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Abstract

It has been widely recognized that many future database applications, including
engineering processes, manufacturing and communications, will require some kind of
rule based reasoning. It is conceivable that large knowledge bases cannot, and
perhaps should not, for space reasons, reside in main memory. In this paper we study
methods for storing and manipulating large rule bases using relational database
management systems. First, we provide a matching algorithm similar to the Rete
Network used in OPS5, which can be used to efficiently identify applicable rules. The
second contribution of this paper, is our proposal for concurrent execution strategies
which surpass, in terms of performance, the sequential OPS5 execution algorithm.
Since the problem of identifying applicable rules is the same as the problems of sup-
porting triggers and materialized views in a conventional relational database system,
our approach provides some new ideas for the solution of these problems as well.
Finally, the proposed method is fully parallelizable, which makes its use even more
attractive, as it can be used in parallel computing environments.
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2 Also with University of Maryland Institute for Advanced Computer Studies (UMIACS).



1. Introduction

It has been widely recognized that many future database applications, including engineering
processes, manufacturing and communications, will require some kind of rule based reasoning. It
is conceivable that a large knowledge base cannot, and perhaps should not, for space reasons,
reside in main memory. This is exactly the point where DataBase Management Systems (DBMS)
come to play. However, applications such as the ones referenced above, require control mechan-
isms much more sophisticated than the ones current DBMS’s can offer (simple value matching).
For this reason a lot of research effort has been devoted to studying the support of more
advanced control mechanisms in database environments, such as rules, deductive inference,

recursion, and forward chaining, to name a few [KERS86,KERS87].

Commercial DBMS’s have limited capabilities for supporting such mechanisms. For exam-
ple, deductive rules can be "simulated" using views, though without allowing multiple or recur-
sive rule definitions. Deductive inference can then be achieved through query modification
[STON75]. In the case of multiple and recursive definitions new execution mechanisms need to
be incorporated. @ Recent work in this area has provided a lot of results
[CHAKS86,BANC86,JOAN86,SELL88]. More general kinds of rule systems, such as production
rule systems [HAYES5], are harder to incorporate because they require mechanisms to propagate

updates to the database, in contrast to deduction which just retrieves data from the database.

Existing relational systems have some limited rule subsystems in the form of integrity con-
trol and protection subsystems. Updates> are "filtered" and performed only if several user—
defined constraints are met. In a general production rule system environment, updates to the
database may trigger the firing of some rules, which in turn may perform several updates to the
database, etc. This control mechanism introduces several sub—problems to be solved, such as,
how to efficiently trap updates, how to process actions of rules that have been triggered, and.
what kind of low-level support is needed for all the above. The problem of supporting produc-

tion systems efficiently in a database environment will be the focus of this paper.

The organization of the paper is as follows: Section 2 introduces the problem and surveys
previous work in the area. Then in Section 3 we study the solution that the Artificial Intelli-
gence (AI) community favors and discuss its advantages and disadvantages. Section 4 then looks

at various ways of implementing production systems in a DBMS environment and compares
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them to the Al approach. In Section 5 we discuss execution strategies that allow for concurrent
processing of qualifying rules and we conclude this paper in Section 6 with a summary and future

research issues.

2. Production Rule Systems

Both the DBMS and Al community have been studying problems related to production
rules, usually under different contexts. Hanson [HANSS87] offers a very good discussion of past
and recent research. In the following, we first describe the problem that is of interest and then

present some of the basic approaches.

2.1. Rules

In the area of expert systems, a production system program is a collection of Condition—
Action statements, called productions [FORGS82| or rules. The condition part of a production is
referred to as the LHS (left-hand side) of the production; similarly, the action part is called the
RHS (right-hand side) of the production. Rules operate on data stored in a global database,
called working memory (WM). A production system repeatedly performs the following opera-

tions, and in the sequence they are presented

Match
For each rule r, determine if LHS(r) is satisfied by the current WM contents. If so, add the
qualifying rule to the conflict set.

Select
Select one rule out of the conflict set; if there is no such rule, halt.

Act
Perform the actions in the RHS of the selected rule. This will change the content of the
WM and new rules may have to be fired.

The above procedure implies that two significant problems must be solved. First, one needs a
fast way for performing the first step, i.e. finding qualifying rules. This may not be important
in an environment with a few rules but becomes critical in the case of large rule bases and/or
when secondary storage is used to store the WM elements. Second, the process of selecting one

rule out of the conflict set may be very complicated, depending on the application. One may use



user—defined priorities or, in general, order rules according to some static or dynamic criteria and
then fire the rules in that order. Of course, the execution of a rule may cause other rules to fire,
which may cause preemption of other rule executions, etc. Another way, which is of practical
importance in a database environment, would be to allow all selected rules to execute in parallel
and let the concurrency control manager of the DBMS take care of concurrent accesses to the
same data by serializing updates. We discuss this problem further in Section 5. In the remain-
ing of this section and the following two sections, we focus on the problem of efficient matching.
We should finally note that the problem of supporting production systems in a DBMS
environment is of interest to conventional DBMS’s as well. Productions can be thought of as
triggers. Maintenance of materialized views also requires mechanisms to trap and propagate

updates. It will become clear later on how the various approaches can be used to solve problems

such as view maintenance.

2.2, The AT Way

The most representative approach to efficient matching has been the Rete Match Algorithm
[FORG82| used in the OPS5 system [FORG81|. The Rete algorithm compiles the LHS condition
elements into a binary discrimination network. Elements that are inserted to or deleted from
the system are input into the discrimination network and flow through its nodes. Each node of
the network stores tokens corresponding to WM elements that satisfy the network, i.e. the con-

junction of the condition elements above that node.
Example 1: Suppose that we have a LHS condition of the form
CiANC,ANCs -+ ANC,
Figure 1 shows the discrimination network built. The output from the network is all the appli-

cable productions whose LHS is satisfied, i.e. the conflict set. In addition to that, the tokens

that satisfy the above LHS’s are also output. (|

Notice that the above network is an inherently redundant storage structure since it stores a
token for each WM element satisfying a rule condition and a single WM element could simul-
taneously satisfy several rule conditions. Moreover, tokens flow through the network in a serial

way, each node examined at each step. We elaborate more on the Rete Match algorithm in
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Figure 1: Example of a Discrimination Network

Section 3 in the context of its implementation in a DBMS environment.

