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Abstract

In this paper we investigate image compression from a perceptual viewpoint. We
develop a detailed image compression scheme using multiscale edges of the image,
based on wavelet maxima representations. We also develop a detailed implementation
of the Human Visual System (HVS) performance evaluation model. The HVS model
includes all key components of the physiological human visual model, and it provides a
performance evaluation of image compression linked to perceptual criteria. Using the
HVS we show that image compression based on multiscale edges gives results inferior
to standard schemes such as JPEG.

1 Introduction

The inexorable advance of technology for the processing and display of electronic im-
agery has in recent years offered the possibility of radically new means of communicat-
ing visual information. Bandwidth, memory, and computational resources are limiting
factors for all these systems and in every instance directly affect their cost, quality, and
practicality.

Therefore, image compression is now essential for applications such as transmission
and storage in databases. Several successful generic methods have been developed such
as JPEG. These methods have some disadvantages. First they do not take into account
the multiresolution composition of the image, i.e., do not use such a decomposition to
improve the efficiency of the coding scheme. Furthermore, they are not well suited
for multicasting because they encode the image as a whole and do not separate the
information corresponding to approximations of the image at different resolutions.

Thus, multiresolution schemes have received much interest during the past few
years. One of the most promising methods is to use a Wavelet Representation of the
image and Vector Quantization of the wavelet coefficients using a bit allocation scheme
that matches the human visual system characteristics (See [12], [14], [15] and [16]).

Here we investigate a new method based on multiscale edges of the image, because
the structural information required for recognition tasks is in most cases provided by
edges. This is particularly well illustrated by our ability to recognize objects from
drawings that outline the contours. We therefore use a multiscale edge-based repre-
sentation of the image to select the important information for coding (See [3], [4] and
[5]).

Furthermore, since the human eye is the final judge of visual image quality, it is
essential to understand the human visual system in order to understand the important
parameters of image quality. One realizes the need for a perceptual measure of image
quality, that would fit human judgment in more accurate way than usual mathematical
criteria. Such a perceptual criterion would be very useful for the optimization of coding
schemes, because it would point out the deficiencies of the schemes according to the
eye requirements (See [6]).

That is the reason why we study several perceptual distortion measures, which we
test on the reconstructed images from the presented coding scheme.
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1.1 Description of the scheme

In this report, we present an image compression scheme based on a multiscale edge-
based representation of the image: the Wavelet Maxima Representation (WMR).

This representation is computed from the Wavelet Representation of the image.
From the Wavelet Representation, we keep the coarse resolution image; and for each
detail image of the different resolution levels, we keep the values of the wavelet coeffi-
cients at the locations of the local modulus maxima along the gradient direction. This
coding scheme involves two steps: first we select the information that is considered
important for visual image quality, then we efficiently code this information only.

We use the Wavelet Maxima Representation to perform the coding of the image
because local modulus maxima of the wavelet coefficients correspond to sharp varia-
tion points in the image, i.e they correspond to edges. In order to achieve interesting
compression ratios, we build curves from the points of the Wavelet Maxima Represen-
tation. This allows us to make an easier selection of the information to encode; and
the curve structure allows chain coding.

To compress the computed edge information, we will use different coding methods
depending on the nature of the curve information we are coding. The main types
of curve information will be point locations, modulus and argument values and some
reference information such as the location of the first point of each edge etc. Certain
types of information are more important than others. We thus use a combination of
lossless and lossy methods.

This report begins by reviewing the Wavelet Representation and the extraction of
multiscale edges (including the Wavelet Maxima Representation and associated ap-
proximate reconstruction). We also review a recently proposed model of the human
visual system (HVS), and discuss how it may be used to assess image quality. These
background concepts and methods set the stage for the subsequent presentation of a
novel HMR edge map coding technique and its performance evaluation using the above
HVS model. The structure of the overall image compression scheme is shown in Figure
1.

Lastly, we will present an algorithm whose goal is to predict the difference between
the reconstructed image and the original one that will be actually perceived by the
eyes of the observer. This algorithm uses an HVS (Human Visual System) model to
predict this perceptual difference. We use this algorithm to assess the quality of the
reconstructed images of our coding scheme and we make some comparison with other
coding methods.
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Figure 1: Global diagram of the compression scheme
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2 The Wavelet Transform

2.1 Introduction

The Wavelet Transform is a mathematical transform that performs a multiresolution
decomposition of a signal or an image. It has already found many fields of applications
[1] [2].

The Wavelet Transform reorganizes the signal information into a set of details
appearing at different resolutions. It splits the signal into subbands (2 for a 1-D signal
and 4 for an image) which are located in the space-frequency domain. Therefore the
decomposition of a signal onto an orthonormal wavelet basis gives an intermediate
representation between Fourier and spatial representations.

Depending on the subband one considers, the transformed signal will contain more
or less details. Since the location information of these details is maintained, the trans-
formed signal subbands will maintain varying degrees (depending on the subband) of
resemblence to the original signal. One may iterate the Wavelet Analysis by splitting
further the coarse resolution image.

The main properties of the Orthogonal Wavelet Transform are the following:

• It decomposes the signal or the image onto an orthogonal basis and therefore
removes redundancy. This is really important if the Wavelet Transform is to be
followed by a coding stage. The information is scattered among the different
subbands in an optimal way.

• The Orthogonal Wavelet Transform can be implemented using simple FIR filters,
this is very convenient.

• We can even use linear phase filters so that we can cascade them for a faster
result.

In the following sections, we restrict ourselves to the case of the dyadic wavelet
transform, which is used in most practical applications. The dyadic Wavelet Transform
involves scales of the form 2j and therefore splits a signal onto octave subbands.

