
An Evaluation of Architectural Alternatives for Rapidly GrowingDatasets: Active Disks, Clusters, SMPsMustafa Uysal Anurag Acharya Joel SaltzDept. of Computer Science Dept. of Computer Science Dept. of Computer ScienceUniversity of Maryland University of California University of MarylandCollege Park Santa Barbara College ParkAbstractGrowth and usage trends for several large datasets indicate that there is a need for architecturesthat scale the processing power as the dataset increases. In this paper, we evaluate three architecturalalternatives for rapidly growing and frequently reprocessed datasets: active disks, clusters, and sharedmemory multiprocessors (SMPs). The focus of this evaluation is to identify potential bottlenecks ineach of the alternative architectures and to determine the performance of these architectures for theapplications of interest. We evaluate these architectural alternatives using a detailed simulator and asuite of nine applications. Our results indicate that for most of these applications Active Disk and clustercon�gurations were able to achieve signi�cantly better performance than SMP con�gurations. ActiveDisk con�gurations were able to match (and in some cases improve upon) the performance of commoditycluster con�gurations.1 IntroductionGrowth and usage trends for several large datasets indicate that there is a need for architectures that scalethe processing power as the dataset grows. The growth trends indicate that the rate at which several datasetsare growing is outstripping the improvement in performance of commodity processors. The usage trendsindicate that there is a change in user expectations regarding large datasets { from primarily archival storageto frequent reprocessing in their entirety.Results from the 1997 and 1998 Winter Very Large Database surveys document the growth trends fordecision support databases [40, 41]. For example, the Sears Roebuck and Co decision support database grewfrom 1.3 TB in 1997 to 4.6 TB in 1998. Patterson et al [29] quote an observation by Greg Papadopolous- while processors are doubling performance every 18 months, customers are doubling data storage everynine-to-twelve months and would like to "mine" this data overnight to shape their business practices [28].Jim Gray argues that satellite data repositories will grow to petabyte size over the next few years andwill require a variety of processing ranging from reprocessing the entire dataset to take advantage of newalgorithms to re-projection and composition to suit di�erent display requirements [17, 18]. Ferreira et al [14]estimate that digitizing a single slide under a high-resolution confocal light microscope requires between35 and 200 GB. Plans for managing the pathology record of the Johns Hopkins Medical School call fordigitizing tens of thousands of such slides. These images are to be used for telepathology, medical researchand pedagogy and require a variety of processing including three-dimensional reconstruction of tissue sections,image segmentation, virtual staining and histological image analysis [3].In this paper, we evaluate architectural alternatives for scaling the processing power with the growth indataset size. We consider three alternatives: Active Disks [2, 19, 23, 31] (see section 2 for a brief reviewof Active Disks.), clusters and shared memory multiprocessors (SMPs). Each of these architectures can beincrementally scaled as the dataset size increases { Active Disks by adding disk units (and the embeddedprocessors), clusters by adding new machines and SMPs, such as the SGI Origin-2000, by adding inte-grated modules with two-to-four processors. All three architectures are either currently in use for processingdatasets of interest (relational databases, image databases, satellite data repositories) or have been proposed1



as suitable alternatives. Shared memory multiprocessors are widely used for relational databases (Stren-strom et al [35] estimate that in 2000, 40% of such machines will sold for handling relational databases).Clusters have been shown to provide excellent I/O performance: the current world-record for disk-to-disksort (the Indy MinuteSort [20]) is held by NOW-sort running on a cluster [7]. Active Disks have been iden-ti�ed by several researchers as a cost-e�ective architectural alternative for applications that process rapidlygrowing datasets [2, 19, 23, 31].To evaluate these architectures, we use a suite of nine applications that process datasets of interest: (1)SQL select, (2) SQL aggregate, (3) SQL group-by, (4) external sort, (5) the datacube operation for decisionsupport [21], (6) SQL join, (7) datamining retail data for association rules [5], (8) image convolution, and (9)generation of earth images from raw satellite data [12, 13, 34]. The �rst seven applications process relationaldatabases and are used in data warehouses; the remaining two are used in image databases and satellite datarepositories respectively. These applications vary in characteristics such as the amount of computation perbyte of I/O, the number of times the entire dataset is read, whether intermediate and �nal results are writtento disk and whether a disk-to-disk shu�e of the input dataset (or a part thereof) is performed. We believethat, taken as a group, these applications are representative of the applications that process the datasets ofinterest.Based on our experiments, we tried to answer two questions. First, for each of these architectures, doesthe performance of the test applications scale with con�guration size? We used the number of