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1. Introduction and Summary

Large scale dynamical systems encountered in engineering practice often have sub-
systems which are substantially homogeneous. For example, electric power systems are
generally composed of several operating areas. Within each area there may be many
generating units of essentially the same type and size. It is natural to base control or
state estimation algorithms for the subsystems on aggregate variables, e.g., the ‘‘system
frequency” in power systems [1][2]. Similarly, in econometric systems, especially in large
cartels containing many identical firms, it is natural to try to estimate or control the
performance of a ‘‘typical” firm based on measurements of the aggregate dynamics of
the cartel {3]. The dynamics of interconnected networks of neural-like elements have
also been described in this way [4]-[6]. In most cases individual elements in the larger
network may be subject to local, random fluctuations and the network interconnections
may be random (e.g., the models in [4]-[6]). The thermal and mechanical properties of

large lattice structures may also be usefully treated from this perspective [7](8].

In this paper we shall give a detailed treatment of the filtering problem for the sys-

tem
dx‘(t):g[ﬁiit—)]xf(t)dt + o[xzt)]dw(t)
dzf(t)zh[zzt)]zf(t)dt + dv(t) (1.1)

90)=¢& z%0)=0, 0Lt < T, ¢>0

which may be regarded as a prototype of stochastic dynamical systems with many com-
ponents. Here € is an IR" - valued (Gaussian) random variable, g, o, and h are periodic
on the (unit) torus in IR", and w(t) and v () are independent, standard vector-valued
Wiener processes which are independent of €& The filtering problem for (1.1) is to esti-
mate z(¢), i.e., compute its conditional density, given Z;* = o{ 2%(s), 0<s <t }, the

o-algebra of observations. We are interested in the behavior of this filtering problem in



the limit as € | 0.

The vector z%¢) may be regarded as the composite state of the overall system
formed from the lexicographical listing of the states of each of the components of the
system. The periodicity of g, o, and h is a regularity property of the array; and the
small parameter € represents a natural, non-dimensional ‘“distance” or ‘“coupling” vari-
able characterizing component interactions. In a subsequent paragraph we shall describe

a formal analysis of a prototype system of this type.

One would expect the system (1.1) to be well approximated as € | 0 by a similar
system with ¢ (z /¢€), o(x /€), and h (z /€) replaced by their averages g, 7, and h over the
torus. This is the case, although the precise nature of the average is difficult to guess
from a cursory inspection of (1.1). The filtering problem for the limiting system is just
the Kalman-Bucy filtering problem which has a simple, closed form solution. By con-
structing an asymptotic expansion for the conditional density of z%(¢) given Z,°, we can
obtain a family of finite dimensional linear filters which provide increasingly accurate,
e.g., 0(¢), 0(¢?),..., etc., approximations of the conditional density of z(¢) based on the
Kalman estimator. The technique used to derive the result is ‘“homogenization’ of a
linear stochastic partial differential equation for the (un-normalized) conditional density
of z%(¢) given Z,°. The theory of homogenization, which has been widely used in physics

and applied mathematics, is described in [10][11].

While the system (1.1) is obviously only an example of a larger class of problems,
we shall see that its analysis has all the essential difficulties of more general problems.
Before starting the analysis it is useful to describe how a problem like (1.1) might arise
in “practice’’.

Consider the prototype system:

1 N
dr(t) = alz; (), u(t)dt + ~ Jz:]l b [z;(¢)]dw;; (t) (1.2)

i =12,.,N, t>0

1A version of this problem was first discussed in [9].



Here a and b are smooth functions of their (vector—valﬁed) arguments, w;; and wy are
standard (vector) Wiener processes which are independent for (7,7) £ (k,l) and u(t) is
a vector of control variables. The functions a¢ and b are the same for ail the subsystems
- SO the overall system with state z () = [z (¢),...,zy (¢ )]T has a homogeneous struc-
ture. The coupling is random and normalized by 1/N to reflect the assumption that

each subsystem has O (1) coupling to the remainder of the system (as opposed to O(N),

0(1/N), etc.), no matter how large the latter is.