2.2 Mathematical definitions for one-dimensional signals

2.2.1 The Multiresolution Transform

Let A2j be the linear operator which approximates a signal at resolution 2j . A2j

is the orthogonal projection on the vector space V2j which is the set of all possible
approximations at resolution 2j of functions in L2(R) (Square integrable functions).
When moving from f(x) to A2jf(x) some information is lost but

limj→∞A2jf(x) = f(x)

We can build an orthonormal basis of the vector space V2j by dilating and translating a
unique function φ(x) which is called a scaling function. Thus (

√
2−j φ2j (x−2−jn))n∈Z

is an orthonormal basis of V2j , with φ2j (x) = 2j φ(2j x). The orthonormal projection
on V2j can be computed by decomposing the signal on this basis:

A2jf = (A2j f(n))n∈Z = ((f(u) ∗ φ2j (−u))(2
−jn))n∈Z

4



(Ad2j f(n))n∈Z is the discrete approximation of f(x) at resolution 2j .

And all the approximations Ad2jf for j < 0 can be computed from Ad1f by repeating
this process.

2.2.2 The Orthogonal Wavelet Representation

The Orthogonal Wavelet Transform extracts the difference of information between
two approximations at resolutions 2j+1 and 2j by decomposing the signal onto an
orthonormal wavelet basis. This difference of information is called the detail signal
at resolution 2j . It also corresponds to the difference between the two orthogonal
projections on V2j and V2j+1 and can be considered as the projection on O2j where
O2j ⊕V2j = V2j+1 . To compute the projection on O2j of f(x), we need an orthonormal
basis of O2j . Such a basis can be built by scaling and translating a function ψ(x)
which is called the mother Wavelet: (

√
2−j ψ2j (x− 2−jn))n∈Z is an orthonormal basis

of O2j , with ψ2j (x) = 2j ψ(2j x). We can then compute the discrete detail signal at
the resolution 2j

D2jf = (D2jf(n))n∈Z = 〈f(u), ψ2j (u− 2−jn)〉n∈Z = ((f(u) ∗ ψ2j (−u))(2
−jn))n∈Z

which contains the difference of information between A2j+1 and A2j .

Finally, for any J > 0, the original discrete signal Ad1f measured at the resolution
1 is represented by (Ad2−J f,D2jf)−J≤j≤−1 which is called the Orthogonal Wavelet
Representation of the signal. It consists of:

• The reference signal at a coarse resolution 2−J : Ad
2−J

f

• The detail signals at resolutions 2j for −J ≤ j ≤ −1

2.2.3 Implementation of an Orthogonal Wavelet Representation

We use a pyramidal algorithm to compute the Orthogonal Wavelet Representation.

We consider: {
D2jf(n) = 〈ψ2j (t), f〉
A2jf(n) = 〈φ2j (t), f〉

We can rewrite these two equations as:{
D2jf(n) =

∑
k g(2n− k)A2j+1(k)

A2jf(n) =
∑
k h(2n− k)A2j+1(k)

with h(n) = 1√
2

∫
φ(2x− n)φ(2x)dx and g(n) = 1√

2

∫
ψ(2x− n)φ(2x)dx.

Therefore we have g(n) = (−1)nh(1 − n) and A0f(k) = f(k).

G is the mirror filter of H and the filter bank is named Quadrature Mirror Filter
bank (QMF). G is a high-pass filter whereas H is a low-pass filter.

The exact reconstruction is computed from the formula:

A2j+1f(l) =
∑
k

[h(2n− l)A2jf(n) + g(2n− l)D2jf(n)]

5



The original image can thus be reconstructed from its Wavelet Representation by iter-
ating this process.

There are some additional conditions that these filters should satisfy in order to
obtain a useful decomposition. The wavelet coefficients resulting from the wavelet
analysis should be relatively smooth. Several trade-offs should be taken into account:

• In our application, we do not want to introduce any redundancy within the Rep-
resentation because it is to be followed by a coding step. Therefore ψ and φ must
give orthogonal basis of V and O so that we get decorrelated representations on
these spaces.

• We want the Wavelet Transform to be fast to compute. Therefore we would like
to implement it with short compact support filters.

• Lastly, we need Linear Phase filters to be able to use a pyramidal structure, that
is to say to be able to cascade them.

The only solution that fulfills these three conditions is the Haar Wavelet (g(0) = h(0) =
h(1) =

√
2 = −g(1)) which is not smooth enough to give good results. Therefore we

have to relax one condition of orthogonality on the wavelets. We keep V2j ⊕ O2j and
we relax V2j ⊥ O2j . We then obtain what are called Biorthogonal Wavelets.

This allows us to build wavelets smooth enough (in terms of vanishing moments
and discontinuity of the derivative of the wavelet).

In order to maintain the perfect reconstruction property, the orthogonality condi-
tion implies that we need to use different filters for analysis and synthesis; the recon-
struction formula becomes:

A2j+1f(l) =
∑
k

[h̃(2n− l)A2jf(n) + g̃(2n− l)D2jf(n)]

We can now compute the Wavelet Representation of the signal with FIR filters which
have the property of being symmetric (Linear Phase Filters). The resulting filter banks
for analysis and synthesis with biorthogonal wavelets are shown in Figure 2.

2.3 Wavelet Transform for Images

The extension of the wavelet transform to 2-dimensional spaces consists of building 4
wavelet/scaling functions. For practical purposes, and because of the importance of
horizontal and vertical directions in man-made images, one typically uses separable
wavelets, which can be written as the product of two one-dimensional wavelets:

φ(x, y) = φ(x)φ(y)
ψH(x, y) = ψ(x)φ(y)
ψV (x, y) = φ(x)ψ(y)
ψD(x, y) = ψ(x)ψ(y)

ψH(x, y), ψV (x, y) and ψD(x, y) correspond respectively to high horizontal fre-
quency, high vertical frequency and high diagonal frequency images.

