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This dissertation aims to advance understanding of initial conditions (ICs) for 

convection-allowing ensembles (CAEs).  To do so, experiments with 80-member 

limited-area ensemble Kalman filters (EnKFs) were performed over the entire 

conterminous United States for a 4-week period.  The EnKF data assimilation 

systems differed in terms of their cycling strategies (continuous or partial cycling) 

and horizontal grid spacings (15- or 3-km horizontal grid spacing).  EnKF analyses 

initialized 36-h, 3-km, 10-member CAE forecasts that were evaluated with a focus on 

precipitation, providing insights about CAE forecast sensitivity to ICs.  Additionally, 

EnKF analyses were leveraged to isolate CAE forecast sensitivity to resolution of 

both IC perturbations and central initial states about which IC perturbations were 

centered.  A “blending” approach was also used to produce new sets of CAE ICs by 

combining small scales from continuously cycling EnKF analyses with large scales 

from Global Ensemble Forecast System (GEFS) ICs using a low-pass filter. 



  

Key results are as follows: 

• CAE forecasts initialized from continuously cycling 3-km EnKF analyses 

were more skillful and reliable than those initialized from downscaled 

GEFS and continuously cycling 15-km EnKF ICs through 12–18 and 6–12 

h, respectively.  Conversely, after 18 h, GEFS-initialized forecasts were 

better than forecasts initialized from continuously cycling EnKFs.  

Blended 3-km ICs led to ~18–36-h forecasts possessing comparable 

quality as GEFS-initialized forecasts while preserving short-term forecast 

benefits of unblended continuously cycling 3-km EnKF analyses. 

• Continuously cycling EnKF analyses initialized ~1–18-h forecasts that 

were comparable to or somewhat better than those with partial cycling 

EnKF ICs.  Conversely, ~18–36-h forecasts with partial cycling EnKF ICs 

were comparable to or better than those with unblended continuously 

cycling EnKF ICs.  However, blended ICs yielded ~18–36-h forecasts that 

were statistically indistinguishable from those with partial cycling ICs.   

• It is more important for central initial states than for IC perturbations to 

possess convection-allowing horizontal grid spacing for short-term CAE 

forecasting applications. 

These collective findings have important implications for model developers 

working on next-generation CAEs and suggest paths toward potentially saving 

computing resources, streamlining processes for improving CAE ICs, and unifying 

short-term and next-day CAE forecasting systems. 
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resolutions of the 3-km ensemble, 15-km ensemble, and GEFS, respectively, 
which were approximately 7 times the horizontal grid spacing for the WRF-
based ensembles (e.g., Skamarock 2004) and approximately 10 times the 
horizontal grid spacing for the GEFS (e.g., Ji et al. 2016).  The y-axis values 
are different in each panel. .............................................................................. 65 
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Chapter 1: Introduction 

 

Convection-allowing numerical weather prediction (NWP) models1 produce 

better precipitation and severe weather forecasts than coarser resolution models with 

parameterized convection (e.g., Done et al. 2004; Kain et al. 2006; Weisman et al. 

2008; Clark et al. 2009, 2010; Schwartz et al. 2009) and have revolutionized weather 

forecasting (e.g., Clark et al. 2016).  While the first real-time convection-allowing 

model forecasts2 were deterministic (e.g., Done et al. 2004), expansion of convection-

allowing modeling to ensembles occurred quickly (Xue et al. 2007), and convection-

allowing ensembles (CAEs) are now operational at most major NWP centers around 

the world (e.g., Gebhardt et al. 2011; Peralta et al. 2012; Hagelin et al. 2017; Raynaud 

and Bouttier 2017; Jirak et al. 2018; Klasa et al. 2018).  Although there are many 

avenues to improve CAEs, like advancing boundary condition perturbation methods, 

stochastic physics implementations, and multi-physics ensemble configurations, this 

dissertation focuses solely on CAE initial conditions (ICs), which exert a strong 

influence on CAE forecasts (e.g., Raynaud and Bouttier 2016; Zhang 2019; Schwartz 

et al. 2020). 

 
1 In a convection-allowing NWP model, the deep cumulus parameterization scheme is removed to 
allow explicit representation of deep convection through model dynamics.  Over the United States, 
cumulus parameterization can be safely removed with approximately 4-km horizontal grid spacing 
(e.g., Kain et al. 2008). 
 
2 Convection-allowing models are routinely run to study physical processes, often in idealized 
scenarios.  However, this dissertation does not concern these types of simulations and instead focuses 
on convection-allowing models explicitly designed for forecasting applications. 
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At first, CAEs were initialized by downscaling pre-existing operational 

analyses or short-term forecasts, like those provided by the National Centers for 

Environmental Prediction’s (NCEP’s) Short-range Ensemble Forecast System (Du et 

al. 2015), onto the convection-allowing model grid (Xue et al. 2007; Kong et al. 

2008, 2009), and data assimilation (DA) was not explicitly performed during any 

stage of the initialization process.  While this downscaling approach is still sometimes 

used today to initialize CAEs (e.g., Clark 2017; Jirak et al. 2018; Cafaro et al. 2019; 

Porson et al. 2019), as computing has increased and ensemble-based DA methods like 

the ensemble Kalman filter (EnKF; Evensen 1994; Houtekamer and Zhang 2016) 

have matured, limited-area DA systems have been developed specifically for CAE 

initialization (e.g., Romine et al. 2014; Schwartz et al. 2014, 2015a; Wheatley et al. 

2015; Schraff et al. 2016; Hagelin et al. 2017; Johnson and Wang 2017; Keresturi et 

al. 2019).  

Despite these developments, there is still a need to improve ICs for CAEs, and 

it has historically been challenging to develop “formally designed” CAEs (e.g., 

Schwartz et al. 2019) over the conterminous United States (CONUS) that are equally 

likely (in a mean sense) and outperform CAEs initialized by ad hoc methods (e.g., 

Roberts et al. 2020; Schwartz et al. 2020).  Additionally, there is little consensus 

about how to best initialize CAEs, with the few papers rigorously devoted to 

intercomparing CAE ICs painting an incomplete picture (Raynaud and Bouttier 2016; 

Johnson and Wang 2020; Schwartz et al. 2020). 

Therefore, with overarching goals to both improve and advance understanding 

of CAE initialization over the CONUS, this dissertation examines topics at the 
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intersection of DA and CAE forecasting by performing systematic objective 

evaluations.  The outcomes of several novel investigations presented in chapters 2–4 

have highly relevant implications for future operational CAEs currently being 

developed at NCEP and other meteorological centers around the world.  Additionally, 

the experiments and evaluations provide insights about the current capabilities of 

limited-area NWP models, demonstrate new possibilities for CAE initialization, and 

serve as important baselines that other modelers can attempt to replicate.  Moreover, 

some of the findings are applicable to future global CAEs that will eventually be 

developed when computing resources permit. 

To perform these investigations, we used the Advanced Research Weather 

Research and Forecasting (WRF) model.  The Advanced Research WRF model 

equations are exhaustively documented by Skamarock et al. (2008) and not repeated 

here.  Our experiments focus on WRF-based CAE forecasts with 3-km horizontal grid 

spacing, which was chosen to match the grid spacing of current operational 

convection-allowing models over the CONUS.  Choices for physical 

parameterizations were guided by almost a decade of experience working with WRF-

based CAEs and included the Thompson et al. (2008) microphysics scheme, Rapid 

Radiative Transfer Model for Global Climate Models (RRTMG) longwave and 

shortwave radiation parameterizations (Mlawer et al. 1997; Tegen et al. 1997; Iacono 

et al. 2008), Mellor–Yamada–Janjić planetary boundary layer parameterization 

(Mellor and Yamada 1982; Janjić 1994, 2002), Noah land surface model (Chen and 

Dudhia 2001), and, on a 15-km domain that provided lateral boundary conditions for 



 

 

4 
 

the 3-km forecasts, the Tiedtke cumulus parameterization (Tiedtke 1989; Zhang et al. 

2011).  The 3-km forecasts did not use cumulus parameterization. 

For the DA components of this research, we employed an EnKF, which is a 

state-of-the-science method that uses flow-dependent background error covariances 

and seamlessly melds ensemble DA and ensemble forecasting.  The EnKF updates a 

background (xb) to produce an analysis (xa).  The analysis is found by optimally 

combining the background (i.e., xb) and observations (yo), as expressed by 

xa = xb + K(yo – H(xb)),    (1.1) 

where H is the observation operator that transforms model quantities into model-

simulated observations and K is the Kalman Gain, given by  

K = BHT(HBHT + R)–1.    (1.2) 

In Eq. (1.2), H is the linearization of H about xb, and B and R are the background 

error covariance and observation error covariance matrices, respectively.  The EnKF 

elegantly uses an N-member ensemble to represent B as B = 1/(N – 1)∑ δxi
bN

i=1 (δxi
b)T, 

where δxi
b is the perturbation of the ith prior (before assimilation) ensemble member 

with respect to the ensemble mean prior.  There are different EnKF flavors (e.g., 

Tippett et al. 2003), and the particular EnKF used in this research was the ensemble 

adjustment Kalman filter (EAKF; Anderson 2001, 2003; Anderson and Collins 2007).  

Eqs. (2.1)–(2.13) of Liu et al. (2007) can be consulted for a gentle description of the 

specific EAKF algorithm we used. 

Using our WRF-based EnKFs, chapter 2 demonstrates the first continuously 

cycling convection-allowing EnKF over the entire CONUS, assesses CAE forecast 

sensitivity to EnKF resolution, and shows that a nearly cost-free “blending” approach 
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substantially improves CAE forecast performance after ~18 h.  Leveraging the EnKFs 

described in chapter 2, chapter 3 investigates CAE forecast sensitivity to resolution of 

both IC perturbations and central initial states about which IC perturbations are 

centered.  In chapter 4, performance of CAEs initialized from EnKFs using both 

partial and continuously cycling DA methodologies is directly compared.  Finally, 

chapter 5 briefly summarizes key findings and provides some thoughts about how this 

research could be extended. 
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Chapter 2: Toward unifying short-term and next-day convection-

allowing ensemble forecast systems with a continuously cycling 3-km 

ensemble Kalman filter over the entire conterminous United States 

 

2.1.  Introduction 

Convection-allowing ensembles (CAEs) produce better precipitation and 

severe weather forecasts than coarser-resolution, convection-parameterizing 

ensembles (e.g., Clark et al. 2009; Duc et al. 2013; Iyer et al. 2016; Schellander-

Gorgas et al. 2017), are operational at many weather forecasting offices (e.g., 

Gebhardt et al. 2011; Peralta et al. 2012; Hagelin et al. 2017; Raynaud and Bouttier 

2017; Jirak et al. 2018; Klasa et al. 2018), and have proven useful and valuable for 

various meteorological applications around the world (e.g., Xue et al. 2007; Clark et 

al. 2012; Evans et al. 2014; Maurer et al. 2017; Zhang 2018; Cafaro et al. 2019; 

Porson et al. 2019; Schwartz et al. 2019).  Thus, as computing power has increased, 

CAE domains have gradually enlarged, with operational global CAEs on the horizon. 

While CAEs can be initialized by downscaling coarser-resolution, convection-

parameterizing analyses, convection-allowing numerical weather prediction (NWP) 

models are typically best when initialized from corresponding convection-allowing 

analyses, particularly for short-term forecasts (e.g., Ancell 2012; Harnisch and Keil 

2015; Johnson et al. 2015; Johnson and Wang 2016; Raynaud and Bouttier 2016; 

Schwartz 2016; Gustafsson et al. 2018).  Therefore, to produce the best possible CAE 

forecasts over ever-expanding domains, convection-allowing data assimilation (DA) 

systems over large areas are needed to provide optimal initial conditions (ICs). 
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However, there are obstacles to implementing convection-allowing DA 

systems over domains large enough to resolve meso-alpha- to synoptic-scale features, 

especially when using state-of-the-science ensemble-based DA algorithms like the 

ensemble Kalman filter (EnKF; Evensen 1994; Houtekamer and Zhang 2016), which 

produces flow-dependent analysis ensembles and has become popular for initializing 

CAEs (e.g., Jones and Stensrud 2012; Melhauser and Zhang 2012; Schumacher and 

Clark 2014; Schwartz et al. 2014, 2015a,b, 2019).  One challenge is simply 

computational expense, which grows directly with domain size3, and accordingly, 

most convection-allowing EnKFs and their associated CAE forecasts have relatively 

small domains centered on a single European country (e.g., Schraff et al. 2016; 

COSMO 2021) or a small portion of the conterminous United States (CONUS).  For 

example, NOAA’s experimental “Warn-on-Forecast” (WoF; Stensrud et al. 2009, 

2013) system, initialized from 36-member 3-km EnKF analyses, covers less than 

1000 km x 1000 km (Wheatley et al. 2015; Jones et al. 2016, 2018, 2020; Skinner et 

al. 2018). 

Fortunately, computing challenges can be overcome with increased resources, 

and recently, several studies initialized CAE forecasts from 40-member EnKF 

analyses with 3-km or finer horizontal grid spacing over the entire CONUS (Duda et 

al. 2019; Gasperoni et al. 2020; Johnson et al. 2020).  Similarly, NOAA’s real-time, 

experimental High-Resolution Rapid Refresh Ensemble (HRRRE) is initialized from 

CONUS-spanning, 3-km, 36-member EnKF analyses (Dowell et al. 2016; Ladwig et 

 
3 Mixed-resolution DA systems (e.g., Gao and Xue 2008; Rainwater and Hunt 2013; Li et al. 2015) 
possessing both convection-allowing and convection-parameterizing resolution components can lessen 
costs and make large-domain convection-allowing analyses more feasible (e.g., Schwartz 2016; Rogers 
et al. 2017). 
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al. 2018).  However, 36–40-member EnKFs are likely smaller than desirable, 

considering that operational global EnKFs run by the United States and Canada 

respectively have 80 and 256 members, and generally, EnKFs benefit from larger 

ensembles (e.g., Zhang et al. 2013; Houtekamer et al. 2014). 

But, even with unlimited resources, there are fundamental scientific concerns 

that must be addressed to develop stable, high-quality, convection-allowing EnKFs 

over large regional domains, especially in continuously cycling limited-area EnKFs 

where external models are relegated to providing boundary conditions.  In particular, 

model physics deficiencies can lead to accumulation of biases throughout EnKF DA 

cycles, potentially degrading analysis system performance and subsequent forecasts 

(e.g., Torn and Davis 2012; Romine et al. 2013; Cavallo et al. 2016; Wong et al. 

2020).  Although all continuously cycling limited-area EnKFs are prone to bias 

accumulation, this issue may be exacerbated as both model resolution and domain 

size increase: biases may accumulate more in high-resolution EnKFs than low-

resolution EnKFs because of rapid small-scale error growth (e.g., Lorenz 1969; 

Zhang et al. 2003; Hohenegger and Schär 2007; Judt 2018), and EnKFs over large 

domains may suffer from bias accumulations more than EnKFs over small domains 

because of reduced influence from lateral boundaries provided by potentially less 

biased global models (e.g., Warner et al. 1997; Romine et al. 2014; Schumacher and 

Clark 2014).   

Given these scientific and computing challenges, operational convection-

allowing continuously cycling EnKFs and attendant CAEs over Europe have small 

domains (e.g., Schraff et al. 2016; COSMO 2021), while large-domain convection-
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allowing EnKFs over the CONUS (e.g., Duda et al. 2019; Gasperoni et al. 2020; 

Johnson et al. 2020; HRRRE) employ “partial cycling” strategies that periodically 

discard convection-allowing analysis cycles and replace them with coarser-resolution, 

large-scale external analyses in hopes of tempering bias accumulations (e.g., Hsiao et 

al. 2012; Benjamin et al. 2016; Wu et al. 2017).  This partial cycling approach over 

the CONUS seems justified, as Schwartz et al. (2020) showed that a limited-area 

continuously cycling EnKF with convection-parameterizing resolution did not 

initialize better CAE precipitation forecasts over the CONUS than downscaled global 

analyses. 

Nonetheless, as discussed at length by Schwartz et al. (2019), continuously 

cycling EnKFs have many attractive properties for CAE initialization, including the 

ability to diagnose model biases while simultaneously producing flow-dependent ICs 

that are dynamically consistent with and span all possible resolvable scales of the 

convection-allowing forecast model.  Thus, despite formidable challenges, it is 

desirable to further explore and develop continuously cycling EnKFs over large 

geographic areas at convection-allowing resolutions for CAE initialization purposes. 

Accordingly, we produced continuously cycling, 80-member, 3-km EnKF 

analyses with a 1-h cycling period for 4 weeks over a computational domain spanning 

the entire CONUS.  EnKF analysis ensembles then initialized 36-h, 3-km, 10-member 

CAE forecasts.  For comparison, 3-km CAE forecasts were also initialized by 

downscaling both 15-km EnKF analyses and global ICs produced for NCEP’s 

operational Global Ensemble Forecast System (GEFS; Zhou et al. 2017).  The impact 

of assimilating radar observations into the 3-km EnKF was also assessed.  Relative to 
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the EnKF described in Schwartz et al. (2020), our EnKFs used more advanced 

observation processing, an upgraded NWP model, and a shorter cycling period, and 

inclusion of 3-km EnKF DA was also new.  To our knowledge, this work presents the 

first time convection-allowing continuously cycling EnKF analyses have been 

produced over the entire CONUS. 

Results indicated benefits of EnKF-initialized forecasts with respect to GEFS-

initialized forecasts diminished with forecast length, presumably because large-scale 

fields were better represented in GEFS ICs and became more important at longer 

forecast ranges.  These findings motivated experimentation with a “blending” 

approach combining large-scale fields from an external global NWP model with 

small-scale fields from a limited-area model, which can be achieved by augmenting a 

variational cost function with a global model constraint (e.g., Guidard and Fischer 

2008; Dahlgren and Gustafsson 2012; Vendrasco et al. 2016; Keresturi et al. 2019) or 

using filtering to perform scale separation (e.g., Yang 2005; Wang et al. 2011; Caron 

2013; H. Wang et al. 2014; Y. Wang et al. 2014; Hsiao et al. 2015; Zhang et al. 2015; 

Feng et al. 2020); we used a low-pass filter to combine large scales from GEFS ICs 

with small scales from EnKF analyses.  These previous studies collectively suggested 

blended limited-area ICs improved forecasts compared to those initialized from 

unblended limited-area ICs, including for a CAE within a perturbed-observation 

variational DA framework (Keresturi et al. 2019).  However, our application of 

blending within the context of a large-domain convection-allowing continuously 

cycling EnKF was unique, and, as described below, blending global fields with high-
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resolution EnKF analyses can potentially unite short-term and next-day (18–36-h) 

CAE forecast systems under a common framework. 

 

2.2.  Model configurations, EnKF settings, and experimental design 

2.2.1.  FORECAST MODEL 

All forecasts were produced by version 3.9.1.1 of the Advanced Research 

Weather Research and Forecasting (WRF) model (Skamarock et al. 2008; Powers et 

al. 2017) over a nested computational domain (Fig. 2.1a).  The horizontal grid 

spacing was 15 km in the outer domain and 3 km in the nest, and time steps were 60 

and 12 s in the 15- and 3-km domains, respectively.  Both domains had 51 vertical 

levels distributed as in the Rapid Refresh model (Benjamin et al. 2016) with a 15-hPa 

top.  Physical parameterizations were identical across the two domains (Table 2.1), 

except no cumulus parameterization was employed on the convection-allowing 3-km 

grid, and all ensemble members used common physics and dynamics options. 

 

2.2.2.  ENKF DA SYSTEMS 

2.2.2.1.  EnKF experiments and configurations 

Two primary DA experiments with 80-member ensembles were performed 

using an ensemble adjustment Kalman filter (Anderson 2001, 2003; Anderson and 

Collins 2007), a type of EnKF, as implemented in the Data Assimilation Research 

Testbed (DART; Anderson et al. 2009) software.  The first EnKF experiment only 

produced analyses on the 15-km domain (Fig. 2.1a), and the 3-km domain was 

removed during WRF model advances between EnKF analyses.  Conversely, the  
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Fig. 2.1.  (a) Computational domain.  Horizontal grid spacing was 15 km in the outer domain 
(415 x 325 points) and 3 km in the nest (1581 x 986 points).  Objective precipitation verification 
only occurred over the red shaded region of the 3-km domain (CONUS east of 105°W).  (b) Total 
accumulated Stage IV (ST4) precipitation (mm) over the verification region between 0000 UTC 
25 April and 1200 UTC 21 May 2017, which encompasses all possible valid times of the 36-h 
forecasts.  (c)–(e) 500-hPa wind speed (shaded; kts) and height (m; contoured every 40 m) from 
Global Forecast System analyses valid at 0000 UTC (c) 25 April, (d) 1 May, and (e) 14 May 2017. 
 
 

Physical 
parameterization WRF model option  References 

Microphysics Thompson Thompson et al. (2008) 

Longwave and   
shortwave radiation 

Rapid Radiative Transfer Model for 
Global Climate Models (RRTMG) 

with ozone and aerosol climatologies 

Mlawer et al. (1997); Iacono et al. 
(2008); Tegen et al. (1997) 

Planetary boundary 
layer Mellor–Yamada–Janjić (MYJ) Mellor and Yamada (1982);  

Janjić (1994, 2002) 

Land surface model Noah Chen and Dudhia (2001) 

Cumulus 
parameterization Tiedtke (15-km domain only) Tiedtke (1989); Zhang et al. (2011) 

Table 2.1.  Physical parameterizations for all WRF model forecasts.  Cumulus parameterization 
was only used on the 15-km domain. 

Fig. 1. (a) Computational domain. Horizontal grid spacing was 15 km in the outer domain (415 x 325 points) and 3 km in the nest (1581 x 986 points).  Objective precipitation verification only 
occurred over the red shaded region of the 3-km domain (CONUS east of 105°W). (b) Total accumulated Stage IV (ST4) precipitation (mm) over the verification region between 0000 UTC 25 
April and 1200 UTC 21 May 2017, which encompasses all possible valid times of the 36-h forecasts.  (c)–(e) 500-hPa wind speed (shaded; kts) and height (m; contoured every 40 m) from Global 
Forecast System analyses valid at 0000 UTC (c) 25 April, (d) 1 May, and (e) 14 May 2017.

15 km

3 km

(d) 0000 UTC 1 May 2017 (e) 0000 UTC 14 May 2017(c) 0000 UTC 25 April 2017

(a)

500-hPa wind speed (kts)

Total 
precipitation 
(mm)

(b)
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second EnKF experiment produced separate, independent analyses on both the 15- 

and 3-km domains, with nested WRF model forecasts between EnKF analyses.  

During these nested forecasts, which were ~45 times more expensive than the single-

domain 15-km model advances, one-way feedback was employed such that the 15-km 

EnKF DA system was unaffected by the 3-km EnKF DA system (i.e., 15-km fields in 

the nested- and single-domain EnKF DA systems were identical), permitting a clean 

comparison of analysis and forecast sensitivity to EnKF resolution.  The 15- and 3-

km EnKFs updated identical state variables (Table 2.2), with hydrometers included in 

anticipation of experimentation with radar DA (section 2.4.3). 

 

Parameter 15-km EnKF 3-km EnKF 

Ensemble size 80 members 

Updated WRF model variables 

Zonal and meridional wind components; perturbation 
geopotential height, potential temperature, and dry surface 

pressure; and water vapor, graupel, snow,  
and rain mixing ratios 

Localization function Eq. (4.10) from Gaspari and Cohn (1999) 

Horizontal localization full-width 1280 km 640 km, except 1280 km for 
rawinsonde observations 

Vertical localization  
full-width 1.0 scale height 

Inflation method Posterior relaxation-to-prior-spread  
[RTPS; Whitaker and Hamill (2012)] 

Inflation factor (a) 1.06 

Sampling error correction Anderson (2012) 

Horizontal thinning for aircraft and 
satellite-tracked wind observations 30 km 15 km 

Vertical thinning for aircraft and 
satellite-tracked wind observations 25 hPa 

Table 2.2.  Summary of EnKF configurations. 
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Initial 80-member ensembles were produced by interpolating the 0000 UTC 

23 April 2017 0.25° NCEP Global Forecast System (GFS) analysis onto the 15-km 

domain and adding random, correlated, Gaussian noise with zero mean (e.g., Barker 

2005; Torn et al. 2006) drawn from background error covariances provided by the 

WRF model’s DA system (Barker et al. 2012).  The randomly-produced 15-km 

ensemble was then downscaled onto the 3-km grid to initialize the 3-km EnKF, 

ensuring initial 15- and 3-km ensembles were identical aside from interpolation 

errors.  These randomly-generated ensembles served as prior (before assimilation) 

ensembles for the first EnKF analyses, and the posterior (after assimilation) 

ensembles at 0000 UTC 23 April 2017 initialized 1-h, 80-member ensemble forecasts 

that became prior ensembles for the next EnKF analyses at 0100 UTC 23 April 2017.  

Analysis–forecast cycles with a 1-h period continued until 0000 UTC 20 May 2017 

(649 total DA cycles).  This experimental period (23 April – 20 May 2017) was 

similar to that in Schwartz (2019), which featured several heavy precipitation 

episodes primarily driven by strong synoptic forcing, a broad overall precipitation 

maximum centered in Missouri (Fig. 2.1b), and a variety of flow patterns (Figs. 2.1c–

e). 

During EnKF cycles, soil states freely evolved for each member, sea surface 

temperature was updated daily from NCEP’s 0.12° analyses (e.g., Gemmill et al. 

2007), and identical randomly-perturbed lateral boundary conditions (LBCs) were 

applied to the 15-km domain in each DA system, with perturbations for individual 

members generated using the same method to produce initial ensembles at 0000 UTC 

23 April 2017.  The first two days of cycling were regarded as spin-up.   
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Spurious correlations due to sampling error were mitigated with a sampling 

error correction scheme (Anderson 2012) and covariance localization [Eq. (4.10) of 

Gaspari and Cohn (1999)].  Vertical localization limited analysis increments to ± 1.0 

scale height (in log pressure coordinates) away from an observation in both the 15- 

and 3-km EnKFs.  However, horizontal localizations differed depending on EnKF 

resolution: 15-km EnKF analysis increments were forced to zero 1280 km from an 

observation, but to lessen expense and complete 3-km EnKF analyses quickly enough 

for operational applications, 3-km EnKF analysis increments were forced to zero 640 

km from an observation, except rawinsonde observations could produce increments 

up to 1280 km away (Table 2.2).  The vertical and 15-km EnKF horizontal 

localization distances were guided by previous experiences with DART (e.g., Romine 

et al. 2013, 2014; Schwartz et al. 2015a,b, 2019), and while our 3-km EnKF 

horizontal localization distances were similar to Johnson et al. (2015), they were 

larger than those in many other convection-allowing EnKFs (e.g., Harnisch and Keil 

2015; Yussouf et al. 2015, 2016; Degelia et al. 2018; Gasperoni et al. 2020; Jones et 

al. 2020).  However, these studies with smaller localization distances either used 

partial cycling strategies or only continuously cycled for a short period (days), and we 

believed that larger localization distances were necessary to provide stronger 

observational constraints in a large-domain continuously cycling 3-km EnKF.  

EnKF spread was maintained by applying covariance inflation to posterior 

state-space perturbations about the ensemble mean following Whitaker and Hamill 

(2012)’s “relaxation-to-prior spread” algorithm with an inflation parameter α = 1.06 

in both the 15- and 3-km EnKFs.  As noted by Schwartz and Liu (2014), α > 1 meant 
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inflated posterior spread was greater than prior spread, which, while counterintuitive, 

was necessary to maintain reasonable spread given absence of other spread-inducing 

methods like multi-physics ensembles, additive inflation, or stochastic physics.  

Several iterative weeklong trials with 15-km EnKFs were performed to settle on α = 

1.06, which provided acceptable prior observation-space statistics for the assumed 

observation errors (section 2.3). 

 

2.2.2.2.  Observations 

Although DART has observation processing capabilities, we instead used 

NCEP’s operational Gridpoint Statistical Interpolation (GSI) DA system (Kleist et al. 

2009; Shao et al. 2016) for observation processing, which, relative to DART, has 

more sophisticated quality control, observation thinning, and observation error 

assignment capabilities.  In addition, GSI’s observation operators were used instead 

of DART’s built-in observation operators to produce model-simulated conventional 

observations.  Initially-specified observation errors were based on the HRRRE and 

identical in the 15- and 3-km EnKFs (Fig. 2.2; Table 2.3); GSI adjusted these errors 

to produce “final” observation error standard deviations (σo) actually used in the 

assimilation, as described by several texts (e.g., Schwartz and Liu 2014; 

Developmental Testbed Center 2016; Johnson and Wang 2017).  These adjustments 

often inflated initially-specified observation errors (Fig. 2.2). 

Time windows for the observation platforms varied and were based on Rapid 

Refresh model (Benjamin et al. 2016) and HRRRE settings, with generally smaller 

windows for frequently-reporting, stationary platforms, like METAR observations  
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Fig. 2.2.  Initially-specified (solid lines) and final (after GSI adjustment; dashed lines) 
observation error standard deviations as a function of pressure for (a) wind (m s-1), (b) 
temperature (K), (c) relative humidity (%), and (d) surface pressure (hPa) observations with 
vertically varying errors averaged over all observations assimilated between 0000 UTC 25 April 
and 0000 UTC 20 May 2017 (inclusive) by both the 15- and 3-km EnKFs.  If a particular 
observation type was not assimilated at a certain pressure level, no value is plotted. 
 

(Table 2.3), and all observations were assumed valid at the analysis time.  Moisture 

observations were initially processed as specific humidity, but because GSI requires 

moisture observation errors in terms of relative humidity, moisture observations were 

ultimately converted to and assimilated as relative humidity using the prior ensemble  

Rawinsonde
Aircraft
Wind profiler

Solid: initial 
Dashed: final (adjusted)

Common obs in both domains

Averaged every 1 h between 00z 25 
April to 00z 20 May

Assimilated obs only

Satellite-tracked wind

Rawinsonde Aircraft Wind profiler Satellite-tracked wind

Fig. 2. Initially-specified (solid lines) and final (after GSI adjustment; dashed lines) observation error standard 
deviations as a function of pressure for (a) wind (m s-1), (b) temperature (K), (c) relative humidity (%), and (d) 
surface pressure (hPa) observations with vertically varying errors averaged over all observations assimilated 
between 0000 UTC 25 April and 0000 UTC 20 May 2017 (inclusive) by both the 15- and 3-km EnKFs. If a 
particular observation type was not assimilated at a certain pressure level, no value is plotted.

Solid: initial
Dashed: final

Solid: initial
Dashed: final

Solid: initial
Dashed: final

Solid: initial
Dashed: final
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Observing platform Observation type Initial observation 
error 

Outlier check 
threshold (a) 

Time 
window (h) 

Rawinsonde 

Surface pressure 
Temperature 

Relative humidity 
Wind 

Fig. 2.2d 
Fig. 2.2b 
Fig. 2.2c 
Fig. 2.2a 

5 
7 
7 
10 

1.5 
1.5 
1.5 
1.5 

Aircraft 
Temperature 

Relative humidity 
Wind 

Fig. 2.2b 
Fig. 2.2c 
Fig. 2.2a 

7 
7 
10 

0.75 
0.75 
0.75 

Wind profiler Wind Fig. 2.2a 5  0.4 

Global positioning 
system radio 

occultation (GPSRO) 
Refractivity 1% of observation 

value 10 3.0 

Infrared and water 
vapor channel 

satellite-tracked wind 
Wind Fig. 2.2a 2.5 1.5 

Ship and buoy 

Surface pressure 
Temperature 

Relative humidity 
Wind 

0.44 hPa 
0.8 K 
3.9% 

1.45 m s-1 

5 
7 
7 
5 

1.5 
1.5 
1.5 
1.5 

SYNOP and METAR 

Surface pressure 
Temperature 

Relative humidity 
Wind 

0.54 hPa 
2.3 K 
3.4% 

1.2 m s-1 

5 
5 
7 
5 

0.25 
0.25 
0.25 
0.25 

Oklahoma and West 
Texas mesonet 

Surface pressure 
Temperature 

Relative humidity 
Wind 

0.35 hPa 
1.5 K 
4% 

1.1 m s-1 

5 
5 
7 
5 

0.1 
0.1 
0.1 
0.1 

Table 2.3.  Conventional observations that were assimilated and their outlier check thresholds, 
time windows, and initially-specified observation error standard deviations. 
 

mean saturation specific humidity.  Satellite-tracked wind and aircraft observations 

were thinned such that remaining observations were spaced 25 hPa apart vertically 

and 30 and 15 km apart horizontally in the 15- and 3-km EnKFs, respectively (Table 

2.2); these different horizontal thinnings were chosen so the 15- and 3-km EnKFs had 

equal numbers of satellite-tracked wind and aircraft observations within their 

respective horizontal localization radii.  Radiance observations were not assimilated 
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since they generally yield small impacts over the CONUS (Lin et al. 2017a) given the 

multitude of available conventional observations.  Additionally, the EnKFs did not 

assimilate radar observations, although an auxiliary experiment was performed where 

radar observations were assimilated with a 3-km EnKF (section 2.4.3).   

Observations were subject to numerous quality control procedures, such as 

excluding observations from specific aircraft with known biases and applying an 

“outlier check” to reject observations whose ensemble mean innovations4 were > aσo, 

where a varied from 2.5–10 depending on observation type and platform (Table 2.3).  

These a were generally fairly lenient and allowed most observations to pass the 

outlier check, which, along with our relatively large localization distances, reflected a 

philosophy that we wanted observations to heavily constrain the 1-h WRF model 

forecasts between EnKF analyses.  Overall, the EnKFs assimilated 30,000–100,000 

conventional observations each cycle, with a relative dearth of overnight observations 

due to fewer commercial flights and maxima at 0000 and 1200 UTC reflecting the 

majority of rawinsonde launches (Fig. 2.3).  Ultimately, GSI-provided observations, 

final observation errors, and prior model-simulated observations for each ensemble 

member were ingested directly into DART for use in EnKF DA. 

 

2.2.2.3.  Forecast initialization 

EnKF analysis ensembles initialized 36-h 10-member ensemble forecasts over 

the nested computational domain (Fig. 2.1a) at 0000 UTC between 25 April and 20  

 
4 The “innovation” is the difference between an observation and the prior model-simulated 
observation. 
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Fig. 2.3.  Computational domain overlaid with observations assimilated by the 15-km EnKF 
during the (a) 0000 UTC, (b) 0600 UTC, (c) 1200 UTC, and (d) 1800 UTC 27 April 2017 
analyses.  Values of N in the headers indicate the number of assimilated observations.  The inner 
box represents bounds of the 3-km domain; most observations located within the 3-km domain 
were also assimilated by the 3-km EnKF at these times. 
 