disks (andprocessors) as a measure of the con�guration size. If not, which component of the architecture (processors,disks, I/O interconnect, network interconnect) becomes a bottleneck? Second, how does the performance ofall three architectures compare for the applications? For comparison between architectures, we con�guredeach of them with identical disks and used con�gurations with equal number of disks (and processors).Our results indicate that for most of these applications Active Disk and cluster con�gurations were ableto achieve signi�cantly better performance than SMP con�gurations. Active Disk con�gurations were able tomatch (and in some cases improve upon) the performance of commodity cluster con�gurations. To be able toe�ectively handle applications that redistribute their input dataset, such as external sort and distributed joinqueries, Active Disks require the ability to communicate directly with peers. Requiring all communication topass through the front-end host can lead to substantial loss of performance for these applications. Given thesubstantial impact for important applications, we revise our original proposal for Active Disk architectures [2]to include direct disk-to-disk communication.2 Background: Active DisksIn this section, we provide a brief introduction to Active Disks. Active disks integrate signi�cant processingpower and memory into a disk drive and allow application-speci�c code to be downloaded and executed onthe data that is being read from (written to) disk. To utilize Active Disks, an application is partitionedbetween a host-resident component and a disk-resident component. The key idea is to o�oad bulk of theprocessing to the disk-resident processors and to use the host processor primarily for coordination, schedulingand combination of results from individual disks.Acharya et al [2] propose a stream-based programming model for the disk-resident component (disklet)and its interaction with host-resident peer. Disklets take streams as inputs and generate streams as outputs.Files (and ranges in �les) are represented as streams. Streams are accessed using a standard interface whichdelivers the data in bu�ers whose size is known apriori. A disklet can be written in any language. However,it is required to adhere to certain guidelines. A disklet cannot allocate (or free) memory. It is sandboxed [39]within the bu�ers corresponding to each of its input streams, which are allocated and freed by the operatingsystem, and a scratch space that is allocated on its behalf when it is initialized. A disklet is also not allowedto initiate I/O operations on its own. These restrictions limit the amount of damage that can be done bya disklet. They also simplify the operating system support required on disk-processors and help reduce itsmemory footprint.Active Disks require a thin layer of operating system support (the DiskOS) at the disk. The DiskOSprovides three services { memory management, stream communication and disklet scheduling. The stream-based model simpli�es memory management as all memory is allocated in contiguous blocks whose size isknown a priori and the lifetime of all blocks is known. The stream-based model also simpli�es the commu-2



nication support required as all stream bu�ers are allocated and managed by the DiskOS. Depending on theamount of memory available, it can allocate multiple bu�ers and overlap data movement and computation.The stream-based model also simpli�es scheduling for disklets. A disklet is ready to run whenever there isnew data available on one or more of its input streams.3 MethodologyTo conduct these experiments, we developed a simulator called Howsim which simulates all three architec-tures. Howsim contains detailed models for disks, networks and the associated libraries and device driversand relatively coarse-grain models of processors and I/O interconnects.For modeling the behavior of disk drives, controllers and device drivers, Howsim uses the Disksim simula-tor developed by Ganger et al [15]. Disksim has a detailed disk model that supports zoned disks, spare regions,segmented caches, defect management, prefetch algorithms, bus delays and control overheads. Disksim hasbeen validated against several disk drives using the published disk speci�cations and SCSI logic analyzers;it achieves high accuracy - the worst case demerit �gure [32] for Disksim is only 2.0% of the correspondingaverage response time [15]. For modeling I/O interconnects, Howsim uses a simple queue-based model thathas parameters for startup latency, transfer speed and the capacity of the interconnect.For modeling the behavior of networks, message-passing libraries and global synchronization operations,Howsim uses the Netsim customizable network simulator developed by Uysal et al [38]. Netsim modelsswitched networks and an e�cient user-space message-passing and global synchronization library with anMPI-like interface. Netsim has been validated using a set of microbenchmarks on an IBM SP-2 with a multi-stage proprietary switch and a 10-node Alpha SMP cluster with an ATM switch yielding 2-6% accuracy formost messages.For modeling the behavior of user processes, Howsim uses a trace of processing times and I/O requestsfor individual tasks. It models variation in processor speed by scaling these processing times. To acquirethe traces of processing time for user-level tasks, we implemented each application on a DEC Alpha 21004/275 workstation with 256 MB of memory. We ran each application with the same dataset and I/O requestsizes as used in our experiments. For