In order to solve border problems, we introduce symmetries and periodization in
the image. We make the assumption that the image is symmetrical with respect to

6
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each of its borders, and is periodic with a period equal to twice the number of its pixels
in each direction. An example of the wavelet transform of an image is shown in Figure
4.

For our implementation, we use Mallat’s spline quadratic filters [3]. In Figure 3 we
show the impulse responses of typical such filters used. They were chosen because of
their smoothness and their small compact support.

n -1 0 1 2

H 0.125 0.375 0.375 0.125
G -2.0 2.0

Figure 3: Finite impulse response of the spline quadratic filters

Figure 4: An example of the dyadic Wavelet Transform of an image

3 The Wavelet Maxima Representation

3.1 Why such a representation ?

We use the Wavelet Maxima Representation to select the important information and
then encode it because the local modulus maxima of the Wavelet Transform of the
image correspond to sharp variation points, that is to say image edges. Therefore if we
use this representation, we will code the part of the image content that corresponds to
the edges and also to the main structures of the image.

From this representation, one can reconstruct an image that is very close to the
original one. In fact, one can obtain a perceptually perfect reconstruction, that is to
say, one cannot see the difference between the original image and the reconstructed
one [8] [9] [11]. Furthermore this representation is well-adapted to the goals of image
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compression, because once the edges have been detected in the image, it is easier to
select the important information and then encode this remaining information. We can
indeed use the average modulus and the length of the curves built from the Wavelet
Maxima Representation as thresholds to make the selection.

Several studies have been conducted on the subject of edge detection based on
zero-crossings of the Wavelet Transform. This method uses the second derivative of
the smoothed signal at scale s whose zero-crossings correspond to the extrema of the
first derivative and to the inflection points of the smoothed signal.

The two methods using respectively the extrema and the zero-crossings of the
Wavelet Transform are similar but the one using the extrema exhibits some advan-
tages:

• First it is possible to make a distinction between two types of extrema : it can be
a maximum or a minimum of the absolute value. Maxima correspond to sharp
variations of the smoothed signal, whereas minima correspond to slow variations
of the image. Therefore, with the extrema method, it is easy to keep only the
sharp variations of the image if we only keep the local maxima of the Wavelet
Transform.

• Second, it is possible to record the absolute value at the maxima locations, which
is the absolute value of the derivative at the inflection points of the smoothed
image. These values will be very helpful for the subsequent selection of points in
the Maxima Wavelet Representation.

3.2 Edge detection and Wavelet Transform

Many edge detection approaches are variants of the following general method: first,
smooth the image at different scales. Then, detect sharp variation points from the first
or second derivative of the smoothed image at several scales.

Let us see how these detectors and the Wavelet Transform can be related.
We call ”smoothing function” any function θ(x, y) such that∫ ∫

θ(x, y) dx dy = 1 and limx,y→∞ θ(x, y) = 0

Let εs(x, y) = 1
s2
ε(xs ,

y
s ) be the dilation of function ε(x, y) by the factor s. Smoothed

images at different scales are obtained by convolving the original image with θs(x, y) =
1
s2
θ(xs ,

y
s ) which is the dilation by s of the smoothing function θ(x, y). Then, for

each smoothed image and for each point (x, y), we can compute the gradient vector
~∇(f ∗θs)(x, y). The direction of the gradient vector indicates the direction in the image
plane along which the directional derivative of f(x, y) has the largest absolute value.
Therefore edges are defined as points where the modulus value is maximum in the
direction given by the gradient vector.

Let us now link this edge detection with the Wavelet Transform of the image. We
define two Wavelet functions ψ1(x, y) and ψ2(x, y) such that

ψ1(x, y) =
∂θ(x, y)

∂x
and ψ2(x, y) =

∂θ(x, y)

∂y

9



Then the Wavelet Transform of f(x, y) at the scale s is defined by the two components

W 1
s (x, y) = f ∗ ψ1

s(x, y) and W 2
s (x, y) = f ∗ ψ2

s(x, y)

And we finally have(
W 1
s f(x, y)

W 2
s f(x, y)

)
= s

(
∂
∂x(f ∗ θs)(x, y)
∂
∂y (f ∗ θs)(x, y)

)
= s~∇(f ∗ θs)(x, y)

Therefore edge points can be located from the two components of the wavelet transform.
They correspond to modulus maxima of the Wavelet Transform of the image along the
gradient direction. The modulus and the gradient direction for each scale are given by
the two formulae: {

Modulus =
√
W 2

1,s +W 2
2,s

Argument = arg(W1,s + j W2,s)

Figure 5: The Wavelet Representation

We illustrate these concepts in the sequence of images presented in Figure 5, of
the ubiquitous Lena image. Let us describe the different images from left to right for
the top row first and then for the bottom row. The first image is the original Lena
image. The second one is the coarse resolution image after one Wavelet Analysis step;
it therefore exhibits a resolution that is half the original one. The next two images
are the Wavelet transform images that correspond respectively to high horizontal and
high vertical frequencies. These three images are part of the Wavelet Transform of
the image. The last two images correspond respectively to the modulus and argument
images computed from the two previous images. These last two images are used to
compute the Wavelet Maxima Representation of the image.
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3.3 Computation of the Wavelet Maxima Representation

The Wavelet Maxima Representation is computed from the Wavelet Representation
of the image. From this representation, we keep the coarse resolution image. Then
for each scale of the Wavelet Representation and, for each pixel in the image, we
check whether this pixel is a local modulus maximum along the gradient direction. We
compute the modulus and the argument at the pixel from the two formulae above.
We discretize the gradient into eight possible directions which correspond to the eight
neighboring pixels. Then we check whether the pixel is a local modulus maximum
along this direction or not.

