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Allergies are a pervasive issue and require novel ways of alleviating symptoms.

Existing treatments focus on symptom management and immunotherapy in response to

an allergic reaction. However, there is also the potential for prophylactic treatment that

inhibits molecules involved in the mast cell degranulation pathway, which causes allergic

symptoms. We identified potential target proteins downstream of this pathway including

PKC, PLCγ, and PI3K isoforms, the activation of which results in the degranulation of

mast cells. We computationally modeled protein-inhibitor binding interactions and

identified inhibitors with the predicted highest binding affinity to the target pathway

proteins. For the most efficient inhibitors, we extended our analysis by construction of

analogs to determine which chemical properties of the inhibitors contributed to the

highest binding affinity. The identified possible inhibitors have the potential to hinder

mast cell degranulation, limit histamine and cytokine release, and therefore prevent

allergic symptoms, making them ideal targets for future pharmacology research.
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Introduction

An allergy is a chronic condition due to an adverse reaction to an otherwise

harmless environmental substance within the immune system. Allergies impede both the

dietary and social lives of those affected as well as the families and communities

surrounding each person. The allergic response is characterized by a range of symptoms

from sneezing, runny nose, coughing, and itching to life-threatening reactions such as

anaphylactic shock (Centers for Disease Control and Prevention, 2017). According to the

World Health Organization (2011), the percentage of persons with sensitivity to allergens

is 40% and climbing; it is the most pervasive disorder globally. In the United States,

allergies are the sixth leading cause of chronic illness (Centers for Disease Control and

Prevention, 2017).

Generally, allergies are the product of repeated reactions within the immune

system to a specific allergen. In every reaction, the immune cells known as mast cells are

activated, triggering a cascade of molecules to bind, activate, or recruit each other in a

complex signaling pathway. This leads to degranulation, a process in which the cells

release cytotoxic molecules and other inflammatory mediator molecules resulting in the

manifestation of allergic reactions.  (Metcalfe et al., 2009). Currently, the most common

therapeutics can be characterized in three ways: avoidance of the allergen, medication to

treat symptoms, and immunotherapy. These current therapeutics involve significant

lifestyle changes and treatment upkeep for the patients. Additionally, although

inexpensive treatments are available, many patients find them insufficient for symptom
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management. Therefore, there exists the opportunity to research novel allergy therapeutic

options.

This research focuses on the intracellular signaling pathway within mast cells to

screen for novel drug targets and identify inhibitors with the best binding affinity to

signaling proteins. Previous treatments have targeted extracellular binding of antibodies

and downstream release of inflammatory molecules, but not the signaling pathway. The

identified inhibitors could then be synthesized by pharmaceutical companies and this

allergy medication could be taken prophylactically.

To determine which inhibitors had the lowest binding energies, signaling protein

structures were modeled in Phyre2 and refined using Modrefiner; these 3D structures

were then modeled with different known inhibitors using PyRx, which outputted binding

energies. The inhibitors that demonstrated protein-inhibitor interactions with the lowest

binding energies were selected, and analogues of these inhibitors were derived from the

ZINC database and modeled against signaling molecules. This analysis demonstrates

proof of concept of the modeling procedure to identify effective inhibitors against

biological signaling molecules, which can be refined and utilized in future drug screening

procedures.

There are a few limitations to this study. These include the use of in silico

modeling, which cannot entirely simulate the conditions in the human body. There might

be unintentional effects on other biological processes due to the ubiquity of the target

proteins in the human body. Furthermore, the modeling software is giving a best

estimation of the binding energies, but these values are not exact, and may also differ
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when done in vitro and in vivo. Therefore, further experimentation should be done in

mast cell lines and murine models to verify these findings.
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Literature Review

This section provides an overview of published works on the basic functions of

the immune system, key components of the allergic response from the binding of

antibodies to mast cells to the signaling pathway leading to degranulation, current

treatments for allergic disease, and potential drug targets.

Overview of Immune Responses

In an adaptive immune response, the body utilizes many cell types to combat

foreign substances known as antigens. When an antigen enters the body, it is detected and

phagocytized by antigen-presenting cells (APCs). The engulfed antigen is broken up into

peptide fragments by acid hydrolases in phagolysosomes which are then presented on

surface proteins on the exterior of the APC (Warrington et al., 2011). These surface

proteins, known as the major histocompatibility complex 2 (MHC2), work in conjunction

with a second signal known as co-stimulation in order to induce T cell maturation and

differentiation (Bonilla & Oettgen, 2010). If the T cell matures into a helper T cell, it can

use the specificity of the original antigen to prompt B cells into producing

antigen-specific antibodies. In different pathways, the B cell acts as an APC itself, and

can use the antigen fragments to make specific antibodies (Bonilla & Oettgen, 2010).

This is the mechanism of antibody-mediated immunity.

Due to DNA rearrangements within the B cell, every antibody made by a specific

B cell is unique to that antigen and to its B cell (Alberts et al., 2002). This allows the B

cells to make many antibodies to combat a specific antigen. After the encounter of an

antigen, the B cell can clonally expand and differentiate into antibody-secreting effector
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cells. Other B cells do not become effector cells, but function to retain the genetic

memory for producing that specific antibody in order to ensure that a second exposure

will trigger a more effective attack on the foreign substance (Warrington et al., 2011).

Most commonly in a normal immune response, effector B cells produce the

immunoglobulin G (IgG) antibodies. Once bound to their specific antigen, the antibody

can enact the antibody-mediated immune response, also known as the humoral immune

response. Antibodies coat the antigen, which can block many of the pathogenic

mechanisms of an antigen such as adhering to host tissues or binding to other mechanistic

structures needed to carry out infection (Forthal, 2014). In other cases, opsonization

occurs when the antibody coating of antigens promotes phagocytosis (Janeway et al.,

2001). The presence of antibodies coating the antigens can cause phagocytes of the

immune system to recognize protein sequences within the Fc region of the IgG antibodies

and bind to Fcγ receptors found on the surface of the phagocytes (Hiemstra & Daha,

1998). This binding increases phagocytosis by pulling the membrane of the phagocyte

around the antigen (Hiemstra & Daha, 1998). A final aspect of the humoral response

occurs in the form of complement activation, which can lead either to enhanced

opsonization or pathogen cell lysis (Noris & Remuzzi, 2013). In summary, the normal

humoral immune response is largely dictated by the activity of immunoglobulin G and

results in the neutralization of pathogenic substances to the body. This greatly differs

from the allergic response, which is dictated by IgE rather than IgG.
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Allergic Response Mechanism

In the allergic response mechanism, the naive T helper cell recognizes the antigen

and the co-stimulatory molecule, it becomes a mature T Helper 2 cell (TH2). When

interacting with the B cell, cytokines such as Il-4, Il-5, and Il-13 trigger the B cell to start

producing Immunoglobulin E (IgE) instead of IgG (Bubnoff et al., 2001). The IgE then

binds to the FcεR1 receptor on the mast cell. If there is another exposure of this same

antigen, the specific IgE antibody is already produced and bound to the mast cell

(Warrington et al., 2011). Once it recognizes the antigen, the Fab region of the IgE binds

to the antigen. This causes the mast cell to degranulate and release proinflammatory

mediators such as histamines, prostaglandins, and leukotrienes (Galli et al., 2008).

Depending on the proinflammatory mediator released, the body expresses different

reactions, as shown in Figure 1.
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Figure 1. The mechanism of IgE mediated allergic reaction. (Nagai,, Teramachi,

& Tuchiya 2006)

Many proinflammatory mediators have overlapping effects, which can cause

symptoms such as coughing, sneezing, wheezing, hives, mucus secretion, and

anaphylaxis. In most cases, these symptoms are a result of acute inflammation in which

the body is working to heal itself and are temporary (Galli et al., 2008). Allergic diseases

such as eczema, hay fever, sinusitis, and asthma, however, are the result of chronic

inflammation (Galli et al., 2008). The specific mechanisms leading to this kind of chronic

inflammation are still not completely understood.

One of the major proinflammatory mediators released are histamines, which bind

to H1 receptors and cause the smooth muscles of the bronchi to contract (Faustino-Rocha

et al., 2017). This makes breathing difficult as the airways start to close. In addition,

histamines cause blood vessel dilation and increase permeability of the blood vessel

walls. In severe cases of allergic responses, rapid onset of histamine release can cause a

combined attack of oral, skin, respiratory, cardiovascular, gastrointestinal, and neurologic

systems known as anaphylactic shock, which can be life-threatening (Kim & Fischer,

2011).

Prostaglandins are important in both early and late immune responses. They can

also cause the smooth muscle to contract, causing coughing, wheezing, and shortness of

breath (Satoh et al., 2006). Persistent bronchial hyperreactivity can lead to the diagnosis

of asthma. Six hours after the exposure to the allergen, it is also involved in the
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pathogenesis of urticaria, allergic rhinitis, and allergic bronchial asthma (Satoh et al.,

2006).

Leukotrienes are seen to have a role in many chronic inflammatory diseases (Liu

& Yokomizo, 2015). For example, they are correlated with eczema, asthma, and hay

fever. The molecules are also related to some more acute symptoms such as

bronchoconstriction, mucus secretion, and anaphylaxis.

Immunoglobulin G and Immunoglobulin E

Human immunoglobulin (Ig) is a Y-shaped protein produced by plasma cells to

aid the immune system in destroying foreign bacteria (Schroeder & Cavacini, 2010). Of

the five antibody classes, IgG and IgE are the two isotypes directly involved in allergy

mechanisms (Warrington et al., 2011). All immunoglobulin are composed of two heavy

(H) and two light (L) chains, and a combination of variable (V) and constant (C) regions.

The light chains are made up of one V region and one C region. The heavy chains are

made up of one V region and three C regions (Schroeder & Cavacini, 2010). The variable

regions of the heavy and light chain are paired together at the top of the antibody to

create an antigen binding site. The constant regions specify effector functions, such as

binding to the Fc regions of mast cells, and determine the specific isotype of the

immunoglobulin (Schroeder & Cavacini, 2010).

Immunoglobulin G (IgG) is the most abundant immunoglobulin within the blood

and lymph nodes. IgG has a large role in the opsonization of pathogens (Warrington et

al., 2011). IgG also engages in agglutination in which the antibody can connect multiple

antigen particles in order to create large clumps for easier and more efficient recognition
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and degradation (Warrington et al., 2011). Finally, IgG is the only immunoglobulin that

can pass through the placenta. This is very important because mothers can pass their IgG

into their offspring, therefore passing certain immunities onto their offspring (Warrington

et al., 2011).

Immunoglobulin E (IgE) is the antibody most directly related to allergies (Stone

et al., 2010). When the immune system produces an allergic mechanism, the B cells

switch from producing IgG to producing IgE. IgE binds to the FcεR1 receptor on mast

cells in order to induce an immune response to a foreign substance. Once the IgE is

bound to the Fc portion of the FcεR1 receptor, it can capture antigens, causing the mast

cell to release its granules which contain proinflammatory mediators (Galli et al., 2008).

B Cell Activation

In the immune response, naive B cells undergo a process known as class switch

recombination in which the class of antibody is changed from IgM to either IgG, IgE, or

IgA by means of a chromosomal deletion along the locus for the antibody’s heavy chain

(Stavnezer et al., 2008). There are two main components to class switching in

T-dependent B cell activation. The first component is the binding of the CD40L molecule

on a T cell with the B-cell surface receptor CD40, and the second is the release of

cytokines by that T cell (Maddaly et al., 2010). Once the B cell is activated, enzyme

activation induced cytidine deaminase (AID) oversees the deletion along two splice sites

known as switch (S) regions (He et al., 2015). The first S region is fixed just upstream of

the coding sequences for IgM and IgD (Stavnezer et al., 2008). The second S region to be

cut is determined by cytokines produced by helper T cells. Cytokine interferon-γ (IFN-γ)
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causes a splice site just before the gene sequence for IgG to be cut, excising the sequence

for IgM and IgD (Kawano et al., 1995). Cytokine interleukin 4 (IL-4) is responsible for

the deletion resulting in the generation of IgE antibodies (Stavnezer & Schrader, 2014).

