A Parallel Implementation of the
Block-GTH algorithm*

Yuan-Jye Jason Wu'
September 2, 1994

Abstract

The GTH algorithm is a very accurate direct method for finding
the stationary distribution of a finite-state, discrete time, irreducible
Markov chain. O’Leary and Wu developed the block-GTH algorithm
and successfully demonstrated the efficiency of the algorithm on vec-
tor pipeline machines and on workstations with cache memory. In
this paper, we discuss the parallel implementation of the block-GTH
algorithm and show effective performance on the CM-5.

1 Introduction

To find the stationary distribution of a finite-state, discrete time, irreducible
Markov chain is a fundamental task for many probabilistic problems. This
is equivalent to seeking the left eigenvector corresponding to the eigenvalue
1 of a transition matrix P of order n:

TP=r,Y m=1. (1)
=1

Grassmann, Taksar and Heyman [2] introduced a direct algorithm, the
GTH algorithm, to solve the steady-state vector 7. Later Heyman [3] showed

*This work was supported by NSF Grant 91-15568.
T Applied Mathematics Programs, University of Maryland, College Park, MD 20742.
yunu@cs.umd. edu

that the GTH algorithm gave very good numerical results and O’Cinneide [4]
showed that the computed vector 7 has low componentwise relative error.
Cohen, Heyman, Rabinovitch, and Brown [1] also developed a parallel im-
plementation on the MasPar system. In order to reach high performance
over a large class of computers, O’Leary and Wu [5] developed a block form
algorithm, the block-GTH algorithm, and successfully demonstrated the effi-
ciency of the algorithm on vector pipeline machines and on workstations with
cache memory. They also proved that the block-GTH algorithm computes =
with low componentwise relative error.

In this paper, we discuss the parallel implementation of the block-GTH
algorithm. The machine used to implement the algorithm is the Connec-
tion Machine CM-5. In §2, we will briefly introduce the parallel computing
environment. The algorithm and data partition will be stated in §3. The
experimental results will be given in §4. Finally, we state conclusions in §5.

2 The CM-5 Environment

The CM-5 machines we used contain either 32 or 256 processing nodes, each
of which includes a 32-megahertz SPARC processor, 32 megabytes of memory,
and four high speed vector-processing units. These processing nodes are
supervised by a collection of control processors which are SUN microsystems
workstations running a version of the UNIX operating system. The control
processors also handle the system’s I/O devices, interfaces, and serial user
tasks. The processing nodes can execute both single-instruction multiple-
data (SIMD) and multiple-instruction multiple-data (MIMD) instructions.
The basic architecture of the data network in the CM-5 is a fat-tree.

The CM-5 system comes with the CM Fortran language which is based
on standard Fortran 77 supplemented with the array-processing extension of
Fortran 90. CM Fortran also supports some additional intrinsic functions and
data allocation statements which are useful in data parallel programming.

For example, the complier directives, which contain layout, align, and
common statements, can specify information to the CM Fortran compiler for
the allocation of arrays in the Connection Machine memory. If we declare an
array in the program as

REAL G(100,100)
CMF$ LAYOUT G(:SERIAL, :NEWS)

Then each column of the matrix GG is saved in one processor only, and a
single processor may contain several columns. In this manner, a subscript
type instruction like

G(1,1:n)=G(1,1:n)+G(2,1:n)

will be executed within each processor simultaneously without interprocessor
communications. This is the fundamental technique in programming SIMD

code for the block-GTH algorithm.

3 The Block-GTH Algorithm

Instead of working on the original transition matrix P in (1), we seek the left
eigenvector corresponding to the eigenvalue 0 of the generator G = I — P,
i.e. B
G =0 5 Z T, = 1.
=1
Note that GG has nonnegative off-diagonal entries and

Ge=10, (2)

where e is the column vector of ones.

The GTH algorithm is a variant of Gaussian elimination and consists
of two phases: LU factorization and backsubstitution. The key difference
between GTH and Gaussian elimination is the way of computing the diagonal
entries during the LU decomposition. Using the property of zero row sums,
GTH calculates the main diagonal pivot elements as the negative row sum
of off-diagonal elements.

The block-GTH algorithm is similar to block LU factorization. Suppose
the block size is [,1 < 1 < n. Let Gy be a (n — (k—1)I) x (n — (k — 1)I)
matrix and partition G} as

Ay By
-])
where Ay and Dy, are square matrices of order [and (n — kl) respectively.
Then ¢; = G and we have a block LU factorization for G5 in the form

G- Ap 0 1 A;'By
T Cr Dr—CRATIB || 0 T '

Now, define Gyq as
Gry1 = Dy — CR AL By .