Therefore the Wavelet Maxima Representation will be constituted of a coarse res-
olution image, and for each scale of the Wavelet Representation, of two detail images,
one for the modulus, one for the argument. In these images, if the pixel is a local
wavelet modulus maximum, the corresponding values will be the modulus and the
argument of the Wavelet Representation; otherwise the values will be set to zero.

In Figure 6 we can see the coarse resolution image obtained after three Wavelet
Analysis steps and the three remaining pictures show the locations of the Wavelet
modulus maxima of the three different scales of the Wavelet Maxima Representa-
tion. Observe that, the coarser the resolution is, the fewer modulus maxima we have.
The resolution sequence is as follows: right bottom corner coarse, left bottom corner
medium, right upper corner fine.

Figure 6: The Wavelet Maxima Representation at three resolutions

3.4 The Reconstruction Algorithm

This algorithm is an extension of the reconstruction algorithm used for one-dimensional
signals [3]. We consider an image f(x, y) and its dyadic Wavelet Transform. For
each scale 2j , we have determined the local maxima of M2jf(x, y) along the direction
given by the angle A2jf(x, y) and stored their locations (xjv, y

j
v)v∈R and the values of
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M2jf(xjv, y
j
v)v∈R and A2jf(xjv, y

j
v)v∈R.

The reconstruction problem is to find the set of functions h(x, y) that satisfy :

• For each scale 2j at locations (xv, yv)v∈R of the maxima:{
W 1

2jh(xv, yv) = W 1
2jf(xv, yv)

W 2
2jh(xv, yv) = W 2

2jf(xv, yv)

• For each scale, the locations of the maxima obtained from W 1
2jh and W 1

2jh are
(xv, yv)v∈R

The first constraint means that the Wavelet Transforms of f(x, y) and h(x, y) have to
coincide at the maxima locations.

We have to modify slightly the second constraint in order to solve the problem nu-
merically. We thus do not impose that the (xjv, y

j
v)v∈R are the only maxima but that

h(x, y) minimizes a Sobolev norm:

‖h‖2 =
+∞∑
j=−∞

[‖W 1
2j‖

2 + ‖W 2
2j‖

2 + 22j(‖
∂W 1

2jh

∂x
‖2 + ‖

∂W 1
2jh

∂x
‖2)]

This constraint, combined with the first one, will tend to introduce maxima at the
(xv, yv)v∈R locations. (Due to the partial derivatives in the norm, we will obtain as
few spurious maxima as possible. We use a coefficient that is proportional to the scale
to take into account the fact that the smoothness of the image grows with its scale.

To minimize the Sobolev norm, we use an alternating projection algorithm. Let Γ be
the space of sequences of functions such that for each index j and each location of
maximum (xjv, y

j
v): {

W 1
2jh(x

j
v, y

j
v) = W 1

2jf(xjv, y
j
v)

W 2
2jh(x

j
v, y

j
v) = W 2

2jf(xjv, y
j
v)

The space Γ is an affine space that is closed in K, the vector space of sequences of
finite norm.

Let V be the space of the dyadic Wavelet Transform of all functions of L2(R2). The
functions that satisfy the first constraint are the elements of K that belong to Λ =
V ∩K. To reconstruct the element of V ∩K that minimizes the Sobolev norm, we use
alternating orthogonal projections on V and Γ with respect to the Sobolev norm. The
orthogonal projection on V is Pv = W ◦W−1. The orthogonal projection on Γ will be
described in the next section.

ForN2 pixels images, the implementations of Pv and PΓ have a complexity of O(N2 log2 n).
If we start the iteration with the zero element of K, the algorithm converges strongly
to the element of Λ whose norm is minimal [3].

3.5 The orthogonal projection on the vector space Γ

The operator we use for images is actually the one used for a one-dimensional signal,
applied to the rows and columns of the image. Let us first explain the one-dimensional
algorithm. PΓ transforms each sequence (gj(x))j∈Z ∈ K into the closest sequence
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(hj(x))j∈Z ∈ Γ for the Sobolev norm. Let εj(x) = hj(x)− gj(x). We have chosen each
function h(x) so that we minimize:

+∞∑
j=−∞

‖εj‖
2 + 22j |

dεj
dx
‖2 (1)

For this, we minimize separately each term ‖εj‖2 + 22j | dεjdx ‖
2 in (1). Let x0 and x1 be

the abscissa of two consecutive maxima of W2jf(x).
Since (hj(x))j∈Z ∈ Γ, we have

{
εj(x0) = W2jf(x0)− gj(x0)
εj(x1) = W2jf(x1)− gj(x1)

(2)

In between x0 and x1, minimizing (1) is the same as minimizing∫ x1

x0

(|εj(x)|
2 + 22j |

dεj(x)

dx
|2)dx .

This minimization problem has the following solution:

εj(x) = α exp(2−jx) + β exp(2−jx)

where α and β are determined from the boundary conditions (2). However, using
this solution would be numerically expensive. Therefore we use an interpolation that
approximates this solution while requiring fewer computations.
Let Noct be the number of Wavelet decomposition levels. Let us denote n = x1 − x0.
Let a = 1

5.82/scale where scale is of the form scale = 2j for j ∈ 1 . . . Noct.

Then we use the formula:

for i ∈ [x0, x1], εj(i) =
εj(x0)

1− a2n
ai [1− a2n−2i] +

εj(x1)

1− a2n
an−i [1− a2i]

We introduce the coefficient a to take into account the fact that smoothness has to
grow with increasing scale.

Since we only approximate the solution of the Sobolev norm minimization problem,
we have to use a follow-up procedure that removes the spurious maxima created by
the projection. For this purpose we proceed on the rows and the columns of the image
separately. We consider again two consecutive maxima whose abscissae are x0 and x1.
We remove the maxima between these two abscissae after checking that the direction
of the maximum to be removed is horizontal if we are processing a row and vertical if
we are processing a column.

