
A Parallel Implementation of theBlock-GTH algorithm�Yuan-Jye Jason WuySeptember 2, 1994AbstractThe GTH algorithm is a very accurate direct method for �ndingthe stationary distribution of a �nite-state, discrete time, irreducibleMarkov chain. O'Leary and Wu developed the block-GTH algorithmand successfully demonstrated the e�ciency of the algorithm on vec-tor pipeline machines and on workstations with cache memory. Inthis paper, we discuss the parallel implementation of the block-GTHalgorithm and show e�ective performance on the CM-5.1 IntroductionTo �nd the stationary distribution of a �nite-state, discrete time, irreducibleMarkov chain is a fundamental task for many probabilistic problems. Thisis equivalent to seeking the left eigenvector corresponding to the eigenvalue1 of a transition matrix P of order n:�P = � ; nXi=1 �i = 1 : (1)Grassmann, Taksar and Heyman [2] introduced a direct algorithm, theGTH algorithm, to solve the steady-state vector �. Later Heyman [3] showed�This work was supported by NSF Grant 91-15568.yApplied Mathematics Programs, University of Maryland, College Park, MD 20742.yunu@cs.umd.edu 1

that the GTH algorithm gave very good numerical results and O'Cinneide [4]showed that the computed vector � has low componentwise relative error.Cohen, Heyman, Rabinovitch, and Brown [1] also developed a parallel im-plementation on the MasPar system. In order to reach high performanceover a large class of computers, O'Leary and Wu [5] developed a block formalgorithm, the block-GTH algorithm, and successfully demonstrated the e�-ciency of the algorithm on vector pipeline machines and on workstations withcache memory. They also proved that the block-GTH algorithm computes �with low componentwise relative error.In this paper, we discuss the parallel implementation of the block-GTHalgorithm. The machine used to implement the algorithm is the Connec-tion Machine CM-5. In x2, we will briey introduce the parallel computingenvironment. The algorithm and data partition will be stated in x3. Theexperimental results will be given in x4. Finally, we state conclusions in x5.2 The CM-5 EnvironmentThe CM-5 machines we used contain either 32 or 256 processing nodes, eachof which includes a 32-megahertz SPARC processor, 32 megabytes of memory,and four high speed vector-processing units. These processing nodes aresupervised by a collection of control processors which are SUN microsystemsworkstations running a version of the UNIX operating system. The controlprocessors also handle the system's I/O devices, interfaces, and serial usertasks. The processing nodes can execute both single-instruction multiple-data (SIMD) and multiple-instruction multiple-data (MIMD) instructions.The basic architecture of the data network in the CM-5 is a fat-tree.The CM-5 system comes with the CM Fortran language which is basedon standard Fortran 77 supplemented with the array-processing extension ofFortran 90. CM Fortran also supports some additional intrinsic functions anddata allocation statements which are useful in data parallel programming.For example, the complier directives, which contain layout, align, andcommon statements, can specify information to the CM Fortran compiler forthe allocation of arrays in the Connection Machine memory. If we declare anarray in the program asREAL G(100,100)CMF$ LAYOUT G(:SERIAL,:NEWS)2

Then each column of the matrix G is saved in one processor only, and asingle processor may contain several columns. In this manner, a subscripttype instruction likeG(1,1:n)=G(1,1:n)+G(2,1:n)will be executed within each processor simultaneously without interprocessorcommunications. This is the fundamental technique in programming SIMDcode for the block-GTH algorithm.3 The Block-GTH AlgorithmInstead of working on the original transition matrix P in (1), we seek the lefteigenvector corresponding to the eigenvalue 0 of the generator G = I � P ,i.e. �G = 0 ; nXi=1 �i = 1 :Note that G has nonnegative o�-diagonal entries andGe = 0 ; (2)where e is the column vector of ones.The GTH algorithm is a variant of Gaussian elimination and consistsof two phases: LU factorization and backsubstitution. The key di�erencebetween GTH and Gaussian elimination is the way of computing the diagonalentries during the LU decomposition. Using the property of zero row sums,GTH calculates the main diagonal pivot elements as the negative row sumof o�-diagonal elements.The block-GTH algorithm is similar to block LU factorization. Supposethe block size is l; 1 � l � n. Let Gk be a (n � (k � 1)l) � (n � (k � 1)l)matrix and partition Gk as Gk = " Ak BkCk Dk # ; (3)where Ak and Dk are square matrices of order l and (n � kl) respectively.Then G1 = G and we have a block LU factorization for Gk in the formGk = " Ak 0Ck Dk � CkA�1k Bk # " 1 A�1k Bk0 I # :3

