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Abstract The classical nonlinear programming problem formulation is often too rigid to adequately
describe an engineering design problem. Recently a design methodology was developed, based on a prob-
lem formulation featuring three types of specifications hard constraints, soft constraints and objectives
The corresponding mathematical problem is a sequence of constrained ‘minimax’ optimization problems.
Such minimax problems highlight the competition between various specifications and facilitate tradeofl
exploration  Accordingly, the new methodology emphasizes designer's intuition and man-machine

interaction

In this paper, we demonstrate the crucial role of interaction in an engineering design context. As mean-
ingful interaction 1s greatly facilitated 1f suitable sensitivity information is available, we then investigate
ways ol computing such information and of graphically conveying it to the user.

Keywords Computer-aided system  design;

BACKGROUND AN APPLICATION-ORIENTED
DESIGN METHODOLOGY

Optimization techniques have been apphed successfuliy to
numerous design problems 1n vartous branches of engineering
such as integrated circuits (see. e g, work by Brayton,
Hachtel and Sangiovanm-Vincentelli (1081)), control systems
(see. e.g.. work by Davison and Ferguson (1982) and by Gus-
tafson and Desoer {1083)), earthquake resistant structures
(see, e g.. work by Bhatti, Pister and Polak (1979)), or digital
filters (see, e.g., work by Deczky (1972)). However, in many
cases, the mathematical problem solved by the opuimization
algorithm may be remote from the real-world problem the
designer is facing This is due to the rigidity of the classical
nonlinear programming problem which can be stated as

min{ [ (z) | g(z)<0}, 1

where f (z) is the cost or objective function to be minimized
and g (z) represents several inequality constraints and where
z 15 the vector of design parameters. While this formulation
does encompass the general idea of optimizing some design
objective while meeting various design specifications, it falls
to take into account several important characteristics of a
large class of design problems.

First, it is rarely the case that a single objective has to be
optimized In most applications, various objectives compete
against each other and a compromise has to be reached.
Amalgaming several objectives into a single cost function has
the disadvantage, particularly acute in an interactive environ-
ment, of hiding the physical significance of these objectives.

Second, the above mathematical formulation (1) does not
accept any violations of the constraints ¢ . In design applica-
tions, constraints specifications are often relatively flexible
and thus better put in words than in numbers. Hence,
moderate violation of a constraint should be acceptable by the
optimization algorithm; often, this will permit it to achieve a
better value of the objective function(s). Notice that the con-
straint formulation

g(z)<o0
is particularly inadequate since it gives no way of estimating

the importance of a given constraint violation.

Third and more generally, formulation (1) expresses only par-
tially the knowledge a designer has about his problem Some
of this knowledge, bullt on experience and physical intuition,

man-machine systems;, interactive computation;
optimization-based design, multiobjective optimization; nonlinear programming.

is often 1mpossible to express numerically Also 1t 1s often
difficult, 1if not impossible, for a designer to provide a priorl
precise and definite design specifications, since engineering
specifications are often revised in view of the design obtained.

Nye and Tits (1986) proposed a methodology that gets around
some of the difficulties just mentioned This methodology
emphasizes designer intuilion and man-machine interaction
A fundamental idea in this methodology is the partition of
the various specifications attached to engineering design prob-
lems into three categories: hard constraints, soft constraints,
and objectives. An objective is a quantity that the designer
would like to see as small (large) as possible; example the
gain of an operational amplifier. A soft constraint is a quan-
tity that the designer would like to see smaller (larger) than
some threshold, or, if this cannot be achieved, as close as pos-
sible to this threshold; example: the stability margin of a con-
trol system. A hard constraint is a quantity that the designer
requires to be below (above) some threshold, any violation
being unacceptable; example: a resistance value must be non-
negative.

