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We consider the time evolution of quantum entanglement in the context of in-

teractions between atoms and the electromagnetic field. We explore the influence of

interatomic separation and the degree to which this can change the qualitative char-

acter of those dynamics, including entanglement generation, protection, and sudden

death (SD). We find that the qualitative features of entanglement dynamics can be

changed entirely in few-mode models when atomic spacing is varied, allowing for

particular choices of configuration that are favorable for maintaining entanglement.

We also examine the inaccuracies introduced by the use of common approx-

imations: We characterize unexpected errors that result from using perturbative

master equations as well as those that result from using the rotating-wave approx-

imation (RWA). We find that in dissipative systems the errors introduced by these

approximations can lead to an incorrect picture of late-time dynamics. Standard

perturbative master equations using the RWA are constrained to predict that late-

time SD occurs to only some initial states at zero temperature, but this is merely an

artifact of those approximation and generally not correct. The same master equa-



tions predict that at finite temperature all states are separable asymptotically at late

times and must undergo SD. In fact a proper accounting of environmentally-induced

corrections to the steady state of the system shows that for low temperatures it is

possible to have asymptotic entanglement in some cases. We derive a master equa-

tion for two atoms interacting with the free field without using the RWA and solve

it to obtain the dynamics, including the effects of distance. From these dynamics

we find that, in fact, all initial states of atoms separated by any positive distance

undergo SD even at zero temperature, though there are sub-radiant states that can

be quite long-lived for closely spaced atoms.
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Chapter 1

Introduction

1.1 Motivation

The last two decades have seen an explosion of interest in uniquely quantum

phenomena that rely upon coherent quantum superpositions, quantum correlations,

and entanglement. There have been a number of influences driving this explosion;

chief among them are the quest to understand the quantum-to-classical transition

through the paradigm of environmentally-induced decoherence and the development

of quantum information processing (QIP). Quantum entanglement is thought to be

of key importance in both these arenas, and as a result an extraordinary effort has

been made to characterize entanglement qualitatively, devise methods for quantify-

ing it, and study its dynamical evolution. The aim of this dissertation will be to add

to the understanding of that last element, by considering how careful analysis may

uncover effects in the dynamics of entanglement overlooked when working under the

assumptions predominant in the literature.

While demonstrating correspondence between a new theoretical paradigm and

the old one is in some cases relatively straightforward, understanding how classical

physics can arise from quantum physics as an emergent phenomenon (or indeed even

be in any way consistent) has puzzled physicists since the seminal paper of Einstein,

Podolsky, and Rosen [1] and the paradox of Schrödinger’s cat [118] up through the
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present day. Both of those early works uncovered the unique role of what Schrödinger

called Verschränkung, or entanglement. Subsequently, Bell showed [79] that there

are scenarios predicted by quantum mechanics which cannot possibly be described

by any theory qualitatively similar to classical mechanics (any theory satisfying the

criterion of local realism), and again entanglement is central to these puzzles.

While even the modern picture is arguably not entirely complete, understand-

ing of the emergence of classical behavior from quantum physics increased dramati-

cally with the introduction of the paradigm of environmentally-induced decoherence

[62, 142]. Under this paradigm, a particular system of interest can attain a quantum

state with classical-like features through interaction with a large environment which

is then traced out (i.e., ignored degrees of freedom are averaged over). Entanglement

plays an important role here as well.

While these considerations are of great theoretical and philosophical interest,

QIP is the focus of considerable practical interest, and again quantum entanglement

seems to play a key role [95]. Interest in QIP became widespread in 1994 when

Shor discovered an algorithm for a quantum computer that allows one to determine

the prime factors of a number in a polynomial number of computational steps,

exponentially faster than the best known classical algorithm. This was of particular

practical significance because the difficulty of this problem underlies the security

of public-key encryption [119]. Shor’s algorithm utilizes quantum entanglement, so

that in order to build a computer capable of carrying out this algorithm one must be

able to reliably generate and control quantum entanglement. In addition to Shor’s

algorithm, quantum computers have been found to be more efficient at solving other
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problems of practical interest [66, 95].

Quantum entanglement has also emerged as a key resource for quantum com-

munication. In quantum communication one aims to transfer a quantum state of a

system from one location to an identical system at another location. If one initially

has a suitably entangled pair of qubits, then it is possible to use those together

with classical communication between the two parties to transfer an arbitrary un-

known state of another qubit to a distant location in a process known as quantum

teleportation [17]. Indeed, it has been shown that any entangled state can improve

the efficiency of quantum communication [73]. Among the applied uses of quantum

communication is quantum cryptography, where it can be used to distribute shared

encryption keys between parties via an untrusted (but authenticated) channel in a

provably secure fashion [18].

Atomic systems constitute an important setting for the investigation of quan-

tum decoherence and entanglement phenomena [113, 103] and are very promising

for quantum information processing [36, 95, 88]. The physical principles underlying

these systems are quite well understood, and it is possible to limit environmental

influences greatly, making these systems ideal for theoretical study. This situa-

tion contrasts with, for example, solid state models; despite being both interesting

and promising for QIP, the underlying mechanisms in solid state models can be

much more complex and difficult to understand with environmental influences be-

ing stronger and less tractable. Atomic systems can also be controlled and measured

with great precision [120, 83, 100, 84, 19, 27, 106, 48, 21, 103, 69, 130]. As a result,

we will choose to focus on atoms interacting with electromagnetic fields as the basic
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model where we will investigate entanglement dynamics.

Even though atomic systems are more tractable than others theoretically, one

must still employ various approximations in order to make predictions about their

behavior. While earlier investigations in quantum physics sought to characterize

some basic — though not necessarily easily determined — features of quantum

systems, such as transition rates and energy spectra, contemporary research seeks

to predict much more nuanced features including quantum coherence and entan-

glement. Therefore, it is fitting that one examines whether the approximations

habitually used in those previous calculations are still suitable for determining these

details.

This dissertation will explore entanglement dynamics in atom-field systems

and specifically how separation between atoms can change the behavior of entangle-

ment. While entanglement dynamics of atoms with position dependence has been

studied in the literature before (e.g., [4, 5, 6, 50, 124, 125, 49, 11, 51, 12]), we ap-

proach problems in which some usual assumptions can be discarded to get a more

complete picture of this phenomenon. We find a great diversity of behavior of en-

tanglement dynamics arising from the dependence on distance, which we examine

and classify in a simple model. Moving to more complex models, we show that with

low temperature environments the weak coupling master equations generally used

will not have the correct late-time behavior and together with the rotating-wave

approximation (RWA) they lead to predictions about entanglement dynamics that

are incorrect even qualitatively. Finally we improve on previous solutions for the

dynamics of two atoms interacting with a common electromagnetic field by deriving
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a solution without the RWA and correctly calculate the late-time steady state and

entanglement dynamics at zero temperatures, which were misrepresented in previous

solutions [49] due to the effects of the weak coupling approximation and RWA.

The following sections will introduce some of the important ideas that underlie

the later chapters, and then having discussed those, we will complete this chapter

by describing the remaining content of the dissertation and the contributions of this

work more specifically.

1.2 Open Quantum Systems

In a closed quantum system, the state of the system is represented by a density

matrix (also called a density operator) χ that is a linear operator on the Hilbert

space HC . The density matrix is Hermitian, positive-semidefinite, and has trace

Tr [χ] = 1. The equation of motion for the density matrix is the von Neumann

equation

d

dt
χ (t) = −i [H ,χ (t)] , (1.1)

so that there is a unitary transformation U (t) giving

χ (t) = U (t)χ (0)U † (t) . (1.2)

Here and throughout this work we will assume units in which ~ = c = 1.

The setting suitable for much of the later discussion is that of an open quan-

tum system. An open quantum system is one in which there is some interaction

between the system of interest and some outside environment. Theoretically, one

can construct such a situation by starting with a closed quantum system that is
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bipartite, composed of two subsystems. One subsystem will be considered the sys-

tem of interest S, with Hilbert space HS, while the other will be considered the

environment E, with Hilbert space HE, so that HC = HS ⊗HE. A measurement of

an observable O on only the system S can be predicted using the reduced density

matrix of ρ of the system S, which is obtained by coarse-graining out the environ-

mental degrees of freedom. Mathematically, given any orthonormal product basis

|j〉S⊗|k〉E — indexed by some labels j and k — for HC , the reduced density matrix

is obtained by taking the partial trace over the system degrees of freedom.

ρ ≡ TrE [χ] =
∑
k

〈k|E χ |k〉E . (1.3)

The resulting operator is independent of the basis in which the trace was taken.

The expectation of the observable O is then 〈O〉 = Tr [Oρ].

Since the reduced density matrix is obtained directly from the state of the

closed system, the evolution of that operator comes directly from the partial trace of

Eq. (1.1). Assuming the closed total system has a HamiltonianHC = H+HE+HI ,

where H acts only on S, HE on the environment E, and HI is the interaction

Hamiltonian that couples them together, the equation of motion can be cast in

integro-differential form as

d

dt
ρ (t) = −iTrE

[[
HI(t),χ(t)

]]
−
∫ t

0

TrE
[
HI (t) ,

[
HI (s) ,χ (s)

]]
ds, (1.4)

which is the master equation of the system in the Dirac picture (denoted by the

underline). Given an initial prescribed state of the environment this equation spec-

ifies the reduced state of the system S at all later times, although the time integral

implies that in general there can be memory effects. Assuming that the open-system
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dynamics can be solved for a given initial state of the environment, one may define

a reduced propagator G super-operator such that ρ(t) = G(t)ρ(0).

While Eq. (1.4) in principle gives the evolution of the system’s reduced den-

sity matrix, one generally seeks to write this equation in terms of the system alone,

without direct reference to the total state of the closed system. Generally the de-

tails of the full closed system dynamics are unknown in any experiment involving an

open quantum system. Furthermore, the setting in which this conceptual framework

is most useful is one in which the environment is quite large, most often where it

contains a continuum of degrees of freedom, leading to irreversible dynamics such

as dissipation. In general it is not possible to find exact master equations for the

dynamics of open quantum systems in terms of ρ alone; however, arbitrary-order

perturbative master equations (in the system-environment interaction) can be de-

rived in a variety of different ways [81, 25, 122] and find application in many branches

of physics and chemistry [112, 32, 26, 82]. Often such derivations additionally make

a Markovian approximation, neglecting the history dependence of the evolution that

may arise from Eq. (1.4). A system which displays such history dependence is said

to be non-Markovian.

Starting from Eq. (1.4), some authors assume an initially separable state

χ (0) = ρ(−) ⊗ ρE(0) (where ρE(0) represents the initial state of the environ-

ment) and then make the approximation that at later times χ (s) ' ρ(t) ⊗ ρE(0)

to obtain the Redfield equation. This approximations is based on the idea that the

effect of the system on the environment is small (assuming weak coupling and a

large environment). In many cases, the approximation is extended further to what
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is called the Born-Markov approximation (BMA) by taking the upper limit of the

integral to zero and replacing HI (s) by HI (t− s), based on the idea that the only

significant contribution to the integral is near s = t due to short bath correlation

timescales. This yields the Born-Markov master equation [26],

d

dt
ρ (t) = −iTrE

[[
HI(t),χ(t)

]]
−
∫ ∞

0

TrE [HI (t) , [HI (t− s) ,ρ(t)⊗ ρE(0)]] ds.

(1.5)

Finally, when dealing with a system bi-linearly coupled to environmental degrees of

freedom, many authors make a RWA that neglects terms in the equation of motion

that oscillate rapidly in the Dirac picture, which is discussed in detail in Sec. 4.2.

1.2.1 Markovian and Non-Markovian Dynamics

Before going further it is beneficial to get a clearer definition of non-Markovian,

as the term is applied in a variety of incompatible ways in the mathematics, physics

and chemistry literature. In an open quantum system perspective, the environment

acts as a stochastic source of noise, of both quantum and classical (thermal) origins,

influencing the system. This noise, which imparts fluctuations and dissipation, can

be multiplicative when there is nonlinear interaction amongst the constituents in the

environment and colored when there is temporal correlation (memory) which reflects

the dynamical timescales of the environment (see e.g. [74]). When the effects of a

thermal reservoir with quantum mechanical degrees of freedom may be represented

by a quantum white noise source, the open quantum system’s noise kernel and

damping kernel (the dissipation kernel’s anti-derivative) will have delta function
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correlations. Noise which induces local dissipation will only necessarily have delta

correlations for the damping kernel. Non-Markovian refers to physical processes

with memories. In an open-system framework the influence of the coarse-grained

environment can engender non-local noise correlations even with local dissipation or

in the high temperature regime. White noise only enters at high temperature and

with local dissipation.

In the Markovian limit the timescales of the environment are taken to be much

shorter than the timescales of the system. Thus in an open-system perspective

one cannot simplistically refer to an environment as Markovian or non-Markovian

in isolation from the dynamics of the system which it influences but is measured

in reference to. A noise may appear ‘Markovian’ only because its characteristic

time scales cannot be resolved by the system. Some authors use the terminology

‘Markovian noise’ or ‘non-Markovian noise’ to describe the nature of the noise.

We prefer to refer the nature or properties of noise simply as white or colored

while reserving the terminology Markovian or non-Markovian for the description of

process describing the system properties, without or with memory, respectively.

Another common habit is the use of Markovian in reference to the master equa-

tion itself, if it is time-local and especially if it is additionally time-homogeneous.

This should more correctly be referred to as a Markovian representation or sim-

ply avoided. Markovian processes produce Markovian representations, but not all

Markovian representations arise from Markovian processes. A master equation

which arises from a non-Markovian process, even if in Markovian representation,

is not sufficient to generate the dynamics of multi-time correlations. By definition,
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Markovian processes are governed by the Quantum Regression Theorem in which

higher order correlations can be determined from lower order correlations, and ulti-

mately everything can be resolved via the master equation [90, 32, 26]. But with a

non-Markovian process there are corrections to the Quantum Regression Theorem

[123, 43].

1.2.2 Time-local and Time-Homogeneous Master Equations

A master equation for the reduced density matrix is time-local or convolution-

less if the time derivative of the (reduced) density matrix at a time t is expressed

only in terms of the (reduced) density matrix at that time ρ(t) (as opposed to an

integro-differential equation depending on the past history of ρ). For any invert-

ible reduced propagator matrix G(t) such that ρ(t) = G(t)ρ(0), the time-nonlocal

master equation

d

dt
ρ(t) =

∫ t

0

dτ K(t− τ)ρ(τ) , (1.6)

can be cast as an equivalent time-local master equation

d

dt
ρ(t) = L(t)ρ(t) , (1.7)

where L(t) = d
dt
G(t)G(t)−1 trivially, and in this case as the kernel K(t − τ) is

stationary, G(t) is given formally by a Laplace transformation and the time-local

master equation is fully determined therefrom. Note that while both master equa-

tions generate equivalent dynamics, (1.7) is Markovian only in representation, unless

the kernel K(t − τ) is delta correlated, in which case L is constant in time. Es-

sentially one finds integrals over the system’s history within the time-local master
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equation coefficients, which manifests through their full time dependence. A brief

discussion of the behaviors of the two formalisms after application of perturbation

theory can be found in [24].

The class of time-dependent time-local master equations is distinguished from

the class of master equations with constant coefficients (such as the familiar Lind-

blad master equation) on the one hand and the time-nonlocal (integro-differential)

equations on the other hand. The latter form is often encountered in a projection

operator formalism with little or no coarse-graining of the environment. (See, e.g.

[144]). As explicitly demonstrated by the above Eqs. (1.6)-(1.7) a master equation

can be time-local and generate non-Markovian dynamics. This occurs, for example,

in the second-order master equation [81, 25, 122]. A well-known example is the Hu-

Paz-Zhang master equation [74, 56] where the coefficients are obtained from solutions

of integro-differential Langevin equations; the non-Markovian features manifest in

the nonlocal dissipation arising from the back-action of the environment with col-

ored noise on the system. While the non-Markovian nature of the master equation

may not be evident in its time-local representation the non-Markovian character is

encoded in the time dependence of the coefficients and should be apparent when

examining multi-time correlations.

1.2.3 The Weak Coupling Master Equation

As we have said, perhaps the most common way to derive an approximate

open-system master equation is by assuming the system-environment coupling to
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be weak. Systems weakly coupled to an environment, where dissipation and deco-

herence may be consequently weak, are a natural context to examine the coherent

quantum phenomena that we are interested in. As we have mentioned, there are

many different approaches to deriving a weak-coupling master equation [81, 25, 122].

We will follow the systematic approach of Fleming [31] for its clarity and also the

attention to issues of accuracy and late-time stability, and we will rely heavily on

the many useful and general results about open quantum system dynamics from

that work. We now state some main results of that general framework.

First define a Dirac picture in terms of the free (i.e., uncoupled) evolution

propagator GCF for the closed system, so that the propagator for the full, closed

system becomes

G
C

(t) = G−1
CF(t)GC(t), (1.8)

and the portion of the Liouvillian of the closed system due to the interaction Hamil-

tonian

LCIχ ≡ −i [HI ,χ] (1.9)

becomes

LCI(t) = G−1
CF(t)LCI(t)GCF(t) . (1.10)

Given that

d

dt
G

C
(t) = LCI(t)GC

(t), (1.11)

one may take the partial trace over the environment and write a Neumann series

G(t) = 1 +

∫ t

0

dτ1 TrE [LI(τ1)] +

∫ t

0

dτ1

∫ τ1

0

dτ2 TrE [LI(τ1)LI(τ2)] + · · · , (1.12)
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for the Dirac-picture reduced-system propagator G(t) that is perturbative in the

system-environment coupling. For the reduced system we have L(t) =
[
d
dt
G(t)

]
G−1(t),

so that Eq. (1.12) leads to a perturbative series for L(t). Assuming the odd mo-

ments of the bath vanish (as with Gaussian noise), the odd orders of the perturbative

expansion vanish, and one has

L(t) = L[2](t) + L[4](t) + · · · (1.13)

with

L[2](t) =

∫ t

0

dτ TrE [LCI(t)LCI(τ)] , (1.14)

assuming a stationary reservoir and time-independent Hamiltonian.

Given a stationary system Hamiltonian and stationary bath correlations, Gaus-

sian noise distributionals (e.g. noise generated via linear coupling to an environment

of harmonic oscillators) may allow the master equation to have a stationary late-time

limit [53]

L(∞) = lim
t→∞

L(t) , (1.15)

so that the late-time and weak-coupling limits commute; otherwise perturbation

theory cannot be used for long durations of time. Gaussian noise processes are

categorized by their second-order noise correlation, and whether or not the master

equation will have a stationary limit is dependent upon how localized this noise

correlation is. Well-localized noise correlations (e.g., Gaussian or exponential) can

lead to a very well-behaved master equation, whereas long-ranged noise correlations

(e.g. Cauchy) can produce a more pathological master equation which cannot be
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accurately analyzed in a perturbative fashion. Exact examples of this phenomena are

given in Ref. [56] in the context of quantum Brownian motion with Ohmic and sub-

Ohmic couplings. Moreover, the exact solutions ρ(t) can be very well-behaved even

if L(t) is not. Markovian representations (and, more generally, effective equations

of motion) are not always suitable.

Having a perturbative expansion for the Liouvillian and Eq. (1.14) gives the

lowest-order correction to the uncoupled dynamics, which is second order in the

system environment coupling. We will call this second-order master equation the

weak-coupling master equation. Assume that the system-environment interaction

Hamiltonian takes the form

H I(t) =
∑
n

Ln ⊗ ln , (1.16)

with Hermitian system coupling variables Ln coupled bilinearly to collective envi-

ronment coupling variables ln. Without loss of generality, these variables can be

assumed to have vanishing diagonals in the energy basis of the free system, since

any diagonal portion of the coupling would commute with the free bath Hamiltonian

and could be effectively absorbed into the free system Hamiltonian at second order.

With these assumptions, the second-order master equation can be expressed

L[2] ρ =
∑
nm

[
Ln,ρ (Anm�Lm)† − (Anm�Lm)ρ

]
, (1.17)

where in the basis of energy states of the uncoupled system |ωi〉

〈ωi|Anm�Lm |ωi′〉 = 〈ωi|Anm |ωi′〉 〈ωi|Lm |ωi′〉 , (1.18)
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with the Anm operator defined

〈ωi|Anm |ωi′〉 ≡ Anm(ωii′) , (1.19)

Anm(t;ω) =

∫ t

0

dτ αnm(t, τ) e−iω(t−τ) , (1.20)

and ωii′ = ωi−ωi′ . If the correlation function is sufficiently localized in time, then

these coefficients will have a stationary limit.

One can try to solve the weak-coupling master equation exactly, but given

that it is of only perturbative accuracy, an equally accurate answer can be obtained

by solving the open-system master equation in a perturbative fashion. To do this

one seeks a solution to the eigenvalue problem

Lo = f o , (1.21)

where o is a Hilbert-space eigen-operator and f is its corresponding eigen-value. We

already know the zeroth-order solutions

L[0] |ωi〉〈ωj| = −i ωij |ωi〉〈ωj| . (1.22)

We then have the perturbative expansions

L = L[0] + L[2] , (1.23)

oij = |ωi〉〈ωj|+ o[2]
ij + · · · , (1.24)

fij = −iωij + f
[2]
ij + · · · . (1.25)

An important point in thinking about solving the master equation perturba-

tively is that for an N -dimensional Hilbert space the problem is always (at least)

N -fold degenerate, since ωjj = 0 for all j. Perturbation theory tells us that the
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second-order corrections to all eigenvalues and eigenoperators of L outside the de-

generate subspace — these operators will be purely off-diagonal in the energy basis

at zeroth order — are given by:

f
[2]
ij = 〈ωi|L[2]{|ωi〉〈ωj|} |ωj〉 , (1.26)

〈ωi′|o[2]
ij |ωj′〉 =

〈ωi′|L[2]{|ωi〉〈ωj|} |ωj′〉
−i(ωij − ωi′j′)

. (1.27)

As is usual in degenerate perturbation theory, to compute corrections to eigenvalues

and eigen-operators from the degenerate subspace, we must diagonalize L in the

degenerate subspace. The associated characteristic equation can be written

W ~o = f ~o , (1.28)

[[~o]]i ≡ 〈ωi|o |ωi〉 , (1.29)

where ~o denotes the degenerate-subspace projection of o represented as a vector,

i.e. diagonal entries of the eigen-operator while in the free energy basis, and W if

defined as

[[W ]]ij = 〈ωi|L{|ωj〉〈ωj|} |ωi〉 , (1.30)

which is the degenerate-subspace projection of L — i.e., master-equation super-

operators which map diagonal entries to diagonal entries — represented as a matrix.

Thus, W in essence gives the Pauli master equation [32]. It will turn out that

computing the o[2] for the degenerate subspace is problematic, which we explore

later in Sec. 4.1. Once we have solved the eigensystem perturbatively, however, the

solution to the master equation is merely

ρ(t) =
∑
ij

cijσije
fijt, (1.31)
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with the constants cij determined by ρ(t).

1.2.4 Master Equations with Lindblad Form

When the environment in an open system can be represented by a quantum

white noise the master equation has time-local coefficients and assumes a Lindblad

form:

d

dt
ρ = −i [H + V ,ρ] + D{ρ} , (1.32)

D{ρ} ≡
∑
nm

Dnm
(
en ρe

†
m −

1

2

{
e†men,ρ

})
, (1.33)

where H is the Hamiltonian of the free system and V is a correction introduced

by the environment, not necessarily to be renormalized in its entirety as it may

contain nontrivial features such as diffusion components. D is the “dissipator”

super-operator: Dnm is a positive-definite and Hermitian coefficient matrix and en

denotes a particular (operator) basis of representation for the dissipator.

Lindblad’s theorem categorizes the algebraic generators La for all completely-

positive maps esLa , wherein s > 0 parameterizes the semi-group [93, 65]. Such

algebraic generators and the dynamics arising when the Liouvillian appearing in the

master equation has Lindblad form have been extensively studied [87, 40, 41, 42,

7, 3, 14, 76, 94, 132]. In general, however, the time-translation generator Lt that

appears in the master equation is not constant in time, so that it is not equivalent to

the algebraic generator. In this case the dynamical maps are given by time-ordered

products of the exponentials edtLt , and not necessarily of the Lindblad form. But

following the generalization of Choi’s theorem on merely Hermitian-preserving maps
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[34], one can quickly prove that any Hermitian and trace-preserving master equation

of analogous time-local form must have a pseudo-Lindblad form, i.e. the form of

Eq. (1.33) but with merely Hermitian Dnm.

Therefore the Lindblad equation classifies all completely-positive master equa-

tions without any time dependence in their coefficients; completely positive master

equations which are merely asymptotically constant in time are not restricted to

Lindblad form, even in the weak (but non-vanishing) coupling limit. See [74, 56]

for a specific example, both exactly and perturbatively. Furthermore, a Markovian

representation of the master equation, i.e. a time-local Lt, does not necessarily

indicate Markovian dynamics, as expanded upon in Sec. 1.2.2.

1.3 Atom-Field Interactions

Given that atomic physics is a good context in which to study coherent quan-

tum phenomena, we will repeatedly discuss the quantum physics of a set of atoms

interacting with a quantized electromagnetic field. We will work in the setting of

non-relativistic quantum field theory. The simplest way to formulate this approach

is to imagine the field confined to some volume V . Then, subject to the boundary

conditions, the field may be decomposed into normal modes. Second quantization

transforms these modes into a set of quantum harmonic oscillators.

Atomic physics is attractive to the theorist in part because the interaction

between light and matter is so well studied and understood. However, as with most

problems in Physics a full treatment of the exact model would be intractably com-
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plex. So we will follow much of the literature and adopt a relatively simplistic model

of the atom as a two-level system. This two-level atom (2LA) represents two energy

levels of the atom, which have an associated energy splitting given by the frequency

Ω. Modes of the electromagnetic field (EMF) will significantly excite a transition

between these levels provided that they have a similar frequency; thus, although

the atom may have many levels, the others can be neglected provided they are not

excited initially and none of the field modes resonant with those transitions are

excited. Additionally, we will make the dipole approximation, in which the spacial

extent of the atom is assumed to be small compared to the resonant wavelength, in

which case the interaction will be dominated by the electric dipole moment associ-

ated with the transition. The basis of these approximations has been extensively

treated [6, 38].

We will consider the interaction between a collection of 2LAs and an EMF

decomposed in terms of normal modes with the aforementioned approximations. We

will additionally assume throughout that the center of mass of each atom does not

move significantly, and the jth atom can be considered to have a fixed location ~Rj.

This will be a reasonable model in situations where the atoms are strongly confined

(compared to the resonant wavelength). To simplify calculations somewhat we will

also assume that the atomic transition in each atom will produce linearly polarized

photons (i.e., both ground and excited state are eigenstates of some component of

angular momentum with the same eigenvalue).
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The free Hamiltonian for the atom-field system is

H0 =

(∑
j

Ωjσ+jσ−j +
∑
q,s

εq,sa
†
q,saq,s

)
. (1.34)

where Ωj is the transition frequency of the jth atom, σ+j and σ−j are the raising

and lowering operators for the two-level system representing that atom, and εq,s is

the frequency of the qth normal mode with polarization indexed by s. With all of

the approximations specified, the atom-field interaction Hamiltonian becomes

HI =
∑
j

∑
q

σxj
(
gj,q,saq,s + g∗j,q,sa

†
q,s

)
, (1.35)

where σxj is the Pauli matrix for the jth atom. The coupling constants gj,q are

defined by

gj,q ≡ −i dj~ed,j · ~fq,s
(
~Rj

) Ωj√
2ε0εq,sV

, (1.36)

where dj is the complex dipole matrix element for the transition in the jth atom,

the dipole moment has a direction ~ed,j, and ~fq,s (~r) is the classical electric field mode

function for the qth normal mode [6, 47].

In addition to the approximations already made, very often in atomic physics

one makes the RWA. As we will discuss in Ch. 4, there are, in fact, two distinct forms

of the RWA in use [6], but perhaps most common in atomic physics discussions is

the form in which the interaction Hamiltonian is cast in the Dirac picture and the

rapidly oscillating terms are neglected. If σxj is written in terms of σ+j and σ−j ,

then the terms containing σ+jaq,s and σ−ja
†
q,s will oscillate with frequency Ωj−εq,s

while the terms containing σ−jaq,s and σ+ja
†
q,s will oscillate with frequency Ωj+εq,s.

For modes close to resonance |Ωj − εq,s| � Ωj + εq,s. On that basis, the terms with
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σ−jaq,s and σ+ja
†
q,s (often called the counter-rotating terms) are dropped, leaving

one with the perhaps more familiar interaction Hamiltonian

HI =
∑
j

∑
q

gj,q,sσ+jaq,s + g∗j,q,sσ−ja
†
q,s. (1.37)

Physically, the meaning of this approximation lies in the fact that it ensures that

the free and interaction Hamiltonians commute, so that the energy according to the

free Hamiltonian is still conserved in the interacting theory. For this reason, the

dropped terms are also sometimes referred to as energy-non-conserving terms.

1.4 Quantum Entanglement

As we have already mentioned, entanglement is a unique property of quantum

systems, which can be used as a resource for certain sorts of tasks. We will now give

a brief overview of its properties, which can be found in more depth in, for example,

[73]. For pure states, entanglement is relatively easily defined: any quantum state

of a multipartite system — comprised of several subsystems — that cannot be

factorized into a tensor product of states for the individual subsystems is called

entangled. For example, the state

|Ψ〉 =
1√
2

(|ψ〉A ⊗ |φ〉B + |ξ〉A |ζ〉B) (1.38)

for systems A and B will be entangled so long as |ψ〉 is linearly independent from

|ξ〉 and |φ〉 is linearly independent from |ζ〉. If a state is not entangled then it is

said to be separable and can be cast in the form

|Ψ〉 = |ψ〉A ⊗ |φ〉B . (1.39)
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For separable pure states the outcomes of any measurements on the two subsystems

are statistically independent, while for an entangled state they will have correlations.

Classically there would have to be a probability distribution describing an ensemble

of possible states of the system in order for there to be correlations, but in the

quantum context the correlations can exist even when the global state of the system

is specified uniquely.

The predominant way of thinking about quantum entanglement has become

the paradigm of local operations and classical communications (LOCC) [95, 111, 73].

The physical picture appropriate to this approach is one of several distant labora-

tories attempting to accomplish various tasks using quantum operations performed

locally in each laboratory individually, classical communications between laborato-

ries to coordinate, and some shared multipartite quantum states. The entanglement

of that shared state is then assessed as its utility as a resource for performing tasks

that could not be performed by LOCC alone, which are sometimes referred to as

“nonclassical tasks”. From this perspective, it then becomes clear how to generalize

the definition of entanglement to mixed states.

Given initially uncorrelated systems A and B, LOCC can be used to produce

only states of the form

ρ =
∑
j

pjρ
A
j ⊗ ρBj . (1.40)

These form the set of separable mixed (unentangled) states, since they can be syn-

thesized through LOCC and are, therefore, not a useful resource. Any state outside

this set is trivially a resource, because at the least it can be used to produce that

22



same non-separable state, which cannot be done by LOCC alone. Thus, any state

that cannot be expressed in the form of Eq. (1.40) is entangled. In fact, entangled

states can be used as a resource in many less trivial ways [95, 73]. One impor-

tant task is quantum teleportation, where a general unknown quantum state can

be transferred from one laboratory to another by using shared entangled states and

classical communication [17, 23]. Another task of considerable import is quantum

key distribution, where shared entangled states are used to distribute encryption

keys among remote parties in a secure fashion [18, 16].

Having developed a notion of what constitutes entanglement, one may easily

wonder whether some states can be established as being more entangled than others.

