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The Naval Research Laboratory’s Trace Element Accelerator Mass Spectrometer 

(NRL-TEAMS) system offers a unique opportunity to develop a new type of time-of-

flight (TOF) SIMS.  This opportunity derives from use of a Pretzel magnet as a 

recombinator and mass filter in the injector to the accelerator.  Mass filtering prior to 

time-of-flight analysis removes extraneous species, shortening the analysis time for a 

single beam pulse, thereby improving the duty cycle.   Using this approach, it is 

possible to obtain an expanded portion of a narrow segment of the entire time-of-

flight spectrum created by a single beam pulse.  A longer flight path for greater 

momenta in the Pretzel magnet introduces time dilation.  Potential benefits derived 

from time dilation and mass filtering include improved duty cycle, shorter analysis 

time, increased precision, and better resolution.   

While the NRL-TEAMS system is not designed for TOF work, it has been 

used as a test bed to prove the theoretical benefit of such a design.  Theoretical 



  

treatments of the spectrometer have shown improved resolution is possible under 

certain conditions, when compared to a traditional TOF spectrometer.  SIMION 8.0 

computer simulations were used to model the system and provide insight to the 

theoretical capabilities of the Pretzel magnet.   As expected, models have shown that 

as field decreases, and therefore path length increases, mass resolution improves.  

Generally, the model matched well to experimental results provided by the NRL 

TEAMS system.   These experimental results have predicted fundamental parameters 

of the system accurately and consistently, and confirmed the validity of the model.  

This research improved the current system’s performance through improved 

electronics and pulsing and further uses the model to predict the theoretical benefits 

of a system designed for use with a Pretzel magnet. 
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Chapter 1: Nuclear Forensics 

 Beginning with the end of the Cold War, smuggling of nuclear material began 

to receive attention.  The terrorist attacks of 9-ll reinforced the need for improved 

security from such threats.  Around that time a spike in interdicted nuclear material 

was observed.  To determine the source and potential use of this nuclear material and 

improve detection capabilities, governments began funding new scientific endeavors 

in the field of nuclear forensics. 

 Nuclear forensics is the scientific field that endeavors to analyze nuclear 

materials interdicted in cases of smuggling or obtained through investigations of 

nuclear facilities or post-detonation scenarios.  These analyses work to establish the 

chemical, elemental and isotopic composition and physical characterization of the 

material in order to provide insight to the source, age, and intended use of the 

material.  More complete overviews of the state-of-the-art can be found in May et al. 

(2008) and Moody et al. (2005). 

 Nuclear forensics employs radiometric techniques traditionally used with 

nuclear materials, i.e. counting methods, gamma spectroscopy, along with techniques 

which are used more broadly, such as mass spectrometry. Mass spectrometry can be 

used to aid in the determination of many attributes important to the nuclear forensics 

investigation.  The background of mass spectrometry will be developed in Chap. 2, 

but its general application to nuclear forensics will be discussed here.  

 Magnetic sector mass spectrometry is routinely used to determine the isotopic 

composition of a sample of nuclear material, which provides information regarding 

the intended use and age of the material.  Enrichment of specific isotopes can indicate 
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the use of the material for peaceful purposes or for weapons.  The presence of certain 

isotopes in a uranium sample, 236U for instance, indicates the material has been 

irradiated, as that isotope is not present in natural samples.  For plutonium and 

uranium the half-life of a given isotope and its decay products are well known.  By 

measuring the composition of a given sample and comparing the specific isotopic and 

elemental information, it may be possible to determine the age of a sample.  This age 

corresponds to the last time of separation and can be used to narrow the origin of the 

sample. 

 In addition to determining the use and age of a sample, knowing its origin is 

also a concern.  For some samples, oxygen isotope ratios can offer insight into the 

location of a sample’s origin.  During the processing of uranium ore into reactor 

pellets, the sample is converted into a uranium dioxide compound.  This compound 

will contain the oxygen isotope ratio of the water used in the processing.  While this 

ratio will be disturbed if the pellet is irradiated, it is possible to use the oxygen 

isotope ratio of a non-irradiated pellet to determine its probable processing location.  

Further, some studies have suggested the isotopic composition of plutonium samples 

can be used to determine the type of reactor used in its creation (Wallenius et al., 

2000).  Others have suggested the use of several rare earth elements, produced as 

activation and fission products in the reactor, and metallic impurities may be able to 

be used for a similar purpose (Mayer and Wallenius, 2008; Weaver et al., 2009).  

 In all of the cases, instrumentation exists that can be used to collect the 

desired information.  Yet, all the measurements could benefit from increased 

capabilities.  The joint American Physical Society-American Association for the 
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Advancement of Science working group on nuclear forensics pointed to the need for 

small, automated, field-deployable instruments, specifically mass spectrometers, to 

speed the collection of information (May et al., 2008).  Researchers developing the 

isotope ratio procedures for nuclear forensics have suggested improvements are 

needed in mass resolution, because as mass resolution increases, sensitivity decreases 

(Esaka et al., 2007; Török et al., 2004).  Others have noted the need for more 

routinely available techniques that can improve isotopic ratios of uranium near the 

natural abundance (Mayer and Wallenius, 2008).  These factors have led to the 

investigation of mass filtered, time dilated, time-of-flight mass spectrometry to 

determine if it could advance the field of mass spectrometry for nuclear forensics. 
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Chapter 2: Mass Spectrometry 

Mass spectrometry is an analytical technique used to determine the chemical, 

elemental, or isotopic composition of a material by ionizing the analyte and 

measuring the mass-to-charge ratio.  Typical mass spectrometers are composed of 

three main parts: an ion source, mass analyzer, and detector.  Improvements to any 

one of these three components can lead to advances in mass spectrometry and this 

thesis evaluates the utility of a Pretzel magnet as an improved mass analyzer.  Skoog 

et al. (2007) present a more complete view of mass spectrometry, the types of 

instruments currently available, and their applications. 

Section 2.1: Applications of Mass Spectrometry 

 Mass spectrometry is used for a host of applications across the natural 

sciences.  Improvements in mass spectrometry instrumentation have led to advances 

in many areas that would not have otherwise been possible.  The development of 

accelerator mass spectrometry (AMS) significantly advanced the field of radiocarbon 

dating, allowing older and smaller samples to be dated with greater precision than 

was possible with radiometric counting techniques.  Progress in Matrix Assisted 

Laser Desorption/Ionization (MALDI) and Electrospray Ionization (ESI) ion sources 

for mass spectrometers significantly improved the characterization of proteins and 

peptides.  Work on orthogonal acceleration mass spectrometry (OA-MS) increased 

the ability of mass spectrometers to be coupled with continuous sources, such a gas 

chromatographs and capillary electrophoresis.  The development of secondary ion 

mass spectrometry (SIMS) allowed the analysis and imaging of sample surfaces, 
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resulting in research advances in areas as scientifically diverse as comsochemistry 

and bio-medicine.  The creation of new ion sources and mass analyzers enabled 

progress in many fields and further research continues to contribute improvements to 

various techniques for mass spectrometry. 

Section 2.2: Time-of-Flight Mass Spectrometry 

The development of time-of-flight (TOF) analysis will not be covered 

completely here, rather a review of the history of the development written by one of 

the pioneers of the technique is recommended (Mamyrin 2001).  Mamyrin’s 

contribution to TOF analysis was the implementation of reflectron ion mirrors as the 

TOF mass analyzer (Mamyrin et al. 1973).  The reflectron TOF analyzer, Fig. 2.1, 

enhances mass analysis by correcting, in some measure, for the initial energy 

dispersion of the analyzed beam. 

 

Figure 2.1: Illustration of a reflectron TOF analyzer.  
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Ions are generally created with a distribution of initial kinetic energies.  In 

TOF analysis this can result in a broadening of the beam over time, causing a 

decrease in mass resolution.  In a reflectron ion mirror, ions entering the electrostatic 

field with higher energy penetrate further into the field, therefore taking a longer time 

to reach the detector than if both high and low energy ions followed an identical flight 

path.  Over small energy distributions, this can result in a near perfect energy 

compensation, with all ions of the same mass arriving at the detector simultaneously 

(Karataev et al., 1972).  Although Mamyrin’s review covers the development of the 

reflectron-style TOF technique, additional developments have occurred to further 

enhance TOF analysis.  These recent developments have sought to improve the mass 

resolution and duty cycle of TOF instruments so that new applications and improved 

results may be pursued. 

Orthogonal Acceleration TOF (OA-TOF) has taken a different approach to the 

initial energy distribution problem, while at the same time improving duty cycle.  

OA-TOF instruments apply the accelerating voltage and conduct the mass analysis 

orthogonal to the direction of the ion beam.  By doing so, the acceleration is 

decoupled from the direction of the natural drift of the ions.  This decoupling means 

all ions in the beam experience the same acceleration in the direction of analysis and 

thus have uniform kinetic energy in the direction of analysis, regardless of the initial 

kinetic energy in the orthogonal direction.  Additionally, ions slowly fill the 

orthogonal accelerator region of the analyzer while the original beam is analyzed.  

When properly designed, the analysis time can match the fill time, resulting in orders 

of magnitude improvements in mass analyzer efficiency over other types of TOF-MS, 
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which is related to duty cycle (Guilhaus et al., 2000).  Others have reported duty 

cycles of 5-15% (Zare et al., 2003).  Mass resolutions of up to 10,000 m/ m have 

been achieved in some circumstances (Guilhaus et al., 2000).  

Other developments to improve the duty cycle of TOF-MS have been made in 

Zare’s lab by using Hadamard Transform (HT) TOF-MS (Brock et al., 1998).  This 

type of system uses a sophisticated mathematical transform, the Hadamard transform, 

to rapidly pulse the primary beam in a pseudo-random, but distinguishable pattern. 

Thus the analyzed ion packets overlap, but the mass spectrum can be deconvoluted by 

use of the transform.  This can improve the duty cycle of such an instrument up to 

100%, by using two detectors (Yoon et al., 2005).  The mass resolution of such 

systems remains at <5,000 m/ m, and it was claimed peptides were detectible at the 

fmol level under certain conditions (Brock et al., 2000). 

Other attempts to improve mass resolution have focused on developing multi-

turn TOF-MS systems.  These systems employ ion optics that attempt to perfectly 

focus the ion beam in space and time, resulting in the ability to transmit the beam 

continuously around the mass spectrometer.  As a result, the path length of the 

transmission of the ions can be extended, without increasing the spectrometer size.  

These instruments have achieved mass resolution >300,000 m/ m FWHM, but do 

have problems because of low transmission (Toyoda, 2010).   

Thus, several novel approaches to TOF-MS have led to increased applicability 

and usage of the technique.  These approaches have created opportunities for new 

applications.  In the case of OA-TOF and HT-TOF instruments, it has allowed for 

TOF analysis on continuous sources, such as those coupled with chromatography 
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instrumentation.  Improvements in TOF-SIMS have led to advances in several areas 

of study, such as bio-molecular studies (Boxer et al., 2009; Fletcher, 2009) and 

polymer surfaces (Mahoney, 2010).  Thus it is important to investigate new 

approaches to TOF-MS, to determine whether such approaches will improve the 

state-of-the art of TOF analysis, and thereby create opportunities for new advances in 

a number of fields. 

Section 2.3: Secondary Ion Mass Spectrometry (SIMS)  

Secondary Ion Mass Spectrometry (SIMS) is a mass spectrometric technique 

that differs from other types of mass spectrometry in the way it generates ions.  

Although more fully explained by Benninghoven et. al. (1987) and Wilson et. al. 

(1989), SIMS will be briefly described in Sec. 2.3.1. 

Subsection 2.3.1: The SIMS Concept 

Various types of SIMS instruments exist that utilize magnetic sector, quadrupole, or 

TOF mass analyzers, but all operate with the same general method of analyte ion 

creation.  In the primary column, an initial ion beam is created, typically at an energy 

< 30 keV.  This initial ion is often Cs+, O-, or O2
+, but many different beams have 

been used and considerable research effort has been dedicated to the investigation of 

new primary ion beams.  This energetic ion beam bombards the sample, creating a 

cascade of collisions that impart energy to the sample atoms, some of which gain 

sufficient energy to leave the sample surface, in a process known as sputtering and 

illustrated in Fig. 2.2.  These sputtered, or secondary particles have low energy, 

usually <100 eV, and may be sputtered in atomic or molecular form.  Most of these 
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secondary particles are neutral, although some are sputtered as ions.  It is the 

sputtered ions that SIMS analyzes; a slightly different technique, sputtered neutral 

mass spectrometry, analyzes neutrals by using a post-ionization step.  The ionization 

energy, electron affinity, and composition of the sample matrix dictate the efficiency 

with which they are sputtered and the type of species, i.e. positive, neutral, negative, 

that will be formed.   

 

Figure 2.2: Illustration of sputtering in SIMS. 

 
 The sputtering process occurs in the first few nanometers of the sample.  As 

the sample is sputtered and layers of the sample are removed, a depth profile may be 

obtained over time.  Also, SIMS instruments provide for rastering, or the movement 

across the sample of the primary ion beam, which can be correlated to the detection of 

ions, creating a mass image of the sample.  Thus, rather than providing a bulk 
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measurement, SIMS analysis allows for a depth analysis and determination of where 

analytes are located within a sample in three dimensions. 

 The low-energy, sputtered ions are then accelerated, focused with various 

lenses, collimated with apertures, and steered with other optics, all collectively 

considered the secondary extraction optics.  This focused ion beam is then transmitted 

to the chosen mass spectrometer.  In most cases, this mass spectrometer is a TOF, 

magnetic sector, or quadrupole instrument.  A general block diagram of a SIMS 

instrument is presented in Fig. 2.3. 

 

Figure 2.3: Block diagram of SIMS instrument. 

 

Subsection 2.3.2: Secondary Ion Mass Spectrometry and Nuclear Forensics 

 Over the past several years, SIMS has been employed as a tool for nuclear 

forensics.  The micro-beam capability of modern SIMS instruments allows 

investigators to analyze single particles without time consuming chemical 
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preparation, while maintaining precision comparable with other tools (Hou et al., 

2005).  However, SIMS instruments have limitations.   

 One limitation is the presence of molecular interferences.  Often SIMS 

facilities will use an injection energy offset to eliminate some molecular background, 

at the cost of lowering collection efficiency.  In nuclear forensics, an interference in 

the measurement of 236U is 235UH.  Uranium-236 is a good indicator of a material’s 

historical use because it is not a naturally occurring isotope.  It is measurable by 

SIMS only after a correction based on the measured ratio of 238U to 238UH (Ranebo et 

al., 2010; Tamborini et al., 1998).  Other interferences reported in swipes from 

nuclear facilities involve PbCO ions, which interferes with 236U and other mass 236 

species.  These are problematic since swipes from facilities using lead shielding will 

always include lead isotopes.  To overcome this limitation and analyze such samples, 

researchers removed uranium particles from the swipe and moved them to a blank 

carbon planchet (Esaka et al. 2007).  Although this is one solution, it may not be 

sufficient in all situations, because extremely small particles may be impossible to 

move and the process is time consuming.  Table 2.1 presents the mass resolution 

required to differentiate between atomic and molecular masses in several situations, 

including those mentioned in the literature.  Many common instruments can achieve 

mass resolution of several thousand.  It has been reported that some SIMS 

instruments can achieve 25,000 m/ m (Erdmann et al., 2000).  But this increased 

mass resolution comes at the reduction of sensitivity, because of the use of an energy 

offset. The presence of molecular interferences, particularly in nuclear forensics 
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applications, points to the need for increased mass resolving power, while achieving 

high collection efficiency and thus high sensitivity. 