applications that use the amount of memory available as an explicitparameter (Sort, Join and Datacube), we generated traces for multiple memory sizes { to allow us to simulatearchitectures with di�erent amounts of memory.For modeling operating system behavior on hosts, Howsim uses parameters that represent the time takenfor individual operations of interest: read/write system calls, context switch time, the time to queue anI/O request in the device-driver and the time to service an I/O interrupt. We obtained the �rst two usinglmbench [25] on a 300MHz Pentium II running Linux (10�s for read/write calls, 103�s for context-switch).We charged a �xed cost of 16�s to queue an I/O request in the device-driver.For Active Disks, Howsim models a preliminary implementation of DiskOS which provides support forscheduling disklets as well as for managing memory, I/O and stream communication. It uses a modi�edversion of DiskSim that is driven by the disk operating system layer. Disklets are written in C and interactwith Howsim using a stream-based API [2]. Howsim has additional parameters for the DiskOS. For thisstudy, we assumed the system call and context switch costs on the DiskOS to be 1 �s. In addition, another1 �s is charged to initiate a disk request from DiskOS and to service an interrupt from the disk mechanism.Given that disklets execute within the same protection domain as the DiskOS, we believe that these costsare reasonable.For clusters, Howsim uses Netsim to model the interconnect and DiskSim to model the I/O subsys-tem. An MPI-like message passing interface is used to drive the network model, providing point-to-pointcommunication and global reduction operations. The disk model is driven by a raw-disk access library.For SMPs, Howsimmodels two-processor boards connected by a low latency, high bandwidth interconnect.For communication, it models one-way block-transfers, shmemget/shmemput, as available on the Originmachines as well as the Cray T3D/T3E. Block transfers are suitable for the applications under considerationas they move large volumes of data in relatively large chunks. For synchronization on SMPs, Howsim providesspin-locks, remote queues [10] and global barriers. We used at-memory fetch-and-op primitive as providedby SGI Origin for spin-locks (which cost around 3�s [22]). Howsim models a high-bandwidth I/O subsystem3



similar to the XIO subsystem available in the Origin 2000. The disk model is driven by a striping librarywritten on top of the raw-disk access library.4 Architectures and con�gurationsWe had two goals for our experiments: �rst, to evaluate the performance of each architecture as the processingpower and dataset size is scaled; and second, to compare the performance of comparable con�gurations ofeach architecture. We scaled the con�gurations for each architecture in disk-processor pairs: Active Diskcon�gurations were scaled by adding disk units (each with an embedded processor); cluster con�gurationswere scaled by adding new hosts, each with a single processor and a single disk; SMP con�gurations werescaled by jointly adding four-processor modules (as in the SGI Origin 2000) and four-disk sets.For comparison between architectures, we con�gured each of them with identical disks and we usedcon�gurations with equal number of disks (and processors). For the rest of the components, we follow thecon�guration guidelines suggested by experts. For each architecture, we de�ned con�gurations with 16,32, 64 and 128 disks (and processors). To understand the impact of scaling individual components andto identify the bottleneck resources for individual applications, we performed additional experiments byselectively scaling individual components.For all con�gurations, we assumed disks similar to the Seagate 39102FC from the Cheetah 9LP diskfamily [33]. These disks have a spindle speed of 10,025 rpm, a formatted media transfer rate of 14.5-21.3 MB/s, an average seek time of 5.4 ms/6.2 ms (read/write) and a maximum seek time of 12.2 ms/13.2 ms(read/write). They support Ultra2 SCSI and dual-loop Fiber Channel interfaces.Active Disks: For the Active Disk con�gurations, we assumed that: (1) a Cyrix 6x86 200MX processor(200 MHz) and 32 MB of 10ns SDRAM were integrated in the disk units; (2) all the disks were connected bya dual-loop Fiber-channel interface with a bandwidth of 200 MB/s (100 MB/s per loop); (3) the disks candirectly address and communicate with each other using a SCSI-like interface; and (4) communications withclients are handled by a front-end host with a 450 MHz Pentium II and 1 GB RAM. Figure 1 (a) illustratesActive Disk con�gurations.To identify the bottleneck resources for individual applications, we studied alternative con�gurations thatindividually scaled: (1) the aggregate bandwidth of the serial interconnect to 400 MB/s; (2) the speed ofthe processor in the front-end host to 1 GHz; and (3) the memory integrated into the disk unit to 64 MBand 128 MB. No software changes were associated with scaling the bandwidth of the serial interconnect andspeed of the front-end processors. To take advantage of the additional memory available in the 64 MB/diskand 128 MB/disk con�gurations, the number of bu�ers allocated per stream by the DiskOS was increasedfrom two to four and eight respectively. This allowed these con�gurations to tolerate longer communicationand I/O latencies. Finally, to understand the impact of allowing the disks to communicate directly with eachother, we considered alternative con�gurations that restrict disks to communicate only with