This algorithm allows us to reconstruct a perceptually almost – perfect image with
a PSNR above 39 dB. However, as we discuss next, PSNR is not an accurate metric of
the perceptual fidelity of reconstructed images.
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4 Compact Image Coding

4.1 Perceptual Ranking of Information

From a theoretical point of view, we have to encode several kinds of image information
to be able to reconstruct the image from the Wavelet Maxima Representation. In
particular:

• For each scale, the locations of the Wavelet maxima and the values of their mod-
ulus and arguments.

• The coarse resolution information as a coarse resolution image.

But if we want to obtain a high compression ratio we cannot afford to keep all the
information content. We have to remove the components that are not very important
from the visual point of view. Therefore we have to rank the information contained
in the Wavelet Maxima Representation, and proceed by encoding the different compo-
nents of suitable levels of information (approximation) loss.

We use a Wavelet Analysis of depth 3. We code only the maxima points contained
in the corresponding subbands for the three scales 2, 22 and 23. This is justified by
the fact that these subbands correspond to more than 90% of the image bandwidth,
and, therefore, most of the information content of the image. We also use similarities
between these three different scales. We assume that edges from the different scales
are spatially close enough so that we can afford to encode only one set of locations for
the three different resolutions of the Wavelet transform. And we make the same kind
of approximation for the values of the argument: we only store the argument values of
the medium resolution. We choose the medium resolution because the argument values
are smoother than the values of the finest resolution.

4.2 Construction of the curves

In order to obtain high compression ratios, we build curves from the Wavelet Maxima
Representation. These curves are unions of edges. This allows us to select more easily
the information that needs to be kept, and the curve-based structure allows chain
coding.

To construct curves, we link together points of the Wavelet Maxima Representation
whose modulus and arguments are close. We utilize this constraint because we want
to obtain smooth curves that correspond to continuous edges in the original image.
We use the medium resolution to build the curves because it gives the best trade-off
between a low high-frequency noise and a sufficient number of points in the Wavelet
Maxima Representation, that is to say a sufficient amount of edges.

To link points together, we use an extended neighborhood. We do not link together
only points that are 8-neighbors. If there is no candidate in this close neighborhood
of eight surrounding pixels, we look further to find the next point in the chain. We
allow a difference of 3 for each coordinate. This procedure permits us to fill gaps in
the curves. This gap-filling has two consequences: first it reduces the number of curves
and therefore leads to a higher compression rate; second it leads to a reconstructed
image that does not have intermittent curves.
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As we explained in the previous section, we decided to encode only one set of
locations for the three different scales of the Wavelet Transform. These curves are not
exactly co-located in these three scales; yet they are very close. We therefore proceed
by encoding only one set of locations. In addition, we use a curve-shifting procedure
that shifts the curves of the coarsest and the finest resolutions.

4.3 Curve-shifting procedure and curve selection

To shift curves, we consider each pixel of each curve in the medium resolution image,
and for this pixel, we try to determine a coarser point and a finer point that will
correspond to it, that is to say, we try to determine points that belong to the same
curve as the pixel we are considering, but in the two other scales. To determine these
two points, we look in the 8 pixel-neighborhood of the pixel under consideration in
the finest and coarsest images, and attempt to find a modulus maximum. Among the
several potential candidates for each resolution, we choose the one that has the highest
modulus value. This is depicted in Figure 7.

FINE
 RESOLUTION

COARSE 
RESOLUTION

(i,j)

(i+a,j+b)

(i+c,j+d)

POINT RELOCATION

Figure 7: Curve shifting procedure

4.4 Selection on the curves

Once the edges have been constructed, we select only the ones that correspond to
the sharpest variations in the image, i.e., to the main structures. Since the main
structures usually correspond to rather long curves, we use a thresholds on the length
of the curves. In practice we use a length between 15 and 20 pixels on the example
of LENA for a 256x256 pixel image. Furthermore, sharp variation curves correspond
to curves with a rather high modulus. We impose thresholds on the average modulus
along the curve to remove edges that are not sharp enough.

Once this selection process is complete, only the most important curves remain.
This is depicted in Figure 8.
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Figure 8: Curve-shifting procedure and curve selection

4.5 Curve coding

Once the curve selection process is complete, it remains to encode the information
contained in the surviving curves. We use several coding methods, adapted to the
different kinds of information that the curves contain. We use lossless coding to encode
the locations of the curves. We cannot afford to modify edge positions because the
image quality is very sensitive to edge position. We use a differential coding: we record
the increment of the position along each curve.

We tried two different methods for this encoding. First an adaptation of Huff-
man coding to our particular application. Instead of computing an optimal codebook,
we only use 8 different codewords that correspond to 8 different directions. These
codewords are shown in Table 1.

We first scan the curve once to determine the most likely moves. We then use
the estimated empirical probabilities to build a Huffman codebook for this particular
curve. We consider the example of a dominant direction equal to 0. This direction
corresponds to a move to the right and the directions are numbered in a clockwise
manner. The next table shows the codewords used for each move. For the coordinates,
the origin is the upper left corner of the image.

The second method we use is Lempel-Ziv coding on the set of the moves for the
entire image. Each move corresponds to half a byte. The second method proves more
efficient than the first one. Both methods result in a compression gain because along
a curve the same move is typically encountered a large number of times.

