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ABSTRACT
Linear feedback stabilization of nonlinear systems is studied for systems whose linearization
at an equilibrium point possesses a simple critical mode that is uncontrollable. The results
complement previous work on the synthesis of nonlinear stabilizing control laws. The present
work addresses continuous-time systems for which the linearization has either a simple zero
eigenvalue or a pair of simple pure imaginary eigenvalues. Both the stability analysis and
stabilizing control design employ results on stability of bifurcations of parametrized systems.
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1 Introduction

Feedback stabilization of nonlinear control systems is a subject which has received significant
attention in the control literature in recent years. Local, semiglobal, and global stabilization
problems have been considered. In this paper we address problems of local stabilization,
using linear feedback, of an equilibrium point of a nonlinear system

i = fla,u). (1)

Here, € IR" is the state, u € R is the control, and f is sufficiently smooth in z and « with
£(0,0) = 0.

Thus, we consider the question of existence of a linear feedback

uw=u(r) = ke (2)



(k € R'™") rendering the origin of Eq. (1) locally asymptotically stable. In addressing
this question, we take an approach which is by nature constructive. By standard theory,
stabilizability of the linearization of (1) is sufficient for local stabilizability of the nonlinear
system (1). Thus, in this paper, as in many previous studies, we assume that the linearization
of (1) at the origin has uncontrollable critical eigenvalues. An eigenvalue is critical if it
lies on the imaginary axis. More specifically, we consider two critical cases. In the first,
the linearization has an uncontrollable zero eigenvalue. In the second, an uncontrollable
complex conjugate pair of purely imaginary eigenvalues occurs. The recent book (Bacciotti,
1992) and the review paper (Sontag, 1990) provide overviews of many results on nonlinear
stabilization. The papers (Andreini et al., 1989), (Bacciotti and Boieri, 1990) address linear
feedback stabilization of nonlinear systems with uncontrollable critical modes.
Since the right side of (1) is smooth, we may write

& = f(z,0) + ugi(2) + u’gs(z) + u’gs(z) + - -. (3)

We can also expand the zero-input system corresponding to (1):

& = f(z,0)
= Az + B(z,z)+ C(z,z,2)+---. (4)
Denote the Taylor expansions of the input kernel functions g;(z), « = 1,2,..., appearing in
Eq. (3) as
gi(x) = bi + Aix + Bi(x, ) + Ci(z,z,a) + - - (5)

In (4) and (5), B(z,z), C(z,z,z), and Bi(z,z), Ci(z,z,2),1 =1,2,..., are vector quadratic
and cubic forms induced by symmetric bilinear and trilinear forms, and the dots denote
higher order terms (Abed and Fu, 1986), (Abed and Fu, 1987), (Iooss and Joseph, 1990). To
conform with standard notation in linear control theory, we shall henceforth denote b by b,
viz.,

b = bl-

As noted by Brockett (1983), the only situations in which the smooth local stabilizability
question for (1) cannot be addressed based only on considerations for the linearized system

T = Az + bu (G)

are those in which (6) possesses at least one uncontrollable critical mode. That is, the cases in
which the determination of existence of a stabilizing smooth feedback requires one to consider
the influence of the nonlinear terms in (1) are those in which the matrix A has at least one
uncontrollable eigenvalue with zero real part. These are referred to as the critical cases
in nonlinear stabilization. This terminology derives from the classical nonlinear stability
literature, in which a critical case corresponds to the vanishing of the real part of at least
one system eigenvalue (Zubov, 1964).

This having been said, we wish to note that there are cases in which a system is stabiliz-
able by linear methods, but a stabilizing controller designed using nonlinear considerations
is preferable to a traditionally designed linear controller. For example, a system may pos-
sess eigenvalues on the imaginary axis which are nearly uncontrolluble. In such a case, a
linear feedback giving an adequate margin of stability may have an unacceptably large gain,



whereas there might exist a nonlinear controller of low gain which also stabilizes the system
adequately. There is evidence (Marino and Kokotovic, 1986) that high gain linear feedback
which achieves a large margin of stability for the linearized system may compromise stabil-
ity of the nonlinear system. A careful investigation of these issues would require a separate
effort.

Several approaches have been used in addressing stabilization problems for (1) in critical
cases. Following the introductory work of Aeyels (1985), center manifold reduction has been
frequently employed in the literature on feedback stabilization; see, for instance, (Behtash
and Sastry, 1988), (Andreini et al., 1989), (Bacciotti and Boieri, 1990), and (Boothby and
Marino, 1989). An alternative but mathematically equivalent approach was introduced by
the authors in (Abed and Fu, 1986), (Abed and Fu, 1987). Here, a bifurcation-theoretic
framework is employed, and stabilization of an equilibrium point in a critical case is tied
to the stabilization of bifurcated solution branches. This approach is also employed in the
present paper. This approach affords the advantage of calculations performed directly on
the original system dynamic equations.

From a control-theoretic viewpoint, it is interesting to consider the feasibility of employing
the common linear feedback laws in the local feedback stabilization of nonlinear systems.
This work is also motivated by Theorem 3 of Abed and Fu (1987), which asserts the following:
Under certain generic conditions (see (Abed and Fu, 1987)), the local feedback stabilization
problem for (1) whose Jacobian A has an uncontrollable zero eigenvalue is not solvable by a
smooth feedback control with vanishing linear part.

In essence, the purely nonlinear stabilizing feedback laws in (Abed and Fu, 1986), (Abed
and Fu, 1987) are constructed by ensuring negativity of certain so-called bifurcation stability
coefficients, the values of which can be determined using formulae given directly in terms of
the system dynamic equations. It appears that these bifurcation stability coefficients play a
role similar to that of dominant open-loop pole(s) in linear control theory. Thus the problem
investigated here may be viewed as a corresponding “nonlinear pole” assignability problem.

The strategy for studying stabilizability employed in previous papers of the authors (e.g.,
(Abed and Fu, 1986), (Abed and Fu, 1987), (Fu, 1990), (Fu and Abed, 1993)) will also be
used here to study existence and synthesis of linear stabilizing feedback controllers. The
analysis is more involved than that in (Abed and Fu, 1986), (Abed and Fu, 1987), however.
This is because linear feedback modifies the Jacobian matrix A, unlike the case with purely
nonlinear feedback. This results in two important differences between the work in (Abed
and Fu, 1986), (Abed and Fu, 1987) and the present endeavor: First, the linear feedback
gain vector k must now be restricted to ensure that the nominally stable eigenvalues remain
stable for the closed-loop system. Second, in (Abed and Fu, 1986), (Abed and Fu, 1987) the
pertinent closed-loop bifurcation stability coefficients are polynomial functions of the control
gain. In contrast, we shall be faced with rational functions of the gain & in the present paper.

