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This dissertation introduces and analyzes research problems related to Retail

Operations and Humanitarian Logistics. In Retail Operations, the inventory that

ends up as unsaleable at primary markets can be significant (up to 20% of the retail

product). Thus retailers look for strategies like selling in secondary markets at a

discounted price. In such a setting, the decisions of how much to order for a product

of limited shelf life and when (if at all) to start selling the product in the secondary

market become critical because these decisions not only affect the retailer’s cost of

procurement and sales revenues obtained from the product but also affect utilization

of shelf space, product rollover and assortment decisions of the retailer. Apart from

using secondary markets, retailers that sell seasonal products or products with sales

horizons shorter than the typical production/procurement lead time also enter into

contractual agreements with suppliers. These contracts are in place to share risks

associated with unknown or uncertain demand for the product. Presence of such



contracts does affect a retailer’s order quantity as well as the time to start selling in

the secondary market. In our two essays on retail operations, we analyze a retailer’s

optimal order quantity and when he/she starts selling in the secondary market. We

refer to the former as the ‘ordering decision’ and the latter as the ‘timing decision.’

These two decisions are studied first without risk sharing contracts in Essay 1, and

then in the presence of contracts in Essay 2.

In Essay 1, we build a two-stage model with demand uncertainty. The order-

ing decision is made in the first stage considering cost of procurement and expected

sales revenue. The timing decision is made in the second stage and is conditional

on the order quantity determined in the first stage. We introduce a new class of

aggregate demand model for this model. We study the structural properties of

the retailer’s timing and ordering problem and identify optimality conditions for

the timing decision. Finally, we complement our analytical results with computa-

tional experiments and show how retailer’s optimal decisions change when problem

parameters are varied.

In Essay 2, we extend the work in first essay to include the contracts between

the retailer and a supplier. In this essay, we introduce a time-based Poisson demand

model. We define three different types of contracts and investigate the effect of each

of these contracts on the retailer’s ordering and timing decisions. We investigate

how the analytical structure of the retailer’s decision changes in the presence of these

contracts. For a given order quantity, we show that the timing decision depends on

the type of contract. Our analytical results on the timing decision are complemented

with computational experiments where we investigate the impact of contract type



on the optimal order quantity of the retailer.

In Humanitarian Logistics, non-profit organizations receive several-billion-dollars-

worth of donations every year but lack a sophisticated system to handle their com-

plex logistics operations; the absence of expertly-designed systems is one of the

significant reasons why there has been a weak link in the distribution of relief aid.

The distribution of relief aid is a complex problem as the goal is humanitarian yet

at the same time, due to limited resources, the operations have to be efficient. In

the two essays on humanitarian logistics, we study the distribution of aid using

homogeneous fleet, with and without capacity restrictions.

In Essay 3, we discuss routing for relief operations using one vehicle without

capacity restrictions. Contrary to the existing vehicle routing models, the key prop-

erty of our routing models is that the nodes have priorities along with humanitarian

needs. We formulate this model with d-Relaxed Priority rule that captures distance

and response time. We formulate routing models with strict and relaxed forms of

priority restrictions as Mixed Integer Programs (MIP). We derive bounds for this

problem and show that this bound is attained in limiting condition for a worst-case

example. Finally, we evaluate the optimal solutions on test problems for response

time and distance and show that our vehicle routing model with priorities captures

the trade-off between distance and response time unlike existing Vehicle Routing

Problem (VRP) models without priorities.

In Essay 4, we extend the problem dealt in third essay to consider fleet con-

sisting of multiple vehicles (homogeneous) with capacity and route length restric-

tions. First, we show that the humanitarian aspect imposes additional challenges



and develop routing models that capture performance metrics like fill rate, distance

traversed, response time and number of victims satisfied. Proposed routing models

are formulated as Mixed Integer Programs and are solved to optimality for small

test problems. We conduct computational experiment and show that our models

perform well on these performance metrics.
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Chapter 1

Introduction

The field of operations is claimed to be as old as civilization (Singhal et al.

(2007)) but has found its niche during the Industrial Revolution early in the 20th

century. The problems and ideas came from manufacturing and military in those

days. When Elwood Buffa, a pioneer, coined the term “operations management” in

1950s, he referred to both manufacturing and non-manufacturing activities. In his

1961 textbook, Buffa discussed the increasing role of services in the economy and

provided many examples where production-related concepts equally apply to services

(Buffa (1961)). Despite Buffa’s vision, majority of the research papers that appear

in academic outlets remained focused on manufacturing-related problems for a long

time: A survey by Pannirselvam et al. (1999) shows that only a handful of articles

on services were published in operations management journals during 1990s. The

interest on services have been growing, with several journals publishing special issues

on topics related to service industries in the recent years (e.g. Management Science

journal published a Special Issue on Call Center Management in 2008, Production

and Operations Management journal announced two special issues, one on Financial

Services and the other on Retail Operations in the last two years). Two of the

emerging subfields within services, retail operations and humanitarian logistics, are

studied in this dissertation.

1



Retail industry is comprised of individuals and companies that sell finished

products to end users. Many different products are sold at retail, for instance,

coffee at a coffee shop such as Starbucks, fashion apparel at a department store such

as Nordstrom, electronics at an online retailer such as Amazon.com. The total sales

for the U.S. Retail Industry in 2009 was $4,131 billion. This total includes $690.5

billion in automotive sales, $575.8 billion in food and beverage, and $208.6 billion in

clothing and accessories. 1 Companies use various strategies to sell the goods to end

users at retail. For instance, some products are sold by infomercials, some are sold

in stores, some through catalogs and some on the internet. Despite the differences

in these sales strategies, retailers face a common set of questions in managing their

operations: Which products should the retailer sell? What should be the stock

levels of these products? How frequently should the inventory be replenished? How

should the goods be procured from the vendors? What should be the prices of the

products at any point in time?

Finding the ‘right’ answers to these questions is difficult given the level of

uncertainty regarding consumer demand. A retailer has to make many logistical

decisions including procurement, transportation, and inventory-related ones, long

before he/she knows how many customers will purchase the products, and when

and where they will make a purchase. For retailers that sell goods that are seasonal,

perishable or face obsolescence, the answers to the above-mentioned questions are

even more critical as the time window to sell the goods at a profitable level is

typically shorter and the opportunity cost of not selling them before their effective

1http://www.nrf.com/modules.php?name=Pages&sp_id=1237
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sales season ends is high. Furthermore, a retailer that sells an assortment of seasonal

goods has to manage product rollovers effectively from one season to the other.

Another complication in the retail industry arises from the heterogeneity of

the consumers who are willing to pay different prices for a given product and who

differ in their urgency in making a purchase (e.g., customers who want to purchase

an apparel early in the season vs. the ones that purchase the product at a discount

at the end of the season). To manage demand of such heterogeneous customers

effectively, some retailers take advantage of multiple distribution channels. One

common arrangement is selling products in primary and secondary markets. A

retailer can offer an assortment of products in its own stores with a particular sales

and pricing strategy and can offer some (if not all) of these products to a different

customer segment using another channel/strategy. An example of an alternative

or secondary channel is the internet store of the retailer where the goods can be

marked down and offered for a longer period. Another example is the outlet store of

a retailer. Clearly, selling the products at a discount in a secondary market, such as

the internet store or the outlet, can cannibalize the sales in the primary market. To

prevent this, retailers typically do not offer the same product at their primary and

secondary markets simultaneously and offer the products in the secondary markets

with a delay.

The first essay in this dissertation addresses questions for a retailer that has

access to both primary and secondary markets. Should the retailer selling a seasonal

product offer it only in the primary market? If not, then what is the best time to

start offering the product in the secondary market? The answers to these questions
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are obtained by developing an analytical model that focuses on the logistical deci-

sions made by the retailer, specifically, the amount of goods to have in stock at the

beginning of the sales season and the time to switch the sales from the primary to

the secondary market. The second essay investigates these decisions further by con-

sidering the retailer-vendor relations. Retailers enter into agreements with vendors

to share various supply chain costs. The agreements are in the form of contracts. In

this essay, we study the effects of three types contracts on the decisions of a retailer

who makes use of primary and/or secondary markets.

The second research topic, humanitarian logistics, has received wide-spread

recognition in academia and industry especially after natural disasters like Hur-

ricane Katrina in 2005 and tsunami in South-East Asia in 2004. The complex

operational challenges in humanitarian logistics came to the forefront due to these

natural disasters. The entire world mobilized to donate $13 billion in response to the

tsunami (e.g., Thomas & Fritz (2006)). Yet, according to Doctors without Borders,

“. . . we have already received as much money as we can spend. . .What is needed are

supply-managers without borders: people to sort goods, identify priorities, track

deliveries and direct the traffic of a relief effort in full gear” (e.g., The Economist

[Jan 2005]). These challenges are not limited to natural disasters like the South-

East Asia Tsunami in 2004 or Hurricane Katrina in 2005 – relief agencies encounter

similar and additional challenges in military environments like disease outbreaks,

civil conflicts, war-zones, and terrorist attacks.

Compared to well-studied business logistics, humanitarian logistics presents

unanswered challenges in terms of movement of relief goods like food, bedding and
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shelter, medical care, and clothes. The business supply chain and humanitarian

relief chain differ in aspects like revenue sources, goals, stakeholders, performance

measurements, demand characteristics, and customer characteristics. The goal of

a business supply chain is to maximize profit. For humanitarian relief chain, the

goal is to maximize timely delivery in order to minimize the loss of life. A typical

humanitarian relief chain consists of a primary supply hub such as a port of entry,

a central warehouse, and local distribution centers. Finally, the relief goods are

distributed to people in need (or demand points) from the distribution center. This

last stage is commonly known as the “Last Mile Distribution” in humanitarian

logistics, and this is the main focus of our third and fourth essays.

Our purpose is to consider the urgency of locations along with other humani-

tarian needs and design delivery routes that cater to performance metrics relevant

for humanitarian relief operations. Traditional or non-humanitarian routing models

do not capture the humanitarian issues and, thus, perform at a poor level on one

or all of metrics such as distance, latest response time, fill rate (or percentage de-

mand satisfied), and number of customers serviced. The combination of urgencies

for locations in a vehicle routing problem poses interesting research questions in

different relief situations: How do we design optimization models to capture rele-

vant performance metrics discussed above? How much is the route altered when the

urgency restrictions are strict? Is there a structured way to model relaxed forms

of the urgency restrictions? In the third essay, we design delivery routes for the

distribution of relief good with a single vehicle that are efficient as well as that

meet the ultimate humanitarian goal of mitigating human loss in a timely manner.
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In the fourth essay, we extend our model discussed in third essay to consider the

distribution system with single and multiple vehicles constrained by capacity and

route-length restrictions.

This dissertation is organized as follows. In Chapter 2, we consider a retailer

facing primary and secondary markets and analyze the retailer’s logistical decisions.

In Chapter 3, we discuss the implications of supplier-retailer contracts. In Chapter

4, we consider the vehicle routing problem for humanitarian relief operations with

a single vehicle without capacity restrictions. In Chapter 5, we extend the vehi-

cle routing problem for relief operations with single and multiple vehicles having

capacity and route-length restrictions. In Chapter 6, we summarize the contribu-

tions of our research and discuss future research topics in Retail Operations and

Humanitarian Logistics.
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Chapter 2

Essay 1: When to Start Selling in a Secondary Market

2.1. Introduction

Mismatch of demand and supply is commonplace at retailers due to the coupled

effect of demand uncertainty and lead times in the supply chain. According to

Tibben-Lembke (2004), at the primary market of a retailer, anywhere from 5% to

20% of the products may end up as unsaleable. Overstocking, inadequate pricing,

damage, and customer returns all contribute to these percentages. Retailers look

to offer products that are unsaleable in primary markets to appropriate customers

at apt time and price by marking them down, refurbishing the goods, relocating

the inventory, or changing the distribution channel. In all these cases, the good

enters the “secondary market”. Secondary markets thus provide an opportunity for

the retailers to increase sales, decrease inventory levels and costs, and to increase

profits.

Retailers selling seasonal products such as fashion apparel make product as-

sortment (merchandising) and ordering decisions well ahead of the selling season

with limited information and inaccurate forecasts of demand. They have better

demand forecasts at the start of the sales season, as opposed to at the time goods

are ordered from a vendor, as they gather market indicators until the sales season

starts. Change in demand forecasts, unfortunately, does not give the retailers an
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opportunity to change their order quantities when they have long supply lead times.

Therefore they rely on other tactics to manage demand and increase profits: They

can match demand with the quantity on hand by changing the prices of the goods or

reallocating them across different channels during the sales season. For instance, a

product that is not selling as fast at “primary market” (e.g., the department store),

can be offered at a discounted price in a “secondary market” (e.g., outlet store) to

increase the sales and profits. Primary and secondary markets typically appeal to

different customer segments. The former can have customers that are willing to pay

premium prices to purchase a product early in the season, while the customers for

the latter are bargain hunters that do not have “urgent” needs for a product.

As a concrete example, consider Saks Fifth Avenue and Nordstrom, each of

which has its retail stores but also sells products through its outlet stores, OFF

5th and Nordstrom Rack, respectively. Some of the products that do not sell well

in the primary market (e.g., Nordstrom) are moved to the secondary market (e.g.,

Nordstrom Rack) and offered at a 30-70% discount (Sanders (2010)). Department

stores are not the only ones that make use of outlets as secondary markets: Apparel

brands that manufacture and sell products in the company’s own stores, such as

Polo Ralph Lauren and Calvin Klein have primary stores and outlet stores. In their

detailed study of outlets, Coughlan & Soberman (2004) mention that Polo Ralph

Lauren is one brand that offers its products at its own stores as the primary market

and offers the same products with a time delay at its outlets and at a discount of

29%. Similarly, Nautica offers products at its own retail stores first and later in its

outlets at a discount of 47%.
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Yet, another example of secondary markets in fashion apparel is the existence

of third-party discount retailers such as TJ Maxx. TJ Maxx buys merchandise that

have been returned from department stores (e.g., Nordstrom returning excess inven-

tory to Ralph Lauren, which in return sells it to TJ Maxx) and sells it at a discount

at its own stores (Wahba (2010)). Ongoing economic recession has boosted the sales

in the secondary markets, including discount retailers and outlet stores, while the

department store sales have been declining (Birchall (2010)). Retail analysts point

out (Birchall (2010)) that “vendor who does not sell to [the secondary markets] runs

the risk of not being able to move excess inventory.”

In this chapter, we focus on a decision maker that has the option of selling

products through primary and/or secondary markets that is common for products

with limited shelf-life such as high-end fashion apparel. The decision maker retains

the ownership of goods in both the primary and the secondary markets; this is the

case for the department stores and their outlets (i.e., Nordstrom and Nordstrom

Rack). We refer to the decision maker as the retailer henceforth. Specifically, we

study how much the retailer should order prior to the sales season and when (if

at all) he/she should offer the product in the secondary market. If the product is

offered too early in the secondary market, then the retailer loses out on the revenue

from customers paying higher prices at the primary market. If the product is offered

very late in the sales horizon, when the product is not selling well in primary market,

then the retailer loses out on two fronts: First, the valuable shelf-space in primary

market is held up by goods with low profit potential. Second, the retailer loses out

on potential sales in the secondary market eventually forcing retailer to, possibly,

9



salvage excess inventory at a loss.

The remainder of this chapter is organized as follows. We briefly define the

problem in Section 2.2 and discuss the literature pertinent to secondary markets in

Section 2.3. We formulate the retailer’s decision problem in Section 2.4. We analyze

the retailer’s timing and ordering decisions in Sections 2.5 and 2.6. We discuss

computational experiments in Section 2.7. Finally, we summarize our findings and

discuss the contributions of our research in Section 2.8.

2.2. Problem Definition

Consider a single retailer selling a single product over a fixed sales horizon

[0, T ]. The retailer has to place an order from a vendor, long before the selling

season starts. After giving the order but before the season, the retailer gathers

market indicators. This allows him/her to have better information about the state

of the market, hence the demand, at the start of the season. Once the goods are

received, the retailer decides how best to use two different channels, primary and

secondary, with his/her strategy being that the product will not be offered in these

two markets simultaneously.

At the time of ordering, the retailer knows the demand/market is uncertain

and predicts it will be in one of a finite number of states, denoted s. For simplicity,

we assume only two states in this chapter. The knowledge of the state does not

provide perfect information on the demand, but provides perfect information about

the probability distribution of demand in the primary and secondary markets. For
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each state and market, the demand is a random variable, characterized by a known

probability distribution. Without loss of generality, we refer to the states as low

and high. At the time of ordering, the retailer knows that the market will be in

a low state, denoted l, with probability θl and in a high state, denoted h, with

probability θh where θl + θh = 1. The state of the system is known to the retailer

only once the season begins, i.e., the parameters of the underlying random demand

process/distribution are known only at the start of the selling season.

One can think of this model as follows: The retailer orders merchandise to be

sold during the Holiday Season in the US at the end of the summer. At that time,

the retailer thinks the economic recession will continue through out the end of the

year or a recovery will start prior to holiday season, with probabilities θl and θh,

respectively. For each scenario, the retailer predicts a different demand distribution.

At the start of the holiday season, the retailer realizes which state of the recession

(continuing vs. recovery) best characterizes the demand.

We formulate the retailer’s problem as a two-stage optimization problem where

the first-stage decision is the order quantity Q, determined prior to revelation of the

market state and before the selling season. The second-stage decision is the length of

time to offer the product in the primary market, after which the goods will be offered

only in the secondary market. Once the retailer is at the beginning of the selling

season, he/she1 finds himself in a particular state of demand market s ∈ {l, h}, with

Q units of inventory on hand. At that point, the retailer chooses β, 0 ≤ β ≤ 1

1Hereafter, the decision makers (retailer in this and next chapter and the supplier in the next
chapter) are referred as ‘he’.
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which is the fraction of the entire sales season during which the goods are offered at

the primary market. By design, β = 1 and β = 0 indicate the goods are offered only

in the primary and only in the secondary market, respectively. The time intervals

during which the goods are sold at the primary and secondary markets is [0, βT )

and [βT, T ]. Once the selling season ends at time T , any unsold goods are salvaged.

During the sales season, the retailer is committed to predetermined unit prices of

p1 (e.g., manufacturer’s suggested retail price, MSRP) and p2 (e.g., markdown) in

the primary and secondary market, respectively. We have p1 ≥ p2 ≥ 0.

The sequence of decision making for the retailer is illustrated in Figure 2.1.

Notice that, depending on the state of the market, the retailer’s optimal timing

decision may be different. We use the notation β∗s to denote the optimal length

of time the goods are sold at the primary market when the state of the market

is s = l, h. The second-stage decision follows a temporal model as illustrated in

Figure 2.2. Before we formulate the retailer’s expected profit function and analyze

his ordering and timing decisions, we provide a review of the relevant literature in

the next section.

2.3. Literature Review

Considering the nature of the retailer’s problem introduced above, there are

several research fields including Retail Operations, Secondary Markets, Dynamic

Pricing, and Timing/Switching that are relevant.

Retail Operations. Retail operations consists of complex decisions at dif-
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Figure 2.1: Timeline of Retail Operations

ferent stages (for example, ordering, assortment, forecasting, and pricing) in a retail

environment. First we look at the relevance of our model for assortment planning

problem (we look at the ordering and pricing problems later in this section). Retail

assortment planning is a problem that has been well studied from an optimization

perspective; Kök et al. (2009) provide a survey of research on optimal retail assort-

ment decisions. Retailer needs to plan on the assortment to procure based on past

and forecasted sales such that the gross margin is maximized. But, the retailer is

constrained by the limited budget, limited shelf space for displaying products and

desire to offer brand choice for a product to the customer. Research surveyed by

Kök et al. (2009) focus only on a single market, whereas our focus is on primary

and secondary markets. Grewal & Levy (2007) and Grewal & Levy (2009) conduct

a survey of research pertaining to retail published in Journal of Retailing for years

2002-2007. They categorize research on retail into ten broad categories as price,

promotion, brand/product, service, loyalty, consumer behavior, channel, organiza-

13



Potential sales at primary market

Potential sales at secondary market

LEGEND

Given inventory 
level Q

S E L L I N G P E R I O D

P1 P2

P1 P2
H

IG
H

L
O

W

Retailer sets *
H

Retailer sets *
L

S
E

A
S

O
N

B
E

G
IN

S

S
E

A
S

O
N

E
N

D
S

State of the 
market revealed

Figure 2.2: Retailer’s Timing Decisions

tional, Internet, and others. Notice that the secondary market in our context can

be interpreted as an alternative channel for selling the product. These two surveys

discuss the research under broad category of ‘channels’ while focusing on topics

like conflict, trust and risk, the need for standardizing merchandise, pricing and

promotion across the multiple channels. A comprehensive survey of literature on

channel design and coordination has been discussed in Sa Vinhas et al. (2010). In

this paper, the authors point out that the complexity of the channels has increased

tremendously and there is a need to analyze the channels together so as not to

compete with one another. Thus, timing decision for moving to the product to the

alternative channels becomes critical in this context.

A recent industry report on retail operations, SAS (2007), discusses the current

practical challenges for retailers, including fashion merchandise planning life cycle:
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During the preseason, the retailer develops a mechandise plan, assortment strategy,

assortment plan and space plan, among other things. During the season, allocation,

market-level price changes, market-level promotional markdown, adjustments and

exit strategies are of interest. Our problem, including ordering and timing decisions

is inline with the timeline of activities outlined in this report. The adjustment and

exit strategies during season are analogous to our timing decision that ends the sales

in the primary market. The report, on the other hand, is a white paper and does

not go beyond discussing the practical problems.

Secondary Markets. While the literature that mentions secondary markets

is rich, there is no standard definition, hence no uniform model, for this phenomenon.

This is not surprising: The definition of secondary markets in Tibben-Lembke (2004)

includes markdowns, use of outlets, third parties, or auctions to sell or dispose of

excess inventory, managing customer returns and selling original vs. used prod-

ucts (as in closed-loop supply chains). For instance, Lee & Whang (2002) discuss

the dynamics of n re-sellers in a secondary market for high-tech products. The

motivation for their research is based on an internet-based secondary market Trad-

ingHubs.com, launched by Hewlett-Packard Company in 1999. The authors consider

a simple newsvendor model with combined demand over two time periods. In this

paper, the re-sellers trade in excessive supply in a “secondary market” at the end

of first period. Ghose et al. (2005) refer to an exchange for used merchandise like

CDs, DVDs, videos, and books as a secondary market. They consider a two-period

problem with new goods being sold in both first and second periods but used goods,

with quality degradation being sold only in second period. Nocke & Peitz (2003)
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investigate whether possibility of future trade in a secondary market for durable

goods (e.g., collector’s items, coins, stamps) affects consumer behavior in a primary

market. In contrast to our work, these papers do not address the timing aspect of

transferring to secondary markets which is important for many brands, especially

in high-end fashion apparel (e.g., Coughlan & Soberman (2004)).

Dynamic Pricing. In our problem, the retailer’s decision of transferring the

goods from the primary to the secondary market corresponds to the time of mark-

down for the product. In that respect, the second-stage decision can also be viewed

as a pricing decision that is made at the start of the sales season. Consequently,

research involving pricing decisions is relevant to our problem. In the pricing lit-

erature, there are numerous papers that determine the optimal markdown pricing

policy for a retailer; we refer the reader to Elmaghraby & Keskinocak (2003), Bitran

& Caldentey (2003), and Talluri & van Ryzin (2004) for a review of that literature.

A number of researchers considered and studied dynamic models to determine the

optimal prices and the optimal price path for a single product in a finite time hori-

zon. In a way, our problem is a simplified dynamic pricing problem, where the price

path is fixed and our decision is dynamic to the market state before to the sales sea-

son starts but not to the amount of sales, as is typically the case in other research

papers. Others that consider fixed price paths are Feng & Gallego (1995), Bitran &

Mondschein (1997), Feng & Gallego (2000) and Petruzzi & Monahan (2003). Feng

& Gallego (1995) propose a dynamic programming formulation for determining the

optimal starting time for end-of-season sales or beginning-of-promotional fares for

a single product with finite horizon. Feng & Gallego (2000) extend this work to
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consider a demand that is modeled by a Markovian, time-dependent rate. These

two papers assume on-hand inventory at the beginning of the season is predeter-

mined, i.e., no discussion of ordering decisions is presented. Yang et al. (2007) focus

on the effect of competition on multiple retailers when each retailer is allowed to

choose the timing of a markdown. Bitran & Mondschein (1997) study both dynamic

pricing and fixed discounting policies (where an initial price is determined and then

predetermined markdowns are applied) for a retailer in a multi-period, dynamic set-

ting. They also discuss the choice of optimal order quantity for each of the pricing

policies. Bitran et al. (1998), on the other hand, consider a retailer that commits

to predetermined times to revise prices. They develop a stochastic dynamic pro-

gramming formulation where the retailer coordinates prices multiple stores in their

problem and inventory can be transferred from one store to another at the end of

each period. In our work, apart from the price changes, we consider the timing of

price changes and the choice of order quantity as well.

The article that is most relevant for our work is by Petruzzi & Monahan

(2003). They discuss the retailer’s recourse strategy of selling in secondary markets

by analyzing a dynamic model wherein the decision after each period is whether

or not to terminate sales in the primary market. They consider demand to be a

function of price in linear form with additive and multiplicative uncertainty (as in

Petruzzi & Dada (1999)). Contrasting our model to this work, we determine the

optimal time to stop selling in the primary market after having acquired information

on the state of the demand but before the sales at the primary market start.

Timing/Switching. Timing is also a key decision when a seller has multiple

17



products to offer: In sports and entertainment industry (e.g., Drake et al. (2008))

determining when to switch from selling bundles to individual tickets a priori, is

significant as it can increase early cash flow and donation rates. Khouja & Robbins

(2005) discuss book publishing and the switch from hard-bound to paper-back ver-

sions. In this paper, the product offered in the secondary market is geared towards

price-sensitive customers and thus of different quality (i.e., the paperback version).

Hugos & Thomas (2005) discuss about the different types of distribution chan-

nel mechanisms like, direct channel, retailer channel, wholesaler channel, agent or

broker channel, and dual or multiple channel for the retail industry. Our problem

can be considered as a dual channel with the product offered sequentially in the

channels, corresponding to primary and secondary markets. Lehmann & Weinberg

(2000) discuss the application of sequential channel management for theater release

and video release of the movie. In this paper, the authors discuss when should

the movie distributor release the video, after the movie is released in the theaters.

Contrasting to our model, we consider timing decision from the perspective of re-

tailer (e.g., Blockbuster). The exponential decaying demand model considered in

their paper is specific to movies. Apart from this article, most of channel manage-

ment research has focused on the design and understanding the conflict/competition

among the channels. From this perspective, our problem helps the retailer/seller in

dynamic channel management, where timing decision corresponds to when to offer

the product sequentially in the alternate channel. Timing decision has not received

much attention from a dynamic channel management perspective and this is the

focus of our research.
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Timing is a key decision when we consider product development and product

rollovers in a market. New product development is a complex process; Krishnan

& Ulrich (2001) provide an exhaustive literature survey on product development.

One of the important decisions of product rollover is determining the timing of

withdrawal for the current generation product. Erhun et al. (2007) discuss the art

of managing new product transitions. Their research mentions that due to supply

constraints, the transition is not smooth but timing is critical so as not to cannibalize

the current or new generation product. Our research helps in product rollover as

it determines the timing of when to offer the product in secondary markets and

effectively end the life of the product in the primary market and thus having room

for next generation of products in this market.

Our Contribution. The research literature falls short on analyzing the oper-

ational decisions of the retailer with secondary markets in a temporal setting. As is

evident in the survey by Coughlan & Soberman (2004), many brands in fashion ap-

parel offer their products sequentially in primary and secondary markets. However,

it is not clear whether this is an optimal action given a short sales horizon and lim-

ited inventories. Our novel model enables us to study when a brand/retailer benefits

from sequential access to primary and secondary markets. Taking an optimization

perspective, we are able to identify the optimal time to start selling goods in the

secondary market. Unlike the extant literature, where timing or ordering is the sole

decision for a retailer, we study both of these decisions. We show that the retailer

may not benefit from the sequential channel approach all the time; this depends on

the prevailing prices and the potential demand in each market. We show that this is

19



true even if the retailer chooses the inventory level to maximize the total expected

profits in the primary and secondary markets.

2.4. Retailer’s Expected Profit Function and Demand Models

We formulate the retailers problem in two stages. The first stage determines

the optimal order quantity, Q∗, based on expected profit maximization:

π∗ = Max
Q≥0

θlR
∗
l (Q) + θhR

∗
h(Q)− wQ (2.1)

where w is the unit cost purchasing the product from a vendor and R∗
s(Q) is the

expected revenue from primary and secondary market sales. π∗ is the optimal ex-

pected total profit for the retailer. We assume that there are no capacity constraints,

so the retailer can order and receive as much as ordered.2 R∗
s(Q) is determined by

solving the second stage optimization problem:

R∗
s(Q) = max

0≤β≤1
E [Rs(β|Q)] (2.2)

E [Rs(β|Q)] = p1E
[
min(Q, N s

1 (β))] + p2E[min
(
(Q−N s

1 (β))+ , N s
2 (β)

)]
(2.3)

for s = l, h. N s
1 (β) and N s

2 (β) are two random variables that denote the demand

observed at the primary and secondary markets during [0, βT ) and [βT, T ], respec-

tively, given state s and the timing decision β. Without loss of generality, any unsold

2If there were capacity constraints, it can be imposed as upper bound on the order quantity Q.
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goods have zero salvage value at the end of the season.3

To capture the essence of the problem, the demand function has to be defined

carefully. The demand in the primary and secondary markets cannot be arbitrary;

the demand has to be dependent on the length of time goods are sold in each

market. Naturally, the longer the time, the higher (or “not lower” to be precise)

should be the demand. That is, demand is a random variable which has a monotonic

relation with parameter β. The larger β is, the longer (shorter) the goods are sold

in the primary (secondary) market, hence the higher N1(β) is and the lower N2(β)

is. We use monotonicity not in a strict sense: We say “increasing” (or higher) for

non-decreasing (or not lower).

In this chapter, we introduce a demand model where the demand in any market

is “proportional” to the time the product is offered in the market given the state of

the system, s. Let X̃s
1(t) and X̃s

2(t) be two non-negative stochastic processes (not

necessarily independent), defined over a known probability space. If the product is

offered for sale during [t1, t2] in market i (i = 1, 2) at state s (s = l, h), then the

demand during this time period is
∫ t2

t1
Xs

2(t)dt; which is a random variable. In our

case, the total (random) demand in the primary and the secondary market is then

N s
1 (β) =

∫ β

0
Xs

1(t)dt and N s
2 (β) =

∫ 1

β
Xs

2(t)dt, respectively.

In this chapter, we analyze a special case where the aggregate demand is

3Suppose every unit of inventory unsold at time T is salvaged at a value ρ such that p1 ≥ p2 > ρ.
The structure of the problem with positive salvage value is the same as the one with zero salvage
value with appropriate change in parameters: The optimal ordering and timing decisions are
obtained by setting w ← w − ρ for the first stage and pi ← pi − ρ, i = 1, 2 in the second stage.
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Xs
1 ,

∫ 1

0
Xs

1(t)dt and Xs
2 ,

∫ 1

0
Xs

2(t)dt, and

N s
1 (β) = βXs

1 , (2.4)

N s
2 (β) = (1− β)Xs

2 . (2.5)

That is, random demand during [0, β] in the primary market is assumed to be linear

in the total market potential, Xs
1 , and the length of the time interval, β. Similarly,

random demand during (β, 1] in the secondary market is linear in the total market

potential, Xs
2 , and the length of the time interval, (1−β). Starting with the general

model we introduced above, this proportional model is valid when (i) Xs
1(t) and

Xs
2(t) are time-invariant, or (ii) changes (trends) in Xs

1(t) and Xs
2(t) over time are

small so that N1(β) and N2(β) are good approximations for the demand in the

primary and the secondary markets, respectively, for any β ∈ [0, 1].

Notice that the expected value, E[N s
1 (β)] = βE[Xs

1 ], is increasing and linear

in β. Similarly, the expected value, E[N s
2 (β)] = (1 − β)E[Xs

2 ], is decreasing and

linear in β. Note that the primary and secondary market demand as represented by

random variables Xs
1 and Xs

2 can be stochastic functions of p1 and p2. For instance,

the aggregate demand in any market in any state can be modeled by the classical

price-demand curve with additive uncertainty: Xs
i = as

i − bs
ipi + εs

i for i = 1, 2,

s = l, h where as
i , b

s
i are the parameters of the demand curve and εs

i is a random

variable. Such a model poses no challenges in our analysis because p1 and p2 are

fixed and are not decision variables.

The above demand model builds on the overall market potential and uses

22



static information about aggregate market demand. We develop a different stochas-

tic model in the next chapter. In this chapter, we use this linear demand model

introduced in Equations (2.4) and (2.5), and assume the probability distribution of

Xs
i (i = 1, 2 and s = l, h) is available.

2.5. Analysis of Second Stage: Retailer’s Timing Decision

At the beginning of the sales season, the retailer finds himself in a particular

state of the market and decides on the optimal length of time to offer the product

in the primary market. At this stage of the retailer has 0 ≤ Q < ∞ units on hand.

The formulation of the problem is presented in Equations (2.2) and (2.3). In this

section, we drop the superscript s from consideration as the problem for low and

high states has the same structure. Basically, the optimization problem is

max
0≤β≤1

E [R(β|Q)]

= max
0≤β≤1

p1E [min(Q,N1(β))] + p2E
[
min

(
(Q−N1(β))+ , N2(β)

)]
(2.6)

The linear demand model has several advantages: We can establish structural prop-

erties of the expected revenue function with minimal restrictions on the probability

distribution of X1 and X2. We only require the demand to be non-negative, bounded,

and proportional to the length of the time interval. Critical to our analysis in the

remainder of this section are the properties of the sample path revenues. Suppose

we take a random sample from the given probability distributions; k1 ≥ 0 is a re-

alization of X1 and k2 ≥ 0 is a realization of X2. Then the corresponding primary
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and secondary market demand values are βk1 and (1− β)k2. The revenue is then

R(β|Q) = p1 min(Q, βk1) + p2 min((Q− βk1)
+, (1− β)k2). (2.7)

which is a deterministic function of β and Q. The sample path revenue function can

be written as

R(β|Q) =





h1(β, Q) = p1Q Q < βk1

h2(β, Q) = (p1 − p2)βk1 + p2Q βk1 ≤ Q < βk1 + (1− β)k2

h3(β, Q) = p1βk1 + p2(1− β)k2 βk1 ≤ βk1 + (1− β)k2 ≤ Q

(2.8)

The function consists of three pieces (planes), defined by functions hi(β,Q) for

i = 1, 2, 3, where each hi(β, Q) is linear (affine) and separable with respect to β

and Q. Note that the revenue function itself is not separable with respect to β

and Q: The conditions under which the functions hi(β,Q), i = 1, 2, 3 are defined

depend on values of β and Q. We summarize the analytical properties of the sample-

path revenue function below. Note that this is not an exhaustive list; we state the

properties that are later used in the analysis of the expected revenue function.

Proposition 1 (Sample Path Properties) Sample path revenue is defined as a func-

tion R(β|Q) : [0, 1] × [0,∞) → R which is (i) continuous over [0, 1] × [0,∞), (ii)

Lipschitz continuous with respect to β ∈ [0, 1] for a given Q, (iii) piecewise linear

in β ∈ [0, 1], (iv) piecewise linear in Q ∈ [0,∞), (v) componentwise concave and

non-decreasing in Q for a given value of β, (vi) componentwise concave in β for a

given value of Q, and (vii) jointly concave in β ∈ [0, 1] and Q ∈ [0,∞).

24



Proof (i) Continuity is proved by checking the end points in (2.8): We first set

Q = βk1 and see that h1(β,Q) = h2(β,Q) when Q = βk1. We then set Q =

βk1 + (1 − β)k2 and see that h2(β,Q) = h3(β,Q). (ii) Lipschitz continuity with

respect to β follows from demand samples k1, k2 < ∞ because the random variables

X1 and X2 have finite support. Piecewise linearity in (iii) and (iv) is immediately

observed because hi(β, Q) is linear and separable in β and Q for i = 1, 2, 3. (v) The

function is nondecreasing and componentwise concave in Q for a given β because

∂h1(β, Q)

∂Q
= p1 >

∂h2(β, Q)

∂Q
= p2 >

∂h3(β,Q)

∂Q
= 0 (2.9)

and hi(β,Q), i = 1, 2, 3 are defined for 0 ≤ Q < βk1, βk1 ≤ Q < βk1 + (1 − β)k2,

and βk1 ≤ βk1 + (1 − β)k2 ≤ Q, respectively. (vi) Componentwise concavity with

respect to β for a given Q requires inspecting

∂h1(β,Q)

∂β
= 0, (2.10)

∂h2(β,Q)

∂β
= (p1 − p2)k1, (2.11)

∂h3(β,Q)

∂β
= p1k1 − p2k2 (2.12)

and performing a case-by-case analysis on the values of k1, k2 and Q to determine

the sign and the magnitude of the partial derivatives ∂hi(β,Q)
∂β

. We refer the reader

to Appendix A.1 for a complete description and treatment of each case. (vii) Joint

concavity is also proved by case-by-case analysis; the details are provided in A.2. •
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The monotonicity of the sample path revenue with respect to Q is intuitive: If

inventory is so low that you can never sellout in the primary market, then procuring

an additional unit of the product gathers additional revenue of p1. Similarly, if the

inventory is enough to meet primary market demand but not enough to meet all of

secondary market demand, then marginal revenue generated is p2. Finally, if the

inventory is too high and exceeds the total demand in the primary and secondary

markets, then the marginal value of an additional unit is 0.

Notice that joint concavity of the revenue function with respect to β and Q

implies componentwise concavity with respect to each parameter. Therefore con-

cavity claims in (v) and (iv) do not require a separate proof when property (vi) is

proved. We discuss componentwise concavity above because componentwise prop-

erties are easier to observe from the piecewise structure of the sample-path revenue.

An illustration of the joint concavity is provided in Figure 2.3 for p1 = 10, p2 = 8

and sample k1 = 13, k2 = 10.

The real advantage of the sample-path analysis is that many of the properties

established for the sample path revenue do generalize to the expected revenue func-

tion E[R(β|Q)] without making further assumptions about the random variables.

We present the next set of results without a proof because continuity, monotonicity,

and concavity are all preserved under expectation. The results below are immediate

from the sample-path properties.

Proposition 2 (Properties of the Expected Revenue Function) Expected revenue

function E[R(β|Q)] defined as a function E[R(β|Q)] : [0, 1] × [0,∞) → R is (i)
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Figure 2.3: Illustration of the joint concavity of the sample-path revenue function

continuous over [0, 1]× [0,∞), (ii) componentwise concave and non-decreasing in Q

for a given value of β, (iii) componentwise concave in β for a given value of Q, and

(iv) jointly concave in β ∈ [0, 1] and Q ∈ [0,∞).

Note that the sample-path revenue function is not differentiable everywhere

for β ∈ [0, 1] given Q. Consequently, E[R(β|Q)] need not be differentiable for all

β ∈ [0, 1], for instance, when the random variables X1 and X2 have discrete prob-

ability distributions. However, R(β|Q) is differentiable almost everywhere. When

the random variables X1 and X2 have continuous probability distributions, then

E[R(β|Q)] is differentiable (see for e.g. Kleywegt & Shapiro (2001)). In that case,
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the first order condition with respect to β is sufficient to identify the optimal length

of time for the goods to be sold at the primary market.

Proposition 3 Suppose E[R(β|Q)] is differentiable with respect to β ∈ [0, 1]. Then

(a) For a given inventory level Q < ∞, the first order derivative with respect to β is

∂E[R(β|Q)]

∂β
= E[p1X1 − p2X2|βX1 + (1− β)X2 ≤ Q]

+ (p1 − p2) E[X1|βX1 ≤ Q < βX1 + (1− β)X2]. (2.13)

(b) Let the optimal length of time for the goods to be sold at the primary market be

denoted β∗(Q). If ∂E[R(β|Q)]
∂β

|β=0 < 0, then β∗(Q) = 0 and if ∂E[R(β|Q)]
∂β

|β=1 > 1, then

β∗(Q) = 1. Otherwise, 0 < β∗(Q) < 1 and is determined by solving ∂E[R(β|Q)]
∂β

= 0.