Thus, the specific isotype of antibody produced by a B cell is dependent on the cytokines

produced by the helper T cell.

FcεR1

FcεRI is expressed on mast cells and basophils and has a high affinity for IgE

(Metz et al., 2008). Structurally, FcεR1 is tetrameric and is composed of, an α, β, and 2

disulfide-linked γ subunits. The β and γ chains are involved in signal transduction after

binding of IgE in order to mediate the cell’s response to IgE binding, and dictate

subsequent signal cascades and histamine release. The FcεR1 receptor is present in its

complete form and expressed at a constitutive level only on basophils and mast cells

(Metz et al., 2008). However, it is also present in a reduced form α𝛾2, in which the β

signaling subunit is not present, in cells like dendritic cells, eosinophils, and platelets. IgE

binding to FcεR1 causes its upregulation.

Signaling Pathways

The binding of IgE to FcεR1 on mast cells and basophils results in a cascading

web of signaling pathways between a complex array of adaptor proteins, kinases, and

other molecules. These events lead to two events specific to the allergic mechanism

symptom manifestation: mast cell degranulation and cytokine production, as depicted in

Figure 2.
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Figure 2: Overview of cell signaling pathways within mast cells. (Gilfillan, & Tkaczyk

2006)

Lipid Rafts, LYN, FYN, GAB2, PI3K

In the early part of the signaling pathway, IgE-antigen complexes bind to the

FcεR1 receptor (Oettgen & Burton, 2015). Before this binding, FcεR1 receptors have a

low affinity to insert into lipid rafts, regions of the cell membrane where certain

glycolipids cluster to form microdomains useful in signaling (Dykstra et al., 2003). After

IgE-antigen binds to FcεR1, however, oligomeric antigens cross-link IgE bound to FcεR1

just long enough to assemble a “signalosome” made of adaptor proteins and other

signaling proteins that promote raft clustering and bind to the actin cytoskeleton to
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stabilize the receptors in the lipid raft (Dykstra et al., 2003). Then, tyrosines in

immunoreceptor tyrosine-based activation motif (ITAM) sequences, found in the

cytosolic domains of the FεcR1 β and γ chains, become phosphorylated by Src kinase

Lyn (Metcalfe et al., 2009). Lyn kinase is preferentially found in these membrane

microdomains and shifts the equilibrium from most inactive to mostly phosphorylated

and active FcεR1 (Gilfillan & Tkaczyk, 2006).

Figure 3. Process of creating lipid raft with IgE-antigen and FcεR1 oligomers

(Dykstra et al., 2003)

Fyn kinase is also found in these lipid rafts and binds more tightly to the β subunit

of FεcR1 when the receptor is activated (Parravicini et al., 2002). It is responsible for

phosphorylating GRB2-associated binding protein 2 (Gab2). Gab2, like its analogs of

Gab1 and Dos, is a scaffold adaptor protein that signal molecules can bind to. Gab-/-

mice were found to have both impaired mast cell degranulation and cytokine expression

(Gu et al., 2001). Phosphorylation of Gab2 causes a conformational change to recruit

molecules like Src-homology domain 2-containing protein tyrosine phosphatase 2

(SHP2) and phosphatidylinositol-3-OH kinase (Ptdlns-3K or PI3K).
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PI3K is a family of lipid kinases known to be involved in many cellular functions

such as cell growth, development, proliferation, and survival (Hemmings & Restuccia,

2012). They are involved in pathways leading to endocytosis, vesicle trafficking,

autophagy, signaling, cortical remodeling, secretion, and cytokinesis. Deregulation of

PI3K can lead to tumorigenesis (Jean & Kiger, 2014). Here we will focus on the

immediate involvement of PI3K within the pathway previously described as activated by

Gab2.

In the mast cell degranulation signaling pathway, PI3K is activated by the adaptor

molecule Gab2. When recruited, the regulatory subunit of PI3K in conjunction with a

tyrosyl phosphorylated SHP binds to sites on Gab2 (Gu et al., 2001). Once bound, class

1A PI3K containing p85 and p110 subunits convert the membrane lipid

phosphatidylinositol-(4,5)-bisphosphate (PIP₂) to

phosphatidylinositol-(3,4,5)-trisphosphate (PIP₃) (Kim et al., 2008). PIP₃ has docking

sites that are made available to associating proteins at domains called

pleckstrin-homology domains (Gilfillan & Tkaczyk, 2006). Some associating proteins

called to PIP₃ include PLCγ, VAV, PLD, SK, and BTK.

There are two well established inhibitors of PI3K: wortmannin and LY294002.

Wortmannin is a fungal toxin which binds to the p110 subunit of PI3K (Barker et al.,

1995). Wortmannin has been  shown to reduce levels of degranulation when tested in the

rat basophil leukemia cell line RBL-2H3 (Gilfillan & Tkaczyk, 2006). The second

inhibitor of PI3K is known as LY294002. LY294002 is a more stable alternative to

wortmannin in solution with a tradeoff of requiring a much higher concentration in order
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to reach the same level of inhibition (Walker et al., 2000). Other inhibitors such as

quercetin, myricetin, and staurosporine have also been tested as PI3K inhibitors,

providing proof of concept for allergic therapy in the inhibition of PI3K (Walker et al.,

2000).

PLCγ and PLD Pathways

Syk tyrosine kinase activates adaptor molecules that lead to the activation of

phospholipase Cγ (PLCγ), a critical molecule for B cell activation (Peng & Beaven,

2005). There are two forms of PLCγ with PLCγ-1 mainly expressed in mast cells and T

cells and PLCγ-2 mainly involved in B-cells (Kim, 2000). PLCγ is the signaling enzyme

that catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), a

phosphoinositide on the plasma membrane, into the second messengers DAG and inositol

1,4,5-trisphosphate (IP₃) (Kim, 2000). These two cleavage products have important and

independent roles in subsequent signaling that ultimately results in calcium release and

PKC activation (Gericke, 2013). PLC inhibitor U-73122 has been previously tested in

inhibiting PI hydrolysis and IP₃ synthesis in neutrophils, neuroblastoma cells, and

platelets, and has been cited as a possible inhibitor of PLC (MacMillan & JG McCarron,

2010).

IP₃ production induces calcium release in the endoplasmic reticulum, that in turns

causes calcium to flow in from extracellular channels (Rivera & Gilfillan, 2006). This

influx of calcium leads to steps initiating transcription and differentiation. Internal

calcium is also involved in a number of other activating processes, such as in the

activation of Protein Kinase C (PKC).
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PKC is a group of lipid dependent kinases that phosphorylate protein structures

and serve as effector molecules (Becker, 2005). DAG generation recruits PKC to migrate

to the plasma membrane, during the path in which it attaches to and activates PLD

(Becker, 2005). DAG competes with phorbol esters to bind to the C1 site on PKC

(Becker, 2005). This could possibly become an area of interest for cascade inhibition.

There are several different subgroups of PKC, some of which are dependent on DAG and

calcium, some DAG alone, and some on neither (Singer et al., 1996). Of the calcium

dependent groups, DAG generally binds to the C1 unit and calcium to the C2 unit, while

in the calcium-independent groups, only DAG binds to the C1 unit (Huang 1989). PKC

inhibitors such as staturosphine and calphostin C have been seen to block PLD activation.

However, there are some studies that suggest that calphostin may act directly upon PLD

(Peng & Beaven, 2005).

Production of DAG is what triggers PKC to bind and interact with PLD, though

this pathway is less understood. It has direct contact with kinases such as Protein Kinase

C (PKC), ERK, and Tyrosine Kinase 2 (TYK). DAG is produced by PLC, which then

induces PLD to produce its own DAG in a much greater amount in order to activate PKC

(Peng & Beaven, 2005). Activation of PLD has been linked to the production of

phosphatidic acid (PA), diacylglycerol (DAG), and choline. PA itself also targets and

regulates PKC (Peng & Beaven, 2005).

Sphingosine Kinase Pathway

Sphingosine kinase (SphK) is another enzyme found in the mast cell pathway.

The role of SphK is to catalyze the phosphorylation of sphingosine to form
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sphingosine-1-phosphate (S1P) (Sun & Bonder, 2012). S1P is known to have a role in the

signaling processes of various diseases from cancers, to diabetes, osteoporosis, and

allergies and asthma (Maceyka et al., 2011). In the allergic response, SphK and S1P are

involved in survival, differentiation, migration, and activation (Sun & Bonder, 2012).

There are two isoenzymes which form S1P, the SphK1 and the SphK2. These

enzymes catalyze the phosphorylation of sphingosine to form S1P. SphK1 regulates cell

growth and survival, but when overexpressed SphK2 induces cell death (Olivera et al.,

1999). Both SphK1 and SphK2 were found to have increased activity when the FcεRI

receptor was activated in mast cells (Mizugishi et al., 2005).

S1P has two receptors, S1P1 and S1P2, which are both expressed on the surface of

mast cells. (Oskeritzian et al., 2007). S1P1 regulates migration of mast cells towards

antigens. S1P2 is known to mediate mast cell activation and degranulation, which makes

it a better target for this research. (Oskeritzian et al., 2007). The S1P that is secreted by

the mast cell is able to bind to these receptors.

PKA and cAMP

Protein kinase A (PKA) is an enzyme that phosphorylates other proteins to

regulate their function. Its two catalytic subunits are responsible for the phosphorylation

activity, while its two regulatory subunits are able to detect and properly react to levels of

cyclic AMP (cAMP). When cAMP levels are low, the catalytic subunit is inactive, and

when cAMP levels are high, the catalytic subunit is active. Research suggests that

administering a treatment using an antagonist of cAMP or shRNA down-regulation of

PKA reversed the EP2-mediated inhibitory effect on MC degranulation (Serra-Pages,
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Olivera, Torres, Picado, de Mora, & Rivera, 2012). A molecule called PGE2 can mediate

the suppression of mast cell degranulation, which researchers found could be modulated

to vary from activating to suppressing, depending on the relative ratio of EP2 to EP3 (two

types of G protein coupled receptors) expression on these cells with suppression evident

only in cells having increased EP2 to EP3 expression. (Serra-Pages et al., 2012).

Current Treatments

Symptom Management

Currently, there is no cure for allergies. Relatively common and established

treatment recommendations for allergies are focused on avoidance measures and

pharmacotherapy-based symptom management (Lanser et al., 2015). Although the

recommendation of avoiding allergens will certainly lessen allergen exposure and thus

the subsequent allergic response, the measure is impractical and inconvenient in daily

practice (Marple et al., 2007).

Some treatments, such as decongestants and corticosteroids, focus on treating the

symptoms of allergies. Decongestants relieve the nasal congestion associated with

allergies by reducing swelling in nasal tissues and blood vessels (AAAAI, 2018).

Corticosteroids also work to reduce inflammation in addition to ameliorating stuffiness,

sneezing, and runny nose. There are also a number of over-the-counter treatments such as

eye drops and nasal saline spray that can also help to alleviate some of the symptoms. In

emergency cases, epinephrine can be administered to stop the serious allergic reaction of

anaphylaxis (AAAAI, 2018).
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Other treatments aim to stop or limit the allergy symptoms from occurring by

interfering with a step in the molecular pathway of the allergic response. These include

antihistamines, mast cell stabilizers, and antileukotriene agents (AAAAI, 2018).

Antihistamines such as loratadine (Claritin) and cetirizine hydrochloride (Zyrtec) block

histamine from attaching to its receptor after it has been released from the mast cells.

Mast cell stabilizers can stop the histamine from being released from the mast cells in the

first place. Antileukotriene agents work to limit the effects of leukotrienes, which are

known to play an important role in some severe allergic symptoms. Some of these agents

work by blocking the production of leukotrienes while others stop leukotrienes from ever

binding to their receptors (AAAAI, 2018).

Although avoidance and symptom management treatments are able to reduce the

effects of allergic responses, they are insufficient for many and are not measures working

towards a curative or long-lasting therapy. Researchers have been seeking new and

improved therapeutics such as through immunotherapy to better target the foundational

mechanisms initiating allergic reactions which can even work in conjunction with the

aforementioned treatments to increase the efficacy and endurance of treatment.

