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Immobilization of nucleic acid molecules on solid surfaces is the core of 

numerous important technologies in the genomics, disease diagnostics and biosensors 

applications. The architecture and density of immobilized probe molecules depend on 

the type of the solid surface on which they are anchored. Even though many different 

types of surfaces have been studied as substrates for deoxyribonucleic acid (DNA) 

attachment, the development of a new type of substrate, which is reproducible, stable, 

highly controlled and easily transferred to practical applications, is still needed. 

Recent studies have shown that As terminated GaAs-based semiconductors can be 

used as substrates for immobilized DNA layers.  



  

In this study, I aim to understand the attachment of nucleic acid onto the 

surfaces of As-terminated GaAs- based semiconductors and focus on improving the 

“brush-structure”, which is essential for high quality of biochip based on a DNA 

layer. Attachment of 8-base and 100-base thiolated ssDNA layers on arsenic 

terminated GaAs(001) was achieved and characterized.  The covalent bonds between 

the thiolated oligonucleotides with As atoms on the GaAs surface were investigated 

using x-ray photoelectron spectroscopy (XPS), and the surface morphology was 

obtained using atomic force microscopy (AFM) and field emission scanning electron 

microscopy (FESEM). In addition, I studied the effect of DNA length and the 

presence of a good solvent, such as water, on the oligonucleotides on a GaAs surface. 

I also investigated the effects of the thiol-based spacer and electrolyte concentration 

to improve the brush-like structure of the DNA layer. Finally, irradiation effects and 

AlGaAs resonators have been studied for the applications of DNA brush layer on 

GaAs as biosensor during the change of attachment probe DNA and hybridization to 

target DNA.  

 

For the 8-base thiolated ssDNA case, AFM results showed that the layer 

thickness was about ~2.2 nm in dry mode and increased in wet mode. Replacement 

reaction from N- , O- As bonds to S-As bonds was observed with addition of MCH as 

indicated by analysis of XPS spectra. The concentration of electrolyte affected the 

brush like layer structure. In the case of the longer, more flexible DNA with 100 

bases, the DNA molecules strongly interacted with each other and formed big cluster, 

of 330~440nm in diameter on the surface. Finally, for the applications, a high level of 



  

radiation destroyed the brush layer. An AlGaAs resonator used as proof of concept a 

change in mass by a change in resonance frequency under hybridization reaction with 

complementary target DNA. This result shows that the design is viable and has a 

defection of ~25pg. 

   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 
 

 
 
 
 
 
 
 
 

THE ATTACHMENT AND CHARACTERIZATION OF DNA PROBES ON  
GaAs-BASED SEMICONDUCTOR SURFACES 

 
 
 

By 
 
 

JoonHyuk Yang 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2007 
 
 
 
 
 
 
 
 
 
Advisory Committee: 

 
     Professor Mohamad Al-Sheikhly, Chair / Advisor 
     Professor Lourdes Salamanca-Riba, Co-Advisor 
   Professor Emeritus Joseph Silverman 
   Professor Aaron Barkatt 

     Associate Professor Don DeVoe 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
JoonHyuk Yang 

2007 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ii  

Acknowledgements 

I would like to express my gratitude to the many people whose support and 

assistance enabled me to complete my dissertation.  

I’m deeply grateful to Dr. Mohamad Al-Sheikhly for his tremendous 

commitment, support, and patience not only during the dissertation phase but 

throughout the Ph.D. process.  Without his guidance, I could not have achieved such a 

goal.  Special thanks are due to Dr. Lourdes Salamanca-Riba for giving me an 

incredible guidance and for her incessant encouragement.  I sincerely thank Dr. 

Joseph Silverman for providing valuable comments and insights.  I would also like to 

extend my thanks to Dr. Aaron Barkatt and Dr. Don DeVoe for their helpful 

suggestions. 

 I thank my fellow doctoral students for their support throughout my graduate 

school experience, helping me to believe in myself despite difficulties along the way.  

I also wish to thank Mr. Tim Zhang who is an engineer in Microanalysis center for 

many technical supports.   

I would like to express my heartfelt thanks to my parents and brother, without 

their support and encouragement this long journey would not have been possible.   

Finally, I truly thank especially my wife, Soojung Kim, and my daughter, Jennifer, 

for their unconditional love and patience.  



 iii  

Table of Contents 
 
 
Abstract 
Acknowledgements……………………………………..…………………………ii 
List of Tables………………………………………………………………………....v 
List of Figures………………………………………………………………………..vi 
List of Abbreviations………………………………………………………………..xiv 
Chemical Nomenclature……………………………………………………………xv 
Greek Letters……………………………………………………………………….xv 
 
Chapter 1 Introduction and Background………………………………………………1 

1.1 Overview…………………………………………………………………..1 
1.2 Polymer Brush Structure on Planar surface and the Effects of          
      Electrolytes………………………………………………………………..5 

1.2.1 Tethered Neutral Polymer Chains on Planar Surface…………...6 
1.2.2 Tethered Polyelectrolyte Chains on Planar Surface……………14 

1.3 DNA monolayer……………………………………………………….…22 
1.4 Immobilization of DNA onto Solid Surface……………………………..23 

1.4.1 Immobilization of Thiolated DNA on Gold Surface…………..25 
1.4.2 Immobilization of DNA on Siliceous Substrate……………….26 
1.4.3 Immobilization of Thiolated DNA by Covalent Bonding 

                                 on GaAs-based Semiconductors……………………………….26 
1.5 DNA Hybridization………………………………………………………30 
1.6 Applications using Immobilization of DNA……………………………..33 

1.6.1 Electrochemical Biosensor……………………………………..33 
1.6.2 Optical Biosensor……………………………………………....34 
1.6.3 Piezoelectric Biosensor……………………………………...…36 

 
Chapter 2. Experimental Approach…………………………………………………..40 

2.1 Materials and Sample Preparation……………………………………….40 
2.2 Characterization Techniques…………………………………………..…41 

2.2.1 Atomic Force Microscopy (AFM) ………………………….…41 
2.2.2 X-ray Photoelectron Spectroscopy (XPS)…………………..…44 
2.2.3 Field Emission Scanning Electron Microscopy (FESEM)…….48 
2.2.4 Grazing Incidence X-ray Scattering……………………………48 

2.3 Linear Accelerator Facilities …………………………………………….49 
 
Chapter 3. Immobilization of  Oligonucleotides on GaAs Surface………………….51 
            3.1 Introduction………………………………………………………………51 
            3.2 Experimental Materials…………………………………………………..53 
            3.3 Thiol Modification Effects for Immobilization………………………..55 
                        3.3.1 Attachment of Non-Modified DNA …………………………...55 
                        3.3.2 Attachment of Thiol-Modified DNA…………………………..60 
                               3.3.2.1 Sonication Cleaning Method …………………………....61 



 iv  

            3.4 Spacer Effects to Immobilization DNA layer on GaAs Surface…………68 
            3.5 Effects of DNA and MCH Concentration on the Immobilization of a DNA  
                   layer on GaAs Surface ………………………………………………..80 
            3 .6Environmental  Effects  on Immobil izat ion of DNA layer  on  
                  GaAs Surface…………………………………………………………..83 
            3 . 7 E l e c t r o ly t e s  E f f e c t s  o n  I m mo b i l i z a t i o n  o fD N A  l a y e r  o n  
                  GaAs Surface…………………………………………………..88 
            3.8 Attachment of Longer Oligonucleotides on GaAs Surface…………....94 
 
Chapter 4. Toward Development of DNA Biosensors…………………………......102 
            4.1 Introduction…………………………………………………………….102 
            4 .2Effects  of  I r radiat ion on an  Immobil izat ion DNA layer  on     
                  GaAs………………………………………………………….……103 
            4.3 AlGaAs Resonator Biosensor………………………………………..…107 
                      4.3.1 Introduction……………………………………………………107 
                      4.3.2 Detection of Hybridization  Using AlGaAs Resonator………..109 
 
Chapter 5. Discussion and summary……………………………………………….112 
 
Chapter 6. Suggestions for Future Work…………………………………………...118 
 
Appendices………………………………………………………………………….121 
 
References……………………………………………………………………….….128 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 v  

 

List of Tables 
 

 

Table 3.1  Sequences of oligonucleotides…………………………………….....54 

Table 3.2  Statistical measurements of ssDNA probe dimensions……………...93 

Table A.1  Quantification report before (a) and after (b) immersion acetone for 30 

minutes of the immobilized 8-base ssDNA (60 μM) layer on GaAs 

substrate…………………………………………………………….125 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi  

List of Figures 

 

Figure 1.1  Schematic of tethered neutral polymer chains on a planar surface. L is 

the layer thickness, d is the average spacing between neighbor tethered 

points, and ε  is the blob size. The graph shows the monomer 

density, ρ ,  as a function of  distance, z, from the surface.[1]  

                          ………………………………………………….……………..8 

Figure 1.2   Mushroom regime and brush regime of tethered polymer layer.[2]…11  

Figure 1.3  Schematic representation of two different regimes for polyelectrolyte 

brush: (a) osmotic regime (L ≥ ξ) and (b) charged regime ( L <ξ ) 

[2].........................................................................................................16 

Figure 1.4  Logarithm dependence of the osmotic pressure between two identical 

polyelectrolyte brushes plotted as a function of the surface separation 

normalized to the brush height for fully extended chains. The filled 

squares are for no added electrolyte while the open squares are for 

5mM monovalent salt. The pressure is in arbitrary units. The 

parameters used for this calculation are L0 = 104 Å, d = 103  Å, and f = 

1 [2]…………………………………………………………………21.  

Figure 1.5  The schematic of immobilization of probes and hybridization with 

target strands…………………………………………………………24 

Figure 1.6  DNA immobilization (i) silanization of the solid support with APTES, 

(ii) reaction of cross linker (PMPI, MBS, or sulfo-MBS) with APTES 



 vii  

to generate a maleimide surface, and (iii) reaction of thiol end-groups 

on DNA with surface maleimides……………………………………27 

Figure 1.7  (a) simulated STM image of the (2x4) reconstructed surface of As-

terminated GaAs using a filled-state bias of 0.3 V below the valence 

band maximum; (b) structural model of the reconstructed surface; (c) 

height cross-section across a dimer trench along the [1 1 0] 

direction[68]………………………………………………………...29 

Figure 1.8 (a)  The primary structure of DNA (b) complementary hydrogen bonded 

base-pairs as proposed by Watson and Crick(c), (d) a schematic 

representation of DNA hybridization and denaturation.[3] 

                        … … … … … … … … … … … … … … … … … … … … … … … . . . 3 2 

Figure 1.9   The schematic of Surface Plasmon Resonance biosensor [92]……...35 

Figure 1.10  Quartz Crystal Microbalance (QCM) [102]………………………….38 

Figure 1.11  The SEM images of the different types of AlGaAs resonator used in 

th i s  work…………………………………………………….39 

Figure 2.1  Schematic of Atomic Force Microscopy…………………………….42 

Figure 2.2   X-ray excite core shell electrons……………………………………..45 

Figure 2.3  XPS spectrum of C 1s with curve fitting…………………………….47 

Figure 2.4  Top schematic of Major Fictional Components of a Varian Linear 

Electron Beam Accelerator (LINAC) (bottom) at the University of 

M a ry l a n d …… … … … … …… … … … …… … … … …… … …5 0 

Figure 3.1.  Schematic of tightly packed monolayer of long-chain thiol molecules 

on Au (111) [21]……………………………………………………52 



 viii  

Figure 3.2  AFM images of the bare GaAs (001) plane surface (500 nm X 500 nm)  

       and cross-sectional line profile………………………………………57 

Figure 3.3  AFM images of  single stranded DNA without thiol-modification layer 

on GaAs (001) surface imaged in (a) height mode, (b) three 

dimensional view, and  (c) cross-sectional line profile.  The schematic 

in (d) illustrates the preferred orientation of DNA on the GaAs surface.      

                        ………………………………………………………..……….59 

Figure 3.4.  Schematics of immobilized DNA probes and the bonds of the desired 

S-As and undesired O-As and N-As DNA to As of the As-terminated 

GaAs…………………………………………………………………61 

Figure 3.5  AFM images of the immobilized thiolated ssDNA  layer on GaAs 

surface (a) after rinsing with DI water without sonication and (b) after 

ultrasonic cleaning.  Dimensions are 2 X 2 μm, z scale is 5 nm. (c) is 

high resolution scan (500 X 500 nm) of (b) and the cross sectional line 

p r o f i l e … … … … … … … … … … … … … … … … … … … … . . . 6 4 

Figure 3.6.  (a) Force calibration plot in terms of signal deflection as fuction of Z. 

AFM topographic images of (a) a sample containing 60 μmol L-1 DNA 

on As-terminated GaAs (001) substrate.  The scan is 1,000 x 1,000 

nm2 and the vertical scale is 5 nm/div. The scan was obtained from a 

dried sample in tapping mode after removing the DNA from a region 

of 500 nm x 250 nm using the AFM tip in contact mode with a force of 

approximately 70 nN.  (b) three dimensional view, (c) plan view, (d) 

and phase image……………………………………………..65 



 ix  

Figure 3.7  AFM image of plane view and height profiles from the scratched area 

in Figure 3.6(b)............................……………………………………66 

Figure 3.8  Schematics of immobilized DNA probes with the treatment of the 

short length of thiol molecule (spacer) and the bonds of the desired S-

As DNA and spacer to As of the As-terminated GaAs………………70 

Figure 3.9  AFM image of  60 μmol L-1 DNA and post treated mercaptohexanol 

(MCH) on As-terminated GaAs (001) substrate. Plane view (a), three 

dimensional view (b), and line profile (c)……………………………71 

Figure 3.10  Surface morphology of  FESEM images (a) non-modified ssDNA 

layer, (b) thiolated ssDNA layer, and (c) treated MCH of (b) Sample 

………………………………………………………….……………72 

Figure 3.11  (a) X-ray scattering scans for DNA in solution (squares), DNA dry 

with the MCH spacer (triangles) and DNA dry without the MCH 

spacer (circles). The DNA in solution and the DNA dry with the MCH 

spacer were taken using X-ray scattering (perpendicular) whereas the 

DNA dry without the MCH spacer was taken using GIXS (parallel). 

(b) The X-ray scans for the DNA dry with MCH and the DNA in 

solution showing the fits to Lorenztian curves………………………76 

Figure 3.12  Comparison of Oxygen (1s) XPS peaks from the DNA/GaAs samples 

(a) without MCH and (b) with MCH spacer and for Nitrogen (1s) XPS 

peaks from the DNA/GaAs samples (c) without MCH and (d) with 

MCH spacer………………………………………………………….79 



 x  

Figure 3.13  Normalized atomic ratios of S-As, O-As, and N-As from XPS spectra 

as a function of concentration of ssDNA……………………………81 

Figure 3.14  Normalized atomic ratios of S-As, O-As, and N-As from XPS spectra 

as a function of treated concentration of MCH to 60μM DNA 

sample………………………………………………………………..82 

Figure 3.15  Schematic of experimental setup for liquid cell AFM study of ssDNA 

probes layer on GaAs. In the zoom circle area, the schematic 

represents that counterions are localized within the DNA brush layer 

                         ……………………………………………………………………..84 

Figure 3.16  AFM image of  60 μmol L-1 DNA on As-terminated GaAs (001) 

substrate in DI water…………………………………………………85 

Figure 3.17  AFM image of  60 μmol L-1 DNA and post treated mercaptohexanol 

(MCH) on As-terminated GaAs (001) substrate in DI water………...86 

Figure 3.18  AFM tapping mode topography images in (a) DI water and (b) NaCl 

1M solution after attachment 60μM DNA on GaAs substrate. Scan 

area in images is 500 x 500 nm. The cross-sectional analysis of each 

image is also provided……………………………………………….91 

Figure 3.19  AFM tapping mode topography images in air (a) bare GaAs surface, 

(b) before and (c) after soaking in NaCl 0.1 M solution for two hours 

after attachment 200μM DNA. The samples rinsed and sonication with 

deionized water, and dried with Ar gas. Scan area in images is 500 x 

500 nm……………………………………………………………….92 



 xi  

Figure 3.20  AFM image in dry of  60 μmol L-1 100-base DNA on As-terminated  

GaAs (001) substrate. Plane view (10 x10 μm) (a), line profile (b), 

three dimensional view (c), and plane view (2 x 2 μm)……………..97 

Figure 3.21  AFM image in dry of  60 μmol L-1 100-base DNA and post treated 

MCH on As-terminated GaAs (001) substrate. Plane view (2 x 2 μm) 

(a), line profile (b), and plane view (500  x 500 nm)………………..98 

Figure 3.22  Surface morphology of  FESEM images (a) thiolated 100-base ssDNA  

layer (b), and treated MCH of (b) sample………………………...….99 

Figure 3.23  AFM image in dry of  60 μmol L-1 100-base DNA on As-terminated  

GaAs (001) substrate in DI water (a) , and in 1M NaCl solution (b): 

Plane view (2 x 2 μm), (500 x 500 nm) and line profile for each image 

are shown in the middle and bottom of the figure, respectively. 