Proof (a) Because R(β|Q) is differentiable almost everywhere and Lipschitz con-

tinuous with respect to β, we can interchange differentiation and expectation to

derive the first order condition (Kleywegt & Shapiro (2001), Glasserman & Tayur

(1995)):

∂E[R(β|Q)]

∂β
= E[

∂R(β|Q)

∂β
]

= E[
∂h1(β,Q)

∂β
|Q < βX1] + E[

∂h2(β,Q)

∂β
|βX1 ≤ Q < βX1 + (1− β)X2]

+E[
∂h3(β, Q)

∂β
|βX1 ≤ βX1 + (1− β)X2 ≤ Q]

= 0 + E[(p1 − p2)X1|βX1 ≤ Q < βX1 + (1− β)X2]

+E[p1X1 − p2X2|βX1 + (1− β)X2 ≤ Q]. (2.14)
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(b) follows from the concavity of the function and the first order condition. •

In summary, we can easily determine the optimal timing using the first order

conditions when the expected revenue function is differentiable, or using a simple

search procedure (such as Fibonacci search, see Bazaraa et al. (2006)) when the

function is not differentiable. Depending on the demand distributions, prices, and

the order quantity chosen, we can have an interior solution to the timing problem

which means that the retailer needs to utilize both the primary and secondary

markets in order to maximize expected revenues. However, there are cases where

the retailer’s optimal decision is to operate in only one of the markets. Analytically

speaking, when the function E[R(β|Q)] is nondecreasing (or nonincreasing) for β ∈

[0, 1], then it is optimal to set β∗(Q) = 1 (β∗(Q) = 0) and sell the goods exclusively

in the primary (secondary) market.

Note that we have not established strict concavity and cannot guarantee a

unique optimal solution to the timing problem. In fact, we can see that multiple

optima exists when we consider the following example: Suppose p1E[X1] = p2E[X2]

with X1 and X2 being non-negative random variables bounded above by Q/2, i.e.

X1 + X2 < Q, almost surely. Then the first order condition reduces to ∂E[R(β|Q)]
∂β

=

E[p1X1 − p2X2] = 0 and is satisfied by any β ∈ [0, 1].

We next turn our attention to the sensitivity of the optimal timing decision

to other problem parameters, especially, to the order quantity Q. In parametric

optimization, it is customary to investigate comparative statics for this purpose. In

our case, we are interested in determining whether the optimal length of time the
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goods are sold in the market is monotonic in the order quantity. Intuitively, β∗(Q)

is not monotonic in Q. This is because the retailer is not interested in ‘clearing’

out the inventory by the end of selling season but increasing his profits. When

the retailer starts the sales season with few units on hand, then he will extend the

primary market exposure and limit secondary market sales (which may not even

be needed because the retailer can sell out the inventory at the primary market at

price p1). Suppose the starting inventory level, Q is high, p2 is low, and the demand

is very high in the secondary market. If the retailer were to use ‘clearance’ policy,

then he would switch to the secondary market as early as possible. But in our

case, the retailer would like to extract as much revenue as possible and hence may

not switch to the secondary market since the revenue potential is negligible in this

market. Thus, when the retailer has high inventories, he may not always benefit

from secondary market sales (depends on potential revenue generated). This means

that the optimal switching time may or may not decrease in Q.

To analytically prove that β∗(Q) is non-increasing or non-decreasing in Q, a

number of ‘general tools’ are available. For instance, if the expected revenue function

E[R(β|Q)] has increasing (decreasing) differences in β and Q or when ∂2E[R(β|Q)]
∂β∂Q

≥

0 (≤ 0) in case of twice continuous differentiability, then β∗(Q) would be non-

decreasing (non-increasing) in Q; see Van Zandt (2002) and Vives (2000). Increasing

or decreasing differences are structural properties that, when established at the

sample-path level, would generalize to the expected revenue function. Unfortunately,

our problem does not satisfy neither the decreasing nor the increasing differences

properties. We show this using a numerical example. First, we provide a formal
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definition of increasing differences property:

Definition 1 A function f : A×Θ → R satisfies the increasing differences property

in (a, θ) if for all a′, a′′ ∈ A, the function f(a′, θ)−f(a′′, θ) is nondecreasing in θ ∈ Θ

(see Chapter 10 of Sundaram (1996)).

The example we chose has p1 = 10, p2 = 8, X1 = 5 with probability 1 and X2 = 8

with probability 1. The expected revenue function E[R(β|Q)] is plotted for β = 0

and β = 1 for varying values of Q in Figure 2.4. Notice that the difference between

the two curves are, increasing, decreasing,and then non-decreasing as Q increases.

This observation rules out applicability of the well-known results on monotonic

comparative statics to prove the monotonicity of the timing decision.

Next, we provide a numerical example to show non-monotonicity of β∗(Q)

in Q. Due to lack of strict concavity, there may be multiple optima for optimal

timing decisions. Figure 2.5 shows the two curves: β∗min(Q), and β∗max(Q). The
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Figure 2.4: Lack of Super or Submodularity of Expected Revenue Function
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Figure 2.5: Effect of inventory on Optimal Timing

range [β∗min(Q), β∗max(Q)] represents the set of optimal timing decisions (i.e., β ∈

[β∗min(Q), β∗max(Q)] is optimal). From the figure, although β∗max is non-increasing

in Q, we see that β∗(Q) ∈ [β∗min(Q), β∗max(Q)], in general is not monotonic in Q.

This is because the potential revenue and not just demand determine the optimal

timing. We next focus on the retailer’s optimal choice of Q in order to maximize

the expected profits.
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2.6. Analysis of First Stage: Retailer’s Ordering Decision

The retailer’s first-stage problem was introduced in Equation (2.1) as:

π∗ = max
Q≥0

θlR
∗
l (Q) + θhR

∗
h(Q)− wQ

where w is the variable cost of product per unit and π∗ is the optimal expected total

profit for the retailer. Let

TP (Q) = θlR
∗
l (Q) + θhR

∗
h(Q)− wQ

be the retailer’s expected total profit as a function of Q. We investigate the prop-

erties of TP (Q) in this section. We have not been able to analytically prove the

concavity of the function relying on the properties of the second-stage problem.

However, through many computational experiments we have not come across any

example where TP (Q) is non-concave in Q. So we conjecture that for many prac-

tical choices of problem parameters and demand distributions, the expected total

profit is concave. We rely on computational methods to solve for Q∗.

Notice that the optimal order quantity Q∗ may not be the optimal for state

l or h, which makes the timing decision important (and non-trivial) in the second

stage. If we consider a special case where w → 0, then the optimal first-stage and

second-stage solutions can be obtained analytically:

Proposition 4 If w = 0, then Q∗ →∞ and β∗s (Q
∗) ∈ {0, 1}.
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Proof For this special case, the retailer solves:

π∗ = max
Q≥0

θl max
0≤β≤1

E [Rl(β|Q)] + θh max
0≤β≤1

E [Rh(β|Q)] . (2.15)

The Q∗ →∞ because the expected revenue function E [Rs(β|Q)] is non-decreasing

in Q for s = l, h. When Q∗ → ∞ and the random variables Xs
1 + Xs

2 < Q almost

surely for s = l, h, then the expected revenue function reduces to

E [Rl(β|Q)] = p1E[Xs
1β] + p2E[Xs

2(1− β)] = p2E[Xs
2 ] + (p1E[Xs

1 ]− p2E[Xs
2 ])β

which is linear in β. Then, β∗ = 0 if p1E[Xs
1 ] ≤ p2E[Xs

2 ] and β∗ = 1 otherwise. •

The last result leads to a trivial case but is relevant for an industry where the

retailer has extremely high profit margin (i.e., p1, p2 >> w ≈ 0). In this case, the

retailer does not benefit from having two separate markets. He is better off with

only one market, the one that has the highest potential expected sales revenue.

2.7. Computational Experiments

In this section we further investigate the retailer’s timing and ordering de-

cisions. Specifically, we (i) provide examples on the optimal ordering and timing

decisions, and perform sensitivity analysis to test (ii) the effect of price at the sec-

ondary market (p2) and (iii) the effect of probabilities of the state of demand (θl, θh)

on the optimal ordering and timing decisions of the retailer.
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2.7.1 Design of the experiment

In our experiments, the aggregate demand in the primary and secondary

markets is a linear function of price with additive uncertainty. That is, Xs
1 =

as
P − bs

P p + εs
P and Xs

2 = as
S − bs

Sp + εs
S, where, as

P , bs
P , as

S, bs
S > 0 and s = l, h

is the state of the system. There are more price-sensitive customers in the sec-

ondary market, and we choose the parameter values so that aP /bP < aS/bS. The

uncertainty εs
P , εs

S can follow any distribution but here we use independent discrete

probability distributions as given in Table 2.1. We use the following price-paths:

p1 = 2 and p2 = {1.75, 1.5, 1.25}. We selected three values for p2 to reflect different

levels of discounts. And, for both market states, we use aP = 4, bP = {3, 2, 1} and

aS = 20, bS = 4. We set wholesale price to w = 1. In the experiments, primary

market demand is always dominated by secondary market. Primary market demand

is robust to the state of the market (i.e., aggregate demand in the primary market

has the same probability distribution for both high and low states). This enables

us to isolate the effect of fluctuations in the secondary market.

Table 2.1: Probability distribution of the demand model
State 0 (low)

P (εP = 5) = 0.2 P (εP = 7) = 0.8 P (εS = 2) = 0.3 P (εS = 5) = 0.7
State 1 (high)

P (εP = 5) = 0.2 P (εP = 7) = 0.8 P (εS = 6) = 0.4 P (εS = 9) = 0.6

2.7.2 The Optimal Ordering and Timing Decision

In this section, we have aP = 4, bP = 1, aS = 20, bS = 4 and w = 1. Table 2.2

shows the optimal order quantity and the corresponding optimal timing decisions
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when only one state of the market is possible (i.e. θl ∈ {0, 1}). We compute the

optimal values for p2 ∈ {1.25, 1.5, 1.75}.

Table 2.2: Optimal Decisions: Q∗ and β∗s
p1 p2 θl π∗ Q∗ β∗l β∗h R(β∗l |Q) R(β∗h|Q)
2 1.75 0 14.4 22 - 0 - 36.4
2 1.75 1 11.925 18 0 - 29.925 -
2 1.5 0 10 20 - 0 - 30
2 1.5 1 8.3645 11.75 0.61 - 20.1145 -
2 1.25 0 8.2 9 - 1 - 17.2
2 1.25 1 8.2 9 1 - 17.2 -

What is interesting in these results is that depending on the level of mark-

down and the market state, the retailer can choose an order quantity to sell only in

the primary market, to sell in both markets or to sell only at the secondary mar-

ket. The level of markdown and the corresponding revenue potential are the main

determinants for utilizing only one of the markets in this experiment.

Note that the aggregate primary market demand is X1 = {7, 9}. The unit

revenue is p1 = 2. If the retailer sells exclusively in the primary market, then total

expected revenue, by ordering high enough, is 2 ∗ 8.6 = $17.2. This serves as a

benchmark for the other cases.

For p2 = 1.75, we have X l
2 = {15, 18} and Xh

2 = {19, 22}. If retailer sells

exclusively in the secondary market, then the expected revenue is 1.75 ∗ 17.1 =

$29.925 for low state and 1.75∗20.8 = $36.4 for high state, assuming order quantity

is high enough. Both of these quantities yield a higher profit compared to the profit

that would be obtained by ordering and selling exclusively at the primary market.

Therefore, when p2 = 1.75, it is optimal to order as high as the secondary market

demand and start selling the goods at the secondary market immediately at the
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start of the sales horizon.

For p2 = 1.25, we have X l
2 = {17, 20} and Xh

2 = {21, 24}. If the retailer sells

exclusively in the secondary market, then total expected revenue is 1.25 ∗ 19.1 =

$23.875 for low state and 1.25 ∗ 22.8 = $28.5 for high state, assuming the retailer’s

order quantity is high enough. For either state, the expected profit of satisfying

the primary market demand only is $8.6. In comparison, the expected profit of

satisfying the secondary market demand only is 0.25*19.1=$4.775 in the low state

and 0.25*22.8=$5.7 in the high state. Thus, even though secondary market has

higher demand compared to the primary market, the level of markdown is too high

and the loss in revenue due to markdowns cannot be compensated with the resulting

sales in the secondary market. Therefore the optimal decision in this case is to order

only enough to satisfy the demand in the primary market and only operate at the

primary market.

For p2 = 1.5, X l
2 = {16, 19} and Xs

2 = {20, 23}. If retailer sells exclusively in

the secondary market, then total expected revenue is 1.5∗18.1 = $27.15 for low state

and 1.5 ∗ 21.8 = $32.70 for high state, assuming his order quantity is high enough.

The primary market profit potential at any state is $8.6 and this is not significantly

different than the profit potential of selling exclusively at the secondary market

(specifically at a profit of 0.5*18.1=$9.05 in the low state). In this case, operating

in a single market, i.e., exclusively, is not the dominant strategy for the retailer: He

chooses an order quantity that is slightly higher than the primary market demand

but is not high enough to satisfy all the demand in the secondary market, and

accordingly, the optimal choice is β∗l = 0.61.
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2.7.3 Effect of prices and state of the market

To study the effect of higher discounts, we fix p1 = 2 and drop p2 from 1.75

to 1.50 to 1.25. This represents discounts of 12.5% off, 25% off, and 37.5% off. For

higher discounts, let us observe the Q∗, β∗ and total profit. We also vary the market

state probability θl from 0 to 1 in 0.10 increments.

In Figure 2.6, we see that as discounts are steeper, the total expected profits

drop steadily. As the low state is more likely, retailer’s total expected profits drop.

This is because, in general, the demand for the product is low when market is in low

state. Notice that this observation is significant as the retailer’s order quantity does

not necessarily decrease for steeper discounts. Figure 2.8 shows the optimal order

quantity for different discount levels and state probabilities. Steeper discounts do

not always mean higher order quantities as the revenue potential drives the order

quantity. For example, if p2 = 0, then theoretically, demand is very high, but the

revenue potential is 0, since there is no gain for the retailer. For p2 = 1.75, the

secondary market demand is comparable to the primary market. When p2 drops to

1.5, the secondary market demand increases, and the revenue potential determines

the order quantity. The interplay of primary and secondary markets is evident

in such a scenario. Though the optimal order quantities increase or decrease with

steeper discounts depending on revenue potential as discussed, but with the low state

more likely, the optimal order quantities decrease. The effect of higher discounts on

optimal timings is shown in Figure 2.7. With steeper discounts, for example, when

p2 = 1.25, the decision to switch to the secondary market is delayed or in fact, the
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retailer never switches. On the other hand, if p2 = 1.50, depending on the state of

the market, retailer might switch to secondary market earlier than he would when,

say p2 = 1.75. This is again, because, of the revenue potential in each market for

each state. There is a trade-off between generating higher demand at a discount vs.

a lower demand at the highest price.
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Figure 2.6: Effect of higher discounts on Optimal Expected Profits

From Figure 2.8, we can study how the optimal order quantity is influenced by

the state probabilities. As the low state is more likely, the retailer would generally

put in a request for lower order quantities. This is intuitive as the market is more

likely to be in low state, then, the likelihood of generating high demand is decreased,

which in turn effects the sales of the retailer. Since sales are decreased, the retailer
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Figure 2.7: Effect of higher discounts on β∗low and β∗high

has no incentive to place higher order quantities. From the Figure 2.8, we can study

how the optimal timing decision is influenced by the state probabilities. Optimal

timing decision inversely follows the optimal order quantity curve.

2.8. Conclusions

In this chapter, we focus on decisions that are prevalent in high-end fashion

retail: Many retailers make use of their own stores (brands) as well as outlets. It

is typical in practice to sell the same goods in the stores and in the outlets, but

the retailers choose to sell the goods first in their primary stores and then at the

outlets with a delay. We build a model to answer the following questions: Should the
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Figure 2.8: Effect of higher discounts on Q∗

retailer selling a seasonal product offer it only in the primary market? If not, then

what is the best time to start offering the product in the secondary market? Our

model is novel that it captures the temporal (sequential) aspect of the sales channels

and also analyzes the optimal order quantity for the retailer that faces both market

and demand uncertainty. Critical to our model and its structural properties is a

demand model where the demand in each market is proportional to the length of

time the product is offered in that market.

We model the retailer’s decision in two stages: first stage involves the ordering

decision which is made with uncertain market information while the second stage

involves the timing decision after observing the market state and having received
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the order. We establish structural properties of the retailer’s profit function in

the first stage and the revenue function in the second stage. Second-stage analysis

makes use of sample path results, hence minimal assumptions are made on the

random demand variables. We also show the retailer’s expected revenue function

does not exhibit additional properties (for e.g., sub or super modularity) to derive

results on monotone comparative statics. Computational studies show that higher

optimal order quantities in general result in decreasing the optimal timing decision

to switch to the secondary market. Steeper discounts do not necessarily result in

higher order quantities as the revenue potential plays an important part. If the

market is more likely to be in the low state, then the retailer would place lower

order quantities and thus consequently earn lower total profits. Most importantly,

it may or may not be optimal for the retailer to delay the sales of the good in the

secondary market depending on the sales and revenue potential in both primary and

secondary markets.

Most often, a retailer that faces market and/or demand uncertainty enters into

contractual agreements with his/her vendors to share the risk on unsold inventory at

the end of the sales season. Intuitively, contractual agreements affect the retailer’s

“selling aggressively” vs. safety-first approaches. Thus, the next essay discusses the

effect of contracts on the retailer’s timing decision and ordering decision.
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Chapter 3

Essay 2: Secondary Markets and Supplier-Retailer Contracts

3.1. Introduction

Based on the latest published Annual Retail Trade Survey (up to the year

2008) apparel businesses, in general, have a gross margin in the low 40%’s, depart-

ment stores make around 30% (U. S. Census Bureau (2010)). For large retailers, this

translates into roughly 3% profit margin (National Retail Federation (2010)). The

retailers like Dillards, Federated Department Stores request the vendors (or suppli-

ers) to share the cost of unsold inventory or lost revenue due to heavy discounts or

markdowns on their selling floors (e.g., Mantrala et al. (2005), Lee & Rhee (2008)).

The argument for such requests is that the selling season of a perishable product is

short with uncertain demand, and there is negligible salvage at the end of selling

horizon with no risk borne by the suppliers.

It is evident that retailers are faced with huge sales risks; if the demand for

product is low, the retailer ends up with huge, profitless unsold inventory. This is

valid even if retailers use different sales tactics and engage in business models that

allow them to sell their goods in primary and secondary markets. On the other hand,

if the demand for the product is high, the retailer should have sufficient inventory to

meet the demand otherwise the retailer faces potential lost sales and revenues. Thus

retailers argue that the request for rebates or return credits is justifiable as some of
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the sales and inventory risk can, now, be shared with the vendor. The vendors buy

into this argument because the vendor-retailer relationship goes beyond one selling

season. Small vendors, who want to improve their brand image and market share

of their products, accept because of the retailer’s superior negotiation power. It is

evident that different risk-sharing mechanisms between the retailer and the supplier

affect the retailer’s operational decisions like how much to order and when (if at all)

to offer the products in a secondary market.

Our goal in this essay is to understand how different contracts between re-

tailers and their vendors affect retailer’s decisions and the supply chain’s overall

profitability. Specifically, we answer the following questions: What is the optimal

length of time for the retailer to offer the good in a primary market when the retailer

has a contract with a vendor to share the risk of excess inventory? Does the retailer

benefit from having access to both primary and secondary markets when the risk

of excess inventory is shared with a vendor? What is the effect of risk-sharing con-

tracts on the retailer’s ordering decision? How does the supply chain perform under

different contracts? How does the supplier choose his contract parameters knowing

the retailer’s decision process? For vendors of high-risk, high-return products (e.g.,

innovative products that are sold at high margins) which contract type is most ben-

eficial? If a vendor is interested in maximizing his/her products’ primary market

exposure, what contract should he/she offer to the retailer? And, at the firm level,

we try to answer: Who, the supplier or the retailer is better off, in terms of profits

and in what type of contract?

We answer these questions extending/adjusting the temporal model we in-
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troduced in Chapter 2. Traditionally, research models in operations management,

study contracts and investigate supply chain coordination for a given contract. Our

research makes a contribution to the literature by (i) developing a model that rep-

resents primary and secondary markets in the retail industry, (ii) introducing a

demand model that captures the trade off involved in selling products in primary

vs. secondary markets during a short sales horizon, (iii) investigating the effect of

contracts on a retailer’s timing and ordering decisions, and (iv) studying a contract

type that is less well known in the research literature but is widely used in industry.

The remainder of the chapter is organized as follows. The next section dis-

cusses pertinent literature to contracts. Section 3.3 formally defines the problem

and we perform analysis for the retailer decisions in Section 3.4. We compare the

optimal decisions for the three contracts in Section 3.5. The supplier’s problem is

discussed in Section 3.6. Results of computational experiments are presented in

Section 3.7. Finally, we conclude in Section 3.8.

3.2. Literature Review

We focus on the literature pertaining to contracts in this section; the literature

on secondary markets is reviewed in Chapter 2. There is a vast amount of literature

concerning varied types of supplier-retailer contracts (e.g., Lariviere (1998), Cachon

(2003)). However, most of the existing literature pertaining to contracts focuses

on analyzing structural properties of contract parameters with respect to achieving

supply chain coordination. A contract is said to coordinate the supply chain, if
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thereby the partners’ optimal local decisions lead to optimal system-wide (supply-

chain) performance (see Cachon (2003)). We study three types of contracts in

this paper: Wholesale-Price (WP), Buyback (BB) and Markdown-Money (MM).

We refer the reader to Cachon (2003) for a thorough investigation of the first two

contracts. Based on the literature and practice we describe the forms of these three

contracts for this research work in the following paragraphs.

Wholesale-Price (WP) contract is the most basic form of contract without any

cost (or risk) sharing mechanism between the supplier and the retailer. In this, the

supplier charges a price of w per unit purchased by the retailer. This is in fact

the model we introduced and analyzed for the retailer in Chapter 2. Compared to

WP contract, in Buyback (BB) contract, the supplier shares some of the sales and

inventory risk: the retailer receives a fixed return credit per unit, on all or portion

of the inventory that is leftover at the end of the selling-season. Pasternack (1985)

is the first to study this type of contract. The author analyzes this contract in the

most general form, that is with two contract parameters: percentage of leftover that

qualify for buyback and the buyback credit. One of the key results in this paper is

that channel coordination is achieved if the manufacturer offers partial credit on all

items unsold at the end of the season.

Markdown-Money (MM) contract received very little attention in literature

and has been the subject of many controversies in the industry. Saks Fifth Avenue

ran into legal trouble with its vendor, International Design Concepts LLC for al-

legedly collecting more than $31 million in penalties for so-called markdown money

for discounted merchandise (Byron (2005)). Internal Revenue Service (IRS) defines
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“markdown money” as the payment by a vendor to a retailer to compensate the

retailer for losses incurred because of the need to reduce the selling price of the ven-

dor’s merchandize. The practice of “markdown money” also known as “guaranteed

profit margin” has been severely criticized in industry articles (Gottlieb (2005), In-

sighter (2006)) partly due to the vagueness surrounding what qualifies for the rebate

and also due to the implementation (Agins (2006)). On the contrary, the research

literature has few articles (Tsay (2001)) that particularly look at how contracts af-

fect the operational decisions of the firms involved. In a MM contract, the supplier

charges w per unit purchased by the retailer, but pays the retailer rebates for the

qualified merchandise. From practice and the literature, all the merchandise that

the retailer prices at less than a pre-specified, agreed upon, profit margin of g, qual-

ifies for the rebate. From this, definitely all goods that are sold at price less than

g margin qualify for rebate, and, depending on the agreement between the retailer

and the supplier, the goods left unsold at the end of the horizon may qualify for

rebate or other forms of chargeback. Krishnan & Soni (1997) look at the power

of retailer and the vendor in a guaranteed profit margin setting. They consider

two competing retailers and manufacturers and discuss the credibility of the threat

posed by the different substitutable brands of the two manufacturers. Tsay (2001)

develops a model for MM contract, considering a newsvendor model for the retailer

where units that are salvaged qualify for MM rebates. Contrasting to this article,

in our work, we develop a temporal model for the retailer, where the model includes

timing and ordering decisions. Similar to our work, Mantrala et al. (2005) discuss

the impact of MM contract on the profits of the retailer and the vendor when both
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agree to a guaranteed profit margin mechanism. However, their model does not

capture the uncertainty in secondary market demand. Lee & Rhee (2008) show that

the MM contract cannot coordinate the supply chain; this is based on single-period,

newsvendor-type setting.

The majority of the research models considered for the retail setting are

single-period models, which are not adequate for representing the retailer’s mark-

downs/pricing tactics or use of a secondary market. These are, however, crucial

modeling elements especially if one is interested in the MM contracts. To the best

of our knowledge, our model with primary and secondary markets with different

revenue potential is the most comprehensive model built to study MM contracts.

In addition to studying MM contracts in detail, the model also allows us to com-

pare retailer’s decisions and the performance of the supply chain with other types

of contracts.

3.3. Problem Definition

We consider the single product, single retailer setting discussed in Chapter

2. The product is sold over the horizon [0, T ]. The retailer can sell the good at

a primary market or a secondary market (but not both) during this sales horizon.

The retailer has to place an order from a supplier, long before the selling season. A

the time of ordering, there is uncertainty about the state of the markets: there are

two possible states. The primary and secondary markets can both be in a low state

with probability θl and high state with probability θh (θl + θh = 1). The demand in
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each of the markets and for each state is a random variable. The retailer knows the

probability distribution of demand for each market and state. The retailer receives

the goods from his vendor at the start of the sales season, after which the state of

the system is revealed. At that point in time, the retailer decides the optimal length

of time for the goods to be sold at the primary market (i.e., the optimal time to

transfer the product from the primary to the secondary market). Prior to giving

an order, the retailer and his supplier engage in a contract. While the retailer’s

decisions involve ordering and timing, the supplier’s decision involves the choice of

the wholesale price (corresponding to the the retailer’s unit cost) for the contract.

The order of events is as follows: First, the retailer and the supplier agree to

a contract and contract parameters, specifically, the buyback credit b in BB and

the guaranteed profit margin g in MM. This stage is given and exogenous to our

problem. Then, the supplier chooses w, which is the unit wholesale price of the

good. Given a unit cost of w and the contract type, the retailer chooses his order

quantity Q to maximize his expected profits for the entire sales season. After the

order is given and after the state of the market is revealed, the retailer chooses β such

that the goods are sold at the primary and secondary markets during [0, βT ) and

[βT, T ], respectively. The sales revenues are obtained throughout the sales season in

the corresponding markets: each unit sold for p1 at the primary market and for p1

in the secondary market, with p1 ≥ p2 ≥ 0. Once the sales season ends, the supplier

pays rebates/credits (if any) to the retailer in accordance with the contract type

and the contract parameters. This entire setup is illustrated in Figure 3.1. This

sequence of events is very common for fashion apparel as discussed in “Lifecycle of
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variable/fashion products” in SAS (2007).
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Figure 3.1: Timeline of Retail Operations with Retailer-Supplier Contracts

We provide a three-stage model below to solve for the supplier’s and the re-

tailer’s optimal decisions.

Stage 1. Supplier Decisions. The supplier determines the optimal wholesale

price w based on expected profit maximization where the supplier’s revenues are

based on the quantity sold and the wholesale price, and his costs are based on the

contract terms (e.g., rebates to retailer) and cost of production. The supplier carries

no inventory and produces to order. Let π∗csup be the optimal expected profit for the

supplier for a given contract type c and unit cost of production ν. The supplier’s

problem is

π∗csup = Max
w≥ν

E[(w − ν)Qc∗(w)− ADJ c] (3.1)

The exact definition of cost of adjustments, ADJ c, depends on the type of contract

in place between the retailer and the supplier. It is equal to the rebates offered to

the retailer in the case of MM contract or in the case of BB contract, it is the return

credits offered to the retailer. Qc∗(w) is the retailer’s optimal order quantity for a
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given wholesale price w and contract c.

Stage 2. Retailer’s Ordering Decision. The retailer decides on the optimal

order quantity Q∗ based on expected profit maximization:

πc∗
ret(w) = Max

Q≥0
θlR

c∗
l (Q) + θhR

c∗
h (Q)− wQ (3.2)

where πc∗
ret(w) is defined as the optimal expected profit for the retailer for a given

contract c and wholesale price w. Rc∗
s (Q) represents the optimal expected revenue

for the retailer for a given contract type c and order quantity Q when the state of

the system is s = l, h.

Stage 3. Retailer’s Timing Decision. The order is received and the state of the

system is realized at the beginning of the season. The retailer next decides on the

optimal length of time to sell the goods at the primary market, after which the sales

will continue in the secondary market until time T . Thus, we have the following

optimization problem for the retailer:

Rc∗
s (Q) = Max

0≤β≤1
E[Rc

s(β|Q)] (3.3)

where E[Rc
s(β|Q)] is the retailer’s expected revenue for a given state of system s,

contract c, and order quantity Q. To solve the retailer’s timing problem, we have to

discuss the details of the demand model and the end-of-season adjustments for each

contract so that we can appropriately formulate the expected revenue function.

Demand Model. Similar to our discussion in Chapter 2, we note that the demand
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model is critical in capturing the trade off between primary and secondary market

sales. The model we analyzed in Chapter 2 took a static view of the aggregate market

demand and assumed demand in a market was proportional to the length of time

the product was offered in that market. In this chapter, we assume demand in each

market during [0, T ] is governed by a stochastic process. Consequently, the demand

in the primary and secondary markets are obtained by considering the evolution

of the corresponding demand processes during [0, βT ) and [βT, T ], respectively. In

the remainder of this chapter, we use a demand model that is based on a Poisson

process.

Without loss of generality, let us normalize the length of the sales horizon to

T = 1. Let λs
1(t) and λs

2(t) be the rate of demand for the primary market and the

secondary market for state s, respectively. The retailer starts offering the product

in the secondary market at time β ∈ [0, 1]. Let N s
1 (β) and N s

2 (β) be the demand

at primary market in interval [0, β) and demand at secondary market in interval

[β, 1]. Then, according to Poisson model, we have, N s
1 (β) ∼ Poisson(

∫ β

0
λs

1(t)dt)

and N s
2 (β) ∼ Poisson(

∫ 1

β
λs

2(t)dt). As a special case, we assume a stationary Poisson

process. That is, assume λs
1(t) = λs

1 and λs
2(t) = λs

2 for all t ∈ [0, 1]. Then,

we know, N s
1 (β) ∼ Poisson(λs

1β) and N s
2 (β) ∼ Poisson(λ2(1 − β)). Let us define

P1
j(β) = P (N s

1 (β) = j) and P2
k(β) = P (N s

2 (β) = k). Then the probability mass
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function of demand is

P1
j(β) = P (N s

1 (β) = j) = (λs
1β)j e−λs

1β

j!
, (3.4)

P2
k(β) = P (N s

2 (β) = k) = (λ2(1− β))k e−λs
2(1−β)

k!
. (3.5)

In this model, we assume the demand in each market and state is an independent

Poisson distributed random variable. Note that the expected demand in each market

is linear in β: E[N s
1 (β)] = λs

1β and E[N s
2 (β)] = λ2(1− β). In contrast to the linear

demand model introduced in Chapter 2, the demand takes only discrete values.

Therefore, it is natural to restrict the order quantity to non-negative integers here.

Expected Revenue Function. Given the demand model, we are ready to formu-

late the expected revenue function for each contract type. For a WP contract the

formulation is:

RWP∗
s (Q) = Max

0≤β≤1
E[RWP

s (β|Q)]

= Max
0≤β≤1

∞∑
j=0

∞∑

k=0

{
p1 min(j,Q) + p2min(k, (Q− j)+)

}
P1

j(β)P2
k(β) (3.6)

For a BB contract, the formulation is:

RBB∗
s (Q) = Max

0≤β≤1
E[RBB

s (β|Q)]

= Max
0≤β≤1

∞∑
j=0

∞∑

k=0

{
p1min(j, Q) + p2min(k, (Q− j)+)

+ b(Q− j − k)+
}

P1
j(β)P2

k(β) (3.7)
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For a MM contract, the retailer and vendor agree on profit margin level of g. If the

retailer has to drop prices below the agreed profit margin level, that is, if p ≤ w(1+g)

where the unit price is p, then the retailer receives rebates at rebate per unit of

w(1 + g)− p. The formulation is:

RMM∗
s (Q) = Max

0≤β≤1
E[RMM

s (β|Q)]

= Max
0≤β≤1

∞∑
j=0

∞∑

k=0

{(
p1 + (w(1 + g)− p1)

+
)
min(j, Q)

+
(
p2 + (w(1 + g)− p2)

+
)
min(k, (Q− j)+)

}
P1

j(β)P2
k(β).

(3.8)

In the next section, we analyze the retailer’s optimal decisions for different

contract types.

3.4. Retailer’s Timing Decisions

We analyze and discuss the retailer’s ordering and timing decisions for WP,

BB, and MM. We start with WP, analysis of which constitutes a stepping stone for

the other two contracts. We drop the superscript s from the notation in this section

because the problems have the same structure regardless of the market state s.

3.4.1 Wholesale-Price (WP) Contract

The retailer’s model analyzed in Chapter 2 is in fact the model for the WP

contract. We repeat the analysis under the new demand model, i.e., where the
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demand is based on a Poisson process. We introduce new notation and state the

structural properties of the retailer’s timing problem below. Defining

V WP (j, k) = p1 min(Q, j) + p2 min(k, (Q− j)+), (3.9)

we can rewrite the optimization problem in Eq. (3.6) as

RWP∗(Q) = Max
0≤β≤1

E[RWP
s (β|Q)] = Max

0≤β≤1

∞∑
j=0

∞∑

k=0

V WP (j, k)P1
j(β)P2

k(β) (3.10)

Proposition 1 (a) The expected revenue function E[RWP
s (β|Q)] is differentiable

for β ∈ [0, 1] and the partial derivative of the function with respect to β is

∂E[R(β|Q)]

∂β
= (p1λ1 − p2λ2) P (N1(β) + N2(β) ≤ Q)

+λ1 (p1 − p2) P (N1(β) ≤ Q < N1(β) + N2(β)) , (3.11)

(b) For a given inventory level Q < ∞, E[R(β|Q)] is quasiconcave in β.

Proof (a) Differentiability of the function with respect to β is observed from the

fact that β only appears in the Poisson probability components P1
j(β)P2

k(β). For

first order partial derivative and proof of quasiconcavity in part (b), see Appendix

B.1.1. •

Corollary 1 The optimal timing decision, denoted by β∗ satisfies (i) 0 ≤ β∗ ≤ 1 if

p1λ1 − p2λ2 ≤ 0 and (ii) β∗ = 1 if p1λ1 − p2λ2 ≥ 0.
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This corollary follows from the first order condition above: When p1λ1 − p2λ2 ≥ 0,

then the expected revenue function is a nondecreasing function of β, leading to

β∗ = 1, otherwise, we have 0 ≤ β∗ ≤ 1.

The Poisson demand model and its properties are closely related to ‘marginal

revenues’ and inventory on hand. Observe that the term (p1λ1 − p2λ2) represents

the marginal revenue received if we switch from the primary market to the secondary

market provided we have enough inventory on hand to meet any increase in demand.

Suppose by delaying the decision to transfer from the primary to the secondary

market, the marginal revenue is negative. If the retailer had enough inventory to

meet demand in both the markets then in such a case, the retailer would immediately

transfer the product to the secondary market since keeping it in the primary market

is not beneficial. But if the retailer does not have enough inventory, then, the

trade-off between demand and the inventory level becomes important. Offering the

product very early in secondary market can result in higher demand with insufficient

inventory and thus lost sales. Offering too late in the season can result in lower

demand with excess inventory unsold. Thus the retailer would like to time the

transfer in such a way that the maximum revenues are obtained from both the

markets with this inventory level and hence, the optimal timing of offering product

in secondary market is given by an optimal value between 0 and 1. If the marginal

revenue received is positive or it means you gain revenue when you delay the decision

to transfer the product and hence you never switch from the primary market to the

secondary market, that is, β∗ = 1. To illustrate this, think of p1 as a very high

positive price and p2 = 0, here, the timing decision is trivial; since it is never
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optimal to transfer the goods to the secondary market.

3.4.2 Buyback (BB) Contract

The key difference between this contract and WP contract is that the retailer

gets credit of b per unit, on all the items that are leftover at the end of the season.

Since the retailer cannot profit from just leftover inventory hence it is reasonable to

assume that b ≤ p2, as mentioned before in Section 3.2.

Let us define the following:

V BB(j, k) = V WP (j, k) + b(Q− j − k)+ (3.12)

where V WP is defined as in (3.9). Then we can rewrite the optimization problem

for BB:

RBB∗(Q) = Max
0≤β≤1

E[RBB(β|Q)] = Max
0≤β≤1

∞∑
j=0

∞∑

k=0

V BB(j, k)P1
j(β)P2

k(β) (3.13)

Similar to WP contract we determine the optimal timing policy (or policies) by

deriving the first and second order derivative of the expected revenue function.

Proposition 2 (a) The first order derivative of the expected revenue function

E[RBB(β|Q)] with respect to β is

∂E[RBB(β|Q)]

∂β
=

[
(p1 − b)λ1 − (p2 − b)λ2

]
P (N1(β) + N2(β) ≤ Q)

+λ1

[
p1 − p2

]
P (N1(β) ≤ Q < N1(β) + N2(β)) . (3.14)
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(b) For a given inventory level Q, the expected revenue function E[RBB(β|Q)] is

quasiconcave in β.

Proof See Appendix B.2.1. •

Corollary 2 If p1λ1 − p2λ2 + b(λ2 − λ1) ≥ 0 then we have β∗ = 1.

The proof of this corollary, for the optimality conditions follows from re-writing the

expression for ∂E[RBB(β)]
∂β

given by Equation (3.14).

∂E[RBB(β|Q)]

∂β
=

[
p1λ1 − p2λ2 + b(λ2 − λ1)

]
P (N1(β) + N2(β) ≤ Q)

+λ1

[
p1 − p2

]
P (N1(β) ≤ Q < N1(β) + N2(β)) .

This is immediate from the sign of the first term in ∂E[RBB(β|Q)]
∂β

: When p1λ1−p2λ2 +

b(λ2 − λ1) ≥ 0, then the function is non-decreasing in β and β∗ = 1.

The above results highlight the importance of buyback credit in relation to

marginal revenues when we compare BB to WP contract. That is, the marginal

revenue (with respect to the timing decision), p1λ1 − p2λ2, in the WP contract is

increased by a positive term b(λ2 − λ1) in the BB contract. That is, when the

demand in both the markets is less than the inventory level, then by delaying the

decision to transfer to the secondary market the retailer gets an additional revenue

of b(λ2− λ1) per unit. This shows that the retailer can bear the demand risk in the

primary market for a longer period in the BB contract as the retailer is assured of a

higher marginal revenue (compared to the WP contract) if the decision to transfer
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to secondary market is delayed.

3.4.3 Markdown-Money (MM) Contract

In our model of the MM contract, the retailer gets rebates on all goods that

are sold at less than the pre-specified margin, g regardless of the market they are

sold in (we discussed there could be different arrangements between the retailer and

the supplier under a MM contract in practice). Based on the prices the retailer

charges at the primary and secondary markets, there are three possible cases: (i)

The retailer gets rebate on all goods sold in both markets if p2 ≤ p1 ≤ w(1 + g).

The goods sold in the primary and secondary markets qualify for unit rebates of

p1 −w(1 + g) and p2 −w(1 + g), respectively. (ii) The retailer gets a rebate for the

products sold in only the secondary market if p2 ≤ w(1 + g) < p1. This situation

is typical to industry, where in a retailer prices aggressively in the primary market

but marks down the prices towards the end of the selling season to avoid excess,

unsold inventory. Each unit sold in the secondary market qualifies for a rebate of

p2 − w(1 + g) in this case. (iii) If w(1 + g) < p2, then the retailer gets no rebate.

This is a trivial, and impractical scenario from a MM contract perspective. We

summarize the conditions on the parameters for these three cases in Table 3.1:

Table 3.1: Price Conditions for Rebate Situations under MM contract

Rebate Situation Condition on p1 Condition on p2

Rebate in both markets p1 ≤ w(1 + g) p2 ≤ w(1 + g)
Rebate in one market p1 > w(1 + g) p2 ≤ w(1 + g)
No Rebate p1 > w(1 + g) p2 > w(1 + g)
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Let us now define

V MM(j, k) = V WP (j, k) + (w(1 + g)− p1)
+ min(j, Q)

+ (w(1 + g)− p2)
+ min

(
k, (Q− j)+

)
. (3.15)

The function V MM(j, k) takes different forms in the case of different rebate situa-

tions; we provide the expressions for each case in Table 3.2.

Table 3.2: Evaluation of Revenue Function for MM contract

Rebate Situation V MM(j, k)

Rebate in both markets w(1 + g)min(j, Q) + w(1 + g)min (k, (Q− j)+)

Rebate in one market p1min(j, Q) + w(1 + g)min (k, (Q− j)+)

No Rebate p1min(j, Q) + p2min (k, (Q− j)+) = V WP (j, k)

Given the function V MM(·), we can rewrite the retailer’s timing problem as:

RMM∗(Q) = Max
0≤β≤1

E[RMM(β|Q)] = Max
0≤β≤1

∞∑
j=0

∞∑

k=0

V MM(j, k)P1
j(β)P2

k(β) (3.16)

Based on Table 3.2, we note the following in the case of different rebate situations.

(i) When the retailer qualifies for rebate in both markets, the expected revenue

function of the retailer is similar to one in the WP contract with prices in both

markets replaced by w(1 + g). (ii) When the retailer qualifies for rebate for the

goods sold in the secondary market only, then we have to replace p2 of WP with

w(1 + g) as the unit revenue obtained in the secondary market under MM contract.

(iii) When no sales qualifies for the rebate in the MM contract, then the situation
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is exactly the same as the WP contract. Therefore, we drop this third case from

further consideration.

