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Developing a real-time system requires finding a balance between the timing constraints and the
functional requirements. Achieving this balance often requires last-minute, low-level intervention
in the code modules — via intensive hardware-based instrumentation and manual program opti-
mizations. In this dissertation we present an automated, static alternative to this kind of human-
intensive work. Our approach is motivated by recent advances in compiler technologies, which we

extend to two specific issues on real-time programming, that is, feasibility and schedulability.

A task is infeasible if its execution time stretches over its deadline. To eliminate such faults,
we have developed a synthesis method that (1) inspects all infeasible paths, and then (2) moves

instructions out of those paths to shorten the execution time.

On the other hand, schedulability of a task set denotes an ability to guarantee the deadlines
of all tasks in the application. This property is affected by interactions between the tasks, as well
as their individual execution times and deadlines. To address the schedulability problem, we have
developed a task transformation method based on program slicing. The method decomposes a
task into two subthreads: the IO-handler component that must meet the original deadline, and the
state-update component that can be postponed past the deadline. This delayed-deadline approach
contributes to the schedulability of the overall application. We also present a new fixed-priority
preemptive scheduling strategy, which yields both a feasible priority ordering and a feasible task-

slicing metric.
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Chapter 1

Introduction

A real-time application is characterized by the existence of two competing factors: its functional
specification and its temporal requirements. Functional specifications define valid translations from
inputs into outputs. As such they are realized by a set of programs, which consume CPU time.
Temporal requirements, on the other hand, place upper and lower bounds between occurrences of
events [9, 24]. An example is the robot arm must receive a next-position update every 10ms. Such
a constraint arises from the system’s requirements, or from a detailed analysis of the application
environment. Temporal requirements implicitly limit the time that can be provided by the system’s

resources.

Figure 1.1 illustrates the real-time software development process from a high-level requirements
specification to a low-level implementation. First, high-level requirements are translated into real-
time programs. Then the programs are compiled into real-time tasks, and timing constraints are
imposed on these tasks. After the compilation, the programmers must assure that each of the
tasks in the application will meet its timing constraints on the underlying hardware platform. This

process is called a feasibility test.

The programmers must also assure that the whole application will adhere to the timing con-
straints, even in the presence of direct and indirect interactions among the tasks, such as task
blocking and preemption. This process is called a schedulability test. If the programmers cannot
guarantee either of the tests, the result is careful refinement of the implementation. As shown
in Figure 1.1, we can think of two alternatives as a means for the low-level system refinement:

system-tuning and compiler-based task optimization.

Low-level tuning of the application can be a time-consuming process. It often involves using
expensive hardware monitors (e.g., in-circuit emulators, logic analyzers, etc.), manually counting

instruction-cycle times, hand-optimizing the code, and experimenting with various orderings of
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Figure 1.1: Software Development Process: Two Alternatives

operations. As a last resort, entire subsystems may have to be re-designed altogether.

The goal of this dissertation research is to provide programmers with a powerful alternative to
low-level tuning. It is based on compiler-based transformation tools. Our approach consists of two
inter-related components: a real-time programming language and static compiler transformation
methods. The programming language not only provides a means for expressing timing constraints
within a source program, but it also lays a foundation for sound compiler transformation methods.
As shown in Figure 1.1, our compiler transformation methods include feasible code synthesis and

real-time task slicing.



1.1 Motivation

Our approach is motivated by the success of static compiler transformation technologies in code
parallelization and program debugging. It is a natural step to adopt these technologies to real-time
domains, where developers lack powerful software engineering tools to apply at the tuning stage.

This stage can consume a disproportionate amount of project’s budget.

To carry out this approach, it is imperative to find a real-time programming language to pro-
vide high-level timing constructs with unambiguous semantics. This allows us to define a class of
semantics-preserving transformations for them. Unfortunately, most existing real-time program-
ming languages do not fulfill the requirement. We conceive this as a problem of “code-based

specifications.”

Consider experimental real-time programming languages which have been proposed in the lit-
erature [23, 27, 30, 33, 40]. They provide high-level real-time constructs such as “within 10ms
do B,” where the block of code “B” must be executed within a 10 millisecond time frame. These
languages, while providing a convenient framework for expressing time in programs, have done little

to ease the process of translating a real-time specification into schedulable code.

The reason is straightforward: Language constructs such as “within 10ms do B” establish
constraints on blocks of code. However, “true” real-time properties establish constraints between
the occurrences of events [9, 24]. While language-based constraints are very sensitive to a program’s
execution time, specification-based constraints must be maintained regardless of the platform’s CPU

characteristics, memory cycle times, bus arbitration delays, etc.

Our approach is to treat a real-time program as (1) an event-based timing specification, which
represents the system’s real-time requirements; and (2) a functional implementation, that is, the
system’s code. We carry out this approach with a real-time syntaz quite similar to those found in the
abovementioned languages. However, in our approach the interpretation is quite different. Instead
of constraining blocks of code, the timing constructs establish constraints between the observable

events within the code.

The language we propose is called Time-Constrained Event Language (TCEL). As an exam-
ple of TCEL code, consider the following specification fragment, which is rendered pictorially in

Figure 1.2:

(1) Every 25ms, an external sensor sends a message to the controller, containing physical world

measurement data.

(2) The controller must receive every message.



(3) Using the sensor data and the current state, the controller computes a next-position command

and sends it to an actuator.

(4) To achieve steady state, transmission of cmd is made no earlier than 3.5ms after receipt of

data.

(5) To guarantee response-time threshold, transmission of cmd is made no later than 4.0ms after

receipt of data.

(6) Based on the sensor-input, the controller updates its current state.

to
2 3.5ms Actuator

output(Actuator, cmd)
A

cmd=nextCmd(...);
| state=nextState(...);

Figure 1.2: Event-Based Specification of Sensor-Controller System

Within our event-based framework, the program fragments in Figure 1.3 realize the specification.
The system’s only observable events occur instantaneously during the executions of the “output”
and “input” operations. The “do” statement establishes timing constraints only between these
two operations. On the other hand, the local statement “cmd = nextCmd(data, state)” is only

constrained by the program’s natural control and data dependences.

Armed with this interpretation, our compiler treats both programs as having equivalent seman-
tics. This is quite different from the approaches mentioned above, where timing constructs establish
constraints on code. In that interpretation, program A would first receive its data, then delay for
3.5ms and finally, evaluate nextCmd and send the result within the remaining 0.5ms. Program B
would receive its data, evaluate nextCmd, then delay for 3.5ms and finally, send the result within

4.0ms of evaluating nextCmd.

Both programs may fail to implement the specification on some hardware platforms. If nextCmd

is a CPU-intensive function (and thereby requires over 0.5ms of execution time), program A is



/* Program A x/
every 25ms
do
input(Sensor, &data);
start after 3.5ms finish within 4.0ms
{
cmd = nextCmd(state, data);
state = nextState(state, data);
output(Actuator, cmd);

/* Program B */
every 25ms

do
{

input(Sensor, &data);
cmd = nextCmd(state, data);

}

start after 3.5ms finish within 4.0ms

{

state = nextState(state, data);
output(Actuator, cmd);

Figure 1.3: Two TCEL Programs with the Same Semantics



inherently unschedulable. On the other hand, program B establishes a constraint between the
evaluation of nextCmd and the nextState, and not between the two specified events. Both programs
would have to be rewritten to achieve the desired effect. The necessary corrections would include
manually decomposing nextCmd, as well as adjusting the timing constraints. The actual changes
would heavily depend on the particular characteristics of the computer, and thus, the very reason

for using high-level timing constructs would be defeated.

There are several immediate benefits to our semantics for real-time constructs. First, a source
program is not hardware-specific, and thus maintains the abstract, “portable” spirit of a high-level
language. Since the timing constraints refer only to specification-based events, they need not be
platform-specific. Second, this decoupling of timing constraints from code blocks enables a more

straightforward implementation of an event-based specification.

But of most importance, some of the arduous, assembly-language level hand-tuning can now
be accomplished semi-automatically — by compiler optimization techniques. In this dissertation we
present two of such techniques: one that relies on Trace Scheduling, and the other based on program
slicing. Traditionally, Trace Scheduling has been used in instruction scheduling, etc., and program
slicing has been used in program analysis and debugging. Here, the objective is different: to achieve
guaranteed real-time performance. In doing this we use the observable events as “signposts,” which
constrain the places where code can be moved. These events, as well as data dependences, establish

the limiting constraints for the optimization algorithm.

1.2 Compiler Transformations

Armed with the event-based semantics of TCEL, we have developed two compiler transformation
techniques, which we call feasible code synthesis and real-time task slicing. The objective of feasible
code synthesis is to achieve internal consistency between a task’s execution time and its timing
constraints specified with “do” constructs. On the other hand, the objective of real-time task
slicing is to enhance inter-task schedulability. This transformation is applicable to “every” periodic

constructs.

1.2.1 Feasible Code Synthesis

We call a code segment infeasible if its execution time stretches over its specified deadline. Fea-
sible code synthesis localizes and corrects such a fault via a two-step process. First, the compiler

decomposes a “do” construct into a set of code blocks according to the control structure, and then



automatically derives a set of dispatch equations from the language-based timing constraints. This
step is necessitated by a gap between the event-based semantics model of source programs and
the code-based execution model of real-time schedulers. In fact, most real-time schedulers only
accept timing constraints on the start and finish times of tasks. The compiler thereby satisfies the
scheduler’s requirements by transforming event-driven source programs into constrained blocks of

code, and providing the dispatch equations for the scheduler.

Next, the compiler attempts to correct feasibility faults with respect to the derived dispatch
equations. This is done by a variant of Trace Scheduling, in which worst-case execution time paths

of the infeasible task are selected, and unobservable code is moved to shorten their execution time.

For simple illustration, suppose that nextCmd in Program A of Figure 1.3 executes longer than
0.5ms and hence Program A is infeasible. As a solution, “nextCmd(data, state)” can be inlined,
and then decomposed into two parts — one which is flow-dependent on the parameters data and
state, and another which is invariant of them. This second part can be lifted out of the do

statement altogether. We elaborate on this transformation method in Chapter 5.

1.2.2 Real-Time Task Slicing

Real-time task slicing considers a more ambitious goal — inter-task transformations for schedulabil-
ity. The effect of this transformation is global, though it is individually applied to a small number

of tasks selected from an unschedulable application.

The key idea behind this method is based on a simple fact, that is, an application’s schedulability
improves if we increase the deadlines of its constituent tasks. The same effect is achieved by allowing
a task to slide past its deadline, while maintaining the original event-based semantics. We can realize
this benefit by transforming a task, so that its time-sensitive component always executes within its

frame, while postponing the rest of the task.

To systematically carry out the transformation, we harness a novel application of program
slicing [41, 52, 53]. An unschedulable task is decomposed into two subthreads: one that is “time-
critical” and the other “unobservable.” The unobservable subthread is then appended to the end
of time-critical thread, with TCEL semantics being maintained. Figure 1.4 pictorially illustrates
the net effect of this transformation. The downward (upward) arrow of the k™ frame represents

the execution of input (output) event in the same time frame.

Since the goal of the transformation comes from the scheduler component of the real-time

system, the framework consists of the following ingredients.
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Figure 1.4: Run-Time Behavior of a TCEL Periodic Task

(1) An algorithm which uses standard fixed-priority preemptive scheduling analysis to find un-

schedulable tasks which need task slicing.
(2) A program slicer which decomposes a task and isolates the thread that can be postponed.

(3) An online component of the scheduler which enforces precedence constraints between task

interactions.

In Chapter 6 we will discuss in detail the fixed-priority preemptive scheduling paradigm as well as

the application of program slicing method.

1.3 Summary of Contributions

The major contributions of this dissertation is itemized as follows:

e The event-based abstraction is a widely used approach in the formal methods literature. We
have extended it into a full-blown real-time programming language called TCEL. The event-
based semantics of TCEL makes it straightforward to realize a high-level specification into
a real-time program. This semantics allows a clear and unique interpretation of high-level
timing constructs, and thus enables us to define safe compiler transformations for TCEL pro-
grams. Although TCEL has been implemented on top of the C programming language, it can
be used with other programming languages such as Pascal or Fortran. It is a general, flexible

mechanism for high-level timing annotations, and is not specific to a particular language.

o We have developed an automatic method of translating a high-level TCEL program into
schedulable units of code. When implemented within a TCEL compiler, this method decom-



poses a TCEL program into tasks, and then derives code-based timing constraints from the
language-based timing constraints. This method automatically refines the original timing

constraints to account for the effects caused by programs’ control structures.

e We have developed an automatic compiler method that is used to transform an infeasible
task into a feasible one. This problem is an intractable one, as will be proved. Thus we have

invented an approximation approach based on Trace Scheduling.

e We have developed another compiler transformation method that is used to enhance the real-
time schedulability of an input task set. This method automatically decomposes a task so
that the real-time scheduling method can guarantee timely execution of observable operations,

while local operations need not lead to scheduling overrun.

o We have developed a priority ordering algorithm that not only assigns feasible priorities, but

also selects a subset of tasks to be transformed. The guiding metric is schedulability.

1.4 Outline of the Dissertation

This dissertation is organized as follows. In Chapter 2 we survey background and related work.
In Chapter 3 we introduce TCEL with an example program. In Chapter 4 we introduce basic
notations for flow graphs and standard compiler technologies which are used throughout the disser-
tation. In Chapter 5 we present the first transformation method, feasible code synthesis, along with
a motivating example. Then, in Chapter 6 we present the second transformation method, real-time
task slicing, and we discuss its underlying theory of fixed-priority, preemptive scheduling. In Chap-
ter 7 we consider the practical limitations of our compiler-based approach, and propose solutions to
overcome these problems. We also briefly show TimeWare/SLICE, our prototype implementation of
the real-time task slicer, which reflects our philosophy on tool-based system development. Finally,

in Chapter 8 we conclude this dissertation with future research directions.



Chapter 2

Related Work

In this chapter we survey related work in real-time programming. First, we review some of formal
methods that have laid the foundation for our event-based semantics. We also study real-time
programming languages, since they have influenced the design of TCEL’s timing constructs. Finally,

we survey compiler-based real-time tools, and compare them with our approach.

2.1 Formal Methods

TCEL’s semantics was inspired by a principle commonly applied in formal methods. That is, when
reasoning about a real-time concurrent system it is often useful to consider only “events of interest,”
and to abstract away local-state information. Indeed, almost all formal models ease this process
by making some distinction between an “event” and a corresponding “action.” In this section we
survey four such methodologies: Real-Time Logic [24], RTRL [9], Timed 10 Automata [37] and
ACSR [29].

RTL. Real-Time Temporal Logic possesses an underlying event-action model. It captures the
temporal ordering between an application’s actions and its events. An action in RTL is the execution
of an operation which consumes a certain amount of system resources. The effects of actions are
revealed by events that are generated before and after they execute. The occurrence of an event is
defined to be instantaneous, while the execution of an action takes non-zero time. Thus a timing
constraint is an assertion about temporal relationships between certain events. The conjunction
of these timing assertions are “the system specification,” and they must imply that key safety

properties are maintained.

10



RTRL. RTRL (Real-Time Requirements Language) is a formal specification language developed
for use in modeling telephone switching systems. In RTRL, a real-time system is viewed as a
finite-state machine, in which a response at any instance is determined by the system’s state and
the external inputs. Hence the timing constraints are established between external inputs and
responses. Unlike the events in RTL, however, these external inputs and responses denote signals

(of a switching system) rather than points in time, and thus have duration times.

Timed I/O Automata. A timed I/O automaton is essentially a state transition system consist-
ing of state variables and events, where each of the events has an enabling condition and an action.
A timed I/0O automaton has a set of timing assumptions, each of which specifies an event set and an
interval during which the event set can be continuously enabled since its last occurrence. Thus the
timing assumptions place constraints on the event-firing times [46]. A “behavioral abstraction” of a
timed 1/O automaton allows reasoning about only the event sequences, since local state information

can be ignored in the abstraction.