………………………………………………………………………100 

Figure 3.24  X-ray scattering scans for 100 bases ssDNA (60μM) on GaAs. 

………………………………………………………….……..101 

Figure 4.1  Formula of the C(5)-C(5) linked dihyrodimer of thymidine……….102 

Figure 4.2  AFM images of immobilized ssDNA layer on GaAs after irradiation 

by e-beam with 47MGy dose level. (a) is scanned in air and (b) is 

scanned in water. Dimensions are 500 X 500 nm, z scale is 5 nm…106 

Figure 4.3  Cross-sectional schematic of an AlGaAs microresonator……….....110 

Figure 4.4  (a) is the AFM plane view image of immobilized ssDNA layer on 

Al0.3Ga0.7As surface. (b) image is after hybridization of (a) sample 



 xii  

with complementary DNA (cDNA). Dimensions are 500 X 500 nm, z 

scale is 20 nm……………………………………………………….111 

Figure 4.5  SEM images and frequency shift (Δf=16.773 kHz) before (a) and after 

(b) hybridization with complementary DNA on disk type of AlGaAs 

resonator. The SEM images have schematics of the ssDNA (a) and 

hybridization DNA (b) on the resonator……………………………112 

Figure A.1  High resolution XPS As 3d spectrum before (a) and after (b) 

immersion in  acetone for 30 minutes of the immobilized 8-base 

ssDNA layer on GaAs substrate. No appreciable change is observed 

…………………………………………………………….. .121 

Figure A.2  High resolution XPS S 2p spectrum before (a) and after (b) immersion 

acetone for 30 minutes of the immobilized 8-base ssDNA  (60 μM) 

layer on GaAs substrate. No appreciable change is observed……...122  

Figure A.3  High resolution XPS S 2p spectrum before (a) and after (b) immersion 

acetone for 30 minutes of the immobilized 8-base ssDNA  (60 μM) 

layer on GaAs substrate. Some change is observed in the relative 

intensities of the high and low energy peaks……………………….123 

Figure A.4  High resolution XPS O 1s spectrum before (a) and after (b) immersion 

acetone for 30 minutes of the immobilized 8-base ssDNA (60 μM) 

layer on GaAs substrate. A new peak is observed at ~ 536 eV after 

immersion in acetone. This peak is probably due to C=O bond of 

acetone……………………………………………………………...124 



 xiii  

Figure B.1  Schematic representation of the procedure followed for preparing edge 

specimens………………………………………………………...…126 

Figure B.2  Heigh resolution TEM image of the immobilized 8-base ssDNA (60 

μM) layer on GaAs substrate. Diffraction pattern shows extra spot 

besides the GaAs spots. The Fast Fourier Transforms show two 

different line spascing……………………………………………127 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xiv  

 

 

List of Abbreviations 
 
 

DNA                      Deoxyribonucleic acid  

ssDNA                   Single stranded deoxyribonucleic acid 

MCH                     Mercaptohexanol 

DTT                      Dithiothreitol 

DI water                De-ionized water 

PBS                       Phosphate buffer solution 

A                           Adenine 

G                           Guanine 

C                           Cytosine 

T                            Thymine 

AFM                     Atomic force microscopy 

XPS                       X-ray photoelectron spectroscopy 

FESEM                 Field emission scanning electron microscopy 

GIXS                    Grazing incident X-ray scattering 

LINAC                  Electron liner accelerator 

 

 

 

 
 
 



 xv  

 
 

Chemical Nomenclature 
 
 

GaAs                               Gallium arsenide 

AlGaAs                           Aluminum gallium arsenide 

HCl                                 Hydrochloric acid 

HS(CH2)6OH                  6-Mercapto-1-hexanol 

HS(CH2)nX                     Long chain thiols (X is the end group) 

KCl                                 Potassium chloride 

KH2PO4                          Potassium phosphate 

Ar                                   Argon gas 

Na2HPO4                        Sodium phosphate dibasic 

NaCl                               Sodium chloride 

 

 

 

Greek Letters 
 
 

2θ                                   Scattering angle 

α                                    Grazing angle 

χ                                    Chi- angle  

  ϕ                                    Rotation angle about surface normal  

λ                                    X-ray wavelength 

ρ                                    Density 



 1 
 

Chapter 1  

1. Introduction and Background 

 

1.1 Overview 

 

Immobilization of DNA probes on a variety of semiconductor surfaces has 

become an important area of research over the past few years due to its potential 

application in the fields of molecular electronics[4-6] and future computer 

architectures and massive memories[7]. The fundamental understanding of the 

chemical interactions and properties of dry-wet interfaces has become a key scientific 

issue in nanoscience. Hence, the understanding of the attachment of organic 

molecules to inorganic semiconductor surfaces has relevance to the future 

development of nanoelectronics and related technologies. The initial attachment of 

organic molecules to surfaces was reported in 1992[8, 9], and the self-assembly of 

DNA bases on crystalline gold in an ordered two dimensional lattice was achieved in 

1994[10, 11] and has been a key step in this technology. The observed two-

dimensional order is a superlattice that is enhanced whenever the regular structure of 

the absorbed molecules corresponds to the structure of the underlying gold. The self-

assembly process was described as consisting of three stages: (1) the initial 

appearance of random clusters of ordered molecules at the gold reconstruction sites, 

(2) occupation of all reconstruction sites by clusters, and (3) rearrangement of the 

molecules to cover the remaining gold surface with a 2-D lattice[10]. The use of 

alkanethiol self-assembly methods to fabricate DNA modified gold surfaces has also 
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been previously reported[12-16]. Attempts have also been made to attach DNA on 

oxidized silicon and silicon surfaces.[17-20]  

 

The attachment of single stranded DNA (ssDNA) to a semiconductor is a vital 

step towards the development of a biochip. We have recently started to investigate the 

surface attachment chemistry and physics of DNA on GaAs[21]. Our group had 

previous demonstrated, the chemical attachment of the thiol-derivatized DNA 

monolayers on arsenic terminated GaAs (001). The sulfur-As-based covalent bonds 

of the thiolated oligonucleotides on the arsenic terminated GaAs (001) were observed 

using x-ray photoelectron spectroscopy (XPS). The purpose of this work was to 

investigate the self-assembly of thiol-derivatized single-stranded DNA 

oligonucleotides (probes) on As terminated GaAs substrate. Our group also 

demonstrated that both the S-H group in the thiolated single-strand DNA, and the N-

H group in the DNA bases are functional groups that can be utilized to anchor the 

DNA molecule, or other biological molecules, on the arsenic-terminated GaAs 

surface. We have performed additional experiments on the attachment using Grazing 

Incidence X-ray Scattering (GIXS) on the 8 base pair DNA to determine the 

orientation of the strands with respect to the GaAs surface. These results provide a 

solid foundation for the understanding of the attachment and surface chemistry and 

physics of DNA probes on GaAs.  

 

Several studies have used organic molecules terminated with a thiol group to 

enhance the attachment on the surfaces. The formation of long chain ω-terminated 
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dialkyldisulfide molecules on a gold substrate was first reported in 1983.[22] Alkyl 

thiols resulted in formation of monolayers on gold.[23] Bain and Whitesides 

presented a model system consisting of long-chain thiols, HS(CH2)nX (where X is an 

end group such as NH2, COOH, or OH), that adsorb from a solution onto gold and 

form densely packed, oriented monolayers.[24-26] The bonding of the sulfur head 

group to the gold substrate is in the form of a metal thiolate, which is a very strong 

bond (~44 kcal/mol) and hence the resulting films are quite stable and suitable for 

surface attachment of functional groups. The DNA molecule can be functionalized 

with a thiol (S-H) or disulfide (S-S) group at the 3′ or 5′ ends. Upon immersion of 

clean gold surfaces in a solution of thiol derivatized oligonucleotides, the sulfur 

adsorbs on the gold forming a single layer of molecules, where the hydrocarbon is 

now replaced with a single stranded DNA (ssDNA) molecule.  

 

Ratner and co-workers at the University of Washington studied the self-

assembly of purines and pyrimidines bases from solution on crystalline gold surface.  

They concluded that mercaptopurine, purine, adenine, thymine, and cytosine self-

assemble on crystalline gold in an ordered two-dimensional lattice similar to that in 

the bulk crystal. This study showed the possibility of attaching DNA to metal surfaces 

in an ordered monolayer. Tarlov and coworkers at the National Institute of Standards 

and Technology (NIST) also focused on the surface characterization of thiol-

derivatized ssDNA monolayer immobilized on gold surfaces with mercaptohexanol 

(MCH)[27, 28]. The MCH spacer prevents the nonspecific attachment of DNA to the 

surface (through the C=O and NH groups of the bases) and enhances the specific 



 4 
 

attachment (through the thiolated group). The specific attachment via the thiol group 

to the gold surface enhances the vertical alignment.  

 

In this work, I performed a series of investigations which target the 

understanding of the mechanisms involved in the attachment of ssDNA oilgomers on 

GaAs, and related compound semiconductor surfaces such as AlGaAs, InGaAs, and 

InAlAs. In particular the selective attachment of DNA to GaAs-based semiconductors 

was studied. I investigated the mechanisms of attachment via a complete 

understanding of the interface chemistry and physics between the DNA molecules 

and the semiconductor substrate surface. Preliminary studies of the application of 

immobilized DNA on GaAs for radiation detection and for hybridization detection 

using AlGaAs were performed using DNA probes attached to GaAs and target 

molecules in aqueous media.  

 

Hybridization is the hydrogen-bonding interaction between two DNA strands 

that obey Watson-Crick complementary rules[3]. DNA strands can be very long, 

thread-like polynucleotides, made up of a large number of deoxyribonucleotides. The 

purine and pyrimidine bases of DNA carry genetic information, whereas the sugar 

and phosphate groups perform a structural role. The variable part of DNA is the 

sequence of its bases. DNA contains four kinds of bases, two purines and two 

pyrimidines. The two purines are adenine (A) and guanine (G). The two pyrimidines 

are thymine (T) and cytosine (C). A double strand helix will be formed through 

hydrogen bonding between the bases of two single strands. The hydrogen bonding 
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occurs between A and T, and G and C to produce complementary base pairs when 

two single strands form one double helix. This process is called annealing or 

hybridization. Ligation is the process in which the free 5’ end of one strand reacts 

with the free 3’ end of another strand to create a longer chain. Although the structure 

of DNA helices is extremely rigid, it can be changed under certain conditions. Several 

nucleic acid based technologies (e.g. genome arrays, Northern and Southern blotting 

analytical techniques, etc.) utilize hydrogen bond hybridization between 

complementary strands. Also, enzyme-based extensions of nucleic acid hybridization 

are widespread e.g., polymerase chain reaction, PCR and applications such as DNA-

based computing. Hence, understanding the fundamental mechanisms of both the 

attachment is a vital step to building a chip which can be used in all these advanced 

Biotechnology applications.  

 

 

1.2  Polymer Brush Structure on Planar surface, and the Effects of 

Electrolytes  

 

DNA is a polyelectrolyte due to a negative charge in the phosphate backbone.  

To understand the properties of monolayers of immobilized DNA, although DNA 

layer structure is a polyelectrolyte brush, it is necessary to review the theoretical 

background of tethered neutral polymer chains. 
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1.2.1 Tethered Neutral Polymer Chains on Planar Surface  

 

Tethered neutral polymer chains have been studied for a long time and are 

well understood compared to the polyelectrolyte case. A number of studies on the 

structure of tethered neutral polymer chains on planar surfaces have been carried out 

using various theoretical means and computer simulations, such as scaling theories, 

self consistent field (SCF) theory, molecular dynamics, and Monte Carlo simulations. 

Although a tethered polyelectrolyte chain is more complex, the same concepts for 

tethered neutral polymer chain can be applied to polyelectrolyte system. Alexander 

demonstrated scaling theories that determine the structure of a grafted polymer chains 

in a good solvent with the assumption that the polymer chains are uniformly stretched 

and the segment concentration is constant through the layer. The scaling theories 

indicate that tethered neutral polymer chains on a surface are subjected to a 

deformation from equilibrium configurations. The deformation is the outcome of the 

competition between excluded volume interactions and the entropic elastic energy of 

the system. Uniform stretching of the chains is a basic assumption for the scaling 

theory. Another basic assumption is that the monomer density is constant up to a 

height ( L ) from the surface. Figure 1.1 shows a schematic of tethered neutral 

polymer chains on a planar surface used for scaling theory [1].  
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Under this condition, the volume fraction of a segment is 

 

                                       Ф = N a3 / (Ld2)                                       (1.1) 

   

d : Average distance between polymer grafting points 

L: Equilibrium brush height 

N: Number of repeat units 

a: Statistical segment length 
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Figure 1.1 Schematic of tethered neutral polymer chains on a planar surface. L is the 

layer thickness, d is the average spacing between neighbor tethered points, and ε  is 

the blob size. The graph shows the monomer density, ρ ,  as a function of  distance, z, 

from the surface.[1]  
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The free energy per chain, Fchain, in the brush is the sum of osmotic excluded 

volume interactions, Fos, and the elastic stretching energy of Gaussian chains, Fel, that 

measures the entropic penalty of chain stretching :  

 

                                                    (1.2) 

 

Where υ is a dimensionless excluded volume parameters( υ → 1 for a good 

solvent), Rg0
2 is the radius of gyration (~Na2), d is the average distance between 

polymer tethering sites, L is the equilibrium layer height, and Φ is volume fraction of 

segments(~Na3/Ld2) . Minimizing the free energy Fchain with respect to L leads to the 

equlibrium coverage for overlap, L is  
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d
aNaL ν   ~ 3/1σNa                         (1.3) 

 

where σ is the ( number of chains per unit area) σ = a2/d2. For the polymer 

chain in a good solvent, the radius of gyration of a polymer coil Rg is   Rg ~ aN3/5.  

The results of L (~N) and Rg(~N3/5) indicate that the tethered chains are highly 

stretched compared to the untethered case.  

 

Gennes demonstrated two regimes based on the tethering density, so-called 

mushroom and brush regime [29]. The mushroom regime refers to the limit of low σ, 

where the chains do not overlap and Rg (~aN3/5) less than the distance (d) (see Figure 
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1.2). Thus, Rg < d leads to σ < N-6/5. In the brush regime which corresponds to  

overlap between stretched chains, σ is lager than N-6/5.(see Fig 1.2) 

 

In the mushroom regime, the polymer coils have an equilibrium height L ≈  

Rg. In the brush regime, the equilibrium brush height (L) can be calculated by the 

number of blobs per chain and the blob size. 