Proposition 3 (a) The first order derivative of the expected revenue function with

respect to β for MM contract is given as

(i) When p2 ≤ p1 ≤ w(1 + g),

∂E[RMM(β|Q)]

∂β
= w(1 + g)[λ1 − λ2] P (N1(β) + N2(β) ≤ Q). (3.17)

(ii) When p2 ≤ w(1 + g) < p1,

∂E[RMM(β|Q)]

∂β
=[p1λ1 − w(1 + g)λ2]P (N1(β) + N2(β) ≤ Q)

+ λ1[p1 − w(1 + g)]P (N1(β) ≤ Q < N1(β) + N2(β)).

(3.18)

(b)For a given inventory level Q and wholesale price w, the retailer’s expected rev-

enue function for a MM contract is quasiconcave in β.

Proof See Appendix B.3.1. •

In contrast to the WP contract, we notice from the marginal revenue terms in

Equations (3.17) and (3.18) that the retailer would like to take rebates if it is possible

at all to avail the rebates.

Corollary 3 The optimal timing for MM contract satisfies:

(i) If p2 < p1 ≤ w(1 + g) then β∗ = 0
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(ii) If p2 ≤ w(1 + g) < p1 and p1λ1 − w(1 + g)λ2 > 0 then β∗ = 1.

This follows from the first order derivatives: In part (i), the first order derivative is

negative which implies β∗ = 0. In part (ii), it is positive, hence β∗ = 1.

3.5. Comparison of Retailer’s Timing Decisions

In this section we analytically compare the retailer’s optimal timing of offering

the product in the secondary market for different contracts for a given order quantity

Q. As the results hold true for any state s, we will drop the subscript s in this section.

Proposition 4 For a given wholesale price w and order quantity Q, let the optimal

timing in WP and BB contracts be denoted β∗WP (Q) and β∗BB(Q), respectively. Then,

we have β∗WP (Q) ≤ β∗BB(Q).

Proof The proof for this follows from comparing the first order derivatives for WP

and BB contract in Equations (3.11) and (3.14). •

This result is intuitive since when we have the BB contract, the retailer is willing to

be more aggressive (in terms of price) by keeping the product in the primary market

for a longer time, as the vendor is sharing some of his/her risk of unsold items. Two

corollaries that follow from the above proposition are:

Corollary 4 If we have β∗WP (Q) = 1 then β∗BB(Q) = 1.

Corollary 5 If we have β∗BB(Q) = 0 then β∗WP (Q) = 0.
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Proposition 5 For a given wholesale price w and order quantity Q, let the optimal

timing in WP and MM contracts be denoted β∗WP (Q) and β∗MM(Q), respectively.

Then, we have β∗MM(Q) ≤ β∗WP (Q).

Proof In the case of the rebate situation corresponding to “rebate in both markets,”

we know that β∗MM(Q) = 0 (see Corollary 3) where as β∗WP (Q) can take any value

between [0, 1]. Consider the case of rebate situation corresponding to “rebate in one

market”. We can derive the following relations in this rebate situation: −w(1 +

g)λ2 ≤ −p2λ2 and [p1 − w(1 + g)] λ1 ≤ [p1 − p2] λ1. From Equations (3.18) and

(3.11) and using the relations just derived, we see that ∂E[RMM (β)]
∂β

≤ ∂E[RWP (β)]
∂β

for

“rebate in one market” situation. This completes the proof. •

From this result we see that unlike a BB contract, the retailer does not delay offering

the product in the secondary market under a MM contract compared to a WP

contract. This is because there are three possible situations. When both the prices

are higher than the agreed margin of w(1 + g), MM contract behaves just like WP

contract. When both the prices are lower than the agreed margin of w(1 + g),

then the retailer would like to take rebate as early as possible since the rebate is

provided on all items that are sold; and the retailer receives highest demand for lower

price, which happens in the secondary market. In the case of the primary market

price being higher than the cutoff price and the secondary market price being lower

than cutoff, there is a trade-off between delaying offering the product in secondary

market to receive rebates on higher demand to receiving revenue for higher price but

possibly lower demand in primary market. Why would the retailer like to offer the
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product in the secondary market earlier under a MM contract in this latter rebate

situation, compared to WP contract? In the case of a WP contract, the retailer

receives marginal revenue of p1λ1− p2λ2 per unit time delay in offering the product

in the secondary market, where as in a MM contract in this rebate situation, the

retailer receives a marginal revenue of p1λ1−w(1+g)λ2 and since p2 ≤ w(1+g), the

retailer’s marginal revenue is lower if the product is offered in the secondary market

at a later time when compared to a WP contract.

Proposition 6 For a given Q and w, β∗MM(Q) ≤ β∗BB(Q).

Proof Follows from Propositions 4 and 5 . •

While these results convey practical information on the use of secondary markets,

they are valid when the same order quantity, Q, is used in all contracts. However,

the retailer’s optimal order quantity can be different for each contract. Compari-

son of optimal timing decisions for optimal order quantities (corresponding to each

contract) are done later in this chapter using a computational experiment. Further-

more, the supplier’s optimal choice of w depends on the optimal order quantity of

the retailer and vice versa. Hence, the relation among the optimal timing decisions

for different contract types is not straightforward when we consider the actions of

both the retailer and the supplier.

3.6. Retailer’s Ordering and Supplier’s Wholesale Pricing Decisions

We solve the three-stage model starting from the third stage and going back-

wards. Once the expected revenue from sales and rebates is formulated for the
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retailer, the optimal time to transfer the goods can be determined. Once the op-

timal timing decision for a given order quantity is known, then retailer’s Stage-2

problem is solved for each contract type:

πc∗
ret(w) = Max

Q≥0
θlR

c∗
l (Q) + θhR

c∗
h (Q)− wQ (3.19)

where πc∗
ret(w) is the optimal expected profit for the retailer for a given contract c and

wholesale price w. The complexity of the model does not allow us to obtain closed-

form solutions for the retailer’s ordering problem. We determine Q∗ or optimal order

quantity using computational methods. Note that we restrict ourselves to discrete

order quantities because the demand is discrete.

Finally, we can analyze the actions of the supplier, knowing the retailer’s

optimal actions for a given contract type and a wholesale price. The supplier’s

wholesale pricing problem has a different formulation for each contract. In case of

a WP contract, we can write the supplier’s optimization problem as:

πWP∗
sup = Max

w≥ν
(w − ν)QWP∗(w) (3.20)

QWP∗(w) is the optimal order quantity for a retailer for a given wholesale price w.

In case of a BB contract, the supplier’s expected profit maximization problem
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is as follows:

πBB∗
sup = Max

w≥ν
(w − ν)QBB∗(w)

− b
∑

s=l,h

θs

( ∞∑
j=0

∞∑

k=0

(
QBB∗(w)− j − k

)+
P1

j(β
∗
s )P

2
k(β

∗
s )

)
(3.21)

The first term is the profit from delivering QBB∗(w), the retailer’s optimal order

quantity for a given wholesale price w and β∗s is the corresponding optimal time of

transfer of goods from the primary to the secondary market, for state s. The second

term denotes the expected return credits offered to the retailer over all possible

demand states.

In the case of a MM contract, we can write the supplier’s optimization problem

as:

πMM∗
sup = Max

w≥ν
(w − ν)QMM∗(w)

−
∑

s=l,h

θs

{ ∞∑
j=0

∞∑

k=0

[
(w(1 + g)− p1)

+ min(QMM∗(w), j)

+ (w(1 + g)− p2)
+ min((QMM∗(w)− j)+, k)

]
P1

j(β
∗
s )P

2
k(β

∗
s )

}

(3.22)

The first term is the profit from delivering QMM∗(w), the optimal order quantity for

a retailer for a given wholesale price w and β∗s is the corresponding optimal time of

transfer of goods from the primary to the secondary market, for state s. The second

term denotes the expected rebates offered to the retailer over all possible demand
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states.

We conduct extensive numerical experiments to understand the properties of

the expected profit functions of the retailer and the supplier in the next section.

3.7. Computational Experiments

We conduct computational experiments to understand the effects of WP, BB

and MM contracts on the optimal order quantity, expected profit and supplier’s

choice of wholesale price.

3.7.1 Setup and Design

We design the computational experiment to investigate the effect of various

problem parameters on the retailer and supplier optimal actions. The values con-

sidered for different parameters are as follows:

• State: Market state probabilities (θ) vary from 0.1 to 0.9. The state probabil-

ities are varied in steps of 0.1 in the numerical exercises.

• Demand Model: In our experiments, we use the Poisson demand model where

the demand in the primary and secondary markets can also be a function of

prices in the respective markets. Consider the Poisson arrival process and

assume that each arriving customer has a willingness-to-pay (WTP). A cus-

tomer in the primary or secondary market purchases the product if his/her

WTP exceeds the price p1 or p2 in the respective markets. This effectively re-

duces the sales rate in corresponding markets to λs
1F 1(p1) or λs

2F 2(p2), where
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F 1(p1) = 1 − F1(p1) and F 2(p2) = 1 − F2(p2). Here, F1(·) and F2(·) repre-

sent the WTP distribution of the customers in the respective markets. This

joint WTP and Poisson arrival type of demand model is commonly used in

the pricing literature (e.g., Bitran & Mondschein (1997)). In our model,

this translates to primary and secondary market demand distributions of

N s
1 (β) ∼ Poisson(λs

1F 1(p1)β) and N s
2 (β) ∼ Poisson(λs

2F 2(p2)(1− β)), respec-

tively.

• Demand Parameters: We use a common demand rate (λ) for Poisson process.

λ takes one of the following values: 10, 30 and 50 in our experiments. Con-

sumer’s WTP (F ) follows from this: U [0, 150], U [0, 200] and U [0, 300]. This

affects the overall sales rates as mentioned above. The parameter λ, prices p1

and p2, and the WTP determine the probability distribution of the demand

in any market.

• Prices: We consider two sequences of price paths (p1, p2) for the two markets.

In first sequence we have price paths of (100, 80), (100, 60), (100, 40) and

(100, 20). In second sequence we have the following price paths: (120, 100),

(120, 80), (120, 60) and (120, 40).

• Contract Parameters: Guaranteed profit margin (g) varies from 0 to 1.2 in

steps of 0.1. Buyback credit (b) varies from 0 to 30 in steps of 5.

• Cost of Supplier: Finally, the marginal cost of production for supplier (ν) is

assumed to be 15 .
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• Optimal decisions: In each experiment, we determine the optimal wholesale

price, w∗, for the supplier, and the optimal order quantity, Q∗ and timing,

β∗ for the retailer for each contract. The algorithm used in optimization is

described in Appendix B.4.

For each of the contracts we conduct the following experiments: In the first exper-

iment, we study the effect of contract parameters (if any) on the optimal decisions

of the retailer and the supplier. In the second experiment we discuss the properties

and behavior of optimal decisions for a set of parameter values. In the third experi-

ment, we study the effect of the % discount in secondary market’s price on optimal

decisions of the supplier and retailer, that is, p1 vs. p2. In the fourth, we study the

effect of WTP distribution parameters. Finally, in the fifth, we study the effect of

market state probabilities, that is, θl, θh.

We conduct a comprehensive computational experiment. Before we provide the

numerical results, we discuss the major findings in the next Section 3.7.2. In Sections

3.7.3 - 3.7.5, we discuss the optimal decisions for the WP, BB and MM contracts.

In Section 3.7.6, we compare the optimal decisions across the three contracts. In

Section 3.7.7, we discuss the preference of the retailer and the supplier for each of

the contracts when products are of a high-risk and high-return nature.

3.7.2 Summary of Results

We conduct a comprehensive series of experiments, with different goals in

mind. Here is a summary of our main observations: (1) The time to transfer the
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products from the primary to secondary markets is affected by contractual agree-

ments - BB transfers later and MM transfers earlier compared to WP contract. (2)

The retailer places higher order quantities under a MM contract compared to a

WP contract. However, the order quantities are marginally higher in a BB contract

when compared to a WP contract. (3) The retailer’s profits under BB contract can

be lower compared to WP contract. In contrast, the supplier is always better off

with a BB contract compared to a WP contract. A MM contract is more beneficial

for the retailer compared to a WP contract but can also be a win-win situation

for both parties in the supply chain. (4) Considering the uncertainty in the state

of the market: When the potential demand market is likely to be in a low state,

then the retailer prefers MM contract and on the other hand the supplier prefers

the BB contract. This is a significant finding for the suppliers and the retailers as it

helps them to quantify the effectiveness of the individual contracts under potential

demand market scenarios.

3.7.3 Optimal Decisions under WP Contract

For the WP contract, the first and second experiments are coupled: we investi-

gate the properties of optimal decisions for the retailer and the supplier. We use the

following values for the parameters: ν = 15, and F l, F h ∼ U [0, 150]. The demand

arrival rates are given as follows: In the primary market we have λl
1 = 10(1− p1

150
),

λh
1 = 50(1− p1

150
) and in secondary market we have λl

2 = 10(1− p2

150
), λh

2 = 50(1− p2

150
).

Tables 3.3 and 3.4 show the results of the optimization with state probabilities as
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(0.1, 0.9) and (0.7, 0.3) respectively. In general we note the following observations

from this numerical exercise:

• The optimal order quantity, Q∗ decreases with increasing w. We illustrate this

for the different price paths in Figure 3.2. Notice that Q∗ stays constant for

a certain range of wholesale prices and drops to lower Q when w is increased.

This happens because we considered Q as discrete for this research.

• The optimal retailer’s expected profit, π∗ret decreases with increasing w. This

is shown in Figure 3.3.

• The supplier’s expected profit, πsup is not concave as shown in Figure 3.3.

We believe this happens because (i) Q is discrete, and (ii) for multi-stage

optimization problems, some of the essential properties like continuity and

differentiability are lost (in general) from one stage to the next stage. However,

based on computational experiments, we observe that the supplier’s expected

profit function exhibits a uni-modal structure, allowing us to find the optimal

wholesale price. Note that the w∗ does not necessarily lie between the two

prices, p2 and p1.

In the third experiment, we varied the discounted price in the secondary market,

keeping other parameters the same as the second experiment. The results are shown

in Tables 3.3 and 3.4. We observe that:

• The retailer’s optimal time to transfer to the secondary market increases with

p2 in this experiment. However, this need not be true in other cases and the
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Table 3.3: WP Contract - Results for different Price Paths with (θl, θh) = (0.1, 0.9)

(p1, p2) w∗ π∗sup π∗ret Q∗ β∗l β∗h

(100, 80) 76 793.000 187.380 13 0.0003 0.9433
(100, 60) 76 793.000 185.373 13 0.0003 0.9834
(100, 40) 76 793.000 182.578 13 0.9997 0.9997
(100, 20) 76 793.000 182.548 13 0.9997 0.9997

(120, 100) 58 645.000 432.708 15 0.0003 0.0003
(120, 80) 88 584.000 153.353 8 0.0003 0.8989
(120, 60) 87 576.000 155.532 8 0.0003 0.9452
(120, 40) 85 560.000 161.516 8 0.2583 0.9809

Table 3.4: WP Contract - Results for different Price Paths with (θl, θh) = (0.7, 0.3)

(p1, p2) w∗ π∗sup π∗ret Q∗ β∗l β∗h

(100, 80) 46 186.000 144.297 6 0.0003 0.9721
(100, 60) 60 180.000 82.303 4 0.9202 0.9928
(100, 40) 75 180.000 36.984 3 0.9997 0.9997
(100, 20) 75 180.000 36.975 3 0.9997 0.9997

(120, 100) 65 200.000 85.451 4 0.0003 0.9008
(120, 80) 62 235.000 90.720 5 0.0003 0.9352
(120, 60) 47 224.000 142.933 7 0.0003 0.9534
(120, 40) 36 147.000 173.298 7 0.4217 0.9840

Table 3.5: WP Contract - Results for different WTP distribution parameters

(F l, F h) w∗ π∗sup π∗ret Q∗ β∗l β∗h

U [0, 150], U [0, 150] 78 504.000 130.184 8 0.9753 0.9753
U [0, 150], U [0, 200] 83 748.000 145.784 11 0.9521 0.9997
U [0, 150], U [0, 300] 81 990.000 212.085 15 0.8150 0.9997
U [0, 200], U [0, 150] 80 520.000 118.470 8 0.9997 0.9753
U [0, 300], U [0, 150] 80 520.000 118.754 8 0.9997 0.9753
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optimal order quantity (in particular a jump in Q as p2 changes) can positively

or negatively impact β∗.1

• The retailer’s optimal expected profit does not show any well-defined trend

with a drop in the discounted price (or higher discounts). But the supplier’s

optimal expected profit exhibits quasi-concavity in the discounted price.

In the fourth experiment the goal is to study the effect of parameters of the WTP

distribution on the optimal solutions. we consider price path of (p1, p2) = (100, 60)

with the following parameters: ν = 15, θl = 0.1, θh = 0.9, λl = λh = 30 and

F l, F h ∼ U [0, 150], U [0, 200], U [0, 300]. The demand rates for state s are given by

λs
1 = 30F

s
(p1) and λs

2 = 30F
s
(p2). The results as shown in Table 3.5. We observe

the following:

• The optimal timing of transfer to secondary market is affected by the variance

(range) of demand in the primary market. As the variance increases, there

is a higher probability of high-price paying customers in the primary market.

Consequently, switch to the secondary market is delayed.

• The supplier’s optimal expected profits are non-decreasing in the variance of

the demand in the primary market. This is also true for the retailer’s optimal

expected profits. The supplier’s expected profit increases with the variance

of the WTP distribution in the secondary market, although retailer observes

decline in expected profits in this case.

1β∗ is not monotonic in general. Consider p1 = 47, p2 = {11, 12, 13}; F l ∼ U [0, 50], Fh ∼
U [0, 50]; λl

1 = 3/5, λh
1 = 3; λl

2 = 10(1 − p2/50), λh
2 = 50(1 − p2/50); θl = 0.1. Then, β∗l is 0.7123,

0.5244, and 0.6634 when p2 is 11, 12, and 13, respectively. This is due to the fact that Q∗ is 2, 3,
and 2 when p2 is 11, 12, and 13, respectively.
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• This analysis tells us that the suppliers prefer market states which have higher

variance.

In the fifth experiment the goal is to understand the effect of different θl and θh for

two price paths in primary and secondary markets: (p1, p2) = (100, 60) and (120, 80).

For both price paths we assume that ν = 15, F l ∼ U [0, 150] and F h ∼ U [0, 150].

The demand rates are given as follows: In primary market we have λl
1 = 10(1− p1

150
),

λh
1 = 50(1− p1

150
) and in secondary market we have λl

2 = 10(1− p2

150
), λh

2 = 50(1− p2

150
).

We vary the market state probabilities in steps of 0.1 from 0.1 to 0.9. The results

Table 3.6: WP Contract - Results under different Market State Probabilities for
(100, 60)

(θl, θh) w∗ π∗sup π∗ret Q∗ β∗l β∗h

(0.1, 0.9) 76 793.000 185.373 13 0.0003 0.9854
(0.2, 0.8) 72 684.000 151.005 12 0.0003 0.9853
(0.3, 0.7) 63 576.000 177.019 12 0.0003 0.9853
(0.4, 0.6) 54 468.000 202.032 12 0.0003 0.9853
(0.5, 0.5) 48 363.000 195.283 11 0.0003 0.9865
(0.6, 0.4) 39 264.000 221.208 11 0.0003 0.9865
(0.7, 0.3) 60 180.000 82.303 4 0.9202 0.9928
(0.8, 0.2) 71 168.000 43.761 3 0.9458 0.9928
(0.9, 0.1) 68 159.000 47.357 3 0.9458 0.9928

are shown in Tables 3.6 and 3.7. Here is a summary of our observations:

• The optimal order quantity, Q∗, decreases and β∗ increases as θl increases.

This is because the overall market demand decreases with θl, reducing the

number of units that can be sold. Notice that when θl = 0.1, high state is very

likely, and retailer places an order of 13 units. It is interesting to note that

if retailer finds himself in the low state, then he would switch immediately to
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Table 3.7: WP Contract - Results under different market state probabilities for
(120, 80)

(θl, θh) w∗ π∗sup π∗ret Q∗ β∗l β∗h

(0.1, 0.9) 88 584.000 153.353 8 0.0003 0.8989
(0.2, 0.8) 79 512.000 170.829 8 0.0003 0.8989
(0.3, 0.7) 79 448.000 124.900 7 0.0003 0.9139
(0.4, 0.6) 69 378.000 149.282 7 0.0003 0.9139
(0.5, 0.5) 69 324.000 111.850 6 0.0003 0.9258
(0.6, 0.4) 70 275.000 78.540 5 0.0003 0.9352
(0.7, 0.3) 62 235.000 90.720 5 0.0003 0.9352
(0.8, 0.2) 54 195.000 102.901 5 0.0003 0.9352
(0.9, 0.1) 46 155.000 115.081 5 0.0003 0.9352

secondary market. This looks counter-intuitive since p2 = 60, is lower than

w∗ = 76. This can be explained when one calculates the expected profits,

taking into account the order quantity.

• The supplier’s optimal expected profits are decreasing as the lower market

state is more probable. The retailer’s optimal expected profits do not exhibit

monotonic behavior.

• This analysis tells us that the supplier prefers higher market states where as

the retailer’s preference is influenced not only by the state of the market but

also the supplier’s choice of the optimal wholesale price.

3.7.4 Optimal Decisions under BB Contract

In the first experiment for studying the effect of buyback credit on the optimal

solutions we consider the following parameters: ν = 15, F l ∼ U [0, 150], F h ∼
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U [0, 150] and price path as (p1, p2) = (100, 60). The demand rates are given as

follows: In primary market we have λl
1 = 10

3
, λh

1 = 50
3

and in secondary market we

have λl
2 = 6, λh

2 = 30. The buyback credit is dropped from 40 to 0. From the results

Table 3.8: BB Contract - Results for different Buyback Credits with (p1, p2) =
(100, 60)

b w∗ π∗sup π∗ret Q∗ β∗l β∗h RetRev∗l RetRev∗h

40 81.5 867.219 163.246 14 0.9997 0.9997 426.633 23.464
30 83.0 845.196 130.398 13 0.9997 0.9997 289.975 10.896
25 82.0 838.663 136.931 13 0.9997 0.9997 241.646 9.080
20 81.0 832.131 143.464 13 0.9997 0.9997 193.317 7.264
18 80.5 828.218 147.377 13 0.9997 0.9997 173.985 6.538
15 79.5 819.098 156.496 13 0.9997 0.9997 144.988 5.448
12 79.0 816.478 159.116 13 0.9997 0.9997 115.990 4.358
10 78.5 812.565 163.029 13 0.9997 0.9997 96.659 3.632
5 77.5 807.441 170.900 13 0.0003 0.9909 35.033 1.729
0 76.0 793.000 185.373 13 0.0003 0.9834 0.000 0.000

of optimization as shown in Table 3.8 we can observe that:

• In general, the optimal timing does not vary with change in buyback credit.

If we look at the expression p1λ1 − p2λ2 + b(λ2 − λ1) for low demand state it

equals 1
3
(8b−80) and for high demand state it is 1

3
(100b−400). From Corollary

2, we note that for low state β∗ = 1 when b ≥ 10 and for high state when

b ≥ 4. When the buyback credit approaches 0 then BB contract behaves like

WP contract and we see optimal timings close to what we observed in WP

contract.

• One of the important observations is that the supplier’s optimal expected

profit increases monotonically in the buyback credit. The retailer obtains
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higher profits at lower buyback credit. The highest profit attained by the

retailer corresponds to that of a WP contract. Notice that the total supply

chain profit remains constant for buyback credit between 30 and 0 as the order

quantity does not change. The supply chain profit just gets re-distributed

between the retailer and the supplier.

Table 3.9: BB Contract - Results for different Price Paths with (θl, θh) = (0.1, 0.9)

(p1, p2) w∗ π∗sup π∗ret Q∗ β∗l β∗h RetRev∗l RetRev∗h

(100, 80) 78.0 807.743 172.567 13 0.0003 0.9596 83.343 3.247
(100, 60) 78.5 812.565 163.029 13 0.9997 0.9834 96.659 3.632
(100, 40) 78 806.069 169.509 13 0.9997 0.9997 96.654 3.629
(100, 20) 78 806.072 169.476 13 0.9997 0.9997 96.650 3.626

(120, 100) 58 663.643 452.846 16 0.0003 0.0003 126.671 12.989
(120, 80) 43 609.868 612.189 23 0.0003 0.0003 183.342 17.554
(120, 60) 89 586.917 144.426 8 0.0003 0.9590 23.150 3.076
(120, 40) 87 565.875 152.422 8 0.9997 0.9997 59.989 4.585

In the second experiment we study the behavior and properties of optimal decisions

using the following values for the parameters: ν = 15, F l ∼ U [0, 150] and F h ∼

U [0, 150]. We assume buyback credit of 10 for this experiment. The demand rates

are given as follows: In primary market we have λl
1 = 10(1− p1

150
), λh

1 = 50(1− p1

150
)

and in secondary market we have λl
2 = 10(1− p2

150
), λh

2 = 50(1− p2

150
). Tables 3.9 and

3.10 show the results of the optimization with state probabilities as (0.1, 0.9) and

(0.7, 0.3) respectively. In general, the following is observed:

• The optimal order quantity decreases as w increases. One key difference in

this behavior compared to WP contract is that the optimal order quantity
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approaches infinity for very low wholesale prices. This is because the retailer

is assured of revenue on the leftover inventory at the end of the horizon due

to the BB contract. This is illustrated in Figure 3.4.

• Similar to the WP contract, the retailer’s optimal expected profit drops with

increasing wholesale price and the supplier’s optimal expected profit is not

concave as shown in Figure 3.5.

Table 3.10: BB Contract - Results for different Price Paths with (θl, θh) = (0.7, 0.3)

(p1, p2) w∗ π∗sup π∗ret Q∗ β∗0 β∗1 RetRev∗0 RetRev∗1

(100, 80) 46 199.365 156.542 7 0.0003 0.9596 25.178 0.034
(100, 60) 63 184.191 77.689 4 0.9997 0.9834 11.156 0.001
(100, 40) 63 184.193 77.679 4 0.9997 0.9997 11.153 0.001
(100, 20) 63 184.194 77.662 4 0.9997 0.9997 11.151 0.001

(120, 100) 69 208.160 77.290 4 0.0003 0.9095 11.163 0.087
(120, 80) 64 237.681 88.036 5 0.0003 0.9440 10.345 0.256
(120, 60) 50 233.514 133.387 7 0.0003 0.9652 15.708 1.634
(120, 40) 67 147.472 65.103 3 0.9997 0.9997 12.169 0.033

In the third experiment we varied the discounted price, keeping other parameters

the same as in the second experiment and results are shown in Tables 3.9 and 3.10.

We observe that:

• Similar to the WP contract, optimal timing decision is not monotonic in higher

discounts. Based on Corollary 2 we see that for price paths of (100, 40) and

(100, 20) the optimal timing is 1 as p1λ1 − p2λ2 + b(λ2 − λ1) > 0.

• The retailer’s and the supplier’s optimal expected profit show similar behavior
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as discussed in the WP contract. π∗ret does not show any trend and π∗sup exhibits

quasi-concavity.

The goal of the fourth experiment is to study the effect of parameters of the WTP

distribution on the optimal solutions. We consider price path of (p1, p2) = (100, 60)

and assume the following parameters: ν = 15, b = 10, θl = 0.1, θh = 0.9, λl = λh =

30 and F l, F h ∼ U [0, 150], U [0, 200], U [0, 300]. The demand rates for state s is given

by λs
1 = 30F

s
(p1) and λs

2 = 30F
s
(p2). We obtain the results as shown in Table 3.11.

• From Tables 3.11 and 3.12, it is optimal to keep the product in the primary

market as long as possible. This is an effect of the buyback credit.

• The supplier’s optimal expected profits are increasing in the variance of the

WTP distribution in either market. This is not true for the retailer’s optimal

expected profits.

Table 3.11: BB Contract - Results for different WTP distribution parameters

(Fl, Fh) w∗ π∗sup π∗ret Q∗ β∗l β∗h RetRev∗l RetRev∗h
U [0, 150],
U [0, 150]

80 515.402 118.568 8 0.9997 0.9997 4.598 4.598

U [0, 150],
U [0, 200]

85 765.872 127.803 11 0.9997 0.9997 18.327 2.551

U [0, 150],
U [0, 300]

83 1012.646 188.768 15 0.9997 0.9997 51.019 2.503

U [0, 200],
U [0, 150]

81 523.832 114.446 8 0.9997 0.9997 0.295 4.598

U [0, 300],
U [0, 150]

82 531.861 106.701 8 0.9997 0.9997 0.011 4.598

In the fifth experiment the goal is to understand the effect of different θl and

θh for two price paths in primary and secondary markets: (p1, p2) = (100, 60) and
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Table 3.12: BB Contract - Results under different Market State Probabilities for
(100, 60)

(θl, θh) w∗ π∗sup π∗ret Q∗ β∗l β∗h RetRev∗l RetRev∗h

(0.1, 0.9) 78.5 812.565 163.029 13 0.9997 0.9997 96.659 3.632
(0.2, 0.8) 71.0 705.763 176.803 13 0.9997 0.9997 96.659 3.632
(0.3, 0.7) 63.0 592.460 197.078 13 0.9997 0.9997 96.659 3.632
(0.4, 0.6) 58.0 480.072 180.593 12 0.9997 0.9997 86.659 2.108
(0.5, 0.5) 48.0 378.855 224.627 13 0.9997 0.9997 96.659 3.632
(0.6, 0.4) 42.0 271.162 220.394 12 0.9997 0.9997 86.659 2.108
(0.7, 0.3) 63.0 184.191 77.689 4 0.9997 0.9997 11.156 0.001
(0.8, 0.2) 74.0 172.658 38.901 3 0.9997 0.9997 5.427 0.000
(0.9, 0.1) 71.0 163.115 43.014 3 0.9997 0.9997 5.427 0.000

(p1, p2) = (120, 80). We assume the following values for the parameters: ν = 15,

b = 10, F l ∼ U [0, 150] and F h ∼ U [0, 150]. The demand rates are given as follows:

In primary market we have λl
1 = 10(1 − p1

150
), λh

1 = 50(1 − p1

150
) and in secondary

market we have λl
2 = 10(1 − p2

150
), λh

2 = 50(1 − p2

150
). We vary the market state

probabilities in steps of 0.1 from 0.1 to 0.9. Performing the optimization we obtain

the results as shown in Table 3.12 and 3.13. The optimization results provide us

with useful observations:

• The optimal order quantity decreases as θl increases. Depending on the real-

ized state of the market, the retailer may benefit from secondary market sales

entirely or prefer to sell in both the markets.

• The supplier’s optimal expected profits are decreasing in θl. The retailer’s

optimal expected profits do not exhibit monotonic behavior.
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Table 3.13: BB Contract - Results under different Market State Probabilities for
(120, 80)

(θl, θh) w∗ π∗sup π∗ret Q∗ β∗l β∗h RetRev∗l RetRev∗h

(0.1, 0.9) 43 609.868 612.189 23 0.0003 0.0003 183.342 17.554
(0.2, 0.8) 82 527.101 155.629 8 0.0003 0.9126 34.173 2.581
(0.3, 0.7) 81 453.477 119.380 7 0.0003 0.9258 25.182 1.384
(0.4, 0.6) 73 395.097 132.148 7 0.0003 0.9258 25.182 1.384
(0.5, 0.5) 73 339.132 96.704 6 0.0003 0.9358 17.089 0.646
(0.6, 0.4) 64 283.488 115.844 6 0.0003 0.9358 17.089 0.646
(0.7, 0.3) 64 237.681 88.036 5 0.0003 0.9440 10.345 0.256
(0.8, 0.2) 57 201.672 96.226 5 0.0003 0.9440 10.345 0.256
(0.9, 0.1) 49 160.664 109.417 5 0.0003 0.9440 10.345 0.256

3.7.5 Optimal Decisions under MM Contract

In the first experiment to study the effect of profit margin on optimal solutions,

consider the following values for the parameters: ν = 15, θl = 0.1, θh = 0.9,

Fl ∼ U [0, 150], Fh ∼ U [0, 150] and price path as (p1, p2) = (100, 60). The demand

rates are: In primary market we have λl
1 = 10

3
, λh

1 = 50
3

and in secondary market we

have λl
2 = 6, λh

2 = 30. Performing the optimization for different profit margins, g,

varying from 0 till 1.2, we obtain the results as shown in Table 3.14.

Table 3.14: MM Contract - Results for different Profit Margins with (p1, p2) =
(100, 60)

g w∗ π∗sup π∗ret Q∗ β∗l β∗h RebRev∗l RebRev∗h

0.0 78.0 800.291 174.441 13 0.0003 0.9026 107.862 8.803
0.2 77.0 809.904 209.683 15 0.0003 0.7016 194.314 111.850
0.4 61.5 660.209 429.708 17 0.0003 0.7041 156.549 127.373
0.6 50.0 531.169 595.364 18 0.0003 0.7292 124.760 105.950
0.8 42.5 430.367 719.663 19 0.0003 0.7367 98.969 91.374
1.2 33.0 284.706 881.677 20 0.0003 0.7405 75.576 75.263
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From the results of the optimization we observe that:

• For g > 0, note that the optimal timing is decreasing as g increases. This is

intuitive as the retailer is assured of a higher profit margin level and hence

can be more aggressive in pricing thus delaying the discount. The situation

of g = 0 is peculiar in that the retailer asks for guarantee of selling up to

w, which is the purchase price for the retailer. It can represent any one of

the three possibilities: (a) When p2 ≤ p1 ≤ w, it can represent an unrealistic

situation as the retailer is acting like an extension of the supplier and does

not earn any profit; (b) When w < p2 ≤ p1, it represents a situation exactly

like a WP contract; (c) When we have p2 ≤ w < p1, it represents a situation

corresponding to part (ii) of corollary 3. For the given parameter values, we

see that here with g = 0, case (c) is applicable. Thus calculating p1λ1 − wλ2

we see that this expression is negative (for low state it is −80
3

and for high

state it is −400
3

) and hence β∗ ∈ [0, 1].

• The supplier’s optimal expected profits decrease monotonically in profit mar-

gin. On the contrary, the retailer’s profits increase with a higher profit mar-

gin. This is because the MM contract naturally favors the retailer compared

to other contracts. Also note that the total supply chain profits increase with

higher profit margin.

In the second experiment we assume the following values for the parameters: ν = 15,

g = 0.4, F l ∼ U [0, 150] and F h ∼ U [0, 150]. Based on the surveys of retailing

industry for previous years we felt 0.4 represents a reasonable value. The demand
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arrival rates are given as follows: In primary market we have λl
1 = 10(1 − p1

150
),

λh
1 = 50(1− p1

150
) and in secondary market we have λl

2 = 10(1− p2

150
), λh

2 = 50(1− p2

150
).

Tables 3.15 and 3.16 show the results of optimization with state probabilities as

(0.1, 0.9) and (0.7, 0.3) respectively. In general, we note the following results:

• The optimal order quantity decreases with increasing wholesale price until a

cutoff wholesale price as illustrated in Figure 3.6. Beyond this cutoff whole-

sale price, the optimal order quantity increases with increasing wholesale price.

This is vastly different behavior compared to other two contracts. At suffi-

ciently high wholesale prices, the retailer is assured of revenue up to guaranteed

profit margin level and hence would like to order enough to meet the maximum

possible demand that can occur at the given prices.

• Unlike the other two contracts, the retailer’s optimal expected profits is quasi-

convex (only a conjecture) in the wholesale price as shown in Figure 3.7.

Retailer’s profits drop until a cutoff wholesale price but beyond which since

the retailer orders higher quantity, the profit increases.

• The supplier’s expected profit, πsup is not concave in w as shown in Figure

3.7. Notice how the supplier’s profit drops rapidly beyond a cutoff wholesale

price. This is because the retailer can meet (almost surely) entire demand in

the secondary market and take rebates straightaway as this falls under “rebate

in two markets” situation.

In the third experiment, we varied the discounted price keeping other parameters

the same as second experiment and the results are shown in Tables 3.15 and 3.16.
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Table 3.15: MM Contract - Results for different Price Paths with (θl, θh) = (0.1, 0.9)

(p1, p2) w∗ π∗sup π∗ret Q∗ β∗l β∗h RebRev∗l RebRev∗h

(100, 80) 67.0 755.826 337.528 19 0.0003 0.0216 64.380 250.818
(100, 60) 61.5 660.209 429.708 17 0.0003 0.7041 156.549 127.373
(100, 40) 57 547.723 512.580 18 0.0003 0.7549 291.761 199.001
(100, 20) 52 429.145 597.779 18 0.0003 0.8200 457.313 212.360

(120, 100) 78 711.335 264.277 13 0.0003 0.0003 30.657 116.221
(120, 80) 70 738.980 352.687 19 0.0003 0.0153 83.974 330.692
(120, 60) 64 559.323 430.245 25 0.0003 0.0141 177.544 719.914
(120, 40) 57 340.250 495.162 13 0.0003 0.7674 290.463 196.357

We observe that:

• The effect of higher discounting on the optimal timing is complex; there is no

monotonic behavior.

• The retailer’s optimal expected profit shows quasi-convex behavior with a drop

in the discounted price. The supplier’s optimal expected profit shows quasi-

concavity in the discounted price.

The goal of the fourth experiment is to study the effect of parameters of the WTP

distribution on the optimal solutions. We consider price path of (p1, p2) = (100, 60)

with the following parameters: ν = 15, g = 0.4, θl = 0.1, θh = 0.9, λl = λh = 30

and F l, F h ∼ U [0, 150], U [0, 200], U [0, 300]. The demand rates for state s are given

by λs
1 = 30F

s
(p1) and λs

2 = 30F
s
(p2). Performing the optimization we obtain the

results as shown in Table 3.17.

• We observe that the optimal timing is monotonically non-decreasing in the
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Table 3.16: MM Contract - Results for different Price Paths with (θl, θh) = (0.7, 0.3)

(p1, p2) w∗ π∗sup π∗ret Q∗ β∗l β∗h RebRev∗l RebRev∗h

(100, 80) 46 186.000 144.297 6 0.0003 0.9721 0.000 0.000
(100, 60) 65 190.713 110.770 6 0.0003 0.9026 156.080 0.104
(100, 40) 42 152.603 173.812 9 0.0003 0.9740 129.024 0.269
(100, 20) 27 143.959 262.992 12 0.9997 0.9997 0.048 0.023

(120, 100) 65 200.000 85.451 4 0.0003 0.9008 0.000 0.000
(120, 80) 69 223.551 102.080 5 0.0003 0.8876 65.816 1.258
(120, 60) 52 209.378 157.383 7 0.0003 0.9245 69.486 3.273
(120, 40) 54 142.597 190.246 8 0.0003 0.9064 233.110 20.752

upper limit of the WTP distribution. This occurs because the probability of

high-price paying customers increases.

• The supplier’s and retailer’s optimal expected profits are non-decreasing in

the upper limit of the WTP distribution.

• This analysis tells us that both the supplier and the retailer prefer markets

which have higher variance as it leads to more profits.

In the fifth experiment the goal is to understand the effect of different θl and θh

for two price paths in primary and secondary markets: (p1, p2) = (100, 60) and

(p1, p2) = (120, 80). For both price paths we assume the following values for the

parameters: ν = 15, g = 0.4, Fl ∼ U [0, 150] and Fh ∼ U [0, 150]. The demand rates

are given as follows: In primary market we have λl
1 = 10(1− p1

150
), λh

1 = 50(1− p1

150
)

and in secondary market we have λl
2 = 10(1 − p2

150
), λh

2 = 50(1 − p2

150
). We vary the

market state probabilities in steps of 0.1 from 0.1 to 0.9. Performing the optimization
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Table 3.17: MM Contract - Results for different WTP distribution parameters

(Fl, Fh) w∗ π∗sup π∗ret Q∗ β∗l β∗h RebRev∗l RebRev∗h

U [0, 150],
U [0, 150]

58 390.610 322.239 11 0.6509 0.6509 82.390 82.390

U [0, 150],
U [0, 200]

62 578.181 424.771 14 0.1043 0.8006 334.278 51.546

U [0, 150],
U [0, 300]

65 816.113 518.470 18 0.0003 0.8707 505.639 37.023

U [0, 200],
U [0, 150]

59 398.710 328.995 12 0.9114 0.5025 9.049 142.650

U [0, 300],
U [0, 150]

58 403.405 337.183 13 0.9997 0.4067 0.006 172.883

we obtain the results as shown in Table 3.18 and 3.19.