ACSR. The computation model of ACSR (Algebra of Communicating Shared Resources) ad-
dresses two key issues in modeling a real-time system: concurrency and communication. An ap-
plication specified in ACSR consists of a set of communicating processes that use shared resources
for execution and synchronization with one another. A timed action in ACSR takes unit time
to execute and consumes a set of resources during that time. Synchronization between actions is

supported by events that are instantaneous, and consume no resources.

Impact of Formal Methods. Strongly motivated by the event-action models, we have extended
the event-action abstraction into to a “full-blown” real-time programming language, in which the
“events” correspond to actual 10 operations within C code. A logical consequence of the event-
action model is the ability to exploit this looser semantics, and to use compiler transformations to

move unobservable instructions out of over-constrained code blocks.

2.2 Real-Time Programming Languages

Most other real-time languages do not make such a distinction, and instead place constraints on
the boundaries of code blocks. Two paradigms are used in these languages: either constraints are
expressed directly in the program itself (as in [33, 30, 54]), or they are postulated in a separate

interface, and then passed to the scheduler as directives. A common language-based approach (first

11



presented in [30]) is to provide constructs such as “within ¢t do {...},” “at t do {...}” and “after
tdo {...}.” An alternative, taken in [33], is to set up linear constraint expressions on the the start
times and deadlines of code blocks. We have borrowed from both approaches: in the TCEL source
we use the higher-level constructs, while in our intermediate code we make use of the constraint
representation. But in TCEL the semantics is quite different, as it establishes constraints between

the observable events within the code, and not on the code’s textual boundaries.

2.3 Real-Time Compiler Tools

There have been many other compiler-based approaches to real-time programming, most of which
address different real-time programming problems and rely on different techniques. However, they
share a common goal, namely, enhancing predictability and schedulability of real-time applications.
In this section we survey tools, and then show where we can place our tools in the realm of real-time

programming.

Schedulability Analyzer for Real-Time Euclid. Among the early approaches was the schedu-
lability analyzer [49], specifically developed for the timing and scheduling analyses of programs
written in Real-Time Euclid [27]. The schedulability analyzer consists of a front-end and a back-
end. The front-end is incorporated into the code generator of the Real-Time Fuclid compiler, and
it produces a segment tree that represents compilation units such as modules, monitors or routines.
Using a segment tree, the back-end computes the execution time profile of each segment consid-
ering synchronization, phasing, and 10 between segments, as well as execution times of segments’
instructions. We believe that such a technique is infeasible in a practical sense, because it presents
an intractable circularity between the compiler-based analyzer and the scheduler. The result of the

analysis affects that of scheduling, and vice versa.

Compiler-Assisted Adaptive Scheduling. Gopinath and Gupta introduced a technique called
compiler-assisted adaptive scheduling in [18]. In their work, the compiler indexes a piece of code
into four classes on the basis of predictability and monotonicity. Then it rearranges the code to
support adaptive run-time scheduling. Unlike our approach, which is entirely static in terms of
both program analysis and scheduling, their approach was developed to aid in dynamic runtime
scheduling. However, their work still demonstrates that a successful interplay between the compiler

and scheduler is possible without introducing a circularity between them.

12



Partial Evaluation. Partial evaluation may conceptually be understood as compile-time eval-
uation of constant expressions. Partial evaluation of a source program not only reduces constant
expressions in the program into simple values, but also simplifies some control structures such as
loops and conditionals. In [39] Nirke and Pugh applied the technique of partial evaluation to real-

time programming to produce residual code that is both more optimized and more deterministic.

Safe Real-Time Code Optimizations. Conventional compiler optimizations are designed to
reduce the expected or average execution time of programs without taking in account the exact
timing behavior of programs. On the other hand, optimizations for hard real-time must meet
stringent timing constraints. In [36] Marlowe and Masticola examine a large class of conventional
code transformations, and then classify them for application in real-time programming by the notion
of safe real-time code transformations. To do so, they assume time-critical statements (or events)
in the underlying programming language, and interpret deadlines as relationships between the
executions of time-critical statements. This approach comes closest to our work, in that the timing
behavior of real-time programs is described in terms of events or the executions of time-critical
statements. Unlike the semantics for TCEL, however, the execution times of non-time-critical
statements are not explicitly decoupled from timing constraints imposed on the events. This is
because the start of a process or start of a critical section is still considered “time-critical.” As a

result, the applicability of some transformations may be unnecessarily restricted.

Timing Tools. Predicting the worst-case execution time of a program is a fundamental require-
ment to build a real-time application. Indeed, the results of our compiler-based methods rely
on timing tools, since both the feasibility and schedulability of tasks are a function of predicted

worst-case executions of the transformed tasks.

The technique reported in [42] is based on a simple source-level timing schema, and it is fairly
straightforward to implement in a tool. In [19] another approach for more accurate timing was
proposed. Since the resulting tool is able to analyze micro-instruction streams using machine-
description rules, it is retargetable to various architectures. On the other hand, both approaches
do not address the problem of predicting architecture-specific timing behaviors due to various
latencies in the memory hierarchy and pipelines. Recently, several approaches have been developed
to account for this timing variance. In [55] Zhang et al. presented a timing analyzer based on a
mathematical model of the pipelined Intel 80C188 processor. This analysis method is able to take
into account the overlap between instruction execution and fetching, which is an improvement over

schemes where instruction executions are treated individually. In [44] Arnold et al. developed a
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timing prediction method called static cache simulation to statically analyze memory and cache
reference patterns. A similar but more advanced approach was reported in [32]. While the latter
approach is able to predict pipeline stalls as well, both approaches essentially rely on attribute

grammars [2] to propagate cache hit information backward in a flow graph.

However, no static timing tool is precise enough to be used with complete confidence for de-
veloping production-quality software. Moreover, even sophisticated timing analysis methods such
as [32, 44] are not appropriate for fine-grained instruction timing. In Chapter 7 we explain how
we can effectively use these tools in spite of the limitations, by also taking advantage of software
profiling, as well as static timing prediction. Specifically, our slicing technique does not require any
static analyzer: it can be used to first transform the program, with the timing carried out later by

a runtime profiler.
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Chapter 3

The Language of Time-Constrained Events

In this chapter we present TCEL’s timing constructs to express timing constraints within a high-
level program. These high-level timing constructs make explicit reference to observable events as
well as time, so that the specification-level timing constraints can be extracted from the source

code, and then conveyed to real-time schedulers.

3.1 Design Goals

The objectives of the TCEL design are (1) to lay a semantic foundation for developing safe real-time
compiler transformation techniques; and (2) to provide high-level timing constructs that enable a
compiler to automatically translate a high-level real-time specification into executable code. In

addition to these, the design of the timing constructs is motivated by the following practical goals:

o To add a minimal set of features to existing languages. To this end, we embedded timing
constructs in C, and then extended it as a real-time programming language. Our constructs

are syntactic descendents of the temporal scope in [30].

o To keep the definition of an observable event as general as possible. The notion of an observ-
able event is a relative term depending on the application system. We support a generalizable
mechanism in that observable events are classified by the programmer, and the resulting event
specification is externally provided for a TCEL compiler. Such a specification may include
input and output operations, message passing primitives and memory accesses to shared vari-
ables. For simplicity, in the sequel we consider all “input” and “output” operations to be

observable.
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3.2 Timing Constructs and Their Semantics

We first elaborate the “do” construct which establishes several types of relative timing constraints.

Its general form is as follows.

do
(reference block)
[start after t,,;, | [start before t,,,,1 ]| [finish within #,,,,2 ]

(constraint block)

The reference block (RB) and the constraint block (CB) are simply C statements, or alterna-

tively, timing constructs themselves. The “do” construct induces the following timing constraints:

e start after ¢,,;,: There is a minimum delay of ¢,,;, between the last event executed in the

RB, and the first event executed in the CB.

e start before t¢,,,,1: There is a maximum delay of ¢,,,,1 between the last event executed in

the RB, and the first event executed in the CB.

e finish within ¢,,,.9: There is a maximum delay of ¢,,,,2 between the last event executed in

the RB, and the last event executed in the CB.

Since either block may contain conditionals, depending on the program’s state there may be several
such events executed either “first” or “last.” For example, consider the fragment from a typical

flow graph in Figure 3.1.

Depending on the path taken, the last event executed in the reference block may be either E1
or 2. Similarly, the first event in the constraint block will be E3 or E4, while the last event will be
either 4 or E5. To denote such possibilities, we introduce two mappings FIRST and LAST from
code blocks to sets of events. That is, LAST(RB) = {F1,E2}, FIRST(CB) = {E3,E4} and
LAST(CB) = {F4,E5}. Thus, the “do” construct introduces two potential constraints between
an executed event from LAST(RB) and another from FIRST(CB), as well as one constraint between
two executed events from LAST(RB) and LAST(CB) each.

The second real-time construct denotes a statement with cyclic behavior of a positive periodicity:

every p [while (condition) ]
[start after t,,;, | [start before t,,,,1 ]| [finish within #,,,,2 ]

(constraint block)
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| Reference Block (RB)

Constraint Block (CB)

@ @
@ ®

B6

{ 3o
2.

Figure 3.1: Flow Graph of do Construct

As long as the “while” condition is true, the observable events in the constraint block execute
every p time units. Akin to an untimed while-loop, when the condition evaluates to false the
statement terminates. However, unlike the untimed counterpart, event operations cannot be part
of the condition. In its real-time behavior, the interpretation of the “every” construct is similar
to that of “do.” For example, assume that the statement is first scheduled at time ¢, and that
the “while” condition is true for periods 0 through i. The periodic constraints established by
this statement are depicted in Figure 3.2, where the time-line shows the first two instances of the

statement.

Examining the time-line, we see that the every statement is released at time ¢, and that within
the first frame, the first observable event (denoted by an arrow) occurs between ¢ + ¢, and
t 4+ tpar1- Similarly, the first frame’s last event occurs before ¢ + ¢,,,4,2. Generalizing, the following

constraints are induced for period ¢ where ¢ > 0:

e start after ¢,,;, : The first event executed in the CB occurs after t +¢-p+ tnin.
e start before t,,,,1 : The first event executed in the CB occurs before t + ¢ - p + t,001-

o finish within ¢,,,,9 : The last event executed in the CB occurs before t + i - p + t,422.
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t+p+tmazl
t+ tmin t+ tmaz2 t+rttmin t+p+ tmas2

* observable event occurrence

Figure 3.2: Behavior of Periodic Timing Construct

3.3 Example TCEL Code

As we have stated, timing constructs may be arbitrarily nested. Consider the program in Fig-
ure 3.3(A), which is a (very gross) 2-dimensional abstraction of an aircraft navigation/control loop.
A set of route coordinates are maintained in the array “GOAL,” which is managed by another mod-
ule. These coordinates are accessed using index variable “1,” which is initialized before the periodic
loop, and updated within the loop body. The TCEL program’s role is to (1) sample the aircraft’s
current coordinates, its (true) heading, roll, and its ground speed; (2) get the next route coordinate
to visit; (3) compute the relative attitude between the heading and the coordinate; and (4) adjust
the course by updating throttle and roll. Adjustments are made in discrete increments, and are

contingent on the current roll and velocity, as well as the amount that the course must be changed.

The timing constraints are induced as follows:

(1) Control updates are made periodically, with rate 50/second.

(2) In order to give the actuators time to get updated (and for the craft to respond accordingly),

all updates must be made within the first 5ms of each period.

(3) Velocity (ground speed) is obtained via a “request-response” protocol from an external unit;

the response arrives with maximum latency of 0.75ms.

(4) To correlate ground speed with outputs, all throttle and flap updates must be made within
of 3.1ms of actual ground speed sample. In the best case this may be made upon issuing the

request.

If the specification mandated additional timing constraints, clearly we could employ further
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levels of nesting to achieve them. For example, suppose we desired to add a fifth timing requirement

to the four listed above:

(5) The final two outputs must be correlated within 0.5ms of each other. (This is not unrealistic,

since the two outputs control are coordinated to effect the angular adjustment.)

To accomplish this we would replace the sequential composition with an additional nested TCEL

statement:

do
output(THROT, throttle);
finish within 0.5ms
output(FLAP_Cntrl, wflap);

The net runtime effect would simply be a refinement of the potential behaviors; i.e., the time-event

relationships exhibited by the altered program would be a subset of those in the original version.
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every 20ms finish within 5ms

do |Per|od|c 20ms |
{ v
/* Get current position, heading & roll */ o [ - [5ms]

input(GPS, &x, &y); S
input(NAV, &theta); - -1~

input(IMU, &roll);

‘ input(GPS, &x,&y) ‘

v

| input(NAV, &theta) |

/* Request current velocity */

output(Cntrlout, REQ_VEL);

‘ input(IMU, &roll) ‘

start after 0.75ms finish within 3.1ms

{

‘ output(CntrI_oﬁt, REQ_VEL) ‘

/* Get current velocity */

\

\

\

\

\

\

\

\

\

|
Constraint Block (CB)
input(Cntrlin, &vel); 1

\

\

\

\

\

\

\

\

\

\

\

\

\

1

/* Update target position */ |
if (GOAL[i].passed) { |
gx = GOALI] .x; |
gy = GOAL[i].y; }
\

|

\

\

\

\

\

\

\

|

\

\

\

\

\

\

\

\

gx=GOAL][i].x
P . =GOALJi].
i = (i+1) % NCOORD; B NCO0RD

rtheta=compRelAtt(theta, x,y, gx,gy)
if(rthetal<EPS)

\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \

\
} true/ \_false ‘
‘\ dtheta=0.0 | [ if(vel<VHIGH) | |
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \

/* Using relative attitude w.r.t target, */
/+ compute angular adjustment. */
rtheta = compRelAtt(theta, x, y, gx, gy);

. true, — S false
if (|rtheta] < EPS) dtheta=rtheta | [dtheta =

dtheta = 0.0 safeDtheta(rtheta,roll)
else {

if (vel < VHIGH)
dtheta = rtheta;
else
dtheta = safeDtheta(rtheta, roll);

wflap=compFlapw(roll,vel,dtheta)
throttle=compThrot(roll,vel,dtheta)

[ output(THROT, throttle) |

1

/+ Adjust flap and throttle for heading. */ | - ——— — — — — — =
wilap = compFlapw(roll, vel, dtheta); - xr |
throttle = compThrot(roll, vel, dtheta);
output(THROT, throttle);

output(FLAP Cntrl, wflap); ‘ tmin | tmax] tmaxz‘ @
} Entry Node Exit Node

‘ output(FLAP_Cntrl, wflap) ‘

Figure 3.3: (A) TCEL Source Code for the Flight Controller and (B) Corresponding Flow Graph
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Chapter 4

Basic Notations

The output of the TCEL compiler’s machine-independent pass is the code in an intermediate
representation, encapsulated in a flow graph [2]. We extend the format of a flow graph to hold the
original timing information. For example, Figure 3.3(B) shows the extended flow graph for our
flight controller program in Figure 3.3(A), where for the sake of brevity we have left the code in
its original C form. In this chapter we first introduce two types of flow graphs, and then define
basic notations of standard compiler technologies. These notations include a data structure called
a program dependence graph, and a code representation called static single assignment form. We

will use these notations throughout this dissertation.

4.1 Flow Graphs

A flow graph is a natural representation of an intermediate program from which other important
information (such as data and control dependences) is extracted by standard static analysis tech-
niques. In order to help compilers deal with nested program structures we define a hierarchical

flow graph as well as a standard flow graph.

Flow Graph. A flow graph is a standard, flattened representation of a program, in which a node
denotes a fragment of straight-line code and an edge specifies potential flow of control from one

node to another.

Definition 4.1 A flow graph FG(B) of code block B is a directed graph

(V, E, entry(B), ezit(B))
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where V' is a set of basic blocks of B, and the two distinguished nodes entry(B) and exzit(B) that
denote the unique entry and exit of B, respectively. F is a set of edges representing potential

control flow. O

Hierarchical Flow Graph. It is sometimes necessary to explicitly specify the program’s original

hierarchical levels of scoping in a flow graph. We call this structure a hierarchical flow graph.