 

               L = (# blobs per chain)(blob size) = ( N/g ) ζ =  ( N/g ) d = Naσ1/3     (1.4) 

 

Where ζ  is the correlation length, or the blob size, g is the number of 

monomers per blob((d/a)5/3), and N/g is the number of blobs. Even though 

correlations are included in the calculation, the brush height (L) is still the same as for 

the case of poor solvent. When the polymer is contained between two plates separated 

by a distance less than twice the brush thickness ( D ≤  2L ), compression forces 

apply on the chains. Gennes derived the equation for the surface pressure ( Π  ) as 

function of the separation distance ( D ).[29]  

For D ≤  2L, 
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For low surface coverage, mushroom regime, the chains do not overlap 

sufficiently to cause stretching.  The interaction between the chains confined to two 
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Rg

Mushroom σ < N-6/5

L

d

Brush σ > N-6/5 

plates will increase when the separation distance is less a twice the extension of the 

chains and the chains are under compression because of their confinement.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2  Mushroom regime and brush regime of tethered polymer layer.[2] 
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To compare the scaling assumptions, self consistent field (SCF) theory [1] 

was applied to considere that the monomer density is not uniform along the polymer 

layer thickness. This assumption is realistic and describe in the intrinsic layer 

structure. If the chains strongly stretch, the chains fluctuate a little bit near the most 

favorable configuration which minimizes the energy of the system. The mean field 

energy of a strongly stretched layer can be calculated by 
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Where ϑ  is a concentration dependent materials parameter with dimensions of 

inverse length squared and  v  is the excluded volume parameter. The brush thickness 

at equilibrium is obtained as: 
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Therefore, in SCF theory the brush height has the same dependence on N  and d as 

obtained by scaling theory, even though the numerical coefficient is slightly lager. 

The monomer density in the SCF theory can be determined by the distance z  

between the tethered polymer molecules on the surface in a good solvent as: 
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This density value is vaild only for very large N  and moderate σ  where 

binary interactions dominate. Unlike the scaling theory, the specific points of the free 

ends of the chains are at the outer boundary of the brush in SCF theory. The SCF 

approach revealed that the end chain of a has the maximum probability of being 

located at a distance of around 0.7 L  away from the flat substrate surface, and the free 

ends of the chains are distributed  throughout the entire brush layer. 

 

In contrast to a good solvent environment, the conditions for layers in a poor 

solvent have not been investigated in much detail. In a poor solvent, the polymer 

segments tend to attract each other. In a poor solvent, the chains try to isolate from 

the solvent, by coiling of the polymer coil, i.e., the radius shrinks below gR . The 

coiling is the result of the attraction by van der Waals or the salvation forces within 

the polymer. The coils, however, do not collapse completely because of the 

monomer-monomer repulsive that still dominates for smaller radius. When the 

distance between two faced flat surfaces containing tethered chains is reduced in a 

poor solvent, steric overlap repulsions become dominate. Under poor solvent 

conditions, Pincus derived the forces between planar polymer brush surfaces. The 

forces are attractive in long range and repulsive in short range. The polymer chains 

can forms bridges between two faced surfaces depending on the properties of 
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interaction between the polymer and the surfaces. The net interaction is the sum of 

segment-segment forces and segment-surface interactions and depends on the 

probability for the segments to approach to binding sites on the opposite surface. A 

strong bridging formation is the result of the strong attraction between the polymer 

and the surface which exceeds van der Waals attraction within the polymer as the 

thickness of the brush increases beyond polymer length, the bridging attraction is 

reduced.  

 

1.2.2 Tethered Polyelectrolyte Chains on Planar Surface 

 

A polyelectrolyte brush is an end-grafted charged polymer attached to a 

surface. Unlike the neutral polymer brush case, due to the long range electrostatic 

interactions, the polyelectrolyte brush has more complexity. These electrostatic 

interactions between charged polymers are not fully understood yet and the 

correlation of the chains is difficult to explain because of the complexity of the 

system. The configuration of the charged layers depends on the ionic strength of the 

solution and the degree of ionization of charged group along the polymer backbone as 

well as the molecular weight, tethering density, and solvent quality found for neutral 

brush system. In a tethered polyelectrolyte brush system, the structure of the brush 

depends not only on the entropic and elastic interaction but also the degree of ionicity 

of the polymer (f) and the concentration of salt (Cs) in solution. Using an energy 

balance technique, Pincus described the structure of polyelectrolyte chains as a 

function of counterion osmotic pressure and the chain elasticity with different 
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grafting densities and charge density [2]. He studied two cases, one without added 

salt ions and one with added salt.  

    

Without Added  Salt 

Pincus assumed that inside the blob, which is the repeated unit along the 

polymer chain, of the dimension of the chain scales in a similar way to neutral 

polymers. He also disregarded local chain stiffness due to of local electrostatic 

interactions. Another basic assumption is a uniform monomer concentration 

throughout the brush thickness ( L ) like for neutral polymer brush. Pincus divided 

two possible different behavior regimes dominated by electrostatic interaction for 

tethered polyelectrolyte brush in the absence of salt in the solution. The counterion 

density ( cρ ) decreases as a power law of the distance from the surface. The 

counterions are limited near the surface over the Gouy-Chapman length ξ  

(neutralization length): 

 

                                                 
Bclπρ

ξ
2

1
=                                         (1.9) 

 

Where Bl  is Bjerrum length. 

The neutralization length ξ is the distance over which the charge of the counterion is 

neutralized. Then two possible regimes are identified: the L >ξ  regime, and L <ξ  

regime(see Figure 1.3). where, L is the brush height.  
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L < ξ regime

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Schematic representation of two different regimes for polyelectrolyte 

brush: (a) osmotic regime (L ≥ ξ) and (b) charged regime ( L <ξ ) [2] . 
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In the L ≥ ξ  regime, called osmotic regime, for relatively dense and strongly 

charged polymer brushes, the mobile counterions are distributed within the brush 

height, and there is  balance between the swelling effect of counterion entropy and the 

chain elasticity. The osmotic pressure produced by the counterions trapped inside the 

brush would make the brush swell. The thickness of the brush does not relate to the 

strength of the electrostatic interaction since the stretching of the chain is only due to 

counterion pressure in this regime. The counterion osmotic pressure P is P ≈  fcT.  

Where f is the fixed fraction of counterions, c is the counterion concentration, and T 

is the temperature. Thus, the brush height L  is given by  

               

                                                 NafL 2/1≅                                          (1.10) 

 

L  is proportional to the chain length N (number of repeating units) as in the 

case of neutral brush, and a  is characteristic dimension of each repeating unit.  In this 

case, L  does not depend on the tethering density σ and the chains are strongly 

stretched for limited charging.  

 

In the L <ξ  regime, called charged regime, for relatively low degree of 

ionization, the counterions distribute beyond the outer ends of the brush. This system 

is not locally charge as the charge in the brush is balanced by the cloud of mobile 

counterions. The pressure on the stretching chains applies only partially to the chains. 

In this case, both electrostatic interaction and entropic contribution determine the 

height of the brush.   In this regime, the brush is similar to a simple charged surface 
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with charge density, fN / d2. The neutralization length ξ is d2/2πlNf, where l is the 

Bjerrum length. The counterion osmotic pressure, P , is reduced by the fraction of 

remaining within the brush region, L /ξ. Thus, P  is given by  

  

                                       2/)/( dkLTLfcP ≅≅ ξ                             (1.11) 

Thus,  

                                              23 )/(2 dfalNL π≅                              (1.12) 

 

This shows the unusual 3N  dependence of the brush height as well as its dependence 

on the tethering density σ. 

 

Similar to the case of neutral polymer chains on planar surface case, we take 

into account two different cases (D ≤  2L , and D > 2L)  about surface pressure when 

two opposing surfaces with tethered polyelectrolytes approach each other. When the 

distance is lager than twice of the thickness, the brush behaves as a highly charged 

surface. The surface pressure can be calculated by disjoining pressure. 

 

                                                   2

2)(
Dl

kTDP
Bπ

≈                                      (1.13) 

 

k : Boltzman constant, T  :  temperature, Bl  :  Bjerrum length 

When the two surfaces are close enough, the brush is under compression by the 

counterion osmotic pressure. 
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In this case, the osmotic pressure is higher than for a neutral polymer brush with the 

same condition of grafting density and molecular weight. 

 

With Added Salt 

Adding monovalent, completely ionized salt gives rise to screening of the 

electrostatic interactions within the polymer. The screening is related to a Debye 

screening length 1−
Sk  given by, 

 

                                                  avSBS NClk π81 =−                                        (1.15) 

 

Where SC  is the salt concentration, and avN  is Avagadro’s number. 

The structure of the polyelectrolyte brush is affected by the salt only when the 

concentration of salt is high enough such that the corresponding Debye screening 

length 1−
Sk  is comparable to the neutralization length ξ.  When 1−

Sk  > ξ , the a 

screening limit, the structure of the polyelectrolyte brush can be determined similarly 

to the L >ξ  regime described above. When the salt concentration is increased 1−
Sk  < 

ξ, the Debye screening reduces the counterion osmotic pressure, causing the 

polyelectrolyte chains to stretch. Witten and Pincus studied this case. They have 

proposed the osmotic pressure of a semi-dilute polyelectrolyte solution to be 
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                                           2
0 )/( kkcTP ≅                                 (1.16) 

 

Where 0k  : the Debye length associated with the counterions alone ( 22
0

2
skkk += ) 

By balancing osmotic pressure and entropy loss of the polymer, one can obtain: 
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This result indicates that the polyelectrolyte brush shrinks with increasing salt 

concentration with a relatively weak power law 3/1−
SC  (see Figure 1.4). Hariharan 

extended Pincus model to obtain the height of the polyelectrolyte brush for the case 

when a less sensitive dependence of  on the concentration of added salt ( L 6/1−≈ SC ) 

[30, 31].  

 

In summary, Pincus predicted that for an electrolyte in a solvent containing 

salt the counterions are mostly located in the polyelectrolyte brush layer. Therefore, 

the thickness of the brush depends on the balance of the osmotic pressure of the 

counterions within the layer and the configurational elasticity of the chains. At no or 

low ionic strength, the polyelectrolyte brush is nearly stretched to almost full length. 

In contrast, when a large concentration of salt is added, the brush collapses because 
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the electrostatic interactions are apparently insufficient and screened to maintain an 

extended roadlike conformation.  

 

 

 

 

 

Figure 1.4 Logarithm dependence of the osmotic pressure between two identical 

polyelectrolyte brushes plotted as a function of the surface separation normalized to 

the brush height for fully extended chains. The filled squares are for no added 

electrolyte while the open squares are for 5mM monovalent salt. The pressure is in 

arbitrary units. The parameters used for this calculation are L0 = 104 Å, d = 103  Å, 

and f = 1 [2].  
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1.3 DNA monolayer 

 

DNA monolayers are of great interest both for fundamental research and for 

application in sensing, medical diagnostics, and bioengineering applications where 

specific recognition is required. Hybridization is the binding of two complementary 

DNA strands together with A:T and G:C pairing. This specific binding allows 

identification and detection of un-known single strand DNA (target) by binding to 

known sequence DNA (probe) immobilized on a surface (see Figure 1.5). For this 

process, first, probe DNA is immobilized on the surface. The common candidate 

substrate could be either gold, glass slide, silica, or silicon wafer. Second, the 

substrate together with the immobilized probe DNA is immersed or dropped in the 

solution containing the target ssDNA. Hybridization will occur only if the 

complementary strand is present in the solution. This system needs to give some kind 

of detectable signal to indicate that hybridization has taken place. The detectable 

signal could be electrical or optic. Fluorescent tags on target DNA are usually used 

for detection of successful hybridization. However, the fluorescent molecules which 

are incorporated into the probe layer may interfere with hybridization. Therefore, 

different detection system is recently being considered from other type of signal, such 

as, electrical signal due to the change of mass upon hybridization.  

 

For better sensing, it is necessary to understand the physical and chemical 

properties of the DNA monolayer and to develop new substrates that could make a 

more sensitive biochip. Another possible advantage is the reusability of the substrate. 
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This possibility has increased the interest in the bonding stability between probe DNA 

and the substrates.   

 

1.4 Immobilization of DNA onto Solid Surface 

 

Adsorption is the simplest way for immobilization of DNA on a solid surface 

because it does not need pretreatments or modifications. The substrate could be nylon 

membranes, polymer films, carbon electrodes or metal oxide surfaces. For example, 

Nylon membranes can bind to both DNA and RNA [32-34]. The palladium oxide 

surface also could bind nucleic acids through palladium-nitrogen or palladium -

hydrogen bonds [35-37]. However, this adsorption method has poor efficient binding 

with short length nucleic acids, is time consuming and has poor sensitivity. Also, 

probe DNA might desorbs from the surface during the hybridization or washing 

process. Because the binding is weak, the main disadvantage of the binding is that 

individual probe molecules may attach to the surface at several points, so that the 

possibility of hybridization is dramatically reduced. Other case of immobilization by 

non covalent bonding is based on using a protein layer, such as, avidin and 

streptavidian which bind very tightly to biotin [38-40]. The biotinlylated DNA binds 

with a relatively high strength to an avidin/streptavidin layer on the substrate [41]. 

The formation of a avidin/streptavidin layer is hard to control and the protein also can 

play a role as a site for non-specific recognition.  
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Figure 1.5 Schematic of immobilization of probes and hybridization with target 

strands 
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Covalent binding of the DNA probe to a substrate surface has recently been 

the focus for oligonucleotide immobilization because it can enhance stability of the 

probe and increase the surface density of the immobilized probes. A DNA biosensor 

that uses covalent attachment method can be easily refreshed remove the probe and 

reuse. One example is in situ synthesis of the oligonucleotide directly on a solid 

substrate. The photoresist techniques can allow to synthesize more than 90,000 

different oligonucleotides. This method, however, has two big drawbacks which are: 

limitation of probe length synthesized and a high possibility of making faulty 

sequences during the processing. Another method for immobilization is by applying 

pre-synthesized oligonucleotides which have functionalized groups, such as, amine, 

carboxyl, carbonyl, and thiol groups at the 3’ or 5’ end.  Immobilization of a DNA 

layer can be achieved on substrates, such as, siliceous, gold and GaAs-based 

semiconductors. 

 

1.4.1 Immobilization of Thiolated DNA on Gold Surface 

 

Gold substrates for immobilization of DNA have been used because of its 

electrochemical properties of gold [16, 42-44]. Single stranded DNA with modified 

thiol- endgroup is attached on gold metal surface directly by the gold-thiol bond. 

Another approach for good quality of DNA monolayer with gold substrate is using 

alkanethiol molecule, such as mercaptohexanol [13, 27, 45-47]. Mercaptohexanol 
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serves to block physical adsorption of the oilgonucleotide to the metal surface to 

ensure specific attachment via the thiol end group.  

 

1.4.2 Immobilization of DNA on Siliceous Substrate 

 

Glass and silicon are other common substrates for immobilization of nucleic 

acids [48-50]. Silanol (-Si-OH) groups are the active sites used to bond nucleic acid 

to [17, 18, 48, 51-60]silicon and silica substrates . Siliceous substrates have also been 

researched with other modified surface. Jin L. and coworkers have investigated 

aminopropyltriethoxysilane (APTES) treated silica with heterobifunctional 

crosslinkers  p-maleimidophenylisocyanate (PMPI) for immobilization of thiolated 

ssDNA [61]. This study showed that the probes on the PMPI activated surface are 

able to bind complementary strands from solution at yields of up to 40%. Figure 1.6 

shows the procedure of pretreatment and immobilization. 

 

1.4.3 Immobilization of Thiolated DNA by Covalent Bonding on 

GaAs-based Semicnductors 

 

Miniaturization and integration of the detecting system into the sensor is a 

very important factor for applications, in the field of biosensors. Therefore, the use of 

other substrates, which are able to be fabricated into a micro or nano-scale chip, is 

another area of research in this field. Metal based substrates, such as, gold are not 

suitable for the fabrication of devices semiconductor technology. In the Si-based 
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semiconductor, complex layers on Si substrate are not desirable for the design of 

DNA chip. 