the front-endhost (as proposed in [2, 31]).Clusters: For the cluster con�gurations, we assumed that each host contained: (1) a 300 MHz PentiumII, (2) 128 MB of 10ns SDRAM, (3) a 133 MB/s PCI bus, and (4) a 100BaseT ethernet NIC. We furtherassumed that the hosts were connected to 24-port 100BaseT ethernet switches with two gigabit ethernetuplinks similar to the 3Com SuperStack II 3900 [27, 36] { the 16 host con�guration being connected to asingle switch, larger con�gurations being connected to an array of switches with the uplinks connecting toa gigabit ethernet switch similar to the 3Com SuperStack II 9300 [36, 37]. Figure 1 (b) illustrates clustercon�gurations. We selected these con�gurations based on the design of large Beowulf-class clusters withcommodity components (e.g. Avalon [9]).We assumed that these machines ran a standard full-function operating system similar to Solaris. Acharyaet al [1] report that, on the average, the kernel on a 128 MB Solaris machine has a memory footprint of24 MB (including the paging free list but not including the �le cache). Accordingly, we assumed that only104 MB on these hosts is available to user processes. We assumed these machines provided an e�cient user-space messaging and synchronization library similar to BSPlib [11] that pins send/receive bu�ers on everyhost for every communicating peer. We also assumed an asynchronous I/O interface like lio listio. To4
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Network Interconnect(c) SMP con�gurationsFigure 1: Schematics of the three architectures.determine the impact of varying the network bandwidth, we studied alternative con�gurations that scaledthe bandwidth of the network interconnect to 1 Gbps per host.Shared memory multiprocessors (SMPs): For the SMP con�gurations, we followed the guidelines forcon�guring decision support servers (as quoted by [23]): (1) put as many processors in a box as possibleto amortize the cost of enclosures and interconnects; (2) put as much memory as possible into the box toavoid going to disk as much as possible; and (3) attach as many disks as needed for capacity and stripe dataover multiple disks to quickly load information into memory. We assumed an SMP con�guration similarto the SGI Origin 2000: (1) two-processor boards (with 250 MHz processors) that directly share 128 MBmemory; (2) a low-latency high-bandwidth interconnect between these boards (1�s latency and 780 MB/sbandwidth); (3) a high-performance block-transfer engine (521 MB/s sustained bandwidth [24]); (4) a high-bandwidth I/O subsystem (two I/O nodes with a total of 1.4 GB/s bandwidth), similar to XIO, that connectsto the network interconnect; and (5) a dual-loop Fiber Channel I/O interconnect (200 MB/s) for all disks.Figure 1 (c) illustrates the SMP con�gurations. Note that the amount of memory is scaled with the numberof processors { a 64-processor con�guration having 4 GB and a 128-processor con�guration having 8 GB.We assumed that these machines ran a standard full-function operating system like IRIX and providedthe lio listio asynchronous I/O interface and user-controllable disk striping for individual �les. Further,we assumed that these machines provided a remote queue abstraction (as suggested by Brewer et al [10]).To identify the bottleneck resources for individual applications, we studied alternative con�gurations thatindividually scaled the bandwidth of the serial I/O interconnect to 400 MB/s.5



5 ApplicationsOur suite of applications consists of nine applications from three application domains - relational databases,image databases and satellite data repositories. For each application, we started with a well-known e�cientalgorithm from the literature and adapted it for each architecture and the corresponding programmingmodel.For Active Disks, we adapted the algorithms to use the stream-based programming model proposed byAcharya et al [2]. Note that, overlapping computation and communication is handled by the DiskOS (thedisk-resident OS layer) by using multiple bu�ers per stream.For clusters, we adapted the algorithms to use MPI-like asynchronous message-passing operations andglobal synchronization primitives. Each host posts up to 16 asynchronous receives for any message fromany peer. We adapted all algorithms to use large (256 KB) I/O requests and deep request queues (upto four asynchronous requests) to take full advantage of the aggressive I/O subsystem and to overlap thecomputation with the I/O as much as possible. Since each host can only address its own disk, we partitionedthe input datasets over all hosts.For SMPs, we adapted the algorithms to use one-way block-transfers (shmemput/shmemget) and remotequeues for moving data between processors. Given the volume of data being transferred and the one-waynature of the data movement, block-transfers and remote queues are suitable for these applications. Westriped each �le over all disks using a 64 KB chunk per disk. To take advantage of the aggressive I/Osubsystem, each processor issues up to four 256 KB asynchronous requests (each request transferring 64 KBfrom four disks). Note that for sort and join, which shu�e their entire dataset and write it back to disk,we partitioned the disks into separate read and write groups (as in NOW-sort [7]). Since all processors canaddress all disks, we did not a-priori partition the input datasets to processors. Instead, we maintained twoshared queues (read/write) of �xed-size blocks in the order they appear on disk. When idle, each processorlocks the queue and grabs the next block o� the