Associated with (1.2), we define

N
S(t) = Y1 x;(t) = “the aggregate output”

=1

N
o(t) = S z; (¢) = ““the average output” (1.3)

Suppose that in the process of controlling the system, we observe not z(t), but the

aggregate S'(¢) through the measurerrient

dz(t) =h[S)dt + dv(t) (1.49)
with A smooth and v(t) a standard Wiener process. Suppose further that the control
u(t) is defined by u(t) = f [S(¢)] with S(f) an estimate of S(¢) derived from z(s),
s <t. We would like to analyze (1.2) - (1.4) in the limit as N — oo; and, more pre-

cisely, show that this analysis involves the asymptotic analysis of systems scaled like

(1.1).

N
Defining 6z;(¢) = z;(t) — o(t), we have ¥)6z;(t)=0. The aggregate output

1=1
S (t) satisfies

N . N N

dS(t) = 33 a(z;(t), u(t)dt + — 3 b(z;(t) 3 duwy(¢)
i=1 N o i=1
= Na(o(t), u(t))dt + 06| z;(t)|>dt (1.5)
. N . N N

+ b(o(t)= Y3 dw; () + b (o(t)= 3 bz (t) 3 dw;(¢)
N; 72 N 2 i=1



+ 0( ] bz; (t) | Hdw (t)

where w(¢) is a vector Wiener process defined from the components of w;; (¢). Neglect-

ing 0( | 6z; (¢) | ®) terms, we have

N
do(t) = a(o(t), u()dt + b(o(t)— ¥ duy;(t)
N* ;7=
1 Y 1 N
+ b, (U(t))W iZz]l 5xi(t)'ﬁ j§1 dw;; (t) (1.6)

To treat the last term, we use the formal argument in [8] which goes as follows: As
N —oco a ““local chaos’” condition prevails in which each subsystem with state &z;(t)

behaves ‘‘independently’ of every other subsystem, and, in effect, of the noises

N
(3 dw;(t)/N), +=1,...,N. That is, a law of large numbers applies to the last term as
Jj=1

N —o00. Since

1

N

by the definition of o(f), the last term in (1.6) is zero. (In a more general situation, this
term would approach zero as IN —oco.) Notice
- N )
w(t)= ¥ w;()/N
1,7]=1
in the second term behaves like a standard Wiener process for each V. Thus, for large

N we obtain the approximate model
do(t) — a(o(t)u(t))dt + b(a(t))dw(t) (1.7)

Now let Zz(a,S) 2 4(0,5) and assume that S and S have the same order
behavior in N for IV large. Deflning ¢ = 1/N, we have two descriptions of the aggre-

gate behavior of (1.2) for N large:

do(t) = a(o(t), %a(t))dt + b (o(t))dw (1)



dz(t):h(%a(t))dt + du(t) (1.8a)

dS(t) — % a(eS(t), S(t))dt + %‘ b (eS(¢))dw (t)

dz(t) = h(S(¢)dt + dv(t) (1.8b)

So to analyze the aggregate behavior of the original system (1.2) as IV —o00, we can study

(1.8a) or (1.8b) as ¢ | 0. If a, b, and h have a periodic or randomly recurrent depen-
dence on their arguments, then the analysis of (1.8a,b) involves a homogenization prob-

lem.

The literature in mathematical physics and engineering contains many examples of
systems scaled like (1.8) which can be effectively treated using homogenization theory.
The structural mechanical and thermal properties of lattice structures may be treated in
this way by deriving continuum models for the macroscopic behavior of lattices with a
regular infrastructure [7][8]. The transport of liquid through a porous medium may fre-
quently be analyzed by replacing the description of the porous, heterogeneous medium in
the analysis with a model of a homogeneous medium whose transport parameters are
systematic averages of the material properties of the original medium [13]. Similarly, in
nuclear reactor designs it is important to be able to estimate the neutron production in a
reactor core composed of a periodic array of fuel rods. Homogenization methods have
been used to estimate the neutron transport properties of the medium by approximating
periodic core structure with a homogeneous core from which the neutron population can
be more easily computed [14]. It is possible that the filtering methods developed here
could be adapted to play a role in verifying these models from measurements. Homogen-
ization methods have not been developed in control theory, other than the limited
results in [8][15] - [17].