 

 

 

 

 

 

 

Figure 1.6 DNA immobilization (i) silanization of the solid support with APTES, (ii) 

reaction of cross linker (PMPI, MBS, or sulfo-MBS) with APTES to generate a 

maleimide surface, and (iii) reaction of thiol end-groups on DNA with surface 

maleimides [61].  
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Gallium arsenide (GaAs) is a semiconductor with direct band-gap (Eg = 

1.42eV) and unique crystal structure. Also, GaAs is a desirable material for 

optoelectron VLSI circuits, sensors and systems requiring emitters such as lasers or 

light emitting diodes(LED).  In addition, GaAs is a promising material for the 

fabrication of intergrated sensor using its piezoelectric properties [62-64].  Figure 1.7 

shows the As-rich (2 X 4) reconstructed surface of GaAs (001).  Unlike Si-based 

semiconductors, As-terminated GaAs attaches to the thiolated-DNA directly through 

As-S covalent bonds without need of an oxide or gold layer. The attachment of DNA 

on Si requires predeposition an oxide layer that causes the DNA molecules to lay-

down on the surface reducing its efficacy for hybridization in a biochip. Another 

crucial advantage is that GaAs-based semiconductors have a much higher resonant 

frequency over silicon. This is important for the fabrication of microresonators that 

were used in this work for detection of hybridization with very high sensitivity, 

 

L. M. et al demonstrated that thiolated single stranded DNA can be 

successfully covalently anchored to GaAs and utilized X-ray photoelectron 

spectroscopy to show evidence that the thiol group can be used to form the 

attachment on an As-terminated surface [21, 65-67]. 
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(a) 

(b) (c)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 (a) simulated STM image of the (2x4) reconstructed surface of As-

terminated GaAs using a filled-state bias of 0.3 V below the valence band maximum; 

(b) structural model of the reconstructed surface; (c) height cross-section across a 

dimer trench along the [1 1 0] direction [68] . 
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1.5 DNA Hybridization  

 

Deoxyribonucleic acid (DNA) is a polymer composed of 5-carbon 

sugar(deoxyribose), a nitrogen containing base and a phosphate group. The sugar in 

the DNA binds the hydrophilic phosphate group. On the other hand, bases are 

hydrophobic. The bases are divided by their chemical structure into purines, 

composed of adenine (A) and guanine (G), and pyrimidines, composed of thymine 

(T) and cytosine (C). 

 

DNA hybridization is a reaction between two complementary single strands of 

DNA that bind with each other through hydrogen bonding (see Figure 1.8). Only very 

specific bonds between a purin and a pyrimidine base pair can form upon 

hybridization. A-T and G-C are the only possible purin-pyrimidine base pairs because 

only these base pairs have the right position for bonding to occur in the double helix 

at the right hydrogen bonding distance. Once hybridization has taken place, the 

pyrimidine-pyrimidine ring pairs would be too far for the formation of double helix 

and the purine-purine ring pairs  would be too big. The hydrophilic phosphates are 

located in the outer side of the helix structure while the inner region is occupied by 

the hydrophobic bases. The hybridization efficiency and stability of the hybrid 

depend on several factors, such as, salt concentration, length of target DNA, 

composition of DNA, mismatch percentage, and temperature. Monovalent cations , 

manly  Na+, electrostatically interact with the phosphate group in the nucleic acid. 

The concentration of the cations in the hybridization buffer affects the rate of 
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hybridization because of the electrostatic interaction between probes and targets. If 

the concentration of probes on the surface of a substrate is lager than the 

concentration of target, the diffusion of target controls the hybridization rate. 

Consequently, short targets would have a faster hybridization rate. The hybridization 

rate increases with increasing temperature. The melting temperature (Tm) is defined 

as the temperature at which 50 % of the oligos are hybridized. Tm is given by 

             

                Tm = 81.5°C  + 16.6(log10[4]) + 0.41(%G+C) – 600/L                  (1.19) 

 

Where, M is the molal concentration of a monovalent cation, (%G+C) is the 

percentage of G and   C nucleotides in the DNA and L is the length of the duplex in 

base pairs. 
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 (a)                                                                                 (b)                    Bases 

(c)                                                                                   (d) 

 

 

Figure 1.8 (a) The primary structure of DNA (b) complementary hydrogen bonded 

base-pairs as proposed by Watson and Crick(c), (d) a schematic representation of 

DNA hybridization and denaturation.[3] 
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1.6 Applications using Immobilization of DNA 

 

A good design for a biosensor should have high specificity and sensitivity for 

the purpose of analyzing specific targets. The signal response should be accurate, 

rapid, and precise. The biosensor system should also be small, cheap, and preferably 

reusable. A small amount of sample needed is preferred for analysis as long as it is 

enough to obtain an effective signal within a short response time. Other requirements 

of this type of biosensor are that it uses direct, i.e., label free, methods to avoid any 

pretreatment and unwanted reaction of sample with the attached labels, and to allow 

for in situ monitoring. There are several sensors that satisfy these requirements; 

electrochemical, optical, and piezoelectric.  

 

1.6.1 Electrochemical Biosensor 

 

Electrochemical sensors are based on voltametric, potentiometric, or 

electrogenerated  measurements [16, 69-73]. In voltametric measurement, 

hybridization between probe and target DNA can be detected by measuring changes 

in the peak current potential of the redox active molecule bound to the probe DNA.  

Potentiometric biosensors, usually made from silicon type capacitors, detect pH 

changes at the surface by using light emitting diodes [74-76]. Electrogenerated 

chemiluminescence is based on a chemiluminescence reaction initiated by an 

electrical stimulus. 
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1.6.2 Optical Biosensor 

 

For detection of DNA hybridization, many of the optical biosensors use 

evanescent wave technology. The evanescent wave is an electromagnetic wave 

produced when light is reflected within the sensor surface. The sensor uses an optical 

fiber cable to transmit the excitation light to a fluorescent label and to receive the 

emission light. Probes are immobilized on the fiber optic cable. Hybridization is 

detected with a selectable dye on the target DNA [77-84]. 

 

Another similar method uses surface Plasmon resonance (SPR) phenomenon 

(see Figure 1.9) [85-92]. SPR occurs under very specific conditions for which the free 

electron cloud within a metal film is coupled and resonate with the evanescent wave 

of the incident light. The change of thickness on the surface due to hybridization can 

tilt the incident SPR angle. From the change of SPR angle, the degree of 

hybridization is determined. 
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Figure 1.9 Schematic of Surface Plasmon Resonance biosensor [92]. 
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1.6.3 Piezoelectric Biosensor 

 

Piezoelectric biosensors have attracted attention because of their high 

sensitivity, accuracy, and effective signal with small change of mass due to 

hybridization [44, 93-98]. Piezoelectric substrates vibrate at a regular frequency when 

changing electric fields are forced upon them. The substrate is characterized by a 

resonance frequency for which the amplitude of vibration is maximum. The most 

common example of a piezoelectric biosensor is the quartz crystal microbalance 

(QCM)[ QCM is a direct, label free, detection approach that involves an oscillating 

quartz crystal with probe DNA immobilized on the surface. When hybridization 

proceeds, the increase in mass gives rise to a decrease in the oscillating frequency 

(see Figure 1.10). The change of oscillation frequency is described by the Saubrey 

equation. 

 

                           ( ) 2/1
02

qqA
mff

ρμ
Δ

=Δ                                          (1.20) 

                           

Where;  

∆f  : measured frequency shift 

f0  : resonant frequency of the fundamental mode of the crystal 

∆m : mass change per unit area 

A : piezoelectrically active area 

ρq = density of quartz (2.648 g/cm3) 
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μq = shear modulus of quartz (2.947 x 1011 g/cm· s2) 

 

However, QCM are typically large sensors that require large amounts of 

sample material. Other piezoelectric materials such as Si and GaAs, can be 

manufactured into micro electromechanical systems (MEMS) using photolithography 

technology. These materials are expected to have higher sensitivity than QCM 

resonators. Silicon resonators have several difficulties when exposed to an aqueous 

environment while most of the biological systems operate in aqueous environments. 

Also, their sensitivity is limited by the relatively low transduction strength afforded 

by a capacitive coupling for sensing and actuation of the resonators. Furthermore, 

relatively high voltages are required, leading to potential electrochemical instabilities 

which can affect measurement repeatability.   

 

DeVoe and coworkers demonstrated piezoelectric micro- and nano-scale 

resonators with high amplitude narrow width at the resonance frequency fabricated 

from AlGaAs materials, which is almost lattice matched to GaAs(see Figure 1.11) 

[99-101]. This resonator can be used as a new sensor for detection based on a 

measurement of the change in resonance frequency upon hybridization. By 

employing piezoelectric transduction and high Q-device designs, the sensitivity is 

increased by over an order of magnitude compared to silicon devices. 
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Figure 1.10 Quartz Crystal Microbalance (QCM) [102]  

 

 

 



 39 
 

 

 

 

 

 

 

 

 

Figure 1.11 The SEM images of the different types of AlGaAs resonator used in this 

work. 
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Chapter 2 

2. Experimental Approach 

 

2.1 Materials and Sample Preparation  

 

Thiolated eight base single-stranded DNA of sequence SH-(CH2)6-

5”AGTCAGTC3’ and 100 base ssDNA of sequence HS-(CH2)6-5’-(TG)50-3’ were 

obtained from Oligos Etc (Wilsonville, Oregon) in the form of lyophilixed powder 

and stored at -85°C. The sequence of DNA was chosen to prevent hybridization of the 

DNA in the solution. The 100-mers DNA were received in disulfide form which was 

cleaved by reacted with 0.1 M DTT at room temperature for one hour.  After 

treatment of DTT, DNA was filtered and separated through a NAP-10 gel-filtration 

columns (Amersham Pharmacia) equilibrated with phosphate buffer solution. GaAs 

(001) obtained from AXT. Inc. (Fremont, California) was cut into 5 X 5mm squares, 

successively cleaned in trichloroethylene, acetone, and isopropyl alcohol using an 

ultrasonic cleaner and then dried with argon gas. To prevent the atmospheric 

molecular oxygen from reacting with the etched GaAs the whole procedure explained 

below was carried out using all aqueous solutions saturated with argon prior to use 

inside an argon filled glove bag. The cleansed substrate was etched in dilute 

hydrochloric acid to remove the first layer of gallium and the native oxide. 
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Immediately after etching the GaAs wafers were immersed in an aqueous solution of 

the desired concentration of DNA with phosphate buffer (0.06 g KH2PO4, 0.05g KCl, 

2.0g NaCl, 0.36g Na2HPO4, and 250ml DI water) at a pH of 7.8 for 24 hours. After 

DNA attachment some samples were immersed in various concentration 6-mercapto-

1-hexanol (MCH) spacer solutions for one hour. In order to remove any DNA 

oligonucleotides or MCH molecules that were not covalent bonded to the As 

terminated surface. The samples were cleaned by using ultrasonic cleaner and rinsed 

in running DI water.   

 

2.2 Characterization Techniques 

 

2.2.1 Atomic Force Microscopy (AFM) 

 

The atomic force microscope (AFM) has become a very important 

characterization tool in many fields since G. Binnig and co-workers invented it in 

1986 .  The AFM scans over a surface by using a fine ceramic or semiconductor tip. 

Typically, the tip is located at the end of a cantilever with a laser beam focused at the 

end of the cantilever. As the tip is either repelled by or attracted to the sample surface, 

the cantilever deflects which results in a chang of the laser beam position on a 

photodiode.(see Figure 2.1) The photodiode detects the relative position of the laser 

on the photodiode face. The photodiode is composed of two major parts which 

separately detect normal motions and shear motions. The top half and bottom half of 

the photodiode detect normal and shear motions respectively by the laser 
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displacement along the x axis of the photodiode. A plot of the laser deflection versus 

tip position in the x,y, and z directions on the sample surface provides 2 or 3 

dimensional surface images. A sensitive piezoelectric element controls the position 

and motion of the tip over the surface of the substrate.  

 

 

 

 

 

 

Figure 2.1 Schematic of an Atomic Force Microscope 
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Atomic force microscopy can be divided into three major modes of operation; 

contact, non-contact, and tapping mode. In contact mode, the tip is placed in direct 

contact with the surface. The deflection of the cantilever is generated by a variation of 

the surface topography. In the case of biological or polymer samples, which are soft 

and easily damaged, contact mode might not be good characterization method due to 

tip induced sample damage.    

 

The second technique, non-contact mode, was developed to investigate soft 

sample surfaces. The AFM tip is held at a distance in the range 3-15 nm above a 

surface and this space is maintained constant by using the force signal. As the tip is 

scanned over a sample surface, long range attractive forces acting between the tip and 

the sample are detected, and a topographic image is recorded. 

 

The last technique is tapping mode. A cantilever is oscillated at its resonant 

frequency and is in contact with a surface for only a very small fraction of its 

oscillation period. This is probably the most useful mode of operation for biological 

applications.  

 

AFM imaging can be performed under vacuum, air, and liquid conditions and 

it can image biological samples in three dimensions. The AFM has successfully been 

used to image individual and macro biological molecules, such as amino acids, 

proteins, and DNA. In this work, AFM ( D-3000 model, Digital Instruments Inc.) was 

employed as an  analytical tool to evaluate the surface morphology and roughness of 
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the DNA layer attached to the surface of GaAs-based semiconductors in air and liquid 

conditions utilizing a fluid cell.   

 

2.2.2 X-ray Photoelectron Spectroscopy (XPS) 

 

X-ray Photoelectron Spectroscopy (XPS) provides information on the 

elemental contents and chemical bonding states at the surface region of a sample up 

to 20 nm thick (excluding hydrogen and helium). A photon of high energy (short 

wavelength) can excite an atom, producing an ejected free electron. (see Figure 2.2) 

The kinetic energy Ek of the ejected electron (photoelectron) depends on the energy 

of the photon hυ by the Einstein photoelectric law: 

 

                                              Ek  = hυ – Eb                                                          (2.1) 

 

Where, Eb is the binding energy of the particular electron in the atom being excited. 

Since hυ is known, a measurement of Ek determines Eb.  

Considering the energy loss during the excitation process due to the specific 

instrument, 

 

                                              Ek  = hυ – Eb – Ф                                (2.2) 

 

Where, Ф is the work function of the instrument. The binding energy of the electrons 

is related to the chemical state of a specific atom.  The probability for photoejection 
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from each orbital of an atom is different and it can be characterized by the 

photoionization cross section σ. This probability also varies for a given orbital in 

different atoms and depends on the X-ray energy used. Thus, an XPS spectrum 

contains a number of peaks according to different Eb. The position of the peaks 

directly identifies the orbital of the atom concerned, the intensity of the peaks 

depends on the number of atoms present and on the σ values for the corresponding 

orbital.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2  X-ray excite core shell electrons 
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Ci =
100 Ni /si

Σ Ni /si

 

Atomic concentration    

Figure 2.3 shows one example of an XPS spectrum of C 1s peak. The area 

under the peak can be determined by subtracting the baseline and integrating the area 

under the curve. The integrated area is the measured photoelectron peak intensity for 

C 1s in counts per second. To compare the relative quantities of the elements present, 

a sensitivity factor can be used. This factor relates a number of collected electrons to 

the amount of a particular element present. It depends on the photoelectron cross 

section and the instrument response function and is different for each element. The 

atomic concentration can be calculated as: 

 

                                                (2.3) 

 

 

Where; 

Ci : Concentration of element i in % 

Ni : Total counts of element i 

si : Sensitivity factor of species i 

 

 

In this study, XPS was used to obtain the type of chemical bonding between 

the DNA oligos and the GaAs substrate in atomic percentage. The measurement was 
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done using a Kratos AXIS 165 model at UMCP Department of Chemistry and 

Biochemistry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 XPS spectrum of C 1s with curve fitting 
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2.2.3 Field Emission Scanning Electron Microscopy (FESEM) 

 

FESEM has a field-emission cathode inside the electron gun chamber. The 

field emission cathode allows generation of a narrow probing beam at low as well as 

high electron energy. This improves spatial resolution and minimizes sample 

charging and damage. Spatial resolution can be as high as 1.0 nm. That is 3 to 6 times 

better than a conventional SEM. Accelerating voltages range from 0.5 to 30 kV, and 

low voltage images are obtained with negligible electrical charging of samples, such 

as insulating materials or biological samples. The surface of the GaAs containing 

DNA monolayer was investigated by a ZEISS SUPRA 55VP FESEM model at 

Georgetown University..  