Definition 4.2 A hierarchical flow graph HFG(B) of code block B is a directed graph
(V, E, entry(B), exit(B))

where V' is a set of nodes, and F is a set of edges representing potential control flow between nodes.
A vertex n € V', however, may be either a basic block of B, an entry node, an exit node, or another

hierarchical flow graph HFG(B'). a

Thus all nested constructs, including loops, are reduced into single nodes in a hierarchical flow
graph. In our work we do not lift code out of loops, and thus we treat HFG’s as acyclic graphs,

since we can ignore all back edges.

Of course our hierarchical structure assumes that the underlying programming language is
“perfectly structured.” That is, any two statements 57 and S5 in the program are in one of the

following forms:

1. 51 is contained in S9;
2. S5 is contained in S%; or

3. 51 and 55 are disjoint.

Since many real-time programming languages allow only “structured” programs without unre-

stricted gotosl, we assume that our programs possess this property.

Since nodes in both a flow graph and a hierarchical flow graph have the same interface and
structure, all notations defined for a flow graph are used in a hierarchical flow graph. We can easily

extend traditional compiler terminology to HFG’s as well. In the following sections we define basic

compiler notations for HFG(B) = (V, I, entry(B), ezit(B)).

!'We disallow break statement as well, since it is a special instance of goto.
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4.2 Basic Compiler Definitions

Paths. A path (or trace) between ny,ny € V is denoted by “n; —" ny,” where b is the sequence
of nodes traversed between (and including) ny and ny. When b includes a node m € V, we denote

this by overloading the set membership operator, i.e., as “m € b.”

We also use the path relation, but omit the actual path, to denote the existence of some path

between two nodes, i.e.,

def
ny—ne = 3 bun —ng

We assume that for any node n € V,n — n.

Dominator and Postdominator. A node d is called a dominator of node n, if every path from
entry(B) to n goes through d. Similarly, a node p is a postdominator of node n, if every path from

n to exit(B) goes through d [2].

Data dependence. Let Def(n) and Use(n) be sets of variables defined and used by node n in

B, respectively. For instructions s1,s3 € B, s is data dependent on 51 (denoted “sq LA 59”7 ) iff there

b

is a path b such that s; —° s and

Jv € Def(s1) N Use(sy) :: (Vs € B (s €b)Av € Def(s)) = s =s1)

For instructions s; and sy in B, we say that sy is transitively data dependent on s; (denoted

[13

d . .
s1 —4 s27) iff there is a path
d d d d
s =8 = s — ... = s

We extend the notion of data dependence for nodes of HFG. For nodes ny,ny € V', ny is data

d .
dependent on ny (denoted “ny — ny”) iff
d
dsy € ny, 89 € ng i 57 — Sg.

Control Dependence. For nodes nq,nqy € V', ny is control dependent on ny (denoted “nq = n2”)

if one of the following holds:

1. mq is an entry vertex and ns is not nested within any loop or conditional; or

2. nq represents a control predicate and ny is immediately nested within the loop or the condi-

tional whose predicate is represented by n;.
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Our definition of control dependence is simpler than that found in [11], since it covers a restricted

language possessing only structured program constructs.

Reaching Definitions. For anoden € V and an expression e in B, we define reaching definitions

RD(n,e) as a set of nodes m such that

b (m —bn AJv € Def(m)N Use(e)
Vn' e Vi ((n' €b)Av € Def(n')) = n' = m).

In other words, RD(n,e) is a set of nodes whose definitions of some variables in Use(e) are available

at node n.

Dependence Closure (Static Backward Program Slice). The dependence closure for node
n in the block B, denoted by “DC(n,B),” contains n and all nodes m that reach n via zero or
more control or data dependence edges. It is inductively defined by the following least fix-point

operation:

»)
g
3
=
I

fiz F({n}), where
{m€V|E|n’€S::min’ vm =/} us

Pralt
e
[

When we are concerned only with data dependences, we make use of data dependence closure,
“DDC(n,B)” defined as below.
DDC(n,B)={m eV |m >, n} u{n}

In fact, a dependence closure and a data dependence closure are equivalent to a static backward

program slice and a static data slice, respectively [52].

Program Dependence Graph. A program dependence graph is an intermediate program rep-

resentation that stores both the data and control dependences for each operation in a program.

Formally, the program dependence graph is a directed graph PDG(B) = (U, W), where

o The vertex set U is equal to V in HFG(B).

o The edges W are of two sorts: either a control dependence between nl and ng such that

c d
n1 — Mo, or a data dependence between ny and ny such that ny — ns.

In addition, we define “m =-, n” to mean that there is a path starting from node n and ending

at node ¢ in PDG(B).
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Static Single Assignment Form. The static single assignment (SSA) form of a program can
be considered not only as a sparse representation of flow data dependences, but also as a notation

where the spurious data dependences such as output and anti-dependences are eliminated [7, 8].

A program is defined to be in SSA form if each use of a variable is reached by exactly one
assignment to it [8]. Thus, a program’s SSA representation can be obtained iteratively applying
the following process: For each variable in the program, (1) unique names are given to all of
its appearances on the left-hand-side of an assignment; and (2) all of the uses reached by that
assignment are renamed to correspond to the new name. The following examples demonstrate this
process. In the straight line code, each assignment to a variable is given a subscripted name, and

all of its uses are then renamed as well.

v=10; vi = £0);
a=v+1; a=v + 1;
=g0; vy = g0;
=V + 2 b = vy + 2;

Conditional statements require a bit more work in achieving the SSA form. At confluence points
in the CFG, merge functions called ¢-functions are introduced. A ¢-function for a variable merges
its possible values from distinct incoming control flow paths, and produces one argument for each

control flow predecessor.

P = cond;
if cond
if P
then v = £();
then vy = £();
else v = g(); =
else vy = g(O;
a=v;

In addition to a confluence point immediately following a conditional, another type of confluence
point exists at every loop header. For each variable » defined in a loop body, two values of v, namely
one assigned v before the loop, the other within the loop, merge at the confluence point of the loop

header. Thus a ¢-function for » is introduced there.

v = 10; vp = 10;
do { do {

v =v—1; — v1 = ¢(vo,v32);
} while(v > 0) vy = vi—1;

} while( vy > 0)
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Here we denote the value initialized before the loop by vq (subscript 0).

Gated Single Assignment Form. Although SSA form allows for efficient representation of data
flows in a program, it possesses a weakness in terms of program transformability. For example, in
the above code the ¢-function is structurally bound to the conditional “if P.,” since the ¢-function
“vs=¢(v1,v3)” can be executed only after the outcome of “P” is known. Such a coupling will be

avoidable, if we parameterize the ¢-function with the associated predicate.

Gated single assignment (GSA) form solves this problem [20]. GSA form is an extension of SSA
form with new functions that encode control over value assignment. The following code fragments

show translation from a conditional into the code in GSA form.

P = cond;
if cond
if P
then v = £();
then vy = £();
else v = g(); =
else vy = g(O;
a=v;

vy = 7(P,v1,v2);

a = V3,

The ~-function denotes the extension. The first argument of the v-function is the predicate
associated with the original ¢-function and its remaining arguments are the same as the ¢-function.
Having our intermediate programs in GSA form, we can treat y-functions in the same way as we

deal with any other statement.

In GSA, loops need a special form of pseudo-assignment function other than a <-function.
The reason is the confluence points at loop headers are not associated with particular conditional
predicates. Thus for each variable v defined in a loop body, a definition v" = p(vinit, viter ) is inserted
at the loop header, where v;,;; is the initial value of v reaching the header from outside and vz, is
the iterative value reaching along the back-edge of the loop [20]. In our example below we denote

Vinst and v’ by vp and vy, respectively.

v = 10; vp = 10;
do { do {

v = v—1; == vi = u(vo,va);
} while(v > 0) vy = vi—1;

} while( vy > 0)
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Chapter 5

Transformation 1: Feasible Code Synthesis

In this chapter we address translating a TCEL program into a low-level representation eligible for
real-time scheduling. To give a clear understanding of the problem domain, consider Figure 5.1.
Our problem domain at hand — denoted by the components with bold lines — actually contains two
problems. The first problem lies in compiling a TCEL program into the schedulable units, and the

second problem deals with attaining the feasibility of an infeasible task.

We approach the first problem with a compiler-based decomposition method. This method en-
ables a TCEL compiler to automatically translate a TCEL source program into a set of decomposed
tasks, and it derives a set of timing equations for them. Later, at runtime, a scheduler benefits
from this decomposition method, since it can efficiently dispatch the tasks according to their time

schedules (or priorities) based on both their execution times and associated timing equations.

The second problem arises when any task is determined to have an execution time conflicting
with the derived timing constraints. In this case, it is impossible for any scheduler to generate a
feasible schedule for the task set. We develop a compiler transformation method to automatically
correct such feasibility faults based on a variant of Trace Scheduling [12]. We name this method
feasible code synthesis. In this method, the compiler picks the worst-case execution time paths of

an infeasible task and moves unobservable code to eliminate the overload.

The remainder of this chapter is organized as follows. In Section 5.1 we formally state the
feasible code synthesis problem, and show that it is essentially an intractable problem. Then we

briefly discuss our solution strategy. In Sections 5.2 and 5.3 we explain the transformation strategy.
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Figure 5.1: Software Development Process: Revisited for Feasible Code Synthesis

5.1 The Problem and Our Solution

Compiling a TCEL program into schedulable code raises two fundamental issues, which are endemic

to all real-time systems.

1. A program may not be feasible, i.e., a single process’s execution time may conflict with its

own real-time constraints.

2. While the program may be feasible, it may not be schedulable under any tractable real-time

scheduling algorithm.

As for the feasibility problem, consider the following TCEL fragment:
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do
input(P, &m);
start after 10ms finish within 20ms
{
input(Q, &x);
S’ [20ms]
output(R, y);

}

The code’s timing constraints mandate a 10ms latency between the events generated by “in-
put(P, &m)” and “input(Q, &x),” as well as a 20ms deadline between the events generated by
“input(P, &m)” and “output(R, y).” Meanwhile, the bracketed “20ms” denotes that the un-
observable statement 5 requires a maximum of 20ms to execute, a bound obtained by a timing
analysis tool (e.g., [19, 32, 42, 47, 55]). Consequently, the program possesses an inherent conflict,
since S requires 20ms to execute while it is only allowed 10ms.

We address this problem by an approach we call feasible code synthesis. In our example this
would involve decomposing S and, if possible, moving instructions not dependent on “x” out
of the overloaded section. However merely achieving feasibility may be of little help, since the
transformed code may still not be schedulable under any known methods. For example, when a
program contains if-then-else branches, then the actual execution paths (and the events executed)
are determined dynamically. But since schedulers must provide guarantees, they do not have the
flexibility to instantaneously, dynamically reschedule a task set whenever an event is triggered.
Indeed, while an event-based semantics makes conceptual sense at the source-program level, most

real-time schedulers only accept timing constraints on the start and finish times of tasks.

Since the strategies used to achieve feasibility have a profound affect on the ultimate task
structure, we solve these two problems together. Thus the role of the TCEL compiler is to partition
event-driven source programs into time-constrained blocks of code, in which all of the blocks are

feasible.

5.1.1 The Problem of Feasible Code Synthesis

Even without the code block partitioning component, achieving feasibility is a nontrivial problem.
This is obviously the case if we allowed potentially unbounded loops (or conditional jumps), which
would render the problem undecidable. But since real-time programs must be amenable to worst-

case timing estimates, we assume that upper bounds can be obtained for execution times. Formally,
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we let “wt(5)” denote a statement’s worst-case execution time, where we assume that wt(5) €
[0,00) for any statement S. Obviously “wt” is implementation dependent, and its tightness is

determined by the quality of the analysis tool used to generate the bound.!

While the feasibility problem may be decidable for our domain, it is not necessarily trivial.
Even when a program is structured like our example above, and where 5 is a basic block, simply

deciding whether the program can be made feasible is still NP-hard.

The problem can be stated as follows: given a TCEL timing construct
do RB start after ¢,,;, start before {,,,,1 finish within ¢,,,,2 CB
is it possible to transform RB and CB to meet the following constraints?

(1) On any execution path, the original ordering of observable events is maintained.
e original data and control dependences are not violated between instructions and events.
2) The original dat d control depend t violated bet instructi d t

(3) The code’s execution time does not conflict with the timing constraints between the events.

Clauses (1)-(2) imply that the transformed code must be functionally correct: events may not
be reordered, and the original relationships between input and output data must be maintained.

Clause (3) means that the new code is feasible.

This problem is NP-hard, due to the existence of immovable operations and data dependences.
Theorem 5.1 Feasible code synthesis is NP-hard.

Proof: The proof follows by a straightforward transformation from “Partition[SP12]” [13] to fea-
sible code synthesis. Consider an instance (A, s) of Partition, where A = {aq,az,...,a,} is a set of
elements, and where s : A — N is the cost of each element. Letting Y7, s(a;) = 27, a partition
of Ais some A" C A such that 3 c4s(a) =T = 3 ypca_4 5(b). Determining whether such an A’

exists is equivalent to determining whether the following TCEL program can be made feasible:

1We return to this issue in Chapter 7.

30



do
Eq: input(P, &x);
start after 7 start before 7T finish within 27

{

FEs: output(Q, g(x));

Lq: z1=f1(x); [s(a1)]
Ly: zo= fo(x); [s(az)]
Ly: xn:fn(x)§ [S(QTL)]
Fs: output(R, h(zy,...,2,));

Here Fy — Fs generate events, L1 — L, are unobservable instructions, and each line is considered

atomic (that is, a line must be relocated as a single entity). Then by the construction,

(1) F3, Iy — L, are mutually data independent.
(2) F3, Ih — L, are data dependent on FEj.
(3) Fjsis data dependent on Ly — L.

If we assume that wt(L;) = s(a;) for 1 <17 < n, and that wt(E;) = 0 for 1 < j < 3, then there exists

a partition of our original set A if and only if there is a feasible transformation for the program.

As for the “only if” part, assume there is a partition A’ C A. Then for all a; € A’, moving the
corresponding instruction L; between the events F; and Fs ensures feasibility: exactly T execution

time is consumed between Fq and Fs, and another T is used between Fs and Fs.

As for the “if” part, assume there is a feasible transformation. Then, since 2T execution time
is used overall, the constraints mandate that exactly T of it be used between F; and FE5, and the
rest between Fy and FEs3. Thus we must move some set of instructions L C {Ly,... L, } between
FEq and F5, where ZL]eL wt(L;) =T. But then the corresponding elements in A form a partition.
O

When both the constraint block and reference block consist of straight-line code, the problem
is obviously in NP as well. A feasible ordering can always be “guessed” and then verified, which

consequently yields the following corollary.

Corollary: Feasible code synthesis is NP-complete for straight-line code. O
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5.1.2 Solution Strategy

In proving Theorem 5.1 we used the simplest possible TCEL program, which possessed just two
basic blocks. In this case a feasible transformation would simply reorder the instructions, while

keeping the program’s fundamental structure intact.

But the situation gets significantly more complicated when the program possesses branches,
and when the events that get executed are determined at runtime. Since attaining feasibility
mandates that we statically gunarantee the timing constraints along all execution paths, reordering
the instructions along a single path may not be sufficient. In the worst of all cases, all paths of a
multi-branching program would have to be “expanded,” and then each one reordered individually
— potentially requiring time and space exponential in the original number of instructions. Clearly
this is not an attractive solution approach. Moreover, it would render the problem of schedulable

task decomposition — our second objective — next to impossible.

Thus we take the following alternative approach, in which feasible tasks are synthesized in a

two-step process — section decomposition (Section 5.2) and code scheduling (Section 5.3).

Section Decomposition. First the code is translated into its gated single assignment (GSA)
form [8, 20]. This representation serves two purposes: (1) it yields a compact means of representing
the data-dependence relation discussed in Chapter 4; and (2) GSA’s convention of uniquely naming

each variable assignment is precisely what we require in the code transformations phase.