Summary. In the next section we precisely state the filtering problem to be
treated. In section 3 we introduce and analyze a duality form which is useful in
representing the conditional density that is the essential element of the filtering problem.

In section 4 we carry out the asymptotic analysis of the filtering problem by first homo-



genizing the deterministic duality expression (Proposition 4.1) using standard techniques,
and then applying this to prove a limit theorem for the conditional density (Theorem
4.1). This theorem is our main result which constitutes homogenization of the filtering
problem. In section 5 we prove three estimates which are required in the probabilistic

and asymptotic analysis.
2, The Filtering Problem

Let (Q,F ,P) be a probability space on which are defined two independent Wiener
processes ’L;)(t) and z(¢) with values in IR" and IRd, respectively. Let € be a Gaussian
random variable with values in IR® which has mean z, and covariance P, Suppose £ is
independent of 1;1(t) and z(t). Let F'¢, t >0, be a family of o-algebras with FF® = F,
such that ’L;)(t) and z(t) are adapted to F' and € is F° - measurable. Let

7' = a{z(s), s <t}. Let Y be the unit torus in IR" and

g(y) € L(R"; R")
o(y) € L(R"; R"); invertible (2.1)

h(y) € L (IR"; RY)
which are defined on the torus Y, and which are sufficiently smooth there.

Let z%(¢) be the solution of the Ito equation

dré(t) — ol a4

€

zf0) =¢ o<t<T (2.2)

and note that z%(¢) is independent of z(f). Consider the processes
t X 1'6
wi(t) = - [ (679} =)zcds + z(t)
€

t €
vi(t) = - [ h(%—)x‘ds + z(1) (2.3)

and

13 € ¢ € ~
pi(t) = exp{ [ h(=—)z"dz + Jy @) =)z dw



1 ¢ x€ 12 1 4 , z€ .
-5k TRt - o [ o ()at | s ) (2.4)

For any filnite T we have
Ep{(T)<oo EpyT)*<C (2.5)
(See section 5.)

Because of (2.5) we can use the change of probability given by the Girsanov

transformation
dP¢
_JI‘)“IFT = u«(T) (2.6)

Under the probability P¢ the processes w(t) and v%{f) are independent standard
Wiener processes. Since w(t) and v%(¢) are independent of F'° under P¥, £ is indepen-
dent of w%(t) and v%(¢). Further, since {g(¢), F'} is a martingale, £ has the same dis-

tribution under P as under P.

In the space (2, F, P¢, F') we can write
z€ z €
de® = g(—)z¢dt + o(—)dw*

€ €

240) = &€ (2.7)
€ z* € €
dz® = h(—)zdt + dv(¢)

€

where w€ and v°¢ are standard F* - Wiener processes which are mutually independent.

Moreover, € is a F'° - Gaussian random variable with mean z, and covariance matrix P,

The filtering problem associated with (2.7) consists in computing
()W) = Bz () | Z2°) (2:8)
for ¢ any Borel bounded test function on IR". It is easy to check that

E [Pz (t)nt) | 7'
Epst)| 2

pA(t)(1)

Tt )(Y) =



where
P & EEe)Net)] 2" (2.10)

Our purpose here is to study the behavior of the conditional density p (¢ )(?)) as

e—0.
3. A Duality Form and an Expression for the Conditional Density

By introducing a certain duality formula it is possible to obtain an expression for
the conditional density which is convenient for the homogenization and convergence

analysis.

Let /3 be a deterministic function in L *°(0, T:R%) and

p(t) _ 6{fotﬂ'dz B _;'fotlﬂ|2d3} (3.1)

It is known that \# T, the set of random variables, { p(T) }, obtained by varying g in
L=, T ;IRd) is dense in L2(Q,ZT P RY).
Let 7 be a smooth, bounded function on IR" and let B(¢) be a smooth, bounded

deterministic function on {0, 7T ] with values in IRY. We introduce the deterministic func-

tion V%(z,f) which is the solution of?