If it happens that b = 0, which occurs in particular if (1) is affine in the control, then A
is invariant under any linear feedback. Under this condition, the complications just noted
do not occur. The simplified results for this situation follow easily from the more general
results presented here.

The remainder of this paper proceeds as follows. In Section 2 the basic problem set-
up is given, including expressions for the stability coefficients of the open- and closed-loop
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systems. In Section 3 the stability of the linearized closed-loop system is considered. Section
3 also addresses the computation of some relevant matrix inverses as well as of the closed-
loop eigenvectors associated with the critical eigenvalues. The main results of the paper are
presented in Sections 4 and 5: Section 4 contains the results in the case of an uncontrollable
zero eigenvalue, while Section 5 addresses critical systems with an uncontrollable pair of pure
imaginary eigenvalues. Concluding remarks are collected in Section 6.

Notation. In what follows, ||-|| stands for the Euclidean norm: |[v|| = (v7v)? for v € R"™ and
|v]| = (vFv)? for v € C". The real and imaginary parts of a scalar expression are denoted
by Re{-} and Im{-}, respectively. A superscript T" (resp., H) indicates the transpose (resp.,
Hermitian transpose) of a matrix or vector. With k& € R'*", denote by R (F(-)) the range
of a function of k over a domain ||k|| < &:

Ry(F()) == {F (k) : |Ik]l < k}. (7)

2 Stability Criteria and Stabilization Strategy

As mentioned above, this paper addresses the stabilization by linear feedback of the origin
of Eq. (1) in two critical cases. In this preliminary section, we give the basic problem
set-up and recall formulae for quantities known as stability coefficients. The use of the
stability coefficients in stability assessment for the origin in the critical cases studied here
1s summarized. The effect of linear feedback on the values of the stability coefficients is
determined. Finally, we outline an overall strategy for the investigation of stabilizability by
linear feedback. '

Consider the zero-input system (4). In this paper, the Jacobian A of this system is
assumed to satisfy either of the following two hypotheses:

(S) A has an eigenvalue \; = 0, with the remaining eigenvalues \,,..., A, in the open left
half complex plane;

(H) A has a pair of simple, pure imaginary eigenvalues A\; = iw,. and A\, = —iw,, with the
remaining eigenvalues A3, ..., A, in the open left half complex plane.

For ease of reference, say that Case (S) (resp., Case (H)) prevails for Eq. (1) if A satisfies
hypothesis (S) (resp., (H)).

It is convenient to denote by A. the critical eigenvalue in either of the critical cases,
(S) or (H). That is, A. := 0 in Case (S) and A, := 4w, in Case (H). The row and column
vectors [ and r are the left and right eigenvectors, respectively, of the Jacobian matrix A
corresponding to the critical eigenvalue A.. For definiteness, set the first component of [ to
1 in Case (S) and to J in Case (H), and further normalize r to satisfy *

Ir=1. (8)

1Tt may be necessary to first interchange the first component of the state vector with another component,
to ensure the nonvanishing of the first component of /. This normalization turns out to be more convenient
here than that used in (Abed and Fu, 1986), (Abed and Fu, 1987), as will be seen in Section 3.2. In the
cited references, the first component of r was set to unity and then [ was chosen to satisfy Ir = 1 both in
Case (S) and Case (H). This modification does not affect the form of the stability criteria.



In Case (S), two stability coefficients f, f25 will be employed in the analysis. These
coefficients and their connection to the stability of the origin of (4) are identified next.

Fact 1. ((Abed and Fu, 1987), (Iooss and Joseph, 1990)) In Case (S), denote

Bis :=1B(r,r), (9)

Bag 1= I[-2B(r, (ATA + F1)" AT B(r,r)) + C(r,r,7)]. (10)

Then the origin of (4) is locally asymptotically stable (resp., unstable) if 41, = 0 and 5, <0
(resp., B1g # 0, or B1, =0 and Fz, > 0). u

Two stability coefficients were introduced above for the assessment of stability in Case
(S). In the stability analysis of the origin of (4) in Case (H), a single stability coefficient,
denoted B,,,, occurs. A formula for this coefficient, and its connection to the stability of the
origin of (4) are recalled next.

Fact 2. ((Abed and Fu, 1986), (Howard, 1979)) In Case (H), denote
1 3
Bay = 2Re{l[-B(r, A"'B(r,7)) — —2—B('F, (A = 2iw ) 'B(r,r)) + ZC(T‘, r, )]} (11)

Then the origin of (4) is locally asymptotically stable (resp., unstable) if 85, < 0 (resp.,
ﬂzH > 0) u

We note in passing that the quantities 3, B2, and f;, can be interpreted as coeffi-
cients in asymptotic expansions of dominant Liapunov exponents for bifurcated solutions
of parametrized embeddings of Eq. (4). Various derivations of these coefficients have been
given in the literature. These employ, for instance, the projection method (Abed and Fu,
1987), (Iooss and Joseph, 1990), harmonic balance (Howard, 1979), and Liapunov functions
(Fu and Abed, 1993). Note also that in the nongeneric situations in which the coefficients
of Eqs. (9)-(11) vanish, typically stability can still be assessed by examination of further
(higher order) coefficients in the appropriate asymptotic expansions.

Due to the foregoing considerations, assignability of bifurcation stability coefficients by
feedback plays a role in critical nonlinear systems (1) analogous to that played by pole
assignability in linear time-invariant systems.

Under either Case (S) or Case (H), the basic assumptions we make on (1) are that: (i) the
origin is unstable for the zero-input system (4); and (ii) the critical mode is uncontrollable
for the linearized system (6G). Indeed, the results of this paper can easily be re-construed to
apply to the case in which the origin is locally asymptotically stable for (4) or that in which
the stability of the origin is unknown. In these situations, assignability of the pertinent
stability coefficients takes the place of the pure stabilizability question. Achieving a certain
degree of stability or simply guaranteeing stability despite inability to determine the stability
properties of the open-loop system become the issues of concern.