May 2017 (inclusive; 26 forecasts).  Although 80 EnKF analysis members were 

available, due to computing constraints, 36-h forecasts were only initialized from 

members 1–10; 10-member CAEs are sufficient to provide skillful and valuable 

probabilistic forecasts (e.g., Clark et al. 2011, 2018; Schwartz et al. 2014) and similar 

in size as the HRRRE and NCEP’s operational High-Resolution Ensemble Forecast 

system (Jirak et al. 2018).  Choosing members 1–10 was effectively the same as 

randomly selecting 10 members since all ensemble members had identical 

configurations (e.g., Schwartz et al. 2014).  In principle, free forecasts could have 

been initialized every hour, but given finite resources, forecasts were solely initialized 

(a) 0000 UTC 27 April [N = 106975] (b) 0600 UTC 27 April [N = 43483]

(c) 1200 UTC 27 April [N = 95613] (d) 1800 UTC 27 April [N = 75967]

Aircraft

Satellite-tracked wind

Ship/buoy

METAR/SYNOP/Mesonet

GPSRO

Wind profiler

Rawinsonde

Fig. 3. Computational domain overlaid with observations assimilated by the 15-km EnKF during the (a) 0000 UTC, (b) 
0600 UTC, (c) 1200 UTC, and (d) 1800 UTC 27 April 2017 analyses. Values of N in the headers indicate the number of 
assimilated observations. The inner box represents bounds of the 3-km domain; most observations located within the 3-
km domain were also assimilated by the 3-km EnKF at these times.
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at 0000 UTC, which allowed us to focus on both short-term and next-day forecast 

periods featuring active convection. 

When initializing 36-h forecasts from 15-km EnKF analyses, the 3-km nest 

was initialized by downscaling 15-km EnKF analyses onto the 3-km grid.  

Conversely, downscaling was unnecessary to initialize 36-h forecasts from the 3-km 

EnKF; 3-km ICs were simply 3-km EnKF analysis members.  For both sets of EnKF-

initialized 36-h forecasts, perturbation members 1–10 from the GEFS (Zhou et al. 

2017) with 0.5° horizontal grid spacing provided LBCs at 3-h intervals for the 15-km 

domain, which in turn provided LBCs for the 3-km nest.  While random LBCs could 

have been used for the 36-h forecasts as in the EnKF DA system, we believed it was 

more appropriate to use flow-dependent LBCs for these longer unconstrained 

forecasts. 

 

2.2.3.  BENCHMARK ENSEMBLE 

To serve as a benchmark for the EnKF-initialized CAE forecasts, 36-h 

forecasts on the nested grid (Fig. 2.1a) with the configurations in section 2.2.1 were 

initialized by interpolating 0.5° ICs from perturbation members 1–10 of the GEFS 

onto the computational domain at 0000 UTC daily between 25 April and 20 May 

2017 (inclusive), with LBCs provided by GEFS forecasts identically as in the EnKF-

initialized CAEs.  As described by Zhou et al. (2017), GEFS ICs were produced by 

adding 6-h forecast perturbations from a global EnKF DA system (Whitaker and 

Hamill 2002) to “hybrid” variational-ensemble analyses produced for NCEP’s 

deterministic GFS (e.g., Wang and Lei 2014; Kleist and Ide 2015a,b).  Relative to the 
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limited-area EnKF analyses, GEFS ICs were much coarser but reflected assimilation 

of many more observations, including satellite radiances.  Overall, comparison of 

GEFS- and EnKF-initialized CAE forecasts provides insight about whether the vastly 

more expensive EnKF initialization procedure was warranted. 

 

2.2.4.  BLENDING  

Based on performance of the EnKF- and GEFS-initialized CAE forecasts 

(section 2.4.2), additional ensemble ICs were created by “blending” small scales from 

EnKF analyses with large scales from GEFS ICs.  Blending was solely performed at 

0000 UTC between 25 April and 20 May 2017 (inclusive) immediately after EnKF 

DA and before initializing 36-h CAE forecasts; blending was not employed within the 

context of continuously cycling EnKF DA, as the blended 0000 UTC fields were not 

used to initialize 1-h WRF model forecasts that served as priors for the next DA 

cycle. 

Specifically, ICs from corresponding GEFS and EnKF ensemble members 

were blended on both the 15- and 3-km domains5 to create new initial ensembles 

using 

xiblend = (EnKFi – EnKFFILT,i) + GEFSFILT,i  ,     (2.1) 

 
5 It was unclear whether blending should be performed on just the 3-km domain or on both the 15- and 
3-km domains.  While the former perhaps enables a fairer comparison between forecasts initialized 
from blended and unblended 3-km ICs, the latter maintains consistency across both domains that 
intuitively seems desirable.  So, we experimented with both scenarios, which yielded remarkably 
similar 36-h forecasts.  Thus, forecast impacts of blending were due to changes in 3-km ICs and not 
attributable to modified LBCs for the 3-km domain provided by 15-km forecasts.  All results regarding 
blending are for the scenario where blending occurred on both the 15- and 3-km domains. 
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where xiblend represents the blended ICs for the ith ensemble member, EnKFi is the 

EnKF analysis for the ith member, and EnKFFILT,i and GEFSFILT,i are the low-pass 

filtered EnKF and GEFS ICs for the ith member, respectively, for i = 1...10.  To 

perform the scale separation, a low-pass, 6th-order implicit tangent filter (e.g., 

Raymond 1988; Raymond and Garder 1991) as implemented by several studies (e.g., 

Yang 2005; H. Wang et al. 2014; Hsiao et al. 2015; Feng et al. 2020) and given by 

H(L) = [1 + tan-6(πΔx/Lx)tan6(πΔx/L)]-1       (2.2) 

was employed (Fig. 2.4), where Δx is the horizontal grid spacing (either 15 or 3 km), 

L the wavelength, H(L) the scale-dependent response function, and Lx a specified 

filter cutoff (km) physically representing the spatial scale (wavelength) where the 

blended ICs (e.g., xiblend) had equal contributions from GEFS and EnKF initial states 

[i.e., when L = Lx, H(L) = 0.5].  Blending was applied at all 51 vertical levels to zonal 

and meridional wind components; perturbation geopotential height, potential 

temperature, and dry surface pressure; and water vapor mixing ratio, and the cutoff 

length was height- and variable-invariant. 

We produced blended ICs using filter cutoff lengths (Lx) of 640, 960, and 

1280 km, guided by EnKF horizontal localization lengths and previous work 

suggesting values between 640–1280 km were appropriate (e.g., H. Wang et al. 2014; 

Hsiao et al. 2015; Feng et al. 2020).  CAE forecasts initialized from these three sets of 

blended ICs objectively had similar skill, although Lx = 960 km yielded slightly better 

results.  Therefore, results are shown only for the 960-km cutoff. 
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Fig. 2.4.  Amplitude response (y axis) of a 6th-order implicit tangent filter as a function of 
wavelength (km) for a specified cutoff length of 960 km.  In the context of this study, the curve 
denotes the contribution of GEFS ICs to blended ICs at a given wavelength (e.g., for wavelengths 
where the amplitude response is 1, 100% of the blended ICs at those wavelengths were from the 
GEFS).  The dashed vertical and solid horizontal lines illustrate how the amplitude response is 
0.5 at the cutoff length. 
 

2.3.  EnKF performance 

To assess EnKF performance, we examined the observation-space bias and 

relationship between the prior ensemble mean root-mean-square error (RMSE) and 

“total spread,” the square root of the sum of the observation error variance (σo2) and 

ensemble variance of the simulated observations (Houtekamer et al. 2005).  Ideally, 

the ratio of total spread to RMSE [termed the consistency ratio (CR; Dowell and 

Wicker 2009)] should be near 1.0.  To fairly compare the 15- and 3-km EnKFs, we 

cutoff = 960 km

Fig. E

Fig. 4. Amplitude response (y axis) of a 6th-order implicit tangent filter as a function of 
wavelength (km) for a specified cutoff length of 960 km. In the context of this study, the 
curve denotes the contribution of GEFS ICs to blended ICs at a given wavelength (e.g., for 
wavelengths where the amplitude response is 1, 100% of the blended ICs at those 
wavelengths were from the GEFS). The dashed vertical and solid horizontal lines illustrate 
how the amplitude response is 0.5 at the cutoff length.
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restricted this analysis solely to those observations assimilated by both EnKFs, 

although overall findings were unchanged when computing identical statistics with 

inhomogeneous samples.  We focused on aircraft and rawinsonde observations 

because of their large impacts on springtime forecasts over the CONUS (James and 

Benjamin 2017). 

Ensemble mean additive biases (model minus observations) and RMSEs 

aggregated over all prior ensembles (1-h forecasts) between 0000 UTC 25 April and 

0000 UTC 20 May 2017 (inclusive) were similar in the 15- and 3-km EnKFs with 

respect to zonal wind and temperature observations at most levels (Figs. 2.5a,b,d,e), 

 
 
Fig. 2.5.  Ensemble mean additive bias (model minus observations; short-dashed lines), ensemble 
mean RMSE (solid lines), total spread (long-dashed lines), and consistency ratio (CR; solid lines 
with circles) for (a) rawinsonde temperature (K), (b) rawinsonde zonal wind (m s-1), (c) 
rawinsonde relative humidity (%), (d) aircraft temperature (K), (e) aircraft zonal wind (m s-1), 
and (f) aircraft relative humidity (%) observations aggregated over all prior ensembles (1-h 
forecasts) between 0000 UTC 25 April and 0000 UTC 20 May 2017 (inclusive).  These statistics 
were computed for those observations assimilated by both the 15- and 3-km EnKFs.  Sample size 
at each pressure level is shown at the right of each panel.  Vertical lines at x = 0 and x = 1 are 
references for biases and CRs, respectively. 
 

Fig. G

(a) Rawinsonde temperature (K) (b) Rawinsonde zonal wind (m s-1) (c) Rawinsonde relative humidity (%)

(d) Aircraft temperature (K) (e) Aircraft zonal wind (m s-1) (f) Aircraft relative humidity (%)

3-km EnKF bias 3-km EnKF RMSE 3-km EnKF total spread
15-km EnKF bias 15-km EnKF RMSE 15-km EnKF total spread

3-km EnKF consistency ratio
15-km EnKF consistency ratio

Fig. 5. Ensemble mean additive bias (model minus observations; short-dashed lines), ensemble mean RMSE (solid lines), total spread (long-dashed lines), 
and consistency ratio (CR; solid lines with circles) for (a) rawinsonde temperature (K), (b) rawinsonde zonal wind (m s-1), (c) rawinsonde relative humidity 
(%), (d) aircraft temperature (K), (e) aircraft zonal wind (m s-1), and (f) aircraft relative humidity (%) observations aggregated over all prior ensembles (1-h 
forecasts) between 0000 UTC 25 April and 0000 UTC 20 May 2017 (inclusive). These statistics were computed for those observations assimilated by both 
the 15- and 3-km EnKFs. Sample size at each pressure level is shown at the right of each panel. Vertical lines at x = 0 and x = 1 are references for biases and 
CRs, respectively.
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while biases and RMSEs for moisture were typically smaller in the 3-km EnKF (Figs. 

2.5c,f).  Magnitudes of temperature biases were typically < 0.1 K, except near the 

surface and in the upper troposphere for rawinsonde observations (Fig. 2.5a); the 

latter is consistent with other continuously cycling EnKFs over the CONUS (e.g., 

Romine et al. 2013; Schumacher and Clark 2014; Schwartz and Liu 2014; Cavallo et 

al. 2016; Schwartz 2016) and likely due to closer fits to the more numerous aircraft 

observations that may have systematically warm biases compared to rawinsonde 

observations (Ballish and Krishna Kumar 2008).  That upper-tropospheric 

temperature biases relative to aircraft observations (Fig. 2.5d) were smaller than and 

opposite the sign of temperature biases relative to rawinsonde observations (Fig. 2.5a) 

further supports this reasoning. 

Prior total spreads were similar in both EnKFs (Fig. 2.5) and CRs were 

usually between 0.8–1.2, although CRs suggest moisture observation errors could 

potentially be decreased.  While more spread may have been expected in the 3-km 

EnKF because small-scale errors grow rapidly upscale (e.g., Lorenz 1969; Zhang et 

al. 2003; Hohenegger and Schär 2007), cumulus parameterization in the 15-km DA 

system may have served as an error source that compensated for missing storm-scale 

structures, and assimilating copious observations each cycle (Fig. 2.3) with fairly 

large localization distances highly constrained the 15- and 3-km EnKFs, limiting 

spread growth during 1-h WRF model integrations between analyses.  In balance, 

these factors potentially contributed to the similar 15- and 3-km prior spreads. 

Overall, systematic biases were usually small and EnKF performance 

appeared acceptable.  Moreover, after the first two days, prior total spread and 
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ensemble mean biases were steady throughout the cycles (Fig. 2.6), and observation 

rejection rates varied little with time (not shown).  These results indicate the 

continuously cycling EnKFs maintained stable climates, which is particularly 

noteworthy for the 3-km EnKF, as it has not previously been demonstrated that a 

convection-allowing EnKF can be continuously cycled over a large domain without 

deleterious consequences like a drifting model climate or filter divergence [see 

Appendix A of Houtekamer and Zhang (2016) for a succinct summary of filter 

divergence]. 

 
 
Fig. 2.6.  Prior (1-h forecast) total spread (long-dashed lines) and ensemble mean additive bias 
(model minus observations; short-dashed lines) for (a) rawinsonde temperature (K), (b) 
rawinsonde zonal wind (m s-1), (c) aircraft temperature (K), and (d) aircraft zonal wind (m s-1) 
observations between 150–1000 hPa as a function of time.  In (c),(d) values are plotted every 
hour between 0000 UTC 23 April and 0000 UTC 20 May 2017 (inclusive) and smoothed with a 6-
h running average, while in (a),(b) values are plotted every 12 h between 0000 UTC 23 April and 
0000 UTC 20 May 2017 (inclusive) without smoothing.  These statistics were computed for those 
observations assimilated by both the 15- and 3-km EnKFs.  The x axis labels represent 0000 UTC 
for a specific month and day in 2017 (e.g., the marker for “0511” denotes 0000 UTC 11 May 
2017).  Dashed lines at y = 0 are for reference. 
 

 

(a) Rawinsonde temperature (K) (b) Rawinsonde zonal wind (m s-1)

(c) Aircraft temperature (K) (d) Aircraft zonal wind (m s-1)

3-km EnKF bias 3-km EnKF total spread
15-km EnKF bias 15-km EnKF total spread

Total spread

Bias

Total spread

Bias

Total spread

Bias

Total spread

Bias

Fig. 6. Prior (1-h forecast) total spread (long-dashed lines) and ensemble mean additive bias (model minus observations; short-dashed lines) for (a) rawinsonde temperature (K), 
(b) rawinsonde zonal wind (m s-1), (c) aircraft temperature (K), and (d) aircraft zonal wind (m s-1) observations between 150–1000 hPa as a function of time. In (c),(d) values 
are plotted every hour between 0000 UTC 23 April and 0000 UTC 20 May 2017 (inclusive) and smoothed with a 6-h running average, while in (a),(b) values are plotted every 
12 h between 0000 UTC 23 April and 0000 UTC 20 May 2017 (inclusive) without smoothing. These statistics were computed for those observations assimilated by both the 15-
and 3-km EnKFs. The x axis labels represent 0000 UTC for a specific month and day in 2017 (e.g., the marker for “0511” denotes 0000 UTC 11 May 2017). Dashed lines at y 
= 0 are for reference.
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2.4.  Precipitation forecast verification 

Hourly-accumulated precipitation forecasts were verified against Stage IV 

(ST4) analyses (Lin and Mitchell 2005) produced at NCEP considered as “truth”.  

Objective evaluations were performed over the CONUS east of 105°W (hereafter the 

“verification region”; Fig. 2.1a), where ST4 analyses were most robust (e.g., Nelson 

et al. 2016).  For metrics requiring a common grid for forecasts and observations, we 

used a budget algorithm (e.g., Accadia et al. 2003) to interpolate forecast precipitation 

to the ST4 grid (4.763-km horizontal grid spacing).  Otherwise, metrics were 

computed from native grid output.   

The following statistics were aggregated over all 26 0000 UTC-initialized 3-

km forecasts. 

 

2.4.1.  PRECIPITATION CLIMATOLOGIES 

To assess precipitation climatologies, aggregate domain-total precipitation per 

grid point and fractional coverages of 1-h accumulated precipitation meeting or 

exceeding various accumulation thresholds (e.g., 2.5 mm h-1) were calculated on 

native grids over the verification region.  Additionally, spatial patterns of total 

precipitation over all 26 forecasts were examined, which were similar in the various 

ensembles and generally agreed with observations (e.g., Fig. 2.1b), including the 

SW–NE-oriented maximum across Missouri and adjacent areas.  Although 

magnitudes of these maxima differed across the ensembles, these differences were 

manifested by the following domain-average statistics, so spatial variations of 

precipitation climatologies are not discussed further.  
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2.4.1.1.  Impact of analysis resolution 

Differences between ensembles were largest over the first 12 h, when GEFS-

initialized forecasts were spinning-up precipitation from coarse 0.5° ICs.  While this 

spin-up meant GEFS-initialized forecasts underpredicted total precipitation (Fig. 2.7) 

and areal coverages (Fig. 2.8) over the first 5 h, ultimately, the spin-up process 

yielded too much 6–12 h total precipitation and excessive coverages ≥ 2.5 mm h-1.  

Forecasts initialized from 15-km EnKF analyses also overpredicted total precipitation 

over the first 12 h, accompanied by excessive coverages for thresholds ≥ 5.0 mm h-1.   

 
 
Fig. 2.7.  Average 1-h accumulated precipitation (mm) per grid point over all 26 3-km forecasts 
and the verification region (CONUS east of 105°W) computed on native grids as a function of 
forecast hour.  Red, blue, gold, and black shadings represent envelopes of the 10 members 
comprising the ensembles with 3-km EnKF ICs, 15-km EnKF ICs, GEFS ICs, and blended 3-km 
ICs, respectively, and darker shadings indicate intersections of two or more ensemble 
envelopes.  Values on the x axis represent ending forecast hours of 1-h accumulation periods 
(e.g., an x-axis value of 24 is for 1-h accumulated precipitation between 23–24 h).  ST4 data 
during the 0–12- and 24–36-h forecast periods were identical except for one day (the former 
included data between 0000–1200 UTC 25 April – 20 May while the latter instead included data 
between 0000–1200 UTC 26 April – 21 May), and because domain-total ST4 precipitation 
between 0000–1200 UTC 21 May was much larger than that between 0000–1200 UTC 25 April, 
average 24–36-h domain-total ST4 precipitation was greater than average 0–12-h domain-total 
ST4 precipitation. 

3-km EnKF ICs
15-km EnKF ICs
GEFS ICs
Blended 3-km ICs
ST4 analyses

Fig. M

Fig. 7. Average 1-h accumulated precipitation (mm) per grid point over all 26 3-km 
forecasts and the verification region (CONUS east of 105°W) computed on native grids as a 
function of forecast hour. Red, blue, gold, and black shadings represent envelopes of the 10 
members comprising the ensembles with 3-km EnKF ICs, 15-km EnKF ICs, GEFS ICs, and 
blended 3-km ICs, respectively, and darker shadings indicate intersections of two or more 
ensemble envelopes. Values on the x axis represent ending forecast hours of 1-h 
accumulation periods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation 
between 23–24 h).  ST4 data during the 0–12- and 24–36-h forecast periods were identical 
except for one day (the former included data between 0000–1200 UTC 25 April – 20 May 
while the latter instead included data between 0000–1200 UTC 26 April – 21 May), and 
because domain-total ST4 precipitation between 0000–1200 UTC 21 May was much larger 
than that between 0000–1200 UTC 25 April, average 24–36-h domain-total ST4 
precipitation was greater than average 0–12-h domain-total ST4 precipitation.
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Fig. 2.8.  Fractional areal coverage (%) of 1-h accumulated precipitation meeting or exceeding 
(a) 1.0, (b) 2.5, (c) 5.0, (d) 10.0, (e) 25.0, and (f) 50.0 mm h-1 over the verification region (CONUS 
east of 105°W), computed on native grids and aggregated over all 26 3-km forecasts as a function 
of forecast hour.  Red, blue, gold, and black shadings represent envelopes of the 10 members 
comprising the ensembles with 3-km EnKF ICs, 15-km EnKF ICs, GEFS ICs, and blended 3-km 
ICs, respectively, and darker shadings indicate intersections of two or more ensemble 
envelopes.  Values on the x axis represent ending forecast hours of 1-h accumulation periods 
(e.g., an x-axis value of 24 is for 1-h accumulated precipitation between 23–24 h).   
 

Overall, forecasts initialized from unblended 3-km EnKF analyses had 

precipitation climatologies best matching observations through 12 h, but there were 

shortcomings.  For example, although at 1 h, unblended 3-km EnKF analyses 

produced forecasts with areal coverages closest to observations (Fig. 2.8), coverages 

rapidly decreased between 2–3 h and were further from those observed between 2–12 

h for the 1.0 and 2.5 mm h-1 thresholds (Figs. 2.8a,b) compared to forecasts with 15-

km or blended 3-km ICs, suggesting poor maintenance of stratiform precipitation 

regions after initialization.  However, forecasts with unblended 3-km ICs had 6–12-h 

ST4 analyses3-km EnKF ICs 15-km EnKF ICs GEFS ICs Blended 3-km ICs

Fig. N

Fig. 8. Fractional areal coverage (%) of 1-h accumulated precipitation meeting or exceeding (a) 1.0, (b) 2.5, (c) 5.0, (d) 
10.0, (e) 25.0, and (f) 50.0 mm h-1 over the verification region (CONUS east of 105°W), computed on native grids and 
aggregated over all 26 3-km forecasts as a function of forecast hour. Red, blue, gold, and black shadings represent 
envelopes of the 10 members comprising the ensembles with 3-km EnKF ICs, 15-km EnKF ICs, GEFS ICs, and 
blended 3-km ICs, respectively, and darker shadings indicate intersections of two or more ensemble envelopes. Values 
on the x axis represent ending forecast hours of 1-h accumulation periods (e.g., an x-axis value of 24 is for 1-h 
accumulated precipitation between 23–24 h).
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areal coverages at the 5.0 mm h-1 threshold well-matching observations (Fig. 2.8c) 

and 2–6-h coverages at the 10.0–50.0 mm h-1 thresholds closer to observations than 

forecasts with GEFS and 15-km EnKF ICs (Figs. 2.8d–f).  Furthermore, 2–12-h 

domain-total precipitation was clearly best in forecasts with unblended 3-km ICs (Fig. 

2.7). 

Despite differences between the ensembles through 12 h, domain-total 

precipitation and areal coverages were broadly similar between 18–36 h, with too 

much total precipitation (Fig. 2.7) and general underprediction and overprediction of 

areal coverages at the 1.0 and 10.0–50.0 mm h-1 thresholds, respectively (Figs. 

2.8a,d–f).  Collectively, for precipitation climatologies, these findings suggest 

benefits of convection-allowing analyses relative to convection-parameterizing 

analyses are primarily confined to short-term forecasts and heavier rainfall rates. 

 

2.4.1.2.  Impact of blending 

With respect to forecasts initialized from unblended 3-km EnKF analyses, 

forecasts with blended 3-km ICs (using a 960-km cutoff) had similar 18–36-h areal 

coverages and total precipitation but higher domain-total precipitation and areal 

coverages over the first 6–12 h that typically compared worse to observations through 

3 h (Figs. 2.7, 2.8).  Examination of individual forecasts indicated blended 3-km ICs 

mostly enhanced 1–3-h forecast precipitation within and near precipitation entities 

also predicted by forecasts with unblended 3-km ICs and that widespread spurious 

features did not cause the overprediction.  This behavior is illustrated by the forecast 

initialized at 0000 UTC 1 May 2017, which had the largest difference of domain-total 
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precipitation (e.g., Fig. 2.7) between member 1 in the CAEs with blended and 

unblended 3-km ICs across all 26 36-h forecasts (Fig. 2.9).  While both 1–3-h 

precipitation forecasts had similar spatial patterns, blended ICs led to more numerous 

cells in places with scattered rainfall, and these additional entities were usually 

erroneous compared to observations (black and gold circles in Fig. 2.9).  

Additionally, within features, the forecast with blended ICs had heavier rainfall 

maxima than ST4 observations and the forecast with unblended ICs (red circles in 

Figs. 2.9b,c,e,f,h,i). 

Thus, overall, it appears blending did not improve short-term precipitation 

climatologies, likely due to imbalances created by blending (e.g., Yang 2005; H. 

Wang et al. 2014).  Additional steps like digital filter initialization (DFI) applied to 

blended ICs (e.g., Yang 2005) may potentially lessen these imbalances, but DFI could 

result in spin-ups that are smoother than desirable for short-term high-resolution 

NWP model applications.   

 

2.4.2.  ENSEMBLE PRECIPITATION VERIFICATION 

As in many studies, we used percentile thresholds to define events (e.g., the 

95th percentile, which selects the top 5% of values), which removes bias and permits 

a thorough assessment of spatial performance given a model’s climate (e.g., Roberts 

and Lean 2008; Mittermaier and Roberts 2010; Mittermaier et al. 2013; Dey et al. 

2014; Gowan et al. 2018; Woodhams et al. 2018; Schwartz 2019).  Our application of 

percentile thresholds exactly followed section 5a(1) of Schwartz (2019), where 

physical thresholds corresponding to percentile thresholds were obtained separately  
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Fig. 2.9.  1-h accumulated precipitation (mm) for (a,d,g) 1-, (b,e,h) 2-, and (c,f,i) 3-h forecasts 
initialized at 0000 UTC 1 May 2017 from member 1 of the 3-km ensembles with (a)–(c) 
unblended 3-km EnKF ICs and (d)–(f) blended 3-km ICs (using a 960-km cutoff length).  (g)–(i) 
Corresponding ST4 analyses, with grey-shaded areas denoting no data.  Annotated circles 
correspond to features noted in the text. 
 

for observations and each ensemble member on the ST4 grid for each precipitation 

accumulation interval.  These physical thresholds were ultimately used to determine 

forecast and observed event occurrence.  To help interpret subsequent objective 

statistics, mean physical thresholds corresponding to specific percentile thresholds are 

1-h forecasts 2-h forecasts 3-h forecasts

Unblended   
3-km EnKF ICs

Blended     
3-km ICs

ST4 analyses

Fig. O

Fig. 9. 1-h accumulated precipitation (mm) for (a,d,g) 1-, (b,e,h) 2-, and (c,f,i) 3-h forecasts 
initialized at 0000 UTC 1 May 2017 from member 1 of the 3-km ensembles with (a)–(c) 
unblended 3-km EnKF ICs and (d)–(f) blended 3-km ICs (using a 960-km cutoff 
length). (g)–(i) Corresponding ST4 analyses, with grey-shaded areas denoting no 
data. Annotated circles correspond to features noted in the text.
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provided in Fig. 2.10.  As with areal coverages (Fig. 2.8), the largest differences 

amongst the ensembles’ percentiles were over the first 6–12 h. 

After interpolating precipitation forecasts to the ST4 grid, a “neighborhood 

approach” (e.g., Theis et al. 2005; Ebert 2008, 2009) was used to produce 

“neighborhood ensemble probabilities” (NEPs; Schwartz et al. 2010; Schwartz and 

Sobash 2017) that were ultimately verified.  In short, NEPs were computed at the ith 

grid point by averaging point-based ensemble probabilities over all grid points within 

the neighborhood of the ith point, which incorporates spatial uncertainty and reflects  

 
 
Fig. 2.10. Average physical thresholds (mm h-1) over all 26 3-km forecasts of 1-h accumulated 
precipitation corresponding to the (a) 90th, (b) 95th, (c) 97.5th, (d) 99th, (e) 99.5th, and (f) 99.9th 
percentile thresholds as a function of forecast hour.  The physical thresholds were computed 
separately for each day and 1-h forecast period on the ST4 grid over the verification region 
(CONUS east of 105°W) and averaged to obtain the y-axis values.  Red, blue, gold, and black 
shadings represent envelopes of the 10 members comprising the ensembles with 3-km EnKF ICs, 
15-km EnKF ICs, GEFS ICs, and blended 3-km ICs, respectively, and darker shadings indicate 
intersections of two or more ensemble envelopes.  Values on the x axis represent ending forecast 
hours of 1-h accumulation periods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation 
between 23–24 h). 

Fig. P

ST4 analyses3-km EnKF ICs 15-km EnKF ICs GEFS ICs Blended 3-km ICs

Fig. 10. Average physical thresholds (mm h-1) over all 26 3-km forecasts of 1-h accumulated precipitation corresponding to 
the (a) 90th, (b) 95th, (c) 97.5th, (d) 99th, (e) 99.5th, and (f) 99.9th percentile thresholds as a function of forecast hour. The 
physical thresholds were computed separately for each day and 1-h forecast period on the ST4 grid over the verification 
region (CONUS east of 105°W) and averaged to obtain the y-axis values. Red, blue, gold, and black shadings represent 
envelopes of the 10 members comprising the ensembles with 3-km EnKF ICs, 15-km EnKF ICs, GEFS ICs, and blended 3-
km ICs, respectively, and darker shadings indicate intersections of two or more ensemble envelopes. Values on the x axis 
represent ending forecast hours of 1-h accumulation periods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation 
between 23–24 h).
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the inherent inaccuracy of high-resolution NWP models at individual grid points.  We 

produced NEPs for neighborhood length scales (r) between 5 and 200 km, which 

represented radii of circular neighborhoods.  Please see section 2a of Schwartz and 

Sobash (2017) for more information about constructing and verifying NEPs and Eqs. 

(1)–(3) in Schwartz (2019), which explicitly describe NEP computation when using 

percentile thresholds. 

Statistical significance testing followed section 5a(3) of Schwartz (2019).  

Specifically, a pairwise difference bootstrap technique with 10,000 resamples was 

used to determine whether aggregate differences between two ensembles’ statistics 

were statistically significant at the 95% level (e.g., Hamill 1999; Wolff et al. 2014). 

 

2.4.2.1.  Attributes statistics and rank histograms 

To assess calibration, attributes diagrams (Wilks 2011) were produced with 

forecast probability bins of 0–5%, 5–15%, 15–25%, …, 85–95%, and 95–100%; 

curves on the diagonal indicate perfect reliability.  Varying r changes sharpness and 

the resulting NEP distribution (Schwartz and Sobash 2017), which in turn impacts 

reliability.  Over the 1–12- and 18–36-h forecast periods, the smallest r yielding near-

perfect reliability for any experiment was r = 90 km and r = 125 km, respectively, so 

we focus on reliability computed with those r. 

Over the first 12 h for r = 90 km, the ensemble initialized from unblended 3-

km EnKF analyses was statistically significantly more reliable than the ensembles 

initialized from GEFS and 15-km EnKF ICs, with the GEFS-initialized ensemble 

having the worst reliability (Fig. 2.11).  Conversely, between 18–36-h for r = 125 km,  
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Fig. 2.11.  Attributes statistics computed over the verification region (CONUS east of 105°W) 
with a 90-km neighborhood length scale aggregated over all 26 1–12-h 3-km forecasts of 1-h 
accumulated precipitation for the (a) 90th, (b) 95th, (c) 97.5th, (d) 99th, (e) 99.5th, and (f) 99.9th 
percentile thresholds.  Horizontal lines near the x axis represent observed frequencies of the 
event (sample climatology) and diagonal lines are lines of perfect reliability.  Points lying in grey-
shaded regions had skill compared to forecasts of sample climatology as measured by the Brier 
skill score (Brier 1950; Wilks 2011).  Values were not plotted for a particular bin if fewer than 
500 grid points had forecast probabilities in that bin over the verification region and all 26 
forecasts.  Symbols along the top axis denote those probability bins where differences between 
two ensembles were statistically significant at the 95% level, with the five rows of colored 
symbols corresponding to the five comparisons in the legend to denote which ensemble was 
statistically significantly closest to perfect reliability.  For example, in the top row, red symbols 
indicate the ensemble with 3-km EnKF ICs had statistically significantly better reliability than 
the ensemble with 15-km EnKF ICs, while blue symbols indicate the ensemble with 15-km EnKF 
ICs had statistically significantly better reliability than the ensemble with 3-km EnKF 
ICs.  Absence of a symbol means the differences were not statistically significant at the 95% 
level.  Note that the attributes diagrams themselves stop at 100%; area above 100% was added 
to make room for statistical significance markers.   
 

the GEFS-initialized ensemble was regularly statistically significantly more reliable 

than the ensembles with unblended 15- and 3-km EnKF ICs, and the ensemble with 

F1-f12, r=90km
Any issues with including fhr 1 
with GEFS in bootstrapping?

Statistical significance markers               
3-km EnKF ICs (■) vs. 15-km EnKF ICs (■)
3-km EnKF ICs (■) vs. GEFS ICs (■)
15-km EnKF ICs (■) vs. GEFS ICs (■)
Blended 3-km ICs (■) vs. 3-km EnKF ICs (■)
Blended 3-km ICs (■) vs. GEFS ICs (■)

3-km EnKF ICs
15-km EnKF ICs

GEFS ICs
Blended 3-km ICs

Fig. Q

Fig. 11. Attributes statistics computed over the verification region (CONUS east of 105°W) with a 90-km neighborhood length scale 
aggregated over all 26 1–12-h 3-km forecasts of 1-h accumulated precipitation for the (a) 90th, (b) 95th, (c) 97.5th, (d) 99th, (e) 
99.5th, and (f) 99.9th percentile thresholds. Horizontal lines near the x axis represent observed frequencies of the event (sample 
climatology) and diagonal lines are lines of perfect reliability. Points lying in grey-shaded regions had skill compared to forecasts of 
sample climatology as measured by the Brier skill score (Brier 1950; Wilks 2011). Values were not plotted for a particular bin if 
fewer than 500 grid points had forecast probabilities in that bin over the verification region and all 26 forecasts. Symbols along the 
top axis denote those probability bins where differences between two ensembles were statistically significant at the 95% level, with 
the five rows of colored symbols corresponding to the five comparisons in the legend to denote which ensemble was statistically 
significantly closest to perfect reliability. For example, in the top row, red symbols indicate the ensemble with 3-km EnKF ICs had 
statistically significantly better reliability than the ensemble with 15-km EnKF ICs, while blue symbols indicate the ensemble with 
15-km EnKF ICs had statistically significantly better reliability than the ensemble with 3-km EnKF ICs. Absence of a symbol means 
the differences were not statistically significant at the 95% level. Note that the attributes diagrams themselves stop at 100%; area 
above 100% was added to make room for statistical significance markers.
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15-km ICs usually had comparable or better reliability than the ensemble with 

unblended 3-km ICs (Fig. 2.12).  Except for the 99.9% threshold, all ensembles had 

skill with respect to forecasts of sample climatology. 