One observation that can be easily made here is that LHS’s are equivalent to retrieval
operations in a DBMS context. Satisfying the LHS of a production is equivalent to executing a
retrieval operation against the occurrences in a database. However, it is the usual case in a
DBMS environment, to process retrievals only when a user issues a query to the system. In the
case of production systems, the satisfiability of a condition is checked at the time an update is

performed to the database; such operations have also appeared in database contexts and are dis-

cussed in the next sub—section.

2.3. The DB Way

Previous work relative to production systems has focused on database triggers and alerters.

A trigger is a condition and an associated action to be executed if the database comes to a state
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that makes the condition true. An alerter is a trigger that sends a message to a user or an appli-
cation program if its condition is met. Triggers have been studied by Eswaran in [ESWAT76] in
the context of concurrency control and authorization. In particular, this work has examined
what kind of privileges that triggers should have and how they should relate to the transaction
that forced them to fire. Perhaps the first systematic work has been the one by Buneman and
Clemons [BUNE79]|. They discuss two classes of triggers, simple and complex. Simple triggers
basically account for single relation conditions while complex ones involve conditions that
include multi-relation operations (e.g. joins). Buneman and Clemons put the problem in the
context of supporting materialized views in a relational DBMS. The qualifications of the view
definitions are used to make up the collection of conditions that must be monitored. They use
add and delete triggers that are awakened when a tuple should be inserted or deleted from the
view, respectively. The triggering mechanism they propose requires recomputing the view after
each update. However, since recomputing the view is very expensive, they developed a method
that checks if updates must be propagated based on the idea of Readily Ignorable Updates (RIU).
An RIU is an update that can be determined in advance not to affect the view used as the condi-
tion of a rule. Similar work has been done recently on the same subject by Blakeley, Larson and

Tompa [BLAKS86a], and Blakeley, Coburn and Larson [BLAKS86D].

Recently, Stonebraker proposed an extension to QUEL [STON76] commands to model
triggers [STON85]. Stonebraker, Sellis and Hanson have studied the details of the implementa-
tion of such triggers [STON86a|. Triggers are formed by tagging any QUEL command with the
keyword "ALWAYS". Such tagged commands conceptually appear to run indefinitely. To give
an example drawn from [STONS86a|, assuming a relation EMP(name,salary,age,dept), with the
obvious meanings for its fields, a trigger that forces Mike’s salary to always be equal to Sam’s

salary is expressed as follows:

range of E is EMP

replace ALWAYS EMP (salary = E.salary)
where  EMP.name = "Mike"

and E.name = "Sam"

Whenever a command such as
replace EMP (salary = 1000) where EMP.name = "Sam"

is processed, the trigger should be awakened to update Mike’s salary.



In general, the system maintains a collection of triggers. When a user update U is pro-
cessed, the system must find all triggers that might have to be fired because of U. Of course,
depending on the complexity of the algorithm that looks for satisfiable conditions, the system
may awaken a trigger even when it should not (false drops). However, the penalty to be paid is
just in processing time, the database will not become inconsistent. This is due to the semantics

of "ALWAYS" commands.

Although it has been the case with the Rete algorithm that only one-tuple-at—a~time pro-
cessing is feasible, database environments have always been based on the set-at-a—time concept.
In [STONS6a/|, Stonebraker, Sellis and Hanson, have suggested mechanisms to efficiently detect
qualifying rules in a DBMS environment ("rule indezing"). The methods presented there can
also be used for maintaining materialized views, since, as mentioned above, the qualifications of
the views can be thought of as the conditions of rules that take actions to keep the views up—

to-date. We briefly present here the methods described in [STONS86a).

The two approaches taken, Basic Locking and Predicate Indexzing, share the same proper-
ties with physical and predicate locking respectively [GRAY77| as used in concurrency control.
Abstractly, a set of tuples is used to produce the result of some query and our goal is to be able
to detect when a given update conflicts with this set. Hence, the similarity with the concurrency

control problem.

In Basic Locking, all tuples used in processing a given condition or view qualification are
marked with a special kind of marker, which is used to uniquely identify the condition. If an
index is used for accessing the data tuples, these markers are set on data records and on the key
interval inspected in the index. Index interval locks are required to deal correctly with insertion
of new records (the phantom problem in concurrency control). If a new tuple is inserted in one of
the relations used to produce the result of a procedure entry, then the collection of markers must
be found for the new tuple. To ascertain what collection of cached entries are affected by the
insertion of a tuple £, one first collects all the markers on ¢ and then determines which of the

corresponding conditions are really affected.

In Predicate Indexing, a data structure similar to a discrimination network is built. Such a
structure allows for the efficient search and detection of conditions (LHS’s) affected by the inser-

tion of a specific tuple in the database. In [STONS86a), it is suggested that a variation to R-trees
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[GUTTS4], R* -trees [SELL87], are used for that reason. Using Predicate Indexing implies no
special treatment of insertions to base relations, but a search of the whole tree is required when-

ever one asks for the conditions affected by an update.

Performance analysis results in [STON86a|, show that it is not possible to choose one
implementation to efficiently support any rule-based environment. Depending on the probability
of updating base relations and the number of conditions that overlap (in the sense that their
read sets share some tuples from base relations), the first or the second approach becomes more
efficient. Analysis of these schemes and investigation of other extensions are a topic of current

research.

Given this discussion we move next to present other ways of implementing production rule sys-
tems in database environments. The following sections show how ideas from the Rete algorithm

can be tied together with relational DBMS technology to obtain better indexing schemes.

3. Al Indexing Techniques

In this section we present in more detail the most prominent Al technique for rule indexing

and discuss its implementation in a DBMS environment.

3.1. The OPS5 Approach

As mentioned in the previous section, the most representative of all methods used in Al is
- the Rete Match Algorithm invented by Forgy [FORG82|. In OPS5, the database resides entirely
in virtual memory, and does not persist after the execution of a program. An OPS5 rule consists
of (1) the symbol p, (2) the name of the rule, (3) the LHS, (4) the symbol -*, and (5) the RHS.