Table 3.18: MM Contract - Results under different Market State Probabilities for
(100, 60)

(θl, θh) w∗ π∗sup π∗ret Q∗ β∗l β∗h RetRev∗l RetRev∗h

(0.1, 0.9) 61.5 660.209 429.708 17 0.0003 0.7041 156.549 127.373
(0.2, 0.8) 66.0 643.203 285.116 16 0.0003 0.6421 194.331 167.414
(0.3, 0.7) 63.0 554.680 232.476 13 0.0003 0.8306 168.984 26.607
(0.4, 0.6) 51.0 438.553 267.745 13 0.0003 0.9358 68.313 3.536
(0.5, 0.5) 42.0 351.000 265.716 13 0.0003 0.9834 0.000 0.000
(0.6, 0.4) 39.0 264.000 221.208 11 0.0003 0.9865 0.000 0.000
(0.7, 0.3) 65.0 190.713 110.770 6 0.0003 0.9026 156.080 0.104
(0.8, 0.2) 56.0 148.578 101.890 5 0.1556 0.9540 70.526 0.007
(0.9, 0.1) 54.0 134.549 96.053 4 0.5802 0.9634 23.835 0.001

The optimization results provide us with useful observations:

• The optimal timing is not monotonic in the probability of the lower market

state. This is evident when one observes the β∗h for different θl.

• The supplier’s optimal expected profits are monotonically non-increasing as
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Table 3.19: MM Contract - Results under different Market State Probabilities for
(120, 80)

(θl, θh) w∗ π∗sup π∗ret Q∗ β∗l β∗h RetRev∗l RetRev∗h

(0.1, 0.9) 70.0 738.980 352.687 19 0.0003 0.0153 83.974 330.692
(0.2, 0.8) 77.0 661.611 242.937 17 0.0003 0.0316 129.693 458.063
(0.3, 0.7) 82.0 442.101 163.795 8 0.0003 0.6547 159.457 65.803
(0.4, 0.6) 63.0 365.168 207.664 8 0.0003 0.8657 37.573 5.432
(0.5, 0.5) 61.0 309.076 172.513 7 0.0003 0.8957 24.199 1.648
(0.6, 0.4) 62.0 264.106 135.193 6 0.0003 0.9058 29.175 0.971
(0.7, 0.3) 69.0 223.551 102.080 5 0.0003 0.8876 65.816 1.258
(0.8, 0.2) 54.0 195.000 102.901 5 0.0003 0.9352 0.000 0.000
(0.9, 0.1) 65.0 165.667 71.788 4 0.0003 0.9164 38.124 0.217

the lower market state is more probable. The retailer’s optimal expected

profits do not exhibit monotonic behavior.

• This analysis tells us that the supplier prefers higher market states where as

the retailer’s preference is not trivially obvious.

3.7.6 Discussion of Optimal Decisions across Contracts

In this section we discuss the decisions across WP, BB and MM contracts

when both the retailer and supplier make optimal choices. We will consider the

following numerical experiment for this discussion. Consider the first sequence of

prices in the corresponding markets: (100, 80), (100, 60), (100, 40) and (100, 20). We

assume the following values for other parameters: θl = 0.7, θl = 0.3, b = 10, g = 0.4

and demand rates for effective Poisson process are as follows: λl
1 = 10

3
, λh

1 = 50
3
,

λl
2 = 1

15
(150− p2) and λh

2 = 1
3
(150− p2).
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Timing of Transfer to Secondary Market: This is illustrated in Figures 3.8 and 3.9.

When we compare the optimal timing of transfer to secondary market across different

contracts for same price path, we see that the relation between the optimal timing

across the three contracts, as discussed in Propositions 4 through 6, holds true even

when all the parties involved make optimal ordering decisions. This observation

tells us BB contract gives the product a longer exposure in the primary market.

Order Quantity: Referring to Figures 3.10 through 3.13, when we compare the

optimal order quantities for BB and WP contract under the same price path we

note that the retailer orders slightly higher or same amount for BB contract. When

we compare MM and WP contract, we notice that the order quantities are equal

or higher under a MM contract. There is no apparent relation between the order

quantities under BB and MM contract.

Retailer’s Expected Profit: As shown in Figure 3.14, comparing the retailer’s opti-

mal expected profits for BB and WP contracts, we see that a BB contract need not

be beneficial to the retailer. However, the retailer’s profits under MM contract are

at least as high as WP contract.

Supplier’s Expected Profit: Contrary to expectation, we notice from Figure 3.15

that the supplier is better off in terms of profits for a BB contract when compared to

a WP contract. This happens because the supplier has the first-mover advantage and

thus can negate the buyback credit requested by the retailer by choosing an optimal

wholesale price. When we compare the MM and the WP contracts, we see that the

88



relation is not obvious as the supplier can earn lower or higher profits under the MM

contract depending on the profit margin requested. Again, the relation between the

optimal profits of the supplier under BB and MM contract is not straightforward.

Total Supply Chain Profit: We compare the total supply chain profits across dif-

ferent contracts as shown in Table 3.20. In general, we observe that the total supply

chain profits between the BB and the WP contracts remain more or less similar.

Another important observation is that for a certain range of buyback credit values,

the total supply chain profit remains constant but it gets re-distributed differently

between the retailer and the supplier. On the other hand, in general, MM contract

performs better in terms of supply chain profits. Notice that the profits are higher

in a MM contract compared to the BB or the WP contract.

Table 3.20: Comparison of Supply Chain Profits under different Contracts with
(θl, θh) = (0.1, 0.9)

Price Path Contract Parameter Supply Chain Profits π∗sup π∗ret

(100, 60) WP − 978.373 793.000 185.373
(100, 60) BB b = 25.0 975.594 838.663 136.931
(100, 60) BB b = 20.0 975.595 832.131 143.464
(100, 60) BB b = 10.0 975.594 812.565 163.029
(100, 60) BB b = 5.0 978.341 807.441 170.900
(100, 60) BB b = 0.0 978.373 793.000 185.373
(100, 60) MM g = 0.4 1089.917 660.209 429.708
(100, 60) MM g = 0.6 1126.533 531.169 595.364
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3.7.7 Preferences of Supplier and Retailer for High Risk Markets

To analyze the preferences of the supplier and the retailer under different con-

tracts towards products with potential higher demand or lower demand, we compare

the preference of the supplier and the retailer under different low state probabilities.

Recall that the general state of the market is unknown at the time of the ordering

decision. This reflects the notion that both the suppliers and the retailers are un-

certain whether the product (e.g., new designer shirt, new music player) that will be

launched during the season turns out to be very popular or be a flop. The popular

product resembles the high demand state and on the other hand the flop item is

equivalent to the low demand state. Thus, when we vary the occurrence of the low

state probabilities under different contracts we can see which state is preferred by

the supplier and the retailer. With different contracts, consider the following prices

in the corresponding markets: (100, 60). We assume the following values for other

parameters: ν = 15, b = 10, g = 0.4 and demand rates for an effective Poisson

process are as follows: λl
1 = 10

3
, λh

1 = 50
3
, λl

2 = 6 and λh
2 = 30. This is illustrated in

Figure 3.16. Comparing the profits we observe that:

• In general, the supplier’s and the retailer’s profits decreases when the low state

is more likely to occur. This means that both the retailer and the supplier

would like to see the product be a popular item under any contract.

• When we observe the retailer’s behavior we notice that they prefer MM con-

tract when the low state is more probable. That is, when the product is likely

to be a flop, the retailer would like to utilize the better risk-sharing mechanism,
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which is the MM contract.

• Observing the supplier’s behavior, we notice that they prefer BB contract un-

der all low state probabilities. This looks counter-intuitive since WP contract

does not offer any risk sharing mechanism but is still not preferred. This

happens because we observed that BB contract is not an effective risk-sharing

mechanism for the retailer, since retailer’s profits are adversely affected as

shown in Table 3.20.

3.8. Conclusions

In this essay, we develop a model to study the effect of contract types on a

retailer’s use of primary and secondary markets to sell his product. Specifically, we

discuss the implications of WP, BB and MM on the optimal timing of transfer of

goods from the primary to the secondary market and the optimal order quantity.

We also discuss the effect of these contracts on the supplier and on the supply chain

performance as a whole. We show that for a given order quantity, the time to trans-

fer the goods from the primary market to the secondary market varies depending

on the contract type - BB contract transfers later and MM contract transfers ear-

lier compared to a WP contract. Considering the optimal order quantities for the

retailer, the retailer places the highest amount of orders under the MM contract.

While this is advantageous for the supplier, increasing his own sales, it also poses

challenges because the potential for paybacks from the suppliers to the retailer are

also higher when the order quantity is high. In general, the retailer benefits more
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from the MM contract but there can also be a win-win situation for both parties in

the supply chain under MM. On the other hand, the retailer’s order quantities are

marginally higher in BB contract when compared to WP contract. The retailer’s

profits under BB contract can be lower compared to WP contract while the supplier

is always better-off compared to WP contract.
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Figure 3.2: Optimal Order Quantity vs. Wholesale Price for WP contract

Supplier & Retailer's Optimal Expected Profit vs. W for WP Contract
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Optimal Order Quantity vs. Wholesale Price for BB contract
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Figure 3.4: Optimal Order Quantity vs. Wholesale Price for BB contract

Supplier & Retailer's Optimal Expected Profit vs. W for BB Contract
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Optimal Order Quantity vs. Wholesale Price for MM contract
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Figure 3.6: Optimal Order Quantity vs. Wholesale Price for MM contract

Supplier & Retailer's Optimal Expected Profit vs. W for MM Contract
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Figure 3.7: Supplier and Optimal Retailer Expected Profit vs. Wholesale Price for
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Figure 3.11: Optimal Order Quantity for (p1, p2) = (100, 60) for Different Contracts

96



Optimal Order Quantity for Different Contracts
L
=0.7,

H
=0.3, b=10, g=0.4 

and 1
L
=10/3, 1

H
=50/3, 2

L
 =22/3, 2

H
 =110/3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

WP BB MM

O
p

ti
m

a
l 
O

rd
e
r 

Q
u

a
n

ti
ty

Q*: P2=40

Figure 3.12: Optimal Order Quantity for (p1, p2) = (100, 40) for Different Contracts

Optimal Order Quantity for Different Contracts
L
=0.7,

H
=0.3, b=10, g=0.4 

and 1
L
=10/3, 1

H
=50/3, 2

L
 =26/3, 2

H
 =130/3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

WP BB MM

O
p

ti
m

a
l 
O

rd
e
r 

Q
u

a
n

ti
ty

Q*: P2=20

Figure 3.13: Optimal Order Quantity for (p1, p2) = (100, 20) for Different Contracts

97



Retailer Expected Profit for Different Contracts
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Figure 3.14: Optimal Retailer Expected Profits for Different Contracts
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Supplier and Retailer Expected Profit for Different Contracts
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Chapter 4

Essay 3: Humanitarian Vehicle Routing Problem: Uncapacitated

Case

4.1. Introduction

Rapid urbanization coupled with environmental degradation and the spread

of HIV/AIDS is unfortunately, expected to increase the scope of man-made and

natural disaster relief five-fold in the next 50 years (Thomas & Kopczak (2005)).

Complex operational challenges in humanitarian logistics came to the forefront when

an earthquake and resulting tsunami crippled South Asia on December 26, 2004

(Russell (2005), Fritz Institute (2006)). The entire world mobilized to donate $13

billion (Thomas & Fritz (2006)), but according to Doctors without Borders, “. . . we

have already received as much money as we can spend. . .What is needed are supply

managers without borders: people to sort goods, identify priorities, track deliveries

and direct the traffic of a relief effort in full gear” (Economist (Jan 2005)). In the

aftermath of the tsunami, Sri Lanka struggled to manage the large number of cargo-

laden humanitarian flights and distribution of relief goods to warehouses; in India,

the transportation pipelines were clogged; in Indonesia, the damaged infrastructure

with excessive assistance created unforeseen logistical challenges in the context of

humanitarian relief operations. These challenges are not limited to natural disasters
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like the tsunami in 2004 or hurricane Katrina in 2005. Relief agencies encounter

similar and additional challenges in military environments like civil conflicts, war-

zones, and terrorist attacks.

Compared to well-studied business logistics, humanitarian logistics presents

unanswered challenges in terms of movement of relief goods like food, bedding and

shelter, medical care, and clothes (Sheu (2007a), Kovács & Spens (2007)). The chal-

lenges are magnified when the humanitarian relief operations need to maintain neu-

trality and impartiality (Tomasini & van Wassenhove (2009)). The business supply

chain and humanitarian relief chain differ in aspects like revenue sources (e.g., invest-

ments vs. philanthropic donations), goals (e.g., profit vs. loss of life), stakeholders

(e.g., businesses vs. Non-Government Organizations), performance measurements

(e.g., financial metrics vs. social welfare), demand characteristics (e.g., erratic in

disasters), and customer characteristics (e.g., no competing brands in disasters).

The goal of a business supply chain is to maximize profit; for humanitarian relief

chains, the goal is to maximize timely delivery in order to minimize the loss of life.

A typical humanitarian relief chain consists of a primary supply hub such as a port

of entry, a central warehouse (or a secondary hub), and local distribution centers

(Balcik et al. (2008)). Finally, the relief goods are distributed to people in need (or

demand points) from the distribution centers. This last stage is commonly known

as the “Last Mile Distribution” in humanitarian logistics, and this is the main focus

of our research.

This research aims to design delivery routes for the distribution of relief goods

that meet the ultimate humanitarian goal of mitigating human loss in a timely man-
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ner and that are efficient on performance metrics relevant with respect to humani-

tarian relief operations. Davidson (2006) identifies multiple performance metrics for

humanitarian relief operations but for this work, we focus on two applicable mea-

sures - distance and response time. Traditional or non-humanitarian vehicle routing

models do not capture these metrics very well and, thus, perform at a poor level

on these metrics. One of the key principles identified in the manual, prepared by

Emergency Preparedness and Disaster Relief Program of PAHO1, for the distribu-

tion phase is that not all victims are the same and the delivery of assistance must

be proportionate and equitable (Cuadra (2001)). Towards this end, we consider the

node priorities, a proxy for urgency of locations along with other humanitarian needs

and develop mathematical models for designing efficient delivery routes. The scope

of this work is not only limited to addressing the operational challenges of relief op-

erations due to natural disasters, but also has other applications in situations that

gives primary importance to social welfare with customers at varying urgency levels.

For example, medical agencies encounter similar challenges when they have to de-

liver vaccines to people in distress during disease outbreaks. If a vaccine is available

for Swine influenza or other types of Avian influenza, then the agencies would need

to dispatch the vaccine with minimal loss of life but in an efficient manner.

As mentioned above, one of the key components of the humanitarian relief

chain is the delivery of aid to the recipients. In this research, we are concerned

with the delivery of relief goods from a distribution center to the people in need

as efficiently as possible with the ultimate objective of minimizing the loss of life.

1Pan American Health Organization
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In this work, we consider distribution of a single product using a single vehicle

with unlimited capacity and no route length restrictions. One can imagine such a

situation when the entire network’s demand can be serviced by a single vehicle in one

particular day. Campbell et al. (2008) consider such a problem but without taking

into account the urgencies for the nodes. This research is (we think) the first of its

kind pertaining to humanitarian relief routing, as we address the issue of priorities

for locations along with the humanitarian demands. The combination of priorities

for locations in a vehicle routing problem poses interesting research questions: (1)

How do we simultaneously capture performance metrics like distance and response

time in our models? (2) How much is the route altered when the priority restrictions

are strict? (3) Is there a way to model relaxed forms of the priority restrictions? If

we can incorporate the relaxations, then our models can provide a lot of flexibility

to the decision maker in terms of handling political and social issues. We plan to

answer these research questions by developing mathematical models that produce

optimal results for small to mid-size problems. It should be noted that to evaluate

the performance of a humanitarian relief operation, one needs not a single, but

multiple metrics (Beamon & Balcik (2008)). As the vehicle does not have capacity

restrictions, and based on humanitarian literature, in our work, we plan to compare

routes using the following metrics: (i) Distance, (ii) Response Time (Earliest, Latest,

Average). Also, we compare our models to VRP models without priorities used in

Campbell et al. (2008).

One important contribution of this research work to the literature is that

we consider the effect of priorities on vehicle routing problems in the context of
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humanitarian relief operations. To the best of our knowledge, previous work in

humanitarian relief operations does not address the issue of priorities for the effi-

cient distribution of relief goods using a mixed integer program (MIP). Not only

is humanitarian logistics an emerging area of research, but it is of high practical

importance as evidenced by natural disasters such as hurricane Katrina and the

tsunami in South Asia in 2004, discussed earlier. Non-Governmental Organizations

and non-profit organizations receive billions of dollars in donations every year, but

lack a sophisticated system to handle their complex logistics operations; the absence

of expertly-designed systems is one of the significant reasons why there has been such

a weak link in the distribution of relief aid. Thus, this work is of significant value

to both researchers and practitioners as it strives to improve the delivery of relief

aid with the ultimate goal of saving lives.

4.2. Setup

To answer our research questions, we adopt the following framework for the

vehicle routing problem. Customers are represented as nodes and a depot is denoted

by node 1. Apart from the humanitarian needs, we assume that the nodes have

priorities. It should be mentioned that priorities or variants have been used in

the literature (see Section 4.3) in a variety of applications. Priorities are proxies

for urgencies at each location. This is illustrated in Figure 4.1 for different relief

situations with three priority classes. The relief situation can be to deal with a

natural disaster such as a tsunami, earthquake, hurricane, or flood. Also, it can
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arise when agencies have to deliver vaccines in case of a disease outbreak. Priorities

are a natural representation of how urgent the situation is, due to a disaster or how

badly people are affected. For example, certain locations urgently need life-saving

drugs, while other locations, that need precautionary drugs, can be considered less

urgent. The needs at higher priority nodes have to be satisfied before the vehicle

can visit the lower priority nodes. Without loss of generality, we assume that lower

numbers represent locations with higher priorities. That is, a node with priority 1

needs to be served before we proceed to serve nodes with priority 2. The key rule

in our models that is not present in traditional routing models is the d−Relaxed

Priority Rule. We plan to develop MIPs for the d−Relaxed Priority Rule for single

vehicle and solve the networks to optimality. Before we discuss this rule further, let

us take a closer look at the definition for node priorities.

4.2.1 Definition of Node Priorities

The definition of priority for node i, pi can vary based on different social,

political criteria set by decision makers in conjunction with on-the-ground realities.

We briefly discuss this aspect to highlight the underlying issues. In a simple assign-

ment, it can be just an ordinal number based on the urgency for the node. Without

loss of generality, we can assume lower urgency values (for e.g., ui for node i can

be probability of node survival) represent nodes that require immediate response

(thus, we can assign the depot an urgency of 0). Priority can also be based on a

combination of distance and urgency; this second definition can result in substantial
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Figure 4.1: Illustration of Urgencies and Priorities for Disasters

distance savings, as it can affect how the vehicle trades off distance for priority. In

most situations, a certain set of nodes with urgencies lying between a lower limit of

urgency, uk
l , and an upper limit of urgency, uk

h, can be considered to be of the same

priority, k, as illustrated in Figure 4.1. In such a case we can define the following:

pi = k if uk
l ≤ ui ≤ uk

h where k = 1, 2, 3, . . . , pmax. One can define as many clusters

(pmax) as needed by the decision maker. Note that, in this definition, we assume

that a node cannot be assigned two priorities. In this research, we do not focus

on how to devise priorities but rather on the routing problem with priorities. We

believe that the assignment of priorities is better handled at a planning level, rather

than at an operational level.
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4.2.2 d−Relaxed Priority Rule

This rule depending on the relaxation, balances the trade-off between opera-

tional efficiency and meeting humanitarian goals. In general, the d−Relaxed Priority

Rule means that the vehicle can satisfy demand at a node with priority, d lower than

a higher priority node before it satisfies all higher priority nodes. One can think

of d as the degree of relaxation. To illustrate this rule, let us consider a special

variant of this rule called the 0−Relaxed Priority Rule where, d = 0 represents the

hardest version of priority restrictions. Here, all the higher priority nodes must be

satisfied before the vehicle can proceed to satisfy any lower priority node. To explain

further, let us say, a vehicle starts servicing nodes with priority p and on its way it

encounters a node with priority p + 1. According to this 0−Relaxed Priority Rule,

the vehicle will have to come back later to satisfy the node with priority p + 1. The

vehicle first finishes servicing all nodes with priority p before proceeding to nodes

with priority p + 1. If we had the 1−Relaxed Priority Rule, then a vehicle servicing

nodes with priority p can satisfy nodes with priority p+1, even if it has not finished

servicing all nodes with priority p. However, the vehicle cannot service nodes with

priority greater than p + 1 until it finishes servicing all nodes of priority p.

Figure 4.2 illustrates the optimal routes under different relaxations for a 21-

node network. It represents a relief operation with a single vehicle of unlimited

capacity. As expected, we can see from the figure that the optimal distance decreases

with higher d values. In the case of d = 2, one can notice that the vehicle does not

observe any priorities. Thus, we can consider the traditional vehicle routing problem
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or the problem without any priorities as a problem with the d−Relaxed Priority Rule

with highest d value (which is one less than the total number of priority classes,

pmax − 1). With higher d values, though distance decreases, the service times for

different priority nodes are not equitably distributed. For example, the latest service

time for priority 1 nodes, which are the nodes requiring urgent response, goes up

from 10.85 to 12.42 to 14.22 for d = 0, 1, and 2, respectively. On the other hand,

the latest service time for priority 3 nodes, which are not so urgent, goes down from

28.57 to 21.56 to 16.27 for d = 0, 1, and 2, respectively. Delaying rescue response

to priority 1 nodes, for example, could be fatal and thus, the decision maker needs

to effectively devise efficient and timely routes. Hence, we believe that this form of

modeling is unique to humanitarian relief operations and has not been addressed in

the existing vehicle routing literature.

Apart from this key restriction, we make assumptions that are typical to unca-

pacitated vehicle routing problems. For the sake of completeness, we write down all

the assumptions: (i) the depot is designated as node 1 with a service time of 0. Ve-

hicle(s) can leave and return to the depot at most once after servicing the nodes. (ii)

Customers are designated as nodes {2, . . . , n}. Each node can be serviced at most

by one vehicle. (iii) Vehicle does not have capacity restrictions. (iv) Vehicles does

not have any route-length restriction (in terms of distance traversed) due to fuel,

working hours, etc. (v) All vehicle routes will have to obey the d−Relaxed Priority

Rule. There can be two types of underlying networks that we consider: (a) Basic

(in the form of trees). This can occur in rural areas where there is no complex road

network or when most road links are temporarily destroyed or deemed dangerous for
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Figure 4.2: Illustration of the d-Relaxed Priority Rule

relief operations; (b) Sophisticated Networks (generic graphs). This occurs in most

urban areas or when the road network is largely intact after disaster. In general,

for this research, we assume type (b) – general undirected graphs. However, note
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that the vehicle will always use the shortest path of distance when servicing nodes of

priorities satisfying the d−Relaxed Priority Rule. As we are dealing with undirected

graphs with non-negative costs, we use the Floyd-Warshall algorithm to calculate

the shortest path and corresponding distances and travel times between any pair of

nodes i and j. As a result, we transform the original graph into a complete graph

with edge costs as shortest path distances between the nodes in the original graph.

Henceforth, we will use the complete graph for our MIP formulations.

The outline for the paper is as follows. In Section 4.3 we discuss the relevant

literature. In Section 4.4, we develop mathematical models with different objectives

using Mixed Integer Programming (MIP) techniques, derive bounds for VRP with

d−Relaxed Priority Rule and conduct worst-case analysis. In this research, we

use a small set of test problems and compare our models with methods from the

literature with respect to the performance metrics discussed. Computational Study

is discussed in Section 4.5 and finally we present conclusions in Section 4.6.

4.3. Literature Review

Though there is a large literature associated with the standard non-humanitarian

vehicle routing problem, the field of humanitarian relief operations has received wide-

spread recognition after the Southeast tsunami in 2004. In this section, we discuss

the literature associated with humanitarian relief logistics and variants of vehicle

routing problems relevant for humanitarian relief situations. Finally we end the

section with a summary of our contribution to the VRP literature.
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Several applications pertaining to service and military operations have dis-

cussed concept of separating the customers or ranking the targets, in a similar vein

to the concept of priorities that was introduced in Section 4.2. Shetty et al. (2008)

introduce ‘value’ for a target in a military setting. The objective is to design a route

for unmanned combat aerial vehicles such that it delivers maximum total weighted

payload. Payload delivered at each node is weighted by a ‘value’ for that node. This

approach does not work well for humanitarian relief operations as, a higher-valued

node can be substituted with a lower-valued node having an appropriately designed

payload. To illustrate, consider two nodes having values and payloads as (5, 10)

and (10, 5). This route is reasonable for military operations since both contribute

weighted payload of 50 but for humanitarian operations, one cannot ignore the fact

that second node is of higher importance.

In the context of service delivery, Schmitz & Niemann (2009) discuss a Trav-

eling Salesman Problem with Sequence Priorities (TSPwSP). The objective is to

minimize the cost of traveling but at the same time, the cities are to be serviced

strictly in an order. This order is dictated by the arrival time of the delivery requests

(that is, nodes 1, . . . , m correspond to 1, . . . , mth service delivery request). When

node i is visited at ai, a penalty of max(i− ai, 0) is calculated for node i. One issue

with this penalty function is that it can ignore the order if the total penalty value is

same. For example, if we had 3 nodes, then this penalty function cannot distinguish

between routes 2, 3, 1 and 3, 1, 2 as the total penalty is 2 but in the first route, a

priority 1 node is serviced last! If the order in service context is violated, the firm

incurs an additional cost but for humanitarian relief operations it can be fatal.
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Smith et al. (2010) discuss a dynamic vehicle routing problem in which there

are n vehicles and m priority classes of service demands. Customer requests for

service arrive randomly over time at different locations in Euclidean space and re-

quire a random amount of on-site service. Each customer request is assigned to

one of the m priority classes. The goal is to minimize the convex combination of

expected delay for each priority class. Under heavy-load conditions, they show that

ignoring priorities makes the expected delay unbounded. Since the vehicle provides

only service (no pick up or delivery), their work ignores the vehicle capacity restric-

tions. Compared to service industry, in most disasters, customers or victims cannot

communicate in real-time and put in a request for service. But notice that our idea

of priorities for demand is similar to the definition the authors used in their work.

Recently, concepts similar to priorities have been discussed in the context of

humanitarian relief operations. Chiu & Zheng (2007) develop a model that mini-

mizes total travel time for dynamically assigning response resources and evacuation

groups in the presence of multi-priority emergency response resources and evac-

uation groups. Example of multi-priority evacuation groups are elderly, patients

or nursing home residents, etc. Their work provides an another interpretation for

the concept of priorities. Sheu (2010) extended prior work in Sheu (2007b) to de-

velop a dynamic relief-demand management model for large-scale disasters. The

methodology consists of three recursive mechanisms (1) dynamic relief-demand fore-

casting (2)affected-area grouping, and (3) identification of area-based relief-demand

urgency. The first mechanism predicts relief-demand over time, the second mecha-

nism groups the affected areas through multi-criteria fuzzy clustering technique and
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the third mechanism associates urgency with each clustered affected area utilizing

multi-criteria decision-making methodology called TOPSIS (Technique For Order

Preference by Similarity to Ideal Situation). The author tests this methodology at

the massive Chichi earthquake, which occurred in central Taiwan on September 21,

1999 and concludes that the forecasted model performs satisfactorily. This paper

complements our work as it identifies distribution priorities for affected areas and

our work comes up different routing models for distribution that take into account

the priorities.

Next, let us look at the literature that specifically discuss vehicle routing

models for humanitarian relief operations. Yi & Kumar (2007) solve a variant of

simultaneous pickup-delivery problem, where the problem is to transport priori-

tized commodities to survivors and deliver health care services to injured people by

transporting them to emergency units. The goal is to design routes that minimize

the weighted sum of unsatisfied demand over all commodities and that of unserved

wounded people at demand nodes and emergency units. The authors propose an

ant colony optimization based heuristic that works in two phases: the vehicle routes

construction and the multi-commodity dispatch in disaster relief distribution. Bal-

cik et al. (2008) discuss the last mile distribution in humanitarian relief chain. The

objective is to minimize the total costs which is the unweighted sum of routing costs

and penalty costs over all days in the planning horizon for two types of products.

Type 1 has very large demand with backlogs allowed (e.g., tents, blankets). Type

2 represents demand for regularly consumed items and demand is lost if it is not

satisfied (e.g., food, hygiene kits). Penalty costs are linear in unmet demand and
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accumulate for lost or back-ordered demand. The problem is solved in two phases.

In Phase I, the authors develop all feasible demand combinations for each vehicle.

Then, the authors develop routes with minimum travel time (by solving a TSP)

for each of these demand combinations. In Phase-II, they determine which demand

locations to visit on any day and how much to allocate on each day at a demand lo-

cation. Though the authors consider two types of products over a planning horizon,

they do not take into account the priorities of nodes. Campbell et al. (2008) work

is most relevant to our work. They discuss routing for relief efforts using two types

of objective functions. In the first, they minimize the maximum arrival time at a

node. This means that nodes that are far away from the depot can be reached as

early as possible for service. However, this is not an appropriate objective function

to cater to networks with nodes of varying urgency levels, as nodes that are not

that far out do not affect the objective function. The focus is on a particular node

that is the farthest from the depot and this may not be the node that requires ur-

gent attention. In the second formulation, they minimize the average arrival time.

It is an aggregate measure, so when all nodes have more or less the same level of

urgency this will work well but there is no guarantee that all high-priority nodes

will be visited before low-priority nodes are visited. Jotshi et al. (2009) take an

integrated view for dispatching emergency vehicles in a disaster situation using data

fusion. Information on casualties and road and traffic conditions is combined to

dispatch emergency vehicles and deliver patients to appropriate hospitals. The au-

thors conduct a simulation study to minimize the service time for the aftermath of

an earthquake with a large number of casualties needing medical attention. The au-
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thors consider a pick-up and delivery problem with real-time information. However,

in most humanitarian relief operations, the decision maker has limited or uncertain

information from multiple sources. In Shen, Ordóñez & Dessouky (2009), the au-

thors discuss the stochastic vehicle routing problem. They develop routing model

for large-scale emergencies that minimizes unmet demand with uncertain demand

and travel time, with predefined service deadline and limited supply at the depot.

They formulate three models Deterministic Model, Chance-constrained Program

and Robust optimization to develop the preplanned vehicle routes and compare

the results. The authors extended the work to include planning stage and oper-

ational stage in Shen, Dessouky & Ordóñez (2009). In this two-stage approach,

the routes are developed in the planning stage and in the operational stage, using

a recourse strategy, the actual routes are decided with adjustments based on the

information revealed. Ngueveu et al. (2010) discuss cumulative capacitated vehicle

routing problem (CCVRP). In this problem, the objective is to minimize the sum of

arrival times at customers, instead of the traditional total length, subject to vehicle

capacity constraints. This type of objective assumes significance when importance

is attached to the satisfaction of customer need, e.g., supply of necessary goods or

rescue after a natural disaster. In this paper,the authors discuss upper and lower

bounding procedures for this new problem using memetic algorithm and properties

of the CCVRP. In Nolz et al. (2010) the authors discuss a covering tour problem

(CTP) where in the routes have to satisfy three criteria: (1) minimizes the sum of

distances between all members of a population and their nearest facility (2) a tour

length criterion and (3) minmax routing criterion that minimizes the latest arrival
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time at a population center point. The authors develop Pareto-optimal solutions

for this bi-objective CTP. Hentenryck et al. (2010) discuss the single commodity al-

location problem (SCAP) for disaster recovery. SCAPs are stochastic optimization

problems that combine resource allocation, warehouse routing, and parallel fleet

routing. The objective function aims at minimizing three factors (1) the amount

of unsatisfied demands (2) the time it takes to meet those demands (3) the cost of

storing the commodity. For the fleet routing, the objective is to minimize the latest

delivery time. They investigate the performance of a novel algorithm and validate

it on hurricane disaster scenarios generated by Los Alamos National Laboratory.

To summarize one can note that there is no unifying framework in the development

of routing models. However, one commonality among the articles is that typical

humanitarian routing model is multi-objective in terms of unmet demand, response

time and other performance measures. Thus, in this work, we focus on develop-

ment of routing models with different objectives and look at the performance of the

models in the humanitarian relief operations.

As can be observed, there are numerous challenges present in distribution of

humanitarian aid. There are many inherently conflicting objectives for humanitar-

ian relief operations, right from the procurement phase to deciding on the inventory

or supply levels at the distribution center. Sheu (2007a) mentions the various chal-

lenges in humanitarian logistics but specifically, discusses how crucial is the 3-day

period right after the occurrence of a disaster. This highlights the importance of

effectively utilizing the limited response period. Balcik & Beamon (2008) discuss

the importance of positioning of distribution centers in a relief network (facility
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decisions) and the amount of supplies to be stocked at each center (inventory deci-

sions) in case of a quick-onset disaster using a variant of maximal covering location

model. For this research, we assume that the distribution center location and in-

ventory level are given and thus we focus on the distribution or routing model for

relief operations.

Another stream of literature that is related to vehicle routing problem with

priorities is vehicle routing with time windows or precedence relations. Variants

of this problem have been extensively studied (e.g., Bräysy & Gendreau (2005a),

Bräysy & Gendreau (2005b)). There is a similarity among the vehicle routing prob-

lem with priorities, the vehicle routing problem with time windows, and the vehicle

routing problem with precedence constraints. In the case of humanitarian relief op-

erations, lack of information on road network conditions and the actual state of the

people in need do not make it viable for the customer to be assigned a time window.

The assignment of priorities is realistic as it is based on the effects of the disaster

that struck the region. Note that one can theoretically convert the network with

priorities into a network with suitable time windows, but this is a complex task as

we need to ensure that feasibility and optimality are maintained in the transformed

network. There is some level of similarity between our problem and TSP with Prece-

dence constraints. But, later in the paper, we show that our model is much more

powerful than a TSP with Precedence constraints.

To summarize, concept of priorities has been used in the context of service

operations, military operations and more recently in the humanitarian operations.

Compared to service or military operations, priorities assume primary importance
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in humanitarian relief operations since ignoring the priorities can be fatal to the

survival of a customer. Some have studied the vehicle routing models in the context

of humanitarian relief operations in conjunction with inventory allocation, and lo-

cation of distribution center problems. Few articles have studied the vehicle routing

problem but ignored the effect of node priorities. In this work, not only we study the

effect of priorities on the vehicle routing problem for humanitarian relief operations

but also propose a novel way (d-Relaxed Priority Rule) to model the relaxed form

for enforcement of priorities. This provides the decision maker with optimal solu-

tions that highlight the tradeoff between metrics like distance and response time.

Thus our work is of tremendous value to practitioners and we make a significant

contribution to the vehicle routing literature as it provides new variants for the VRP

community to study.

4.4. Single Uncapacitated VRP with Priorities (u-HVRP)

In this simplified version of the relief operations, we assume that the vehicle

has unlimited capacity, and no route-length restriction. Hence, all the nodes will

be visited. One can imagine such a situation when the entire network’s size and

total demand needs permit it to be serviced by a single vehicle in one particular

day. This model also serves as a base model for developing complex models with

capacity and other restrictions. Campbell et al. (2008) consider such a model in

their research work. Based on the literature we identify three possible objectives:

(1) Minimize Total Distance (2) Minimize the Latest Arrival Time (3) Minimize
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the Average Arrival Time. Corresponding to the three objectives, we develop three

different formulations: MinDist(d), MinMax, and MinSum respectively. In the first

formulation MinDist(d), we consider priorities for nodes and enforce with different

d-Relaxed Priority Rules. Campbell et al. (2008) consider MinMax and MinSum

objectives in their paper and to evaluate these objectives, we ignore priorities for

nodes and write down formulations MinMax and MinSum. This helps us compare

the optimal solution(s) of our formulation MinDist with the d−Relaxed Priority

Rule with the optimal solutions using MinMax and MinSum objectives.

We use u-HVRP (Uncapacitated Humanitarian Vehicle Routing Problem) to

denote this routing problem. In Section 4.4.1, we discuss the MIP formulations.

In Section 4.4.2 we derive the worst-case bounds for this routing problem, and in

Section 4.4.3, we illustrate the powerfulness and compactness of u-HVRP compared

to a variant of Asymmetric Traveling Salesman Problem (ATSP).

4.4.1 MIP Formulations

All the notation used in this work is defined in Appendix C.1. MIP formula-

tions for MinDist(d) and MinMax and MinSum are provided in Appendix C.2 and

C.3 respectively. The complete mathematical formulations are provided in appen-

dices but we discuss the key observations for the MIP formulations2.

There are a few observations that are worth-noting in these formulations.

Firstly, notice that for all of the formulations, we do not need to explicitly write

2In this paper, please note that we use different typeface to differentiate parameters or given
data and decision variables in the MIP formulations
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down demand constraints as the vehicle has no capacity restrictions. Secondly,

notice that all formulations do not have sub-tour elimination constraints. This is

because service time constraints, as described for each of the three formulations,

rule out the possibility of sub-tours in the optimal solution as shown in Proposition

1.

Proposition 1 Optimal solution(s) to formulation MinDist, MinMax, and MinSum

contain no sub-tours.

Proof See Appendix C.2.1. •

The proof for the proposition works on the idea that any sub-tour will always contain

the depot. Though these set of constraints are of O(n2), but it should be noted that

they are not facet-inducing. The main difference between MinMax, MinSum and

our MinDist(d) is the constraints corresponding to d−Relaxed Priority Rule that

take into account the node priorities. Intuitively, one can write these constraints as

si ≤ sj∀ i ∈ Np, j ∈ Np+d+1. However, when the triangle inequality holds true for

travel times between two nodes, we can strengthen these constraints, as shown in

Proposition 2.

Proposition 2 Constraints defined by equation (C.7), enforces the d-Relaxed Prior-

ity Rule without affecting the optimality of the route as long as the triangle inequality

holds true for travel time (Tij) between node i and j for all i, j ∈ N.

Proof See Appendix C.2.2. •

This proposition gives us tighter version of d−Relaxed Priority Rule constraints.
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Apart from the strengthening of these constraints, depending on the d level, one

can write few additional inequalities. These are illustrated in Appendix C.2.3. For

example, if d = 0, then vehicle can never travel from a lower priority node to

the higher priority node. Polyhedron defined by our MIP formulation is not full-

dimensional and some of the inequalities used to described are not facets. There is

a lot of literature (e.g., Miller et al. (1960), Desrochers & Laporte (1991), Gouveia

& Pires (1999), Sherali & Driscoll (2002)) that try to tighten the formulations by

developing facets or better bounds in similar problems, but, in this paper, we do

not delve in depth into improving the solution time for reaching optimality. We

stop our discussion of MIP formulations here, since the focus of our work is to

understand the formulation(s) that can handle the different performance metrics for

humanitarian relief operations. Further work is needed to strengthen and improve

the MIP formulation for this new variant of routing problem.

Intuitively, we can see that the MinMax and MinSum objectives fail to give us a

reasonable distribution of service times for nodes. These do not consider the relative

differences in urgencies of nodes; they only focus on a particular node (MinMax)

or assign the same level of urgency to all nodes (MinSum). On the contrary, the

d-Relaxed Priority Rule should capture the trade-off between the two performance

metrics: distance and response times in a reasonable manner as it considers the

urgencies of the nodes. In the next section, we study the distance traveled in the

worst-case using MinDist(d) formulation.
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4.4.2 Bounds and Worst-case Examples for u-HVRP

In this section, we discuss the bounds for u-HVRP with MinDist(d) formu-

lation and show that the bound is tight as it is attainable in a the worst-case

situation. Let Z∗
d,P be the total distance traversed in the optimal tour by the vehicle

with d−Relaxed Priority Rule in a network with P priority classes. If the network

has P priorities, then d = P − 1 corresponds to u-HVRP without any consideration

for the priorities. In this situation, it just becomes a standard TSP, so let us denote

the optimal tour length in this situation as Z∗
TSP .

Theorem 1 Let Z∗
d,P and Z∗

TSP be the optimal tour length (distance) for u-HVRP

with d−Relaxed Priority Rule and for u-HVRP without any priorities, respectively.

If the triangle inequality holds for the distances, then (a) Z∗
0,P ≤ PZ∗

TSP , and (b)

Z∗
d,P ≤ (P − d) Z∗

TSP .