 

2.2.4 Grazing Incidence X-ray Scattering 

 

The X-ray experiments will be performed using a Rigaku rotating anode 

source operating at 50kV and 100mA, using Cu K radiation (energy 8.8KeV), with a 

bent graphite monchromator. The resolution used is 0.017qo. Samples will be 

mounted in a four-circle diffractometer (2θ,θ,ϕ,χ). Two types of experiments will be 

performed. In the GIXS experiment the substrate and samples will be oriented at χ = 

0º  so that the experiment will be performed in the plane of the GaAs substrate. The 

tilt of the DNA with respect to the substrate plane, Ψ, will be determined for DNA 

base pairs larger than 16 by comparing the observed persistence length, Robs, to the 

experimentally determined persistence length, Ψ = arccos(Robs/Rtheor) where, Rtheor = 
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0.38(N/3)1/2. GIXS is a physical probe, which will complement the findings from the 

chemical probes. 

 

2.3 Linear Accelerator Facilities 

 

The irradiation to DNA layer was carried out using a Varian electron beam 

linear accelerator (LINAC) capable of producing 1 to 8 MeV beam energy at the 

University of Maryland. Electron emission is produced by heating of a filament. The 

electrons are ejected into an input cavity of the accelerator waveguide structure (~1.5 

m in length) in pulses of approximately 3 microsecond (µs) at a continuous variable 

repetition rate of up to 550 pulses per second at a pulse level of approximately 80 kV. 

In these experiments, 3 µs pulses with 7 MeV beam energy were produced at a dose 

rate of 30~70 Gy/pulse for the samples. The absorbed dose by a sample was 

determined by the radiochromic film dosimetry system ( FWT-103, Far-West 

Technology Inc). The change in optical absorbance of film after irradiation was 

examined by a spectrophotometer ( BeckmanTM  DU Series 7000 ).   
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Figure 2.4 Top schematic of Major Fictional Components of a Varian Linear Electron 

Beam Accelerator (LINAC) (bottom) at the University of Maryland. 
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Chapter 3  

3. Immobilization of Oligonucleotides on GaAs Surface 

 

3.1 Introduction 

 

Recently, immobilization technique is the core for the development of 

biochips and biosensors. In addition, various substrates have been used including 

metallic materials, polymer- based materials, silica- based wafer and GaAs-based 

semiconductors. The first solid-support for DNA was proposed by researchers at 

University of Wisconsin in Madison in 1996. After that, it developed very quickly 

with different methods to attach oligonucleotides to a variety of solid substrates. The 

most effective and widely used method utilizes the covalent bond between 5’-end 

thiol modified oilgonucleotides and the substrates. Many studies have shown that  

Alkyl thiols, such as, HS(CH2)nX (end group X can be NH2, COOH or OH) form 

densely packed monolayers with certain orientation published by Bain and 

Whitesides in 1989 [24]. The monolayer are very stable because of the strong 

covalent bond (~44kcal/mol) between the sulfur at the head group and the gold atoms. 

The oligonucleotides can be modified with thiol (H-S) or disulfide (S-S) group at the 

ends. The thiol molecules adsorb in random clusters during the first stage, and then 

the molecules assemble over the reconstruction site of gold surface in a similar 

manner to the bulk lattice. The study of surface chemistry of thiolated ssDNA 

monolayers on gold surface was researched by Tarlov and co-workers [27]. They also 

studied the MCH treatment as a spacer to obtain a better organized brush-like 
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structure.  They propose that MCH post treatment could displace the non-specifically 

adsorbed DNA from the gold surface as well as prevent non-specific adsorption of the 

DNA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Schematic of tightly packed monolayer of long-chain thiol molecules on 

Au (111) [24] 
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In this chapter, the use of non-modified and thiol modified oilgonucleotides 

are presented in regards to theattachment on GaAs surfaces. After attachment of DNA, 

the effects of cleaning method, the presence or absence of spacers, and environmental 

conditions are explored. AFM and FESEM method for visualizing the DNA layer on 

GaAs were employed. Moreover, XPS and GIXS techniques are used to examine the 

structure of the immobilized DNA layer. The results of this work impact upon the 

development of biosensors using immobilized DNA or protein modified surfaces.  

 

3.2 Experimental Material  

 

All oligonucleiotides were purchased from Oligos Etc (Wilsonville, Oregon) 

in the form of lyophilized powder and stored at -85ºC.  I used non-modified, 5’ thiol-

modified 8-mers, and 5’ thiol-modified 100-mers for all specific attachment 

experiments. The specific sequences of each type of DNA listed in Table 3.1. The 

sequences of DNA were chosen to prevent hybridization of the DNA in the solution.  
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Table 3.1 Sequences of oligonucleotides 

 

Oligonucleotides 
 

Sequence 
 

8-mers 
 
5’-AGTCAGTC-3’ 

Thiolated 8-mers 
 
HS-(CH2)6-5’-AGTCAGTC-3’ 

complementary DNA  8-mers 
 
5’-GACTGACT-3’ 

Thiolated 100-mers 
 
HS-(CH2)6-5’-(TG)50-3’ 
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3.3 Thiol Modification Effects for Immobilization 

 

3.3.1 Attachment of Non-Modified DNA  

 

The GaAs (001) wafers were purchased by customer order specifically for 

lower surface roughness than commercial products. The smoother surface allows for 

increasing uniformity of the DNA layer morphology. To investigate the surface 

changes of attachment the DNA probes, AFM was employed to investigate the 

surface roughness of a cleaned bare GaAs substrate. GaAs was cut 1cm X 1cm size 

and cleaned and etched with dilute HCl as described before. After that GaAs was 

rinsed by running DI water and dried by argon gas. AFM scan was carried out at 

room temperature and under atmospheric conditions. The AFM image of the bare 

GaAs (001) plane surface and cross-sectional line profile are presented in Figure 3.2. 

The scan area was 500 nm X 500 nm, and to obtain better statistics on the surface 

roughness measurement of at least 5 different areas were examined per sample. For 

each scan, dimension statistical data were extracted from 60 different scan lines of 

scanned area. The typical expression of roughness is given in terms of the Root mean 

square (RMS), which was directly determined from the height data. 

 

                                      
N
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RMS i∑ −

=
2

arg )(
                                 (3.1) 
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Where Zi is the surface height at point i, Zarg is the mean value of Zi and N represents 

the number of points sampled 

. 

Form Figure 3.2, the RMS of the bare GaAs surface is  0.3 nm ± 0.1 nm. This 

result shows that even though the surface was etched to remove the natural oxide 

layer, slight roughness of the surface still remained. The As-rich dimmer rows and 

trenches of the  2X4 reconstructed GaAs surface were not clearly observed. The 

reason for this is the thin natural oxide layer formed during the AFM scan in air and 

depth penetration limit of AFM tip. The 2 x 4 reconstructed surface is only observed 

in vacuum after desorption of the oxide large at high temperatures.  
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     Figure 3.2 AFM images of the bare GaAs (001) plane surface (500 nm X 500 nm)  
     and cross-sectional line profile.  
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Figure 3.3 is a 500 X 500 nm AFM image of the surface of GaAs after 

immersion  for 24 hours in a 60 μM solution of non-modified 8-base DNA (5’-

AGTCAGTC-3’).  8-mer single strand DNA behaves like a rigid rod with 3.5 nm 

contour length and ~1  nm width. The significantly changes in the images compared 

to the bare GaAs surface (see Figure 3.2) were observed. The surface is covered with 

ssDNA bundles with distorted round or elliptical shape. The average width of those is 

about ~ 20.4 ± 5.5 nm, and the difference in of height difference between the red 

indicators in Figure 3.3 (c) cross-sectional line profile is 8.2 nm. This value is lager 

than the dimensions of individual single stranded DNA.  Although the AFM tip 

makes the measured size bigger than the actual size of DNA layer is known as 

dilatation effect induced by tip radius, this result indicats that along the several DNA 

strands form the bundles. The AFM image also shows that DNA prefers to deposit 

along the of the GaAs [110] direction which corresponds to the direction of the As-

rich dimmer rows. Ladan et al. reported that the nitrogen or oxygen of the bases of 

DNA also bond with the arsenic atoms on the surface. This suggests that non-

modified DNA is preferentially lying down following the As-rich dimmer rows 

through bond between the base of DNA and the arsenic atom on the surface(Figure 

3.3 (d)). In addition, the thickness of the DNA layer revealed that some interaction π-

π interactions existed between DNA molecules to hold each other In DNA, π-π 

interactions occurs between the nitrogen in the bases of the neighbor DNA, oligos 

consisting of aromatic rings [103, 104]. The faces of aromatic rings will overlap their 

π orbitals. Even though this interaction is weaker than covalent bonding, the total sum 

of π- π interaction can not be neglected. 
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Figure 3.3 AFM images of  single stranded DNA without thiol-modification layer on 
GaAs (001) surface imaged in (a) height mode, (b) three dimensional view, and  (c) 
cross-sectional line profile.  The schematic in (d) illustrates the preferred orientation 
of DNA on the GaAs surface.      
 
 
 

(a) 

(b) 

(c) 

(d) 
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3.3.2 Attachment of Thiol-Modified DNA 

 

3.3.2.1 Sonication Cleaning Method  

 

The 8-base thiolated ssDNA is used to achieve brush like layer structure of 

DNA probes layer. The sulfur in thiol group is expected to bond covalently with the 

arsenic atoms on the surface. Figure 3.4 shows schematics of the immobilized  DNA 

probes and the bonds of the desired S-As and undesired O-As and N-As DNA to As 

of the As-terminated GaAs. During the attachment procedure, non desired bonds and 

adsorption usually occur both of DNA strands with each other and between DNA and 

the substrate (see Figure 3.4). The undesired bonds can not be easily removed or 

broken by simply washing with running water or buffer solution. Several techniques 

can be applied for better result of cleaning the immobilization surface, such as using 

heated water or ultrasonic cleaner. However, some reports indicated that the non 

desired bonds and adsorption would still remain on the surface even after heating to 

75℃.  

 

On the other hand, I found that ultrasonic cleaning was more effective to 

remove the non desired bond and adsorption. AFM observation was carried out to 

investigate the change in morphology of the rod shape DNA oligos before and after 

sonication cleaning.  Figure 3.5 shows change in the surface morphology before and 

after ultrasonic cleaning for 60 μM DNA sample on the GaAs (001) by AFM tapping 

mode in air. Before ultrasonic cleaning, the AFM image (2 x 2 μm) (Figure 3.5 a) 
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shows that the surface is covered big by DNA bundles with ~70 nm size and ~5 nm in 

height.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
Fig 3.4. Schematics of immobilized DNA probes and the bonds of the desired S-As 
and undesired O-As and N-As DNA to As of the As-terminated GaAs 
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Since the contour length of the DNA is only 4.6nm, this result indicates that extra 

DNA molecules still remain on the surface even after the surface rinsing with running 

DI water. As shown in Figure 3.5 (b) and (c), the ultrasonic cleaning is more effective 

at removing the non desired bonds and adsorption. This figure shows that DNA 

bundle are smaller and their height is greatly reduced and more uniform. The 

cavitation from ultrasonic and high intensity sound waves through the water or buffer 

solution removed the weakly adsorbed DNA without removing the strong covalent 

bonds of the immobilized DNA on the surface. Cavitation is the phenomenon of rapid 

formation and violent collapse of bubbles and cavities in water and buffer solution. 

The ultrasonic energy has sufficient intensity to create small water bubbles that  

collapsed or implode very fast. These events create a very effective force which can 

help removing the non specific bonded DNA and extra DNA molecules. Inside the 

bubbles, a pressure and a temperature can be calculated theoretically to be more than 

10,000 psi and 20,000 °F [105, 106]. Thus, under such extreme conditions, some non 

specific bonds on the surface after immobilization could be broken. The ultrasonic 

cleaning depends on two major factors which are wave frequency and treating time. 

With increasing wave frequency, the total number of cavities increases. The energy of 

each collapsing cavity, however, decreases. Consequently, higher frequency provides 

less energy to the surface. On the other hand, at affixed frequency, longer time of 

sonication provides more energy to the surface.   

 

Figure 3.5 (b) was taken from a dried sample after ultrasonic cleaning for 20 

minutes. The image shows a uniformly array of needle like DNA oligos forming a 
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layer on the surface.  The high resolution image in Figure 3.5 (C) shows the DNA 

oligols forming a dense array of slightly elliptical shape bundles with an average 

width of ~14.6 ± 2.6 nm. Because of the shape and size of the AFM tip, however, it is 

most likely that the tip does not reach the GaAs surface during image acquisition. As 

a result one would expect the measured height of DNA brush obtained from AFM to 

be shorter than the real value (Figure 3.5).  

 

In order to determine more accurately the average height of the DNA brush a 

high force was used on the AFM tip in contact mode to remove the DNA from the 

surface. For scratching the DNA monolayer, a rectangular area (500 x250nm2) was 

selected and then the set point voltage increased until the desired force but low 

enough was applied to the tip. The force should be high enough to break the S-As 

bonding to prevent scratching of the GaAs substrate. Form a literature review, force 

required to break covalent bonding is several nano-Newtons. For example, a force of 

is necessary to break 3.7 nN to break carbon-carbon covalent bonding. In 

nanoindentation chose experiments of bulk GaAs, a force of the 500nN is typically 

used for minimum force [107-110]. I chose approximately a force of 50~100nN for 

removing DNA layer.  Figure 3.6 (a) shows a calibration plot for the force in terims 

of the signal deflection as a function of Z. The force can be calculated from  the 

spring constant of a cantilever and Z using the expression. 

 

                                                         F= -kZ                                                    (3.2) 
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where k : spring  constant of the cantilever (0.9 N/m) 

Z : a distance of piezo movement after touching a surface (~75nm) 

In the presen experiment, the force is approximately 67nN. 

  

 

 

 

 
 
 
 
 
 
 
 
Figure 3.5 AFM images of the immobilized thiolated ssDNA  layer on GaAs surface 
(a) after rinsing with DI water without sonication and (b) after ultrasonic cleaning.  
Dimensions are 2 X 2 μm, z scale is 5 nm. (c) is high resolution scan (500 X 500 nm) 
of (b) and the cross sectional line profile. 
 
 
 

(a) (b) 

(c) 
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Figure 3.6. (a) Force calibration plot in terms of signal deflection as fuction of Z. 

AFM topographic images of (a) a sample containing 60 μmol L-1 DNA on As-

terminated GaAs (001) substrate.  The scan is 1,000 x 1,000 nm2 and the vertical 

scale is 5 nm/div. The scan was obtained from a dried sample in tapping mode after 

removing the DNA from a region of 500 nm x 250 nm using the AFM tip in contact 

mode with a force of approximately 70 nN.  (b) three dimensional view, (c) plan view, 

(d) and phase image. 