These findings suggest aspects of GEFS ICs were beneficial for next-day (18–

36-h) forecasts, which motivated blending GEFS and EnKF initial states.  Indeed, 

blended 3-km ICs led to 18–36-h forecasts with comparable or better reliability as 

GEFS-initialized forecasts and statistically significantly better reliability than the 

ensemble with unblended 3-km ICs (Fig. 2.12).  Over the first 12 h, differences 

between the ensembles with blended and unblended 3-km ICs were also often  

 
 
Fig. 2.12.  As in Fig. 2.11 except statistics were aggregated over all 26 18–36-h 3-km forecasts of 
1-h accumulated precipitation using a 125-km neighborhood length scale. 

 

F19-f36, r=125kmFig. R

Statistical significance markers               
3-km EnKF ICs (■) vs. 15-km EnKF ICs (■)
3-km EnKF ICs (■) vs. GEFS ICs (■)
15-km EnKF ICs (■) vs. GEFS ICs (■)
Blended 3-km ICs (■) vs. 3-km EnKF ICs (■)
Blended 3-km ICs (■) vs. GEFS ICs (■)

3-km EnKF ICs
15-km EnKF ICs

GEFS ICs
Blended 3-km ICs

Fig. 12. As in Fig. 11 except statistics were aggregated over all 26 18–36-h 3-km forecasts of 1-h accumulated precipitation using a 
125-km neighborhood length scale.
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statistically significant, suggesting that blending can additionally improve short-term 

forecast reliability (Fig. 2.11). 

Rank histograms (e.g., Hamill 2001) based on domain-total precipitation (e.g., 

Schwartz et al. 2014, 2020) corroborated attributes statistics.  Specifically, over the 

first 12 h, bin counts in the ensemble with unblended 3-km ICs were closer to optimal 

in most bins compared to those for the ensembles with GEFS and 15-km EnKF ICs 

(Fig. 2.13a), which was quantified by the smaller-is-better reliability index (RI; Delle 

Monache et al. 2006).  Blended 3-km ICs yielded slightly lower 1–12-h RIs than 

unblended 3-km ICs, but the difference was small compared to that between 18–36 h 

(Fig. 2.13b), where rank histograms and RIs indicated more observations fell within 

the ensemble and dispersion was improved when GEFS initial states were either used 

as standalone ICs or combined with 3-km EnKF analyses through blending. 

 

Fig. 2.13.  Rank histograms containing all 26 3-km (a) 1–12- and (b) 18–36-h forecasts of domain-
total 1-h accumulated precipitation on the ST4 grid over the verification region (CONUS east of 
105°W) for the various ensembles.  Horizontal lines are optimal values, and the reliability index 
(RI; Delle Monache et al. 2006) is annotated for each ensemble in the legend; lower values are 
better and indicate flatter rank histograms. 

 
Based on total precip over verification domain 
without any bias correction.3-km EnKF ICs 15-km EnKF ICs GEFS ICs Blended 3-km ICs

3-km EnKF ICs (RI = 0.76)

15-km EnKF ICs (RI = 0.73)

GEFS ICs (RI = 0.49)

Blended 3-km ICs (RI = 0.52)

3-km EnKF ICs (RI = 0.84)

15-km EnKF ICs (RI = 0.93)

GEFS ICs (RI = 0.96)

Blended 3-km ICs (RI = 0.76)

(a) 1–12 h (b) 18–36 h

Fig. S

Fig. 13. Rank histograms containing all 26 3-km (a) 1–12- and (b) 18–36-h forecasts of domain-total 1-h accumulated precipitation on the ST4 grid 
over the verification region (CONUS east of 105°W) for the various ensembles. Horizontal lines are optimal values, and the reliability index (RI; 
Delle Monache et al. 2006) is annotated for each ensemble in the legend; lower values are better and indicate flatter rank histograms.
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2.4.2.2.  Spread and spectra 

Improved reliability and rank histograms engendered by GEFS and blended 3-

km ICs was associated with increased ensemble spread.  In particular, the ensembles 

with GEFS and blended 3-km ICs had statistically significantly more 24–30-h 

precipitation spread compared to the ensembles with unblended EnKF ICs (Fig. 2.14). 

 
 
Fig. 2.14.  Average ensemble variance (mm2) over the verification region (CONUS east of 105°W) 
and all 26 3-km forecasts of 1-h accumulated precipitation as a function of forecast hour.  Values 
on the x axis represent ending forecast hours of 1-h accumulation periods (e.g., an x-axis value of 
24 is for 1-h accumulated precipitation between 23–24 h).  Symbols along the top axis indicate 
forecast hours when differences between two ensembles were statistically significant at the 95% 
level as in Fig. 2.11 and denote the ensemble with statistically significantly higher variance. 
 

3-km EnKF ICs 15-km EnKF ICs GEFS ICs Blended 3-km ICs

Fig. T

Statistical significance markers               
3-km EnKF ICs (■) vs. 15-km EnKF ICs (■)
3-km EnKF ICs (■) vs. GEFS ICs (■)
15-km EnKF ICs (■) vs. GEFS ICs (■)
Blended 3-km ICs (■) vs. 3-km EnKF ICs (■)
Blended 3-km ICs (■) vs. GEFS ICs (■)

Fig. 14. Average ensemble variance (mm2) over the verification region (CONUS east of 105°W) and all 
26 3-km forecasts of 1-h accumulated precipitation as a function of forecast hour. Values on the x axis 
represent ending forecast hours of 1-h accumulation periods (e.g., an x-axis value of 24 is for 1-h 
accumulated precipitation between 23–24 h). Symbols along the top axis indicate forecast hours when 
differences between two ensembles were statistically significant at the 95% level as in Fig. 11 and 
denote the ensemble with statistically significantly higher variance.
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Additionally, blended 3-km ICs led to significantly more spread than unblended 3-km 

ICs over the first 6 h that may have improved reliability statistics and rank 

histograms, even though this enhanced spread reflected excessive early precipitation 

(e.g., Figs. 2.7–2.9).  The greater spread through ~18 h in the ensembles with GEFS 

and 15-km ICs relative to that from the ensemble with unblended 3-km ICs may 

reflect a substantial contribution from the small, yet intense precipitation entities that 

were more numerously predicted when forecasts had downscaled, rather than 3-km, 

ICs (Figs. 2.8c–f, 2.10d–f). 

To further understand spread characteristics, perturbation power spectra were 

computed with the discrete cosine transform (Denis et al. 2002), which is well suited 

for obtaining spectra from limited-area models.  Perturbation spectra were determined 

with respect to the ensemble mean over the entire 3-km domain except for the 15 

points nearest each lateral boundary.  Final spectra were averaged over all 10 

perturbations and 26 forecasts. 

At 1 h, 500-hPa perturbation kinetic energy (PKE) in the ensemble with 

blended 3-km ICs broadly followed PKEs of the GEFS-initialized ensemble at scales 

> 500 km and the ensemble with unblended 3-km ICs at smaller scales, reflecting the 

blending procedure (Fig. 2.15a).  Compared to the GEFS-initialized ensemble, the  

ensemble with unblended 3-km ICs had more 1-h forecast PKE at most scales (Fig. 

2.15a), with enhanced large-scale power possibly reflecting upscale error growth with 

time through the continuous 3-km DA cycles.  But, PKE in the GEFS-initialized 

ensemble grew fastest between 3–6 h (Figs. 2.15b,c) and was largest at all scales after 

6 h (Figs. 2.15d–f), while unblended 3-km ICs yielded the least 12–36-h PKE at  
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Fig. 2.15.  Average 500-hPa perturbation kinetic energy (m2 s-2) as a function of wavelength (km) 
computed from all 26 (a) 1-, (b) 3-, (c) 6-, (d) 12-, (e) 24-, and (f) 36-h 3-km, 10-member ensemble 
forecasts over the entire 3-km domain, excluding the 15 grid points nearest each lateral 
boundary.  Perturbations were computed with respect to the ensemble mean, and the spectra 
were averaged over all 10 perturbations and 26 forecasts.  Dashed vertical lines denote 6 times 
the horizontal grid spacing (3 km), the approximate effective resolution of the forecasts 
(Skamarock 2004).  The discrete cosine transform was used to perform the spectral analysis and 
spectral variance binning employed the method of Ricard et al. (2013). 
 

scales > 100 km.  Thus, more robust large-scale perturbation growth and kinetic 

energy in the GEFS-initialized ensemble was associated with its superior 18–36-h 

forecast reliability and rank histograms relative to the ensembles with unblended 

EnKF ICs.  However, blending GEFS ICs with 3-km EnKF analyses promoted large-

scale PKE growth after 6 h, and by 24–36 h, the ensembles initialized from GEFS and 

blended 3-km ICs had comparable large-scale PKEs, indicating blending successfully 

recovered these apparently favorable large-scale spectral characteristics that benefited 

reliability statistics and rank histograms. 

 

 

 

NEW SPECTRA w/ sqrt(KE)

(a) 1-h forecasts (b) 3-h forecasts (c) 6-h forecasts

(d) 12-h forecasts (e) 24-h forecasts (f) 36-h forecasts

Fig. 15. Average 500-hPa perturbation kinetic energy (m2 s-2) as a function of wavelength (km) computed from all 26 (a) 1-, (b) 3-, (c) 6-, (d) 12-, (e) 24-, and (f) 36-h 
3-km, 10-member ensemble forecasts over the entire 3-km domain, excluding the 15 grid points nearest each lateral boundary. Perturbations were computed with 
respect to the ensemble mean, and the spectra were averaged over all 10 perturbations and 26 forecasts. Dashed vertical lines denote 6 times the horizontal grid 
spacing (3 km), the approximate effective resolution of the forecasts (Skamarock 2004). The discrete cosine transform was used to perform the spectral analysis and 
spectral variance binning employed the method of Ricard et al. (2013).

Wavelength (km) Wavelength (km) Wavelength (km)

Pe
rtu

rb
at

io
n 

ki
ne

tic
 e

ne
rg

y 
(m

2 
s–

2 )
Pe

rtu
rb

at
io

n 
ki

ne
tic

 e
ne

rg
y 

(m
2 

s–
2 )



 

 

42 
 

2.4.2.3.  Fractions skill scores 

Forecast skill was further evaluated with the fractions skill score [FSS; 

Roberts and Lean (2008)], where FSS = 1 indicates a perfect forecast and FSS = 0 

means no skill.  We present FSSs for r = 100 km, although conclusions were 

unchanged when FSSs were computed with different neighborhood length scales.  

Moreover, areas under the relative operating characteristic curve (Mason 1982; 

Mason and Graham 2002) provided identical conclusions as FSSs and are not 

discussed further. 

Forecasts initialized from unblended 3-km EnKF analyses had higher FSSs 

than those initialized from downscaled 15-km EnKF analyses through 6–12 h, both 

when aggregated over all forecasts (Fig. 2.16) and on an hour-by-hour basis (Figs. 

2.17a–d), with many instances of significant differences.  However, after 6–12 h, the 

ensembles with unblended 15- and 3-km EnKF ICs usually had statistically 

indistinguishable FSSs.  Compared to the GEFS-initialized ensemble, the unblended 

EnKF-initialized ensembles had statistically significantly higher aggregate FSSs 

through 12–18 h but comparable or lower aggregate FSSs thereafter (Fig. 2.16), 

similar to attributes statistics.  These 1–12-h forecast benefits from unblended 3-km 

EnKF ICs compared to GEFS ICs were evident for most hourly forecasts (Figs. 

2.17i–l), while individual 1-h accumulated precipitation forecasts over the 18–36-h 

period from the ensemble with GEFS ICs were frequently comparable to or better 

than those from the ensemble with unblended 3-km EnKF ICs (Figs. 2.17m–p). 

Blended 3-km ICs led to FSSs mirroring those from unblended 3-km EnKF 

ICs over the first 12–18 h (Fig. 2.16), indicating blending preserved short-term  
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forecast benefits of increased analysis resolution for spatial placement.  Furthermore, 

after 18–24 h, the ensemble with blended 3-km ICs had higher FSSs than the 

ensemble with unblended 3-km EnKF ICs both on an hourly basis (Figs. 2.17e–h) and 

in aggregate that were similar to or higher than FSSs from the GEFS-initialized 

ensemble. 

 
 
Fig. 2.16.  Fractions skill scores (FSSs) over the verification region (CONUS east of 105°W) with 
a 100-km neighborhood length scale for the (a) 90th, (b) 95th, (c) 97.5th, (d) 99th, (e) 99.5th, and 
(f) 99.9th percentile thresholds aggregated over all 26 3-km forecasts of 1-h accumulated 
precipitation as a function of forecast hour.  Values on the x axis represent ending forecast hours 
of 1-h accumulation periods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation 
between 23–24 h).  The y axis scales are different in each panel.  Symbols along the top axis 
indicate forecast hours when differences between two ensembles were statistically significant at 
the 95% level as in Fig. 2.11 and denote the ensemble with statistically significantly higher 
FSSs.  Note that the maximum FSS is 1.0; area above 1.0 was added to make room for statistical 
significance markers.   
 

 

R=100km

Statistical significance markers               
3-km EnKF ICs (■) vs. 15-km EnKF ICs (■)
3-km EnKF ICs (■) vs. GEFS ICs (■)
15-km EnKF ICs (■) vs. GEFS ICs (■)
Blended 3-km ICs (■) vs. 3-km EnKF ICs (■)
Blended 3-km ICs (■) vs. GEFS ICs (■)

3-km EnKF ICs
15-km EnKF ICs

GEFS ICs
Blended 3-km ICs

Fig. V

Fig. 16. Fractions skill scores (FSSs) over the verification region (CONUS east of 105°W) with a 100-km neighborhood length scale for 
the (a) 90th, (b) 95th, (c) 97.5th, (d) 99th, (e) 99.5th, and (f) 99.9th percentile thresholds aggregated over all 26 3-km forecasts of 1-h 
accumulated precipitation as a function of forecast hour. Values on the x axis represent ending forecast hours of 1-h accumulation periods 
(e.g., an x-axis value of 24 is for 1-h accumulated precipitation between 23–24 h). The y axis scales are different in each panel. Symbols 
along the top axis indicate forecast hours when differences between two ensembles were statistically significant at the 95% level as in Fig. 
11 and denote the ensemble with statistically significantly higher FSSs. Note that the maximum FSS is 1.0; area above 1.0 was added to 
make room for statistical significance markers.
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Fig. 2.17.  (a)–(d) Histogram [expressed as probabilities (%)] of FSS differences with r = 100 km 
between the ensembles with 3-km EnKF ICs and 15-km EnKF ICs (3-km ICs minus 15-km ICs) 
computed from all 26 0–1-, 1–2-, …, 10–11-, and 11–12-h 3-km forecasts of 1-h accumulated 
precipitation for the (a) 90th, (b) 95th, (c) 99th, and (d) 99.9th percentile thresholds.  (e)–(h) As 
in (a)–(d) but for differences from all 26 18–19-, 19–20-, …, 34–35-, and 35–36-h 3-km forecasts 
of 1-h accumulated precipitation between the ensembles with blended and unblended 3-km ICs 
(blended 3-km ICs minus unblended 3-km ICs).  (i)–(l) and (m)–(p) As in (a)–(d) and (e)–(h) 
respectively, but for differences between the ensembles with unblended 3-km EnKF and GEFS 
ICs (3-km ICs minus GEFS ICs).  Values on the x axis denote the leftmost points of each bin, and 
bin widths were 0.025 (e.g., the bars with left edges at 0.05 are for bins spanning 0.05–
0.075).  Colors of the bars correspond to the legend and indicate the experiment with the higher 
FSS in that bin. 

 

2.4.2.4.  SYNTHESIS 

FSSs, attributes statistics, and rank histograms revealed clear benefits of 

convection-allowing analyses compared to convection-parameterizing analyses for 1–

12-h precipitation forecasts, consistent with previous work (e.g., Johnson et al. 2015; 
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Fig. 17. (a)–(d) Histogram [expressed as probabilities (%)] of FSS differences with r = 100 km between the ensembles with 3-km EnKF ICs and 15-km 
EnKF ICs (3-km ICs minus 15-km ICs) computed from all 26 0–1-, 1–2-, …, 10–11-, and 11–12-h 3-km forecasts of 1-h accumulated precipitation for the 
(a) 90th, (b) 95th, (c) 99th, and (d) 99.9th percentile thresholds. (e)–(h) As in (a)–(d) but for differences from all 26 18–19-, 19–20-, …, 34–35-, and 35–
36-h 3-km forecasts of 1-h accumulated precipitation between the ensembles initialized with blended and unblended 3-km ICs (blended 3-km ICs minus 
unblended 3-km ICs). (i)–(l) and (m)–(p) As in (a)–(d) and (e)–(h) respectively, but for differences between the ensembles with unblended 3-km EnKF and 
GEFS ICs (3-km ICs minus GEFS ICs).  Values on the x axis denote the leftmost points of each bin, and bin widths were 0.025 (e.g., the bars with left 
edges at 0.05 are for bins spanning 0.05–0.075). Colors of the bars correspond to the legend and indicate the experiment with the higher FSS in that bin.
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Johnson and Wang 2016; Schwartz 2016; Gustafsson et al. 2018).  But, these 

improvements from convection-allowing ICs did not persist to next-day forecast 

ranges, where GEFS-initialized forecasts outperformed EnKF-initialized forecasts.  

However, blended 3-km ICs led to similar or better 18–36-h forecasts than GEFS ICs, 

suggesting that blending large-scale fields from a global model with convection-

allowing EnKF analyses can improve next-day CAE forecast dispersion, skill, and 

reliability while preserving short-term forecast benefits of increased IC resolution.  

Thus, when considering all forecast ranges, blending yielded initial ensembles that 

produced the best probabilistic forecasts. 

 

2.4.3.  IMPACT OF HOURLY RADAR DA 

Because our 3-km EnKF was highly constrained, we wondered whether 

assimilating radar observations could realize meaningful analysis and forecast 

improvements.  So, to assess the impact of assimilating radar reflectivity 

observations, another EnKF was configured exactly as the nested 15-/3-km EnKF DA 

system (section 2.2.2), except reflectivity observations throughout the CONUS were 

assimilated into 3-km analyses along with conventional observations hourly from 

1900–0000 UTC.  Although reflectivity observations could easily be assimilated 

more frequently in our framework, hourly radar DA mimics the HRRRE 

configuration.  Backgrounds for 1900 UTC radar-assimilating EnKF analyses were 

provided by 1-h forecasts initialized from 1800 UTC posterior ensembles from the 

nested 15-/3-km EnKF assimilating solely conventional observations.  Thus, the 

impact of assimilating reflectivity observations was confined to a 6-h period each 



 

 

46 
 

day.  This approach was adopted primarily to avoid the expense of continuously 

cycling another 3-km EnKF over the entire 4-week period.  However, assimilating 

radar observations for just a few hours was methodologically consistent with 

numerous other high-resolution DA systems, including the WoF system (e.g., 

Wheatley et al. 2015; Jones et al. 2016; Skinner et al. 2018), and 6 h of assimilating 

radar observations was more than sufficient to assess the data impact (e.g., Johnson 

and Wang 2017 and references therein). 

Specific radar DA configurations mostly followed Duda et al. (2019) and 

references therein (Table 2.4), and like the other EnKFs, 0000 UTC analysis 

ensembles initialized 36-h, 3-km, 10-member CAE forecasts.  Furthermore, to 

examine the interplay of blending and radar DA, we also created a set of ICs by 

blending GEFS ICs with radar-assimilating 3-km EnKF analyses using a 960-km 

filter cutoff. 

Assimilating reflectivity observations generally improved FSSs over the first 

3 h but had small impacts thereafter (Fig. 2.18), similar to other studies finding short-

lived benefits of radar DA (e.g., Kain et al. 2010; Johnson et al. 2015; Fabry and 

Meunier 2020).  Within the radar-assimilating experiments, blending boosted FSSs at 

later times, as with the non-radar DA experiments.  Assimilating reflectivity 

observations negligibly impacted attributes statistics, although assimilation of 

100,000–200,000 radar observations each cycle lessened precipitation spread over the 

first hour (not shown).  While more frequent assimilation cycles could potentially 

realize additional improvements from radar DA, it is unlikely that the small-scale 

information from radar observations can consistently yield forecast improvements  
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Radar observation source 
Three-dimensional Multi-Radar Multi-Sensor 
(MRMS; Smith et al. 2016) reflectivity mosaic 

valid at the top of the hour 

Horizontal localization full-width 18 km 

Vertical localization full-width 0.5 scale heights 

Observation error standard deviation 5.0 dBZ 

Outlier check 

3(σf2 + σo2)½, where σf is the prior ensemble 
standard deviation at the observation location 

and σo is the observation error standard 
deviation (5.0 dBZ) 

Observation operator 
Interpolate diagnosed reflectivity from the 

Thompson microphysics scheme to 
observation locations within DART 

Excluded observations 0–10 dBZ 

Assimilation of non-precipitation observations Reflectivity observations < 0.0 dBZ  
reset to 0.0 dBZ and assimilated 

Minimum allowed forward operator value 0.0 dBZ; priors < 0.0 dBZ reset to 0.0 dBZ 

Table 2.4.  Settings for assimilation of radar reflectivity observations. 
 

after the shortest forecast ranges, especially in an EnKF highly constrained by other 

observations.  Nonetheless, these experiments suggest feasibility of performing radar-

assimilating, WoF-like analyses over large domains in a continuously cycling EnKF 

DA framework. 

 

2.5.  Summary and conclusions 

EnKF DA systems with 80 members and 15- and 3-km horizontal grid 

spacings were continuously cycled with a 1-h period for 4 weeks over a 

computational domain spanning the entire CONUS.  Both the 15- and 3-km EnKFs 

had stable climates throughout the cycling period and acceptable prior observation-

space statistics, demonstrating the viability of a convection-allowing continuously  
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Fig. 2.18.  As in Fig. 2.16, but for comparisons focusing on the impact of assimilating radar 
reflectivity observations and aggregated over 24, rather than 26, forecasts (necessitated due to 
missing radar observations that precluded radar data assimilation sensitivity experiments for the 
forecasts initialized at 0000 UTC 13 and 14 May 2017).  Grey curves are often beneath the black 
curves, especially in (a) and (b). 
 

cycling EnKF over the CONUS.  However, our EnKFs were highly constrained by 

observations, and whether convection-allowing EnKFs can be continuously cycled 

without deleterious consequences over large data-sparse domains is unclear. 

At 0000 UTC, EnKF analyses initialized 36-h, 10-member CAE forecasts 

with 3-km horizontal grid spacing that were evaluated with a focus on precipitation.  

CAE forecasts were also initialized from NCEP’s operational GEFS and “blended” 

ICs produced by using a low-pass filter to combine large scales from GEFS ICs with 

small scales from EnKF analysis members.  Precipitation forecasts initialized from 

continuously cycling EnKF analyses outperformed GEFS-initialized forecasts 

Statistical significance markers                            
3-km EnKF ICs (■) vs. 3-km EnKF ICs with radar DA (■)
3-km EnKF ICs with radar DA (■) vs. Blended 3-km ICs with radar DA (■)
Blended 3-km ICs with radar DA (■) vs. Blended 3-km ICs (■)

3-km EnKF ICs
3-km EnKF ICs 
with radar DA

Blended 3-km ICs
Blended 3-km ICs 
with radar DA

Fig. Y

Fig. 18. As in Fig. 16, but for comparisons focusing on the impact of assimilating radar reflectivity observations and aggregated 
over 24, rather than 26, forecasts (necessitated due to missing radar observations that precluded radar data assimilation sensitivity 
experiments for the forecasts initialized at 0000 UTC 13 and 14 May 2017).
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through 12–18 h, and benefits from initializing 3-km forecasts from corresponding 3-

km analyses, rather than downscaled 15-km analyses, were realized through 6–12 h.  

But, after 18 h, GEFS-initialized forecasts were comparable to or better than EnKF-

initialized forecasts, indicating limitations of limited-area continuously cycling 

EnKFs as initialization tools for next-day CAE precipitation forecasts, consistent with 

Schwartz et al. (2020).  Benefits of assimilating radar reflectivity observations into 

the 3-km EnKF were confined solely to 1–3-h forecasts. 

Although blending sometimes degraded precipitation climatologies over the 

first 12 h, forecasts initialized from blended 3-km ICs reflected the respective 

strengths of both GEFS and 3-km EnKF ICs.  Specifically, through 12–18 h, forecasts 

initialized from blended 3-km ICs had similar or better skill, reliability, and 

dispersion than those initialized from unblended 3-km EnKF analyses, while after 18–

24 h, forecasts with blended 3-km ICs were comparable to or better than those with 

GEFS ICs.  Therefore, blending produced ICs yielding the best performance when 

considering the entire 36-h forecast, indicating how combining large-scale global 

fields with high-resolution, limited-area EnKF analyses can potentially unify short-

term WoF-like and next-day CAE guidance systems under a common framework. 

There are many avenues for additional research and improvements.  For 

example, while using identical inflation factors and observation errors in the 15- and 

3-km EnKFs provided reasonable results, these choices may have been suboptimal.  

In particular, because observation errors are the sum of measurement and 

representativeness errors and representativeness errors are resolution-dependent (e.g., 

Ben Bouallegue et al. 2020), observation errors should arguably be tuned for each 
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domain, which, in turn, might require adjusting inflation factors.  Thus, it may be 

possible to further improve our 3-km EnKF.   

Additionally, our blending procedure did not impact the continuously cycling 

EnKF DA systems, and future work might assess whether incorporating large scales 

from global analyses into hourly limited-area DA cycles is beneficial.  Furthermore, 

blending could potentially be optimized by dynamically determining the filter cutoff 

scale (e.g., Feng et al. 2020) or using height- and variable-specific cutoffs (e.g., 

Zhang et al. 2015), and efforts to mitigate blending-induced initial imbalances 

tailored for high-resolution models are needed.  Moreover, next-day forecast benefits 

of blending suggest further exploring the value of mixed-resolution ensemble-based 

DA systems for convective applications may be worthwhile.  Also, blending and 

partial cycling DA approaches should be compared; while both methods introduce 

external large-scale information into limited-area ICs, whether either method is 

preferable is unclear.  It is also important to note that our blending methodology [Eq. 

(2.1)] changed the large-scale component of both the IC perturbations and the initial 

ensemble mean state, differing from an approach of blending perturbations derived 

from two different ensembles without changing the spectral representation of the 

initial ensemble mean (e.g., Caron 2013).  Therefore, we cannot determine whether 

the 18–36-h forecast improvements from blending were due to altering the large-scale 

IC perturbations or large-scale initial ensemble mean, and it would be interesting to 

refine attribution in future work. 

Finally, computing availability limited our cycling period to just 4 weeks, and 

additional experimentation is needed over longer periods, different seasons, and 
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varied geographic regions to further understand large-domain convection-allowing 

continuously cycling EnKF performance and whether benefits of blending are 

regime- and location-dependent.  Nonetheless, this work suggests a combination of 

blending and high-resolution EnKF DA may represent a promising pathway toward 

an operational ensemble-based convection-allowing analysis–forecast system suitable 

for both nowcasting and next-day prediction over the CONUS. 
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Chapter 3: Short-term convection-allowing ensemble forecast 

sensitivity to resolution of initial condition perturbations and central 

initial states 

 

3.1.  Introduction 

An ensemble of initial conditions (ICs) can be viewed as a set of IC 

perturbations added to a deterministic model solution.  In this framework, the 

deterministic solution serves as a central initial state6 for the IC ensemble.  

Theoretically, central initial states and IC perturbations can originate from disparate 

sources with different underlying physics, dynamics, and resolutions, which is 

common for convection-allowing ensemble (CAE) applications.  For example, CAE 

ICs have regularly been constructed by adding perturbations derived from relatively 

coarse analyses or short-term forecasts to comparatively higher-resolution 

deterministic analyses (e.g., Xue et al. 2007; Peralta et al. 2012; Kühnlein et al. 2014; 

Tennant 2015; Raynaud and Bouttier 2016, 2017; Hagelin et al. 2017; Johnson and 

Wang 2020). 

High-quality central initial states and IC perturbations are both critical for 

 
6 This deterministic central state is often, but not necessarily, exactly the mean of the IC ensemble.  For 
example, many analysis–forecast systems using ensemble Kalman filters (EnKFs) produce N-member 
analysis ensembles but only initialize “free forecasts” of interest from M members, where M < N (e.g., 
Houtekamer et al. 2014; Schwartz et al. 2015b; Johnson et al. 2017; Zhou et al. 2017; Gasperoni et al. 
2020).  Through EnKF equations, all N posterior (after assimilation) ensemble members, including the 
subset of M members, are naturally centered on the ensemble mean of the N members (xN!!!).  However, 
if only initializing free forecasts from M members, the mean of the M-member IC ensemble (xM!!!) is 
clearly not necessarily xN!!!.  Although differences between xN!!! and xM!!! are small in equally likely, single-
physics, single-dynamics ensembles like those considered in this study, given the above technical 
considerations, we prefer the term “central initial state” instead of “mean initial state”.   
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producing skillful and reliable probabilistic CAE forecasts.  Central initial states 

establish an overall forecast trajectory about which IC perturbations evolve (e.g., 

Ancell 2013) and IC perturbations are important contributors to CAE spread, 

especially at short forecast ranges before lateral boundary condition (LBC) or physics 

perturbations generate appreciable forecast diversity (e.g., Hohenegger et al. 2008; 

Vié et al. 2011; Peralta et al. 2012; Kühnlein et al. 2014; Zhang 2019).  Thus, to 

improve CAE forecasts, it is important to improve both central initial states and IC 

perturbations. 

One way to potentially realize these improvements is to increase horizontal 

resolutions of central initial states and IC perturbations to convection-allowing scales, 

as numerous studies have indicated short-term (e.g., ~1–12-h) convection-allowing 

model forecasts are improved when initialized from corresponding convection-

allowing analyses, rather than from coarser convection-parameterizing analyses (e.g., 

Ancell 2012; Johnson et al. 2015; Johnson and Wang 2016; Schwartz 2016; Lu et al. 

2017; Gustafsson et al. 2018; Schwartz et al. 2021).  Given that central initial state 

and IC perturbation resolutions can differ, it seems prudent to assess whether it is 

necessary for both central initial states and IC perturbations to possess convection-

allowing horizontal grid spacing.  In other words, are CAE forecasts degraded if one 

of the IC components possesses convection-parameterizing, rather than convection-

allowing, resolution? 

The answer to this question has important implications for how next-

generation CAEs, like NCEP’s Rapid Refresh Forecast System (RRFS; Carley et al. 

2021), are designed.  For example, substantial computational resources can 



 

 

54 
 

potentially be saved if increasing central initial state resolution to convection-

allowing scales dramatically improves CAE forecasts but increasing IC perturbation 

resolution to convection-allowing scales has comparatively smaller impacts.  In this 

case, RRFS development efforts can primarily be devoted to producing high quality, 

convection-allowing, deterministic central initial states about which relatively coarse, 

inexpensive IC perturbations are centered7.  Conversely, if increasing IC perturbation 

resolution to convection-allowing scales is more important, a stronger emphasis 

should be placed on developing a pure ensemble-based convection-allowing data 

assimilation (DA) system for the RRFS. 

Although previous work has not directly assessed the relative benefits of 

increasing IC perturbation resolution versus increasing central initial state resolution 

for CAE forecasting applications, several recent studies touched on issues concerning 

central initial states and IC perturbations for real-world CAEs.  For example, 

Schwartz et al. (2020; hereafter S20) suggested CAE precipitation forecasts were 

more sensitive to central initial states than IC perturbations.  However, the three 

sources of IC perturbations and two sources of central initial states considered by S20 

reflect vastly different underlying numerical weather prediction (NWP) models and 

DA systems and possessed convection-parameterizing resolutions.  Thus, it is unclear 

if S20’s findings would hold for finer-scale ICs or in frameworks with more unified 

configurations among central initial states and IC perturbations. 

In addition, Schwartz et al. (2021; hereafter S21) showed that 3-km ensemble 

 
7 A potential caveat: Even if IC perturbations can be coarsened without harming CAE forecasts, CAEs 
could be critical for providing flow-dependent background error covariances within convective-scale 
data assimilation systems.  We discuss this possibility more thoroughly in section 4.5.1. 
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Kalman filter (EnKF; Evensen 1994; Houtekamer and Zhang 2016) analyses 

initialized better short-term 3-km CAE precipitation forecasts than downscaled 15-km 

EnKF analyses.  S21’s 3-km EnKF ICs can be viewed as 3-km IC perturbations 

centered on 3-km states (the mean of 3-km EnKF analysis members), while their 15-

km EnKF ICs can be conceived as 15-km IC perturbations centered on 15-km states 

(the mean of 15-km EnKF analysis members).  Therefore, S21’s experiments could 

not disentangle precisely whether a specific component of the 3-km EnKF—its 

higher-resolution central initial state or higher-resolution IC perturbations—was 

responsible for yielding better short-term forecasts than the 15-km EnKF. 

Furthermore, Johnson and Wang (2020; hereafter JW20) examined ten 18-h 

forecasts over a small (1200 km x 1200 km) domain from CAEs centered about 

common 3-km initial states but with different IC perturbations.  Their results 

indicated that 3-km IC perturbations led to better CAE forecasts than IC perturbations 

derived from a 0.5° global ensemble.  However, benefits of higher-resolution IC 

perturbations steadily decreased with forecast lead-time and generally vanished 

beyond 12–15 h.  These findings were similar to Raynaud and Bouttier (2016), who 

noted that 4-km IC perturbations yielded better 9–12-h CAE forecasts than 15-km IC 

perturbations given common 2.5-km central initial states.  While these collective 

results suggest short-term CAE forecasts benefit from possessing convection-

allowing IC perturbations, neither Raynaud and Bouttier (2016) nor JW20 

concurrently examined CAE forecast sensitivity to central initial state resolution. 