To encode the values of the modulus and argument along the curves, we use a lossy
coding scheme. We use vector quantization with 8-dimensional vectors. As image
quality is more sensitive to the argument value than to the modulus value, we use
more bits to code the argument than to code the modulus. We employ full search VQ
[13], using 0.5 or 1.0 bits per sample for the modulus, and 1.0 or 1.5 bits per sample for
the argument. Furthermore, in order to cluster the values that we quantize and obtain
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direction ∆x ∆y codeword

0 1 0 1
1 1 1 011
2 0 1 0011
3 -1 1 0001
4 -1 0 00001
5 -1 -1 00000
6 0 -1 0010
7 1 -1 010

Table 1: Codewords for the 8 directions used in the encoding

better results with the VQ, we quantize the difference between the actual value (of the
modulus or the argument) and the corresponding average along the curve. Thus, the
values we quantize are clustered around zero. To encode the coarse resolution image,
we use the fact that it is inherently low-pass to subsample it by a factor of 23 along
the rows and the columns of the image, we then perform scalar quantization using only
6 bpp instead of 8. Finally, we have to encode the first point location of each curve
and the averages along the curve for the three moduli (corresponding to the three
different scales) and the corresponding arguments. This information can be considered
as reference information because of the differential coding. Thus we cannot use a lossy
coding scheme to encode it: it would lead to a propagation of the error that could
completely degenerate image quality. We use Lempel-Ziv coding for these two types of
information.

4.6 Results

Figure 9 depicts two examples of image reconstruction using the proposed coding
scheme. These are 256x256 pixel LENA images. The left image corresponds to a
compression ratio of 12:1 and the right one to a compression ratio of 19:1. They were
both obtained using VQ on the modulus and argument values. As expected, most of
the texture information of the image is lost, especially at the 19:1 compression rate. A
lot of details are lost in the hat and its plume. As expected, the eyes and the mouth
are distorted because they mostly consist of rather short curves. On the other hand,
the important edges in the image are well – preserved. We still have sharp edges for
the hat, the mirror, and Lena’s shoulder.

5 Measures of the perceptual quality of recon-

structed images

5.1 Introduction

Usually, to assess the quality of a reconstructed image obtained from a lossy compres-
sion scheme, we use mathematical criteria such as MSE or PSNR. But these criteria do
not always fit the visually perceived quality of the reconstructed image: one can easily
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Figure 9: Reconstructed images at compression ratios 12:1 and 19:1

build two distorted images from an original one in such a way that these mathematical
criteria lead to comparable numerical results, yet one looks perceptually much better
than the other.

Therefore, it is clear that we need some perceptual criteria that will be able to
assess image quality in a way that captures visual perception. This is not an easy task
because the Human Visual System (HVS) is very complex, and there are still many
aspects of it that we do not fully understand [26].

We will now present two kinds of perceptual distortion measures. The first one,
which exhibits low complexity, uses sums of weighted pixel-to-pixel differences. The
second one, which is more complex, uses a complete model of the HVS to predict, for
each pixel of the image, a probability of error detection by the eye.

5.2 Weighted pixel-to-pixel differences

The idea is to weight the pixel-to-pixel differences in order to give them more or less
importance in the summation, depending on the importance that these differences have
for visual perception [7]. This model capitalizes on the so-called “masking effect”, i.e.,
decreased visibility of a signal due to the presence of a suprathreshold background.
For each pixel of the image, we compute the activity of the neighborhood of the pixel,
and from this value we determine the weight of the pixel-to-pixel difference within the
summation. Let us denote respectively by Ai and Wi the activity and the weight of
the pixel i. Then the first perceptual distortion measure is given by :

EMp = (
1

m

m∑
i=1

|
ei
Wi
|p)1/p

One can use different types of activity functions:

• A1 = |xi,j − xi−1,j|+ |xi,j − xi+1,j|+ |xi,j − xi,j−1|+ |xi,j − xi,j+1|
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• A2 =
9∑
i=1

|xi − x̄|r

• A3 = max|xi − xj |i,j=1,2,..,9

And from this activity value, we compute the weight of the pixel i using an exponential
formula, and scale it in order to obtain weights in the range of 1 to 10 approximately.

To improve this perceptual measure, we can also use the fact that the viewer rates
the picture by some weighted average of the worst two or three patches. Therefore, we
can divide the image into squares, compute a local perceptual measure of the distortion
for each square, and finally obtain a global measure for the entire image by using the
average of the two or three largest values.

But, because of its lack of complexity as compared to the HVS, this simple type
of measure does not prove much more efficient than classical mathematical measures
such as the root mean squared error. The root mean squared error is one of the best
mathematical criteria because of its non-linearity, which is similar to the eye non-
linearity. Nevertheless, it is clear that we need more elaborate HVS models.

5.3 The visible differences predictor

5.3.1 Introduction

The visible differences predictor (VDP) is an algorithm for modeling the human visual
response [6]. Its goal is to predict the probability of error detection by the eye, for
each pixel of the entire image. This algorithm uses a complete model of the human
visual system: it models the amplitude non-linearity function, the contrast sensitivity
function, and several detection mechanisms encountered within the visual system.

Within the overall HVS model [6], the multiple detection mechanisms are modeled
with four subcomponents: the spatial frequency hierarchy, which models the frequency
selectivity of the visual system; the masking function, which models the magnitude
of the masking effect; the psychometric function, which describes the threshold in
a detailed manner; and the probability summation, which combines the responses of
all the detection mechanisms into a unified perceptual response. Figures 10 and 11
(reprinted here with permission of MIT Press from [6]) illustrate the overall architecture
of HVS and VDP.