Parentheses are used to enclose everything.
Example 2: The following are two rules [FORG82]

(p PlusOx
(Goal 1 Type Simplify 1t Object <N>)
(Expression { Name <N> 1 Argl O t Op + 1 Arg2 <X>)

(modify 2 1 Op NIL {1 Argl NIL))



(p TimeOx
(Goal t Type Simplify 1t Object <N>)
(Expression 1 Name <N> 1t Argli O t Op % 1 Arg2 <X>)

(modify 2 1 Op NIL 1 Arg2 NIL))

that can be used to simplify algebraic expressions. The effect of the modify statement is to
write NIL into the "Op" and "Arg2" fields of the data item matching condition element number

2, that is the second term of the condition. O

Possible statements in a rule include, modify, for updating fields, remove, to remove data ele-
ments, make, to insert new data elements, and call, for calling general procedures. As it can
seen in the above examples, joins are implemented through common variables (e.g. variable <N>

above).

The Rete Match Algorithm is used in OPS5 to reduce the computation required to check for
conditions that are satisfied. Forgy mentions in [FORG82| that the Rete Network has been
introduced "to avoid iterating over working memory". Essentially, what is suggested is to
evaluate the conditions of the various rules and monitor changes in the database in an efficient
way. This is achieved by keeping all matches among working memory elements, in database ter-
minology, all tuples satisfying selections or pairs of tuples satisfying joins. Given this informa-

tion, OPS5 uses the Rete Network as shown in Figure 2. The descriptions of working memory

Changes to Working Memory

propagate

Rete Network

detect matches

Changes to Conflict Set

Figure 2: OPS5 Function




(WM) changes that are propagated to the Rete Network are called tokens. Tokens are simply
tuples tagged with a "-+" or a "—" to show whether the tuple was inserted or deleted, respec-
tively. It is assumed that modifications are treated as deletions followed by insertions. As
shown in Figure 2, the algorithm maintains a conflict set which contains information on all

applicable rules and the data elements (tuples) that cause these rules to fire.

Rule definitions are compiled and the discrimination network is produced. For example,
Figure 3 illustrates the result of compiling the two rules of Example 2. There is a root node
which receives all the tokens that are input to the network. Omne-input nodes are used to check

single attribute conditions. That is conditions of the form
attribute op constant
where op€ { <,>,<,>,=,#}. Finally, two-input nodes are used to check joins of the form
left—input.attribute op right-input.attribute

Data elements are input through the root. Suppose a tuple ¢ is input to the network of Figure 3.
The one-input nodes are first checked to determine if it is a "Goal* or "Expression® tuple. If ¢
does not meet either qualification, it is discarded. Otherwise it is propagated to the successors of
the qualifying node of the network. In case a check is performed at a two-input node, and a
matching value is not found at the corresponding join branch, the tuple is queued up at the net-
work waiting for a future arrival of a matching tuple. When such a tuple comes through the
network, the result of the join is propagated to the successors of the two—input node. Finally, if
a token makes it all the way till the "bottom" of the Rete Network, a rule or set of rules have
qualified and the system adds these rules to the conflict set, together with the token that caused

the rule to become active.

Using the above algorithm, updates are treated incrementally and re-computation is
avoided. The algorithm is very similar to the one suggested by Blakeley et al. [BLAKSGa,b].
However, in this latter approach all materialized view results are checked if they are affected .by
a given update. Using the Rete Network, OPS5 avoids that by quickly discarding rule conditions

that clearly cannot be affected.
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Root

T

Class="Goal" Class=="Expression*
v l
Type="Simplify" Argl=0

Op=n* "
v /
left.Object=right.Name left.Object=right.Name
| |
PlusOx is satisfied TimeOx is satisfied

Figure 3: The Rete Network for the two rules of Example 2

3.2. DBMS Implementation of the Rete Network

Assuming secondary storage is used to store the WM elements, a straightforward implemen-
tation for the Rete Network is possible. First, all classes can be simulated by relations. The
OPS5 manual provides a way to define classes of data elements using the literalize command.

For example,

(literalize Emp name age salary dno)
_ (literalize Dept dno dname floor manager)

is equivalent to defining two relations Emp and Dept in a relational DBMS, except types are not
explicitly defined. Using the above, the working memory can reside on secondary storage and be
persistent. As with the implementation of OPS5, single input nodes need not store the tokens (or
tuples), since they are simply used to filter incoming tuples. Relevant tuples are propagated to

successor nodes, irrelevant ones are discarded. The only place where tokens have to be stored is
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two-input merge nodes. This corresponds to the case of relational joins. The approach taken
for the implementation of OPS5 is to keep a log of all tokens inserted to the system so that
future arrivals can be checked for matching. We will denote the two relations used to store the
tokens that correspond to the left and right input of a two-input merge node by LEFT and
RIGHT respectively. This leads to some redundancy, since, as in OPS5, data is stored both in the

WM and the LEFT and RIGHT relations.

Before presenting the function of such a system, we give an example of a production sys-

tem.
Ezample 3: Suppose the following two rules are defined on the Emp and Dept relations

/ delete Mike if he makes more than his manager/

(p R1
(Emp 1 name Mike { salary <S> 1 manager <M>)

(Emp 1 name <M> 1 salary {<S1> < <8>})

(remove 1))

/delete all employees working on the first floor in the Toy department/

(p R2
(Emp 1 dno <D>)
(Dept 1 dno <D> 1 dname Toy { floor 1)

(remove 1))

For this production system, there are four relations needed, two per join condition. Let LEFT1
and RIGHT1 be the two relations that store tokens relevant to rule R1 and LEFT2 and RIGHTZ2

the corresponding relations for rule R2. LEFT1 will contain tuples of the form
(Mike,<A>,<8>,<D>)

where we have used the OPS5 notation for variables. RIGHT1 will contain all tuples inserted in
the Emp relation, as all of them are potential matches. Similarly, LEFT2 will be identical to the

Emp relation, while RIGHT2 will contain tuples of the form

(<D>,Toy,1,<M>) ]

We describe now the algorithm for inserting a new tuple. Deletion is handled similarly. A
newly inserted tuple will be first checked for the name of the relation it belongs to ("class"

checking in Figure 3) and then be propagated to the corresponding nodes of the Rete Network.
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If single-input node conditions are satisfied, tuples are kept propagated until a two—input node is
found. Suppose that the inserted tuple ¢ comes from the left input of a node. Again, let LEFT
and RIGHT be the relations corresponding to the left and right input respectively. Relation
RIGHT is searched for tuples that match ¢. If at least one such tuple ¢, is found, a new tuple, the
join of ¢ and ¢, is created and propagation continues. Otherwise, ¢ is stored in LEFT and waits
for a joining tuple to arrive from the right input. Tuples can never be deleted from LEFT and

RIGHT relations unless there is an explicit deletion of a WM element (remove command).