Assumption (ii) above is equivalent, by the well known Popov-Belevitch-Hautus eigen-
vector test for controllability (Kailath, 1980), to

Ih=0. (12)



Generically, the local stability or instability of the origin of Eq. (4) in Cases (S) and (H)
is determined by terms in the vector field up to cubic order. This follows from Facts 1 and 2
above. Thus, next we record how these terms in the vector field are affected by linear state

feedback u = kx.

Substituting the linear feedback (2) into (1), and using an asterisk to indicate quantities
after feedback, we obtain the closed-loop system

= A"+ B*(z,z)+ C*(z,z,2)+ - (13)

where the linear, quadratic and cubic terms in the closed-loop vector field are given by

A* = A+ bk, (14)
B*(z,z) = B(z,z)+ (kz)Ajz + by(kz)?, (15)
C*(z,z,z) = C(z,z,7)+ (kx)Bi(x,2) + (kz)*Asz + (kx)°bs, (16)

respectively.

Note from Eqs. (14)-(16) that linear state feedback affects terms of every order in (1). In
particular, with b # 0 such a feedback in general affects the system linearization: A* # A.
This implies that a large gain linear feedback may destabilize modes that are stable for the
open-loop system. Hence, in the stabilization of a critical system using linear feedback, one
must ensure that all eigenvalues of A*, besides the immobile critical mode, are not moved
out of the open left half complex plane.

Thus, to stabilize (1) using linear feedback, it suffices to find a vector k that, firstly, does
not destabilize the nominally stable system eigenvalues, and secondly, ensures satisfaction
of the stability criteria of Facts 1 and 2 above for the closed-loop system. The first of these
requirements is equivalent to asking that k preserves the original criticality hypothesis (S)
or (H). The second requirement we impose is that, for the closed-loop system, Ai, =0 and
B3 < 0in Case (S); and 35 < 0 in Case (H). Here, by the formulae in Facts 1 and 2, these
stability coefficients for the closed-loop system are given in Case (S) by

ﬂfs = [*B*(r*,r*), (17a)
ﬂ;s — l*[——?B*(T*, (A*TA* 4 Z*Tl*)—lA*TB*(T'*,T‘*)) + C*('r‘*,‘l‘*,'r*)], (17b)
and in Case (H) by
ﬁ;H — QRG{I*[—-B*(T*, A*_IB*(T'*,’I_'*)) . %B*(’F*, (A* _ 2in)_1B*(T'*,7'*))
3
+ 5070 ) (18)

Here, as in Eqgs. (13)-(16), an asterisk indicates a closed-loop quantity.

3 The Closed-Loop Linearized System

In this section we present calculations relevant to the closed-loop linearized system. The
concept of restricted matrix inverse is recalled and used in the calculation of the closed-loop
critical eigenvectors [* and r*, in addition to other useful closed-loop matrix quantities.
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3.1 Restricted Matrix Inverses

In Case (S), we deal with a singular Jacobian matrix A. This matrix has a (geometrically and
algebraically) simple zero eigenvalue. In Case (H), the Jacobian matrix is not singular, but
we will none the less find it convenient to solve certain associated linear algebraic equations
with coefficient matrix A — sw.I, which is singular with a simple zero eigenvalue. In this
subsection, therefore, we consider linear algebraic equations

Mz =y (19)

where M € C"*" possesses a simple zero eigenvalue and y € C". The conclusions for M and
y real in Eq. (19) follow as a special case. The notation [, r for the left and right eigenvectors
of M, respectively, is as employed in the foregoing section. The particular normalization used
in defining these eigenvectors does not affect the restricted inverses obtained.

Denote by M (M) the null space of M, a subspace of C*. Denote by N'(M)* the orthogo-
nal complement of A'(M) (a subspace of C"). Using the Fredholm Alternative, we find that,
if both the domain and range of M are restricted to N'(M)*, there results a unique solution
to the equation Mz = y. Restriction to A (M)* is tantamount to imposing the conditions

lx = ly = 0. The corresponding solution operator is found to be given by the following
restricted inverse on N (M)*:

M~ = (Mlyans) i N(M)*E — N(M)*
= (MM 417y MY (20)

To illustrate the relevance of (20) in this work, note that formula (9), which gives f in
Case (S), is rewritten using (20) in the following compact form:

Bag = I[-2B(r, A" B(r,r)) 4+ C(r,r,r)]. (21)

3.2 Closed-Loop Inverses and Critical Eigenvectors

Observe that, since [b = 0 (the uncontrollability assumption), it follows from (14) that
[A* = [A. Taken along with the normalization of Section 2 for the eigenvectors, we thus
have that [* = [ in both Cases (S) and (H). To compute r*, write r* = r +  and solve for 7
subject to the normalization [*r* = 1 and to the associated eigenvector equation A*r* = A.r*.
(Recall that A, is either 0 or iw..) Since [* = [, I*7* = 1 implies that 7 satisfies {7 = 0. It
follows that the corresponding eigenvalue/eigenvector equations in Case (S) and in Case (H)
lead to A*F = —(kr)b and (A* — iw )7 = —(kr)b, respectively.

Next we consider solving the equations at the end of the last paragraph for . Since
Ib = 0 and I¥ = 0, the Fredholm Alternative applies. Using also the fact that [* = [, the
closed-loop system restricted matrix inverses in Case (S) and Case (H) are found to be given

by

1
A = A~ - —— A~ -

AT (22)
1

A*_. ¢ To= —1 d) =
(A7 = iwel) A=) = A o

(A — 1w d) k(A —iw 1)”  (23)



respectively, provided that 1 + kA~b # 0 and 1 + k(A — iw.J)"b # 0. These formulae are
easily verified. Their statement was initially motivated by the Sherman-Morrison Formula

((Golub and Van Loan, 1983), Eq. (2.1.4)).

Motivated by the Eqs. (22) and (23), introduce the following class of rational functions:

k 1x x1
: = " e 24
F(k;p,q) 1+k,k€R , 7,q€C (24)
It follows that the closed-loop critical eigenvector r* of A* is given by?
. { r—S(k)A™b in Case (S) (25)
- H(k)(A —iw.J)"b  in Case (H)
where
kr
= o AT = — 26
S(k) := F(k;r,A7b) 1+kA—b€IR (26)
and
k "
H(k) = Fk;r, (A — iwd)"b) = ! € C. (27)

14+ k(A—iwd)"b

It is easily verified that kr* = S(k) in Case (S) and kr* = H(k) in Case (H). These obser-
vations will be useful in Appendix A in the computation of B3, and 33, respectively.