 

Table 2.1: Required Mass Resolution for Cases of Interest in Nuclear Forensics 

Nominal Mass Species Atomic/Molecular Mass Required m/ m 

234 234U 234.040946  
 233UH 234.047460 35928 
 206Pb12C16O 233.969364 3270 
235 235U 235.043923  
 234UH 235.048771 48483 
 207Pb12C16O 234.970796 3214 
239 239Pu 239.052163  
 238PuH 239.057385 45782 
 238UH 239.058608 37093 
240 240Pu 240.053814  
 239PuH 240.059988 38876 
18 18O 17.991600  
 17OH 18.006957 1172 

 

SIMS measurements for nuclear forensics are currently conducted with either 

TOF systems or using magnetic sector mass spectrometers.  SIMS-TOF systems are 

hindered by the duty cycle needed to ensure all species are collected before the 

introduction of new material, causing long analysis times.  To shorten analysis time, 

material is often sputtered quickly without the collection of data to reach a new depth 

where data is then collected.  This results in a loss of information.  By limiting the 

mass range that can get to the TOF detector, the duty cycle can be improved because 

the pulse time would only need to pause for the difference in flight times of species of 

interest. 
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 At this time, most nuclear forensics measurements are conducted with 

magnetic sector instruments.  One limitation of these instruments is that they 

determine several masses simultaneously by using several detectors.  These detectors 

must be cross-calibrated and only a limited number can be used over a narrow mass 

range.  The limitation in mass range is overcome by peak hopping.  Several groups 

use this technique, even within a few amu, to measure multiple masses (Ranebo et al., 

2010; Lehto, 2002; Pajo et al., 2001).  Peak switching results in lower collection 

efficiency because during the time one isotope, or set of isotopes is counted, ions 

resulting from other isotopes are not being collected.  Thus, a mass spectrometer with 

a wide dynamic range could improve instrument sensitivity. 

Subsection 2.3.3: An Idealized Instrument for Nuclear Forensic Analysis 

 In order to achieve the best possible results for the analysis of materials for 

nuclear forensics, no one tool can currently be used.  As noted in Chap. 1 an idealized 

instrument would be automated and field deployable.  To achieve this goal, sample 

preparation must be minimal.  Many techniques currently used in nuclear forensics, 

such as the selection of non-lead containing particles mentioned in Sec. 2.3.2, are far 

from this goal.  Further, ICP-MS techniques have also been employed in nuclear 

forensics and require careful, lengthy preparations.  Additionally, for certain 

situations it has been shown that bulk measurements are not always sufficient for 

analysis and spatial information can be required (Desgranges et al., 2006).  Current 

techniques used to measure uranium and plutonium isotope ratios use a correction 

factor to account for hydrides.  This results in decreased precision and also requires 

user input and data analysis.  In order to reduce user interaction, the need for sample 
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preparation requirement, and meet the need for spatial information, increases in mass 

resolution are needed.  As noted in Table 2.1, mass resolution approaching 50,000 

m/ m is necessary.  While a few commercial instruments can achieve this, it is 

achieved with limited sensitivity.   

The precision that must be achieved varies with the application and specific 

measurements.  For oxygen isotope ratios, the observed variation in natural 

abundance is up to about 3%.  From work by Pajo (2001) it can be estimated that 

isotope ratio precisions of up to 0.05% may be required to determine the origin of the 

material.  Currently, experimental precisions of 0.1-0.25% have been achieved 

(Tamborini et al., 2002).  For uranium enrichment, isotope ratio precisions of 0.5-

2.0% have been achieved, which is sufficient to determine the material’s use (Betti et 

al., 1999).  

For uranium age measurements with small sample sizes, it has been noted by 

Mayer (2008) that using the current SIMS instruments, only highly enriched uranium 

can be aged.  The half-life of the uranium isotopes, the efficiency of ion detection, 

and the size of the sample limit sensitivity and therefore the age determination.  

Figure 2.4 is adapted from Mayer (2008), and depicts the in-growth of 230Th decay 

from 234U.  The figure was created assuming a 1-μm particle of uranium at the given 

enrichments and assuming 234U will be enriched at the same rate as 235U.  The 

efficiencies were calculated assuming the detection of 10 230Th atoms.  From Fig. 2.4, 

it can be determined that to achieve the dating of low-enriched uranium, efficiency of 

the system would need to approach 10%.  Mayer (2008) estimates the current 

efficiency of SIMS as 0.5%. The low efficiency is due to source characteristics as 
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well as transmission through the spectrometer.  To improve efficiency from the 

source, Sputtered Neutral Mass Spectrometry could be investigated to ionize more of 

the particles leaving the sample.  The efficiency through the spectrometer can be 

improved by achieving high transmission and by detecting the entire sputtered beam.  

During peak switching only a part of the ion beam is detected at the same time, 

lowering efficiency by at least half.  A spectrometer that detected the entire beam 

would at least double the efficiency, with additional gains if more than two species 

are detected.  

 

Figure 2.4: Number of 230Th atoms produced in a 235U sample, by different 

enrichment values. Efficiency values are presented for the number of atoms required 

in a sample to detect 10 atoms. 
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 One method of collecting the entire sputtered beam is to switch to a TOF 

instrument.  Currently sample measurement time is limited by sample preparation.  

However, if the previously mentioned gains in mass resolution, precision, and 

sensitivity were achieved and sample preparation time became small, the duty cycle 

of a time-of-flight spectrometer would become important.  In work by Lehto (2002), 

uranium particles were completely sputtered in under 700 s, using a magnetic based 

technique and, therefore, constant sputtering.  Using this value, Table 2.2 was 

constructed to demonstrate the effect of duty cycle on analysis time.  A 20% duty 

cycle is common in commercial TOF instruments.  For a single particle analysis, this 

duty cycle does not have a large impact on analysis time.  However, if 100 particles 

are analyzed, to improve precision for instance, the analysis time increases from 1 

day at 100% duty cycle to 3 days at 20% duty cycle.  For the worst-case scenario of a 

post-detonation nuclear forensics case, time is critical, thus a spectrometer with a duty 

cycle as near to 100% as possible is desired. 

 

Table 2.2: Effect of Duty Cycle on Analysis Time 

Duty Cycle 
(%) 

Analysis Time (hr) 
1 particle 

Analysis Time (hr) 
10 particles 

Analysis Time (hr)  
100 particles 

100 0.2 2 19 
50 0.4 4 39 
20 0.8 8 78 
10 2 16 156 
5 3 31 311 
1 6 62 622 

0.1 12 124 1244 
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 Thus, an ideal TOF spectrometer would have a mass resolution near 50,000 

m/ m, precision for measuring isotope ratios better than 0.05%, better than 50% 

efficiency at detection of atoms, and a duty cycle near 100%.  

Section 2.4: Accelerator Mass Spectrometry and the Naval Research Laboratory’s 

Trace Element Accelerator Mass Spectrometer 

 Accelerator mass spectrometry (AMS) is an ultra-sensitive technique used for 

the analysis of isotopes with a long half-life.  The technique has found great success 

in radiocarbon dating, as well as contributing to other scientific arenas such as: 

archeology, geology, cosmochemistry, hydrology, biomedical sciences, and nuclear 

forensics.  The sensitivity and isotopic resolution of this technique is achieved by the 

use of an accelerator that causes break-up of molecules in a gas-filled stripper canal 

or stripper foil, and because of the use of low-background nuclear detection 

techniques.  Because AMS is only referred to here as part of the description of the 

system used, the reader is referred to Tuniz et al. and Gove for a more complete 

treatment of the technique (Tuniz et al., 1998; Gove, 1999). 

 Traditionally, AMS is a bulk sample technique.  Most ion sources designed 

for AMS are not meant for surface analysis.  A few systems have been designed 

which, like the Naval Research Laboratory Trace Element Mass Spectrometer (NRL-

TEAMS), couple the surface analysis capabilities of a SIMS instrument with the 

isotopic sensitivity and accuracy of an AMS system (McDaniel et al. 1992; McDaniel 

et al. 1993; Ender et al. 1997a; Ender et al. 1997b; McKeegan et al. 2005; Knies et al. 

2006).  These hybrid SIMS-AMS instruments have been given various names in the 

literature: TEAMS, accelerator SIMS, and MegaSIMS.  The applications have 
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likewise been varied.  The University of North Texas instrument has been 

predominately used to determine trace contaminants in semi-conductors (Datar et al., 

2000; McDaniel et al., 1998).  The PSI/ETH instrument has been used for geology 

purposes, focusing on Beryllium, Osmium, and Platinum Group elements (Maden et 

al., 2001, 2004; Sie et al., 2002; Maden, 2003).  It has also been used to measure 

tritium in the vessel walls of fusion reactors (Stan-Sion et al., 2002).  The UCLA 

Mega-SIMS was specifically designed to analyze the oxygen isotope ratio of solar 

wind to high precision, as part of the NASA Genesis project, which seeks to 

understand the origin of the sun by analyzing the composition of the solar wind 

(McKeegan et al., 2005, 2009, 2010; Mao et al., 2006, 2008; Kallio et al., 2008). 

 The NRL-TEAMS facility includes the micro-beam primary column and 

secondary extraction optics of a Cameca IMS-6f SIMS instrument (Grabowski et al. 

1997; Grabowski et al. 2000; Knies et al. 2004; Knies et al. 2006; Knies et al. 2007).  

The facility’s AMS supplants the normal detector portion of the Cameca IMS-6f.  The 

AMS system was designed for parallel mass analysis and has a unique injection 

magnet and an unusual detection magnet, which can be outfitted with an array of 

detectors, along a 1.5-m-long focal plane (Cetina et al., 2003).  A representation of 

the instrument is presented in Fig. 2.4. 

 In addition to being bulk analysis instruments, most AMS systems, including 

the few SIMS-AMS instruments, do not have truly parallel mass capabilities over a 

broad range.  In many systems a “bouncing” injection is employed (Fifield, 1996; Sie 

et al., 2002).  This means the trace beam is analyzed for a significant amount of time, 

followed by a short measurement of the matrix beam, after which the cycle is 
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repeated.  For bulk measurements, where the matrix beam is not changing in time, 

this provides a reasonable estimation.  However, for the most precise data, and for 

situations such as near-surface analysis where the matrix beam may vary with time, 

parallel mass analysis may be preferred.  Other systems, such as the MegaSIMS, have 

some parallel mass capability, but they are limited to a restricted mass range.  In the 

case of the MegaSIMS, this limitation is m/m < 30%, which, for example, allows 

transmission of all oxygen isotopes and hydrides (Mao et al., 2008). 

 

 

Figure 2.5: Representation of the NRL-TEAMS facility.  ES is energy slit;  ESA is 

electrostatic analyzer; EL is Einzel Lens; MCP is micro-channel plate; EQT is 

electrostatic quadrupole triplet. 
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  The original design concept for the NRL-TEAMS was to apply truly 

parallel mass analysis capabilities to challenging materials problems.  An initial study 

analyzed rare earth elements and was able to measure nanogram quantities, achieving 

limits of detection comparable with other competitive techniques (Cetina et al., 2007).  

Other experiments were conducted in preparation for the analysis of NASA 

GENESIS samples (Cetina et al., 2008, 2009, 2010).  These results were achievable 

only by the use of parallel mass analysis, which is enabled by two unique features, the 

spectrograph detection magnet and the use of a Pretzel magnet for injection.   

Section 2.5: The Pretzel Magnet 

 Enge originally described the Pretzel magnet in 1963 (Enge 1963).  Magnetic 

systems used to deflect beams had previously been dispersive in ion momentum or 

had a limited range where they were non-dispersive.  Enge’s “achromatic magnet 

mirror” resolved this problem and created a magnet that could be used to deflect 

beams approximately 900 without adding dispersion over a wide range of momenta.  

This “achromatic magnetic mirror” was later termed a Pretzel magnet, due to the 

nearly 2700 bend experienced by ions traveling through it.  Enge’s magnet design has 

been previously employed for the momentum analysis of electron beams (Rowe, 

1970).   

 To enable the parallel mass analysis capability in the NRL-TEAMS, a Pretzel 

injection magnet was developed to allow for the injection of a wide mass range in 

parallel, while simultaneously providing the ability to remove unwanted species 

(Knies et al., 1997).  A schematic of the Pretzel magnet with simulated ion 

trajectories is given in Fig. 2.5.  The NRL system is capable of transmitting 1-200 
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amu when the ion energy is 40 keV and higher mass ranges at lower energy (Knies et 

al., 1997).  Ion beams enter the Pretzel magnet at 42.30 and separate according to 

momentum along a 0.75-m-long focal plane.  These ion beams are then recombined 

and leave the Pretzel magnet with the same optical characteristics with which they 

entered.  By placing masks along its symmetry axis, only the momenta of interest are 

transmitted through the entire system.  Because the NRL-TEAMS system is designed 

to be mono-energetic and utilize a single charge state, the momentum can be 

considered as mass, and such masks can be used as a mass filter.  The magnetic field 

in a Pretzel magnet is inhomogeneous, but all references to field in this document are 

measured at the same location in the Pretzel magnet, at a penetration depth of 

approximately 0.8425 m, based on historical NRL-TEAMS calibrations.   

 The inherent Pretzel magnet properties can be exploited for TOF analysis 

(Knies et al., 1997; Demoranville et al., 2009; Demoranville et al., 2010).  Mass 

filtering (MF) can be added to TOF analysis similarly to its use in TEAMS.  

Additionally, the Pretzel magnet’s ability to separate individual masses, giving each a 

unique trajectory, and then recombining them into a single beam can be exploited to 

provide improved mass resolution. 
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Figure 2.6: Illustration of simultaneous ion trajectories in the Pretzel magnet. 

Section 2.6: The Mass Filtered, Time Dilated, Time-of-flight Concept 

 When particular regions of the TOF spectra are of interest, MF can be added 

to TOF analysis in a way analogous to its use in traditional AMS, namely, masses can 

be selectively analyzed or rejected using a mask in the Pretzel magnet.  When masses 

are rejected, gaps are left in the TOF spectrum.  If enough masses are rejected, it is 

possible to interleave spectra, so that more than one spectrum can be collected at the 

same time.  This provides a tunable duty cycle, meaning that the instrument only 

needs to wait for the dwell time between species of interest before introducing the 

next burst of ions.  By this method, the second pulse of ions can be injected to the 

system before the first is collected.  This results in an increased duty cycle.  The mask 

also minimizes noise by removing non-interesting species before they enter the rest of 

the spectrometer.  If a particular mass has a significantly high count rate and is not of 

interest, such as a matrix beam not needed for normalization, it can be selectively 
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blocked before analysis.  This will prevent flooding of the detector and lower dead 

time.  This consideration may lead to better sensitivity than the current capability of 

standard TOF systems. 

 The concept of time dilated (TD) TOF utilizes an inherent property of the 

Pretzel magnet.  That is, since all trajectories scale with momentum, essentially mass, 

and have the same geometric shape, species with higher mass have longer flight paths 

in the magnet.  Traditional TOF spectrometers make use of the fact that heavy mass 

species take longer to fly than lighter ones when all ions are of the same energy and 

follow identical flight paths.  In the Pretzel magnet, species of higher mass follow a 

longer flight path than those of a lower mass.  These two factors, the ion velocity 

difference and the flight path difference, when taken together result in a mass-

dependent time dilation of the transmitted ions.  If time peaks are separated further in 

time, without a proportionate spread in the width of the peak, this time dilation will 

produce an increase in mass resolution over more traditional methods of TOF-MS.   