5.3.2 Amplitude non-linearity function

The amplitude non-linearity function describes the sensitivity of the eye as a function
of light intensity. It is well-known that visual sensitivity and perception are nonlinear
functions of luminance [22] [26] [6]. The local amplitude non-linearity is implemented
[6] in the VDP as a function of pixel location (i, j):

R(i, j)

Rmax
=

L(i, j)

(L(i, j) + c1L(i, j))b)

where R(i,j)
Rmax

is the normalized retina response, L is the luminance falling on the retina,

b is 0.63 and c1 is 12.6 for the units of cd/m2. The amplitude non-linearily function is
shown in Figure 12 (reprinted here with permission of MIT Press from [6]).
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Figure 10: The three main components of the HVS model within the VDP (reprinted with
permission of MIT Press from [6])

Figure 11: The four components of the detection mechanism in VDP (reprinted with per-
mission of MIT Press from [6])
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Figure 12: Amplitude non-linearity and contrast sensitivity functions (reprinted with per-
mission of MIT Press from [6])

5.3.3 Contrast Sensitivity function

The contrast sensitivity function (CSF) describes the variations in visual sensitivity as
a function of spatial frequency. The CSF is a function of light adaptation, noise, color,
accommodation, eccentricity and image size; it is illustrated in Figure 12 (reprinted
here with permission of MIT Press from [6]).

The VDP models [6] the sensitivity S as a function of radial spatial frequency ρ

in c/deg, orientation θ in degrees, light adaptation level l in cd/m2, image size i2 in
visual degrees, lens accommodation due to distance d in meters, and eccentricity e in
degrees:

S(ρ, θ, l, i2, d, e) = P min[S1(
ρ

rarerθ
, l, i2), S1(ρ, l, i

2)]

where P is the absolute peak sensitivity of the CSF. In our work, we used P=250. The
parameters ra, re and rθ model the changes in resolution due to the accommodation
level, eccentricity and orientation, respectively, via the following equations:

• ra = 0.856 d0.14

• re = 1
1+0.24 e

• rθ = 0.11 cos(4θ) + 0.89

Remaining to be modeled are the effects of the image size and the light adaptation
level:

S1(ρ, l, i
2) = ((3.23 (ρ2 i2)−0.3)5 + 1)−1/5 Al 0.9 ρ e

−(0.9Bl ρ)
√

1 + 0.06 e0.9Bl ρ

with Al = 0.801 (1.7
l )−0.2 and Bl = 0.3 (101

l )0.15.
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Figure 13: The formation of the cortex filters (reprinted with permission of MIT Press from
[6])

5.3.4 Spatial frequency hierarchy

The frequency selectivity of the visual system is modeled [6] by using a hierarchy of
filters, called cortex filters. Cortex filters are constructed from separate classes of filters,
whose effects are cascaded to describe the combined radial and directional selectivity
of cortical neurons. The first class of filters is called dom filters. The second class is
called fan filters. These filters are shown in Figure 13 (reprinted here with permission
of MIT Press from [6]).

The dom filters [6] are formed as differences of a series of two-dimensional low-pass
mesa filters, characterized by a flat pass-band, a transition region, and a flat stop-band
region. In the VDP algorithm, the transition region is modeled by a Hanning window,
so that each mesa filter can be completely described by its half-amplitude frequency
ρ1/2 and the transition width tω as follows:

mesa(ρ) = 1.0 for ρ < ρ1/2 −
tω
2

= 1
2(1 + cos(

π(ρ−ρ1/2+tω/2)

tω )) for ρ1/2 −
tω
2 < ρ < ρ1/2 + tω

2
= 0.0 for ρ > ρ1/2 + tω

2

The radial frequency selectivity is modeled by dom filters (differences of mesa) formed
from two mesa filters evaluated with different half-amplitude frequencies. The kth dom
filter is given by

domk(ρ) = mesa(ρ)|ρ1/2=2−(k−1) −mesa(ρ)|ρ1/2=2−k

Increased values of k correspond to lower frequency bands in the hierarchical pyramid
of filters of the cortex transform.

The lowest-frequency band is referred to as the baseband. To avoid ringing effects
that occur if we use the same formulation for this base filter, we use a truncated
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Gaussian function for the baseband, as given by:{
base(ρ) = e−(ρ2/2σ2) for ρ ≥ ρ1/2 + tw

2
= 0 for ρ < ρ1/2 + tw

2

with σ = 1
3(ρ1/2 + tω

2 ) and ρ1/2 = 2−K .

The equations for the whole set of dom filters are therefore: domk(ρ) = mesa(ρ)|ρ1/2=2−(k−1) −mesa(ρ)|ρ1/2=2−k for k = 1, . . . ,K − 2

= mesa(ρ)|ρ1/2=2−(k−1) − base(ρ)|ρ1/2=2−k for k = K − 1

where K is the total number of radial filters.

In the practical implementation of the algorithm, we used a transition width of the
form tω = 2

3 ρ1/2. This transition width configuration gives constant behavior on a log
frequency axis with a bandwidth of 1.0 octave and symmetrical responses.

The orientational selectivity is modeled with fan filters [6]. An integer number of
fan filters is used to approximate the nearly continuous orientation selectivity of the
visual system. A Hanning window is also used for these filters, which is determined
in angular degrees θ in the Fourier plane. The equation for fan l as a function of
orientation is fanl(θ) = 1

2(1 + cos[π|θ−θc(l)|θtω
]) for, |θ − θc(l)| ≤ θtω

= 0.0 for, |θ − θc(l)| > θtω

where θtω is the angular transition width and θc(l) is the orientation of the center, or
peak, of the fan filter given by θc(l) = (l − 1) θtω − 90.

If we set the transition width equal to the angular spacing θ∆c between adjacent
fan filters,

θtω = θ∆c =
180

L

where L is the total number of fan filters. The total number of fan filters in our
implementation is 6, which gives an orientation bandwidth of 30 degrees.

The cortex filters are formed as the polar separable product of the dom and fan
filters as{

cortexk,l(ρ, θ) = domk(ρ) · fanl(θ) for, k = 1, . . . ,K − 1; l = 1, . . . , L
= base(ρ) for, k = K

where the particular cortex filter can be denoted by the dom and fan filter indices, k,
l, respectively. The total number of cortex filters in the set is ((K − 1)L+ 1), which is
31 in our implementation (K = 6, L = 6).