Now, de�ne Gk+1 as Gk+1 = Dk � CkA�1k Bk :To check the inheritance of the zero row sums property, assume that Gksatis�es (2), i.e., [Ak Bk] " e1e2 # = [Ck Dk] " e1e2 # = 0 ;where e1 and e2 are l and (n� kl) column vectors of ones respectively. SinceA�1k Bke2 = �e1, we haveGk+1e2 = Dke2 � CkA�1k Bke2= Dke2 + Cke1= 0 :In addition, all o�-diagonal entries of Gk+1 are nonnegative, so Gk+1 is agenerator.As for the backsubstitution phase, suppose we have the row vector pk+1such that pk+1Gk+1 = 0. It is easy to verify thatpk = [�pk+1CkA�1k pk+1] (4)satis�es pkGk = 0. Finally, we compute the stationary distribution by nor-malizing the vector p1.The only task left is how to represent A�1k . Since Gk is a generatorfor every k, it is natural to compute a LU decomposition for Ak by theGTH algorithm. To reduce the data access time and to maintain the blockstructure, we can patch the column vector Bke2, which is part of the rowsums, to Ak. It has been shown in [5] that a LU decomposition for Ak canbe obtained by applying the GTH algorithm to the matrixHk = " Ak Bke20 0 # : (5)Suppose the matrix Ak has a LU factorization as Ak = Lk Uk, where Ukhas unit diagonal entries. Then after performing the LU factorization phasein block-GTH, the generator G can be expressed as4

I0 0I (L2U2)�1B2(L1U1)�1B1. . . IL1U1C1 C2L2U2 00. . .LnUnG = :We now state the block-GTH algorithm formally. The notation daemeansthe smallest integer which is larger than or equal to the number a. Thealgorithm is excerpted and modi�ed from [5].Algorithm block-gthfactorization phase:Given: Generator G, Block size l.1. Let G1 = G. Let n̂ = dn=le:2. For k = 1; 2; :::; n̂2.1. Partition Gk as in (3), where Ak is an l � l matrix.2.2. Compute the row sums of Bk and de�ne Hk by (5).2.3. Compute matrices Lk and Uk by applying the factorization phaseof the GTH algorithm to the matrix Hk.2.4. If k < n̂2.4.1. Replace Bk by (LkUk)�1Bk.2.4.2. Compute Gk+1 = Dk � CkBk.End if.End for.backsubstitution phase3. Let pn̂ be computed from the back substitution phase of the gth algo-rithm applied to Hn̂. 5

4. For k = n̂� 1; n̂� 2; :::; 1;4.1. Compute pk by (4), using Lk; Uk.End for.5. Renormalize � = p1=(p1e).There are two steps that can be implemented by using intrinsic functionssupported by the CM Fortran in the block-GTH algorithm. At step 2.2, weuse the function SUM to calculate the row sums of the matrix Bk. It can bewritten as a single instruction:ROWSUM=SUM(B k(:,:), DIM=2)The DIM=2 means the summation carried out along the column dimension,and ROWSUM will be an l vector saving the row sums. The function MATMUL,matrix multiplication, can be used at step 2.4.2.As we mentioned before, the proper use of compiler directives combinedwith subscript instructions will signi�cantly improve the performance of aCM Fortran program. We now have to decide in which way the generator Gis allocated.There are three possibilities:G(:NEWS,:NEWS), G(:NEWS,:SERIAL), and G(:SERIAL,:NEWS).(G(:SERIAL, :SERIAL) produces a serial implementation.) Based on ourexperiments, we �nd G(:SERIAL,:NEWS) has better performance than theother two. The G(:NEWS,:NEWS) case makes the function MATMUL faster butcosts too much interprocessor communication in the other steps. As forG(:NEWS,:SERIAL), it does not fully utilize the parallel processors since theoptimal block size usually is much smaller than the order n of the generator.Thus, the column dimension of the matrix Bk is usually larger than the rowdimension. To declare the second axis to be serial does not achieve parallelperformance at step 2.2 and 2.4.1. 6