Thus, to directly assess whether it is more important for IC perturbations or 

central initial states to possess convection-allowing horizontal grid spacing, we 
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designed, executed, and evaluated a series of CAE forecast experiments based upon 

S21’s EnKFs.  Sections 3.2 and 3.3 describe our experiments, while section 3.4 

presents results.  Although our focus is on IC resolution requirements for CAE 

forecasting applications, there are parallels between this topic and resolution 

requirements for mixed-resolution ensemble-based DA systems, which we discuss in 

section 3.5.  Our overall conclusions (section 3.6) provide guidance about how 

development efforts to improve CAE ICs might best proceed. 

 

3.2.  Model and EnKF configurations 

Thirty-six-hour (36-h), 10-member CAE forecasts were initialized from nine 

sets of ICs with different IC perturbations and central initial states.  Eight of the IC 

sets leveraged analyses produced by the continuously cycling EnKF DA systems 

described by S21, who provided comprehensive details and justifications for specific 

EnKF DA settings (summarized in Table 3.1).  Thus, only brief descriptions of EnKF 

and NWP model configurations are provided here, with a more thorough discussion 

reserved for how the nine sets of ICs were constructed (section 3.3). 

Specifically, S21 performed two limited-area continuously cycling DA 

experiments using a square-root form of the EnKF (Anderson 2001) implemented 

within the Data Assimilation Research Testbed software (Anderson et al. 2009).  Both 

EnKFs used 80 ensemble members and produced analyses every hour between 0000 

UTC 23 April and 0000 UTC 20 May 2017 (inclusive; 649 hourly cycles).  As noted 

by S21, this experimental period featured a variety of flow patterns and several heavy 

precipitation episodes primarily driven by strong synoptic forcing.  The EnKFs  
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Parameter Setting 

EnKF algorithm Ensemble adjustment Kalman filter  
(EAKF; Anderson 2001, 2003; Anderson and Collins 2007) 

Ensemble size 80 members 

Cycling period 1 hour 

Updated WRF model variables 

Zonal and meridional wind components; perturbation 
geopotential height, potential temperature, and dry surface 

pressure; and water vapor, graupel,  
snow, and rain mixing ratios 

Localization function Eq. (4.10) from Gaspari and Cohn (1999) 

Horizontal localization full-width 
For 15-km EnKF analyses, 1280 km for all observations. 
For 3-km EnKF analyses, 640 km, except 1280 km for 

rawinsonde observations 

Vertical localization full-width 1.0 scale height 

Sampling error correction Anderson (2012) 

Inflation method Posterior relaxation-to-prior-spread  
[RTPS; Whitaker and Hamill (2012)] 

Inflation factor 1.06 

Lateral boundary condition 
perturbations 

Random perturbations based on Gaussian noise added to 
GFS analyses and forecasts (e.g., Torn et al. 2006) 

Sea surface temperature updates Daily updates from NCEP’s 0.12° analyses 
 (e.g., Gemmill et al. 2007) 

Assimilated observations 
Rawinsonde, aircraft, wind profiler, satellite-tracked wind, 
global positioning system radio occultation (GPSRO), and 

surface observations 

Observation errors and  
time windows 

Based on the High-resolution Rapid Refresh Ensemble  
(HRRRE; Dowell et al. 2016, 2021) 

Horizontal thinning for aircraft and 
satellite-tracked wind observations 

30 km for 15-km EnKF analyses 
15 km for 3-km EnKF analyses 

Vertical thinning for aircraft and 
satellite-tracked wind observations 25 hPa 

Table 3.1.  Summary of continuously cycling EnKF configurations.  See S21 for justifications for 
these settings. 
 

assimilated approximately 30,000 – 100,000 observations from conventional 

measurements each cycle, and the first two days of cycling (i.e., 23 and 24 April) 
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were regarded as spin-up where model solutions moved away from randomly-

perturbed initial states prescribed at 0000 UTC 23 April 2017 (see S21 for details).   

One EnKF experiment produced analyses solely on a 15-km computational 

domain (Figs. 3.1, 3.2a), while the second produced separate, parallel analyses on 

both 15- and 3-km domains (Figs. 3.1, 3.2b).  To advance the 80-member ensemble 

states between hourly analyses, version 3.9.1.1 of the Advanced Research Weather 

Research and Forecasting (WRF) model (Skamarock et al. 2008; Powers et al. 2017) 

was used.  WRF model physical parameterizations (Table 3.2) were identical across 

all 80 ensemble members and the two domains, except no cumulus parameterization 

was employed on the convection-allowing 3-km grid.  In the nested 15-/3-km EnKF 

 
 
Fig. 3.1.  Computational domain.  Horizontal grid spacing was 15 km in the outer domain (415 x 
325 points) and 3 km in the nest (1581 x 986 points).  Lateral boundary conditions (LBCs) 
provided by global models were applied to the 15-km domain, which in turn provided LBCs for 
the 3-km domain.  Objective precipitation verification only occurred over the red shaded region 
of the 3-km domain (CONUS east of 105°W).   

15 km

3 km

Fig. A

Fig. 1.  Computational domain.  Horizontal grid spacing was 15 km in the outer domain 
(415 x 325 points) and 3 km in the nest (1581 x 986 points).  Lateral boundary conditions 
(LBCs) provided by global models were applied to the 15-km domain, which in turn 
provided LBCs for the 3-km domain.  Objective precipitation verification only occurred 
over the red shaded region of the 3-km domain (CONUS east of 105°W).  
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Fig. 3.2.  Flowcharts of continuously cycling EnKF data assimilation systems over (a) solely the 
15-km computational domain (i.e., outer domain in Fig. 3.1) and (b) both the 15- and 3-km 
computational domains (i.e., both domains in Fig. 3.1).  Posterior ensembles (red shaded boxes) 
were used to construct initial conditions for CAE forecasts. 
 

DA system (Fig. 3.2b), 1-h WRF model forecasts between analyses were one-way 

nested, ensuring that the 15-km EnKF was unaffected by the 3-km EnKF (i.e., 15-km 

fields in the nested- and single-domain EnKF DA systems were identical).  Both 

EnKFs performed well, yielding acceptable spread–error relationships (e.g.,  

80-member, 
15-km prior 
ensemble

1-h, 80-member ensemble 
WRF model forecast: 
15-km grid spacing

15-km 
EnKF

80-member, 
15-km analysis 

ensemble (xi
15km)

80-member, 
15-km prior 
ensemble

1-h, 80-member ensemble 
WRF model forecast: 

one-way nested 15- and
3-km forecasts

15-km 
EnKF

80-member, 
15-km analysis 

ensemble (xi
15km)

80-member,  
3-km prior 
ensemble

3-km 
EnKF

80-member, 
3-km analysis 

ensemble (xi
3km)

(a) Single-domain 15-km EnKF

(b) Nested-domain 15-/3-km EnKF

Fig. B

x15km = 1
80"
i=1

80
xi
15km

x3km = 1
80"
i=1

80
xi
3km

Fig. 2.  Flowcharts of continuously cycling EnKF data assimilation systems over (a) solely the 
15-km computational domain (i.e., outer domain in Fig. 1) and (b) both the 15- and 3-km 
computational domains (i.e., both domains in Fig. 1).  Posterior ensembles (red shaded boxes) 
were used to construct initial conditions for CAE forecasts.

Posterior 15-km EnKF
mean analysis

Posterior 3-km EnKF
mean analysis
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Parameter WRF model setting 

Model version Version 3.9.1.1 of the Advanced Research WRF model 

Horizontal grid spacing 15 and 3 km in the outer and inner domains, respectively 

Time step 60 and 12 s in the 15- and 3-km domains, respectively 

Number of vertical levels 51 (based on the Rapid Refresh model; Benjamin et al. 2016) 

Model top 15 hPa 

Microphysics 
parameterization Thompson (Thompson et al. 2008) 

Longwave and shortwave 
radiation parameterizations 

Rapid Radiative Transfer Model for Global Climate Models 
(RRTMG) with ozone and aerosol climatologies 

 (Mlawer et al. 1997; Iacono et al. 2008; Tegen et al. 1997) 

Planetary boundary layer 
parameterization 

Mellor–Yamada–Janjić (MYJ) 
(Mellor and Yamada 1982; Janjić 1994, 2002) 

Land surface model Noah (Chen and Dudhia 2001) 

Cumulus parameterization Tiedtke (15-km domain only; Tiedtke 1989; Zhang et al. 2011) 

Table 3.2.  WRF model settings used for the EnKFs and CAE forecasts. 
 
 
Houtekamer et al. 2005) and similar model climates that were stable throughout the 4 

weeks of continuous cycling (see Figs. 5 and 6 in S21). 

 

3.3.  Experimental design 

Analysis ensembles from the 15- and 3-km EnKFs (i.e., red boxes in Fig. 3.2) 

were used to derive central initial states and IC perturbations for various CAEs.  

Operational global models were also used as sources of IC perturbations and central 

initial states. 

Ultimately, the forecasts of interest were those produced on the 3-km grid 

over the conterminous United States (CONUS) east of the Rockies (Fig. 3.1).  

Employing a nested WRF model configuration provided a computationally affordable 

way to place this region far from lateral boundaries, which is potentially 
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advantageous (e.g., Warner et al. 1997).  However, this choice required ICs to be 

constructed for both the 15- and 3-km domains, which somewhat complicated the 

experimental design.  While we offer some remarks about initializing the 15-km 

domain in upcoming subsections, the primary function of the 15-km domain was to 

provide LBCs for the 3-km domain, and the most important aspect of the 

experimental design concerned how ICs were produced for the 3-km domain.  Note 

that ICs for the 3-km domain did not have to possess 3-km horizontal grid spacing, as 

coarser fields could be downscaled onto the 3-km grid. 

 

3.3.1.  CENTRAL INITIAL STATES FOR THE 3-KM DOMAIN 

Central initial states for the 3-km domain were provided by three sources.  

One source was 3-km EnKF mean analyses (x3km$$$$$), given by  

x3km$$$$$ = 
1
80% xi

3km
80

i = 1

 ,                                             (3.1) 

and another source was 15-km EnKF mean analyses (x15km$$$$$$$), given by 

x15km$$$$$$$ = 
1
80% xi

15km
80

i = 1

 ,                                             (3.2) 

where xi
15km and xi

3km denote 15- and 3-km EnKF analyses for the ith of 80 ensemble 

members, respectively8.  Operational Global Forecast System (GFS) analyses (xGFS) 

 
8 Although we refer to EnKF ensemble means (e.g., x3km!!!!!) as possessing identical resolutions to 
individual ensemble members (e.g., xi3km), ensemble means are effectively coarser than individual 
ensemble members because of spatial smoothing inherent in ensemble averaging (e.g., Leith 1974; 
Surcel et al. 2014). 
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with 0.25° horizontal grid spacing9 also served as central initial states for the 3-km 

domain.  From a spectral perspective, all three sources of central initial states were 

usually similar on mutually resolvable scales, with the largest differences at scales     

< 100 km that were not resolvable by all analyses (Fig. 3.3). 

 
 
Fig. 3.3.  Power spectra of 3-km EnKF mean analyses (purple), 15-km EnKF mean analyses 
(orange), and GFS analyses (green) as a function of wavelength (km) for (a) 250-hPa zonal wind 
(m2 s-2), (b) 500-hPa meridional wind (m2 s-2), (c) 850-hPa dewpoint temperature (K2), and (d) 2-
m temperature (K2) averaged over all 0000 UTC analyses between 25 April and 20 May 2017 
(inclusive).  To compute spectra from the various datasets, all fields were interpolated onto the 3-
km domain (Fig. 3.1).  Spectra were then computed over the geographic area covered by the 3-
km domain, excluding points within 45 km of each lateral boundary.  The discrete cosine 
transform (Denis et al. 2002) was used to compute spectra and spectral variance binning 
employed the method of Ricard et al. (2013).  Dashed purple, orange, and green vertical lines 
denote effective resolutions of 3-km EnKF mean analyses, 15-km EnKF mean analyses, and GFS 
analyses, respectively, which were approximately 7 times the horizontal grid spacing for the 
WRF-based EnKFs (e.g., Skamarock 2004) and approximately 10 times the horizontal grid 
spacing for the GFS (e.g., Ji et al. 2016).  The y-axis values are different in each panel. 

 
9 The GFS had approximately 13-km horizontal grid spacing, but data available to us were coarsened 
to 0.25°. 

GFS analyses3-km EnKF mean analyses 15-km EnKF mean analyses

(a) 250-hPa zonal wind (b) 500-hPa meridional wind

(c) 850-hPa dewpoint temperature (d) 2-m temperature

• Reference for effective resolution: 
https://journals.ametsoc.org/view/journals/mwre/136/4/2007mwr2250.1.xml

• Over d02 region only except for 15 points nearest each lateral boundary (from 3-km f000 GRIB files)
• Over all 0000 UTC EnKF mean analyses (and GFS analyses)
• Spectra for mean
• Extrapolation for 850-hPa below ground.

Fig. D

Fig. 3.  Power spectra of 3-km EnKF mean analyses (purple), 15-km EnKF mean analyses (orange), and GFS analyses (green) as a function of 
wavelength (km) for (a) 250-hPa zonal wind (m2 s-2), (b) 500-hPa meridional wind (m2 s-2), (c) 850-hPa dewpoint temperature (K2), and (d) 2-m 
temperature (K2) averaged over all 0000 UTC analyses between 25 April and 20 May 2017 (inclusive).  To compute spectra from the various datasets, all 
fields were interpolated onto the 3-km domain (Fig. 1).  Spectra were then computed over the geographic area covered by the 3-km domain, excluding 
points within 45 km of each lateral boundary.  The discrete cosine transform (Denis et al. 2002) was used to compute spectra and spectral variance 
binning employed the method of Ricard et al. (2013).  Dashed purple, orange, and green vertical lines denote effective resolutions of 3-km EnKF mean 
analyses, 15-km EnKF mean analyses, and GFS analyses, respectively, which were approximately 7 times the horizontal grid spacing for the WRF-based 
EnKFs (e.g., Skamarock 2004) and approximately 10 times the horizontal grid spacing for the GFS (e.g., Ji et al. 2016).  The y-axis values are different 
in each panel.

Effective resolution of GFS: 
https://www.weather.gov/media/sti/nggps/NGGPS%20Dycore%20Phase%202%20Test%20Report%20website.pdf



 

 

63 
 

Differences between 15- and 3-km EnKF mean analyses were attributable to 

differences in horizontal grid spacing and associated representation of convection 

(parameterized versus explicit).  Conversely, because GFS and limited-area EnKF 

analyses reflected entirely different NWP models and DA systems, differences 

between GFS and limited-area EnKF mean analyses were potentially due to many 

factors other than disparities in resolution and associated treatment of convection.  

Nonetheless, employing GFS analyses as a source of central initial states was useful 

for examining whether CAE forecast sensitivity to IC perturbations depended on the 

central initial state and provides an operational baseline for the EnKF-based central 

initial states. 

 

3.3.2.  IC PERTURBATIONS FOR THE 3-KM DOMAIN 

IC perturbations for the 3-km domain were derived from three sources, 

including from both 15- and 3-km EnKF analysis ensembles (e.g., Fig. 3.2), given by 

δxi
15km = xi

15km − x15km$$$$$$$                                       (3.3) 

and 

δxi
3km = xi

3km − x3km$$$$$,                                       (3.4) 

where δxi
15km and δxi

3km	respectively denote 15- and 3-km posterior (after 

assimilation) EnKF perturbations for the ith ensemble member.  Although Eqs. (3.3) 

and (3.4) were valid for i = 1 … 80, IC perturbations from just members 1–10 were 

required because CAE forecasts only had 10 members (as explained in section 3.3.4).  

Thus, there was some uncertainty about whether EnKF-based IC perturbations should 
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be computed with respect to the mean of all 80 posterior members [as in Eqs. (3.3) 

and (3.4)] or just the mean of posterior members 1–10.  However, testing revealed 

that CAE forecasts were insensitive to whether IC perturbations were computed with 

respect to the mean of posterior members 1–80 or 1–10, because averages over 

members 1–80 and 1–10 were extremely similar (not shown). 

ICs from NCEP’s operational 0.5° Global Ensemble Forecast System (GEFS; 

Zhou et al. 2017) provided the third source of IC perturbations for the 3-km domain10.  

Specifically, perturbations for the ith GEFS member (δxi
GEFS) were given by 

δxi
GEFS = xi

GEFS − xGEFS$$$$$$$ ,                                           (3.5) 

 where xi
GEFS denotes GEFS ICs for the ith ensemble member (for i = 1 … 10) and 

xGEFS$$$$$$$ =
1
10% xi

GEFS
10

i = 1

 .                                          (3.6) 

While the GEFS had 20 perturbation members during our experimental period 

(April–May 2017), GEFS-based IC perturbations were derived from just members 1–

10 because subsequent CAE forecasts only had 10 members.  Like the 15- and 3-km 

IC perturbations, GEFS IC perturbations were EnKF-based, and, thus, flow-

dependent (Zhou et al. 2017). 

The 15-km EnKF IC perturbations had more energy than 3-km EnKF IC 

perturbations at most mutually resolvable scales (Fig. 3.4), possibly due to the 15-km 

EnKF’s use of cumulus parameterization, a well-known error source (e.g., Torn and 

Davis 2012; Romine et al. 2013; Mahoney 2016; Wong et al. 2020), whereas the 3- 

 
10 The GEFS had approximately 34-km horizontal grid spacing, but data available to us were coarsened 
to 0.5°. 
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Fig. 3.4.  Perturbation power spectra of 3-km EnKF analysis ensembles (purple), 15-km EnKF 
analysis ensembles (orange), and GEFS initial condition ensembles (green) as a function of 
wavelength (km) for (a) 250-hPa zonal wind (m2 s-2), (b) 500-hPa meridional wind (m2 s-2), (c) 
850-hPa dewpoint temperature (K2), and (d) 2-m temperature (K2) averaged over all ensemble 
perturbations and all 0000 UTC analyses between 25 April and 20 May 2017 (inclusive).  
Perturbations were defined with respect to the ensemble mean.  To compute spectra from the 
various datasets, all fields were interpolated onto the 3-km domain (Fig. 3.1).  Spectra were then 
computed over the geographic area covered by the 3-km domain, excluding points within 45 km 
of each lateral boundary.  The discrete cosine transform (Denis et al. 2002) was used to compute 
spectra and spectral variance binning employed the method of Ricard et al. (2013).  Dashed 
purple, orange, and green vertical lines denote effective resolutions of the 3-km ensemble, 15-km 
ensemble, and GEFS, respectively, which were approximately 7 times the horizontal grid spacing 
for the WRF-based ensembles (e.g., Skamarock 2004) and approximately 10 times the horizontal 
grid spacing for the GEFS (e.g., Ji et al. 2016).  The y-axis values are different in each panel. 
 

km EnKF was convection-allowing.  However, 3-km IC perturbations had the most 

power at scales < 100 km.  Differences between 15- and 3-km EnKF IC perturbation 

power spectra were typically small compared to their collective differences with 

respect to GEFS IC perturbation power spectra, which had the most perturbation 

(a) 250-hPa zonal wind (b) 500-hPa meridional wind

(c) 850-hPa dewpoint temperature (d) 2-m temperature

• Over d02 region only except for 15 points nearest each lateral boundary.
• Over all 0000 UTC 10-member EnKF posterior analyses (and 10-member GEFS analyses)
• Perturbation spectra
• Extrapolation for 850-hPa below ground.

Fig. E

GEFS3-km EnKF 15-km EnKF

Fig. 4.  Perturbation power spectra of 3-km EnKF analysis ensembles (purple), 15-km EnKF analysis ensembles (orange), and GEFS initial condition 
ensembles (green) as a function of wavelength (km) for (a) 250-hPa zonal wind (m2 s-2), (b) 500-hPa meridional wind (m2 s-2), (c) 850-hPa dewpoint 
temperature (K2), and (d) 2-m temperature (K2) averaged over all ensemble perturbations and all 0000 UTC analyses between 25 April and 20 May 2017 
(inclusive).  Perturbations were defined with respect to the ensemble mean.  To compute spectra from the various datasets, all fields were interpolated 
onto the 3-km domain (Fig. 1).  Spectra were then computed over the geographic area covered by the 3-km domain, excluding points within 45 km of 
each lateral boundary.  The discrete cosine transform (Denis et al. 2002) was used to compute spectra and spectral variance binning employed the 
method of Ricard et al. (2013).  Dashed purple, orange, and green vertical lines denote effective resolutions of the 3-km ensemble, 15-km ensemble, and 
GEFS, respectively, which were approximately 7 times the horizontal grid spacing for the WRF-based ensembles (e.g., Skamarock 2004) and 
approximately 10 times the horizontal grid spacing for the GEFS (e.g., Ji et al. 2016).  The y-axis values are different in each panel.
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energy at scales > 1000 km.  Similarly, differences of domain-average spread 

between 15- and 3-km posterior ensembles were small compared to differences 

between EnKF and GEFS IC ensembles, the latter of which had uniformly smaller 

spreads except for low-level temperature11 (Fig. 3.5). 

 
 
Fig. 3.5.  Average standard deviation over the geographic area covered by the 3-km domain (Fig. 
3.1) and all 0000 UTC 3-km EnKF analysis ensembles (purple), 15-km EnKF analysis ensembles 
(orange), and GEFS IC ensembles (green) between 0000 UTC 25 April and 0000 UTC 20 May 
2017 (inclusive) for (a) zonal wind (m s-1), (b) meridional wind (m s-1), (c) temperature (K), and 
(d) water vapor mixing ratio (g kg-1).  The x-axis values are different in each row. 

 
11 This enhanced low-level temperature spread from GEFS IC perturbations exclusively occurred over 
the high plains adjacent to the Rocky Mountains and other regions of the intermountain western 
CONUS for reasons that are unclear. 

Over d02 region only.
Over all 0000 UTC 10-member 
posterior ensembles.

No extrapolation below 
ground.

Fig. F

GEFS3-km EnKF 15-km EnKF

Fig. 5.  Average standard deviation over the geographic area covered by the 3-km domain (Fig. 1) and all 
0000 UTC 3-km EnKF analysis ensembles (purple), 15-km EnKF analysis ensembles (orange), and GEFS 
IC ensembles (green) between 0000 UTC 25 April and 0000 UTC 20 May 2017 (inclusive) for (a) zonal 
wind (m s-1), (b) meridional wind (m s-1), (c) temperature (K), and (d) water vapor mixing ratio (g kg-1).  
The x-axis values are different in each row.
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3.3.3.  IC CONSTRUCTION 

At 0000 UTC daily between 25 April and 20 May 2017 (inclusive), each of 

the three sets of IC perturbations [Eqs. (3.3)–(3.5)] was re-centered about each of the 

three sets of central initial states [Eq. (3.1), Eq. (3.2), and GFS analyses (xGFS)], 

yielding nine sets of IC ensembles that differed by their IC perturbations and central 

initial states (Tables 3.3, 3.4).  While re-centering is a common CAE initialization 

technique (e.g., Xue et al. 2007; Kong et al. 2008, 2009; Peralta et al. 2012; Kühnlein 

et al. 2014; Tennant 2015; Johnson and Wang 2016; Raynaud and Bouttier 2016, 

2017; Hagelin et al. 2017; JW20; S20), an alternative way of assessing forecast 

sensitivity to IC resolution would be to remove small-scale features from 3-km EnKF 

posterior ensembles with a low-pass filter to produce coarser central initial states and 

 

 

Central initial state for the 3-km domain 

3-km EnKF  
mean analyses 

15-km EnKF mean 
analyses downscaled 
onto the 3-km domain 

 0.25° GFS analyses 
downscaled onto the 

3-km domain 

IC
 p

er
tu

rb
at

io
ns

 fo
r 

 th
e 

3-
km

 d
om

ai
n 

3-km EnKF 
analysis 

perturbations 
3kmCent_3kmPert 15kmCent_3kmPert GFSCent_3kmPert 

15-km EnKF 
analysis 

perturbations  
downscaled 

onto the 3-km 
domain 

3kmCent_15kmPert 15kmCent_15kmPert GFSCent_15kmPert 

 0.5° GEFS IC 
perturbations  
downscaled 

onto the 3-km 
domain 

3kmCent_GEFSPert 15kmCent_GEFSPert GFSCent_GEFSPert 

Table 3.3.  Experiment names and their corresponding central initial states (columns) and IC 
perturbations (rows) for the 3-km domain.  All IC sets were constructed at 0000 UTC each day 
during the experimental period.  Bolded experiments denote the four “EnKF-only” experiments, 
while italicized experiments denote the four “EnKF+Global” experiments.  
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Experiment name Expression for the ith ensemble member’s  
ICs for the 3-km domain 

3kmCent_3kmPert x3km!!!!! + δxi3km 

3kmCent_15kmPert x3km!!!!! +Dδxi15km 

3kmCent_GEFSPert x3km!!!!! +DδxiGEFS 

15kmCent_3kmPert Dx15km!!!!!! + δxi3km 

15kmCent_15kmPert Dx15km!!!!!! +Dδxi15km 

15kmCent_GEFSPert Dx15km!!!!!! +DδxiGEFS 

GFSCent_3kmPert DxGFS + δxi3km 

GFSCent_15kmPert DxGFS +Dδxi15km 

GFSCent_GEFSPert DxGFS +DδxiGEFS 

Table 3.4.  Mathematical expressions for the ith ensemble member’s ICs for the 3-km domain in 
the various experiments.  Term D represents a downscaling operator within the WRF model that 
remaps fields with horizontal grid spacing coarser than 3 km (e.g., 15-km EnKF analyses) onto 
the 3-km computational domain.  Terms xi15km and xi3km denote 15- and 3-km EnKF analyses for 
the ith ensemble member, respectively, and xGFS denotes GFS analyses.  All other terms are 
defined in Eqs. (3.1)–(3.5). 
 

IC perturbations (e.g., Potvin et al. 2017; JW20).  Although this method is elegant, we 

did not apply filtering to construct ICs with varied resolutions because re-centering 

has greater relevance within operational environments, where output from multiple 

modeling systems with different resolutions is typically available.  Furthermore, re-

centering is common within operational DA systems (e.g., Clayton et al. 2013; Wang 

et al. 2013). 

Similar to S20 and Peralta et al. (2012), only zonal and meridional wind, 

potential temperature, water vapor mixing ratio, and perturbation geopotential and dry 

surface pressure (U, V, q, qv, f, and µ, respectively) were re-centered.  All other 

fields, like hydrometeors, were provided by the ith member of either the 15- or 3-km 

posterior ensemble when the finest-resolution field used to construct a specific set of 
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ICs had 15- or 3-km horizontal grid spacing, respectively (e.g., for IC ensembles 

produced by combining 3-km central initial states with GEFS or 15-km IC 

perturbations, initial microphysics states were provided by the ith member of the 3-

km posterior ensemble).  We used ensemble members for these fields to provide IC 

diversity, rather than forcing these other variables to common values provided by 

deterministic central initial states.  However, initialization of these auxiliary fields 

likely had little forecast impact, as S20 suggested that precipitation forecasts over the 

CONUS east of the Rockies were more sensitive to IC perturbation characteristics of 

U, V, q, qv, f, and µ than initial hydrometeor states.   

 

3.3.3.1.  ICs based solely on limited-area EnKF analyses 

Four sets of ICs were based solely on 0000 UTC limited-area EnKF analyses 

and are henceforth collectively referred to as the “EnKF-only” experiments (bold 

experiments in Table 3.3).  Because the nested-domain EnKF employed one-way 

nesting (section 3.2, Fig. 3.2b), ICs for the 15-km domain across all EnKF-only 

experiments were identical, namely, 0000 UTC 15-km EnKF analysis ensembles 

(i.e.,	xi
15km).  Thus, CAE forecast differences among the four EnKF-only experiments 

were solely due to how the 3-km domain (Fig. 3.1) was initialized at 0000 UTC. 

The most straightforward EnKF-based ICs for the 3-km domain were 

provided by 3-km EnKF analysis members (i.e.,	xi
3km), which are 3-km EnKF analysis 

perturbations centered on 3-km EnKF mean analyses (“3kmCent_3kmPert”; Tables 

3.3, 3.4).  Initial states for the 3-km domain were also provided by downscaling 15-

km EnKF analysis members (i.e.,	xi
15km) onto the 3-km computational domain 
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(“15kmCent_15kmPert”; Tables 3.3, 3.4).  The downscaling process does not add 

detail, so even though downscaled 15-km fields resided on the 3-km grid, the ICs still 

possessed spatial resolution associated with 15-km horizontal grid spacing. 

The final two sets of ICs for the 3-km domain within the EnKF-only 

experiments had mixed resolutions of IC perturbations and central initial states.  In 

one set, the 3-km domain was initialized by re-centering downscaled 15-km EnKF 

analysis perturbations [i.e., Eq. (3.3)] about 3-km EnKF mean analyses 

(“3kmCent_15kmPert”; Tables 3.3, 3.4).  The other set was produced by re-centering 

3-km EnKF analysis perturbations [i.e., Eq. (3.4)] about downscaled 15-km EnKF 

mean analyses (“15kmCent_3kmPert”; Tables 3.3, 3.4). 

Because 3-km IC ensembles can be averaged to create 3-km central initial 

states [e.g., Eq. (3.1)], a configuration like 15kmCent_3kmPert would be unlikely 

within operational environments.  However, this experiment was helpful for 

elucidating whether it is more important for central initial states or IC perturbations to 

possess convection-allowing horizontal grid spacing, as CAE forecast differences 

between 15kmCent_3kmPert and 15kmCent_15kmPert were solely attributable to IC 

perturbation resolution for the 3-km domain and 15kmCent_3kmPert and 

3kmCent_3kmPert only differed regarding central initial state resolution. 

 

3.3.3.2.  ICs based on a combination of limited-area EnKF analyses 

and global fields 

The four EnKF-only experiments suffice to disentangle whether it is more 

critical for central initial states or IC perturbations to possess convection-allowing 
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horizontal grid spacing.  However, as noted earlier, initial states for the 3-km domain 

were also produced by leveraging GFS and GEFS fields, allowing us to assess 

whether ICs partially derived from readily-available operational data can yield similar 

quality CAE forecasts as ICs derived solely from limited-area EnKFs.  Moreover, 

comparing CAEs with GEFS and 3-km EnKF IC perturbations replicates some of 

JW20’s analyses, but with a larger sample size and evaluation domain.  Furthermore, 

incorporating GFS and GEFS states into the experiments provides further insights 

about whether CAE forecast sensitivity to IC perturbation and central initial state 

resolution varies depending on whether global fields are a component of CAE ICs. 

Specifically, another four sets of ICs for the 3-km domain were constructed 

that relied in part on the GFS or GEFS and are collectively referred to as the 

“EnKF+Global” experiments (italicized experiments in Table 3.3).  Two sets of ICs 

for the 3-km domain were produced by re-centering downscaled perturbations derived 

from 0000 UTC GEFS ICs [Eq. (3.5)] about 0000 UTC 15- and 3-km EnKF mean 

analyses (“3kmCent_GEFSPert” and “15kmCent_GEFSPert”; Tables 3.3, 3.4).  The 

other two sets of ICs for the 3-km domain were produced by re-centering 0000 UTC 

15- and 3-km EnKF analysis perturbations [Eqs. (3.3), (3.4)] about downscaled 0000 

UTC GFS analyses (“GFSCent_3kmPert” and “GFSCent_15kmPert”; Tables 3.3, 

3.4). 

Introducing global fields poses somewhat of a dilemma: should GFS and 

GEFS fields participate in re-centering only for purposes of initializing the 3-km 

domain or for purposes of initializing both the 15- and 3-km domains (Fig. 3.1)?  The 

former would mean all four EnKF+Global experiments have identical ICs for the 15-
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km domain that are equal to those of the EnKF-only experiments (i.e.,	xi
15km).  

Conversely, the latter would maintain consistency across both domains, which 

intuitively seems desirable.  However, in this latter scenario, 3-km forecasts from the 

four EnKF+Global experiments could potentially be sensitive to LBCs inherited from 

different 15-km forecasts.  Likewise, 3-km forecasts from the EnKF+Global 

experiments could potentially differ from those produced by the EnKF-only 

experiments because of different 15-km forecasts. 

To address this conundrum, we performed several exploratory experiments 

where pairs of experiments solely differed by either their ICs for the 15-km domain or 

ICs for the 3-km domain.  Findings revealed that 3-km precipitation forecasts were 

far more sensitive to ICs for the 3-km domain than ICs for the 15-km domain.  

Moreover, S21 arrived at identical conclusions (see their footnote 3).  Therefore, ICs 

for the 15-km domain appeared to have little impact on 3-km forecasts, and 

differences between various 3-km CAE forecasts were attributed to different ICs for 

the 3-km domain.   

Ultimately, we chose to maintain consistency across both domains, so GEFS 

IC perturbations and GFS analyses were introduced to ICs for both the 15- and 3-km 

domains in the EnKF+Global experiments.  Expressions for the 15-km domain’s ICs 

are analogous to those for the 3-km domain’s ICs given in Table 3.4, except x3km$$$$$ and 

δxi
3km are replaced by x15km$$$$$$$ and δxi

15km, respectively, GFS and GEFS fields are 

downscaled onto the 15-km domain, and there is no need to downscale 15-km fields. 
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3.3.3.3.  ICs based solely on global fields 

The final set of ICs for the 3-km domain was produced by re-centering 

downscaled GEFS IC perturbations about downscaled GFS analyses at 0000 UTC 

(“GFSCent_GEFSPert”; Tables 3.3, 3.4).  These ICs were independent of the limited-

area EnKFs and were nearly identical to GEFS ICs (i.e., xi
GEFS) on account of the 

GEFS initialization procedure (Zhou et al. 2017).   Additionally, CAEs with these ICs 

served as benchmarks for the other CAEs whose ICs relied on limited-area EnKF 

analyses (Tables 3.3, 3.4).  Per the above discussion, ICs for the 15-km domain were 

also produced by re-centering GEFS IC perturbations about GFS analyses.   

While the other eight sets of ICs had non-zero hydrometeor mixing ratios 

consistent with the WRF model, microphysics variables produced by the GFS and 

GEFS were incompatible with the Thompson et al. (2008) microphysics scheme.  