Allergy Immunotherapy

Allergy-specific immunotherapy (SIT) is a curative method of treatment for

certain allergies as it is able to induce long-term allergen-specific tolerance through

multiple mechanisms and routes of administration (Akdis, 2014). Desensitization with

SIT involves a process similar to vaccinations in which increasing doses of extracts of the

specific allergen are administered followed by maintenance doses for several years. This
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process is hoped to trigger immunological change for sustained desensitization (Orengo

et al., 2018). Immunotherapy, specifically allergy shots or desensitization, is one of the

most effective treatments for those who experience chronic allergies. Currently, there are

even oral tablets such as Grastek and Oralair that can be taken at home (AAAAI, 2018).

SIT focuses on inducing an increase in IgG production to outcompete IgE in

binding to effector cell receptors. Orengo et al. (2018) tested this method in mice and

cat-allergic patients, finding that an increase in the blocking IgG/IgE ratio reduces the

allergic response. Although SIT can provide lasting treatment, it has variable efficacy

among patients. Some patients have no response to treatment, and others have adverse

side effects. Side effects are most commonly associated with food allergies, and therefore

SIT is only available for environmental aeroallergens (Orengo et al., 2018). To address

some of the issues of this technology, more research is emerging on dosing schedules,

routes of administration, and advanced vaccines (Akdis, 2014). While there are

established methods of immunotherapy, improvements can be made for more effective

actions that can be applied to all types of allergens.

Anti-Cytokine Drug Therapy

There is research underway in the vein of genetic exploration among the genes

behind antibody production and class switch recombination. In a 2016 study, the effects

of anti-IL-4 were investigated to combat asthma with variable changes among asthmatic

symptoms across asthma types (Bagnasco et al., 2016). In 2001, clinical trials began

testing anti-IL-4 drug pascolizumab against the effects of allergic asthma with mixed

results that ultimately concluded inefficacy (Hart et al., 2002). Often, therapies with
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action to block IL-4 act in conjunction with inhibitors of IL-13 due to the redundancy that

the two cytokines possess in expressing many of the same pathways, functioning

similarly (Kau & Korenblat, 2015). Several dual-blocking anti-IL-4 and anti-IL-13 drugs

are in the process of testing yet are thus far ineffective in entirely blocking allergic

asthma due to functional differences of various subtypes of asthma which complicate the

efficacy of the drugs (Kau & Korenblat, 2015). Overall there is a lack of consistent

efficacy in asthma studies and even less so within the scope of more complicated

allergies, rendering anti-cytokine therapy unpromising.

Anti-IgE Drug Therapy

Anti-IgE drugs mediate the allergic response by binding to the Cε3 region within

the Fc region of the IgE antibody (Holgate, 2014). One example of this type of drug is

omalizumab, a recombinant humanized monoclonal antibody. It works by binding two of

its molecules to the Fc region of the free-floating IgE so that it is unable to bind to FcεR1.

This reduces the levels of free-floating IgE in the body as over time they are recycled.

This reduction of IgE over time allows the drug to be effective against a long-term allergy

such as allergic rhinitis (Easthope & Jarvis, 2001). Other allergies have been tested

against the effects of omalizumab with varying degrees of success. In a review done in

2014, omalizumab was reported to have anecdotal or limited evidence against allergies

such as Churg-Strauss Syndrome, bronchopulmonary allergic aspergillosis (fungal

sensitivity), and eosinophilic otitis media (Holgate, 2014).

MEDI4212 is an anti-IgE monoclonal antibody that has the potential to eliminate

IgE-expressing B cells and neutralize soluble IgE in asthma prone patients (Nyborg et al.,
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2015). This occurs through cell-mediated cytotoxicity, a type of immune reaction in

which the target is coated with antibodies and killed by white blood cells. MEDI4212

variants also inhibited IgE-induced signaling and demonstrated enhanced cell killing.

(Incorvaia & Mauro, 2015). MEDI4212’s advantage over omalizumab is its ability to

neutralize high amounts of soluble IgE as well as remove the IgE expressing B cells.

(Incorvaia & Mauro, 2015). The authors suggest that this drug is not likely to replace

omalizumab, which has been brought to market, but could potentially be used as an

additional treatment (Nyborg et al., 2015). More research needs to be done on this novel

high-affinity anti-IgE monoclonal antibody, such as testing its abilities to reduce other

allergies other than asthma.

Adenine in Cell Signaling

Adenine has a variety of biological functions other than being a component of

DNA and RNA. A 2015 study shows that adenine possess anti-allergic effects by

inhibiting FcɛRI-mediated signaling events (Silwal et al., 2015). Findings by Silwal et al.

testing the effects of adenine is valuable in the search for finding a medication that

prevents the allergic response from occurring. Rather than antihistamines which merely

alleviate symptoms caused by the degranulation of mast cells, administering adenine

could terminate the allergic response earlier in its pathway.

Potential Targets

After conducting the literature review, including the background on the immune

response as well as current and potential treatments available, the team decided to target

the mast cell degranulation pathway. There are extensive therapeutic options that target
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processes after degranulation occurs; thus, we focused our research on inhibiting the

release of inflammatory molecules. Based on the literature findings for parts of the

pathway, we chose which enzymes to focus our research on based on three factors: the

availability of previously-identified inhibitors for the protein, the protein having a critical

role in the signalling pathway, and a gap in the research on its impact in mast cells. Three

enzymes fit these requirements and warranted further research on their inhibitors: Protein

Kinase C (PKC), Phospholipase C gamma (PLCγ), and Phosphoinositide-3-Kinase

(PI3K). Next, we will examine these known inhibitors and their analogs to optimize their

binding to these target proteins. In this project, we explore how proteins within the

downstream mast cell signaling pathway can be inhibited in order to reduce degranulation

and thus reduce the allergic response. To examine this, the team decided to focus on

computational methodologies.

State of Current Research in Protein Modeling

Virtual screening is a computational method by which binding between ligands

and their macromolecule is simulated. This technique is often used in the context of drug

discovery due to its ability to screen libraries by way of sequential filters to target ligands

with appropriate affinities to a molecule’s binding site (Lavecchia & Di Giovanni, 2013).

There are two main types of virtual screening methods: ligand-based and

structural-based. In ligand-based virtual screening, the properties of known active ligands

are evaluated according to their similarity to new ligands. To operate in a ligand-based

method, an efficient similarity measure and a reliable scoring method are utilized (Hamza

et al., 2012) This method is useful when there is no available structure of the target



23

protein molecule. Structure-based virtual screening operates by scoring the affinity of a

known ligand with a known protein target. This predicted ligand-protein complex is

evaluated by calculating the free energy of the docking site when involved by the ligand

in the protein (Lionta et al., 2014). Many computational softwares use both ligand- or

structure-based screening techniques to approximate novel ligand-protein complexes.

PyRx is an open-source virtual screening software that contains Autodock Vina, a

program used for computational docking to simulate receptor-ligand interactions (Trott &

Olsen, 2010). Computational docking software relies on a number of approximations to

predict the confirmation and binding affinity between a target receptor and its ligand.

Autodock Vina assumes a rigid receptor and fixed bond angles and bond lengths in the

ligand to reduce the size of the conformational search space (Cosconati et al., 2010). An

empirical free energy force field with terms for hydrogen bonding potentials,

electrostatics, and torsional entropy predicts the binding affinity between the ligand and

receptor at different conformations. Autodock Vina uses a scoring function based on

predictions from the empirical force field to determine the best binding conformations

and their respective free energies of binding. Since the conformational search methods

are stochastic, the lowest reported binding affinity is not guaranteed to be a global

minimum. The estimated free energies of binding are accurate within 2-3 kcal/mol (Forli

et al., 2016).

Identification of more inhibitors in the pathway through computational modeling

could lead to more effective treatment after in depth study. Thus, the aim of this project is

to identify drug candidate molecules similar in structure to these lead inhibitors from a
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vast library of compounds and to screen them using virtual modeling. Specifically, by

modeling protein-inhibitor interactions using PyRx, we can predict the effectiveness of

different molecules in reducing degranulation.
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Materials and Methods

Refining Macromolecules

The protein sequences (FASTA sequences) of the macromolecules tested—PI3K,

PKC-beta1 (β1), PKC-beta2 (β2), PKC-delta (δ), PKC-eta (η), PLC-gamma1 (γ1),

PLCgamma2 (γ2)—were derived from the National Center for Biotechnology

Information (NCBI) database or Research Collaboratory for Structural Bioinformatics

(RCSB) database. These protein sequences were then modeled using Phyre2, a 3D

protein modeling software (Kelley et al., 2015). Putting the resulting protein models

through Modrefiner, an algorithm for atomic-level, high-resolution protein structure

refinement, provided a more reliable model of the signaling molecule, as we determined

using the following protein structure analysis programs: ProSA, ProCheck, and ERRAT

server (Xu & Zhang, 2011). ProSA determined local quality of sections of the protein so

that it can be seen if any areas specifically are incorrectly modelled (Wiederstein & Sippl,

2007). ProCheck created Ramachandran plots to check accuracy of bond angles

(Laskowski et al., 1996). ERRAT server measured the accuracy of nonbonded

intermolecular forces (Colovos & Yeates, 1993). All of these analysis programs together

provided a comprehensive picture of the accuracy of the protein models made by Phyre2

and ModRefiner.

Preparing Ligands for Docking

These refined models were then screened in PyRx, a virtual molecular screening

software which predicts binding affinity, against known inhibitors whose structures were
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derived from PubChem (Dallakyan & Olson, 2014). The chosen proteins were imported

into PyRx as .pdb files and converted into AutoDock macromolecules.

The established inhibitors for the selected pathway were designated as the

‘ligands’ within PyRx and were screened against the signaling molecules, termed

‘macromolecules’ in the software. ‘Ligands’ were imported into PyRx from PubChem in

the form of SDF files. Intramolecular forces within the ligands were then minimized

through OpenBabel by setting the total number of steps to 10,000 and the stop criterion at

an energy difference of less than 0.01. These parameters were modified in the PyRx

software in order to optimize the orientation of the ligand for binding interactions. The

ligand was then converted into an AutoDock ligand to begin virtual screening. For the

screening process, we used the Vina Wizard program within PyRx. We selected the

macromolecule and ligand whose binding was to be modeled and maximized the region

of protein to be analyzed for potential binding sites, although not necessarily the ATP

binding pocket of the kinases modeled, as well as increased exhaustiveness of binding

site identification to 12 before starting the run. A list of binding affinities was generated,

and we recorded the most favorable ΔG value, indicative of the highest predicted affinity

between the ligand and the macromolecule.

Analogs

Several ligands were selected to be run with each protein specified. Eleven

simulation trials were run in PyRx modeling affinity software for each ligand-protein

pair. Out of 34 known inhibitors, the average binding affinity was calculated across

eleven trials. Out of 15 selected inhibitors, analogs were derived from the ZINC database.
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Analogs tested had similarity thresholds above 0.3, by ZINC standards. These analogs

were then tested for binding energy to the signaling molecules in PyRx using a similar

methodology as described above; however, exhaustiveness was set to 16 and an average

of predicted ΔG values was taken across 5 trials.
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Results

We were interested in identifying novel inhibitors that might point to new

therapeutic avenues for treating allergies. In order to investigate this, we took a

computational approach.

Protein Structure Analysis

We began by using Phyre2 and Modrefiner to develop and refine 3D models of

the signaling molecules involved in the degranulation pathway, as many of the selected

molecules did not have reliable existing file type PDBs of the selected molecules; in

order to maintain consistency in our modeling, we chose to create 3D models for all

selected signaling molecules. The Phyre2 server, a protein structure prediction web

portal, was used to predict the 3D structure of a single submitted protein sequence

(Kelley et al., 2015). The 3D structures were subsequently put through Modrefiner, which

aimed to enhance the models by altering them to be closer to their native states by

altering hydrogen bonds, backbone topology, and side chain positioning (Xu & Zhang,

2011). Models were then evaluated through ProCheck, ProSA, and ERRAT─which

determine the validity of the 3D protein models through evaluation of local quality of

sections of the protein, accuracy of bond angles, and accuracy of nonbonding

intermolecular forces, respectively─and indicated that ModRefiner greatly increased the

quality of the protein model PDB files in relation to the models that were only made with

the Phyre2 software. This made the signaling protein models more valid for binding

studies. The results of the protein structure analysis programs are shown in Appendix C.
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Notably, many of the Ramachandran plots generated from the 3D models of the

signaling molecules, even after refinement, indicated regions of error above acceptable

levels. However, despite this limitation in our models, we proceeded forward with

modeling as proof of concept of the modeling procedure due to time limits and lack of

computational power for modeling.