 Because of the needs of nuclear forensics, a TOF-MS system with higher duty 

cycles and improved mass resolution, particularly at low mass, relative to many mass 

spectrometric applications, e.g. amu < 500, would prove to be an effective and 

important tool.  Additionally, advances in many fields have benefited from the 

advances made in TOF-MS, SIMS and AMS.  Research is continually improving the 

state of the art in mass spectrometry through new and innovative approaches.  MF-

TD-TOF-MS is such an approach that merits investigation into its utility and potential 

benefits.  The NRL-TEAMS offers an opportunity to investigate MF-TD-TOF-MS in 
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order to determine if it is a technique that may offer improvements to the state-of-the 

art of TOF-MS. 
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Chapter 3: Theoretical Background and Calculations 
 

Several important equations in TOF-MS, and specifically Pretzel magnet 

based TOF-MS, can be derived based on the theoretical underpinnings of the 

technique.  These equations can be used to predict the fundamental behavior of such a 

system if a few empirically determined parameters are known.  Specifically, it is 

possible to compare traditional and Pretzel magnet based systems of similar physical 

footprints.  Because the NRL-TEAMS system is limited in its ability to perform TOF 

experiments, as will be shown in Chap. 4, this theoretical analysis provides valuable 

insights that cannot be obtained using the NRL-TEAMS system alone.   

Section 3.1: Theoretical Derivations 

In TOF spectrometry, the TOF, t, is described by: 

  
t = L

m

2E , (3.1) 

where L is path length, m is ion mass, and E is the ion kinetic energy.  In typical TOF 

analysis, path length is constant so time is proportional to the square root of mass, 

m, at constant energy.  However, in a Pretzel magnet based TOF spectrometer, path 

length is dependent on the analyzed mass.  Additionally, in a physical system, the 

time is delayed by the response of electronics.  Thus, for a Pretzel magnet TOF 

system the total flight time as measured by the system ttotal is the sum of the flight 

times in the Pretzel magnet, in the portion of the system outside the Pretzel magnet, 

and the time delay of the acquisition electronics, yielding: 
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  ttotal = LP
m

2E
+ LO

m

2E
+ telectronics.  (3.2) 

 

In a traditional system, it is trivial to determine the path length LO, however in a 

Pretzel magnet based system the relationship is more complex.  Because the 

geometric shape of the trajectories in the Pretzel magnet is independent of momenta, 

i.e. mass, it is possible to relate the length of the trajectory LP to the maximum 

penetration depth by a proportionality constant KP, 

  LP = KP * Xmax, (3.3)  

where Xmax is the maximum penetration along the symmetry axis of an ion in the 

Pretzel magnet.  By combining Eq. 3.2 and 3.3 an expression for the total time ttotal 

can be obtained 

  
ttotal = KPXmax

m

2E
+ LO

m

2E
+ telectronics

. (3.4) 

In the original description of a Pretzel magnet, Enge developed the relationship: 

  Xmax =
(n +1)(mv)(1+ sin )

qGP

 

 
 

 

 
 

1

n+1

, (3.5) 

where n is the field index,  is velocity,  is the entrance angle, and q is the electric 

charge (Enge, 1963).  The constant GP describes the relationship of field to 

penetration of the magnet, according to 

  GP =
Bz

Xz
n , (3.6) 

where Bz is the field measured at location Xz.  Combining Eqs. 3.5 and 3.6, and using 

the definition of kinetic energy it is possible to say: 
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Xmax =

(n +1) 2mE (1+ sin )XDTM
n

qBz,DTM

 

 
 

 

 
 

1

n+1

, (3.7) 

where BZ,DTM is the field as measured at location XDTM.   

Combining Eq. 3.4 and 3.7 gives, 

  .   (3.8) 

The NRL Pretzel magnet was designed to have n = 0.925 and  = 42.30 (Knies et al. 

1997).  Additionally, historical measurements at NRL provide the location of the 

Digital Tesla Meter (DTM), the field measuring device, as 0.8425 m.  Using these 

values in Eq. 3.8 and converting units such that m is in units of u, E is in units of keV, 

B is in units of Gauss, and X is in units of m, yields an expression for ttotal in seconds: 

  ttotal = 2.55X10
5KP

m(n+2) (2n+2)

B1 (n+1)E n (2n+2) + 2.2764X10
6LO

m

E
+ telectronics.   (3.9) 

 Equation 3.9 can be used to analyze the ability of a Pretzel magnet to improve 

mass resolution.  Since mass resolution can be represented as:  

  
,
 (3.10) 

and m/ t is a measurable quantity equal to the mass of a given peak divided by its 

width in the time domain, it is possible to differentiate Eq. 3.9 to obtain t/ m and 

compute m/ m.  This leads to the following representation of mass resolution: 

  
m

m
=
m

t

1.94X10 5KP

B1/(n+1)mn /(2n+2)E n /(2n+2) +
1.14X10 6LO

Em

 

 
 

 

 
 . (3.11) 

ttotal = KP

(n +1) 2mE (1+ sin )XDTM
n

qBz,DTM

 

 
 

 

 
 

1

n+1 m

2E
+ LO

m

2E
+ telectronics

m

m
=
m

t
•

t
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Given these parameters, a Pretzel magnet based system will have the highest mass 

resolution with low energy, low field, and large path lengths outside the Pretzel 

magnet.   

Section 3.2: Analysis of Mass Resolution 

To determine the potential benefits of the Pretzel magnet, a theoretical approach 

using Eq. 3.11 was used to compare the mass resolution of the current NRL Pretzel 

magnet with a linear TOF system, as described by the first and second terms in the 

sum of Eq. 3.11, respectively.  The value of KP has been determined experimentally 

as 2.3 ± 0.2, as will be presented in Sec. 6.2. 

To constrain the analysis to a particular situation, a Pretzel magnet of the 

current size, that is a penetration depth of 0.75 m, was assumed.  To compare the 

Pretzel magnet to a TOF instrument with a similar footprint, an LO of 1.5 m was 

chosen.  This is twice the penetration depth to account for a reflectron style 

instrument.  For nuclear forensic applications, masses in the 240 u range are of 

interest.  Traditionally the NRL TEAMS instrument has been used at a 9 keV 

secondary ion energy because this energy is needed to match with the acceptance of 

the accelerator system.  However, most SIMS analysis is typically conducted at lower 

secondary ion energies and this has the benefit of improving mass resolution.  A 

secondary ion energy of 1 keV was thus chosen for this exercise.  While according to 

Eq. 3.11 it is beneficial to use as low a field as possible, the applied field must be 

sufficient to bend the heaviest isotope (i.e. most rigid momenta).  For the chosen case 

of 240 u, this requires approximately 2300 G, as calculated from an empirical 
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calibration of the magnet.  A pulse width of 5 ns, comparable to that reported by 

Katta and Chait (1991), was considered for the estimates generated.   

A series of calculations was then conducted using Eq. 3.11.  Figures 3.1-3.4 

present the results of this analysis.  In each, the blue, solid line is the mass resolution 

from the Pretzel magnet alone and the red, dashed line is the mass resolution of a 

reflectron TOF spectrometer of similar depth.  In Fig. 3.1 the solid, vertical line 

represents the field below which 240 u cannot be bent through the magnet, at the 

given energy.  In Fig. 3.2, the masses above the solid, vertical line cannot be bent 

through the magnet at the given field and energy. In Fig. 3.3, solid, vertical line 

represents the energy above which 240 u cannot be bent at the given field. 

 

Figure 3.1: Mass resolution variation due to field (m = 240, E = 1 keV, LO = 1.5m) 
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Figure 3.2: Mass resolution variation due to mass (B = 2300 G, E = 1 keV, LO = 1.5 

m) 

 

 
Figure 3.3: Mass resolution variation due to energy (B = 2300 G, m = 240, LO = 
1.5m) 
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Figure 3.4: Mass resolution variation due to non-Pretzel spectrometer path length (B 
= 2300 G, m = 240, E = 1 keV) 

 

It can be seen that in most cases under these starting conditions a Pretzel 

magnet based system is preferable to a traditional spectrometer.  In fact only at fields 

above 8 kG, masses below 12u, or spectrometer lengths larger than 3 m, do the 

benefits of a traditional spectrometer overtake those offered by a Pretzel magnet 

based system. 

As further evidence, a specific example can be selected.  For E = 1 keV, m = 

240 u, B = 2300 G, and LO = 1.5 m, the mass resolution can be estimated at 10,350 

m/ m for the magnet, and only about half of that for the reflectron system.  A 

somewhat better mass resolution would need to be achieved in order to separate 

hydride molecules in the actinide region.  However, the Pretzel magnet would still 

offer an advantage over a reflectron TOF system of a comparable depth. 
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Looking at the results more broadly, with the parameters used to create Fig. 

3.1-3.4 a Pretzel magnet should offer increased mass resolution over a similar 

reflectron TOF spectrometer for LO < 3.0 m, B < 8800 G, and m > 19 u.  Based on 

empirical calibrations of the Pretzel magnet, fields higher than 8800 G would be 

needed only if heavier masses, that is > 8700 u, were to be analyzed.  Such masses are 

not of interest for nuclear forensics, as actinides and their oxides will have mass < 

300 u.  In some cases the low-mass region, m < 19 u, would be of interest.  For 

example it may be necessary to measure the oxygen isotope ratios to high precision 

for geo-location. In this case, the Pretzel magnet system could still offer an advantage 

since the field could be reduced and thus the mass resolution increased.  Table 3.1 

illustrates this scenario, and is calculated based on E = 1 keV, LO = 1.5 m, t = 5 ns.  

Mass 12 u was selected and can be bent with 600 G.  Under this condition, higher 

masses will not be transmitted through the Pretzel magnet.  Thus, the analysis of low 

masses sacrifices the detection of high mass species in order to improve the mass 

resolution of the low mass species.  However, the mass resolution for m = 12 u is 

2130 m/ m, which is almost double the mass resolution of a reflectron of similar 

length.  Alternatively, if the higher field, 2,300 G, is used mass 240 can be 

simultaneously detected with high mass resolution with a slightly reduced mass 

resolution for mass 12, when compared to a reflectron of similar size. 

These calculations assume a uniform energy.  However, it is known the 

sputtering process does not produce a uniform energy, but rather an energy 

distribution.  It has long been established that over a small range of energy 

distributions a reflectron-style TOF-MS can compensate for this energy distribution 
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(Karataev et al. 1972).  A Pretzel magnet will have some energy-focusing properties, 

but whether it can completely compensate for the distribution is not currently 

understood.  Thus, while this analysis provides some valuable insight into the 

capability of a Pretzel magnet based system, the analysis is not complete.  If the 

Pretzel magnet does not have sufficient energy-focusing, it may still be possible to 

use this technique as part of a more complex system that includes energy-focusing or 

orthogonal accelerations techniques to reduce or eliminate the impact of energy 

straggle. 

Table 3.1: Calculated Resolution for Selected Masses and Fields. 

Mass 
(u) 

Field  
(G) 

Pretzel Mass Resolution 
(m/ m) 

Reflectron Mass Resolution 
(m/ m) 

12 600 2130 1185 

12 2,300 1062 1185 

240 2,300 10,350 5,298 
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Chapter 4: SIMION Modeling 

 

SIMION is a software package commonly used to model ion trajectories in 

electrostatic and magnetic fields (Manura and Dahl, 2008).  It was used to create a 

model of the pre-accelerator portion of the NRL-TEAMs facility, which was later used 

experimentally as the test bed for mass filtered, time dilated, time-of-flight mass 

spectrometry (MF-TD-TOF-MS).  This model was used to estimate the overall mass 

resolution of the system, as well as aid in the determination of its mass resolution 

limiting elements and the impact of starting conditions. 

Section 4.1: The SIMION software and the NRL-TEAMS model 

   In the SIMION software package each electrostatic or magnetic element in a 

given system can be created as a potential array.  The electrostatic or magnetic field 

produced by the array is predicted by the software and used to calculate the likely 

trajectory of ions through a given system element.  These potential arrays can be 

adjusted in the software to model a variety of conditions (e.g. different voltages or 

magnetic fields).  In order to model a system, the potential arrays are placed in the 

software’s “ion bench” in the proper orientations to one another, creating a model of the 

complete system. 

Individual ions, or groups of ions, can be defined by a variety of starting 

conditions, including location (x,y,z), kinetic energy, initial angular direction, mass, 

charge, etc.  These can be given single values or a variety of distributions.  This starting 

ion, or group of ions, can then be “flown” through the system.  The software package 
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predicts the trajectory through the components and final conditions of the ion (i.e. TOF, 

velocity, energy, etc.).   

 In order to create the model of the system, potential arrays for each of the 

elements were created.  The design of the element is contained within a “Geometry” or 

“GEM” file.  An example of such a file is given in App. G for the reflectron ion mirror 

that was used in the ion bench for the NRL-TEAMS system.  These were then located 

within an ion bench.  The location of each element was measured using the physical 

system, system design drawings, and schematics of the elements in the system.  The 

coordinates and orientation of these elements are presented in Table 4.1.   

 

Table 4.1: Location and Angles of Potential Arrays in SIMION Ion Bench Model. 

Element X Y Z Azi-

muthal 

Ele-

vation 

Rotation 

Immersion Lens 0 0 0 0 0 0 

Transfer Lens 276.2 0 0 0 0 0 

Contrast Aperture 422.2 0 0 90 0 0 

Field Aperture 498.2 0 0 90 0 0 

ESA 1316.53 135 0 -90 0 180 

LE Slits 2085.44 624.1 0 90 0 -45 

Einzel Lens 2261 799.2 0 0 45 0 

Pretzel Magnet 2737.44 1276.10 -190 0 87.3 90 

EQT 3238.97 669.85 0 -180 -39.6 -90 

Reflectron 3615.4 214.83 -139.7 0 39.6 90 

 

Section 4.2: Simulations of MF-TD-TOF-MS in the NRL-TEAMS model 

To evaluate the magnitude of the benefits provided by MF-TD-TOF using the 

NRL Pretzel magnet and studying the mass resolution of the system and the TD effect, 

computer simulations modeled the low energy, or pre-accelerator, portion of the NRL-
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TEAMS facility.   

The mass resolutions of the simulations were determined using Eq. 3.11.  In 

Sec. 6.2, the path length of the complete system outside the magnet will be 

experimentally determined to be 4.7 ± 0.1 m and KP will be experimentally determined 

to be 2.3 ± 0.2.  These values were used in the mass resolution calculations.  The t 

term was determined from the FWHM of the simulated data when fit with a gaussian 

curve, using the Kaleidagraph software package (Synergy Software, 2010).  The error 

bars presented are ± 1 , as calculated by the Kaleidagraph fitting algorithm and 

propagated through the calculations. 

The simulations were conducted with a secondary ion extraction voltage of 9 

keV.  While this is a higher accelerating voltage than is typically used for TOF analysis, 

it is the voltage typically used at the NRL-TEAMS facility because of compatibility 

issues with the accelerator.  A line sequence of starting origins from -0.1 mm to 0.1 mm 

in the vertical direction of the model was used to simulate the impact of variation in the 

location of ion origin in the vertical direction.  Any horizontal variation, due to rastering 

of the beam, can be compensated by the dynamic transfer system of the Cameca 

instrument, so was not modeled.  Because its lower magnetic rigidity allowed for wide-

range scans of the Pretzel magnet, 28Si was initially chosen for study.  This isotope was 

“flown” through the low energy portion of the system, including the Pretzel magnet.  