4 Experimental ResultsIn this section, we will present the experimental results on the CM-5. Tomake a comparison, we also show the serial performances with the samegenerators on a SUN SPARCstation IPX which has a 64k byte cache memory.Two technical remarks have to be noted when we compile the code:1. The CM-5 run time system uses a block layout which divides the arrayinto contiguous subgrid blocks of array elements and distributes onesubgrid block per vector unit. Since the length of vector unit is eight,the natural subgrid block size is a multiple of 8. This is referred to asvector length padding. To make the array layout exible, we compilethe code with the option -nopadding.2. The standard Fortran 90 function MATMUL does not utilize the vectorunits, but MATMUL is specially optimized in the CM Scienti�c SoftwareLibrary (CMSSL). One can link in the CMSSL library by compilingcode with option -lcmsslcm5vu.First, we tested four di�erent sizes of generator, i.e., n = 512; 800; 1024;and 2048. The block size was varied as l = 4; 8; 12; : : : ; n on the CM-5 with32 nodes. For the SUN machine, we varied the block size from 1 to somepredicted optimal size (see [5]) with increment 1. Once it passed the predictednumber, we changed the increment to 20. Table 1 shows the timings, optimalblock size, megaops rate and speedup, de�ned byspeedup = the times on CM-5the times on SUN SPARC IPX :We can see the speedup increases from 8.53 to 48.78 when the problem sizebecome larger. Next, we tested larger problem size n = 4096 and 8192 on theCM-5 with 256 nodes. Table 2 gives the timings, block size, and megaopsrate.Figure 1 shows timing data for the block-GTH algorithm on the CM-5 forproblem size 1024. The backsubstitution phase cost only 0.10-0.16 second,so we do not plot it in the �gure. For small block size, the most expensivesteps are matrix multiplication and row sums, while LU decomposition andtriangular solve are expensive when the block size is large. Initially, the costof matrix multiplication and row sums drops faster than LU decomposition7

and triangular solve grow, and the optimal block size is about 100. Thejaggedness of the time curve for triangular solving for matrix Bk (step 2.4.1)is caused by the loops at step 2.4. When dn=le drops by one as the blocksize l increases, we will save one triangular solve. Therefore, the time dropswhen the block size l evenly divides n.Figure 2 gives the total time as a function of block size on both the CM-5and the SUN. Note that the program performs the GTH algorithm whenthe block size is equal to the problem size. The parallel GTH has betterperformance than the serial block-GTH, and the parallel block-GTH is evenbetter.5 ConclusionWe have produced an e�cient parallel implementation of the block-GTHalgorithm, distributing the matrix G by columns, and demonstrated that itis a very e�ective algorithm for parallel computation.6 AcknowledgementsI thank Dianne P. O'Leary and Jerry Sobieski for very helpful comments.References[1] DavidM. Cohen, Daniel P. Heyman, Asya Rabinovitch, and Danit Brown.A parallel implementation of the GTH algorithm. Bellcore, Morristown,New Jersy, unpublished notes, 1994.[2] W. K. Grassmann, M. I. Taksar, and D. P. Heyman. Regenerative analysisand steady state distributions. Operations Research, 33:1107{1116, 1985.[3] Daniel P. Heyman. Further comparisons of direct methods for computingstationary distributions of Markov chains. SIAM J. Alg. Disc. Meth., 8No.2:226{232, 1987.[4] C. A. O'Cinneide. Entrywise pertrubation theory and error analysis forMarkov chains. Numerische Mathematik , to appear.8

[5] Dianne P. O'Leary and Yuan-Jye J. Wu. A block-GTH algorithm for �nd-ing the stationary vector of a Markov chain. Technical report, Inst. forAdvanced Computer Studies Report TR-93-123, Computer Science De-partment Report TR-3182, University of Maryland, College Park, 1993.

9

SUN CM-5 (32 nodes)Problem Actual ActualSize Optimal Time Mop Optimal Time Mop Speedupn block (sec) Rate block (sec) Rate512 21 22.30 4.03 32 2.61 34.36 8.53800 16 79.00 4.33 48 6.58 52.01 12.001024 14 193.02 3.72 64 9.85 72.83 19.602048 140 1981.18 2.85 128 40.61 139.10 48.78Table 1: Timings, optimal block size, megaops rate, and speedup for gen-erators of order 512, 800, 1024, and 2048CM-5 (256 nodes)Problem Size Block Size Time (sec) Mop Rate4096 128 38.20 1199.828192 256 153.13 2394.11Table 2: Timings, block size, and megaops rate for generators of order 4096and 8192
0 200 400 600 800 1000 1200

0

10

20

30

40

50

60

70

80

block size l

tim
e

(s
ec

)

CM-5

___ Total

+++ Row sums (step 2.2)

----- LU decomposition (step 2.3)

...... Triangular solving (step 2.4.1)

-.-.- Matrix multiplication (step 2.4.2)

Figure 1: Detailed block-GTH time as a function of block size for generatorof order 1024 10

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

___ n=1024

---- n=800

..... n=512

block size l

tim
e

(s
ec

)

CM-5

0 200 400 600 800 1000 1200
0

50

100

150

200

250

n=1024

n=800

n=512

block size l

tim
e

(s
ec

)

SUN SPARCstation IPX

Figure 2: Block-GTH time as a function of block size for generator of order512, 800, and 1024 11