Binding Energy of Established Inhibitors

We then identified known inhibitors for signaling proteins in the selected pathway

and predicted the binding energy using PyRx, a virtual molecular screening software (See

Appendix B for complete list). This screening allowed us to establish a baseline for

finding novel inhibitors. Shown in Table 1 are the average ΔG values of the established

inhibitors with the highest affinities to the signaling molecules across eleven trials. For

each signaling macromolecule, the best one or two inhibitors were selected for further

study in order to determine what, if any, changes to the structure would lead to a stronger

binding energy. We then converted averaged binding energies to Kd using the equation:

dG = RTln(Kd).

Binding Site
(macromolecule)

Known Inhibitors
(ligand) Structure

Average
Binding Energy
(kcal/mol) Kd

PI3K Wortmannin -7.62 0.36± 1.35E-06

PI3K ZSTK474 -8.41 0.18± 4.89E-07

https://pubchem.ncbi.nlm.nih.gov/compound/312145#section=3D-Conformer
https://pubchem.ncbi.nlm.nih.gov/compound/11647372
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PKC-β1 Enzastaurin -10.15 0.38± 3.54E-08

PKC-β1 Ruboxistaurin -9.50 0.06± 8.54E-08

PKC-β1 Midostaurin -9.63 0.06± 8.54E-08

PKC-β2 Enzastaurin − 9. 40 ± 0. 31 1.27E-07

PKC-β2 Sotrastaurin -8.90 0.46± 6.44E-08

https://pubchem.ncbi.nlm.nih.gov/compound/Sotrastaurin
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PKCδ Sotrastaurin -10.00 0.67± 1.41E-08

PKCδ Rottlerin -9.36 0.54± 1.27E-07

PKCη Sotrastaurin -9.03 0.25± 2.38E-07

PLC-γ1 U73122 -8.60 0.45± 1.78E-07

PLC-γ2 U73122 -8.20 0.31± 4.89E-07

Table 1. The binding energy of known inhibitors to macromolecules in the mast cell
signalling pathway

Analogs of Selected Inhibitors
In order to identify novel inhibitors that could serve as potential therapeutics

against the signaling molecules of the degranulation pathway, we utilized the ZINC

Database to search for analogs of the established inhibitors we selected. We searched for

https://pubchem.ncbi.nlm.nih.gov/compound/Sotrastaurin
https://pubchem.ncbi.nlm.nih.gov/compound/5281847
https://pubchem.ncbi.nlm.nih.gov/compound/104794
https://pubchem.ncbi.nlm.nih.gov/compound/104794
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analogs that had a similarity-30 by ZINC database standards, which means ZINC

database defined them to be at least 30% similar to the ligand. When we did this, we

increased the exhaustiveness for binding from 12 to 16 in the PyRx software to ensure

that we were truly identifying the best binders.

PI3K Inhibitor: Wortmannin
We examined 30 analogs of Wortmannin from the ZINC Database. Of these 30

analogs, there were four analogs that had better binding affinities than Wortmannin.

Inhibitor Structure Binding Energy (kcal/mol)

Wortmannin -7.62 0.36±

Analog

ZINC8035078 − 8. 08 ± 0. 38

ZINC257519889 − 8. 18 ± 0. 16

ZINC144119389 − 8. 26 ± 0. 05
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ZINC71789745 − 7. 90 ± 0. 42

Table 2. Average binding affinities after molecular docking of  Wortmannin and analogs
to PI3K. An average of five trials was taken for the binding affinities of each analog with
corresponding standard deviation values.

Figure 4. Image to the left shows binding of ZINC144119389 which had the lowest
binding energy and image to the right shows binding of ZINC257519889 to PI3K.

The binding energy of Wortmannin to PI3K was measured to be -7.62 kcal/mol

over five trials. The analog that decreased binding energy the most was ZINC144119389

with an increase of about 0.94 kcal/mol from that of Wortmannin. Another analog with a

strong binding energy was ZINC257519889 with an increase of 0.86. The figure above

shows the binding site for the two analogs with the lowest binding energy. When

comparing the values we found in the literature, wortmannin had a binding energy of

−10.9 and −11.7 kcal/mol.
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PI3K Inhibitor: ZSTK474
We examined 17 analogs of ZSTK474 from the ZINC Database. Of these 17

analogs, there were 5 analogs with higher binding affinities upon docking with PI3K than

that of ZSTK474.

Inhibitor Structure Binding Energy (kcal/mol)
ZSTK474 -8.41 0.18±

Analog
ZINC113914670 -8.60 0.00±

ZINC1772626092 -8.50 0.00±
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ZINC1772653009 -8.66 0.06±

ZINC73160255 -8.70 0.00±

ZINC1243947389 -8.82 0.19±

Table 3. Average binding affinities after molecular docking of  ZSTK474 and analogs to
PI3K. An average of five trials was taken for the binding affinities of each analog with
corresponding standard deviation values.
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Figure 5: Image to the left shows the binding of ZINC1243947389, which had the lowest
binding energy, on to PI3K. Image to the right shows the binding of all the six
compounds, ZSTK474 and its examined analogs, on to PI3K.

The binding energy of ZSTK474 to PI3K was measured to be -8.41 kcal/mol over

five trials. Figure 5 shows that all examined analogs of ZSTK474, as well as ZSTK474

itself, bind to the same area on the PI3K molecule. The ZSTK474 analogs with better

binding affinities differed in structure through changes to the triazine ring or its

substituents, which may have led to their higher binding affinities. The analog that

decreased binding energy the most was ZINC1243947389 with an increase of about 0.41

kcal/mol from that of ZSTK474.

PKCβ1 Inhibitor: Enzastaurin

We examined six analogs of Enzastuarin from the Zinc Database. Of these six

analogs, there were three analogs that had a binding energy that was at least as strong as

Enzaustaurin itself.

Inhibitor Structure Binding Energy (kcal/mol)
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Enzastuarin − 10. 16 ± 0. 40

Analog

ZINC13489985 − 10. 36 ± 0. 05

ZINC13489986 − 10. 16 ± 0. 31

ZINC13489987 − 10. 42 ± 0. 54
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Table 4. Average binding energies after molecular docking of enzastaurin and analogs to
PKCβ1. An average of five trials was taken for the binding energies of each analog with
corresponding standard deviation values.

Figure 6. The image on the left shows Enzastaurin (shown in the molecular surface
model) interacting with PKCβ1 (in the ball and stick model). The image on the right
shows the analog ZINC13489987  interacting with PKCβ1.

Binding of PKCβ1 to ZINC13489987 had the lowest energy of -10.42 kcal/mol,

which is a 0.26 kcal/mol increase compared to the binding energy of enzastaurin. This

analog has a carbon instead of a nitrogen in the benzene ring. It also has a wedge

stereochemistry change at one position, where the six carbon ring is replaced with a five

carbon ring. As depicted in Figure 6, the analog does bind in the active site, and it likely

interacts with a different orientation, therefore possibly different residues within that site

that allow it to have a lower binding energy..

PKCβ1 Inhibitor: Ruboxistaurin

We examined 15 analogs of Ruboxistaurin from the Zinc Database, with five trials

each. Of these fifteen analogs, there were five analogs that had a negative binding energy

that was significantly stronger than Ruboxistaurin itself.

Inhibitor Structure Binding Energy (kcal/mol)
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Ruboxistaurin -9.5 0.00±

Analog

ZINC3825435 -10.1 0.00±

ZINC13604307 -10.02 0.18±

ZINC95569944 -9.84 0.05±
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ZINC195440759 -9.82 0.13±

ZINC575440512 -9.78 0.04±

Table 5. Average binding affinities after molecular docking of Ruboxistaurin and analogs
to PKCβ1. An average of five trials was taken for the binding affinities of each analog
with corresponding standard deviation values.

Figure 7. This image above shows the binding of ZINC3825435, which had the lowest
binding energy, on to PKCβ1.
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Binding of PKCβ1 to ZINC3825435 had the lowest energy of -10.1 kcal/mol,

which is a 0.6 kcal/mol increase compared to the binding energy of ruboxistaurin. This

analog has a hydroxyl group instead of a tertiary amine attached to the cyclic ring next to

the oxygen. The stereochemistry of the hydroxyl group is conserved as it remains on the

dashes.

PKCβ1 Inhibitor: Midostaurin

We examined 15 analogs of midostaurin binding to PKCβ1. Below are the 5

analogs that caused the greatest decrease in binding energy compared to base

midostaurin.

Inhibitor Structure Binding Energy (kcal/mol)

Midostaurin -9.44 0.34±

Analog

ZINC253614774 -10.58 0.12±  
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ZINC100080802 -10.42 0.12±

ZINC27326075 -10.92 0.15±

ZINC1569989194 -10.32 0.15±

ZINC584567048 -10.40 0.25±

Table 6. Average binding affinities after molecular docking of  Midostaurin and analogs
to PKCβ1. An average of five trials was taken for the binding affinities of each analog
with corresponding standard deviation values.
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Figure 8. Image at the top shows the binding of ZINC27326075, which had the lowest
binding energy, on to PI3K. Image at the bottom shows the binding of all the compounds,
Midostaurin and its examined analogs, on to PKCβ1.

Binding of midostaurin to PKCβ1 was measured with a ΔG of -9.44 kcal/mol over

5 trials. Each analog of midostaurin, as well as midostaurin itself, bind to the same area

on the PKCβ1 molecule. The analog that decreased binding energy the most was

ZINC27326075, which differs from base midostaurin in that it has an extra chloride

group coming off one of its aromatic rings, as seen in Figure 8. This leads to a binding

energy increase of about -1.48 kcal/mol, from -9.44 kcal/mol for midostaurin to -10.92

kcal/mol for the analog.
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PKCβ2 Inhibitor: Enzastaurin

We examined the same six analogs of Enzastuarin from the Zinc Database,

however this time they were tested with PKCβ2.  Two analogs, ZINC13489985 and

ZINC13489987, were found to bind better to PKCβ2 than enzastaurin itself.

Inhibitor Structure Binding Energy (kcal/mol)
Enzastaurin − 9. 40 ± 0. 31

Analog

ZINC13489985 − 10. 34 ± 0. 25

ZINC13489987 − 10. 16 ± 1. 14

Table 7. Average binding affinities after molecular docking of  Enzastaurin and analogs
to PKCβ2. An average of five trials was taken for the binding affinities of each analog
with corresponding standard deviation values.
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Figure 9. Image to the left shows the binding of ZINC13489985, which had the lowest
binding energy, on to PKCβ2. Image to the right shows the binding of both analogs of
enzastaurin, ZINC13489985 and ZINC13489987, on to PKCβ2.

The binding energy of enzastaurin to PKCβ2 was measured to be -9.40 kcal/ mol

over five trials. Each analog of enzastaurin binds the site on the PKCβ2 molecule. The

analog that had the best binding energy was ZINC13489985, with an increase of about

-0.94 kcal/ mol from enzastaurin. The change made to enzastaurin to create this analog is

replacing a nitrogen with a carbon in the benzene ring.

PKCβ2 Inhibitor: Sotrastaurin

We examined 9 analogs of Sotrastaurin from the ZINC Database, with five trials

for each. Of these analogs, there were two molecules with significantly greater binding

affinities upon docking with PKCβ2 than that of sotrastaurin.