(a) 

(c) 

(b) 

(d) 
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Figure 3.7 AFM image of plane view and height profiles from the scratched areain 
Figure 3.6 (b) 
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The AFM image in Figure 3.6 shows the exposed GaAs surface in the region 

where the DNA was removed surrounded by a fairly regular array of bundles of 

DNA. Figure 3.6 also shows pile up of the DNA at the two boundaries of the region 

where the DNA was removed and in the direction of the scanning. In a separate 

experiment the same force was applied to a bare GaAs sample and no damage was 

detected.  The height of the DNA bundles in Figure 3.6 was measured with respect to 

the bare GaAs surface with an average of ~2.2 ± 0.4 nm.  Based on the contour length 

of the SH-(CH2)6-5’AGTCAGTC3’ of 4.621 nm this height indicates that the DNA 

oligos lie at an angle of ~28.4° with respect to the surface of the GaAs.  To 

investigate if the DNA showed any preferred in-plane orientation with respect to the 

<110> directions of the GaAs substrate the sample was mounted with the <110> 

direction (As-As dimmer row direction) of GaAs at approximately 45 degrees with 

respect to the scanning (horizontal) direction of the AFM tip.  Figure 3.7 shows that 

the bundles are elongated along the [110] direction of the GaAs. This is in agreement 

with Ladan et al.’s previous XRD result on the 28 base ss-DNA attached to GaAs 

which showed that the DNA oligos preferentially align along the 0.7 nm wide 

trenches of the reconstructed 2x4 surface structure of the As-terminated GaAs 

substrate.  
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3.4 Spacer Effects to Immobilization DNA layer on GaAs Surface 
 

The brush-like structure of the DNA monolayer is essential for biosensor 

applications. To improve the layer quality, Tarlov’s group at the National Institute of 

Standards and Technology (NIST) have shown that the monolyer formed from 

mixtures of thiolated DNA and short length thilo molecules, such as mercptohexanol 

(MCH) form a more uniform brush like structure. MCH leads to displace non-specific 

interactions of the DNA. A schematic showing the mechanism is presented in Figure 

3.8 for DNA attached to GaAs. These mixed monolyers were found to have enhanced 

hybridization efficiency. 

    

Figure 3.9 shows the dried surface morphology of a 60μM DNA treated with 

60mM MCH on the GaAs. The line profile shows that the average height of the DNA 

bundles is 3.3 ± 0.3 nm, and plane view image shows that the elliptical shape of DNA 

bundles has an average width of  ~13 ± 1.8 nm. Comparing the results of the sample 

wit no MCH Figure 3.6 to the ones with MCH, we see that Figure 3.9, the height 

increased from 2.2 ± 0.4 nm to 3.3 ± 0.3 nm and the diameter of the DNA bundles 

slightly decreased from 14.6 ± 2.6 nm to 13 ± 1.8 nm with the addition of MCH. 

These dimensional changes after addition of MCH indicate that the immobilized 

ssDNA layer has more brush-like structure because the MCH molecules substituted 

the N-As and O-As bonds with S-As bonds. A quantitative study of the displacement 

reaction of MCH is discussed in chapter 3.5 using XPS. 
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To confirm the AFM results, high resolution FESEM was employed. Figure 

3.10 shows the surface morphology of (a) unmodified ssDNA , (b) thiolated ssDNA, 

and (c) a mixture of thiolated ssDNA and MCH samples. In the un-modified ssDNA 

sample, no DNA bundles were observed. The image agrees with the AFM image of 

the same sample in Figure 3.3 which indicated that the DNA molecules laid on the 

surface. On the other hand, smaller bundles of DNA were observed in the modified 

DNA samples in Figure 3.10 (b) and (c). For each sample, the size of the bundles are 

13.7 ± 0.9 nm for thiolated ssDNA only sample and 10.5 ± 0.8 nm for post treated 

MCH sample. These results are slightly smaller than AFM results. This can be 

explained by the convolution of the shape of the AFM tip with the sample profile. It 

is also possible that during the AFM scan, the AFM tip could compress slightly the 

top of the DNA bundles.     
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Figure 3.8 Schematics of immobilized DNA probes with the treatment of short length 
thiol molecule (spacer) and the bonds of the desired S-As DNA and spacer to As of 
the As-terminated GaAs. 
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Figure 3.9 AFM image in dry mode of  60 μmol L-1 DNA and post treated 
mercaptohexanol (MCH) on As-terminated GaAs (001) substrate. Plane view (a), 
three dimensional view (b), and line profile (c). 
 
 
 
 
 
 
 
 
 
 

(a) 

(b) 

(c) 
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Figure 3.10 Surface morphology of  FESEM images (a) non-modified ssDNA layer, 
(b) thiolated ssDNA layer, and (c) treated with MCH of thiolated ssDNA sample.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) (c) 
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To investigate the structure and orientation of the immobilized DNA layer, 

grazing incidence X-ray scattering (GIXS) was employed. X-ray maps were obtained 

with a Rigaku 18 kW rotating anode source diffractometer operating at 50 kV and 

100 mA, and using Cu Kα radiation and a bent graphite monochromator with a 

resolution of Δq=0.017 qo Å-1. The samples were placed in a four circle Huber 

goniometer (2θ, θ, φ and χ). In these measurements θ was kept constant at θ = 0° and 

φ takes the place of θ in both perpendicular and parallel scans. We used both a regular 

x-ray scattering geometry (χ = 90º) and grazing incidence (GIXS) geometry (χ = 0º). 

 

The geometrical orientation of the oligos with respect to the surface of the 

GaAs was determined from 2θ-φ x-ray maps in both the out-of plane (χ=90°) and in-

plane (GIXS, χ=0°) orientations (Figure 3.11). We have previously used a similar 

approach to investigate the orientation of  28-base thiolated ss-DNA on As-

terminated GaAs and found that the oligos align preferentially at low angles with 

respect to the [100] direction of the (2x4) reconstructed surface of the As-terminated 

GaAs. The 8-base DNA behaves and can be treated as rigid extended chains, with two 

characteristic dimensions; a length of 4.62 nm and a diameter of 0.6-0.7 nm.     

 

 The circles in Figure 3.11 (a) show the in-plane (parallel to the surface of the 

substrate) scan obtained with GIXS when 60 μmol L-1 DNA is deposited on the 

surface of the GaAs and dried. The squares correspond to X-ray scattering taken in 

the perpendicular direction when DNA is kept in buffer solution.  
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 We have analyzed the intensity (I) of the x-ray peaks in Figure 3.11 using 

Lorenztians of the form, 

 

    
]2)(21[

)(
oqq

AqI
−+

=
ξ

                   (3.3) 

 

where A is a constant, ξ is a measure of the size of the cluster, q is the wavevector, 

and qo= 4π/λsinθο  is the wavevector for which I is maximum. When the DNA oligos 

are normal to the surface, qo is minimum and inversely proportional to the contour 

length. The fitted peaks are shown in Figure 3(b) for the perpendicular scans.  

 

 The peak of the Lorenztian for the dried DNA corresponds to 3.97 ± 0.05 nm, 

which suggests that the oligos are at an angle of 31 ± 1º from the substrate surface. 

This value agrees fairly well with the value of 28.4° obtained from the AFM images 

in Figure 3.7. This angle may be due to the way the DNA attaches to the surface as 

seen in Figure 3.4. The value of ξ for this sample is below the monochromator 

resolution, which suggests that the in-plane cluster size is larger than 9 nm for the 

dried DNA. This result is also in agreement with the AFM results which show a 

bundle width or ~14.6 nm for the dried DNA sample. 

 

Note that for the DNA in aqueous solution the peak of the Lorenztian 

corresponds to 4.325 ± 0.006 nm, which suggests that the oligos are at an angle of 20 

± 1º from the normal to the substrate or 70±1 º from the substrate surface. Note also 
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that 4.325 ± 0.006 nm is close to the calculated contour length of the DNA. For this 

sample, ξ⊥ is 3.74 ± 0.04 nm. The smaller size, ξ⊥, compared to 4.325 ± 0.006 nm 

may be due to incomplete coverage of the DNA on the surface of GaAs. In general, 

short rod shaped polyelectrolyte molecules such as DNA oligos anchored from one 

end to a surface stand at right angle in the presence of a good solvent such as water.  

However, it is not surprising that the DNA oligos on GaAs are not oriented at 90 ° 

with respect to the GaAs surface because of the attachment of the N and O of the 

bases and sugar of the DNA with As in addition to the S at the end of the chains as we 

have previously reported for 28 base ss-DNA. 

 

X-ray scattering was used to investigate the role of MCH in achieving the 

right-angled brush-like structure. The triangles in Figure 3.11 (a) correspond to X-ray 

scattering taken in the direction perpendicular to the GaAs substrate surface when 60 

x10-3
 mol L-1 of MCH was added after the attachment of 60 μmol L-1 DNA and dried. 

We note that for the dried DNA with the MCH spacer, the peak of the Lorenztian fit 

(Figure 3.11(b)) corresponds to a distance of 3.5 ± 0.7 nm, which suggests that the 

oligos are at an angle of 41 ± 1.6º from the normal to the substrate or 49 ± 1.6º from 

the substrate surface. For the DNA with the MCH spacer, ξ is 5.2 ± 1.0 nm. These 

results indicate that with the addition of MCH the angle between the DNA oligos and 

the GaAs surface increased from 31° to 49° even in the absence of water. 
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Figure 3.11 (a) X-ray scattering scans for DNA in solution (squares), DNA dry with 

the MCH spacer (triangles) and DNA dry without the MCH spacer (circles). The 

DNA in solution and the DNA dry with the MCH spacer were taken using X-ray 

scattering (perpendicular) whereas the DNA dry without the MCH spacer was taken 

using GIXS (parallel). (b) The X-ray scans for the DNA dry with MCH and the DNA 

in solution showing the fits to Lorenztian curves. 

(a) 

(b) 
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O (1s) and N (1s) XPS spectra from a sample with 60 μmol L-1 attached to 

As-terminated GaAs are shown in Figure 3.12 (a) and (c), respectively.  The broad O 

(1s) peak in Figure 3.12 (a) can be resolved into two separate peaks; one at a lower 

binding energy (peak (b)) of 531.0 eV corresponding to the oxygen in the DNA 

backbone, i.e. bases, sugar and phosphate moieties, and one at a higher binding 

energy (peak (a)) of 532.6 eV corresponding to O-As bonds. Similar behavior is 

observed in the case of N (1s) (see Figure 3.12 (c)), which can also share its electron 

with arsenic.  The two nitrogen peaks at 400.5 ± 0.2 eV and 399.1 ± 0.3 eV, 

corresponding to two types of nitrogen bonds. The higher binding energy peak at 

400.5 eV, peak (a), corresponds to the undesired N-As bond and the peak at 399.1 eV, 

peak (b) corresponds to nitrogen in the bases of the DNA.  It is very well known that 

short electrolytes have rod shape structure and are expected to form a brush-like 

morphology perpendicular to the surface when they are anchored at one end. 

However, these results demonstrate that the N-As and O-As bonds force these rods to 

bend preventing them from standing at right angle.   

 

In an attempt to achieve the right-angled brush like structure we introduced 

MCH into the system after the attachment of the DNA as shown in Figure 3.12 (b) 

and (d). Since the MCH molecules are smaller than the 8 base DNA and, more 

importantly, they do not have N and only have one O per molecule it is expected that 

the steric effect will be decreased. XPS data from samples with 60 μmol L-1 and 

different [MCH] showed further reduction in the fraction of N-As and O-As bonds 

and an increase in the S-As bonds as expected.  The O (1s) peak from the sample with 
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DNA and MCH spacer (Figure 3.12(b)) has two components, one at 531.2 eV 

corresponding to oxygen in the DNA backbone and the second at 532.5 eV 

corresponding to undesired oxygen bonding with As.  It is also possible that the peak 

at 532.5 eV has a contribution from bonding between the hydroxyl group of mercapto 

hexanol with As.  A comparison of Figure 3.12 (a) and (b) shows that with the 

addition of MCH the intensity of the peak at 531.0 eV (peak (b)) increases while the 

intensity of the peak at 532.6 eV (peak (a)) decreases. The ratio of the integrated 

intensity under peak (a) to that of peak (b) in Figure 3.12 (a) is 2.83. After the 

addition of MCH spacer (Figure 3.12(b)), this ratio decreases to 0.64.   Similarly, for 

N (1s) the ratio of the integrated intensity under peak (a) to that of peak (b) in Figure 

3.12 (c) is 1.1. After the addition of MCH spacer (Figure 3.12(d)), this ratio decreased 

to 0.87. These results indicate that the MCH spacer has displaced some of the As-O 

and As-N undesired bonding.  
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Figure 3.12 Comparison of Oxygen (1s) XPS peaks from the DNA/GaAs samples (a) 

without MCH and (b) with MCH spacer and for Nitrogen (1s) XPS peaks from the 

DNA/GaAs samples (c) without MCH and (d) with MCH spacer.  

(a) 

(b) 

(c) 

(d) 
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3.5 Effects of DNA and MCH Concentration on the Immobilization 
of a DNA layer on GaAs Surface  
             

I investigated quantitatively the role of the thiol group laced at the 5’ end of 

the rods on the morphology of the brush like structure. This role stemmed from the 

fact that S-As bonds displace the O-As and N-As bonds. Figure 3.13 shows the effect 

of the concentration of the thiolated DNA on the S-, N-, and O- bonding with the As 

of the GaAs obtained from XPS. As expected the S-As bonding is preferable over the 

N-As and O-As bonding as the [ss-SH-DNA] increases. Initially, the ratio of S-As 

increases while the N-As, and O-As decrease and eventually all three curves reach a 

plateau at around 60 μmol L-1. This result suggests that displacement reactions have 

occurred by the thiol, removing some of the N and O from the As-terminated GaAs 

surface and producing S-As bonds instead. It is not surprising that the fractions of N-

As and O-As bonds do not decrease further with increasing [ss-SH-DNA] because of 

the steric effect.   

In an attempt to achieve the right-angled brush like structure we introduced 

MCH into the system after the attachment of the DNA as shown in Figure 3.14. Since 

the MCH molecules are smaller than the 8 base DNA and, more importantly, they do 

not have N and only have one O per molecule it is expected that the steric effect will 

be decreased. XPS data from samples with 60 μmol L-1 and different [MCH] showed 

further reduction in the fraction of N-As and O-As bonds and an increase in the S-As 

bonds as expected.  These results indicate that the MCH spacer has displaced some of 

the As-O and As-N undesired bonding.  
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Figure 3.13 Normalized atomic ratios of S-As, O-As, and N-As from XPS spectra as 
a function of concentration of ssDNA  
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Figure 3.14 Normalized atomic ratios of S-As, O-As, and N-As from XPS spectra as 
a function of treated concentration of MCH on 60μM DNA samples.  
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3.6 Environmental Effects on the Immobilization of DNA layer on 
GaAs Surface 
 

DNA biosensors for the detection of target molecules usually operate in 

solution. Therefore, the properties of the dry-wet interface in the DNA / GaAs system 

are key issue in biosensor technology. To investigate the environmental effects on the 

morphology of the immobilizaed DNA layer, a fluid cel kit for the AFM was 

employed. The samples were imaged in solution in tapping mode using silicon nitride 

(resonance frequency: 8~15 kHz, spring constant: 0.06N/m; DNP-S, Veecoprob, 

USA) tips.  Images were taken at rates of 0.5~1 kHz which the frequency was 

optimized for best image quality and the applied force was minimized as much as 

possible. Figure 3.15 shows a schematic of the experimental setup for the liquid cell 

AFM used to obtain images of ssDNA probes layer on GaAs in solution. Typical 

temperature was about 26°C during the scan. 

 

Figure 3.16 shows the change of morphology of the DNA in the presence of 

aqueous buffer solution. Attempts to remove the DNA from a small region of the 

sample in aqueous solution using the AFM tip as done for the dried samples were not 

successful because of sticking of some DNA molecules on the AFM tip. Therefore, 

we expect the measured height of the DNA brush obtained from the samples in 

aqueous solution to be shorter than the real value. In any case there is a significant 

increase in the height (~3.7 ± 0.6 nm) of the DNA layer compared to the dry samples. 

The average diameter of the bundles of DNA is reduced to 6.6 ± 2 .5 nm in the 

presence of water. Based on the contour length of 4.621 nm this result indicates that 
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the DNA oligos orient at an angle of >53.4° with respect to the surface of the GaAs. 

For 60 μM DNA treated with 60mM MCH (Figure 3.17), the average height of DNA 

bundles is 4.4 ± 0.4 nm which is slightly increased compared to the sample with DNA 

only. The size of the bundles was 7.6 ± 3.0 nm.  