In fact, the LOCC paradigm gives a natural partial order on the set of entangled

states: if a state ρ can be converted to a state σ by LOCC, then ρ can be said to be

unambiguously more entangled than σ (since any task that can be accomplished with

σ and LOCC can obviously be done with ρ and LOCC). It also follows that if any

state ρ can be converted to a state σ using only local unitary operations, then the

two states must be equally entangled, since this is a reversible local operation. This

ordering is only partial, however, because there are some pairs of states where neither

can be converted to the other via LOCC. One can, however, further order the set of

entangled states (and even quantify entanglement) under additional assumptions.
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1.4.1 Quantifying Bipartite Entanglement

Now we shall restrict our attention to quantifying entanglement between two

subsystems, though there has been considerable work on multipartite entanglement

as well [9, 73]. While in general there are entangled states that cannot be inter-

converted between by LOCC, for two d-level systems the state

∣∣Φ+
d

〉
≡ 1√

d

d∑
j=1

|φj〉 |χj〉 (1.41)

can be converted to any other bipartite pure state via LOCC and is, therefore,

maximally entangled. Altering the problem slightly, however, one can say much

more. One may consider asymptotic convertibility, the question of whether n copies

of ρ can be converted to m copies σ in the limit n → ∞. One can define the

entanglement cost as

EC (ρ) ≡ inf
{
r : lim

n→∞

(
inf
M

∥∥∥ρ⊗n −M (∣∣Φ+
2

〉 〈
Φ+

2

∣∣⊗rn)∥∥∥) = 0
}
, (1.42)

where M is any LOCC manipulation and the norm ‖•‖ may be the trace norm

or any other topologically equivalent norm. This gives the proportion of copies of

the state ρ that can be created from maximally entangled qubits in the asymptotic

limit. Conversely, one can define the distillable entanglement

ED (ρ) ≡ sup
{
r : lim

n→∞

(
inf
M

∥∥∥M (
ρ⊗n

)
−
∣∣Φ+

2

〉 〈
Φ+

2

∣∣⊗rn∥∥∥) = 0
}
, (1.43)

which is the proportion of maximally entangled qubits that can be obtained from

many copies of ρ via LOCC in the asymptotic limit. Because maximally entangled

qubits can be used to perform, for example, quantum teleportation, the distillable

entanglement indicates the usefulness of a given quantum state for that purpose.
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On pure states the entanglement cost and distillable entanglement are equal

(implying that such conversions are asymptotically reversible), and that common

value is also given by the entropy of entanglement (EOE)

EEOE (|Ψ〉) ≡ S (TrB [|Ψ〉 〈Ψ|]) (1.44)

in terms of the von Neumann entropy

S (ρr) ≡ −Tr [ρr log2 (ρr)] , (1.45)

where ρr is the reduced density matrix of one of the two subsystems after the

other has been traced over. The existence of a Schmidt decomposition for the

total, bipartite state ensures that the eigenvalues of the reduced density matrix of

either subsystem are the same, so the EOE does not depend on which subsystem is

traced over. Though entanglement cost and distillable entanglement are equal for

pure states, for mixed states they are in general different, with EC (ρ) ≥ ED (ρ).

This suggests that for mixed states there may not be a unique way to quantify

entanglement, and the usefulness of a particular state for carrying out non-classical

tasks may depend upon the task.

While the entanglement cost and distillable entanglement both have direct

meaning, they both involve taking a quite non-trivial infimum [129, 73]. Indeed, it

is known that the problem of determining whether an arbitrary state of a bipartite

quantum system is separable falls in the NP-hard complexity class [67], so it is not

surprising that entanglement measures will be difficult to compute in general. How-

ever, there are many other functions that can be defined to quantify entanglement

in some way that can be more easily computed. Generally, one may define many

25



entanglement monotones, which are functions that vanish on separable states and

are non-increasing under LOCC. If such a function is additionally equal to the EOE

on pure states, then it is often referred to as an entanglement measure. While a

great variety of entanglement measures and monotones exist [111], we will be chiefly

concerned with four: the negativity, the logarithmic negativity, the entanglement of

formation, and the concurrence.

The entanglement of formation is an entanglement measure that is in some

sense a straightforward generalization of the EOE to mixed states. Given a mixed

state ρ there are many possible projector decompositions of the form ρ =
∑

j pj |Ψj〉 〈Ψj|,

provided that one does not make the requirement that the projectors be orthogonal.

The entanglement of formation is then defined as

EF (ρ) ≡ inf

{∑
j

pjEEOE (|Ψj〉) : ρ =
∑
k

pk |Ψk〉 〈Ψk|

}
. (1.46)

While the entanglement of formation is not known to be easily computed in general,

it can be efficiently computed for two qubits in terms of the Wootters concurrence

[134]. The concurrence is defined as

C (ρ) ≡ max
{

0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
(1.47)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 are eigenvalues of

ρ (σy ⊗ σy)ρ∗ (σy ⊗ σy) (1.48)

computed in some basis (the eigenvalues are basis independent) and

EF (ρ) = h

(
1 +
√

1− C2

2

)
(1.49)

h (x) ≡ −x log2 (x)− (1− x) log2 (1− x) . (1.50)
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In addition to being useful for calculating the entanglement of formation, the con-

currence itself is an entanglement monotone.

Although in general determining whether a state is separable is computation-

ally difficult, the Peres-Horodecki criterion gives a necessary (but not sufficient)

condition for separability [109, 71, 72, 73]. This criterion is the mathematical condi-

tion that the density matrix of a state remain positive-semidefinite after the partial

transpose operation is performed; thus it is often referred to simply as the posi-

tive partial transpose (PPT) condition. The partial transpose with respect to some

product basis B = {|j〉A |k〉C} is defined as

ρTB =
∑
j,k,l,m

[〈j|A 〈k|F ρ |l〉A |m〉C ] |l〉 〈j|A ⊗ |k〉 〈m|C . (1.51)

The resulting operator is basis dependent, however the spectrum is not. The degree

to which a state violates the PPT condition can be quantified in a number of ways.

One way is to take the sum of the absolute value of all the negative eigenvalues.

This quantity is known simply as the negativity, which may be written

N (ρ) ≡
∥∥ρTB∥∥

1
− 1

2
(1.52)

in terms of the trace norm defined

‖O‖1 ≡ Tr
(√

OO†
)
. (1.53)

One can alternatively define the closely related quantity

EN (ρ) ≡ log2

∥∥ρTB∥∥
1
, (1.54)

known as the logarithmic negativity (LN). Both of these are entanglement mono-

tones, and additionally the LN provides an upper bound on distillable entanglement
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[129, 110]. Furthermore, each can be efficiently computed even in the general case.

These are, however, only entanglement monotones and do not equal the EOE on

pure states. Moreover, these measure violation of the PPT condition, which is only

a necessary condition for separability. In general there exist entangled states which

have positive partial transpose, known as bound entangled states, on which both en-

tanglement monotones vanish. However, there are important special cases in which

no bound entanglement exists and a state is entangled if and only if it violates the

PPT condition. These cases include two qubits and two continuous variable systems

in a Gaussian state.

1.4.2 Entanglement Sudden Death

Since quantum entanglement is of both fundamental importance and practi-

cal use as a resource, its time evolution is also of great interest. Just as the loss

of quantum coherence through the action of environmentally-induced decoherence

is of importance for both of these perspectives, the loss of entanglement is also

of great interest. Entanglement, of course, is itself a product of quantum coher-

ence. However, where much of the earlier work on decoherence had been focused on

decoherence of individual degrees of freedom, examining disentanglement involves

examining the loss of the quantum coherence between different degrees of freedom.

So, this is sometime thought of as examining local vs. nonlocal decoherence [138].

It is common to find that quantum coherence in a system weakly coupled to

an environment will decay to zero only asymptotically as t → ∞, and under many
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conditions it decays exponentially [62, 142, 53]. A natural question, then, is whether

entanglement will also decay to zero in the same qualitative fashion, only asymp-

totically. Perhaps surprisingly, theoretical study showed that in many models the

entanglement will vanish entirely at finite times even when local coherence decays

only asymptotically [75, 114, 138, 141]. This phenomenon has been termed entan-

glement sudden death (SD). It has subsequently been found experimentally [8, 89].

This change in qualitative features is interesting in its own right, but it is also poten-

tially undesirable if one seeks to use entanglement as a resource. Another feature of

theoretical and practical interest is that in such models (at zero temperature) only

some initial states undergo SD while others do not, suggesting that some may be

better for preserving entanglement.

Much of the theoretical study of SD has been in models of atom-field inter-

action [138, 136, 137, 141] or mathematically similar models. In the context of

open systems, these have generally been restricted to master equations of Lindblad

form that arise (explicitly or implicitly) from the weak-coupling and Born-Markov

approximations. However, it has not been clarified precisely how these approxima-

tions may impact predictions of this dynamical feature. Additionally, much of the

work on SD uses a model where two 2LAs interact with totally separate environ-

ments. A more physical model is one in which two atoms interact with a common

field as the environment. One may then expect that the limit of large separation

will be the physical situation that corresponds to the abstract model of separate

environments. The issue of SD with a common field environment has been studied

but only under the RWA [11, 12] and also additionally under the RWA, BMA, and
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assumption of weak coupling to the field [49].

1.5 Overview and Summary of Major Findings

The aim of this dissertation will be to examine the dynamics of entanglement

in atom-field systems (and other open quantum systems), how entanglement dy-

namics can vary with atomic separation, and how predictions of those dynamics are

impacted by the conventional approximations that are widely used in this context.

We begin in the early chapters with some simple models and then in the later chap-

ters move to more complicated models and make some more general statements.

In Ch. 2, we examine the dynamics of entanglement between a 2LA and the EMF

without the BMA or an assumption of weak coupling, though we retain the RWA.

Starting with the atom-field interaction Hamiltonian obtained under the RWA (as

well as the dipole and two-level approximations common to all our calculations), we

use an exact solution to that Hamiltonian dynamics to find how the entanglement

must evolve. In this case we are able to compute additional features of the entan-

glement including the effect of many modes (with a discrete spectrum) that were

not previously calculated.

In Ch. 3, we compute the entanglement for a pair of 2LAs interacting with

two modes of the EMF. This calculation uses the same interaction Hamiltonian as

in Ch. 2 with the RWA, but the setting is sufficiently simple that the open system

dynamics of the atoms can be obtained without the BMA (because the environment

is finite and the close system dynamics can be used). We proceed to examine how
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changing atomic separation through even a relatively small distance can greatly

affect the qualitative features of the entanglement dynamics. We find SD for many

initial conditions but that a judicious choice of positioning and initial field state

can generate entanglement from a separable state or protect initial entanglement

from decaying away, extending previous work on these systems [85, 128, 136, 137].

This also serves to connect the study of SD in separate field modes [136, 137] to the

more general case of two atoms with some separation interacting with a common

multi-mode field.

Having looked at some simple models, in Ch. 4 we examine the weak coupling

approximation and the RWA in-depth. We find that the accuracy of solutions ob-

tained with a weak coupling approximation is less than one might expect, with some

components of the density matrix known to only zeroth order in the coupling even

when the second-order master equation is used to find the solution. This limitation

of weak coupling master equations seems to have thus far gone without explicit ac-

knowledgement in the literature. In examining the RWA, we characterize the two

different forms of RWA that are in use in the literature and their effect on solutions.

Chief among these effects are discrepancies in the coherences between different en-

ergy states. Using the weak coupling master equation as a tool for comparison,

we are able to make a detailed and general characterization of the inaccuracies in-

troduced by the RWA, in contrast to previous work that focused on more limited,

specific questions [6, 4, 5, 133, 58, 45].

With this information about the effect of approximations, Ch. 5 examines how

their shortcomings may change the properties of the predicted entanglement dynam-
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ics. We show that any previous calculation of the late-time steady state of an open

quantum system using a weak-coupling master equation (e.g., [6, 131, 32, 26]) will

be missing the correct lowest-order environmentally induced corrections at low tem-

perature, and we discuss how these corrections may be accurately derived at zero

temperature. Furthermore, the inaccuracies in solutions of the perturbative master

equation limit what one can accurately predict about the dynamics of entanglement,

even qualitatively, in low temperature environments. For sufficiently low tempera-

tures, predictions about SD using any of the previously known techniques will be

incorrect. We also find that the dependence of SD on the initial state of the system

[138, 141] should be a generic property of zero-temperature calculations using the

RWA and weak coupling but that this feature is actually simply an artifact of the

approximations and in general will not be a real physical effect. Moreover, correctly

accounting for the environmentally-induced corrections to the steady state of the

system will even allow the possibility of asymptotic entanglement in some cases. We

use the weak-coupling master equation to solve the dynamics of two atoms interact-

ing with a common free field, obtaining a solution to the problem that surpassing

the previous approaches [4, 5, 6, 50, 124, 125, 49, 11, 51, 12] by going beyond the

RWA. This, together with a correct zero-temperature asymptotic state, allows us

to correctly characterize the late-time entanglement dynamics for two atoms in a

common field and find, in contrast to all the previous examinations, that SD is in

fact universal behavior for all initial states.
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Chapter 2

Dynamics of Entanglement Between a Single Atom and the

Electromagnetic Field

Our first step in exploring the entanglement dynamics induced by atom-field

interactions is to consider the entanglement generated between a single atom and

the electromagnetic field during the process of spontaneous emission. We will treat

a single two-level atom (2LA) interacting with the electromagnetic field (EMF) via

an interaction Hamiltonian that assumes the dipole approximation and the rotating-

wave approximation (RWA). Given that Hamiltonian, we then pursue exact solu-

tions.

We begin with a detailed, general, and exact treatment of the dynamics of

entanglement in the Jaynes-Cummings model. From there, we expand our consid-

erations to include the effects of other nearby field modes, which can, in principle,

add new features to the evolution of entanglement when coupling is strong enough.

Finally, we will explore interaction between the atom and the full, infinite collection

of modes in the intracavity field. In all these cases we solve for the exact dynamics

induced by our chosen Hamiltonian, keeping the full unitary dynamics of the com-

posite system, so that our treatment can capture the non-Markovian behavior of the

atom (considered as a subsystem) even in the infinite-mode case. We want to adopt

an approach which can best preserve the quantum coherence and entanglement of
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the system and include the full interplay of the subsystems involved (or back-action

from its environment, if any one such subsystem merits special attention), treated

self-consistently.

Simple atom-field models, such as that of a 2LA interacting with one single

electromagnetic field mode described by the Jaynes-Cummings model (JCM), have

solutions in closed form. Such closed form solutions offer a good point of compar-

ison for results involving approximations. Quantum entanglement for the Jaynes-

Cummings model has been studied in depth by Pheonix and Knight [115, 28] and

Gea-Banacloche [77] for initial pure states and Bose et al. [22] for initial mixed

states. We will begin by presenting the exact time evolution of the entanglement for

general, mixed initial atomic states, and we will explore the effect of detuning be-

tween the atomic transition frequency and the cavity mode frequency. This detailed

and exact description of the dynamics of entanglement in the Jaynes-Cummings

model is sufficiently simple that one can gain some intuition for the behavior of the

entanglement there.

Moving on to more complex models, we study the case of a 2LA interacting

with any finite number M of EMF modes. We present an exact solution of the time

evolution of entanglement for an arbitrary, pure initial atomic state, which gives the

effect of these additional modes. Using a perturbative approach we extract simpler

expressions for the leading order corrections to Jaynes-Cummings dynamics from

other, nearby field modes in the case of strong atom-field coupling.

Of particular interest to us is the strong-coupling regime of cavity QED. In the

context of cavity QED, strong coupling is defined as the regime where the dipole
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coupling between the atom and the intracavity field g is large compared to both

the cavity damping rate κ or the rate of spontaneous emission γ by the atom into

modes that escape the cavity. In this regime the coherent evolution of the atomic

and intracavity field state is fast compared to the dissipation rates in the system,

so coherent quantum effects become important [98]. In recent years experiments

have begun to approach this regime in optical-frequency systems [101, 99, 13, 20]

and has been achieved for some time at microwave frequencies [113, 70]. Our model

is rather theoretical. Without including the dissipative processes, the quantitative

predictions that could be made relevant to experiments are limited. However, our

aim here is to get a general picture of the possible phenomena. When treating the

closed system models with a finite number of modes, it is the strong-coupling regime

that is the physical situation relevant to the mathematical model. In the strong-

coupling regime, for sufficiently short times one could in principle ignore dissipation

so that the dynamics will look approximately like that of a closed system.

Finally, we study the interaction of a 2LA with a cavity and its full, infinite

collection of EMF modes in certain limits, going beyond a simple one- or few-

mode treatment. We do not need to invoke the Born-Markov approximation (BMA)

or use a perturbative approach to obtain the general solution. This solution will

be applicable to the model described by the Hamiltonian even for strong atom-

field couplings. Since the RWA presumes weak coupling, the applicability of these

solutions to the physical model will be limited somewhat, although some results will

still prove to be of physical interest.
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2.1 System and Quantities Under Investigation

2.1.1 Hamiltonian and Initial States Considered

Throughout this chapter we consider a two-level atom (2LA) coupled to M

electromagnetic field (EMF) modes. We adopt the dipole and rotating-wave ap-

proximations, neglecting motion of the atomic center of mass, so that we have the

free Hamiltonian appearing in Eq. (1.34) and interaction Hamiltonian Eq. (1.37).

If we choose our modes to be polarized such that one is always perpendicular to

the dipole vector of our atomic transition, then one polarization can be neglected

and that index dropped from our expressions. Thus, the total Hamiltonian for this

system becomes

H = ω0σ+σ− +
M∑
k=1

ωka
†
kak + gkσ+ak + g∗kσ−a

†
k, (2.1)

the sum of the atomic energy, the energy of the field modes, and the dipole interac-

tion term, respectively. Here ω0 is the (bare) frequency of the atomic transition, ωk

is the frequency of the kth field mode, and gk is the electromagnetic dipole coupling

of the kth mode to the atom. It is convenient to divide the total Hamiltonian into

the sum of a free part and an interaction part so that the free Hamiltonian is

H0 = ω0σ+σ− +
M∑
k=1

ω0a
†
kak (2.2)

and

HI =
M∑
k=1

δka
†
kak + gkσ+ak + g∗kσ−a

†
k (2.3)

is the interaction Hamiltonian, with δk ≡ ωk − ω0 being the detuning of each field

mode from the atomic resonance. As will be discussed in far more detail in Ch. 3,
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we may choose to define the complex phase of the field operators such that all values

gk are real. With this division of the free and interaction Hamiltonians, we have

that [H0,HI ] = 0, so they have simultaneous eigenstates. Where the atom and the

electromagnetic field modes in question form a closed system, the dynamics of the

total system is unitary.

For the M = 1 case, this model is just the familiar Jaynes-Cummings model

with no dissipation. We will often write state vectors in the form |ηA〉 |nk1 , nk2 , . . . , nkN 〉,

where ηA denotes the atomic state with ηA = 0 the ground state and ηA = 1 the

excited state, and each nkj represents the number of photons in the EMF mode kj.

In this notation any modes not explicitly assigned a photon number are assumed to

be in the vacuum state. Any state that can be written as a single such vector is an

eigenstate of H0 with

H0 |ηA〉 |nk1 , nk2 , . . . , nkN 〉 = ω0

(
ηA +

N∑
j=1

nkj

)
(2.4)

showing that the energy levels are degenerate.

The state of the total, bipartite system at time t is described by the density

matrix χ(t). We will often be concerned with the reduced density matrix of the

atom ρA, obtained by tracing over the field degrees of freedom. At the time t this

will be

ρA(t) ≡ TrF [χ(t)] . (2.5)

Throughout the chapter we will always assume at t = 0 the initial state is separable

and has all electromagnetic field modes in the vacuum state |0〉. The initial state
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can, therefore, be written as

χ(0) = ρA(0)⊗ |0〉 〈0| , (2.6)

where the atom may be in an arbitrary (possibly mixed) initial state, described by

the initial atomic reduced density matrix ρA(0). As time advances, the atom-field

interaction will generally cause entanglement between the atomic and field degrees

of freedom and, consequently, changes in the purity (and entropy) of the atomic

reduced density matrix. It is also important to note that in the cases where ρA(0)

is pure then so is χ(0), and the unitary evolution of the total system implies χ(t)

is pure for all times.

The internal state of the 2LA at any time t, described by the reduced density

matrix ρA(t), can be represented by a point in the Bloch sphere, as is well known.

We will use the spherical polar parametrization of the sphere, so that ρA can be

specified by the triple (r, θ, φ), and, as usual, pure states lie on the surface of the

sphere with r = 1. We choose (1, 0, φ) to represent the excited state of the atom

|1A〉 and (1, π, φ) to represent the ground state |0A〉.

In this work we seek to quantify the bipartite entanglement between the atom

and the electromagnetic field (considered as a whole). We will not look at en-

tanglement with individual modes of the field separately, nor will we explore en-

tanglement among the modes of the field. A local unitary operation of the form

U = UAtom ⊗ UField does not change the amount of entanglement in the system

[111], and the time evolution due to H0, which relates the Schrödinger picture to

the interaction picture, is such a local unitary operation; therefore, we may work
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entirely in the interaction picture and compute the entanglement of the interaction

picture state directly, as though it were the Schrödinger picture state.

2.1.2 Methods of Solution

For the single-mode case (M = 1) we have the Jaynes-Cummings model, and

one can exactly diagonalize HI in the basis known as the dressed states (see, for

example, [30, 60]). The evolution of χ in this basis is quite simple, and knowing

χ(t) we can then calculate the entanglement using the logarithmic negativity (LN)

in general and the entropy of entanglement (EOE) if χ(0) is a pure state. For

any finite M > 1, one can still diagonalize the Hamiltonian in the same way. Our

initial state has all the EMF modes in their vacuum, so the energy arises from

the atomic state. This confines the initial state to a subspace spanned by energy

eigenstates of H0 with zero-excitations (energy E = 0) or one-excitation (E = ω0).

Since [H0,HI ] = 0, the system will remain in this subspace. We then only need

to diagonalize HI in the subspace of the degenerate one-excitation energy level of

H0. When there are M field modes, this subspace has dimension M +1. While this

diagonalization is straightforward numerically, doing this analytically requires the

solution to a polynomial of degree M+1, so for M > 3 there is, in general, no closed

form solution. Aside from the possible necessity of this numerical root finding, this

method of solution is otherwise exact, requiring no further approximations to find

the evolution under the Hamiltonian of Eq. (2.1).

For a pure initial state χ(0), however, we only need the reduced density matrix
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ρA to find the entanglement. Anastopoulos and Hu [10] found the solution for the

evolution of ρA(t) for a 2LA coupled to the EMF with the Hamiltonian and initial

condition we’ve described in Sec. 2.1.1. Given an initial atomic state (1, θ, φ), at

time t the reduced density matrix of the atom interacting with M modes is given

by

ρA(t) =

 1
2
u∗u(1 + cos(θ)) 1

2
ueiφ sin(θ)

1
2
u∗e−iφ sin(θ) 1− 1

2
u∗u(1 + cos(θ))

 (2.7)

where

u(t) = L−1

(
1

z + iω0 + µ̂(z)

)
=

1

2πi

∫ c+i∞

c−i∞

ezt

z + iω0 + µ̂(z)
dz, (2.8)

L−1 represents the inverse Laplace transform, and

µ̂(z) =
M∑
j=1

g2
j

z + iωj
. (2.9)

In this solution the function u(t) contains all the time evolution of the 2LA reduced

density matrix, including coherently all interaction with the field (and, thus, any

non-Markovian behavior the field induces in the reduced density matrix of the atom).

The function µ̂(z) encapsulates all the effects of the EMF on the dynamics of the

atom. If one considers the propagator for the two-level system with and without

the atom-field interaction, then µ̂(z) can be thought of as the self-energy correction

to the 2LA propagator that occurs due to the interaction with the EMF.

In the case that the total state of the system is pure, the amount of entan-

glement can be determined from the reduced density matrix of the atom ρA(t).

This is clear for the EOE as defined in Eq. (1.44), which depends directly on the

eigenvalues of the reduced density matrix pj One may also show using the Schmidt
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decomposition that the LN [defined in Eq. (1.54)] can be expressed

EN = log2

(∑
j

√
pj

)2
 . (2.10)

When the total state of the system is mixed, however, knowing only the reduced

density matrix is not sufficient (since, for example, the reduced density matrix of a

maximally entangled state is the same as when the total system is in a separable,

completely-mixed state). Thus, if we wish to track the evolution of entanglement for

a total mixed state, we must keep more information than just the reduced density

matrix.

Having u(t), we can compute the time evolution of entanglement. In fact, the

entanglement only depends on |u(t)|. One can understand this by noting that the

complex phase of u only determines the phase between the ground and excited states

in the atomic reduced density matrix, so it does not affect the entropy and, thus,

the entanglement. Equivalently, such a phase shift in the reduced density matrix

can be achieved by a local operation on the composite system, so we know that it

cannot influence the entanglement. We can calculate the eigenvalues of ρA(t),

p =
1

2

(
1±

√
1− 4 cos4

(
θ

4

)(
|u|2 − |u|4

))
, (2.11)

which determine the entanglement. For M field modes

|u(t)| =

∣∣∣∣∣
M∑
j=0

∏M
k=1 (zj + iδk)∏M
l 6=j (zj − zl)

ezjt

∣∣∣∣∣ (2.12)

with the zj values being all the solutions to the equation

z

M∏
k=1

(z + iδk) +
M∑
k=1

(
g2
k

M∏
l 6=k

(z + iδl)

)
= 0. (2.13)
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Using Eq. (2.11) we can compute the eigenvalues of the reduced density matrix and,

thus, the EOE or the LN. From Eq. (2.7) we can see that we must have |u(t)| ≤ 1

(in order for ρA to Hermitian). From Eq. (2.11) for the eigenvalues of the atomic

reduced density matrix we can see that when |u(t)| = 0 or |u(t)| = 1 we have a pure

atomic state, and when |u(t)| = 1√
2

we have a completely mixed atomic state. As

a result, both the EOE and LN share the qualitative features that they are smooth

functions of |u(t)| on the interval [0, 1] which take on minima (of zero) at the ends

of the interval and a maximum value (of one) at when |u(t)| = 1√
2

and have no

inflection points. Inserting the expression for the eigenvalues into Eq. (2.10), the

LN takes the particularly simple form

EN = log2

(
1 + 2 cos2

(
θ

2

)√
|u|2 − |u|4

)
(2.14)

that readily exhibits these qualitative features.

2.1.3 Dependence on Initial Conditions

In examining the evolution of entanglement in this system, one of the primary

questions is how it depends on initial conditions. We have have already said that

the phase of the reduced density matrix does not affect the entanglement; if at any

instant two atomic reduced density matrices differ only in φ on the Bloch sphere,

they must have the same entanglement at that time. However, one may ask whether

states with different initial φ values will evolve under the dynamics into states of

different entanglements. Given the Hamiltonian and the class of initial states we

are considering, we find that the entanglement at any point in time is completely
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independent of the initial value of the parameter φ on the Bloch sphere, because for

these dynamics φ is just carried forward by the evolution as a phase shift in the ρA.

This is clear for pure initial states, because the form of the solution for those states,

Eq. (2.11), shows clearly φ only appears in the phase of the density matrix at all

times. For mixed initial states, note that the unitary operator Uφ(α) ≡ e−iH0α/(ω0)

acting on an initial state of the form Eq. (2.6) will simply shift the angle φ of

the atomic state by an amount α (and add an overall complex phase). Consider

two initial states, χ(0) and χ′(0) ≡ Uφ(α)χ(0)Uφ(α)†, which differ only in their

coordinate φ on the Bloch sphere. Since H0 commutes with HI , we know

χ′(t) = e−iHI tUφ(α)χ(0)Uφ(α)†eiHI t = Uφ(α)e−iHI tχ(0)eiHI tUφ(α)†

= Uφ(α)χ(t)Uφ(α)†. (2.15)

Because Uφ(α) represents a local operation, we also know that the degree of entan-

glement in the states χ(t) and χ′(t) must be the same.

For the case where the initial state of the system is a pure state, we can

additionally conclude that, while the value of the entanglement at a given time

depends on the θ coordinate of the initial state, qualitative features like the times

at which local maxima and minima of entanglement occur will be the same for all

such initial pure states. The easiest way to see this is by looking at Eq. (2.14), since

the value of |u(t)| at which the LN reaches extrema does not depend on θ.
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2.2 Specific Case Study

2.2.1 Single Mode — The Jaynes-Cummings Model

We begin with the case of a single mode of the field (M = 1) interacting with

the atom, which is just the Jaynes-Cummings model. The Hamiltonian now depends

only on the single atom-field coupling g, the field mode frequency ω, and the atomic

transition frequency ω + δ. First, consider a system in which the atom is initially

in a pure, excited state and the field mode is resonant with the atomic transition.

In this case, the system undergoes Rabi oscillations between the separable states

|1A〉 |0〉 and |0A〉 |1〉, passing through a maximally entangled state each way. As a

result, the entanglement has relatively simple oscillatory behavior with a time scale

set by g. For an initial pure state we have

u(t) = e−i(ω+ δ
2

)t

[(
∆α + δ

2∆α

)
e−i

∆α
2
t +

(
∆α− δ

2∆α

)
ei

∆α
2
t

]
(2.16)

where ∆α ≡
√
δ2 + 4g2. For initially mixed atomic states, the full density matrix

for the bipartite system may be computed using the dressed states, as discussed in

Sect. 2.1.2.

The variation in the behavior of entanglement in the δ = 0 case for different

initial conditions is shown in Fig. 2.1.
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As stated above, the entanglement evolution does not depend on the φ of

the initial state, and many of the qualitative features, such as the times at which

maximal and minimal entanglement occur, do not depend on θ. All plots in Fig.

2.1 show the amount of entanglement generated by the dynamics becomes small

as θ increases. This is due to that fact that initial states with larger values of θ

have a larger projection onto the ground state of the atom-field system, |0A〉 |0〉,

for which no excitations and, thus, no entanglement occur. For r 6= 1, the initial

state is a statistical mixture of one state on the surface of the Bloch sphere with

coordinate θ and the antipodal state. For states with small values of θ, the antipodal

states (which then have large θ) generate little entanglement, causing the total

entanglement generated by the dynamics of this initially mixed state to be reduced.

Conversely, for states with large θ, the mixing with antipodal states increases the

amount of entanglement the occurs during time evolution. When r = 0 the mixture

is equally weighted, and the state lies at the center of the Bloch sphere. In this case

all values of θ correspond to the same state, making it irrelevant, which is reflected

in Fig. 2.1 (c).

The other question is how the entanglement generated by the dynamics of the

system depends on the parameters of the Hamiltonian. As is well known for the

Jaynes-Cummings model, the time scale of the evolution is the vacuum effective

Rabi frequency ∆α/2 , which increases with the detuning as stated above. For an

initial pure state, we can understand the time evolution of entanglement by focusing

on the manifold of states composed of the degenerate one-excitation energy level of

H0, states with ηA + n = 1. This two-level system can again be mapped to the
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y

z

Figure 2.2: The Bloch sphere for the one-excitation manifold of H0.
The vector representing the quantum state of the system |ψ〉 precesses
in a circle about the vector for the Hamiltonian HI as time advances.
The vector for the state starts on the pole of the sphere (due to the
initial condition) and travels around a circle centered on the Hamiltonian
vector; thus, the circle of precession is a great circle when δ = 0, and the
circle becomes very small when |δ/g| is large.
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Bloch sphere, as shown in Fig. 2.2. Any time-independent Hamiltonian acting on

this system can be represented by a fixed vector, and the state’s evolution under the

Hamiltonian can simply be described by a precession of the Bloch vector for the state

about the Hamiltonian vector. If we choose the basis to be B = {|1A〉 |0〉 , |0A〉 |1〉}

where the first state lies at the top of the Bloch sphere and the second state lies at

the bottom, then we have

HI =

 −δ/2 g

g δ/2

 = −δ
2
σz + gσx = (g, 0,−δ

2
) · ~σ (2.17)

where ~σ is the (pseudo) vector associated with the Pauli matrices, and (g, 0,− δ
2
)

becomes the vector representing the Hamiltonian. The poles at the top and bottom

of the sphere represent separable states. Notice that all points along the “equator”

of this Bloch sphere are maximally entangled, because they are all equivalent to

1√
2
(|1A〉 |0〉 + |0A〉 |1〉) by a local unitary operation. Entanglement of a state then

decreases monotonically with its distance from the equator.

From this picture we can understand the dependence of the entanglement

dynamics on the parameters of the Hamiltonian. The ratio of the detuning δ to

the atom-field coupling g determines the angle the Hamiltonian vector makes with

the vertical axis. When the detuning is small, the vector for HI points almost

along the x-axis, and the state rotates from |1A〉 |0〉 nearly to |0A〉 |1〉 as it evolves

in time, crossing the equator twice, so it passes through two maximally entangled

states, one separable state, and one nearly separable state during each cycle. As

|δ/g| increases the Hamiltonian vector acquires a larger z-component, so the circle

along which the state precesses no longer passes as close to the bottom of the Bloch
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Figure 2.3: The dependence of entanglement on the parameters of the
Hamiltonian, the detuning δ and atom-field coupling g. The odd num-
bered minima in the entanglement (as a function of time t) increase and
eventually disappear as the detuning increases.

sphere; thus, the state is only separable once per cycle, and the other minimum

in entanglement is significantly non-zero. When |δ/g| = 2 the path of the state

no longer enters the lower hemisphere so that there is now only one maximum

and one minimum in entanglement each cycle, and as |δ/g| increases further the

circle of precession becomes smaller and smaller, so that the maximum amount of

entanglement decreases. Finally, we know from the expression given earlier for the

effective Rabi frequency that the frequency of the oscillations in entanglement will

increase with |δ/g|, doubling when |δ/g| = 2. All these features of the entanglement

dynamics for the different values of |δ/g| can be seen in Fig. 2.3.
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2.2.2 Multiple Modes

With additional modes of the electromagnetic field, the behavior of the system

quickly becomes more complex. We already have outlined the mathematical tools

necessary for solving the M mode case. For pure states we may use Eq. (2.12)

and Eq. (2.13) to find the entanglement dynamics, while for the mixed state we

can exactly diagonalize the Hamiltonian as described in Sect. 2.1.2. Getting a

conceptual understanding of the dynamics, however, becomes much more difficult.