Ve z, O%°VE T A%
Y 4 oa (2 L+ g (D) z;
ot i ( € ) Ox; 0x; 9ij € )% ow;
+ Veh; (%)fﬂj Bi(t)=0 (3.2)

Vi ,T)=1yz), T=2t=>0

Because the coeflicients are smooth, (3.2) has a solution in C*'(IR™ X[0,T]). Moreover,

it satisfies the growth conditions (see section 5)

| Vie,t)| <Csell® )’

?Here and in the following we use the convention that repeated indices are summed over their range.



2
| DVe(z,t)]| <Cyee®?] (3.3)
where 6>0 can be chosen arbitrarily small. Note that the first constant 05 in (3.3) can
be chosen independent of ¢, but not 6.

Using the function Vz,t), it is possible to obtain a convenient expression for
p(&)(@).

Proposition 3.1 Under the assumptions (2.1) we have, for any 3, the equality

Ep(T))p(T)] = E[V(E0)] = fmn Viz ,0)mo(x )da (3.4)
where
rz) & 1 - S~ 29T P§l (s - 29) 3.5
° - [(27m)" det P )'/? ‘
Proof. From (2.10) we have
Ep(T)YWBT) = E Ya(T)Hu(T)B(T)
= E [V T),T)u(T)3(T)). (3.6)
But
e € oVe oV ove -
and
d(up) = pulh ()ateds + (079 ) )wedu)
+ puBedz + puﬁ.h(—g—)zedt (3.8)

Using this and (3.2), we have

d V(2 (t),t)u(t)p(t)} = ue(t)p(t){a*(%i)DVe(xE(t),t)



+ VEat),t)o g )(ﬁ-eit—))xe(t )edw (3.9)

+ VOO0 (E ) )+ Bz,

Because of the estimates (3.3) one can take the expectation of the stochastic integrals

obtained by integrating (3.9). Integrating and taking the expectation gives
EV(E0) = E[V(z(T),T)u(T)p(T)] (3.10)

which is the desired result.

QED

Remark. Note that (3.4) is well defined if v is Borel bounded and 8 € L°°(O,T;]Rd).
In this case the function V¢ is not C'*'(IR™ X [0,T]); but this is not essential for the
right hand side of (3.4) to be well defined. Thus, by regularization, it follows that (3.4)

also holds when 1 is Borel bounded and 8 € L *®(0,T;R?).

4. Homogenization

Our objective is to derive a homogenization representation of the conditional distri-
bution p¢(f)(1)) as €—0. The representation is based on the homogenization of (3.2)

which is a relatively classical problem [10].

Proposition 4.1. Under the assumption (1.1) we have the estimate
| Vi@ ,t) — Vyz.t)] < eKzellzl? (4.1)
where 6>0 can be chosen arbitrarily small, and

v, 9%V, Lo 9V,
ot " NiGnes, PN

+ Vohijz;B; =0

3

10



Vo, T)=1x) T>t>0 (4.2)
with
@G = [ a;j(y)m(y)dy (4.3)
Y

and g;; and i?ij are similarly defined in terms of the unique density m(y) satisfying

2

W[aij(y)m (y)l=o (4.4)

1)

m periodicon Y, m >0, m € C?% fm(y)dy =1
Y

(c.f. [10], p. 530).

By adapting the procedure used to derive this result (see the proof below), we can
construct the homogenization properties of the conditional distribution (2.10) in the non-

linear filtering problem. This is the main result of the paper.
First, consider the “limiting filtering problem” defined as follows: Let

dzx =g zdt + Tdw
dz = h zdt + dv (4.5)

z(0)=¢ 2(0)=0, 0<t<T
where @ 2 (27)Y2 and let
pUTYY) = E [z (T)WAT)| Z"] (4.6)
where

¢ 1ot
Vo(t):e{fohx.dz _?fo | bz | %ds} (4.7)

in which z is a standard Wiener process. ((4.5) follows from a Girsanov transformation

as used in (2.7).) In fact, we have the well-known formula

11



|- 5 -2 (TN PYTYw - 2(T))
dy

O TV — e(-o(T), [ ¥Yy)e
pUAT YY) = e n{" RGP (T

in which
1 b e 1l
p(t):?j(; |h.’1:] dS *?Lhzod?f
and z (t) is the state of the Kalman filter

de =gudt + PhT(dz - hzdt) z(0) =z,

d

P PETRP - 557 - (gP + PgF¥)y=0 P(0) =P,

As in Proposition 3.1, we can show that

EpATY)o(T)) = E[Vy(£0)] = [ Vz,0)m(z)da.
o

Using this, we can state the following:

Theorem 4.1. Under the assumptions (2.1) and (3.10) we have
P p°(T)W)

weakly in LY, Z7, P) for every bounded, uniformly continuous 1.