The above method is a straightforward implementation of a Rete Network in a DBMS
environment and offers several advantages, such as simplicity and re—usability of existing tech-
nology. The compilation process used in OPS5 can be used to obtain a Rete Network for a given
set of rules; the above guidelines can then be used for a simple DBMS implementation. However,

there are also several disadvantages.

First, conditions on the same relation (one-variable selections) may be checked at several
points in the Rete Network. This is not a good tactic in a database environment where opera-
tions are set—oriented. One would like to check all conditions on a given relation with a single
scan of the relation or even using indices, if they exist. Second, the Rete Network implements
only one possible way of processing a set of conditions (i.e. qualifications) over a set of relations.
Database technology provides more efficient ways of generating efficient access plans. Moreover,
since it is the case that multiple conditions have to evaluated and these conditions may share
simpler conditions, such as selections or joins, it would be advantageous to build a global com-
piled plan that avoids multiple relation accesses. Recent work on multiple-query processing
[SELL86,CHAKS86,PARKS87| has studied this problem and algorithms can be used to generate
very efficient access plans, i.e. Rete Networks. It is essential that this technology is used to
improve the performance of the matching process. Finally, we find that another disadvantage of
the Rete Network lies in its hierarchical structure. There is no reason why sequential propaga-
tion of tokens must be performed. For example, in the case of a three-way join condition,
checking for matching tuples can be done at the same time between all three relations. Since the
structure of the conditions (expressions) is known at compile time, there is no reason why one
should imply a strict order in the evaluation of the one— or two-input node conditions. "Flat-

tening" the hierarchy is another alternative, and is of significant interest in the case of a
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relational DBMS, where data is kept in flat tables without any structure. Such an approach is

taken in Section 4.

Before moving to describe this approach, we make a note on the relationship between the
above simple implementation and the one undertaken by POSTGRES [STONS86b|. Notice that
the Rete Network augments rule conditions with data tuples. This is done by actually storing
in—-coming data at the nodes of the network. POSTGRES uses a dual approach, i.e. it stores
identifiers of possibly qualifying rules with the data. For example, in our employee database,
markers are set on Emp tuples that possibly satisfy the conditions of rules R1 and R2. In the
absence of indices however, that means marking all tuples in the Emp and Dept relations. The
space overhead incurred in such an implementation is clearly lower than that of the Rete Net-
work, as rule identifiers require much less space compared to the full data tuples that the Rete
Network stores. However, the process of identifying qualifying rules is more expensive in
POSTGRES, as more false drops may arise. For example, in the case where all Emp tuples are
marked because of rules R1 and R2, a new insertion to that relation will trigger both of these
rules, even though it should not be fired because there are no matching Dept tuples. POSTGRES
will of course check the conditions of the rules before the corresponding actions are performed,
but that will incur unnecessarily high computation cost. We discuss these trade—offs in more

detail in Section 4.

4. A DBMS Approach

In the previous section we described a straightforward DBMS implementation of the Rete
Network. However, working in a DBMS environment may call for several modifications to the
direct implementation. First of all, the large number of intermediate relations (i.e. LEFT and
RIGHT relations of each two—input node) is not realistic. Second, the performance could be poor
because of the hierarchical structure of the network. For example, the propagation delay of
inserting a token into C; (see Figure 1) will be significant if the number of single input nodes n is
large. No speed—up by parallel processing is possible because all operations must be done sequen-
tially. Flattening the hierarchy is a promising solution to the problems mentioned above. In the

following we study two different approaches.
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4.1. Eliminating Redundancy

The first alternative is to treat the LHS of each rule as a query to be evaluated against
working memory elements, thus eliminating the need of any redundant storage. This has also
been proposed in [MIRA84|. Instead of storing a large number of intermediate relations, we will
only need to store one relation per class of working memory (WM) elements. Each relation
records all the conditions related to that particular class of WM elements. The number of rela-
tions is thus equal to the number of classes which is relatively small compared to the number of
intermediate relations used in a Rete Network. Moreover, the number of these relations is also
independent of the number of the rules. We discuss the data structures and the algorithms

involved in this implementation, in the following two sub—sections.

4.1.1. Data structures

There are two basic types of relations: the Working Memory Relations (WM) and the Con-
dition Relations (COND). As discussed in Section 3.2, each class of working memory elements is
stored as a WM relation. All condition elements in rules that refer to a class of WM elements,
say O, are stored in a corresponding COND relation. Given a set of rules, the translation from a
Rete Network into WM and COND relations is straightforward. For example, the rule set of

Example 2 can be represented as two COND relations:

COND-Goal COND-Expression
Rule-ID Type Object Rule-ID Name Argl Op Arg2
PlusOx | Simplify <N> PlusOx <N> 0 ‘4 <>
TimeOx | Simplify <N> TimeOx <N> 0 K’ <>

Rule-ID is the unique identifier assigned to the rule using the p command. Another global rela-
tion (RULE-DEF) is needed for storing the remaining information for all rules. The following

table shows this relation for Example 2.
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RULE-DEF

Rule-ID Cond# Check

PlusOx 1 0
PlusOx 2 0

RULE-DEF contains one tuple for each condition of each rule. Cond# shows which condition ele-
ments this tuple refers to, while the Check bit indicates whether the corresponding condition ele-
ment is satisfied or not. A rule is put into the conflict set if all its Check bits are set (meaning

all condition elements of the rule are satisfied.)

4.1.2. The simplified algorithm

Given the above data structures, a simple algorithm can be devised. When a working
memory element (tuple) W of class C is inserted, first the tuple is inserted into the WM relation
of C (abbreviated WM-C hereafter). Second, the COND relation of C (abbreviated COND-C) is
searched against W. There are two kinds of variables used in OPS5, which are represented by
symbols enclosed by <>, e.g. <N> and <X> in the example above. The first kind of variables,
like <N> in Example 2, are used as a means of connecting two or more condition elements. They
are the two—-input nodes in the Rete Network and correspond to joins in a DBMS approach. The
second kind of variables, like <X> in the same example, are just don’t—care attributes. In the
discussion below, "variables" means the former ones. Don’t-care attributes are represented by

‘*’ and will match anything.