In Case (S), by (25) we have that r* is an affine vector function of the real fraction S(k).
However, in the next section the necessary condition for stabilization B = 0 (cf. Fact 1)
will be 1mposed resulting in S(k) being constrained to take one of only three possible values.
Hence, r* is similarly constrained by the condition Bi, = 0. In contrast, in Case (H), no
such equality constraint is imposed. Hence, from Eq. (25), in Case (H), 7* is an affine vector
function in the complex fraction H(k), a free variable.

Several matrix inverses associated with the closed-loop linearized system will be used in
the calculations in Case (H). One is the restricted inverse (A* —iw.I)~ of Eq. (23). However,
in applying Eq. (18) expressions for the actual inverses A*™' and (A* — 2iw 1)~ will be
needed. Since both A and A — 2iw.I are invertible in Case (H), direct application of the
Sherman-Morrison formula ((Golub and Van Loan, 1983), Eq. (2.1.4)) yields

A7k AT
*—1 — A-—l I e 2
A 1+ kA-1D (28)
9 V1B A — 950y V=1
(A* = 2iw ) = (A= 2iw )1 — (A = 2iw ) 'bk(A — 2iw.T) (29)

15 HA = 2i )1
respectively, provided that 1 4+ kA™'0 # 0 and 1 + k(A — 24w J)"'h £ 0.

Finally, we introduce the following notation, which will be used in the statement of results
on stabilization by linear feedback in Case (S) and Case (H). Denote by k the largest scalar
for which the matrix A + bk retains the same number of stable eigenvalues as the matrix
A, for all k with [|k]| < k. Thus, for all k& with norm less than k, the linear state feedback
u = kz does not destabilize any oi the open-loop stable elgenvaluea

*Note that if [ and r were specified in the way that one first normalizes [r]1 = 1 and then normalizes [
to Ir = 1, then since (25) would not guarantee that [r*]; = 1, it would have been necessary to take the new
normalizing factor into account for applying (17) and (18). The present way of specifying [ and r makes use
of the result I* = I which guarantees [*]; = 1 in Case (S) and [I*]; = 3 in Case (H), and thus does away
with the need for renormalization.



4 Linear Feedback Stabilization in the Case of
One Zero Eigenvalue

This section contains the main results of this paper for Case (S); hypothesis (S) is in force
throughout the section. The linear stabilizability of the origin of (1) is addressed first,
followed by a procedure by which a stabilizing linear feedback can be constructed explicitly.
In studying the linear stabilizability problem, it is natural to assume that the origin of the
open-loop system does not satisfy the conditions for asymptotic stability 3, = 0, 82, < 0 of
Fact 1.

In the remainder of this section, the objective is to find a linear feedback u = kx ensuring
that A7 = 0 and 85 < 0, without moving any of the open-loop stable eigenvalues of the
linearization out of the open left half complex plane. The last requirement can also be
expressed by asking that matrix A* is itself consistent with hypothesis (S). Derivations of
the expressions for the closed-loop bifurcation stability coefficients B7, and 5 in terms of
the gain vector k are detailed in Appendix A.

4.1 Necessary Conditions for Stabilizability

From Fact 1, any smooth feedback which stabilizes the origin of (1) must result in a vanishing
closed-loop stability coefficient 8} .- Such a feedback must satisfy further conditions to be
guaranteed locally stabilizing. Here, we shall ask that it also achieve 83 < 0, and that it
not result in destabilization of the open-loop stable eigenvalues.

In this subsection, we determine necessary conditions for linear stabilizability by consid-
ering the possibility of achieving A7 = 0 through a linear feedback u = kx, and then proceed
to consider the possibility of achieving, in addition, the condition B3, < 0.

Substituting 2 := r* from (25) (for Case (S)) in the formula (15) for B*(z, ), and
grouping terms of like order in S(k) (introduced in (26)), we obtain

B*(r*,7*) = B(r,r) + S(k)vy + S*(k)v,, (30)

where the v; and v, are real coefficient vectors determined in Appendix A (see Egs. (A.3)
and (A.4)). Hence, using (17a), the necessary condition for stabilization B, = 0 now takes
the form

0 = fA1.(S) ,
= B+ S(k)(Ivy) + SE(k)(Iv,). (31)

From Fact 1 and Eq. (17a), we see that (1) is not linearly stabilizable if there is no real
solution S(k) to Eq. (31). Conversely, for any gain vector k which linearly stabilizes (1), the
resulting § = S(k) given by (26) must solve (31). When (31) is truly a quadratic equation,
L.e., when [v; # 0, we denote by A the discriminant of (31):

A= (lvl)z — 41 ,(lvs). (32)

Clearly, if A < 0, then (31) has no real solutions, and Eq. (1) is not linearly stabilizable.
If A is defined (i.e., vy # 0) and A > 0, then (31) has precisely two real solutions. If

(¢}



A is not defined (i.e., lvy; = 0) and if [v; # 0, then there is only one solution, namely
S(k) = —pig/(lv1). If both lvy and lv; vanish, then (31) has either no solution or else
any value for S(k) is a solution, depending on whether or not 3;, # 0. Disregarding the
degenerate case in which all of [v;, [v; and $; vanish, we have that the possible real solutions

of (31) are any of 1, S;, S5 defined as follows:

—(l’l)l) + A1/2

81782 = 2(1’02) ’

(33)

/315
S3 = ———. 34
3 (l’Ul) ( )
Below, we will need to consider the special cases in which Sy, S, apply and either A = 0 or
B, =0, and the case in which S5 applies and S, = 0.

The preceding remarks clearly delineate certain necessary conditions for linear stabiliz-
ability of (1) under hypothesis (S). The next theorem collects several of these. Note that
these conditions are also sufficient conditions for existence of a linear feedback rendering

By, =0.