In the last section we laid out a clear conceptual picture of the evolution of

entanglement for an initially pure, excited atomic state in the single-mode case by

looking at the evolution of the state’s representation on the Bloch sphere. Based on

the discussion in Sect. 2.1.2, we know that the state will remain in the one-excitation

subspace of H0. With M field modes considered, this space has dimension M + 1,

and the set of physically distinct states (i.e., normalized state vectors with the same

overall complex phase) is the complex projective M-space CPM . When M = 1 this

is just the Bloch sphere, but for M > 1 this is a higher dimensional (in some cases

non-orientable) surface. Also, in the single-mode case both time evolution and en-

tanglement could be visualized simply, as precession of the state vector about some

axis and as the distance from the “equator” of the sphere, respectively. In the higher

dimensional case it is not at all clear how to simply visualize these things simul-

taneously, and such visualization seems no longer to be such a simple conceptual

aid, though with enough work one can get a geometrical picture of dynamics and

entanglement in CPM as discussed in [15].
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We can gain some very rough conceptual insight into what should happen,

however. If we view the problem in terms of the dressed states that diagonalize the

Hamiltonian, then the initial, separable state is a superposition of these entangled

dressed states. As time evolves the different energies of these dressed states cause

them to evolve at different rates, changing the quantum interference between them.

In the single-mode case, this interference between the two dressed states shows up

as changes in entanglement on a time scale set by the difference in their energies.

As more modes are added, then, there will be additional interference on other time

scales based on the difference in energies between any two of the dressed states;

the energy shifts between the atom and the various field modes at different rates

depending on their detuning from resonance. By analogy with the single-mode case,

we can surmise that the addition of far-detuned modes will give rise to additional

dressed states with little entanglement. We therefore would expect modes near

resonance to dominate the dynamics of the entanglement while modes further from

resonance cause smaller, higher frequency fluctuations.

Let us begin the consideration of multiple-mode models with the bipartite

entanglement between the atom and the EMF when the field has only two modes.

First consider the “symmetric” case, where g1 = g2 ≡ g and δ1 = −δ2 ≡ δ. If the

initial state is pure, then we have

u(t) =
δ2 + 2g2 cos

(
t
√

2g2 + δ2
)

δ2 + 2g2
(2.18)

and we can easily compute the entanglement as a function of time. The dependence

on δ shown in Fig. 2.4 is somewhat more complex than in the single mode case,
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Figure 2.4: The dependence of the EOE on both time t and the detuning
δ from the atomic resonance frequency for the case where there are two
EMF modes.

which we can understand from the fact that in this case the initial state is now a

superposition of three dressed states of different energies, rather than just two as in

the single-mode case. The symmetric detuning and equal g values we have selected,

however, limit the complexity considerably. As these states evolve in time, the inter-

ference between the three dressed states leads to the oscillations in entanglement.

Increasing detuning causes the energy of the dressed states to be more disparate

and, thus, the interference to evolve more rapidly in time. We are more interested,

however, in cases where one of the field modes is very close to resonance, so a more

practical case to investigate is that of three field modes.

In considering a finite number of field modes, we are primarily thinking of

modeling the behavior of a resonator with a sufficiently high quality factor that
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the intracavity field effectively behaves like a set of discrete modes rather than a

continuum. Any physical resonator will have dissipation, however we will work for

the moment with a model where the dissipation is neglected. This should at least

correspond approximately to the behavior in a resonator with very low dissipation

at early times.

For our cavity modes we will just consider the harmonics in one dimension (the

longitudinal direction along the cavity axis). Considering the frequencies of these

cavity modes, if the mode closest to resonance is detuned by an amount δ then all

other modes will be detuned by an amount δ + k∆ where ∆ is the free spectral

range of the cavity in angular frequency, which is ∆ = π
L

for a cavity of length L

in our simple model. All the gj values are proportional to each other, so if we call

the value for the mode closest to resonance g, this sets the value for all the other

coupling constants. Thus, we are left with only four constants whose values need be

specified.

We will consider the regime where δ � ∆ (as is often the case in cavity QED

experiments); thus, one mode is almost in resonance, and the next nearest two

modes have almost the same detuning. From the single-mode model, we can expect

the influence of modes on the dynamics of the atom to decrease with detuning; as a

result, it will make most sense to consider odd total numbers of modes M (so that

they are in pairs with comparable detuning). With this further specificity, we may

rewrite the formula for |u(t)|. Let M = 2Q + 1, then using calculus of residues we
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find

|u(t)| =

∣∣∣∣∣
M∑
j=0

∏Q
n=1

(
w2
j + n2∆2

)∏M
l 6=j (wj − wl)

ewjt

∣∣∣∣∣ (2.19)

where wj are solutions to the equation

(
w2 − iδw + g2

) Q∏
n=1

(
w2 + n2∆2

)
+

2wg2

Q∑
n=1

(
1− n2∆2

(ω0 + δ)2

)−1(
w +

in2∆2

(ω0 + δ)

)
·
Q∏
j 6=n

(
w2 + j2∆2

)
= 0, whicharethelocationofthepolesoftheintegrandofEq. (2.8)inthecomplexplane.

(2.20)

We consider first the M = 3 case. When ∆ is small, the time evolution behav-

ior, shown in Fig. 2.5(a), becomes considerably more complex with the contributions

of more frequency components to u(t). The effect of the addition of two more modes

in the M = 5 case is shown in Fig. 2.5(b). The clear intuitive interpretation that

was present in the single mode case is not obvious in these cases.

In cavity QED experiments, for example, one is generally working in the regime

where ω0 � ∆ � g and δ is O(g). In this case, other cavity modes are far enough

away in frequency to have little effect on the atom, and the evolution for the multi-

mode models becomes nearly identical to that of the single mode case. We can

calculate the solutions in this regime by writing Eq. (2.20) in terms of the dimen-

sionless parameters g/∆, ∆/ω0, and δ/ω0 and solving it perturbatively in these

small parameters. In experiments, these parameters might typically have values on

the order of 10−4, 10−3, and 10−7 respectively. This perturbative analysis leads to
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Figure 2.5: The evolution with time t of the EOE between an atom in
an initially pure, excited state and (a) three modes or (b) five modes
of the EMF. To highlight the effect of additional modes, we choose the
values for the detuning δ, atom-field coupling g, and free spectral range
∆ so that ∆/g = 5, g/δ = 10, and ω0/g = 107, though these are unlikely
to be characteristic of experimental values.
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the solutions

w = − i
2

(
δ ±

√
δ2 + 4g2

)
(2.21)

w = ±i
(
k∆ +

g2

k∆

)
k ∈

{
1, 2, ...,

M − 1

2

}
(2.22)

keeping up to terms linear in δ/ω0 and terms quadratic in g/∆ and ∆/ω0 (including

terms of order g/ω0). This is the lowest order at which the poles in Eq. (2.22) yield

non-vanishing contributions to |u(t)| 1. In the sum from Eq. (2.19), the poles of the

form shown in Eq. (2.21) give terms of order unity, while poles of the form shown

in Eq. (2.22) yield terms of order g2/∆2, so in this regime the effects of additional

modes are very small, but we have found an analytic expression for the behavior of

the system for an arbitrary, finite number of modes.

2.2.3 Full Intracavity Field

Having treated the idealized cases in which there are only a finite number if

EMF modes, we turn to considering the full intracavity field, including the contin-

uum of modes present. We will use a simple cavity model consisting of two infinitely

large, perfectly conducting parallel plates separated by a distance L. We will restrict

our attention to initially pure states, so that (as discussed in Sect. 2.1.2) we can

determine the behavior of the entanglement simply by calculating u(t).

We calculate u(t) via the contour integral in Eq. (2.8). This integral can be

1If one keeps only to zeroth order in δ/ω0 and linear order in g/∆ and ∆/ω0, then the resulting

expression for |u(t)| is identical to the single-mode case, as one may expect when all other modes

are very far off resonance.
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evaluated using the calculus of residues. If the integrand has isolated poles zj then

u(t) =
∑
j

Res (zj) e
zjt, (2.23)

where Res (zj) is the residue to arising from that pole. If zj is a first-order pole, then

Res (zj) =
(

1 + dµ̂(z)
dz

∣∣
zj

)−1

. The time dependence is all carried in the exponential

terms of Eq. (2.23). Having already established that at all times |u(t)| ≤ 1, we

know that all the poles must have a non-positive real part, so we can say that at

sufficiently late times only the terms from the poles with the largest real parts will

be important, because all other will be exponentially suppressed.

It remains to find the correct expression for µ̂(z) for the full intracavity field.

We can begin by considering a box having a square transverse cross-section of area

A and a longitudinal length L with boundary conditions such that the field van-

ishes on the plates at the longitudinal boundaries and is periodic on the transverse

boundaries. In this case we can write g~k = λ√
ω~kLA

, where the dimensionless quantity

λ is the strength of the coupling to the overall field. As found in [10],

µ(s) =
∑
~k

g2
~k
e−iω~ks → λ2

2π2L

∞∑
n=−∞

∫ ∞
|πnL |

e−ik
′sdk′ (2.24)

in the continuum limit where A → ∞. Since this integral clearly diverges, we add

an exponential cutoff by taking s→ s− iε to regularize it. With this cutoff

µε(s) =
λ2

2π2L

∞∑
n=−∞

∫ ∞
|πnL |

e−ik
′s−k′εdk′ =

λ2

πL

1

ε+ is

1 + e−iπ(s−iε)/L

1− e−iπ(s−iε)/L . (2.25)

Taking the Laplace transform yields approximately [10]

µ̂ε(z) =
−iλ2

π2ε
+
λ2

π2
z ln (ieγeεz)

− iλ2

πL

[
ln

(
Γ

(
Lz

iπ

))
− Lz

iπ
ln

(
Lz

iπ

)
+
Lz

iπ
+

1

2
ln

(
Lz

2iπ2

)]
+O(ε) (2.26)
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where ln (Γ(z)) is defined such that it has a branch cut on each ray {−n + iy |n ∈

N& y ∈ R ≥ 0}, and γe is the Euler-Mascheroni constant. Clearly this expression

depends on the cutoff ε, which we assume to be small. One cannot in the end take

the limit of ε→ 0 for this model, even with renormalization of the model parameters.

ε should be regarded as a phenomenological parameter that reflects the fact that

at high frequencies the approximations that underlie our model (the rotating wave

approximation, the two level approximation, etc.) must give way to other physics.

Inserting this result for µ̂(z) into Eq. (2.8), we can now in principle obtain u(t).

Unfortunately, the contour integral in Eq. (2.8) will be quite complicated

in general, especially given the infinite set of branch cuts in the integrand. This

does, however, reduce the problem to simply evaluating this integral, numerically if

necessary. If λ is sufficiently small then we may follow [10] and use a perturbative

treatment to find the pole with the greatest real part to at least get some sense

of the late-time behavior. (A true solution for this behavior, however, would need

to take into account the contribution of the branch cuts.) Doing a perturbative

expansion in λ yields

zp = −iω̂0 − µ̂ε(−iω̂0) +O
(
λ4
)
≡ −iΩ− γ (2.27)

where ω̂0 ≡ ω0 − λ2

π2ε
for notational convenience. Let us further define

Ω∞ ≡ ω̂0 −
λ2ω̂0

π2
ln (eγeεω̂0) . (2.28)

Ω∞ would be the value of Ω in the case of the free field and, therefore, the physically

observable dressed value of the two-level transition frequency in free space. If we
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rewrite our expression for zp in terms of this dressed atomic frequency, we may write

ω̂0 = Ω∞ +
λ2Ω∞
π2

ln (eγeεΩ∞) +O
(
λ4
)
, (2.29)

so then the pole from Eq. (2.27) becomes

zp = −iΩ∞ −
iλ2

πL

{
ln

[
Γ

(
−LΩ∞

π

)]
+
LΩ∞
π

ln

(
−LΩ∞

π

)
− LΩ∞

π

+
1

2
ln

(
−LΩ∞

2π2

)}
+O (ε) +O

(
λ4
)
. (2.30)

This perturbative solution for the pole will be valid as long as λ is sufficiently small

that the higher order terms can be ignored and no branch cut lies between −iΩ∞

and the pole calculated in Eq. (2.30). Clearly, the expression will not be valid when

LΩ∞/π is a non-negative integer, which is the condition for resonance.

When Ω∞ is close to resonance or λ is large, then the perturbative solution is

no longer valid and multiple poles of the integrand may become important. In this

case we can attempt to find the significant poles, those with the greatest real parts,

by numerically finding the zeros of the denominator of the integrand in Eq. (2.8).

Having performed such numerical solutions for cases close to resonance with larger

values of λ, we were able to find, as expected, the emergence of two closely spaced,

significant poles, which give rise to oscillatory behavior similar to what we saw in

the treatment of the cases above where only a finite number of longitudinal cavity

modes were considered. Now, however, the oscillating terms are also decaying in

time, due to the coupling to the continuum of transverse modes that escape from

the cavity.

In examining the solution for the full intracavity field, we found, through nu-
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merical solutions, the qualitative connection with models using only a finite number

of modes and the new decay features arising from the continuum of modes present

in the full intracavity case. With Eqs. (2.8), (2.14), and (2.25) we have the ingredi-

ents for further work on numerical solutions for the entanglement evolution in any

parameter regimes that might be of specific interest.

2.3 Summary and Discussion

In this chapter we have considered the interaction between a single two-level

atom and different numbers of electromagnetic field modes with the aim of gaining

a detailed description and deeper understanding of the nature and dynamics of

quantum entanglement between the atom and the field. Results discussed go beyond

the usual single-mode Jaynes-Cummings model. They are an exact solution of the

dynamics under the usual atom-field interaction Hamiltonian (derived from making

the rotating wave, dipole, and two-level approximations), and we have given the

complete solution of quantum entanglement in time for a system where the field is

initially in the vacuum state.

On the effect of initial conditions of the atom in the general case, we find

that quantum entanglement is not affected by the φ angle of the initial atomic state

on the Bloch sphere. For initially pure atomic states, we also find that qualitative

features of the time evolution of entanglement remain the same for different values

of θ.

For the case where the cavity has only one dominant field mode, these cal-
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culations reproduce the familiar results for the Jaynes-Cummings model obtained

before [77, 78, 115]. This result shows the expected oscillations of entanglement

between the atom and the field, including periodic complete disentanglement in the

resonant case. We have calculated the entanglement when the initial state (and,

thus, the state at all times) of the atom-field system is mixed, and we have shown

the effects of detuning from resonance on the dynamics, giving a simple conceptual

picture that accounts for all qualitative features.

When discussing the strong- and weak-coupling regimes of cavity QED, the

meaning is somewhat different than the distinction of strong versus weak coupling

made above. In the cavity QED context there is the rate g of coupling between the

atoms and the intracavity field and the dissipation rates that arise from coupling

to environments outside the cavity. These dissipation rates include a rate γ of

emission from the atom into field modes that escape the cavity and a rate κ for cavity

losses, from transmission through the mirrors for example. Thus, the strong-coupling

regime of cavity QED refers to when the intracavity coupling rate dominates over

the dissipation rates.

The calculations here with a finite number of field modes are neglecting cou-

pling to any other environmental reservoirs, so if one wishes to relate this to an

actual cavity QED system where losses due to spontaneous emission and cavity

damping are present, our closed-system treatment will be useful exclusively in the

case of strong coupling g � κ, γ at sufficiently early times where κt� 1 and γt� 1,

wherein dissipation is insignificant and can be ignored.

We have also treated the case of a 2LA interacting with the infinite number
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of modes present in an intracavity field. We have obtained a formal solution that

could be evaluated numerically or by further approximation. In this model we have

assumed that the mirrors are perfectly reflecting. There are two possible approaches

to applying these results to a physical cavity with damping. If the damping time

scale is sufficiently longer than the other important dynamical time scales then the

damping can be ignored for times κt � 1, and one can apply our results directly.

Alternately, one could modify the treatment we have given by constructing the

field from “modes of the universe”, cavity field modes that extend through the

cavity mirrors to the exterior, as would exist with partially transmitting mirrors.

However, the entanglement calculated would still be with the entire field, not merely

the intracavity portion.

In this chapter we have looked at the usual Hamiltonian under the RWA and

derived the exact solutions for entanglement dynamics that are predicted by this

model. Except where noted in Sec. 2.2.3, we have made no explicit assumption that

the coupling between the atom and the field modes in the model is small. So the

material in this chapter addresses the strong-coupling regime of the model described

by the Hamiltonian derived in the the RWA. In Ch. 4 we will examine the RWA in

more detail and the errors it introduces, and in Ch. 6 we will return to consider the

applicability of these results to physical atom-field systems. More generally, while

the behavior of the solutions to the RWA Hamiltonian for strong coupling may be

of interest in the abstract or in relation to systems where this form of Hamiltonian

may arise without approximation, we do not expect them to predict the physical

behavior of atom-field interactions that, in fact, contain “counter-rotating” terms.
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In Ch. 3 we will continue looking at the RWA Hamiltonian, this time in the

context of examining the entanglement dynamics in two atoms interacting with

a common field. In that case we will consider an environment consisting of two

resonant field modes, and the RWA will be quite reasonable. Then in Ch. 5 we

will return to a calculation with a continuum of modes without the RWA and take

careful account of the precision of our results.
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Chapter 3

Two Atoms with Two Field Modes

One of the simplest scenarios for theoretically studying the dynamics of en-

tanglement between atoms is that of two atoms which are isolated from one another

and interact with different electromagnetic fields. This is the context in which en-

tanglement sudden death (SD) [138, 141, 8, 136, 137] was discovered. An alternative

simple model for atom-field interaction in which to study entanglement dynamics

is a Dicke model [44],where one assumes all atoms are grouped in a sample whose

size is small compared to the resonant wavelength (resulting in identical coupling

to every atom). However, such a simplistic model may miss the variety of behavior

that can result when the atoms are not confined to such a small sample.

Entanglement dynamics have been shown to have a significant distance depen-

dence when two atoms are interacting with a common field [126]. For atoms weakly

interacting with a continuum of field modes in the Born-Markov approximation, it

has been shown [51, 124, 124, 49] that changing the atomic separation of two atoms

can affect whether there is SD and whether there is revival of entanglement, as

well as modify the dynamical generation of entanglement; in short, the qualitative

features are sensitive to the atomic spacing. At short inter-atomic distance non-

Markovian effects associated with induced interactions between the atoms due to

the quantum field may become more pronounced, and in this case the qualitative
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behavior varies greatly with different classes of initial states [11]. So it is clear that

distance dependence gives rise to a significant variety of behaviors, and some seem-

ingly innocuous approximations can qualitatively alter the entanglement dynamics

in unintuitive ways [12, 80].

In view of this, we seek to study entanglement dynamics in a model that is

sufficiently complex to manifest some of this variety of behavior yet simple enough

that the dynamics may be understood in considerable detail and obtained with

fewer approximations. The simplest model one may pursue along this line would be

two two-level atoms (2LA) coupled to a single mode with couplings that reflect the

distance dependence; however, as we demonstrate in Sec. 3.1, one needs to include

at least two field modes before any non-trivial distance dependence can arise in the

problem. So we will study such a model with two field modes here.

Out of the class of Hamiltonians that can arise from distance dependence, we

will focus on two special cases with the aim of illustrating the variety of different

behaviors that can arise. Specifically, we will show how SD, dynamical entanglement

generation, and other phenomena differ between these two cases. We will also

compare with the behavior of the analogous versions of the two well-studied types

of models mentioned above: For two isolated atom-field systems, we will compare

with the case where each system is a single 2LA interacting with a single field mode

[136, 137, 33]. In the instance of two atoms interacting with the same field, we

will compare with the properties of two 2LAs interacting with a single common

field mode [85, 128]. We will show that the entanglement dynamics in these models

differs significantly from the model of two atoms interacting with a two-mode field,
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which is our focus.

We will describe the cases where entanglement meets sudden death (SD) and

identify the conditions under which entanglement can survive. Situations in which

entanglement never dies (i.e., the system is never separable) we term always alive

(AL). In addition to known scenarios of entanglement death, birth and revival we

also encounter situations where entanglement dies only for an instant (DI). The

qualitative features for all the cases we have studied are summarized in Table 3.1.

3.1 The Model

3.1.1 Interaction Hamiltonian and Couplings

We will consider a pair of identical two-level atoms (2LA) coupled via the

multipolar interaction Hamiltonian to a collection of electromagnetic (EM) field

modes in the dipole and rotating-wave approximation as described in Sec. 1.3. In

general, the mode functions ~fq,s (~rj) that appear in the coupling constants of the

interaction Hamiltonian can be quite complicated, and even for a single atom there

can be position dependence in the dynamics arising from the boundary conditions

that the mode functions obey. In order to distinguish these effects from the effect

of atomic separation, we will consider mode functions of the form

fq (u, v) e±ikqw~eq,s (3.1)

in terms of some set of coordinates (u, v, w), with s = 1, 2 indexing the polarization.

This form describes traveling-wave mode functions that are solutions to an EM
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boundary value problem which is invariant under translations in the coordinate w.

This form appears in a number of interesting physical systems, including spherical

resonators [96] and toroidal resonators [13]. We will consider situations in which all

atoms share the same coordinates u = u0 and v = v0, differing only in the coordinate

wj, so that the variation in behavior due to the atomic separation will manifest

without additional position dependence arising from the boundary conditions. Let

us further assume that the atoms are arranged such that the atomic transition

dipole vectors are aligned with one of the mode polarizations, so ~ed,j · ~eq,s = δs,1.

In this situation only one polarization is relevant, and all polarization labels will be

suppressed. With these further assumptions we may express the coupling constants

as

gj,q = djfq (u0, v0) e±ikqw
√

ωq
2ε0V

; (3.2)

however, it turns out that without loss of generality one may study a much smaller

set of Hamiltonians.

Given a particular set of complex phases for the coupling constants gj,q, one

may make a trivial basis transformation

U b =
∏
l

e−iξlσzl/2
∏
s

eiζsa
†
sas , (3.3)

which simply amounts to redefining the reference for the phases of the atoms by

σ+j → σ+je
−iξj and for the fields by aq → aqe

−iζq . After this transformation, the

interaction Hamiltonian becomes

H ′I = U bHIU
†
b = HI =

∑
j

∑
q

g′j,qσ+jaq +
(
g′j,q
)∗
σ−ja

†
q (3.4)
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with g′j,q = gj,qe
−iξje−iζq , and we may obtain the solution to the original problem by

using the transformed Hamiltonian:

|ψ (t)〉 = e−iHI t |ψ (0)〉 = U †be
−iH′I tU b |ψ (0)〉 ≡ U †be

−iH′I t |ψ′ (0)〉 . (3.5)

If we consider two identical atoms, with frequencies Ω0 and dipole strengths

|dj| = d coupled to a single EM field mode, then the previous paragraph implies

that it suffices to consider only a Hamiltonian where both couplings are real, and

the atomic separation does not enter; thus, there can be no non-trivial distance

dependence. However, if we consider the two identical atoms coupled to two field

modes, then without loss of generality we can write the total Hamiltonian of the

system as

H = Ω0

(
σ†1σ1 + σ†2σ2

)
+ ω1a

†
1a1 + ω2a

†
2a2 + g1

(
σ+1a1 + σ−1a

†
1

)
+ g2

(
σ+1a2 + σ−1a

†
2

)
+ g1

(
σ+2a1 + σ−2a

†
1

)
+ g2e

iφ
(
σ+2a2 + σ−2a

†
2

)
, (3.6)

where all distance dependence arises from φ = (k2 − k1) (w2 − w1). For simplicity,

we will further assume that ω1 = ω2 = Ω0, which by implies g1 = g2 ≡ g. Our aim

is to get a sense of the variety of different entanglement dynamics that can result

from different separations and initial conditions. To that end, we will consider two

special cases, which are arguably extreme cases of the general model, φ = 0 and

φ = π.

3.1.2 Mapping Equivalent Models and Time Evolution

Since we have assumed the two field modes have the same frequency, rather

than using the original modes F1 and F2 one could equally well choose a differ-
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ent mode decomposition of the field where the two modes are replaced by linear

combinations TF1 and TF2 with annihilation operators

A1 =
1√
2

(a1 + a2) (3.7)

A2 =
1√
2

(a1 − a2) . (3.8)

In the case of two modes with symmetrical coupling (TMSC), where φ = 0, the

interaction Hamiltonian can then be written

HI =
√

2g
[
σ+1A1 + σ−1A

†
1 + σ+2A1 + σ−2A

†
1

]
(3.9)

in terms of these transformed modes, so that the atoms only couple to A1 and not

A2. This shows that the Hamiltonian is equivalent to the model of a single mode

symmetrically coupled (SMSC) to two atoms. If we consider the evolution of the

reduced density matrix of the atom ρA (t) in the TMSC model it should be the

same as in the SMSC model with a properly transformed initial state. Namely, if

the total system (atoms and modes) is in an initial state described by the density

matrix χTMSC (0), then the appropriate initial density matrix for the SMSC model

is obtained by making the mode transformation of Eqs. (3.7) and (3.8) and tracing

out the second transformed mode TF2. For example, if the initial state in the TMSC

model is separable with the field in a product of Glauber coherent states |α, β〉, then

χTMSC (0) = |φ〉 〈φ|⊗|α, β〉 〈α, β| → TrTF2

[
|φ〉 〈φ| ⊗

∣∣∣∣α + β√
2
,
α− β√

2

〉〈
α + β√

2
,
α− β√

2

∣∣∣∣]
= |φ〉 〈φ| ⊗

∣∣∣∣α + β√
2

〉〈
α + β√

2

∣∣∣∣ = χSMSC (0) (3.10)

is the appropriate mapping to the equivalent SMSC problem. It is important to note

that, because this mapping of initial states involves a partial trace, it is a many-
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to-one mapping from the TMSC problem to the SMSC problem (and this mapping

does not preserve purity). In order to solve the dynamics in the SMSC model, and

by extension the TMSC model, we simply compute the time evolution operator

expressed in the atomic basis {|ee〉 , |eg〉 , |ge〉 , |gg〉} directly by exponentiation (as

in, e.g. [85]):

HI =
√

2g



0 A1 A1 0

A†1 0 0 A1

A†1 0 0 A1

0 A†1 A†1 0



⇒ U = e−iHI t =



C1 −iS1 −iS1 C2

−iS2 C3 C4 −iS3

−iS2 C4 C3 −iS3

C5 −iS4 −iS4 C6


(3.11)

where

C1 = 1−A1
1

AA
†
1 +A1

cos
(√

4Agt
)

A A†1 S1 = A1

sin
(√

4Agt
)

√
2A

C2 = −A1
1

AA1 +A1

cos
(√

4Agt
)

A A1 S2 =
sin
(√

4Agt
)

√
2A

A†1

C3 =
1

2

(
cos
(√

4Agt
)

+ 1
)

S3 =
sin
(√

4Agt
)

√
2A

A1

C4 =
1

2

(
cos
(√

4Agt
)
− 1
)

S4 = A†1

sin
(√

4Agt
)

√
2A

C5 = −A†1
1

AA
†
1 +A†1

cos
(√

4Agt
)

A A†1 A ≡ A1A
†
1 +A†1A1 .

C6 = 1−A†1
1

AA1 +A†1

cos
(√

4Agt
)

A A1 (3.12)
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When φ = π we have a two-mode model with asymmetrical coupling (TMAC),

and we may again use the mode transformation of Eqs. (3.7) and (3.8) and write

the Hamiltonian as

HI =
√

2g
[
σ+1A1 + σ−1A

†
1 + σ+2A2 + σ−2A

†
2

]
. (3.13)

In this case, rather than both atoms coupling to one mode we see that atom one

couples only to transformed mode TF1 while atom two couples only to TF2, implying

that this Hamiltonian is equivalent to a model comprised of two subsystems that

are totally isolated from one another, each composed of a single atom coupled to a

single mode. We will call this the double Jaynes-Cummings (DJC) model. This sort

of model with isolated subsystems is common to the study of entanglement sudden

death [138, 141], and the DJC model specifically has been studied [33, 136, 137].

As in the previous case, the evolution of ρA (t) for the TMAC model should be the

same as given by the DJC model with the proper mapping of initial states. In this

case the mapping of initial states is limited to transforming the modes according to

Eqs. (3.7) and (3.8), so

|φ〉 ⊗ |α, β〉 → |φ〉 ⊗
∣∣∣∣α + β√

2
,
α− β√

2

〉
. (3.14)

This mapping implies that there can, for example, be no dynamical generation of

atomic entanglement in the TMAC model unless the DJC initial field state ob-

tained by the mapping is entangled. In the DJC model we can write the unitary

time-evolution operators for the two separate non-interacting atom-field subsystems

as U 1 and U 2, and then the total time evolution operator is U = U 1 ⊗ U 2. We
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again compute the two subsystem unitary time evolution operators by direct expo-

nentiation to obtain

U 1 = e−iH1t =



C11 0 −iS11 0

0 C11 0 −iS11

−iS12 0 C12 0

0 −iS12 0 C12


(3.15)

U 2 = e−iH2t =



C21 −iS21 0 0

−iS22 C21 0 0

0 0 C22 −iS21

0 0 −iS22 C22


(3.16)

with

Ci1 = cos(

√
2AiA

†
igt) Ci2 = cos(

√
2A†iAigt) (3.17)

Si1 =
sin(
√

2AiA
†
igt)√

AiA
†
i

Ai Si2 = A†i
sin(
√

2A†iAigt)√
A†iAi

.

3.2 Entanglement Dynamics

In order to illustrate the variety of behavior that can arise among the four

models we discussed in Sec. 3.1.2, we will examine the entanglement dynamics of

a selection of initial states in which the atoms are separable from the fields and

which are comprised of familiar atomic and field states. In each case we will select

the atomic state from the set of pure states {|gg〉 , |ee〉 , |eg〉 , |Φ〉 , |Ψ〉}, where |Φ〉 ≡

(|ee〉+ |gg〉) /
√

2, |Ψ〉 ≡ (|eg〉+ |ge〉) /
√

2, and e and g label the excited and ground
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states of the atom respectively. The initial field state will be either the vacuum |00〉,

a product of Fock states |nN ,mN〉, a product of Glauber coherent states |αc, βc〉, a

product of squeezed vacuum states |ξsq,−ξsq〉 , a two-mode squeezed vacuum state

(TMSS) |ξ, 0, 0〉 , a thermal state ρth (with both modes having equal temperature),

the pure state |ηnm〉, or the mixed state ρnm. The two-mode squeezed state is

defined as the state resulting from the action of the two-mode squeezing operator

S(ξ) = e(ξ
∗a1a2−ξa†1a

†
2) on vacuum. The state |ηnm〉 is the result of mapping the state

|nN ,mN〉 in the original modes of the TMAC problem to the transformed modes

equivalent to the DJC problem, with

|ηnm〉 =
n∑
k=0

m∑
l=0

nCk
mCl√

2m+nm!n!

√
(m+ n− k − l)!(k + l)!(−1)l |m+ n− k − l〉 |k + l〉 ,

(3.18)

and ρnm ≡ TrTF2 [|ηnm〉 〈ηnm|] is the state in the SMSC model that gives equivalent

evolution to the state |nN ,mN〉 in the TMSC model. nCk represents the binomial

coefficients.