To check the inheritance of the zero row sums property, assume that Gy
satisfies (2), i.e.,

2 €9

[AkBk]lZI]Z[Cka]lGI]ZO,

where €1 and ey are [and (n — kl) column vectors of ones respectively. Since
A;lBkez = —e¢p, we have

Gk+1€2 = Dkeg - CkA;IBkGQ
Dyey + Crey
= 0.

In addition, all off-diagonal entries of G4y are nonnegative, so Gyyq is a
generator.

As for the backsubstitution phase, suppose we have the row vector ppyq
such that pry1Gryr = 0. It is easy to verify that

P = [P ChAL Y pr] (4)

satisfies p Gy = 0. Finally, we compute the stationary distribution by nor-
malizing the vector p;.

The only task left is how to represent A;'. Since Gy is a generator
for every k, it is natural to compute a LU decomposition for Aj by the
GTH algorithm. To reduce the data access time and to maintain the block
structure, we can patch the column vector Bjey, which is part of the row
sums, to Ag. It has been shown in [5] that a LU decomposition for A can
be obtained by applying the GTH algorithm to the matrix

A Byey] ')

H’“:lo 0

Suppose the matrix Ay has a LU factorization as Ay = Ly Uy, where Uy,
has unit diagonal entries. Then after performing the LU factorization phase
in block-GTH, the generator (G can be expressed as

LUy (L Uy)™' By
LU, (LzUz)_le
G =
Ci | O
LU, I

We now state the block-GTH algorithm formally. The notation [a] means
the smallest integer which is larger than or equal to the number a. The
algorithm is excerpted and modified from [5].

ALGORITHM BLOCK-GTH

FACTORIZATION PHASE:

Given: Generator (G, Block size [.

1. Let Gy = G. Let n = [n/I].

2. For k=1,2,....n

2.1. Partition Gy, as in (3), where Ay is an [x [matrix.

2.2. Compute the row sums of By and define Hy by (5).

2.3. Compute matrices L, and U by applying the factorization phase
of the GTH algorithm to the matrix Hj.

24. Itk <n

2.4.1. Replace By, by (LyUy)™' By.
2.4.2. Compute Gy = Dy — Cp By.

End if.
End for.

BACKSUBSTITUTION PHASE

3. Let p; be computed from the back substitution phase of the GTH algo-
rithm applied to Hj;.

4. Fork=n—-1,n—2,...,1

?

4.1. Compute py by (4), using Ly, Uy.
End for.

5. Renormalize 7 = p1/(p1e).

There are two steps that can be implemented by using intrinsic functions
supported by the CM Fortran in the block-GTH algorithm. At step 2.2, we
use the function SUM to calculate the row sums of the matrix By. It can be
written as a single instruction:

ROWSUM=SUM(B k(:,:), DIM=2)

The DIM=2 means the summation carried out along the column dimension,
and ROWSUM will be an [vector saving the row sums. The function MATMUL,
matrix multiplication, can be used at step 2.4.2.

As we mentioned before, the proper use of compiler directives combined
with subscript instructions will significantly improve the performance of a
CM Fortran program. We now have to decide in which way the generator &
is allocated.

There are three possibilities:

G(:NEWS, :NEWS), G(:NEWS, : SERIAL), and G(:SERIAL, :NEWS).

(G(:SERIAL, :SERIAL) produces a serial implementation.) Based on our
experiments, we find G(:SERIAL, :NEWS) has better performance than the
other two. The G(:NEWS, :NEWS) case makes the function MATMUL faster but
costs too much interprocessor communication in the other steps. As for
G(:NEWS, : SERIAL), it does not fully utilize the parallel processors since the
optimal block size usually is much smaller than the order n of the generator.
Thus, the column dimension of the matrix By is usually larger than the row
dimension. To declare the second axis to be serial does not achieve parallel
performance at step 2.2 and 2.4.1.

4 Experimental Results

In this section, we will present the experimental results on the CM-5. To
make a comparison, we also show the serial performances with the same
generators on a SUN SPARCstation IPX which has a 64k byte cache memory.

Two technical remarks have to be noted when we compile the code:

1. The CM-5 run time system uses a block layout which divides the array
into contiguous subgrid blocks of array elements and distributes one
subgrid block per vector unit. Since the length of vector unit is eight,
the natural subgrid block size is a multiple of 8. This is referred to as
vector length padding. To make the array layout flexible, we compile
the code with the option -nopadding.

2. The standard Fortran 90 function MATMUL does not utilize the vector
units, but MATMUL is specially optimized in the CM Scientific Software
Library (CMSSL). One can link in the CMSSL library by compiling

code with option -lemsslembvu.