Next, the timing construct is decomposed into sections, which represent the natural schedulable
“task” units. This step involves determining the section boundaries, as well as generating a set of

dispatch equations that constrain the start and finish times of each section.

Code Scheduling. In this step the dispatch equations are checked for their consistency with the
code’s execution time. If there is an inconsistency, program transformations are used to relocate

unobservable code across section boundaries.

The algorithm is a greedy approximation, in that each section is processed locally, with the goal
of attaining consistency for an entire program. The following strategy is used: if a given section is
determined to be over-constrained, code is moved out of the section and “up” on the HFG. After
the section at hand is determined consistent, another section can be processed in reverse topological
order. Thus the net result is an “upward migration” of unobservable instructions, which terminates

either when the program achieves consistency, or it is determined to be inconsistent.

An analogous strategy is used for programs with nested timing constructs. In this case the HFG
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is scheduled in a “bottom-up” manner. That is, the innermost nodes in the HF(G are scheduled
first, with the goal of satisfying their local constraints. Then, the surrounding node is handled. If
this level is found inconsistent, the inner nodes are “opened up” once again, and more aggressive

optimization is carried out.

The actual transformations are similar to those used in Trace Scheduling [12]. As the name
implies, the Trace Scheduling algorithm works on specific traces: it selects a path (or trace) from
a given code block, and then selects instructions on that path to move. Such an approach is well
suited to our purpose, because it can focus on the traces that have the maximum execution time

among all traces within a given code block.

5.2 Section Decomposition

Section decomposition is the process of decomposing the program into a set of “code blocks” (or
sections). The input is the original HFG (e.g, that portrayed in Figure 3.3(B)), with the output
being a slightly different HFG, which is more amenable to real-time dispatching. This involves
dividing a timing construct into five code sections, as portrayed in Figure 5.2. As can be seen,
the reference block is decomposed into three sub-blocks. The unobservable code before the first
observable statement becomes an interface section (S1). The code containing the observable state-
ments becomes the reference section (S2). The unobservable code after the observable statements
becomes the first part of the delay section (S3). Consequently, the topmost unobservable code of

the constraint block becomes the second part of S3, and so on.

5.2.1 Determining Section Boundaries

Recall the discussion of the FIRST and LAST functions in Chapter 3. Since a code block may
contain complicated control structures, we require a convenient means of defining the boundaries of
52 and 54 — the sections that contain observable events. We accomplish this by inserting “markers”
in the flow graph, which consume no time and are not visible. The following marker definitions
guarantee that there are unique boundaries into and out of the sections containing observable

events.

o begin_S2: This marker is inserted directly after the unobservable instruction most closely

dominating LAST(RB) U {ezit(RB)}.
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Reference Block(RB)

te—

interface! 2
section
S1 BL begin_S2
2 D)
@ (B4) end_s2
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del ay
section l Constraint Block(CB)
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; begin_S4
o @ o Q)
. end_s4
interface 8
section
S5
‘ < Entry/Exit

Figure 5.2: Flow Graph of do Construct and its Section Division

o end_S52: This marker is inserted directly before the unobservable instruction most closely

post-dominating LAST(RB) U {entry(RB)}.

e begin_S4: This marker is inserted directly after the unobservable instruction most closely

dominating FIRST(CB) U {ezit(CB)}.

e end_S4: This marker is inserted directly before the unobservable instruction most closely

post-dominating LAST(CB) U {entry(CB)}.

For example, consider the constraint block in Figure 5.2. The unobservable node B9 post-
dominates LAST(CB) and the entry node. Thus, its logical place is in the interface section S5,
which is not subject to the construct’s timing constraints. Hence we need the marker end_S4, which

is the unique exit point for the constrained section S4.

Now, let the variable S2.start correspond to the actual time that the marker begin_S2 is “exe-
cuted” (that is, the dispatch time of section S2), and let S2.finish correspond to the time that the
section ends. Similarly, let S4.start and S4.finish represent the start and finish times of section 54.
Using these variables we can represent the section decomposition of a TCEL construct in a manner

similar to that found in the Flex language [25].

Recall the flight controller program from Figure 3.3. Figure 5.3 illustrates its constituent sec-

tions. The constraint-expression for S6 corresponds to the program’s outer, periodic loop. As the
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program is in GSA form, y-functions appear at confluence points where different values of the
same variable in the original program merge. For example, “dtheta4=v (c3,dtheta2,dtheta3)” is
inserted at the place where two different values of dtheta merge. As a result, each use of a variable
is reached by a unique assignment. Also, u-functions for variables gx, gy and i are inserted at the
periodic loop header so that the initialized values are merged with the iterative values. Again, the
bracketed numbers denote the maximum execution times of the corresponding operations on the
targeted CPU. On modern architectures, fine-grained operations like simple assignments possess
minuscule execution times, and cannot be measured (in isolation) by any timing tool. For the sake
of presentation we assume that such instructions take zero time, and concentrate on larger-grained

function calls and the like.2

5.2.2 Deriving Code-Based Timing Constraints

As seen in Figure 5.3, the code-based timing constraints can be expressed as conjunctions of linear
inequalities between start-times and finish-times of different sections. However, note the difference
between the code-based constraints and the TCEL source-level constraints: In Figure 3.3 the “finish
within” deadline is 3.1ms, while in Figure 5.3 it is tightened to 3.0ms. There is good reason for this
— the new code-based timing constraints must be strong enough to guarantee the original semantics
of the event-based constraints. That is, they must take into account the program’s execution-time

characteristics. In general, consider the TCEL construct such as
do RB start after ¢,,;, start before {,,,,1 finish within ¢,,,,2 CB

Obviously, the original TCEL parameters are not tight enough to guarantee the correctness of the
code-based constraints. For example, if we wish to maintain the “f,,,,1” requirement, it is not
sufficient to simply mandate that S4 starts within a maximum delay of ¢,,4,1 after S2 ends (though
this is certainly necessary). We can see in Figure 5.2 that the event actually ezecuted in LAST(S2)
may be E1, while the event executed in FIRST(S4) may be E4. Thus the naive strategy fails to

factor in the execution times of B3 and B4.

However, the event-based semantics is clear: the time between the executed event in LAST(S2)
and the executed event in FIRST(S4) is at most ¢,,4,1. To guarantee that this occurs, we must
account for all possible execution scenarios. Specifically, we must tighten the constraints, allowing

for the maximum amount of time between an event in LAST(S2) and end_S2, as well as the

2We revisit this issue in Chapter 7.
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S6: (S6.start[p]>pXx20ms, S6.finish[p] <px 20ms+5ms)
{
S1: |
gx1 = p(gx0, gx3);
gyl = n(gy0, gy3);
il = u(io, i3);

input(GPS, &x1, &yl); [-1ms]
input(NAV, &thetal); [-1ms]
input(IMU, &rolll); [-1ms]

S2:
output(Cntrl out, REQ_VEL); [-1ms]
S3: /* Null */ }

S4.start>S2.finish+0.75ms, S4.ﬁnish§52.ﬁnish—|—3.0ms)

P UL S

input(Cntrlin, &vell); [-1ms]
cl = GOALJi1].passed
if (c1) {

gx2 = GOALJi1].x;

gy2 = GOALJil].y;

i2 = (i1+1) % NCOORD:;

gx3 = ~y(cl, gx2, gx1);

gy3 = v(cl, gy2, gyl);
13 = v(cl, 12, i1);

rthetal = compRelAtt(thetal, x1, y1, gx3, gy3); [-25ms]
c2 = |rthetal| < EPS;
if (c2)
dthetal = 0.0;
else{
c3 = vell < VHIGH;
if (c3)
dtheta2 = rthetal;
else
dtheta3 = safeDtheta(rthetal, rolll); [-43ms]
dthetad = ~(c3, dtheta2, dtheta3);
3

dthetab = ~(c2, dthetal, dthetad);

wilap = compFlapw(rolll, vell, dtheta5); [
throttlel = compThrot(rolll, vell, dtheta5); [
output(THROT, throttlel); [-1ms]
output(FLAP Cntrl, wilap); [

3
S5: { /xnull «/ }
}

Figure 5.3: Flight Controller Program: After Section Decomposition
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maximum amount of execution time between begin_S4 and an event in FIRST(S4). We must

similarly adjust ¢,,4-2. To do this, we make the following definitions:

o Agy ™ maz{wt(p) | e € LAST(52), e —F end_S2}.°

o Agy maz{wt(p) | e € FIRST(54), begin_54 —? e}.

Note that Agy and Agy are sensitive to not only code’s execution time characteristics, but also
changes made to some paths between events and markers during program translation. For example,

changes to paths between end_S2 and a node in LAST(S2) might require re-evaluation of Ags.
Now the code-based timing constraints can be postulated as follows:
(1) Sd.start S2.finish + T (where Thin, = tinin)

(2) Sd.start S2.finish + Tae1  (Where Thap1 = tmazt — Agz — Agy)
(3)  S4.finish < S2finish + Taw2  (where Thprs = tnawz — As2)

>
<

These timing constraints are strong enough to guarantee the original event-based timing constraints.
(By convention, if the “start after” constraint is omitted, we consider ¢,,;, to be 0. Similarly, when
either the “start before” or “finish within” constraints are missing, we consider t,,,,1 = 00 or
tmaz2 = 00, respectively.) Returning to Figure 5.3, we can see that equation (3) indeed mandates

tightening the original 3.1ms to 3.0ms.

Now we wish to determine when (1)-(3) can be met. That is, what do these equations infer
about the program’s allowable worst-case execution-time behavior? This can easily be derived if we
add precedence constraints reflecting the natural flow of the program; i.e., that 54 executes after

53, which executes after S2:

(4) S2.finish + wt(S3) < Sd.start
(5) S4.start + wt(S4) < S4.finish

Eliminating S2.finish, S4.start and S4.finish from (1)-(5), we end up with:

(a) Trin < Tzt
(b) wt(S3) < Do
(¢) wt(S3) + wt(S4) < Thaw2
(d) wt(S4) < Thaw2 — Tiin

*We overload the wt-function for paths, since a path can be thought of as a sequential composition of statements.
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Section | Duration Constraint (DUR(S))

S3 min{Tmaaclv TmaxQ - wt(S4)}
S4 Trar2 — Trin

Table 5.1: Timing Constraints of S3 and S4

Obviously, (a) had better be true in order for the TCEL construct to make any sense. For the pur-
poses of our algorithm we combine (b) and (c), yielding the following two constraints on execution

times:

(*) wt(S3) < min{Tas1, Tmarz — wt(S4)}
(**) wt(S4) < TmaxZ_Tmm

These are the necessary and sufficient conditions to achieve feasibility, and they are summarized in

Table 5.1.

Returning to our example, we find that section S4 violates its duration constraint (DUR(S4) =
2.25ms),* since wt(S4) by far exceeds it. (Adding up the time annotations yields wi(S4) = 2.82ms
along the worst-case execution time path.) In the next section we discuss our code-scheduling

techniques which handle cases such as this, in which the duration constraints fail to hold.

5.3 Code Scheduling

The code scheduling algorithm is inspired by a common compiler strategy used for VLIW and
superscalar architectures [3, 10, 12, 14, 38, 48]. In such domains, an optimizing compiler exploits a
program’s inherent fine-grained parallelism, and “packs” its computations into as many functional
units as possible. Thus the objective is to keep each unit busy, and to achieve better overall

throughput.

Our problem context has an entirely different goal, and it cannot be solved by directly applying
well-known techniques such as Trace Scheduling [12] or Percolation Scheduling [3, 10]. We are
concerned not with enhancing average-case performance, but instead with ensuring feasibility. In
fact, we will be satisfied with even increasing the program’s overall execution time — as long as the

timing constraints are met.

*Tmazs — Tmin = 3.0ms — 0.75ms = 2.25ms
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algorithm Code_Scheduling('T) /* T is a timing construct */
input: the ordered set of sections {S1,S2,...,S5} in T
begin

d = Thazs — Tiin;

/* Schedule code from S4 into S3 */

call Schedule_Section(S4, S3, d, 0);

recompute Tpnaq1; /* to reflect the change in Agy */

if (wt(S3) < T ) then exit(“No scheduling needed for S3.”);

else d = min{Tap1, Tmaz2 — wt(S4)};

/* Schedule code from S3 into S1 */

call Schedule_Section(S3, S1, d, Def(S2));

end

Figure 5.4: Top-Level Algorithm for Code Synthesis

5.3.1 The Top-Level Algorithm

Our approach to code scheduling is a greedy approximation, and it attempts to attain the desired
feasibility of a timing construct in a section-by-section manner. It inspects sections S4 and S3 (in
reverse topological order), and checks whether they satisfy their duration constraints. If S4 violates
its constraint, the algorithm attempts to reduce its surplus execution time by moving nodes into

section S3. In turn it processes section 53, which may now contain newly moved code.

To perform greedy code motion, we have adapted a technique from the approach to Trace
Scheduling in [12], and we use it as a component of the code scheduling algorithm. In our approach,
nodes lying on paths that exceed their section’s duration constraint are considered for code motion.
We distinguish such paths as eritical traces. Formally, a critical trace p of section S is defined as a
path

entry(S) —F exit(S)

such that wt(p) > DUR(S). The reason we use the trace-based approach is straightforward: op-
timizing to avoid hard real-time exceptions demands scheduling only the critical traces, and no

others.

Figure 5.4 sketches the algorithm. Note that T),,,1 is recomputed after scheduling S4 and before
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scheduling S3. This is mandatory, since Agy may be changed during the scheduling. Also observe
that the code of S3 is moved into S1, while that of S4 is moved into S3. We disallow code from
moving into S2 because it could potentially change the value of Agy, which would in turn invalidate
our assumptions about DUR(S4). In order to complete the procedure in a single pass, we assume
that Agy remains constant. In reality this restriction does not seriously limit the approach: from
our experience, events in the RB typically lie in straight-line code (and thus S2 contains a single

instruction, as in our example).

The top-level algorithm calls subroutine “Schedule_Section,” which then schedules the over-
loaded section at hand. Note that when code is scheduled from S3 into S1, the variables defined in
52 are passed to the subroutine, which ensures the dependences from S2 to S3 are maintained. In
the following section we discuss this subroutine, and the strategies it uses to solve the scheduling

problem.

5.3.2 Subroutine Schedule Section(S,D,DUR(S),Viur)

For the flow graphs of source section S and destination section D, the critical trace scheduling

problem is to construct new flow graphs for S and D such that:

(1) The observable nodes of S remain in S and keep their relative order on all paths in S.
(2) wt(p) < DUR(S) holds for all traces p in S.

3) Execution ordering established by code’s original data dependences is preserved.
g g

When code is scheduled from S3 into S1 the parameter Vp,, — containing the variables defined in

S2 - is required to maintain property (3).

As we have stated, the trace-based approach is attractive precisely because it allows us to
concentrate on paths which violate the duration constraints. However, a direct application of
Trace Scheduling induces a severe liability — extra code must be inserted to preserve the program’s
semantic integrity. In the parlance of instruction-scheduling, this is typically called bookkeeping
code.

Consider the GSA program in Figure 5.5(B) to see why Trace Scheduling requires bookkeeping.

2

Since the instruction “z1=F(x)” is free of a data dependence on the variable“y,” it may be eligible
to be moved into S3. (This transformation — which we develop in the sequel — is called speculative,
since it breaks a control dependence.) As shown in Figure 5.5(C), moving the instruction requires
no additional code to maintain the program’s semantics; GSA’s naming conventions maintain the

correctness.
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(A) Code in TCEL

(B) Code in GSA

(C) Our Approach

(D) Bookkeeping Approach

do
input(P, &x);
start after ¢;
finish within ¢,
{
input(Q, &y);
cl = p(y);
if (c1) {
a = E(y);
7z = F(x);
} else
z = G(y);
2 = q(y);
if (c2)
r = H(z);
else
r = K(z);
s = I(r);

:SQ:
{

input(P, &x);

}

S3: { /* Null */ }

S4: (Sd.start> ...,
S4.finish< ...)