Theorem 1. (Necessary Condition for Linear Stabilizability) Let (1) satisfy hypothesis (S).
Suppose the origin of (1) is stabilizable by a linear feedback u = ka. Then either #;, = 0 or
there is a linear feedback u = kx rendering 3j_ = 0. More precisely, either f;, = 0, or one
of the following cases holds:

(a) lv#£0and A >0, or
(b) lvg =0 and lv, # 0. [ |

Theorem 1 is a constructive result, when taken along with the derivation preceding it.
For example, we see that in case f;, = 0, any stabilizing linear feedback gain vector k& must
either satisfy S(k) = 0 or S(k) = —(lv1)/(lv2) (the latter being a possibility only if lv, # 0).

4.2 Sufficient Conditions for Stabilizability

Suppose that (1) satisfies the necessary conditions given in Theorem 1, and let the feedback
gain vector k be such that & = S(k) is one of the §;, i = 1,2,3 of Eqs. (33), (34). Thus,

having ensured 8, = 0, the formula (17b) for f;_ applies. The detailed calculations, given
in Appendix A, result in the following expression:

Pis = Bk S)

= Ps(S)+d(S)d(k;S). (35)
In this expression,
Ps(S) = (lwo) + (Iw)S + (lwg)S* + (lw3)S?, (36)
d(S) = (lv1) + 2(lv,)S, (37)
d(k;S) = F(k;A™B*(r*,1"),A7b),
= F(k; A {B(r,r) + Sv; + 8%y}, A7D) (38)
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where the coefficient vectors wo, wy, s, w3 appearing in (36) are specified in Egs. (A.5)-(A.8)
of Appendix A. (Recall that v; and v, are defined in Eqs. (A.3) and (A.4) of Appendix A.)
Thus Ps(8) is a cubic polynomial in S, d(S) is affine in S, and ¢(k;S) is rational in the
elements of k. The real fractional map F was defined in (24).

Note that we have used the notation 4;_(k;S) and ¢(k;S), even though S depends on
k (see Eq. (26)). This notation is useful, however, since it is a reminder of the two-stage
nature of the control design procedure of this paper. First, one determines, if possible, the
values of S which would ensure 3} = 0. Since any particular value of S is to be achieved
by appropriate choice of k, this places a restriction on the allowable feedback gain vectors k.
The next step is to find, if possible, a gain vector k from among those achieving S(k) = S,
which also results in a negative value for f;_, and which does not at the same time destabilize
any of the open-loop stable eigenvalues.

In what follows, we focus on the achievable values of 3;_(k;S) where k is restricted such
that S(k) is one of the S;, ¢ = 1,2, 3, given above. That is, we study the assignability of 3;_
by linear feedback laws achieving 87 = 0.

Consider the goal of finding a gain vector k for which g7, = 0 and 5, < 0. In the
foregoing, we have determined that this goal is closely related to that of finding a gain vector
k which results in certain desired values for S(k) and ¢(k; S). The latter are fractional maps
of the form (24). We are thus led to consider the simultaneous solvability of equations
involving such fractional maps. This is addressed in detail in Appendix B, and a specific
result is given in Lemma B.1. From Lemma B.1 and the expressions above for 3, 85 _, the
next result follows.

Theorem 2. (Stability Coefficient Assignability) Let (1) satisfy hypothesis (S) and suppose
Ib=0. Fix a S € R for which 8] (S) = 0 (see Eq. (31)). The function 8;_(k;S) defined on

the domain of those vectors k € R'*" for which S(k) = S is onto if either of the following
holds:

(a) vz #0 and A >0,
(b) lvy =0 and lv; # 0, or

(¢) Big = lvy = lvy =0 and either lws # 0, or lws = lwy = 0 and lwy # 0. [ |

Note that it is also straightforward to address in the same fashion other special cases.
However, to limit the complexity of the presentation, we prefer not to discuss these explicitly.

As observed previously, sufficient conditions such as those given in Theorem 2 do not
alone imply local stabilizability of the origin of Eq. (1) by linear state feedback. Besides
stability coefficient assignability, a linear feedback also must not destabilize open-loop stable
eigenvalues. The next result addresses linear stabilizability, and involves consideration of
the issue of nondestabilization of the open-loop stable modes. To characterize the linear
stabilizability in a more explicit fashion, we first note Eq. (35) and the notation (38).
Theorem 3 below results immediately. The theorem statement uses the notation k introduced
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at the end of Section 3, and the notation R;(F'(-)) introduced at the end of Section 1. This
is in order to take into account the stable mode nondestabilization requirement.

Theorem 3. (Sufficient Condition for Linear Stabilizability) Let (1) satisfy hypothesis (S)
and suppose b = 0. Then the origin of Eq. (1) is stabilizable by linear state feedback if
there is a k with ||k|| < k that satisfies kA~b # —1 and S(k) = S; € R;(S(")) (defined in
Eqs. (33), (34)) for some ¢ € {1,2,3}; and for this k and this S;, ¢(k;S:) € Ri(9(+,Si))
satisfies the inequality

Ps(Si) + d(Si)¢(k; Si) < 0. (39)
|

It is possible, though tedious and not very informative, to translate the conditions of The-
orem 3 into more explicit conditions for the linear stabilizability of (1). This would involve
explicit limits on the allowed norm of the control gain vector under which the nominally
stable modes would be guaranteed to remain stable for the closed-loop system. Obtaining
such upper bounds from, say, Liapunov matrix equations would be feasible but would lead to
conservative results. Given such bounds, one would simply check if any of the gain vectors of
Theorem 3 which result in appropriate values of the stability coefficients satisfy the bounds.
We do not present calculations on this issue here, since they are intricate and are not of
primary importance in this work. We note, however, that one approach to obtaining the
bounds is to change coordinates of the linearized system so as to separate the uncontrollable
critical mode from the remaining modes. Also, note that it may be best to obtain such
bounds using extensive numerical search.

4.3 Construction of Stabilizing Linear Feedbacks

Next, we combine the results of the previous two subsections to result in a procedure for the
construction of a stabilizing linear feedback « = kx which achieves a prescribed value 35 (k) =
B. For brevity, only case (a) of the statement of Theorem 2 is addressed. Construction
procedures for other cases follow similarly.

Our strategy for constructing stabilizing linear feedback is as follows. First, the family
of linear feedback gain vectors k achieving a prescribed value assignment 85 = 8 < 0 (with
Bi, = 0 fulfilled) is generated via a set of linear algebraic equations. Then, those k that
preserve the stability of the open-loop stable modes can be selected from the obtained family.
If for the current choice of 8 < 0 there exists no such solution k, decrease the modulus |G|
and restart the procedure.