Accordingly, GFSCent_GEFSPert ICs did not have hydrometeors, which is typical 

for WRF model ICs provided by global analyses (i.e., initial hydrometeor mixing 

ratios were set to zero).  Thus, a longer spin-up relative to the other experiments was 

expected during model integration. 

 

3.3.4.  CAE FORECASTS  

Members 1–10 from all nine sets of ICs (i.e., section 3.3.3; Tables 3.3, 3.4) 

initialized 36-h, 10-member ensemble forecasts over the nested domain (Fig. 3.1) at 

0000 UTC daily between 25 April and 20 May 2017 (inclusive; 26 CAE forecasts per 

experiment).  These 36-h forecasts employed identical WRF model configurations as 

the nested 15-/3-km EnKF DA system (Table 3.2).   
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Although ICs for more than 10 ensemble members were available, computing 

constraints limited 36-h CAE forecasts to 10 members, which is sufficient to provide 

skillful and valuable probabilistic precipitation forecasts (e.g., Clark et al. 2011, 2018; 

Schwartz et al. 2014) and comparable to ensemble sizes of other CAEs that operate 

regularly over the CONUS (e.g., Dowell et al. 2016, 2021; Roberts et al. 2020).   

For all 36-h forecasts, perturbation members 1–10 from the GEFS provided 

LBCs for the 15-km domain, which in turn provided LBCs for the 3-km nest.  The 3-

km forecasts were then verified with a focus on precipitation, as described next. 

 

3.4.  Precipitation forecast verification 

3.4.1.  METHODS 

As this study builds upon S21, overall methods for precipitation verification 

closely followed S21, which can be consulted for additional details.  Specifically, 

forecasts of 1-h accumulated precipitation were objectively verified against NCEP’s 

~4.763-km Stage IV (ST4) analyses (Lin and Mitchell 2005) over the CONUS east of 

105°W (Fig. 3.1), where ST4 analyses are most reliable (e.g., Nelson et al. 2016).  

Precipitation forecasts were interpolated to the ST4 grid with a budget algorithm 

(Accadia et al. 2003) for comparison to ST4 analyses. 

Following S21, we used percentile thresholds (e.g., the 95th percentile), rather 

than absolute thresholds (e.g., 1.0 mm h-1), to define events.  Using percentile 

thresholds removes bias, permitting a robust assessment of spatial placement within 

the context of a model’s climate (e.g., Roberts and Lean 2008; Mittermaier and 

Roberts 2010; Dey et al. 2014; Gowan et al. 2018; Cafaro et al. 2021).  We used the 
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95.0th, 97.5th, 99.0th, 99.5th, 99.75th, and 99.9th percentile thresholds to examine a 

range of precipitation intensities, which roughly corresponded to physical thresholds 

of 1.1, 2.0, 4.0, 6.2, 8.8, and 12.8 mm h-1 (based on ST4 analyses). 

Additionally, rather than verifying point-based probabilities, we used a 

neighborhood approach to derive and verify “neighborhood ensemble probabilities” 

(NEPs; Schwartz et al. 2010; Schwartz and Sobash 2017), which were computed by 

spatially averaging point-based probabilities within circular neighborhoods 

surrounding each grid point.  NEPs are more appropriate for verifying convection-

allowing model forecasts than point-based probabilities because they recognize that 

high-resolution NWP models are inaccurate at the grid scale (e.g., Theis et al. 2005; 

Ebert 2008, 2009).  Statistical significance was assessed with a bootstrap resampling 

approach (with replacement) applied to pairwise differences between two 

experiments (e.g., Hamill 1999; Wolff et al. 2014) using 10,000 resamples. 

 

3.4.2.  RESULTS 

Probabilistic precipitation forecasts from the nine CAEs were evaluated with 

fractions skill scores [FSSs; Roberts and Lean (2008)], attributes diagrams (e.g., 

Wilks 2011), the “reliability component” of the Brier score decomposition (BSREL; 

Murphy 1973), and areas under the relative operating characteristic (ROC) curve 

(Mason 1982; Mason and Graham 2002).  Both FSSs and ROC areas range between 0 

and 1, with higher values indicating more skill, while perfect reliability is achieved 

for curves lying on the diagonal of attributes diagrams.  Smaller values of BSREL are 

better. 
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These metrics were computed for NEPs constructed with neighborhood length 

scales (r) between 5 and 150 km, but varying r did not change overall conclusions.  

Thus, we focus on statistics computed with r = 100 km, and to provide a holistic 

assessment we present statistics aggregated over all 26 forecasts. 

 

3.4.2.1.  CAE forecast sensitivity to central initial states 

Given identical IC perturbations, CAEs with 3-km central initial states 

typically had higher aggregate FSSs over the first ~12–21 h than CAEs with 15-km 

central initial states, which in turn had higher FSSs than CAEs with GFS central 

initial states (compare purple, orange, and green curves with common line patterns in 

Fig. 3.6).  These relationships held at all thresholds and differences were regularly 

statistically significant at the 90% confidence level, particularly those between CAEs 

with 15- and 3-km central initial states and CAEs with 3-km and GFS central initial 

states (Fig. 3.7).  Aggregate ROC areas over the first 12 h yielded identical 

conclusions as FSSs (Fig. 3.8), and statistical significance between pairs of 

experiments for ROC areas echoed patterns in Fig. 3.7 (not shown).  Moreover, for 

constant IC perturbations, CAEs with 3-km central initial states usually had better 1–

12-h forecast reliabilities than CAEs with 15-km central initial states, and CAEs with 

GFS central initial states typically had the poorest reliabilities (Fig. 3.9, Table 3.5).  

All CAEs had comparable sharpness and were typically skillful compared to 

climatological forecasts (Fig. 3.9).  The consistency of FSSs, ROC areas, and 

reliabilities through 12 h strongly suggests that short-term CAE precipitation 

forecasts are improved by using convection-allowing analyses as central initial states. 
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Fig. 3.6.  Fractions skill scores (FSSs) over the CONUS east of 105°W (Fig. 3.1) with a 100-km 
neighborhood length scale for the (a) 95th, (b) 97.5th, (c) 99th, (d) 99.5th, (e) 99.75th, and (f) 
99.9th percentile thresholds aggregated over all 26 3-km forecasts of 1-h accumulated 
precipitation as a function of forecast hour.  Values on the x axis represent ending forecast hours 
of 1-h accumulation periods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation 
between 23–24 h).  The y-axis scales are different in each panel.  
 

Conversely, after ~18–21 h, differences between CAEs were generally 

smaller, with the largest differences occurring after ~30 h at the 95th and 97.5th 

percentile thresholds, where CAEs with GFS central initial states were more skillful 

than those with 15- and 3-km central initial states given fixed IC perturbations (Figs. 

3.6a,b).  Additionally, at higher thresholds, GFS central initial states typically led to 

the best ~22–26-h forecasts (Figs. 3.6c–f).  ROC areas and attributes statistics after 

~18 h yielded similar results as FSSs (not shown). 

 

R = 100 km

Fig. J

GFSCent_15kmPert3kmCent_15kmPert 15kmCent_15kmPert
GFSCent_3kmPert3kmCent_3kmPert 15kmCent_3kmPert

GFSCent_GEFSPert3kmCent_GEFSPert 15kmCent_GEFSPert

Fig. 6.  Fractions skill scores (FSSs) over the CONUS east of 105°W (Fig. 1) with a 100-km neighborhood length scale for the (a) 95th, (b) 97.5th, (c) 99th, 

(d) 99.5th, (e) 99.75th, and (f) 99.9th percentile thresholds aggregated over all 26 3-km forecasts of 1-h accumulated precipitation as a function of forecast 

hour.  Values on the x axis represent ending forecast hours of 1-h accumulation periods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation 

between 23–24 h).  The y-axis scales are different in each panel.  
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Fig. 3.7.  Statistical significance levels of aggregate FSS differences (e.g., Fig. 3.6) between 
various experiments for the (a) 95th, (b) 97.5th, (c) 99th, (d) 99.5th, (e) 99.75th, and (f) 99.9th 
percentile thresholds for forecast hours 1–12.  These comparisons assess the impact of changing 
central initial state resolution.  Specifically, in each panel, a given row represents a fixed set of IC 
perturbations; “3kmPert”, “15kmPert”, and “GEFSPert” refer to IC perturbations provided by 
3-km EnKF analysis ensembles, 15-km EnKF analysis ensembles, and GEFS ICs, respectively.  
Each panel is broken into thirds to represent different comparisons, and pink text denotes the 
experiment in each comparison with the higher resolution central initial state.  The top third 
compares experiments with 15- and 3-km central initial states (“3kmCent vs. 15kmCent”).  The 
middle third compares experiments with 3-km and 0.25° GFS central initial states (“3kmCent vs. 
GFSCent”).  The bottom third compares experiments with 15-km and 0.25° GFS central initial 
states (“15kmCent vs. GFSCent”).  Pink shadings indicate that higher resolution central initial 
states led to statistically significantly higher FSSs for the fixed IC perturbations, while green 
shadings indicate that lower resolution central initial states led to statistically significantly higher 
FSSs for the fixed IC perturbations.  White cells indicate that aggregate FSSs of two experiments 
with varied central initial states but common IC perturbations were not statistically significantly 
different at the 90% confidence level or higher.  Annotations to the right of (f) represent the 
number of occurrences where, for the given row, experiments with higher resolution central 
initial states had statistically significantly higher FSSs than experiments with lower resolution 
central initial states across all 6 percentile thresholds and all forecast hours (i.e., the total 
number of pink-shaded boxes in each row across all 6 panels).  
 

 

 

 

R = 100 km FSS

Fig. K

15kmCent vs. GFSCent

3kmCent vs. GFSCent

3kmCent vs. 15kmCent

Significance level;
higher-resolution central 

initial state better

90% 95% 99%
Significance level; 

lower-resolution central 
initial state better

90% 95% 99%

15kmCent vs. GFSCent

3kmCent vs. GFSCent

3kmCent vs. 15kmCent

Constant IC 
perturbations

Fig. 7.  Statistical significance levels of aggregate FSS differences (e.g., Fig. 6) between various experiments for the (a) 95th, (b) 97.5th, (c) 99th, (d) 99.5th, (e) 99.75th, 
and (f) 99.9th percentile thresholds for forecast hours 1–12.  These comparisons assess the impact of changing central initial state resolution.  Specifically, in each panel, 
a given row represents a fixed set of IC perturbations; “3kmPert”, “15kmPert”, and “GEFSPert” refer to IC perturbations provided by 3-km EnKF analysis ensembles, 15-
km EnKF analysis ensembles, and GEFS ICs, respectively.  Each panel is broken into thirds to represent different comparisons, and pink text denotes the experiment in 
each comparison with the higher resolution central initial state.  The top third compares experiments with 15- and 3-km central initial states (“3kmCent vs. 15kmCent”).  
The middle third compares experiments with 3-km and 0.25° GFS central initial states (“3kmCent vs. GFSCent”).  The bottom third compares experiments with 15-km 
and 0.25° GFS central initial states (“15kmCent vs. GFSCent”).  Pink shadings indicate that higher resolution central initial states led to statistically significantly higher 
FSSs for the fixed IC perturbations, while green shadings indicate that lower resolution central initial states led to statistically significantly higher FSSs for the fixed IC 
perturbations.  White cells indicate that aggregate FSSs of two experiments with varied central initial states but common IC perturbations were not statistically 
significantly different at the 90% confidence level or higher.  Annotations to the right of (f) represent the number of occurrences where, for the given row, experiments 
with higher resolution central initial states had statistically significantly higher FSSs than experiments with lower resolution central initial states across all 6 percentile 
thresholds and all forecast hours (i.e., the total number of pink-shaded boxes in each row across all 6 panels). 
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Fig. 3.8.  As in Fig. 3.6, except for areas under the relative operating characteristic (ROC) curve 
computed using decision thresholds of 1%, 2%, 3%, 4%, 5%, 10%, 15%, …, 95%, and 100% 
and a trapezoidal method.  Only forecast hours 1–12 are presented to zoom-in on the period with 
the largest systematic differences between experiments and to more easily visualize differences 
between CAEs with identical central initial states but different IC perturbations (which have 
common line colors but different line patterns).  The y-axis scales are different in each panel.   
 

Overall, benefits of convection-allowing central initial states were mostly 

confined to the first ~12 h, consistent with S21, who found that GEFS-initialized 

CAEs had better ~18–36-h precipitation forecasts than CAEs with 15- and 3-km 

EnKF ICs due to improved large-scale representation in GEFS ICs compared to 

limited-area EnKF analyses.  We thus presume that large scales, which are more 

critical for next-day (i.e., ~18–36-h) forecasts than shorter-term forecasts, were better 

represented in GFS analyses than in limited-area EnKF ICs.  Because these general 

~18–36-h forecast behaviors were exhaustively discussed by S21, we henceforth 

R = 100 km

Fig. L

GFSCent_15kmPert3kmCent_15kmPert 15kmCent_15kmPert
GFSCent_3kmPert3kmCent_3kmPert 15kmCent_3kmPert

GFSCent_GEFSPert3kmCent_GEFSPert 15kmCent_GEFSPert

Fig. 8.  As in Fig. 6, except for areas under the relative operating characteristic (ROC) curve computed using decision thresholds of 1%, 2%, 3%, 4%, 5%, 
10%, 15%, …, 95%, and 100% and a trapezoidal method.  Only forecast hours 1–12 are presented to zoom-in on the period with the largest systematic 
differences between experiments and to more easily visualize differences between CAEs with identical central initial states but different IC perturbations 
(which have common line colors but different line patterns).  The y-axis scales are different in each panel.  



 

 

80 
 

focus on ~1–12-h forecasts, where differences among the CAEs were usually largest.  

However, some thoughts about how our findings enhance S21’s conclusions about 

~18–36-h forecast quality are provided in section 3.5.4. 

 

 
 
Fig. 3.9.  Attributes diagrams computed over the CONUS east of 105°W (Fig. 3.1) with a 100-km 
neighborhood length scale aggregated over all 26 1–12-h 3-km forecasts of 1-h accumulated 
precipitation for the (a) 95th, (b) 97.5th, (c) 99th, (d) 99.5th, (e) 99.75th, and (f) 99.9th percentile 
thresholds.  Horizontal lines near the x axis represent observed frequencies of the event, diagonal 
lines are lines of perfect reliability, and forecast frequencies (%) within each probability bin are 
shown as open circles (all nine CAEs had very similar probability distributions, so the circles lie 
atop each other).  Points lying in grey-shaded regions had skill compared to climatological 
forecasts as measured by the Brier skill score (Brier 1950; Wilks 2011).  Values were not plotted 
for a particular bin if fewer than 500 grid points had forecast probabilities in that bin over the 
CONUS east of 105°W and all 26 forecasts. 
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Fig. 9.  Attributes diagrams computed over the CONUS east of 105°W (Fig. 1) with a 100-km neighborhood length scale aggregated over all 26 1–12-h 3-km 
forecasts of 1-h accumulated precipitation for the (a) 95th, (b) 97.5th, (c) 99th, (d) 99.5th, (e) 99.75th, and (f) 99.9th percentile thresholds.  Horizontal lines near the 
x axis represent observed frequencies of the event, diagonal lines are lines of perfect reliability, and forecast frequencies (%) within each probability bin are shown as 
open circles (all nine CAEs had very similar probability distributions, so the circles lie atop each other). Points lying in grey-shaded regions had skill compared to 
climatological forecasts as measured by the Brier skill score (Brier 1950; Wilks 2011).  Values were not plotted for a particular bin if fewer than 500 grid points had 
forecast probabilities in that bin over the CONUS east of 105°W and all 26 forecasts.
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 Percentile threshold 
95.0 97.5 99.0 99.5 99.75 99.9 

Ex
pe

ri
m

en
t  

3kmCent_3kmPert 0.000342 0.000434 0.000507 0.000551 0.000577 0.000596 

3kmCent_15kmPert 0.000359 0.000442 0.000505 0.000548 0.000575 0.000595 

3kmCent_GEFSPert 0.000351 0.000433 0.000504 0.000543 0.000573 0.000596 

15kmCent_3kmPert 0.000347 0.000445 0.000521 0.000553 0.000577 0.000598 

15kmCent_15kmPert 0.000345 0.000448 0.000526 0.000555 0.000577 0.000597 

15kmCent_GEFSPert 0.000348 0.000446 0.000527 0.000561 0.000582 0.000600 

GFSCent_3kmPert 0.000363 0.000434 0.000524 0.000558 0.000578 0.000597 

GFSCent_15kmPert 0.000364 0.000450 0.000529 0.000562 0.000581 0.000597 

GFSCent_GEFSPert 0.000415 0.000496 0.000565 0.000582 0.000591 0.000602 

Table 3.5.  Reliability component of the Brier score decomposition (Murphy 1973; smaller is 
better) aggregated over all 26 1–12-h 3-km forecasts of 1-h accumulated precipitation for various 
percentile thresholds, computed over the CONUS east of 105°W (Fig. 3.1) with a 100-km 
neighborhood length scale.  These values correspond to the curves in Fig. 3.9. 
 

3.4.2.2.  CAE forecast sensitivity to IC perturbations 

CAE precipitation forecast sensitivity to IC perturbations somewhat depended 

on the central initial state.  For example, given identical 3-km central initial states, 3-

km IC perturbations rarely yielded better CAE forecasts than 15-km IC perturbations 

over the first 12 h (compare solid and long-dashed purple curves in Figs. 3.8–3.10; 

also see Table 3.5 and the top row of each panel in Fig. 3.11).  But, when the CAEs 

had common GFS or 15-km central initial states, there were more instances where 3-

km IC perturbations led to better forecasts than 15-km IC perturbations (Figs. 3.8–

3.10; also see Table 3.5 and the second and third rows from the top of each panel in 

Fig. 3.11).  Overall, any benefits of decreasing IC perturbation horizontal grid spacing 

from 15 to 3 km were reserved for situations where central initial states had 

convection-parameterizing horizontal grid spacings that were associated with poorer 

short-term forecasts.  There were no consistent benefits of 3-km IC perturbations  
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Fig. 3.10.  Exactly as in Fig. 3.6, but zoomed-in over the first 12 forecast hours to more easily 
visualize differences between CAEs with identical central initial states but different IC 
perturbations (which have common line colors but different line patterns). 
 

relative to 15-km IC perturbations when CAEs had demonstrably preferable 3-km 

central initial states. 

However, 1–12-h forecasts with 3-km IC perturbations were usually better 

than those with GEFS IC perturbations when holding central initial states constant 

(e.g., compare solid and short-dashed curves with common colors in Figs. 3.8 and 

3.10; also note the middle third of each panel in Fig. 3.11 has more statistically 

significant differences than the top third).  CAEs with 15-km IC perturbations also 

typically outperformed CAEs with GEFS IC perturbations given common central 

initial states (Figs. 3.8 and 3.10; also see the bottom third of each panel in Fig. 3.11).  

The greatest benefit of 15- and 3-km EnKF IC perturbations compared to GEFS IC  

GFSCent_GEFSPert3kmCent_GEFSPert 15kmCent_GEFSPert R = 100 km

Fig. P

GFSCent_15kmPert3kmCent_15kmPert 15kmCent_15kmPert
GFSCent_3kmPert3kmCent_3kmPert 15kmCent_3kmPert

GFSCent_GEFSPert3kmCent_GEFSPert 15kmCent_GEFSPert

Fig. 10.  Exactly as in Fig. 6, but zoomed-in over the first 12 forecast hours to more easily visualize differences between CAEs with identical central initial states 
but different IC perturbations (which have common line colors but different line patterns).
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Fig. 3.11.  As in Fig. 3.7, but for different comparisons that assess the impact of changing IC 
perturbation resolution.  Specifically, in each panel, a given row represents a fixed set of central 
initial states; “3kmCent”, “15kmCent”, and “GFSCent” refer to central initial states provided 
by 3-km EnKF ensemble mean analyses, 15-km EnKF ensemble mean analyses, and GFS 
analyses, respectively.  Each panel is broken into thirds to represent different comparisons, and 
pink text denotes the experiment in each comparison with the higher resolution IC 
perturbations.  The top third compares experiments with 15- and 3-km IC perturbations 
(“3kmPert vs. 15kmPert”).  The middle third compares experiments with 3-km and 0.5° GEFS 
IC perturbations (“3kmPert vs. GEFSPert”).  The bottom third compares experiments with 15-
km and 0.5° GEFS IC perturbations (“15kmPert vs. GEFSPert”).  Pink shadings indicate that 
higher resolution IC perturbations led to statistically significantly higher FSSs for the fixed 
central initial state, while green shadings indicate that lower resolution IC perturbations led to 
statistically significantly higher FSSs for the fixed central initial state.  White cells indicate that 
aggregate FSSs of two experiments with varied IC perturbations but common central initial 
states were not statistically significantly different at the 90% confidence level or higher.  
Annotations to the right of (f) represent the number of occurrences where, for the given row, 
experiments with higher resolution IC perturbations had statistically significantly higher FSSs 
than experiments with lower resolution IC perturbations across all 6 percentile thresholds and 
all forecast hours (i.e., the total number of pink-shaded boxes in each row across all 6 panels).  
 

perturbations occurred when GFS analyses provided central initial states (e.g., see the 

sixth row from the top and bottom row of each panel in Fig. 3.11), illustrating that 

combining EnKF-based IC perturbations with GFS analyses is preferable to 

employing purely global ICs.  Moreover, differences between CAEs with 15- and 3-

km IC perturbations were generally smaller than differences between CAEs with 

R = 100 km FSS

Fig. Q

15kmPert vs. GEFSPert

3kmPert vs. GEFSPert
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perturbations better
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perturbations better
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Constant central 
initial state

Fig. 11.  As in Fig. 7, but for different comparisons that assess the impact of changing IC perturbation resolution.  Specifically, in each panel, a given row represents a 

fixed set of central initial states; “3kmCent”, “15kmCent”, and “GFSCent” refer to central initial states provided by 3-km EnKF ensemble mean analyses, 15-km EnKF 

ensemble mean analyses, and GFS analyses, respectively.  Each panel is broken into thirds to represent different comparisons, and pink text denotes the experiment in 
each comparison with the higher resolution IC perturbations.  The top third compares experiments with 15- and 3-km IC perturbations (“3kmPert vs. 15kmPert”).  The 

middle third compares experiments with 3-km and 0.5° GEFS IC perturbations (“3kmPert vs. GEFSPert”).  The bottom third compares experiments with 15-km and 
0.5° GEFS IC perturbations (“15kmPert vs. GEFSPert”).  Pink shadings indicate that higher resolution IC perturbations led to statistically significantly higher FSSs for 

the fixed central initial state, while green shadings indicate that lower resolution IC perturbations led to statistically significantly higher FSSs for the fixed central initial 

state.  White cells indicate that aggregate FSSs of two experiments with varied IC perturbations but common central initial states were not statistically significantly 
different at the 90% confidence level or higher.  Annotations to the right of (f) represent the number of occurrences where, for the given row, experiments with higher 

resolution IC perturbations had statistically significantly higher FSSs than experiments with lower resolution IC perturbations across all 6 percentile thresholds and all 
forecast hours (i.e., the total number of pink-shaded boxes in each row across all 6 panels). 
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EnKF- and GEFS-based IC perturbations, consistent with GEFS IC perturbations 

possessing very different spectral characteristics (Fig. 3.4) and spread (Fig. 3.5) than 

the two sets of EnKF IC perturbations, which resembled each other in many ways 

(Figs. 3.4, 3.5). 

Short-term precipitation forecast sensitivity to IC perturbations appeared to 

have some association with forecast evolution of small-scale perturbations, which 

exert greater control on short-term forecasts than large-scale perturbations.  For 

instance, given 3-km central initial states, the CAE with 15-km IC perturbations 

quickly spun-up fine-scale structures and had nearly identical perturbation spectra to 

the CAE with 3-km IC perturbations at scales < 100 km by 3 h (Figs. 3.12a,b).  This 

fast spin-up of small-scale structures from 15-km IC perturbations may be related to 

why CAEs with 15- and 3-km IC perturbations had similar short-term precipitation 

forecast skill given common 3-km central initial states (e.g., Figs. 3.8–3.11).   

Similarly, the CAE with GEFS IC perturbations and 3-km central initial states 

also quickly spun-up perturbations at scales < 100 km over the first 3 h.  However, 

some differences between CAEs with GEFS and limited-area EnKF IC perturbations 

remained through 6 h (Figs. 3.12a–c), consistent with most statistically significant 

differences regarding precipitation forecast skill between CAEs with EnKF and GEFS 

IC perturbations occurring before 6 h (see the fourth and seventh rows from the top of 

each panel in Fig. 3.11).  By 12 h, all three CAEs with 3-km central initial states had 

similar perturbation spectra at scales < 800 km (Fig. 3.12d), consistent with little 

precipitation forecast sensitivity to IC perturbations after 12 h (e.g., see purple curves  
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Fig. 3.12.  Average 250-hPa zonal wind perturbation energy (m2 s-2) over all 26 3-km forecasts 
and all 10 ensemble perturbations as a function of wavelength (km) for the three CAEs with 3-
km central initial states for (a) analyses (0-h forecasts) and (b) 3-, (c) 6-, and (d) 12-h forecasts.  
Perturbations were defined with respect to the ensemble mean, and spectra were computed over 
the entire 3-km domain (Fig. 3.1), excluding points within 45 km of each lateral boundary.  The 
discrete cosine transform (Denis et al. 2002) was used to compute spectra and spectral variance 
binning employed the method of Ricard et al. (2013). 

 

in Fig. 3.6).  Similar spectral evolutions occurred over the first 12 h for other 

meteorological variables (not shown). 

These results echo previous studies indicating that small-scale (e.g., < 100 

km) perturbations quickly develop from relatively coarse ensemble ICs once high-

resolution model integration commences (e.g., Harnisch and Keil 2015; Tennant 

2015; Johnson and Wang 2016; Raynaud and Bouttier 2016; Potvin et al. 2017; 

JW20).  These findings are also commensurate with hypotheses that large-scale 

(a) Analysis (0-h forecasts) (b) 3-h forecasts

(c) 6-h forecasts (d) 12-h forecasts

• Over d02 region only except for 15 points nearest each lateral boundary.
• Over all 0000 UTC 10-member ensemble forecasts
• Perturbation spectra

Fig. T

3kmCent_15kmPert 3kmCent_GEFSPert3kmCent_3kmPert

3kmCent_15kmPert
3kmCent_GEFSPert

3kmCent_3kmPert

Fig. 12.  Average 250-hPa zonal wind perturbation energy (m2 s-2) over all 26 3-km forecasts and all 10 ensemble perturbations as a function of wavelength (km) 

for the three CAEs with 3-km central initial states for (a) analyses (0-h forecasts) and (b) 3-, (c) 6-, and (d) 12-h forecasts. Perturbations were defined with 

respect to the ensemble mean, and spectra were computed over the entire 3-km domain (Fig. 1), excluding points within 45 km of each lateral boundary.  The 

discrete cosine transform (Denis et al. 2002) was used to compute spectra and spectral variance binning employed the method of Ricard et al. (2013).
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perturbations are more important drivers of error growth than small-scale 

perturbations (e.g., Durran and Gingrich 2014), as the absence of small-scale 

perturbations in GEFS ICs (Fig. 3.4) did not seem to fundamentally limit error growth 

in CAEs with GEFS IC perturbations (Fig. 3.12). 

 

3.4.2.3.  Overall sensitivities of short-term CAE forecasts 

Considering all nine CAEs, those with 3-km central initial states usually had 

better 1–12-h precipitation forecasts than CAEs with 15-km central initial states, 

which in turn were typically better than CAEs with GFS central initial states, 

regardless of IC perturbations (e.g., Figs. 3.8–3.10; Table 3.5; note that all purple 

curves are usually above all orange curves, which are usually above all green curves 

in Figs. 3.8 and 3.10).  The only systematic exception occurred at forecast hour 1, 

where the five CAEs with at least one 3-km IC component had the five best forecasts, 

suggesting that information content at convection-allowing scales provided by either 

central initial states or IC perturbations is helpful for the shortest forecasts.  However, 

skill in the CAEs with 3-km IC perturbations and GFS or 15-km EnKF central initial 

states (i.e., 15kmCent_3kmPert and GFSCent_3kmPert) diminished between hours 1–

2, sometimes rapidly (Figs. 3.8, 3.10). 

Forecast skill characteristics over the first 2 h in 15kmCent_3kmPert and 

GFSCent_3kmPert appear related to precipitation spin-up.  For instance, given GFS 

and 15-km central initial states, 3-km IC perturbations led to the most domain-total 

precipitation at forecast hour 1 (Fig. 3.13).  Adding 3-km perturbations to relatively 

coarser GFS and 15-km fields surely led to imbalances; the small-scale perturbations  
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Fig. 3.13.  Average 1-h accumulated precipitation (mm) per grid point over all 26 3-km forecasts 
and the CONUS east of 105°W (Fig. 3.1), computed on native grids as a function of forecast 
hour.  These statistics were computed for all 10 ensemble members, but for readability, only 
ensemble means are shown.  Values on the x axis represent ending forecast hours of 1-h 
accumulation periods (e.g., an x-axis value of 9 is for 1-h accumulated precipitation between 8–9 
h).  At forecast hours 1 and 2, GFSCent_GEFSPert domain-total precipitation was non-zero but 
below the x axis. 

 

likely acted as noise that stimulated precipitation development.  Although the greater 

domain-total precipitation resulting from 3-km IC perturbations did not always agree 

well with observed domain-total precipitation (e.g., see the solid orange line in Fig. 

3.13), these enhanced precipitation elements were often placed correctly, given that 

spatial skill was greatly improved at forecast hour 1 by adding 3-km IC perturbations, 

rather than GEFS or 15-km IC perturbations, to GFS and 15-km central initial states 

• Using the 3kmCent_3kmPert and 15kmCent_15kmPert explicitly re-centered 
about 80-member analyses.

Fig. U
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Fig. 13.  Average 1-h accumulated precipitation (mm) per grid point over all 26 3-km forecasts and the CONUS east of 

105°W (Fig. 1), computed on native grids as a function of forecast hour.  These statistics were computed for all 10 

ensemble members, but for readability, only ensemble means are shown.  Values on the x axis represent ending forecast 

hours of 1-h accumulation periods (e.g., an x-axis value of 9 is for 1-h accumulated precipitation between 8–9 h).  At 

forecast hours 1 and 2, GFSCent_GEFSPert domain-total precipitation was non-zero but below the x axis.
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(Figs. 3.8, 3.10).  Between 1–2 h, domain-total precipitation in 15kmCent_3kmPert 

and GFSCent_3kmPert decreased as imbalances were resolved (Fig. 3.13), which is 

consistent with the sometimes precipitous decline of skill in these two experiments 

over this period (Figs. 3.8, 3.10) and epitomizes the dominant influence of central 

initial states for short-term forecast evolution.  Overall, after 3–6 h, domain-total 

precipitation provided similar conclusions as other metrics: for a fixed central initial 

state GEFS IC perturbations produced forecasts that were typically furthest from 

observations, 15- and 3-km IC perturbations added to 3-km central initial states 

yielded comparable performance, and CAEs with 3-km central initial states were 

usually closest to observations regardless of IC perturbations. 

Furthermore, differences between CAEs with identical IC perturbations but 

different central initial states were statistically significant more often than differences 

between CAEs with identical central initial states but varied IC perturbations 

(compare Figs. 3.7 and 3.11).  Most importantly, the four EnKF-only experiments 

(bold experiments in Table 3.3) clearly revealed that CAEs with 3-km central initial 

states were statistically significantly better than CAEs with 15-km central initial 

states (given constant IC perturbations) more often than CAEs with 3-km IC 

perturbations were statistically significantly better than CAEs with 15-km IC 

perturbations (given constant central initial states; compare the top two rows of each 

panel in Figs. 3.7 and 3.11). 

Therefore, collective findings strongly suggest it is more important that 

central initial states possess convection-allowing horizontal grid spacing than IC 

perturbations for short-term CAE precipitation forecasts.  These results imply that 
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small-scale structures in central initial states help to define a more accurate envelope 

within which ensemble members’ short-term forecasts evolve. 

 

3.5.  Discussion 

3.5.1.  CONNECTION TO MIXED-RESOLUTION ENSEMBLE–VARIATIONAL DA 

SYSTEMS 

Our results are broadly consistent with previous work that examined 

deterministic forecasts initialized from ensemble–variational (EnVar) DA systems 

(e.g., Hamill and Snyder 2000; Lorenc 2003; Wang et al. 2008; Wang 2010) with 

“dual-resolution” configurations, where a comparatively low-resolution ensemble 

provides background error covariances (BECs) for a relatively higher-resolution 

deterministic background.  Specifically, several studies noted that deterministic 

forecasts were improved when increasing resolution of the deterministic background 

while holding ensemble perturbation resolution constant (e.g., Schwartz 2016; Lu et 

al. 2017; Pan et al. 2018; Wang et al. 2019).  Conversely, studies isolating sensitivity 

to perturbation (i.e., BEC) resolution in dual-resolution EnVar DA systems have 

yielded mixed results and provide scant overall evidence that BECs coarser than the 

deterministic background systematically degrade subsequent forecasts (e.g., Schwartz 

et al. 2015c; Schwartz 2016; Lei and Whitaker 2017; Bédard et al. 2018, 2020; Kay 

and Wang 2020).  Furthermore, some ensemble-based DA systems use simpler 

procedures to update ensemble perturbations relative to methods for updating 

deterministic backgrounds, finding few adverse impacts from the simplifications and 
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implicitly acknowledging the overriding importance of central states (e.g., Buehner et 

al. 2017; Lorenc et al. 2017; Bédard et al. 2018).   

Therefore, past research collectively suggests that ensemble perturbation 

resolution likely has secondary importance relative to resolution of deterministic 

backgrounds in dual-resolution EnVar DA systems, mirroring our results for short-

term CAE forecasts.  However, most previous studies assessing sensitivity of dual-

resolution EnVar analyses to BEC resolution focused on DA systems at convection-

parameterizing scales.  The exception is Schwartz (2016), who found that 20- and 4-

km BECs yielded 4-km EnVar analyses that initialized similar deterministic forecasts.  

But, absence of continuous cycling in their comparisons meant potential benefits of 4-

km BECs could not accumulate through time. 