The magnetic field was varied in order to produce a variety of different path lengths, 

and produce the time-dilation effect.   

Other simulated parameters include a uniform distribution of initial kinetic 

energies from 0.5-10 eV.  This is not an exact model of the true distribution of initial 

energies, but provides a measure of the influence of the initial energy (Wilson et al., 

1989).  The true ion energy distributions vary slightly by atomic mass, cluster size (e.g. 
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Si1, Si2, Si3, etc.), matrix, primary ion voltage, and primary ion species.  Data for the 

specific conditions used were not available, however, 14.5 keV Cs+ primary ions used 

to sputter Si offer some insight.  For negative Si atoms and clusters, there is a strong 

peak in emission energy at < 5 eV, with emission energies tailing to more than 100 

eV for monoatomic Si negative ions (Gnaser, 2007).  These tails decrease 

exponentially by three orders of magnitude.  Additionally, the exponential tail in 

emission energy is more steep with increasing cluster size, reducing by 5 orders of 

magnitude to 20 eV for Si5 clusters.  This fact is commonly used in SIMS analysis to 

reduce the impact of molecules by employing an energy offset.  Because of this steep 

decay in kinetic energy, it is likely that the chosen initial model condition, a uniform 

distribution of initial kinetic energies from 0.5-10 eV, provides a reasonable 

estimation of ion energies.  The literature provides similar emission energy profiles 

for 14.5 keV Cs+ on graphite (Gnaser, 2000).   

Arithmetic sequences of direction angles from -900 to 900 in both the 

horizontal and vertical direction were also used.  Again, emission angle is dependent 

on a number of factors, including the primary ion energy, angle of incidence, and 

species, as well as the matrix.  The choice of an 1800-wide emission angle distribution 

for the simulations is again a worst-case scenario and will therefore overestimate the 

width of arrival times.  In fact, the literature suggests emission angles are 

significantly narrower for Cs+ sputtered Si at 10 keV, with a range of approximately 

400 and the peak emission angle and width depending on the incidence angle (Verdeil 

et al., 2008).   



 38 

An additional simulation was conducted that used the energy data from 

Gnaser (2007) and the angular data from Verdiel et al. (2008).  The distributions used 

are presented in Fig. 4.1.  The simulation also utilized a uniform distribution of starting 

origins from -0.1 mm to 0.1 mm in the vertical direction of the model and 9 kV 

extraction voltage in order to more realistically simulate the initial starting conditions.  

This simulation was also used to determine the applicability of the more generalized, but 

more easily modeled uniform distribution of ion energy and emission angle. 

 

Figure 4.1: Initial energy and angular starting conditions for simulation. (a) Energy 

data based  on 14.5 keV Cs+ on Si from Gnaser (2007).  (b) Angular data based on 

10-keV Cs+ on Si at a 300 incidence angle from the normal given in Verdeil et al. 

(2008). 

 

The results of these two simulations are shown in Fig. 4.2 and display the 

expected trend of decreasing mass resolution with increasing field.  Increasing field 

decreases path length and, therefore, decreases the TD effect.  Additionally, the use of a 

uniform distribution of initial ion energy and angular distribution under-predicts the 
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mass resolution, when compared with the simulations based on measured data for 

sputtered ions under similar conditions to those expected at NRL-TEAMS.  In both 

cases, however, the mass resolutions were insufficient to be useful as a functional 

instrument.   

Due to the small discrepancy in mass resolution, the difficulty in running 

literature-based simulations, and the lack of literature data for many species of interest, 

particularly actinides, the uniform ion energy and angular distributions, which under-

predict the mass resolution were used for further simulations.  In this way the 

simulations could be compared more directly. 

 

Figure 4.2: Mass resolution dependence on field for entire low energy system.  Red 

circles are from simulation using a uniform distribution of initial energy and angles.  

Blue squares are from simulations based on the data from Gnaser (2007) for initial 

energy and Verdeil et al. (2008) for initial angular distribution. 
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In order to determine if the mass resolution was limited fundamentally or by 

some component of the NRL-TEAMS system, simulations were conducted with beam 

stops placed after different elements of the system and the mass resolution was 

calculated.  These simulations were conducted using the uniform distribution of initial 

energy (0.5-10 eV), an arithmetic sequence of angles (-900 to 900), a line sequence of 

starting origins in the vertical direction (-0.1 mm to 0.1 mm), and 9 kV extraction 

voltage.  For positions prior to the Pretzel magnet, there is no TD effect.  Therefore, the 

term in Eq. 3.11, which is derived from the Pretzel magnet portion of the system, was 

omitted in mass resolution calculations.  Mass resolution for these positions can 

therefore be calculated as: 

 

m

m
=
m

t

1.1382X10 6LO
Em

 

 
 

 

 
 
 . (4.1) 

The path lengths for non-Pretzel based portions of the system used in the calculations 

are presented in Table 4.2 and were derived from drawings of the system, with one 

exception.  Because the total path length was experimentally determined (see Sec. 6.2), 

the experimentally determined value of 4.68 m was used, rather than the value of 4.63 

m derived from construction drawings.   

 

Table 4.2: Distance Outside the Pretzel Magnet to Various System Locations. 

Physical Location L0 (m) 

Contrast Aperture 0.422 

Low Energy Slits 2.269 

Pretzel Entrance 3.265 

Pretzel Exit 3.265 

Reflectron 4.68 

  



 41 

  Figure 4.3 presents the results of these simulations on an image of the model.  

These simulations suggest the electrostatic analyzer (ESA) is the major limitation to 

mass resolution.  This was not unexpected, as ESAs are known to be non-time-

compensated, when used individually.  Other TOF systems use various compensation 

schemes to correct for this (Verdeil et al., 2008).  While the NRL system is not 

designed for TOF experiments and has inherent resolution limitations, it still enables 

some practical, experimental assessment of MF-TD-TOF-MS.   

 

 

Figure 4.3: Mass resolution at various locations in the low energy system.  Length 

measurements are the distance outside the Pretzel magnet from the source to the 

location. 

 

Having established the general trend of mass resolution in relation to field 

behaves as predicted and the mass resolution in NRL system is limited by the ESA, 

simulations through the system depicted in Fig. 4.3 were conducted to determine the 

behavior of mass resolution at higher masses.  Actinides, in particular, were of 
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interest.  Isotopes and molecules modeled were 208Pb, 208Pb16O, 232Th, 238U, and 

232Th16O.  These simulations were conducted under the same initial conditions as the 

previous study. As presented in Fig. 4.4, the mass resolution of these actinides and 

actinide surrogates again follow the anticipated pattern of a decrease with increased 

field.  The mass resolution remains low, at approximately 90-100 m/ m.  

 

Figure 4.4: Mass resolution dependence on field for selected actinides and surrogates.  

Error bars are presented for 208Pb16O and are indicative of the error associated with 

each species.   

 

In order to further explore the factors limiting mass resolution, several groups 

of 238U ions were flown with different initial conditions at 10 kG.  Each group 
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removed one or more of the factors leading to a difference in flight time, in order to 

help determine which initial parameters cause the greatest limitation to mass resolution.  

These parameters are presented in Table 4.3.  When no source variation is listed the 

position was the origin, in the case of no angular distribution 00 was used, and for no 

initial KE distribution 0.5 eV was used. 

 

Table 4.3: List of Parameters for Different Ion Groups. 

Group 
Number 

± 1 mm 
source 
position 

-900 to 900 vertical 
angular 
distribution 

-900 to 900 
horizontal angular 
distribution 

0.5-10eV 
initial KE 

1 Yes Yes Yes Yes 
2 No Yes Yes Yes 
3 Yes No Yes Yes 
4 Yes Yes No Yes 
5 Yes No No Yes 
6 Yes Yes Yes No 

 
   

The mass resolutions resulting from these simulations are presented in Fig. 4.5.  

It can be determined from the plot that initial source position, within the limits modeled, 

and vertical angular distribution, that is angles coming into and out of the page when 

looking at Fig 4.3, provide little limitation to the mass resolution.  Further, the use of 

the initial energy distribution contributes some limitations to mass resolution.  It is the 

horizontal angular distribution, however, that is the greatest limiting factor to mass 

resolution.   
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Figure 4.5: Presentation of mass resolution for various starting parameters.  The ion 

groups are described in Table 4.3.  For ion groups 1-3 the error bars are smaller than 

the data points.   

 

This angular divergence is an overestimation of the physical system, based on 

literature values.  To further determine if the poor mass resolution presented in Fig 

4.2 was caused by the ESA, as suggested in Fig. 4.3, or by the horizontal angular 

divergence, as suggested in Fig. 4.5, the simulations conducted to create Fig. 4.3 were 

repeated but with no initial horizontal angular divergence.  The results from these 

simulations are presented in Fig. 4.6 and show a consistent increase in mass 

resolution through the system.  This suggests it is the angular divergence in 

conjunction with the ESA that cause the drop in mass resolution before and after the 
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ESA.  When no horizontal angular divergence is modeled, the ESA does not cause a 

limit to mass resolution.  Therefore, while the ESA does contribute to limiting the 

mass resolution if angular divergence is present, the angular divergence is a more 

important factor to control than changing the ESA. 

 

 

Figure 4.6: Mass resolution at various locations in the low energy system, simulated 

with no horizontal angular divergence.  Length measurements are the distance outside 

the Pretzel magnet from the source to the location. 

 

 Although it is not possible to absolutely eliminate the effect of angular 

divergence, it is possible to limit the divergence by strategic positioning of apertures.  

Although these improvements were not implemented in the physical system, it was of 

interest to obtain an upper limit on the mass resolution of the system if they were 

implemented.  Therefore, the actinide elements and surrogates for actinide elements 

were modeled in the system using no initial angular divergence, an initial beam height 
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of ± 1 mm, an initial beam width of 2 μm, and a uniform distribution of 0.5-10 eV 

initial kinetic energy at several fields.  The addition of a small beam width was used 

because, although the dynamic transfer optics of the Cameca instrument account for a 

centering of the beam during rastering, it does not compensate for intrinsic beam width.  

The results are presented in Fig. 4.7. 

 The data presented in Fig. 4.7 further confirm the existence of a time dilation 

effect in the Pretzel magnet.  Again, the overall trend shows a decrease in mass 

resolution with increasing field.  The mass resolution for 238U at 10 kG is slightly 

lower than that presented in Fig. 4.5 for ion group 5.  However, the error bars are 

relatively large and could account for the slight difference.  There also is a slight 

contribution from the initial beam width included in the simulations for Fig. 4.7, which 

was not used in Fig. 4.5 and would further limit the overall mass resolution.   

 For many routine applications of MS, mass resolutions of a few hundred m/ m 

are sufficient.  However, commercial mass spectrometers are easily able to achieve this 

level of mass resolution and this system does not represent a significant improvement to 

the state of the art.  In order to separate hydrides in the actinide region the mass 

resolution must approach 50,000, as presented in Table 2.1.  Thus, as currently 

configured, the NRL system is not capable of resolving hydrides in the actinide region, 

which is important for nuclear forensic analysis.  These simulations suggest it can, 

however, be used as a test bed for MF-TD-TOF-MS and could potentially be used for 

routine applications of MS, if the impact of angular distribution was negated.  This may 

be addressed with the proper use of apertures or an isochronous ESA.  The NRL-

TEAMS system can be used to generate valuable experimental information to confirm 

the validity of system modeling and provide insight into the design of a true MF-TD-

TOF-MS by suggesting what fundamental limitations may exist. 
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Figure 4.7: Mass resolution dependence on field for selected actinides and actinide 

surrogates, modeled with no initial angular distribution.  Error bars are presented for 

208Pb16O and are indicative of the error associated with each species.   
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Chapter 5: System Design & Improvements 

 The NRL-TEAMS facility, described in Sec. 2.4, was used to provide 

experimental confirmation of the theoretical and modeling results presented in Chap. 

3 and 4.  For this work, only the pre-accelerator portion of the system was used, the 

SIMION representation of which is presented in Fig. 4.3.  This system is not an ideal 

system, as is discussed in Sec. 4.2, yet it can be used to evaluate the potential of an 

optimally designed TOF system.  This chapter discusses the necessary system 

improvements required to perform TOF experiments.  Several experiments regarding 

pulse generation are described.  To provide counting detection in the pre-accelerator, 

a reflectron was added immediately prior to the accelerator to either electrostatically 

deflect the beam 900 into a microchannel plate detector or allow the beam to enter the 

accelerator.  A microchannel plate detector was used to provide counting detection.  

These improvements, described in this chapter, allowed for a series of TOF-MS 

experiments, the results of which will be presented in Chap. 6. 

Section 5.1: Beam Pulsing 

 The first generation of beam pulsing electronics used for experiments 

employed a waveform generator (HP 33120A) to produce a top-hat pulse shape.  This 

waveform generator drove a high voltage switch (DEI PVM-4140) that switched 

between positive and negative high voltage power supplies.  A number of different 

power supplies were attempted.  In the final design, a Bertan Associates PMT 2kV-

20A negative supply and a Glassman EW05120-115 positive supply were used.   
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The pulsing system was designed to pulse a set of deflectors after the 

electrostatic analyzer (ESA).  The design was such that beam would be pulsed into 

the system at a high voltage and out at all other voltages.  This pulsing scheme had 

several problems.  First the waveform generator was not capable of producing short 

pulses.  This is crucial to TOF measurements as the width of the analysis peak is 

partially limited by the width of the start pulse.  A particularly long start pulse 

produces very wide analysis peaks, resulting in poor mass resolution.  The waveform 

generator being used was limited to a 20% duty cycle.  This produced analysis peaks 

limited to 2-μs wide out of a 10 μs spectrum.  Thus at most 5 peaks would be able to 

be measured.  Additionally, the pulsing system was difficult to tune to the proper 

voltage for pulse-in.   

Therefore, a second generation of pulsing electronics was developed.  A 

homemade circuit was designed by NRL electronics technician Claire Kennedy to 

provide an adjustable injection pulse width of 0-8.4 ms and an adjustable dwell time 

of 5.7 μs – 4.1 ms.  Initially, this pulsing system was applied to the post-ESA 

deflection plates.  The system was again difficult to tune to the proper voltage for 

pulse-in.  Additionally, it was found that the beam, when in the pulsed-out position, 

could be deflected around the outside, rather than through the center, of the low 

energy slits following the deflector plates.  This resulted in ghost peaks unrelated to 

the actual TOF spectrum.  The voltage range for which the beam would be pulsed out 

of the center of the slits, but not beyond them was difficult to determine.  At this 

location in the system, marked as LE slits in Fig. 4.3, the distance between the 

components is quite long, i.e. tens of centimeters, meaning that a small deflection 
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angle causes a large deflection downstream at the slit.  Since the ESA is on the 

secondary, not the primary, ion column, sample was being consumed constantly 

although only a small portion was detected.  This caused a significant loss in 

sensitivity.  Therefore, the pulsing system was moved to deflector 4 of the Cameca 6f 

SIMS primary column, presented in Fig. 5.1.  At this location the distance from the 

deflector to the slit is much shorter, i.e. < 10 cm, and the beam stop is a single 

aperture so that no beam could be deflected around it. 