Given a desired value 3 < 0 for 35, the problem is equivalent to finding those k& which
solve two equations: S(k) =S, and

B — Ps(Si)

o(k; Si) = s ¢si8-

(40)

(Note that d(S;) # 0, do to the fact that A > 0, which holds because case (a) of Theorem 2
is in force.)

12



Applying Lemma B.1, we obtain the linear system
kVs = [Si, ¢s..6] (41)
where the coefficient matrix Wg is given by
Us = Ug(Si, B) :=[r —SiATb, A~ (B*(r*,r") — ¢s,8b)]. (42)

Note that rank [¥s(S;, 8)] = 2 for any S; and 8 such that B*(r*,r7*) # és, gb, since Ir =1
whereas [A~z = 0 for any z € E*. Also, note that if it happens that Ps(S;) < 0, then (39)
holds with ¢(k;S;) = 0, giving a linear equation to be solved along with (31).

Procedure S below summarizes the main steps in constructing a stabilizing linear feedback

under hypothesis (S) assuming the situation specified in case (a) of the statement of Theorem
2.

Procedure S (Construction of stabilizing linear feedbacks in Case (S))

Step 1. Solve Eq. (31) for S; and S,, and compute vy, vz, w1, ws, ws, B*(r*,r*), Ps(S;)
and d(8;) for i = 1 and 2. Select any 8 < 0.

Step 2. Compute ¢s, 5 for : =1 and 2.

Step 3. Solve Eq. (41) for k, first for 7 = 1 then for ¢ = 2. If one of these solutions k
satisfies ||k|| < k, then this k gives a stabilizing linear feedback v = ka. Otherwise,
select another 4 < 0 of smaller magnitude, and go to Step 2. [ ]

5 Linear Feedback Stabilization in the Case of
One Pair of Imaginary Eigenvalues

In this section, results on linear feedback stabilizability of the origin of (1) in Case (H) are
given. The development entails an analysis of the assignability of 8;, and implications for
linear stabilizability. A procedure for the synthesis of stabilizing linear feedback laws which
achieve a prescribed value 8 < 0 of 5, is also given. The analysis proceeds in a fashion
similar to that for Case (S) in Section 4. However, in Case (H) there is no equality condition
analogous to the condition ff, = 0 in Case (S).

5.1 Stability Coefficient Assignability

A formula giving the closed-loop stability coefficient 85, in terms of the linear state feedback
vector k is obtained in Appendix A. This formula is:

Bay = Pr(H) + di(H)$1(k; H) + Re{da(H)$a(k; H)} (43)

with H = H(k) the complex fraction given by Eq. (27), Py(H) a real-valued cubic polyno-
mial in H, dy(H) a real coefficient, dz(H) a complex coefficient, ¢, (k; H) a real fraction, and
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$2(k; H) a complex fraction. These are given by

Pyg(H) = Pay + 2Re{H(lw;) + H(lw,) + H*(lws) + HH(lwy) + H*H(lws)}, (44
d] (H) = Re{(lvm) + H(l’l)ll)}, (45
da(H) (lvoz) + H(Iv12), (4
(
(

D

)
)
)
o1(k;H) = F(k; A7'B*(r*,7),A7'b), and 47)
po(k;H) = F(k; (A~ 2iw ) B*(r*,r*), (A — 2iw.1)™'D), 48)
respectively; See Appendix A for the values of coefficient vectors w;, ¢ = 1,...,5 and vo1, vogz,
oz, V12 as well as the vectors B*(r*,7*) and B*(r*,r*). Note that although H does not appear
explicitly in the formulae (47) and (48) for ¢;(k;H) and ¢,(k; H), it affects these quantities
through the expressions for B*(r*,#*) and B*(r*,r*), respectively. Compare with Eq. (38)
for Case (S).

Apparently, the fraction H plays a role similar to that of S in Case (S), and analogies occur
between Py and Ps; between (dy(H), d2(H)) and d(S); and between (¢1(k; H), ¢2(k; H)) and
¢(k; S). However, because of the absence of a necessary stabilizability condition analogous
to 37, =0, H is a free variable. In Case (S), the variable S was subject to the requirement
§ = §;. The difference between Eq. (35) for 85 (k) and Eq. (43) for 35, (k) results in added
freedom in achieving value assignments 3; = 3. Indeed, since H need not be fixed, f;, can

be modified via three ‘channels,” namely H, ¢;(k; H) and ¢2(k; H). In parallel to Theorems

3 and 4, we have

Theorem 4. (3;, Assignability) Let (1) satisfy hypothesis (H) and suppose Ib = 0. The
function 35 _(-) is onto if lw;, + = 1,2,3,5, as well as lvgy, lvgy, lv1; and lvy, do not vanish
simultaneously. If lw; = 0 for ¢ = 1,2,3,5 and lvg; = lvy; = lvgy = lvy = 0, then

B3, (k) = Bay + IH(k)|*Re{lw,} (49)

which has a global maximum (resp., global minimum) f;,, if Re{lws} < 0 (resp., if Re{lw,} >
0). |

Theorem 5 below is analogous to Theorem 3 of Section 4. The theorem statement uses
the notation k introduced at the end of Section 3, the notation R;(F'(-)) introduced at the
end of Section 1, the notation and the quantities H(k), ¢1(k; H) and ¢2(k; H) given by (27),
(47) and (48), respectively.

Theorem 5. (Sufficient Condition for Linear Stabilizability in Case (H)) Let (1) satisfy
hypothesis (H) and suppose {b = 0. Then the origin of Eq. (1) is stabilizable by linear state
feedback if there is a k with ||k|| < k that satisfies kA™b # —1 and k(A — 2iw.J)™'b # —1;
and with H := H(k), we have H € R;(H(-)) and that ¢ (k;H) € Ry(¢i(-)) and ¢y(k; H) €
R (¢2(+)) satisty the inequality

Py(H) + dy(H)é1(k; H) + Re{d:(H)p2(k; H)} < 0. (50)
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5.2 Construction of Stabilizing Linear Feedbacks

In this subsection, which parallels Section 4.3, a procedure is given for generating stabilizing
linear feedback laws u(z) = kz for (1).