Inhibitor Structure Binding Energy (kcal/mol)
Sotrastaurin − 8. 74 ±  1. 80
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Analog
ZINC36477833 − 11. 16 ± 0. 32

ZINC955736 − 9. 28 ± 0. 39

Table 8. Average binding affinities after molecular docking of  Sotrastaurin and analogs
to PKCβ2. An average of five trials was taken for the binding affinities of each analog
with corresponding standard deviation values.

Figure 10. This image shows the analog ZINC36477833 (in the ball and stick model)
interacting with PKCβ2 (shown in the molecular surface model).
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Binding of sotrastaurin analogs to PKCβ2 were measured across five trials.

ZINC36477833 has the lowest binding energy to PKCβ2 with a value of -11.16. This

analog differs from sotrastaurin in its lack of a methyl group on a cyclic nitrogen,

resulting in a 2.42 kcal/mol binding increase. The analog with the second lowest binding

energy is ZINC955736, which differs from Sotrastaurin within many aspects of its

structure, resulting in an increase of 0.54 kcal/mol. The major changes in the molecule

include the addition of three fluorines, the removal of two cyclic structures, and the

addition of an ester.

PKCδ Inhibitor: Sotrastaurin

We examined the binding energy of sotrastaurin and 10 of its analogues to PKCδ.

Among these analogues, ZINC95573621 and ZINC36477833 had higher binding

affinities to PKCδ compared to sotrastaurin. Another sotrastaurin analogue,

ZINC95571944, exhibited a slightly lower but comparable binding affinity to PKCδ. We

confirmed that sotrastaurin and all three reported sotrastaurin analogues have the same

binding site on PKCδ.

Inhibitor Structure Binding Energy (kcal/mol)

Sotrastaurin -10.00 0.67±
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Analog

ZINC36477833 -10.16 0.09±

ZINC95573621 -10.18 0.01±

ZINC95571944 -9.72 0.04±

Table 9. Average binding affinities after molecular docking of  Sotrastaurin and analogs
to PKCδ. An average of five trials was taken for the binding affinities of each analog with
corresponding standard deviation values.
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Figure 11. Image to the left shows the sotrastaurin analog ZINC95573621 interacting
with PKCδ. Image to the right shows sotrastaurin and its three examined analogs bind to
the same site on PKCδ.

The binding energy of sotrastaurin to PKCδ was measured to be -9.78 kcal/mol

over five trials. The lowest binding energy was observed to be ZINC95573621 with a

measured binding energy of -10.18 kcal/mol. The structure of ZINC95573621 differs

from the structure of sotrastaurin by the addition of a chlorine substituent.

PKCδ Inhibitor: Rottlerin

We examined 13 analogs of Rottlerin from the ZINC Database. Of these 13

analogs, there were 5 analogs with higher binding affinities upon docking with PKCδ

than that of Rottlerin.

Inhibitor Structure Binding Energy (kcal/mol)

http://zinc.docking.org/substances/ZINC000095573621/
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Rottlerin -9.30 0.09±

Analog

ZINC33832042 -9.90 0.00±

ZINC33832041 -10.70 0.00±

ZINC238744931 -10.58 0.04±
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ZINC238753381 -9.80 0.00±

Table 10. Average binding affinities after molecular docking of Rottlerin and analogs to
PKCδ. An average of five trials was taken for the binding affinities of each analog with
corresponding standard deviation values.

Figure 12. This image shows the analog ZINC33832041 (in the ball and stick model)
interacting with PKCδ (shown in the molecular surface model).

The binding energy of Rottlerin to PKCδ was measured to be -9.3 kcal/mol over

five trials. The analog that decreased binding energy the most was ZINC33832041 with an

decrease of about 1.4 kcal/mol from that of Rottlerin. All analogs bound to PKCδ at the

same binding site. The largest change in structure from Rottlerin to its analogs was the

construction of a cyclohexane via a nucleophilic attack of an alkene by a hydroxyl group,
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which was found in three of the analogs that increased binding affinities compared to

Rottlerin.

PKCη Inhibitor: Sotrastaurin

We examined 26 analogs of sotrastaurin binding to PKCη. Below are the 5

analogs that caused the greatest decrease in binding energy compared to base sotrastaurin.

Inhibitor Structure Binding Energy
(kcal/mol)

Sotrastaurin -9.24 0.09±

Analog

ZINC95571944 -10.0 0.12±
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ZINC45318117 -9.64 0.15±

ZINC95574708 -9.62 0.13±

ZINC95578909 -9.94 0.09±

ZINC13489990 -10.58 0.13±

Table 11. Average binding affinities after molecular docking of Sotrastaurin and analogs
to PKCη. An average of five trials was taken for the binding affinities of each analog with
corresponding standard deviation values.
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Figure 13. Image to the top shows the binding of ZINC13489990, which had the lowest
binding energy, on to PKCη. Image to the bottom shows the binding of all the
compounds, Sotrastaurin and its examined analogs, on to PKCη.

Binding of sotrastaurin to PKCη was measured with a ΔG of -9.24 kcal/mol over

5 trials. The figures show that each analog of midostaurin, as well as midostaurin itself,

bind to the same area on the PKCη molecule. The analog that decreased binding energy

the most was ZINC13489990, which differs from base sotrastaurin in that it has a

cyclohexane converted to a cyclopentane, as well as the loss of two nitrogen groups, as

seen in Figure 13. This leads to a binding energy decrease of about -1.36 kcal/mol, from

-9.24 kcal/mol for midostaurin to -10.58 kcal/mol for the analog.
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PLC𝛾1 Inhibitor: U73122

We examined 26 analogs of U73122 from the ZINC Database. Of these 26

analogs, there were three analogs with lower binding energies upon docking with PLC𝛾1

than that of U73122.

Inhibitor Structure Binding Energy
(kcal/mol)

U73122 − 8. 63 ± 0. 47

Analog
ZINC575440631 − 9. 10 ± 0. 43

ZINC145390416 − 8. 66 ± 0. 87

ZINC31356813 − 8. 64 ± 0. 62

Table 12. Average binding energies after molecular docking of U73122 and analogs to
PLC𝛾1. An average of five trials was taken for the binding energies of the analogues.
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Figure 14. This image shows the analogs ZINC575440631, ZINC145390416, and
ZINC31356813 (in the ball and stick model) interacting with PLC𝛾1 (shown in the blue
molecular surface model).

Binding of U73122 to PLC𝛾1 was measured with a ΔG of − 8. 63 ± 0. 47

kcal/mol over eleven trials. Binding of U73122 analogs to PLC𝛾1 were measured across

five trials. As shown in figure 14, analogs ZINC145390416 and ZINC31356813 bind to

the same binding pocket of the PLC𝛾1 molecule. The ZINC575440631 analog was

predicted to be bound at a different location of the signaling molecule as its primary

binding mode. The analog that was measured to have the lowest binding energy to PLC𝛾1

was ZINC575440631 which differs from base U73122 structure with respect to the

presence of an alkene, as seen in table 12. This resulted in a binding energy change of

about -0.47 kcal/mol, from kcal/mol for U73122 to− 8. 63 ± 0. 47 − 9. 10 ± 0. 43

kcal/mol for the analog. The analog with the second lowest binding energy with PLC𝛾1,

among 26 analogs tested, was ZINC145390416 which differs from base U73122 in
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stereochemistry, as seen in Table 12. This resulted in a binding energy change of about

-0.03 kcal/mol, from kcal/mol for U73122 to− 8. 63 ± 0. 47 − 8. 66 ± 0. 87

kcal/mol for the analog. The analog with the third lowest binding energy with PLC𝛾1,

among 26 analogs tested, was ZINC145390416 which also differs from base U73122 in

stereochemistry, as seen in table X. This resulted in a binding energy change of about

-0.01 kcal/mol, from kcal/mol for U73122 to− 8. 63 ± 0. 47 − 8. 64 ± 0. 62

kcal/mol for the analog.

PLC𝛾2 Inhibitor: U73122

We examined 26 analogs of U73122 from the ZINC Database. Of these 26 analogs, there

was one analog with a decreased binding energy upon docking with PLC𝛾2 than that of

U73122.

Inhibitor Structure Binding Energy (kcal/mol)
U73122 − 8. 18 ± 0. 32

Analog
ZINC575440631 − 8. 46 ± 0. 31

Table 13. Average binding energies after molecular docking of U73122 and analogs to
PLC𝛾1. An average of five trials was taken for the binding energies of the analogues.



58

Figure 15. This image shows the analog ZINC575440631 (in the ball and stick model)
interacting with PLC𝛾2 (shown in the blue molecular surface model).

Binding of U73122 to PLC𝛾2 was measured with a ΔG of − 8. 18 ± 0. 316

kcal/mol over eleven trials. Binding of  U73122 analogs to PLC𝛾2 were measured across

five trials. The ZINC575440631 analog binds to the same binding pocket of the PLC𝛾2

signaling molecule as established inhibitor U73122. ZINC575440631, which differs from

the base U73122 structure with respect to the presence of an alkene, was the only analog

of the 26 screened that was predicted to have decreased binding energy to PLC𝛾2 than

U73122. The screening software predicted a binding energy change of about -0.28

kcal/mol, from kcal/mol for U73122 to kcal/mol for− 8. 18 ± 0. 316 − 8. 46 ± 0. 313

the analog.
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Discussion

Once the binding energy of a ligand and each of its analogs to the target protein

was calculated, analogs were ranked by how they changed binding affinity. Some analogs

introduced structural changes that greatly enhanced binding to the target protein, as

evidenced by a much more negative ΔG of interaction compared to the original ligand

structures. The analogs that increased binding affinity were selected, and their binding fit

was observed in PyRx. This was done by loading the file with the modelling results for

one analog into PyRx with the target protein structure. This allowed direct visualization

of the predicted best binding sites on the target protein that PyRx found for each ligand

and analog. From here, it can be observed the molecular character of the binding site,

such as the regions of hydrophobicity, polarity, and aromaticity, based on which amino

acid residues comprise the binding site. It can be observed which parts of the ligand bind

to each amino acid in the binding site, as well as how a ligand analog binds differently in

the binding site. This allowed characterization of how each structural change afforded by

each analog improved certain electrostatic interactions that contributed to the overall

increase in binding affinity.

Our findings suggest that there are many novel and existing molecules that can be

used to reduce the release of histamines and cytokines responsible for the allergic

response, and further modification of these molecules may increase their inhibition

capacities. In general, each inhibitor used as a ligand for each protein macromolecule had

at least two analogs that increased binding to that protein. In some cases the binding

affinity of the ligand’s analog increased by over 1 kcal/mol compared to the ligand,
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corresponding to at least a tenfold increase in ligand affinity for the protein. This

indicates that there is much room for improvement of existing inhibitors for these

proteins, and modifications can easily be made to them to reach analog structures. Such a

large increase in affinity observed by the analog bindings indicates that these potential

inhibitors can be made much more effective and reach the status of potent drug inhibition.

Analog acquisition can be done several ways: by chemical synthesis or through

purification from biological organisms.

Between inhibitors and their analog structures, there was also a pattern of some

intermolecular forces always being retained. The binding sites of these proteins were very

specific in character, often containing regions of high aromaticity, and of negative,

positive, and neutral charge. Likewise, these potential inhibitors bound so well to their

respective proteins because they also contained complementary regions to the protein

binding sites. Even if analogs changed some structure of the inhibitors, these main

intermolecular interactions between protein and inhibitor were maintained, and

contributed to the bulk of the free energy of binding. Specific breakdowns of each

inhibitor and its analogs can be found below.

PI3K - Wortmannin

By examining the structures we found that the Wortmannin analogs with the most

negative binding energy, ZINC257519889 and ZINC144119389, differed from

Wortmannin’s structure by a change in the stereochemistry. A change of the ether

substituent from a wedge to a dash made the analog bind more strongly. In

ZINC144119389, having both the ether and ketone substituents moved from a wedge to a
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dash led to decreased binding energy. The results suggest that changes in stereochemistry

were effective at increasing the binding of Wortmannin to PI3K. The binding site of

ZINC8035078,  ZINC144119389, and ZINC71789745 were the same and were a

different binding site than ZINC257519889 and ZINC3875294. Both of these analogs

were bound at two different sites on PI3K. Studies have shown that there are at least five

different binding pockets in PI3K which can all allow for inhibition, including allosteric

inhibition (Miller et al., 2017).