Proof (a) We will prove this by contradiction. Assume that Z∗
0,P > PZ∗

TSP . This

implies that for any feasible tour τ for u-HVRP with 0−Relaxed Priority Rule, we

have: Zτ
0,P ≥ Z∗

0,P > PZ∗
TSP ⇒ Zτ

0,P > PZ∗
TSP . Let τ = (D,R1, . . . , Rr, B1, . . . ,

Bb, G1, . . . , Gg, . . . , D). Figure 4.3(a) illustrates such a route for P = 3 classes. Let

us construct the tour τ as follows. Consider a subgraph consisting of only priority

1 nodes and depot. Then we know that optimal length of such a tour, Z1∗, cannot

exceed the optimal length of TSP tour for the entire graph. Let’s denote such a tour

as D, R1, . . . , Rr, D and we have: Z1∗ ≤ Z∗
TSP . We do the same for priority 2 nodes

and we get the optimal tour as D, B1, . . . , Bb, D and optimal tour lengths are related

as: Z2∗ ≤ Z∗
TSP . Similarly, for all other priority classes, we can construct TSP tours
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as mentioned and for each priority class, the optimal length of the tour cannot

exceed optimal length of TSP tour for the entire graph. From this set of P TSP

tours, let us construct one single TSP tour for u-HVRP that satisfies 0−Relaxed

Priority Rule. First, let us combine priority 1 TSP tour and priority 2 TSP tour as

follows. Remove the two edges Rr, D and D,B1, and instead add edge Rr, B1. Since

triangle inequality holds, replacing the two edges by a single edge will result in a

tour for priority 1 and priority 2 that travels at most Z1∗ + Z2∗. This is illustrated

in the figure for P = 3 classes. Continue in this manner until all P TSP tours

are combined into a single TSP tour. Thus, we obtain tour τ for u-HVRP with

0−Relaxed Priority Rule such that Zτ
0,P ≤ Z1∗ + . . . + ZP∗. And we also know that

Z1∗+ . . .+ZP∗ ≤ PZ∗
TSP . This implies that Zτ

0,P ≤ PZ∗
TSP , which is a contradiction

and hence proved. (b) Consider a graph with P classes and with degree of relaxation

as d. Recall that Np is the set of nodes with priority p. In the optimal tour for this

problem, notice that any such set with priority p gets partitioned except N1 and

NP . N1 and NP do not get partitioned because N1 is the highest priority class and

NP is the lowest priority class, so no nodes need to be visited before and after these

priority classes, respectively. We call this optimal partition C∗
p for priority p. This

is illustrated for P = 4 classes for d = 1 in Figure 4.3(c). This happens because each

node needs to be visited only once with d−Relaxed Priority Rule. This rule says

that nodes of a priority p can be visited before nodes of priority p−d. Figure 4.3(b)

shows how the d−Relaxed Priority Rule splits each of the node sets. Effectively,

with d−Relaxed Priority Rule, we are partitioning all nodes into new priority classes

η1, η2, . . . , ηP−d. Notice that, now the nodes in set ηp are visited before nodes in any
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other set ηq where q > p. This means that original problem is equivalent to this new

problem with P −d priority classes and 0−Relaxed Priority Rule. From part(a), we

know that the bound for this problem is (P − d)Z∗
TSP . Thus, we have proved that

Z∗
d,P ≤ (P − d)Z∗

TSP . •

Theorem 1 gives us an upper bound on the optimal distance for u-HVRP tour. In

the next section, we show that this this bound is tight for any number of priority

classes when d = 0. For d > 0, we were able to provide worst-case examples to show

that this bound is tight, for up to P = 3 priority classes.

(a) Proof for bound of u‐HVRP with d=0
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(c) Illustration for u‐HVRP with d=1
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Figure 4.3: Proof for bound on optimal u-HVRP tour and Worst-case Example
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4.4.2.1 Worst-case Example (Tree) when d = 0

For this situation, we devise a worst-case example, where in, the bound of

PZ∗
TSP is attained in the limiting condition. Consider the network as shown in

Figure 4.3(d). The network is a tree with distances and priorities for nodes as

shown. The figure is an illustration just for P = 3 but one can trivially extend this

to P priorities. Then, for such a network with P priority classes and d = 0, we can

calculate Z∗
TSP and Z∗

0,P by inspection. Thus we get, Z∗
TSP = b (2e1 + . . . + 2eP )

and Z∗
0,P = (b)2e1 + (2b − 1)2e2 + (3b − 2)2e3 + . . . + (Pb − (P − 1))2eP . Let the

edge distance with P priority classes be e1 = 1
b
, . . . , eP−1 = 1

b
, eP = b as illustrated

in the figure. Substituting these values, we get: Z∗
TSP = 2(b− 1) + 2b2 and Z∗

0,P =

(P − 1)P − (P−2)(P−1)
b

+ (Pb − (P − 1))2b. Now consider the ratio of distances for

optimal tour in u-HVRP and TSP, in the limiting condition when b →∞.

lim
b→∞

Z∗
0,P

Z∗
TSP

= lim
b→∞

(P − 1)P − (P−2)(P−1)
b

+ (Pb− (P − 1))2b

2(b− 1) + 2b2
= P

Thus, for d = 0, the ratio is P and in fact we have found a worst-case example

where in this bound is attainable for u-HVRP.

4.4.2.2 Worst-case Example (Tree) where d > 0

Theorem 1 says that in such a case, the optimal tour distance is at most

(P − d)Z∗
TSP . The authors have been able to prove the tightness of the bound for

up to P = 3 priority classes. For P > 3, the authors were unable to find worst-case

examples.
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Consider P = 2. The bound is attained trivially for P = 2 with d = 1 as

u-HVRP is equivalent to standard TSP in this case. Consider P = 3. Again here,

if d = 2 then the u-HVRP is equivalent to standard TSP and bound is attained

trivially. Let us consider the interesting case of d = 1. Let us consider the example

shown in Figure 4.3(d). In this case, the optimal tour distances for u-HVRP and

TSP can be calculated by inspection. Thus we get, Z∗
TSP = b (2e1 + 2e2 + 2e3) and

Z∗
1,3 = (2b)e1 +(2b)e2 +(4b+2)e3. Let the edge distance with P = 3 priority classes

be e1 = e2 = 1
b
, e3 = b as illustrated in the figure. Substituting these values, we get:

Z∗
TSP = 4 + 2b2 and Z∗

1,3 = 4 + 4b2 + 2b. Consider the ratio of distances for optimal

tour in u-HVRP and TSP, in the limiting condition when b →∞.

lim
b→∞

Z∗
1,3

Z∗
TSP

= lim
b→∞

4 + 4b2 + 2b

4 + 2b2
= 2

Thus, for d = 1, the ratio is P − 1 = 2 and in fact we have found a worst-case

example where in, this bound is attainable for u-HVRP.

4.4.2.3 Worst-case Example (Cluster) when d = 0

Consider the network in Figure 4.4. The network displays a cycle with n + 1

(where n ≥ 2) clusters. All the clusters are identical and contain P nodes. Each of

the P priority classes is represented in each cluster. For such a network with d = 0,

we can calculate Z∗
TSP and Z∗

0,P by inspection. For the former, we obtain,

Z∗
TSP = e1 + . . . + en+2 + 2δ(n + 1)P = 2 + n− 2 + 2δ(n + 1)P = n + 2δ(n + 1)P.
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The optimal HTSP tour is illustrated for priority 1 and 2 classes in the figure. The

vehicle starts service for priority 1 in cluster 1 and ends service for priority 1 in

cluster n + 1. Since all priority 1 nodes are serviced, the vehicle begins service for

priority 2 nodes in cluster n + 1 itself and ends service in cluster n. This continues

for the remaining priorities and the vehicle finishes service for all priority P nodes

in cluster n + 2−P . From this cluster, there are two possible routes for the vehicle

to return to the depot, as shown in the figure. We denote the distance traversed as

disttop and distbot. Notice that the distance traversed in each cluster is the same as

that of the TSP, that is, 2δ(n + 1)P . Thus, we can write down the expression for

the optimal tour distance as

Z∗
0,P =

Priority 1︷ ︸︸ ︷
e1 + e2 + . . . + en+1 +

Priority 2︷ ︸︸ ︷
en+2 + e1 + . . . + en +

Priority 3︷ ︸︸ ︷
en+1 + en+2 + e1 + . . . + en−1 + . . .

+

Priority P︷ ︸︸ ︷
en+4−P + . . . + e1 + e2 + . . . + en+2−P + min(disttop, distbot) + 2δ(n + 1)P

= (n− ε) + (n− 1 + ε) +

(P−2) times︷ ︸︸ ︷
(n− 1) + . . . + (n− 1) + min(disttop, distbot) + 2δ(n + 1)P.

Notice that disttop = n + 1− P and distbot = P − 1. When we choose n ≥ 2(P − 1)

then distbot ≤ disttop. Thus, we can write:

Z∗
0,P = 2n− 1 + (n− 1)(P − 2) + P − 1 + 2δ(n + 1)P = nP + 2δ(n + 1)P.
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Figure 4.4: Worst-case Example for HTSP with d = 0 (any P ) and d = 1 (P = 3)

Now consider the ratio of optimal lengths for the HTSP vs. the TSP, where n ≥

2(P − 1), and in the limiting condition when δ → 0, we obtain

lim
δ→0

Z∗
0,P

Z∗
TSP

= lim
δ→0

nP + 2δ(n + 1)P

n + 2δ(n + 1)P
=

nP

n
= P.

Thus, for d = 0, the ratio is P and we have found a worst-case example where the

bound is attainable.

128



4.4.2.4 Worst-case Example (Cluster) where d > 0

Theorem 1 says that in such a case, the optimal HTSP distance is at most

(P −d)Z∗
TSP . The authors have been able to prove the tightness of the bound for up

to P = 3 priority classes. For P > 3, the tightness of the bound is an open research

question.

Consider P = 2 classes. When d = 1, the bound is attained as the HTSP is

equivalent to the TSP. Consider P = 3. When d = 2, the HTSP is again equivalent

to the TSP and the bound is attained. The remaining case is d = 1. To prove that

the bound is attained in this case, refer to the example shown in Figure 4.4. The

optimal tour distances for HTSP and TSP can be calculated by inspection. From

Section 4.4.2.3, we have Z∗
TSP = n+6(n+1)δ. In the optimal HTSP tour, the vehicle

will travel to cluster 1 to service nodes of priority 1 and 2, then to cluster 2, and so

on, until cluster n+1. At this cluster, since all priority 1 nodes are serviced, it starts

servicing nodes of priority 3 (only priority 3 nodes because all priority 2 and priority

1 nodes have already been serviced together) and keeps doing it until it reaches

cluster n. Then we can write: Z∗
1,3 = n−ε+n−1+ε+1+6(n+1)δ = 2n+6(n+1)δ.

Consider the limiting ratio of distances as δ → 0, and this yields

lim
δ→0

Z∗
1,3

Z∗
TSP

= lim
δ→0

2n + 6(n + 1)δ

n + 6(n + 1)δ
=

2n

n
= 2.

Thus, for P = 3 and d = 1, the ratio is P − d = 2 and the bound is attained.
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4.4.3 Relation of u-HVRP to ATSP

In this section, we study the relation between u-HVRP with MinDist(d) formu-

lation and show that our model is much more powerful than an ATSP or Precedence

ATSP.

For u-HVRP with 0−Relaxed Priority Rule: Consider small example illustrated

in Figure 4.5. Figure 4.5(a) represents the original graph on which we would like

to solve for u-HVRP with 0−Relaxed Priority Rule. Figure 4.5(b) shows the cor-

responding transformation needed and we can easily see that the optimal tours in

both are of length 23. In a general network, one can easily transform u-HVRP into

equivalent ATSP as shown in Figure 4.6(a). Trivially, finding an optimal ATSP tour

on this transformed network is equivalent to finding an optimal u-HVRP tour in the

original problem. To our knowledge, there are no known tight bounds for ATSP

exhibiting such a structure described. Our worst-case analysis for d = 0 provides

an attainable bound for this variant of ATSP.

For u-HVRP with d−Relaxed Priority Rule where d > 0: It is not easy to find

an obvious transformation of u-HVRP into an equivalent ATSP when d > 0. To

illustrate, consider Figure 4.6(b) when d = 1. Here, one needs to find that optimal

partition C∗
b and solve for optimal ATSP tour. This is not a trivial exercise as there

are 2|B| partitions! One can possibly imagine that this complexity grows rapidly as

d gets higher. The powerfulness of our model is illustrated here as it combines the

optimization on these two aspects: it partitions the nodes optimally as discussed
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Figure 4.5: Transformation of u-HVRP with d=0 into ATSP

earlier and then finds an optimal ATSP tour. If one had to find such an optimal

tour theoretically using just ATSP, first, one needs to find all partition of the nodes

and then solve for least cost ATSP tour over all partitions. Thus, our model is much

more powerful and compact as it combines the partitioning and finding ATSP tour.

In the next section, we conduct computational experiment to study how our model

captures the performance metrics like distance and response time.

4.5. Discussion of Computational Studies

The goal of our computational studies is to understand the appropriateness

of our model with priorities to different objectives for existing routing models with
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(a) Transforming u‐HVRP with d=0 into ATSP
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Figure 4.6: Transformation of u-HVRP into ATSP

respect to performance measures like Total Distance, and Latest Response Time.

Towards this goal, we focus on optimality rather than on computational speed, so

that we can analyze the applicability of our routing models for relief operations, in

terms of these performance measures.

We run the MIP formulations proposed in the previous section, with different

objectives on 11, 21, 30 and 40 nodes networks. The networks are assumed to

have 3 priority classes and the unloading times are assumed to be negligible for

this study. The travel times between nodes are assumed to be same as the distance

between the nodes. The MIP formulations are coded using OOPs concept in C++.

We use optimization software CPLEX 11.0 ( c©IBM-ILOG) on a 2.61GHz machine

with 3.25GB RAM, and a AMD Athlon 64 X2 Dual Core Processor 5000+. The

optimal solutions, computational times, and other performance measures from these
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networks are discussed in the remainder of this section.

Table 4.1 shows the optimal results of computational runs on 21, 30, and 40

nodes networks using formulations MinDist with d-Relaxed Priority Rule in Ap-

pendix C.2 along with valid inequalities in C.2.3 and formulations MinMax, and

MinSum given in Appendix C.3. The computational complexity increases as the d

value increases and this is evident from the computation times to reach optimality.

From Table 4.1, we see that as d increases, the total distance traveled decreases at

the expense of distribution of service times. The optimal tours for network 1 with

21 nodes is illustrated in Figure 4.2. The total distance traversed in the strictest

form of d-Relaxed Priority Rule is, 52.12%, 56.15%, 68.39% higher than the ones

where the tour does not have to follow priorities for 21 nodes, 30 nodes and 40 nodes

networks. This is reasonable for humanitarian relief operations, but as discussed in

previous, the ratio go upto 300%. Apart from distance, applying d-Relaxed Prior-

ity Rule also gives us different distribution for service times for priority classes. If

we enforce the strictest or the 0-Relaxed Priority Rule, we see that though overall

response time is a bit longer, but the nodes are served in the order of their urgency.

If severely damaged locations are not served immediately, it may prove fatal for

these locations. As one can observe, it is not always required to enforce the order

strictly as noticed in the 1-Relaxed Priority Rule results for these three networks.

The advantage of using this rule is that it provides optimal solutions to the deci-

sion maker with a tradeoff between distance and service times. Thus, this helps in

pooling resources for better serving the nodes or customers in a disaster.

Figure 4.7 illustrates the optimal solutions for different objectives discussed
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Table 4.1: Optimal Results for u-HVRP (with inequalities)

ID(n) d Distance Time3

Priority 1
Service

Times [min,
max]

Priority 2
Service

Times [min,
max]

Priority 3
Service

Times [min,
max]

1 (21) 0 29.07 0.14s [1.26, 10.85] [11.31, 19.96] [20.65, 28.37]
1 23.06 5.57m [1.26, 12.42] [2.87, 21.96] [13.34, 21.56]
2 19.11 0.11m [2.06, 14.22] [1.10, 17.82] [0.70, 16.27]

3 (30) 0 59.32 0.09m [1.26, 19.90] [20.53, 36.99] [37.62, 58.62]
1 45.08 3.76h [2.06, 20.68] [1.10, 40.44] [22.12, 44.38]
2 37.99 2.96h [5.69, 36.73] [1.10, 34.12] [1.50, 35.34]

4 (40) 0 82.61 0.41m [1.26, 29.79] [37.79, 54.25] [54.88, 81.91]
1 62.14 77.52h [1.26, 29.90] [1.10, 57.50] [33.90, 61.44]
2 49.06a 91.07h [2.06, 44.17] [1.10, 47.77] [0.70, 46.22]

h:hours, m:min, s:sec, a1.12% gap

for u-HVRP. It represents a relief situation for an 11-node network that is served

by a single vehicle without capacity or route-length restriction. With increasing d

values, the distance decreases from 13.62 to 9.99. In the case of d=0, the latest

service time is 12.92, compared to 8.89 for d=1 and 7.72 for d=2. Comparing these

three models to MinMax model, we see that the total distance traversed remains

the same as for d=1 but total service time is 6.86. Similarly MinSum is comparable

to d=2. This means that MinSum behaves just like a standard VRP model without

any consideration for priorities of the nodes.

The distribution of service times for priority classes can be compared by look-

ing at measures like earliest service time, latest service time, and average service

time. First, we compare by looking at the start times for each priority class. Con-

sider the five models for an 11-node network show in Figure 4.7 corresponding to

MinDist with d=0, 1, and 2, MinMax and MinSum formulations. When we com-

pare the start times for priority 1 nodes and priority 3 nodes for the five models,
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we see that it is (1.26, 1.26, 2.06, 2.06, 2.06) vs. (10.47, 6.04, 0.70, 0.70, 0.70) for

MinDist with d=0, 1, and 2, MinMax, and MinSum respectively. The first two mod-

els perform reasonably well, but the last three models – MinDist (d=2), MinMax

and MinSum can prove fatal to the people badly affected by a disaster as urgent

nodes are kept waiting compared to nodes which do not require immediate assis-

tance. When we observe the latest service times for each of the priority classes,

we again observe that the service times for priority 1 nodes are higher than pri-

ority 3 nodes for the last three models – MinDist (d=2), MinMax and MinSum.

Thus, when one considers the earliest and latest service times for the three priority

classes in MinDist(d=2) model, MinMax, and MinSum, the results show us that

all classes are treated as of equal urgency. This behavior is undesirable as delaying

service to urgent nodes can further deteriorate the crisis situation and result in more

nodes needing urgent assistance. For networks with 21, 30 and 40 nodes, we could

not solve MinMax and MinSum formulations to optimality and hence do no report

these results.

Next, we compare average service times by priority class for the four models.

Table 4.2 shows the average service times for different models on 11, 21, 30, and 40

node networks. For an 11 nodes network, we see that MinMax gives us an unrea-

sonable distribution of service times as urgent nodes are kept waiting compared to

MinDist (d=1). Intuitively, MinMax focuses on that one particular node; whereas

our model can also be visualized as an multi-node extension of the MinMax model.

For this specific 11 nodes network, MinDist (d=1) is better and a reasonable op-

timal solution. Now, let us look at how the d−Relaxed Priority Rule affects the
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Figure 4.7: Optimal results for different u-HVRP formulations on 11 nodes network

average service times for 21, 30 and 40 node networks. For the 21 node network,

with MinDist (d=2), all the priority classes are serviced at more or less at the same

time. Contrarily, the average service times for the MinDist (d=0) model show the

sequential serving of customers based on their priority class. With the MinDist

(d=1) model, Priority 1 nodes (which require urgent service) are visited first com-
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pared to Priority 3 nodes at the cost of 20.7% increase in distance traversed. For

30 nodes, MinDist (d=2) gives us average service time as 24.23, 18.34, 16.29 com-

pared to MinDist(d=1) which gives us 10.85, 20.21 and 35.64 for Priority 1, 2, and

3 classes, respectively. The strictest model, MinDist(d=0), gives us average service

times increasing in priority class as 9.64, 28.12, and 50.45, respectively. One can

observe similar behavior in the distribution of service times for 40 nodes. Thus,

this rule provides the decision maker with a set of Pareto-optimal solutions in terms

of distance and average response times. The unique aspect of this rule is that it

systematically captures the urgencies in the optimal solution.

Table 4.2: Comparison of distribution of service times for u-HRP

ID(n) Model Distance

Priority 1
Avg.

Service
Time

Priority 2
Avg.

Service
Time

Priority 3
Avg.

Service
Time

2(11) MinDist (d=0) 13.62 3.08 6.72 11.45
2(11) MinDist (d=1) 9.99 3.96 5.58 7.27
2(11) MinDist (d=2) 9.99 4.68 4.78 2.37
2(11) MinMax 9.99 4.96 3.55 2.33
2(11) MinSum 10.63 4.50 3.00 3.81
1(21) MinDist (d=0) 29.07 6.35 15.44 24.61
1(21) MinDist (d=1) 23.06 6.76 10.72 17.42
1(21) MinDist (d=2) 19.11 8.10 9.33 8.91
3(30) MinDist (d=0) 59.32 9.64 28.12 50.45
3(30) MinDist (d=1) 45.08 10.85 20.21 35.64
3(30) MinDist (d=2) 37.99 24.23 18.34 16.29
4(40) MinDist (d=0) 82.61 13.89 43.87 70.10
4(40) MinDist (d=1) 62.14 16.17 29.00 61.44
4(40) MinDist (d=2)a 49.06 22.28 23.53 23.07
h:hours, m:min, s:sec, a1.12% gap

To conclude, the objectives MinMax and MinSum do not consider the relative

differences in urgencies of nodes; they only focus on a particular node (MinMax)

or assign the same level of urgencies for all nodes (MinSum). On the other hand,
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as we can see, the d−Relaxed Priority Rule captures the trade-off between the two

performance metrics – distance and response time.

4.6. Conclusions

In this research, we discussed the challenges that are faced in the last mile

distribution of the aid to disaster victims. We developed routing models that con-

sider the priorities or a proxy for urgency of a location, to cater to humanitarian

relief operations. We formulated a d−Relaxed Priority Rule which provides flexi-

bility to the decision maker. This rule captures the trade-off between operational

efficiency and the humanitarian nature of the operations. We develop MIP formu-

lations for a single vehicle without capacity restrictions. We derive the bounds for

the u-HVRP and provide with a worst-case example that attains this bound in the

limiting condition. Also, we show that our model is much richer as it encompasses

ATSP with precedence constraints. As a result, we were able to provide a tight

bound for this ATSP variant. Computationally, the routing models are successfully

run on test problems with 21, 30 and 40 nodes network to optimality (or nearly

optimal) using CPLEX optimization software. Finally, we discuss the performance

of the MIP formulations on the performance metrics – distance traversed and re-

sponse time (earliest, average, and latest). We show that VRP models which ignore

priorities like standard MinMax or MinSum gives us unreasonable distribution of

service times. The objectives MinMax and MinSum do not consider the relative

differences in urgencies of nodes; they only focus on a particular node (MinMax) or
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assign the same level of urgencies for all nodes (MinSum). On the other hand, as we

can see from this work, the d−Relaxed Priority Rule captures the trade-off between

the two performance metrics – distance and response time. Our work is of practical

value as it provides a richer model for the distribution of aid in humanitarian relief

operations. Also, our work is of tremendous research value to the vehicle routing

problem (VRP) literature as we have defined a new class of VRPs.

There are many possible extensions to this work. In this work, we have ig-

nored the capacity limitations for the vehicle. Imposing capacity limitations can

potentially affect the other humanitarian relief operations’ performance measures

like demand satisfied, and number of customers served. In the presence of priorities,

relaxing the single to multiple vehicles can pose new challenges to the distribution

system. In this work, we ignored the computational speed of solving these routing

models; hence future research can be geared towards to solving these problems in

real-time, efficiently to optimality or near-optimality.

4.7. Summary of Insights

In this chapter, we discussed the last mile distribution in the humanitarian

relief chain. The key insights from this chapter are:

• Developed a new routing model that considers the node priorities. Priorities

are a proxy for urgency of a location. Introduced a new constraint, d−Relaxed

Priority Rule that provides flexibility to the decision maker. This rule captures

the trade-off between operational efficiency and the humanitarian nature of the
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operations.

• Developed MIP formulations for a single vehicle without capacity restrictions.

To reduce the computation time, valid inequalities were developed.

• Derived the bounds for the u-HVRP. Also, provided worst-case examples for

d = 0, with any number of priority classes and for d = 1, 2, for up to 3 priority

classes. Thus, the tightness of the bound is proved in these situations.

• For d = 0, we show that the u-HVRP can be transformed into ATSP. And for

d > 0, there is no a priori transformation (as far as we know). Our model

performs the partition of priority classes and then devises the optimal tour for

these partitions with precedence relations.

• Computationally, the routing models are successfully run on test problems

with 11, 21, 30, and 40 nodes network to optimality (or nearly optimal) using

CPLEX optimization software.

• Finally, discussed the performance of the MIP formulations on the performance

metrics – distance traversed and response time (earliest, average, and latest).

Showed that VRP models which ignore priorities like standard MinMax or

MinSum give us unreasonable distribution of service times. The objectives

MinMax and MinSum do not consider the relative differences in urgencies of

nodes; they only focus on a particular node (MinMax) or assign the same level

of urgencies for all nodes (MinSum). On the other hand, from this research, the

d−Relaxed Priority Rule captures the trade-off between the two performance
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metrics – distance and response time.

• Our work is of practical value as it provides a richer model for the distribution

of aid in humanitarian relief operations. Also, our work is of value to the

vehicle routing problem (VRP) literature as we have defined a new class of

VRPs.
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Chapter 5

Essay 4: Humanitarian Vehicle Routing Problem: Capacitated Case

5.1. Introduction

As discussed in previous Chapter, the goal of a humanitarian relief operation is

to deliver as much aid as possible but at the same time, due to limited resources, the

operations have to be efficient on other metrics as well. In the case of u-HVRP, we

highlighted the fact that the routing models need to incorporate node priorities so

that routing operations are efficient on the response time as well the distance. With

additional restrictions on the vehicle(s) like capacity and route-length, humanitarian

relief routing poses new challenges in the presence of node priorities. Due to capacity

or route-length restrictions, the vehicle may be able to satisfy only a subset of the

victims. For any humanitarian relief operations, satisfying a subset of customers is

never ideal, but relief organizations face such a problem if one were to consider a

snapshot of the humanitarian relief operations spanning many days. Thus, the need

for operational efficiency assumes utmost importance given such limited resources.

Towards this goal, measuring operational efficiency of humanitarian relief op-

erations is not trivial. For example, consider a single vehicle with only capacity

restriction. Route that was designed to satisfy as much demand as possible does

not necessarily imply that the route is efficient in terms of other measures like dis-

tance, response time and number of customers satisfied. Such issues are not just
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limited to routing operations with a single vehicle. To illustrate, consider routing

model with multiple vehicles having only capacity restriction. With multiple vehi-

cles at its disposal, the relief organization face a new challenge. Should they use all

vehicles to service all the nodes simultaneously? Or should the vehicles be split up

to service the nodes separately? Thus, multiple vehicles gives rise to the problem

of plenty, where in, the resources can be used simultaneously or sequentially. For

example, one can imagine two routes which satisfy as much demand as possible

but these routes may differ on the response time for the nodes. Thus, due to the

capacitated nature of the problem, along with humanitarian restrictions, imposes

new challenges for the routing models. It should be noted that to evaluate the per-

formance of a humanitarian relief operation, one needs not a single, but multiple

metrics (e.g., Beamon & Balcik (2008)). Based on humanitarian literature, in our

work, we plan to compare routes using the following four metrics: (i) Distance, (ii)

Response Time (Earliest, Latest, Average), (iii) Fill Rate (or % Demand Satisfied),

(iv) Number of Customers Serviced. Traditional or non-humanitarian routing mod-

els do not capture the performance metrics for humanitarian operations and, thus,

perform at a poor level on these metrics.

In this research, we are concerned with the delivery of a relief good (single

product) from a distribution center to the people in need as efficiently as possible

with the ultimate objective of minimizing the loss of life. With additional restrictions

in the presence of node priorities poses interesting research questions for the vehicle

routing problem: (1) How do we simultaneously capture performance metrics like

distance, demand satisfied, number of customers served and response time in our
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models? (2) How does the route perform on these measures with the d−Relaxed

Priority Rule? In this research, we systematically analyze the trade-offs between

the four metrics for different routing models. Thus, we believe that our models give

a lot of flexibility to the decision maker in terms of handling political and social

issues.

5.2. Setup

We plan to answer the research questions posed in Section 5.1 by extending

the setup for u-HVRP that was discussed in the previous Chapter. Specifically, we

consider a more realistic situation where the routing operations can be performed

with a single or multiple vehicles consisting of homogeneous fleet with capacity and

route-length restrictions. Not only all the routes have to satisfy the d−Relaxed

Priority Rule but also other restrictions. Apart from the d−Relaxed Priority Rule

and other restrictions, we impose a key additional rule, called “Order of Demand

Fulfillment”, that caters to the humanitarian aspect of the routing problem.

The Order of Demand Fulfillment rule states that at the end of the day (or time

horizon) all higher priority nodes need to be satisfied if a vehicle has enough available

capacity. In this research, as we are dealing with humanitarian relief operations, the

primary goal is to deliver as much supply as possible to the people who are most

needy, and thus, to this effect, we enforce this rule. It means that at the end of

the time period (can be a day, week, etc.), if there is enough capacity of the vehicle

available, then all the higher priority nodes have to be satisfied before the vehicle
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can satisfy any node of lower priority. This ensures that the higher priority nodes

are not left unsatisfied at the expense of providing supplies to the lower priority

nodes. For example, consider a vehicle of capacity 120. Let the network have two

priority classes with total demand of 100 units for priority 1 and 50 units for priority

2. Then, when we impose this rule, it will eliminate solutions in which the vehicle

supplies 80 units to priority 1 nodes and 20 units to priority 2 nodes. Such solutions

are undesirable as priority 1 represents people with urgent needs which have to be

met when there is enough vehicle capacity. If d ≥ 0, the two rules together imply

that lower priority nodes may be visited before higher priority nodes on a given day,

provided that all higher priority nodes are visited by the end of the day. This rule

is illustrated in Figure 5.1 for a 13-node network with two priority classes. We have

one vehicle with capacity of 50 units and total demand for priorities 1, 2 is 40 and

43 respectively. With 1−Relaxed Priority Rule, though both the routes utilized the

entire capacity of the vehicle, the route on the left satisfies the Order of Demand

Fulfillment rule whereas, the route on the right violates this rule as priority 1 nodes

are left unsatisfied at the end of the day.

Apart from these two key restrictions – d−Relaxed Priority Rule and Order

of Demand Fulfillment, we make assumptions that are typical to vehicle routing

problems with capacity and route-length restrictions. For the sake of completeness,

we write down all the assumptions: (i) the depot is designated as node 1 with a

service time of 0. Vehicle(s) can leave and return to the depot at most once after

servicing the nodes. (ii) Customers are designated as nodes {2, . . . , n}. Each node

can be serviced at most by one vehicle. (iii) Capacity of vehicle cannot be exceeded.
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(b) Route with d=1 that violates the rule
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demand Dj satisfied
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demand Dj NOT satisfied

j
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Figure 5.1: Illustration of Order of Demand Fulfillment Rule

(iv) Vehicles have route-length restriction (in terms of distance traversed) due to

fuel, working hours, etc. (v) All vehicle routes have to obey the d−Relaxed Priority

Rule, and Order of Demand Fulfillment. We assume the routing is done on complete

graphs for reasons mentioned in the previous Chapter. Depending on the availability

of the number of vehicles, the total supply and d−Relaxed Priority Rule for the relief

operations, one can consider different models. Primarily, we consider two different

models - Single Capacitated VRP with Priorities and Multiple Capacitated VRP

with Priorities. We use the following shorthand notation, 1-HVRP and m-HVRP
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to denote these models respectively.

The outline of this work is as follows. In Section 5.3 we discuss the literature

relevant for these two models. In Section 5.4 we highlight the new challenges and

develop mathematical models using Mixed Integer Programming (MIP) techniques

for 1-HVRP and m-HVRP. Next, we use small-size test problems (up to 30 nodes)

and compare optimal solutions from our models on the four performance metrics

discussed. Computational Study is discussed in Section 5.5 and finally we present

Conclusions in Section 5.6.

5.3. Literature Review

In the previous Chapter, we discussed literature associated with vehicle routing

problems that consider the concepts similar to priorities in the service industry,

military and a few humanitarian applications. In this section, we discuss relevant

literature to our two problems 1-HVRP and m-HVRP.

Our two problems 1-HVRP and m-HVRP, have similarity to Orienteering or

Team-Orienteering Problem in VRP literature. In an orienteering problem, the

goal is to maximize the total score, which is obtained by collecting the reward at

each node visited on the tour subject to a limit on the total distance that can be

traveled. In case of the Team-Orienteering Problem, we have multiple vehicles with

route-length restrictions that can collect the prizes. This problem and its variants

have been well-studied in the literature. For most of the models in the literature, the

focus has been on improving the MIP formulations, focus on improving the branch-
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and-bound algorithm, and developing fast heuristics that generate optimal or near-

optimal solutions. For example, Boussier et al. (2007) discuss exact algorithms for

the team orienteering problem. In their work, the authors propose a branch-and-

price algorithm for solving a team orienteering problem. However, as in this paper,

and others, they do not consider priorities in their mathematical models. Our work

on 1-HVRP and m-HVRP provides a new variant of Orienteering Problem that

considers the node priorities.

Next, let us look at the literature that uses concepts similar to priorities in

the context of orienteering problems. Few such variants are Orienteering Problems

with Time Windows or Orienteering Problems with Precedence Relations. As shown

in the previous Chapter, our model is much more powerful as d−Relaxed Priority

Rule designs the partitions optimally such that the sequence for visiting nodes is

optimally determined.

Let us look at the routing problems in the context of humanitarian relief oper-

ations. As discussed in the earlier Section, designing routing model is non-trivial as

one needs to consider the multiple performance measures. Shetty et al. (2008), dis-

cussed earlier, consider a team orienteering problem in their paper. However, their

model does not reflect the humanitarian relief situation as the Order of Demand

Fulfillment Rule is violated and the model does not capture the other performance

metrics (for example, response time). Schmitz & Niemann (2009), Smith et al.

(2010), discussed earlier, do not consider the capacity or route-length restriction for

the vehicles. In Liu et al. (2007), the authors develop routing model for distribution

of medical supplies in large-scale emergencies. They develop an objective function
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that is a combination of unmet demand and total delay but it is unclear how the

weights are designed for each of the objectives. Tzeng et al. (2007) discuss devel-

opment of relief-distribution model at the planning stage that optimizes multiple

objectives like minimizing total cost, minimizing the total travel time and maximiz-

ing the minimal satisfaction. The last objective is reflective of fairness compared

to first two objectives which reflect the efficiency of the model. Balcik et al. (2008)

discuss the last mile distribution in humanitarian relief chain. The objective is to

minimize the total costs which is the unweighted sum of routing costs and penalty

costs over all days in the planning horizon. Campbell et al. (2008) discuss routing

for relief efforts using two types of objective functions. In the first, they minimize

the maximum arrival time at a node. This means that nodes that are far away from

the depot can be reached as early as possible for service. However, this is not an

appropriate objective function to cater to networks with nodes of varying urgency

levels, as nodes that are not that far out do not affect the objective function. In

the second formulation, they minimize the average arrival time. It is an aggregate

measure, so when all nodes have more or less the same level of urgency this will work

well but there is no guarantee that all high-priority nodes will be visited before low-

priority nodes are visited. In Shen, Ordóñez & Dessouky (2009), the authors discuss

the stochastic vehicle routing problem. They develop routing model for large-scale

emergencies that minimizes unmet demand with uncertain demand and travel time,

with predefined service deadline and limited supply at the depot. They formulate

three models Deterministic Model, Chance-constrained Program and Robust opti-

mization to develop the preplanned vehicle routes and compare the results. The
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authors extended the work to include planning stage and operational stage in Shen,

Dessouky & Ordóñez (2009). In this two-stage approach, the routes are developed in

the planning stage and in the operational stage, using a recourse strategy, the actual

routes are decided with adjustments based on the information revealed. Ngueveu

et al. (2010) discuss cumulative capacitated vehicle routing problem (CCVRP). In

this problem, the objective is to minimize the sum of arrival times at customers,

instead of the traditional total length, subject to vehicle capacity constraints. This

type of objective assumes significance when importance is attached the satisfaction

of customer need, e.g., supply of necessary goods or rescue after a natural disas-

ter. In this paper,the authors discuss upper and lower bounding procedures for this

new problem using memetic algorithm and properties of the CCVRP. In Nolz et al.

(2010) the authors discuss a covering tour problem (CTP) where in the routes have

to satisfy three criteria: (1) minimizes the sum of distances between all members of

a population and their nearest facility (2) a tour length criterion and (3) minmax

routing criterion that minimizes the latest arrival time at a population center point.

The authors develop Pareto-optimal solutions for this bi-objective CTP. Hentenryck

et al. (2010) discuss the single commodity allocation problem (SCAP) for disaster

recovery. SCAPs are stochastic optimization problems that combine resource allo-

cation, warehouse routing, and parallel fleet routing. The objective function aims

at minimizing three factors (1) the amount of unsatisfied demands (2) the time it

takes to meet those demands (3) the cost of storing the commodity. For the fleet

routing, the objective is to minimize the latest delivery time. They investigate the

performance of a novel algorithm and validate it on hurricane disaster scenarios
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generated by Los Alamos National Laboratory.

To summarize one can note that there is no unifying framework in the develop-

ment of routing models for humanitarian relief operations. However, one commonal-

ity among the articles is that typical humanitarian routing model is multi-objective

in terms of unmet demand, response time and other performance measures. Thus,

in this work, we focus on development of routing models, 1-HVRP and m-HVRP,

that consider the different objectives and look at the performance of the models in

the humanitarian relief operations.

Based on the literature, we notice that the issue of priorities has not been

addressed in orienteering problems. In this work, we study the effect of priorities

on the vehicle routing problem for humanitarian relief operations. Also, traditional

orienteering problems look at maximizing only the total reward. In our problem, if

demand is considered as the reward, then maximizing demand does not necessar-

ily mean the routes are optimal on other performance metrics like response time,

distance and number of customers satisfied. Thus, our work nicely bridges the gap

in the vehicle routing problems literature for humanitarian relief operations, where

in we develop routing models that cater to multiple objectives. Also, our work

is of value to vehicle routing literature as it provides new variants for the VRP

community.
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5.4. Routing Models

In this section, we discuss the two different models: Single Capacitated VRP

with Priorities (1-HVRP) and Multiple Capacitated VRP with Priorities (m-HVRP).

We highlight the issues with optimization methods for these routing models and

discuss the key aspects of MIP formulations1 for these two models. The complete

mathematical formulations are provided in Appendices D.2 and D.3.

5.4.1 Single Capacitated VRP with Priorities (1-HVRP)

To state this model, consider a single capacitated vehicle with a restriction on

the total route-length it can travel in one tour. As the vehicle has limited capacity

and route-length restriction, it can service only a subset of nodes. Each node of the

network has a fixed demand for the relief item. There can be different categories of

goods like housing and shelter, water and sanitation etc with varying level of need

but in our problem we assume that there is only good or one package of such items

to be delivered. Assume that the relief agency has single vehicle with finite capacity

for each category of good. Apart from the capacity for goods; assume that the

vehicle also has a route-length restriction due to fuel and working hours, etc. In our

model, apart from the distance traveled, we also consider the distance equivalent

of unloading time at the customer location in the design of the route. As one can

see, this model represents a more realistic version of relief operations compared to

the problem discussed in the previous Chapter. In this case, it is possible that the

1In this work, please note that we use different typeface to differentiate parameters or given data
and decision variables in the MIP formulations
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vehicle may not be able to meet the entire demand. If the vehicle is able to meet

all of the demand, then this becomes the uncapacitated problem or u-HVRP.

The goal of relief operation in such a setting is to deliver maximum total

demand and perform this task efficiently. Note that designing an objective function

for this goal is a non-trivial task. We discuss two different approaches, along with

their limitations. The first approach is to solve this problem using a two-stage

procedure. The second approach is to use an objective function that is a weighted

combination of two objectives - Total Distance and Total Demand Delivered. We

write down the formulations for these two approaches and show that the second

approach does not always find the pareto optimal solutions that maximize the total

demand delivered and also minimize the total distance.

5.4.1.1 Two-stage Optimization

The general idea behind this two-stage optimization is that we can sequen-

tially tackle two of the metrics used to measure performance of a humanitarian

relief operation. If one wants the least total distance traversed, then it is theo-

retically zero, which corresponds to least total demand met, which is zero. If one

wants to achieve maximum total demand met, then total distance will increase

correspondingly. That is, both these metrics Total Demand Delivered and Total

Distance Traversed increase or decrease in each other. However, we are interested

in maximizing the Total Demand Delivered but also minimizing the Total Distance

Traversed. To guarantee such pareto optimal solutions, we perform optimization in
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two stages, described as follows:

Stage I: Maximize Total Demand Delivered. The objective in this stage re-

flects the humanitarian nature of the routing problem. The optimal solution gives

us the maximum that can be delivered to the nodes subject to capacity of the vehicle

or the route-length restriction. If route-length is not an issue but capacity of the

vehicle is binding, then total demand met is just the capacity of the vehicle. On the

other hand, if the vehicle has capacity that exceeds the total demand but with a

limit on the route-length it can travel, then the route-length restriction determines

how much demand can be served. The MIP formulation for this stage is denoted as

1-HVRP-MaxDemand.

Stage II: Minimize Total Distance Traversed. In this stage, we develop vehi-

cle route that traverse minimal distance, given that we know the maximum demand

that can be delivered in Stage I. If the route-length restriction is not binding, then

the route that is generated in Stage I may not be efficient since maximal demand as-

signment corresponding to optimal solution in Stage I need not traverse the network

efficiently to serve these nodes. This is illustrated in Figure 5.2 for a network of 10

nodes. The route-length restriction of 30 units is not binding as the vehicle traverses

29 units in Stage I optimization. Thus, one can pose the following question: Given

the demand assignment corresponding to maximum demand delivered, what is the

most efficient route with respect to the total distance? To obtain efficiency with

respect to the total distance, we minimize total distance traversed subject to the

maximum demand delivered in Stage I. It is not clearly evident how the maximum

demand can be enforced as a constraint in this stage. In fact, the maximum demand
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delivered constraint can be added to this model in two different ways:

Stage II(i): Individual Assignment. In this model, we enforce the constraint

that the nodes that had been served in Stage I need to be serviced in this stage

as well. This is equivalent to creating a subgraph with the subset of nodes that

were serviced in Stage I and solving u-HVRP on these subset of nodes. The MIP

formulation in this stage is denoted as 1-HVRP-MinDist-i.