Obviously the various specifications or, at least, the various
objectives and soft constraints are competing against each
other. It is then necessary to be able to meaningfully compare
the values of various specifications for a given z-vector value,
i.e., to define the normalized value of a specification. In the
approach proposed by Nye and Tits (1986), the driving idea is
to follow as closely as possible the viewpoint of the designer
by involving quantities, expressed in the physical units of his
particular application, that call on his intuitive knowledge of
the problem, thus facilitating his task of expressing the rela-
tive importance of the various specifications. This leads to
the concept of good and bad value that the designer has to
specify for each of the design specifications, based on the idea
he has of a good or bad design. These good and bad values
should be chosen according to the foliowing uniform
satisfaction/dissatisfaction rule for choosing the good and bad
values: having all of the various objectives and soft con-
straints achieve their corresponding good values should pro-
vide the same level of ‘satisfaction’ to the designer for each,
while achieving the bad values should provide the same level
of ‘dissatisfaction’. If f’(z) is the raw (unnormalized) value
of f7 at z and if f/and [ are the corresponding good and
bad values, the normalized value f J(z) is defined as

fXa)-1§
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To take into account the above considerations, it is then sug-
gested by Nye and Tits (1986) to formulate the design prob-
lem as a sequence of three (or fewer) constrained minimaz
problems, i.e., problems of the form

j ; .
m’in{jmeaz J(=) | ¢'(z)<o0oVj€El} 3)

where

m < {12..m}

1 {12..0}

and where all function values are normalized as shown above.
The first problem of the sequence corresponds to the case
when no initial r is known that satisfies all the hard con-
straints. In this case, the f ’'s are the hard constraints and
{ =0 (no constraints). The idea is to try to satisfy the hard
constraints as soon as possible, since any design violating
these would be of little value. As soon as a design parameter
T is obtained that satisfles all the hard conmstraints, the
second problem in the sequence is activated. This second
problem corresponds to the case when there is a design
parameter vector available which satisfles all hard constraints
but some of the soft constralnts or objectives do not achieve
their good value. In this case, the f 7/ 's are the values of the
objectives and soft constraints and the g7 's are the hard con-
straints. Here the idea {s to improve the “worst” achievement
among objectives and soft constraints, which are treated in an
identical manner. If and when a design parameter {s obtained
that achieves the good values of all the soft constraints and
objectives, while still satisfying the hard constraints, the third
problem in the sequence is activated. ‘This third problem
corresponds to the case when there is a design parameter vec-
tor available at which all hard constraints are satisfied and
soft constraints and objectives at least reach their good value.
In this case the f /'s are the objectives and the g’ 's are the
(hard and soft) constraints. The idea here is to improve the
objective values only, while keeping the constraints satisfled.

14

In the sequel, we will focus on a single phase of this possibly
3-phase design process. This could be either the second or the
third phase, but we will think of it as the final phase of the
particular design considered.

NEED FOR INTERACTION

It has often been argued that any manual intervention of the
user in an optimization process is unnecessary if the problem
is correctly posed and the optimization algorithm is sound. In
this section, we show that, in an engineering design environ-
ment, interaction between user and optimization process is
generally crucial.

At this point, the choice for a minimax formulation may seem
arbitrary, i.e., it may not be clear that solving problem (3)
can result in a design that the user will consider ‘best’. Since
the original problem is essentially a constrained multiobjective
problem, let us consider the well known concept of Pareto
optimality. For the time being, assume that all the objective
functions are to be minimized.

Definition. A point z° € R" is a local Pareto point with
respect to objective functions f',f% --- ,f™ and con-
stramnts g'g% - - ¢! if, for j=1,-- -, g7(z")<0, and
there exists a positive p such that, for any z € B(z °,p).

fi(zy<fIi(z*) forsome j €Em
implies
FE@z)>f%@*) forsome k € m

or

g% (z)>0 forsome k € 1.

#
Clearly, any point z € IR" which 15 not a Pareto point can-
not be consider as optimal.

! Since we assume that the designer knows exactly what he means by optimal,
these curves can be thought of as precisely defined.

The following simple Fact (straightforward extension gt
Theorem 13.2 of Brayton and Spence (1980)) relates the con-
cept of Pareto point to constrained minimax optimization.