queue. This technique reduces the seek costs at the disks asthe overall sequence of requests roughly follows the order in which data has been laid out on disk. A-prioripartitioning of the dataset would result in a potentially long seek for every request.SQL select and aggregate: these are simple one-pass algorithms { select �lters tuples from a relationbased on a user-speci�ed predicate and aggregate computes a single aggregate value for all tuples in arelation.1 The active-disk algorithm performs the �ltering/aggregation locally and forwards the results tothe front-end host. The front-end concatenates/aggregates data from di�erent disks. The cluster algorithmand SMP algorithm are similar. In the former, each host performs �ltering/aggregation on its partition ofthe data and forwards the results to the front-end; in the latter, each processor dynamically selects 256 KBchunks from the input relation and directly writes the results to the destination bu�er using block-transfer.Both select and aggregate perform little computation/byte.SQL group-by: The group-by operation computes a one-dimensional vector of aggregates indexed by a listof attributes [26]. It partitions a relation into disjoint sets of tuples based on the value(s) of index attribute(s)and computes an aggregate value for each set of tuples. We used the hashing-based algorithm from [16] asthe starting point. The active-disk and cluster algorithms are similar. They perform the group-by in twosteps. In the �rst step, each disk/host performs local group-bys as long as the number of aggregates beingcomputed �ts in its memory. When it runs out of space at a disk/host, it ships the partial results to thefront-end and reinitializes its memory. The front-end accumulates the partial results. In the SMP algorithm,each processor computes a local version of the group-by; results from all processors are merged at the end.Note that, in our experiments, group-by generates signi�cantly larger results than select. It also performsmore computation/byte as it needs to maintain a hash-table of aggregates.Datacube: the datacube is the most general form of aggregation for relational databases. It computesmulti-dimensional aggregates that are indexed by values of multiple aggregates [21]. In e�ect, a datacubecomputes group-bys for all possible combinations of a list of attributes. We used the PipeHash algorithmproposed in [4] as the starting point for our algorithms. It schedules the group-bys as a sequence of pipelines;all the group-bys in a pipeline are computed as a part of a single scan of disk-resident data. The �nal resultsof each pipeline are stored back on disk; some of these results are used as input for following pipelines. For1Using one of the �ve SQL aggregation operations: min, max, sum, avg and count.6



individual group-bys, PipeHash uses a hashing-based technique [16]. The active-disk and cluster algorithmsare similar. For every pipeline, they partition the memory available at each disk/host in proportion tothe estimated size of the group-bys being performed in the pipeline. For each group-by, they partition therange of values over all the disks/hosts; each disk/host is responsible for combining results from all peers forthat range of values. Each disk/host performs local group-bys as long as the number of aggregates beingcomputed �ts in its memory. When it runs out of space, it partitions the partial results and ships eachpartition to the disk/host that is responsible for the corresponding range of values. The SMP algorithmperforms the group-bys in a batched manner { similar to that for group-by. After all the results for agroup-by have been accumulated, the result is written to disk. Note that since datacube performs multiplegroup-bys in a single scan, it performs more computation per byte read than group-by. Also, since itcomputes a multi-dimensional aggregate, it generates and communicates signi�cantly more data.External sort: we used the two-pass parallel NOW-sort [7] as the starting point for our sort algorithms.The active-disk and cluster algorithms are fully pipelined in that they overlap reading data, sending datato peers and sorting and writing data. The SMP algorithm overlaps just the �rst two operations; readingand writing operations are performed synchronously (Dusseau et al [7] recommend that for less than fourdisks, all operations should be overlapped whereas for more than four disks, only the �rst two shouldbe overlapped). The �rst pass of these algorithms repartitions their entire input on disks and has largecommunication requirements. The second pass for the active-disk and cluster algorithms is localized; eachdisk/host operates on its own partition. The SMP algorithm uses a disjoint set of disks for reading andwriting in the �rst phase { it divides the total number of disks into two for this purpose. Note that the�rst pass of sort is communication-intensive and requires all-to-all communication. Since it repartitions itsentire dataset, sort performs signi�cantly more communication than datacube.Project-Join query: we used a sort-merge join for this application. A sort-merge join partially sorts eachof the relations being joined and performs a join by stepping through the partially sorted relations usinga pair of loops. We based our join algorithms on the two-pass NOW-sort. The �rst two passes of thesealgorithms are similar, in structure, to the �rst pass of a two-pass sort: the �rst pass repartitions and createssorted runs for the �rst relation; the second pass does the same for the second relation. The