{

input(Q, &y);
cl = p(y);
if (c1) {

al = E(y);

7zl = F(x);
} else

22 = G(y);
a2 = y(cl, al, a0);
23 = v(cl, z1, 22);
2 = q(y);
if (c2)

rl = H(z3);
else

r2 = K(z3);
r3 = y(c2, rl, r2);
s = I(r3);

S2: 4
input(P, &x);
}
S3:4
721=F(x);
}
S4: (S4.start> ...,
S4.finish< ...)
{
input(Q, &y);
cl = p(y);
if (cl1)
al = E(y);
else

22 = G(y);

a2 = y(cl, al, a0);
23 = y(cl, z1, 22);

2 = q(y);
if (c2)

rl = H(z3);
else

r2 = K(z3);

r3 = y(c2, rl, r2);

s = I(r3);

S2:{
input(P, &x);

—

S4: (S4.start> ...,
S4.finish< ...)
{
input(Q, &y);
cl = p(y);
if (c1) {
al = E(y);
3 = q(y);
r3 = y(c3, rl, r2);
} else {
22 = G(y);
cd = q(y);
if (c4)
rd = H(22);
else
rh = K(z2);
6 = y(c4, r4, r5);

y(cl, al, a0);

(cl, 71, 22);
(cl, 3, 16);
s = I(z7);

Figure 5.5: (A) Source Code in TCEL, (B) Corresponding Intermediate Code in GSA Form, (C) In-
termediate Code after Bookkeeping-Free Transformations, and (D) Intermediate Code after Trans-
formations with Bookkeeping
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However a more aggressive policy could be carried out, which is shown in Figure 5.5(D). Note
that additional code may be moved without breaking data dependences; even the variable r may be
split into movable parts (i.e., r1 and r2) and the parts that depend on y (i.e., r3 and r5). However,

the price we pay is the additional bookkeeping code required to maintain correctness.

One obvious problem with bookkeeping is that it induces a significant amount of extra code —
indeed, if carried to extremes, the transformations in Figure 5.5(D) may result in an exponential

blow-up. And in our problem context bookkeeping may have an additional, “fatal” effect:

Scheduling a critical trace may insert bookkeeping code on other, non-critical traces, and

thereby increase their execution times. Hence a non-critical trace may become critical.

To avoid this drawback of Trace Scheduling, we use the type of transformation depicted in
Figure 5.5(C), and we use it as aggressively as possible. The strategy involves repetitively applying
the following three steps: (i) finding a critical trace p; (ii) identifying a node n which can be moved
into the destination section D; and (iii) moving n into D, along with n’s ancestor nodes required
to maintain the program’s semantics. Since our objective is to keep the amount of new code to a

minimum, step (iii) translates into the following rules for moving n into D:

(1) Node n’s data dependence predecessors are moved along with n; i.e., the nodes on which n

is transitively data dependent.

(2) The control-dependence predecessors (i.e., the if-then-else’s guarding n) are treated as fol-

lows:

(a) If possible they are copied into D, so that they still guard the execution of n.

(b) Otherwise (as in Figure 5.5(C)), n will now be unguarded in its destination section D.

The end result of code scheduling appears as if large-grained control structures were rearranged,
and hence we name the strategy structural code motion. Yet code scheduling is still trace-based,

since it is driven by worst-case paths.

Consider a node n to be moved into the destination section. When all of n’s dependence
predecessors (both data and control) are moved (or copied) along with n, the new execution ordering

is guaranteed to maintain the program’s original semantics.

But what are the ramifications of case 2(b) above, i.e., where control dependences are broken?

Consider Figure 5.6(A), where we assume that the condition variable “c” is dependent on an input

event. Examining the source code, assume that we wish to move the node above .
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if ¢ if ¢ Y, iftc C )
/
x=a+3 /)(2221-1—3
‘ x3=7(c, x1,x2) x3=7(c, x1,x2)

(A) (B) (€)
Figure 5.6: Speculative Code Motion: (A) Original Code, (B) Corresponding GSA Code and (C)
Speculatively Transformed Code

The moved instruction is executed regardless of the control-predicate’s outcome; hence the name

“speculative transformation.”

Carrying out speculative transformations raises three critical issues: variable naming, execution

time and safety.

Naming: Consider what would happen if the transformation shown in Figure 5.6(C) were per-
formed at the source level. Since x would always end up defined as a+3, one branch of the conditional
would result in an incorrect state. Fortunately, the GSA form of the program ensures that multiply
defined source variables — and their corresponding v-functions — maintain the original semantics,
regardless of where assignments are moved. Examining Figure 5.6(C), we see that x1 and x2 are

defined sequentially. By GSA’s naming conventions, the node (x3=v(c,x1,x2)) ensures that x3

always carries the assignment corresponding to the original source variable x.

Timing: Figure 5.6 shows how speculative transformations can easily increase the execution
time of the destination section D. This is not necessarily harmful, since D may in fact possess
sufficient slack for both instructions to execute. (Indeed, D may contain an explicit delay.) But
if D itself exceeds its own duration constraint, excessive speculative transformations could make
matters worse. Thus we take the following approach: the algorithm performs speculative code

motion only when feasibility cannot be achieved with the non-speculative variety.
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Safety: Perhaps the most critical issue is the correctness of the transformed program. After
all, the source code is written by a human programmer. When an instruction appears within the
body of a conditional (but is free of a transitive dependence on it), one should still assume that
the programmer had a good reason for putting it there. Often the reason stems from a personal
coding style, or perhaps for readability. Also, splitting variable definitions in the style of GSA is a

rather unnatural practice at the source level.

Referring back to Figure 5.5(C), we note that the “eager” execution of “F” should be safe if:
(1) it contains no observable events, (2) it induces no global side-effects, and (3) it does not cause
an exception. We can assume that (1)-(2) hold — otherwise “F” would not have been moved in
the first place. However, verifying property (3) may be difficult, since there may be an invariant

relationship between “p” and “F” that only the programmer understands.

While this seems to argue against speculative transformation, recall that our objective is to
assist programmers in tuning faulty code. And production real-time programmers will find this
type of code reordering sadly familiar, since it is usually carried out by hand, and often under the
pressure of an approaching release deadline. Qur technique can help in this effort, since it helps
automate this process by (1) identifying the “good target” instructions to move, (2) by transferring
them to their “correct” places, and (3) by analyzing the results. Nonetheless, we do believe that this
should be an interactive process (perhaps driven by a graphical front-end), in which the programmer

visually checks each transformation.’

For the sake of brevity, however, we present the algorithm in a fully automatic form. Thus we
assume that any node n that can be speculatively executed is “pre-checked” and is denoted by the

condition spec(n).

Unconditional and Speculative Movability. The preceding discussion leads to three classes
of instructions: those that can be unconditionally moved, those that can be moved to execute
speculatively, and those which cannot be moved at all. The following definitions distinguish between

these cases.

Definition 5.1 (Unconditional Movability) Mu(S, Vi) is the set of nodes in S that do not

trigger events, and do not use any variables in Vp,,; i.e.

Mu(S, Vigr) = {m € S| m is not an event A Use(m) N Vi, = 0}

®We discuss this issue in Chapter 7.
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Then Umove(n) denotes that we can unconditionally schedule node n from S into D:
Umove(n) = DC(n,S) C Mu(S, Vigr)

That is, all of n’s data and control dependence ancestors are also unconditionally movable — and

when n is moved, they will be moved (or copied) as well. O

Definition 5.2 (Speculative Movability) Additional considerations come into play when a node

is speculatively executed. Consider the set Ms(S, Vi, ):
Ms(S, Viar) ={m € Mu(S, Via,)| spec(m)}

If a node n is in M s(S, Vie,) then (1) it uses no variables in Vi, (2) it triggers no events, and (3)
the programmer has checked that it does not cause a local exception. Then Smove(n) denotes that

we can speculatively move node n:
Smove(n) = DDC(n,S) C Ms(S, Vigr)

That is, when Smove(n) holds true, all of n’s data-dependent ancestors can be moved too, without

mandating bookkeeping. O

The Algorithm. The code scheduling algorithm is presented in Figures 5.7 and 5.8. It is com-
posed of three stages: pre-processing, marking/deleting and post-processing. In the pre-processing
stage, S’s flow graph is traversed in topological order, during which the conditions Umove and
Smove are evaluated. A topological traversal ensures that whenever a node n is visited, all ances-
tor nodes in DC(n,S) have already been processed; hence a single traversal is sufficient to evaluate
these conditions. Then a “clone” S’ of S is created, which is used to hold the part of the flow graph
to be transferred to D.

Next the algorithm searches for a critical trace, and if one exists it invokes subroutine “Sched.”
Sched makes use of array “mark,” each of whose entries corresponds to a node in S’. Whenever
“mark[m,S’] = true,” it means that node m will be “moved” into the destination section. Sched
examines the critical trace in topological order, looking for node n such that Umove(n) is true. If
such a node n exists, then closure DC(n,S) is generated; its non-predicate members are deleted
from S, while all corresponding nodes in S’ are marked. If no unconditionally movable instruction
exists, then a transformation of the speculative variety is attempted. And if no movable node is

present, the program is forced to exit.
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subroutine Schedule_Section(S, D, d, Viqr)
input: source section S, destination section D, duration constraint d, and
a set V4, of variables defined in sections lying between S and D.
begin
/* Pre-processing Stage */
foreach node n in S in topological order do
evaluate Umove(n) and Smove(n);
/* Marking/Deleting Stage */
make a copy S’ of S;
compute p in S such that wt(p) = maz{wt(p’) | entry(S) — exit(S)};
while (wt(p) > d)
call Sched(p,S,S');
recompute p in S such that wt(p) = max{wt(p') | entry(S) ' exit(S)};
end
/* Post-processing Stage */
delete all unmarked nodes from S/;
delete all predicate nodes guarding null code from S;
append S’ to end of D;

end

Figure 5.7: The Section Scheduling Algorithm (Schedule_Section)

At the end, if all critical traces were scheduled, the algorithm proceeds to a post-processing
stage. If speculative transformation was carried out then S’ will, by definition, contain branching
structures with empty predicate nodes. In this case, the nodes on the different branches of the

predicate node are merged into a single block.

Finally, S’ is attached to the end of the destination section D. Cleaning up, the algorithm deletes
control-predicates which guard empty nodes in section S —i.e., the “if” nodes whose corresponding

bodies and y-functions were completely transferred to S’.

Example Revisited. We return to our original flight controller example from Figure 5.3, and
subject it to the code scheduling algorithm. The end-result appears in Figure 5.9. In scheduling
5S4, “Sched” unconditionally moves the function call compRelAtt, as well as the other nodes in its

dependence closure. This reduces wt(,54) by 0.25ms, which now stands at 2.57ms. Since DUR(54) =
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subroutine Sched(p, S, ')
input: critical trace p, source section S, and a clone S’ of S.
begin
if there is some n € p such that Umove(n) holds then
begin
Select first such n € p such that Umove(n) holds;
foreach node m € DC(n,S) do
mark[m, S'] := true;
if m is not a control-predicate then Delete m from S;
end
end
else if there is some n € p such that Smove(n) holds then
begin
Select first such n € p such that Smove(n) holds;
foreach node m € DDC(n,S) do
mark[m, S'] := true;
if m is not a control-predicate then Delete m from S;
end
end
else exit(“Unable to synthesize.”);

end

Figure 5.8: The Section Scheduling Algorithm (Sched)

predicate if (c3).

2.25ms), further reductions are made by entering the speculative transformation phase; this results

in moving one conditional branch and the function call safeDtheta beyond the immovable control-

After the transformation, the implementation satisfies the necessary condition for consistency,
since the body of S4 requires 2.14ms in the worst-case. Since wt(S3) = 0.68ms is still less than
DUR(S3), the code scheduling successfully terminates without further scheduling S3.

In addition to such an instant benefit, the transformation converts possibly wasteful delay into
useful computation time, since the new code in S3 can be scheduled within the delay interval

between S2 and S4.
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S6: (S6.start[p]>pXx20ms, S6.finish[p] <px 20ms+5ms)

{
S1: |
gx1 = p(gx0, gx3);
gyl = u(gy0, gy3);
il = p(i0, i3);
input(GPS, &x1, &yl); [-1ms]
input(NAV, &thetal); [-1ms]
input(IMU, &rolll); [-1ms]
3
s2: |
output(Cntrl out, REQ_VEL); [-1ms]
3
s3: {

cl = GOAL[i1].passed;
if (c1) {
gx2 = GOALJi1].x;
gy2 = GOALJil].y;
i2 = (i1+1)% NCOORD;

gx3 = ~y(cl, gx2, gx1);

gy3 = v(cl, gy2, gyl);
13 = v(cl, 12, i1);

rthetal = compRelAtt(thetal, x1, y1, gx3, gy3); [-25ms]
c2 = |rthetal| < EPS;
if (c2)
/* null */
else
dtheta3 = safeDtheta(rthetal, rolll); [-43ms]

¥
S4: (S4.start>S2 finish4+0.75ms, S4.finish<S2.finish+3.0ms)

input(Cntrlin, &vell); [-1ms]
if (c2)
dthetal = 0.0;
else{
c3 = vell < VHIGH;
if (c3)
dtheta2 = rthetal;
else
/* null */
dthetad = ~(c3, dtheta2, dtheta3);
3

dthetab = ~(c2, dthetal, dthetad);

wilap = compFlapw(rolll, vell, dtheta5); [
throttlel = compThrot(rolll, vell, dtheta5); [
output(THROT, throttlel); [-1ms]
output(FLAP Cntrl, wilap); [

3
S5: { /xnull «/ }
}

Figure 5.9: Flight Controller Program: After Code Scheduling
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5.4 Summary

In this chapter we have addressed the problem of feasible code synthesis. We approach the problem
via a two-step process, in that (1) an event-based TCEL program is decomposed into code-based
tasks; and (2) unobservable code is scheduled to avoid feasibility faults. We attack the intractability

of the code scheduling problem with a greedy approximation approach, based on Trace Scheduling.
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Chapter 6

Transformation 2: Real-Time Task Slicing

After tasks have been successfully synthesized into feasible code, the next challenge lies in achieving
schedulability of the entire application. Consider Figure 6.1. The two components at the bottom
of the diagram correspond to the major elements involved in the tuning problem. “Schedulability”
is, by definition, a key metric that drives our compiler-based task transformation tools. Thus close
interactions between the real-time scheduler and the compiler tool are necessary. But this presents
two competing demands: (1) it is desirable to maintain the traditional separation of concerns
between compilation and scheduling; and (2) schedulability depends on complex task interactions

that are often exposed at runtime.

In this chapter we present a compiler transformation method which satisfies these demands. We
name the technique real-time task slicing. This transformation is specifically intended for periodic

tasks in the domain of periodic, discrete control systems.

Ideally real-time task slicing should be complementary to feasible code synthesis, since both
address two distinct system-tuning problems. Each must be solved before we get a correct real-
time system. In practice, however, it is possible that their successive applications to the same task
will produce a conflicting result. If we were to truly aim for optimal performance, feasible code
synthesis would have to be geared for the specific schedulers. However we have already shown
that the synthesis problem is, by itself, highly complex. This would add an additional layer of

complexity.

In this thesis we treat the two phases as orthogonal. In doing so, we restrict ourselves to applying
the real-time task slicing method only to simple “every” constructs with no nested “do” constructs
within their bodies. Fortunately, many applications from discrete control domains possess this type

of periodicity requirement.

To take a closer look at the problem of schedulability tuning, we open up the process diagram of
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Figure 6.1: Software Development Process: Revisited for Real-Time Task Slicing

Figure 6.1, and re-draw the related components in Figure 6.2. The generalized task transformation
method consists of three interrelated components: (1) schedulability tests, (2) a priority ordering
algorithm, and (3) a real-time task slicer. In this chapter we explain these components, as well as
the interactions. First, in Section 6.1 we discuss the characteristics of control domain software and
fixed-priority preemptive scheduling algorithms. We also present the key idea of the generalized
slicing method, and discuss the safety of the transformation method. We devote the remaining

sections to the technical discussion of these three components.