The correspondence drawn between the TMSC-SMSC leads to the essential

feature that the map for the initial field states from TMSC to SMSC is many to

one; the set of initial states that have the same reduced density matrix for the

first transformed mode TF1 have identical entanglement dynamics in terms of A1-

A2 entanglement. As a counterintuitive example of this feature we will see that a

squeezed state of the form |ξsq,−ξsq, 0〉 and a thermal field in the TMSC model give

the same entanglement dynamics provided the average number of photons in the

thermal field corresponds to that in the squeezed state (n̄th = sinh2 |ξsq|).
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We summarize our findings for the entanglement behavior given the various

initial states considered in the four models in Table 3.1, listing the equivalent TMSC-

SMSC cases and TMAC-DJC cases. When discussing entanglement sudden death,

we adopt the usage of the term as in [136] in applying it only to instances where

the entanglement goes to zero for some time interval of non-zero length. In the case

where entanglement goes to zero only for an instant during the time evolution we

refer to it as death for an instant (DI). If there is a non-zero entanglement at all

times once it is generated in the system then we label it as being “always living”

(AL).
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3.2.1 Entanglement Generation and Transfer

The generation of entanglement from an initially separable state by the dy-

namics of the system is one interesting, and potentially useful, phenomenon to

examine. In the DJC model each atom interacts only with a separate field mode, so

the dynamics cannot increase entanglement between the two atom-field subsystems;

therefore, if the atomic state is not entangled initially then it will remain separable,

unless there is an initial entanglement between the field modes that can be trans-

fered to the atoms by the dynamics. Knowing this, we can see that any initial field

state for the TMAC model that maps to a separable DJC field state will also fail

to generate entanglement. The nature of the mapping means that even some en-

tangled field states will fail to generate atomic entanglement in the TMAC model,

while some separable states will map to an entangled DJC state and will generate

entanglement.

This structure means that, as shown in Table 3.1, many familiar initial field

states fail to dynamically generate entanglement in the TMAC model. In contrast,

entanglement generation is a common feature in the TMSC model for the same

selection of field states. For example, starting with a two-mode squeezed state in

the field modes does not generate any entanglement in TMAC, because the corre-

sponding field state in DJC possesses no correlations amongst TF1 and TF2. On the

other hand, a two-mode squeezed state in the symmetrically coupled case generates

entanglement in the initially separable atomic states as can be seen in Fig. 3.1. In

fact, for initial atomic states |ee〉 and |gg〉, if the field is sufficiently squeezed then
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entanglement once generated sustains forever.

When considering the TMAC model with an initial field state that is a product

of squeezed states |ξsq,−ξsq〉 we find that entanglement is dynamically generated as

shown in Fig. 3.2. One can understand this from the fact that the state |ξsq,−ξsq〉

maps to the DJC model with an initial TMSS, so the generation of atomic entan-

glement occurs simply because the dynamics transfers the entanglement between

the field modes to the atoms. Further, we find that there is an optimal squeezing

value that generates maximal entanglement. The maxima in generated entangle-

ment occur for values of the squeezing parameter such that the field state is close

to being a maximally entangled qubit state (α0(ξ) |00〉+α1(ξ) |11〉), with α1(ξ) and

α0(ξ) being comparable. On increasing the squeezing parameter further there are

contributions from higher Fock states which decrease the transfer of entanglement.

We also notice some secondary peaks on increasing the squeezing parameter ξsq.

By comparing the effects of a TMSS and thermal field state in the DJC model,

one can also get some insight into the role of correlations between the field modes.

The reduced density matrices for individual modes correspond to a thermal state for

both the cases; the difference being that in a TMSS the two field modes are strongly

correlated with each other while in the thermal fields there are no correlations. One

would generally expect that the correlated TMSS generates more entanglement in

the atomic subsystem, which is trivially true for the case of an initially separable

atomic state. This intuition generally extends to the situation of initially entangled

atomic states, where we see that apart from the regular SD pattern in the absence

of the field-field correlations there are spontaneously generated peaks as a result
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Figure 3.1: Entanglement dynamics for a single mode squeezed state
(|ξs〉) in the SMSC model or two-mode squeezed state (|ξ, 0, 0〉) in the
TMSC model interacting with different initial atomic states
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Figure 3.2: Entanglement dynamics for a two-mode squeezed state
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in TMAC interacting with different initial atomic states

79



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

gt

C
o
n
c
u
rr

e
n
c
e

TMSS in DJC, ξ=0.5

Thermal states in DJC, n
th

=sinh
2
(ξ)

Figure 3.3: Comparing entanglement dynamics for a two-mode squeezed
state vs a thermal state in the DJC model for an initial atomic state |Φ〉

of two-mode squeezing(Fig. 3.3); however, we note as an exception that at certain

instants of time the entanglement in the presence of an initial thermal field exceeds

that of the TMSS. Transfer of field-field (TF1-TF2) correlations can be explicitly

seen in a small squeezing approximation when a two mode squeezed state interacts

with an initially separable atomic state |ee〉 (Fig. 3.4). Since the probability of

higher photon numbers is small, by restricting to the 4-dimensional subspace of

lowest energy states in the Fock basis for TF1-TF2 we obtain the negativities for

the two subsystems as,

NA1−A2 ≈|min(s2
1c

2
1 − ξs2

1c
2
2, 0)| (3.19)

NTF1−TF2 ≈|min(s2
1c

2
1 − ξc2

1c
2
2, 0)|.
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where s1 = sin(
√

2gt), c1 = cos(
√

2gt) and c2 = cos(2gt)

In the TMSC model, the same initial field state, consisting of a product of

squeezed states, corresponds to having a thermal field state in the SMSC model,

a situation where entanglement generation has been previously studied [85]. Com-

paring the entanglement behavior in Fig. 3.5 for the two different couplings, we

see that for the initial atomic state |gg〉 there is more entanglement generated in

TMAC than TMSC. As mentioned before, two thermal fields in TMSC also map to

the same situation. This is a somewhat unintuitive situation for the generation of

entanglement. There is no entanglement generation when the atoms are initially in
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the state |ee〉. As Figs. 3.6(c) and 3.6(d) show, for |eg〉 entanglement is generated

with only instantaneous zeros, however high the temperature, and for |gg〉 there is

entanglement generation and sudden death behavior with an optimal n̄th ≈ 1 for

the generation of atomic entanglement.

The observation that the initial atomic state |ee〉 will remain separable can, in

fact, be generalized to any initial field state with a density matrix that is diagonal

in the Fock basis. As had been shown in [128], in the SMSC model an atomic state

|ee〉 interacting with any Fock state |n〉 in the field mode never gets entangled.1

This then implies that the atom-atom density matrix given as ρ(n) = TrF [|ψn〉 〈ψn|]

remains separable, where the time evolved state |ψn〉 ≡ U |ee〉 |n〉. Extending to a

general completely-mixed field density matrix the time evolved atom-atom density

matrix given as ρ12 = TrF
[∑

n Pnρ
(n)
]

is clearly a convex sum of separable density

matrices, and hence there is no entanglement generation.

Looking at the initial state |eg〉 |n〉 in the SMSC case, we observe no SD

in Fig. 3.6(a). This can be explained by considering the state as a superposition

|eg〉 = 1
2

(|eg〉+ |ge〉) + 1
2

(|eg〉 − |ge〉), where due to the symmetry of the coupling

constants the maximally entangled dark state (|eg〉 − |ge〉) /
√

2 does not interact

with the field. It is only momentarily during the evolution that the state of the

system returns to being the original separable superposition |eg〉. As a result we

1To explain this it can be observed from symmetry arguments that the time evolved atom-atom

density matrix is an incoherent mixture of the states {|ee〉 , |gg〉 , |Ψ〉} such that the contribution

of the maximally entangled part |Ψ〉 in the mixture is at all times smaller as compared with the

other two.
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always observe some entanglement between the two atoms for an initial field density

matrix diagonal in the Fock basis. The dynamics of the |gg〉 |n〉 state in the SMSC

model, shown in Fig. 3.6(b), exhibit SD in general except for the special case of

n = 1 where because of symmetry reasons the state oscillates between the states

|gg〉 |1〉 and |Ψ〉 |0〉, going from being separable to maximally entangled. Hence, any

density matrix diagonal in the Fock basis with a high component of |1〉 〈1| would

generate more entanglement in general.

Apart from the Fock state in the SMSC model with a thermal field, another

example of having a initial field density matrix diagonal in the Fock basis is to have

a Fock state |n,m〉 in the TMSC which corresponds to the SMSC density matrix

ρnm ≡
1

2m+nn!m!

n∑
k,p=0

m∑
l,q=0

κmnkl |m+ n− k − l〉 〈m+ n− k − l| (3.20)

where κmnkl = nCk
nCp

mCl
mCqδk+l,p+q(m + n − k − l)!(k + l)!(−1)l. For this state

again we see no entanglement generation for |ee〉 and DI for |eg〉 and maximal

entanglement in |gg〉 |10〉, as shown in Figs. 3.6(e) and 3.6(f). Another point we

observe is that for an initial state |gg〉 |n, n〉 there is no entanglement generation,

which is a common feature between TMSC and TMAC. A Fock state |n,m〉 in

TMAC transforms into an entangled state in the DJC model, so we expect and

observe entanglement generation in the system for an initially separable atomic

state. As an exception we find that for n = m, if there is no atom-atom entanglement

to begin with then the atoms remain separable evolving into a completely mixed

state. This is counterintuitive in the sense that even though the field state in

the DJC model is entangled to begin with, there is still no transfer to the atomic
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subsystem. This feature can be explained by considering the initial field state |ηnn〉 =

1
2nn!

∑n
k=0

nCk(−1)k
√

2k!(2n− 2k)! |2n− 2k, 2k〉. If the atoms are initially in the

state |ee〉 then time evolution will lead to an entanglement of atomic and field

states such that detecting whether the number of photons in each mode is even

or odd tells us the state of the two atoms. On tracing out the field this gives us

a completely mixed atom-atom density matrix with no atom-atom entanglement.

The same is true for the initial atomic states |eg〉 and |gg〉.

While there are more nuanced details in what we have reported in this section,

generically speaking it seems that the TMSC (and SMSC) models are much more

conducive to the dynamical generation of entanglement than the TMAC (and DJC)

model, suggesting that atomic separation may have a strong influence on this. Par-

ticularly useful is the ability in the TMSC to dynamically generate entanglement

with a thermal field state or from a squeezed state in SMSC where one can even

generate atomic entanglement that is AL.

3.2.2 Entanglement Sudden Death and Protection

The phenomenon of entanglement sudden death has clearly provoked much

theoretical interest, and it is related to another question that is both interesting

from a theoretical perspective and clearly of great practical importance: how can one

protect a system from disentanglement? Here we do not propose any active scheme

for protecting entanglement (as in, e.g. [97]), but rather consider what initial states

of the field tend to minimize the loss of entanglement or safeguard entanglement
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Figure 3.6: Entanglement dynamics in presence of a completely mixed
initial field state in SMSC - no entanglement is seen for initial atomic
state |ee〉, only DI is observed for the atomic state |eg〉 and maximum
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once it has been dynamically generated. Of particular interest is avoiding SD.

In terms of the effect of the initial atomic state on the entanglement dynamics,

it has been discussed previously in [137] for the DJC model that the initial state

|Φ〉 |00〉 undergoes sudden death while |Ψ〉 |00〉 has DI of the atomic entanglement.

This differentiation in behavior is common to many of the models for studying SD

in which each atom interacts with a separate field [138, 141]. The same situation

must occur in the TMAC case as well. In comparing these two initial states for the

TMSC we find a sort of reversal of roles; as Fig. 3.7 shows, |Φ〉 |00〉 enjoys non-zero

entanglement at all times and |Ψ〉 |00〉 still suffers DI, so now the entanglement of

|Φ〉 is better preserved. This reversal also holds in the case of a thermal field in the
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Figure 3.8: Entanglement dynamics for a single mode thermal field inter-
acting with an initially entangled atomic state |Φ〉 in the TMSC model.
SD occurs after a certain threshold temperature.

TMSC model so long as the thermal average photon number is below a threshold

value n̄crit ≈ 0.43 (Fig. 3.8) with the state being AL (above this critical temperature

|Φ〉 experiences SD as well).

If one considers the TMSC model with the field modes in a two-mode squeezed

state, then for the separable initial atomic states |ee〉 and |gg〉, if the field is suffi-

ciently squeezed, entanglement is dynamically generated and once generated sustains

forever (whereas a Fock state or thermal state may generate entanglement but it

goes to zero again at some later time). This behavior is shown in Figs. 3.1(a) and

3.1(c). If the atoms are initially in the entangled atomic state |Φ〉, then Fig. 3.9

shows that in the TMSC model increasing squeezing raises the minimum value of
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entanglement progressively towards a situation where the state is maximally en-

tangled at all times, while for the TMAC model the system exhibits SD, and the

entanglement gets destroyed in general with increasing squeezing.

A general observation that seems to fit for most of the cases considered is

that a higher average number of photons in the field destroys entanglement. As an

exception, however, it can be seen from Fig. 3.10(a) that in the TMSC model with

the field in a product of coherent states, if the average number of photons is in a

particular range then there is no SD once entanglement is generated for the states

|ee〉 and |gg〉. While Fig. 3.10(b) shows that for |eg〉, the regular rule applies. In the

case of the initial field being a two-mode squeezed state (Fig. 3.1), we observe that

after a threshold squeezing (or average photon number) there is no sudden death

of entanglement after generation in the system when the atoms are initially in the

state |ee〉 or |gg〉. On the other hand, for the initial atomic state |eg〉 entanglement

decreases as the average number of photons is increased.

Much as for generating entanglement, we find that the TMSC model is gener-

ically better suited to protecting entanglement from sudden death. While in the

TMAC model at nonzero temperature disentanglement occurs for both entangled

states considered, in the TMSC we find that below a threshold temperature entan-

glement of the |Φ〉 state remains AL. In addition, we find that in the SMSC model

a two-mode squeezed vacuum field can keep |Φ〉 almost maximally entangled at all

times, provided squeezing is large enough. In the TMAC sudden death is a quite

generic feature, which is only escaped for an initially entangled state when the field

is the vacuum or a select product Fock state.
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3.2.3 General Spacing and Generic Features

We have examined two special cases φ = 0 and φ = π, on the basis that they

would appear likely to be extreme cases, and examining them should give an idea

of the breadth of qualitative behaviors possible for the entanglement dynamics with

different inter-atomic separations. In these cases we found that the field could be

expressed in terms of transformed modes where the Hamiltonian is especially simple

and the unitary matrix governing the time evolution can be explicitly computed by

hand. For other values of φ, however, it is not clear that any such simple representa-

tion exists. The dynamics may always be solved, however, by exact diagonalization.

With the field modes included, the Hilbert space of our system is infinite

dimensional, and diagonalization would not be easy in general. When the rotating-

wave approximation (RWA) is used, however, matters become considerably simpler.

In the RWA the interaction Hamiltonian commutes with the free Hamiltonian, so

that they must have simultaneous eigenstates. Specifically, the eigenvalue N of the

operator ∑
jk

σ+jσ−j + a†kak (3.21)

is conserved, and this may be thought of as the number of quanta of energy or

number of excitations. The result of this is that the Hamiltonian can be diagonalized

on each finite dimensional subspace separately. Moreover, if the number of quanta

cannot increase, a state which has no probability of having more than some certain

number of quanta will continue to obey that condition, restricting the state to a

finite subspace. This situation is then quite amenable to exact diagonalization of
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the Hamiltonian. This process will generally involve finding the roots of higher

order polynomials for which no closed form exists, making symbolic expressions

rather opaque; however, the problem may be solved numerically relatively simply.

We have therefore used numerical solution of the diagonalization problem to

generate the unitary operator for time evolution in this system, and using that

further observations about entanglement dynamics in this system can be made. We

do not present a complete characterization of all those results here, however, we will

note some aspects of the foregoing analysis on which light is shed by the numerical

solutions. What we find when examining the same set of initial states as before for a

range of φ values is that SD is the generic behavior. Instances in Table 3.1 where we

have DI or AL invariably become SD for any intermediate value of φ. For example,

in Sec. 3.2.2 we found that when φ = 0 there is a critical temperature below which

entanglement is AL. Allowing φ to vary, we find that there is SD for any φ 6= 0. It

is simply that as φ → 0 the instant at which SD occurs moves to later and later

times. Similarly, the ability we observed for a squeezed field state to protect the

entanglement of the state |Φ〉 exists only at φ = 0 with exactly the same transition

of behavior when φ 6= 0.

These observations suggest that while the two cases φ = 0 and φ = π are

extreme cases that exhibit the breadth of behavior, they are not characteristic. The

special symmetry that allows easy solutions in those two cases also seems to lead

to exceptional features in the entanglement dynamics. If the effects we observed in

those two cases exist only on a set of measure zero in parameter space, as seems

likely from our numerical investigations, one may reasonably ask to what degree
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they are real physical effects. In fact they do seem to be real effects insofar as a

scenario which was AL in the case φ = 0 will have a very late time of SD when φ is

a very small value. However, given the complicated nature of the solutions in many

of these cases, clearly qualifying this approach to the special cases appears to be

quite difficult.

3.3 Discussion

In this chapter we have analyzed the entanglement dynamics in a model con-

sisting of two two-level atoms and two electromagnetic field modes for a variety

of familiar field states and classified the various cases in terms of phenomena such

as dynamical entanglement generation, entanglement sudden death. One aim of

this analysis is to get a sense of the variety of different classes of entanglement dy-

namics that can arise from different atomic separations in a case where two atoms

interact with a common EM field. It is useful to examine this question in a very

simple model that can be solved with a minimum of approximations in finding so-

lutions, since approximations can in some case introduce unphysical effects, though

the Hamiltonian itself still have a number of approximations underlying it, includ-

ing the RWA. We have argued that there is no non-trivial distance dependence in a

single mode model, and, therefore, a two-mode model represents the simplest case

for the study of distance dependence in the entanglement dynamics.

We have studied two arguably extreme cases out of the class of two-mode

Hamiltonians that can arise, one in which the two modes are symmetrically coupled
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(TMSC) to the second atom, and one where the two modes have asymmetric cou-

pling (TMAC). A useful insight in understanding these models is that the atomic

dynamics in the TMSC model correspond exactly to the dynamics for a model with

single field mode symmetrically coupled (SMSC) to both atoms with a suitable map-

ping of the field state, while the atomic dynamics for the TMAC model correspond

exactly to the dynamics for a double Jaynes-Cummings (DJC) model, made up of

two isolated subsystems each with one atom coupled to one mode, under the proper

transformation of the field state. These mappings help one understand the signifi-

cant differences in behavior in the two seemingly similar models, giving a window

into how significantly atomic separation can affect entanglement dynamics. An-

other significant implication of the mapping between the TMSC and SMSC models

comes from the fact that the mapping of initial field states between those models

is many-to-one (because it involves a partial trace); this shows us entire classes of

field states for the TMSC model that will give exactly the same atomic dynamics.

In particular, we saw that a product squeezed state can be identical to a thermal

state with respect to the atomic dynamics.

In examining the dynamical generation of entanglement from an initially sepa-

rable atomic state in Sec. 3.2.1, we find quite a marked contrast between the TMSC

and TMAC models. While entanglement generation is a relatively common feature,

present for a variety of field states, in the TMSC model, it is comparatively much

more rare in the TMAC model. One aspect that highlights these differences is that in

the TMAC model entanglement can be generated by a product of squeezed states or

fock states, but in the TMSC model it can also be generated by more easily prepared
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states including thermal states and product coherent states. This difference is not

so surprising however, if one views it in terms of the mappings we have introduced

to the other models. When considering that the TMAC maps to the DJC model,

where the two subsystems are isolated, one would expect entanglement generation

to be relatively rare; it can only exist in cases where the field state is mapped to an

entangled state whose entanglement can then be transferred to the atoms. With the

TMSC, by contrast, we have a mapping to the SMSC model where a single shared

field mode can readily introduce entanglement between the two atoms.

When one is concerned with protecting the entanglement of two initially en-

tangled atoms, our analysis in Sec. 3.2.2 shows that again the TMSC model is better

for that purpose in most cases. In the TMAC entanglement sudden death (SD) is

a fairly generic feature, with the initial state |Ψ〉 |00〉 being one of only two classes

we consider that does not show SD; the |Ψ〉 |00〉 shows ”death for an instant” (DI),

where entanglement goes to zero only on a finite set of points. The TMSC shows

a reversal of the fortunes of the |Ψ〉 |00〉 and |Φ〉 |00〉 states, with the former expe-

riencing DI while entanglement for the latter is AL, staying non-zero for all times.

Moreover, the DI property of the dynamics of the |Ψ〉 |00〉 state in the TMAC model

is fragile, in the sense that it is destroyed by even the smallest departure from the

vacuum to, for example, a finite temperature field, while for the TMSC model the

AL feature of the dynamics of the |Φ〉 |00〉 state is robust, remaining for non-zero

temperature below a threshold n̄crit ' 0.43. This gives us a condition for protecting

entanglement in this case.

A different sort of issue we have touched on briefly is the role of quantum
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correlations between field modes in the entanglement dynamics of the atoms. In

the DJC model we compared the resulting entanglement dynamics for fields in a

two-mode squeezed state (TMSS) and a thermal state. For appropriate choice of

the squeezing parameter, the TMSS has the same reduced density matrix for either

mode alone as the thermal state, so in this sense these form a pair of extreme cases

to compare, one with strong quantum correlations while the other has none at all.

It is necessarily true in the DJC that a thermal state cannot generate entanglement,

while a TMSS does. Intuition would also suggest that the local entropy destroys

entanglement and leads to qualitative sudden death features, while the entanglement

generation we observe in the case of a two-mode squeezed state arises from the

field-field entanglement being transferred to the atomic subsystem. The transfer of

entanglement from field-field to atoms was analytically verified for a small squeezing

approximation of the two-mode squeezed state where one can observe the field-field

entanglement going to zero as the atom-atom entanglement builds up. We would

expect that the correlations of the TMSS aid in maintaining the entanglement of an

initially entangled state, and we find this to generally be the case, although in some

cases for brief periods of time a thermal state can actually result in greater atomic

entanglement than the corresponding squeezed states.

In SMSC case we have a general result for the class of density matrices that are

diagonal in the Fock basis; we conclude that in terms of generating entanglement it

is preferable to choose an initial atomic state |eg〉, which has entanglement being AL

or at the least DI, as opposed to |ee〉 where no entanglement is generated. This had

been previously pointed out in the case of Fock states and thermal states [85, 128].
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As an interesting result in terms of entanglement protection, we find that a

single mode squeezed state interacting with symmetrically coupled atoms initially

in the state |Φ〉 can be extremely effective in protecting the entanglement. Even for

the vacuum, this entangled state is AL, but as squeezing is increased the minimum

entanglement rises monotonically toward maximal entanglement. For entanglement

generation by a single mode squeezed state in the separable atomic initial states |ee〉

and |gg〉, we found that for a sufficient amount of squeezing entanglement is not only

generated but remains AL for all future times. Similarly, for a single mode coherent

state there is a range of values of the average photon number for which there the

generated atom-atom entanglement is AL. In these cases, it was observed that |eg〉

shows sudden death as squeezing or the average photon numbers were increased.

We have chosen in this analysis to try to isolate the effect of atomic sepa-

ration on entanglement dynamics from the position-dependent effects arising from

boundary conditions. For this purpose, we have assumed an atom-field coupling

that depends on the coordinate separating the atoms only by a phase factor, as in

Eq. (3.2), arising from coupling to two traveling-wave field modes. An experimen-

tally relevant situation in which this form of coupling arises is a toroidal resonator.

In this case the two modes of interest would be two resonant, counter-propagating

whispering-gallery modes. Here the transformed modes we have considered also have

a simple interpretation, as two orthogonal standing wave modes at the same fre-

quency. Because strong coupling between an atom and a whispering-gallery modes

of a microtoroidal resonator has been observed experimentally [13], there is the

possibility of experimentally probing quite directly the model we have considered.
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However, in the experimental system there will be dissipative dynamics arising from

emission into other modes outside the resonator as well as scattering that can di-

rectly couple the traveling wave modes, so a detailed comparison would require

either including these effects in the theoretical model or a restriction to the case of

sufficiently strong coupling to the resonator modes and early times that evolution

on these longer timescales could be neglected.

Our analysis of special cases of the entanglement dynamics arising in two

atoms interacting with two modes suggests a wide variety of different behaviors

can arise, with qualitative features of the dynamics changing entirely between the

two cases, even with the same initial field state. This suggests that understanding

the distance dependence of entanglement dynamics for multiple atoms interacting

with a common field will be quite important for predicting even the qualitative

features that may arise. Furthermore, if one has the practical goal of dynamically

generating entanglement or protecting entanglement once generated, the special

cases we have considered suggest that the ability to achieve these goals will be

greatly impacted by the positioning of the atoms. We have noted that the special

cases we have considered seem to be somewhat exceptional, and our numerical study

of the dynamics for other separations suggests that SD is in fact the generic behavior

that applies for other separations. The time of sudden death can simply become

very long as the special cases are approached.

The model we have used here is comparatively simple, but it is based on a

Hamiltonian that employs the RWA, which is integral to deriving the solutions for

the time evolution. While we have exactly solved the dynamics under the Hamil-
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tonian we are using, the RWA used to derive that Hamiltonian is based on an

assumption of weak coupling, so the solution can only really be applied to the phys-

ical system in that regime. Moreover, one may wonder what discrepancies may

arise through use of the RWA. We pursue precisely this question in Ch. 4. We will

comment on the implications for these results in Ch. ch:conclusion.
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Chapter 4

Accuracy of the Weak-Coupling and Rotating-Wave Approximations

4.1 Accuracy of Solutions to the Weak-Coupling Master Equation

In Sec. 1.2 we said that in the time-local representation the dynamics of the

reduced density matrix of the system can be expressed with a quantum Liouville

equation

d

dt
ρ(t) = L(t)ρ(t) , (4.1)

where, despite the apparent time-local form, non-Markovian behavior may be encap-

sulated in the time dependence of the Liouvillian L(t). As a perturbative approx-

imation, L(t) is expanded in powers of the system-environment interaction, scaled

here by some parameter g, and truncated to some order.

We will consider the relatively general setting of a perturbative master equa-

tions where the Liouvillian L(t) is time independent at zeroth order and asymptot-

ically constant for late times. We will assume that the perturbative expansion of

L(t) is in even powers of the coupling, because as discussed in Sec. 1.2, this can

naturally arise from a microscopic derivation of the open-system dynamics. The

expansion of L(t) will then take the form

L(t) =
∞∑
n=0

L[2n](t) , (4.2)

L[0](t)ρ ≡ [−iH ,ρ] , (4.3)
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where L[2n](t) = O(g2n) and to zeroth order the system is driven in a unitary manner

by its Hamiltonian H .

The most well-known perturbative master equation is the second-order master

equation, as it can be equivalent to the Redfield and Born-Markov master equations.

This is partly due to the fact that in the Markovian limit, the second-order master

equation is exact. But equivalence with the previous approximate master equations

does not carry to fourth order and there perturbation theory is strictly superior.

One might easily assume that solving the second-order master equation defined by

the Liouvillian L[0] +L[2] would yield a solution that would match the exact solution

to the exact master equation up to second order, having error terms of order O(g4);

however we will show that in general they will differ by second-order terms, so that

one can only say they are in perturbative agreement at zeroth order.

One very significant implication of these facts is for positivity. Not being

exact, nor generally of Lindblad form [93, 65], a perturbative master equation is

not guaranteed to yield a dynamical map with exact complete positivity. Solutions

can and should be completely positive to the relevant perturbative order, and as we

show in this work that order is not what one might naively expect. Solutions to

the second-order master equation can violate positivity by an amount that is O(g2).

We show that to find solutions good to second-order, canonical perturbation theory

generally demands the fourth-order Liouvillian.
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4.1.1 Indeterminacy of Solutions

Before determining what the appropriate level of accuracy is for the solutions

of perturbative master equations, we will first demonstrate that there is an issue

with the naive expectation of order-2n accuracy. This argument is a generalization

of one found in Ref. [104], where the discrepancy was noticed for the second-order

equilibrium state. Let ρ(2n)(t) be any solution which satisfies the master equation

(and is supposedly accurate) to order 2n, then

d

dt
ρ(2n)(t) = L(t)ρ(2n)(t) +O(g2n+2) . (4.4)

Furthermore consider the order-2n state

ρ′(2n)(t) ≡ ρ(2n)(t) + δρ[2n](t) , (4.5)

where δρ[2n] is an order-2n traceless and diagonal (in the energy basis) perturbation

for which

δρ[2n](0) = 0 , (4.6)

d

dt
δρ[2n](t) = O(g2n+2) , (4.7)

so that both ρ(2n)(t) and ρ′(2n)(t) share the same initial conditions, and the discrep-

ancy δρ[2n](t) grows slowly with the perturbation as to also satisfy

d

dt
ρ′(2n)(t) = L(t)ρ′(2n)(t) +O(g2n+2) , (4.8)

since L0 δρ[2n](t) = 0 by construction. This demonstrates that, for non-perturbative

durations of time, there is an order 2n ambiguity in the stationary (e.g. diagonal)

entries of all solutions if one only compares terms up to order 2n. This proof also
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applies to time-nonlocal master equations, replacing perturbative contributions to

the Liouvillian with corresponding memory-kernel operators. Next we will proceed

to our main proofs where we show how this issue arises, that this is the full extent

of the problem, and precisely how it can be remedied.

4.1.2 Late-time accuracy

It is clear that if Eqs. (4.1) and (4.2) are well defined then for sufficiently short

times an order-2n master equation (in which the sum in Eq. (4.2) only includes terms

up to order 2n) can produce a solution that is also accurate to order 2n. We find that

for longer spans of time, and in particular the late-time regime wherein the master

equation assumes its stationary limit, solutions to the order-2n master equation are

only accurate to order 2n−2. The reason is an ultimately mundane but slightly

subtle result of degenerate perturbation theory. In this section we will address the

late-time stationary dynamics, and then in following sections we will address the

full-time dynamics, including the crossover from accuracy at the same order to loss

of accuracy.

Assuming we have the perturbative expansion of a stationary master equation

(i.e., an expansion of L), we then seek perturbative solutions obtained by applying

canonical perturbation theory of the eigenvalue problem, applying the discussion of

Sec. 1.2 (based on [53]). So we seek to solve

Lo = f o , (4.9)

for each eigen-operator o and f is its corresponding eigenvalue. In the appropriate
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regime of validity, exact solutions to the perturbative master equation should agree

with the perturbative solutions to the exact master equation up to the appropriate

order. We have already noted that perturbation theory with master equations is

always degenerate perturbation theory, as ωii = ωjj = 0. This inevitably-degenerate

subspace corresponds to the space of operators that are diagonal in the energy basis

of the free system. For simplicity let us assume no other degeneracy in the spectrum

of the free Liouvillian (though the possibility of extra degeneracy or near degeneracy

arising from resonance can be suitably dealt with).

Perturbation theory tells us that the second-order corrections to all eigenvalues

and eigenoperators of L outside the degenerate subspace (off-diagonal operators) can

be computed using only the second-order master equation, as shown in Eqs. (1.26)

and (1.27). As noted in Sec. 1.2, to compute corrections to eigen-operators from the

degenerate subspace (which all satisfy L[0] o
[0] = 0) we must diagonalize L in that

subspace by solving the associated characteristic equation:

W ~o = f ~o , (4.10)

[[~o ]]i ≡ 〈ωi|o |ωi〉 , (4.11)

where ~o is the vector that gives the degenerate-subspace projection of o as the linear

combination of the operators |ωi〉〈ωi| with coefficients [[~o ]]i, and W is defined

[[W ]]ij = 〈ωi|L{|ωj〉〈ωj|} |ωi〉 , (4.12)

which is the degenerate-subspace projection of L represented as a matrix (giving

essentially the Pauli master equation). Therefore Eq. (4.10) must be solved for with

105



W[2] exactly, and then the further effects of W[4], W[6], etc., can be incorporated via

canonical perturbation theory. 1 The eigenvalues obtained in diagonalizingW[2] give

the second-order corrections f [2] to the eigenvalues of L and the correct zeroth-order

eigenoperators o[0] for the degenerate subspace. Degenerate perturbation theory

tells us that in order to calculate each ~o
[2]
i for the degenerate subspace, one actually

requires W[4] from the fourth-order master equation; it will contribute the second-

order correction ∑
j 6=i

(
~o

[0]
j

)?
W[4]

(
~o

[0]
i

)
f

[2]
i − f

[2]
j

~o
[0]
j , (4.13)

where ~o ?i is the left eigen-vector of W such that ~o ?i W = ~o ?i fi and ~o ?j ~oi = δij. In

the non-degenerate problem the denominator of Eq. (4.13) would be f
[0]
i − f

[0]
j and

such corrections would be fourth order, but the degeneracy of the free Liouvillian in

any perturbative master equation leaves second order as the relevant lowest-order

nonvanishing eigenvalue splitting. Without this information from the fourth-order

master equation, one cannot generate the complete second-order solution.

