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INTRODUCTION

We consider the nonlinear filtering problem of a
vector diffusion process, when several noisy vector ob-
servations with possibly different dimension of their
range space are available. At each time any number of
these observations (or sensors) can be utililized in
the signal processing performed by the nonlinear filter.
The problem considered is the optimal selection of a
schedule of these sensors from the available set, so
as to optimally estimate a function of the state at the
final time. Optimality is measured by a combined perfor-
mance measure that allocates penalties for errors in
estimation, switching between sensor schedules and for
running a sensor. The solution is obtained in the form
of a system of quasi-variational inequalities in the
space of solutions of certain Zakai equations.

1 - PRELIMINARY DESCRIPTIOK OF THE PROBLEM

The problem considered is as follows. A signal (or
state) process x(*) is given, modelled by the diffusion

dx = f(x(t))dt + g(x(t))dw
(1.1
x(0) = ¢
in R". We further consider f noisy observations of x(¢),
described by
dy* = hi(x(t))dt + R¥/2 avicn)
i
i (1.2)
y°(0) =0

. d.
with values in R 1. Here w(*), vi(') are independent,
standard, Wiener processes in RD, rdi respectively and
R; = R} are d; xd; symmetric, positive definite matri-
cés.

The control concerns all possible sensor activation
configurations. There are N = 2Y possibilities (each
sensor can be activated or not).

A schedule of sensors is a piecewise constant func-
tion u(*) {o,73 » [1,...N]. Let 75 be the increasing
sequence of switching times, and

vj = u(Tj) [1... N]

the corresponding sequence of sensor configurations,
hence

t) = v,, t T.,T , j=1,2...
u(t) 3 e 3 Y .3

i+l

One can then make precise the observation process
corresponding to a sensor schedule u(-).
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Define indeed for v = [1,... K]

1
h (x)xv(l)
h(x;v) = :M
M
h <X)Xv( )
where Xv(i) =1 if i is activated under the configura-
tion v. Hence h is a RD valued vector, where

(1.3)

D = d1 + L.+ dN'

Define next
vl
v(t) =
M
vi(t)

which is a standard Wiener process in rP

, and r(v) :
L(RD;RD) defined by

N 1/2 r) \
r(v) = Block diagonal {Ri Xv(l);.
With this notation, the observation in the interval
[Tj’1j+l) is given by

h(x(t),vj)dt + r(vj)dv(t), t E[Tj, ).

Tj+1
Therefore the observation corresponding to the schedule
u(+) is described by

dy(t;u(+)) = h(x(o),u(t))dt + r(u(t))dv(t). (1.4)
In order to define the cost function, corresponding to
a sensor schedule, one considers functions k(x;v,v') and
c(x;V) representing the switching cost from the configu-
ration v to the configuration v’, and the running cost
of the configuration v. Typically they are of the form

M
clx;v) = .21 Cj(x)Xv(j)
3=

M
. (R o . 1 .
k(x;v,v') = jZl(kj xv(3)+ijv.(3))

o
where k, represents the cost of switching off the sensor
3, and J k% the cost of switching on the sensor j.

The cost function corresponding to a schedule u(+),
is written as
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T
Ju(e)) = E{!X(T)-fc(T)l2 + J c(x(t),u(t))dt
° (1.5)
+ } k(x(t).U(1j_l).U(TJ))ij o}

vhere ®(T) is the best estimate of x(T), corresponding
to the observation process y(t;u(s)).

2 - THE STOCHASTIC CONTROL FORMULATION

It remains to make precise the probabilistic set
up, in particular the family of o-algebras to which the
sensor schedule should be adaptec.

2.1. Setting of the model

Let (Q;’QCP) be a complete probability space, on
which a filtration F_ is given,c¥ = F_. Let w(e), z(9)
be two independant, standard F -Wiener processes with
values in R" and RD respectiveiy, and £ be a R"-valued
random variable, independant of w(.), z(-), with proba-
bility distribution T

Let f,g such that

n

£: R > Rn, bounded and Lipschitz

n

g : R = L(Rn;Rn), bounded and Lipschitz ; (2.1)
*

a = %»gg 2ol.

The Lipschitz assumption simplifies some technica-
lities but are not essential
d.