third pass ofthese algorithms is similar to the second pass of a two-pass sort: it maintains a heap for the heads of thesorted runs for each relations and performs the join by picking elements from the two heaps. The �rst twopasses of these algorithms have large communication and I/O requirements. The third pass for active-diskand cluster algorithms is localized as each disk/host operates on its own partition. The SMP algorithmuses a disjoint set of disks for reading and writing in the �rst two passes { it divides the total number ofdisks into two for this purpose. Note that the �rst pass of join is communication-intensive and requiresall-to-all communication. Since both sort and join repartition their entire dataset, their communicationrequirements are similar.Datamining: we focus on frequent itemset counting for miningassociation rules in retail transaction data [5].We used the eclat algorithm [42] as the starting point for our algorithms. It is a multi-pass algorithm withthe �rst two passes same as the Count distribution algorithm proposed by Agrawal et al [6]. After the �rsttwo passes, it clusters the candidate itemsets into equivalence classes and uses these classes to �lter, transposeand repartition the input data sets. The third pass is localized and does not require any communication.It is also I/O-optimized as each processor is able to perform all its remaining computation with a singlescan of its partition. Unlike external sort and sort-merge join, this application repartitions only a fractionof its input dataset (the exact fraction depends on the parameters the algorithm is run with). The eclatalgorithm was originally described for shared memory multiprocessors. We adapted it for Active Disks andclusters by reverting to Count distribution in the �rst two passes. The original SMP algorithm performed�ne-grained updates; we modi�ed it to batch updates to the counters associated with itemsets. The originalalgorithm built a large triangular array of counters in its second pass. We noticed that a large fraction ofthe elements were zero in all our experiments and optimized it for memory consumption by using a sparsearray. Note that dmine needs to communicate only the counters in the �rst two passes and a signi�cantlyreduced version of its input data in the third pass. Its communication requirements, therefore, are smaller7



than that of sort, join and datacube.Image convolution: convolution is widely used to enhance spatial features or subdue noise in images. Itcomputes a new value of each pixel as a linear combination of its own value and the values of its neighboringpixels. The coe�cients for the linear combination are speci�ed as a matrix (known as the kernel). Theactive-disk and cluster algorithms partition the images over all disks; the SMP algorithm stripes a �le withall images over all disks, each stripe containing an integral number of images. The active-disk and clusteralgorithms process each image independently and forward it to the front-end; each processor in the SMPalgorithm stores the processed image directly using block-transfers. Note that conv is compute-intensiveand performs a very large amount of computation per byte read.Generating composite satellite images: Earth scientists generate earth images by compositing remotely-sensed data acquired over multiple days from satellite-based sensors. Generating a composite image requirespre-processing and projection of the sensor values onto a two-dimensional grid followed by composition ofall values that map onto a single grid point to generate the associated pixel. We base our algorithms onthe technique used in several programs used by NASA [12, 13, 34]. All our algorithms process sensor valuesin large chunks, mapping each value to the output grid and performing the composition operation usingan accumulator for every output pixel. The active-disk and cluster algorithms perform local accumulationto reduce the amount of data communicated. The output image for the high-resolution datasets (about556 MB [34]), however, does not �t into the memory available at individual disks/hosts. To deal with this,each disk/host performs accumulation for a contiguous section of the output grid that �ts into its memory.When a sensor value that maps outside this subgrid is encountered, the partial result is shipped to thefront-end. As each partial result is received at the front-end, it is composed into the �nal image. The SMPalgorithm uses a similar technique { each processor performs local accumulation as long as possible; whenlocal accumulation is no longer possible, it locks and shmemgets the corresponding portion of the global grid,merges the data from the local subgrid and shmemputs the �nal result back to the �nal location. Note thatearth is compute-intensive and performs a very large amount of computation per byte read.6 DatasetsWe used 16 GB datasets for all the applications except join for which we used a 32 GB dataset. In thissection, we describe the structure of the datasets for the di�erent applications.Select, Aggregate, Group-by: for these applications, we used a dataset with about 268 million tuples,each tuple being 64 bytes. For select, we test a single 4-byte �eld with a selectivity of 1%. For aggr andgroup-by, we used the sum operation on a 4-byte �eld. For group-by, we used a 4-byte �eld with 13.5million distinct values as the grouping attribute.Datacube: for dcube, we used a dataset with 536 million tuples. Each tuple had eight 4-byte attributes.We used four attributes as group-by attributes and the