6.1 Background

In this section we study two essential factors related to the real-time task slicing method, namely the

characteristics of discrete control software and fixed priority preemptive scheduling. Since discrete
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control software possesses many representative properties that can be found in other applications
(e.g., multimedia, vision, etc.), our approach can be easily adopted to other types of real-time

systems.

6.1.1 Characterization of Discrete Control Software

Many discrete control algorithms possess computations that fit a fixed-rate algorithm paradigm [28],
i.e., control-loops which execute repetitively with fixed periods. During each period, the physical
world measurement data is sampled, and then actuator commands are computed. Meanwhile, a

set of states is updated based on the current state and the sampled data.

The dynamic behavior of discrete control systems can often be expressed by the following
equations.
Outputy, = g(Stateg, Inputy)
Statery1 = h(Statey, Inputy)
In these equations, Inputy, Statey, and Outputy respectively represent the input, current state,
and output of the k™ period, while ¢ is an output generation function and A is a state evolution

function.

Since control equations are thought of as simultaneous relationships (and not as a computation
procedure), there are usually many valid computational orderings. The usual practice is to choose

a single ordering, and then to code it up as a cyclic control-loop whose k¥ iteration is rendered
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in Figure 6.3. The actual loop structure is often driven by one’s personal programming style, or
perhaps the availability of generic code modules. But regardless of the choice (unless the underlying

control laws are stateless), ¢ and h mandate key precedence constraints, denoted by “<”:

Inputy < Outputy
Stater, < QOutputy
Inputy, < Statepiq
Stater, < Stateriq

The typical way to enforce these constraints is to use the “code-based” semantics, and ensure that
each iteration of the control-loop completes by the end of its period. This means that the & + 1%

iteration starts only after the k** iteration ends. Figure 6.4 illustrates the effect.

Inputy  Outputy,

bt At

- >
-

k— 18t kth period k4 15 k4 2nd

A
Y

A
Y
A
Y

Figure 6.4: Dynamic Behavior of Periodically Implemented Control-Loop
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6.1.2 Fixed-Priority Preemptive Scheduling

In any nontrivial system, there are usually many such tasks that must share the CPU and other
resources. Thus they must be scheduled in a way that allows each of them to adhere to their
timing constraints. Fixed-priority, preemptive scheduling algorithms are well-suited for control
domain applications, not only because they possess periodic behavior, but also because efficient
schedulability tests can be applied. Rate-monotonic scheduling, originally developed by Lui and
Layland, is the first well-known algorithm of this kind. In their seminal paper [34] they proposed
a priority assignment algorithm, in which a task with the shorter period is assigned the higher
priority (hence the name rate-monotonic scheduling (RMS)). They also showed that such priority
assignment is optimal in a sense that whenever it fails to find a feasible priority ordering, neither
can any other static priority algorithm. However, their algorithm is applicable only to the periodic
task model where tasks have fixed periods, deadlines are equal to periods, and tasks are totally

independent of each other.

Recent research has made significant enhancements to this model which relaxes the original
restrictions. In [31] Leung and Merrill showed that deadline monotonic priority assignment is also
optimal where deadlines are shorter than periods. In [45] Sha et al. presented two protocols which
enable tasks to interact via shared resources, while still guaranteeing the tasks’ deadlines. Most
recently, a group of researchers at the University of York developed a set of analytical techniques
which can provide schedulability tests for broad classes of tasks, including those whose deadlines

are greater than their periods. [5, 51, 50].

In this dissertation work we choose the York model, mainly because of its generality. The

following notation is used in the remainder of this chapter.

o I'={r.,7m,...,7,} denotes a set of n tasks to be scheduled.
e T; denotes the period of task 7.
e D; denotes the deadline of task 7.

e ¢; denotes the worst-case execution time of 7.

The fixed priority scheduling theory of York is based on response time analysis. The response
time of task 7; is defined as the time interval between when a request for 7; arrives, and when 7;
finishes its execution servicing the request. If we can confirm that the maximum response time of
7; is no greater than D;, we can guarantee that 7; will meet its deadline even in the worst-case. We

first consider the simpler case where D; < Tj.
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Let R; denote the maximum response time of task 7;. Then R; is computed as shown below.

R =c¢ + Z [%}c] (Fq6.1)

Ti€hp(i) Y
where hp(7) is the set of higher priority tasks than 7. Observe that R; is composed of two com-
ponents, namely execution time ¢; and interference. The interference, the second term of Fq 6.1,
is the amount of time during which 7; is preempted by the higher priority tasks in hp(¢) since the
arrival of its request. As Fqg 6.1 is a recurrence equation on R;, an iterative algorithm computes

R; by initially assigning it ¢;, and then getting a new value until it converges on a fixpoint.

On the other hand, where there exists a task 7; such that D; > T, Fq 6.1 is not sufficient. This
is because uncompleted iterations of 7; can now interfere with the current one. In this case the

following general equation is used instead as discussed in [51].

R;= max {r;,—q-T;} (Fq6.2)

q=0,1,2,...

where

7‘2'7
rig=(qg+Dei+ > [Tﬁcj
75 €hp(4) I

Consider the case of three periodic tasks, where the source of task 7y is given in Figure 6.5.

Task | Execution Time | Period Deadline
T1 c1 =400 Ty = 1000 | Dy = 1000
T2 co = 400 Ty = 1600 | Dy = 1600
T3 c3 = 570 T5 = 2500 | D3 = 2500

Since the periods are equal to the deadlines, rate-monotonic priority assignment is a natural choice.
In the above table the row order corresponds to the priority order; i.e., 71 is assigned the highest

priority. We can carry out the response time analysis for these tasks using Fq 6.1 as follows:

Form: Ry = 400 < D¢ = 1000
For rp: Ry, = 400 4 [800/1000]400 = 800 < D3 = 1600
For 751 R = 5704 [2570/1000]400+ [2570/1600]400 = 2570 > D3 = 2500

We observe that the two high priority tasks 7y and 7y are schedulable, while 75 is not. (Rs is
greater than Ds when 75 runs at priority 3.) In an effort to make the task set schedulable, we
might try some hacking: e.g., by promoting 73 to the highest priority level. Although this makes

73 schedulable, it does not achieve the desired schedulability, since 79 will now be unschedulable.
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every 16ms

{

L1: input(Sensor, &data);
L2:  if ('null(data))
{

L3: t1 = Fl(state);

L4: t2 = F'2(state);

L5: t3 = F3(data);

L6: t4 = F4(data);

L7: state = I'5(t1, 12, t3);
L8: cmd = F6(t1, t3, t4);
L9: output(Actuator, cmd);

}

L10:  status.dump(“logfile”, cmd, state);

}
Figure 6.5: TCEL Program for Task 7y

Indeed, since the rate-monotonic assignment is optimal, no fixed priority assignment will suffice

here — unless the code-based semantics is abandoned!

The reason the above task set is unschedulable is obvious: the computation demands of 75 exceed
the available time. The simulated time line given in Figure 6.6 pictorially illustrates an unschedu-
lable instance of 73. Thus, to make the task set schedulable, we must be able to postpone some
computation out of the overloaded time frame. This transformation helps achieve schedulability,

since we can utilize “idle” time intervals outside the congested period.

6.1.3 Scheduling with Compiler Transformations

When the task is found unschedulable, current engineering practice forces programmers to manually
pick some critical tasks from the task set, and then to hand-optimize them. Such system-tuning is
often repeated many times, until the entire task set finally gets schedulable. We aim to ease this

process by providing a semi-automatic task transformation method, real-time task slicing.
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Figure 6.6: Simulated Time Line for the Example Task Set

Real-time task slicing is based on two simple observations; that is, (1) the current practice is
to assume that an entire control-loop must finish by its deadline, but (2) the high-level TCEL

semantics mandates only the observable event operations be finished within the task’s time frame.

The key idea of the task slicing method is as follows. We decompose a task 7 into two subtasks:
one containing all observable event operations, and the other all remaining local operations. We
call the former the IO-hander and the latter the state-update component, and we denote them by

10 State

% and T , respectively. Figure 6.7 demonstrates the decomposition of the control-loop task

originally shown in Figure 6.3.

After the decomposition, we ensure that the IO-handler subtask will execute within its allowable
time frame. On the other hand, we may postpone the execution of the state-update subtask under

I

O and 7_5'25(12567

the worst-case task phasing. Finally, we maintain precedence constraints between 7

originally induced by the task’s data and control dependences.

The task decomposition itself is carried out by the program slicing technique. As we stressed
above, we put the greatest emphasis on preserving the timing behavior of observable events and
the precedence constraints derived in Subsection 6.1.1. Before presenting the systematic slicing
procedure we describe our approach using our example task set.

Assume that slicing 7 yields the greatest benefit in schedulability. We decompose 73’s code

State

into 10-handling 7/© and state-update 75'%**, as shown in Figure 6.8. Their computation times are

separately calculated as follows:
9 =2.2ms, ' = 1.9ms

Note that the sum of the two execution times is slightly greater than the original execution time
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Figure 6.7: Decomposed Task at the k* Period

/* Subtask 74 */ /* Subtask 75t x/
input(Sensor, &data); if (¢)
¢ = null(data); {
if (¢) t2 = F'2(state);
{ state = I'5(t1, 12, t3);
t1 = Fl(state); }
t3 = IF'3(data); status_dump(“logfile”, cmd, state);

t4 = F4(data);
cmd = F6(t1, t3, t4);
output(Actuator, cmd);

Figure 6.8: Two Decomposed Subtasks of Task
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4.0ms of .

To enforce that the precedence constraints between the subtasks, we rewrite them for m5: (1)
the " instance of 74¢ must finish before the ' instance of 75%**¢; and (2) the k™ instance of
751 must finish before the k + 1% instance of 74© starts. Thus, the scheduling and dispatching

subsystems must guarantee the following execution behavior of 7.

7_210 _ Tigtate _ 7_210 _ Tigtate -

The net result of the transformation of 7 is as follows: within the worst-case time interval of 275,

we may only see one whole instance of 735,

Remainder of This Chapter. Throughout the remainder of this chapter we discuss the gen-
eralized slicing method for schedulability tuning, explaining the details of the three components.
In Section 6.2 we present the program slicing algorithm which is the crux of our transformation.
In Section 6.3 we discuss new schedulability tests, and then show how they are used, by way of a
motivating example. In Section 6.4 we introduce a priority ordering algorithm that is capable of
making feasible slicing decisions, as well as finding a feasible priority order for a given task set. To
demonstrate the effectiveness of this algorithm we show the result of an experiment we conducted

on a task set drawn from an avionics platform.

6.2 Automatic Task Decomposition by Program Slicing

The idea behind the task decomposition is, as discussed in Subsection 6.1.3, to accept a task and
then generate its two code components: one that corresponds to a subthread triggering all ob-
servable events, and the other that corresponds to a subthread computing the next-state update.
Straightforward as it may look, the decomposition can be a very complex compiler problem. Many
factors make this the case, among which are intertwined threads of control, nested control struc-
tures, complex data dependences between statements, procedure calls in the task code, etc. To
cope with these problems in a systematic manner, we harness a novel application of program slicing

[41, 52, 53]. For the sake of brevity, we assume the following;:

e Function calls are inlined.
e Loops are unrolled.

e The intermediate code of programs is translated into static single assignment form [8, 21, 16].
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The first assumption allows us to avoid interprocedural slicing [22]. The next two assumptions
simplify problems induced by spurious data dependences such as anti-dependences and output de-
pendences [4]. However, we can partially alleviate the restrictions, relying on dependence breaking
transformations, such as scalar expansion [4]. Static single assignment is one such transformation.
However, such methods will unfortunately lead to overly-conservative analysis — a limiting factor

in the algorithm.

6.2.1 The Program Slicing Algorithm

Informally a slice of program P with respect to program point p and expression e consists of P’s
statements and control predicates that may affect the value of e at point p. We call a pair (p, e)
a slicing criterion, and denote its associated slice by P/(p,e). The result is that we can execute
the slice P/(p,e) to obtain the value of e at location p. Recall our periodic controller task 72 of

Figure 6.5. The following fragment is the slice 75/(L9, cmd).

L1:  input(Sensor, &data);
L2:  if (Inull(data))
{

L3: t1 = Fl(state);

L5: t3 = F3(data);

L6: t4 = F4(data);

L8: cmd = F6(t1, t3, t4);
L9: output(Actuator, cmd);

Statements L1, 1.3, L, 1.6 and L8 are included in the slice, because variable “cmd” depends
on their computations (this is called data dependence). Also, statement L9 is included because it
generates an observable event.! Finally, the predicate on line L2 is included, because the execution
of statements L3, L5, L6, L8 and 1.9 (hence the value of “cmd”) depends on the boolean outcome
of the predicate (this is called control dependence).

Thus the computation of slices is based on data dependence as well as control dependence. In
this regard, using a program dependence graph [11, 22, 41] is ideal, since it represents both types of

dependences in a single graph. (See Section 4.2 for definition.)

The program dependence graph PDG of our controller task 7, is shown in Figure 6.9.

!We intentionally include L9, as will be discussed in Algorithm 6.1.
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Figure 6.9: Program Dependence Graph

The slice of program P with respect to program point p and expression e (i.e., P/(p,e)) can
be obtained through a traversal of P’s program dependence graph. We can extend the definition
of a program slice for a set of slicing criteria C' in a way that P/C = Uip.eyec P/{p,e). A simple
algorithm to compute the slice is given below. In the algorithm the program point p corresponds

to a vertex of PDG.
Algorithm 6.1 Computes the slice P/(p,e):

Step 1 Compute reaching definitions RD(p,e).
Step 2 Compute the slice by a backward traversal of PDG such that

P/{p,e)y={m|3In € RD(p,e) : m =, n}U{p}.

Figure 6.10 shows the graph that results from taking a slice of the program dependence graph

in Figure 6.9 with respect to criterion (L9, cmd).

One of the essential points in using our task decomposition algorithm is providing right slicing
criteria for the algorithm, so that the computed I/O slice of a task “covers” all the observable
behaviors of the original task. Criteria selection can be automated by means of the observable

event specification, or it can be manually performed by way of graphical user interface.

Let Cro(7) be a set of slicing criteria for I/O slice of task 7. Then the task decomposition
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Figure 6.10: Slice with respect to Criterion (L9, cmd)

algorithm is given below:

Algorithm 6.2 Decompose task 7 into 7'° and 75t

Step 1 Compute the slice of 7 with respect to C'1o(7) using Algorithm 6.1. The generated

slice 7/C1o(7) becomes 719,

Step 2 Delete from 7 all repeated statements of 7/¢ except for the conditional statements.

The remaining code becomes 73t

Figure 6.8 shows the two subtasks 74© and 75%¢ of 75 computed by Algorithm 6.2 with slicing

criteria Cro(7) = {(L1, data), (L9, cmd)}.

6.2.2 Assigning Times to Subtasks

Program slicing may well increase worst-case execution times of tasks for a number of reasons: (1)
control structures are replicated and will be executed twice; (2) splitting a basic block may increase
the number of register load and store operations [2]; and (3) worst-case execution time paths of the
two resultant subtasks may be incorrectly derived. We take a close look at the last factor, since
it tends to take up the greatest portion of the increase, though it is not a genuine cause of the

increase, but an artifact of overly-conservative timing prediction.
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After a conditional of a task is sliced and then spliced, the worst-case execution time of the new
task may be increased unless we carefully correlate the duplicated condition predicates. Figure 6.11
pictorially depicts this case. The original task 7 consists of one conditional, one branch of which is
[0-generating code “I0” and the other is state-update code “ST.” The worst-case execution time
of T is:

wt(7) = wt(c) + max{wt(I0), wt(ST)}.

State

In Figure 6.11 7 is sliced into two subtasks 7/¢ and 7 . Their worst-case execution times

are also given below.
wt(t19) = wt(c) + wt(I0)
wt(r9¢) = wit(c) 4+ wt(ST).

(= TIO;TSt“te) may be

Consequently, the worst case execution time of the transformed task 7’
measured as:

wit(7') = 2 - wi(c) + wi(10) + wt(ST),

which is much larger than wt(r).