Stage II(a): Aggregate Assignment. In this model, we impose the constraint

that the total demand met in this formulation must be at least the total maximum

demand obtained in Stage I. Here, we solve the problem on the entire network, since

we are aggregating all demand for a priority class. The MIP formulation in this

stage is denoted as 1-HVRP-MinDist-a.

One can expect that Individual Assignment might perform poorly on total dis-

tance metric relative to Aggregate Assignment, since it is more restrictive. However,

one should also note that Individual Assignment can also result in a higher number

of customers serviced relative to the Aggregate Assignment. Distance and Number

of Customers serviced are two performance metrics, and the policy maker can de-

cide on the appropriateness of the model to be applied. Irrespective of the Stage II

method employed, this two-stage procedure gives us an efficient and humanitarian

routing solution.

The Two-Stage optimization approach is illustrated for two networks - Network

1 and Network 2 in Figure 5.2. First consider Network 1, where, we have a 10 nodes

with a total demand of 120 units and one priority class. The nodes are served by

a single vehicle with capacity of 100 units and route-length limit of 30 units. After
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Stage I, notice that 7 out of 8 nodes are served since capacity available is slightly

lower than the total demand and the total distance traversed is 29 units. After Stage

II using Individual Assignment, the number of nodes served is 7 and the distance

traversed is 27. One can see that this helps in making the route efficient and yet serve

the maximum demand. After Stage II using Aggregate Assignment, one can see that

total distance traversed is 25 units, better than using Individual Assignment, but

the number of nodes served is 6, lower than using Individual Assignment.

Individual Assignment is more restrictive on the distance traversed but it can

serve a higher number of customers compared to Aggregate Assignment. Consider

another example, as illustrated for Network 2 in Figure 5.2. This is a 9-nodes tree

network with one priority class, served by one vehicle with a capacity of 50 units

and a route-length limit of 18 units. Though distance is an important criterion,

it cannot be the sole measure to be used in deciding the route as this example

illustrates. Individual Assignment gives us an optimal route that traverses 8 units

but serves 4 customers whereas Aggregate Assignment gives us a lower distance of 6

units, but serves only 3 customers. And from an operations perspective one cannot

choose between serving 3 customers or 4 customers. As shown in this example,

it is not obvious that Aggregate Assignment should be used in all situations as

Individual Assignment can potentially perform well on another performance metric

– number of customers served. Thus, for humanitarian operations, one can not

trivially rule out one approach in favor of another just based on the perspective of

operations. However, in this research, our goal is to put forth operationally efficient

routing models in front of the decision maker to help him/her arrive at a decision
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appropriate to the crisis situation.

The notation and formulations for the two stages are defined in the Appendices

D.2.1, D.2.2, and D.2.3 respectively. We develop a MIP formulation for Stage I based

on the orienteering problem. The key aspect of orienteering problem is the profit or

prize collected when vehicle services a node. Here, we use the demand at each node as

the prize or profit collected when vehicle services the node. One important constraint

that is enforced here is the Order of Demand Fulfillment since all higher priority

nodes have to be serviced if the vehicle has enough capacity. Stage II(i) formulation

is similar to MinDist(d) formulation for u-HVRP. Stage II(a) formulation is similar

to u-HVRP, except for aggregate demand constraint. Since the focus of this research

is designing relevant models for humanitarian relief operations, we do not delve on

improving the computational speed by improving the MIP formulations or designing

clever heuristics. The computational results for this approach are illustrated in

Section 5.5.

5.4.1.2 Weighted Objective

Another approach common in the literature is to use a weighted combination

of the two objectives: Total Demand Delivered and Total Distance Traversed. In

this situation, the feasible region for the MIP formulation is same as in formulation

1-HVRP-MaxDemand, except for the objective function, which is as follows:

Max α Total Demand Delivered − β Total Distance Traversed
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where, 0 ≤ {α, β} ≤ 1. The complete formulation 1-HVRP-WeightedObj is pro-

vided in Appendix D.2.4. In this research, we examine this approach and find that

this approach may not find that optimal solution which delivers maximum demand

but is efficient in terms of distance. The intuition behind this can be explained as

follows. When Total Demand Delivered has higher weight, the route is inefficient

in terms of distance as long as the maximum demand is delivered. On the other

hand, when weight for Total Distance Traversed is higher, the route places too much

emphasis on the route-length and thus will start delivering at lower demand levels.

This transition defeats the purpose of a humanitarian relief operation as nodes are

left unsatisfied even though the vehicle has enough supply. For further analysis, we

drop this weighted objective approach. The computational results for this approach

are illustrated in Section 5.5.

5.4.2 Multiple Capacitated VRP with Priorities (m-HVRP)

This problem is similar to 1-HVRP except that now we have multiple vehicles

that can handle the distribution of relief good. One can imagine such a problem

in relief situations where the distribution center needs to dispatch a homogeneous

batch of vehicles carrying one type of item. Each vehicle is limited by its capacity

and the tour route-length. Note that the homogeneous assumption can be very

easily relaxed in the MIP formulations.

With multiple vehicles, one additional issue that needs resolving is the enforce-

ment of the d−Relaxed Priority Rule. Since we have multiple vehicles, one needs
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to clarify whether this rule should be imposed globally or locally. The two types of

enforcement are important because they impact two of the performance metrics –

Latest Response Time and Number of Customers Satisfied, as explained below:

(1) Local Timing Rule: In this, the route of each vehicle is consistent with the

d−Relaxed Priority Rule. So, in this it is possible that the service time of a node

with priority p is higher than a node with priority p + d + 1, since they can be ser-

viced by two different vehicles. When we have the Local Timing Rule, although an

individual vehicle is consistent with the d−Relaxed Priority Rule, a lower priority

node can be serviced earlier than a higher priority node. This may be undesirable,

but on the positive side, since the nodes are distributed between multiple vehicles, it

is possible that all vehicles together cover a much bigger area of the entire network.

(2) Global Timing Rule: In this, we enforce the d−Relaxed Priority Rule across

all the vehicles. So, the service time for a node with priority p is always lower than

for a node with priority p + d + 1, irrespective of which vehicle services these nodes.

When we enforce d−Relaxed Priority Rule across all routes, then essentially all

vehicles are dispatched as a batch to nodes of the same priority. This can result in

vehicles reaching route-length restrictions at the same time, and, thus, all vehicles

together may not be able to service the entire network. However, one big advantage

to this approach is that the a priority class can be serviced in much less time.

These two approaches are relevant in different situations. When vehicle route-

length is not a binding constraint, then the Global Timing Rule makes sense since

it can service the entire priority class in much shorter duration as any point in the

route, the focus of the relief fleet is servicing nodes of a priority class or for a more
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general d−Relaxed Priority Rule, nodes in p, p+1, . . . , p+d+1 priority classes. On

the other hand, if the route-length restriction is binding resulting in fewer number

of customers served, then the Local Timing Rule helps in serving higher number

of customers. For example, if the nodes of different priority classes are very far

apart then dispatching all the vehicles to serve nodes of a priority class will result

in all vehicles hitting the route-length restriction before they can hit the capacity

restriction.

The two rules are illustrated in Figure 5.3. In this example, we have 12 nodes

with two priority classes that are far apart. Total demand for priority 1 class is

40 units and for priority 2 is 47 units. The network is served by two identical

vehicles of capacity 50 units and each with a route-length limit of 25 units. Let

us impose the 0−Relaxed Priority Rule. With Local Timing Rule for enforcing

priorities, after performing Stage I and Stage II optimization, the first vehicle serves

only Priority 1 customers and second vehicle serves only Priority 2 customers. With

Global Timing Rule for enforcing priorities, both vehicles first proceed to serve the

priority 1 class and then proceed to serve Priority 2 customers, provided there is

still available capacity and the route-length limit has not been reached. Comparing

total distance traversed, with Local Timing Rule, first vehicle traverses 16 units and

the second vehicle traverses 17 units whereas with Global Timing Rule, both the

vehicles traverse 25 units. Capacities of the two vehicles are under-utilized in Global

Timing Rule model as vehicles hit route-length limits even before the capacity is

exhausted.

The main advantage of using the Global Timing Rule is that the range of
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service times for each priority class is decreased as seen for each class in this example.

Comparing the two rules, we can see that with Global Timing Rule, the route-

length limit is more restrictive, whereas with the Local Timing Rule, the capacity

of vehicle becomes more restrictive. Unlike this intentionally worst-case example

where the two priority classes are very far apart, if applying the two rules do not

result in leaving out customers, then one should appropriately choose the model

based on the whether all vehicles should be directed towards servicing nodes in

p, p + 1, . . . , p + d + 1 priority classes or the resources can be split up to service all

priority classes simultaneously.

Similar to 1-HVRP, we employ the two-stage optimization procedure for this

situation as well. We write MIP formulations for the two-stage optimization as dis-

cussed in Section 5.4.1.1, keeping in mind the two different ways one can enforce the

d-Relaxed Priority Rule. Our goal in this study is to understand the appropriateness

of our formulations in capturing the different performance metrics rather than on

reducing the computational time by improving the MIPs or devising heuristics. The

formulations are provided in Appendices D.3.1 and D.3.2 for the Local Timing Rule,

and Appendices D.3.3 and D.3.4 for the Global Timing Rule. The MIP formulations

corresponding to Local Timing Rule are denoted as: m-HVRP-local-MaxDemand

for Stage I and m-HVRP-local-MinDist-i or m-HVRP-local-MinDist-a for Stage II

Individual or Aggregate Assignment, respectively. Similarly, for the Global Tim-

ing Rule, the MIP formulations are denoted as m-HVRP-global-MaxDemand for

Stage I and m-HVRP-global-MinDist-i or m-HVRP-global-MinDist-a for Stage II

Individual or Aggregate Assignment, respectively.
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Figure 5.3: Illustration of Global vs. Local Timing Rules for m-HVRP
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5.5. Discussion of Computational Studies

The goal of our computational studies is to understand the relevance of differ-

ent routing models with respect to performance measures like Total Distance, Total

Demand Met, Latest Response Time, and Number of Customers Served. Towards

this goal, we focus on optimality rather than on computational time, so that we

can analyze the applicability of our routing models for relief operations, in terms of

these performance measures.

We run the MIP formulations proposed in the previous sections, with different

objectives on 21, and 30 nodes networks. The networks are assumed to have 3

priority classes and the unloading times are assumed to be negligible for this study.

The travel times between nodes are assumed to be same as the distance between

the nodes as shown in the networks. The optimal solutions, computational times,

and other measures from these networks are discussed in the next few sections. The

MIP formulations are developed using OOPs concept in C++. We use optimization

software CPLEX 11.0 ( c©IBM-ILOG) on a 2.61GHz machine with 3.25GB RAM,

and a AMD Athlon 64 X2 Dual Core Processor 5000+.

5.5.1 1-HVRP

Here, we run the computational studies on 21 and 30 node networks. The

network characteristics are given in the Table 5.1 (see also Appendix E). In the case

of 21 nodes, the total demand is 132 units and in the case of 30 nodes, the total

demand is 198 units. The results of computational runs on 21 and 30 nodes networks
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using two-stage optimization procedure with formulations given in Appendix D.2.1,

D.2.2, and D.2.3 are shown in Tables 5.2 and 5.3 for different route length limits and

capacity. Computational time for reaching optimality is reasonable for 21 and 30

nodes networks. However, for a 40-node network, CPLEX did not reach optimality

and hence are not reporting those results.

Table 5.1: Network Characteristics for 1-HVRP and m-HVRP

ID(n)
Priority
Class

No. of
Nodes

Total
Demand

Demand at Individual Nodes (Node
#:Demand)

4 (21) 1 6 44 4:12, 9:6, 11:3, 13:2, 16:12, 18:9
2 8 49 3:4, 6:11, 8:7, 10:2, 12:8, 15:6, 17:3, 21:8
3 6 39 2:10, 5:7, 7:4, 14:1, 19:1, 20:16

5 (30) 1 9 63
4:12, 9:6, 11:3, 13:2, 16:12, 18:9, 22:5,
23:10, 24:4

2 11 76
3:4, 6:11, 8:7, 10:2, 12:8, 15:6, 17:3,
21:8, 28:10, 29:8, 30:9

3 9 59
2:10, 5:7, 7:4, 14:1, 19:1, 20:16, 25:7,
26:9, 27:4

From Table 5.2, we see that as d increases, the total distance traveled de-

creases but at the expense of an inequitable distribution of service times. When

the vehicle capacity is 100 units for 21 nodes network, it is never enough to satisfy

total demand of 132 units; hence at best it can satisfy all demand of Priority 1

and 2 but only 7 units of Priority 3 nodes. Applying Stage II optimization (either

Individual or Aggregate Assignment method) results in lowering the total distance

traversed compared to just Stage I optimization. For this table, we have combined

both the Stage II methods since they serve the same number of customers for these

examples. But, in reality, with different problem data, it is possible to see why these

Stage II methods assume importance as shown in Figure 5.2. Let us compare the

average service times for different priority classes applying the d−Relaxed Priority
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Table 5.2: Optimal Results for 1-HVRP using Two-stage Optimization on a 21
node network

d Lmax CAP
Distance

after Stage I
(Stage II)

Demand
met by
Priority
(#1, #2,

#3)

Average Service
Time by Priority

(#1, #2, #3)
Time

0 20 100 19.55 (19.55) 44, 45, 0 6.35, 14.11, - 0.44s(0.03s)
1 20 100 19.82 (16.72) 44, 49, 7 8.02, 7.47, 14.57 4.08s(3.38s)
2 20 100 19.87 (16.15) 44, 49, 7 7.27, 7.70, 2.95 1.20s(1.28s)
0 36 100 29.95 (22.79) 44, 49, 7 5.72, 15.79, 20.64 0.06s(0.05s)
1 36 100 30.94 (16.72) 44, 49, 7 7.22, 9.03, 13.77 0.27s(3.61s)
2 36 100 31.15 (16.15) 44, 49, 7 7.27, 7.69, 2.95 0.03s(1.02s)
0 20 150 19.55 (19.55) 44, 45, 0 6.35, 14.11, - 0.53s(0.05s)
1 20 150 19.88 (19.88) 44, 49, 33 7.27, 7.87, 16.21 0.45h(5.30m)
2 20 150 19.75 (19.11) 44, 49, 39 7.59, 10.69, 8.11 0.76m(4.20s)
0 36 150 35.31 (29.07) 44, 49, 39 6.35, 15.44, 24.61 2.26s(0.36s)
1 36 150 34.70 (23.06) 44, 49, 39 6.76, 11.08, 17.55 5.69s(7.33m)
2 36 150 34.76 (19.11) 44, 49, 39 7.59, 10.69, 8.11 0.13s(4.78s)
h:hours, m:min, s:sec

Rule when the vehicle capacity and route-length limit are constrained. For a 21

node network with a vehicle capacity of 100 units and a route limit of 20 units,

the optimal routes satisfy 89, 100, and 100 units of demand for different d values.

In this situation, where the problem is severely constrained by both capacity and

route-length, applying 0−Relaxed Priority Rule resulted in not fully utilizing the

vehicle capacity and hence it may not be a preferred solution in humanitarian relief

operations. On the contrary, the 1−Relaxed Priority Rule or the 2−Relaxed Pri-

ority Rule fully utilize the capacity. Thus, let us look at how these routes perform

on distribution of service times. The average service times for Priority 1 are 8.02,

7.27, for Priority 2 are 7.47, 7.70 and for Priority 3 are 14.57, 2.95 across the two

models. To ensure equitable distribution of service times, one might choose the
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1−Relaxed Priority Rule. When the vehicle has the same capacity level but the

route-length limit is increased to 36 units, the route limit is never binding in for

d=1,2,3 as the capacity is fully utilized. Comparing the average service times, we

see that 1−Relaxed Priority Rule performs well as the average service times are

7.22, 9.03, and 13.77 for Priority 1, 2 and 3 respectively. Let us consider the next

situation when vehicle capacity is 150 units and thus never a constraint. When

vehicle route-length is limited to 20 units, we can see that the 0−Relaxed Priority

Rule and the 1−Relaxed Priority Rule effectively result in vehicle not fully utilizing

its capacity. Though these models give optimal solutions that are result in ordered

distribution of service times, these solutions may not be preferred in humanitarian

relief operations since vehicle capacity is not fully utilized. On the other hand, when

the vehicle route-length is at most 36 units, we see that the vehicle is able to satisfy

all of the demand. Among the three models, 1−Relaxed Priority Rule results in

an equitable distribution of service times for compared to other models. Table 5.3

shows the optimal results for two-stage optimization for a 30-node network. One

can make similar observations from optimal results for 30 nodes network as reported

in this table.

To summarize, for both networks, based on demand met for each priority

class, notice that the optimal solutions satisfy the Order of Demand Fulfillment

Rule. When vehicle capacity and route-length are restrictive, one should apply the

d−Relaxed Priority Rule and not only look at the optimal solutions in terms of

service times but also with respect to the other metrics like demand satisfied. These

models thus help in developing optimal solutions that trade-off the pros and cons
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of satisfying demand of urgent nodes at a faster pace vs. satisfying all nodes at a

slower pace. These models can help the decision maker in the objective analysis of

humanitarian relief operations.

Using Two-Stage optimization, we obtain Pareto-optimal solutions that max-

imize demand and are also efficient in terms of distance traversed. Such solutions

are not trivial to obtain when we use the Weighted Objective approach. We run

Weighted Objective approach using the formulation given in Appendix D.2.4 for 1-

HVRP on a v21 node network and show the results in Table 5.4 for a single vehicle

with capacity of 100 units and route-length limit of 36 units. As one can see from

Table 5.4, arriving at the desired optimal solution depends on the weights associated

with the two objectives. If the weights are not properly designed or if the step size

is too high, it is possible that the Pareto-optimal solution might be missed in the

transition of domination of one objective to the other. Compared to this ambiguous

approach, the two-stage optimization approach guarantees us finding the desired

Pareto-optimal solutions.

Table 5.3: Optimal Results for 1-HVRP using Two-stage Optimization on a 30
node network

d Lmax CAP
Distance after

Stage I (Stage II)
Demand met by Priority

(#1, #2, #3)
Time

0 35 175 34.70 (34.65) 63/63, 68/76, 0/59 5.56s(1.84s)
1 35 175 34.82 (31.15) 63/63, 76/76, 36/59 0.20h(0.19h)
2 35 175 34.95 (30.57) 63/63, 76/76, 36/59 0.73m(0.39h)
0 35 200 34.65 (34.65) 63/63, 68/76, 0/59 6.20s(2.47s)
1 35 200 34.50 (34.50) 63/63, 76/76, 47/59 1.78h(5.23h)
2 35 200 34.67 (34.67) 63/63, 76/76, 55/59 0.02h(7.16h)
h:hours, m:min, s:sec
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Table 5.4: Optimal Results for 1-HVRP using Weighted Objective Approach on a
21 node network

α(β) Distance
Demand

Met
Priority 1 %
Dem Met

Priority 2 %
Dem Met

Priority 3 %
Dem Met

1.0 (0.0) 34.59 100 44/44 49/49 7/39
0.9 (0.1) 22.79 100 44/44 49/49 7/39

. . . . . . . . . . . . . . . . . .
0.3 (0.7) 22.79 100 44/44 49/49 7/39
0.2 (0.8) 18.61 87 44/44 43/49 0/39
0.1 (0.9) 2.52 12 12/44 0/49 0/39

5.5.2 m-HVRP

We run our computational exercises on 21 node and 30 node networks using

formulations given in Appendix D.3. For this study, we assume that the network is

served by at most two identical vehicles with a capacity and a route-length limit.

The demand characteristics are assumed to be same as that given in Table 5.1.

Due to the complexity of the problem, we were unable to run the computational

exercises to optimality for 30 nodes network with the 2−Relaxed Priority Rule. Our

focus in this research is to study the relevance of various models to humanitarian

relief operations and the authors believe that future research can be done to reduce

computational time for solving bigger networks.

Recall that as discussed in Section 5.4.2, we can enforce the d−Relaxed Priority

Rule locally or globally. Tables 5.5 shows the optimal results of using Two-stage

optimization with Local Timing Rule on a 21 node network. For 21 node network,

we fix the route-length limit at 18 units and vary the capacity. The network can

be serviced by 2 vehicles with a capacity of 50 units each or with a capacity of

75 units each. As one can notice from Table 5.5, route length is never binding for
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either of the situations and the vehicle capacity constraint is binding only when the

total capacity is 100 units. First, let us discuss the different performance measures

for total capacity of 100 units. For different d values, the demand satisfied is the

same as the total vehicle capacity, thus all the models are the equivalent on this

performance measure. The total distance traversed is 24.72, 21.43, 21.43 as the d

value increases. Thus, one can see that d=1 and d=2 are equivalent with respect

to distance traversed. We will combine the discussion of service times distribution

using the Local Timing Rule with the discussion of optimal results when we apply

the Global Timing Rule.

Next, lets discuss the optimal results for total capacity of 150 units. For the

different d values, all of demand is satisfied, hence all the models are the equivalent

with respect to this performance measure. The total distance traversed is 29.51,

25.04, and 23.44, corresponding to increasing d values. The two vehicles traverse a

longer distance as all of the demand is satisfied with 150 units of total capacity. The

vehicles do not always distribute the load evenly but rather it is possible that one

vehicle entirely satisfies demand of a priority class and the second vehicle satisfies

the demand of another priority class. Though it is beneficial in terms of meeting

demand, the drawback is that if there are many Priority 1 nodes compared to

Priority 3 nodes then that last Priority 1 node may be serviced at a much later time

compared to a Priority 3 node. Later in this section, we discuss how the Global

Timing Rule addresses this issue.

Table 5.6 shows the optimal results for Two-stage optimization on 30 nodes

with the Local Timing Rule. We do not discuss this situation in detail as one can
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Table 5.5: Optimal Results for m-HVRP using Two-stage Optimization and Local
Timing Rule on 21 nodes network

d
(Stage)

Total
dis-

tance

Distance by
Vehicle (#1,

#2)

CAP used
by vehicle
(#1, #2)

Demand
met by

Priority for
Veh 1

Demand
met by

Priority for
Veh 2

Time

Two vehicles with CAP = 50, Lmax = 18
0 (I) 30.69 13.04, 17.65 50, 50 35, 15, 0 9, 34, 7 2.80s
0 (II) 24.72 13.94, 10.78 50, 50 21, 29, 0 23, 20, 0 8.26s
1 (I) 30.79 17.35, 13.44 50, 50 32, 11, 7 12, 38, 0 3.49s
1 (II) 21.43 12.44, 8.99 50, 50 23, 27, 0 21, 22, 7 0.32h
2 (I) 30.45 12.56, 17.89 50, 50 26, 17, 7 18, 32, 0 2.28s
2 (II) 21.43 8.99, 12.44 50, 50 21, 22, 7 23, 27, 0 9.03m

Two vehicles with CAP = 75, Lmax = 18
0 (I) 34.01 17.97, 16.04 69, 63 0, 41, 28 44, 8, 11 0.49m
0 (II) 29.51 11.77, 17.74 62, 70 0, 41, 21 44, 8, 18 9.25s
1 (I) 35.29 17.70, 17.59 71, 61 21, 15, 35 23, 34, 4 0.17m
1 (II) 25.04 15.85, 9.19 70, 62 23, 29, 18 21, 20, 21 9.58h
2 (I) 34.99 17.40, 17.59 58, 74 9, 21, 28 35, 28, 11 2.97s

2 (II)a 23.44 14.25, 9.19 70, 62 23, 29, 18 21, 20, 21 3.39h
h:hours, m:min, s:sec, a5.81% gap

make similar observations. However, the computational time grows rapidly as the

LP-bound used in the branch-and-bound tree for CPLEX grows slowly.

Similar to the 1-HVRP, we attempted to solve this two stage procedure in a

single stage by developing a weighted combination of distance and demand. The

optimal results for this Weighted Objective approach are shown in Table 5.7 for 21

nodes with 2 vehicles of capacity 50 units each and a route-length limit of 18 units

each. Similar to the 1-HVRP, we observe that one needs to design the weights aptly

to obtain Pareto-optimal solutions that maximize demand and yet travel efficiently

in terms of distance.

Next, we apply Two-Stage optimization procedure using Global Timing Rule.

The optimal results on 21 nodes are shown in Table 5.8. The network is assumed to
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Table 5.6: Optimal Results for m-HVRP using Two-stage Optimization and Local
Timing Rule on 30 nodes network

d
(Stage)

Total
dis-

tance

Distance by
Vehicle (#1,

#2)

CAP used
by vehicle
(#1, #2)

Demand
met by
Priority
for Veh 1

Demand
met by
Priority
for Veh 2

Time

0 (I) 68.44 34.96, 33.48 121, 77 27, 66, 28 36, 10, 31 70.75m
0 (II) 57.71 27.12, 30.59 121, 77 21, 66, 21 42, 10, 38 0.85m
1 (I) 69.34 34.43, 34.91 121, 77 36, 54, 2 27, 22, 57 16.00m

1 (II)a 48.40 30.41, 17.99 133, 65 43, 43, 47 20, 33, 12 6.98d
2 (I) 65.69 33.31, 32.28 121, 77 40, 59, 26 23, 17, 33 0.92m

2 (II)b 42.53 33.34, 9.19 148, 50 54, 56, 38 9, 20, 21 11.41h
d:days, h:hours, m:min, s:sec, a4.97% gap, b11.31% gap

Table 5.7: Optimal Results for m-HVRP using Weighted Objective Approach and
Local Timing Rule on 21 nodes network

α(β)
Total

Distance

Distance by
vehicle (#1,

#2)

Total
Demand

Met

Demand
met by
vehicle

(#1, #2)

Demand met
by Priority

(#1, #2, #3)

1.0 (0.0) 34.62 16.66, 17.96 100 50, 50 44, 49, 7
0.9 (0.1) 24.72 13.94, 10.78 100 50, 50 44, 49, 7

. . . . . . . . . . . . . . . . . .
0.3 (0.7) 24.72 13.94, 10.78 100 50, 50 44, 49, 7
0.2 (0.8) 19.47 16.66, 17.96 84 41, 43 44, 40, 0
0.1 (0.9) 3.92 1.40, 2.52 12 0, 12 12, 0, 0

be served by 2 vehicles with capacity of 75 units each and route-length limit of 18

units. Similar to the Local Timing Rule, all of the demand is satisfied for both these

models, hence both models are equivalent in terms of demand satisfied. Recall from

Figure 5.3 that this is not necessarily true in all situations. The two vehicles together

travel a total distance of 30.87 units for d=0, and 25.55 for d=1 with Global Timing

Rule. Compared to Local Timing Rule model, the total distance is 4.6% and 2.0%

higher and this might be reasonable, depending on how these models perform with

respect to other performance measures. The load distribution for the two vehicles
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between the Local and Global model is very similar.

Finally, let us compare the Local and Global Timing Rule models on the

distribution of service times. Table 5.9 gives us the comparison of service times

for Local Timing Rule and Global Timing rule models on this network. Figure 5.4

illustrates the Two-stage optimization using Local Timing Rule for d=0 and d=1

and Figure 5.5 illustrates the Two-stage optimization using Global Timing Rule for

d=0 and d=1. Observe that the Stage I route for both the rules is not optimized in

terms of distance, but notice how the routes are efficient distance wise, after Stage II

optimization. In case of the Local Timing Rule model with d=0, notice that vehicle

1 services all the Priority 1 (red) nodes and a few Priority 2, 3 nodes. On the other

hand, observe that vehicle 2 starts servicing with Priority 2 nodes and finishes with

Priority 3 nodes. This means that with the Local Timing Rule, it is possible that a

higher priority node will have to wait since the other vehicle is attending to a lower

priority node. If the nodes are badly affected by a disaster, this can prove fatal and

hence may not be an acceptable solution as resources can, alternatively, be pooled

to service higher priority nodes. From Table 5.9, with Local Timing Rule for d=0,

the earliest and latest service times for Priority 1 nodes using vehicle 2 are 1.26 to

10.49 (vehicle 1 does not service Priority 1 nodes). The earliest and latest service

times for Priority 2 nodes using vehicle 1 are 1.10 to 7.90 and using vehicle 2, they

are 11.27. Comparing the average service times, we see that it is 5.73 for Priority 1,

where as for Priority 2 is 4.70 and 11.27. That is, some of the Priority 2 nodes are

serviced earlier than Priority 1 nodes! On the other hand, with Global Timing Rule,

the service times reflect the urgency levels of the nodes, that is, all vehicles cater to
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Priority 1 nodes first and so on. In the Local Timing Rule model with d=1 we see

that some of the Priority 3 nodes get serviced earlier compared to Priority 1 nodes!

On the other hand, with Global Timing Rule model with d=1, the latest service

times for Priority 1 nodes are (6.96, 5.66) which is lower than the earliest service

times for Priority 3 nodes. Thus, we observe that the Global Timing Rule model

gives us an ordered distribution of service times based on urgency levels compared

to Local Timing Rule model. But it should also be emphasized that Local Timing

Rule model has its benefits as discussed in Section 5.4.2 when the vehicle capacity

or route-length is limited.

Table 5.8: Optimal Results for m-HVRP using Global Timing Rule on 21 nodes
network

d
(Stage)

Total
dis-

tance

Distance by
Vehicle (#1,

#2)

CAP used
by vehicle
(#1, #2)

Demand
met by

Priority for
Veh 1

Demand
met by

Priority for
Veh 2

Time

Two vehicles with CAP = 75, Lmax = 18
0 (I) 34.80 16.92, 17.88 57, 75 17, 29, 11 27, 20, 28 13.67s
0 (II) 30.87 14.13, 16.74 70, 62 23, 26, 21 21, 23, 18 70.50s
1 (I) 34.70 17.76, 16.94 75, 57 24, 19, 32 20, 30, 7 22.08m

1 (II)a 25.55 15.56, 9.99 66, 66 23, 25, 18 21, 24, 21 18.46h
h:hours, s:sec, m:min, a4.14% gap

5.6. Conclusions

In this research we discussed the challenges that are faced in the last mile dis-

tribution of the aid to disaster victims. We developed two routing models 1-HVRP

and m-HVRP. For both these models, the vehicle(s) are constrained by capacity and

route-length restrictions. Apart from the d−Relaxed Priority Rule, we enforce the
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Table 5.9: Service Times for m-HVRP using Local & Global Timing Rules (after
Stage II)

d
Service Times for Veh 1
by Priority

Service Times for Veh 2
by Priority

Local Timing Rule

0
Min: N/A, 1.10, 9.12 Min: 1.26, 11.27, 11.96
Max: N/A, 7.90, 11.07 Max: 10.49, 11.27, 14.69
Avg: N/A, 4.70, 9.94 Avg: 5.73, 11.27, 13.29

1
Min: 4.53, 3.66, 9.48 Min: 1.26, 3.99, 6.04
Max: 8.56, 14.75, 12.21 Max: 4.86, 5.32, 8.49
Avg: 6.43, 9.80, 10.88 Avg: 3.08, 4.56, 7.02

Global Timing Rule

0
Min: 1.26, 7.33, 11.48 Min: 3.44, 6.57, 11.17
Max: 6.46, 10.26, 13.43 Max: 5.79, 10.65, 13.90
Avg: 3.93, 8.96, 12.30 Avg: 4.62, 8.27, 12.57

1a

Min: 2.93, 1.29, 9.99 Min: 2.06, 1.10, 7.34
Max: 6.96, 12.03, 12.72 Max: 5.66, 6.12, 9.29
Avg: 5.06, 7.66, 11.39 Avg: 3.88, 3.86, 8.16

aStage II optimality gap is 4.14%

Order of Demand Fulfillment rule for these routing models. The routing models are

developed to cater to four performance metrics: Distance, Demand Satisfied, Re-

sponse Time and Number of Customers Served. We develop MIP formulations for

the capacitated vehicle routing problem with single (1-HVRP) and multiple vehicles

(m-HVRP). Inherent conflicts in the performance measures in the case of single and

multiple vehicles, are addressed by multi-stage optimization or adding appropriate

constraints. Multiple vehicles adds on to the complexity of the problem in terms of

whether all the vehicles need to service all the nodes simultaneously or sequentially.

The routing models are successfully run on small test problems with 21, and 30

nodes network to optimality (near-optimal) using optimization software. Then, we

discuss the performance of the routing models on four different performance metrics

– distance traversed, demand satisfied, response time and number of customers sat-
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Figure 5.4: Optimal results of m-HVRP on 21 nodes using the Local Timing Rule

isfied. Finally, we show that traditional routing models fail as they do not capture

the multiple performance measures relevant for humanitarian relief operations.

Delivery of aid concerns not only just relief agencies but businesses as well
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Figure 5.5: Optimal results of m-HVRP on 21 nodes using the Global Timing Rule

since their global supply chain is affected. During hurricane Katrina, businesses

like Waffle House, Lowes, Home Depot, and Wal-Mart did an outstanding job of

restoring their stores to help serve the needs of local community. This helped them
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earn tremendous social value, and in the process helped their businesses to thrive as

their stores were up and ready to serve the community. In a recent panel discussion

(Humanitarian Logistics Conference, Feb 2009), director of World Food Programme

– an organization known for its logistics and distribution, mentioned that cost and

efficiency of humanitarian relief operations as important as the humanitarian aspect

of the operations to the agency and as well as to the donors. With involvement of

numerous parties in the relief operations (e.g., businesses, international and local

relief agencies), it is of vital importance that distribution of relief aid is efficient.

Our research designs efficient and humanitarian delivery routes for distribution of

relief goods which provides a better understanding of relief operations for businesses

and relief agencies.

There are many possible extensions to this work. Most of the relief operations

cannot be completed in one time-period and hence one can extend this work to

multi-period vehicle routing problem. In this work, we ignored the computational

complexity of these routing models; hence future research can be geared towards

to solving these problems in real-time, efficiently to optimality. Our work is of

tremendous research value as it contributes to the vehicle routing problem (VRP)

literature and has defined a new VRP variant.

5.7. Summary of Insights

In this chapter, we extended the uncapacitated VRP model for humanitarian

relief situations (that was discussed in Chapter 4) to consider single and multiple
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vehicle(s) with capacity and route-length restrictions. The key insights from this

chapter are:

• Developed two routing models 1-HVRP and m-HVRP corresponding to rout-

ing with single vehicle and multiple vehicles, respectively, with capacity and

route-length restrictions. Also, introduced new constraint - Order of Demand

Fulfillment that is relevant for dealing with nodes that have demand and pri-

orities. This says that all high priority demand must be satisfied if a vehicle

has enough available capacity.

• Discussed the additional challenges in the distribution of aid that are posed

when one has single and multiple vehicles with capacity and route-length re-

strictions. Primary objective is to satisfy as much demand as possible. But,

can we achieve this using the least distance? Does maximum demand mean,

we can satisfy as many victims as possible? With multiple vehicles, should

relief organization do sequential or simultaneous delivery for a priority class?

For example, one can imagine two routes which satisfy as much demand as

possible but these routes may differ on the response time for the nodes. Based

on these research questions, we develop models that capture the four perfor-

mance metrics: (i) Distance, (ii) Response Time (Earliest, Latest, Average),

(iii) Fill Rate (or % Demand Satisfied), (iv) Number of Customers Serviced.

• Discussed two optimization models for solving 1-HVRP: (i) Two-stage opti-

mization and (ii) Weighted objective function.

• The two-stage optimization model consists of two stages. In first stage, the
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routes that deliver maximum demand are identified. This stage is not trivial

to solve as the vehicle has route-length restriction. In second stage, such a

route is cleaned up for efficiency in terms of distance and number of customers

serviced. First stage caters to the humanitarian aspect and the second stage

caters to the efficiency of the operations.

• MIP formulations are developed for the two-stage optimization model. First

stage problem is formulated as an Orienteering Problem, taking into account

the node priorities. Prize is the demand at each node. Second stage problem

is modeled as (i) u-HVRP for the same subset of nodes that are visited in first

stage or (ii) u-HVRP for any subset of nodes that meet the maximum demand

objective in the first stage.

• In the other approach - weighted objective function is formed by taking a

convex combination of total demand satisfied and total distance traversed.

Depending on the weights of the objectives, one objective dominates the other.

If distance is highly weighted, then the vehicle starts delivering at lower levels,

which is unacceptable for humanitarian relief operations. Thus, this approach

is discarded for 1-HVRP.

• Computationally, 1-HVRP formulations are solved to optimality for 21 node

and 30 node networks. Results indicate that the routes that deliver maximum

demand do not necessarily travel least distance. Weighted objective function

approach is not guaranteed to obtain such desired solutions as the objectives

do not have inverse relationship.
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• With m-HVRP, one important issue that arises is the sequential or simulta-

neous service of a priority class. These two models arise as a result of how

the d−Relaxed Priority Rule is applied – for individual vehicle separately or

for all vehicles. In sequential servicing (we call it local timing model), a high

priority node can be serviced at a later time than a low priority node if the two

nodes are visited by two different vehicles. In simultaneous service (we call

it global timing model), a high priority node is always serviced earlier than a

lower priority node.

• Similar to 1-HVRP, we have two-stage optimization and weighted objective

approach. We discard the weighted objective approach for the same issues as

in 1-HVRP. MIP formulations for two-stage optimization are developed. First

stage is modeled as a Team-Orienteering Problem with d−Relaxed Priority

Rule enforced locally or globally. In the second stage, the routes from first

stage are cleaned up for efficiency for distance and number of customers sat-

isfied. Second stage problem is modeled as (i) multiple vehicle extension of

u-HVRP for the same subset of nodes that are visited in first stage or (ii)

multiple vehicle extension of u-HVRP for any subset of nodes that meet the

maximum demand objective in the first stage.

• Computationally, m-HVRP formulations are successfully run on test problems

with 21 nodes network to optimality using CPLEX optimization software.

Local timing rule results in some of the high priority nodes serviced later than

a low priority node, where as with global timing rule, high priority nodes have
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lower service times compared to low priority nodes.

• Our work is of practical value as we developed comprehensive routing models

for single and multiple vehicles that consider different performance metrics.

Our models not only meet the primary goal of satisfying as much demand as

possible but also cater to other performance metrics like distance, response

time and number of customers satisfied.

• Developed a new orienteering or team-orienteering model that not only has

prize, but also places importance on the order of visit to collect these prizes.

Thus, this work is of value to the vehicle routing problem (VRP) literature as

we have defined a new class of VRPs.
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Chapter 6

Conclusions and Future Work

In this dissertation, we introduced and studied research problems in Retail

Operations and Humanitarian Logistics. We summarize our work and discuss future

research directions below.

In Chapters 2 and 3, we focused on Retail Operations. Matching supply with

demand at the right time is a big challenge for retailers, especially for fashion apparel

goods due to long procurement and production lead times and relatively short sales

horizon. Retailers have to order their goods long before a sales season and face

market uncertainty at a macro level and demand uncertainty at a micro level. In

Retail Operations, the inventory that ends up as unsaleable at primary markets can

be significant (up to 20% of the retail product). Retailers of short life cycle products

look for strategies like selling in secondary markets at a discounted price to increase

revenues. Apart from this strategy, retailers also enter into contractual agreements

with suppliers to share the cost of excess (unsaleable) inventory. The effect of such

contracts on the retailer’s order quantities and the retailer’s channel strategies is

not trivial.

In Chapter 2, we focus on decisions that are prevalent primarily for high-end

fashion retail: Many retailers make use of their own stores (brands) as well as outlets.

It is typical in practice to sell the same goods in the stores and in the outlets, but the
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retailers choose to sell the goods first in their primary stores and then at the outlets

with a delay. We build a model to answer the following questions: Should the retailer

selling a seasonal product offer it only in the primary market? If not, then what

is the best time to start offering the product in the secondary market? Our model

is novel that it captures the temporal (sequential) aspect of the timing decision

and also analyzes the optimal order quantity for the retailer that faces both market

and demand uncertainty. Critical to our model and its structural properties is a

demand model where the demand in each market is proportional to the length of time

the product is offered in that market. By establishing analytical properties of the

retailer’s expected revenue and profits and conducting computational experiments,

we find that higher optimal order quantities in general result shortens the sales

horizon in the primary market while extending it in the secondary market. Steeper

discounts in the secondary market do not necessarily result in higher order quantities

as the revenue potential in both markets plays an important role in the retailer’s

total expected revenues. Most importantly, it may or may not be optimal for the

retailer to use a sequential, dual channel approach: The retailer can maximize his

expected profits by selling only in the primary market or only in the secondary

market; this depends on problem parameters, including demand and prices.