Finally note that this requirement must extend even to exact solutions of the

perturbative master equation. A perturbative solution to the second-order master

equation will be equivalent to solving the full master equation perturbatively and

then artificially setting L[4] and all higher-order contributions to the Liouvillian

to vanish. From this and the preceding perturbative analysis we know that the

second-order perturbative solutions to the exact and second-order master equations

1This is slightly more complicated than the canonical perturbation one often sees treated for

the Schrödinger equation where the perturbation has only a first order part and no higher-order

corrections.
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must differ by a term that is O(g2). Since the exact solutions to each given master

equation must differ from the corresponding second-order perturbative solutions by

terms of O(g4), we can conclude from our analysis that even the exact solution to

the second-order master equation differs from the exact solution to the full master

equation by a term of O(g2). In Sec. 4.1.5 we use the example of quantum Brow-

nian motion, where an exact solution is available, to show that the second-order

corrections arising from the fourth-order Liouvillian are indeed present.

More generally, the same argument can be extended to higher order and tells

us that while the short-time accuracy of an order-2n master equation can also be

order 2n, the long-time accuracy can only be order 2n− 2. To obtain order-2n

solutions one requires not only the order-2n master equation but in addition the

order-(2n+2) Pauli master equation.

Among the information missing due to the second-order errors of the solution

to the second-order master equation are important contributions to the asymptotic

state of the system. When coupled to a thermal reservoir the system must asymp-

tote to ρ ∝ e−βH for vanishing system-environment coupling (though this may also

happen in other, very specific approximations [61]). One often desires to find the

additional environmentally induced system-system correlations (and possibly entan-

glement) provided by perturbative corrections, but these will not be given correctly

by directly finding the steady state of the second-order master equation. However,

at least for zero-temperature noise, it is still possible to easily construct via other

methods the order-2n corrections using only order-2n master equation coefficients

and limits thereof [53], as we will see in Ch. 5.
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Another important characteristic that is mangled by the second-order master

equation is positivity, as was mentioned at the beginning of this section. The second-

order inaccuracies that arise from using the second-order master equation imply

that the diagonal elements of the density matrix in the (free) energy basis are off by

second-order terms. This can lead to second-order violations of positivity. In fact,

this is almost guaranteed at low temperature, where any off-diagonal perturbation

to the ground state will immediately cause second-order positivity violation, given

that the necessary inequality

ρii ρjj ≥ ρij ρji , (4.14)

cannot be satisfied with the left-hand side vanishing at zeroth-order and not per-

turbed to the correct second-order values.

4.1.3 Full-time accuracy

In analyzing the full-time accuracy of time-dependent master equations, first

we will show that the short-time solutions are accurate to the order of the master

equation, and then we will show that longer-time solutions display accuracy loss.

The timescale for this transition is determined by the frequency perturbations, e.g.

1/f[2].

To analyze the short-time behavior we rotate to the interaction picture defined

ρ(t) ≡ G−1
0 (t)ρ(t) , (4.15)

G0(t)ρ ≡ e−iHt ρ e+iHt , (4.16)

108



wherein the master equation is now given by

d

dt
ρ(t) = δL(t)ρ(t) , (4.17)

δL(t) ≡ G−1
0 (t) δL(t)G0(t) , (4.18)

δL(t) ≡ L(t)−L0 , (4.19)

and so the interaction-picture dynamics are strictly perturbative. Short-time solu-

tions can be obtained from the Neumann series

ρ(t) = G(t)ρ(0) , (4.20)

G(t) = 1 +

∫ t

0

dτ δL(τ) +

∫ t

0

dτ

∫ τ

0

dτ ′ δL(τ) δL(τ ′) + · · · , (4.21)

where the order-2n solution is fully determined by L[2n](t). However, such solutions

are inherently secular in time. If f[2] denotes the second-order frequency perturba-

tions, e.g. dissipation and diffusion rates, then the above solutions (at second order)

are only good for times t� 1/f[2]. This is the regime wherein perturbative master

equations are ensured to provide matching accuracy in their solutions.

For longer spans of time, one must resort to time-ordered integration for solu-

tions. For weak coupling the master equation can asymptote to its stationary value

within timescales much shorter than 1/f[2], and so one can apply the stationary

master equation and our corresponding proof of accuracy loss. More generally one

may consider the behavior of the time-dependent eigen-value equation

L(t)o(t) = f(t)o(t) , (4.22)

so that the time-translation generator may be given by its spectral decomposition

L(t) =
∑
k

fk(t)ok(t)o
?
k(t) . (4.23)
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Again, the order-2nmaster equation can only determine the perturbatively-stationary

eigen-operators o(t) to within order 2n−2. Given that the time-dependent basis of

the time-translation generator cannot be determined to second order, neither can

the solutions.

One might be concerned with how the proof of short-time accuracy is compati-

ble with this proof of full-time accuracy loss. In fact, the short-time accuracy occurs

within a span of time 0 < t � 1/f[2], which is not sufficient enough to accumulate

full-order contributions from the perturbation. Therefore the regime of short-time

accuracy is a rather trivial result.

4.1.4 Time non-local accuracy

Corresponding to the time-local master equation (4.1) is the time-nonlocal

master equation

d

dt
ρ(t) =

∫ t

0

dτ K(t−τ)ρ(τ) , (4.24)

first derived via the projection-operator formalism of Nakajima [105] and Zwanzig

[143]. The two representations are contrasted in Ref. [135, 35, 53]. The nonlocal

kernel K(t) also has a perturbative expansion with zeroth-order dynamics given by

K[0](t) = 2 δ(t)L[0] . (4.25)
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which is time-local and unitary. Solutions are most easily calculated in the Laplace

domain wherein one has the kernel

K̂(s) =

∫ ∞
0

dt e−tsK(t) , (4.26)

K̂[0](s) = L[0] . (4.27)

Perturbative solutions can then be acquired by solving the nonlocal eigen-value

equation [53]

K̂(s) ô(s) = k̂(s) ô(s) , (4.28)

where from Eq. (4.27) the nonlocal eigen-system must be a perturbation of the free

system-energy eigen-system, and therefore our proof of accuracy loss will carry over.

The order-2n master equation can only determine the perturbatively-stationary

eigen-operators ô(s) to within order 2n−2.

4.1.5 Example: QBM

As an example of an exactly-solvable open system, let us consider the master

equation of an oscillator bilinearly coupled (position-position) to an environment of

oscillators initially in a thermal state [74]:

d

dt
ρ = [−iHR,ρ]− iΓ [x, {p,ρ}]−MDpp [x, [x,ρ]]−Dxp [x, [p,ρ]] , (4.29)

where HR is the system Hamiltonian but with frequency ΩR, Γ is the dissipation

coefficient, Dpp and Dxp are the regular and anomalous diffusion coefficients. This

master equation describes the dynamics of damped nano-mechanical resonators at

low temperature, among other physical systems.
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In Ref. [56] exact solutions are given with full time dependence, and it is

from this reference that we take all of the following results. Let us consider Ohmic

coupling to the bath with damping kernel γ(t) = 2 γ0 δΛ(t), where δΛ(t) is a rep-

resentation of the delta function in the high-frequency cutoff limit Λ → ∞. [The

damping kernel, and thus γ0, is second order in the system-environment interaction

g.] The homogeneous coefficients quickly asymptote to ΩR = Ω and Γ = γ0 within

the cutoff timescale, whereas the diffusion coefficients asymptote to

Dxp = +γ0Im[I0] , (4.30)

Dpp = 2γ0T + γ0Im
[(
γ0 + iΩ̃

)
I0

]
, (4.31)

I0 ≡
2

π

(
i+

γ0

Ω̃

){
H

(
Λ

2πT

)
−H

(
γ0+iΩ̃

2πT

)}
, (4.32)

Ω̃ ≡
√

Ω2 − γ2
0 , (4.33)

mostly within the system timescale, but also hastened by temperature. In all coef-

ficients we have neglected terms of order O(1/Λ). H here is the harmonic number

function, which is asymptotically logarithmic and yet H(0) = 0. Therefore both

diffusion coefficients contain logarithmic cutoff sensitivities, though the sensitivity

is present in the anomalous diffusion coefficient at second order, whereas it does not

appear in the regular diffusion coefficient until fourth order.

In the stationary limit, the system relaxes into a Gaussian state with phase-

space covariance

σT =

 1
MΩ2

R

(
1

2Γ
Dpp −Dxp

)
0

0 M
2Γ
Dpp

 . (4.34)
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One can see that for a second-order master equation, the contribution from the

regular diffusionDpp/Γ starts at zeroth order, while the contribution from anomalous

diffusion Dxp starts at second order. The full second-order contribution from the

regular diffusion actually requires the fourth-order coefficients.

In the exact calculation, or in any consistent perturbative calculation, the

logarithmic cutoff sensitivities present in the diffusion coefficients actually cancel

in the position uncertainty. In this sense the anomalous diffusion coefficient acts

as an anti-diffusion coefficient and this behavior will also occur for supra-Ohmic

couplings. If one were to naively apply the second-order diffusion coefficients, and

solve the master equation exactly, then one would obtain a mixed-order result and

the logarithmic cutoff sensitivities would not precisely cancel. The position uncer-

tainty would contain a second-order negative log(Λ) contribution. For sufficiently

large cutoff frequencies, the Heisenberg uncertainty principle would be violated.

For even larger frequencies, the covariance would become negative. In any case the

second-order master equation would produce a (supposedly) second-order position

uncertainty which is an underestimation of the true second-order uncertainty.

4.2 The Rotating-Wave Approximation

The rotating-wave approximation (RWA) is used in many places in the study

of open quantum systems, particularly in the fields of quantum optics (see for ex-

ample [26, 131, 32]) and nuclear magnetic resonance [2], but the validity of the

approximation is treated in depth far less often. There are actually two distinct
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rotating-wave approximations both in widespread use : 1) the ‘pre-trace’ (preT)

RWA, which consists of modifying the interaction Hamiltonian by dropping the so-

called counter-rotating terms that are quickly oscillating in the Dirac picture; and 2)

the ‘post-trace’ (posT) RWA, which is obtained by neglecting terms in the master

equation for the reduced density matrix that are quickly oscillating in the Dirac

picture (see, e.g., [131, 32] and [26, 6] respectively). Agarwal examined the RWA

[6, 4, 5], differentiating between these two distinct forms and addressing in some re-

spects their validity for atom-field interactions and spontaneous emission processes.

More recently, various authors have claimed some features of the RWA that may

limit its applicability, which we will now discuss.

The most widely acknowledged problem with the preT RWA seems to be that

it yields incorrect frequency shifts in the atomic energy levels, so that it is not

suitable for calculating environmentally induced level shifts or induced cooperative

frequency shifts [6, 4, 5]. West and Lindenberg [133] found that the reduced system

dynamics obtained from the pre-trace RWA do not have a Markovian limit 2. Finally,

Ford and O’Connell [58] have raised concerns that in general the total Hamiltonian

obtained by the preT RWA does not have a spectrum which is bounded below, and

they suggest that this limits the applicability of the approximation to first-order

transition amplitudes.

Other authors have raised a very different sort of concern about the preT-

RWA Hamiltonian for coupling of a localized system to a quantized field, that it

2These authors also claim that there is no fluctuation-dissipation theorem for this model, a

statement that the present authors cannot agree with.
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may produce spurious causality violation in the calculations. Consider, for example,

a two-level atom in the dipole approximation interacting with the electromagnetic

field. The Hamiltonian for the interaction is

H = ~d · ~D(~R) (4.35)

=
∑
~k

2∑
s=1

−i Ω√
2ε0ε~kV

(
~d · ~e~k,s

) (
σ+e

iωt + σ−e
−iωt) (a~k,se−iε~kt − a†~k,seiε~kt)

in the Dirac picture, and in the preT RWA the terms with frequency Ω + ε~k would

be neglected. However, with these terms dropped the interaction can no longer be

expressed in terms of the local field variable ~D(~R) [37]. Indeed, a numerical study of

a three-atom problem [45] found that noncausal terms appear when the preT RWA

is used, unless one makes the ad hoc modification of extending frequency integrals

to −∞. The preT RWA may then misrepresent the effects of retarded propagation

in the electromagnetic field, which suggests problems with causality in the study of

multipartite systems.

Moreover, the Glauber detector model [64, 63], long used in photodetection

theory and quantum optics, uses the preT RWA, and it might give rise to quantum

correlations between spacelike separated events that do not represent the effects

of actual entanglement. The effective status of preT RWA in Glauber’s theory is

debated: some authors have shown that photodetection probabilities at short times

appear to violate causality [29, 127], and modifications to Glauber’s photodetection

theory have been suggested [29, 127, 52], while others indicate that a different form

of the RWA in photodetection theory can guarantee causality [102]. Our interest in

this problem partly arose from discussion of how the imposition of preT RWA affects
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the range of validity of results from the calculation of the entanglement dynamics

of two atoms interacting with a common quantum field at large atomic separation

[11].

Some form of the RWA is often invoked in the quantum optics and atomic

physics literature, in derivations of the Born-Markov master equation for a system

weakly coupled to bosonic reservoir. In such derivations, the Born-Markov master

equation requires an RWA to render it in Lindblad form [26], thus providing a

completely-positive dynamical map (for all states at all times) as is useful to assume

for many quantum information theory discussions.

With these two distinct RWAs in widespread use while some open questions

remain about their limitations and fallacies, we find it useful to carry out a sys-

tematic analysis of the consistency and applicability of the RWAs in the modern

language of open quantum systems. This is especially needed with researchers now

tackling problems beyond those of level population and dissipation rates to deal

with more subtle issues such as quantum decoherence and entanglement dynam-

ics and performing more demanding tasks such as quantum state tomography and

engineering.

In the analysis that follows, we find that the RWA may be sufficient or in-

sufficient depending on what information is desired about the system. For the per-

turbative relaxation rates either the pre-trace or post-trace RWA is sufficient. To

obtain the environmentally induced shifts in system frequencies, only the post-trace

RWA is sufficient. In order to get more detailed information about the evolution of

the quantum state, entanglement dynamics, and the asymptotic steady state nei-
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ther RWA is sufficient in general. We also find that the pre-trace RWA does not in

general have a Markovian limit. Finally, we seek to emphasize the following fact:

Even in a system where the underlying environmental noise is colored and dynamics

nonlocal, the RWA can yield a Lindblad-form master equation similar to what one

might get in the Markovian limit with white noise. However, with the inclusion of

multiple systems and any external forces, one cannot obtain the correct dynamics

by naively adding together the dissipative terms of the master equations, as would

be possible in the Markovian limit. While the master equation obtained by such a

naive addition has a mathematically valid form, it does not generally yield the dy-

namics of the system obtained from a microscopic derivation of the master equation

for the combined system (even after the RWA).

However, there are sufficiently simple systems and bath correlations for which

a less judicious application of the RWA can nevertheless produce an adequate master

equation. Likewise, there are mathematical limits in which the RWA will be exact,

and in some cases experiments may work very close to these limits. Finally, we find

that finite bandwidth of measurements may mask the inaccuracies produced by the

RWA (at least for some measurements).

4.2.1 The rotating-wave approximation in closed systems

We first examine the rotating-wave approximation as ordinarily applied to a

closed system consisting of several interacting subsystems. Its wave function |ψ〉
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evolves as

d

dt
|ψ〉 = −iH |ψ〉 , (4.36)

under the total Hamiltonian H ≡ H0 + H1 where H0 represents the sum of all

uncoupled subsystems and H1 represents the part from the subsystems coupling.

One seeks to solve the eigenvalue problem

H |ω〉 = ω |ω〉 , (4.37)

for eigenstates |ω〉 with eigenvalues ω by perturbing off the free eigensystem

ωi = ω
(0)
i + δω

(1)
i + · · · , (4.38)

|ωi〉 =
∣∣∣ω(0)

i

〉
+
∣∣∣δω(1)

i

〉
+ · · · , (4.39)

where ω
(0)
i are the eigenvalues of the uncoupled system. The non-degenerate first-

order corrections are then

δω
(1)
i =

〈
ω

(0)
i

∣∣∣H1

∣∣∣ω(0)
i

〉
, (4.40)

〈
ω

(0)
j

∣∣∣δω(1)
i

〉
=

〈
ω

(0)
j

∣∣∣H1

∣∣∣ω(0)
i

〉
ωi − ωj

(ωi 6= ωj) , (4.41)

and for the degenerate corrections one must find the correct linear combination of

degenerate states |f〉, which exist solely in the degenerate subspace
∣∣∣ω(0)

di

〉
wherein

H0

∣∣∣ω(0)
di

〉
= ωd

∣∣∣ω(0)
di

〉
. |f〉 are the eigenstates of the degenerate interaction Hd

Hd |f〉 = f |f〉 , (4.42)

which possesses matrix elements

(Hd)ij =
〈
ω

(0)
di

∣∣∣H1

∣∣∣ω(0)
dj

〉
, (4.43)
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This kind of analysis should also extend to nearly-degenerate subspaces where the

basis corrections in Eq. (4.41) would nearly diverge.

In the rotating-wave approximation one only considers components of the in-

teraction H1 which oscillate least rapidly in the interaction picture. If these terms

are stationary, e.g. at resonance, then they will include the correct non-degenerate

first-order frequencies, Eq. (4.40), as well as the correct characteristic equation,

Eq. (4.43), which determines the degenerate first-order frequencies and zeroth-order

energy states. What the RWA generally neglects are the first-order basis correc-

tions, Eq. (4.41). If the RWA terms are non-stationary, then they will include the

most nearly-degenerate first-order frequencies and also neglect their first order basis

corrections. Therefore the RWA has limited correspondence to perturbation theory

as long as all terms that are close to resonance have been retained in the interaction

Hamiltonian. If, however, the RWA is made such that there are neglected terms

that are near resonance, then the correspondence fails even in the weak coupling

regime (because the missing first-order basis corrections become large, and even the

first-order eigenvalue corrections are inaccurate). Moreover, for subsystems with a

multiplicity of timescales, there may be several near-resonance frequencies which a

proper application of RWA would have to take into account.

In the rest of this section we consider open quantum systems and divide our

attention between two cases: the post- and pre- trace RWA.
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4.2.2 The post-trace rotating-wave approximation

The RWA is an approximation that is employed in the weak-coupling regime.

It is a valid question to ask precisely what this approximation is doing by comparing

it to the weak coupling dynamics without the RWA. As we will show, the post-trace

RWA actually lies between the zeroth-order and second-order master equations. For

a system weakly coupled to a reservoir, such open-system master equations can

be derived perturbatively, in the system-environment interaction, with a variety of

different techniques [81, 25, 122]. All of these are equivalent to no approximations

other than ordinary perturbation in the interaction. The second-order perturbative

master equation, which we call the weak-coupling master equation, is known to be

non-Markovian [81, 25, 122]. While the master equation can assume a Lindblad form

in the limit of vanishing coupling, for any actual finite coupling it will generally differ

from Lindblad form. The rotating-wave approximation is often introduced, not in

a purely perturbatively derived master equation, but in one derived via the Born-

Markov approximation. To second order in the system-environment interaction, the

Born-Markov approximation is consistent with weak coupling perturbation, even

well outside of the Markovian limit. Therefore, given that the RWA will only be

applicable to second order, it is of no consequence if one starts from the Born-Markov

approximation or a more rigorous perturbative analysis. One only has to keep in

mind that RWA has no reliance upon any kind of Markovian approximation.

It may also be useful to note that Davies has derived [40, 41] a Lindblad-

form master equation in the weak-coupling regime with the additional requirement
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that one take the limit where the coupling λ vanishes and rescale time as τ = λ2t,

effectively taking a simultaneous t → ∞ limit. Our analysis supposes only weak

(but non-vanishing) coupling and can be applied even at early times, although we

focus on the late-time dynamics, so in principle we are restricted to neither limit.

The post-trace (posT) RWA effectively consists of only considering the parts

of the super-operator L[2] which commute with the free system propagation super-

operator

G0(t){ρ} = e−iHt ρ e+iHt . (4.44)

If we consider evaluating our master equation coefficients in the energy basis, which

in pseudo-Lindblad form amounts to resolving

Dki;jl =
∑
nm

Dnm 〈ωk| en |ωi〉 〈ωj| e†m |ωl〉 , (4.45)

then the RWA essentially amounts to projecting out the diagonal of this Hermitian

matrix, i.e. terms with ωk − ωi = ωj − ωl or equivalently ωi− ωj = ωk − ωl. For the

perturbative master equation to second order in the system-environment coupling,

which is assumed to be weak, these diagonal entries will settle to positive values

and therefore this projection yields a master equation of the Lindblad form. We will

refer to the master equation obtained this way as the RWA-Lindblad equation.

Such a Lindblad projection is only reasonable because the system-environment

coupling is assumed to be weak and the projection is performed in the energy ba-

sis. As we will presently show, the eigen-operators of the Liouvillian have the form

|ωj〉 〈ωk| plus corrections at second order in the coupling strength so that the dis-

crepancy introduced by the dropped terms is small for sufficiently weak coupling.
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The RWA-Lindblad equation is not fully equivalent to the weak coupling master

equation, but it generates an evolution which is close to that of the weak coupling

master equation in a perturbative sense.

4.2.2.1 Correspondence with perturbation theory

Recall from Sec. 1.2.3 that the environmentally-induced corrections to the

eigenvalues and eigenoperators of the Liouvillian are

f
[2]
ij = 〈ωi|L[2]{|ωi〉〈ωj|} |ωj〉 , (4.46)

〈ωi′|o[2]
ij |ωj′〉 =

〈ωi′|L[2]{|ωi〉〈ωj|} |ωj′〉
−i(ωij − ωi′j′)

(4.47)

when ωi 6= ωj and ωij 6= ωi′j′ . From this we see that the perturbative corrections to

the eigenvalues are entirely captured by the post-trace RWA, since those terms in the

Liouvillian are retained in the RWA. The perturbative basis corrections, however,

are entirely neglected. The lack of basis perturbation can lead to discrepancies (with

the non-RWA evolution) even at late times, as was seen for example by Haikka and

Maniscalco in [68].

We can readily see a late-time discrepancy in the thermal state of the system.

The system evolving under the RWA-Lindblad equation will relax into the thermal

state described by the Boltzmann density matrix ρ ∝ e−βH . But this is generally

not how most systems would actually thermalize in a Hamiltonian formulation:

Given the full system + bath and interaction Hamiltonian, H + HB + H I, the

system is expected to relax into a state described by the reduced density matrix
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ρ ∝ TrB

[
e−β(H+HB+HI)

]
, assuming the bath to be very large3. This state typically

only reduces to Boltzmann form in the limit of zero system-bath interaction strength;

however, an infinitesimal interaction strength would imply an infinite relaxation

time, so we cannot speak self-consistently of the system relaxing to the thermal

state the RWA-Lindblad equation predicts.

This property suggests a limitation to the applicability of posT RWA in the

study of entanglement dynamics. In a multipartite system with components inter-

acting only through the bath, this precludes the presence of asymptotic residual

entanglement. This is in contrast to the asymptotic behavior of bipartite systems

in quantum Brownian motion—see, for example [107, 108, 92].

We also remark that if one takes the simultaneous limits of vanishing coupling

and t → ∞ on the second-order master equation such that all f
[2]
ij t remain finite

following Davies [40, 41], then one will similarly obtain a master equation of Lindblad

form, which is exactly the RWA-Lindblad equation. Our perturbative approach is

not restricted to such a limit, of course, and the difference between the perturbative

weak-coupling dynamics and the posT RWA dynamics will also show the difference

with the limit of vanishing coupling used by Davies, namely the limit used by Davies

removes the lowest order basis corrections.

3That the entire system + environment appears thermalized in its reduction is proven to second

order in [53].
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4.2.2.2 RWA fails when perturbation theory fails

The second-order master equation should be valid when the second-order cor-

rections provided by L[2] are small as compared to the unperturbed dynamics gen-

erated by L0. Let us denote the strength of the dissipative corrections generically

by the frequency γD, then the weak coupling condition is

γD � min
ωij 6=0

|ωij| , (4.48)

as ωij corresponds to the eigenvalues of L0 (not ωi which corresponds to the eigen-

values of the unperturbed Schrödinger equation).

The RWA-Lindblad equation does not directly correspond to the second-order

master equation, but more correctly to the second-order solutions of said master

equation. For the second-order solutions to be valid the coupling must not only be

weak in the above sense but also in the following sense

γD � min
ωij 6=ωkl

|ωij − ωkl| , (4.49)

which justifies the perturbative solutions. One cannot have near degeneracy in the

energy level splittings or the naive perturbative solutions, which the RWA-Lindblad

equation corresponds to, will fail. Perfect degeneracy is acceptable; the RWA-

Lindblad equation retains these terms in the Pauli master equation for instance.

But near-degeneracy needs to be treated in a manner analogous to degeneracy; the

nearly degenerate subspace should be diagonalized. With the second-order mas-

ter equation this is still possible, but with the RWA-Lindblad equation these terms

have been discarded and one is left with an invalid master equation. Thus, there can
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be situations where the weak-coupling condition is satisfied while the posT RWA

condition is not.

This problem arises, for example, in cavity QED. A two-level atom of frequency

Ω coupled to a resonant intracavity field mode will result in an energy spectrum of

the composite system that has the form of the harmonic oscillator with each level

split in two by the Rabi frequency
√
nΩV R of the dressed states,

En,± =
(
Ωn±

√
nΩV R

)
.

If the intracavity field is coupled to the field outside the cavity, this becomes an open

quantum system. If the intracavity field is coupled weakly enough to the atom, then

the system will be in the weak-coupling regime of cavity QED and the vacuum Rabi

frequency ΩV R will be small compared to γD. In this case the posT RWA procedure

does not, strictly speaking, apply as was noted by Scala et. al. [117].

In such a case one can still do a partial RWA, neglecting terms that oscil-

late much faster than γD and keeping those that are slower. This still leaves the

master equation in pseudo-Lindblad form; however, assuming these timescales are

sufficiently slow and the spectrum of environmental noise is sufficiently flat, one may

be able to make an effective Markovian approximation for the remaining pseudo-

Lindblad terms (even if one might not have been valid for original master equation

due to the faster system dynamics that have been ignored in the posT RWA) to

recover a Lindblad-form master equation. Scala et. al. argued this is the case for

cavity QED with a low-temperature bath [116].
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4.2.2.3 Combining RWA-Lindblad Equations

A non-Markovian master equation will exhibit memory in a manner that is

not naively apparent in its time-local representation. This is true even of the RWA-

Lindblad equation, despite the fact that it is of Lindblad form as one would have

in a Markovian limit. Let us consider the master equations for the reduced density

matrices of the (open) systems A and B with Hamiltonians HA,HB each coupled

to a dissipative environment of equivalent influence. We then have the open system

d

dt
ρA = −i[HA,ρA] + δLA{ρA} , (4.50)

d

dt
ρB = −i[HB,ρB] + δLB{ρB} , (4.51)

where the Hamiltonians are those of the free systems and the corrections to the

Liouville operator are introduced via interaction with the dissipative environment.

In the Hamiltonian formalism one can simply add two Hamiltonians and arrive at

another Hamiltonian, though one might be motivated to fix the energy spectrum

through renormalization. One cannot do this with non-Markovian Liouville oper-

ators. E.g. given some coupling HAB between subsystems one cannot simply add

dissipative terms.

d

dt
ρA+B 6= −i[HA +HB +HAB, ρA+B] + δLA{ρA+B}+ δLB{ρA+B} ,(4.52)

The above (incorrect) master equation is in general completely different from the cor-

rect open-system master equation derived from first principles. For non-Markovian

processes, the environmental contributions have a nontrivial dependence (due to

memory effects) upon the system’s dynamics through their couplings. If one changes
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the system Hamiltonian then one must also change the environmental contributions

to be compatible with the history these new terms will create. This is how mem-

ory exhibits itself in a time-local representation. Moreover, one must also take into

account whether or not the dissipative environments are separate or shared. If the

dissipative environment is shared then the two subsystems can interact via environ-

mental back-reaction. This effect is also missed when simply combining the Liouville

operators.

In a general non-Markovian master equation, the problems of the above incor-

rect master equation would be readily apparent as it would likely violate positivity,

uncertainty, etc. Positivity violation will not occur when adding RWA-Lindblad

terms, but the mistake has only become more subtle and therefore more dangerous.

The master equation might be completely positive, but it does not correspond to

the dynamics of the physical system considered. This is the key point.

This issue has already been commented on in the context of cavity QED. The

often-used master equation includes the Hamiltonian for the atom, intracavity field,

and atom-field interaction, but the dissipator used is exactly that of an empty cavity

with dissipation plus that of an atom spontaneously emitting into empty space, so

that the situation is just that depicted in Eq. (4.52). And, indeed, if one begins

instead with the atom-cavity system and derives the microscopic master equation

using the standard technique [26], one finds that the master equation has a different

dissipative term [117, 116]. As explained in [116] if the spectrum of environmental

noise is sufficiently flat then the difference is suppressed, which explains the success

of the standard cavity QED master equation. But this is not true in general, and it
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is a point often overlooked.

4.2.2.4 Application to the two-level atom

Here we consider a two-level system with σz Hamiltonian and energy level

splitting Ω, bilinearly coupled to a thermal reservoir via a σx coupling. This would,

for example, model a two-level atom coupled to the electromagnetic field in the

dipole approximation. Denoting our reduced density matrix

ρ =

 ρ++ ρ+−

ρ−+ ρ−−

 , (4.53)

one can compute the second-order master equation [53] and place it into the form

d

dt

 ρ++

ρ−−

 =
Γ

cosh
(

Ω
2T

)
 −e+ Ω

2T +e−
Ω
2T

+e+ Ω
2T −e− Ω

2T


 ρ++

ρ−−

 , (4.54)

d

dt

 ρ+−

ρ−+

 =

 −Γ− i(Ω− δΩ) +Γ + i δΩ

+Γ− i δΩ −Γ + i(Ω− δΩ)


 ρ+−

ρ−+

 , (4.55)

with decoherence rate (here also the half thermalization rate) and energy level shift

Γ ≡ Γ(Ω) , (4.56)

δΩ ≡ 2

π

∫ ∞
0

dεP
[

Ω

ε2 − Ω2

]
Γ(ε) , (4.57)

in terms of the phenomenological decoherence rate function Γ(ω). P denotes the

Cauchy principal value which regulates contained poles from contributing to the

integral.

This master equation and those that follow are exact to second order, only

the coefficients have been allowed to relax to their asymptotic values. The relax-
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ation occurs quickly, within the system and bath timescales, as compared to their

effect, which occurs in the coupling timescale. Therefore, when considering prop-

erly correlated initial states which do not jolt, it is safe to consider this “late-time”

regime.

In terms of the microscopically derived damping kernel γ̃(ω), the anti-derivative

of the dissipation kernel, the decoherence rate can be expressed

Γ(Ω) = γ̃(Ω) Ω coth

(
Ω

2T

)
. (4.58)

Regardless of system-environment coupling, the damping kernel is effectively con-

stant for Ohmic coupling, which along with high temperature is responsible for

thermal white noise. For linear coupling to the collective positions of a bath of har-

monic oscillators the dissipation kernel has no more temperature dependence than

the system-environment coupling itself.

The post-trace RWA here amounts to neglecting the dynamical interaction

between ρ+− and ρ−+. To second order in the coupling, the only effect of this is

to neglect a perturbative amount of phase information pertaining to their damped

oscillations, i.e. the perturbative change of basis. The asymptotic state works out

to be exactly the same in either case. Thus under the specific conditions leading to

these results the post-trace RWA can be viewed as largely acceptable and somewhat

innocuous.
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4.2.2.5 Application to quantum Brownian motion

Now we return to the example of Quantum Brownian Motion (QBM), which

is of interest since the problem is exactly solvable. The master equation will have

a stationary limit if the noise correlation is not excessively widespread in time (e.g.

a regulated ohmic coupling is perfectly suitable). To lowest order in the coupling,

the late-time expressions for these coefficients can be determined from the weak

coupling master equation [53] to be

Γ = Γ(Ω) , (4.59)

ΩR = Ω− 2

π

∫ ∞
0

dεP
[

ε2

ε2 − Ω2

]
Γ(ε) , (4.60)

Dpp = Γ(Ω) Ω coth

(
Ω

2T

)
, (4.61)

Dxp = +
2

π

∫ ∞
0

dεP
[

1

ε2 − Ω2

]
Γ(ε) ε coth

( ε

2T

)
, (4.62)

in terms of the phenomenological dissipation function, which is proportional to the

dissipation kernel at second order.