 

   

 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 3.15 Schematic of the experimental setup for liquid cell AFM study of ssDNA 
probes layer on GaAs. In the zoom image on the right, the schematic represents 
counterions (    ) that are localized within the DNA brush layer.   
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Figure 3.16 AFM image of  60 μmol L-1 DNA on As-terminated GaAs (001) substrate 
in DI water. 
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Figure 3.17 AFM image of  60 μmol L-1 DNA and post treated mercaptohexanol 
(MCH) on As-terminated GaAs (001) substrate in DI water. 
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An important parameter to determine from the AFM images is the grafting 

density. However, this is difficult to obtain because the images of the DNA bundles 

represent the collapsed DNA oligos on each other in the absence of a good solvent as 

well as π-π stacking. Furthermore, some collapse is also expected in the presence of 

water because of the osmotic pressure due to the counter ions.  

 

 Taking into account the distance of 0.7 nm between As-As dimmers, and the 

approximate diameter of the ss-DNA of 0.6-0.7 nm we expect that the closest 

separation between adjacent DNA oligos would be 0.7 nm corresponding to one DNA 

molecule per unit cell of GaAs. From our AFM images the diameter of the DNA 

bundle is in average 14.6 nm (dry) and 6.6 nm (in water). These values correspond to 

an average of ~527 (dry) and ~107 (in water) oligos/bundle.  These reduce to ~421 

(dry) and 86 (in water) oligos/bundle taking into account the fact that from our XPS 

results 80% of the bonding to As is through S and 20% through N and O. Therefore, 

within a bundle the grafting density is ~2.5 oligos/nm2
 both dry and in water.  This 

value is the upper limit value of the grafting density within a bundle. Based on the 

AFM images, the bundle density is ~3,440/μm2 (dry) and 8,480/μm2 (in water). The 

fraction of GaAs surface covered by DNA bundles is ~58% (dry) and ~29% (in 

water). The lower coverage in water indicates that some of the bundles become 

smaller than the lateral resolution of our AFM which is ~3 nm. 
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3.7 Effect of Electrolyte on Immobilization of DNA layer on GaAs 

Surface 

           

DNA is a  polyelectrolyte  because of the negative charges on the phosphate in 

the backbone of the DNA. When DNA is anchored on a substrate, there is  

electrostatic repulsion between neighboring DNA probes that can affect the 

hybridization reaction between probe and target molecules. In aqueous solution, the 

architecture of the DNA layer is determined by the chain elasticity and the osmotic 

pressure produced by the counterions . Therefore, the ionic strength in the solution is 

one of the major factors in determining the quality of DNA probes and the efficiency 

of any biosensor fabricated with them. In this section, the effect of electrolyte on the 

immobilized ssDNA layer on GaAs is investigated using AFM in solutions with 

different  ionic strength. 

 

Figure 3.18 (a) shows AFM images of immobilized ssDNA layer (60 μM 

concentration) on GaAs using a fluid cell in a solution of DI water. The immobilized 

ssDNA chains are stretched along the normal orientation to the substrate surface in DI 

water. In this case an electrostatic repulsion exists between the DNA molecules with 

negative charge in the phosphate backbone. The addition of NaCl into the solution 

increased the osmotic pressure in the system preventing the swelling of the grafted 

polyelectrolyte layer (see Figure 3.18 (b)).     
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The effects of ionic strength should be investigated more systematically to 

gain better understanding of the behavior of the immobilized ssDNA layer in a buffer 

composition. These results will shed light into biological requirements for the 

application of these materials as biosensors. For this purpose, the sample was scanned 

in solution after adding different concentrations of monovalent salts, such as NaCl. 

Figure 3.18 (b) shows the same sample of Figure 3.18 (a) scanned after adding in 1M 

NaCl solution. The average height of ssDNA layer slightly decreased from 3.7 ± 0.6 

nm for the case of pure DI water to 3.5 ± 0.5 nm for the solution with NaCl. The 

average diameter of the bundles of ssDNA increases from 6.6 ± 2.5 nm to 9.8 ± 

1.1nm after the addition of NaCl. These dimension changes indicate that increased 

concentration of Na+ shield negatively charge of the phosphate backbone of ssDNA  

causing of the repulsive forces between DNA molecules. As a result, the bundle size 

increases. For the height difference, Pincus (1991) predicted that a polyelectrolyte 

brush height shrinks with increasing salt concentration as a relatively weak power law 

in 3/1−
SC (CS : salt concentration) . Considering that the 8-base ssDNA molecule is a 

rigid rod, the shrinkage of the brush height is very small. The dimension of the brush 

is determined by a balance between the counterion entropy and the chain elasticity.  

Pincus also predicted that higher grafting densities of polyelectrolytes are less 

sensitive to added electrolytes. We investigated the behavior of higher coverage of 

ssDNA on the surface in a solution containing salt. For this study, 200μM 

concentration of ssDNA was used. Figure 3.19 (b) shows the surface morphology 

after immobilization of 200μM ssDNA by AFM in dry mode. The average brush 

height and width of the bundles are 3.4 ± 0.3 nm and 10.2 ± 1.2 nm. Comparing 60 
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μM and 200 μM cases, the brush height was slightly increased and the bundle size 

was decreased. This results is in agreement with Pincus prediction that high coverage 

of ssDNA on the surface helps to stretch the ssDNA polyelectrolyte to form a brush-

like structure of ssDNA. After soaking in NaCl 0.1M solution for two hours and 

washing with DI water, the AFM image shows the ssDNA layer slightly collapsed in 

dry mode (Figure 3.19 (c)). The height in this case is reduced to 2.7 ± 0.7 nm. The 

bundle size is increased to 14.3 ± 1.3 nm. A summary of the statistical measurements 

of ssDNA probe dimensions is presented in Table 3.2. 
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Figure 3.18 AFM tapping mode topography images in (a) DI water and (b) a solution 
with NaCl 1M after attachment of 60μM DNA on GaAs substrate. The Scan area in 
the images is 500 x 500 nm. The cross-sectional analysis of each image is also 
provided. 
 
 
 
 

(a) (b) 
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Figure 3.19 AFM tapping mode topography images in air of (a) bare GaAs surface, 
(b) before and (c) after soaking in NaCl 0.1 M solution for two hours after attachment 
of 200μM DNA. The samples were rinsed and sonicated in deionized water, and dried 
with Ar gas. The scan area in the images is 500 x 500 nm. 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) (c) 
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Table 3.2 Statistical measurements of ssDNA probe dimensions 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
60μM 
sample 
(dry) 

60μM 
sample 

(DI water) 

60μM 
sample 

(NaCl 1M 
solution) 

200μM 
sample 
(dry) 

200μM sample 
(dry after NaCl 
0.1 M solution) 

av height 
(nm) 2.2 ± 0.4 3.7 ± 0.6 3.5 ± 0.5 3.4 ± 0.3 2.7 ± 0.7 

av width 
(nm) 14.6 ± 2.6 6.6 ± 2.5 9.8 ± 1.1 10.2 ± 1.2 14.3 ± 1.3 
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3.8 Attachment of Longer Oligonucleotides on GaAs Surface 
 

Longer DNA oligonucleotides have more genetic information than shorten 

strands. However, as the length increases, the molecules become more flexible and 

more polymeric like as far as their configurations. Flexible, coil-like polymer chains 

are expected for low surface coverage. Biosensor devices with low coverage of long 

chains are thus, expected to have low sensitivity. Steel et al. proposed that chains with 

24 to 48 nucleotides are in a transition regime between rod like and flexible coil 

model [28]. In this chapter, I have investigated immobilization of 100-base thiolated 

ssDNA, flexible coil-like polymer for comparison with the more rigid 8-base ssDNA.  

 

Figure 3.20 shows AFM images of an immobilized layer of 100-base ssDNA 

(60μM) on GaAs. These results reveal significant changes in surface morphology 

compared to the  8-base DNA presented in section 3.3.2. The lower magnification 

image (Figure 3.20 (a)) shows that the surface is covered by big clusters of circular 

shape. The diameter of the clusters is 330~440 nm, and their height is 9.5 ± 2.2 nm. 

The density of the clusters is 3 ~ 4 bundles/μm2. These aggregations could be 

explained by π-π stacking between the bases of adjacent DNA molecules, and 

hydrophobic interactions of the bases. When the length of DNA is increased, these 

interactions become dominant in determining the morphology of the immobilization. 

Figure 3.20 (d) shows that there still exist some small bundles of DNA probes in the 

regions between the big clusters. The width of the small bundles is 28 ± 3.4 nm, and 

the height was 1.2 ± 0.3 nm. 
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When MCH is applied to this sample (see Figure 3.21), a displacement 

reaction of the N-As and O-As bond is expected. The dimensions of the big bundles 

are reduced with diameter of (290~340 nm) and height (6.6 ± 1.7 nm). In addition, for 

the small bundles are also changed. The width is reduced to 24 ± 2 nm, and the height 

increased to 2.8 ± 0.7 nm.  These results indicate that MCH spacer is still affective in 

the immobilized 100-base DNA layer, even though a much larger number of  non-

desired bonds through the larger number of bases occurred between the DNA and the 

As atoms on the surface. This is because of an increase in entropic penalty to stretch 

the chains. FESEM results for both samples are shown in Figure3.22. In both cases, 

big bundles cover the surface as in the AFM images. Also, the bundle size matched 

fairly well that obtained from the to AFM results   

 

To understand the behavior of the immobilized 100-base DNA layers in 

solution, the fluid cell of over AFM was used in DI water and 1M NaCl solution. 

Figure 3.23 (a) is the surface morphology of 100-base DNA layer in DI water by 

AFM tapping mode. The diameter of the DNA bundles is reduced to 17.5 ± 2.9 nm. 

The height of the DNA layer significantly increased to 8.7 ± 1.0 nm compared to the 

dried sample. These results indicate that the chains stretch in the normal direction of 

the surface in the presence of water. The height is reduced to half (~ 4 ± 0.8 nm) 

when the sample was immersed in the 1M NaCl solution, whereas the width increased 

about 2 times to 32 ± 4.3 nm. This result is expected because of the osmotic pressure 

of the counterions in the layer is reduce by the added salt.   
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Figure 3. 24 shows X-ray scattering results for flexible 100 bases ssDNA (60 

μM) on GaAs.  X-ray was performed from 0.1 degrees to 5 degrees in 2θ. The data 

shown were extracted from the rough data by comparing the high and low intensities 

produced by a wide angle mesh in θ ~ 2θ.  There was not evidence for the radius of 

gyration determined by Tinland et al of Rg = 0.38N1/2 which is equal to 3.8 ± 0.1 

nm[111]. There are peaks that seem to correspond to harmonics of the 32 nm spacing 

observed in AFM. The harmonics correspond to 23 ± 1 nm, 12 ± 0.5 nm, and 7 ± 0.5 

nm. The structure corresponds to an arrangement of small crystallites, since the peaks 

can be fit with a Gaussian as illustrated in the lower figure. 
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Figure 3.20 AFM image in dry of  60 μmol L-1 100-base DNA on As-terminated 
GaAs (001) substrate. Plane view (10 x10 μm) (a), line profile (b), three dimensional 
view (c), and plane view (2 x 2 μm) (d). 
 

 

 

 

 

(a) (b) 

(c) 

(d) 
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Figure 3.21 AFM image in dry of  60 μmol L-1 100-base DNA and after treatment 
with MCH on As-terminated GaAs (001) substrate. Plane view (2 x 2 μm) (a), line 
profile (b), and plane view (500  x 500 nm) (c). 
 

 

 

 

 

 

 

(a) (b) 

(c) 
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Figure 3.22 Surface morphology of  FESEM images (a) thiolated 100-base ssDNA 
layer (b), and after treatment with MCH of (b) sample.  
 

 

(a) 

(b) 
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Figure 3.23 AFM image of  60 μmol L-1 100-base DNA on As-terminated GaAs 
(001) substrate in DI water (a) , and in 1M NaCl solution (b): Plane view (2 x 2 μm), 
(500 x 500 nm) and line profile for each image are shown in the middle and bottom of 
the figure, respectively. 
 
 

(a) (b) 
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Figure 3.24 X-ray scattering scans for 100 bases ssDNA (60μM) on GaAs.  
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Chapter 4.  

 

4. Toward the Development of DNA Biosensors 

 

4.1 Introduction 

 

A biosensor is a device that couples electronic machinery to biological 

molecules. There are three major types of biosensors :  bimolecular sensor, a solid 

phase platform, and electronic transducer. The transducer detects and measures a 

physio-chemical change produced by interactions between the biological sensor and 

the target molecules. The bimolecular sensor can be based on by enzymes, antibodies, 

or ssDNA depending on the desired type of interaction (DNA-DNA, DNA-protein, or 

protein-protein). For the electronic transducer, there are three different types of 

strategies which are currently utilized electrochemical, optical and piezoelectric 

technique. In the electrochemical method, DNA based biosensors normally involve 

immobilized single-stranded DNA at an electrode surface. The hybridization can be 

detected by monitoring changes in the redox properties of an electroactive indicator. 

Other development of DNA biosensors are optical transduction techniques including 

fluorescence spectroscopy, fiber optics and surface Plasmon resonance (SPR). The 

third type of biosensor utilizes piezoelectric or acoustic wave sensor which is a device 

sensitive to mass variation during hybridization. This method has the advantage of 

being a direct detection method and does not require labelling.  
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A biosensor should have high sensitivity, reliability, short response time, low 

cost, and miniaturization as well as direct detection method (label-free) to avoid any 

undesired reaction of the sample with the attached labels.     

 

DNA can be damaged by ionizing radiation and this led to an interest in 

airspace field and the radiation industry. In space, the background level of radiation is 

many times higher than on Earth which is protected by the atmosphere. DNA 

biosensors are excellent tools for detection of DNA damage by ionizing radiation.  

In this chapter, I present preliminary results of the damage of ionizing radiation to 

DNA probes and detection of hybridization reaction between the probes and targets 

using AlGaAs resonator. 

 

4.2 Effects of Irradiation on an Immobilized DNA layer on GaAs 
 

The DNA biosensor composed of a thiolated ssDNA layer on GaAs surface 

has great potential for monitoring radiation. Several degrees of damage to the DNA 

layer should be considered when a DNA biosensor is exposed to high levels of 

ionizing radiation.  Fist, radiation can damage DNA by production random scissions 

on the back bone of the DNA. Second,  rupture can occur in the anchoring bond 

between the DNA and the As atom on the surface (N-As, O-As, and S-As). This can 

make DNA molecules leave the surface. Finally, radiation can cause cross-linking 

between adjacent thymine or cytosine bases, creating a so-called pyrimidine dimmer. 
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Thymidine dimmer is shown in Figure 4.1[112, 113]. This dimerization prevents 

hybridization.  

 

M. Al-Sheikhly et. al investigated the damage induced by ionizing irradiation 

to the DNA probes on GaAs using by XPS [67]. They observed a decrease in atomic 

concentration of thiol after irradiation, which means that cleavage and rupture of the 

anchoring group had taken place upon irradiation. In this section, the observation of 

surface morphology changes of the DNA layer immobilized on GaAs after irradiation 

was carried out using AFM technique  

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Formula of the C(5)-C(5) linked dihyrodimer of thymidine  
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The AFM images in Figure 4.2 show the dramatic change of surface 

morphology after 47 MGy electron beam radiation of 8-base ssDNA probes (60 μM) 

on GaAs. Figure 4.2 (a) shows the scan image in dry mode. Comparing with Figure 

3.6, before irradiation, the surface roughness decreased and needle-like circular shape 

of the DNA bundles is not observed any more. The height of the DNA layer before 

and after irradiation changed from 2.2 ± 0.4 nm to 0.8 ± 0.3 nm. The whole surface 

became fairly smooth and flat. This result indicates that the ssDNA layer collapsed 

completely by irradiation. The bundle size of the DNA probes increased almost 2 

times from 14.6 ± 2.6 nm to 29.8 ± 4.8 nm. This increasing bundle size can be 

explained the by collapse of DNA probes as well as the dimerization of thymine-

thymine dimers through the formation of covalent bond between two thymine bases 

in adjacent DNA molecules. Figure 4.2 (b) is an AFM image in DI water from the 

same sample as Figure 4.2(a). The bundle size remains almost same as in dry mode 

size (27.3 ± 5.8 nm). However, the height of the DNA layer increased to 2.92 ± 

1.1nm. In addition, some areas of the sample did not show any bundle shape of DNA. 