I0 TState

l
AN
[¢) ST => 10 + ST
\?/

Figure 6.11: Slicing a Conditional

However, tighter worst-case execution time can be easily obtained by correlating the conditional
predicate of the subtask 7/¢ with that of the subtask 75%*¢. For example, in Figure 6.11 if “I0”
is executed in subtask 7/, then we know that the empty left branch will be executed in subtask

r5tete Thus wt(r') can be refined as follows:

wit(7') = 2 - wi(c) + max{wt(I0), wi(ST)}
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For the given two subtasks of ;, we carry out the following simple steps which are based on the

(@]

notion of predicate correlation to compute tight worst-case execution times of subtasks TZI and

TZState‘

Step 1 Calculate ¢; by running a timing tool with the code of 7.
Step 2 Calculate ¢/© by running a timing tool with the code of 7/©.

Step 3 Calculate ¢ such that eFtet = ¢/ — ¢l©.

This will serve as a good rough estimate for the transformed task code. Then we can use a profiler

to account for the two other factors that incur timing overhead.

6.3 Scheduling Alternatives and Their Analyses

We now sketch a simple, high-level procedure that uses slicing to transform an unschedulable task
set into a schedulable one. The input is set I' of n tasks, processed in order from 7, to 7. If
the task set is found unschedulable, the slicer algorithm is invoked to decompose 7, into its two
constituent threads, which then replace 7,, in I'. If the updated set is still deemed unschedulable,

the procedure goes to work on 7,_1, and so on.

In [15] we present a detailed alternative to this approach, in which tasks are processed from 7y to
Tp; i.e., the first task found unschedulable is selected for slicing. One can imagine other alternatives

as well.

However, any such scheme is critically dependent on two elements:

(1) A scheduling policy that can exploit our task model; i.e. while the 751%% threads can miss

I State

their original deadlines, the precedence constraints between instances 7/¢ and 7 must be

maintained.

(2) An offline schedulability analyzer for the given scheduling policy.

In this section we present an analytic approach that systematically addresses (1) and (2).

A static priority approach: In [15] we present a RMS based method which enjoys a simple
priority assignment rule and analysis test for its dual-priority scheme. This is certainly one of its
strengths. Its principal weakness is that the online component lacks the simplicity found in pure,

static priority scheduling due to its semi-dynamic dual priority assignment.
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Thus the following question arises: when can a set of transformed TCEL tasks be scheduled
under a fully preemptive, static priority scheme? Burns [6] provides an answer to this question
after identifying a simple, but essential fact about the TCEL task model. That is, whenever we
let a task’s deadline be greater than its period, this represents a relaxation of the classical rate-
monotonic restrictions put forth in [34]. Thus the rate-monotonic priority assignment may not be

the optimal one.

Given set I of transformed TCEL tasks

!’ 10. _State
o= 717
!’ 10. -State
Ty = T3 37y
o 10. _State
Tn - Tn 7Tn

it turns out the appropriate priority assignment is not only dependent on the deadlines (as in the
pure deadline-monotonic model), but also on the respective execution times of each 10-handler and
state-update component. In [6] Burns presents a search algorithm to generate the feasible static-
priority order — or to detect when no such order exists. Thus the approach includes the following

components.

Online Scheduler: This is a simple, preemptive dispatching mechanism, in which priority “ties”
are broken in favor of the task dispatched first. Thus, for example, a task’s current iteration will

finish before the next one starts.

Offline Analyzer: The analyzer is constructive, in that it produces a feasible priority assignment
if one exists. If no such assignment exists, perhaps the programmer may have to go back to the

system design step and reply on more aggressive system-tuning.

For given task set I' = {7y, 7,...,7,} Burns’ priority assignment algorithm accepts the pre-
processed task set I'' = {r{,75,..., 7/} as its input, where 7/ is a sliced version of 7;. It then begins
looking for a task that can run at the lowest priority (level n)?. After such a task, say, 7, is found,
the algorithm proceeds to search the new task set IV — {7/} for the second lowest priority task,
and so on. There is an important fact that leads to the optimality of this algorithm: while a task
is being tested for priority level p, all p — 1 tasks whose priorities have not yet been assigned are
assumed to run at a higher priority. In fixed-priority, preemptive scheduling, since a lower priority
task can never preempt the higher priority tasks, selections made for priority levels p or below will

not affect those above p.

2For n tasks, n denotes the lowest priority level, and 1 the highest.
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During this priority ordering, the schedulability test of 7/ (= 710, pState

K3 ? Z

) for priority p vyields

the following two conditions:

(1) Whether 7/© can always run within time D; at priority p, and

(2) Whether ¢ consecutive iterations of 7/ can run within ¢-7; + D; at priority p where ¢ > 1.

Condition (1) is required by the TCEL’s semantics; condition (2) accounts for the case where at
least one iteration of 7'2»515‘7”56 is delayed. The schedulability test boils down to a check to see if the

maximum response time of 7/ is no greater than D; in either case.

The maximum response time (denoted by R!?) of 719 with respect to hp(i) is computed as

below:

10 St te IO § : ilvq
7‘2’7q = (Ci -I— @ -I—
Tjehp( ) ]

Ri? = max {ri,—q-T) (Eq6.3)
We must subtract ¢ - T; from r;, to obtain the real response time, since r;, is measured from
the start of the ¢** period prior to the current period. Although ¢ is denoted as an unbounded
number in Fq 6.3, it can be trivially shown that there exists bounded response time R!© as long
as utilization of tasks in hp(7) and 7; is less than 100% [51]. The value of ¢ is bounded below by p
such that 7‘§7p <p-T;+ D; where

o
[=ETe;

10 State
iy = (4 D45 4 Y [

7;5€hp(7)

The intuition behind this is the execution pattern of 7/ repeats after the entire execution of 7/ fits

within its time frame.

Now recall the unschedulable task set we showed in Subsection 6.1.2. Suppose that only 7 was
sliced. This requires priority rearrangement among the tasks, since RMS is no longer optimal in

the transformed task model. The result of new priority ordering is as follows:
T3 < T3 < Té

In the next section we show how this ordering is obtained. But given that we have an ordering, we
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can check it using Fq 6.3.

For 7s:
Ry = 570 < D3 = 2500
For 7:
Ry = 400 4 [970/25001570 = 970 < Dy = 1000
For 74:
rhy = 2410 4 [2750/2500]570 + [2750/10007400 = 2750 < T5 + Dy = 3200
Too = 220 4 [1590/2500]570 4 [1590/10007400 = 1590
roq = 4104 220+ [2400/2500]570 + [2400/10007400 = 2400
RIC = max{1590, 2400 — 1600} = 1590 < Dy = 1600

As a result, the task set is shown to be schedulable under the new priority assignment.

6.4 Priority Ordering with Task Slicing

As discussed in Section 6.3, Burns’ priority assignment algorithm expects that all tasks in I' are
sliced before they are submitted for priority assignment. However, it is typically not desirable to
slice all tasks in the application due to execution time overhead incurred by task slicing. As an
example, consider a task set whose utilization is 0.96. Suppose that task slicing uniformly increases
the worst-case execution times of the tasks by 5%. If we naively slice all the tasks, this will result

in utilization of 1.008 and render the task set permanently unschedulable.

Moreover, since we view slicing as a means of tuning an application, it should selectively be

applied to tasks which will realize the greatest benefit.

To address this problem, we present an algorithm that not only finds a feasible task priority
ordering, but also picks only a small subset of tasks to slice. For a given ordered list of tasks

I' =[r,72,...,7s), we make the following definitions.

e sliced(7;) : a boolean variable denoting whether or not 7; is sliced.

o ¢l =cl0 4 cPtate,

We refer to a certain permutation I of T as a configuration, i.e. I' denotes a priority ordering® of

the tasks in I', and sliced(r;) is defined for all 7; € I". There are n! different priority orderings, and

*The first task in the list has the highest priority.
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2" possible slicing choices. Thus the algorithm’s job is to choose a task configuration among 2" - n!

distinct ones in an eflicient manner.

Definition 6.1 (Feasibility) For a given I', a configuration 1" is said to be feasible iff all tasks

in IV meet their deadlines under the priority ordering and slicing choice denoted by I".

6.4.1 Feasibility Test

Since Burns’ algorithm accepts a pre-sliced application, it can compute the exact amount of inter-
ference from the higher priority tasks when it considers a task for a priority. On the other hand,
our problem is to slice for schedulability. (Recall that for a task 7;, ¢; # !9 + ¢7t%) Thus it
seems inevitable to search the entire solution space of size 2™ - n! in order to find a feasible task

configuration.

Fortunately, there are cases where we can make a slicing decision without exhaustively exploring
the search space. We rely on the response time analysis summarized by equations Fq 6.2 and Fq 6.3

to find these cases. To be specific, we make use of the following schedulability test.

Feasible(L, 1) =
if —sliced(7y) then max,—o12. {74, — ¢ - Tr} < Dy
else max;—o1,2. {7y, — ¢ Tk} < D
where
S ={r € L]sliced(m)},
Thg = (g4 L)ex + qu,c—s[%ﬂcj + qus[%ﬂc‘v and

!
Tk,

/

R

— 10 Tk,
Tk,q—q-%Jer +ZT]€£—S[T]q—‘Cj+ZTJES :?ﬂc}-

“sliced(7) A Feasible(L, )" denotes that the unsliced 7 is schedulable with tasks in £ running
at higher priorities. Similarly, “sliced(r;) A Feasible(L,7y)” means that 7, when being sliced, is
schedulable with tasks in L.

6.4.2 The Algorithm

We now present the priority ordering algorithm in Figure 6.12. We describe below variables we use

in the algorithm.

o I' = [r,7,...,7,] is the input task list which is initially ordered in nondecreasing order of

the deadlines. Such a deadline monotonic ordering is desirable as a starting point, since most
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tasks, except for a small number of tasks to be sliced will be consistent with the ordering.

e The two parameters £1 and Ly of function Search collectively hold the list of tasks to be
priority-ordered. In every invocation, function Search(Ly,L3) returns either the priority-

ordered list of the tasks or false, if it cannot find any feasible ordering among them.

We use operator “@” to denote list append operation.

In every invocation, function Search attempts to assign the last task in £y (7 in Figure 6.12)
priority level |£1|+]|Lz|. The condition on line (1) denotes that the algorithm has already generated

a complete task configuration of T'.

The condition on line (2) means that the algorithm has checked all tasks in lists £ and £, for

priority level |£1| 4 |£L2|, but it can assign none of them that priority. Thus false is returned.

When the condition on line (3) holds, the algorithm checks if 7 is feasible with current high
priority tasks. Before doing this, the algorithm attempts to find a feasible priority ordering among
the higher priority tasks (on line (4)). If it cannot do so, 7 is infeasible in the current priority level,
and thus the algorithm tries other task for the current priority level, invoking tail recursion on line
(12).

On the other hand, if the higher priority tasks are schedulable, the algorithm checks if 7 is
feasible. If so, it returns a new ordering L@[r]. Otherwise, the algorithm slices 7 and sees if 7/ is

feasible. If 7/ is deemed feasible, it returns L@[r'].

6.4.3 A Larger Example

We constructed a task set consisting of eighteen periodic tasks, based on the avionics application
described in [35, 51]. We added tighter deadlines to the original task set, and modified the execution
times of some of the tasks. As aresult, the task set had utilization of 0.836, and it was unschedulable.
The resultant timing specification of our task set is given in Table 6.1 where the time unit is 1

microseconds.

We make the following assumptions for the task set, which we have found representative.

1. Only small portion of a task — no more than 25 % of the original task code in terms of the

worst case execution time — can be sliced.

2. Slicing incurs no more that 5 % increase in a task’s worst-case execution time.

69



algorithm Pridssign(1)
begin
return(Search(I',[]));

end

list function Search(Lq,Ls)
case

(1) when £y = £, = []: return([]);
(2) when £; =[], L2 # []: return(false);
(3) when £y = L1Q[7]:
(4) L = Search(L{QL4,1]);
(5) if L # false then
(6) if Feasible(L,7) then
(7) return( LQ[r]);
(8) else
(9) 7' = Slice(T);
(10) if Feasible(L,7') then
(11) return(LQ[r']);

end

end

(12) return(Search(L],[T]QL3));

end

Figure 6.12: Algorithm for Priority Ordering with Slicing Decision

When we ran the priority ordering algorithm with the task set in Table 6.1, it chose to slice
tasks 74, 77 and 76, and made the task set schedulable. The utilization grew slightly to 0.844. We
show the result in Table 6.2, where “R” denotes the maximum response time of an unsliced task,
and R'C and R5'**¢ respectively represent the maximum response times of the two components of

an sliced task.

6.5 Summary

In this chapter we addressed the schedulability tuning problem for real-time applications in discrete
control domains. We solved this problem with a two-tier approach. At one end was a semantics-
based compiler transformation method that safely segregates two subthreads from given task code;
at the other end was an extended schedulability analysis test, and its associated feasible priority

ordering algorithm. While the compiler-based tool had to be carefully guided by the scheduling
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T D ¢ CIO CState

71 1000 1000 51 51 0
T2 25000 5000 2000 1600 500
T3 25000 5000 1000 800 250
T4 40000 5000 2000 1600 500
Ts 50000 20000 3000 2400 750
Te | 200000 20000 3000 2400 750
T7 50000 25000 5000 4000 1250
T8 59000 25000 8000 6400 2000
T9 80000 80000 9000 7200 2250
T10 80000 80000 2000 1600 500
711 | 100000 80000 8000 6400 2000
712 | 100000 100000 5000 4000 1250
713 | 200000 100000 3000 2400 750
714 | 200000 100000 1000 800 250
715 | 200000 120000 1000 800 250
716 | 200000 140000 2000 1600 500
717 | 1000000 1000000 1000 800 250
718 | 1000000 1000000 1000 800 250

Table 6.1: Example Task Set

component in our approach, the conventional separation of concerns between compilation and

scheduling could still be maintained.
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T D c c’ R RIO  RState  Gliced?

1 1000 1000 51 51 51 0 0 n
Ty 25000 5000 2000 2100 2153 0 0 n
T3 25000 5000 1000 1050 3204 0 0 n
T4 40000 5000 2000 2100 0 4855 5406

76 | 200000 20000 3000 3150 8559 0 0

Ts 50000 20000 3000 3150 11712 0 0 n
Ts 59000 25000 8000 8400 20171 0 0 n
7 50000 25000 5000 5250 0 24375 28829

To 80000 80000 9000 9450 38339 0 0

Ti0 | 80000 80000 2000 2100 42643 0 0 n
711 | 100000 80000 8000 8400 71372 0 0 n
712 | 100000 100000 5000 5250 79780 0 0 n
T3 | 200000 100000 3000 3150 96747 0 0 n
714 | 200000 100000 1000 1050 97798 0 0 n
15 | 200000 120000 1000 1050 98849 0 0 n
16 | 200000 140000 2000 2100 0 139890 140441

717 | 1000000 1000000 1000 1050 141492 0 0 n
71z | 1000000 1000000 1000 1050 142543 0 0 n

Table 6.2: Priority Assignment with Program Slicing
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Chapter 7

Practical Considerations and Prototype

Implementation

The TCEL paradigm helps incorporate a higher level of abstraction into real-time domains. As
we have shown, TCEL’s event-based semantics constrains only those operations that are critical to
real-time operation; i.e., the events denoted in the specification or those derived from it. As such, a
source program is an appropriate representation of the designer’s intentions, and it need not over-
burden the system with unnecessary constraints. Moreover, the event-based semantics enables our
compiler tools to transform the program, and helps resolve conflicts between the timing constraints
and the code’s actual execution time. Since this is exactly the type of dirty work that compilers

do best, a human programmer’s time is probably better spent elsewhere.

On the other hand, the success of our compiler tools is contingent upon the limitations of static
program analysis techniques. In this chapter we consider such limitations, and show how we can

work around the problems associated with them.

We faced these problems in our implementation of the real-time slicer tool which uses an existing
data and control dependence analyzer. We finish this chapter with a discussion of the prototype

implementation which we call TimeWare/SLICE.