For variable—free condition elements, a simple selection on COND-C is sufficient. The condi-
tion element is satisfied if W matches all attributes specified in the condition element. The
corresponding Check bit is then set in the RULE-DEF relation. For condition elements with vari-
ables, the procedure is more complicated. A join of related WM relations is needed to determine
if a specific condition is satisfied. In the simple two—wé,y join case, however, the join degenerates
into a selection on the WM relation. For example, the insertion of working memory element
(Goal Simplify TERM) will cause the selection on WM relation Expression for tuples
(TERM 0 “+’ %) and (TERM O ‘*° ). Deletion of tuples is handled similarly. For multiple—

join conditions, the system will have to come up with optimal plans for processing the queries
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that correspond to the LHS’s of the various rules. In general, the performance of the system

largely depends on the efficiency of processing joins.

In terms of space, this algorithm is much better than the Rete Network because no inter-
mediate results are stored. On the other hand, the speed may be slower in some cases since re—
computation of joins is necessary whenever a change is made to the working memory. One
advantage of this alternative is that the order of joins is not fixed and can be optimized by the
DBMS, compared to the fixed access plan of a Rete Network. In addition, for the case of
variable—free conditions, that is single relation conditions, one can use intelligent indexing tech-
niques such as R —trees [GUTT84] or R* —trees [SELL87], as suggested in [STONS6a], to check if

a given tuple satisfies conditions stored in the COND relations.

A second alternative seeks to avoid re-computation (especially of joins) whenever changes
are made to the WM. This solution also avoids storing intermediate results. In the alternative
described above, the COND relation for each class of WM elements only stores information from
that class. In the approach to be described next, the COND relation associated with class C also
stores information from other classes that interact with C in productions. In other words,
instead of propagating changes and storing intermediate results, as the Rete Network does, this
alternative propagates changes and stores that information in the COND relations of the

affected classes. This approach is detailed in the next sub-section.

4.2. The New Approach

The main design goal of our approach is to speed up the matching process. The simplified
algorithm described above suffers from the fact that joins have to be re-computed every time.
To tackle that problem, we introduce the idea of matching patterns which alleviates the problem
of recomputation. As above, we first describe the data structures used and then the algorithms

for handling insertions and deletions of tuples.

4.2,1. Data structures: Trading space for time

Our approach also uses condition (COND) relations. Variable free conditions are handled
in exactly the same way as in the simplified algorithm, and therefore are omitted in the discus-

sion below. Each tuple in the COND relation has the following attributes:
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(1) Rule ID (RID), to record the unique rule identifier
(2) Condition Element Number (CEN), to differentiate among conditions of the same rule
(3) Restrictions on each attribute of the corresponding WM relation

(4) A list of Related Condition Elements (RCE), each RCE being represented by a (RID,CEN)
pair (see later discussion)

(5) A Marker, comprised by one bit per RCE, default to zero.
The structure is best described by an example:

Ezample 4: Assume three relations A, B, C, with attributes Ai, Bi, and Ci, i=1,2,3 respec-

tively. The following is a rule definition.

(p Rule-1
(A 1 A1 <x> T A2 ‘a’ 1 A3 <z>)
(Bt BL<x> t B2<y> { B3 ‘b")
(C 1t CL ‘e’ 1t C2<y> t €3 <2>)
-5
... N

Rule-1 has three conditions (three~way join) involving relations A, B and C respectively. We
have three COND relations: COND-A, COND-B, and COND-C. These three relations are related to

each other by variables <x>, <y> and <z> because of the conditions of Rule-1. The initial con-

tents of these COND relations are as follows:

COND-A

RID CEN Al A2 A3 RCE Mark: BC
Rule-1 1 <xX> ‘a’ <z> |(B,2),(C,3) 00
COND-B

RID CEN B1 B2 B3 RCE Mark: AC
Rule-1 2 <x> <y> ‘b’ |(A,1),(C,3) 00
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COND-C

RID CEN C1 c2 c3 RCE Mark: AB

Rule-1 3 ‘e’ <y> <z> |(A,1),(B,2) 00

When a WM element is inserted into relation A, two tasks are executed. First, we have to
examine the tuples in COND-A and determine if this element satisfies Rule-1 (as well as any
other rule that is defined on A). The second task is to do the equivalent of propagating changes
through the Rete Network and store information on how class A elements interact with class B
and C elements within Rule-1. This information is stored in the form of "matching patterns®

(see discussion that follows) in COND-B and COND-C. O

The Related Condition Elements list is used to show which conditions of the same rule are
affected because of insertions or deletions in the relation examined. There is one Mark bit for
each RCE, which if set indicates that the "matching pattern" is created by the corresponding
condition element. A tuple in a COND relation with at least one Mark bit set is called a match-
ing pattern. The matching pattern is the key point of the whole algorithm which improves the
matching process. A matching pattern in a COND relation indicates that there is some tuple in
another (related) WM relation having the property of the matching pattern and therefore is join-
able with tuples in the current WM relation. Hence, when a tuple is inserted later in the current
WM relation which matches the matching pattern, we know immediately that there is a match.

The details of the algorithm are discussed next.

4.2.2. The algorithm

When a working memory element of class C is inserted, say tuple ¢, the system performs

the following:

Search relation COND-C for tuples matching ¢.
For each matching tuple 7, do

begin
If T contains a variable—free condition, or all Mark bits of T are set, set the

Check bit(s) in the RULE-DEF relation.
For each RCE(X,n) of T'do
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begin
Search relation COND-X for tuples M matching the pattern desired
(which can be derived from the definition of the rule) with the restriction
that the RID must be the same as that of T and the CEN is equal to n.
Furthermore, each Mark bit must be set in 7' if the corresponding Mark

bit is set in the matching tuple M.

For each tuple M found as described, do
begin
Unify M with the desired pattern. If a new binding is introduced,
create a new tuple with the new binding and set the Mark bit of C.
end
end

end

Let us trace the algorithm for the rule of Example 4.