* n 1, bounded and Holder continuous.(2.2)

h" : R +R

Let A be the 2nd order differential operator

i ~
> 3
A= - v —_— —_—
. 4_ aij(x) 89X, 3X. Z fi(x) X .
i,j=1 i i i
n (2.3)
- T 3 2 3
=- ) T (a,. =)+ Z a, (x) —
i,3=1 8xi ij axj $ i axi
where
n Bai,
23,00 = - £.00 + .21 ox, o
3=

Consider an increasing sequence T,<T,...<T < ...
Oth stopping times. To each stopping time T, is asso-
tiated a random variable v, with values in tﬁe set
"1,2...8}, and vy is F, measurable.

i

Moreover
i t T, as i + =
andTo = 0. Note that T = Tis possible. Define

u(t) = v

i ).

for t« [Ti'Ti+l
This process 1s a random schedule of sensors. Define
r{u{t)) and h(x(t),u(t)) as in section 1, and the pro-
cess y(tju(*)) by
ft
y(tiu(e)) = j r(u(s))dz(s). (2.4)
o
In order to derive (1.4) we proceed with a Girsanov
transformation. First notice that although r(v) is not
lnvertible, one can write

h(x,v) = r()h(x;v) (2.5)

185

where
-1/2 .1
Ry RO x (D

Ry B G0y

;(x;v) =

Consider then the process

t .
£(t) = exp{J h{x(s),u(s))+dz(s)

o R (2.6)

- %. J Ih(x(s),u(s) '~ ds
(o]

which is a Ft martingale.

Let us define a change of probability measure

apt ()

— 1 =g (2.7)

P
dr Ft

and consider also the process

t
v(t) = z(t) - { h(x(s),u(s))ds. (2.8)

‘o
By Girsanov's theorem, under the probability measure
Pu(.) on (Q/Wﬁ, v(+) is a standard Ft-Wiener process

. Note that x(+) retains its proba>ili-
From (2.4) and (2.8) we see at once

with values in RD
ty low under puls),

that under Pu(.), the process y(t;u(+)) behaves accord-
ing to the relation (1.4).

Let us now define what is the class of admissible
controls. For any u(+), given the construction of
y(+,u(*)) above we can consider FY(",u(*)) defined by

Fi’(-,u(-)) = o(y(s,u(+)), s<t).

We shall say that u(*) is admissible if u(+) is ¥
Fy(',U(-))

m o~

measurable. Note that for an admissibl
oul=)) Pz
t

and

control, Fz<.

Defining

u(+)

%(T) = E (.’U(.))]

v

T) F:
{=x(T) T
we can write the cost function (1.5) more precisely as
fT
+

c(x(t),ult))dt
‘o (2.9)

sy = O x(m-gm?

+ % k(x(Tj),U(Tj_l),u(rj))ij< o

The problem consists in minimizing J(u) among the
set of admissible controls.

2.2, The equivalent fully observed problenm.

Consider as customary in the theory of non linear
filtering, the operator

p(u(+), ) ) = E(g ()¢ (e FY 20Dy (2,10

for each impulsive control u(+). One can view p(u(-),t)
as a positive finite measure on RO,

To obtain a simple form for the evolution equation
of p, assume that



L has a density with respect to Lebesgue's (2.11)

measure po('Lz(Rn).
Consider the Zakal equation (controlled by u(+)),
dp + A*p dt = pﬁ(',u(t))'dz

p(e) = py

whose solution is sought in the functional space

S I
y .,u(.))(O,T,H (R)) (2.13)

L2 dr;c(o,T3RM) L
F (
where the 2nd space means that the process p is adapted
to the filtration y(+,u(*)). From PARDOUX [3] it follows
that the solution of (2.12), (2.13) is unique, and more-
over the correspondance between (2.10) and ((2.12) is
given by

U{x)plul*),x,t)dx

R" (2.14)

(v,plu(+), 1))

plu(=), ) i) = J

2
(scalar product in L“(Rn)).
We can then rewrite the cost (2.9) in terms of the
process p{u(+),t) (with values in 12(em)Y{*) | However
since we shall deal with unbounded functijons, it is

useful to consider, instead of Lz(Rn), Hl(Rn), Sobolev
spaces with weights.

Let

weo = Qelx'DH®, er 22
and Lz(Rn;u) denotes the space of functions ¢ such that

i LZ(R™). Define in a similar way Lirnsny, Hl(R“;u).
Then assume that
2 1
p el R - LR (2.15)

which is more stringent than (2.11). It follows that
besides (2.13) the solution p(u(*),t) satisfies

plu(e),t) - e r],p;c(o,T;Lz(R“;;;) AL @)

and 120,300 (2750 (2.16)
it
Consider the functional on L (R™:L)
f 2
’ [ A (x)x dx]
1) = | eGyxtdx - A (2.17)

6(x) dx

which is well defined with the choice of the weight p.
Define also

c(V)(x) =

c(x;v)
k(v,v") (%) = k(x,v;v")

then it is not difficult to convince oneself that the
cost function J{(u) can be written as

(p(u(+),t),Clu(t)))de
(2.18)
(p(U('),Ti),K(U(Ti_l),u(Ti))))-

T
J(u) = E{u(p(u(+),T)) + I
o]

R

X
e T

+
e~

i

(%) there is a slight abuse of notation here, since we
denote in the same way the measure_on R7, plu(+),t)
and its density which belongs to LZ(R“).