This second generation pulsing system produced reasonable results but was 

still not ideal.  Because the deflector used was important to the tuning of the primary 

beam onto the sample, the voltage needed to transmit the beam varied from sample to 

sample.  Additionally, it was found that the beam was difficult to tune to the proper 

pulse-in voltage.  Further study of this second issue revealed that the pulse-in voltage 

suffered from ringing.  This ringing caused the beam to be pulsed in and out several 

times over the course of the pulse-in time.  

In determining the third generation of the pulsing system both the location and 

the pulse-in voltage problem were considered.  The Cameca 6f SIMS primary column 

(Fig. 5.1) deflector 3a is before a different aperture but is earlier in the column.  

Additionally, this deflector is not optically important for the tuning of the beam and is 

maintained at ground.  It is included in the primary column for use with an additional 

lens not present in the NRL configuration.  Since using a primary beam deflector 

showed some success in the previous iteration, this lens was selected as the pulsing 

location.   
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Figure 5.1: The primary and secondary beam column of the Cameca IMS6f.  The 

primary column is the left set of optics, starting at the Cs source and ending at the 

sample. The secondary column is the right set of optics, starting at the sample and 

ending at the NRL adapter flange.  Lenses are presented with double-headed arrows, 

deflectors with parallel lines. P.B.M.F. is the Primary Beam Mass Filter and N.E.G. is 

the Negative Electron Gun. 

 

The second problem of being able to accurately maintain the pulse-out voltage 

was also investigated.  It was found that most modern TOF instruments do not 

attempt to pulse in this manner.  Instead, these systems pulse by sweeping the beam 

across a slit (Chait & Standing 1981; Rathmann et al. 1985; Katta & Chait 1991; Ma 
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et al. 1992; Piel et al. 1999).  Therefore, a top-hat waveform was again applied to the 

high voltage switch, however, rather than attempting to reach the pulse-in voltage and 

maintain it, the top-hat was used to sweep the beam across an aperture in the primary 

column.   

This third generation pulsing system is reliable and relatively easy to use.  

However, the counting system is triggered on the rising edge of the top-hat pulse, yet 

beam can pass on both the rising and falling edge of the pulse.  As noted by Ma et al. 

(1992), the rising and falling edges can have slightly different rise and fall times.  

This results in two slightly different mass spectra, or the splitting of peaks.  Ma also 

notes that if the rising and falling edges are not sufficiently separated, it can lead to 

overlap of spectra.  This is true in the current configuration of the pulsing system.  

Thus the dwell time must remain high, e.g. at least twice the collection time of the 

spectrum.  This significantly limits the duty cycle.   

Although each described system was an improvement over the previous 

generation, it was possible to obtain experimental data using each of them, which will 

be presented in Chap. 6.  As a reference for those experiments, Table 5.1 presents a 

summary of each of the generations of pulsing equipment used.   

Future work should focus on creating a “box” pulsing system, such as those 

described in Katta & Chait (1991), Ma et. al (1992), and Piel et. al (1999).  In such a 

system the beam is swept across the aperture in one direction, for instance the 

positive y direction, by the leading pulse, then pushed in the orthogonal (positive x) 

direction and allowed to return by the falling pulse to the original y position, then 
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returned to the original x position.  The cycle would then repeat creating a second 

pulse.   

Table 5.1: Summary of Pulsing Electronics Development 

Generation First Second  Third 

Pulse 
Generator 

Waveform 
generator (HP 
33120A) 

Homemade Pulse 
Circuit 

Waveform generator 
(HP 33120A) 

Pulse 
Characteristic 

Top Hat 
20-50 % Duty 
Cycle 
 

Top Hat 
Pulse: 0-8.4 ms  
Dwell: 5.7 μs – 3.1 ms 

Top Hat 
 

Pulse In/Out In: High V  
Out: Low V 

In: High V 
Out: Low V 

In: Transition 
between High and 
Low V 
Out: High and Low V 

Pulse 
Location 

Post-ESA 
deflectors 

Final primary beam 
deflector (L4) 

Unused primary beam  
deflector (L3a) 

 

Section 5.2: Reflectron Ion Mirror Design 

 The majority of the research performed at the NRL-TEAMS facility involves 

utilizing the complete accelerator system, while this work was performed completely 

without the accelerator.  It was therefore necessary to design a detection system that 

could be used for TOF research, while at the same time maintaining the capability of 

using the accelerator for other measurements.   

 The TOF system requires the use of a counting detector, such as a micro-

channel plate detector (MCP).  An MCP detector is composed of an array of glass 

micro-tubes, or channels, arranged at an angle to the impinging beam of ions or 

electrons.  When held at high voltage, the charged particles impacting on the MCP 
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create a cascade of electrons that are accelerated through the channels to a collection 

plate.  This cascade amplifies the incoming signal.  Usually the channel plates are 

used in multiple, either as a chevron - two arrays - or as a z-stack - three arrays, to 

further improve the gain.  These detectors have a dead time at high count rates, 

because of the time needed to recharge the electrons liberated in the cascade.  An 

MCP is, therefore, limited to a count rate of some MHz, translating to approximately 

1 pA.   

 Frequently, for other TEAMS research, beams of higher current are employed.  

These high currents can cause damage to MCPs, which also cannot provide reliable 

count rates at that level.  The TEAMS system therefore employs a Faraday cup 

detector as a tool to determine the beam current being injected into the accelerator.  

There are times, however, when minor, trace beams are injected into the accelerator.  

Often, these constituents are so minor, they are below the limit of detection of the 

Faraday cup.  The NRL-TEAMS research group has wanted the ability to detect these 

beams prior to acceleration as a diagnostic tool to aid in the tuning of the NRL-

TEAMS system.   

 It was decided that the TOF detection system should be designed so both 

needs were filled.  The goal of the design was to have a system that would allow 

beam to pass through for typical use of the NRL-TEAMS, but enable a fast switch 

into a counting detector to determine the count rate of trace species or to employ as a 

TOF detector.  A reflectron ion mirror is a suitable choice for this purpose. 

 In an ion mirror, when a voltage equal to the voltage of the ion beam is 

applied, it has the property of bending an ion beam entering it at twice the entrance 



 55 

angle.  Thus a beam entering at 450 to the mirror will be bent by 900.  Further, under 

these conditions the optical properties of the beam are conserved.  Thus, the use of an 

ion mirror in the NRL-TEAMS system allows the analysis beam to be bent off-axis 

into an MCP detector when a voltage is applied to the mirror or to enter the Faraday 

cup or remainder of the system when no voltage is applied. 

 In order to test the design prior to implementation, SIMION was used to 

create a number of models of the system to optimize the design.  All the simulations 

performed in Chap. 4 utilized the final reflectron design as it was installed.  This 

SIMION model was used to determine if the reflectron operated properly.  It was also 

used to ensure that the reflectron plates fit inside the required vacuum chamber 

without degradation of operation.  Because the chamber is grounded and components 

were to be in close proximity it was possible the chamber could alter the electro-

potential field lines.   

After several iterations of design, the reflectron shown in Fig. 5.2 was 

constructed.  Oval plates were necessary to fit into the vacuum chamber, an eight-

inch, six-way cross, as can be seen in the engineering drawing presented in Fig. 5.3.  

It was also determined a “halo” electrode was necessary.  This electrode is the middle 

plate in Fig. 5.2.  It is hollow through the center.  When the rear electrode is held at 

the voltage required to bend the beam, the halo electrode is held at half that voltage, 

while the front electrode is held at ground.   
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Figure 5.2: Reflectron ion mirror (a) front view and (b) rear view.  The ion beam 

enters in (a) as indicated by the arrow, passing straight through at 0 V, and bending 

900 at voltage.  Structure on right is a support for the MCP.  In (b) the beam leaves 

through the visible hole at 0 V.  The middle ring visible in both (a) and (b) is the halo 

electrode. 
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Figure 5. 3: Engineering drawing of the reflectron in an 8-inch, six-way cross. 

 
By including a halo electrode the potential field shape is improved, i.e. the 

equipotential lines are held parallel to the electrode plates rather than having a bend to 

them.  This is illustrated in Fig. 5.4.  Figure 5.4a is the SIMION representation of the 

reflectron with no halo electrode; the front plate is at ground, the rear plate at -9 kV.  

The equipotential lines have an obvious bend to them throughout the reflectron.  

Equipotential lines that are parallel to the plates are crucial for proper operation of the 

reflectron because the ions travel perpendicular to the field potential, therefore, any 

curvature in the equipotential lines can cause aberrations in the beam.  Figure 5.4b 

presents the SIMION model of the reflectron with the halo electrode included; the 

front plate is at ground, the halo is at -4.5 kV and the rear plate is at -9 kV.  In Fig. 
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5.4b, the equipotential lines are significantly more parallel to the electrodes, which 

will cause significantly fewer aberrations.  There is still some curvature to the field 

lines near the apertures in the electrode, however the potential field is significantly 

improved.   

 

Figure 5.4: SIMION representation of the reflectron with field potentials  (a) the 

reflectron with no halo electrode (b) the reflectron with halo electrode.  The beam 

direction is presented with arrows.  Black arrows denote the incoming beam, red 

arrows denote the bent beam (reflectron at voltage), and blue arrows denote the beam 

traveling through the reflectron (reflectron at ground).  The voltages applied to the 

electrodes to create the field potentials are labeled.  The electrically suppressed 

faraday cup is comprised of the two non-labeled electrodes, which are at ground for 

this diagram.   

 

After installation, the reflectron was tested.  During its initial use it appeared 

that the MCP, a Photonis 30227 chevron, was not responding to the beam at the 

expected level.  It is not possible to measure current in the Faraday cup prior to the 
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Pretzel magnet while operating in TOF mode.  However, using the total current at that 

cup in DC mode (i.e. no TOF pulsing), and the estimated pulse width and dwell 

times, it is possible to estimate the anticipated count rate.  

Initial experiments, using the second generation pulsing system described in 

Sec. 5.1, did not allow for routine switching between TOF mode and DC mode.  Thus 

a direct measurement of the total current in the pre-Pretzel magnet Faraday cup was 

not possible.  It is possible, however, to estimate this current using the primary beam 

current and historical data.  From this estimation, an order of magnitude comparison 

of the data can be made.  For example, data taken with similar settings in DC mode 

suggest that approximately 50 na Cs+ primary beam will produce approximately 500 

pA total current.  Using a 500 pA total beam, pulsed with a 100 ns pulse width and 76 

μs dwell time, it is possible to estimate a 3.9 MHz average count rate.  With the 

system producing 50 na Cs+ primary beam and pulsing with a 100 ns pulse width and 

76 μs dwell time, count rates were measured at approximately 4 kHz.  Thus, the 

estimate that a 50 na Cs+ primary beam will produce a 3.9 MHz average count rate 

provides evidence that the detection system was not working properly given the 

resultant beam current that was several orders of magnitude too low. 

 It was hypothesized that the reduced count rate could have been due to the 

beam being larger or more divergent than anticipated.  Thus, the support tube for the 

MCP on the reflectron may have been cutting the beam.  In order to test this 

hypothesis, the instrument was retuned to change beam divergence and size, yet the 

count rate could not be raised.  This suggested that tuning was not, in fact, the factor 

limiting the count rate.   
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To further test the hypothesis that the reflectron was the limiting factor, an 

alternative detection scheme was devised.  The reflectron was removed from the 

system and instead a linear positioning feedthrough was used.  The MCP was 

mounted on the feedthrough so when it was fully extended the MCP was located at 

the center of the beamline, yet could be removed from the beamline so that the cup 

could also be inserted.  This still allows for the operation of the NRL-TEAMS system 

in its normal configuration and enables the TOF or trace beam detection.  It is not, 

however, as easily employed as the reflectron system would have been.   

Unfortunately, data taken just before the reflectron was removed suggested 

the MCP may have been damaged.  The pulse shape of the signal was not clean, and 

signs of breakdown between the MCP plates were evident.  When it was removed the 

MCP showed no visible signs of damage, but it was, nonetheless, replaced.  Because 

both the MCP and the reflectron were replaced, the determination of the source of the 

original low count rate is difficult. 

 To test the linear positioning feedthrough system, the third generation pulsing 

system, summarized in Table 5.1, was used.  This pulsing system allowed for quick 

changes between DC and TOF mode, so that more direct comparisons of the data 

could be made.  The beam was measured in the pre-Pretzel magnet Faraday cup and 

on the MCP.  A mask that permitted transmission of 1 amu was inserted into the 

Pretzel magnet.  The count rate from various graphite beam currents at two fields is 

presented in Fig. 5.5.  Varying Lens 1 in the primary column (see Fig. 5.1) produced 

the differences in beam current.  



 61 

 

Figure 5.5: Count rate for given currents at mass 12 and 24 u. Blue circles are the 

count rate in kHz for mass 12 u transmitted at 5125 G. Red diamonds are the count 

rate in kHz for mass 24 u transmitted at 3560 G. 

  

 An examination of Fig. 5.5 shows higher count rates, by almost two orders of 

magnitude, than were obtained using the reflectron. Other experiments using the 

linear positioning feedthrough produced count rates of up to 700 kHz, which 

approaches the order of magnitude of the estimated count rates. This suggests the 

reflectron was not properly transmitting the entire beam to the MCP, but could also 

indicate an improperly functioning MCP. 
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 Figure 5.5 also provides valuable insight into the MCP operation. At very low 

current, the count rate appears to scale linearly with current. However, as current is 

increased, the count rate loses linearity and, in fact, begins to decrease. It is possible 

to explain this trend by considering how beam arrives at the MCP.  Prior to this, it has 

been claimed that the average count rate, that is the measured count rate averaged 

over the entire time of measurement, is an accurate reflection of the count rate 

experienced by the MCP.  However, when looking at a single amu, all ions arrive at 

approximately the same time.  These counts are then averaged over the entire 

collection period, in this case 1 s.  This gives the appearance of a lower average count 

rate.  However, when beam arrives at the MCP it instantaneously experiences a count 

rate analogous to a DC beam.  As previously mentioned, MCPs are limited to count 

rates in the tens of MHz range.  Thus, at low currents, the response is linear.  But as 

current is raised, the instantaneous count rate exceeds the limit of the MCP and there 

is significant dead time, causing lower count rates. 

 In Fig. 5.5 linearity of the graphite beam count rate is maintained until 

approximately 0.015 nA, corresponding to an instantaneous count rate of 94 MHz.  

Functionally, the instantaneous count rate at the MCP is lower than this however, 

because the 0.015 nA is measured before the Pretzel magnet and represents the total 

beam.  In this experiment, the beam is mass filtered to approximately 1 amu.  This 

means the transmitted beam will be significantly less than the total beam.   

 This difference in measured beam current and transmitted beam also explains 

the difference in the peak location between the two masses observed in Fig. 5.5.  Prior 

experience with the tuning of the Pretzel magnet has shown that, of the total current 
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from graphite, approximately half is from mass 12 u and a quarter is from mass 24 u.  

Thus the maximum MCP count rate is reached at higher currents for the 24 u beam 

than for the 12 u beam.   

 Although this realization may explain part of the deficiency in expected count 

rate in the reflectron, it cannot completely account for the deficiency. Higher count 

rates were found using the linear feedthrough detection scheme than using the 

reflectron.  This suggests that, in fact, the reflectron was not working properly and 

that beam was in fact being cut somehow by the reflectron.  Several possible 

explanations exist.  First, the reflectron as constructed and installed could have slight 

variations in spacing and angle, which could cause differences in the flight path to the 

MCP.  Related to this is the fact the beam enters and exits the Pretzel magnet at the 

proper theoretical angle in the SIMION model.  In practice, the NRL system has no 

capability of ensuring this is true.  There are many deflection plates that can correct 

for improper deflection of the ion beam.  It is possible that beam enters the reflectron 

at a non-450 angle, which can affect the flight path through the reflectron.  These 

alternate paths can cause the beam to be cut on several apertures in the reflectron.  