Fact. Suppose z° is a local Pareto point with respect to
objective functions f !, - - - ,f ™ and constraints g%, - - - .g¢,
and suppose that f 7/(z°)>0 for all ; €m. Then there
exist positive numbers w,, - - - ,u, such that z° is a local
solution for the constrained minimax problem

min{ max w; f (z) | 97(z)<0}. (9
#

In the following corollary, we do not assume any more that all
objectives are to be minimized (l.e., possibly some of them are
to be mazimized), and that all optimal values are positive.

Corollary. Suppose 1 ° is a local Pareto point with respect to

objective function f !, - - - f ™ and constraints g, - - - ,¢™.
Then there exists (nonunique) scalars o', - - ,a, and
B ' - .Bm such that z’ is a local solution for the con-

strained minimax problem

Sy | ¢7(z)<0} . ()

#
Thus, no matter which Pareto point the designer feels is
optimal, there exists a set of good and bad values suc? that,
with the normalization (2), problem (3) will have z~ as a
local solution. The question, however, is how to determine a
suitable set of good and bad values. To the designer, the
design problem may not be equivalent to a constrained
minimax problem in any obvious way. Thus the originally
chosen good and bad values will likely not yield the desired
Pareto point. The designer may then wish to interactively
modify these good and bad values, guided by their
application-related interpretation, so as to ‘steer’ the minimax
solution to the desired solution. This in fact amounts to tra-
deoff exploration.

min max {
3 JEM ﬂj

Suppose now that the designer is able to think of his design
problem as one of minimizing the highest degree of dissatis-
faction (i.e., maximizing the lowest degree of satisfaction)
among those associated with the various specifications. Thus,
suppose he is able to give, at the outset, precise and definite
good and bad values (according to the uniform
satisfaction/dissatisfaction rule). Thus, if all the good values
are exactly achfeved at the solution of the constrained
minimax problem, the designer will be entirely satisfied. Con-
sider Fig. 1 where designer satisfaction is plotted versus nor-
malized specification value for each of the design objectives'.
After a minimax optimization has been performed, a typical
situation would be one where several normalized specifications
(the competing specifications) have achieved a value such as p
on Fig 1, while lower values have been achieved for others.

Designer
Satisfaction
£}
1
]
\ -~
1 -
Seoop) P (BAD)

Fig. 1. Designer Satisfaction Versus
Normalized Specification Values.
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Obviously, in view of the likely nonlinearity of the various
curves, the degrees of satisfaction corresponding to the vari-
ous competing objectives will probably not be equal at this
point. In other words, the resulting design will probably still
not be considered optimal by the designer. A typical action
would then be o tnteractively modify the good values to
make them more realistic.

The methodology proposed by Nye and Tits (1086) does rely
on interaction between designer and optimization process.
Suitable information on the current performance of the design
is communicated graphically to the designer whenever
requested. The graphical display, which has been imple-
mented in the DELIGHT (Nye and co-workers., 1081, Nye,
1983) system, 1s referred to as Pcomb (for performance comb,
from 1its shape). A glance at this display allows the designer to
compare achievements of the current design with respect to
his varioys specifications As a solution 1s approached, the
designer can decide to revise the emphasis he had placed on
some of the currently competing specifications, through suit-
able modification of corresponding good and bad values

The Pcomb display has proven very eflective in academic as
well as industrial environment (Nye and co-workers, 1983;
Fan and co-workers, 1985a). However, it has appeared that a
desirable piece of information was lacking from this display"
what change can be expected 1n the tradeoff solution if the
emphasis of the various specifications is modified, 1¢e, if some
of the good and bad values are altered. The availability of
such sensitivity information would help the designer in explor-
ing tradeoffs 1n a more economtical way, by discarding
unpromising alternatives without having to perform costly
simulations.

In the sequel, we show how such sensitivity information can
be computed and efliciently displayed in the framework of the
methodology of Nye and Tits (1986)

ESTIMATING THE SOLUTION

Suppose that, after running an optimization process [or a few
1terations, one wishes to explore tradeofl designs correspond-
ing to various settings of the good and bad values Clearly,
the first step 1s to estimate what the optimal design will be af
no such changes are performed This should be obtained at
low CPU cost.