remaining four as aggregation attributes with sumas the aggregation function. The number of distinct values for each of the group-by attributes were 5.36million, 536,000, 53,600 and 5,360. We created this dataset by scaling one of the datasets used in the paperthat described the PipeHash algorithm [4].Sort: for sort, we used a dataset with 100-byte tuples and 10-byte uniformly distributed keys. The totalnumber of tuples was about 170 million. We created this dataset based on the standard sort benchmarkdescribed in [20].Project-Join: for join, we used a dataset with 64-byte tuples and 4-byte uniformly distributed keys. Theprojection operation extracted eight 4-byte �elds from each tuple. Each relation was 16 GB and contained268 million tuples. The output for join was about 108 MB.Datamining: for dmine, we used a dataset with 300 million transactions. The total number of itemswas 1 million and the average length of the transactions was 4 items. We generated this dataset using theQuest datamining dataset generator which we obtained from IBM Almaden [30]. For generating the frequent8



itemsets, we used a minimum support parameter of 0.001 (0.1%).Image convolution: for conv, we used a dataset consisting of 65536 512x512 grayscale images with onebyte per pixel. We used a 5x5 convolution kernel.Earth science: for earth, we used a dataset which corresponds to high-resolution AVHRR images fromthe NOAA polar-orbiting satellites [34]. The output image for this dataset was 556 MB.7 ResultsFigure 2 compares the performance of all nine applications on comparable con�gurations of all three architec-tures. The results for each application on con�gurations of a particular size (16/32/64/128) are normalizedwith respect to the performance of the same application on the Active Disk con�guration of the same size.We make six observations:� The performance of select and aggregate is dominated by time taken to move the data from thedisks to the processors. For all sizes, SMP con�gurations take longer to move data to the processorsas their I/O interconnect (two Fiber-Channel loops) is unable to keep up with the I/O demand. Theperformance of Active Disk and cluster con�gurations is the same for all sizes except the 128-nodecon�gurations. In this case, select is slower on clusters due to serialization at the front-end { withits 100BaseT link, the cluster front-end can receive at no more than 10 MB/s whereas the Active Diskfront-end with its Fiber-Channel link can receive up to 200 MB/s.� The performance of group-by is signi�cantly better on Active Disk con�gurations than on cluster orSMP con�gurations, albeit for di�erent reasons. On SMP con�gurations, the performance of group-byis limited by bandwidth of the I/O interconnect; on cluster con�gurations, its performance is limitedby serialization at the front-end.� The performance of sort and join is signi�cantly better on Active Disk and cluster con�gurationsthan on SMP con�gurations. On SMP con�gurations, both sort and join move their data four timesover the I/O interconnect. The Fiber Channel loops used by the SMP con�gurations are not able tokeep up with the I/O demand. In comparing the performance of these applications on Active Diskand cluster con�gurations, we note a pattern. For sort, the Active Disks perform better for 16/32node con�gurations, the two are approximately equal for 64 node con�gurations and clusters performbetter for 128 node con�gurations. This is due to the all-to-all communication performed by sort torepartition its input data. For con�gurations smaller than 32, total all-to-all communication bandwidthfor clusters is � 160 MB/s (8 or 16 pairs); whereas the the corresponding bandwidth for Active Disksis 200 MB/s. In contrast, for a 128-node cluster, total all-to-all communication bandwidth is 640 MB/s(64 pairs).� The performance of datacube is signi�cantly better on Active Disk and cluster con�gurations than onSMP con�gurations. On SMP con�gurations, datacube moves its input data once and each group-bytwice over the I/O interconnect. The performance of datacube is roughly equal on Active Disks andclusters for 32 and 64 nodes. On 16 nodes and 128 nodes, cluster con�gurations achieve better perfor-mance, albeit for di�erent reasons. For 16 nodes, the Active Disk con�guration does not have enoughmemory to execute even a single pipeline within the disks. Therefore, it has to frequently forward theresults to the front-end. For 128 nodes, the cluster con�gurations achieve better performance due totheir greater communication capability.� The performance of dmine is signi�cantly better on Active Disk and cluster con�gurations than on SMPcon�gurations. On SMP con�gurations, dmine moves its entire dataset twice and a �ltered version ofthe dataset once over the Fiber Channel which is not able to keep up with the I/O demand. On ActiveDisk and cluster con�gurations, the performance of dmine is dominated by computation time (sincethe �rst two passes communicate just itemset frequency counters and the third pass communicatesa �ltered version of the input). Accordingly, the ratio of its performance on these architectures isdetermined by the ratio of their processor speeds.9



� The performance of conv and earth is dominated by the computation time for all architectures andcon�gurations. For each con�guration size, the relationships between their performance on the three ar-chitectures is determined solely by the relationships between the speed of the corresponding processors(200MHz for Active Disks, 250MHz for SMP and 300MHz for clusters).