Additionally, as was explained in Sec. 4.2, the initial conditions for the SIMION 

model are poorly constrained.  If the beam is in fact larger than modeled, it could be 

cut on the beam tube leading to the MCP.   

  To partially determine the impact these effects could have on the performance 

of the reflectron, further SIMION simulations were conducted.  These simulations 

looked at the effect of the reflectron on an ion beam entering it at exactly 450 and 

with no angular dispersion.  An F shape for the beam was employed, as shown in Fig. 
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5.6.  This shape is frequently used in ion optical calculations as it displays the effects 

the optics have on beam shape.  For these simulations only the reflectron was used.  

These simulations, presented in Fig. 5.6, reveal that the reflectron causes a slight 

distortion in the beam, particularly in the vertical direction.   

 

 

Figure 5.6: Graph depicting the starting ion image and final ion image through the 

reflectron ion mirror and its centering on the MCP.  Red diamonds represent the 

starting position of ions in the simulation on the x axis, blue squares represent the end 

position of the ions on the z axis, and black triangles represent the area of the MCP on 

the z axis.  The shift from the x to z axis reflects the 900 bend through the reflectron.  

Units are mm.   
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 This distortion is due to the potential lines not being perfectly parallel to the 

plates and therefore perpendicular to the beam, as presented in Fig. 5.7a.  The slight 

aberrations in the beam can be corrected in the simulations by adding a grounded grid 

to the front and rear plates of the reflectron.  This smooths the potential lines and 

removes the aberrations, as shown in Fig. 5.7b.  If the aberrations were limiting the 

performance of the reflectron, such grids could be employed on the physical 

reflectron.  However, using grids in a physical system can reduce transmission as 

some ions will impact on the grid.  This is not the case in the simulation, as they are 

transparent. 

 

Figure 5.7: SIMION representation of the reflectron with equipotential lines.  (a) 

presents the reflectron as constructed.  (b) presents the reflectron with a grid on the 

front and rear electrodes.  The labels on the figured are as described in Fig. 5.4. 

 

 A simulation identical to that used to create Fig. 5.6 was conducted, but the 

gridded reflectron was used.  The results of this simulation are presented in Fig. 5.8. 

This simulation reveals that there is a magnification and steering effect caused by the 
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aberrations in the reflectron, when compared with Fig. 5.6.  Even without the 

aberrations, the MCP appears to be positioned slightly off-center.   

 

Figure 5.8: Graph depicting the starting ion image and final ion image through the 

gridded reflectron ion mirror and its centering on the MCP.  Red diamonds represent 

the starting position of ions in the simulation on the x axis, blue squares represent the 

end position of the ions on the z axis, and black triangles represent the area of the 

MCP on the z axis.  The shift from the x to z axis reflects the 900 bend through the 

reflectron.  Units are mm. 
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 Further studies using the reflectron simulation without the grid revealed the 

largest beam that could be completely transmitted to the MCP, without steering, was 

6 mm in diameter.  It is possible the beam could be larger than this in the 

experimental system and so is being cut by the reflectron.  The beam can be centered 

on the MCP by an increase in reflectron voltages, however this causes increased 

aberrations and decreases the size of the beam that can be transmitted to the MCP.  In 

order to truly correct for the non-centering of the MCP, the reflectron would need to 

be rebuilt to compensate for the aberrations.   

Section 5.3: Detection Electronics 

 In order to properly detect negative ions, the rear plate of the MCP must be 

biased at high voltage.  The signal therefore floats on the high voltage bias.  This high 

voltage background must be removed in order to process the signal in most detection 

electronics. The first generation of detection electronics employed an Ortec 142PC 

pre-amplifier to accomplish this.  This initial data, presented in Fig. 6.5 and 6.6, 

showed only one peak in the spectrum.  Part of this was due to the pulsing system, as 

mentioned in Sec. 5.1, however, the Ortec 142PC also has a long rise time (~25 ns).  

The pre-amplified signal was then fed to a Canberra 2026 shaping amplifier.  A 

shaping amplifier is typically not used in TOF systems because they are used to shape 

the pulse for accurate energy and pulse height information.  This, however, comes at 

a sacrifice to time resolution.  A Lecroy level discriminator was used to process the 

signal from the amplifier.  Level discriminators are also not typically used in TOF 

analysis.  A level discriminator produces a signal as soon as a pulse crosses a certain 

threshold level.  Because the peaks generated from the MCP can have different pulse 
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heights, a level discriminator can cause jitter in the determined time of arrival of a 

pulse.  All of these factors contributed to a broad time peak.  The signal from the 

level discriminator was then processed by a time-to-digital converter (Lecroy VT960) 

and software to determine the TOF.  In this first iteration of detection electronics, the 

equipment selections were based on equipment that was already in use with the NRL-

TEAMS system.  The results, however, forced an evaluation of the proper equipment 

needed. 

 Commercially available pre-amplifiers that include the ability to select the 

signal off a high-voltage bias with sufficient timing resolution could not be found.  

Therefore, for the second generation of detection electronics, a capacitively-coupled 

current pick-off (CCP) was designed by the NRL TEAMS facility’s electronics 

technician, Claire Kennedy.  A circuit diagram of the initial CCP is presented in Fig. 

5.9.  The resistor and capacitor between the high voltage and the output signal create 

a high pass filter.  At DC and low frequency, the impedance through these 

components is high, isolating the DC voltage and any low frequency ripple.  At high 

frequency, the impedance is low, allowing signal pulses from the MCP to cross the 

capacitor. 

 Initially, it was determined the signal peaks from the CCP were very broad, on 

the order of 100 μs.  Upon investigation, the capacitor used in the CCP was too large, 

1 μF, resulting in a 50 μs time constant.  This long time constant integrated all the 

pulses generated by the MCP over time, resulting in the broad peaks seen in the initial 

data using this system.  This was corrected by replacing the capacitor with a 1.5 pF 

capacitor, resulting a time constant of 75 ps.  This allows for significantly sharper 
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peaks and provides the ability to collect spectra with multiple peaks.  This CCP was 

used to collect all remaining data.   

 

Figure 5.9: Capacitively-coupled current pick-off circuit diagram.  The capacitor 

labeled “Var” was initially 1 μF, but changed to 1.5 pF in further experiments. 

 

 Further improvements were made in the second generation of detection 

electronics.  Signals leaving the CCP are processed by an Ortec VT120-C pre-

amplifier to increase the pulse height.  This pre-amplifier has a 1 ns rise time, 

compared to that of 25 ns for the 142PC.  Further amplification could broaden the 

peak width because of delays caused by amplifiers and after pre-amplification the 

pulse height was sufficient for analysis so further amplification was not employed.  

Also, the level discriminator was replaced by a Lecroy 3420 constant fraction 

discriminator (CFD).  Unlike a level discriminator, a CFD produces an output signal 

at a constant fraction of each individual pulse’s height.  This provides a more 

consistent determination of the pulse time with less jitter.  The Lecroy VT960 TDC 

was not changed. 
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 These changes in electronics, combined with the improved pulsing system 

described in Sec. 5.1, produced a much greater capability of signal processing.  The 

peaks produced from the system were reduced from 1 μs FWHM to 25 ns FWHM.  

However, the current settings used with the TDC only allow for 64 μs of data to be 

collected.  This currently limits the mass range of the instrument because high mass 

species, approximately > 180 u, require longer than this time period to fly through the 

system.  Several software-based solutions are available with the current TDC and 

alternative commercial schemes have also been investigated.  Future work on this 

system should focus on such improvements.  A summary of the different stages of 

detection electronics used in the experiments presented in Chap. 6 is presented in 

Table 5.2. 

 

Table 5.2: Summary of Detection Electronics Development 

Generation First Second  

Signal pick-off Ortec 142PC pre-amplifier Home-made CCP (Fig.  5.8) 

Amplifier Canberra 2026 shaping 
amplifier 

Ortec VT120-C pre-amplifier 

Discriminator Lecroy level discriminator Lecroy 3420 constant fraction 
discriminator 

Time to Digital 
Convertor 

Lecroy  VT960 Lecroy  VT960 
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Chapter 6:  Experimental Evidence 

 

 A series of experiments were conducted in order to provide experimental 

validation for the benefits of Pretzel-based TOF analysis.  As was noted in Sec. 4.2, 

the SIMION simulations suggest the NRL-TEAMS system is not ideally designed for 

TOF work.  Thus a true comparison of mass resolution between a Pretzel-based TOF 

system and a more traditional system cannot be conducted using the NRL-TEAMS 

system.  This work instead seeks to confirm that the inherent Pretzel magnet 

properties allow mass filtering and time dilation to occur and that the theoretical 

relationships predicted in Chap. 3 from the derivation of equations describing the 

fundamental properties of the Pretzel magnet can be realized in an experimental 

system.  Additionally, the experimental results can be used to confirm the validity of 

the SIMION model.  In order for a more direct comparison of MF-TD-TOF and 

traditional TOF mass spectrometry, it would be necessary to design a TOF system 

with a Pretzel magnet as the spectrometer, rather than using the NRL-TEAMS 

system, which is not designed for TOF experiments. 

For this work, only the pre-accelerator portion of the NRL-TEAMS facility 

was used (Fig. 4.3).  All measurements were conducted with a Cs+ primary beam with 

the primary and secondary ion energy set to 9 keV.  All spectra were collected with 1-

ns time resolution. 
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Section 6.1: Mass Filtering 

Two mass filtering experiments were performed to determine the validity of the 

concept and to determine the potential benefits of its use.  These experiments are 

summarized in Table 6.1. 

 

Table 6.1: Summary of Mass Filtering Experiments. 

Experiment 1 2 

Sample Graphite Graphite 

Pulsing electronics1 First generation Second Generation 

Detection electronics2 First generation Second Generation 

Pulse Width 2 μs 100 ns 

Dwell Time 8 μs 78 μs, 6.8 μs, 

Mass 12 16-17, 72-79 

Field 5359 G 5890 G 

Figure 6.1 6.2-6.4 

 
1: See Table 5.1 
2: See Table 5.2 

 
 
 Mass filtering experiment 1 was conducted using a graphite sample, the first 

generation pulsing system summarized in Table 5.1, and the first generation detection 

electronics summarized in Table 5.2.  The Pretzel magnet was fitted with a mask that 

transmitted 12C at 5359 G.  A 2-μs-wide pulse followed by an 8-μs-long dwell was 

applied.  Figure 6.1 presents this example of the benefit of mass filtering.  Collected 

on the same TOF spectrum is the rapidly (100 kHz) and continuously pulsed 12C 

beam.  Because the Pretzel magnet mask filters all masses other than 12C, one 

advantage of the Pretzel magnet is the ability to introduce pulses in rapid succession.   
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Figure 6.1: TOF spectrum of 12C at Pretzel magnet field of 5359 G with a 2-μs pulse 

and 8-μs dwell. The box surrounds the time peak resulting from the pulse at time 0 s. 

(Demoranville et al. 2009) 

 

 The flight time of 12C is approximately 12.4 μs at this field.  The second peak 

in Fig. 6.1, surrounded by a box, corresponds to this TOF.  The first peak in the 

spectrum is the result of a prior beam trigger pulse at -10 μs.  The peaks are entirely 

from 12C, as only that mass was selected for transmission through the Pretzel magnet, 

enabling MF-TOF analysis.  For conventional TOF without mass filtering, each peak 

in the series would contain 12C but could also contain contributions from other 

masses, arising from different start pulses.  By removing these extraneous masses, 

this mode of operation increases the duty cycle of a MF-TD-TOF instrument, in this 

case to about 20%.   

 While this initial experiment begins to illustrate the benefits of mass filtering, 

the improvements made to the pulsing and detection systems allowed for improved 
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data to be collected.  A second experiment using a graphite sample and the second 

generations of pulsing and detection electronics described in Table 5.1 and 5.2, 

respectively, was conducted.  For this experiment, a non-filtered time spectrum was 

collected with a 100-ns pulse width and a 78-μs dwell time with no mask in the 

Pretzel magnet and a field of 5890 G, resulting in the spectrum in Fig. 6.2.   

 Next a mask designed to transmit masses 16-17 and 72-79 at the same field 

was inserted at the Pretzel magnet symmetry axis.  The time spectrum in Fig. 6.3 was 

collected from the same graphite sample with identical parameters, that is a 100-ns 

pulse width and a 78-μs dwell time, to ensure filtering of all intended masses.  This 

filtering allowed for the decrease of the dwell time such that ion pulses occurred more 

frequently, interleaving the analyzed peaks.  The dwell time was decreased in order to 

show the interleaving of peaks and to determine the duty cycle increase.  In this 

experiment the optimum dwell time was determined to be 6.8 μs.  The spectrum 

resulting from this decreased dwell time is presented in Fig 6.4.   

 In Fig. 6.2 through 6.4, the data have been normalized to the mass 16 peaks to 

account for differences in the ion beam current and analysis time.  In each of the three 

figures, the black peaks represent the peaks occurring from the start pulse at time 0.  

The gray peaks in Fig. 6.2 represent the peaks that are filtered by the Pretzel mask in 

Fig. 6.3 and 6.4.  In Fig. 6.4, the gray peaks are interleaved pairs of peaks that arise 

from pulses starting before and after time 0.  The annotations in Fig. 6.4 denote the 

pulse before or after the time 0 from which that peak originates. 
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Figure 6.2: Non-mass filtered time spectrum of a graphite sample.  Annotations are 

the mass of the peak.  Counts are normalized to the mass 16 counts. The black peaks 

are transmitted when the Pretzel magnet mask is used; the gray peaks are not. 

(Demoranville et al. 2010) 

 

Figure 6.3: Mass filtered time spectrum of a graphite sample.  Counts are normalized 

to the maximum of the mass 16 counts.  
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Figure 6.4: Mass filtered and interleaved time spectrum of a graphite sample 

produced with 100-ns pulse width and 6.8-μs dwell time.  Counts are normalized to 

the maximum of the mass 16 counts.  The mass filter is designed to select masses 16-

17 and 72-79, as in Figure 6.3. The black peaks represent the peaks occurring from 

the start pulse at time 0.  The gray peaks are interleaving pairs of peaks that arise 

from pulses starting before and after time 0.  Annotations represent the index of the 

pulse from which the peak is produced, referenced to zero for the peaks that match 

the TOF scale of Fig. 6.2.  Negative notations represent peaks originating from pulses 

before pulse 0. (Demoranville et al. 2010). 

 

 In this second experiment the duty cycle is increased from 0.12% to 1.5%.  

This is larger than the duty cycle of traditional TOF spectrometers, but is lower than 

achievable with orthogonal acceleration and Hadamard transform spectrometers 
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(Fernandez et al., 2002).  Certain orthogonal and traditional TOF instruments make 

use of a filtering capability to remove matrix related background, such as Ar+ in an 

ICP-MS TOF instrument (Cotter, 1997 p. 150).  However, this scheme does not, and 

could not, improve duty cycle by interleaving peaks.  Simply filtering one species is 

not sufficient to interleave peaks and create an increased duty cycle.  Additionally, 

the method of pulsing differs and does not allow for the type of filtering achievable 

with the Pretzel magnet.  However, if particular ranges of masses are of interest, 

using a Pretzel magnet as a mass filter allows the duty cycle to be tuned depending on 

the species of interest in a specific application.  By studying fewer masses or 

increasing time resolution it may be possible to interleave a larger number of peaks 

and thereby further enhance the duty cycle.   