Moreover, even if BEC resolution is less important than resolution of 

deterministic backgrounds, BEC resolution cannot necessarily be entirely ignored for 

convective-scale DA applications.  For instance, there are likely situations where 

convection-parameterizing BECs cannot provide relevant spatiotemporal details 

about small-scale features represented in convection-allowing EnVar backgrounds, 

potentially leading to suboptimal analyses.  Thus, while it may be unnecessary to 

initialize CAE “free forecasts” with convection-allowing IC perturbations, it is 

conceivable that convection-allowing BECs are in fact critical to producing optimal 

convection-allowing analyses.  Future studies should investigate this topic to better 

understand whether BEC resolution can be degraded without also degrading 

convective-scale EnVar analyses. 
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3.5.2.  THEORETICAL ASPECTS 

Our findings are limited by the effectiveness of Gaussian-based DA 

methodologies, like the EnKF, to effectively represent posterior means and 

perturbations at various spatial resolutions.  For example, in a highly idealized 

scenario, Posselt and Bishop (2012) suggested that given non-Gaussian priors (states 

before assimilation), EnKFs reasonably represent posterior means (i.e., central initial 

states) but poorly estimate posterior covariances (i.e., IC perturbations).  This 

deficiency can directly limit forecast performance of convective-scale NWP systems 

that use EnKFs (Poterjoy et al. 2017, 2019).  Assuming that 3-km EnKF priors were 

more non-Gaussian than 15-km EnKF priors, our findings are consistent with past 

research: benefits of decreasing central initial state horizontal grid spacing from 15 to 

3 km suggest reliable EnKF updates for the mean at all scales, while lack of benefits 

from decreasing IC perturbation horizontal grid spacing from 15 to 3 km suggests the 

3-km EnKF may not properly represent convective-scale posterior covariances.  

These concepts are consistent with the discussion in section 3.5.1 and may provide a 

theoretical basis for using dual-resolution DA systems to initialize CAEs. 

 

3.5.3.  SIMILARITIES WITH JW20 

In general, our results corroborate JW20’s findings that 3-km IC perturbations 

lead to better short-term CAE forecasts than 0.5° GEFS IC perturbations given 3-km 

central initial states, and, together with JW20’s conclusions, suggest that 

approximately 12 h represents an upper bound on forecast ranges for which 

convection-allowing IC perturbations are beneficial.  As there were meaningful 
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differences between JW20 and our study (e.g., JW20 used a 40-member partial 

cycling EnVar/EnKF DA system while we used an 80-member continuously cycling 

EnKF), these collective findings concerning 3-km versus 0.5° GEFS IC perturbations 

appear robust.   

Additional experiments in JW20 suggested these results were due to missing 

small-scale structures in GEFS IC perturbations, rather than the myriad other 

differences between GEFS IC perturbations and IC perturbations provided by limited-

area 3-km WRF-based DA systems, like physical parameterizations.  However, our 

findings that 3-km IC perturbations did not lead to better precipitation forecasts than 

15-km IC perturbations given common 3-km central initial states suggest a point of 

diminishing returns for increasing IC perturbation resolution. 

 

3.5.4.  FURTHER INSIGHTS INTO S21 

Comparison of the EnKF-only experiments (bold experiments in Table 3.3) 

indicates that S21’s 3-km EnKF initialized better 6–12-h forecasts than their 15-km 

EnKF due to increased resolution of its central initial state, not because of finer-

resolution IC perturbations.  Furthermore, S21 noted that ICs produced by “blending” 

small scales from 3-km EnKF analysis members with large scales from corresponding 

GEFS IC members led to better ~18–36-h CAE forecasts than ICs provided by 

unblended 3-km EnKF analysis ensembles (i.e., xi
3km).  However, because individual 

members from 3-km EnKF and GEFS IC ensembles were blended (i.e., xi
3km and 

xi
GEFS were blended for the ith member to create new ICs), S21 could not assess 
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whether changing the large-scale central initial state or the large-scale IC 

perturbations was responsible for the success of blending. 

Although we did not perform experiments to explicitly examine the impact of 

modifying large-scale central initial states and IC perturbations, our experiments 

nonetheless provide some insights on S21’s findings.  Specifically, after ~30 h at the 

95th and 97.5th percentile thresholds (Figs. 3.6a,b) and between ~22–26 h at higher 

thresholds (Figs. 3.6c–f), CAEs with GFS central initial states outperformed CAEs 

with EnKF central initial states regardless of IC perturbation resolution.  Moreover, 

~18–36-h forecast sensitivity to using global IC perturbations was relatively modest: 

given 3-km central initial states, while employing GEFS IC perturbations sometimes 

boosted 30–36-h FSSs compared to using 15- or 3-km IC perturbations, much bigger 

performance gains were realized by changing central initial states to GFS analyses 

(Figs. 3.6a,b). 

Therefore, ~18–36-h forecasts were improved most by using central initial 

states provided by a global model.  This finding suggests that S21’s blended 3-km ICs 

yielded better next-day forecasts than unblended 3-km ICs because of forcing large-

scale central initial states to global model large scales during blending, rather than 

forcing large-scale IC perturbations to those provided by a global model.  It thus 

seems more critical to accurately depict large-scale central initial states than large-

scale IC perturbations for next-day CAE forecasts. 
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3.6.  Summary and conclusions 

Nine sets of 36-h, 10-member CAE forecasts were produced over the CONUS 

for a 4-week period spanning April–May 2017.  The various CAEs differed solely 

with regard to their central initial states and IC perturbations (Tables 3.3, 3.4) and 

were verified with a focus on precipitation east of the Rockies. 

When holding IC perturbations constant, CAE precipitation forecasts over the 

first ~12 h were best when central initial states were provided by 3-km EnKF mean 

analyses, rather than GFS or 15-km EnKF mean analyses.  Thus, short-term CAE 

forecasts clearly benefited when central initial states possessed convection-allowing 

horizontal grid spacing.  However, when holding these optimal 3-km central initial 

states constant and varying IC perturbations, there were no systematic benefits of 

decreasing IC perturbation horizontal grid spacing from 15 to 3 km, although 3-km IC 

perturbations typically led to better short-term CAE forecasts than GEFS IC 

perturbations. 

Overall, considering all nine CAEs, in aggregate, the three with 3-km central 

initial states produced better short-term precipitation forecasts than CAEs with GFS 

or 15-km central initial states, regardless of IC perturbations.  Therefore, while 

increasing IC perturbation resolution can be helpful in some instances, it is far more 

important for central initial states than for IC perturbations to possess convection-

allowing horizontal grid spacing for short-term CAE forecasting applications; IC 

perturbation resolution is subordinate to central initial state resolution.  Of course, 

these findings must be interpreted within the context of this study, which focused 

primarily on strongly forced events and used EnKF-based IC perturbations limited by 
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their various Gaussian assumptions.  In weakly forced scenarios and with future 

advances in non-Gaussian DA methods and NWP models, conclusions could differ. 

Nonetheless, given that it appears IC perturbations can be coarser than central 

initial states for CAE forecasting applications, dual-resolution EnVar DA systems 

may be prime candidates to initialize future CAEs because they can provide 

convection-allowing analyses while leveraging relatively coarse, cheap ensemble 

perturbations (e.g., Schwartz 2016; Lu et al. 2017).  These relatively coarse 

ensembles could then be re-centered about convection-allowing deterministic EnVar 

analyses to initialize CAE forecasts.  Mixed-resolution EnKFs (e.g., Rainwater and 

Hunt 2013) could also potentially be developed for CAE initialization.  However, 

further work is needed to determine whether mixed-resolution EnKFs or EnVar DA 

systems can produce similar quality analyses as those provided by single-resolution 

convection-allowing EnKFs.  Thus, although convection-allowing IC perturbations 

appear unnecessary for CAE forecasts, paradoxically, ensemble-based BECs 

possessing convection-allowing horizontal grid spacing could conceivably be 

necessary to produce the best possible convection-allowing central initial states. 

Another consequence of our findings is that deterministic forecasts initialized 

from central initial states (e.g., EnKF mean analyses) can potentially be used as 

proxies for CAE forecasts at 1/M the cost of an M-member CAE.  As evidence of this 

possibility, comparison of deterministic forecasts initialized from GFS, 3-km EnKF 

mean, and 15-km EnKF mean analyses over the nested domain (Fig. 3.1) yielded 

identical conclusions as comparisons of 10-member CAEs solely differing by their 

central initial states: over the first ~12–21 h, 3-km EnKF mean analyses yielded the 
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best forecasts and GFS analyses the worst, whereas forecasts initialized from GFS 

analyses were comparable to or better than those initialized from limited-area EnKF 

analyses after ~18–24 h (Fig. 3.14).  Therefore, CAE developers may only need to  

 
 
Fig. 3.14.  Fractions skill scores (FSSs) over the CONUS east of 105°W (Fig. 3.1) with a 100-km 
neighborhood length scale aggregated over all 26 forecasts of 1-h accumulated precipitation for 
deterministic 3-km forecasts initialized from 3-km EnKF mean analyses (purple), 15-km EnKF 
mean analyses (orange), and GFS analyses (green) for the (a) 95th, (b) 97.5th, (c) 99th, (d) 99.5th, 
(e) 99.75th, and (f) 99.9th percentile thresholds as a function of forecast hour.  Values on the x 
axis represent ending forecast hours of 1-h accumulation periods (e.g., an x-axis value of 24 is for 
1-h accumulated precipitation between 23–24 h).  Symbols along the top axis denote instances 
where differences between two forecasts were statistically significant at the 95% level, with the 
three rows of colored symbols corresponding to the three comparisons in the legend to denote 
which forecast had statistically significantly higher FSSs.  For example, in the middle row, 
purple symbols indicate the forecasts with ICs provided by 3-km EnKF mean analyses had 
statistically significantly higher FSSs than forecasts with ICs provided by GFS analyses, while 
green symbols indicate forecasts with ICs provided by GFS analyses had statistically 
significantly higher FSSs than forecasts with ICs provided by 3-km EnKF mean analyses.  
Absence of a symbol means the differences were not statistically significant at the 95% level.  
The y-axis scales are different in each panel. 
 

 

R = 100 km
FSS deterministic

GFS analysis ICs

3-km EnKF mean analysis ICs
15-km EnKF mean analysis ICs

Fig. X

GFS analyses3-km EnKF mean analyses 15-km EnKF mean analyses

Statistical significance markers               
3-km EnKF ICs (■) vs. 15-km EnKF ICs (■)
3-km EnKF ICs (■) vs. GFS ICs (■)
15-km EnKF ICs (■) vs. GFS ICs (■)

Fig. 14.  Fractions skill scores (FSSs) over the CONUS east of 105°W (Fig. 1) with a 100-km neighborhood length scale aggregated over all 26 forecasts of 1-h accumulated 
precipitation for deterministic 3-km forecasts initialized from 3-km EnKF mean analyses (purple), 15-km EnKF mean analyses (orange), and GFS analyses (green) for the (a) 95th, (b) 
97.5th, (c) 99th, (d) 99.5th, (e) 99.75th, and (f) 99.9th percentile thresholds as a function of forecast hour.  Values on the x axis represent ending forecast hours of 1-h accumulation 
periods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation between 23–24 h).  Symbols along the top axis denote instances where differences between two forecasts were 
statistically significant at the 95% level, with the three rows of colored symbols corresponding to the three comparisons in the legend to denote which forecast had statistically 
significantly higher FSSs.  For example, in the middle row, purple symbols indicate the forecasts with ICs provided by 3-km EnKF mean analyses had statistically significantly higher 
FSSs than forecasts with ICs provided by GFS analyses, while green symbols indicate forecasts with ICs provided by GFS analyses had statistically significantly higher FSSs than 
forecasts with ICs provided by 3-km EnKF mean analyses.  Absence of a symbol means the differences were not statistically significant at the 95% level.  The y-axis scales are 
different in each panel.
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initialize deterministic forecasts from central initial states during portions of 

experimentation, potentially saving resources and enabling trials over longer time 

periods. 

In conclusion, our results suggest scientists working on initialization of future 

operational CAEs like the RRFS primarily concentrate their energies on producing 

the best possible high-resolution deterministic analyses that can be used as central 

initial states for CAEs.  A common focus on this aspect of CAE ICs across the 

community can potentially accelerate progress toward advancing CAE capabilities, 

thus leading to better probabilistic weather forecasts. 
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Chapter 4: Comparing partial and continuously cycling ensemble 

Kalman filter data assimilation systems for convection-allowing 

ensemble forecast initialization 

 

4.1.  Introduction 

Limited-area convection-allowing ensembles (CAEs) have become 

increasingly popular over the past decade and are now operational at many numerical 

weather prediction (NWP) centers (e.g., Gebhardt et al. 2011; Peralta et al. 2012; 

Hagelin et al. 2017; Raynaud and Bouttier 2017; Klasa et al. 2018; Roberts et al. 

2020).  While CAEs can be initialized by simply downscaling operationally available 

coarse-resolution analyses and short-term forecasts onto the computational domain 

(e.g., Xue et al. 2007; Kong et al. 2008, 2009; Tennant 2015; Clark 2017; 

Schellander-Gorgas et al. 2017; Cafaro et al. 2019; Porson et al. 2019), as data 

assimilation (DA) methods have matured and computing has increased, CAE initial 

conditions (ICs) are now commonly produced by customized limited-area DA 

systems explicitly designed for CAE initialization (e.g., Jones and Stensrud 2012; 

Schumacher and Clark 2014; Schwartz et al. 2014, 2015a, 2021; Harnisch and Keil 

2015; Wheatley et al. 2015; Dowell et al. 2016, 2021; Raynaud and Bouttier 2016; 

Schraff et al. 2016; Johnson and Wang 2017; Gustafsson et al. 2018; Keresturi et al. 

2019; Gasperoni et al. 2020; Johnson et al. 2020; COSMO 2021). 

Over the conterminous United States (CONUS), NCEP’s operational CAE, 

the High Resolution Ensemble Forecast (HREF; Roberts et al. 2020), currently lacks 

its own analysis system and instead is an ad hoc aggregation of independent 
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deterministic convection-allowing model forecasts.  However, within the Unified 

Forecast System framework, NCEP intends to replace the HREF with a Rapid 

Refresh Forecast System (RRFS; Carley et al. 2021) initialized from its own 

ensemble-based limited-area analyses.  Thus, configurations for the RRFS’s DA 

system must be carefully considered. 

One design choice concerns DA cycling methodology, as two overarching 

strategies are possible: continuous cycling and partial cycling.  In continuous cycling, 

the short-term forecast initialized from the previous cycle’s analysis always serves as 

the background for the current analysis cycle, relegating the role of external models to 

supplying boundary conditions and yielding a self-contained limited-area DA system.  

Conversely, in partial cycling, limited-area analysis cycles are periodically discarded 

and replaced with coarser-resolution external analyses or short-term forecasts 

typically provided by a global NWP model. 

Although CAE forecast sensitivity to cycling strategy has not been 

systematically examined, prior research at convection-parameterizing resolutions 

indicated partial cycling three-dimensional variational (3DVAR; e.g., Courtier et al. 

1994; Lorenc et al. 2000) DA systems initialized better deterministic forecasts than 

continuously cycling 3DVAR DA systems (e.g., Rogers et al. 2009; Hsiao et al. 2012; 

Benjamin et al. 2016).  While reasons for these findings are not completely 

understood, one possibility is that continuously cycling DA systems poorly represent 

large-scale features that may exert important controls on forecast evolution (e.g., 

Durran and Gingrich 2014; Durran and Weyn 2016; Weyn and Durran 2017), 

whereas partial cycling DA systems might possess smaller large-scale errors because 
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they ingest global fields with a “better longwave representation not available via 

regional data assimilation unable to use the full global set of observations” (Benjamin 

et al. 2016).  Another possible reason for the historical deficiencies of continuously 

cycling systems may be related to biases that can accumulate throughout continuous 

DA cycles; these biases likely arise from imperfect physical parameterizations and 

can eventually degrade analyses and subsequent forecasts.  In contrast, the act of 

periodically replacing limited-area states with comparatively less biased global fields 

may limit how much bias can accumulate in partial cycling DA systems.  For 

example, Hsiao et al. (2012) demonstrated that partial cycling 3DVAR analyses were 

substantially less biased than continuously cycling 3DVAR analyses and initialized 

commensurately better forecasts over Taiwan and its surroundings, and several 

studies employing continuous cycling over the CONUS and adjacent areas also 

documented bias accumulations (e.g., Torn and Davis 2012; Romine et al. 2013; 

Cavallo et al. 2016; Wong et al. 2020; Poterjoy et al. 2021). 

Given the collective findings questioning the suitability of continuous cycling, 

NCEP’s operational limited-area North American Mesoscale (NAM), Rapid Refresh 

(RAP; Benjamin et al. 2016), and High-resolution Rapid Refresh (HRRR; Benjamin 

et al. 2016; Dowell et al. 2021) models, as well as NOAA’s experimental real-time 

CAEs, the HRRR-Ensemble (HRRRE; Dowell et al. 2016, 2021) and “Warn-on 
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Forecast” system (Stensrud et al. 2009, 2013; Wheatley et al. 2015; Jones et al. 2016), 

all employ partial cycling12.  In addition, several research studies 

 effectively used partial cycling approaches to initialize convection-allowing model 

forecasts over the CONUS (e.g., Schumacher and Clark 2014; Johnson et al. 2015, 

2020; Johnson and Wang 2017; Gasperoni et al. 2020). 

However, partial cycling DA systems have several limitations.  For instance, 

while continuous cycling facilitates a straightforward diagnosis of model biases—

such that they can be remedied—forecast errors in partial cycling systems reflect both 

the external and limited-area models, increasing the difficulty of pinpointing error 

sources or masking errors altogether (e.g., Poterjoy et al. 2021).  Additionally, partial 

cycling DA system performance may depend on both characteristics of the external 

fields and frequency with which they are ingested, introducing extra sources of 

potential sensitivity compared to continuously cycling DA systems.  Furthermore, 

partial cycling workflows can be complicated and require simultaneous execution of 

two limited-area DA systems, including a “primary” system and a “parallel” or 

“catch-up” system that essentially handles the periodic ingestion of external fields 

(e.g., Djalalova et al. 2016; Hu et al. 2017).  Perhaps recognizing these shortcomings, 

Rogers et al. (2009) noted, “It should be pointed out that the use of partial cycling in 

the [NAM DA system] is considered a temporary solution”, and overall, relative to 

 
12 Notably, operational European limited-area models, including CAEs, are initialized from 
continuously cycling DA systems (e.g., Schraff et al. 2016; Hagelin et al. 2017; Raynaud and Bouttier 
2017; Keresturi et al. 2019; COSMO 2021).  Although it is unclear whether this approach is optimal 
given the absence of studies intercomparing forecasts initialized from partial and continuously cycling 
DA systems over Europe, it is possible that continuously cycling DA systems spanning relatively large 
geographic areas like the CONUS may be more prone to the issue of bias accumulation than 
continuously cycling DA systems over comparatively small European domains, where more assertive 
lateral boundary conditions (e.g., Warner et al. 1997) may limit bias accumulations. 
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partial cycling DA systems, continuously cycling DA systems permit more rapid 

progress toward improving NWP models and are easier to maintain and upgrade.  

Accordingly, it would be preferable to initialize the future RRFS with a continuously 

cycling DA system, so long as it produces similar quality forecasts as other potential 

initialization methods like partial cycling. 

Thus, for RRFS development purposes, it seems sensible to rigorously revisit 

partial versus continuous cycling for limited-area modeling applications, especially 

with modern DA systems incorporating flow-dependent background error covariances 

like the ensemble Kalman filter (EnKF; Evensen 1994; Houtekamer and Zhang 

2016), contrasting previous systematic studies concerning partial and continuous 

cycling that employed inferior 3DVAR DA methodologies (e.g., Rogers et al. 2009; 

Hsiao et al. 2012; Benjamin et al. 2016).  Moreover, limited-area continuously 

cycling EnKFs can perform well and initialize better convection-allowing model 

forecasts than downscaled global analyses over the CONUS (e.g., Schwartz and Liu 

2014; Schwartz 2016), including for CAE applications (Schwartz et al. 2021).  

Finally, Schumacher and Clark (2014) suggested partial and continuously cycling 

EnKFs yielded similar caliber CAE forecasts, which is encouraging, but their study 

was limited by its small sample size of just 16 assimilation cycles over 4 days and 

specific experimental design choices, like initializing their partial cycling EnKF with 

randomly perturbed 36-h forecasts rather than flow-dependent analyses or shorter-

term forecasts.  Ultimately, it remains unclear whether continuously cycling EnKFs 

can systematically initialize comparable quality CAE forecasts as partial cycling 

EnKFs, as there has yet to be a study devoted to such an investigation. 
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To address this uncertainty about cycling strategy, this work directly 

compares CAE forecasts initialized from partial and continuously cycling EnKF DA 

systems over the CONUS for a 4-week period.  In addition, this study investigates 

another method for CAE forecast initialization that, like partial cycling, entrains 

external information into limited-area ICs.  Specifically, CAE forecasts were also 

initialized from “blended” states, where small scales provided by continuously 

cycling EnKF analyses were combined with large scales provided by global ensemble 

ICs.  Our experiments offer insights about CAE ICs and guidance for how future 

CAEs like the RRFS should be initialized. 

 

4.2.  Model and data assimilation configurations 

CAE forecast sensitivity to EnKF cycling procedure (i.e., partial or continuous 

cycling) was explored through several experiments.  The following descriptions about 

experimental model and EnKF settings are brief, as configurations were identical to 

those described by Schwartz et al. (2021; hereafter S21).  Despite this parallel, the 

current study fundamentally differs from S21, who focused on comparing CAE 

forecasts initialized from continuously cycling 15- and 3-km EnKFs and did not 

intercompare forecasts initialized from partial and continuously cycling EnKFs. 

 

4.2.1.  MODEL CONFIGURATIONS 

All EnKF experiments used identical model configurations as S21 (Table 4.1).  

Specifically, version 3.9.1.1 of the Advanced Research Weather Research and 

Forecasting (WRF) model (Skamarock et al. 2008; Powers et al. 2017) produced all  
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Parameter WRF model setting 

Model version Version 3.9.1.1 of the Advanced Research WRF model 

Horizontal grid spacing 15 and 3 km in the outer and inner domains, respectively 

Time step 60 and 12 s in the 15- and 3-km domains, respectively 

Number of vertical levels 51 (based on the Rapid Refresh model; Benjamin et al. 2016) 

Model top 15 hPa 

Microphysics parameterization Thompson (Thompson et al. 2008) 

Longwave and shortwave 
radiation parameterizations 

Rapid Radiative Transfer Model for Global Climate Models 
(RRTMG) with ozone and aerosol climatologies (Mlawer et al. 

1997; Iacono et al. 2008; Tegen et al. 1997) 

Planetary boundary layer 
parameterization 

Mellor–Yamada–Janjić (MYJ)  
(Mellor and Yamada 1982; Janjić 1994, 2002) 

Land surface model Noah (Chen and Dudhia 2001) 

Cumulus parameterization Tiedtke (15-km domain only; Tiedtke 1989; Zhang et al. 2011) 

Table 4.1.  WRF model settings for all experiments. 
 
 
forecasts over a nested computational domain with 15-km horizontal grid spacing in 

the outer domain and 3-km horizontal grid spacing in the nest (Fig. 4.1).  The same 

physics options (Table 4.1) were used on both domains, except cumulus 

parameterization was not employed on the convection-allowing 3-km grid.  All 

ensemble members used identical physical parameterizations. 

 

4.2.2.  ENKF CONFIGURATIONS 

Both the partial and continuously cycling EnKFs had identical configurations 

to the 15-km continuously cycling EnKF described by S21, who thoroughly 

documented and justified their settings (summarized in Table 4.2).  Moreover, S21 

showed their 15-km EnKF DA system had acceptable spread–error statistics (e.g., 

Houtekamer et al. 2005), was stable from a climatological perspective, and initialized  
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Fig. 4.1.  Computational domain.  Horizontal grid spacing was 15 km in the outer domain (415 x 
325 points) and 3 km in the nest (1581 x 986 points).  Objective precipitation verification only 
occurred over the red shaded region of the 3-km domain (CONUS east of 105°W).   
 

better short-term CAE precipitation forecasts than ICs provided by an operational 

global ensemble.   

Specifically, using the Data Assimilation Research Testbed (DART; Anderson 

et al. 2009) software, 80-member EnKF analyses were produced hourly (i.e., hourly 

cycles) on solely the 15-km domain (Fig. 4.1); the 3-km domain was removed during 

1-h, 80-member ensemble forecasts between EnKF analyses.  As in S21, these 1-h 

ensemble forecasts employed perturbed lateral boundary conditions (LBCs) that were 

constructed by adding random, correlated, Gaussian noise with zero mean (e.g., 

Barker 2005; Torn et al. 2006) to Global Forecast System (GFS) analyses and 

forecasts; this approach was chosen for its simplicity and is commonly used to  

15 km

3 km

Fig. 1. Computational domain.  Horizontal grid spacing was 15 km in the outer 
domain (415 x 325 points) and 3 km in the nest (1581 x 986 points).  Objective 
precipitation verification only occurred over the red shaded region of the 3-km domain 
(CONUS east of 105°W).  

Fig. A
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Parameter Setting 

EnKF algorithm Ensemble adjustment Kalman filter (EAKF; Anderson 
2001, 2003; Anderson and Collins 2007) 

Ensemble size 80 members 

Cycling period 1 hour 

Updated WRF model variables 

Zonal and meridional wind components; perturbation 
geopotential height, potential temperature, and dry surface 

pressure; and water vapor, graupel, snow,  
and rain mixing ratios 

Localization function Eq. (4.10) from Gaspari and Cohn (1999) 

Horizontal localization full-width 1280 km 

Vertical localization full-width 1.0 scale height 

Inflation method Posterior relaxation-to-prior-spread 
[RTPS; Whitaker and Hamill (2012)] 

Inflation factor 1.06 

Lateral boundary condition 
perturbations 

Random perturbations based on Gaussian noise added to 
GFS analyses and forecasts 

Assimilated observations 
Rawinsonde, aircraft, wind profiler, satellite-tracked wind, 
global positioning system radio occultation (GPSRO), and 

surface observations 

Moisture observations Assimilated as relative humidity 

Horizontal thinning for aircraft and 
satellite-tracked wind observations 30 km 

Vertical thinning for aircraft and 
satellite-tracked wind observations 25 hPa 

Table 4.2.  Summary of partial and continuously cycling EnKF configurations.  See S21 for more 
details and justifications for these settings. 

 

provide LBCs for limited-area EnKFs (e.g., Torn and Davis 2012; Romine et al. 

2013; Schumacher and Clark 2014; Johnson et al. 2015; Schwartz et al. 2015a, 2020; 

Zhu et al. 2019).  Whereas S21 produced both 15- and 3-km EnKF analyses, we only 

produced the more affordable 15-km analyses to enable several 4-week experiments 

(section 4.3) given finite computing resources.  Although future operational CAEs 

will likely be initialized from convection-allowing DA systems, as we further discuss 



 

 

107 
 

in section 4.6, higher-resolution DA systems would probably not provide different 

conclusions about the comparative performance of partial and continuously cycling 

DA methodologies. 

The EnKFs used sampling error correction (Anderson 2012) and covariance 

localization to mitigate spurious correlations, and EnKF spread was maintained with 

posterior inflation (Table 4.2).  Approximately 30,000 – 100,000 conventional 

observations were assimilated each cycle (Table 4.2), all assumed to be valid at the 

analysis time.  Radar-based observations were not assimilated.  Furthermore, as in 

S21, radiance observations were not assimilated.  There are two reasons for this 

choice: 1) Consistency with S21, and 2) although assimilating radiances has shown 

promise for improving forecasts of specific events over small portions of the CONUS 

(e.g., Zou et al. 2011; Zhang et al. 2019; Jones et al. 2020), radiance observations 

historically have yielded only small impacts over the CONUS in systematic studies 

with limited-area DA systems (Lin et al. 2017a,b; Zhu et al. 2019), likely because of 

ample conventional observation coverage over the CONUS.  Table 3 of S21 provides 

a complete list of assimilated observations. 

Following S21, NCEP’s operational Gridpoint Statistical Interpolation (GSI) 

DA system (Kleist et al. 2009; Shao et al. 2016) provided observation operators, 

performed observation quality control, thinned aircraft and satellite-tracked wind 

observations (Table 4.2), specified observation time windows, and assigned 

observation errors.  GSI’s observation-related output was then ingested into DART. 

It is important to note that specific DA configurations (e.g., Table 4.2) were 

determined while developing the continuously cycling EnKF, and optimal settings for 
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the partial cycling EnKFs may differ.  Thus, a hypothetical operational partial cycling 

EnKF that has been exhaustively tuned may perform better than our partial cycling 

EnKFs.  Nonetheless, fine-tuning partial cycling DA parameters is beyond the scope 

of this study, and all EnKFs used identical configurations to attribute differences 

between partial and continuously cycling EnKF analyses and subsequently initialized 

CAE forecasts to the external fields introduced during partial cycling EnKF 

initialization.  

 

4.3.  Experimental design 

As in S21, EnKF experiments were performed between 23 April and 20 May 

2017.  This period featured several severe weather and heavy precipitation events 

over the CONUS. 

 

4.3.1.  CONTINUOUSLY CYCLING ENKF 

The 80-member continuously cycling 15-km EnKF in S21 and used again 

here (“CCEnKF”; Fig. 4.2; Table 4.3) was initialized by downscaling the 0000 UTC 23 

April 2017 0.25° GFS analysis onto the 15-km domain (Fig. 4.1) and adding random, 

correlated, Gaussian noise with zero mean, akin to the method for generating 

perturbed LBCs (section 4.2.2).  This randomly-generated ensemble served as the 

prior (before assimilation) ensemble for the first EnKF analysis, and the posterior 

(after assimilation) ensemble initialized a 1-h, 80-member ensemble forecast that 

became the prior for EnKF DA at 0100 UTC 23 April 2017. 
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Fig. 4.2.  Schematic diagram of CCEnKF (top), PC12z (middle), and PC06z (bottom) cycling 
methodologies.  Solid vertical lines with filled black circles represent EnKF analyses, and red 
denotes CAE forecast initialization times.  Priors for EnKF analyses at 0600 and 1200 UTC in 
PC06z and PC12z, respectively, were 6-h GDAS-EnKF forecast perturbations re-centered about 
GFS analyses. 
 

Thereafter, continuous analysis–forecast cycles with a 1-h period were 

performed until 0000 UTC 20 May 2017 (inclusive; 649 hourly DA cycles).  Land 

surface and microphysics states freely evolved for each member throughout the 4-

week cycling period, and sea surface temperatures were updated daily from NCEP’s 

0.12° analyses (e.g., Gemmill et al. 2007).  S21 showed it took approximately two 

days for the EnKF to spin-up from and effectively “forget” about the initially-

specified random noise (i.e., develop flow-dependent structures consistent with the 

WRF model climate). 
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Fig. 2.  Schematic diagram of CCEnKF (top), PC12z (middle), and PC06z (bottom) cycling methodologies.  Solid vertical lines with filled black circles represent EnKF analyses, and red denotes CAE 
forecast initialization times.  Priors for EnKF analyses at 0600 and 1200 UTC in PC06z and PC12z, respectively, were 6-h GDAS-EnKF forecast perturbations re-centered about GFS analyses.
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Experiment 
name Description 

CCEnKF 

Continuously cycling EnKF initialized at 0000 UTC 23 April 2017 by adding 
random noise to GFS analyses.  Hourly assimilation cycles were then 

performed until 0000 UTC 20 May 2017 (inclusive), and 0000 UTC analysis 
ensembles initialized 36-h, 10-member CAE forecasts. 

PC12z 

Partial cycling EnKF initialized daily at 1200 UTC between 24 April and 19 
May 2017 (inclusive) by re-centering perturbations derived from 6-h GDAS-

EnKF forecasts about 1200 UTC GFS analyses.  The perturbations were 
inflated according to Fig. 4.3.  Hourly self-contained assimilation cycles were 
then performed for 12 h until 0000 UTC, and 0000 UTC analysis ensembles 

initialized 36-h, 10-member CAE forecasts.  After CAE forecast initialization, 
limited-area cycles were discarded. 

PC06z 

Exactly the same as PC12z, except the partial cycling EnKF was initialized   6 h 
earlier at 0600 UTC daily by re-centering inflated perturbations derived from 

6-h GDAS-EnKF forecasts about 0600 UTC GFS analyses.  Hourly self-
contained assimilation cycles were then performed for 18 h until 0000 UTC, 

and 0000 UTC analysis ensembles initialized 36-h, 10-member CAE forecasts. 

PC12z_soil Exactly the same as PC12z, except initial land surface states at 1200 UTC were 
taken from 1200 UTC continuously cycling EnKF (CCEnKF) members. 

CCEnKF_blend 

Exactly the same as CCEnKF, except at 0000 UTC, small scales from CCEnKF 
analysis members 1–10 were blended with large scales from corresponding 

GEFS IC members 1–10 using a 960-km filter cutoff (Fig. 4.4).  These blended 
ICs then initialized 36-h, 10-member CAE forecasts.  Blending did not impact 

continuous EnKF assimilation cycles. 

GEFS 0000 UTC GEFS ICs were downscaled onto the computational domain to 
initialize 36-h, 10-member CAE forecasts. 

Table 4.3.  Summary of experiments.  Also see Fig. 4.2. 
 

Members 1–10 from 0000 UTC posterior ensembles initialized 36-h forecasts 

over the nested domain (Fig. 4.1) between 25 April and 20 May 2017 (inclusive; 26 

forecasts); the 10-member ensemble forecasts on the 3-km grid were the CAE 

forecasts of interest.  Because only 15-km EnKF analyses were produced, the 3-km 

nest was initialized by downscaling 15-km posterior ensembles onto the 3-km grid.  

Although 80-member EnKF analyses were available, computing constraints limited 

CAE forecasts to just 10 members, which is sufficient to provide skillful and valuable 

probabilistic forecasts of precipitation and severe weather-related quantities (e.g., 
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Clark et al. 2011, 2018; Schwartz et al. 2014) and is similar in size to the HRRRE and 

HREF.  For these 36-h forecasts, LBCs provided by perturbation members 1–10 from 

NCEP’s operational Global Ensemble Forecast System (GEFS; Zhou et al. 2017) with 

0.5° horizontal grid spacing were applied to the 15-km domain, which in turn 

provided LBCs for the 3-km nest.   