This is probably because some DNA probes were removed from the surface of the 

substrate in DI water after the rupturing of the anchoring group (mainly S-As 

covalent bond) by the irradiation. M Al-Shekhily et al. noted that the dose on the 

DNA dose is 50 % greater than the dose received by the GaAs the backscattering 

phenomenon from the GaAs. They also observed 40 % reduction of atomic 

concentration of bounded sulfur at thiol after irradiation[67].        
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Figure 4.2 Three-dimensional and plane view AFM images and linear profile of 
immobilized ssDNA layer on GaAs after irradiation by e-beam with 47MGy dose 
level. (a) scanned in air and (b) scanned in DI water. Dimensions are 500 X 500 nm, z 
scale is 5 nm. 
 

 

(a) (b) 



 107 
 

4.3 AlGaAs Resonator Biosensor 

                        

4.3.1 Introduction 

 

More recently, resonant mass sensors have been created on a single chip by 

microfabrication technology. The chip works in resonant mode which could detect 

resonant frequency shift by interaction between target and probe molecules that are 

functionalized on the sensor surface. The mass change is calculated by resonance 

frequency shift using Sauerbrey Equation. 

 

                                                                                                                              (4.1) 

 

Where 0f  is resonant frequency of the material,  

A : active area 

qρ : density of material 

qμ : shear modulus of material 

fΔ : change frequency 

mΔ : change mass 

 

Ilict et al. demonstrated resonant mass sensors using 150 nm polysilicon 

cantilever[114]. However, low quality factors of silicon based resonators at 

atmospheric pressures require vacuum operating system to obtain acceptable mass 

resolution. The active piezoelectric materials for resonant mass sensor have been 

qqA
mff

μρ

2
02 Δ−

=Δ
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studied to overcome the limitation of silicon resonator system. Several resonant mass 

sensors based on piezoelectric materials have recently been demonstrated[115, 116].  

Although piezoelectric materials have low values of motion resistance with small bias 

voltage, higher internal loss and big damping effect caused metal electrodes can 

reduce the overall Q of a resonator. 

 

Don DeVoe et al. have recently demonstrated a fabrication process for 

resonators based on mutilayer of single crystal piezoelectric Al0.3Ga0.7As and Si-

doped Al0.3Ga0.7As electrodes. Figure 4.3 shows a cross-sectional of a typical device. 

These Al0.3Ga0.7As resonators showed Q value as high as 25,390 in vacuum, and 

11,200 in air [117]. These high Q values can make the establishment system without a 

vacuum environment.   

 

4.3.2 Detection of Hybridization Using AlGaAs Resonator 

 

The disk type AlGaAs microresonator was fabricated by Don DeVoe group 

members for detecting the change in frequency of a resonator upon hybridization of 

8-base ssDNA probes with its complementary target ssDNA. Thiolated 8-base 

ssDNA (60µM) probes immobilized by same method described in Chapter 2. After 

immobilization of probes, the resonator was washed with DI water and measured its 

resonance frequency in air. 
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Then the resonator immersed to complementary DNA solution (60µM) at 

room temperature for 24 hours for hybridization. After 24 hours, the resonator was 

washed with DI water and measured its resonance frequency again in air. Figure 4.4 

shows the dried surface morphology of a DNA layer on AlGaAs before (a) ssDNA 

and after (b) dsDNA hybridization with complementary DNA obtained using AFM. 

AFM data revealed that the bundle size increased from ~10-30 nm to ~40-60 nm after 

hybridization. This increase in size is expected from the bigger diameter of dsDNA. 

The relatively uniform increase in size shows that hybridization successfully occurred 

over the whole area. As shown in Figure 4.5, the completion of the hybridization 

reaction produced a change in resonance frequency Δf of 16.773 kHz. Using 

Sauerbrey’s equation and taking into account the density of AlGaAs of 4.852 g/cm3, 

the shear modulus of AlGaAs of 3.223 x 1011dyn/cm2, and assuming that 

hybridization occurs on the top and bottom sides of the 60 µm diameter resonator, I 

obtained a change in mass of ~25pg. These results indicate that 10fmol of the 8 bses 

ssDNA underwent hybridization. This shows that the resonator method is capable of 

detecting very low changes in mass due to chemical interactions.   
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Figure 4.3 Cross-sectional schematic of an AlGaAs microresonator 
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Figure 4.4 AFM plane view images of immobilized ssDNA layer on Al0.3Ga0.7As 
surface (a) before hybridization and (b) after hybridization with complementary DNA 
(cDNA). Dimensions are 500 X 500 nm, z scale is 20 nm. 
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Figure 4.5 SEM images and frequency shift (Δf =16.773 kHz) before (a) and after (b) 
hybridization with complementary DNA on a disk type AlGaAs resonator. The SEM 
images have schematics of the ssDNA (a) and hybridized DNA (b) on the resonator. 
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Chapter 5 

 

5. Discussion and summary 

 

In this work, thiolated ssDNA probes were immobilized on GaAs-base 

semiconductors via covalent bonding between the thiol group, the N or O in the bases 

and the As of the GaAs substrate. A series of characterization techniques have been 

carried out to understand the structure and behavior of the immobilized DNA layer on 

GaAs (001) surfaces as well as to investigate the surface chemical bonds between the 

DNA molecules and the As atoms of the GaAs surface. In a different set of 

experiments, the effect of irradiation and the detection of DNA hybridization using 

AlGaAs resonator we are also performed.  

 

The effects of modification of unmodified and modified 8-base DNA 

molecules have been characterized using  AFM and FESEM after immobilization of 

the DNA probes using the  same procedure. The results indicate that non-modified 

DNA molecules prefer to lay down along the  As-rich dimmer row direction [110] 

because the nitrogen and oxygen atoms in the bases of ssDNA with As atoms on the 

surface. In addition, the AFM line profile shows that some interactions (π-π stacking), 

caused aggregation of DNA molecules, in spite of the negative charge on the 

backbone of the DNA. The tethering density in this system was high enough to give 

rise to overlap between molecules’ chains as predicted by to the scaling theory. In the 

regime with low tethering density, called mushroom regime, the equilibrium height of 
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the coils is expected to be close to the radius of gyration of the molecules. In the thiol 

modified DNA molecules case, the AFM result shows that circular shape bundles of 

the DNA probes about 14 nm diameters covered the surface. Using contact mode in 

AFM, the DNA layer was partially removed over an area and the surface revealed the 

thickness of the layer (~ 2.2 nm). Considering the contour length of the 8-base 

ssDNA molecules and the fact that 8-base DNA oligos behave as rod-like molecules, 

the DNA probes lie at an angle of ~28.4° with respect to the surface of the GaAs. 

Similarly to the non-modified DNA case, the thiolated DNA bundles orient along the 

trenches in the 2x direction of the GaAs (2 x 4) reconstructed surface.  

 

To achieve a better quality layer of the brush-like structure MCH method was 

employed to the immobilized ssDNA layer. After MCH treatment, the height of the 

layer was increased by approximately 1nm as characterized by AFM. XPS results 

shows reduction the bonded nitrogen and oxygen peaks after MCH treatment. These 

results indicated that the sulfur in MCH substituted the nitrogen- and oxygen – for 

bonding with arsenic atoms. The MCH treatment provided a brush-like layer with the 

oligos at a higher angle with respect to the surface of the GaAs by displacing the non-

specific bonds and/or adsorption. 

 

When the DNA probes are immersed in solution, their behavior is complicated 

because of the complexity of interpreting the electrostatic interaction within the 

polyelectrolyte brush and the effects of the countrions from the added salt. As a result, 

the morphlogy of the polyelectrolyte strongly depends on concentration of added salt 
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and the elasticity of the polyelectrolyte. Namely the energy balance is to describe the 

behavior of the polyelectrolyte layer (ssDNA probes layer in this work) is a function 

of counterion osmotic pressure and chain elasticity as proposed by Pincus in 1991. 

Without or for very low concentration of salts in a good solvent, such as water, the 

DNA layer swells and stretches as a result of the counterion entropy or osmotic 

pressure. The fluid cell AFM results obtained in this work shows that the height of the 

layer increased in solution compare to dry form. This direct observation of 

conformational change is important to understand an efficiency of hybridization. 

Electrostatic repulsion between the DNA by a negative charge in the backbone of 

DNA probes could affect hybridization in low salt concentration because of the 

reduced accessibility of the target molecules to the probes. On the other hand, under  

high concentration of salt, the screening of the counterions reduces the osmotic 

pressure. Pincus proposed that the polyelectrolyte brush collapses as the salt 

concentration increases ( 3/1−≈ SCL  ) (see Table 3.2).  Therefore, a design of a 

biosensor with better efficiency for hybridization should consider an  appropriate the 

concentration of salt.  

 

In this work, long (100-base) of DNA was also studied to investigate if the 

morphology of a longer molecules in dry mode and in solution was the same as for 

the shorten oligos. For designing a biochip, optimization of the length of the 

immobilized DNA probes has to be addressed. In theory, a longer, a molecule carries 

more genomic information. Also, it is easier for a long probe DNA to identify and 

bind to the target DNA. Furthermore, the stability of the system after hybridization 



 116 
 

would be higher. However, higher probe surface coverage reduces the distance 

between neighbor tethered molecules thus increasing the length of the DNA because 

the DNA molecules behave like flexible chains instead of rod-shape. Also, increasing 

probe length gives rise to increase of entropic penalty associated with ordering 

structure. Our AFM results revel that for long DNA relatively big size of clusters as 

well as small bundles of DNA covered the surface of  the GaAs. The size and shape 

of clusters were relatively regular. That indicates that the system is in there are some 

equilibrium. This equilibrium could depend on factors, such as hydrophobicity and π-

π interaction. To get a better understanding of the behavior of long DNA tethered at 

one end, further studies should be performed including low concentration of DNA 

solution, determination of the radius of gyration of the DNA molecules in solution, 

and the quality of the DNA solution. At this moment, I can only expected that π-π 

stacking interaction is the dominant interaction because of the increasing in the 

number of bases and aromatic rings. Even though MCH effects will be insensitive as 

the length of the molecules increases, I observed MCH influence to the height of 

ssDNA layer. The level of the collapse was higher than for short DNA at in high salt 

concentration.   

 

In the preliminary experiments for possible applications of DNA anchored to 

GaAs for biosensors, the effect of irradiation was observed by AFM. After irradiation 

of the ssDNA layer, the surface became smother indicating complete collapse of the 

DNA layer. In addition, valleys were found during the AFM scan in water. The 

valleys could be the result of the removal of DNA from the surface because the S-As 
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bonds were broken by strong radiation energy. This change can be detected using 

DNA biosensor. Using an AlGaAs disk resonator, 10fmol of the 8-base target DNA 

was detected. This preliminary result shows that a very low mass change due to 

hybridization can be detected by AlGaAs resonator.       
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Chapter 6.  

 

6. Suggestions for Future Work 

 

In this work, I investigated the morphology immobilized DNA probes on 

GaAs-based semiconductors in dry form and in solution and its application. 

Additional studies for the understanding of this system could be achieved by 

employing other characterization techniques, such as neutron reflectivity (NR), 

transmission electron microscopy (TEM), and ellipsometry. Neutron reflectivity (NR) 

could be used to provide in depth understanding of the attachment and density profile 

of the DNA at the surface in an aqueous environment [116]. NR can provide high 

resolution information on the density profile normal to the substrate surface (1 nm 

resolution or better) and through the use of D2O can provide better contrast between 

the DNA chains and the aqueous environment than with comparable experiments 

using x-rays . In particular, NR can reveal how far the DNA extends into the solution 

which will allow comparison to the expected extension for DNA molecules and allow 

the determination of whether the DNA is collapsed as the result of nonspecific 

bonding with the surface. In addition, NR can provide insight into the role of the 

MCH spacer in lifting the DNA off the surface by potentially minimizing the existing 

nonspecific interactions between the DNA and the surface. The neutron data will 

complement the x-ray data. Finally, NR may provide some insight into the DNA 

hybridization and the effect of MCH on this process. The density profile measured by 

NR should be changed by the hybridization process and this data will be useful in the 
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evaluation of the DNA attachment to GaAs as a route to the fabrication of a DNA 

chip. The NR data will complement the AFM, GIXS and XPS results and provide a 

more complete picture of the attachment process and enable the transformation of this 

research into practical applications.  

 

To obtain more detailed, structural information, TEM could be used. For the 

TEM studies, both plan view and cross section samples should  be prepared to obtain 

complementary information. However, the preparation of the TEM samples will be 

challenging since the samples have a very soft organic (DNA) material on a relatively 

hard inorganic (semiconductor) material. Cryotechniques for TEM sample could also 

be used to reduce the damage caused by the electron beam. Also, for greater contrast 

of TEM images, M- DNA could be used. M-DNA is a type of metalated DNA 

containing Zn, Ni, and Co, with the metals placed in between each base pair [118, 

119]. Some preliminary results of TEM images and diffraction patterns from 8-base 

DNA samples are presented in the appendiex. 

 

Ellipsometry is a highly sensitive optical technique for surface information 

and thin films. The shape and orientation of the ellipse strongly depend in the angle of 

incidence and the reflection of the light.  Ellipsometry gives thickness information of 

the thin film on the surface when the reflection properties, thickness or chemical 

composition,  are changed [120, 121].  
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Some preliminary results using short length DNA were obtained using 

AlGaAs resonator in this study. This type of biosensor should be studied in more 

detail with different lengths of DNA. In addition, as discussed in chapter 4.2, the 

effect of irradiation on the DNA layer should be applied to the AlGaAs resonator 

technique. Finally, the study for the design of in-situ detection solution should be 

carried out for next generation of DNA biosensor.     
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Appendices A  
 

Some example of XPS spectra for As under different conditions are presented below  

 

 

 

 

Figure A.1 High resolution XPS As 3d spectrum before (a) and after (b) immersion in  

acetone for 30 minutes of the immobilized 8-base ssDNA layer on GaAs substrate. 

No appreciable change is observed. 

 

 

 

(a) (b) 
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Figure A.2 High resolution XPS S 2p spectrum before (a) and after (b) immersion 

acetone for 30 minutes of the immobilized 8-base ssDNA  (60 μM) layer on GaAs 

substrate. No appreciable change is observed.  

 

 

(a) (b) 
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Figure A.3 High resolution XPS S 2p spectrum before (a) and after (b) immersion 

acetone for 30 minutes of the immobilized 8-base ssDNA  (60 μM) layer on GaAs 

substrate. Some change is observed in the relative intensities of the high and low 

energy peaks. 

(a) (b) 
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Figure A.4 High resolution XPS O 1s spectrum before (a) and after (b) immersion 

acetone for 30 minutes of the immobilized 8-base ssDNA (60 μM) layer on GaAs 

substrate. A new peak is observed at ~ 536 eV after immersion in acetone. This peak 

is probably due to C=O bond of acetone. 

 

(a) (b) 



 125 
 

 

 

 

 

 

 

 

Table A.1 Quantification report before (a) and after (b) immersion acetone for 30 

minutes of the immobilized 8-base ssDNA (60 μM) layer on GaAs substrate.  

(a) 

(b) 
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Appendices B 

Preliminary Results using TEM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1 Schematic representation of the procedure followed for preparing edge 

specimens 
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Figure B.2 Heigh resolution TEM image of the immobilized 8-base ssDNA (60 μM) 

layer on GaAs substrate. Diffraction pattern shows extra spot besides the GaAs spots. 

The Fast Fourier Transforms show two different line spascing. 
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