PI3K - ZSTK474

The PI3K binding area that ZSTK474 and its examined analogs bound to was

conserved, as they all bound to the same pocket. By examining their structures, it was

found that the ZSTK474 analogs with the most negative binding energy,

ZINC1772653009, ZINC73160255, and ZINC1243947389, differed in structure through

changes to the triazine ring or its substituents which may have led to their higher binding

affinities. In ZINC73160255, there is a pyrimidine instead of the triazine ring which may

have made the analog bind more strongly as it became bound deeper within the PI3K

binding area. In ZINC1772653009, the morpholine substituent on the triazine ring has

been changed to an aminopiperidine, which may have made the analog bind more

strongly. In ZINC1243947389, the morpholine substituent on the triazine ring has been

changed to a tetrahydropyridine, which may have led to increased binding energy, the

highest amongst the set of ZSTK474 analogs tested. The substituent changes on the

analogs are interestingly on the part of the ZSTK474 inhibitor that protrudes out of the

binding area pocket of PI3K.
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PKCβ1 - Enzastaurin

By examining the structures we found that the analogs with the most negative

binding energies differed from Enzastaurin’s structure by a substitution of the nitrogen in

the benzene ring for a carbon, which made the molecule less charged/polar, and by a

change in the stereochemistry. A change of the ether substituent from a wedge to a dash

made the analog bind more strongly. Because Enzastaurin is already a good inhibitor of

PKCβ (IC50 of 50 nM), the analogs didn’t need to have major modifications in order to

demonstrate stronger binding affinities.

PKCβ1 - Ruboxistaurin

There were several structural changes that resulted in decreased binding energy.

These changes mainly involve stereochemistry and substituent substitutions. The analog

with the strongest binding energy, ZINC3825435, substituted the tertiary amine with a

hydroxyl group. This group protrudes out of the binding area pocket of PKCβ1. Similarly,

the analog with the second highest binding energy, ZINC13604307, substituted the same

tertiary amine with an amino group. The analog was attached to the same binding pocket

on the PKCβ1 protein as ZINC3825435. However, the amino group did not protrude

outwards like the hydroxyl group. The other analogs had changes in either

stereochemistry, other substitutions, or a combination of both. These findings suggest that

the change to Ruboxistaurin with the most significance when binding PKCβ1 is the

substitution of the tertiary amine with a hydroxyl or amine group.
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PKCβ1 - Midostaurin

The PKCβ1 binding area that midostaurin and all of its analogs bound to was

conserved, as evidenced by the figures, and had several particular characteristics. There

was a region with many aromatic amino acids pointing into the pocket, and another

region that had many negatively charged amino acids and oxygens. For all of the analogs,

there was always some interaction between the aromatic area of the ligand and the

aromatic amino acids of the PKCβ1 binding pocket, indicating that this interaction was

very important to the binding energy of midostaurin and its analogs to PKCβ1. For

midostaurin, the ligand oriented itself so that its aromatic region was as close to all of the

aromatic amino acids in the pocket as possible. There was very little interaction with the

negatively charged amino acids of the binding pocket. In the analog ZINC253614774, the

change in stereochemistry led to the observance of an extra aromatic interaction between

the lone end benzene on the left of the molecule and the binding pocket, which likely

resulted in the observed decrease in binding energy is probably a big reason for binding

energy decrease between ligand and protein. The change in stereochemistry caused the

analog ZINC100080802 to orient differently in the binding pocket than midostaurin.

Despite the additional chloride group, the analog ZINC27326075 took the same

conformation in the binding pocket as ZINC253614774, so it is unclear why it has the

highest affinity for PKCβ1 out of all the tested midostaurin analogs. In the analog

ZINC1569989194, methylation caused the ligand to take a different conformation in the

binding pocket than other analogs, with the aromatic region pointing outwards, and this

was also the case for ZINC584567048, which had an extra carbonyl group on the pentane
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near the aromatic region of the ligand. It is noticeable that most of the analogs, and

midostaurin itself, prefer to orient with their aromatic regions overlapping that of the

protein. For most of the analogs as well, there was not very clear engagement of the

negatively charged region of the PKCβ1 binding pocket, and it did not interact visibly

with the ligands.

PKCβ2 - Enzastaurin

Through examination of the structures, the analogs with the most negative binding

energies differed from Enzastaurin’s structure either in a substitution of an atom or by

ring size. The ZINC13489985 analog has a carbon in the benzene ring instead of the

nitrogen that was present in Enzastaurin, which made the ligand less polar. The

ZINC13489987 analog has replaced a cyclohexane with a cyclopentane leading to a

newly formed stereocenter, which may have contributed to the increased binding affinity

to PKCβ2.

PKCβ2 - Sotrastaurin

Of the two high affinity potential inhibitors, the analog with the highest affinity,

ZINC36477833, differed from Sotrastaurin structure through the lack of a methyl group

on a cyclic nitrogen. Changes in the structure from a methyl to a hydrogen is a

contribution of the stronger binding affinity, likely due to increased hydrogen bond

capacity. While the second analog, ZINC955736, did have an increased binding affinity

as well, major changes in its structure were only responsible for a 0.54 kcal/mol

improvement in binding affinity. These changes included the addition of three fluorines,

the removal of two cyclic structures, and the addition of an ester, which made the
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molecule more polar overall. Therefore, the small change of the methyl-group removal

appears to have a much greater impact than the many major adjustments found on

ZINC955736.

PKCδ - Sotrastaurin

The central maleimide group on Sotrastaurin forms a hydrogen bond with

ASN478 in the PKCδ binding pocket. This interaction is important for ligand binding to

PKCδ because the maleimide group is conserved across all the analogues that had higher

binding affinities compared to Sotrastaurin. Two analogues differed from Sotrastaurin by

the addition of a chlorine substituent on the indoline group. The added chlorine

substituent on these analogues may improve binding by steric or electronic effects. The

chlorine atom fills up a large volume, and may provide a tighter fit to the residues in the

binding pocket. The large size of the chlorine atom may also contribute to van der Waal

interactions between the chlorine and nonpolar residues during binding.

PKCδ - Rottlerin

By examining the structures we found that the analogs with the lowest binding

energy, ZINC33832041 and ZINC238744931, differed from Rottlerin’s structure by the

attack of the existing alkene by the hydroxyl within Rottlerin’s structure to form a novel

ring. From there, ZINC33832041 and ZINC238744931 alter stereochemistry by adjusting

to a dash or wedge onto the phenyl group, which may decrease binding energy.

Furthermore, Rottlerin contains a hydroxyl group on one benzene whereas in

ZINC238744931 it has been exchanged for a methyl group. It is unclear if this leads to

lower binding energy since the analog with the lowest binding energy, ZINC33832041,
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contains the hydroxyl. Finally, ZINC238753381 does not contain the newly formed

cyclohexane, yet the decreased binding energy may come from the change in

constituents, two hydroxyls added which increase hydrogen bonding capacity.

PKCη - Sotrastaurin

The main binding site for sotrastaurin and its analogs on PKCη is conserved, as

observed by the figures. Inspection of this binding site on PKCη in PyRx reveals that it

contains a region of aromatic amino acids, as well as a region of nonpolar and region of

negatively charged amino acids. Within all of the analogs of sotrastaurin, it appears that

the amine group on the pentane ring at the top of the molecule always forms a hydrogen

bond with a section of the binding pocket of PKCη, so this is probably a large factor in

the free energy of ligand-protein interaction. The aromatic section of the binding pocket

does not appear to interact strongly with sotrastaurin at all, as the ligand and all its

analogs are separated by a large physical space from the aromatic amino acids of PKCη.

In the analog ZINC95571944, the addition of a chlorine group caused the substrate to

orient differently in the binding pocket than normal sotrastaurin, which might have been

part of the increased affinity of the ligand-protein in. In ZINC45318117, the replacement

of a nitrogen with an oxygen leads to an electrostatic interaction with a PKCη amine

group in the binding pocket. The analogs ZINC95574708 and ZINC95578909 both added

methyl groups in different places of the ligand, which changed the orientation of the

analog of sotrastaurin binding to the pocket. As stated before, the analog with the highest

increase in binding affinity, ZINC13489990, differs from base sotrastaurin in that it has a

cyclohexane converted to a cyclopentane, as well as the loss of two nitrogen groups,
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leading to a different conformation in the PKCη binding pocket. The aromatic residues of

the binding pocket did not play a major, observable role in binding for any of these

analogs. The addition of  minor substituent groups to the sotrastaurin ligand to make

nearly identical analogs still caused large changes in the conformation of the ligand in the

protein binding pocket, indicating that binding is flexible many different modes of

binding can occur.

PLC𝛾1 - U73122

Upon examination of the structures of these low binding energy analogues, we

observed that the analog with the highest affinity to PLC𝛾1 amongst the set of U73122

analogs tested was ZINC575440631. It differed from U73122’s structure through a

change to one of its substituents. In this analogue, the ether substituent bound to an

aromatic carbon has been changed to an alkene. Analogs ZINC145390416 and

ZINC31356813 differed from the structure of U73122 simply by a change in

stereochemistry. Changes in the structure from wedges to dashes resulted in the analogs

binding more strongly.

PLC𝛾2 - U73122

Upon examination of the structure of ZINC575440631, the lowest binding energy

analog amongst the set of U73122 analogs tested, we observed that it differs from

U73122’s structure through a change to one of its substituents. In this analog, the ether

substituent bound to an aromatic carbon has been changed to an alkene. Notably, this

analog was also predicted to have the lowest binding energy, among the 26 analogs
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tested, with PLC𝛾1. This is indicative of the degree of low binding energy of this analog

with PLC𝛾 isoforms.

These findings might aid in the development of a new allergy medication, perhaps

with more efficacy than ones currently on the market. For each of the inhibitors tested,

there was at least one analog that bound more tightly to the target protein than the

inhibitor itself. These analogs can be easily synthesized for future testing. Furthermore,

treatments targeting the molecules we examined have the potential to be administered

prophylactically, and still be useful even after exposure to allergens



69

Future Directions

The first thing that can be done with these results is to test a combination of

analog modifications. The research conducted in this project identified analogs to existing

inhibitors for proteins of the mast cell degranulation pathway. These analogs are discrete

and most of them do not overlap, so the modifications made from the base inhibitor to

create them can be combined. In this way, beneficial changes can be combined to make a

potential inhibitor that would be even more potent than any of the analogs individually.

The structures of the analogs that increased binding affinity the most could be

combined in an effort to further boost ligand-protein binding by putting together

individually beneficial structural changes. This can be done by importing the structure of

each ligand into a molecular editing software like PYMOL. Once within PYMOL, the

structure of the ligand could be changed and then saved as a separate file. In this way, the

molecular changes of multiple analogs could be combined to create new potential

structures to test. The affinity of these new structures would then be modelled in PyRx to

see if the summation of the molecular changes was truly beneficial. The analog

combination can be repeated with several different structural variants in an attempt to

find an optimized ligand structure. In addition, user-suggested changes could be

implemented based on observations of the character of the primary binding site on the

protein that the ligand attached to. If a binding site was rich in aromatic amino acid

residues, then a custom modification of the ligand could be made in PYMOL outside of

those provided by the analogs of ZINC database, such as an addition of a benzene or

naphthalene ring to the ligand structure. However, any and all of these structural
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modifications shared the same underlying principle of enhancing the observed

intermolecular interaction between the ligand and protein at the main binding site, so any

favorable analog combinations or custom structures would be made with the intent of

optimizing at least one of these interactions in an attempt to improve the overall ΔG of

binding.

These “custom” potential inhibitors can also be modified based on the observed

characteristics of the binding site on the protein. For example, the binding pocket of

PKCβ1 had many negatively charged amino acids that midostaurin did not interact with,

and the binding pocket of PKCη had a region of aromaticity that sotrastaurin did not

interact with as well. The information gained from this project with regard to combining

analogs and tailoring inhibitors to their binding sites would be very useful in future

creation of better inhibitors for these proteins. An example of this is the structure the

custom sotrastaurin analog shown below:

Figure 16: Structure of two custom analogs modelled off sotrastaurin and optimized to

maximize interactions with the PKC eta binding pocket.