 

4.3.2.  PRIMARY PARTIAL CYCLING ENKF 

The primary partial cycling EnKF (“PC12z ”; Table 4.3; Fig. 4.2) was 

initialized daily at 1200 UTC between 24 April and 19 May 2017 (inclusive).  First, 

deterministic 1200 UTC 0.25° GFS analyses were interpolated onto the 15-km 

computational domain (Fig. 4.1).  Then, flow-dependent perturbations of horizontal 

winds, temperature, water vapor mixing ratio, and surface pressure were derived from 

global, 6-h, 80-member ensemble forecasts valid at 1200 UTC; these 6-h global 

ensemble forecasts had T574 resolution (~34 km) and were initialized from 

operational EnKF analyses produced within NCEP’s Global Data Assimilation 

System (GDAS; e.g., Whitaker and Hamill 2002; Whitaker et al. 2008; Wang et al. 

2013).  Finally, the GDAS-EnKF perturbations13 were interpolated onto the 15-km 

grid and added to downscaled GFS analyses to construct 80-member ensembles that 

initialized the limited-area partial cycling EnKF.  As the mean of GDAS-EnKF 

perturbations was zero, ensemble mean states at 1200 UTC in the partial cycling 

EnKF were identical to GFS analyses.  Therefore, the partial cycling EnKF was 

influenced by radiance measurements assimilated within the GDAS, despite not 

 
13 Perturbations were defined with respect to the ensemble mean. 
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assimilating these measurements directly.  Moreover, in GDAS analyses, 

observations located outside the regional domain can influence locations within the 

regional domain, meaning 1200 UTC partial cycling EnKF states reflected 

observations outside the regional domain.  Thus, from an observational perspective, 

the continuously cycling EnKF was somewhat disadvantaged with respect to the 

partial cycling EnKF, as the former was unable to implicitly benefit from additional 

observations through global analyses, aside from LBC influences. 

Constructing initial ensembles by adding perturbations derived from GDAS-

EnKF forecasts to GFS analyses is similar to HRRRE and GEFS initialization 

procedures (e.g., Zhou et al. 2017; Dowell et al. 2021).  Additionally, perturbations 

were derived from 6-h ensemble forecasts, rather than from analysis ensembles, in 

recognition that using short-term forecasts to initialize partial cycling DA systems is 

common (e.g., Rogers et al. 2009; Benjamin et al. 2016; Djalalova et al. 2016; Hu et 

al. 2017; Wu et al. 2017; Dowell et al. 2021) given operational constraints sometimes 

requiring a modeling system to start before global ensemble analyses are available 

(e.g., Zhou et al. 2017). 

The above procedure produced prior ensembles for 1200 UTC EnKF analyses, 

and 1200 UTC posterior ensembles initialized 1-h, 80-member ensemble forecasts 

that became priors for EnKF DA at 1300 UTC.  Thereafter, self-contained hourly 

assimilation cycles were performed until 0000 UTC (i.e., 12 h of self-contained 

cycles) using identical configurations and assimilating the same observations as the 

continuously cycling EnKF (Table 4.2), with 1-h, 15-km, 80-member ensemble 

forecasts between analyses.   
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As with the continuously cycling EnKF, 0000 UTC posterior ensembles 

initialized 36-h, 10-member CAE forecasts between 25 April and 20 May 2017 

(inclusive) that employed GEFS LBCs.  After these CAE forecasts were initialized, 

0000 UTC posterior ensembles were discarded and the partial cycling EnKF was 

initialized anew the next day (e.g., Fig. 4.2).  Performing 12 h of self-contained cycles 

before initializing forecasts of interest was similar to Hsiao et al. (2012), the RAP 

(Benjamin et al. 2016; Hu et al. 2017), and previous versions of the NAM DA system 

(Wu et al. 2017). 

 

4.3.3.  INTRICACIES OF PARTIAL CYCLING INITIALIZATION: ADDITIONAL 

EXPERIMENTS AND DISCUSSION 

Partial cycling EnKF initialization has several intricacies and subjectivities 

that warrant discussion and motivated additional experimentation.  Notably, the 

following issues are irrelevant for continuously cycling EnKFs, illustrating how 

partial cycling EnKFs have more sources of potential sensitivity than continuously 

cycling EnKFs. 

 

4.3.3.1.  Partial cycling duration 

CAE forecasts initialized from partial cycling EnKFs could be sensitive to 

self-contained cycling length, and previous partial cycling systems employed between 

6 and 24 h of self-contained cycles before initializing forecasts of interest (e.g., 

Johnson et al. 2015; Wu et al. 2017; Gasperoni et al. 2020).  However, as determining 

the optimal self-contained cycling length for CAE forecast initialization was not a 
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primary goal of this study, we did not experiment with a wide range of self-contained 

cycling lengths.   

Nonetheless, some of our results suggested performing only 12 h of self-

contained cycles before initializing CAE forecasts may have been insufficient.  

Therefore, we initialized another partial cycling EnKF at 0600 UTC daily between 24 

April and 19 May 2017 (inclusive) that produced 18 h of self-contained cycles until 

0000 UTC, when posterior ensembles initialized 36-h, 10-member CAE forecasts 

(“PC06z”; Table 4.3; Fig. 4.2).  Aside from their initialization times, PC06z and PC12z 

were identically configured and used the same GFS/GDAS-EnKF initialization 

method (e.g., section 4.3.2). 

 

4.3.3.2.  Initial ensemble spread 

Six-hour GDAS-EnKF forecast spread is not tuned for limited-area WRF 

model applications and is potentially insufficient at low levels (e.g., Zhou et al. 2017; 

Gehne et al. 2019).  Thus, following the HRRRE, 6-h GDAS-EnKF forecast 

perturbations were inflated while initializing all partial cycling EnKFs (Table 4.3), 

with inflation factors linearly increasing from 1.0 (no inflation) at model level 26 to 

2.0 at the lowest model level (Fig. 4.3).  Although HRRRE developers found these 

tunings improved HRRRE forecast spread–error statistics compared to applying no 

inflation, these specific inflation factors may not be optimal for our model and DA 

settings (section 4.2).  However, the ideal external ensemble spread for partial  
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Fig. 4.3.  Perturbation inflation factor as a function of model level (level 1 is nearest the ground).  
These inflation factors were applied to perturbations derived from 6-h GDAS-EnKF forecasts 
during partial cycling EnKF initialization.  The approximate pressure (hPa) at each model level 
is given on the right axis. 

 

cycling EnKFs that eventually initialize CAE forecasts cannot be determined a priori, 

and finding this optimum is a potentially expensive tuning exercise that is well 

outside our scope and reflects one of the many challenges of working with two 

modeling systems in partial cycling EnKFs. 

 

4.3.3.3.  Initial land surface states 

There are multiple options for initializing land surface states (e.g., soil 

temperature and moisture) in partial cycling DA systems.  For example, operational 

Approxim
ate pressure (hPa)

M
od

el
 le

ve
l

Perturbation inflation factor

Fig. B

Fig. 3.  Perturbation inflation factor as a function of model level 
(level 1 is nearest the ground).  These inflation factors were applied 
to perturbations derived from 6-h GDAS-EnKF forecasts during 
partial cycling EnKF initialization.  The approximate pressure (hPa) 
at each model level is given on the right axis.
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partial cycling DA systems continuously cycle land surface states and only ingest 

atmospheric fields from external models (e.g., Rogers et al. 2009; Hu et al. 2017; Wu 

et al. 2017).  Conversely, some research studies used external models to initialize 

their partial cycling systems’ land surface states (e.g., Hsiao et al. 2012; Johnson et al. 

2015, 2020; Duda et al. 2019).   

An additional complexity for ensemble-based partial cycling is initial land 

surface state spread.  As 6-h GDAS-EnKF forecast perturbations of land surface 

variables were extremely small (e.g., Gehne et al. 2019), all 80 ensemble members in 

PC12z were effectively initialized with identical GFS analysis land surface states at 

1200 UTC.  We believe this approach is satisfactory, as we surmised that top-level 

soil states would quickly adjust to diverse atmospheric forcings during self-contained 

DA cycles and expected initial atmospheric fields to impact EnKF analyses and 

subsequent forecasts more than initial land surface states.  However, to both ensure 

that this method did not needlessly harm PC12z and test our hypotheses, an additional 

experiment was performed.  This new experiment was identical to PC12z, except 

initial land surface states for the 80 members were taken from continuously cycling 

EnKF (i.e., CCEnKF) members’ land surface states at 1200 UTC each day, meaning 

diverse initial land surface states reflecting the continuously cycling EnKF’s land 

surface climate (“PC12z_soil”; Table 4.3).  As described in the appendix, although PC12z 

and PC12z_soil had different 0000 UTC soil moisture characteristics, aggregate 

precipitation forecast skill was insensitive to land surface state initialization in the 

partial cycling EnKFs. 
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4.3.3.4.  Initial microphysics states 

Like land surface states, microphysics initialization also requires 

consideration in partial cycling DA systems.  During our experimental period (April–

May 2017), NCEP’s GDAS employed the Zhao and Carr (1997) microphysics 

scheme, which only produces total cloud ice and cloud water and is incompatible with 

the Thompson et al. (2008) microphysics scheme (Table 4.1) that predicts five liquid 

and ice species.  Thus, using GFS and GDAS-EnKF fields to initialize microphysics 

variables in the partial cycling EnKFs was not possible, and rather than borrowing 

microphysics states from the continuously cycling EnKF (analogously to how 

PC12z_soil borrowed land surface states from CCEnKF), we simply set initial 

microphysics variables to zero in all ensemble members and expected microphysics 

fields to rapidly adjust to dynamic and thermodynamic states during the self-

contained cycling period. 

 

4.3.4.  BLENDED ICS 

An alternative to partial cycling for introducing external (i.e., global) fields 

into limited-area DA systems is a “blending” approach, where large scales from a 

global model are combined with small scales from a limited-area analysis, which can 

improve subsequent limited-area forecasts (e.g., Yang 2005; H. Wang et al. 2014; Y. 

Wang et al. 2014; Hsiao et al. 2015; Zhang et al. 2015; Keresturi et al. 2019; Feng et 

al. 2020; S21).  Our blending methodology was thoroughly detailed in section 2d of 

S21, so only a short description follows. 
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Specifically, new 10-member IC ensembles were created daily at 0000 UTC 

between 25 April and 20 May 2017 (inclusive) by blending small scales from 

members 1–10 of continuously cycling EnKF analysis ensembles with large scales 

from corresponding members 1–10 of 0.5° GEFS IC ensembles using a low-pass, 6th-

order implicit tangent filter (e.g., Raymond 1988; Raymond and Garder 1991), 

similar to several studies (e.g., Yang 2005; H. Wang et al. 2014; Hsiao et al. 2015; 

Feng et al. 2020; S21).  This filter requires a specified cutoff, which, within the 

context of this work, represents the spatial scale (wavelength) where blended ICs had 

equal contributions from GEFS and continuously cycling EnKF initial states.  S21 

noted that ICs produced by blending GEFS ICs and 3-km EnKF analyses with a 960-

km cutoff yielded slightly better CAE forecasts compared to using 640- and 1280-km 

cutoffs.  Thus, we used a 960-km cutoff (Fig. 4.4). 

The 0000 UTC blended states initialized 36-h, 10-member CAE forecasts like 

unblended EnKF analysis ensembles (“CCEnKF_blend”; Table 4.3).  Blending did not 

impact the continuously cycling EnKF itself, as blended ICs were solely used for 

purposes of CAE initialization and not incorporated into EnKF DA cycles.  However, 

Feng et al. (2021) found that incorporating blending into 3DVAR DA cycles 

improved deterministic forecasts over China, and future work may assess whether 

integrating blending within continuous EnKF DA cycles is beneficial for CAE 

forecast initialization over the CONUS. 
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Fig. 4.4.  Amplitude response (y axis) of a 6th-order implicit tangent filter as a function of 
wavelength (km) for a specified cutoff length of 960 km.  In the context of this study, the curve 
denotes the contribution of GEFS ICs to blended ICs at a given wavelength (e.g., for wavelengths 
where the amplitude response is 1.0, 100% of the blended ICs at those wavelengths were from 
the GEFS).  The dashed vertical and solid horizontal lines illustrate how the amplitude response 
is 0.5 at the specified cutoff length. 
 

4.3.5.  BENCHMARK ENSEMBLE 

Finally, as in S21, 36-h CAE forecasts were initialized by interpolating 0.5° 

ICs from members 1–10 of NCEP’s operational GEFS (Zhou et al. 2017) onto the 

nested computational domain (Fig. 4.1) daily at 0000 UTC between 25 April and 20 

May 2017 (inclusive).  These GEFS-initialized CAE forecasts (Table 4.3) used 

identical WRF model configurations and LBCs as the EnKF-initialized CAE forecasts 

cutoff = 960 km

Fig. 4.  Amplitude response (y axis) of a 6th-order implicit tangent filter as a 
function of wavelength (km) for a specified cutoff length of 960 km.  In the 
context of this study, the curve denotes the contribution of GEFS ICs to 
blended ICs at a given wavelength (e.g., for wavelengths where the amplitude 
response is 1.0, 100% of the blended ICs at those wavelengths were from the 
GEFS).  The dashed vertical and solid horizontal lines illustrate how the 
amplitude response is 0.5 at the specified cutoff length.

Fig. C
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and served as a benchmark to assess whether experimental limited-area EnKF 

analyses could initialize better CAE forecasts than operational ICs.  Unlike the other 

ICs that had nonzero hydrometeor fields at 0000 UTC, GEFS-initialized forecasts 

began without hydrometeors, so a long spin-up was expected. 

 

4.4.  Partial and continuously cycling EnKF characteristics 

While the continuously cycling EnKF (i.e., CCEnKF) required two days to spin-

up from random noise, it was unclear how quickly the partial cycling EnKFs would 

move away from their flow-dependent GFS/GDAS-EnKF initial states and adjust to 

the WRF model climate.  Because 0000 UTC analyses initialized CAE forecasts, we 

wanted to understand properties of 0000 UTC partial cycling EnKF states, in 

particular, whether they resembled 0000 UTC CCEnKF states or retained 

characteristics of their prescribed initial GFS/GDAS-EnKF states from 12 or 18 h 

earlier. 

Thus, the following analyses were performed to elucidate the composition of 

0000 UTC partial cycling EnKF states and their similarities with 0000 UTC CCEnKF 

states.  These analyses are also offered as evidence that partial cycling EnKF 

performance was acceptable given several subjective configuration choices (section 

4.3.3).  As partial cycling EnKF spin-up can largely be controlled through DA 

parameters like observation errors, the following statistics were purely diagnostic, and 

ultimately, we hoped to relate differences between 0000 UTC-initialized CAE 

forecasts to differences between their ICs.   
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4.4.1.  OBSERVATION-SPACE DIAGNOSTICS 

Prior ensemble mean additive biases (model minus observations) and root-

mean-square errors (RMSEs) were computed with respect to rawinsonde and aircraft 

observations, the latter of which have particularly important influences in hourly-

updated DA systems over the CONUS (James and Benjamin 2017; James et al. 

2020).  Observation-space ensemble spreads were also assessed but are not presented, 

as state-space spreads yielded identical conclusions (section 4.4.2).  Given the partial 

cycling initialization procedure (sections 4.3.2, 4.3.3), PC06z and PC12z prior ensemble 

mean statistics at 0600 and 1200 UTC, respectively, quantified GFS analysis fits to 

observations, whereas PC06z and PC12z prior ensemble mean statistics at later hours 

(during self-contained cycling) measured how the partial cycling EnKFs were 

adjusting toward the WRF model climate.  Statistical significance of aggregate 

statistics at the 95% confidence level was assessed with a bootstrap resampling 

approach using 10,000 resamples (with replacement) applied to pairwise differences 

between two experiments (e.g., Hamill 1999; Wolff et al. 2014). 

Compared to continuously cycling EnKF (i.e., CCEnKF) prior ensemble means, 

GFS analyses more closely fit zonal wind and relative humidity (RH) observations14 

and were drier at most levels (compare orange and purple lines in Figs. 4.5a,g and 

green and purple lines in Figs. 4.5b,h,j).  Additionally, GFS analyses had significantly 

smaller 925–400-hPa RMSEs compared to temperature observations than CCEnKF 

prior ensemble means at 1200 UTC (Fig. 4.5e), but not at 0600 UTC  

 
14 Evaluating continuously cycling EnKF posterior ensemble means lessens these differences.  
However, because GFS analyses indeed served as prior ensemble means for partial cycling EnKF 
initialization, comparing GFS analyses to continuously cycling EnKF prior ensemble means is the 
relevant comparison. 
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Fig. 4.5.  Ensemble mean additive bias (model minus observations; short-dashed lines) and 
RMSE (solid lines) compared to (a)–(c) aircraft zonal wind (m s-1), (d)–(f) aircraft temperature 
(K), (g)–(i) aircraft relative humidity (%), and (j),(k) rawinsonde relative humidity (%) 
observations aggregated over all prior ensembles valid at (a),(d),(g) 0600 UTC, (b),(e),(h),(j) 1200 
UTC, and (c),(f),(i),(k) 0000 UTC between 0600 UTC 24 April and 0000 UTC 20 May 2017 
(inclusive).  The priors were 1-h forecasts except for PC06z and PC12z at 0600 and 1200 UTC, 
respectively, where prior ensemble mean statistics quantified GFS analysis fits to observations.  
Sample size at each pressure level is shown at the right of each panel.  Vertical lines at x = 0 are 
references for biases.  Circles on the PC12z and PC06z curves denote instances where differences 
between CCEnKF and PC12z and differences between CCEnKF and PC06z were statistically 
significant at the 95% level; open circles indicate PC12z or PC06z had statistically significantly 
better scores than CCEnKF, while filled circles indicate CCEnKF had statistically significantly 
better scores.  Absence of a circle means differences were not statistically significant at the 95% 
level.  Note that x-axis values differ in each row. 
 

(Fig. 4.5d).  However, at both 0600 and 1200 UTC, GFS analyses had significant cold 

biases (Figs. 4.5d,e), possibly due to GFS physics errors (e.g., Zheng et al. 2017).  
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Fig. 5.  Ensemble mean additive bias (model minus observations; short-dashed lines) and RMSE (solid lines) compared to 
(a)–(c) aircraft zonal wind (m s-1), (d)–(f) aircraft temperature (K), (g)–(i) aircraft relative humidity (%), and (j),(k) 
rawinsonde relative humidity (%) observations aggregated over all prior ensembles valid at (a),(d),(g) 0600 UTC, 
(b),(e),(h),(j) 1200 UTC, and (c),(f),(i),(k) 0000 UTC between 0600 UTC 24 April and 0000 UTC 20 May 2017 (inclusive).  
The priors were 1-h forecasts except for PC06z and PC12z at 0600 and 1200 UTC, respectively, where prior ensemble mean 
statistics quantified GFS analysis fits to observations.  Sample size at each pressure level is shown at the right of each panel.  
Vertical lines at x = 0 are references for biases.  Circles on the PC12z and PC06z curves denote instances where differences 
between CCEnKF and PC12z and differences between CCEnKF and PC06z were statistically significant at the 95% level; open 
circles indicate PC12z or PC06z had statistically significantly better scores than CCEnKF, while filled circles indicate CCEnKF
had statistically significantly better scores.  Absence of a circle means differences were not statistically significant at the 
95% level.  Note that x-axis values differ in each row.
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GFS analyses also had cold biases compared to rawinsonde observations between 

925–300 hPa (not shown).  

As self-contained cycles progressed, prior ensemble mean biases and RMSEs 

in the partial cycling EnKFs generally became more similar to those of CCEnKF at 

most levels, suggesting the partial cycling EnKFs were behaving properly.  For 

example, differences of zonal wind RMSEs and temperature biases between CCEnKF 

and PC06z decreased going from 0600 to 1200 to 0000 UTC (Figs. 4.5a–f), indicating 

PC06z was moving away from GFS analyses.  However, small, but often statistically 

significant, differences between the partial and continuously cycling EnKFs remained 

at 0000 UTC regarding temperature and zonal wind RMSEs (~0.01 K and ~0.01–0.05 

m s-1 differences), which were lower in the partial cycling EnKFs.   

Compared to zonal wind and temperature, RH adjustments appeared smaller, 

especially according to biases, which indicated 0000 UTC partial cycling EnKF prior 

ensemble means were regularly statistically significantly drier than CCEnKF (Figs. 

4.5i,k).  This finding suggests that moisture fields had not fully moved away from 

GFS/GDAS-EnKF states assigned at partial cycling EnKF initialization even after 18 

h of self-contained cycles.  

 

4.4.2.  STATE-SPACE CHARACTERISTICS  

State-space characteristics were also assessed to explore partial cycling EnKF 

evolution.  Regarding ensemble spread, inflated 6-h GDAS-EnKF forecasts (i.e., 

PC06z and PC12z at 0600 and 1200 UTC, respectively) had lower domain-average 
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standard deviations15 than CCEnKF for zonal wind, temperature, and water vapor 

mixing ratio above 600 hPa and higher standard deviations below (compare purple 

and circular-marked dashed curves in Figs. 4.6a–c), reflecting initial variance 

inflation (Fig. 4.3).  While patterns were similar at 0000 UTC, differences between 

the partial and continuously cycling EnKFs were smaller than at 0600 and 1200 UTC, 

indicating the partial cycling EnKFs had moved away from their inflated 

GFS/GDAS-EnKF initial states. 

However, some noteworthy 0000 UTC differences remained.  For example, 

above 500 hPa, while PC06z had closer temperature and zonal wind spreads to CCEnKF 

than PC12z due to greater adjustment afforded by an extra 6 h of self-contained cycles 

(compare solid lines in Figs. 4.6a,b), even 18 h of self-contained cycles was not 

enough for PC06z spread to match the larger CCEnKF spread, suggesting spin-up was 

not complete.  In addition, the partial cycling EnKFs had more moisture spread than 

CCEnKF below 500 hPa (compare solid lines in Fig. 4.6c).  It is possible that moisture 

spread did not adjust as much as temperature and zonal wind spreads below 500 hPa 

in the partial cycling EnKFs due to the relative scarcity of moisture observations to 

directly constrain EnKF analyses (see sample sizes on Fig. 4.5), although specific DA 

settings may also have played a role. 

Despite initializing the partial cycling EnKFs without hydrometeors, 0000 

UTC domain-average standard deviations (Figs. 4.6d–f) and means (Figs. 4.6g–i) of 

rain, snow, and graupel mixing ratios in PC06z and PC12z were comparable to or  

 
15 The continuously cycling EnKF had a stable climate with only small diurnal spread variations, 
primarily in the planetary boundary layer.  Thus, to foster readability, CCEnKF domain-average spread 
is only shown at 0000 UTC, as its spread was approximately the same at 0600 and 1200 UTC. 
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Fig. 4.6.  Average standard deviation over land points within the portion of the 15-km domain 
colocated with the 3-km domain (Fig. 4.1) and all posterior ensembles between 0600 UTC 24 
April and 0000 UTC 20 May 2017 (inclusive) at 0000 UTC (solid lines), 1200 UTC (long-dashed 
lines) and 0600 UTC (short-dashed lines) for (a) zonal wind (m s-1), (b) temperature (K), (c) 
water vapor mixing ratio (qv; g kg-1), (d) rain mixing ratio (qrain; g kg-1), (e) snow mixing ratio 
(qsnow; g kg-1), and (f) graupel mixing ratio (qgraupel; g kg-1).  Open circles denote those curves 
representing GFS/GDAS-EnKF statistics (i.e., PC06z and PC12z at 0600 and 1200 UTC, 
respectively).  Annotations on (a) and (b) indicate how partial cycling EnKF statistics changed 
with time.  (g)–(i) As in (d)–(f) except for domain-average means.  In (d)–(i), open circles at x = 0 
reflect how the partial cycling EnKFs had no hydrometeors at initialization.  Note that x-axis 
values are different in each panel. 
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Fig. 6.  Average standard deviation over land points within the portion of the 15-km domain colocated with the 3-km domain (Fig. 1) and all 
posterior ensembles between 0600 UTC 24 April and 0000 UTC 20 May 2017 (inclusive) at 0000 UTC (solid lines), 1200 UTC (long-dashed 
lines) and 0600 UTC (short-dashed lines) for (a) zonal wind (m s-1), (b) temperature (K), (c) water vapor mixing ratio (qv; g kg-1), (d) rain 
mixing ratio (qrain; g kg-1), (e) snow mixing ratio (qsnow; g kg-1), and (f) graupel mixing ratio (qgraupel; g kg-1).  Open circles denote those curves 
representing GFS/GDAS-EnKF statistics (i.e., PC06z and PC12z at 0600 and 1200 UTC, respectively).  Annotations on (a) and (b) indicate how 
partial cycling EnKF statistics changed with time.  (g)–(i) As in (d)–(f) except for domain-average means.  In (d)–(i), open circles at x = 0 
reflect how the partial cycling EnKFs had no hydrometeors at initialization.  Note that x-axis values are different in each panel.
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greater than those in the continuously cycling EnKF.  These findings confirm that 

microphysics variables quickly respond to atmospheric states given our 

configurations and suggest that initializing partial cycling EnKFs without 

hydrometeors may be acceptable. 

 

4.4.3.  SPECTRAL ANALYSIS 

To examine how EnKF analyses represented different spatial scales, power 

spectra were computed using the discrete cosine transform (DCT; Denis et al. 2002).  

Power spectra of EnKF analysis perturbations reflected conclusions from Fig. 4.6 

(there was typically more 0000 UTC perturbation power below 500 hPa and less 

above in the partial cycling EnKFs compared to CCEnKF) and are not further 

discussed.  Instead, we focus on understanding how 0000 UTC partial and 

continuously cycling EnKF mean analyses compared with global analyses across a 

range of scales, as mean IC states exert a strong influence on CAE forecast skill (e.g., 

Schwartz et al. 2020). 

Specifically, power spectra of differences between EnKF mean and GFS 

analyses were computed, which indicated 0000 UTC partial cycling EnKF mean 

analyses more closely resembled GFS analyses than continuously cycling EnKF mean 

analyses for wavelengths > 200 km (Fig. 4.7).  Moreover, the gap between difference 

spectra of the partial and continuously cycling EnKFs typically widened as 

wavelength increased, especially for temperature and moisture (Figs. 4.7c–f), 

suggesting the partial and continuously cycling EnKFs differed more at larger scales 

than smaller ones.  For most scales > 1000 km, differences between the two partial  
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Fig. 4.7.  Spectra for differences between GFS analyses and ensemble mean initial states for 
various experiments (see legend) as a function of wavelength (km) for (a) 850-hPa zonal wind 
(m2s-2), (b) 500-hPa zonal wind (m2s-2), (c) 850-hPa temperature (K2), (d) 500-hPa temperature 
(K2), (e) 850-hPa water vapor mixing ratio (kg2 kg-2), and (f) 500-hPa water vapor mixing ratio 
(kg2 kg-2), averaged over all 0000 UTC analyses between 25 April and 20 May 2017 (inclusive).  
The spectra were computed over the entire 15-km domain, excluding the 10 grid points nearest 
each lateral boundary, using the discrete cosine transform, and spectral variance binning 
employed the method of Ricard et al. (2013).  Note that y-axis values are different in each panel. 
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Fig. 7.  Spectra for differences between GFS analyses and ensemble mean initial states for various experiments 
(see legend) as a function of wavelength (km) for (a) 850-hPa zonal wind (m2s-2), (b) 500-hPa zonal wind (m2s-2), 
(c) 850-hPa temperature (K2), (d) 500-hPa temperature (K2), (e) 850-hPa water vapor mixing ratio (kg2 kg-2), and 
(f) 500-hPa water vapor mixing ratio (kg2 kg-2), averaged over all 0000 UTC analyses between 25 April and 20 
May 2017 (inclusive).  The spectra were computed over the entire 15-km domain, excluding the 10 grid points 
nearest each lateral boundary, using the discrete cosine transform, and spectral variance binning employed the 
method of Ricard et al. (2013).  Note that y-axis values are different in each panel.
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cycling EnKFs were smaller than their collective differences with respect to CCEnKF.  

Differences between GFS analyses and GEFS mean initial states reflected the link 

between the GFS and GEFS (Zhou et al. 2017) and were at least an order-of-

magnitude smaller than limited-area EnKF difference spectra for scales > 200 km, 

and difference spectra of mean blended states affirmed the blending procedure. 

To further explore spectral differences, 0000 UTC GFS and EnKF mean 

analyses were filtered within various wavelength bands using the DCT and its inverse 

(e.g., Denis et al. 2002).  These band-pass filtered fields were then directly compared 

to calculate root-mean-square differences (RMSDs) between GFS and EnKF mean 

analyses as a function of spatial scale using  

RMSD =)
1
N%

(GFSk – EnKF$$$$$$$k)2

N

k=1

 ,      (4.1) 

where for the kth of N points, GFSk is the GFS analysis and EnKF$$$$$$$k the EnKF mean 

analysis for a particular experiment (e.g., Table 4.3).  Additionally, normalized 

reductions of RMSDs between two experiments (D) were computed as     

D =
RMSDi	– RMSDj

RMSDj
 × 100% ,      (4.2) 

where RMSDi and RMSDj are RMSDs of the ith and jth experiments, respectively 

(Table 4.3).  D is interpreted as, “relative to experiment j, experiment i had a D% 

smaller or larger RMSD”, where D < 0 indicates experiment i had the smaller RMSD 

(i.e., RMSDi < RMSDj) and was more similar to GFS analyses than experiment j. 
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Corroborating Fig. 4.7 and generally consistent with Figs. 4.5c,f,i,k, 0000 

UTC partial cycling EnKF mean analyses usually had statistically significantly 

smaller aggregate RMSDs than continuously cycling EnKF mean analyses for full 

fields (no filtering; Figs. 4.8a–c) and in the 200–500- and 1000–1500-km wavelength 

bands (Figs. 4.8d–i).  RMSDs were smaller in the 1000–1500-km band than the 200–

500-km band, indicating EnKF mean and GFS analyses were more alike on larger,  

 
 
Fig. 4.8.  Aggregate RMSDs between GFS and EnKF mean analyses [Eq. (4.1)] for (a),(d),(g) 
zonal wind (m s-1), (b),(e),(h) temperature (K), and (c),(f),(i) water vapor mixing ratio (g kg-1) 
over all 0000 UTC analyses between 25 April and 20 May 2017 (inclusive) for (a)–(c) full fields, 
(d)–(f) band-pass filtered fields for 200–500-km wavelengths, and (g)–(i) band-pass filtered fields 
for 1000–1500-km wavelengths.  These statistics were computed over land points within the 
portion of the 15-km domain colocated with the 3-km domain.  Statistically significant 
differences between CCEnKF and PC12z and between CCEnKF and PC06z at the 95% level are 
denoted as in Fig. 4.5.  Note that x-axis values are different in each panel.  
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Fig. 8.  Aggregate RMSDs between GFS and EnKF mean analyses [Eq. (1)] for (a),(d),(g) zonal wind (m s-1), (b),(e),(h) 
temperature (K), and (c),(f),(i) water vapor mixing ratio (g kg-1) over all 0000 UTC analyses between 25 April and 20 May 2017 
(inclusive) for (a)–(c) full fields, (d)–(f) band-pass filtered fields for 200–500-km wavelengths, and (g)–(i) band-pass filtered 
fields for 1000–1500-km wavelengths.  These statistics were computed over land points within the portion of the 15-km domain 
colocated with the 3-km domain.  Statistically significant differences between CCEnKF and PC12z and between CCEnKF and PC06z
at the 95% level are denoted as in Fig. 5.  Note that x-axis values are different in each panel. 
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more predictable scales.  However, when letting RMSDi and RMSDj represent 

aggregate 0000 UTC RMSDs of PC06z and CCEnKF, respectively, D [Eq. (4.2)] 

typically became more negative as spatial scale increased (Figs. 4.9a–c), especially 

for temperature and moisture, for which PC06z had ~10–20% smaller RMSDs than 

 
 
Fig. 4.9.  Normalized RMSD reductions [%; Eq. (4.2)] between CCEnKF and PC06z for (a) zonal 
wind, (b) temperature, and (c) water vapor mixing ratio for various wavelength bands (km) and 
pressure levels (hPa) aggregated over all 0000 UTC analyses between 25 April and 20 May 2017 
(inclusive).  (d)–(f) As in (a)–(c) except for normalized RMSD reductions between CCEnKF and 
PC12z.  Negative values indicate RMSDs with respect to GFS analyses [Eq. (4.1)] were smaller in 
PC06z and PC12z compared to CCEnKF.  Colorbars and their ranges are different in each panel.  
These statistics were computed over land points within the portion of the 15-km domain 
colocated with the 3-km domain. 
 

(a) Zonal wind [PC06z vs. CCEnKF] (b) Temperature [PC06z vs. CCEnKF] (c) Water vapor mixing ratio [PC06z vs. CCEnKF]
% % %

Fig. 9.  Normalized RMSD reductions [%; Eq. (2)] between CCEnKF and PC06z for (a) zonal wind, (b) temperature, and (c) water vapor mixing ratio for various wavelength bands (km) and pressure 
levels (hPa) aggregated over all 0000 UTC analyses between 25 April and 20 May 2017 (inclusive).  (d)–(f) As in (a)–(c) except for normalized RMSD reductions between CCEnKF and PC12z.  
Negative values indicate RMSDs with respect to GFS analyses [Eq. (1)] were smaller in PC06z and PC12z compared to CCEnKF.  Colorbars and their ranges are different in each panel.  These statistics 
were computed over land points within the portion of the 15-km domain colocated with the 3-km domain.

(d) Zonal wind [PC12z vs. CCEnKF] (e) Temperature [PC12z vs. CCEnKF] (f) Water vapor mixing ratio [PC12z vs. CCEnKF]
% % %
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CCEnKF for many wavelengths ≥ 1000 km but RMSD reductions of typically only 

~5% or less for scales < 1000 km (Figs. 4.9b,c).  Therefore, relative differences 

between PC06z and CCEnKF generally grew as wavelength increased. 

Collectively, Figs. 4.7–4.9 indicated PC06z and CCEnKF mean analyses differed 

most at larger scales, where PC06z mean analyses were closer to GFS analyses than 

CCEnKF mean analyses.  Thus, even after 18 h of self-contained cycles, PC06z had 

“memory” of its most recent injection of GFS/GDAS-EnKF fields, especially at large 

scales; PC12z unsurprisingly had an even stronger memory of and was more similar to 

GFS/GDAS-EnKF fields at 0000 UTC than PC06z (e.g., Figs. 4.7, 4.8; also compare 

Figs. 4.9a–c and Figs. 4.9d–f).  The next section shows how the large-scale 

differences between partial and continuously cycling EnKF ICs impacted subsequent 

CAE precipitation forecasts. 