Ezxample 5: Suppose that we insert the tuples B(4,5,b), €(c,7,8), A(4,2,8) and B(4,7,b) in

the sequence given. The contents of the various COND relations will be as follows:

COND-A

RID CEN Al A2 A3 RCE Mark: BC Comment
Rule-1 1 <x> ‘a’ <z> |(B,2),(C,3) 00 Original Tuple
Rule-1 1 4 ‘a’ <z> |[(B,2),(C,3) 10 By tuple B(4,5,b)
Rule-1 1 <x> ‘a’ 8 (B,2),(C,3) 01 By tuple c(c,7,8)
Rule-1 1 4 ‘a’ 8 (B,2),(C,3) 11 By tuple B(4,7,Db)
COND-B

RID CEN B1 B2 B3 RCE Mark: AC Comment
Rule-1 2 <x> <> | v [a,1),(c.8) 00 Original Tuple
Rule-1 2 <x> 7 ‘b” |(A,1),(C,3) 01 By tuple C(c,7,8)
Rule-1 2 4 <y> ‘br |(a,1),(C,3) 10 By tuple A(4,2,8)
Rule-1 2 4 7 ‘b” |(A,1),(C,3) 11 By tuple A(4,2,8)
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COND-C
RID CEN Cc1 c2 Cc3 RCE Mark: AB Comment

Rule-1 3 ‘e’ <y> <z> [(A,1),(B,2) 00 Original Tuple
Rule-1 3 c 5 <z> |(a,1),(B,2) 01 By tuple B(4,5,b)
Rule-1 3 ‘e’ <y> 8 (A,1),(B.2) 10 By tuple A(4,2,8)
Rule-1 3 ‘¢’ 5 8 (4,1),(B.2) 11 By tuple A(4,2a,8)
Rule-1 3 ‘e 7 <z> |(a,1),(B,2) 01 By tuple B(4,7,b)
Rule-1 3 ‘e’ 7 8 (A,1),(B,2) 11 By tuple B(4,7,b)

Notice that when B(4,7,b) is inserted, the last tuple in COND-B causes Rule-1 to be put in the

conflict set because all Mark bits are set. O

The deletion of a working memory element could remove rules from the conflict set. The
basic algorithm is very similar to the insertion algorithm discussed above. The difference is that
instead of setting Mark bits, we reset them in the case of a match and instead of inserting new
matching patterns, we delete existing ones. However, because a matching pattern tuple may
have been created by more than one WM element, deleting one of them is not enough to delete
the matching pattern tuple. To handle such cases, Mark bits can be easily replaced by counters
to record the number of contributing tuples. The propagation algorithm is modified by replacing

setting/resetting of Mark bits with incrementing/decrementing the corresponding counters.

Another issue not discussed in previous sections is the capability that OPS5 offers in
defining negated conditions. Condition elements preceded by the ‘-’ operator are interpreted as
negated conditions. Such a condition will be satisfied if there is no WM element satisfying the
corresponding non—negated condition element. To incorporate negated condition elements in our
algorithm, some modifications need be made. First of all, the default values for the Mark bits of
such a condition element should be set to one instead of zero. Second, the insertion of a new
tuple that matches the condition will have to reset the corresponding Mark bit, instead of setting
it. Similarly, deletion of a working memory element will do the opposite. Hence, negated condi-

tions can be supported easily.
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4.2.3. Discussion

There are several parameters that we can use to compare our approach to the previously
mentioned alternatives.
Time
Matching is very fast with our approach because only a single search over a COND relation
is necessary. Maintenance of matching patterns is more expensive since propagation of
matching patterns must be performed. The propagation cost though, is the same as the cost
incurred by a Rete Network. However, our approach is easily parallelizable, since propaga-
tion of changes can be performed in parallel to all the COND relations. In contrast to that,
the Rete Network method is highly sequential. More important, in our approach, the
conflict set is updated first, and then the maintenance process follows. In the Rete algo-
rithm, propagation through the discrimination network must precede the updates to the

conflict set; rule execution is thus delayed further.

Space
Clearly, our approach consumes a lot of space for storing matching patterns. As mentioned
above, this is a trade—off between matching time and space. Notice that the matching pat-
terns are actually the result of joins we have so far computed plus other associated informa-
tion. Therefore, we are actually doing the join in an incremental way, thus reducing pro-
cessing time. Compared to the Rete Network, the results of joins are stored in a better

form (COND relations), so that matching is reduced to a search and can be done efficiently.

There are several possible improvements to our approach. First, it is obvious that there is
a lot of redundancy among matching patterns. Compacting them in a nice way without
sacrificing performance is crucial in applications with limited space. We are currently exploring
several compaction techniques. Second, since a lot of selection operations are used in the algo-
rithm, efficient implementation of selection, i.e. variable—free condition checking, is very impor-
tant. Building indices such as R-trees or R*—trees on COND relations can help in speeding up
this process. Another significant advantage of such indices is their use in answering queries on

the rulebase itself. For example, questions of the form

Give me all the rules that apply on employees older than 55
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can be easily answered using such an index. Supporting rulebase queries is very important in the
design of expert database systems that can provide information on the effect of various rules,
even if data that satisfy the conditions of the rules has not already been stored in the database
[LIN87]. Notice that this is not possible in systems, such as POSTGRES, where rule information
is stored together with the actual data. Finally, as discussed also above, our scheme can be fully
parallelized. Parallel processing can help improving the propagation and maintenance of match-

ing patterns.

After discussing the matching and maintenance processes of our approach, we move next to
present our ideas on the second major part of a rule based system, namely the execution of appli-

cable rules.

5. Processing Applicable Rules

The RHS actions of productions or rules placed in the conflict set must be executed. The
actions on the RHS of the production represent changes to the WM classes and include inser-
tions, deletions and updates of WM elements. In our DBMS implementation, executing these
actions means that these changes must be made to the corresponding WM relations. The
changes will trigger the maintenance process, described above, that affects the COND relations.
RHS actions that add or delete tuples from WM relations trigger the insertion or deletion algo-
rithm, respectively. An update is equivalent to a delete followed by an insert, and trigger both
algorithms. Conceptually, execution of a production completes after processing changes against

both WM relations and the COND relations.