When solving an opumization problem ansing from an
engineering design problem, most of the CPU time 1s typically
spent 1n system simulations. Thus ideally one would like to
obtain an estimate of the solution, from the current iterate,
without performing any additional simulations. Second to
best would be to only perform simulations that will anyway
be needed for the next optimization iteration, whether or not
some good or bad values are modifled. The latter will be
achieved provided that estimation of the solution requires
function and gradient evaluations at the current point only
The former will be achieved if, in addition, gradients are
already available. Such 1s practically the case when the sys-
tem under consideration 1s described by a set of differential or
difference equations, since for such systems, sensitivities are
obtained as almost free by-products of function evaluations®.

An obvious candidate formula for obtaining an estimate of
the solution to a nonlinear programming problem is the
sequential quadratic programming (SQP) 1teration In case of
the constrained minimax problem (3). if the current iterate 1s
7. this iteration can be written as (Han, 1981)

min 6 + l<d,Bd >
(4.8 2

st. [l (z)+ <9fl(z)d><é forall j Em (6)

g7 () + <vgi(z)d><o0 foralij €1,

where B is some positive definite estimate of the Hessian of

2 Thus, in such problems. most of the CPU time Is spent in the stepsize com-
putation

the Lagrangian. Let (dq.6,) solve (6). Then the estimated
solution vector for (3) is

To=1z +d, v
The corresponding Kuhn-Tucker multipliers are estimate of
the Kuhn-Tucker multipliers at the solution of (3). §, is an
estimate of the optimal value of (3). Note that, equivalently,
(6) can be written as

mdinl<d,Bd> +max{f 7(z) + <vf T (2)d >} ()
2 j€m

st gl(z)+ <vg’(z)d><oforallj €1.

It 15 well-known that if B 1s a good enough approximation to
the Hessian of the Lagrangian at the solution of (3) the SQP
iteration yields a superlinear local rate of convergence. Thus
1t does make sense to take r, as the desired estimate.

The [following easily proven proposition gives a simple
geometric nterpretation for the solution of (7).
Proposition. For any v € R", let us define

1

llv|lpg & <v.,Bu>?.
If d,solves (7) and ||dy||g =p, then d, solves

mi max ! + < J d >
HdI!anSﬂ )Gm( S (=z) v/ (z) )

st g'(z) + <yg’(z)d> <0 forally €1.
#

Thus z, solves a first order approximation to problem (3)
constrained to the ball of radius p corresponding to norm

I1'Na

TRADEOFF EXPLORATION

{n solving the quadratic program (6), one has identifled objec-
tives and constraints likely to be active at the solution of
(3)-—they are the objectives and constraints that are active for
the quadratic program. We will denote these index sets
respectively by J, (z) and J (z), if the current point is z.
When investizating the sensitivity of the optimal cost of (3)
to vanations in good and bad values, an attractive option is
to assume that this active set will remain invariant. There
are several reasons for doing so. First, in most cases, this
assumption will hold true, if changes in good and bad values
are small. Second, without this assumption, it would be
necessary to solve a quadratic program similar to (6) for each
of the sets of good and bad values one is interested in. This
may well be prohibitive in an interactive environment. If one
makes use of the assumption, one merely has to solve linear
systems.
Thus, suppose that the good value f," of f ¥ ke Jpz®)is
modiflied to f‘, so that f ¥ (z) becomes

_— A=) - T

f (= ):—T—Zk_"

/b - fg

Its gradient becomes
vt )=6v/* (=)
with
_ -1
Ji- 7_: '
(If instead the bad value ff is modified to Jf, one has

frk(z)"j:

B

E
THa) ="
+ ¥
fb - j,
and the expression for ¥ f ¥ (z) is still valid, with 3 given by
g
=2t
—7 .
-4