7.1 Practical Considerations.

For the sake of brevity we presented the code scheduler and the program slicer in a rather idealized
form, abstracting out some implementation-related considerations. For example, we assume that a
given program is in its perfect GSA form so that all spurious dependences are effectively removed.

We also assume that available timing tools provide fairly tight execution time bounds for small code
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segments. During our research these implementation-related factors revealed themselves via three
sources: (1) experiences in building our prototypes, (2) experiences in dealing with large programs,
and (3) discussions with colleagues who design and build production-quality real-time systems. In

the following subsections we briefly summarize several of these considerations.

7.1.1 Limits of Data-Flow Analysis

Both of the code scheduler and the program slicer heavily rely on contemporary compiler methods,
including intra- and inter-procedural data and control analysis. And as with all program transfor-
mation algorithms, the limitations of this enabling technology become a constraining factor of our
approach. For example, current static data-flow analysis is incapable of disambiguating all pointer
aliases (which at worst is an undecidable problem). Thus we cannot always translate the TCEL
source into its corresponding “perfect” GSA form. We partially assuage the problem by adopting
techniques such as (1) inlining procedures to avoid inter-procedural aliases; (2) rendering in GSA
form only those assignments that contain statically analyzable variables; and (3) unrolling loop
bodies. Of course these and similar methods will degrade the code scheduler’s performance, either
by increasing the amount of code, or by decreasing its eflicacy. However, dependence analyzers are
improving at a rapid rate, and our algorithm will improve along with them. For example, if we
incorporate the recent advances in loop dependence analyses such as those in the Omega Test [43],
we may not have to unroll loops to slice a real-time task. We can obtain better slices for loops

using techniques like loop distribution.

7.1.2 Limits of Timing Analysis

Another limiting factor is the difficulty of achieving accurate, static timing analysis in the face of
more complicated architectures. Quite simply, it has become incredibly difficult to use vendor-
supplied benchmarks, and to model the interplay between pipelines, hierarchical caches, shared
memories, register windows, etc. Thus with an approach like ours, it seems meaningless to predict
the execution time of a single instruction (or even a small block). First, the CPU time will probably
be too small to make a difference in achieving feasibility, and second, the “noise” in the prediction

will be too large.

Thus we have adopted a hierarchical abstraction approach to deal with time predictions. For
example, in the program of Figure 5.3 we accounted only for the CPU-intensive function calls that
performed complex operations, while ignoring the execution time of finer-grained instructions. The

same approach can be used on larger-grained structures. Our experience shows the compiler should

74



i

usually hunt for the “big-game targets,” and forget about the smaller ones.

However after code scheduling or program slicing is completed, it becomes imperative to verify
the result with a more sophisticated timing tool; for example, a good profiler. Performing such
re-timing is especially important in a cached memory structure, where code scheduling will always
change the instruction alignment. We note that all modern RISC compilers re-order instructions

to some degree; thus the efficacy of any source-level timing analysis is diminishing.

7.1.3 User Interaction

The above two factors argue against the fully automated code synthesis and program slicing tools.
There is also a third factor, which we discussed in reference to speculative code motion. That is,
programmers of production-quality, real-time systems will simply not accept a compiler technology
that “outsmarts” them, and possibly “disobeys” their intentions. They will, however, accept a
tool that helps tune their systems, but not at the price of sacrificing traceability to their original
programs. A simple example illustrates the importance of this. Consider what might happen if
an instruction that interacts with the environment fails to be annotated as an event (which could
easily happen with memory-mapped 10). If the instruction is relocated outside of its source section,
debugging the transformed program could become a nightmare. Even worse, a fatal timing fault
may accrue at runtime, since the program slicer may place it in the state thread, which can be

delayed past the original deadline.

All of these considerations argue for a front-end that permits the programmer to interact with
the tool during system-tuning. With our transformation engine as its foundation, a graphical
interface allows a programmer to selectively apply the transformations — and also remain informed
of the results. We have implemented such a tool for program slicing. In this tool, programmers
are asked to pick a slicing criterion from the tool’s program source screen, rather than the program
slicer doing it automatically. In this way, programmers can selectively control the application of

program slicing.

7.2 TimeWare/SLICE: the Prototype Implementation

As a proof of concept, we have implemented a program slicer tool we named TimeWare/SLICE.

The key features of the tool are as follows:

o [t computes a program slice with respect to a given slicing criterion.
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e It works on source code.

o It allows users to save a computed slice, and to carry out operations between the current
and the saved slices. These operations include intersection between slices, union of slices and
subtracting one slice from another. These commands are used to segregate special threads

from given task code.
o [t provides a graphical user interface.

o [t generates the transformed task code.

In this section we discuss the implementation of TimeWare/SLICE.

7.2.1 TimeWare/SLICE Tool Screens

A source program is displayed on the two tool windows: one called the primary window and the
other the secondary window. Figure 7.1 demonstrates a possible layout on the tool screen of a SUN

Sparc station equipped with a 17 inches display.

The primary window provides users with a work place where they can pick a slicing criterion
and get the slicing result. The result is shown as a set of highlighted source lines on the window. On
the other hand, the secondary window provides with a buffer space where a user can temporarily
store a pre-computed slice. When a user carries out operations between two slices (one on the
primary window and the other on the secondary window), the primary window works as if it were
an accumulator. That is, the primary window provides the first operand and gets the result. We
refer to the slice on the primary window as a current slice, and the one on the secondary window

as a saved slice.

7.2.2 Commands

Figure 7.2 shows a screen dump of the primary window of TimeWare/SLICE. The highlighted source
lines correspond to a computed slice. Now we describe the command buttons that are located below

the text window.

Picking a Slicing Criterion. A slicing criterion consists of a source line and a variable name.
By pressing the leftmost button of a mouse and then dragging the pointer on the primary window,

the user can select a variable name. Then the selected string is highlighted.

Similarly, by moving the pointer and clicking the middle button of a mouse, the user can mark

a source line. At that point, an arrow sign appears at the beginning of the line.
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[#] slice

/bird/sshong/test/control,c

[®] buf_shell

#include “rtio,h™

float data, state, cnds
float F10), F20), F30), FAO);
int null)s

nain{}
float t1, t2, t3, t4;
int c:
state = 0,0

EVERY (25ns)
i

receive{Sensor, Bdata);
c = lnull{data};

B

t1 = Fl{state)s

t3 = F3({data};

td = Fd{datal;

cnd = t1 * (t3+td);

send{Actuator, cnd);

state = t1 « (£2+t3);
3

ile™, cnd,

int nullCx}
float u;

return{x};
float F1{x}

float u;

return{=};

float F2(x}
float x;

Realtine_Slice Del_Line Subtract

Clear Quit Add_Line Add Isolate

Intersect

Suap

Load

Save

Undo

Transforn

static progran slice on “"cnd” at line 29
add line 24 to current slice

suap current slice with saved slice
static program slice on “state” at line 29
isolate current slice from saved slice
add line 27 to current slice

>

include "rtio.h"
float data, state, cnd;
float F1(), F20), F30), FAO);
int nullO;
nain(}

float t1, t2, t3, t4;

int cy

EVERY (25ns}

£

receive{(Sensor, #datals

{c
£
t1 = Fl{state);|

t2 = F2{state};

td = Fd{data}s

cnd = tl # (£3+t4) ;]
send{Actuator, cnd);
state = t1 & (t2+13};

3
status_log({"log_file", cnd, statels
3

int nullx)
float x5

return{x};
float F1{x}

float =3

return{a)s

float F2{u}
float x5

Figure 7.1: Tool Screens of TimeWare/SLICE

Realtime Slice Command. The (Realtime_Slice] function computes a static program slice of

the function one of whose source lines are picked as part of the slicing criterion. Figure 7.2 shows

the slice with respect to the slicing criterion ( line 29, state ).

Add and Delete Line Commands. When (Add_Line](or(Del_Line)) is pressed, TimeWare/SLICE

adds (or deletes) a current line. These commands are useful to manually edit a slice. If the current

slice is empty then has no effect.

Subtract Command. The [Subtract] function subtracts the saved slice from the current slice,

and then displays the result on the primary window. As a result, all source lines common to both

slices are removed from the current slice.

Add Command. The function adds the saved slice to the current slice, and then displays

the result on the primary window.
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[¢] slice

/bird/sshong/test/control . c

1 $include “rtio.h™

2

3 float data, state, cnd:

q float F1{}, F2(}, F3{}, Fd{};

L] int null{};

6

7 maint}

]

9 float tl1, t2, t3, td:

10 int c3}

11

12

13 EVERY {25ns}

14 §

15 receive{Sensor, Bdatal);

16 c = null{data}:

17 if {c}

18 £

19 tl = Fl{state);

20 t2 = F2{statel}

21 t3 = F3{datal:

22 td = Fd{datal:

23 chd = t1 = {(t3+td);

24 zend{Actuator, cnd):

25

26 3

27 status_log{"log_file", cnd, state};

28 3

29 3

30

31 int nullix)

32 float =3

33 £

34 return{x);

35

36

37 float Fl{x}

28 float =3

39 H

dq0 return{x};

41 3

42

dq3 float F2{xr}

dd float =3

d5 £

46 =
Realtine_Slice Del_Line Subtract Intersect Load Undo
Clear Quit Add_Line Add Isolate Suap Save Transforn

._

> static program slice on "state™ at line 29

) -~

Figure 7.2: Output of TimeWare/SLICE
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Intersect Command. The function computes the intersection of the saved slice with

the current slice, and then displays the result on the primary window.

Isolate Command. The function deletes all repeated lines from the current slice, but
leaves the control predicates of the current slice undeleted. The command is used to isolate
the state-update slice from the 10 slice.

Transform Command. The command produces transformed code by attaching the
current slice to a user-specified target line. The result is copied into a file but the original code

remains intact.

Save, Load and Swap Commands. These buttons are used to save the current slice onto the

secondary window, load the saved slice onto the primary window, and swap the two slices.

7.2.3 Implementation

The prototype implementation of TimeWare/SLICE is based on a dynamic program slicing tool
SPYDER developed at Purdue University [1]. SPYDER is originally a program debugging tool
relying on dynamic slicing, and it consists of two components: a modified version of GCC (GNU
C compiler) and GDB (GNU symbolic debugger). The role of the modified GCC is to produce the
program dependence graph for an input program as well as the object code. SPYDER traverses

the graph to compute a static program slice.

We had to tailor the implementation of SPYDER due to the following limitations.

(1) It does not allow users to pick a general slicing criterion. Instead, it limits the criterion to a

variable name.
(2) It is a program analysis tool where our implementation actually transforms the program.

(3) Its static slicer is not complete, which results in incorrect slices being produced. For example,
the static data flow analyzer of the modified GCC does not detect redefinitions of a global
variable within a function, but SPYDER does not take into account of such limitation. We

had to retool TimeWare/SLICE to conquer this problem.

We have added several features to the TimeWare/SLICE implementation, as we described in

the previous subsection. We made a strong assumption that every function call has a potential to
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redefine every global variable. This is due to SPYDER’s limited interprocedural analysis. While
our assumptions may result in too a large slice, users of TimeWare/SLICE can still modify the
automatically generated slice using the editing facilities. In such a case it is always better to be

safe than sorry.

The implementation of TimeWare/SLICE enjoys all the benefits of GNU-based software. For

instance, it can easily be compiled and run on various hardware platforms.

7.3 Summary

In this chapter we considered two fundamental technologies that enabled our tool-based method-
ology. Unfortunately, these technologies still impose practical limitations and they impede the
development of fully automated compiler tools. Thus it is desirable that programmers should be
able to closely guide and trace tool applications. Keeping this philosophy as a principle, we de-
veloped a program slicer tool that allowed user interactions and traceability of transformations

through a graphical front-end.
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Chapter 8

Conclusions

Real-time computing, once the realm of small, hard-coded embedded systems, has evolved into a
major computing discipline. Many practical techniques and formal theories have been developed for
real-time computing, and they are now widely available for various computer applications. The goal
of our work is to provide engineers with software support where we believe they need it the most:
in system-tuning. We identified three problems in this area and then presented a comprehensive

solution to them.

The first problem arises well before system-tuning, but it results in many of the inconsistencies
that only tuning can remedy. That is, a high-level real-time program must be translated into both
scheduler-oriented tasks and associated timing constraints on the tasks. The second problem is in
reconciling the difference between task execution characteristics and the timing constraints. The

last problem is attaining the desired real-time schedulability of the task set.

Our alternative to system-tuning is based on semi-automatic, compiler-based transformation
methods as shown in Figure 8.1. Our approach consists of three ingredients: a new real-time

programming language and two novel compiler transformation methods.

The TCEL Language. We designed the TCEL language, which possesses high-level timing
constructs for deadlines, periodicity, etc. Unlike other languages that came before it, TCEL has a
semantics based on time-constrained relationships between observable events. The semantics yields

a clear interpretation of timing behavior.
Feasible Code Synthesis. Armed with the event-based semantics, we developed a program
transformation called feasible code synthesis, to help synthesize feasible task code from a TCEL

program. The objective is to correct intra-task feasibility errors.
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Figure 8.1: Software Development Process: Two Alternatives

Real-Time Task Slicing. After the feasibility of each task is achieved the entire task set may
still be unschedulable. We developed a transformation method to address this problem, and we call
it real-time task slicing. While the optimization is completely local, the improvement is realized

globally, for the entire task set.

Alan Burns at the University of York independently developed a fixed-priority scheduling scheme
to support the TCEL model. His analysis, in turn, led us to make a further improvement in the
slicing tool; specifically, we developed a priority ordering algorithm that derives only a small subset

of tasks to be sliced for schedulability.

82



8.1 Future Directions

We originally envisioned TCEL as a stand-alone real-time programming language. However, over
time the emphasis of this work shifted from “programming languages” to “tuning.” Eventually we
realized that this tuning approach was applicable to many different languages where the minimal
requirement is an annotation mechanism that can both distinguish observable events in a real-
time program, and establish timing relationships between the events. Indeed, perhaps a graphical
language may prove better suited to this purpose. Though their application domain is different from
ours, several recent multimedia tools have been developed, which allow users to specify temporal
relationships between several continuous media [26]. We plan to borrow some of the ideas used in

these languages to graphically describe timing relationships in a real-time program.

When a real-time application is written in such a graphical language, the compiler has more free-
dom to interleave operations because code blocks are only constrained by the specified precedences
and data dependences. We are investigating this research direction, since it accords with our thrust
in a graphical user interface. Moreover, we believe a wider spectrum of compiler transformations

will be applicable to the program.

There is another interesting research direction which is closely related to our tool-based approach
to real-time programming. The compiler-based approach we presented in this dissertation can help
developers tune applications. However, when the design is flawed, no amount of tuning can help
achieve either feasibility or schedulability. Flaws are often the result of translating a high-level
specification into a set of schedulable “tasks.” For example, real-time programmers manually
break a complex real-time design into tasks, while trying to maintain the functional correctness, so
that the real-time schedulers can tractably guarantee the system’s requirements. Consequently, this
decomposition introduces a new class of intermediate timing constraints, which are artifacts used
to realize the original high-level requirements. If our tuning tools cannot help the programmers
achieve an implementation consistent with the intermediate constraints, then the whole manual

decomposition may have to be repeated.

An important research direction is to automate this process with a comprehensive design
methodology. Although our compiler-based approach provides a partial solution by means of a
new programming language, we plan to push it into a higher level in the design hierarchy. We
recently laid the foundation to achieve this goal, via an automated design methodology that works

hand-in-hand with real-time design tools [17]. We call this end-to-end design.

The methodology links two more phases in the design hierarchy, i.e., a high-level component

derives intermediate constraints using the low-level tuning tools. The result is a way to aid pro-
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grammers in decomposing tasks and deriving the intermediate rate constraints.

We believe that this type of strategy can significantly streamline the design process, since it
supports a variety of low-level resource-specific considerations early on in the life-cycle. We are
currently investigating a full-scale version of this method in order to incorporate network commu-

nication, as well as the load on each processor.
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