Note that one can write (2.12) more directly in terpg
of dy (instead of dz), by noticing that

(e, u(t))odz = §(~,u(t)) ~dy(t;ul+))

where
-1 1
Ry h (X)Xv(l)
S(x,\v) = .
Ry RGO X, 00

3 - THE SOLUTION OF THE OPTIMIZATION PROBLEM

. Setting up a system of quasi variational inequali-
ties.

Let us consider the Banach space H = L2(Rn;;) o

1 +

L (Rn;u) and the metric space H of positive elements

of H. Let

space of Borel, measurable, bounded functions
on H*

= space of uniformly continuous, bounde functions

on H*.

Introduce also the subspacesiﬁ% and(éi of functionals
F such that
IF(n):
= sup
ot 1 ot

v

"y
[

| 1ot

v Ll(Rn;L)

The spaces jel and (él are also Banach spaces. Con-
sider semi-groups ¢.(t) on 7gor(6 , defined as follows.
Freeze in (2.12) u(t) as j and denote by p; the corres-
ponding density

pj(t)‘= p(3,t)

then pj = p, . is the solution of

dp. + A*p. dt = p, nledz
J 3 J (3.1)
(0) = 71

Py )

where

n o= h(eL3) -
We set

¢j(t)(F)(ﬂ) = E{F(pj,ﬂ(t))}-

group on'ﬁqor Q?. It is not a semi
but it has an important property. 1f
sup RGOS
720 1+(r,1)

Then dj is a semi
group on 791 ’ ({’1

one sets !!Fnl = then

e, eyl < ltFly

which of course makes sense only for F such that!'F”1<“-
To simplify the writing we restrict ourselves to the
case N=2, from now on, and we use the notation

ey = c(1) , 1=1,2

k) = k(1,2)

k, = k(2,1)
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k, vhich are bounded functions of x,

oo

Cyy kl’ )
éswndfunctionals on Q{l via (for example)

cl(ﬂ) = (Cl,“)-

conctional ¥(7) defined by (2.17), considered on

: A o - -
- .glangs also to 1

(onsider mow the set of functionals Ul(n,t), U2(n,t)

exsiying

oo, )

\*1‘L2 [ |
v ), Uz('»t) 20
H(r,T) = U, (7, T) = Y(r)

s

%(”,t)f ¢1(s—t)Ul(S)(ﬂ) + Jt ¢l(>-t)cl(ﬂ)d‘
s (3.2)
U, (7, t) s ¢, (s-t)U,(s) (M) + J ¢2(>—t)C,(ﬂ)d1
2 2 2 ¢ 2

¥s2t
GO N IRACHS

Uz(w,t)s kz(n) + Ul(ﬂ,t)

sere we use the notation Ui(s)(ﬂ) = Ui(n,s), i=1,2.

Then one can prove the following

Theorem 3.1 : We assume (2.1), (2.2), (2.15). Then the

set of functionals El, U2 satisfying (3.2) is not empty
that if U}, U,
satisfies (3.2)

2ad has a maximum element, in the sense

Zenotes this maximum element and U], U2

=U,.

3.2, Interpretation of the maximum element.

Note now U,, Uo the maximum element, to save nota-
tion. Consider to fix the ideas Ul(ﬂ,t) with (r,1) =1
(" is a probability density).

One constructs a schedule as follows. Define

T - inf U (py (8),6) = &y (py ()41 (p (0), 1))

and write
PT(t) = p (), tel0,1]].
Next define
inf {Uz(pz(t),t) = ky(p, (1)) + U](pl(t),t)}

*< <T
Tl_t_

vhere pz(t) represents the solution of (3.1) with j=2
and initial condition given at T;

We then define

with value pl/T;).

p () = py(t) , tel1],750.

Note that unless T; = T, one has T;> T; .

One then proceeds in constructing a sequence of
stopping times T;< < Tg< ... and the process p*(¢).
One then can prove t%e following

Theorem 3.2 : Under the assumptions of Theorem 3.1,
one has
U, (r,0) = inf  J(u(+))
U(O)zl}
p(0)=m

*
and the sequence of stopping times )

optimal admissible sensor schedule.

defines an

*
Tyyens

Note that the functional |(7) creates technical pro-
blems. The proof is carried over first for functionals

satisfying
0<y(m) <¥(m,1) , where ¥ is a

constant. Details can be found in BARAS-BENSOUSSAYN [27.
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