5.1. Sequential versus Parallel Execution

In the Rete network implementation of OPS5, productions placed in the conflict set are exe-
cuted in a serial order. In each cycle, a single production, together with the corresponding
tokens satisfying it, is selected. The RHS actions are then executed; this may result in changes
to WM. In the next match phase, these updates to WM are propagated through the discrimina-
tion net. Consequently, productions in the conflict set may be deleted, or productions may be

added.
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In our proposed DBMS implementation of a production system, changes to the WM rela-
tions will be propagated to the COND relations and matching patterns will be added to the
COND relations. When a tuple that is inserted into a WM relation matches a tuple in the
corresponding COND relation with all its bits set, then, the matching pattern will be added to
the conflict set; this is equivalent to adding a production. The matching pattern tuple, however,
does not store pointers to, or identifiers of the actual tuples of the WM relations. These tuples
must be selected before executing the RHS actions. The attribute values in each matching pat-
tern will provide the selection criterion that must be applied when selecting tuples from the WM

relations.

When several combinations of WM elements satisfy a single production, the Rete imple-
mentation treats each combination as a separate instance of the production, and each instance is
executed independently. Traditionally, DBMS support set—at—a—time processing, against all
tuples of a relation. Thus, in our proposed implementation, sets of tuples from each WM rela-
tion, satisfying the selection criterion, will be grouped together. A selected production will exe-

cute simultaneously against all combinations of these sets of tuples.

Each production in the conflict set (together with all tokens in the Rete implementation) or
each matching pattern (with its combinations of tuples from the WM relations in the DBMS
implementation) can be treated as a transaction that is to be executed. The Rete implementa-
tion will then resemble a serial execution strategy of transactions in the conflict set. We are

interested in exploring a concurrent execution strategy, for the DBMS implementation.

We use serializability to determine if the concurrent execution is equivalent to a particular
serial execution strategy. We assume that a locking strategy will be used to ensure the execution
is serializable. We show that serializability requires that appropriate locks be placed on both the

WM and COND relations.

5.2. Equivalence of a Serial and Parallel Execution Strategy

We examine how the serializability criterion can be used to show the equivalence of a serial
and concurrent (interleaved) execution strategy, in a production system environment. We also
use serializability to show that the concurrent execution of a set of productions in the conflict set

maintains the consistency of the database.
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Given an initial set ¥, of transactions, each of which corresponds to an already satisfied
production in the conflict set, we compare the serial execution of these transactions in a serial
production system environment (OPS5) with their interleaved execution in a concurrent environ-

ment (our proposal).

In a serial production system, in each step ¢, a single transaction, T}, is arbitrarily selected
from the conflict set and applied (Select and Act operations of Section 2.1). Subsequently, the
production system will determine (Match operation of Section 2.1) if, as a result of applying T,
some other transactions in this conflict set are no longer applicable; if so, these transactions will
be deleted from the set. Let the set of transactions deleted in step ¢ be Adel;. Also as a result
of applying T;, the production system will determine (Match cycle) if some additional transac-
tions are now applicable, as well. Let the set of transactions added in step ¢« be Aadd;. The new
set of candidate transactions in step ¢+1 is ¥, , = {\II,- — T; — Adel; + Aadd,-}. This pro-
cess will continue until finally in step F, the set ¥ pis empty. Note that in the serial production

system, each step corresponds to the execution of a single transaction.

The selection of each T} is arbitrary; thus, it is entirely possible that in step 2, T} is selected
from the set {\Ill ' Adell} which is the set {\I/2 - Aaddl}. In other words T, could

also be selected from the initial set ¥, and not from the added set of transactions A add;. Simi-

i—1
larly, in subsequent steps ¢, T; can be selected from the set {\111 - (T]— Adelj)} which is
=1

4 —1
the same as the set {\Il,- - ’z] (A addj)}.

=1
If the selection is as described, then, eventually after some f; steps, the serial production

system will have executed a sequence of f; transactions Ty, Ty, .. Ty,, where each T; happens to

be an element of the initial set W ;. After step f;, all transactions in W, are either executed or

J1
deleted and the set of applicable transactions for step (fy+1), ¥ . ; is the set {E Aaddj}, ie.,
j=1

all the transactions added in the f; previous steps, which were not selected previously. In step

(fi+1), Ty, is chosen from this set ¥ ;.

We have gone through this exercise with the serial production system to compare it with a

concurrent execution strategy. Given an initial set of transactions, ¥, the serial production
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system can arbitrarily select and execute an initial sequence of transactions all of which happen
to be in ¥ ;. Given this same initial set ¥, a concurrent execution strategy would interleave the
execution of this set of transactions. If an appropriate protocol is used, and the resulting
schedule is serializable, then it must be equivalent to some serial schedule 73, 75, .., etc., where
each T; must be from the initial set ¥,. In other words, the concurrent production system will
execute an equivalent serial schedule which may be the same as the serial schedule arbitrarily

selected by the serial production system.

After the interleaved execution of the set ¥; completes, the equivalent serial schedule of
the concurrent production system is the same as the (arbitrary) serial schedule of the serial pro-
duction system, and a sequence of f; transactions would have been executed. The second conflict

set will be identical to the set ¥ ; ., which was available to the serial production system in step

(fi+1). Thus, the serial execution and the concurrent execution are found to be equivalent.

We have now to examine this equivalence in the environment of the WM and COND rela-
tions. We must show that the conditions for serializability are enforced, or that locks on the
WM and COND relations are obtained at the appropriate time, and more importantly not
released until some logical commat point for the production is reached. We have to define what

that point is.

Selecting an appropriate commit point must satisfy two requirements in the concurrent pro-
duction system environment. First, the interleaved execution of a set of productions must main-
tain consistenc& of the database. i.e., two transactions that update the same WM relation must
be serializable. Second, transactions that are inter—related and effect each others execution, i.e.,
transactions that delete each other’s matching pattern tuples from the conflict set, must interact

correctly. For example, when a transaction T; executes, the selected commit point must enforce
a delay in the execution (and commit) of the transactions in the set iilAdelj, so that their sub-
1
sequent execution can be prevented or aborted.
For our DBMS implementation, this logical commit point must necessarily occur after the

maintenance process (insertion and deletion algorithms triggered by changes to the WM relation)

finishes updating the COND relations. The following description will justify this necessity.
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We say that a transaction (production) is positively dependent on a WM relation if the LHS
of the production is satisfied by the existence of some specific tuples of a WM relation. A tran-
saction is negatively dependent on a WM relation if it is satisfied by the absence of some specific
tuples. A transaction is independent of a WM relation if it is unaffected by the existence or

absence of specific tuples.