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

Proof. First note that we can assume, without loss of generality, that 1 is smooth and

bounded. Indeed, let £ € L0, ZT, P), then using (3.5)

|Ep(T))r]| = | E e (THu(T)Er] |
< Wl | €7 | 2 VERS(T)?

< Olllpe Ter | g2

(4.13)

Since v is uniformly continuous and bounded, it can be approximated in the sup norm

by a sequence of smooth, bounded functions. This and the uniform estimate (4.13)

12



means that it suffices to establish (4.12) for smooth s,

Note also that the estimate (4.13) proves that p% T )t) is bounded in

L¥q, ZT, P). Therefore, it is sufficient to prove that

EpAT)YnT) = Ep%T)®) o(T)] (4.14)

for any f, since the corresponding set of p(T)’s is dense in L*Q, ZT, P), as we have

already noted.

But from formulas (3.4) and (4.11), the assertion (4.14) is equivalent to

J V=0 mz) dz = [ V(z,0) m(a) de (4.15)
e

]Rn

Since this is immediate from Proposition 4.1, the Theorem is proved.

QED

Remark. Theorem 4.1 implies the convergence of the conditional probability itself in a

very weak sense. Indeed we have for any £ € L*%, 77, P)

E‘r(TY)er = EP@(THu(T)r = E p(T)¥)ér

E°x° (T)W)ér = Ep® (T ))ér (4.16)

where
(T )w) = LW 417
" P (1)) (17

denotes the limit conditional probability, and E° refers to the probability on Q for

which z satisfies (4.5). Therefore we can assert that
En(TY)er— E°n° (TYW)Er b V€rp. (4.18)
It would be nice to prove stronger convergence results, but it must be kept in mind that

13



the processes (1.1) themselves converge just in law and not in a stronger sense (c.f. [11]

p. 405).

Proof of Proposition 4.1. Formally, the method is as follows: We consider an expan-

sion of the form
Vi@, t) = Vya.,t) + eViz, 2, t) + E&Vyz, Z,t) + V¥z,t)
€ €

Introducing ¥ == z /¢ and using the change of coordinates

we obtain

oV, av, s OV, Ve
AN TR TR T
oV, v,
+ aij(y)m + 9i;(y)z; £ + Vohij(y)z; B;
P J 7
L1 ) 9%V, v 2 a(y) 0%V, . ) o*V,
— —_— a. - €a: —
e Y Y y; Jy; i\ dy; Ox; i\ Ox; 0x;
v, ov,
+ 955 (y)zj (e 5t +—a—!7—) + € Vihii(y)z; B
(3 2
. ) a*v, L ) a*V, ;e a(y) a*v,
.. ——— . /l e .. ————————
ity dy; dy; A dy; 9x; © ity 0z; 0z
, OV, av, . e
+ g5 (y)z; (€ Fromiia £ ) + € Vah(y)xiB; — AVE=0
2 K]
where we have set
IV oV
ATV = —a;;(y) EY 9:; (y)z; T hi; (y)z; B; 4
i ] 1

with y == 2 /e. We choose

14

(4.19)

(4.20)

(4.21)

(4.22)



VI(I :y :t) - Vl(z ’t)
and

v, 9V, ) AV,
AR T P A A
Voh Vs
.. . . _/_ .. fr—
+ Vohij(y)z; Bi + a;i(y) 33,9,

To deal with the latter, we introduce m (y) the unique solution of

62
W(au(y)m(y)) =0

m periodicon Y, m >0, m € C2% fm(y)dx =1
Y

(4.23)

(4.24)

(4.25)