An equation similar to (41) in Case (S) is sought to characterize the set of vectors k
which achieve the value assignment B3, = B. For brevity, as in Case (S), only the simplest
(nondegenerate) case is considered, namely that in which d;(H) and d3(H) are nonvanishing
functions of H. That is, we assumne that at least one of the coefficients appearing in each of
Egs. (45) and (46) does not vanish. Consider the assignment equation

Py (H(k)) + di(H(k))1(k; H(k)) + Re{dz(H(k))d2(k; H(K))} = B. (51)

By the reasoning preceding Theorem 4, first we fix an H € C such that |dy(H)| + |d2(H)| #
0 so that 87 can be modified also by either ¢;(k;H(k)) or ¢2(k; H(k)). Thus, Py(H)
becomes a fixed constant, and ¢, (k; H(k)) and @z(k, H(k)) reduce to ¢;(k; H) and ¢q(k; H),
respectively. Now, Eq. (51) can be treated as a linear equation in the two unknowns

¢1:= ¢1(k;H) € R and ¢, := ¢o(k; H) € C:
di(H)¢1 + Re{dzy(H)$2} = B — Pu(H). (52)

It follows that (51) now consists of three equations in k, namely H(k) = H, ¢1(k;H) = 6,
and ¢,(k; H) = ¢y (with (41, $2) any solution pair of Eq. (52)), each involving expressions
of the form of the fraction introduced in (24). Finally, we use Lemma B.2 (including the
(-)notation defined in Eq. (B.4) for complex fractions H(k) = H and ¢o(k;H) = ¢3) to

obtain the system of real linear equations (see Eq. (B.5)):
KUy = [Re{H}, Im{H}; ¢1; Re{¢2}, Im{¢.}] (53)
where the coefficient matrix ¥y is given by
U = Uy(H;é1;¢2)

= 0 (A i) D)5 A7NB G, 7) - b
(A = 2iw 1) B*(r*, 1)), ((A — 2iw 1) 7'b)). (54)

Procedure H below is analogous to Procedure S given at the end of Section 4. It sum-
marizes the main steps in constructing a stabilizing linear feedback under hypothesis (IT).
The simplest situation addressed in the statement of Theorem 4 is assumed, namely that in
which not all of the quantities lw;, ¢ = 1,2, 3,5 and lvgy, lvoy, lvq1, lvgz vanish simultaneously.

Procedure H (Construction of stabilizing linear feedbacks in Case (H))
Step 1. Compute voy, voz, v11, viz and lw; for i = 1,...,5. Select any # < 0.

Step 2. Select H € C such that d;(H) anddy(H) do not both vanish. Compute Py(H)
using Eq. (44). Select a solution pair ¢; € R, ¢5 € C to Eq. (52).

Step 3. Solve Eq. (53) for k. If a solution k satisfies ||k|| < k, then this k gives a stabilizing
linear feedback u = k. Otherwise, select another 3 < 0 of smaller magnitude, and go
to Step 2. [ |



6 Conclusions

Linear feedback stabilizability and stabilization of nonlinear systems with uncontrollable
critical modes have been studied. The paper focused on the two basic critical cases, those
in which the system linearization at the origin possesses either a simple zero eigenvalue or
a pair of simple pure imaginary eigenvalues. Construction procedures facilitating synthesis
of stabilizing linear feedback laws were also given. In general, the conditions obtained com-
bine sufficient conditions for assignability of certain associated stability coefficients with a
requirement that open-loop stable eigenvalues not be destabilized. The critical system is
generically stabilizable by a linear static state feedback u = kz, under the condition that
the open-loop stable eigenvalues have a sufficiently large margin of stability. In the case
of systems (1) for which the control u enters the vector field f(z,u) linearly, the results
presented here readily simplify, since destabilization of stable modes is no longer a possi-
bility. The specialized results for these so-called linear-analytic systems were not given in
this paper, in the interest of brevity. An interesting topic for further research concerns the
trade-off between between linear and nonlinear feedback in the local stabilization of systems
for which the critical eigenvalues are nearly uncontrollable.

Appendix A. Closed-Loop System Stability Coefflicients

Here, we compute the stability coefficients for the closed-loop system (13) under hypotheses
(5) and (H). These are 8f_ and #5_ in Case (S), and f5y in Case (H). To employ the
general expressions for stability coefficients given in Facts 1 and 2, it is necessary that the
bilinear and trilinear forms in the closed-loop dynamics (13) retain the symmetry properties
of the analogous terms in the open-loop dynamics (4). To achieve this, we employ the
symmetrization operation, as in (Abed and Fu, 1986), (Abed and Fu, 1987).

For the quadratic and cubic forms B*(z, z) and C*(z, , z), respectively, of Eqs. (15) and
(16), the associated bilinear and trilinear forms are defined as follows:

B*(z,y) == B(z,y) + 3[(kx) Ay + (ky) Arz] + ba(kx)(ky), (A.1)
C*(ZE,y,Z) = C(xa y7z) + %[(kw)Bl(y’ Z) + (ky)Bl(Zﬂ 1’) + (kZ)Bl(l‘, .7/)]
+%[(kx)(ky)Azz + (ky)(kz) Az + (kz)(kx)Agy] + bs(kz)(ky)(kz). (A.2)

We can now proceed to the calculations associated with obtaining the expressions for the
stability coefficients 37 , A5 occurring in the discussion of Case (S). To begin, we compute
the coefficient vectors vy and v, first appearing in the text in Eq. (30). Letting « := r*, with

r* as given in (25) (Case (S)), in Eq. (15) yields Eq. (30), with the coefficient vectors vy
and vy given by

vy = —=2B(r, A7b) + Ayr, (A.3)
vy := B(A7b, A7b) — AyA™b + by, (A.4)
respectively. Now using this same substitution z := r* in Eq. (16) yields C*(r*,v*,1%),

a quantity required in applying Eq. (17b). The vector A*~ B*(+*,r*) which occurs in Eq.
(17b) is easily obtained using Eqs. (22) and (30). Substituting this value and that of *

into (A.1) gives the first term in (17b). Thus, 8;_is given by (35), along with the notation
(36)-(38), where

wy 1= —2B(r, A"B(r,r)) + C(r,r,r), (A.5)
wy = By(r,r) — AyA~B(r,r) — 2B(r, A=b) — 3C(r,r, A7D), (A.6)
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wy 1= Agr — 2B1(r, A™B) + 3C(r,7, A7b), and (A.7)
wy := by — C(A7b, A"b, A7D). (A.8)