An estimate of the new solution will then be obtained by solv-
ing the quadratic program
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min §+~<d Bd>
(4.9 2

st. Jr@)+B<uft@)d><s$
J(z)+ <9fi(z)d> < 6forall jsk

¢’ (z) +<vg’A(z),d> <Oforall j €1

If we do assume that the active sets remain invariant, we
obtain

min § + L <d .Bd>
(4.8 2

st. THz) +B<vft(z)d> =6
Ji@)+ <uf(z)d> =26 forall j € J(z). j =k
9’(x)+ <vg’(z)d> =o0foral j € J ().
For simphcity of notation, we will now assume that all objec-
tives and constraints are aclive.
The latter quadratic program can be solved explicitly. Writ-

ing the first order necessary conditions of optimality gives the
linear system

Bd + NX +Ma=o0

oY =1

J

<l
-
A
o - L
f
!
)
=
0
fa

MTT - gz
where the columns of N and M are the gradients of the
active objectives and constraints {with ﬂvf (z’) as the k th
column of 7\7) and where the bars indicate that we are now
considering the modified problem. Egquivalently, the linear
system above can be written as

B N Moj|l|d 0

NT o o -e||% - T (z)

MT o o ollm -g(z) |’ ®
0 -7 o0 o]|3 -1

where e is the m-vector with alt entries equal to 1. This sys-
tem can be solved for 8, the estimated minimax value at the
solution of the modified problem. Although this requires solv-
ing a linear system of equations for each selected set of good
and bad values, computation can be kept within reasonable
bounds if one only considers instances where a single good or
bad value is modified. This is because, in such cases, the
matrix in (8) differs from the matrix in the nominal system

B N Molld o

NT o0 o -ef | - [ (z)

MT o o ollu] ™ | -9(z) @
0 -eT 0 o]|s -1

only by a matrix of rank 2. The Cholesky factorization for
(8) can then be obtained from that for (0) at moderate cost
(see, e.g., work by Gill and co-workers (1974)).

f ([,k - /,") is small, (8) can be simplified. Denoting by A (8)
the matrix in the left hand side of (8), subtracting (9) from
(8). and expanding to the first order in 1-8, one gets, since
A (B) - A (1) is linear in 1-5,

® Similar Information could be displayed about Lhe effect of changes In bad
values We feel however that the designer wlill generally favor adjusting good values.

d-d, dy o

X% o ~(F@)-f ()
AW |, | +A@-Am|, |= o

56, b 0

(10)

Note that, since A (1) already appears in system (8), system
(10) can be readily solved, without the need to perform any
extra factorization.

Further simplification can be achieved if 7 1s close to the
solution of the original problem. Let us first rewnite the
second and third block-equations in (10) as

<0f )T -do> +5-6=(1-8)vf *(x)7 d,
UAICORNRICH)
<9fl(z)d -doy> +5-6,=0 j#k

<ggl(z)d -do> =0

Under our last assumption, d, is small Since 1-J is also
small, the first term in the nght hand side of the first equa-
tion can be neglected. Siice, from (9),

Bdy + NS () + Budvg’(z) =0,
) bi
(10) yields

Exol(b" 60) == Bd, - xo'{(fk(l) - k(I N.
J
i.e . n view of the last equation 1n (9),

B-8g==Bdg + NH(J (x)- [ () (an

Thus, as could be expected, the sensitivity of the optimal cost
to changes in good or bad values 1s directly related to certamn
multipliers.

Relations (8), (10) and (11) give three different ways of
defining &~ §,, the estimated vanation in the minimax solu-
tion of (3) if a good or bad value 1s modified. In the next sec-
tion, we propose a way of displaying this information to the
designer.

THE ECOMB GRAPHICAL DISPLAY

Although similar in appearance to the Pcomb display (alluded
to at the end of Section 2; see the work by Nye and Tits
(1988) for more detail), the Ecomb (or estimation comb) has
an entirely different interpretation. Beside displaying the
estimated values of the various specifications at the solution
of the original problem, 1t conveys information about the
effect modifications of the various good values may have on
the overall minimax solution.®* While we are convinced that,
after a short learning period, the designer will feel comfortable
in interpreting the Ecomb display, we admit that its complex-
ity may throw of the first time reader. Thus a detailed expla-
nation is in order. As a support to this explanation, consider
the Ecomb display of Fig. 2, obtained while designing a flight
controller for an F14 aircraft (see the work by Fan and co-
workers (1085a, 1985b) for details on this problem).