For this problem, the Fokker-Planck equation for the probability distribution

function (Wigner function) W in a phase space representation presents a much

cleaner picture with simple solutions [56].

d

dt
W =

{
~∇T H ~q + ~∇TD ~∇

}
W , (4.63)

~q = [x, p]T , (4.64)

~∇ =

[
∂

∂x
,
∂

∂p

]T

, (4.65)

The matrices H and D are the homogeneous and diffusion coefficient matrices
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respectively.

H =

 0 − 1
M

MΩ2
R 2Γ

 , (4.66)

D =

 0 −1
2
Dxp

−1
2
Dxp M Dpp

 . (4.67)

Do not confuse the homogeneous generator with the Hamiltonian; they differ by

some frequency renormalization and the dissipation Γ. From hereon we will assume

the system frequency to be properly renormalized such that ΩR = Ω in the stationary

limit. The diffusion matrix contains two components: the regular diffusion Dpp and

an anomalous anti-diffusion Dxp which keeps the position uncertainty insensitive to

high frequency.

If one expresses the QBM master equation in terms of ladder operators, the

pseudo-Lindblad coefficient matrix can be calculated to be

D =
1

Ω

 Dpp − Γ Ω Dpp + iDxp Ω

Dpp − iDxp Ω Dpp + Γ Ω

 . (4.68)

The rotating-wave approximation then constitutes projecting out the diagonal of

this matrix, which will be positive definite. Transforming back into the phase space

representation, the Fokker-Plank coefficients become

HRWA =

 Γ − 1
M

MΩ2
R Γ

 , (4.69)

DRWA =

 Dpp
2MΩ2 0

0 MDpp
2

 . (4.70)
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The anomalous diffusion coefficient vanishes entirely while the dissipation and reg-

ular diffusion coefficients are both broken in half, with the missing half reappearing

as an analogous coefficient of the master equation.

The role of the homogeneous coefficients are to generate the homogeneous

propagator e−tH. The RWA homogeneous coefficients are just slightly off in both

the oscillation rates and phase; the dissipation rates are entirely correct. Compare

the characteristic frequencies of the two matrices

h = Γ± i
√

Ω2 − Γ2 , (4.71)

hRWA = Γ± iΩ . (4.72)

The diffusion coefficients are relatively more mangled given that the anomalous

coefficient is entirely absent. The effect of diffusion is only present in the second

cumulant or covariance of the Wigner function. For this stationary master equation,

the evolution of the covariance is simply

σ(t) = e−tH [σ(0)− σ(∞)] e−tH
T

+ σ(∞) , (4.73)

where the stationary covariance is determined by the Lyapunov equation

Hσ(∞) + σ(∞)HT = 2D . (4.74)

We can easily compare the stationary covariances.

σ(∞) =

 1
MΩ2

(
1

2Γ
Dpp −Dxp

)
0

0 M
2Γ
Dpp

 , (4.75)

σRWA(∞) =

 1
MΩ2

1
2Γ
Dpp 0

0 M
2Γ
Dpp

 . (4.76)
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Amazingly the only difference in the stationary state will come from the lack of

an anomalous diffusion coefficient. This contribution will ultimately be lower order

in the coupling, due to the Γ−1 prefactor before Dpp, and therefore its absence is

acceptable perturbatively.

4.2.3 The pre-trace rotating-wave approximation

4.2.3.1 Inconsistency of approximation

Let us consider a bilinear interaction Hamiltonian H I between a system ob-

servable L and the collective environment observable l.

H I = L l , (4.77)

For each of these operators, assuming them to be completely non-stationary, there

is a gross raising and lowering decomposition L± given by

L+ =
∑
i>j

〈ωi|L |ωj〉 |ωi〉〈ωj| , (4.78)

L− =
∑
i<j

〈ωi|L |ωj〉 |ωi〉〈ωj| , (4.79)

such that

L = L+ +L− , (4.80)

J = i(L+ −L−) , (4.81)

L†± = L∓ , (4.82)
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where L and J will be two relevant observables. For position coupling with a

harmonic oscillator the decomposition becomes

L = x , (4.83)

L+ =
1√

2MΩ
a† , (4.84)

L− =
1√

2MΩ
a , (4.85)

J =
1

MΩ
p , (4.86)

and for σx coupling with a σz Hamiltonian (two-level system) we have

L = σx , (4.87)

L± =
1

2
σ± , (4.88)

J = −σy . (4.89)

Now consider coupling the system to an environment made of a large number

of harmonic oscillators in their collective positions. Let us furthermore assume the

system coupling is like that of the above harmonic oscillator or two-level system

such that it is characterized by a single frequency Ω.

l =
∑
k

ck xk , (4.90)

H I =
∑
k

ck√
mkεk

{(
L+ ak +L− a

†
k

)
+
(
L+ a

†
k +L− ak

)}
, (4.91)

where xk is the environment position operator with ladder operator ak, energy εk

and mass mk. In the interaction picture we have the interaction Hamiltonian

H I(t) =
∑
k

ck√
2mkεk

(
L+ ak e

+i(Ω−εk)t +L− a
†
k e
−i(Ω−εk)t

)
+∑

k

ck√
2mkεk

(
L+ a

†
k e

+i(Ω+εk)t +L− ak e
−i(Ω+εk)t

)
. (4.92)
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An often utilized pre-trace rotating-wave approximation (preT RWA) is to neglect

the second terms (conventionally referred to as counter-rotating terms) as they are

deemed more rapidly oscillating than the first. However, this is only true in a mode-

by-mode comparison. Keeping terms of frequency |Ω − 2Ω| = Ω while discarding

terms of frequency |Ω + 0| = Ω serves no good purpose. There is no a priori sense

in which this is an approximation at all, unless the only environment modes which

exist are near resonance.

A true bandwidth approximation which does what the preT RWA claims would

instead modify the interaction Hamiltonian of Eq. (4.92) (before tracing out the

environment) by neglecting all the “rapid” terms that oscillate with a frequency

outside some frequency band ∆ω in the interaction picture while retaining all the

slower terms 4. The resulting Hamiltonian would be

H I(t) =
∆ω+Ω∑
εk=0

ck√
2mkεk

(
L+ ak e

+i(Ω−εk)t +L− a
†
k e
−i(Ω−εk)t

)
+

∆ω−Ω∑
εk=0

ck√
2mkεk

(
L+ a

†
k e

+i(Ω+εk)t +L− ak e
−i(Ω+εk)t

)
(4.93)

Note that if ∆ω < Ω, then the bandwidth approximated Hamiltonian would have

no counter-rotating terms . Furthermore, if the environment were such that all

environmental frequencies εk lie in a band around resonance with |εk − Ω| < Ω,

then a bandwidth approximation using this band would be equivalent to dropping

all counter-rotating terms. However, in the general case the two approximations are

4Note that this “bandwidth” Hamiltonian does not arise from restricting the field to some

bandwidth of modes around the resonance frequency.
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inequivalent, and simply dropping all counter-rotating terms is inconsistent.

It is also important to note that if the bandwidth approximation of Eq. (4.93)

is performed with ∆ω chosen such that all near-degenerate terms are retained, then

this is just the sort of RWA we discussed in Sec. 4.2.1. The only difference is that

the environment is to be traced out at the end of the calculation. In any case, such

a bandwidth approximation would render the problem more difficult to solve than

simply calculating a full perturbative solution.

4.2.3.2 Noise and the Markovian limit

The Hamiltonian obtained after RWA is not generally an approximation of

the full interaction Hamiltonian for reservoirs. It is nonetheless a linear Hamilto-

nian interaction with a thermal reservoir and will cause dissipation, decoherence,

thermalization, etc. Therefore it still possesses some of the same character as the

original model.

Back in terms of observables, the RWA interaction Hamiltonian takes the form

H I =
1

2
L
∑
k

ck xk +
1

2
J
∑
k

ck
pk

mkωk
, (4.94)

and thus it describes a different but related set of system variables coupled to a

different, but related set of bath variables. This results in two quantum noise sources

lRWA =
1

2

∑
k

ck xk , (4.95)

jRWA =
1

2

∑
k

ck
pk

mkωk
, (4.96)

which have not only autocorrelations in and of themselves but cross-correlations

between themselves. Perhaps more clearly, if we consider the original damping
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kernel with one L-coupled source

γ̃(ω) = γ̃(ω)

 1 0

0 0

 , (4.97)

then the RWA damping kernel with both L and J -coupled sources becomes

γ̃RWA(ω) =
γ̃(ω)

4

 1 −i sign(ω)

+i sign(ω) 1

 , (4.98)

with reference to the original damping kernel γ̃(ω). The damping kernel, here in

Fourier space, is defined (as in [53]) as the anti-derivative of the multivariate dis-

sipation kernel, which is itself the imaginary part of the multivariate noise correla-

tion in the time domain. The diagonal components come from the self-correlations

〈l(t) l(τ)〉B and 〈j(t) j(τ)〉B, while the off-diagonal components come from the cross-

correlations 〈l(t) j(τ)〉B and 〈j(t) l(τ)〉B.

There is a subtle pathology in the cross-correlations of these two noise sources.

The RWA interaction is an example of couplings to different kinds of bath observ-

ables with strong cross-coupling. Such couplings do not always admit a Markovian

limit. The reason for this is because in addition to high temperature, the white

noise limit also requires a local damping kernel, i.e. one constant in the Fourier

domain. This is not a problem with one noise source as one can typically choose an

appropriate coupling, e.g. Ohmic, such that the damping kernel will work out to be

local. But with multivariate noise one must make all components of the damping

tensor local, including new kinds of terms which arise from the cross-correlations.

Whether or not this is possible depends in part upon any relation between the

self-correlations and the cross-correlations.

137



For the RWA damping tensor, if we make the diagonal components local with

what was Ohmic coupling, then the off-diagonal components will appear highly non-

local like sign(ω). But if we were to choose a coupling as to make the off-diagonal

components local, then the diagonal components will necessarily be highly non-local.

There is no choice of coupling which can give us white noise. This problem with the

white noise limit of pre-trace RWA has been noted before [133].

4.2.3.3 Correspondence with perturbation theory

The perturbative correspondence between the pre-trace RWA and the original

model is a bit more complicated to demonstrate. Let us start with the second-order

corrections for our simple separable coupling without any sort of RWA following

[53].

〈ωk|L[2]{|ωi〉〈ωj|} |ωl〉 = 〈ωk|L |ωi〉
[
A(ωki) + Ā(ωlj)

]
〈ωj|L |ωl〉

−δlj
∑
h

〈ωk|L |ωh〉A(ωhi) 〈ωh|L |ωi〉

−δki
∑
h

〈ωj|L |ωh〉 Ā(ωhj) 〈ωh|L |ωl〉 , (4.99)

with late-time master equation coefficients

A(ω) ≡ 1

2
α̃(ω)− i

2π

∫ +∞

−∞
dεP

[
1

ω − ε

]
α̃(ε) , (4.100)

α(t) ≡ 〈l(t) l(0)〉B , (4.101)

where α is the quantum noise correlation for our stationary bath. These corrections

capture all of the second-order relaxation rates, perturbative frequency shifts, and

basis corrections.
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As we have discussed, the post-trace RWA essentially considers taking only

entries where ωki = ωlj, and under appropriate conditions this is sufficient to repro-

duce all of the perturbative frequency shifts and relaxation rates but not the basis

corrections.

〈ωi + ω|L[2]{|ωi〉〈ωj|} |ωj + ω〉 = 〈ωi + ω|L |ωi〉 2 Re[A(ω)] 〈ωj + ω|L |ωj〉

−δ0ω

∑
ω′

A(ω′) |〈ωi + ω′|L |ωi〉|2

−δ0ω

∑
ω′

Ā(ω′) |〈ωj + ω′|L |ωj〉|2 . (4.102)

One can see that the first terms, which directly correspond to the pseudo-Lindblad

dissipator, are now only determined by the real part of A(ω) or the characteristic

function of the noise correlation α̃(ω). This function is always positive by Bochner’s

theorem.

The pre-trace RWA master equation has four related sets of terms because of

the two correlated noise sources. But as far as these diagonal terms are concerned,

which determine the perturbative timescales, one can essentially consider a master

equation of the same form but with the modified coefficients

ARWA(ω) =
1

2
α̃(ω)− i

2π

∫ +∞

−∞
dε

1 + sign(ω) sign(ε)

2
P
[

1

ω − ε

]
α̃(ε) .(4.103)

The real part, which determines the relaxation rates, remains unchanged. But the

imaginary part, which determines the energy level shifts, is very different. So while

the post-trace RWA can correctly produce all of the perturbative timescales, the

pre-trace RWA can only produce the relaxation rates, consistent with what has

been found in earlier specific cases [6, 4].
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4.2.3.4 Non-Markovian nature of the master equation

It is necessary to point out that, although the pre-trace RWA can often produce

a master equation of Lindblad form, the coefficients are inherently non-Markovian.

Even though the master equation is in a convolutionless form, the coefficients them-

selves contain integrals over the system’s history alongside nonlocal correlations of

the noise. As such, they cannot be universally applied to different systems (which

would have different histories) even if one only wants the relaxation rates. This

was easy to notice for the post-trace RWA as the correctly derived master equation

coefficients would come out to be completely different. Here the reason is much the

same.

For instance, let us consider an oscillator system with x coupling to the en-

vironment. The accuracy of the pre-trace RWA decay rates stems from a correct

a†, a raising and lowering operator decomposition of x. This leads to a different

but related model of environmental interaction with x and p-coupled noise. We

have proven that the perturbative decay timescales will work out to be equivalent,

but only by using the raising and lowering properties. If we couple this oscilla-

tor to additional degrees of freedom in some larger system, then a† and a are no

longer ensured to be raising and lowering operators for the new energy eigenstates

of the system. Once this criterion has been broken, the proof fails to apply and

all coefficients of the misapplied master equation will likely be wrong. A correct

pre-trace RWA interaction would have to involve a raising and lowering operator

decomposition which utilizes the full Hamiltonian of the larger system.
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4.2.3.5 Application to the two-level atom

Utilizing the second-order master equation, we find the RWA interaction Hamil-

tonian yields

d

dt

 ρ++

ρ−−

 =
Γ

cosh
(

Ω
2T

)
 −e+ Ω

2T +e−
Ω
2T

+e+ Ω
2T −e− Ω

2T


 ρ++

ρ−−

 , (4.104)

d

dt

 ρ+−

ρ−+

 =

 −Γ− i(Ω− δΩ?) +Γ + i δΩ?

+Γ− i δΩ? −Γ + i(Ω− δΩ?)


 ρ+−

ρ−+

 , (4.105)

with new energy level shift

δΩ? ≡
1

π

∫ ∞
0

dεP
[

1

ε− Ω

]
Γ(ε) . (4.106)

In addition to differing from the frequency shift without the RWA, it also contains

a higher order cutoff sensitivity. For approximately local dissipation, the sensitivity

was logarithmic but is now linear.

4.2.3.6 Application to quantum Brownian motion

Again utilizing the second-order master equation, we find the RWA interaction

Hamiltonian yields

d

dt
ρ = −i[H?

R,ρ]− iΓ[x, {p,ρ}]−M Dpp[x, [x,ρ]]−D?
xp[x, [p,ρ]] ,(4.107)

with new frequency shift and anomalous diffusion coefficient

Ω?
R = Ω− 1

π

∫ ∞
0

dεP
[

ε

ε− Ω

]
Γ(ε) , (4.108)

D?
xp = +

1

π

∫ ∞
0

dεP
[ 1

Ω

ε− Ω

]
Γ(ε) ε coth

( ε

2T

)
. (4.109)
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For what was Ohmic coupling in the original model, the frequency shift has a dif-

ferent but still linear cutoff sensitivity. However the anomalous diffusion coefficient

now also has a linear cutoff sensitivity. If the cutoff is very large, this could be very

problematic.

4.2.3.7 A multipartite example

Let us say that we have an array of, otherwise non-interacting, parallel qubits

all with σz Hamiltonians. A simple dipole interaction can be represented with the

bilinear interaction Hamiltonian

H I =
∑
n

σxn ln (4.110)

where σxn is the x spin component of the nth qubit and ln is its corresponding

collective environment coupling. The environmental coupling for a qubit at location

~rn is 5

ln =
∑
~k

gk

{
e+i~k·~rn a†~k + e−i

~k·~rn a~k

}
. (4.111)

The resultant damping kernel corresponding to the 〈ln(t) lm(τ)〉B correlation is

γ̃nm(ω) = γ̃0 sinc(rnmω) , (4.112)

where ~rnm = ~rn − ~rm and therefore the damping is Ohmic or local for the autocor-

relations where rnn = 0. The cross-correlations, which are strictly nonlocal, vanish

in the limit of large distance separation.

5Note that this form of the damping kernel assumes that the coupling is independent of the

direction of ~k, which is like an interaction with a scalar field rather than a vector field like the

electromagnetic field.
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The pre-trace RWA interaction, which was considered for two qubits in [11],

introduces the duplication of quantum noise sources

lRWA
n =

1

2

∑
~k

gk

{
e+i~k·~rn a†~k + e−i

~k·~rn a~k

}
, (4.113)

jRWA
n =

i

2

∑
~k

gk

{
e+i~k·~rn a†~k − e

−i~k·~rn a~k

}
, (4.114)

and one must now consider the correlations between all such operators. The resul-

tant damping kernels can be organized γ̃RWA
lnlm

(ω) γ̃RWA
lnjm

(ω)

γ̃RWA
jnlm

(ω) γ̃RWA
jnjm (ω)

 =
γ̃nm(ω)

4

 1 −i sign(ω)

+i sign(ω) 1

 , (4.115)

with reference to the original damping kernel γ̃nm(ω). The scenario is much the same.

The damping rates will be correct, while the frequency shifts and basis corrections

(including asymptotic entanglement) will be incorrect. There is no longer a white

noise limit, even when the qubits are distantly separated.

However this remains a fairly reasonable physical theory, as the RWA interac-

tion itself was fairly reasonable. The cross-correlations between different qubits still

vanishes for large separations. The second-order master equation, being determined

by the second-order cumulants or two-time correlations, will therefore reduce to that

of qubits coupled to independent environments in the large separation limit.

4.2.4 The Effect of Finite Bandwidth

The discussion so far has examined the discrepancies between the mathemat-

ical solutions with and without the RWA. However, in a physical experiment one

does not have access to the pure mathematical solution. In fact, measurements in
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a laboratory must be made using instruments with finite response or integration

times, i.e. finite bandwidth. We will see that measurements under this constraint

obscure some of the inaccuracies introduced by the RWA.

Consider the expectation of an observable O measured with some apparatus

with a finite bandwidth described in the time domain by the function h(t). Assuming

that O is time independent in the Schrödinger picture,

〈O〉 = Tr [O (ρ ∗ h)(t)] (4.116)

in terms of the convolution ρ ∗ h. We know that the solution to the weak coupling

equation has the form of Eq. (1.31), which gives

(ρ ∗ h)(t) =
∑
ij

cijoij
(
h ∗ efijt

)
. (4.117)

In the Fourier domain (ρ ∗ h)(t) becomes ρ̃(ω)h̃(ω) with

ρ̃ (ω) = − 1√
2π

∑
ij

cijoij
i
(
ω − ω′ij

)
+ Re

[
f

[2]
ij

]
(
ω − ω′ij

)2
+ Re

[
f

[2]
ij

]2 , (4.118)

where ω′ij = ωij +Im
[
f

[2]
ij

]
and we have implicitly multiplied ρ(t) by a step function

for convenience (which will be irrelevant for later times assuming h(t) has compact

support). Thus, assuming that h̃(ω) falls off quickly with frequency, all the terms

with large values of ω′ij will be greatly attenuated, and the contributions from o
[2]
ij

may easily become negligible.

For example, let us suppose that the finite bandwidth of the measuring appa-

ratus results in taking a running average of observables with averaging time τa. In

that case, the measured expectation of an observable will be 〈O〉 = Tr [Oρ (t)] with

ρ (t) =
1

τa

∫ τa
2

− τa
2

ρ (t+ τ) dτ. (4.119)
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Using the weak coupling solution we obtain

ρ (t) =
∑
ij

cijoije
fijt

2 sinh (fijτa/2)

fijτa
. (4.120)

If we assume that there is some smallest non-zero frequency Ω for the values of ω′ij,

largest value γ for Re
[
f

[2]
ij

]
, and that Ω � 1

τa
� γ, then we have two small scales

in the problem

1� 1

Ωτa
� γ

Ω
. (4.121)

Any term in Eq. (4.120) for which ωij 6= 0 will be attenuated by 1
Ωτa

, making

the contribution of the second-order basis corrections o
[2]
ij much smaller. Based on

the assumption of weak coupling, these basis corrections must necessarily be small,

but with this extra attenuation they may easily become negligible (even if they

were not previously). Thus, the discrepancies introduced by using the RWA can

be hidden somewhat when making single-time measurements with finite bandwidth.

However, it should be noted that the terms with ωij = 0 will be relatively unaffected

by the finite bandwidth (since they are slowly evolving). So, for example, o
[2]
ii will in

general have corrections with off-diagonal elements (terms proportional to |ωl〉 〈ωm|)

that would be neglected by the RWA, and these are not significantly attenuated by

finite measurement bandwidth. The other issue is that we have only looked at

single-time measurements, and it is not clear without further study to what degree

finite bandwidth would effect the apparent accuracy of the RWA for measurements

of multi-time correlations.

145



4.3 Discussion

In this chapter we have examined the effect of two widely used approxima-

tions, the RWA and the weak coupling approximation (i.e., use of the perturbative

master equation). We have found that each approximation introduces inaccuracies

in the predicted lowest-order corrections to the system dynamics, and we have char-

acterized the source and size of the discrepancies. We have also noted that in the

context of some experiments these errors may be too small to be detected. On a

theoretical level, however, this sheds significant new light on problems of positivity

and may have some implications for entanglement dynamics.

We have shown that even when provided with a stationary master equation

describing dynamics that are amenable to perturbative solution, the solutions to

an order-2n perturbative master equation are, in general, only accurate to order-

(2n−2), a step down from that of the master equation itself. This has a wide range

of implications upon the common use of second-order master equations and related

master equations derived from second-order dynamics: the Redfield, Born-Markov,

and many Lindblad equations. Moreover, not even a nonlocal representation, such

as with the Nakajima-Zwanzig master equation can avoid this effect. This is to be

expected as a thorough analysis of time-local and nonlocal dynamics shows their

asymptotics to be perturbatively the same [53].

To be more specific, the second-order master equation can provide all second-

order timescales and off-diagonal density matrix elements (in the free energy ba-

sis). However it can only provide the diagonal matrix elements with zeroth-order
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accuracy, and the missing information is the most relevant to positivity in the

low-temperature regime. Therefore the second-order master equation can produce

second-order positivity violations, whereas the full second-order solutions are posi-

tive to second-order. Likewise, the steady state of the second-order master equation

may only agree with the steady state of the full master equation to zeroth order.

Without knowledge of the accuracy limitations we have discussed, this violation

of positivity could easily be mistaken as a problem with the physics of the master

equation.

More generally, the predicted expectation of observables will typically be off

by a second-order amount, except if an observable O anticommutes with the Hamil-

tonian. Certainly the energy or other quantities that were conserved at zeroth order

will have such discrepancies, as will any quantities involving the diagonal elements of

the density matrix. We have shown that this inaccuracy manifests itself in the case

of quantum Brownian motion (where an exact solution is available for verification)

through an underestimation of the position uncertainty stationary limit. As we will

see in Ch. 5, these same inaccuracies affect predictions about the dynamics of en-

tanglement in bipartite systems, and the complete second-order solution is required

make meaningful predictions about the sudden death of entanglement.

We have also systematically examined the rotating-wave approximation by us-

ing the weak-coupling master equation. There are, in fact, two distinct rotating-wave

approximations: The pre-trace RWA is an approximation performed on the inter-

action Hamiltonian before the environment is traced out which yields a somewhat

modified Hamiltonian dynamics from which the reduced dynamics can be derived.
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The post-trace RWA is performed on the master equation for the reduced density

matrix after the environment has already been traced out. Using the general frame-

work of [31], we have compared the master equation describing the dynamics of this

open system under the pre and post-trace RWA to the dynamics without making

such an approximation. We have specifically addressed the master equations for a

two-level system and for a linear oscillator, two models in which the RWA is often

invoked.

We find the post-trace RWA to be more innocuous than the pre-trace RWA.

It can be seen as an approximation in which the full weak-coupling Liouvillian

(which is time-local and of pseudo-Lindblad form) is projected onto a Lindblad-form

Liouvillian. We call the resulting master equation the RWA-Lindblad equation.

We find that for a general open quantum system the post-trace RWA will yield

exactly the same timescales as perturbative solutions of the weak-coupling master

equation. The perturbative corrections to eigen-operators of the Liouvillian are

neglected in the RWA-Lindblad equation, so the details of the predicted quantum

state will differ. In particular, the steady state solution of the RWA-Lindblad master

equation will differ from the true steady state by an amount that is perturbative in

the coupling, adding to discrepancies already present from using the weak coupling

approximation. Our results are consistent with what Agarwal found [6, 4, 5] for

the two-level atom and the linear oscillator in the Born-Markov approximation.

One context in which the discrepancy in the steady state could be important is

examining the late-time behavior of entanglement dynamics at low temperature.

When the system is bipartite and the ground state is separable, the RWA-Lindblad

148



equation will give an asymptotically separable state, whereas the weak-coupling

master equation leaves open the possibility of asymptotic entanglement. In view of

our findings, we can say that generally the post-trace RWA is suitable if one only

wants the perturbative timescales of the dynamics, but it may not be appropriate if

one wants more detailed information about the quantum state of the system, as it

misses some corrections introduced by the coupling to the environment, and it will

also not be appropriate when perturbative timescales fail, i.e. for near-resonance in

the energy level splittings.

We find the pre-trace RWA to be more problematic. When the environment

contains many frequencies with a spread comparable to the frequencies of the sys-

tem, then the pre-trace RWA in general does not provide a faithful representation

of the true solution. We also find that the pre-trace RWA results in two strongly

correlated sources of environmental noise that together have no Markovian limit.

The cross-correlations between the noise sources are such that if the autocorrela-

tions are white then the cross-correlations are strongly colored. This issue has been

noticed before [133]. Finally, we have shown that, unlike the post-trace RWA, the

pre-trace RWA in general does not correctly obtain all perturbative timescales for

the dynamics, yielding incorrect frequency shifts. This finding based on a more

extended theoretical framework agrees with results obtained for specific cases stud-

ied before for the two-level atom [6, 4, 5]. In use, this problem may be obscured

if the renormalized system frequencies are simply determined phenomenologically.

It is worth noting that Klimov et al. have developed a different, algebraic way of

analyzing the pre-trace RWA [86].
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We caution that the way the RWA is applied also matters. For Markovian

processes in closed and open systems, certain liberties can be taken with the master

equation; dissipation terms can be simply added together to find their collective

effect and the interplay between the system Hamiltonian an dissipator coefficients

is absent. A Markovian process will generally produce a master equation of Marko-

vian (i.e. time-local) representation and Lindblad form. The RWA can also produce

a master equation of Markovian representation and Lindblad form, and therefore

one might assume that the master equations can be treated in the same caviler

fashion as those for Markovian processes. But this is not the case, as the underly-

ing stochastic process remains non-Markovian and the master equation coefficients

contain memory despite their Markovian representation. A haphazard construction

of RWA-Lindblad master equations for multipartite systems, or those with exter-

nal forcings, can produce an evolution which is completely positive and yet totally

unphysical.

A single two-level atom is clearly a particularly simple quantum system. As

such, some of the shortcomings of the RWA are obscured in this case. We find that

the post-trace RWA gives the correct equilibrium state for a thermal environment

in this case, in addition to the correct timescales, though it does miss some of the

corrections to the transient quantum evolution that can be obtained from the weak-

coupling master equation without the RWA. Thus, if one’s theoretical investigations

are limited to those features that it captures correctly, then the post-trace RWA

may be a suitable approach.

To summarize the total effect of both approximations it is useful to think about
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the elements of the density matrix ρij in the energy basis. We have said that using

weak coupling approximation (i.e. solving the second-order master equation) yields

O (γ/Ω) errors (if there is a characteristic system frequency Ω and dissipation rate

γ) in the diagonal elements of the density matrix. Introducing the posT RWA intro-

duces additional O (γ/Ω) errors in all the elements of the density matrix. Even with

both these approximations, the timescales calculated will be correct to O (γ). Us-

ing the preT RWA will additionally introduce errors in the environmentally-induced

frequency shifts (as well as seemingly destroying the Markovian limit).

There are three mathematical limits in which these approximations will still

give solutions accurate to second order: The first is early times, where t is small com-

pared to any of the second-order damping time scales. The second is the Markovian

limit, because in this limit the second-order master equation is exact and of Lindblad

form. The third is the limit employed by Davies [40] where one rewrites the master

equation in terms of the rescaled time parameter τ = g2t and then takes the limit

g → 0 (for τ 6= 0 this effectively amounts to taking a simultaneous t → ∞ limit).

In this limit all corrections to the eigenoperators of the Liouvillian vanish, and the

only effect of the environment is to introduce damping rates through corrections to

the eigenvalues, which are correctly captured by the perturbative master equation

and posT RWA. Thus, the inaccuracies introduced by these approximations may be

sufficiently suppressed (even at late times) if a physical system is sufficiently close

to being described by one of these limits.

Reading about the inaccuracies present in the predicted lowest-order correc-

tions under the weak-coupling approximation and RWA, one might easily question
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the apparent success of their ubiquitous application in atomic physics and the lit-

erature on open quantum systems more generally. In atomic physics, the answer is

often simply that the coupling is so small that one is essentially in the limit used

by Davies. The lowest-order dissipation rates (decoherence and population decay)

introduced by the environment will always become important at sufficiently late

times, when t & 1/γ. Lowest-order corrections to the eigenoperators contribute

only O (γ/Ω) to the state at all times. But in an optical-frequency atomic sys-

tem, for example, one can have γ/Ω ∼ 10−9, so that these corrections will be too

small to be noticed unless one were doing a very high precision experiment with

extraordinarily low noise.

If one is concerned with predicting the values of observables measured at a sin-

gle time in an experiment with finite temporal resolution (characterized by timescale

τa that is long compared to system timescales and short compared to dissipation

timescales), then many of the terms in the weak coupling solution (specifically those

with ωij 6= 0) will be suppressed by an additional factor of O
(
(Ωτa)

−1). This could

easily make terms arising from o
[2]
ij that were small but measurable become negligi-

ble. However, there will still be off-diagonal corrections from the terms with ωij = 0

that will not be suppressed by finite measurement bandwidth.

The practical applicability of these results will then depend on precisely how

small γ/Ω is, the accuracy with which measurements are made, and the temporal

resolution of the measurements. Our results should be most heeded in the non-

Markovian regime of low temperature or long-ranged correlations in contexts where

O (γ/Ω) discrepancies are not negligible. We will see in Ch. 5 that these considera-
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tions do have an impact on theoretical examination of entanglement dynamics in low

temperature environments. Also, we have not addressed the question of multi-time

correlation measurements in the non-Markovian regime, where these approximations

could potentially be more problematic.
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Chapter 5

Entanglement Dynamics Beyond the Rotating-Wave Approximation

In this chapter we apply the results of Ch. 4 to understand entanglement dy-

namics in weakly coupled open quantum systems. We explore the effects of the weak

coupling approximation and rotating-wave approximation (RWA) on our predictions

for asymptotic entanglement dynamics at late time for a general bipartite system

where interaction between the subsystems happens only through the environment.

Specifically, we focus on the issue of sudden death. We then proceed to apply the

weak-coupling master equation to a specific such system, namely two atoms sharing

a common field. Using that approach we find the dynamics of the system without

invoking the RWA. We then examine the entanglement dynamics and its relationship

to atomic separation for this case.

5.1 Weak Coupling, the Rotating-Wave Approximation, and Asymp-

totic Entanglement Dynamics

We have already said in Sec. 4.1 that in any calculation using the second-

order master equation, we know that there will be second-order inaccuracies in the

diagonals of the density matrix, and this will generally lead to discrepancies in the

value of entanglement obtained. The addition of the post-trace RWA adds further

errors of the same size. However, so long as the weak coupling approximation is good,

154



these errors will be small; thus, the qualitative picture of entanglement, including

generation, sudden birth, sudden death, and revival, should be much the same,

except in specific cases where such a small discrepancy would make a qualitative

difference. The question of SD focuses on whether or not entanglement will decay

to zero asymptotically, however, so if one understands the late time behavior one

may be able to make broader statements about SD.