Next we obtain the closed-loop stability coefficient 85, which is defined in Case (H).
First, using r* from Eq. (25) (Case (H)), substitute z := r* and y := 7 into Eq. (A.1), and
substitute = := r* into (15), to obtain

B*(r*,7) = B(r,7) + Hv, + Ho, + HHv,, (A.9)

B*(r*,r*) = B(r,r) + Hvs + H?v4. (A.10)
To state the values of the vectors vy, vy, v, v4 appearing in (A.9) and (A.10), denote

£:=(A—iwd)"b (A.11)

Then the v;, 2 = 1,...,4 are given by
vy := —B(7,£) + %Alf, ( )
= B(£,€) — 3 A1(E+ &) + by, (A.13)
(A.14)

(

v

[ &)

vg := —2B(r,£) + Ayr, and
vy := B(€,€) — A&+ b,.
Next, substitute @ := r* y := r* and z := 7* into Eq. (A.2) to obtain C*(r* ,r ,7*). Then,
premultiply the quantities B*(r*, ) and B*(r*,7*) by A*™" and (A* — 2iw.)™", respectively.
(These matrix inverses are given in Eqs. (28) and (29), respectively.) Substitute the obtained
products along with r* and #* in place of the proper vector arguments in (A.1) to obtain the
first two terms in the expression (18) for 85, . The final expression (43) follows by adding
these two vectors to C*(r*,r*,7), obtained earlier. The notation used in Eqs. (44)-(48)
(needed in the expression (43)) is as follows:
vor := —2B(r, A71b) + Ay, ( )
vi1 := 2B(z, A71b) — Ay (2 + A7) + 20, ( )
vog 1= —B(F, A7'b) + AT, (A.18)
vy 1= B(Z,A7'b) — 1 As(2 + A‘lb) + by, ( )

wy := —B(r, A7 vy) — 2B(z, B(r, 7)) — 3 B(7, (A — 21w 1) vy)

—’O(T,f,,o)—}—Al(l-{- 3By (r,7), (A.20)
wy 1= —B(r, A7'0,) — B(z, b)

=3C(r,r,2) + $A1b+ 1 Bi(r,7), (A.21)
ws := B(z, A~ ) — 1 B(7, (A — 2iw.I) " vg)

+3C0(7, 2,2) — 1A1A7 0 — 1By (7, 2) + 3 Aor, (A.22)

wy 1= —B(r, A7) + %B(z, A1) + %O('r, z,%)

—%AlA“Lﬁl — %Al(A — 2iw I ) 1wy — %Bl(‘r, z) + %Ag'r, and (A.23)

ws := B(z, A7) + 1B(z, (A — 2iw,) " vy)
“I"BC( z 7) - ’1‘A1A_1’02 %Al(/l — 27:&)(7])_1’04
+3Bi(z, 2 +22) — 2z + 2) + 2bs. (A.24)
Appendix B. Solution Sets of Certain Rational Equations

In this Appendix, we consider the solution of systems of equations in which certain rational
functions of the unknown vectors appear. Each rational function is a ratio of linear functions
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of the unknown vectors. The systems of equations are related to systems of linear algebraic
equations, and the structure of the solution set is studied.

Consider the following special class of functions F' given by the rational functions of a
real vector k, which are parametrized by real vectors v and v:

F(k;u,v):= ku

- (B.1)

The range of F(k;u,v), and the set of solutions k to a system F(k;u,v) =6 (0 € R), are
important in the stabilizability analysis and stabilization procedures in the paper.

First, we note that for any 8 the equation F(k;u,v) = 6 is equivalent to the linear
equation k(u—0v) = #. Hence, for any ¢ such that u—0v # 0, the solution set of F(k; u,v) =0
coincides with that of the linear equation k(u — v) = . (Note: thus, if u,v are linearly
independent, the equation F(k;u,v) = 0 is solvable for any 6; if u = awv for some o # 0,
then u — fv = (@ — 0)v # 0 and the rational equation is solvable for any 6 # «.) Applying
this idea to a system of equations each in the form of (B.1): Fi(k;u,v) =6;, 1 =1,...,n,
we have

Lemma B.1. The solution set of the simultaneous equations F;(k;u;,v;) =6;, it =1,...,n
defined in the form of (B.1) via a set of vectors {uy,v1,...,uUpn,vs}, coincides with the
solution set of the linear system

klup — 61v1,. .., um — Opvn] = [01,...,0,]. (B.2)
[ |
Note that if kv; = —1 for some solution k of (B.2) for some ¢, then ku; = 0 necessarily.

Also note that (B.2) is guaranteed solvable for any 8y, ..., 6., if the set {u; — 6101, ..ty —
0,,vy } is linearly independent.

The conclusion above, in particular whether or not a single rational function of type
F(-;u,v) is onto, is in doubt if an additional constraint is imposed on k, such as |k| < k.

Direct application of Lemma B.1 in Case (H) is not possible, due to the presence of
complex quantities. Therefore some modification in the statement of Lemma B.1 is in order.
Consider Eq. (B.1), with the function F(k;u,v) now defined for vectors u,v € C". For

brevity, denote by [-]* and [-]! the real and imaginary parts of a vector [-]. Rewrite F(k;u,v)
as:

o) = (ku') + i(kui)
Let ( )l._ r R, {0} r_|_I {0} i
{ (’U)' ; U/,i — R,e{a}'ui — IIn{H}Urj (B4)

It can be shown that for any # € C for which the set {(u),(v)'} is linearly independent,
or Im{0}(u) = Re{#}(v)’, the equation F(k;u,v) = # has solutions coinciding with the
solutions of the system of linear equations k[(u), (v)'] = [Re{0},Im{6}].
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The same idea applies to a set of rational equations F;(k;u;,v;) = 0; ,i =1,...,m <
n/2, all in the form of (B.1) defined via vectors u;,v;. That is, to consider each equation

Fi(k;uiyv;) = 0; as in (B.3) and to define (u;)’ and (v;)’ as in (B.4). We thus have

m <

9 =

Lemma B.2. The solution set of the rational system F;(k;u;,v;) =6, € C, i =1,...
n/2 coincides with the solution set of the linear system

Fl(wr)', (01)'5 .5 (um)'s ()] = [Re{01}, Im{01 ;.. .;Re{0,}, Im{0,. ). (B.5)
|
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