In Chapter 3, we develop a model to study the effect of contract types on a

retailer’s use of primary and secondary markets to sell his product. We introduce the

MM contract, which is commonly used in the industry, but has seldom been studied

in the research literature on supply chains. In this chapter, we not only study

retailer’s ordering and timing decisions but also the supplier’s choice of wholesale
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price given contractual agreements between the retailer and the supplier. We show

that for a given order quantity, the time to transfer the goods are sold for longest time

in the primary market when BB contract is in place; the second longest sales horizon

in the primary market is observed under WP. MM, on the other hand, increases the

length of the sales horizon for the secondary market. Considering the optimal order

quantities for the retailer, the retailer places the highest amount of orders under the

MM contract. While this is advantageous for the supplier, increasing his own sales,

it also poses challenges because the potential for paybacks from the suppliers to the

retailer are also higher when the order quantity is high. In general, retailer benefits

more from the MM contract but both parties can benefit from MM.

Our work contributes to the literature on Retail Operations, especially with

sequential management of channels. There are many extensions possible to the

problem discussed in this dissertation. One can look at menu of contracts that

can result in equitable distribution of inventory-related costs. We have considered

costless transfer and in future work, this assumption can be relaxed. With the

advent of technology, customers are strategic in that they wait for sales to make

the purchase. For example, a customer walking into store with iPhone has access

to review of the product and feedback from the customers of the product without

incurring additional search costs. Another potential extension is when the retailer is

carrying multiple products, across multiple channels. The issue of substitution needs

to be considered to accurately model the demand. Do we time the product changes

at the same time? Channel conflict issues need to be examined carefully. Yet,

another extension is managing sales channels sequentially when the sales channels
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are owned by different parties.

The next two chapters – Chapter 4 and 5, we discuss one particular aspect of

humanitarian relief chain: The distribution of relief aid for non-profit organizations,

commonly known as “Last Mile Distribution”. This is a complex problem as the

goal of the relief operation is humanitarian yet at the same time, due to limited

resources, the operations have to be managed efficiently.

In Chapter 4, we consider the vehicle routing problem without capacity and

route-length restrictions for humanitarian relief operations. We discuss vehicle rout-

ing problem for such relief operations whose primary goal is to deliver as much aid as

possible but that also is efficient on other performance metrics like response time. In

this paper we discuss routing for relief operations using one vehicle without capacity

restrictions. Contrary to the existing vehicle routing models, the key property of

our routing models is that the nodes have priorities along with humanitarian needs.

Nodes with higher priority represent places that urgently need service; hence they

need to be serviced before a lower priority node. Mixed integer programs (MIP) are

used to formulate routing models with strict and relaxed forms of priority restric-

tions for a single vehicle with no capacity restrictions. We derive bounds for this

problem and show that this bound is attained in limiting condition for a worst-case

example. Finally, we test the formulations on a set of small problems (up to 40

nodes) and evaluate the optimal solutions with respect to the performance metrics

like response time and distance and show that u-HVRP, our vehicle routing model

with priorities and d−Relaxed Priority rule capture the trade-off between distance

and response time effectively compared to VRP models without priorities.
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In Chapter 5, we discuss two vehicle routing models for distribution of a single

relief good (e.g., water, blankets, medicines) to disaster victims using single and

multiple vehicles consisting of homogeneous fleet with capacity and route length

restrictions. We call these problems as 1-HVRP and m-HVRP respectively. The

goal of a humanitarian relief operation is to deliver as much aid as possible but at

the same time, due to limited resources, the operations have to be efficient on other

metrics as well. This imposes new challenges for the routing models and in this work,

we consider metrics like fill rate (demand satisfied), distance traversed, response

time and number of victims satisfied to capture performance metrics relevant for

humanitarian relief operations. The key aspect of our routing models is that the

nodes have priorities and all the routes have to satisfy two important constraints:

d−Relaxed Priority Rule and Order of Demand Fulfillment. Nodes with higher

priority represent places that urgently need service; hence they need to be serviced

first compared to a lower priority node. Different routing models are formulated as

Mixed Integer Programs and are solved to optimality for small test problems (up

to 30 nodes). Finally, we show that our routing models show the trade-off between

these four metrics as the former constraint caters to operational efficiency and the

later constraint caters to the humanitarian nature of this routing problem.

Our work is of tremendous research value as it contributes to the vehicle rout-

ing problem (VRP) literature and has defined a new VRP variant. We have studied

the VRP for humanitarian relief situations and shown that traditional models fail

to capture the relevant performance metrics. There are many possible extensions

to this work. In this work we assumed demand is deterministic; if the demand is
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random, then we have Stochastic VRPs. Most of the relief operations cannot be

completed in one time-period and hence one can extend this work to multi-period

vehicle routing problem. In this work, we ignored the computational complexity of

these routing models; hence future research can be geared towards to solving these

problems in real-time, efficiently to optimality.
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Appendix A
Appendix for Essay 1
A.1. Proof for Componentwise Concavity of the Sample Path Rev-

enue

We will show that the expected revenue function is concave in sample-path
sense. For a sample-path, X1 = k1 and X2 = k2, we see that R(β|Q) can consist
of possibly three slopes as derived in Equation (2.12). For this sample path, if the
first order derivative with respect to β decreases in β then our proof is complete.

First, we identify the feasible range of β for which hi(β, Q) for i = 1, 2, 3 are
defined, in Table A.1. Analyzing different cases based on ‘Condition Set 1’ and
‘Condition Set 2’ we arrive at feasible ranges of β for hi(β, Q) functions. Each
function has a different partial derivative, hence a distinct ‘slope,’ with respect to β.
Using this table and based on the sign of three terms, Q− k1, Q− k2, and k1 − k2,
we list the possible sequence of slopes for β ∈ [0, 1] in Table A.2. The last column
in Table A.2 refers to the cases that are listed in Table A.1.

In summary, the retailer’s timing problem can be simplified to understanding
these eight possibilities. We illustrate each feasible case in Figure A.1: In Figure
A.1(a), h2(β,Q) is followed by h3(β, Q) and it is never possible for p1k1−p2k2 > (p1−
p2)k1; hence R(β|Q) is concave in β. In Figure A.1(b), only h3(β,Q) exists; hence
R(β,Q) is concave in β. In Figure A.1(c), there are two possibilities: either h2(β, Q)
is followed by h1(β, Q) or h3(β, Q) precedes h2(β, Q) which precedes h1(β, Q). Again,
for this parameter combination, it is never possible that p1k1 − p2k2 < (p1 − p2)k1.
Therefore R(β, Q) is componentwise concave in β for a given Q.
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Figure A.1: Sample path revenue as a function of β

We continue by referring to the conditions in Table A.2. In No.1 and No.2, the
slopes are decreasing in β since p1 ≥ p2 and thus concave. Consider No.3. Notice
that the slopes are decreasing since p1k1 − p2k2 ≥ (p1 − p2)k1 ≥ 0. Otherwise we
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Table A.1: Feasible region for first order derivatives (in sample-path) for the Linear
Demand Model
Case Condition Set 1 Condition Set 2 Feasible region β

h1(β,Q) = p1Q

1.1 Q < βk1 ≤ k1
Q
k1

< β < 1

h2(β,Q) = (p1 − p2)βk1 + p2Q

2.1
βk1 ≤ Q ≤ k1,
Q−k2 < β(k1−k2)

Q ≤ k2, k1 < k2 0 ≤ β ≤ Q
k1
≤ 1 ≤ Q−k2

k1−k2

2.2 Q ≤ k2, k1 > k2
Q−k2

k1−k2
≤ 0 ≤ β ≤ Q

k1
≤ 1

2.3 Q ≥ k2, k1 > k2 0 ≤ Q−k2

k1−k2
≤ β ≤ Q

k1
≤ 1

2.4 Q ≥ k2, k1 < k2 Infeasible as β < Q−k2

k1−k2
≤ 0

3.1
βk1 ≤ k1 ≤ Q,
Q−k2 < β(k1−k2)

Q ≤ k2, k1 < k2 0 ≤ β ≤ Q−k2

k1−k2
≤ 1 ≤ Q

k1

3.2 Q ≤ k2, k1 > k2 Infeasible as Q ≥ k1 & k1 > k2 ≥ Q

3.3 Q ≥ k2, k1 > k2 Infeasible as β > Q−k2

k1−k2
≥ 1

3.4 Q ≥ k2, k1 < k2 Infeasible as β < Q−k2

k1−k2
≤ 0

h3(β,Q) = p1βk1 + p2(1− β)k2

4.1
βk1 ≤ Q ≤ k1,
Q−k2 ≥ β(k1−k2)

Q ≤ k2, k1 < k2 Infeasible as β ≥ Q−k2

k1−k2
≥ 1

4.2 Q ≤ k2, k1 > k2 Infeasible as β ≤ Q−k2

k1−k2
≤ 0

4.3 Q ≥ k2, k1 > k2 0 ≤ β ≤ Q−k2

k1−k2
≤ Q

k1
≤ 1

4.4 Q ≥ k2, k1 < k2 Infeasible as Q ≤ k1 & Q ≥ k2 > k1

5.1
βk1 ≤ k1 ≤ Q,
Q−k2 ≥ β(k1−k2)

Q ≤ k2, k1 < k2 0 ≤ Q−k2

k1−k2
≤ β ≤ 1 ≤ Q

k1

5.2 Q ≤ k2, k1 > k2 Infeasible as β ≤ Q−k2

k1−k2
≤ 0

5.3 Q ≥ k2, k1 > k2 0 ≤ β ≤ 1 ≤ Q
k1
≤ Q−k2

k1−k2

5.4 Q ≥ k2, k1 < k2
Q−k2

k1−k2
≤ 0 ≤ β ≤ 1 ≤ Q

k1

will violate the assumptions of this sample-path. No.4 is not feasible. For No.5,
the slopes are decreasing as, (p1 − p2)k1 ≥ p1k1 − p2k2 ≥ 0 to satisfy the conditions
for this sample-path. No.6 is again not feasible. In No.7 and No.8, there is only
one slope and thus it is linear, which implies it is concave. Thus, we see that the
expected revenue function is concave in sample-path sense. In the above table, we
implicitly assumed that k1 > 0, k2 > 0, k1 6= k2. For technical completeness, let us
look at the special situations when these restrictions are violated. If k1 = 0, k2 = 0,
then it is a trivial case with constant revenue of 0 for all β. If k1 = 0, k2 > 0 then
it is equivalent to selling only in the secondary market. Then, the slopes are: 0 for
β ≤ 1− Q

k2
and −p2k2 for β > 1− Q

k2
. Slopes are decreasing and thus it is concave.

If k1 = k2 > 0, then we have the following slopes: (p1 − p2)k1 for β ≤ Q
k1

and 0

for β > Q
k1

. We see that slopes are decreasing and thus the sample path revenue
function is concave.
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Table A.2: First order derivative wrt β (in sample-path) for the Linear Demand
Model

No. Conditions Sequence of Slopes for β Feasible β
1 Q ≤ k1, Q ≤ k2, k1 < k2 (p1 − p2)k1, 0 Cases 2.1, 1.1
2 Q ≤ k1, Q ≤ k2, k1 > k2 (p1 − p2)k1, 0 Cases 2.2, 1.1
3 Q ≤ k1, Q ≥ k2, k1 > k2 p1k1 − p2k2, (p1 − p2)k1, 0 Cases 4.3, 2.3, 1.1
4 Q ≤ k1, Q ≥ k2, k1 < k2 – Not feasible
5 Q ≥ k1, Q ≤ k2, k1 < k2 (p1 − p2)k1, p1k1 − p2k2, 0 Cases 3.1, 5.1
6 Q ≥ k1, Q ≤ k2, k1 > k2 – Not feasible
7 Q ≥ k1, Q ≥ k2, k1 > k2 p1k1 − p2k2 Case 5.3
8 Q ≥ k1, Q ≥ k2, k1 < k2 p1k1 − p2k2 Case 5.4

A.2. Proof of Joint Concavity of the Sample Path Revenue Function

We will prove the joint concavity of β, Q using the definition of concavity.
Consider two points (Q1, β1) and (Q2, β2) and 0 ≤ α ≤ 1. Define Q0 = αQ1 + (1−
α)Q2 and β0 = αβ1 + (1 − α)β2. We will show that the expected revenue function
is concave in β, Q in a sample-path sense. That is, for any sample path, X1 = k1,
and X2 = k2, we will show that R(β0|Q0) ≥ αR(β1|Q1) + (1 − α)R(β2|Q2). There
are many cases depending on the relation between the elements in each of the sets:
{Q1−β1k1, (1−β1)k2}, {Q2−β2k1, (1−β2)k2}, {Q0−β0k1, (1−β0)k2}, {Q1, Q2} and
{β1, β2}. To simplify the notation, let us denote I1 = Q1 − β1k1, D1 = (1 − β1)k2,
I2 = Q2 − β2k1, D2 = (1 − β2)k2, and I0 = Q0 − β0k1, D0 = (1 − β0)k2. Table A.3
summarizes the possible conditions and lists where the analysis is provided. Please
refer to Lemma 1 through 11 below to complete the proof.

Let us define the following for this section: LHS ≡ R(β0|Q0) and RHS ≡
αR(β1|Q1) + (1− α)R(β2|Q2). To prove concavity, we need to show LHS ≥ RHS
for all the cases listed in Table A.3.

Lemma 1 If I1 ≤ 0 ≤ D1 or 0 ≤ I1 ≤ D1 or 0 ≤ D1 ≤ I1, I2 ≤ 0 ≤ D2, I0 ≤ 0 ≤
D0 then LHS = RHS

Proof If I1 ≤ 0 then LHS = p1Q0, RHS = p1(αQ1 + (1 − α)Q2) = p1Q0 =
LHS. If 0 ≤ I1 ≤ D1 then LHS = p1Q0 and RHS = α(p1β1k1 + p2(Q1 −
β1k1)) + (1 − α)(p1Q2). Since p2 ≤ p1, we have RHS ≤ p1(αβ1k1 + αQ1 −
αβ1k1) + (1 − α)(p1Q2) = p1Q0 = LHS. If 0 ≤ D1 ≤ I1 then LHS = p1Q0

and RHS = α(p1β1k1 + p2(1 − β1)k2) + (1 − α)(p1Q2). As p2 ≤ p1, RHS ≤
α(p1β1k1 + p1Q1 − p1β1k1) + (1− α)(p1Q2) = p1Q0 = LHS. •

Lemma 2 If I1 ≤ 0 ≤ D1, 0 ≤ I2 ≤ D2 or 0 ≤ D2 ≤ I2, I0 ≤ 0 ≤ D0 then
LHS ≥ RHS

Proof If 0 ≤ I2 ≤ D2, then LHS = p1Q0, RHS = α(p1Q1) + (1 − α)(p1β2k1 +
p2(Q2 − β2k1)). Since p2 ≤ p1, then RHS ≤ α(p1Q1) + (1 − α)(p1β2k1 + p1(Q2 −
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Table A.3: Proof of joint concavity in sample-path for the Linear Demand Model
No. Conditions Proof

Q2 ≤ Q1, β2 ≤ β1

1 I1 ≤ 0 ≤ D1, I2 ≤ 0 ≤ D2, I0 ≤ 0 ≤ D0 Lemma 1
2 I1 ≤ 0 ≤ D1, 0 ≤ I2 ≤ D2, I0 ≤ 0 ≤ D0 Lemma 2
3 I1 ≤ 0 ≤ D1, 0 ≤ D2 ≤ I2, I0 ≤ 0 ≤ D0 Lemma 2
4 I1 ≤ 0 ≤ D1, 0 ≤ I2 ≤ D2, 0 ≤ I0 ≤ D0 Lemma 3
5 I1 ≤ 0 ≤ D1, 0 ≤ I2 ≤ D2, 0 ≤ D0 ≤ I0 Lemma 4
6 I1 ≤ 0 ≤ D1, 0 ≤ D2 ≤ I2, 0 ≤ I0 ≤ D0 Lemma 3
7 I1 ≤ 0 ≤ D1, 0 ≤ D2 ≤ I2, 0 ≤ D0 ≤ I0 Lemma 4
8 0 ≤ I1 ≤ D1, I2 ≤ 0 ≤ D2, I0 ≤ 0 ≤ D0 Lemma 1
9 0 ≤ I1 ≤ D1, I2 ≤ 0 ≤ D2, 0 ≤ I0 ≤ D0 Lemma 5
10 0 ≤ I1 ≤ D1, I2 ≤ 0 ≤ D2, 0 ≤ D0 ≤ I0 Lemma 6
11 0 ≤ I1 ≤ D1, 0 ≤ I2 ≤ D2, 0 ≤ I0 ≤ D0 Lemma 7
12 0 ≤ I1 ≤ D1, 0 ≤ I2 ≤ D2, 0 ≤ D0 ≤ I0 Lemma 8
13 0 ≤ I1 ≤ D1, 0 ≤ D2 ≤ I2, 0 ≤ I0 ≤ D0 Lemma 9
14 0 ≤ I1 ≤ D1, 0 ≤ D2 ≤ I2, 0 ≤ D0 ≤ I0 Lemma 8
15 0 ≤ D1 ≤ I1, I2 ≤ 0 ≤ D2, I0 ≤ 0 ≤ D0 Lemma 1
16 0 ≤ D1 ≤ I1, I2 ≤ 0 ≤ D2, 0 ≤ I0 ≤ D0 Lemma 5
17 0 ≤ D1 ≤ I1, I2 ≤ 0 ≤ D2, 0 ≤ D0 ≤ I0 Lemma 10
18 0 ≤ D1 ≤ I1, 0 ≤ I2 ≤ D2, 0 ≤ I0 ≤ D0 Lemma 9
19 0 ≤ D1 ≤ I1, 0 ≤ I2 ≤ D2, 0 ≤ D0 ≤ I0 Lemma 8
20 0 ≤ D1 ≤ I1, 0 ≤ D2 ≤ I2, 0 ≤ I0 ≤ D0 Lemma 9
21 0 ≤ D1 ≤ I1, 0 ≤ D2 ≤ I2, 0 ≤ D0 ≤ I0 Lemma 11

Q2 ≤ Q1, β2 ≥ β1

22 I1 ≤ 0 ≤ D1, I2 ≤ 0 ≤ D2, I0 ≤ 0 ≤ D0 See No.1
23 0 ≤ I1 ≤ D1, I2 ≤ 0 ≤ D2, I0 ≤ 0 ≤ D0 See No.8
24 0 ≤ I1 ≤ D1, I2 ≤ 0 ≤ D2, 0 ≤ I0 ≤ D0 See No.9
25 0 ≤ I1 ≤ D1, I2 ≤ 0 ≤ D2, 0 ≤ D0 ≤ I0 See No.10
26 0 ≤ I1 ≤ D1, 0 ≤ I2 ≤ D2, 0 ≤ I0 ≤ D0 See No.11
27 0 ≤ I1 ≤ D1, 0 ≤ I2 ≤ D2, 0 ≤ D0 ≤ I0 See No.12
28 0 ≤ I1 ≤ D1, 0 ≤ D2 ≤ I2, 0 ≤ I0 ≤ D0 See No.13
29 0 ≤ I1 ≤ D1, 0 ≤ D2 ≤ I2, 0 ≤ D0 ≤ I0 See No.14
30 0 ≤ D1 ≤ I1, I2 ≤ 0 ≤ D2, I0 ≤ 0 ≤ D0 See No.15
31 0 ≤ D1 ≤ I1, I2 ≤ 0 ≤ D2, 0 ≤ I0 ≤ D0 See No.16
32 0 ≤ D1 ≤ I1, I2 ≤ 0 ≤ D2, 0 ≤ D0 ≤ I0 See No.17
33 0 ≤ D1 ≤ I1, I2 ≤ 0 ≤ D2, 0 ≤ I0 ≤ D0 See No.18
34 0 ≤ D1 ≤ I1, 0 ≤ I2 ≤ D2, 0 ≤ D0 ≤ I0 See No.19
35 0 ≤ D1 ≤ I1, 0 ≤ I2 ≤ D2, 0 ≤ I0 ≤ D0 See No.20
36 0 ≤ D1 ≤ I1, 0 ≤ D2 ≤ I2, 0 ≤ D0 ≤ I0 See No.21

β2k1)) = p1Q0 = LHS. If I2 ≥ D2, then LHS = p1Q0, RHS = α(p1Q1) +
(1 − α)(p1β2k1 + p2(1 − β2)k2)). Since p2 ≤ p1 and D2 < I2, this implies that
RHS ≤ α(p1Q1) + (1− α)(p1β2k1 + p1(Q2 − β2k1)) = p1Q0 = LHS. •
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Lemma 3 If I1 ≤ 0 ≤ D1, 0 ≤ I2 ≤ D2 or 0 ≤ D2 ≤ I2, 0 ≤ I0 ≤ D0 then
LHS ≥ RHS

Proof If 0 ≤ I2 ≤ D2, then

LHS = p1β0k1 + p2(Q0 − β0k1), RHS = α(p1Q1) + (1− α)(p1β2k1 + p2(Q2 − β2k1))

LHS −RHS = p1 (β0k1 − αQ1 − (1− α)β2k1) + p2 (Q0 − β0k1 − (1− α)(Q2 − β2k1))

= p1 (αβ1k1 − αQ1) + p2 (αQ1 − αβ1k1) = (p1 − p2)α(β1k1 −Q1) ≥ 0

If D2 ≤ I2, then

LHS = p1β0k1 + p2(Q0 − β0k1), RHS = α(p1Q1) + (1− α)(p1β2k1 + p2(1− β2)k2)

LHS −RHS = p1 (β0k1 − αQ1 − (1− α)β2k1) + p2 (Q0 − β0k1 − (1− α)(1− β2)k2)

≥ p1 (αβ1k1 − αQ1) + p2 (Q0 − β0k1 − (1− α)(Q2 − β2k1)) = (p1 − p2)α(β1k1 −Q1) ≥ 0

•

Lemma 4 If I1 ≤ 0 ≤ D1, 0 ≤ I2 ≤ D2 or 0 ≤ D2 ≤ I2, 0 ≤ I0 ≥ D0 then
LHS ≥ RHS

Proof If 0 ≤ I2 ≤ D2, then

LHS = p1β0k1 + p2(1− β0)k2, RHS = α(p1Q1) + (1− α)(p1β2k1 + p2(Q2 − β2k1))

LHS −RHS = p1 (β0k1 − αQ1 − (1− α)β2k1) + p2 ((1− β0)k2 − (1− α)(Q2 − β2k1))

≥ p1 (αβ1k1 − αQ1) + p2 ((1− β0)k2 − (1− α)(1− β2)k2)

= p1 (αβ1k1 − αQ1) + p2k2α(1− β1) ≥ 0

If I2 ≥ D2, then

LHS = p1β0k1 + p2(1− β0)k2, RHS = α(p1Q1) + (1− α)(p1β2k1 + p2(1− β2)k2)

LHS −RHS = p1 (β0k1 − αQ1 − (1− α)β2k1) + p2 ((1− β0)k2 − (1− α)(1− β2)k2)

= p1 (αβ1k1 − αQ1) + p2αk2 (1− β1) ≥ 0

•

Lemma 5 If 0 ≤ I1 ≤ D1 or 0 ≤ D1 ≤ I1, I2 ≤ 0 ≤ D2, 0 ≤ I0 ≤ D0 then
LHS ≥ RHS

Proof If 0 ≤ I1 ≤ D1 then

LHS = p1β0k1 + p2(Q0 − β0k1), RHS = α(p1β1k1 + p2(Q1 − β1k1)) + (1− α)(p1Q2)

LHS −RHS = p1(β0k1 − αβ1k1 − (1− α)Q2) + p2(Q0 − β0k1 − αQ1 + αβ1k1)

= (1− α)(β2k1 −Q2)(p1 − p2) ≥ 0
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If 0 ≤ D1 ≤ I1 then

LHS = p1β0k1 + p2(Q0 − β0k1), RHS = α(p1β1k1 + p2(1− β1)k2) + (1− α)(p1Q2)

LHS −RHS ≥ p1((1− α)β2k1 − (1− α)Q2) + p2(Q0 − β0k1 − α(Q1 − β1k1))

= (1− α)(β2k1 −Q2)(p1 − p2) ≥ 0

•

Lemma 6 If 0 ≤ I1 ≤ D1, I2 ≤ 0 ≤ D2, 0 ≤ D0 ≤ I0 then LHS ≥ RHS

Proof

LHS = p1β0k1 + p2(1− β0)k2, RHS = α(p1β1k1 + p2(Q1 − β1k1)) + (1− α)(p1Q2)

LHS −RHS = p1(β0k1 − αβ1k1 − (1− α)Q2) + p2((1− β0)k2 − α(Q1 − β1k1))

≥ p1(1− α)(β2k1 −Q2) + p2((1− β0)k2 − α(1− β1)k2)

= p1(1− α)(β2k1 −Q2) + p2k2(1− α)(1− β2) ≥ 0

•

Lemma 7 If 0 ≤ I1 ≤ D1, 0 ≤ I2 ≤ D2, 0 ≤ I0 ≤ D0 then LHS ≥ RHS

Proof

LHS = p1β0k1 + p2(Q0 − β0k1)

RHS = α(p1β1k1 + p2(Q1 − β1k1)) + (1− α)(p1β2k1 + p2(Q2 − β2k1)), LHS −RHS = 0

•

Lemma 8 If 0 ≤ I1 ≤ D1 or 0 ≤ D1 ≤ I1, 0 ≤ I2 ≤ D2 or 0 ≤ D2 ≤ I2, 0 ≤ D0 ≤
I0 then LHS ≥ RHS

Proof If 0 ≤ I1 ≤ D1, 0 ≤ I2 ≤ D2 then

LHS = p1β0k1 + p2(1− β0)k2

RHS = α(p1β1k1 + p2(Q1 − β1k1)) + (1− α)(p1β2k1 + p2(Q2 − β2k1))

LHS −RHS ≥ p2k2(1− β0 − α(1− β1)− (1− α)(1− β2)) = 0

If 0 ≤ I1 ≤ D1, 0 ≤ D2 ≤ I2 then

LHS = p1β0k1 + p2(1− β0)k2

RHS = α(p1β1k1 + p2(Q1 − β1k1)) + (1− α)(p1β2k1 + p2(1− β2)k2))

LHS −RHS ≥ p2k2(1− β0 − α(1− β1)− (1− α)(1− β2)) = 0
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If 0 ≤ D1 ≤ I1, 0 ≤ I2 ≤ D2 then

LHS = p1β0k1 + p2(1− β0)k2

RHS = α(p1β1k1 + p2(1− β1)k2) + (1− α)(p1β2k1 + p2(Q2 − β2k1))

LHS −RHS ≥ p2k2(1− β0 − α(1− β1)− (1− α)(1− β2)) = 0

•

Lemma 9 If 0 ≤ I1 ≤ D1 or 0 ≤ D1 ≤ I1, 0 ≤ I2 ≤ D2 or 0 ≤ D2 ≤ I2, 0 ≤ I0 ≤
D0 then LHS ≥ RHS

Proof If 0 ≤ I1 ≤ D1 and 0 ≤ D2 ≤ I2, then,

LHS = p1β0k1 + p2(Q0 − β0k1)

RHS = α(p1β1k1 + p2(Q1 − β1k1)) + (1− α)(p1β2k1 + p2(1− β2)k2)

LHS −RHS ≥ p2(Q0 − β0k1 − α(Q1 − β1k1)− (1− α)(Q2 − β2k1)) = 0

If 0 ≤ D1 ≤ I1 and 0 ≤ I2 ≤ D2, then,

LHS = p1β0k1 + p2(Q0 − β0k1)

RHS = α(p1β1k1 + p2(1− β1)k2) + (1− α)(p1β2k1 + p2(Q2 − β2k1))

LHS −RHS ≥ p2(Q0 − β0k1 − α(Q− β1k1)− (1− α)(Q2 − β2k1)) = 0

If 0 ≤ D1 ≤ I1 and 0 ≤ D2 ≤ I2, then,

LHS = p1β0k1 + p2(Q0 − β0k1)

RHS = α(p1β1k1 + p2(1− β1)k2) + (1− α)(p1β2k1 + p2(1− β2)k2)

LHS −RHS ≥ p2(Q0 − β0k1 − α(Q1 − β1k1)− (1− α)(Q2 − β2k1)) = 0

•

Lemma 10 If 0 ≤ D1 ≤ I1, I2 ≤ 0 ≤ D2, 0 ≤ D0 ≤ I0 then LHS ≥ RHS

Proof

LHS = p1β0k1 + p2(1− β0)k2, RHS = α(p1β1k1 + p2(1− β1)k2) + (1− α)(p1Q2)

LHS −RHS = p1(1− α)(β2k1 −Q2) + p2k2(1− α)(β1) ≥ 0

•

Lemma 11 If 0 ≤ D1 ≤ I1, 0 ≤ D2 ≤ I2, 0 ≤ D0 ≤ I0 then LHS ≥ RHS
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Proof

LHS = p1β0k1 + p2(1− β0)k2

RHS = α(p1β1k1 + p2(1− β1)k2) + (1− α)(p1β2k1 + p2(1− β2)k2)

LHS −RHS = 0

•
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Appendix B
Appendix for Essay 2
B.1. Proofs for Retailer’s Timing Problem with WP Contract

B.1.1 Proof for Proposition 1

We use a simplified notation here: We drop the contract type WP from the
parameters.

(a) We derive the first order partial derivative of E[R(β|Q)]. Let us define the
following:

V (j, k) = p1 min(Q, j) + p2 min(k, (Q− j)+) (B.1)

For convenience in this proof, let us define the following notation: N1(β) = Nβ
1 and

N2(β) = Nβ
2 . Then, we can re-write the optimization problem as:

R∗(Q) = Max
0≤β≤1

E[R(β|Q)] = Max
0≤β≤1

∞∑
j=0

∞∑

k=0

V (j, k)P (Nβ
1 = j)P (Nβ

2 = k) (B.2)

From (B.2) we have the first order derivative in terms of V function as follows:

∂E[R(β|Q)]

∂β
=

∂E[V (Nβ
1 , Nβ

2 )]

∂β
(B.3)

We shall evaluate (B.3), the first order derivative from basic principles:

∂E[R(β|Q)]

∂β
= lim

ε→0

E[V (Nβ+ε
1 , Nβ+ε

2 )]− E[V (Nβ
1 , Nβ

2 )]

ε
= lim

ε→0

V R

ε
. (B.4)

Note that when ε → 0, there is at most one arrival in the interval [β, β +ε] following
the Poisson model. Conditioning on the Nβ

1 and Nβ
2 , we can write the following:

Nβ+ε
1 =

{
Nβ

1 with probability (1− λ1ε)

Nβ
1 + 1 with probability λ1ε

(B.5)

Similarly we have:

Nβ+ε
2 =

{
Nβ

2 with probability (1− λ2ε)

Nβ
2 − 1 with probability λ2ε

(B.6)
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Using (B.5) and (B.6) to expand the term E[V (Nβ+ε
1 , Nβ+ε

2 )], we get:

E[V (Nβ+ε
1 , Nβ+ε

2 )] = (1− λ1ε)(1− λ2ε)E[V (Nβ
1 , Nβ

2 )]

+(1− λ1ε)(λ2ε)E[V (Nβ
1 , Nβ

2 − 1)]

+(λ1ε)(1− λ2ε)E[V (Nβ
1 + 1, Nβ

2 )] (B.7)

Substituting (B.7) in Equation (B.4) and evaluating the numerator, we get,

V R = E[V (Nβ+ε
1 , Nβ+ε

2 )]− E[V (Nβ
1 , Nβ

2 )]

=
(
1− λ1ε− λ2ε + λ1λ2ε

2 − 1
)
E[V (Nβ

1 , Nβ
2 )]

+
(
λ2ε− λ1λ2ε

2
)
E[V (Nβ

1 , Nβ
2 − 1)]

+
(
λ1ε− λ1λ2ε

2
)
E[V (Nβ

1 + 1, Nβ
2 )] (B.8)

Replacing the numerator in (B.4), and re-arranging the terms, we finally obtain,

∂E[R(β|Q)]

∂β
= λ1

(
E[V (Nβ

1 + 1, Nβ
2 )]− E[V (Nβ

1 , Nβ
2 )]

)

−λ2

(
E[V (Nβ

1 , Nβ
2 )]− E[V (Nβ

1 , Nβ
2 − 1)]

)
(B.9)

Using the definition for the expectation, we have,

∂E[R(β|Q)]

∂β
=

∞∑
j=0

∞∑

k=0

{
λ1[V (j + 1, k)− V (j, k)]

− λ2[V (j, k + 1)− V (j, k)]
}

P (Nβ
1 = j)P (Nβ

2 = k)

(B.10)

The difference terms required in Equation (B.10) are provided in Table B.1. Sub-
stituting the values from Table B.1 into Equation (B.10) we obtain the first order
derivative with respect to β as stated in this proposition.

Table B.1: Evaluation of the difference functions V (j + 1, k)− V (j, k) and V (j, k +
1)− V (j, k)

Case V (j + 1, k)− V (j, k) V (j, k + 1)− V (j, k)

j > Q 0 0
j ≤ Q and j + k ≤ Q p1 p2

j ≤ Q and j + k > Q p1 − p2 0

(b) First, consider the interesting case of λ1 ≤ λ2. In this case, the second order

derivative wrt β is given in Lemma 12 below. Let us consider the sign of ∂2E[R(β|Q)]
∂β2

for different inventory levels. For a given inventory level that satisfies Lemmas 13
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- 15, the proof for the proposition follows trivially as ∂2E[R(β|Q)]
∂β2 ≤ 0. In case of

high inventory levels, as mentioned in Lemma 17, ∂2E[R(β|Q)]
∂β2 → 0 and hence the

expected revenue function exhibits affine behavior which implies that it is concave
in β. Consider the case when λ1 > λ2. In this case, the first order derivative with
respect to β is always positive. This means that the expected revenue function is
always strictly increasing in β. Thus, by definition of quasiconcavity, the expected
revenue function is quasiconcave in β when λ1 > λ2.

B.1.2 Lemmas for Retailer’s Timing Problem with Poisson Demand
Model

Lemma 12 (a) The second order derivative with respect to β is given as follows:

∂2E[R(β|Q)]

∂β
= p2(λ2 − λ1)

[
λ1P (Nβ

1 + Nβ
2 = Q)− λ2P (Nβ

1 + Nβ
2 = Q + 1)

]

−λ2
1(p1 − p2) P (Nβ

1 = Q) (B.11)

(b) If γ = βλ1+(1−β)λ2

Q+1
, then we have:

∂2E[R(β|Q)]

∂β2
= p2(λ2 − λ1)(λ1 − γ λ2) P (Nβ

1 + Nβ
2 = Q)− λ2

1(p1 − p2) P (Nβ
1 = Q)

(B.12)

Proof (a) We can write the first order derivative, given in Equation (3.11) as
follows:

∂E[R(β|Q)]

∂β
=

[
p1λ1 − p2λ2

] [
1− P (Nβ

1 + Nβ
2 > Q)

]

+
[
p1λ1 − p2λ1

] [
P (Nβ

1 + Nβ
2 > Q)− P (Nβ

1 > Q)
]

(B.13)

In order to evaluate the second order derivative, it is sufficient if we evaluate the
following expressions: ∂

∂β
P (Nβ

1 + Nβ
2 > Q) and ∂

∂β
P (Nβ

1 > Q). Writing down the
derivative from first principles, we have:

∂

∂β
P (Nβ

1 + Nβ
2 > Q) = lim

ε→0

P (Nβ+ε
1 + Nβ+ε

2 > Q)− P (Nβ
1 + Nβ

2 > Q)

ε
(B.14)

where ε is so chosen that there is at most one arrival in this interval. Using Equations
(B.5) and (B.6) we can evaluate the numerator in (B.14) as follows:

P (Nβ+ε
1 + N1−β−ε

2 > Q) =(1− λ1ε) (1− λ2ε) P (Nβ
1 + Nβ

2 > Q)

+ (λ1ε) (1− λ2ε) P (Nβ
1 + 1 + Nβ

2 > Q)

+ (1− λ1ε) (λ2ε) P (Nβ
1 + Nβ

2 − 1 > Q) (B.15)
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Substituting (B.15) into Equation (B.14), and taking limits, we have,

∂

∂β
P (Nβ

1 + Nβ
2 > Q) = (−λ1 − λ2) P (Nβ

1 + Nβ
2 > Q)

+ (λ1) P (Nβ
1 + Nβ

2 + 1 > Q)

+ (λ2) P (Nβ
1 + Nβ

2 − 1 > Q) (B.16)

Note that the probabilities in the above expression are related as follows:

P (Nβ
1 + Nβ

2 + 1 > Q) = P (Nβ
1 + Nβ

2 > Q) + P (Nβ
1 + Nβ

2 = Q) (B.17)

P (Nβ
1 + Nβ

2 − 1 > Q) = P (Nβ
1 + Nβ

2 > Q)− P (Nβ
1 + Nβ

2 = Q + 1) (B.18)

Using the above relationship, we thus finally arrive at:

∂

∂β
P (Nβ

1 + Nβ
2 > Q) = λ1P (Nβ

1 + Nβ
2 = Q)− λ2P (Nβ

1 + Nβ
2 = Q + 1) (B.19)

Proceeding on similar lines, we can derive the following derivatives as:

∂

∂β
P (Nβ

1 + Nβ
2 ≥ Q) = λ1P (Nβ

1 + Nβ
2 = Q− 1)− λ2P (Nβ

1 + Nβ
2 = Q) (B.20)

∂

∂β
P (Nβ

1 > Q) = λ1P (Nβ
1 = Q) (B.21)

∂

∂β
P (Nβ

1 ≥ Q) = λ1P (Nβ
1 = Q− 1) (B.22)

Differentiating Equation (B.13) and using appropriate relations from (B.19) - (B.22),
we have:

∂2E[R(β)]

∂β2
=

[
λ1p1 − λ2p2

] [
−λ1P (Nβ

1 + Nβ
2 = Q) + λ2P (Nβ

1 + Nβ
2 = Q + 1)

]

+
[
λ1p1 − λ1p2

] [
λ1P (Nβ

1 + Nβ
2 = Q)− λ2P (Nβ

1 + Nβ
2 = Q + 1)

−λ2
1

[
p1 − p2

]
P (Nβ

1 = Q) (B.23)

Re-arranging the terms, we obtain the second order derivative as stated in the
lemma. (b) We know from the Poisson process that the probabilities are related as:

P (Nβ
1 + Nβ

2 = Q + 1) =
βλ1 + (1− β)λ2

Q + 1
P (Nβ

1 + Nβ
2 = Q) (B.24)

Using the relation between the probabilities and definition of γ we get the required
expression. •

Lemma 13 If Q + 1 ≤ λ1, then the second order derivative is non-positive.
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Proof Note that the expression βλ1 + (1− β)λ2 lies between λ1 and λ2 as it is a
convex combination of λ1 and λ2. In this case, we see that:

γ =
βλ1 + (1− β)λ2

Q + 1
≥ βλ1 + (1− β)λ2

λ1

≥ 1

Now, consider the second order derivative mentioned in Equation (B.12):

∂2E[R(β)]

∂β2
≤ p2(λ2 − λ1)(λ1 − λ2)P (Nβ

1 + Nβ
2 = Q)− λ2

1(p1 − p2)P (Nβ
1 = Q) ≤ 0

(B.25)

Equation (B.25) follows as λ1 ≤ λ2 and that γ ≥ 1. Thus, we can see that the
second order derivative as mentioned in Equation (B.12) is non-positive. •

Lemma 14 If λ1 ≤ Q + 1 ≤ λ2, then the second order derivative is non-positive.

Proof Consider the following expression:

λ1 − γ λ2 =
1

Q + 1
[λ1(Q + 1)− (βλ1 + (1− β)λ2)λ2]

=
1

Q + 1
[λ1(Q + 1)(β + 1− β)− (βλ1 + (1− β)λ2)]

=
1

Q + 1

[
βλ1(Q + 1− λ2) + (1− β)(λ1(Q + 1)− λ2

2)
]

≤ 1

Q + 1

[
βλ1(Q + 1− λ2) + (1− β)(λ2(Q + 1)− λ2

2)
]

=
1

Q + 1
[βλ1(Q + 1− λ2) + (1− β)λ2(Q + 1− λ2)]

≤ 0 (B.26)

Thus in this case, using Equation (B.26) in the second order derivative mentioned
in Equation (B.12), we can see that it consists of all non-positive terms. •

Lemma 15 If λ2 ≤ Q + 1 ≤ λ2

(
λ2

λ1

)
, then the second order derivative is non-

positive.

Proof Using the assumption of lemma and by definition of γ we have:

γ =

(
βλ1 + (1− β)λ2

Q + 1

)
≥ λ1

Q + 1
≥ λ1

λ2
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Using the above inequality we derive:

λ1 − γλ2 = λ1 −
(

βλ1 + (1− β)λ2

Q + 1

)
λ2 ≤ λ1 −

(
λ1

λ2

)
λ2

= 0 (B.27)

Using Equation (B.27) we see that in this case also, the second order derivative wrt
β as mentioned in Equation (B.12) is non-positive. •
We need to prove the following additional lemma 16, before we can prove the lemma
17 which is regarding the affine nature of the expected revenue function.

Lemma 16 The following probabilities share the relationship:

P (Nβ
1 + Nβ

2 = Q) = P (Nβ
1 = Q) e−λ2(1−β)

(
1 +

λ2(1− β)

λ1β

)Q

(B.28)

Proof The proof for the above relation is as follows:

P (Nβ
1 + Nβ

2 = Q) =

Q∑
i=0

P (Nβ
1 = i) P (Nβ

2 = Q− i)

=

Q∑
i=0

e−λ1β(λ1β)i

i!

e−λ2(1−β)(λ2(1− β))Q−i

Q− i!