5.1.1 Asymptotic State for Weak Coupling and a Thermal Reservoir

We have assumed a bipartite system with interaction between the two oc-

curring only through the environment which is thermal and weakly coupled to the

system. To zeroth order in the system-environment interaction, the asymptotic

steady state is Boltzmann, which can be expressed

ρT =
∏
n

ρTn , (5.1)

ρTn ≡ e−Hn/T/Tr
[
e−Hn/T

]
(5.2)

and is uncorrelated. The asymptotic state of the second-order master equation is

consistent with this result and can additionally provide some of the second-order

corrections δρT via the constraint

L[0]{δρT}+ L[2]{ρT} = 0 . (5.3)

These will specifically be the off-diagonal or non-stationary perturbations. In gen-

eral, to find the second-order corrections to the diagonal elements of the density

matrix one needs to compute contributions from the fourth-order Liouvillian as

discussed in Sec. 4.1.
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It has been shown [104, 53] that for non-vanishing interaction with the envi-

ronment the off-diagonal elements of the asymptotic state match reduced thermal

state

ρβ ≡
1

ZC(β)
TrE

[
e−β(H+HE+HI)

]
, (5.4)

where ZC(β) is the partition function of the system and environment with non-

vanishing interaction. We will refer to ρβ as the thermal Green’s function; this

function can be expanded perturbatively in the system-environment coupling as

ρβ =
1

Z0(β)
e−βH + δρβ + · · · , (5.5)

where Z0(β) is the partition function of the free system. These coefficients agree

perturbatively with those from Eq. (5.3). Because such an expansion is inherently

secular in β, it is valid only at a sufficiently high temperature such that the pertur-

bations are small compared to the smallest Boltzmann weight,

γ

Ω
� e−β(Ωn+Ωm) =

(
n̄(Ωn, T )

n̄(Ωn, T )+1

)(
n̄(Ωm, T )

n̄(Ωm, T )+1

)
, (5.6)

where Ω is the smallest positive system frequency splitting (i.e., a characteristic

system frequency) and γ is the largest dissipation rate. The expansion does not

apply at lower temperatures, and n̄(Ωn, T ) is the thermal average photon number in

a bosonic mode with frequency Ωn and temperature T . Reliability of the expansion

at higher temperature suggests that the diagonal corrections to the asymptotic state

must be suppressed in that regime.

Since neither the second-order master equation nor the perturbative expansion

of the thermal Green’s function can give the full low-temperature solution, including
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diagonal corrections, it appears that in general this will require the fourth-order

master equation coefficients. However, at zero temperature the thermal state is

simply the ground state of the total system-environment Hamiltonian. This ground

state can be calculated perturbatively from the Hamiltonian as usual in a closed

system, and the zero-temperature reduced thermal state follows directly. All three

of these formalisms are fully consistent as shown in Ref. [53]. It is unclear how

to compute the complete second-order corrections to the asymptotic state for low

positive temperatures.

5.1.2 Late-time Entanglement Dynamics of Two Qubits

Let us consider two consider two qubits labeled n and m with frequencies

Ωn and Ωm, and let γ and Ω still the largest dissipation rate and smallest positive

frequency splitting, respectively. To quantify the bipartite entanglement we will

use Wootters’ concurrence function [134], which we have said is a monotone with

a one-to-one relationship to the entanglement of formation for two qubits. The

concurrence is defined in Eq. (1.47), but it will be useful to rewrite it in terms of

what we will call the unmaximized concurrence C as

C(ρ) = max {0, C(ρ)} (5.7)

C(ρ) =
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4. (5.8)

A two-qubit state is entangled if and only if C > 0. It is important to note

that C (ρ) is a continuous function of the matrix elements of ρ (since the eigenvalues

of a matrix can be written as a continuous function of the matrix elements [121]);
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this then implies that any density matrix with C < 0 lies in the interior of the

set of separable states (with every sufficiently nearby state also separable), while

states with C > 0 lie in the interior of the set of entangled states. States with

C = 0 are separable but include states that lie on the boundary between the two

sets, infinitesimally close to both entangled states and the interior of the separable

states. Any separable pure state lies on this boundary [73].

Given the late-time asymptotic state of the two qubits ρnm, one can easily

compute the asymptotic entanglement from C (ρnm). Based on the preceding para-

graph, however, we know that this will also tell us something qualitatively about

the late-time entanglement dynamics. Assuming only continuous evolution in state

space, if C (ρnm) < 0 then every initial state must become separable at some finite

time as it crosses into the set of separable states. Likewise, if C (ρnm) > 0 then

all initial states lead to entanglement at sufficiently late time, any sudden death of

entanglement must be followed by revival, and any initially separable state must

become entangled. In models that have a unique asymptotic state, it is only when

C (ρnm) = 0 that this qualitative feature of the late-time behavior will depend on the

initial state, with some entangled states remaining separable forever after some finite

time and others becoming disentangled only asymptotically in the limit t→∞ as in

[138, 49]. Previous work has pointed out that the late-time entanglement dynamics

can be determined by the character of the asymptotic state [139, 39], with Yu and

Eberly [140] discussing the role of C in predicting sudden death. In Refs. [140, 39]

the authors consider models with multiple steady states, a situation which intro-

duces additional dependence on initial conditions. The previous work, however, was
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Figure 5.1: Qualitative plot of an (unmaximized) entanglement function
showing dynamics including entanglement sudden death, revival, and
asymptotic separability.

based upon perturbative master equations using the RWA (where microscopic mod-

els were used); in that case the asymptotic state is just the separable Boltzmann

state. We will see that the correct second-order asymptotic state is necessary to

make predictions about SD at low temperature.

It can be seen that none of the foregoing discussion is specific to the concur-

rence; it would apply to any continuous function of the density matrix that takes on

negative values for some separable states and is an entanglement monotone when

non-negative. If we have such an unmaximized entanglement function E from which

an entanglement monotone can be defined by E = max {0, E}, then we can use it

just as we have discussed using C above. As illustrated qualitatively in Fig. 5.1,

entanglement sudden death occurs because the unmaximized entanglement function
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asymptotes towards a negative value, whereas any entanglement monotone (derived

from E or otherwise) cannot go below zero, leading to an abrupt sudden death of

entanglement when E becomes negative.

An important point arises from the facts we have noted about C and sepa-

rability: At sufficiently low temperature the O(γ/Ω) corrections to the asymptotic

state are required to calculate the sign of C (ρnm) and, therefore, the qualitative

features of late-time entanglement dynamics. At zero temperature, the zeroth-order

asymptotic state is simply the ground state of the system, assuming no degeneracy

at the ground energy, according to Eq. (5.1). Thus the zeroth-order asymptotic

state is a pure separable state. This means that it lies on the boundary between

the entangled and separable states, and in general some initial states will suffer

sudden death while others will not, as depicted in Fig. 5.2(a). But any non-zero

perturbation, however small, can lead to asymptotic entanglement or can place the

asymptotic state in the interior of the separable states, implying sudden death for

all initial conditions. Fig. 5.2(b) shows each of these situations. Thus, knowing only

the zeroth-order asymptotic state one can make no meaningful prediction about

late-time entanglement dynamics, and this will always be the case when working

with a perturbative master equation and using the rotating-wave approximation,

because the second-order corrections to the asymptotic state are neglected as we

saw in Ch. 4. This makes calculations such as [49] incapable of correctly predicting

whether SD is universal or there is asymptotic entanglement at late times.
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At positive temperature the zeroth-order asymptotic state is simply the Boltz-

mann state ρT , which lies in the interior of the set of separable states [139], and

ρT ρ̃T =
e−(Ωn+Ωm)/T

Z0(T )2
1 , (5.9)

so that C (ρT ) = −2e−(Ωn+Ωm)/(2T )/Z0(T ). The O(γ/Ω) corrections to ρnm will

yield order O(γ/Ω) corrections to ρnmρ̃nm. Then simply from the definition of C

we know that so long as the temperature is sufficiently high that Eq. (5.6) is satisfied

the corrections to ρnm will cause at most O(γ/Ω) corrections to C (ρnm) so that

it must remain negative. Consequently, the second-order asymptotic state still lies

in the interior of the separable states, and all initial states will suffer entanglement

sudden death at sufficiently late times. For lower temperatures it does not appear

that the sign of C (ρnm) can be generically predicted, and one must find the late-

time asymptotic state for the specific system in question which generally requires

terms from the fourth-order master equation.

5.2 Two Atoms in a Field Common Field

A common setting for theoretical discussion of SD is atomic systems interacting

with the electromagnetic field [138, 136, 137, 49, 11, 12], serving as an environment

in the quantum open system perspective. All of this work has been performed in the

RWA, and most [138, 136, 137, 49] under the BMA. A fully non-Markovian treatment

of multiple two-level atoms in a common quantum field has yet to be carried out

in a manner which can predict entanglement evolution fully and address critical

issues such as sudden death of entanglement. As discussed in Sec. 5.1, perturbative
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master equations (which BMA master equations are equivalent to) derived under

the RWA are unsuitable for examining asymptotic entanglement dynamics and SD,

due to inaccuracies in the predicted asymptotic state. Additionally, use of the

RWA makes proper consideration of near resonance (as additional near-stationary

terms are needed in the Dirac picture) 1. The existence of a subradiant dark state

generically requires the resonance condition, but determining how critical this is

requires some analysis of the near-resonance regime.

Rather than employing the BMA or RWA, we use the weak coupling master

equation. We make careful and justified use of the second-order master equation for

the dynamics, paying attention to the expected accuracy of the solutions. We use

the alternative (but compatible) means of calculating the late-time asymptotics from

the system+environment ground state. In this way we are able to show that the two

atoms in a single field are not asymptotically entangled, even when near resonance

and very close together — which is the criterion for a dark state. This asymptotic

behavior turns out to be the opposite of what one finds with two oscillators in a field,

which can be asymptotically entangled [92]. In fact, we find that the entanglement

of any pair of atoms will always undergo sudden death, regardless of the initial state.

We also find that coherence can be long lived amongst the ground state and dark

states, and we proceed to describe all relevant timescales of the atom-field system.

We explore what conditions are required for sub- and super-radiance in terms of

proximity, tuning, and dissipation. In brief, to achieve dark and bright states one

1Near resonant terms can be preserved in implementing the RWA, but this will then lead to a

master equation not of Lindblad-form as in [116].
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requires proximity better than the resonant wavelength and tuning better than the

ordinary dissipation rates. Temperature only appears to change the nature of these

states and does not diminish their existence (other than increasing any positive

decay rates linearly).

In physical terms the sub- and super-radiance of the dark and bright states

are ultimately a result of interference among the multiple noise processes provided

by the field modes evaluated at different locations. As such, one cannot simply

add the emission rates of two isolated atoms. Some special mention should also

be given to our treatment of renormalization. Previous works have only considered

renormalization of the atoms individually, which is sufficient if the atoms are far

apart, and also simultaneous in time, which is sufficient in the late-time regime.

Here we “dress” the joint system in its entirety, which gives rise to an immersed

dynamics more similar to the free system and also more well behaved. Our counter

terms are also introduced along the light cone, which keeps the full-time theory

causal, and not across all of space simultaneously.

5.2.1 Second-order master equation

5.2.1.1 System-environment coupling and correlations

We wish to investigate the properties of multiple atoms with frequencies Ωn

interacting with a common electromagnetic field in free space, which serves as the

environment in the open quantum system description. As before we will use the two-

level approximation to describe the atoms, so that they are an array of otherwise
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non-interacting qubits. It will be convenient to write the interaction Hamiltonian

of our system with the environment as

H I =
∑
n

σxn ln (5.10)

where σxn is the x spin component of the nth qubit and ln is its corresponding

collective environment coupling. The environmental coupling for an atom at location

~rn with dipole moment ~dn is

ln =
∑
~k,s

i
b√
k

(
~dn · ~ε~k,s

){
e+i~k·~rn a~k,s − e

−i~k·~rn a†~k,s

}
, (5.11)

with b a constant and where ~ε~k,s denote the polarization vectors perpendicular to ~k

for an electro-magnetic field environment such as discussed in Ref. [4, 131, 10] and

Sec. 1.3. For a scalar field environment one can simply neglect the dot product.

We calculate the resultant damping kernels corresponding to the correlation

functions of the scalar field αnm(t, τ) = TrE [ln(t) lm(τ)] to be

γ̃nm(ω) = γ̃0 sinc(rnmω) , (5.12)

and for the electromagnetic field,

γ̃0

{
FS1(rnmω)

(
d̂n · d̂m

)
− 1

2
FS0(rnmω)

(
d̂ ‖n · d̂ ‖m

)}
, (5.13)

in the Fourier domain. Here ~rnm = ~rn − ~rm is the separation vector and d̂‖ denotes

the component of the dipole unit vector parallel to ~rnm, with the entire functions

FS1(z) ≡ 3

2

(z2 − 1) sin(z) + z cos(z)

z3
, (5.14)

FS0(z) ≡ 3
(z2 − 3) sin(z) + 3 z cos(z)

z3
. (5.15)
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Figure 5.3: Comparison of sinc (bold), FS1, and FS0 (dashed). Sinc and
FS1 are extremely qualitatively similar, both being unity at zero whereas
FS0 vanishes at zero.

In Fig. 5.3 we compare these functions. One can see that the scalar-field correlations

are very similar to that of the electromagnetic field when ~dn ‖ ~dm ⊥ ~rnm. Under

this condition, one can also see that the cross correlations, which are very nonlocal,

are maximized when the dipoles are very close. Whereas when the dipoles are very

far apart, the cross correlations always vanish and thus all noise can be treated

independently. As we will wish to maximize cross correlations, we will primarily

work with the scalar-field correlations, which one can think of as being very similar

to the parallel dipoles.

Our theory will be manifestly causal (as long as our renormalization and state

preparation is causal) given that our field correlations are inherently causal. Note
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for instance the temporal representation of the scalar-field damping kernel

γnm(t) =
γ̃0

2
δrnm(t) , (5.16)

δr(t) ≡
θ(r−|t|)

2r
, (5.17)

where θ is the Heaviside step function. This kernel strictly adheres to the light cone.

The fluctuation-dissipation relation allows us to express the environmental

correlations in terms of the damping kernel as

α̃(ω) = γ̃(ω)
ω

sinh
(
ω

2T

)e− ω
2T , (5.18)

= 2 γ̃(ω)ω [n̄(|ω| , T ) + θ(−ω)] , (5.19)

and also noise kernel as

ν̃(ω) = γ̃(ω)ω coth
( ω

2T

)
, (5.20)

= γ̃(ω) |ω| [n̄(|ω| , T ) + 1] , (5.21)

where n̄(ω, T ) is the thermal average photon number in a mode of frequency ω. The

damping kernel γ̃(ω) characterizes dissipation, the noise kernel ν̃(ω) characterizes

diffusion, and the full quantum correlation α̃(ω) can be thought to characterize

decoherence [54]. For two very close and parallel dipoles the off-diagonal entries of

the kernels approach the diagonal values, and in doing so an eigen-value must also

vanish. At resonance this damping and decoherence deficit can give rise to a “dark

state” as we explain more thoroughly in Sec. 5.2.2.2.
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5.2.1.2 Master equation form and coefficients

We will find the dynamics of the reduced density matrix of the atoms using

the weak-coupling master equation Eq. (1.17). In this case

L[2] ρ =
∑
nm

[
σxn ,ρ (anm� σxm)† − (anm� σxm)ρ

]
, (5.22)

with the second-order operator most easily represented by the ladder operators as

(anm� σxm) = Anm(+Ωm) σ+m + Anm(−Ωm) σ−m , (5.23)

and the second-order coefficients being related to the correlation function as

Anm(ω) =
1

2
α̃nm(ω)− iP

[
1

ω

]
∗ α̃nm(ω) , (5.24)

here in the late-time limit (as compared to system and cutoff timescales), where P

denotes the Cauchy principal value.

The first portion of the second-order coefficient, or Hermitian part (here real),

is immediately given by Eq. (5.19). Whereas the second term, or anti-Hermitian

part (here imaginary), must be evaluated via the convolution

Im[Anm(ω)] = − 1

2π

∫ +∞

−∞
dεP

[
1

ω − ε

]
α̃nm(ε) , (5.25)

and together they form a causal response function. These are the coefficients which

often require regularization and renormalization. For now let us simply evaluate

the bare coefficients for non-vanishing r. For finite temperatures, the coefficients

exactly evaluate to

Im[Anm(ω)] = +
γ̃0

rnm

1

π
Im

[
Φ1

(
i ω

2πT
; 2πTrnm

)]
− γ̃0

rnm

{
T

ω
− 1

2

[
coth

( ω
2T

)
− 1
]

cos(rnmω)

}
, (5.26)
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in terms of the Lerch Φ1 function

Φ1(z;λ) ≡
∞∑
k=1

e−kλ

k + z
. (5.27)

This functional representation is exact, though best for positive temperature. Con-

versely, one also has the low-temperature expansion

Im[Anm(ω)] =
γ̃0

rnm

sign(ω)

π

∞∑
k=1

Sk (5.28)

− γ̃0

rnm

1

π
[sin(rnmω) ci(|rnmω|)− cos(rnmω) si(rnmω)] ,

in terms of the summand

Sk =
Ei[(+kβ + i rnm)|ω|]

e(+kβ+i rnm)|ω| +
Ei[(−kβ + i rnm)|ω|]− i π

e(−kβ+i rnm)|ω| , (5.29)

and where the trigonometric integrals are defined

si(z) ≡ −
∫ ∞
z

dz′
sin(z′)

z′
, (5.30)

ci(z) ≡ −
∫ ∞
z

dz′
cos(z′)

z′
, (5.31)

Ei(z) ≡ −
∫ ∞
−z
dz′P

[
e−z

′

z′

]
, (5.32)

however, for positive temperatures this expansion is not well behaved for small

energy differences. For zero temperature, the exact relation (the second term on

the right-hand side in (5.28)) is well behaved and matches perfectly to the zero-

temperature limit of Eq. (5.26).

At resonance it may be useful to cast Eq. (5.22) in a somewhat more familiar

form as

d

dt
ρ = −i [H + VRW + VNRW,ρ] + DRW{ρ}+ DNRW{ρ} , (5.33)
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with the Hermitian generators

VRW ≡ +
∑
nm

Im[Anm(−Ω)]σ+nσ−m

+
∑
nm

Im[Anm(+Ω)]σ−nσ+m , (5.34)

VNRW ≡ +
∑
nm

Anm(+Ω)− A∗nm(−Ω)

2i
σ+nσ+m

+
∑
nm

Anm(−Ω)− A∗nm(+Ω)

2i
σ−nσ−m , (5.35)

and (pseudo) Lindblad-form dissipators

DRW{ρ} ≡
∑
nm

Γnm (n̄(Ω, T ) + 1) (2σ−nρσ+m−{σ+mσ−n ,ρ})

+
∑
nm

Γnm n̄(Ω, T ) (2σ+nρσ−m−{σ−mσ+n ,ρ}) , (5.36)

DNRW{ρ} ≡
∑
nm

A∗nm(−Ω)+Anm(+Ω)

2
(2σ+nρσ+m−{σ+mσ+n ,ρ})

+
∑
nm

A∗nm(+Ω)+Anm(−Ω)

2
(2σ−nρσ−m−{σ−mσ−n ,ρ}) , (5.37)

where Γnm = Ω γ̃nm(Ω) is the zero-temperature value of Re[Anm(−Ω)]. The RW

terms are among those preserved in the rotating-wave approximation RWA, which

results in a Lindblad master equation even outside of the Markovian regime as

discussed in Sec. 4.2. At zero temperature these terms coincide with the form of the

master equation in Ref. [49] and their expression for the distances dependence of

Γnm. The NRW terms are the so-called “counter-rotating” terms that are neglected

in the RWA (though not necessarily VNRW).

Note that sinc(ω/Λ) is a high frequency regulator: sinc(z) : [0,∞) → [1, 0)

sufficiently fast for all of our integrals to converge. Therefore we do not need to
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consider any additional regularization in our damping kernel if we do not evaluate

sinc(rω) for vanishing r. Instead of allowing r to vanish for self-correlations, we

impose a high frequency cutoff r0 = Λ−1, perhaps motivated by the non-vanishing

physical size of the dipole. The more common alternative is to introduce cutoff

regularization directly into the field coupling ln in Eq. (5.11), often by treating the

coupling strength b as a form factor with some gradual ~k-dependence. Different

choices of cutoff regulators will yield the same results to highest order in Λ, and the

theory should be somewhat insensitive to these details in the end.

Given some form of regularization, the coefficients are then bounded yet also

cutoff sensitive. The remaining cutoff sensitivity is reduced through a renormaliza-

tion scheme. The typical scheme in quantum open systems is to subtract off the

zero-energy correction

Im[Anm(0)] = − γ̃0

2 rnm
. (5.38)

This is equivalent to the quadratic σxnσxm counter-term which arises from moving

the bilinear system-environment interaction into the square of the harmonic poten-

tial for the environment. There are numerous reasons for this choice of renormal-

ization. Most importantly it is the minimal renormalization which ensures a lower

bound in the energy spectrum of the interacting system + environment Hamiltonian

for all strengths of interaction [53].
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The bare coefficients contain linear cutoff sensitivity while the renormalized

coefficients are only logarithmically cutoff sensitive. As depicted in Fig. 5.4, this

cutoff sensitivity only appears for small r as sinc(rω) acts as a natural cutoff regula-

tor regardless of any cutoff regulation we might put in by hand. Small r divergence

appears in the coefficients, and thus the induced frequency shifts, of other works

[91, 50, 49, 11], which may arise if one has not considered regularization of the full

influence of the environment, including all cross terms. Here we have chosen to reg-

ularize and renormalize all coefficients Anm(ω) and not simply the auto-coefficients

Ann(ω).

Putting aside the previous arguments, one might consider renormalization to

be a choice of model. However one is not free to choose any form of joint regu-

larization. In previous works, when the cross terms were left unregularized, the

implication is that the environment correlation function α(ω) (5.19) and related

influence kernels are not positive definite for large ω. Their environment correla-

tion therefore does not strictly correspond to any microscopic model and there can

potentially be some pathology associated with this.

Finally we question the physical implications of renormalization or the lack

thereof in its entirety. Without full renormalization of cross terms, one has a theory

where neutral atoms have 1/r potential interactions at close range. This does not

appeal to physical expectations.

For the full-time evolution of initially uncorrelated states, one must apply the
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full-time coefficients

Anm(ω; t) =

∫ t

0

dτ e−iωτ αnm(τ) , (5.39)

which must exhibit causal behavior as the field correlations are causal. At zero

temperature there is a (r− t)−1 pole in the integrand which can be encapsulated by

contour integrals for t > r. The encapsulation of this pole produces an activation

jolt in the master equation coefficients precisely at t = r which we plot in Fig. 5.5.
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Prior to the jolt, the master equation coefficients are roughly zero; whereas

after the jolt, the coefficients are roughly their asymptotic value. For positive tem-

peratures there is an infinite series of poles increasingly attenuated by the rising

temperature.

With the consideration of renormalization, one becomes even more directly

confronted with causality. If renormalization is applied to the entire system simul-

taneously, e.g.

Im[Anm(ω; t)]→ Im[Anm(ω; t)]− Im[Anm(0;∞)] , (5.40)

then the renormalization will be felt instantaneously over finite distances. Effectively

such an acausal renormalization is introducing a counter term into the Hamiltonian

at t = 0 for which there is nothing to counter until t > r. Whereas if renormalization

is applied at a retarded time, e.g.

Im[Anm(ω; t)]→ Im[Anm(ω; t)]− θ(t−rnm) Im[Anm(0;∞)] , (5.41)

where θ(z) denotes the unit-step function, then the renormalized theory will be

as causal in its behavior as the non-renormalized theory. Renormalization (and

any state preparation [55]) must be performed in a causal manner (along the light

cone) if one desires causal evolution. Improper renormalization, in the context of

a factorized initial state of the system and environment, will create (apparently)

mediated interactions between the atoms which are activated before mediation can

actually occur. Such a theory is Hamiltonian, but not causal.
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5.2.2 Second-order solutions

From an analysis of the full-time coefficients (see Fig. 5.5), one can see that

each coefficient jolts on at t = r. 2 So for t < r the atoms roughly evolve indepen-

dently (equivalent to r → ∞) and then for t > r the atoms become aware of each

other’s presence and evolve jointly. If there is any acausal behavior, such as creation

of entanglement outside of the light cone, then it would have to be very small.

Because the master equation coefficients mostly asymptote to constant values

quite quickly here in the weak-coupling regime, as can be seen in Fig. 5.5, it is

sufficient to consider a sequence of constant Liouvillians [55]. E.g. for two atoms

L[r](t) ≈


L[∞](∞) t < r

L[r](∞) t > r ,

(5.42)

and therefore the full-time propagator can be sufficiently approximated by a chain

of exponential propagators, here

G[r](t) ≈


etL[∞](∞) t < r

etL[r](∞) erL[∞](∞) t > r .

(5.43)

A more accurate full-time treatment would be sensitive to initial conditions, and

our factorized initial conditions are not reasonable enough to warrant that level of

scrutiny for any physical applications. For the remainder of the chapter, we will be

interested in the t� r regime. The challenge then lies in calculating the evolution

due to etL[r](∞).

2The jolting (here logarithmic divergence) is a result of the factorized initial conditions and

would become a more smooth activation upon considering properly correlated initial states or

switching on the interaction gradually.
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5.2.2.1 Dynamics

The open-system dynamics are described approximately by the time-independent

Liouvillian L[r](∞), which we will now write simply as L. The time evolution is

then approximately etL, and we will compute it from the solutions of the eigen-value

problem

Lo = f o (5.44)

as in Sec. 1.2.3, where f is an eigenvalue and o a right eigen-operator (super-vector).

In principle this can be performed numerically with the super-matrix operators, but

when confronted with numerical instability we resorted to a careful application of

canonical perturbation theory, discussed in Sec. 1.2.3. The perturbative corrections

to the eigenvalues will give us environmentally-induced frequency shifts and dissipa-

tion rates, while the eigen-operators will determine the details of the evolution of the

quantum state. As always, we know that this perturbative problem is degenerate

at zeroth order.

As our system coupling is non-stationary (the coupling operator anti-commutes

with the Hamiltonian), with no additional degeneracies the cross-coupling will have

no effect upon the second-order frequencies of the perturbed off-diagonal operators,

and the fij corresponding to |ωi〉〈ωj| for i 6= j are given by

fij = −i ωij + 〈ωi|L[2]{|ωi〉〈ωj|} |ωj〉 , (5.45)

which reference no cross-correlations. Second-order corrections to the eigen-operators

o (and thus the states) can then be found by perturbative consistency with the mas-

ter equation. Dynamics of the diagonal operators and any other degenerate (and
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near-degenerate) subspaces must be treated much more carefully with degenerate

perturbation theory. For the energy states, their second-order dynamics are encap-

sulated by a Pauli master equation. This gives rise to their second-order relaxation

rates and zeroth-order eigen-operators. Due to inherent degeneracy, ωii = ωjj = 0

and any resonant frequencies, their second-order operator perturbations require the

fourth-order Pauli master equation as discussed in Sec. 4.1. In Sec. 5.2.2.3 we use

the alternative method of Sec. 5.1.1 to calculate corrections to the asymptotic or

reduced thermal state using only the second-order coefficients. Based on the results

of Ch. 4, in general the matrix elements of the solution ρ(t) expressed in the (free)

energy basis will be accurate to O(γ/Ω) off the diagonal but only to O(1) on the

diagonal. Timescales are known to O(γ). If we had used the RWA, however, all

matrix elements are only good to O(1).

In Figs. 5.6–5.7 we plot all relaxation rates associated with the two-atom sys-

tem as a function of proximity, where γ is specifically the decoherence rate of a single

isolated atom. For large separation the decay rates for |Ψ±〉 ≡ (|0,1〉 ± |1,0〉) /
√

2

are 1 + 1 times γ (which would be Nγ for N atoms), as the noise processes are

independent and the decay rates are additive. Whereas at proximity they become 0

and N2 times γ for |Ψ−〉 and |Ψ+〉 respectively, as the noise processes are maximally

correlated and display destructive and constructive interference. In Fig. 5.8 we

plot all non-stationary decoherence rates associated with the two-atom system as a

function of detuning. To achieve a dark state, the tuning of the two atoms must be

much better than the dissipation, δΩ � γ, which counter-intuitively implies that

weak-dissipation is not always desirable to preserve coherence. However, this con-
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dition makes more sense if thought of in another way: The dark state arises from

the destructive interference of the emission from the two atoms. If the emission

from each atom is characterized by center frequency Ωn and an emission line width

γ, then the condition δΩ � γ simply specifies that the emission lines of the atoms

must overlap enough that their emissions are not distinguishable from one another.

This allows the required destructive interference.

One behavior which is qualitatively different from the closed-system evolution

is the damped oscillations between the singly-excited states. More specifically for

any initial state of the form

ρ0 =
|0,1〉

|1,0〉

 a+ δ +i b

−i b a− δ

 〈0,1|
〈1,0|

, (5.46)

with all positive coefficients, in addition to the Bell state decay one will also have

damped oscillations of the form

[δ cos(f1t)− b sin(f1t)] e
−γ1t (|0,1〉〈0,1| − |1,0〉〈1,0|)

+i [b cos(f1t) + δ sin(f1t)] e
−γ1t (|0,1〉〈1,0| − |1,0〉〈0,1|) (5.47)

which can oscillate from one excited state to the other excited state. But this

happens very slowly, with the frequency

f1 = 2γ̃0
1− cos(Ωr)

r
, (5.48)

for all temperatures. The oscillation arises from the master equation term defined

in Eq. (5.34), and should be present in conventional calculations using the RWA.

This particular frequency vanishes for small separation; without our choice of regu-

larization and renormalization, as detailed in Sec. 5.2.1.2, it would diverge.
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5.2.2.2 Subradiance

All stationary (and thus decoherence-free) states ρD of the open-system must

satisfy the relation

LρD = 0 , (5.49)

and are thus right eigen-supervectors of the Liouvillian with eigenvalue 0. As the

Liouvillian is not Hermitian, there is no trivial correspondence between the left and

right eigen-supervectors. The super-adjoint of the master equation [26] time-evolves

system observables and for closed systems can be contrasted

L[0] ρ = −i[H ,ρ] , (5.50)

L†[0] S = +i[H ,S] . (5.51)

The left eigen-supervector S†D corresponding to ρD must therefore satisfy

L† SD = 0 . (5.52)

So for every stationary or decoherence-free state ρD there is a symmetry operator SD

whose expectation value is a constant of the motion. The thermal state or reduced

thermal state is such a state. In the limit of vanishing coupling strength, this state

is the familiar Boltzmann thermal state. One can check that the symmetry operator

in this case is proportional to the identity and corresponds to Tr[ρ] being a constant

of the motion.

For two resonant dipoles, with Ωn = Ω, there is another stationary state in

the limit of vanishing separation r12 = r. Because of degeneracy, any superposition
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of states

|Ψ〉 = a1 |1,0〉+ a2 |0,1〉 , (5.53)

is also an energy state and therefore annihilated by both L[0] and L†[0]. Further note

that for vanishing separation, the noise processes ln(t) become exactly correlated and

identical. Their contributions to the interaction Hamiltonian can then be collected

into

H I1 +H I2 = (σx1 + σx2) ln = σx ln . (5.54)

Next we note the equality

σx |1,0〉 = σx |0,1〉 , (5.55)

so that for the Bell states

|Ψ±〉 ≡
1√
2
{|1,0〉 ± |0,1〉} , (5.56)

the noise adds destructively for |Ψ−〉 and constructively for |Ψ+〉. Therefore |Ψ−〉

is a decoherence-free state (dark state) of the open system for vanishing separation

and at resonance, regardless of coupling strength or temperature. And whereas |Ψ−〉

appears dark (subradiant), |Ψ+〉 appears bright (superradiant) [44]. Note that for

anti-parallel dipoles, these roles will be reversed due to the anti-correlated noise.

In this particular case the left and right eigen-supervectors are equivalent, and

so it is the dark-state component 〈Ψ−|ρ |Ψ−〉 which is a constant of the motion.