 

4.5.  Precipitation forecast verification 

4.5.1.  METHODS 

Our precipitation verification methods were the same as in S21, who in turn 

followed section 5a of Schwartz (2019), so descriptions here are brief.  Specifically, 

hourly-accumulated precipitation forecasts were objectively compared to NCEP’s 

Stage IV (ST4) analyses (Lin and Mitchell 2005) over the CONUS east of 105°W 

(Fig. 4.1), where ST4 analyses were most robust (e.g., Nelson et al. 2016).  Some 

metrics were computed from native 3-km output, while a budget algorithm (e.g., 

Accadia et al. 2003) was used to interpolate precipitation forecasts to the ~4.763-km 

ST4 grid to compute metrics requiring a common grid for forecasts and observations.   
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As in S21, event occurrence was determined using percentile thresholds (e.g., 

the 95th percentile, which selects the top 5% of events).  This approach defines the 

same number of forecast and observed events, thus, removing bias and permitting a 

thorough assessment of spatial performance given a model’s climate (e.g., Roberts 

and Lean 2008; Mittermaier and Roberts 2010; Dey et al. 2014; Woodhams et al. 

2018; Schwartz 2019).  We used percentiles between 90%–99.9% to verify both 

broad precipitation features and localized, intense events. 

Additionally, because convection-allowing models are inherently inaccurate at 

the grid-scale, a “neighborhood approach” (e.g., Theis et al. 2005; Ebert 2008, 2009) 

was applied to derive “neighborhood ensemble probabilities” (NEPs; Schwartz et al. 

2010; Schwartz and Sobash 2017), which are smoothed ensemble probabilities within 

a designated neighborhood length scale (r) and more appropriate for verifying CAEs 

than point-based probabilities.  Values of r between 5 and 150 km, which represented 

radii of circular neighborhoods, were used to construct NEPs that were ultimately 

verified.  Pairwise difference bootstrapping was again used to assess statistical 

significance, and when bootstrap confidence intervals were obtained for statistics 

aggregated over multiple forecast hours, a circular block bootstrapping method (e.g., 

Politis and Romano 1992; Wilks 1997; Gilleland et al. 2018) was used with a 4-h 

block length to preserve autocorrelations. 
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4.5.2.  RESULTS 

4.5.2.1.  Fractions skill scores and ROC areas 

To assess spatial skill, fractions skill scores [FSSs; Roberts and Lean (2008)] 

and areas under the relative operating characteristic (ROC) curve (Mason 1982; 

Mason and Graham 2002) were calculated.  FSSs and ROC areas range between 0 

and 1, with higher values indicating more skill.  We present FSSs and ROC areas for 

NEPs computed with r = 100 km; overall conclusions were identical when using 

different neighborhood length scales.  Relative differences of FSSs and ROC areas 

between CAE forecasts with partial and continuously cycling EnKF ICs did not 

systematically change throughout the experimental period, so we focus on aggregate 

statistics over all 26 3-km forecasts. 

Through ~18 h, GEFS-initialized CAE forecasts were typically worst (Figs. 

4.10, 4.11) and the ensembles with blended and unblended continuously cycling 

EnKF ICs (i.e., CCEnKF and CCEnKF_blend) had similar FSSs and ROC areas that were 

usually comparable to or somewhat higher than those from PC06z, which in turn 

generally had better scores than PC12z.  Although these findings suggest ICs that are 

more spun-up (e.g., Figs. 4.5, 4.6) are beneficial for ~1–18-h forecasts, differences 

between PC06z, PC12z, CCEnKF, and CCEnKF_blend were only occasionally statistically 

significant.  This broad similarity was consistent with the relatively small differences 

between partial and continuously cycling EnKF ICs at small scales (Figs. 4.7, 4.9), 

which are important for short-term forecast evolution.  In sum, FSSs and ROC areas 

indicated no benefits of partial cycling over continuous cycling for short-term (~1–

18-h) CAE forecasts. 
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Fig. 4.10.  Fractions skill scores (FSSs) over the CONUS east of 105°W (Fig. 4.1) with a 100-km 
neighborhood length scale for the (a) 90th, (b) 95th, (c) 97.5th, (d) 99th, (e) 99.5th, and (f) 99.9th 
percentile thresholds aggregated over all 26 3-km forecasts of 1-h accumulated precipitation as a 
function of forecast hour.  Values on the x axis represent ending forecast hours of 1-h 
accumulation periods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation between 
23–24 h).  The y axis scales are different in each panel.  Symbols along the top axis denote 
instances where differences between two ensembles were statistically significant at the 95% level, 
with the six rows of colored symbols in each panel corresponding to the six comparisons in the 
legend (from top to bottom) to denote which ensemble had statistically significantly higher FSSs.  
For example, the top row of symbols in each panel compares CCEnKF and PC12z; purple symbols 
indicate CCEnKF had statistically significantly higher FSSs than PC12z, while green symbols 
indicate PC12z had statistically significantly higher FSSs than CCEnKF (see Table 4.3 for 
descriptions of the experiments).  As another example, the bottom row of symbols in each panel 
compares PC12z and CCEnKF_blend; green symbols indicate PC12z had statistically significantly 
higher FSSs than CCEnKF_blend, while blue symbols indicate CCEnKF_blend had statistically 
significantly higher FSSs than PC12z.  Absence of a symbol means the differences were not 
statistically significant at the 95% level. 
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Fig. 10.  Fractions skill scores (FSSs) over the CONUS east of 105°W (Fig. 1) with a 100-km neighborhood length scale for the (a) 90th, (b) 

95th, (c) 97.5th, (d) 99th, (e) 99.5th, and (f) 99.9th percentile thresholds aggregated over all 26 3-km forecasts of 1-h accumulated precipitation 

as a function of forecast hour.  Values on the x axis represent ending forecast hours of 1-h accumulation periods (e.g., an x-axis value of 24 is for 
1-h accumulated precipitation between 23–24 h).  The y axis scales are different in each panel.  Symbols along the top axis denote instances 

where differences between two ensembles were statistically significant at the 95% level, with the six rows of colored symbols in each panel 

corresponding to the six comparisons in the legend (from top to bottom) to denote which ensemble had statistically significantly higher FSSs.  

For example, the top row of symbols in each panel compares CCEnKF and PC12z; purple symbols indicate CCEnKF had statistically significantly 

higher FSSs than PC12z, while green symbols indicate PC12z had statistically significantly higher FSSs than CCEnKF (see Table 3 for descriptions 
of the experiments).  As another example, the bottom row of symbols in each panel compares PC12z and CCEnKF_blend; green symbols indicate 

PC12z had statistically significantly higher FSSs than CCEnKF_blend, while blue symbols indicate CCEnKF_blend had statistically significantly higher 

FSSs than PC12z.  Absence of a symbol means the differences were not statistically significant at the 95% level.
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Fig. 4.11.  As in Fig. 4.10, except for areas under the relative operating characteristic (ROC) 
curve computed using decision thresholds of 1%, 2%, 3%, 4%, 5%, 10%, 15%, …, 95%, and 
100% and a trapezoidal method.  Symbols along the top axis indicate forecast hours when 
differences between two ensembles were statistically significant at the 95% level as in Fig. 4.10 
and denote the ensemble with statistically significantly higher ROC areas.  The y axis scales are 
different in each panel. 

 

Conversely, after ~18 h, when large-scale ICs exert greater forecast impacts, 

unblended continuously cycling EnKF analyses initialized CAE forecasts that were 

comparable to or worse than those with GEFS or partial cycling EnKF ICs (Figs. 

4.10, 4.11).  The biggest degradations of CCEnKF relative to ensembles with partial 

cycling ICs occurred after ~27 h, where some differences were statistically significant 

(Figs. 4.10a,b, 4.11a–d).  However, blended ICs yielded next-day (~18–36-h) CAE 
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Fig. 11.  As in Fig. 10, except for areas under the relative operating characteristic (ROC) curve computed using decision thresholds 
of 1%, 2%, 3%, 4%, 5%, 10%, 15%, …, 95%, and 100% and a trapezoidal method.  Symbols along the top axis indicate forecast 
hours when differences between two ensembles were statistically significant at the 95% level as in Fig. 10 and denote the ensemble 
with statistically significantly higher ROC areas.  The y axis scales are different in each panel.
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forecasts that were typically better than those with unblended EnKF ICs and 

statistically indistinguishable from forecasts with partial cycling EnKF ICs. 

These findings indicate limited-area EnKF ICs produced better ~18–36-h 

forecasts when they had memory of GFS large scales through partial cycling or were 

explicitly linked to GFS large scales through blending.  However, closeness to large-

scale GFS analyses alone did not determine next-day forecast quality: for example, 

blended ICs were much closer to large-scale GFS analyses than partial cycling EnKF 

analyses (Fig. 4.7), yet ~18–36-h forecasts with blended ICs were not systematically 

better than those with partial cycling EnKF ICs.  Thus, although ICs too far from GFS 

analysis large scales clearly seem to degrade next-day forecasts, controls on ~18–36-h 

forecast quality appear complex. 

 

4.5.2.2.  Reliability statistics 

Reliability statistics (e.g., Wilks 2011) computed with r = 100 km aggregated 

over all 26 3-km forecasts revealed 1–12-h probabilistic precipitation forecasts with 

blended and unblended continuously cycling EnKF ICs typically had comparable 

reliabilities to those initialized from partial cycling EnKF analyses (Fig. 4.12).  All 

EnKF-initialized forecasts were more reliable than GEFS-initialized forecasts over 

the first 12 h. 

For 24–36-h forecasts, while there were a few probability bins where 

unblended continuously cycling EnKF ICs yielded similar or better reliability 

compared to partial cycling EnKF ICs (Fig. 4.13), partial cycling EnKF ICs led to 

statistically significantly more reliable forecasts than unblended continuously cycling  
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Fig. 4.12.  Reliability diagrams computed over the CONUS east of 105°W (Fig. 4.1) with a 100-
km neighborhood length scale aggregated over all 26 1–12-h 3-km forecasts of 1-h accumulated 
precipitation for the (a) 90th, (b) 95th, (c) 97.5th, (d) 99th, (e) 99.5th, and (f) 99.9th percentile 
thresholds.  Diagonal lines are lines of perfect reliability.  Values were not plotted for a 
particular bin if fewer than 500 grid points had forecast probabilities in that bin over the 
CONUS east of 105°W and all 26 forecasts.  Symbols along the top axis indicate probability bins 
where differences between two ensembles were statistically significant at the 95% level as in Fig. 
4.10 and denote the ensemble with statistically significantly better reliability as determined by 
block bootstrapping.  Note that the reliability diagrams themselves stop at 100%; area above 
100% was added to make room for statistical significance markers.   
 

EnKF ICs in many bins, especially for probabilities < 55% at the 90.0th–97.5th 

percentiles (Figs. 4.13a–c).  Blended ICs typically provided comparable 24–36-h 

forecast reliability as ICs from the two partial cycling EnKFs, which usually had 

similar reliabilities at both forecast ranges (Figs. 4.12, 4.13).  Differences regarding  
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Fig. 12.  Reliability diagrams computed over the CONUS east of 105°W (Fig. 1) with a 100-km neighborhood length scale aggregated 
over all 26 1–12-h 3-km forecasts of 1-h accumulated precipitation for the (a) 90th, (b) 95th, (c) 97.5th, (d) 99th, (e) 99.5th, and (f) 
99.9th percentile thresholds.  Diagonal lines are lines of perfect reliability.  Values were not plotted for a particular bin if fewer than 500 
grid points had forecast probabilities in that bin over the CONUS east of 105°W and all 26 forecasts.  Symbols along the top axis indicate 
probability bins where differences between two ensembles were statistically significant at the 95% level as in Fig. 10 and denote the 
ensemble with statistically significantly better reliability as determined by block bootstrapping.  Note that the reliability diagrams 
themselves stop at 100%; area above 100% was added to make room for statistical significance markers.  
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Fig. 4.13.  As in Fig. 4.12, except statistics were aggregated over all 26 24–36-h 3-km forecasts of 
1-h accumulated precipitation. 
 

probabilistic forecast distributions (i.e., sharpness) between the various CAEs were 

not noteworthy (not shown). 

Like FSSs and ROC areas, reliability statistics indicated both that short-term 

CAE forecasts did not benefit from partial cycling and that ICs with large-scale 

spectral characteristics with memory of or forced to those of GFS analyses improved 

24–36-h forecasts.  Reliability statistics computed over just the 24–30- and 30–36-h 

forecast periods yielded identical conclusions as the 24–36-h aggregate statistics (not 

shown). 
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Fig. 13.  As in Fig. 12, except statistics were aggregated over all 26 24–36-h 3-km forecasts of 1-h accumulated precipitation.
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4.5.2.3.  Precipitation climatologies 

Aggregate areal coverages of 1-h accumulated precipitation meeting or 

exceeding various thresholds (e.g., 5.0 mm h-1) were calculated to examine 

precipitation distributions.  At all thresholds, ensembles with partial cycling EnKF 

ICs had lower mean areal coverages than the ensemble with unblended continuously 

cycling EnKF ICs over the first 12 h (Fig. 4.14).  These lower 1–12-h forecast 

coverages in PC06z and PC12z were further from observed coverages than CCEnKF for 

thresholds ≤ 2.5 mm h-1 (Figs. 4.14a,b) but closer to observations than CCEnKF at 

 
 
Fig. 4.14.  Fractional areal coverage (%) of 1-h accumulated precipitation meeting or exceeding 
(a) 1.0, (b) 2.5, (c) 5.0, (d) 10.0, (e) 25.0, and (f) 50.0 mm h-1 over the CONUS east of 105°W (Fig. 
4.1), computed on native grids and aggregated over all 26 3-km forecasts as a function of forecast 
hour.  These statistics were computed for all 10 ensemble members, but for readability, only 
ensemble mean areal coverages are shown.  At the earliest forecast hours, mean GEFS areal 
coverages were non-zero but below the x axis for some thresholds.  Values on the x axis represent 
ending forecast hours of 1-h accumulation periods (e.g., an x-axis value of 24 is for 1-h 
accumulated precipitation between 23–24 h).  The y axis scales are different in each panel. 
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Mean values only

Fig. 14.  Fractional areal coverage (%) of 1-h accumulated precipitation meeting or exceeding (a) 1.0, (b) 2.5, (c) 5.0, (d) 10.0, (e) 25.0, 
and (f) 50.0 mm h-1 over the CONUS east of 105°W (Fig. 1), computed on native grids and aggregated over all 26 3-km forecasts as a 
function of forecast hour.  These statistics were computed for all 10 ensemble members, but for readability, only ensemble mean areal 
coverages are shown.  At the earliest forecast hours, mean GEFS areal coverages were non-zero but below the x axis for some thresholds.  
Values on the x axis represent ending forecast hours of 1-h accumulation periods (e.g., an x-axis value of 24 is for 1-h accumulated 
precipitation between 23–24 h).  The y axis scales are different in each panel.
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higher thresholds (Figs. 4.14c–f).  Relative to CCEnKF, aside from the first 6 h at the 

1.0 mm h-1 threshold, blended ICs yielded lower coverages.  GEFS-initialized 

forecasts usually had areal coverages furthest from observations over the first 6 h due 

to spin-up from their coarse (0.5°) ICs. 

Commensurate with areal coverages, partial cycling EnKF ICs yielded less 

domain-total precipitation than blended and unblended continuously cycling EnKF 

ICs before 12 h, and these lower amounts agreed best with observations (Fig. 4.15).   

 
 
Fig. 4.15.  Average 1-h accumulated precipitation (mm) per grid point over all 26 3-km forecasts 
and the CONUS east of 105°W (Fig. 4.1), computed on native grids as a function of forecast 
hour.  Shadings represent envelopes of the 10 members comprising the various ensembles 
indicated in the legend, and darker shadings represent intersections of two or more ensemble 
envelopes.  Values on the x axis represent ending forecast hours of 1-h accumulation periods 
(e.g., an x-axis value of 24 is for 1-h accumulated precipitation between 23–24 h).  At the earliest 
forecast hours, GEFS domain-total precipitation was non-zero but below the x axis. 

Fig. T

PC12z
CCEnKF

PC06z
CCEnKF_blend
GEFS
ST4

PC12zCCEnKF PC06z
CCEnKF_blend GEFS ST4

Fig. 15.  Average 1-h accumulated precipitation (mm) per grid point over all 26 3-km 

forecasts and the CONUS east of 105°W (Fig. 1), computed on native grids as a 

function of forecast hour.  Shadings represent envelopes of the 10 members comprising 

the various ensembles indicated in the legend, and darker shadings represent 

intersections of two or more ensemble envelopes.  Values on the x axis represent ending 

forecast hours of 1-h accumulation periods (e.g., an x-axis value of 24 is for 1-h 

accumulated precipitation between 23–24 h).  At the earliest forecast hours, GEFS 

domain-total precipitation was non-zero but below the x axis.
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Lower total precipitation and areal coverages in PC06z and PC12z relative to CCEnKF 

through 12 h was consistent with drier 0000 UTC PC06z and PC12z states compared to 

CCEnKF (Figs. 4.5i,k). 

Differences between the CAEs generally diminished after 12 h, where all 

ensembles accurately captured timing of the observed diurnal maximum, 

underpredicted peak coverages for thresholds ≤ 2.5 mm h-1 (Figs. 4.14a,b), and 

overpredicted both areal coverages ≥ 10.0 mm h-1 and domain-total precipitation 

(Figs. 4.14d–f, 4.15).  Overall, considering the entire forecast period, the partial and 

continuously cycling EnKFs had their strengths and weaknesses, and no ensemble 

had a clearly superior precipitation climatology. 

 

4.6.  Summary and conclusions 

Several EnKF DA experiments with 80 members and 15-km horizontal grid 

spacing were performed over a computational domain spanning the CONUS for a 4-

week period.  These EnKFs were configured identically except for cycling procedure: 

one EnKF employed continuous cycling, while the others used a partial cycling 

methodology where limited-area analyses were discarded after 12 or 18 h of self-

contained cycles and re-initialized from global model fields the next day.  Posterior 

0000 UTC ensembles from all EnKFs initialized 36-h, 3-km, 10-member CAE 

forecasts that were evaluated with a focus on precipitation.  Additionally, CAE 

forecasts were initialized from both GEFS ICs and “blended” states constructed by 

combining small scales from continuously cycling EnKF analyses with large scales 

from GEFS ICs using a low-pass filter. 
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Through ~18 h, all EnKF-initialized forecasts outperformed GEFS-initialized 

forecasts, consistent with S21 and indicating that limited-area EnKFs can initialize 

better short-term CAE forecasts than global ICs.  In addition, ~1–18-h forecasts with 

blended and unblended continuously cycling EnKF ICs were comparable to or better 

than those with partial cycling EnKF ICs.  These results suggest continuously cycling 

EnKFs hold promise for short-term CAE forecast applications, for which partial 

cycling does not obviously represent a superior initialization approach. 

Conversely, partial cycling EnKF analyses and GEFS ICs yielded ~18–36-h 

precipitation forecasts comparable to or better than those with unblended 

continuously cycling EnKF ICs, although improvements were only sometimes 

statistically significant.  However, blended ICs produced comparable quality ~18–36-

h forecasts as partial cycling EnKF ICs.  Therefore, blending appears to be a simple 

way of improving ~18–36-h CAE forecasts initialized from continuously cycling 

EnKFs, corroborating S21 and suggesting that blending may be a viable alternative to 

partial cycling initialization for next-day CAE forecast systems.  Moreover, there may 

be opportunities to improve blending methodologies to ameliorate issues regarding 

balance (e.g., S21) and physical inconsistencies that could potentially arise if 

corresponding limited-area and global fields greatly differ. 

Benefits of ~18–36-h forecasts engendered by partial cycling EnKF and 

blended ICs were associated with large-scale spectral characteristics of blended and 

partial cycling EnKF ICs more closely resembling those of GFS analyses than 

unblended continuously cycling EnKF ICs.  These findings suggest that limited-area 

ICs should strive to emulate large-scale characteristics of global models to initialize 
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the best possible next-day forecasts, which are more influenced by large-scale flows 

than shorter-term forecasts. 

Precisely why the limited-area continuously cycling EnKF had difficulty 

achieving large-scale characteristics of global analyses is unclear and should be 

examined in future studies, with the ultimate goal of improving large-scale 

continuously cycling EnKF analyses such that blending is no longer needed.  

However, lateral boundaries place an inherent limit on the longest resolvable waves, 

which may fundamentally constrain ability of limited-area continuously cycling DA 

systems to accurately depict and predict large-scale features.  Insights about this 

potential limitation may be provided by experimenting with limited-area continuously 

cycling DA systems over progressively larger domains to assess whether longwave 

characteristics eventually attain those of global analyses.  Furthermore, while the 

RRFS and other future CAEs over the CONUS will likely have finer resolution ICs 

than our 15-km analyses, solely increasing analysis resolution is unlikely to recover 

large-scale characteristics of global analyses, and we suspect our overall conclusions 

about partial versus continuous cycling would hold in both higher and lower 

resolution DA systems with similar domain sizes.  Nonetheless, further work is 

needed to confirm this hypothesis. 

Partial cycling EnKFs can likely be improved, perhaps by carefully specifying 

initial spread on a per-variable basis and tuning DA parameters.  Additionally, other 

partial cycling methodologies might be explored; as opposed to our method of 

periodically restarting entire ensembles from external (i.e., global) fields, 

perturbations derived from continuously cycling EnKFs could be periodically re-
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centered about externally-provided central initial states (e.g., Schwartz et al. 2020), 

thus propagating limited-area ensembles indefinitely through time while still 

introducing external information.  Also, our overarching findings suggest an ideal 

self-contained cycling length for CAE initialization may exist where partial cycling 

states are sufficiently spun-up yet retain sufficiently strong memories of large-scale 

external model characteristics, and further work could identify this optimum, which 

likely depends on domain size and external model traits.   

However, our findings instead provide justification for devoting resources 

toward developing and improving continuously cycling EnKFs over the CONUS for 

CAE initialization, rather than investing in further partial cycling DA developments.  

In fact, a combination of continuous cycling and blending may altogether obviate the 

need for partial cycling, as continuously cycling EnKF analyses both initialized short-

term CAE forecasts comparable to or better than those initialized from partial cycling 

EnKF analyses, and, when blended with GEFS ICs, yielded next-day CAE forecasts 

usually statistically indistinguishable from those with ICs produced through partial 

cycling.  Thus, partial cycling systems can be replaced by continuously cycling DA 

systems that incorporate blending without sacrificing forecast quality at either short-

term or next-day forecast ranges.  Accordingly, given that continuously cycling 

methodologies have numerous advantages compared to partial cycling approaches 

and can streamline and accelerate model improvement efforts, we suggest NCEP 

strongly consider adopting continuously cycling DA to initialize future operational 

limited-area models over the CONUS like the RRFS. 
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Chapter 5: Summary and conclusions 

 

5.1.  Summary and key results 

Chapters 2–4 described novel experiments with 80-member limited-area 

EnKFs over the entire CONUS and adjacent areas.  The EnKF DA experiments were 

performed over 4 weeks with a 1-h cycling period and differed in terms of their 

cycling strategies (e.g., continuous or partial cycling) and horizontal grid spacings 

(e.g., 15- or 3-km horizontal grid spacing).  EnKF analyses initialized 36-h, 3-km, 10-

member CAE forecasts that were evaluated with a focus on precipitation, providing 

insights about CAE forecast sensitivity to ICs.  Additionally, EnKF analyses were 

leveraged to isolate CAE forecast sensitivity to resolution of both IC perturbations 

and central initial states about which IC perturbations were centered.  A “blending” 

approach was also used to produce new sets of CAE ICs by combining small scales 

from EnKF analyses with large scales from 0.5° GEFS ICs using a low-pass filter. 

Key results and conclusions are as follows: 

• This work, for the first time, demonstrated that a convection-allowing 

EnKF can be continuously cycled over a large domain without deleterious 

consequences, as the 3-km continuously cycling EnKF maintained a stable 

climate and had small biases.  This finding should motivate further studies 

using convection-allowing DA systems in continuously cycling 

frameworks over large areas like the CONUS. 

• CAE forecasts initialized from continuously cycling 3-km EnKF analyses 

were more skillful and reliable than those initialized from downscaled 
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GEFS and continuously cycling 15-km EnKF ICs through 12–18 and 6–12 

h, respectively.  Conversely, after 18 h, GEFS-initialized forecasts were 

better than forecasts initialized from continuously cycling EnKFs.  

Blended 3-km ICs led to ~18–36-h forecasts possessing comparable 

quality as GEFS-initialized forecasts while preserving short-term forecast 

benefits of employing 3-km ICs produced through continuous cycling.  

Thus, blending high-resolution EnKF analyses with low-resolution global 

fields can potentially unify short-term and next-day CAE forecast systems 

under a common framework, suggesting operational potential of 

incorporating blending within limited-area analysis–forecast systems over 

the CONUS.  

• Continuously cycling EnKF analyses initialized ~1–18-h precipitation 

forecasts that were comparable to or somewhat better than those with 

partial cycling EnKF ICs.  Conversely, ~18–36-h forecasts with partial 

cycling EnKF ICs were comparable to or better than those with unblended 

continuously cycling EnKF ICs.  However, blended ICs yielded ~18–36-h 

forecasts that were statistically indistinguishable from those with partial 

cycling ICs.  Therefore, EnKFs employing a combination of continuous 

cycling and blending can potentially replace the partial cycling 

assimilation systems that currently initialize operational limited-area 

models over the CONUS without sacrificing forecast quality, again 

highlighting the potential operational use of blending for CONUS-centric 

modeling systems. 
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• It is more important for central initial states than for IC perturbations to 

possess convection-allowing horizontal grid spacing for short-term CAE 

forecasting applications.  These results suggest dual-resolution DA 

systems should be further explored for CAE initialization.  Moreover, 

these findings potentially enable substantial computational savings and 

suggest scientists working on initializing future operational CAEs 

primarily concentrate their energies on producing the best possible high-

resolution deterministic analyses that can be used as central initial states 

for CAEs. 

 

All these conclusions are directly relevant to ongoing efforts at NCEP 

working toward developing a next-generation CAE slated to become operational in 

2023.  Our findings also have implications for, and could possibly inspire, modelers 

at other meteorological centers using various NWP models, dynamic cores, and 

physics suites.  For instance, scientists at meteorological centers outside the United 

States might view our demonstration of a convection-allowing continuously cycling 

EnKF over the entire CONUS as an impetus to develop similar systems, even if their 

countries span large areas.  Such efforts can be successful!  Additionally, as holistic 

benefits of continuously cycling are model agnostic, modeling centers around the 

world should strive to implement and improve limited-area continuously cycling DA 

systems to accelerate NWP model development.  Even if previous efforts with 

continuous cycling were disappointing—as in the United States—our results suggest 

that NWP model capabilities and DA techniques have sufficiently progressed to 
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warrant another attempt.  Finally, our demonstration that limited-area EnKFs 

initialized better short-term CAE forecasts than GEFS ICs sets a high bar for future 

experimental DA systems, which should compare forecasts initialized from their 

experimental analyses to those initialized from operational analyses to provide 

context for their developments. 

 

5.2.  Future directions 

Despite our promising findings and their meaningful implications, there are 

many avenues for future work and improvements.  For instance, although we 

demonstrated the first convection-allowing continuously cycling EnKF over a domain 

as large as the CONUS, additional experimentation is needed over longer time 

periods, different seasons, and varied geographic regions to further understand large-

domain convection-allowing continuously cycling EnKF performance.  In particular, 

as our 3-km EnKF was highly constrained by observations, it is unclear whether 

convection-allowing EnKFs can be successfully continuously cycled over large data-

sparse domains like oceanic regions.  Moreover, convection-allowing EnKFs can 

likely be improved by carefully specifying and tuning inflation parameters and 

observation errors. 

Additionally, it would be interesting to further consider assimilation of radar 

reflectivity observations within large-domain continuously cycling DA systems.  

While our 3-km EnKF did not assess reflectivity DA within a continuously cycling 

framework, it would be useful to understand how assimilating radar reflectivity 

observations in a large-domain continuously cycling DA system impacts the model 
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climate.  Intuition suggests the small-scale nature of reflectivity observations may 

impart little overall impact to the mean state, but experimentation is needed to know 

for sure. 

Furthermore, blending can be incorporated into continuous DA cycles, 

contrasting our method where blending did not impact the continuously cycling 

EnKFs and was only used to initialize free forecasts.  Such methodology would 

potentially be attractive in operations and should be tested and compared with 

traditional partial cycling DA systems.  The filter cutoff scale for blending should 

also be tuned for potential operational systems. 

There are also opportunities to study the relative importance of central initial 

state resolution and IC perturbation resolution within idealized modeling frameworks 

to better understand reasons for our findings presented in chapter 3.  Additionally, it 

would be interesting to revisit this topic in real-data situations with non-Gaussian DA 

methodologies, like localized particle filters (e.g., Poterjoy 2016; Poterjoy et al. 

2019), to determine whether theoretically better ensemble-based covariance updates 

translate into greater importance of IC perturbation resolution relative to central 

initial state resolution.  Finally, the ability of mixed-resolution DA systems to 

produce high-quality central initial states suitable for CAE initialization requires 

substantial examination. 

Ultimately, the community will be working toward global convection-

allowing NWP modeling systems for operational weather forecasting purposes.  At 

least some of our results have implications for these future global systems.  For 

instance, our conclusion that it is more important for central initial states to possess 
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convection-allowing horizontal grid spacing than IC perturbations suggests the 

possibility of only needing to continuously cycle one instance of a global convection-

allowing NWP model in a DA system aimed at CAE initialization, possibly saving an 

immense amount of resources.  These resources could then potentially be reinvested 

into increasing the size of relatively coarse-resolution ensembles used to provide 

BECs.  Of course, this possibility will need to be confirmed by experiments focusing 

on BEC resolution requirements for global convective-scale DA systems. 

Furthermore, the role of blending is unclear in future global convection-

allowing modeling systems.  If the presence of lateral boundaries indeed inherently 

limits the ability of limited-area DA systems to accurately depict large scales, there is 

hope that global convection-allowing analyses—free of LBC influences—may 

appropriately analyze large scales.  On the other hand, if either fine resolution itself or 

limitations of high-resolution DA (e.g., necessity of small localization distances 

owing to computing constrains) is responsible for suboptimal large-scale limited-area 

analyses, then blending coarse- and fine-scale analyses may be necessary even within 

global modeling systems to produce optimal forecasts beyond ~18 h.  These types of 

experiments will need to be performed once computing allows, and there is much to 

learn about convection-allowing global NWP and DA in upcoming years and 

decades. 
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Appendix: Partial cycling EnKF sensitivity to land surface state 

initialization 

 

Even though PC06z and PC12z were initialized without soil state spread, they 

both had more domain-average top-layer soil temperature spread than CCEnKF at 0000 

UTC (Fig. A1a), indicating quick adjustments to diverse atmospheric fields.  

Additionally, domain-average ensemble mean top-layer soil temperatures in the 

partial and continuously cycling EnKFs were similar by 0000 UTC (Fig. A1c).  

Conversely, although partial and continuously cycling EnKF top-layer soil moistures 

became closer with time, 0000 UTC soil moisture spread was ~50–75% lower in the 

partial cycling EnKFs compared to the continuously cycling EnKF (Fig. A1b), and 

top-layer soil moisture remained wetter in the partial cycling EnKFs (Fig. A1d). 

For domain-average ensemble mean top-layer soil temperature and moisture, 

PC12z_soil paralleled CCEnKF (Figs. A1c,d), which is sensible, as their 1200 UTC soil 

states were identical.  But, PC12z_soil spread quickly deviated from CCEnKF spread and 

became larger by 0000 UTC (Figs. A1a,b), suggesting top-layer soil state spread is 

sensitive to low-level atmospheric spread and consistent with Figs. 4.6a–c, which 

revealed low-level 1200 UTC atmospheric spread was larger in PC12z (and PC12z_soil) 

compared to CCEnKF. 

To assess whether the soil moisture differences impacted precipitation 

forecasts, 0000 UTC analyses from PC12z_soil initialized 36-h, 10-member ensemble 

forecasts over the nested domain (Fig. 4.1), but these forecasts were only produced 
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between 25 April and 7 May 2017 (inclusive) to save computing resources; 

differences between PC12z and PC12z_soil were attributable to different 1200 UTC soil  

states, while differences between PC12z_soil and CCEnKF were attributable to different 

1200 UTC atmospheric fields.  CAE forecasts were clearly more sensitive to 

 
 
Fig. A1.  Standard deviation of top-layer (a) soil temperature (K) and (b) soil moisture (m3m-3) 
averaged over land points within the portion of the 15-km domain colocated with the 3-km 
domain (Fig. 4.1) and all posterior ensembles between 1200 UTC 24 April and 0000 UTC 20 May 
2017 (inclusive) as a function of time of day.  (c),(d) As in (a) and (b), respectively, but for 
domain-average ensemble means. 
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Fig. A1.  Standard deviation of top-layer (a) soil temperature (K) and (b) soil moisture (m3m-3) 
averaged over land points within the portion of the 15-km domain colocated with the 3-km 
domain (Fig. 1) and all posterior ensembles between 1200 UTC 24 April and 0000 UTC 20 May 
2017 (inclusive) as a function of time of day.  (c),(d) As in (a) and (b), respectively, but for 
domain-average ensemble means.
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atmospheric ICs than initial soil states, as FSS differences between PC12z_soil and 

CCEnKF were much larger than those between PC12z and PC12z_soil (Fig. A2).  

Therefore, differences between CAE forecasts initialized from CCEnKF and PC12z were 

not due to different soil moistures. 

 
 
Fig. A2.  As in Fig. 4.10, but for FSSs aggregated over the 13 3-km, 10-member ensemble 
forecasts initialized at 0000 UTC between 25 April and 7 May 2020 (inclusive), focusing on 
experiments designed to assess forecast sensitivity to land surface state initialization in partial 
cycling EnKFs. 
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Fig. A2
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Fig. A2.  As in Fig. 10, but for FSSs aggregated over the 13 3-km, 10-member ensemble forecasts initialized at 0000 UTC between 
25 April and 7 May 2020 (inclusive), focusing on experiments designed to assess forecast sensitivity to land surface state 
initialization in partial cycling EnKFs.
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