 In order to understand the potential for improvement in duty cycle, a 

simulation program was created using Labview software that utilized a simulated 

flight time for a given mass, and a variable peak width and dwell time to simulate a 

time spectrum (National Instruments, 2003).  A series of masses can be entered into 

the program at a given peak width and the dwell time between pulses varied until the 

maximum interleaving with no overlap occurs.  One interesting case for nuclear 

forensic applications is the simultaneous detection of oxygen and uranium isotopes.  

In this case the isotopic mass for 16, 18O, and 233, 234, 235, 236, 237, 238U were simulated and 

their flight time used in the program with various peak widths.  The optimal dwell 

times for several peak widths, along with the resulting duty cycle are presented in 

Table 6.2.  Over the peak widths selected, the duty cycle remains relatively constant 

at approximately 3.4%, suggesting no resolution penalty must be incurred for 
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increased duty cycle.  The flight time of uranium isotopes in the system is 

approximately 70 μs.  Therefore, a traditional TOF system of similar size with 25-ns 

pulse width would be limited to a duty cycle of 0.04%.  Thus a Pretzel-magnet-based 

system offers a distinct advantage to the traditional TOF instrument.  The duty cycle 

increase does not approach that of orthogonal or Hadamard systems, which, as noted 

in Sec. 2.2 can approach 100%.  However, such systems have other limitations. 

 

Table 6.2: Simulated Duty Cycles at Optimum Dwell Times for the Given Pulse 
Width. 

Pulse Width (ns) Dwell Time (ns) Duty Cycle (%) 
5 146 3.42 

10 303 3.30 
15 440 3.41 
20 596 3.36 
25 747 3.35 
30 906 3.31 

 

Section 6.2: Time Dilation and Model Validation 

The series of experiments conducted to confirm the existence of a time 

dilation effect, determine its utility, and validate the SIMION model are summarized 

in Table 6.3. 

 The first set of experiments, one and two in Table 6.3, used the first 

generation pulsing and detection electronics summarized in Table 5.1 and 5.2.  The 

Pretzel magnet was fitted with a mask with two slots.  Using this mask 12C was 

transmitted at 3661 G or 5359 G, and 28Si was transmitted at 5550 G or 8233 G.  A 

200-ns wide pulse with a 60-μs dwell was utilized.  Silicon was transmitted at a 

particular field and a spectrum collected; the beam was stopped, the Pretzel magnet 
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field changed, and the next spectrum was collected as part of the same data set. 

Figure 6.5 presents such an over-layed spectrum and the 28Si TOF peaks were 

measured at fields of 8233 G and 5550 G, respectively.  The solid vertical bars 

represent the TOF predicted by the SIMION model for the Si data.  Similar results, at 

5339 and 3361 G, were obtained for 12C, and are presented in Fig. 6.6. 

 

Table 6.3: Summary of Time Dilation Experiments. 

Experiment 1 2 3 4 5 

Sample Silicon Graphite Graphite Graphite Silicon 

Pulsing 
electronics1 

First 
generation 

First 
generation 

Second 
Generation 

Third 
Generation 

Third 
Generation 

Detection 
electronics2 

First 
generation 

First 
generation 

Second 
Generation 

Second 
Generation 

Second 
Generation 

Pulse Width 200 ns 200 ns 100 ns ~29 ns ~29 ns 

Dwell Time 60 μs 60 μs 78 μs 588 μs 588 μs 

Mass 12 12 Full spectrum Full spectrum Full spectrum 

Field 3661 & 
5359 G 

5550 & 
8233 G 

4000-16000 G 
2000 G 
increments 

4000-16000 G 
2000 G 
increments 

4000-16000 G 
2000 G 
increments 

KP   2.29 ± 0.05 2.3 ± 0.2 

L0   4.68 ± 0.02 4.7 ± 0.1 

telectronics 787 ± 112 ns 1.1 ± 0.1 μs 5.7 ± 0.2 

Figure 6.5 6.6 6.2, 6.7-6.8 6.9, 6.11-12, 
6.14 

6.10, 6.13-14 

 
1: See Table 5.1 
2: See Table 5.2 
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Figure 6.5: TOF spectrum of 28Si at Pretzel magnet fields of 8233 G (left peak) and 

5550 G (right peak).  The solid lines indicate the TOF predicted by the SIMION 

model.  Dashed lines indicate Gaussian fits to the data. (Demoranville et al. 2009) 

 

Figure 6.6: TOF spectrum of 12C at Pretzel magnet fields of 5359 G (left peak) and 

3361 G (right peak). The solid lines indicate the TOF predicted by the SIMION 

model.  Dashed lines indicate Gaussian fits to the data. 



 81 

 In both cases, as expected, decreasing the Pretzel magnet field increases the 

flight time.  For both the simulation and the experimental data, the difference in flight 

time between the two silicon fields is about 1 s and the difference between the two 

carbon fields is about 0.63 s, however the absolute TOF values are somewhat 

different.  The computer simulation predicts an average flight time that is 787 ± 112 

ns shorter than the recorded flight times.  Table 6.4 presents the TOF obtained from 

the simulation and the experiment for C and Si at each field.  The discrepancy in time 

can be explained by the delay in pulse generation following a trigger request 

associated with the electronic components, the response time of the electrostatic 

deflector used to pulse the beam, and other electronic delays.  This is described as the 

telectronics in Eq. 3.9.  This data set suggests the design of the model is accurate, as it 

can accurately predict the flight times.  However, the effects of time dilation on mass 

resolution cannot be determined because of the limitations in the pulsing and 

detection electronics.   

 

Table 6.4: Experimental and Simulated TOF and Difference by Species and Field. 

Species & Field 
Experimental 
TOF (μs) 

Simulated 
TOF (μs) 

TOF Delta 
(μs) 

Carbon 5359 G 11.619 10.73472 0.88428
Carbon 3361 G 12.253 11.37372 0.87928
Silicon 8233 G 17.096 16.37669 0.71931
Silicon 5572 G 18.036 17.37199 0.66401

 

 In order to further validate the model and evaluate the effects of time dilation, 

the third experiment in Table 6.3 was conducted on a graphite sample, using the 

second generation of pulsing and detection electronics, summarized in Table 5.1 and 
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5.2.  The following time dilation experiments were conducted using 100-ns pulse 

width and 78-μs dwell time with no mask in the Pretzel magnet.  The Pretzel magnet 

field was varied from 4 kG – 16 kG in 2 kG increments.  An example of the time 

spectra collected from graphite was presented in Fig. 6.2.  Several peaks are identified 

by mass on that spectrum.  The location of the peaks changed in time but not in 

fingerprint at the different Pretzel magnet fields.   

 To provide a time-to-mass calibration, after the time spectra had been 

obtained, a Pretzel mask with a 1-u slot was installed in the Pretzel magnet.  The 

time-to-mass calibration was obtained by determining the flight times of ions 

transmitted through the 1 u slot at a previously calibrated location and field.  The 

resulting time information was used to establish characteristic peaks in the spectra.  

This enabled definitive identification of several mass peaks, with others identified by 

interpolation.  As was described by Eq. 3.1, in typical TOF analysis path length is 

constant so time is proportional to the square root of mass, m, at constant energy.  

Figure 6.7 presents time data collected at various field settings of the Pretzel magnet 

plotted versus m.  The dashed line is a linear guide to the eye at 4 kG.  The solid line 

in the plot represents a calculated value of the TOF through the non-Pretzel portion of 

the NRL system.  A length of 4.7 m was used for this calculation, using Eq. 3.9. 
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Figure 6.7: Flight time versus square root of mass for data at various fields.  The 

dashed line is a linear guide to the eye at 4 kG.  The solid line with no data points is 

the calculated time-of-flight over the path outside the Pretzel magnet. 

 

 It is evident from Fig. 6.7 that the experimental data is slightly non-linear with 

regard to m. This supports the theoretical Eq. 3.9, which states the TOF in a Pretzel-

magnet based system will display a relationship that is not simply linear in relation to 

m.  Using n = 0.925 and E = 9 keV, Eq. 3.9 further simplifies to: 

   (6.1) 

 The data from experiment 3 was fit using Eq. 6.1 and several parameters were 

determined.  The constant KP is related to the geometry of the trajectory in the Pretzel 

magnet.  In Eq. 3.3 it is defined as the ratio of trajectory length to maximum 

ttotal =1.5097X10
5KP

m0.75974

B0.51948
+ 7.5881X10 7LO m + telectronics
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penetration in the Pretzel magnet.  This can have a minimum value of  2, arising from 

the situation of an ion following a trajectory directly into and out of the Pretzel 

magnet, along the symmetry axis, to the penetration depth.  In this situation the ratio 

is (2*Xmax)/Xmax, or 2.  Conversely, the maximum trajectory in the Pretzel magnet 

would be a circle.  In this case, the trajectory can be described as the circumference of 

a circle with diameter Xmax.  The ratio then has the value ( *Xmax)/Xmax, or .  

Therefore, KP is expected to be between 2 and .  By fitting a plot of time to mass, 

Fig. 6.8, for each field using equation 6.1, a series of values, m1, can be obtained for 

1.5907x10-5*Kp/B
0.51948.  These values are the coefficient of m and are presented in 

Table 6.5.  Using these values KP can then be calculated according to: 

  KP =
m1B0.51948

1.597X10 5 .  (6.2) 

The series of values calculated for the data from this experiment is presented in Table 

6.6, the average of which is 2.29 ± 0.05, with the error expressed as the standard 

deviation of the average.  This value is in the expected range of 2- .   

 The parameter LO is the length of the trajectory outside the Pretzel magnet.  

The length can be determined from the fit presented in Fig. 6.8 and Table 6.5.  The 

average m2 value from Table 6.5 is 3.55 x 10-6 ± 0.2 x 10-6.  This corresponds to an 

LO of 4.68 ± 0.02 m, with the error calculated as the standard deviation of the data in 

Table 6.3. Calculation of the length outside the Pretzel magnet based on system 

design drawings results in 4.63 m.  In both the case of LO and Kp, there is good 

agreement between calculated and predicted values. 
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Figure 6.8: Experimental data fit with Eq. 6.1.  The values for the fit are presented on 

the figure for the 16 kG case.  The results of all fits are presented in Table 6.5. 

 

 The average telectronics, from Table 6.5, is 1.1 ± 0.1 μs, with the error calculated 

as the standard deviation of the data.  The results from the first experiment, presented 

in Table 6.4, suggested a 787 ± 112 ns electronics delay, as determined by 

comparison with computer simulations of the system.  The difference in the current 

and previous electronics delay results from the changes to the pulsing system and 

collection electronics made between the first experiment and experiments 2 and 3. 
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Table 6.5: Fitting Parameters for Data from Fig. 6.8, using Eq 6.1. 

 m1  m2  m3 

Field (G) (1.5907x10-5 *Kp/B
0.51948) (7.5881x10-7 * LO) telectronics 

4000 4.83 x 10-7 3.56 x 10-6 1.14 x 10-6 

6000 3.91 x 10-7 3.56 x 10-6 1.12 x 10-6 

8000 3.35 x 10-7 3.57 x 10-6 1.11 x 10-6 

10000 3.00 x 10-7 3.56 x 10-6 1.12 x 10-6 

12000 2.82 x 10-7 3.53 x 10-6 1.17 x 10-6 

14000 2.62 x 10-7 3.53 x 10-6 1.18 x 10-6 

16000 2.44 x 10-7 3.53 x 10-6 1.19 x 10-6 

 

Table 6.6: Calculation of KP from m1 Values using Eq. 6.2. 

 m1  B0.51948 Kp 

Field (G) (1.5907x10-5 

*Kp/B
0.51948) 

 (m1* B0.51948/1.5907x10-5) 

4000 4.83 x 10-7 74.34 2.26 

6000 3.91 x 10-7 91.76 2.26 

8000 3.35 x 10-7 106.6 2.24 

10000 3.00 x 10-7 119.7 2.26 

12000 2.82 x 10-7 131.5 2.33 

14000 2.62 x 10-7 142.5 2.35 

16000 2.44 x 10-7 152.7 2.34 

  

 After the third generation of pulsing electronics summarized in Table 5.1 were 

implemented, experiment 4 and 5, listed in Table 6.3, were conducted on the time 
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dilation of the system. In contrast to the earlier experiments, 1-3, which were not well 

controlled for surface effects, these samples were initially sputtered for 30 minutes in 

non-pulsed mode, and then switched to TOF mode for analysis.  To convert the time 

spectra to mass spectra, mass assignments based on the fingerprint of the spectrum 

were made for selected peaks across the entire spectrum.  The time value of the peak 

was plotted against the mass value for the peak and fit using Eq. 6.1.  The resulting 

equation was solved numerically for mass to generate a time-to-mass conversion.  

This conversion was used to generate the mass spectra contained in this section.  The 

mass spectra for graphite and silicon are presented in Fig. 6.9 & 6.10, respectively.  

Both spectra were collected at 16 kG and for a duration of 200 s.   

 In earlier spectra, such as Figure 6.2, surface effects obscured the 

characteristic spectrum of the sample, as determined by Middleton (1990).  However, 

with the initial 30-minute sputtering, the spectra displayed the characteristic pattern of 

ion intensities more closely.  In the case of graphite, Fig 6.9, the major peaks from 

carbon closely follow the predicted pattern in mass and intensity as found by 

Middleton (1990).  In the case of silicon, Fig. 6.10, molecular peaks from silicon 

oxide molecules appear to be present, which were not observed in Middleton’s work.  

However, Middleton explained the absence of oxide molecules as due to the use of 

high purity silicon.  While this current work made use of a high purity silicon wafer, 

oxygen peaks are frequently observed in the NRL-TEAMS system and a strong 

oxygen peak is present in Fig. 6.10, suggesting a significant background of oxygen.  

Thus, the formation of oxide molecules was not unexpected. 
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Figure 6.9: Mass spectrum of a graphite sample collected at 16 kG and for a duration 

of 200 s.  Inset is an expanded view of the high mass portion of the spectrum.  

Annotations are the likely ion species.   
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Figure 6.10: Mass spectrum of a silicon sample collected at 16 kG and for a duration 

of 200 s.  Inset is an expanded view of the high mass portion of the spectrum.  

Annotations are the likely ion species. 

 

 Additionally, experiments 3 and 4 sought to verify the earlier results and show 

the day-to-day and sample-to-sample variability of the technique.  To accomplish this 

a graphite sample was analyzed on three different days, and a silicon sample on two 

different days.  The Pretzel magnet field was varied from 4 kG – 16 kG in 2 kG 

increments.  A time-to-mass calibration was performed on the first day of analysis as 

described previously in this section in reference to experiment 3.  This set of spectra 

was also analyzed to determine the constants from Eq. 6.1, as described in earlier in 
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this section for experiment 3.  Table 6.7 presents the results of the fitting and 

calculations.  This set of experiments results in KP = 2.3 ± 0.2, LO = 4.7 ± 0.1 m, and 

telectronics = 6.7 ± 0.2 μs.  A summary of these parameters, and those determined from 

the earlier experiments, can be found in Table 6.8. The difference in the electronics 

delay between this and earlier experiments can again be attributed to changes in 

electronics, between the experiments.  The values of KP and LO are within the error of 

the earlier experiments and the expected values.  The larger uncertainty given in 

experiments 4 and 5 likely reflect systematic variability in day-to-day and sample-to-

sample measurements, which were not present in the single measurement used to 

generate the data from experiment 4. 