However, unlike the thermal state, if the separation is no longer vanishing then this

is not some perturbative limit of a stationary state but of a very long-lived state.
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The final constant of motion, which we have validated by analyzing the eigen-system

of L, corresponds to the coherence between the ground state and the dark state or

〈0,0|ρ |Ψ−〉. Using these constants of motion, for two very close dipoles in a zero-

temperature environment with initial state ρ0, the system will relax into the state

ρ1 = (1− b) |0,0〉〈0,0|+ b |Ψ−〉〈Ψ−|+ c |0,0〉〈Ψ−|+ c∗ |Ψ−〉〈0,0| , (5.57)

b ≡ 〈Ψ−|ρ0 |Ψ−〉 , (5.58)

c ≡ 〈0,0|ρ0 |Ψ−〉 , (5.59)

to zeroth order in the system-environment coupling, whereupon the system has

bipartite entanglement b.

While our (regularized) model is well behaved in the mathematical limit r →

0, it is important to remember that physically the model is no longer valid for

sufficiently small r. At small enough r other terms would come into play, including

electrostatic interaction, and eventually the atoms would cease to even be distinct.

We are assuming that this scale is much smaller than all other scales in our model

(except perhaps the cutoff). This means that we can sensibly consider cases where

r is small compared to the other parameters, but r cannot vanish completely.

Since the coefficients of our master equation are continuous in r, it is useful to

consider r = 0 to understand the limiting behavior as r becomes small. The existence

of the dark state we have discussed at r = 0 means that this state will be almost

completely dark when r is small; thus, any initial state ρ0 will first relax approxi-

mately into the state given in Eq. (5.57) within the ordinary relaxation timescale γ,

and then on a much longer relaxation timescale τ , where roughly 1/τ ≈ γ(Ωr)2 for
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small r, the system will fully thermalize. However, this expression for the dark state

is only to zeroth-order in the system-environment coupling. In order to understand

the subsequent final state of decay one needs the second-order asymptotics that we

discuss in Sec. 5.2.2.3.

Finally we would note that this “dark state” is a very general feature of res-

onant multipartite systems with similar linear couplings to a shared environment.

One can rather easily work out that for a pair of resonant linear oscillators with

these same noise correlations the sum mode is thermalized, and the difference mode

is decoherence free for vanishing separation. The separation dependence of the en-

tanglement dynamics of two resonant oscillators was considered in Ref. [92], while

that of (effectively) two very close oscillators was considered in Ref. [107, 108].

The subradiant dark state achieves destructive interference in the environmen-

tal noise (and thus little-to-no emission) while the bright state achieves constructive

interference in the noise (and thus near-maximal emission). For the superradiant

bright state one essentially couples the system to N copies of the same noise pro-

cess ln(t) and therefore the superradiant emission rate can be proportional to N2

[44]. An N2 dependence does appear the case as we demonstrate in Fig. 5.9. The

emission rate is (perturbatively) determined by the noise correlation (the square of

the noise process). Both results differ having from N independent noise processes

where one can simply add the N independent noise correlations which results in an

emission rate at most proportional to N .

Following the previous approach, we define a proper dark state as an atomic

state annihilated by L[0] and H I regardless of the state of the environment. Let us
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consider an assembly of N resonant dipoles at close proximity. We first note that

the superposition

|Ψ〉 =
∑

∑
sn=S

as1,s2,··· ,sN |s1, s2, · · · , sN〉 , (5.60)

of energy states with the same total excitement S is also an energy state and there-

fore annihilated by L[0]. Defining the collective spin operator

σx =
∑
n

σxn , (5.61)

such that the interaction Hamiltonian can be expressed

H I = σx ln ; (5.62)

a proper dark state must then satisfy σx |Ψ−〉 = 0 and will be decoherence free. For

N = 2 this is the familiar Bell state that we’ve already labeled |Ψ−〉.

In considering large N the structure is essentially just what was studied by

Dicke [44], so following that approach we define collective y and z spin operators

σy and σz as well as raising and lowering operators σ+ and σ−, analogously to

Eq. (5.61), as well as σ2 = σ2
x + σ2

y + σ2
z. And we can note that the free Hamil-

tonian for the atoms only differs from σz by a multiple of the identity, so all the

eigenstates of that Hamiltonian are also eigenstates of σz. A basis for the Hilbert

space of the system can be specified by the eigenstates of σ2 with eigenvalues j(j+1)

and σz with eigenvalues m (though for N > 2 there will be degeneracy, so that ad-

ditional quantum numbers are needed to identify a specific state). The dark state

we seek must then satisfy σz |Ψ−〉 = m |Ψ−〉 and σx |Ψ−〉 = 0. As the discussion

in [44] implies, only states with j = 0 and m = 0 can satisfy these requirements
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simultaneously. Such states only occur when N is even, and that set of states has

dimension N !/ [(N/2 + 1)!(N/2)!]. These are also the dark states in the RWA, as

they are in the null space of both σ+ and σ−. For N = 4 these states take the form

|Ψ−〉 = a1(|0,0,1,1〉+ |1,1,0,0〉) + a2(|0,1,0,1〉+ |1,0,1,0〉)

+ a3(|0,1,1,0〉+ |1,0,0,1〉) , (5.63)

0 =
∑
n

an , (5.64)

where every pair in parenthesis is spin-flip symmetric. One can easily check that

any such state is annihilated by σx.

More generally we define an improper dark state as one only annihilated by

L and not H I (i.e., stationary in the coarse-grained open-system dynamics but

not in the full closed system dynamics), thus being dependent upon the state of the

environment and even the coupling strength. In the simplest case we can consider the

zero-temperature environment. For the second-order dynamics, upward transitions

are automatically ruled out from the lack of thermal activation. The only term that

could lead to population of higher excitation states is the second term in Eq. (5.36),

which vanishes at T = 0. Rather than investigating the master equation, we can

then simply demand that the lowest-order decay transitions are vanishing, meaning

that if
∣∣ΨS
−
〉

has total excitation S, then 〈S ′|σx
∣∣ΨS
−
〉

= 0 for all S ′ ≤ S lesser

and equally excited states. We can also state this in terms of the collective spin

operators we have defined, by saying that we demand that |Ψ−〉 is an eigenstate

of σz with eigenvalue m, and that all matrix elements onto states with lower m′

values must vanish. Since σx = 1
2

(σ+ + σ−), we know that there will be non-
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vanishing matrix elements onto states with m′ = m − 1 unless m = −j. So any

state with m = −j is an imperfect dark state at zero temperature, and there are

N !(2j + 1)/ [(N/2 + j + 1)!(N/2− j)!] such states [44]. Interestingly, in the RWA

such states (when combined with a vacuum field) are also stationary states but of

the closed-system dynamics. For N = 3 and at zero temperature, all such dark

states can be expressed

|Ψ−〉 = a1 |1,0,0〉+ a2 |0,1,0〉+ a3 |0,0,1〉 , (5.65)

0 =
∑
n

an , (5.66)

for weak coupling to the field. These dark states also exist for positive temperature,

but they take on a different form.

5.2.2.3 The Asymptotic State

In order to get a proper picture of the asymptotic behavior, we now apply the

results of Sec. 5.1.1 to find the correct late-time steady state. To zeroth order in

the system-environment interaction, the asymptotic steady state is the Boltzmann

state

ρT =
∏
n

ρTn , (5.67)

ρTn ≡
1

2

[
1− tanh

(
Ωn

2T

)
σzn

]
, (5.68)

in terms of Pauli matrices. For high temperatures, we can use the perturbative

expansion of Eq. (5.3) [or Eq. (5.5)] to find the second-order corrections, which are
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given by

〈ωi| δρβ |ωj〉 =
∑
nmk

Rnm
ijk

Z0(β)
〈ωi|σxm |ωk〉 〈ωk|σxn |ωj〉 . (5.69)

All terms with ωi = ωj are zero, so that this expression gives no correction to the

diagonal elements of the density matrix. Otherwise, the (non-resonant) off-diagonal

coefficients are given by

Rnm
ijk

∣∣
ωi 6=ωj

≡ Im

[
e−βωk

Anm(ωik)−Anm(ωjk)

ωi − ωj

]
+ Im

[
e−βωiAmn(ωki)−e−βωjAmn(ωkj)

ωi − ωj

]
,

(5.70)

with the free ground-state energy set to zero. At zero temperature we can use

the perturbative ground state for the system+environment to find that the off-

diagonal second-order corrections to the asymptotic state are still of the form given

in Eqs. (5.69) and (5.70), with the coefficients evaluated in the limit β → ∞. The

diagonal (and resonant) perturbations are given by

lim
β→∞

Rnm
ijk

∣∣
ωi=ωj

= lim
β→∞

Im

[
e−βωk

d

dωi
Anm(ωik) + e−βωi

d

dωi
Amn(ωki)

]
, (5.71)

where only a handful of terms are non-vanishing. We note that the expression inside

the limit in Eq. (5.71) has both the correct low and high-temperature limits, so it

may be roughly correct for all temperatures, but we have yet to fully investigate the

fourth-order master equation.

For most regimes the second-order thermal state can now be expressed entirely

in terms of the second-order master equation coefficients and limits thereof, there-

fore we can say that the environmentally induced correlations do vanish for large

separations with a power-law decay like 1/r and 1/r2.
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5.2.2.4 Entanglement of Two Atoms and Sudden Death

Now we will consider the bipartite entanglement between any two atoms, la-

beled n and m, in a system of N atoms in a common quantum field. If the second-

order corrections to the eigen-operators of the Liouvillian are neglected, our solution

becomes identical to previous solutions using the RWA (e.g., [49]), thus the small

corrections introduced will not generally have a significant impact on the qualitative

features of entanglement dynamics at early times. However, in examining late-time

dynamics and the approach to equilibrium the corrections we calculate are quite im-

portant in looking for asymptotic entanglement and SD. We will apply the results

of Sec. 5.1.2 and the asymptotic state we have derived for this system to compute

the reduced density matrix for the asymptotic state ρnm and derive the asymptotic

value of entanglement between these two atoms. This computation will show that

all entangled initial states become disentangled at a finite time.

From Eq. (5.69) it can be readily seen that the atoms are correlated in the

asymptotic state at all temperatures, and from our second-order coefficients these

correlations experience power-law decay with separation. However, we find based

on Eqs. (5.5), (5.69), and (5.70) that when the high-temperature expansion is valid

(according to Eq. (5.6)) the asymptotic state has C (ρnm) < 0. At zero temperature,

Eqs. (5.70) and (5.71) also give C (ρnm) < 0. In both cases the asymptotic state

lies in the interior of the separable states, and all initial states become separable

permanently after some finite time. With this property upheld for zero and high

temperatures, we suspect this to be true at all temperatures, making entanglement
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sudden death a generic feature which happens in every case in this model. Of course,

as discussed in Sec. 5.2.2.2, for closely spaced atoms there can be a dark state, so

that entanglement persists over a long timescale before eventually succumbing to

sudden death. It should also be noted that, while this examination of the asymptotic

behavior tells us that entanglement always remains zero after some finite time, we

do find O(1) sudden death and revival of entanglement at earlier times for some

initial states (similar to [49]).
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In Fig. 5.10 we plot C as it varies with separation distance and frequency

detuning. As a consistency check we also calculated the logarithmic negativity and

found it to be consistent with the concurrence to second order. The behavior of

the entanglement is markedly different from that of two oscillators in a field. The

separation dependence of two resonant oscillators was considered in Ref. [92] and

the more general solution will be given in Ref. [57]. For two oscillators, there can be

asymptotic entanglement if they are held very close and near enough to resonance

with each other. Separation and detuning then causes the entanglement monotones

to decay away. For the two-atom case studied here asymptotic entanglement does

not exist, and resonant tuning with proximity will only exacerbate the problem.

Permanent sudden death of entanglement occurs because the unmaximized entan-

glement functions can trend below zero within a finite amount of time and without

the need of any asymptotic limit. We would finally note that while the concur-

rence function does appear to be increasing for large detuning, the parameters drift

outside of the weak-coupling regime as one of the frequencies becomes very small.

5.2.3 Discussion

In this chapter we have derived the dynamics of a collection of two-level atoms

under a dipole approximation interacting with a common quantized electromagnetic

field assuming only weak coupling and not the Born-Markov approximation (BMA)

or rotating-wave approximation (RWA). Most prior studies of such systems have

assumed the RWA, and the solution we have derived here therefore yields greater
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accuracy by going beyond the RWA. We have also presented a method of finding

the zero-temperature asymptotic state to higher accuracy than is possible directly

with a second-order master equation. We have used this to show that even at zero

temperature the bipartite entanglement between any pair of atoms will undergo

sudden death for all initial atomic states, in contrast to the predictions of previous

theoretical treatments [49] under BMA or RWA. Finally, we have characterized the

various decay rates that are present in this solution without the RWA and the sub-

and super-radiant states that exist.

Based on the findings of Ch. 4, we know that in the RWA there can be in-

accuracies in all entries of the density matrix that are O(γ/Ω). By contrast, when

represented in the (free) energy basis the solution we have derived here will have

off-diagonal elements that are accurate at second-order, having O((γ/Ω2) errors.

Even in this solution diagonal matrix elements (and matrix elements between any

two degenerate energy states) can still have O(γ/Ω) errors, due to a fundamental

limitation of any weak-coupling master equation. However, the expectation of any

operator that anti-commutes with the Hamiltonian (including atomic dipole oper-

ators), will have only O((γ/Ω2) errors. Moreover, unlike some other methods of

solution, our solution can be applied when the atoms have distinct frequencies.

More generally, we have focused on the fact that features of the late-time en-

tanglement dynamics such as SD can often be determined simply be examining the

asymptotic state. Sec. 5.1.1 showed how to find the corrections to that asymptotic

state, which are missed by direct application of a perturbative master equation and

the RWA, at high temperature and zero temperature. At sufficiently high temper-
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ature, characterized by Eq. (5.6), the asymptotic state is sufficiently deep in the

interior of the set of separable states that all initial states are predicted to undergo

SD, with or without the corrections to asymptotic state. At lower temperatures,

however, these corrections can move the asymptotic state across the boundary be-

tween separable and entangled states, changing the qualitative behavior entirely and

potentially allowing asymptotic entanglement or universal SD. Specifically, we find

that the RWA constrains the zero temperature asymptotic state to lie exactly on the

boundary of the separable states, leading to the appearance of SD depending on the

initial state; this is simply an artifact of the approximation, and the proper second-

order corrections will generally perturb the asymptotic state such that either SD or

asymptotic entanglement is universal. In the specific case of the atoms interacting

with a common field, we find that the asymptotic state moves to the interior of the

separable states and SD occurs for all initial states.

As discussed in Ch. ch:approx, in many experimental contexts the second-

order corrections we discuss can be quite small. Though lowest order corrections

to the timescales cannot be ignored (as they are responsible for the presence of

dissipation), corrections of this size to the values of the density matrix elements at

any instant can easily be considered negligible. However, in the case of a theoretical

study of entanglement sudden death, where one wishes to distinguish asymptotic

decay to zero from vanishing in finite time, small perturbations can become vitally

important, as they do at low temperature. In optical frequency atomic systems, for

example, γ/Ω might be on the order of 10−9, but at room temperature the thermal-

average photon number will be sufficiently small that it places the system into what
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we are considering the low-temperature regime for entanglement dynamics.
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Chapter 6

Conclusion

Quantum entanglement is a phenomenon that is of great theoretical and prac-

tical importance. In this work we have examined the dynamics of entanglement

in the context of atom-field interactions, and we will begin this section with an

overview of the results.

To begin our examination, we have taken the usual approximated Hamiltonian

— subject to the two-level, dipole, and rotating-wave approximations1— and derived

an exact solution of the entanglement dynamics between the atom and field for that

Hamiltonian, going beyond previous calculations limited to weak coupling or early

times.

For the most part, however, we have focused on the role of atomic separation

in shaping the time evolution of entanglement between two atoms interacting with a

common field. We seek to characterize important qualitative features that may arise,

such as the dynamical generation of entanglement, the protection of pre-existing en-

tanglement, and the phenomenon of entanglement sudden death (SD), which is both

theoretically intriguing and potentially a serious practical concern for quantum in-

formation processing. Using a model with two field modes, we see the role of atomic

separation in its simplest form and find this is sufficient to exhibit a large variety of

1In fact the form of the rotating-wave approximation that we use in Ch. 2 and 3 is what we

identify in Ch. 4 specifically as the pre-trace form.
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qualitative behaviors. This encompasses and extends previous results, which treated

certain sub-cases [136, 137, 33, 85, 128]. We find that the choice of atomic separation

and initial field state can determine whether a state undergoes SD or avoids it, but

we find that SD seems to be the generic behavior for most scenarios. We have used

the weak-coupling master equation to consider the dynamics of two atoms interact-

ing with the free field, going beyond the rotating-wave approximation (RWA) unlike

most previous treatments [6, 26, 131, 32, 11, 12, 138, 141, 136, 137, 50, 49, 51]. We

avoid the problems arising from the approximations used by previous work and de-

rive the perturbatively correct steady state of the system for zero temperature and

show that, although close spacing of the atoms can cause a long-lived sub-radiant

state, all initial atomic states will undergo entanglement sudden death, in contrast

to previous predictions [138, 49, 51].

Addressing the more general issues contained in these problems, we have ex-

amined the accuracy of perturbative master equations and found that they will yield

unexpectedly large errors. This effect does not seem to be accounted for in the litera-

ture, and among other consequences it precludes finding the lowest-order corrections

to the system’s steady state. Perturbative master equations are extremely prevalent

in atomic and optical physics and beyond (see e.g., [32, 26]), so the applicability of

this result is quite broad. Similarly, we have used the weak-coupling master equation

to make a detailed and general evaluation of the discrepancies introduced by using

the RWA, where previous analyses had focused on particular sorts of observables or

Hamiltonians or particular models [6, 4, 5, 37, 45, 29, 127]. We have shown that

while the RWA can obtain the lowest-order corrections to dissipation timescales, it
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will give inaccurate lowest-order corrections to the quantum state itself. Finally, we

have found that the inaccuracies arising from both of these approximations make

the master equations that use them inadequate for making meaningful predictions

about the asymptotic late-time behavior of entanglement in general. We have found

that the weak-coupling master equation (without RWA) will be sufficient at high

temperature and that there is an alternative method of deriving the correct behavior

at zero temperature, which we apply to the two-atom problem. However, we have

shown that the initial-state dependence of SD featured in many previous calculations

(e.g., [138, 49, 141]) is simply an artifact created by the use of the RWA.

We now discuss these results in more detail, beginning with what we have

found about the effect of approximations. In Ch. 4 we examined the effect of the

weak-coupling and RWA on the predicted dynamics of an open quantum system.

Perturbative master equations, including the Born-Markov and Redfield equations,

are very commonly used in the study of open quantum systems [81, 32, 25, 26, 122].

It would seem natural that perturbative master equations which are accurate to

second-order in the system environment coupling should give solutions accurate to

second order; however, we have found in Sec. 4.1 that there will be second-order in-

accuracies in the solutions obtained from second-order master equations. The RWA

(in one of the two forms we’ve identified) is widely used in the study of atom-field

interactions (and other systems with similar interaction Hamiltonians) [26, 131, 32].

While the RWA has been evaluated previously, such general results about its ac-

curacy have been lacking. Using solutions to the weak-coupling master equation,

we have shown that the RWA will introduce additional second-order errors in solu-
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tions. If the system has a characteristic frequency Ω and dissipation rate γ, second

order terms can be said to be O (γ/Ω) in terms of those more physically relevant

quantities. If the density matrix is expressed in the energy basis, the solution of a

second-order perturbative master equations has inaccuracies of O (γ/Ω) in the di-

agonal elements and use of the RWA introduces additional inaccuracies of the same

order in all elements of the density matrix. Our analysis of the dynamics through

the eigen-decomposition of the Liouvillian proves useful in addition, because it il-

lustrates that all timescales can be obtained correctly to second order (having only

O (γ2/Ω) errors), and it is only the elements of the density matrix at an instant

that have the larger errors. Because these approximations are so widely used, it is

incumbent upon us to explore why they have met with apparent success in many

contexts despite these shortcomings.

In terms of mathematics, we have identified three limits in which these dis-

crepancies vanish: 1) At early times t � 1/γ the errors will be higher order. If

one solves using the eigen-decomposition, the solution is correct by construction at

t = 0, and the effect of the O (γ/Ω) errors in the eigenvectors does not become

significant until t & 1/γ. 2) In the Markovian limit, where the environment is delta-

correlated, the second-order master equation is the exact master equation and of

Lindblad form, so the errors introduced by using the perturbative master equation

and the posT RWA vanish. Issues with the preT RWA, such as the incorrect fre-

quency shifts, may still remain, but they would not be noticed if one is using the

master equation phenomenologically. 3) If one rescales the time variable as τ = g2t

(where g = O
(√

γ
)

scales the system-environment coupling) and takes the limit
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g → 0, then in terms of τ again one obtains a second-order master equation of Lind-

blad form as the exact master equation of the system, which effectively describes

the late-time dynamics with vanishing coupling. This will then correspond to the

perturbative RWA solution in the same fashion as the previous case.

In actual experiment, then, the RWA and perturbative master equations will

make valid predictions as long as the situation is well described by one of the above

limits. In most cases where perturbative master equations using the RWA are suc-

cessful, the relevant limit is probably the third, simply because γ/Ω is extremely

small. As we have said, in optical-frequency atomic physics this could be on the

order of 10−9. Moreover, we have noted that the timescales are predicted correctly,

so in order to uncover these effects one would need to make very high accuracy

measurements depending on the details of the density matrix at late times. In other

systems, it could be that the environmental temperature is sufficiently high that

the dynamics is approximately Markovian and the second mathematical limit above

applies. Thus, one can expect these inaccuracies to be of practical importance at

low temperature when γ/Ω is still small but measurements are sufficiently precise to

resolve O (γ/Ω) differences. Even in situations where the errors arising from these

approximations turn out not to be of direct relevance, there is the benefit that they

now are clearly characterized and can be predicted. Furthermore, we have found

that they do inform theoretical discussions about the phenomenon of SD.

Having examined the RWA, it is sensible to return to the subject matter of

Ch. 2 and 3. In both chapters we use an atom-field interaction Hamiltonian that

includes the preT RWA. Because this Hamiltonian is so widely used, it is of some
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interest simply to understand the dynamics it generates more completely, as we have

sought to do by exploring entanglement dynamics arising from exact solutions with

that Hamiltonian. However, one should be cautious applying such solutions to the

physical system. As we have noted, the RWA is inherently an approximation useful

for weak atom-field coupling. Thus, while the behavior of the exact solutions for

large coupling may be of mathematical interest, we do not expect them to make

accurate predictions for a physical system which has been approximated using the

RWA.

More specifically, we have said that if the constant g scales the atom-field

coupling then the RWA misses lowest-order corrections to the state of the closed

system that are O (g/Ω), while for the open system dynamics the RWA misses

lowest order corrections that are O (g2) = O (γ/Ω). This suggests that the new

corrections we see in Ch. 2 from using an exact solution will not be larger than

the errors introduced by the RWA, and thus the results will not be predictive for

a physical atom-field system. Any higher order corrections arising from the use

of exact solutions in Ch. 3 would suffer the same fate; however, our interest in

that section was in the qualitative features of the entanglement dynamics, which

should not be significantly altered. We will not see the large qualitative impact on

entanglement dynamics that we saw in Ch. 5, because here there is no relaxation to

a steady state and small corrections will not cause qualitative changes.

It should be noted that exact results for the RWA Hamiltonian may be of

interest if an interaction of the form given by the RWA arises naturally, rather

than as an approximation of weak bilinear coupling of observables. This happens
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in the case of the Gardiner-Collett Hamiltonian [59] used to model the coupling

between the intracavity field of a high-finesse electromagnetic cavity and external

field modes, which takes the form of quantum Brownian motion in the pre-trace

RWA. The form of the Gardiner-Collett Hamiltonian is not the result of a RWA

and can be derived [46] from a “modes-of-the-universe” approach for a cavity with

a partially transmitting mirror in the limit that transmission is weak. So in this

case the pre-trace RWA Hamiltonian corresponds to the physical Hamiltonian of

an actual system, and the solutions of the master equation have relevance directly,

rather than as an approximation.

In both Ch. 3 and 5 we turned to the question of entanglement dynamics of two

atoms interacting with a common field. The two-mode model of Ch. 3 represents the

most basic model possible in which to examine the effect of atomic separation (since

it has no meaningful effect distinct from scaling the coupling with only one mode),

yet in examining a number of typical initial conditions we find a great variety of

qualitative behavior is possible. In this model some states will undergo SD, while

others can maintain entanglement at all times (given the correct atomic spacing).

Altering the atomic separation, however, can entirely change these behaviors, and

initial conditions for which entanglement was preserved now undergo SD. Indeed, for

the classes of initial states we have considered, SD seems to be the generic behavior,

with other behaviors only arising for very particular parameter values (i.e., on a set

of measure zero in parameter space). Still, at the least it appears that the time

at which SD occurs can be strongly influenced through atomic positioning. While

the model of Ch. 3 is basic, some aspects of understanding the dynamics are more
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complicated, because the lack of irreversible dissipation means that the system does

not settle down into any steady state that can then be used to derive late-time

behavior.

In Sec. 5.2 we use the weak-coupling master equation to examine the same

sort of model with a continuum of field modes, but we improve on all previous

examinations insofar as we do not use the RWA. We find results that are in many

respects similar to the previous results found using a perturbative master equation

and the posT RWA [6, 50, 49], except that our solution includes off-diagonal elements

correct to second order, which is not possible with the RWA. We verify, though,

that the dynamics seem to be causal in this model and become independent at large

separations. For the study of entanglement, however, going beyond the RWA is

important. The earlier solutions find that at zero temperature there will be some

states that undergo SD while others do not [138, 49, 141]. We derive the correct

asymptotic state including contributions neglected in the RWA and find that, in

fact, all states experience SD, though closely spaced atoms have a sub-radiant state

and entanglement can be quite long lived. At high temperature SD will also be

universal. We have primarily characterized the asymptotic late-time entanglement

dynamics, since the transient dynamics at earlier times will be quite similar to

the RWA model (where the second-order discrepancies won’t lead to qualitatively

important differences in general). For closely spaced atoms the sub-radiant state has

a small dissipation rate that is O (γ(Ωr)2), and this can easily lead to entanglement

in an intermediate time regime, where other terms have already decayed but sudden

death has not occurred.
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In fact, we find more generally in Sec. 5.1 that for any two qubit system where

interaction occurs only through the environment, using a perturbative master equa-

tion with the RWA and a thermal environment will give predictions for the late-time

entanglement dynamics that are not correct, even qualitatively. The asymptotic

state under those assumptions is constrained to be a Boltzmann state, which is

separable and uncorrelated. As a result, such calculations will always predict that

SD is universal for any positive temperature [140, 139], and at zero temperature

they will predict that SD occurs only for some initial states [138, 49, 141]. We find

that the prediction of universal SD at sufficiently high temperature is correct, but

at lower temperature these predictions are generally speaking incorrect. The zero-

temperature prediction of SD conditional on the initial state is simply an artifact of

the approximations used, and this behavior should seemingly occur very rarely in

the exact dynamics.

Using the results of [31], we show that the full second-order asymptotic state

can be derived for high temperature and zero temperature. At high temperature

that state will always be in the interior of the set of separable states, leading to a

prediction that all initial states experience SD. At low temperature the asymptotic

state could lie either in the entangled states or the interior of the separable states,

depending on the details of the particular system, and this would lead to asymptotic

entanglement or SD, respectively, for all initial states. Unfortunately, it is unclear

how to calculate the asymptotic state at low temperature, except in the special case
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that T = 0. We find that the condition defining high temperature is

γ

Ω
� n̄(Ωn, T )n̄(Ωm, T ) (6.1)

in terms of the thermal average photon number n̄(Ωm, T ) for an oscillator with the

qubit frequency Ωm (assuming n̄ is small in both cases). Note that for optical fre-

quencies n̄ . 10−9, placing it in what we are considering here the low temperature

regime. Our result that SD is universal at zero temperature for all non-zero separa-

tions also adds to the understanding of entanglement dynamics in that it contrasts

with the result for linear oscillators [92] where there is asymptotic entanglement

when the spacing is small enough.

A number of potential extensions of this work present themselves. The most

obvious of these is seeking experimental contexts in which the effects discussed in

Ch. 4 and 5 play a larger role. Many optical frequency experiments have long life-

times so that the corrections we have discussed are very small. In experiments

with shorter lifetimes and lower frequencies these corrections would become more

important, provided measurements can be made with sufficient precision. Our cal-

culated corrections to, e.g., the steady state, rely on an accurate understanding of

the system-environment interaction, so application to other models would rely on

these interactions being sufficiently well characterized.

The calculations performed in Sec. 5.2 focused mainly on the situation of two

atoms, but the approach (and, indeed, some of the calculation) applies to systems

with larger numbers of atoms. It could be applied there to examine superradiance

in more detail. With more atoms, one could consider a number of questions related
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to the evolution of various sorts of entanglement, entanglement between various

possible bi-partitions of the system or higher-order multipartite entanglement, as

well as dynamical transfer of entanglement between constituents.

We have focused throughout on the master equation for the density matrix,

which allows one to calculate expectations of observables at a single time. In the

Markovian limit, all multi-time correlations can be calculated from the master equa-

tion using the quantum regression theorem, but in non-Markovian dynamics this is

not the case, and the quantum regression theorem will have corrections. One could

apply the weak-coupling approach of [31] to that problem and evaluate the effect

of the weak-coupling and RWA on predictions for these correlations, which could

potentially be considerably different in the non-Markovian case.

Finally, we have used the second-order master equation to derive our results.

While we have supplemented it with an alternate derivation of the late-time steady

state, our predictions of the transient behavior are still plagued by the second-order

inaccuracies we found in the diagonal elements of the density matrix, and we have

not found a method of calculating the steady state for low positive temperatures.

We have said that fourth-order Liouvillian is required in order to obtain the full

second order solution, so another useful extension of this work would be to attempt

to derive the necessary matrix elements of the fourth order Liouvillian for weak

coupling in order to have a full second order solution for the dynamics.

209



Bibliography

[1] A. Einstein, B. Podolsky, and N. Rosen. Phys. Rev., 47:777, 1935.

[2] A. Abragam. The principles of nuclear magnetism. International series of
monographs on physics. Clarendon Press, 1961.

[3] L. Accardi, Y. G. Lu, and I. V. Volovich. Quantum Theory and Its Stochastic
Limit. Springer, 2002.

[4] G. S. Agarwal. Rotating-wave approximation and spontaneous emission. Phys.
Rev. A, 4(5):1778–1781, Nov 1971.

[5] G. S. Agarwal. Rotating-wave approximation and spontaneous emission. Phys.
Rev. A, 7(3):1195–1197, Mar 1973.

[6] G. S. Agarwal. Quantum statistical theories of spontaneous emission and their
relation to other approaches, volume 70 of Springer Tracts in Modern Physics.
Springer Berlin / Heidelberg, 1974.

[7] R. Alicki and K. Lendi. Quantum Dynamical Semigroups and Applications.
Springer, 2007.

[8] M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. Souto
Ribeiro, and L. Davidovich. Environment-Induced sudden death of entangle-
ment. Science, 316(5824):579–582, April 2007.

[9] Luigi Amico, Rosario Fazio, Andreas Osterloh, and Vlatko Vedral. Entangle-
ment in many-body systems. Reviews of Modern Physics, 80(2):517–60, April
2008.

[10] C. Anastopoulos and B. L. Hu. Two-level atom-field interaction: Exact master
equations for non-markovian dynamics, decoherence, and relaxation. Phys.
Rev. A, 62(3):033821, Aug 2000.

[11] C. Anastopoulos, S. Shresta, and B. L. Hu. Quantum entanglement under non-
markovian dynamics of two qubits interacting with a common electromagnetic
field. 2006.

[12] C. Anastopoulos, S. Shresta, and B. L. Hu. Non-markovian entanglement dy-
namics of two qubits interacting with a common electromagnetic field. Quan.
Inf. Proc., 8:549–563, 2009.

[13] Takao Aoki, Barak Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J.
Kippenberg, K. J. Vahala, and H. J. Kimble. Observation of strong coupling
between one atom and a monolithic microresonator. Nature, 443(7112):671–
674, October 2006.

210



[14] S. Attal, A. Joye, and C.-A. Pillet. Open Quantum Systems II: The Markovian
Approach. Springer, 2006.

[15] I. Bengtsson and K. Zyczkowski. Geometry of Quantum States: An Introduc-
tion to Quantum Entanglement. Cambridge University Press, 2006.

[16] C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin. Experimen-
tal quantum cryptography. Journal of cryptology, 5(1):3–28, 1992.
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