For each specification, identified with a name, the original
good and bad values are printed under the ‘GOOD’ and
‘BAD’' headings and, as in the Pcomb, a horizontal line indi-
cates by the position of its tip the corresponding turrent nor-
malized value. The intersection of this horizontal line with
the vertical ‘G’ (for good) line marks the normalized value of
0 (corresponding to the good value) and the intersection with
the vertical ‘B’ (for bad) line marks the normalized value of 1
(corresponding to the bad value). The horizontal line at the
top of the display, °‘Estimated Minimax’, indicates the
estimated optimal value of (3) for the current set of good and
bad values, computed as described in an earlier section.
Under the heading ‘ESTIMATE', the Ecomb displays, for
each specification, the estimated raw (unnormalized) value
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Ecomb (Iter=30) ESTIMATE GOOD ¢ ? BAD
Estimate Minimax -— :
]
FM1 *AlphErrTop 1.98e-2 1.32e-2 + 2.99e-2
FM2 *AlphErrBot-.176 -.147 ! ! . -.221
11 PhaseMargn 6.17e+1 4.50e+1 : : © 4.30e+1
12  TlrCovWind .534 1.00 e . I 1.40
I3  NzpCovWind 3.67e-2 5.00e-2 e<— ' 6.00e-2
I4 AlphCovWnd 8.89e-2 5.70e-2 : ! .140
15 TlrCovSens .542 1.00 e | l 1.40
16  NzpCovSens 1.48e-2 5.00e-2 e=— , b 6.00e-2
I7  AlphCovSns 7.44e-2 .100 -— ' 140
FI1 *TopGnRatio 1.00 .343 -— : I 2.00
.y ¢ '
\\ : l
~ . ;
"k CEx.397 | !
'\\ : | 1
]
\. : |
\ i |
\ : l
N\ lee-.200 ! ,
\ 1
\ : .
]
A}
\ : |
i ]
\ 1
\ | |
_1+ 0.0 X i
FI2 BotGnRatio 1.00 1.32 ! i .500
FI3 *DeltaPhase .444 7.32 : — -1.00e+1
/ 1 ]
P X X
- ]
— . |
— ¢
T : :
e 1
FI4 Tail Rate 1.41e+1 2.50e+1 oc— ! ! 3.00e+1
FI5 dnzp_dt 9.59e-2 0.00 T l -.200
1
I

Fig. 2. The Ecomb Graphical Display.

that might be reached by that specification under the current
set of good and bad values.

The estimated effect of modifying a given good value by vari-
ous amounts, discussed in the previous section, is indicated by
a set of curves displayed just below the name of the
corresponding specification Each one of these plots indicates
i ordinate the estimated (normalized) optimal value of (3)
expected to be reached 1If the good value of the specification
under consideration is set to the corresponding value in
abscissa—assuming that no other specification has its good or
bad value modified. The current good value is exactly half
way between the extremities of the horizontal axis. The hor-
1zontal scale is hnear and the rightmost point corresponds to
an increase of the good value by a quarter of the difference
Lbetween the current good value and the current bad value.
The vertical scale is also linear, is 1dentical on all the plots,
and 1s indicated on the tallest of them by the value of the
estimated minimax for the current set of good values (CE =
current estimate) and a typical deviation with respect to this
minimax value [If the value O—corresponding to the case
when the worst performing specifications exactly achieve their
good values—is within range, it is displayed as well. Not all
the specifications come with a corresponding plot, but only
those for which a small change in good value would, according
to our estimate, affect the minimax value to an extent greater
than some given threshold. Finally, all the specifications for
which a small change in good value would, according to our
estimate, affect af all the minimax value are indicated by a
star to the left of their name.

From the display of Fig. 2, the designer easily realizes that
the overall gain can be much more substantial if he relaxes,
say, the specification on the upper bound on the frequency

response (TopGnRatio) rather than, say, the specification on
the corresponding lower bound (BotGnRatio).

CONCLUSION

We have demonstrated the crucial role of interaction in
optimization-based design of enginering systems. As a com-
plement to a previously introduced interactive design metho-
dology, we have then shown how the task of the designer can
be greatly eased if suitable sensitivity information is com-
puted and displayed

This supplemental tool is being implemented as part of the
DELIGHT system. Preliminary experiments are promising.
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