71

Both of these sotrastaurin analogs were designed based on the research done in

this study. They combine multiple beneficial traits of sotrastaurin analogs from the ZINC

database, such as methylation and removal of nitrogen in selective locations. They also

are designed with the binding pocket structure of PKCη considered. The addition of an

aromatic group rather than a cyclohexane is intended to help drug binding to aromatic

residues in the binding pocket and enhance overall total affinity. Similar structural

modifications can be made to other potential inhibitors targeting other proteins based on

the research result of this study, which will enhance drug design by allowing scientists to

better understand and optimize the intermolecular forces between proteins and their

inhibitors.

The results compiled from this project are purely theoretical, so the next step after

theoretical drug design would be to actually synthesize the ligands with the highest

affinity for proteins. The protein modelling in PyRx yielded analogs to several known

inhibitors that are predicted to have a higher free energy release upon binding their target

proteins. These potential inhibitor analogs have not yet been made though, so it would be

recommended to use the existing inhibitors as a base to make their analogs. Once the

analogs are made, they can then be tested in actual analytical devices to see if their free

energy of binding to the target proteins match the PyRx predictions. This could be done

using analytical devices like NMR (nuclear magnetic resonance) and ITC (isothermal

titration calorimetry). Determining the actual strength of binding of the potential inhibitor

analogs compared to the existing inhibitors would be very useful to verify the results

gained from PyRx models.
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Because our current data is based on computer modeling, we suggest a next step

would be in vitro experimentation using a mast cell line to determine the efficacy of

potential inhibitors in a cellular environment. To accomplish this a MC/9 mast cell line

can be used, which are mouse liver mast cells that express FceR1 and will release

histamine when exposed to antigens after incubating with anti-Fc-receptor antibodies

(ATCC® CRL-8306™). These cells are commonly used in degranulation assays because

they can be induced into degranulation, which is the main context of measurement for

this study.

In order to measure said degranulation accurately, it will also be necessary to

collect control data of degranulation in known conditions. The first most important test

would be a negative control to determine how much histamine and other degranulatory

substances are released naturally when the cells are at rest and not being induced to

degranulate. As a positive control, degranulation can be induced using the addition of

IgE. Degranulation can be assayed using enzyme linked immunosorbent assay (ELISA)

or flow cytometry. Relative intensities of degranulation and concentrations of

degranulatory metabolites can be measured to see if relative mast cell degranulation is

lower in solutions with the inhibitor analog present compared to the existing inhibitor and

simple uninhibited mast cells. If degranulation is actually reduced with the analog

ligands, they can finally be put into testing for novel anti-allergic drugs. Following

cellular assays, future experimentation can be conducted on murine models to model the

effects of the therapeutic in a mammalian system. If time permits, future experimentation
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within murine models will be conducted in order to understand and minimize negative

effects on other bodily functions.

Another possible avenue for future research is to determine how to best target

these potential therapeutics to mast cells. One popular method of targeted drug delivery is

using nanoparticles. Currently, nanoparticles are being used to encapsulate and deliver

antigen-specific immunotherapy and DNA vaccines (Pohlit et al., 2017). Nanoparticles

confer several advantages over traditional drug delivery systems: protection against

degradation, targeted delivery, and higher concentrations at the delivery site for increased

effectiveness. These can also be biodegradable or nonbiodegradable and their surfaces

can be highly customized to target specific cells (Pohlit et al., 2017).. Nanoparticles are a

promising method of delivering our identified drug targets to mast cells to suppress

histamine release. The future direction outlined here would be crucial to further

understanding the efficacy and safety of the potential inhibitors.
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Equity Impact Report

Using the Racial Equity Impact Assessment, we assessed our research on the basis

of several factors: identifying the stakeholders in our research, examining the causes,

considering adverse impacts, and examining alternatives and improvements. This

framework was posed by race forward─the center for racial justice innovation and it

provides a guide to address questions of equity. In this report, we discuss the impact of

our research on various racial/ethnic and socioeconomic groups and provide

recommendations for equitable next steps of our research.

Defining Equity in Healthcare

Our team first defined the difference between equity and equality, as defining the

distinction between these two terms was important for our consideration of equity in our

research. Equality does not take into account disparities in need while equity does. Equity

can be thought of as synonymous with justice and it has three aims: focus, inclusion, and

narrowing gaps (World Health Organization, 2000). The focus is on the health of the

vulnerable population and thus our policy should focus on improving the health of the

most vulnerable. We should consider the inclusivity of our study to ensure that no

communities are left out. Finally, our research policy should narrow the current gaps in

health.

According to the World Health Organization (2000), equity in health is aimed to

minimize avoidable disparities in health and its determinants and to have an equitable

distribution of health care resources. In order to have equitable access, the distribution of

health services must take into account the social, economic, and demographic
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characteristics and need. Thus, to discuss equitable access to our allergy therapeutic we

must understand the needs of the demographics whom our research will impact.

Who Our Research Serves: Identifying Stakeholders

Throughout the years, the field of medicine has evolved to consider various

socioeconomic and cultural factors that shape a person’s health. Research highlights

certain groups that are more prone to allergies than others and those that struggle with

symptom management.

Susceptibility to allergies is partly based on race. A study on young children aged

1-8, including Afro-American and Caucasian children, investigated the effects of strong

risk factors of allergy, including going to daycare more often and exposure to secondhand

tobacco smoke. (Sun & Sundell, 2011). African American children of the study were

found more likely to have a positive skin prick test (diagnostic test for allergens) and

elevated allergen-specific and total IgE which mediates the allergic response. These

differences persisted even after standardizing for income, education, environmental

exposures, and many other lifestyle factors that differed between races (Wegienka et al.,

2011). Black women are also 2.5 times more likely to be sensitized to at least 3 allergens

compared to white women (Wegienka et al., 2011). It is also known that people with

multiple food allergies are at greater risk of severe food-induced reactions (Bilaver et al.,

2016). Lastly, Black children under 18 years old have double the diagnoses for allergic

disease compared to white children (Wegienka et al., 2011). Black patients are also at an

increased risk of having severe food-induced anaphylaxis (Warren et al., 2021). Asian

children have higher odds of developing food allergies compared to white children,
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whereas Hispanic children are less likely to develop food allergies than white children

(Bilaver et al., 2016). Further research needs to be conducted to determine if these

disparities are caused by genetics or lifestyle.

Among those who have allergies, socioeconomic factors affect disparities in

diagnosis, treatment, and prevention. It is known that low income children who meet the

criteria for food allergy were not diagnosed by a physician as often as high income

children (Warren et al., 2021). Population studies on families with children who have

food allergies have shown that the lowest income families spend 2.5 times more money

on emergency department visits and hospitalization (Bilaver et al., 2016). On the other

hand, families with a higher household income spent more on out-of-pocket medications

and specialist visits and that epinephrine auto-injectors, one of the primary treatments for

anaphylactic shock, has placed an economic burden on low-income families. Patients on

Medicaid receive less follow up care than patients who can afford private insurance,

which can help prevent recurrence of severe symptoms (Warren et al., 2021). This

suggests that children from families with a higher socioeconomic status are more likely to

receive adequate treatments and preventative care that lowers their risk for serious

symptoms.

It is also important to consider racial inequities in access to medical care. Some

factors include access to transportation, income, insurance coverage, and medical

trust/physician cultural competency, among others (Warren et al., 2021). For example, it’s

been shown that black children are less likely to have a food allergy diagnosis by a

physician, attesting to structural barriers to medical care (Warren et al., 2021). Overall,
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barriers faced by racial and socioeconomic minority groups need to be overcome so that

our proposed therapeutics can help treat these patient populations.

Examining the Causes of Inequities and Considering Adverse Impacts

Research that is conducted with the best intentions can often be misused for

different applications. In our study, we identified potential drug targets to be proposed to

pharmaceutical companies for further testing and drug development. Our hope is that

these medications can be distributed equitably to those with allergies. Unfortunately,

there are barriers to universal access to medication that will curtail the potential impact of

this research.

One issue that provides barriers to vulnerable populations is accessibility to the

medication. The paper Measuring Equity in Access to Pharmaceutical Services Using

Concentration Curve establishes a model to score access to pharmaceuticals. This

measure takes into account several access indicators with a score of 100 to prescriptions

that are available in any pharmacy to a score of one to prescribed medicines that are not

available at all. A score of 90 was given if a patient has to change to an alternate drug and

scores of 60 and 50 are given if patients have to make a trip to a larger city to have

availability to the drug (Davari et al., 2015).The proposed methodology then includes

scores for socioeconomic status by providing a ranking for income, occupation,

education, home status and family size. The sum of these scores is used to determine the

socioeconomic status of the individual which can be used to access the barrier they might

face to receiving pharmaceutical treatments. This study provided a method for measuring
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socioeconomic status and pharmaceutical equity. Future research into the development of

our proposed therapeutic should follow this framework to assess accessibility.

Disparities in access to medication can affect how our proposed treatments are

distributed. Areas with a high percentage of minorities have less pharmacy density and

communities with a low average income level, low employment, and high crime rates are

less likely to have access to home medication delivery services (Chisholm-Burns et al.,

2017). In addition, uninsured patients are four times more likely to not take medications

for financial reasons, and patients with lower income who have higher out of pocket

medication costs are at much greater risk of cost-related medication nonadherence

(Chisholm-Burns et al., 2017). These patients are not able to afford medications at the

inflated prices set by pharmaceutical companies. Currently, the pharmaceutical industry is

controlled by the free market, where supposedly high prices are a result of high research

and development costs (Spinello, 1992). If a company has a monopoly on a certain type

of drug, they can control the prices, and in our capitalistic society, the goal is often to

obtain higher profits at the expense of accessibility/equity in distribution (Spinello,

1992). Medication nonadherence due to financial reasons leads to poorer health and

increased hospitalizations, which are also expensive, perpetuating the cycle of inequity

(Chisholm-Burns et al., 2017).

Recommendations

Our team needs to advocate for groups that may lack access to our proposed drug

by encouraging pharmaceutical companies to be more equitable in their drug pricing

policies. This could be achieved by lobbying for more governmental regulation over the
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pharmaceutical industry (Spinello, 1992). We also can recommend that the

pharmaceutical company that produces our drug should follow the proposed methodology

of Davari et al. (2015) to ensure that the drug will be equitably distributed. This way,

treatment can go to the groups who actually require it the most and our medication will

help the most vulnerable populations and close gaps in health care

Additionally, once the drug is developed it must undergo clinical trial testing to

ensure its safety and efficiency (Mbuagbaw et al., 2017). This is another opportunity to

focus on vulnerable populations. The PROGRESS Plus acronym provides a framework to

include the determinants of health within the design of a clinical trial. It stands for Place

of residence, Race/ethnicity/culture/language, Occupation, Gender, Religion, Education,

Socio-economic status, and Social capita (Mbuagbaw et al., 2017). The rationale for

including place of reference makes the study designer consider how different areas, for

example rural versus urban may impact the study results. This will be particularly

important for us since allergies can be directly caused by environmental factors. The role

of minority groups in the trial must be considered as well as language and level of

education. The paper suggests not excluding participants based on their english skills for

example and over translations of the trial to ensure inclusivity. Additionally, gender can

be linked to inequalities as well and so clinical trial designers should consider ensuring

that recruitment efforts are identical to include various gender identities. In total, these

are a few key considerations that must be made to ensure that the clinical trial is inclusive

and thus provides evidence on the effects of a diverse population, especially those of
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vulnerable groups who are disproportionately impacted by allergies as discussed

previously in this report.

Through conducting our Gemstone research, we have been able to contribute to

the field of immunology and allergy research by identifying targets for drug development

and provided recommendations for an equitable framework for pharmaceutical

development and distribution. Through this project, we have committed to providing a

new therapeutic to those who suffer from allergies to provide a new, effective and

affordable option to patients that need it. By keeping these questions of equity at the

forefront of our research we have been able to complete a project that not only advances

scientific knowledge but also the needs of our society.
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Appendices

Appendix A - Glossary

Definitions are from Oxford Dictionary unless otherwise cited. Other definitions

originate from various sources in order to find the most concise or accurate definition of

relevant terms.