5.3.5 Masking function

Masking refers to the decreased visibility of a signal due to the presence of a suprathresh-
old background. The masking function [6] quantifies this effect as a function of the
background contrast.
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In the algorithm, many frequencies contribute to the normalized mask contrast mn

within a particular band k, l as a function of location [i, j]. It is calculated as

mn[i, j] = F−1(L[u, v] · csf[u, v] · cortexk,l[u, v])

where L is the Fourier transform of the input image processed by the amplitude non-
linearity, and u and v are the Cartesian frequency components.

The threshold elevation is implemented as a function of location as follows

T k,le [i, j] = (1 + (k1(k2|m
k,l
n [i, j]|)s)b)1/b

where s corresponds to the slope of the high contrast masking asymptote. Its values
range from 1.0 for the baseband to 0.65 for the middle frequencies. For the other
parameters we use k1 = 1.53 10−2, k2 = 392.5 and b = 4.

The band-specific threshold elevation T k,le [i, j] is a function of pixel location and
is referred to as the threshold elevation image. Since we seek to predict the difference
between an original image and a distorted one, we have to take into account the fact
that the only masking that occurs is that which is mutual to both images. Therefore
the masking threshold elevation image is given by

T k,lem[i, j] = min(T k,le1 [i, j], T k,le2 [i, j])

where the subscript 1 and 2 refer to the two images input to the algorithm.

5.3.6 Psychometric function and probability summation

The psychometric function [6] describes the increase in the probability of detection as
the signal contrast increases. It is given by the following equation

P (c) = 1− e−(c/α)β

where P (c) is the probability of detecting a signal of contrast c.

The probability of detection as a function of location is calculated as follows. First
the contrast difference as a function of location is given by

∆Ck,l[i, j] = C1k, l[i, j] − C2k, l[i, j]

=
B1k,l[i,j]

B̄K
−

B2k,l[i,j]

B̄K

where ∆Ck,l[i, j] is the contrast difference for band k, l as a function of pixel location,
B1k,l and B2k,l are the two filtered input images for band k, l, and B̄K is the baseband
mean. Then the probability of detection in band k, l is computed by

Pn[i, j] = 1− e−(∆Ck,l[i,j]/Tem[i,j])β

where β = 1.04 in our implementation.

Once the detection probabilities are computed for each band of the spatial frequency
filter hierarchy, these probability images are combined into a single image that describes
the overall probability of detecting an error for every pixel in the image:

Pt[i, j] = 1−
∏

k=1,K;l=1,L

(1− Pk,l[i, j])

where Pt[i, j] is the total probability of detection resulting from all bands as a function
of location.
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Figure 14: Two probability mappings obtained for 6:1 and 18:1 compression ratios

5.4 Perceptual distortion of reconstructed images

Once the mapping of probabilities of error detection by the eye have been computed
for the reconstructed image, it can be useful, in order to compare more easily our
coding scheme with some other reference scheme, to convert this mapping into a single
number. To do so, we may use the following formula:

Dist =
100

N

∑
i,j

p(i, j)2

where Dist will be the perceptual distortion for the entire image, N is the total number
of pixel in the image, and p(i, j) is the probability of error detection for the pixel (i, j).

If we want to obtain meaningful numerical values, we have to normalize this mea-
sure. Therefore we subtract the numerical value dist0 obtained for no coding at all,
which corresponds to the case of a perceptually perfect image quality for the recon-
structed image. We then obtain the following formula:

Distnorm =
100

N

∑
i,j

p(i, j)2 − dist0

We used a factor of 100 to obtain values of a convenient order of magnitude.

5.5 Results

We used this perceptual distortion measure to assess the quality of the reconstructed
images obtained from our coding scheme. Typical results of the evaluation are shown
in Figure 14. We also performed this quality assessment on the JPEG coding algorithm
in order to compare our algorithm versus an established reference algorithm.

The two plots in Figure 15 show the results obtained with and without vector
quantization. Image quality at 16:1 with vector quantization is not very different from
image quality obtained without vector quantization at 9:1.
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Figure 15: Perceptual distortion of recontructed images from our coding scheme

However, the comparison with JPEG clearly shows (see Figure 16) that for any
compression rate between 5:1 and 20:1, the JPEG algorithm leads to a higher image
quality than the proposed multiscale edge-based coding. Actually, the difference in
performance is significant. Therefore the method we implemented cannot be considered
as a practical alternative to JPEG.
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Figure 16: Perceptual distortion of recontructed images from JPEG
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6 Conclusions

As we explained in the previous chapter, the proposed image compression scheme based
on multiscale edges does not prove as efficient as other generic methods such as JPEG.
The perceptual image quality is noticeably inferior to the one obtained using JPEG,
for a wide range of coding gains.

One can conclude from these results that the Wavelet Maxima Representation is
not complete enough to be used within such a compression scheme. In fact, edge
information is not robust enough to be encoded itself. We must admit that the Wavelet
Maxima Representation provides an interesting edge map of the image as a side benefit,
and multiscale edges can convey a lot of information about image content. For example,
this representation can be used to denoise the image because, from this representation,
one can compute the Lipschitz exponents and by putting a threshold on the exponents,
remove white noise from a noisy image.

Therefore, one can suggest to use this representation either for purposes other
than image compression, or within another coding scheme. This representation can
be very useful in pattern recognition algorithms or classification because it extracts
important image structure, and classification is often performed using this type of
information. Furthermore, one could use this representation within another coding
scheme, in order to rank information according to perceptual measures. From the
edge-based representation, one can assess the activity of a region of an image and,
from this, assign a certain number of bits to this region. It could also be used as
part of a more complete coding scheme, coupled with a texture coding, for improved
rate-distortion trade-off.
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