=
e−λ1β(λ1β)Q

Q!
e−λ2(1−β)

Q∑
i=0

(
λ2(1− β)

λ1(β)

)Q−i
Q!

i!Q− i!

= P (Nβ
1 = Q) e−λ2(1−β)

Q∑
i=0

(
λ2(1− β)

λ1(β)

)Q−i

1i Q!

i!Q− i!

= P (Nβ
1 = Q) e−λ2(1−β)

(
1 +

λ2(1− β)

λ1β

)Q

•

Lemma 17 If λ2

(
λ2

λ1

)
≤ Q + 1, then the second order derivative approaches zero.

Proof From Equation (B.28) we can see that for low Q, P (Nβ
1 + Nβ

2 = Q) ≤
P (Nβ

1 = Q). For sufficiently high Q, we can say that, P (Nβ
1 + Nβ

2 = Q) ≥ P (Nβ
1 =

Q). Let us re-write the second order derivative using Equation (B.28):

∂2E[R(β)]

∂β2
=

{
p2(λ2 − λ1)(λ1 − γλ2)e

−λ2(1−β)

(
1 +

λ2(1− β)

λ1β

)Q

−λ2
1(p1 − p2)

}
P (Nβ

1 = Q) (B.29)
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As Q is increased, γ goes to 0 and the first term approaches very high positive value

as
(
1 + λ2(1−β)

λ1β

)Q

increases in Q, compared to the negative second term which does

not grow with Q. But as we know, Poisson probabilities, P (Nβ
1 = Q), drop rapidly

after Q ≥ λ1. Since λ2

(
λ2

λ1

)
≤ Q + 1, the second order derivative approaches 0.

To illustrate, consider the limiting case when Q →∞, the first term is highly pos-
itive compared to the second term, hence the difference is positive. But as we are
multiplying the whole expression by P (Nβ

1 = Q) → 0, the second order derivative
approaches 0. In short, for Q mentioned in this case, the second order derivative
approaches zero in the limiting case. In fact, the first order derivative is p1λ1− p2λ2

and thus there is no change in the first order derivative wrt β. •

B.2. Proofs for Retailer’s Timing Problem with BB Contract

B.2.1 Proof for Proposition 2

Proof For notational convenience, we write, N1(β) as Nβ
1 and N2(β) as Nβ

2 .
(a) From Equation (3.13), we have the first order derivative as:

∂E[RBB(β]

∂β
=

∂E[V BB(Nβ
1 , Nβ

2 )]

∂β
(B.30)

Performing similar analysis to the WP contract as in Chapter 2, we can write the
following:

∂E[RBB(β)]

∂β
=

∞∑
j=0

∞∑

k=0

{
λ1[V

BB(j + 1, k)− V BB(j, k)]

−λ2[V
BB(j, k + 1)− V BB(j, k)]

}
Pj Pk (B.31)

Evaluating difference terms in Equation (B.31) we obtain Table (B.2). Substituting

Table B.2: Difference Function for BB contract

Case V BB(j + 1, k)− V BB(j, k) V BB(j, k + 1)− V BB(j, k)

j > Q 0 0

j ≤ Q and j + k ≤ Q p1 − b p2 − b

j ≤ Q and j + k > Q p1 − p2 0

the values from Table (B.2) into Equation (B.31) we obtain the partial differential
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as:

∂E[RBB(β)]

∂β
=

Q∑
j=0

Q−j∑

k=0

[(p1 − b)λ1 − (p2 − b)λ2] P1
j(β) P2

j(β)

+

Q∑
j=0

∞∑

k=Q−j

[p1 − p2]λ1 P1
j(β) P2

j(β) (B.32)

We simplify Equation (B.32) and thus arrive at the first order derivative of expected
revenue function with respect to β.

(b) We will prove this using the second order derivative wrt β. Just like WP
contract, this can be derived from Equation (3.14). That is,

∂2E[RBB(β)]

∂β2
=

∂2E[RWP (β)]

∂β2
+ b

[
λ2 − λ1

] ∂

∂β
P (Nβ

1 + Nβ
2 ≤ Q) (B.33)

Substituting the second order derivative for WP contract from Equation (B.11)
in Equation (B.33), we arrive at the second order derivative with respect to β as
follows:

∂2E[RBB(β)]

∂β2
= (p2 − b)(λ2 − λ1)

[
λ1P (Nβ

1 + Nβ
2 = Q)− λ2P (Nβ

1 + Nβ
2 = Q + 1)

]

−λ2
1(p1 − p2) P (Nβ

1 = Q) (B.34)

Let γ = βλ1+(1−β)λ2

Q+1
, as defined in Lemma 12. Then, we can re-write as follows:

∂2E[RBB(β|Q)]

∂β2
= (p2 − b)(λ2 − λ1)(λ1 − γλ2)P (Nβ

1 + Nβ
2 = Q)

−λ2
1(p1 − p2)P (Nβ

1 = Q) (B.35)

This looks similar to the second order derivative wrt β for WP contract, except for
the term p2 − b. The proof that the expected revenue function for BB contract is
concave follows from the proof for WP contract discussed in Section B.1.1. The
lemmas 13 through 15 and 17 still hold true when we substitute p2 − b for p2 and
thus the expected revenue function is concave in β. •

B.3. Proofs for Retailer’s Timing Problem with MM Contract

B.3.1 Proof for Proposition 3

Proof (a) We will use the analysis from WP contract to obtain first order derivative
wrt β for MM contract as shown below.

• Two-market Rebate
In the analysis from Section B.1.1 we substitute p1 = p2 = w(1 + g) but still
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use p1 and p2 for effective rate calculations for Poisson process in both the
markets. Substituting these values we get:

∂E[RMM(β|Q)]

∂β
= w(1 + g)[λ1 − λ2] P (Nβ

1 + Nβ
2 ≤ Q)

+[w(1 + g)− w(1 + g)] P (Nβ
1 ≤ Q < Nβ

1 + Nβ
2 )

The second term vanishes and simplifying the above expression we arrive at
the first order derivative wrt β.

• One-market Rebate
In this case the primary market situation is unchanged compared to WP con-
tract, that is, revenue per unit sold is p1 and use p1 for effective rate cal-
culations. In secondary market we substitute p2 = w(1 + g) but use p2 for
calculation of effective rate for Poisson process. Substituting corresponding
values into analysis from WP contract, we arrive at the required expression.

(b) We will prove using the second order derivative wrt β. Using the second order
derivative wrt β for WP contract, we can write the same for MM contact:

• Two-market Rebate

∂2E[RMM(β|Q)]

∂β2
= w(1 + g)(λ2 − λ1)

[
λ1P (Nβ

1 + Nβ
2 = Q)

− λ2P (Nβ
1 + Nβ

2 = Q + 1)
]

(B.36)

• One-market Rebate

∂2E[RMM(β|Q)]

∂β2
= w(1 + g)(λ2 − λ1)

[
λ1P (Nβ

1 + Nβ
2 = Q)

− λ2P (Nβ
1 + Nβ

2 = Q + 1)
]

− λ2
1(p1 − w(1 + g))P (Nβ

1 = Q) (B.37)

The above derivation can be trivially obtained. From Table (3.2), we see that MM
contract is a special instance of WP contract. Thus, concavity follows directly from
the WP contract. •

B.4. Description of Algorithm for Computational Experiments

In this research, we considered a game theoretic model between the supplier
and the retailer in three stages. In stage 1, the supplier decides on the optimal
wholesale price. In stage 2, the retailer decides on the optimal order quantity and
in stage 3, the retailer decides on the optimal timing of the discount based on the
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state of the market. We discuss the algorithms (coded in C++) used in each of this
stages below:

• The supplier’s expected profit function is not concave and hence we do discrete
search with an initial step size of w0

step to find out the optimal wholesale price
for this step size, w∗

step0. The idea is that this w∗
step0 represents the approximate

location of optimal wholesale price and hence we do further refined search,
using a smaller step size wstep in the neighborhood of w∗

step0 to get closer to
w∗. We stop when the percentage change in supplier expected profit is not
more pre-specified limit, say δ%. Specifically we use w0

step = 1, decrease step
size by 1/2 and δ = 1.

• Q is discrete and hence we use discrete search with step size of 1 to identify
the Q∗. If the retailer’s expected profit function were concave in Q for any
contract, then we make use of this property in finding the stopping criterion
and thus make the algorithm efficient in identifying the optimal order quantity,
Q∗.

• In stage 3, the retailer decides on the optimal timing of the markdown. We
showed that the retailer’s expected revenue function is quasi-concave in β and
hence we use Fibonacci search algorithm (see Bazaraa et al. (2006)) to identify
the β∗. We identify the number of steps required based on the convergence
criteria.
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Appendix C
Appendix for Essay 3
C.1. Notation

We define the common notation1 that will be used for MIP formulations as
follows:

Sets:

N = Set of nodes i in the network. E.g. {1, 2, . . . , N}
Ni = N− {i}. That is, set of nodes in the network except i.

E = Set of edges i− j in the network. E.g. {1− 2, . . . , E}
P = Set of priorities p for all nodes. E.g. {1, 2, . . . , P}
Np = Set of nodes i in the network with priority p. E.g. {5, 7, 8, 10}

Parameters:

Lij = Shortest path distance between nodes i and j

Tij = Travel time corresponding to shortest path between nodes i and j

UTi = Time of unloading required at node i

Leq
i = Distance equivalent of unloading time at node i

Pi = Priority for node i

Decision Variables:

xij =

{
1 if vehicle uses shortest path from node i to node j
0 otherwise

si = Time at which service is rendered by vehicle at node i

smax = Latest service time for the entire network

C.2. Formulation MinDist(d) for u-HVRP

The objective function denoted by equation (C.1) is to minimize total cost of
travel by the vehicle while satisfying d-Relaxed Rule of Priority. Constraint (C.2)
says the vehicle enters a node only once. Similarly constraint (C.3) says that vehicle
has to leave the node exactly once. Note that even though these constraints say
that the vehicle visits a node only once in this modified complete graph, it does not
necessarily mean that the vehicle visits that node only once in the original graph.
All these assignment constraints say is that the vehicle has to visit node exactly once

1In this chapter, please note that we use different typeface to differentiate parameters or given
data and decision variables in the MIP formulations
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to satisfy demand. Constraint (C.4) says that the service time for the depot is 0.
Constraints (C.5) and (C.6) together calculate the time of service at a node j. If the
vehicle traverses to node j from node i, then xij = 1 and thus the two constraints
become binding. Constraint (C.7) enforces the d-Relaxed Rule of Priority. It says
that service time for nodes of priority p and p+1+ d are appropriately related. For
e.g., if 0-Relaxed Rule of Priority, then it says that the service time of all nodes
with priority p is earlier than that of all nodes with priority p + 1. Constraints
(C.8) corresponds to the integrality and non-negativity constraints for the decision
variables.

Min
∑

i∈N

∑

j∈N

(
Lij xij

)
(C.1)

∑

j∈N

xij = 1 ∀ i ∈ N (C.2)

∑

i∈N

xij = 1 ∀ j ∈ N (C.3)

s1 = 0 (C.4)

si + Tij + UTi −M(1− xij) ≤ sj ∀ i ∈ N, j ∈ N1 (C.5)

si + Tij + UTi + M(1− xij) ≥ sj ∀ i ∈ N, j ∈ N1 (C.6)

si + Tij + UTi ≤ sj ∀ p ∈ P, i ∈ Np, j ∈ Np+1+d (C.7)

xij ∈ {0, 1}, si ≥ 0 ∀ i, j ∈ N (C.8)

C.2.1 Proof for Proposition 1

Proof We will prove this by contradiction. Assume that there are ns > 1 sub-tours
in the optimal solution to Single Uncapacitated VRP with Priorities. This translates
into ns directed cycles in the graph. One sub-tour should contain the depot and
hence that sub-tour is valid. Let us consider any sub-tour without the depot. Call it
x1, x2, . . . , xk, x1. Assume that the unloading times are zero (this result holds even
when the unloading times assume positive values) and let us write down the binding
service time constraints for any node xr in this sub-tour.

sxr = sxr−1 + Txr−1xr = sx1 + Tx1x2 +
r−1∑
i=2

(
sxi

+ Txixi+1

)

Writing down the constraint for x1, we obtain the following:

sx1 = sxk
+ Txkx1 = sx1 + Tx1x2 +

k−1∑
i=2

(
sxi

+ Txixi+1

)

⇒Tx1x2 +
k−1∑
i=2

(
sxi

+ Txixi+1

)
= 0
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The above expression on the left hand side consists of positive and non-negative
terms; thus it can never vanish. Hence it is not possible to have sub-tours in the
optimal solution when we have service time constraints. •

C.2.2 Proof for Proposition 2

Proof We will prove this by contradiction. Assume triangle inequality holds
true for Tij and consider any three nodes a, b, c on the optimal route as shown in
Figure C.1. To enforce 0−Relaxed Priority Rule, all we need the constraint to say
is that the service time for node c is higher than a. However, we would like to
strengthen the inequality by saying that service time at node c is not just higher
but specifically higher by amount Tac +UTa. Let us see if this will alter the optimal
route a → b → c. If we had 0−Relaxed Priority Rule for this network, then we
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�� �
�
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Figure C.1: Proof for d−Relaxed Priority Rule Constraint

write the following constraint for nodes a, b, and c:

sa + Tac + UTa ≤ sc and sb + Tbc + UTb ≤ sc

Since a → b → c is the optimal route, the second constraint is binding. The first
constraint says that sc is higher than sa+Tac+UTa. If this constraint forces the vehi-
cle to travel to another node d from b, then we are altering the optimal route. If this
must happen then sc using path a → c is higher than sc using optimal path a →
b → c. That is,

sa + Tac + UTa > sb + Tbc + UTb

sa + Tac + UTa > (sa + Tab + UTa) + Tbc + UTb

(Tac) + UTa > (Tab + Tbc) + UTa + UTb

⇒ Tac > Tab + Tbc ∵ 0 ≤ UTa ≤ UTa + UTb
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This clearly violates the triangle inequality, which is stated as: Tac ≤ Tab + Tbc.
Hence this constraint does not alter the route in optimality as long as triangle in-
equality holds true for travel times. Note that this constraint is a stronger form of
si ≤ sj. •

C.2.3 Valid Inequalities

We add constraints (C.9) - (C.12) so that running time might be reduced.
Constraint (C.9) says that the vehicle can never travel directly from a priority q
node j to a priority p node i, when q ≥ p + 1 + d. For example, when d = 0, then
it says a vehicle can never travel directly from nodes of priorities 2, 3, and so on,
to any priority 1 node. Constraint (C.10) says that vehicle will travel at most once
from a priority p node i to a priority q node j when q = p + 1 + d. For example,
when d = 0, the vehicle will travel at most once from a priority 1 node to a priority
2 node. Constraint (C.11) extends the constraint (C.10). It says that a vehicle can
never travel directly from a priority p node i to node j of priority strictly greater
than p + d + 1 because otherwise the vehicle would violate the d−Relaxed Priority
Rule. If d = 0, the vehicle will not travel from any priority 1 node to any node of
priority 3, 4, and so on. Constraint (C.12) says that all priority p nodes are serviced
before any node in priority p + d + 1 can be serviced.

∑

i∈Np

∑

j∈Nq

xji = 0 ∀ (p, q) ∈ P2 3 q − p ≥ d + 1 (C.9)

∑

i∈Np

∑

j∈Nq

xij ≤ 1 ∀ (p, q) ∈ P2 3 q − p = d + 1 (C.10)

∑

i∈Np

∑

j∈Nq

xij = 0 ∀ (p, q) ∈ P2 3 q − p ≥ d + 2 (C.11)

∑

i∈N

xij ≥ yp,
∑

i∈N

xik ≤ yp, yp ∈ {0, 1} ∀ j ∈ Np, k ∈ Np+d+1, p ∈ {1, . . . , P − d− 1}

(C.12)

C.3. Formulation MinMax and MinSum for u-HVRP

For MinMax and MinSum objectives as mentioned in Campbell et al. (2008)
paper, we write down MIP formulations MinMax and MinSum. Notice that there
are no priorities for nodes in these two formulations. These are just standard VRP
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and thus the formulations are self-explanatory.

MinMax : Min smax (C.13)∑

j∈N

xij = 1 ∀ i ∈ N (C.14)

∑

i∈N

xij = 1 ∀ j ∈ N (C.15)

s1 = 0 (C.16)

si + Tij + UTi −M(1− xij) ≤ sj ∀ i ∈ N, j ∈ N1 (C.17)

si + Tij + UTi + M(1− xij) ≥ sj ∀ i ∈ N, j ∈ N1 (C.18)

si ≤ smax ∀ i ∈ N1, (C.19)

xij ∈ {0, 1}, smax ≥ 0, si ≥ 0 ∀ i, j ∈ N (C.20)

MinSum : Min
∑

i∈N

(
si

)
(C.21)

∑

j∈N

xij = 1 ∀ i ∈ N (C.22)

∑

i∈N

xij = 1 ∀ j ∈ N (C.23)

s1 = 0 (C.24)

si + Tij + UTi −M(1− xij) ≤ sj ∀ i ∈ N, j ∈ N1 (C.25)

si + Tij + UTi + M(1− xij) ≥ sj ∀ i ∈ N, j ∈ N1 (C.26)

xij ∈ {0, 1}, si ≥ 0 ∀ i, j ∈ N (C.27)
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Appendix D
Appendix for Essay 4
D.1. Notation for all models

We define the common notation1 that will be used for MIP formulations as
follows:

Sets:

N = Set of nodes i in the network. E.g. {1, 2, . . . , N}
Ni = N− {i}. That is, set of nodes in the network except i.

E = Set of edges i− j in the network. E.g. {1− 2, . . . , E}
P = Set of priorities p for all nodes. E.g. {1, 2, . . . , P}
Np = Set of nodes i in the network with priority p. E.g. {5, 7, 8, 10}

Parameters:

Lij = Shortest path distance between nodes i and j

Tij = Travel time corresponding to shortest path between nodes i and j

UTi = Time of unloading required at node i

Leq
i = Distance equivalent of unloading time at node i

Pi = Priority for node i

Di = Demand of product at node i

D.2. Appendix for 1-HVRP

Before we write the MIP formulations, we define the following notation, in
addition to the definitions in Appendix D.1.

Parameters:

CAP = Capacity of the vehicle

Lmax = Route-length restriction for the vehicle

Decision Variables:

vi =

{
1 if vehicle delivers demand to node i
0 otherwise

zp =

{
1 if vehicle is able to meet all of demand for nodes in Np

0 otherwise

1In this paper, please note that we use different typeface to differentiate parameters or given
data and decision variables in the MIP formulations
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Decision Variables (contd.):

v1∗
i =

{
1 if vehicle delivers demand to node i in Stage I
0 otherwise

xij =

{
1 if vehicle uses shortest path from node i to node j
0 otherwise

si = Time at which service is rendered by vehicle at node i

D.2.1 Formulation 1-HVRP-MaxDemand

Max
∑

i∈N1

(
Divi

)
(D.1)

∑

j∈N1

x1j = 1,
∑

i∈N1

xi1 = 1 (D.2)

∑

j∈N i

xij ≤ 1 ∀ i ∈ N1 (D.3)

∑

i∈Nj

xij ≤ 1 ∀ j ∈ N1 (D.4)

∑

j∈N i

xji =
∑

j∈N i

xij ∀ i ∈ N1 (D.5)

s1 = 0 (D.6)

si + Tij + UTi −M(1− xij) ≤ sj ∀ i ∈ N, j ∈ N1 (D.7)

si + Tij + UTi + M(1− xij) ≥ sj ∀ i ∈ N, j ∈ N1 (D.8)

si ≤ sj ∀ p ∈ P, i ∈ Np, j ∈ Np+1+d (D.9)∑
i∈N1

Divi ≤ CAP (D.10)

∑
i∈Np

Divi ≤ max
(
0, CAP−

p−1∑
r=2

∑
i∈Nr

Di

)
∀ p ∈ P − {1} (D.11)

vi =
∑
j∈N

xji ∀ i ∈ N1 (D.12)

∑
i∈Np

Divi ≥ zp

∑
i∈Np

Di ∀ p ∈ P (D.13)

∑
i∈Np

Divi ≤ zp−1

∑
i∈Np

Di ∀ p ∈ P − {1} (D.14)

∑
i−j∈E

(
(Lij + Leq

i ) xij

)
≤ Lmax (D.15)
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xij ∈ {0, 1}, si ≥ 0 ∀ i, j ∈ N (D.16)

vi ∈ {0, 1} ∀ i ∈ N1 (D.17)

zp ∈ {0, 1} ∀ p ∈ P (D.18)

The objective function denoted by equation (D.1) is to maximize the total
demand delivered while adhering to d−Relaxed Rule of Priority, capacity and order
of demand constraints. Constraint (D.2) says the vehicle leaves depot only once and
returns back to depot exactly once. Constraint (D.3) and (D.4) say that vehicle has
to enter and leave any node (other than depot) at most once. These constraints
do not assume that the vehicle has to visit all nodes as we have demand, capacity
and route-length constraints in this formulation. Constraint (D.5) says that if the
vehicle enters a node then it also has to leave that node. We do not need flow
conservation constraints for the depot as it is already enforced via constraint (D.2).
Constraints (D.6) through (D.8) are the service time calculation constraints just
like in the uncapacitated version of this problem. Constraint (D.9) enforces the
d−Relaxed Rule of Priority, similar to the constraint we had in the uncapacitated
version of this problem. Essentially constraints (D.10) and (D.11) talk about the
available vehicle’s capacity for servicing nodes with priority p. Constraint (D.10)
says that the total capacity available to meet demand for all nodes with priority 1 is
just the capacity of the vehicle. Similarly, constraint (D.11) says that the capacity
available for nodes with priority p > 1 is what is leftover (calculated using the
max() function in the equation) after deducting demand for all nodes with higher
priorities. Constraints (D.12) through (D.14) refer to the partial demand fulfillment
by the vehicle for different goods. Constraint (D.12) says that a node cannot have
its demand satisfied until the vehicle arrives to that node. It also says that a node
cannot receive more than its demand requirement. Constraints (D.13) and (D.14)
enforce the order in which demand is satisfied and thus eliminate the possibility that
higher priority nodes are partially fulfilled compared to the lower priority nodes.
The binary variable zp takes on a value of 1 if vehicle is able to meet all of demand
of product for nodes with priority p. For e.g. if a vehicle is planning to satisfy
partially or fully demand of priority p then it implies that zp−1 is 1. This means
that total demand of priority p is completely satisfied. Constraint (D.15) says the
total time traversed by the vehicle cannot exceed the total route-length restriction
for the vehicle. Constraints (D.16) through (D.18) corresponds to the integrality
and non-negativity constraints for the decision variables. Similar to the u-HVRP,
we do not need to write down sub-tour elimination constraints as the service time
constraints rule out the possibility of sub-tours in the optimal solution (shown in
Proposition 1 from the previous Chapter).
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D.2.2 Formulation 1-HVRP-MinDist-i

Min
∑

i∈N

∑

j∈N

(
Lij xij

)
(D.19)

∑

j∈N1

x1j = 1,
∑

i∈N1

xi1 = 1 (D.20)

∑

j∈N

xij = v1∗
i ∀ i ∈ N1 (D.21)

∑

i∈N

xij = v1∗
j ∀ j ∈ N1 (D.22)

∑

j∈N

xji =
∑

j∈N

xij ∀ i ∈ N1 (D.23)

s1 = 0 (D.24)

si + Tij + UTi −M(1− xij) ≤ sj ∀ i ∈ N, j ∈ N1 (D.25)

si + Tij + UTi + M(1− xij) ≥ sj ∀ i ∈ N, j ∈ N1 (D.26)

si ≤ sj ∀ p ∈ P, i ∈ Np, j ∈ Np+1+d (D.27)

xij ∈ {0, 1}, si ≥ 0 ∀ i, j ∈ N (D.28)

The objective function given by equation (D.19) minimizes the total distance tra-
versed. Constraint (D.20) enforces the restrictions on the travel in and out of depot.
Constraints (D.21) and (D.22) say that those nodes that have been served in Stage
I have to be served. Constraint (D.23) enforces the flow conservation, that is, if the
vehicle enters a node, then it has to leave the node, except for depot. Constraints
(D.24) - (D.26) help in calculation of service time for the nodes served. Constraint
(D.27) enforced the d−Relaxed Rule of Priority. Finally, constraint (D.28) is the
non-negativity and integrality of the variables. We do not need to write down de-
mand constraints in this formulation as we indirectly enforced it with the modified
assignment constraints. Also, as this solution is obtained from Stage I, we do not
need vehicle capacity restrictions.

D.2.3 Formulation 1-HVRP-MinDist-a

The formulation is similar to the 1-HVRP-MinDist-i except that we use as-
signment constraints (as in 1-HVRP-MinDist) as we are not enforcing demand for
each node serviced. Instead, we enforce it, for each priority level using constraint
(D.39).
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Min
∑

i∈N

∑

j∈N

(
Lij xij

)
(D.29)

∑

j∈N1

x1j = 1,
∑

i∈N1

xi1 = 1 (D.30)

∑

j∈N

xij ≤ 1 ∀ i ∈ N1 (D.31)

∑

i∈N

xij ≤ 1 ∀ j ∈ N1 (D.32)

∑

j∈N

xji =
∑

j∈N

xij ∀ i ∈ N1 (D.33)

s1 = 0 (D.34)

si + Tij + UTi −M(1− xij) ≤ sj ∀ i ∈ N, j ∈ N1 (D.35)

si + Tij + UTi + M(1− xij) ≥ sj ∀ i ∈ N, j ∈ N1 (D.36)

si ≤ sj ∀ p ∈ P, i ∈ Np, j ∈ Np+1+d (D.37)

vi ≤
∑

j∈N

xji ∀ i ∈ N1 (D.38)

∑

i∈Np

Divi ≥
∑

i∈Np

Div
1∗
i ∀ p ∈ P (D.39)

∑

i−j∈E

(
(Lij + Leq

i ) xij

)
≤ Lmax (D.40)

xij ∈ {0, 1}, si ≥ 0 ∀ i, j ∈ N (D.41)

vi ∈ {0, 1} ∀ i ∈ N1 (D.42)

D.2.4 Formulation 1-HVRP-WeightedObj

The feasible region is same as to that of formulation 1-HVRP-MaxDemand
but the objective function is changed as follows:

Max α
∑

i∈N1

(
Divi

)
− β

∑

i∈N

∑

j∈N

(
Lijxij

)
(D.43)

where, 0 ≤ {α, β} ≤ 1.
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D.3. Appendix for m-HVRP

We define additional notation apart from the sets and parameters already
defined in Appendix D.1.

Sets/Parameters:

K = Set of vehicles k available. E.g. {1, 2, . . . , K}
CAPk = Capacity of the vehicle k

Lmax k = Route-length limit for vehicle k

Decision Variables:

xk
ij =

{
1 if vehicle k uses shortest path from node i to node j
0 otherwise

sk
i = Time at which service is rendered by vehicle k at node i

Decision Variables (contd.):

vk
i =

{
1 if vehicle k delivers demand to node i
0 otherwise

zp =

{
1 if all vehicles are able to meet all of demand for nodes in Np

0 otherwise

vk1∗
i =

{
1 if vehicle k delivers demand to node i in Stage I
0 otherwise

D.3.1 Formulation for Stage I with Local Timing Rule

In this MIP formulation, m-HVRP-local-MaxDemand, we enforce the Local
Timing Rule as wells as other restrictions like travel in and out of depot for each
vehicle, capacity, Route-Length, Order of Demand Fulfillment etc.

Max
∑

k∈K

∑

i∈N1

(
Div

k
i

)
(D.44)

∑

j∈N1

xk
1j = 1,

∑

i∈N1

xk
i1 = 1 ∀ k ∈ K (D.45)

∑

j∈Ni

xk
ij ≤ 1 ∀ i ∈ N1, k ∈ K (D.46)

∑

i∈Nj

xk
ij ≤ 1 ∀ j ∈ N1, k ∈ K (D.47)

∑

j∈Ni

xk
ji =

∑

j∈Ni

xk
ij ∀ i ∈ N1, k ∈ K (D.48)
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sk
1 = 0 ∀ k ∈ K (D.49)

sk
i + Tij + UTi −M(1− xk

ij) ≤ sk
j ∀ i ∈ N, j ∈ N1, k ∈ K (D.50)

sk
i + Tij + UTi + M(1− xk

ij) ≥ sk
j ∀ i ∈ N, j ∈ N1, k ∈ K (D.51)

sk
i ≤ sk

j ∀ p ∈ P, i ∈ Np, j ∈ Np+1+d, k ∈ K

(D.52)∑

i∈N1

Div
k
i ≤ CAPk k ∈ K (D.53)

∑

k∈K

∑

i∈N1

Div
k
i ≤ min

(∑

i∈N1

Di,
∑

k∈K

CAPk
)

(D.54)

∑

k∈K

∑

i∈Np

Div
k
i ≤ max

(
0,

∑

k∈K

(
CAPk

)−
p−1∑
r=2

∑

i∈Nr

Di

)
∀ p ∈ P− {1} (D.55)

vk
i =

∑

j∈N

xk
ji ∀ i ∈ N1, k ∈ K (D.56)

∑

k∈K

vk
i ≤ 1 ∀ i ∈ N1 (D.57)

∑

k∈K

∑

i∈Np

Div
k
i ≥ zp

∑

i∈Np

Di ∀ p ∈ P (D.58)

∑

k∈K

∑

i∈Np

Div
k
i ≤ zp−1

∑

i∈Np

Di ∀ p ∈ P− {1} (D.59)

∑

i−j∈E

((
Lij + Leq k

i

)
xk

ij

)
≤ Lmax k ∀ k ∈ K (D.60)

xk
ij ∈ {0, 1}, sk

i ≥ 0 ∀ i, j ∈ N, k ∈ K (D.61)

vk
i ∈ {0, 1} ∀ i ∈ N1, k ∈ K (D.62)

zp ∈ {0, 1} ∀ p ∈ P, k ∈ K (D.63)

The objective function given by equation (D.44) is to maximize the demand delivered
by all vehicles. Constraints (D.45) - (D.47) are the assignment constraints for the
depot and general node but enforced for each vehicle separately. Constraint (D.48)
is the flow conservation, that is, vehicle k that enters a node has to leave that node
(except for the depot). Constraints (D.49) - (D.51) help in calculation of service
time for vehicle k at nodes it services. Constraint (D.52) says that for vehicle k, it
should service higher priority nodes first compared to lower priority nodes subject
to d−Relaxed Rule of Priority. This constraint is local in nature, that is, it enforces
this d−Relaxed Rule of Priority for each vehicle separately. Hence, it is possible
that vehicle 1’s service time for a node with priority p maybe higher than vehicle
2’s service time for a node with priority p+ d+1 node. Constraint (D.53) says that
the total capacity of the vehicle k cannot be exceeded. Constraint (D.54) provides
a upper limit on the available capacity for priority 1 nodes. It says the upper limit
is the minimum of total capacity or the total demand. Similarly, constraint (D.55)
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gives the upper limit on available capacity for that particular priority p. It says
that the limit is either the leftover capacity after fully satisfying demand for higher
priority nodes or if it cannot, then there is no capacity available for this priority
p nodes. Constraint (D.56) says that a node can be serviced only if the vehicle
visits that node. Constraint (D.57) says that a particular node can be at most
serviced only by one vehicle, that is, there is no split delivery. Constraints (D.58)
and (D.59) enforce the Order of Demand Fulfillment restriction for each priority,
across all vehicles. Constraint (D.60) is the route-length restriction for each vehicle.
Finally, constraints (D.61) - (D.63) enforce the non-negativity and integrality of the
decision variables respectively.

D.3.2 Formulations for Stage II with Local Timing Rule

Similar to the Single VRP with Priorities as discussed in Section 5.4.1.1, the
route obtained in Stage I may not be efficient in terms of distance. Thus, we
write two MIP formulations: m-HVRP-local-MinDist-i and m-HVRP-local-
MinDist-a for individual and aggregate assignment respectively.

Formulation m-HVRP-local-MinDist-i:

Min
∑

i∈N

∑

j∈N

(
Lij xk

ij

)
(D.64)

∑

j∈N1

xk
1j = 1,

∑

i∈N1

xk
i1 = 1 (D.65)

∑

j∈N

xk
ij = vk1∗

i ∀ i ∈ N1 (D.66)

∑

i∈N

xk
ij = vk1∗

j ∀ j ∈ N1 (D.67)

∑

j∈N

xk
ji =

∑

j∈N

xk
ij ∀ i ∈ N1 (D.68)

sk
1 = 0 (D.69)

sk
i + Tij + UTi −M(1− xk

ij) ≤ sk
j ∀ i ∈ N, j ∈ N1 (D.70)

sk
i + Tij + UTi + M(1− xk

ij) ≥ sk
j ∀ i ∈ N, j ∈ N1 (D.71)

sk
i ≤ sk

j ∀ p ∈ P, i ∈ Np, j ∈ Np+1+d (D.72)

xk
ij ∈ {0, 1}, sk

i ≥ 0 ∀ i, j ∈ N (D.73)
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Formulation m-HVRP-local-MinDist-a:

Min
∑

i∈N

∑

j∈N

(
Lij xk

ij

)
(D.74)

∑

j∈N1

xk
1j = 1,

∑

i∈N1

xi1 = 1 (D.75)

∑

j∈N

xk
ij ≤ 1 ∀ i ∈ N1 (D.76)

∑

i∈N

xk
ij ≤ 1 ∀ j ∈ N1 (D.77)

∑

j∈N

xk
ji =

∑

j∈N

xk
ij ∀ i ∈ N1 (D.78)

sk
1 = 0 (D.79)

sk
i + Tij + UTi −M(1− xk

ij) ≤ sk
j ∀ i ∈ N, j ∈ N1 (D.80)

sk
i + Tij + UTi + M(1− xk

ij) ≥ sk
j ∀ i ∈ N, j ∈ N1 (D.81)

sk
i ≤ sk

j ∀ p ∈ P, i ∈ Np, j ∈ Np+1+d (D.82)

vk
i ≤

∑

j∈N

xk
ji ∀ i ∈ N1 (D.83)

∑

i∈Np

Div
k
i ≥

∑

i∈Np

Div
k1∗
i ∀ p ∈ P (D.84)

∑

i−j∈E

(
(Lij + Leq

i ) xk
ij

)
≤ Lmax (D.85)

xk
ij ∈ {0, 1}, sk

i ≥ 0 ∀ i, j ∈ N (D.86)

vk
i ∈ {0, 1} ∀ i ∈ N1 (D.87)

D.3.3 Formulation for Stage I with Global Timing Rule

In this MIP formulation, m-HVRP-global-MaxDemand, we enforce the Global
Timing Rule version of d−Relaxed Priority Rule and other restrictions as mentioned
in m-HVRP-local-MaxDemand.
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Max
∑

k∈K

∑

i∈N1

(
Div

k
i

)
(D.88)

∑

j∈N1

xk
1j = 1,

∑

i∈N1

xk
i1 = 1 ∀ k ∈ K (D.89)

∑

j∈Ni

xk
ij ≤ 1 ∀ i ∈ N1, k ∈ K (D.90)

∑

i∈Nj

xk
ij ≤ 1 ∀ j ∈ N1, k ∈ K (D.91)

∑

j∈Ni

xk
ji =

∑

j∈Ni

xk
ij ∀ i ∈ N1, k ∈ K (D.92)

sk
1 = 0 ∀ k ∈ K (D.93)

sk
i + Tij + UTi −M(1− xk

ij) ≤ sk
j ∀ i ∈ N, j ∈ N1, k ∈ K (D.94)

sk
i + Tij + UTi + M(1− xk

ij) ≥ sk
j ∀ i ∈ N, j ∈ N1, k ∈ K (D.95)

sk
i ≤ sk

j ∀ p ∈ P, i ∈ Np, j ∈ Np+1+d, k ∈ K

(D.96)

sk
i ≤ smax

p ∀ p ∈ P, i ∈ Np, k ∈ K (D.97)

smax
p ≤ sk

j ∀ p ∈ P, j ∈ Np+1+d, k ∈ K

(D.98)∑

i∈N1

Div
k
i ≤ CAPk k ∈ K (D.99)

∑

k∈K

∑

i∈N1

Div
k
i ≤ min

(∑

i∈N1

Di,
∑

k∈K

CAPk
)

(D.100)

∑

k∈K

∑

i∈Np

Div
k
i ≤ max

(
0,

∑

k∈K

(
CAPk

)−
p−1∑
r=2

∑

i∈Nr

Di

)
∀ p ∈ P− {1} (D.101)

vk
i =

∑

j∈N

xk
ji ∀ i ∈ N1, k ∈ K (D.102)

∑

k∈K

vk
i ≤ 1 ∀ i ∈ N1 (D.103)

∑

k∈K

∑

i∈Np

Div
k
i ≥ zp

∑

i∈Np

Di ∀ p ∈ P (D.104)

∑

k∈K

∑

i∈Np

Div
k
i ≤ zp−1

∑

i∈Np

Di ∀ p ∈ P− {1} (D.105)

∑

i−j∈E

((
Lij + Leq k

i

)
xk

ij

)
≤ Lmax k ∀ k ∈ K (D.106)
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xk
ij ∈ {0, 1}, sk

i ≥ 0 ∀ i, j ∈ N, k ∈ K (D.107)

vk
i ∈ {0, 1} ∀ i ∈ N1, k ∈ K (D.108)

zp ∈ {0, 1} ∀ p ∈ P, k ∈ K (D.109)

D.3.4 Formulations for Stage II with Global Timing Rule

Similar to the Local Timing Rule, we write two MIP formulations: m-HVRP-
global-MinDist-i and m-HVRP-global-MinDist-a for individual and aggregate
assignment respectively.

Formulation m-HVRP-global-MinDist-i:

Min
∑

i∈N

∑

j∈N

(
Lij xk

ij

)
(D.110)

∑

j∈N1

xk
1j = 1,

∑

i∈N1

xk
i1 = 1 (D.111)

∑

j∈N

xk
ij = vk1∗

i ∀ i ∈ N1 (D.112)

∑

i∈N

xk
ij = vk1∗

j ∀ j ∈ N1 (D.113)

∑

j∈N

xk
ji =

∑

j∈N

xk
ij ∀ i ∈ N1 (D.114)

sk
1 = 0 (D.115)

sk
i + Tij + UTi −M(1− xk

ij) ≤ sk
j ∀ i ∈ N, j ∈ N1 (D.116)

sk
i + Tij + UTi + M(1− xk

ij) ≥ sk
j ∀ i ∈ N, j ∈ N1 (D.117)

sk
i ≤ sk

j ∀ p ∈ P, i ∈ Np, j ∈ Np+1+d, k ∈ K (D.118)

sk
i ≤ smax

p ∀ p ∈ P, i ∈ Np, k ∈ K (D.119)

smax
p ≤ sk

j ∀ p ∈ P, j ∈ Np+1+d, k ∈ K (D.120)

xk
ij ∈ {0, 1}, sk

i ≥ 0 ∀ i, j ∈ N (D.121)
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Formulation m-HVRP-global-MinDist-a:

Min
∑

i∈N

∑

j∈N

(
Lij xk

ij

)
(D.122)

∑

j∈N1

xk
1j = 1,

∑

i∈N1

xi1 = 1 (D.123)

∑

j∈N

xk
ij ≤ 1 ∀ i ∈ N1 (D.124)

∑

i∈N

xk
ij ≤ 1 ∀ j ∈ N1 (D.125)

∑

j∈N

xk
ji =

∑

j∈N

xk
ij ∀ i ∈ N1 (D.126)

sk
1 = 0 (D.127)

sk
i + Tij + UTi −M(1− xk

ij) ≤ sk
j ∀ i ∈ N, j ∈ N1 (D.128)

sk
i + Tij + UTi + M(1− xk

ij) ≥ sk
j ∀ i ∈ N, j ∈ N1 (D.129)

sk
i ≤ sk

j ∀ p ∈ P, i ∈ Np, j ∈ Np+1+d, k ∈ K (D.130)

sk
i ≤ smax

p ∀ p ∈ P, i ∈ Np, k ∈ K (D.131)

smax
p ≤ sk

j ∀ p ∈ P, j ∈ Np+1+d, k ∈ K (D.132)

vk
i ≤

∑

j∈N

xk
ji ∀ i ∈ N1 (D.133)

∑

i∈Np

Div
k
i ≥

∑

i∈Np

Div
k1∗
i ∀ p ∈ P (D.134)

∑

i−j∈E

(
(Lij + Leq

i ) xk
ij

)
≤ Lmax (D.135)

xk
ij ∈ {0, 1}, sk

i ≥ 0 ∀ i, j ∈ N (D.136)

vk
i ∈ {0, 1} ∀ i ∈ N1 (D.137)
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Appendix E
Networks used in Essays 3 and 4

Network 3 (Ch. 4) and Network 4 (Ch. 5) 

30 nodes without and with node demands��� ���������������	������������
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Figure E.1: 30-node network used in Chapters 4 and 5
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Figure E.2: 40-node network used in Chapter 4
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