In the current definition of the OPS5 language, the RHS actions of a production can only
delete or update a WM element if its existence is tested on the LHS; i.e., a transaction can only
delete tuples from working memory relations on which it is positively dependent. However, a

transaction can insert tuples into any WM relation.

A transaction, corresponding to a selected production, first retrieves the matching pattern
tuple from the conflict set. This pattern does not store tuple identifiers for the tuples of WM
relations satisfying the production. Attribute values from the matching pattern tuple are used
to generate selection predicates for the affected WM relations. A read lock must be placed on

those WM relation tuples that are retrieved.

A transaction 7T that is positively dependent on a WM relation E; may delete or update
specific tuples of R;. This may affect the execution of another transaction T} that is also posi-
tively dependent on R;. Both T; and T; must initially obtain a read lock on the specific tuples of
R;. If T; completes execution first, it will release its read lock, and T; may proceed to delete or
update R;. If T; requests a write lock on the same tuples that are read locked by Tj, then the
execution of T; will be delayed until T; completes execution. In both cases, T; precedes T; in the

equivalent serial execution schedule, and the database is consistent.

If T; obtains a write lock (and thus, completes execution) before T; requests a read lock,
then T; may be in the set A del,, so its execution must be delayed until after the update or delete
from R; Changes made to R; trigger the maintenance process and propagate changes to the
COND relations. The maintenance process can potentially delete the matching pattern tuple for
T; from the conflict set. For this reason, T; must not commit and release its locks until the
maintenance process completes. If the matching pattern tuple corresponding to T} is unaffected
or is deleted before T; starts execution, then, no further action is required. If T; has already

started execution, it will be delayed since it will not be able to obtain a read lock until T;
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releases its write lock on the tuples of E;. Now, even if the matching pattern tuple for T is
deleted, T} will still be executed. However, T} will not be able to process tuples of R; that have
already been deleted by T; so the database will still be consistent. It is also possible that both T;
and T} delete or update tuples from E;, and that T; is in the set A del; and vice versa. This could

lead to a deadlock of the two transactions.

A transaction 7T; that is negatively dependent on a WM relation R; can be affected by
another transaction T} that inserts specific tuples into E;. T; may be in the set Adel; and its
execution must be delayed, if T; executes first. T; will always need a write lock on R; before it
can be executed. If T; is required to obtain a read lock on the entire relation E;, and if it obtains
the read lock on R first, then the execution of T; will be delayed. T; will precede T} in the serial

execution schedule, and the database will be consistent.

If T; obtains a write lock first, then T; will be delayed. Now, T; must not commit and
release this lock until the insertion into R; and the maintenance process triggered by the inser-
tion is complete. This is because the matching pattern tuple for 7; may be deleted from the
conflict set, during the maintenance process. If the matching pattern tuple for 7} is unaffected or

if 1t is deleted before T; starts execution, then, no further action is required.

If T; has already started execution, then its execution will only be delayed, but it will not
be prevented even if the corresponding matching pattern tuple is deleted. Since T; does not lock
specific tuples of R; but locks the entire relation, executing T; may make the database incon-
sistent. Thus, if the corresponding matching pattern tuple has been deleted, then 7; must not be
allowed to commit, and the system must abort 7;. A better solution would require that the
DBMS support the NOT EXISTS operator through its querying facility. Now, a transaction T
that is negatively dependent on FE; will have to obtain a read lock on the entire R; relation, and
verify that the specific tuples of E; do not exist, before being allowed to execute its RHS actions.
This will ensure serializability.

To summarize, we have shown that the serial execution of productions in the Rete imple-
mentation and the concurrent execution in the proposed DBMS implementation are equivalent.
We assumed a locking strategy was used to enforce serializability and justified our claim that a

production should not commit its RHS actions (changes to WM relations) and release its locks on
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these WM relations, until the triggered maintenance process updates the affected COND rela-

tions as well.

The benefits of concurrent execution can be measured in several ways. First, the number of
operations that must execute in a non-interleaved fashion measures the time of execution. In
the best case, neglecting locking overhead, this will be proportional to the maximum number of
updates to any WM relation or COND relation. In the worst case, this will reduce to the time
taken for a serial execution. A second measure that is proposed is the number of serializable
schedules equivalent to a single serial schedule. This measure is proportional to the number of
possible choices of actions that can be executed at any instant. Details of these estimates are in

[RASCS7].

6. Conclusions

We have studied the problem of storing, maintaining and using large production rule bases.
Starting with the known Rete Network method, we provided first an easy implementation of the
OPS5 data structures and matching algorithm for a DBMS environment, and then suggested a
new approach with similar space requirements but offering the advantage of faster detection of
applicable rules. As the problem of maintaining a set of condition-action rules is the same as
the problem of maintaining materialized views and triggers, our method can be used for these

latter problems as well.

The approach we have taken achieves localization of the match procedure in the sense that
a single relation has to be checked in order to decide if an inserted or deleted tuple renders a rule
applicable for firing. This feature not only is suitable for relational DBMS’s but in addition
makes our method easily parallelizable. Operations on the database can be processed in parallel
since we have managed to eliminate the hierarchical propagation delay associated with the Rete

Network.

Finally, we have proposed a new way to process applicable rules based on the notion of
transactions. Again, the goal was to eliminate the sequential nature of the OPS5 system. Appli-
cable rules can be processed concurrently, assuming that the DBMS will serialize RHS actions

(insertions and deletions) through its concurrency control mechanism.
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Our current work focuses on the details and the optimization of the proposed approach.
First, we examine the ways in which multiple query processing and optimization algorithms can
be applied to provide optimal Rete Networks. Although our approach does not assume any glo-
bal execution strategy, we are interested to conduct a performance analysis of the original Rete
Network, a Rete Network which has been optimized using multiple—query processing heuristics
[SELL8S8| and our approach. Second, we look into the details and the extensions needed to R -
trees in order to use them as fast matching devices on COND relations [LIN87]. Finally, we
study the properties and performance of a fully concurrent system where transactions are used to
implement the actions of the various rules. In particular, we look at concurrency control

methods based on locking. Estimates for assessing the benefits of concurrent execution are being

investigated [RASC87].
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