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limited by I/O interconnect bandwidth, particularly for large con�gurations. The I/O interconnect sits inbetween all the processors and all the disks; the data for many applications (in particular decision supportapplications) passes over it multiple times. While it is possible to increase the I/O interconnect bandwidth forSMP con�gurations beyond what we assumed, it nevertheless remains a potential bottleneck as the numberof disks increases.Second, Active Disk con�gurations were able to match (and in some cases improve upon) the perfor-mance of commodity cluster con�gurations for I/O-bound and communication-bound applications. Thehigh-bandwidth Fiber Channel interconnect used in Active Disks is the key reason why Active Disk con�gu-rations with slower embedded processors are able to, at least in some cases, outperform cluster con�gurationswith faster processors with Fast Ethernet links.Third, to be able to e�ectively handle applications that redistribute their input dataset, such as exter-nal sort and distributed join queries, Active Disks require the ability to communicate directly with peers.Requiring all communication to pass through the front-end host can lead to substantial loss of performancefor these applications (a three-fold slowdown on 32-disk con�gurations, a �ve-fold slowdown on 128-diskcon�gurations). Given the substantial impact for important applications, we revise our original proposal forActive Disk architectures [2] to include direct disk-to-disk communication. We also extend the stream-basedprogramming model proposed in [2]to allow the host to establish connections between disklets running ondi�erent disks. Note that the sources and sinks for all streams are still speci�ed by the host and disklets arestill not allowed to determine (or change) where its input streams come from or where its output streams goto. Four, we note that adding more memory to Active Disks provides limited advantage. Our results in-dicate that increasing the disk-memory to 128 MB provides less than 8% performance for 16 and 32 diskcon�gurations, less than 11% for 64 disk con�gurations and less than 21% for 128 disk con�gurations. Thisis not surprising given the streaming nature of the applications of interest.To provide an indication of price/performance ratio for the architectures compared in this study, weestimated the prices of all three architectures for 64 node con�gurations. We estimated the price of the SMPcon�guration using the SGI Origin 2000. The Avalon project at Los Alamos Labs quote the list price ofa 64-processor SGI Origin 2000 with 250MHz processors and 8 GB memory to be about $1.8 million [8].We estimated the price of the cluster con�guration using the Micron PC ClientPro as the individual nodes,the Dell Poweredge 4300 as the front-end host, Seagate ST39102 as the disks and 3Com SuperStack II 3900and SuperStack II 9300 as the Fast ethernet and gigabit ethernet switches. With these components, theprice of a 64-node cluster adds up to about $167,000 ($1500 for each host, $670 for each disk, $300 foreach network port and $9,000 for the front-end). We estimated the price of the Active Disk con�gurationusing Seagate ST39102 as the disks with Cyrix 6x86 200MHz as the embedded processor, 32 MB SDRAMas the embedded RAM and $100 premium for being a high-end component. We assumed the same front-endhost as for clusters with a LP3000 Fiber Channel host bus adaptor from Emulex Corporation2. With thesecomponents, the price for a 64 disk con�guration adds up to about $74,000 ($1000 for each Active Disk,$600 for the Fiber Channel adaptor and $9000 for the front-end).References[1] A. Acharya and S. Setia. Availability and utility of idle memory in workstation clusters. TechnicalReport TRCS-98-26, Dept of Computer Science, University of California, Santa Barbara, Oct 1998.[2] A. Acharya, M. Uysal, and J. Saltz. Active Disks: Programming Model, Algorithms and Evaluation.In Proceedings of ASPLOS VIII, pages 81{91, October 1998.[3] A. Afework, M. Beynon, F. Bustamante, A. Demarzo, R. Ferriera, R. Miller, M. Silberman, J. Saltz,A. Sussman, and H. Tsang. Digital dynamic telepathology { the virtual microscope. In Proceedings ofthe AMIA'98 Fall Symposium, 1998. To appear.2http://www.emulex.com 13
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