(c.f. [10], p. 530). Then the solvability condition (Fredholm Alternative) for (4.24) is

v a2V
- 2 — + Ty

o —
- s g —> + VohyiaiB; =0
at a] ax,ax] avi 0 Jx]ﬁz

where we have set

@ = [ a;(y)m(y)dy
Y

and similarly defined g;; and /-z—“

If we choose

Viz,t)y=o0
then I}E(x ,t) is the solution of
ave y IV, AV,
— -+ A€V6:€(2aijm 4 gz]fL’]-—a—yz—-)

15

(4.26)

(4.27)

(4.28)



av,
+ 9ij T -'5;:—-— + Vthjil?]ﬂi) (4.29)
Ve, T) =0, T>t>0

To estimate V¢ we proceed as follows: First, we derive an explicit formula for

Vo(z,t). Consider the Gaussian process
dé=gédt + adb, E(t)=1x (4.30)
where & 2 (2@)Y2. Using this
T—
Vole 1) = B { (6, o (T b T &x@Hoe)y (+3)

and we can easily check that

| Volz,t)] < Kyellal?

| DVo(z,t)| < Kse®lz1? (4.32)

for some K ; and any 6>0. An additional calculation shows that

(92V0 2
| ax.i Bx] - 5¢ ( )
These estimates mean that
A% 2
| at" | < Kzellz1 (4.34)

From (4.24) - (4.26) we can assert that

VvV, ov
Violz,y,t) = xi;(y) Er + 155 (y)z; EY
i 7 1

+ i (y)zi By Vo (4.35)

for some smooth, bounded functions X;;, 7;;, and ¢;; on Y . Since the higher order

derivatives of V, also satisfy the bounds (4.32) - (4.34), we can deduce from (4.29) and

18



(4.35) that

ave
ot

+Afff€=ef6 f/‘(x,T):o (4.36)

where
| f@,t)] < Ksell=1? (4.37)

Using standard results, we can write

iy T ’ _z_‘_ze. r
Vi z,t) = eE{ ft [ “z(s),s )(e[f' ARt })ds } (4.38)

And, by using arguments similar to those which led to the first estimate in (3.3), we

obtain
| Viz.t)]| < eKselzl? (4.39)
where 6>0 can be chosen arbitrarily small. Combining this estimate with the expression

(4.35) for V, completes the proof.

QED
5. Some Necessary Estimates

It remains to verify two key estimates used in the probabilistic and asymptotic ana-

lyses, i.e., inequalities (2.5) and (3.3), respectively.

Bounds on the expectation of u®(t).

Recall the definition of u*(¢) in (2.4) based on (2.1) - (2.3).
Lemma 5.1. For any finite T one has

(a) EpY(T) < co (5.1)

17



(b)y Ep(TN*<C (5.2)

Proof. (a) This is a consequence of the following condition (see [18])

Efl= O < ¢, vt € [0T) (5.3)
To check (5.3), consider the backward Cauchy problem (a £ %aa*)
Ou By P o <y
Js Y € Bzi 827] ’ -
u(z,t) =@l (5.4)
Then
EeCl= 1) — By (¢£,0). (5.5)

Consider the function

¢ (z,8)=e!P@IzI®+ o) p(s)y >0

P(t) =6, p(t)—o0 (5.6)
‘We have
B¢ s, 0% d d ,
s % (D) 9z; 0z, lgp + P 1=
+ 2tra P + 4|ax |? P?) (5.7)
<% 4 (P 4 4lla||PD) + 2|tral| P
AT dt
<Ly +(Lp 4 allallPy) + 2n|la]| P
=<5l at
Choosing P and p so that
Lp L allallPP=0 Lp + 2n|la|lP =0 (5.8)
dt dt

we have

18



6
P(s) =
)= TaqTa (13— )]

1
(1—4]||a ||6(t-s)]"/ (5.9)

ePl8) —

By the maximum principle, ¢ (z,s) > u(z,s). Hence,

o (816127114 [a | fat ]

Eell= W < E
T (1-4|a |]6t)/?

ol(1-4|fa |{6t) — 2Pyt
€ X (5.10)