Adaptive immunity - immunity that has memory and occurs after exposure to an antigen

either from a pathogen or a vaccination (Molnar & Gair, 2013).

Agglutination - (with reference to bacteria or red blood cells) clumping together.

Allergy-specific immunotherapy (SIT) - administration of allergen extracts to achieve

clinical tolerance of allergens that cause symptoms in patients with allergic conditions

(Frew, 2010).

Anaphylactic shock - an extreme, often life-threatening allergic reaction to an antigen to

which the body has become hypersensitive.

Antibody - a blood protein produced in response to counter a specific antigen.

Antigen - a toxin or other foreign substance which induces an immune response in the

body, such as the production of antibodies.

Antigen-presenting cell (APC) - any cell that assists in the production of immune

responses by presenting antigen; especially any of several types of cell with monocytic

lineage that present antigen in association with class II MHC molecules, to helper T

lymphocytes.

B cell -  a lymphocyte not processed by the thymus gland, and responsible for producing

antibodies. Also known as B lymphocyte.
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Basophil - a basophilic white blood cell.

Corticosteroid - any of a group of steroid hormones produced in the adrenal cortex or

made synthetically. There are two kinds: glucocorticoids and mineralocorticoids. They

have various metabolic functions and some are used to treat inflammation.

Cytidine deaminase (AID) - enzyme that in humans is encoded by the CDA gene (Kuhn,

1993)

Cytokine - any of a number of substances, such as interferon, interleukin, and growth

factors, which are secreted by certain cells of the immune system and have an effect on

other cells.

Decongestant - used to relieve nasal congestion.

Degranulation - (of a cell) lose or release granules of a substance, typically as part of an

immune reaction.

ELISA (enzyme-linked immunosorbent assay) - a laboratory technique that uses

antibodies linked to enzymes to detect and measure the amount of a substance in a

solution, such as serum. The test is done using a solid surface to which the antibodies and

other molecules stick. In the final step, an enzyme reaction takes place that causes a color

change that can be read using a special machine. There are many different ways that an

enzyme-linked immunosorbent assay can be done. Enzyme-linked immunosorbent assays

may be used to help diagnose certain diseases. (“NCI Dictionary of Cancer Terms”, n.d.).

FcεR1 - the high affinity Immunoglobulin E receptor which is a tetrameric membrane

protein complex expressed on mast cells and basophils which belongs to the family of

immunoreceptors involved in antigen recognition (Type I 2018).
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Histamine - a compound which is released by cells in response to injury and in allergic

and inflammatory reactions, causing contraction of smooth muscle and dilation of

capillaries.

Humoral immune response - antibodies produced by B cells cause the destruction of

extracellular microorganisms and prevent the spread of infections (Janeway, 2001).

Immunoglobulin (IgE, IgG, IgM, IgD, IgA) - any of a class of proteins present in the

serum and cells of the immune system, which function as antibodies.

Interferon-γ (IFN-γ) - an interferon that is produced by T cells, regulates the immune

response, and in a form produced by recombinant DNA technology is used especially to

control infections due to inability of white blood cells to destroy certain bacteria and

fungi (Merriam-Webster).

Leukotriene - any of a group of biologically active compounds, originally isolated from

leukocytes. They are metabolites of arachidonic acid, containing three conjugated double

bonds.

Major histocompatibility complex (MHC) - major histocompatibility complex (MHC),

group of genes that code for proteins found on the surfaces of cells that help the immune

system recognize foreign substances. Also known as the human leukocyte antigen (HLA)

system.

Mast cell - a cell filled with basophil granules, found in numbers in connective tissue and

releasing histamine and other substances during inflammatory and allergic reactions.

Opsonization - making (a foreign cell) more susceptible to phagocytosis.

https://www.britannica.com/science/gene
https://www.britannica.com/science/protein
https://www.britannica.com/science/cell-biology
https://www.britannica.com/science/immune-system
https://www.britannica.com/science/immune-system
https://www.britannica.com/science/human-leukocyte-antigen
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Phagocytosis - the ingestion of bacteria or other material by phagocytes and amoeboid

protozoans.

Pharmacotherapy - medical treatment by means of drugs.

Proinflammatory - that promotes inflammation (Ex. When the lesions are traumatized,

or rubbed firmly, the cutaneous mast cells may release proinflammatory mediators,

causing edema, erythema, and even vesicle formation.) (Merriam-Webster, 2007)

Prostaglandin - any of a group of compounds with varying hormone-like effects, notably

the promotion of uterine contractions. They are cyclic fatty acids.

T cell - a lymphocyte of a type produced or processed by the thymus gland and actively

participating in the immune response.

Tyrosine - a hydrophilic amino acid which is a constituent of most proteins and is

important in the synthesis of some hormones.
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Appendix B - Supplemental Figures
Binding Site
(macromolecule)

Known Inhibitors
(ligand)

Binding
Energy (Δ G) Standard Deviation Kd

PKC-eta (η) Miltefosine -4.863636364 0.4365151252 2.70E-04

PKC-eta (η) Sotrastaurin -9.027272727 0.2453198284 2.38E-07

PKC-eta (η) Staurosporine -10.1 1.385640646 3.88E-08

PKC-eta (η) GSK-690693 -7.645454545 0.1809068067 2.45E-06

PKC-eta (η) A-674563 -7.881818182 0.376346069 1.65E-06

PKC-delta (Δ) Miltefosine -5.481818182 0.2676497032 9.50E-05

PKC-delta (Δ) Sotrastaurin -10.01818182 0.6750084175 4.46E-08

PKC-delta (Δ) Rottlerin -9.363636364 0.09244162777 1.35E-07

PKC-delta (Δ) Ingenol Mebuate -6.363636364 4.843195789 2.14E-05

PKC-theta (θ) Miltefosine -5.318181818 0.437762908 1.25E-04

PKC-theta (θ) Sotrastaurin -9.33 0.5375872022 1.43E-07

PKC-β1 Miltefosine -5.045454545 0.3559877424 1.99E-04

PKC-β1 Sotrastaurin -9.681818182 0.6997402115 7.87E-08

PKC-β1 Midostaurin -9.633333333 0.05773502692 8.54E-08

PKC-β1 Enzastaurin -10.15454545 0.3830499611 3.54E-08

PKC-β1 Ruboxistaurin -8.736363636 1.80403588 3.89E-07

PKC-β2 Miltefosine -4.818181818 0.3124681802 2.91E-04

PKC-β2 Sotrastaurin -8.981818182 0.460039524 2.57E-07

PKC-β2 Midostaurin -9.3 0.1 1.50E-07

PKC-β2 Enzastaurin -9.4 0.3130495168 1.27E-07

PKC-β2 Ruboxistaurin -9.009090909 0.1921173884 2.45E-07

PI3K Wortmannin -7.627272727 0.3608071759 2.53E-06

PI3K LY294002 -7.527272727 0.09045340337 3.00E-06

PI3K ZSTK474 -8.427272727 0.1793929156 6.55E-07

PI3K Nobiletin -6.363636364 0.1858640755 2.14E-05

PLC-γ1 GDP -7.8375 0.3020761493 1.77E-06

PLC-γ1 Resveratrol -7.590909091 0.5300085763 2.69E-06

PLC-γ1 Piceatannol -7.681818182 0.430855386 2.31E-06

PLC-γ1 U73122 -8.6 0.4546060566 4.89E-07

PLC-γ1 Nicotinamide -5.254545455 0.1213559752 1.39E-04

PLC-γ2 GDP -7.3125 0.2167124494 4.31E-06

https://pubchem.ncbi.nlm.nih.gov/compound/Miltefosine
https://pubchem.ncbi.nlm.nih.gov/compound/176167
https://go.drugbank.com/drugs/DB11829
https://www.rcsb.org/structure/1CGZ
https://pubchem.ncbi.nlm.nih.gov/compound/Piceatannol
https://pubchem.ncbi.nlm.nih.gov/compound/104794
https://pubchem.ncbi.nlm.nih.gov/compound/Nicotinamide
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PLC-γ2 Resveratrol -7.236363636 0.05045249791 4.90E-06

PLC-γ2 Piceatannol -7.409090909 0.1578261414 3.66E-06

PLC-γ2 U73122 -8.209090909 0.3144981572 9.47E-07

PLC-γ2 Nicotinamide -5.2 0.04472135955 1.53E-04

https://www.rcsb.org/structure/1CGZ
https://pubchem.ncbi.nlm.nih.gov/compound/Piceatannol
https://pubchem.ncbi.nlm.nih.gov/compound/104794
https://pubchem.ncbi.nlm.nih.gov/compound/Nicotinamide
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Appendix C - Structure Analysis and Comparison

PI3K

1. Errat Server Comparison
a. PHYRE2 PDB

b. Refinement with ModRefiner

2. ProCheck Ramachandran Plots
a. PHYRE2 PDB
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b. Refinement with ModRefiner

3. ProSa Comparison
a. PHYRE2 PDB
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b. Refinement with ModRefiner
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PKC-α (PRKCA)
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1. Errat Server Comparison
a. PHYRE2 PDB

b. Refinement with ModRefiner

2. ProCheck Ramachandran Plots
a. PHYRE2 PDB
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b. Refinement with ModRefiner

3. ProSA Comparison
a. PHYRE2 PDB
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b. Refinement with ModRefiner
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PKC-β1 (PRKCB1)
1. Errat Server Comparison
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a. PHYRE2 PDB

b. Refinement with ModRefiner

2. ProCheck Ramachandran Plots
a. PHYRE2 PDB
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b. Refinement with ModRefiner

3. ProSA Comparison
a. PHYRE2 PDB
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b. Refinement with ModRefiner
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PKC-β2 (PRKCB2)
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1. Errat Server Comparison
a. PHYRE2 PDB

b. Refinement with ModRefiner

2. ProCheck Ramachandran Plots
a. PHYRE2 PDB
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b. Refinement with ModRefiner

3. ProSA Comparison
a. PHYRE2 PDB
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b. Refinement with ModRefiner
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PKC-δ (PRKCD)
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1. Errat Server Comparison
a. PHYRE2 PDB

b. Refinement with ModRefiner (Zhang Lab)

2. ProCheck Ramachandran Plots
a. PHYRE2 PDB
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b. Refinement with ModRefiner (Zhang Lab)

3. ProSA Comparison
a. PHYRE2 PDB
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b. Refinement with ModRefiner (Zhang Lab)
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PKC-η (PRKCH)
1. Errat Server Comparison

a. PHYRE2 PDB

b. Refinement with ModRefiner (Zhang Lab)

2. ProCheck Ramachandran Plots
a. PHYRE2 PDB
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b. Refinement with ModRefiner (Zhang Lab)

3. ProSA Comparison
a. PHYRE2 PDB
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b. Refinement with ModRefiner (Zhang Lab)
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PKC-θ (PRKCQ)



111

1. ERRAT Server Comparison
a. PHYRE2 PDB

b. Refinement with ModRefiner (Zhang Lab)

2. ProCheck Ramachandran Plots
a. PHYRE2 PDB
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b. Refinement with ModRefiner (Zhang Lab)

3. ProSA Comparison
a. PHYRE2 PDB
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b. Refinement with ModRefiner (Zhang Lab)
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PLCG1
1. Errat Server Comparison

a. PHYRE2 PDB

b. Refinement with ModRefiner

2. ProCheck Ramachandran Plots
a. PHYRE2 PDB
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b. Refinement with ModRefiner

3. ProSa Comparison
a. PHYRE2 PDB
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b. Refinement with ModRefiner
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1. Errat Server Comparison
a. PHYRE2 PDB

b. Refinement with ModRefiner
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2. ProCheck Ramachandran Plots
a. PHYRE2 PDB

b. Refinement with ModRefiner
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3. ProSa Comparison
a. PHYRE2 PDB
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b. Refinement with ModRefiner
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