First, we tested four different sizes of generator, i.e., n = 512,800, 1024,
and 2048. The block size was varied as [= 4,8,12,...,n on the CM-5 with
32 nodes. For the SUN machine, we varied the block size from 1 to some
predicted optimal size (see [5]) with increment 1. Once it passed the predicted
number, we changed the increment to 20. Table 1 shows the timings, optimal
block size, megaflops rate and speedup, defined by

the times on CM-5
the times on SUN SPARC IPX

speedup =

We can see the speedup increases from 8.53 to 48.78 when the problem size
become larger. Next, we tested larger problem size n = 4096 and 8192 on the
CM-5 with 256 nodes. Table 2 gives the timings, block size, and megaflops
rate.

Figure 1 shows timing data for the block-GTH algorithm on the CM-5 for
problem size 1024. The backsubstitution phase cost only 0.10-0.16 second,
so we do not plot it in the figure. For small block size, the most expensive
steps are matrix multiplication and row sums, while LU decomposition and
triangular solve are expensive when the block size is large. Initially, the cost
of matrix multiplication and row sums drops faster than LU decomposition

7

and triangular solve grow, and the optimal block size is about 100. The
jaggedness of the time curve for triangular solving for matrix By, (step 2.4.1)
is caused by the loops at step 2.4. When [n/l] drops by one as the block
size [increases, we will save one triangular solve. Therefore, the time drops
when the block size [evenly divides n.

Figure 2 gives the total time as a function of block size on both the CM-5
and the SUN. Note that the program performs the GTH algorithm when
the block size is equal to the problem size. The parallel GTH has better
performance than the serial block-GTH, and the parallel block-GTH is even
better.

5 Conclusion

We have produced an efficient parallel implementation of the block-GTH
algorithm, distributing the matrix ' by columns, and demonstrated that it
is a very effective algorithm for parallel computation.

6 Acknowledgements

I thank Dianne P. O’Leary and Jerry Sobieski for very helpful comments.

References

[1] David M. Cohen, Daniel P. Heyman, Asya Rabinovitch, and Danit Brown.
A parallel implementation of the GTH algorithm. Bellcore, Morristown,
New Jersy, unpublished notes, 1994.

[2] W. K. Grassmann, M. I. Taksar, and D. P. Heyman. Regenerative analysis
and steady state distributions. Operations Research, 33:1107-1116, 1985.

[3] Daniel P. Heyman. Further comparisons of direct methods for computing
stationary distributions of Markov chains. SIAM J. Alg. Disc. Meth., 8
No.2:226-232, 1987.

[4] C. A. O’Cinneide. Entrywise pertrubation theory and error analysis for
Markov chains. Numerische Mathematik, to appear.

[5] Dianne P. O’Leary and Yuan-Jye J. Wu. A block-GTH algorithm for find-
ing the stationary vector of a Markov chain. Technical report, Inst. for
Advanced Computer Studies Report TR-93-123, Computer Science De-
partment Report TR-3182, University of Maryland, College Park, 1993.

SUN CM-5 (32 nodes)
Problem | Actual Actual
Size Optimal | Time | Mflop | Optimal | Time | Mflop | Speedup
n block (sec) Rate block (sec) | Rate
512 21 22.30 4.03 32 2.61 | 34.36 8.53
800 16 79.00 4.33 48 6.58 | 52.01 12.00
1024 14 193.02 | 3.72 64 9.85 | 72.83 19.60
2048 140 1981.18 | 2.85 128 40.61 | 139.10 48.78

Table 1: Timings, optimal block size, megaflops rate, and speedup for gen-

erators of order 512, 800, 1024, and 2048

CM-5 (256 nodes)

Problem Size | Block Size | Time (sec) | Mflop Rate
4096 128 38.20 1199.82
8192 256 153.13 2394.11
Table 2: Timings, block size, and megaflops rate for generators of order 4096
and 8192
cM-s
80 T
70 __ Total b
+++ Row sums (step 2.2)
60 - LU decomposition (step 2.3) =
...... Triangular solving (step 2.4.1)
501 .-.- Matrix multiplication (step 2.4.2) =

time (sec)

30

20

10

40

block size |

1200

Figure 1: Detailed block-GTH time as a function of block size for generator
of order 1024

10

CM-5

80 ‘
70f ___n=1024]
60[- —-- =800]

time (sec)

0 Il Il Il Il Il
0 200 400 600 800 1000 1200
block size |
SUN SPARCSstation IPX
250 T T T
200 n=1024 B
1501 B
o
(]
2
]
£ n=800
0~ L B
N/ -
50 B
n=512
O Il Il Il Il Il
0 200 400 600 800 1000 1200
block size |

Figure 2: Block-GTH time as a function of block size for generator of order

512, 800, and 1024

11