~ VT alla [t — 20P,]

Therefore, sufficient conditions for (5.3) to hold are

1 — 4||a ||6T >0

(1 - 4||a [|6T) > 26P,. (5.11)
which hold if 8§ is sufficiently small. There conditions are independent of e.
(b) to ensure (5.2), we proceed as follows: For s > 1 we write
’ T - T
,ue(T)Q _ 6{2f° (hz%dz + (07'g)z%dw —2s fo | (b +07tg)z¢| 2dt}
T -1 €12
R J, 1thtotg)ze|2aty
From this we have
(22220 1T oty a2y
)(3-1)/3 (5.13)

s-1 0

Epq(T ) < (Be

Note that s(2s-1)/(s ~1) has a minimum on [1,00) at some s,>1. Thus, it suffices to

check that
(5.14)

259-1) o
{s(’(:—fl T |(h+o7'g)a%(t) | %}
0 < oo, ¢t € [0,T].

Fe

This is similar to (5.3) except that the parameter é is fixed. Taking

19



$o(25¢-1)

54 T ||h+071g ||? (5.15)

So
we require (5.11) which reads

54ol28 51
220 l) )Hh +o g |]* £ & (5.16)
so-1

1> 4||a||T?
(1 — 8,) > 26P,.
These conditions restrict the size of T, and the extent to which they are necessary is not
clear.

QED

Growth conditions on the dual function.

It remains to verify the estimates (3.3). One way to do this is to use a probabilistic

formula for V¢z,t). Consider the equation

€

dz€ =g (x—)x‘dt + U(x—e)db T () =1z (5.17)
€ €

on a probability space (not necessarily the original one) where b (s) is a standard Wiener

process. Then

Vi(z,t) =F {¢(xf(T))ef' h(=)a"hds . (5.18)

Therefore,

T
| Vi@, t)| S K [ Bl as

T
<K; | Eebl=)1® gg (5.19)

where §>>0 may be chosen arbitrarily small. A calculation similar to (5.7) shows that
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Eebl= 0 < k(ts(o)el’é(o)lzl2 (5.20)

where
d
—d;Pfs + 4(P5)?||a || + 2|lg |.|P§ =0
Plit)y=26 t>s (5.21)
ik
— + 2Pfn|la|]l =0 kj(t)=1
ks
Now
Pi(s) = i
A e e
(5.22)
— 26]|g |l(t~s)

expl _ 2|9 |I(¢~s)exp[-2]|g [|(t~s)]| _
(1= expl-2|lg [[(¢ 50 (FHELESIREE ST — allall(t-s)

Since the function x exp(—z )/[1-exp(—z )] is decreasing on [0,c0], one has

2||g ||(t—s)exp[-2]|g ||[(t-s)] _ 2||g ||T exp[-2]|g ||T]

1-exp[-2|lg |[(t-s)] 1-exp(2|]g || T] (5.23)
If we choose 6>>0 so that
sT < 2llgllexpl-2]]g [|T]
4lla ||6T <  otaTh 1T (5.24)
then
| P5(s)| < 26||g T (5.25)

2[|g ||Texp-2]lg ||T] - 4]|a [|6T (1-exp-2]|g [|T])
And from this the first estimate in (3.3) follows.

To prove the second estimate in (3.3), one may proceed by differentiating the

expression (5.18). Namely,
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Ve oy Oni(T) 1 T aepas)
E —r T e t €

6x,- al'k d(L’i
L hEyesds)
—)zBds
FETE ) (5:26)
T Oh ax;*
1 1k € l
.ft (-6— axl Ty -+ h][) —é? (S)dS}
and from (5.17)
kaf 1 8gk (9.’1?[6 81"6
d = (= LA I
(az,. ) e Oz O T 9k dz; ds (5.27)
0 dz.*
1208 25 g,
€ Oz; O

c‘)xkf
oz;

1

(t) =by, s<t<0

It follows from (5.27) that

o s
B S5 S C 11+ B [, )| dr ]
<c@ + |=z|?. (5.28)
Hence,
a €
[ Z g oa s 12D (5.20)

and from this one can readily deduce the second estimate in (3.3).

QED
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