  

Table 6.7: Fitting Parameters and Calculations from Experiments 4 & 5, 

using Eq. 6.1. 

 m1  m2  m3 Kp 

Field 
(G) 

(1.5907x10-5 *Kp/B
0.51948) (7.5881x10-7 * 

LO) 
telectronics  

4000 4.84 x 10-7 3.51 x 10-6 5.93 x 10-6 2.39 

6000 3.97 x 10-7 3.48 x 10-6 5.98 x 10-6 2.41 

8000 3.50 x 10-7 3.45 x 10-6 6.01 x 10-6 2.48 

10000 3.04 x 10-7 3.50 x 10-6 5.91 x 10-6 2.41 

12000 2.33 x 10-7 3.68 x 10-6 5.51 x 10-6 2.03 

14000 2.14 x 10-7 3.67 x 10-6 5.54 x 10-6 2.02 

16000 2.02 x 10-7 3.64 x 10-6 5.67 x 10-6 2.04 
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Table 6.8: Summary of KP, LO, and telectronics. 

Experiment Kp LO telectronics 

Expected 2-  4.63 m  

1&2   0.787 ± 0.112 μs 

3 2.29 ± 0.05 4.68 ± 0.02 m 1.1 ± 0.1 μs 

4&5 2.3 ± 0.2 4.7 ± 0.1 m 5.7 ± 0.2 μs 

 

Section 6.3: Time Dilation and Mass Resolution 

 One of the interests in using time-dilated TOF-MS is to increase the mass 

resolution capability of TOF instruments.  While the SIMION model of the NRL-

TEAMS system suggests that its mass resolution is fundamentally limited by 

parameters not related to time dilation (see Sec. 4.2), it is important to determine if 

the mass resolution of a TD-TOF-MS system does behave as theoretically predicted 

in Sec. 3.2.  Additionally, experimental evidence can be used to validate the SIMION 

model.   

 The data from experiments 4 and 5 were further analyzed for mass resolution.  

The peaks of selected masses were fit with a Gaussian function.  An example for 12 

u, measured at 10 kG, is presented in Fig. 6.11.  The peak widths from the Gaussian 

fit were converted to FWHM and mass resolution (m/ m) was taken as the nominal 

mass divided by the FWHM.   
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Figure 6.11: Mass 12 u peak measured at 10 kG (red circles) fit with a Gaussian 

function (solid blue line).  The inset box presents the parameters of the Gaussian fit, 

as calculated by Kaleidograph (Synergy Software, 2010). 

  

 Figures 6.12 and 6.13 present the results of the mass resolution calculations 

for the graphite and silicon samples, respectively.  Both figures present the mass 

resolution in m/ m, plotted versus field for various masses.  In both figures, the series 

of data labeled as “Both 16” presents the average mass 16 data from both the graphite 

and silicon samples.  The error bars in both cases are from the standard deviation 

from the trials made over the course of several days and are presented for two masses 
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in each plot.  The error bars are of similar magnitude for the other masses and are not 

presented.   

 Mass resolution values range from approximately 100 m/ m, in the case of 

mass 28 from silicon at fields above 8 kG, to approximately 320 m/ m, in the case of 

mass 105 from silicon at 8 kG.  More importantly, when plotted versus field, the 

overall trend of the data is as expected, e.g. the mass resolution decreases with 

increasing field.  This trend is present only at high masses and is not evident at low 

masses.  As suggested by the simulated 28-u data presented in Fig. 6.13, at low mass 

the improvement in mass resolution is minimal compared to the error present in the 

experimental data.  The lack of a clear correlation between mass resolution and field 

at low mass may therefore be due to the error present in the data.  While these mass 

resolution numbers are not large enough for a state-of-the-art TOF instrument, they 

may allow for some routine TOF measurements where high mass resolution is not 

necessary.  More importantly, the SIMION simulations in Chap. 4 suggest that some 

of the limitations to mass resolution are functions of the NRL-TEAMS system design.  

A more appropriately designed, truly TOF instrument would be capable of 

significantly improved results.  Additional improvements to mass resolution are also 

achievable using the NRL-TEAMS system by conducting experiments at lower 

acceleration energy and by installation of apertures, for reasons explained in Chap. 4. 
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Figure 6.12: Mass resolution presented as mass/FWHM versus field for a graphite 

sample.  Error bars represent the standard deviation of data points taken over several 

days and are representative of the size of errors for each mass.   

 
 This data does suggest that the initial conditions chosen for the SIMION 

simulations are appropriate to estimate the mass resolution.  The solid, gold line 

presented in Fig. 6.13 is the data from the simulation presented in Fig. 4.2 using the 

starting conditions from Gnaser (2000) and Verdiel et al. (2008).  These conditions 

slightly overestimate the mass resolution that is actually achieved in the physical 

system.  This is not unexpected, as the model does not account for the initial pulse 

width.  In the simulated data the width of the time data, measured as FWHM, ranges 

from 80-91 ns, whereas the width in time for silicon in the experimental data ranges 

from 98-122 ns.  Because of the manner of pulsing described in Sec. 5.1, it is not 
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possible to directly determine the pulse width of the system, but it is likely the pulse 

width is contributing to the spread in TOF, lowering the mass resolution from the 

levels predicted by the simulation. This data suggests the pulse width is at least 18-31 

ns. This value is on the order approximated by other researchers using similar pulsing 

systems (Chait & Standing 1981; Rathmann et al. 1985; Katta & Chait 1991; Ma et 

al. 1992; Piel et al. 1999). 

 

 

Figure 6.13: Mass resolution as mass/FWHM versus field for a silicon sample.  Error 

bars represent the standard deviation of data points taken over several days and are 

representative of the size of errors for each mass.  Mass 76 and 105 are not 

transmitted through the Pretzel magnet at 4 kG, so data for those masses begin at 6 

kG.  The simulated data is from Fig. 4.2.  The gold solid line used the literature data 

from Gnaser (2000) and Verdiel et al. (2008) as the starting conditions.  The olive 

dashed line used the uniform angular and energy distributions described in Sec. 4.2. 
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 The simulations using the uniform distribution of energy and angular 

distributions are presented in Fig. 6.13 as the dashed, olive line and were originally 

presented in Fig. 4.2.  These conditions slightly underestimate the mass resolution 

achievable.  Because these conditions overestimate the initial angular distribution 

range, a more broad range of TOF values would result.  The more broad range of 

TOF values results in a lower mass resolution estimation.  These results confirm the 

validity of the SIMION model and suggest that significant changes to the initial 

modeling conditions are not necessary but provide a reasonable estimation of the 

mass resolution of the system.   

 It is also expected that mass resolution will increase as mass increases.  Figure 

6.14 presents the mass resolution data from the graphite sample taken at 10 kG.  The 

mass resolution data were calculated directly from the mass spectra and from the time 

spectra, using Eq 6.1.  The two methods agree very well, supporting the validity of 

the theoretical equation and justifying its use with the simulated data to calculate 

mass resolution, as well as offering justification for the time-to-mass conversion used 

to create the mass spectra. There is an increase in mass resolution with increasing 

mass, as predicted.  The trend in this plot is representative of graphite at all fields.   
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Figure 6.14: Mass resolution as mass/FWHM as a function of mass for the graphite 

sample at 10 kG.  Mass resolution as calculated from the mass spectra (blue squares 

and circles) and from the time spectra using Eq. 6.1 (red triangles and diamonds).  

The lines are drawn as a guide to the eye. Error bars are presented for the mass 

spectra and are ± 1 . 

 

 The predicted trend of mass resolution decreasing with increasing field further 

confirms the theoretical benefits of a Pretzel-magnet-based system.  However, the 

NRL-TEAMS system is limited in its utility as a TOF instrument because of low 

mass resolution, which is unrelated to the Pretzel magnet.  Additionally, the trends in 

mass resolution data exhibit some sample-to-sample variability.  Further experiments 

need to be conducted to better understand and control the sample-to-sample 

variability in the mass resolution data.
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Chapter 7:  Conclusions 

 

The NRL-TEAMS system has served as a test bed in simulations and 

experiments to test the concept of Mass Filtered, Time Dilated Time-of-Flight Mass 

Spectrometry (MF-TD-TOF-MS).  

Section 7.1: Theoretical Background and Calculations 

 A theoretical analysis of Enge’s original design and the NRL specific design 

of the Pretzel magnet led to a series of equations that predicted several of its key 

parameters, which could be experimentally confirmed provide evidence of the TD 

effect. Further, calculations based solely on these equations determined a Pretzel-

magnet based TOF-MS may offer improvements over traditional, reflectron style 

instruments. This advantage was highest at low fields, high masses, and low energy.  

The assumption of similar size, that is a penetration depth equal to the same length as 

a reflectron, was, however, generous. A Pretzel magnet of that size would be heavier 

and of a greater width than a drift tube of equal depth. This could prove to be a 

limitation of such an instrument. However this only considers the TD effect, and the 

advantages of mass filtering are ignored. The coupling of these two benefits could 

provide for unique, niche research opportunities. 

Section 7.2: SIMION Modeling 

SIMION modeling of the NRL-TEAMS system provided the insight that the system 

was not ideally designed for TOF analysis and, therefore, experimental results cannot 

provide the high mass resolution an optimally designed system could. Rather, it could 
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be used as a test-bed to provide insight into the operation and design of such an 

instrument and confirm the functionality of the MF-TD-TOF-MS concept.  These 

simulations suggest the electrostatic analyzer in the NRL-TEAMS instrument limits 

the mass resolution, as does the wide range of initial emission angles present in the 

NRL-TEAMS secondary ion source. Both of these limitations can be better 

constrained in a future MF-TD-TOF-MS instrument. 

 Additionally, the model allowed for the investigation of some species of 

interest, specifically actinides.  With the knowledge that initial emission angle was a 

limiting factor in NRL-TEAMS, these simulations provided the opportunity to 

conduct experiments as if this factor had been controlled. A nearly order-of-

magnitude improvement was seen, and mass resolution values nearing 1000 m/ m, 

making the technique competitive with some standard MS systems. An optimally 

designed system would achieve even higher mass resolution, further confirming the 

usefulness of a MF-TD-TOF-MS system.  

Section 7.3: System Improvements and Experimental Results 

A series of pulsing systems and detection electronics provided the necessary 

improvements to perform MF-TD-TOF-MS experiments at the NRL-TEAMS facility.  

A reflectron ion mirror was also designed installed and tested. 

 The experiments conducted confirmed the validity of the SIMION model in 

several ways. First, analysis of the data confirmed theoretical predictions of key 

parameters of the NRL-TEAMS instrument, including the geometric constant KP and 

the length of the instrument outside the Pretzel magnet. Additionally, using a given 
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pulsing and detection electronics system, the time delay due to the electronics was 

consistent across several experiments. 

 Secondly, the mass resolution of the experiments was within the predicted 

range from the SIMION simulations. The simulations used two different starting 

conditions, one which should slightly overestimate the mass resolution and a second 

which should underestimate the mass resolution. The experimental mass resolution 

for the simulated species fell between the simulated values. 

 Additionally, the experimental results showed the predicted trend of 

decreasing mass resolution with increasing field, particularly at high (>36 u) mass. 

This confirms the value of TD to TOF analysis. The improvements offered by MF 

were also illustrated for a specific case, resulting in a more than ten-fold increase in 

duty cycle. It was also shown greater increases are possible, with the case of oxygen 

and uranium isotopes specifically simulated. In this case an increase from 0.04% to 

approximately 3.4% could be possible. While this is not necessarily competitive with 

some instruments, specifically OA and HT-MS instruments, it does offer some 

distinct advantages, such as the ability to block high intensity, non-interesting species 

and the ability to combine the technique with TD. 

Section 7.4: Method Comparison 

It is important to evaluate the utility of MF-TD-TOF-MS against some of the 

other recently developed TOF techniques:  Hadamard transform (HT), orthogonal 

acceleration (OA), and multi-turn (MT).  Table 7.1 presents a short summary of 

several key benchmarks for MS analysis.  Rather than provide a complete review of 
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each of the techniques, the values presented in Table 7.1 are often for specific 

situations, but represent the state-of-the-art of those particular techniques.  

 

Table 7.1 Comparison of TOF-MS techniques 

TOF  Mass 
Resolution 
(m/ m–
FWHM) 

Duty 
Cycle 
(%) 

Trans-
missiona 

Dynamic Mass 
Range 

Sensitivity 
Limit of 
Detection 
(LOD) 

HT 372b 

743c  
(at 242 u)d 

100d  100%e  
 

>1,500 ue  LOD <5 pmole  

OA 7500f  20g  ~20%h   >106 rangei  
LOD 3 fmolg  

MT 
 
 

Variable 
350,000j 

0.0003j  Variable 
<20%j  

mmx-mmn 
----------- = 2/Nk,l 

     mmx        
 

LOD <50 fmolj  

MF-
TD 

320a  
(at 105 u) 
~550b 

(at 240 u) 

Varies 
1.5a 
3.4b  

>50% 240 u at 40 keV 
1375 u at 9 keV 
12,300 u at 1 keV 

>104 range  
LOD not 
studied 
 

a) This value is through the mass spectrometer only  
b) Measured 
c) Thought to be achievable 
d) (Brock et al., 1998) 
e) (Fernández et al., 2002) 
f) (Guilhaus et al., 2000) 
g) (Verentchikov et al., 1994) 
h) (Myers et al., 1994) 
i) (Ray and Hieftje, 2001) 
j) (Toyoda, 2010) 
k) Where mmx is the maximum m/z value injected, mmn is the minimum m/z value 

injected and N is number of turns.  
l) (Verentchikov et al., 2005) 
 

 From Table 7.1 it is possible to determine some of the benefits and drawbacks 

of each of the techniques.  HT-TOF-MS has very powerful increases in duty cycle 

and transmission, which are related, yet suffers from relatively poor mass resolution.  
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OA-TOF-MS is perhaps the most widely used and versatile of techniques, having 

relatively good mass resolution, reasonable transmission and good sensitivity. Yet, 

the dynamic mass range is not discussed directly in the literature, and several papers 

allude to the limitations of matching the fill time of the OA pulse region with the 

overall flight time through the analysis system. This limitation is linked with 

transmission and duty, as a reduced duty cycle will lower transmission, but increase 

the mass range allowed to traverse the system.  Multi-turn TOF (MT-TOF) systems 

have incredibly high mass resolution. This is provided by ability to lengthen the flight 

path. However, each turn around the spectrometer reduces the transmission as well as 

requiring longer analysis times, thereby reducing the duty cycle.  The dynamic mass 

range is also limited by “over-taking”. This occurs when light, quickly moving ions 

over-take the slowly moving ions in the multiple turns around the system. The 

philosophy of use behind these systems is to obtain a broad, low-mass resolution scan 

of the analyte using one pass through the MT-TOF. Any interesting mass ranges in 

need of high mass resolution data are then separately analyzed using multiple turns 

through the spectrometer.  The data presented in this thesis for MF-TD-TOF-MS 

suggests it is a relatively low mass resolution technique.  However, it was also noted 

that higher resolution may be achievable through a number of means (i.e. limited 

angular divergence, lower energy, etc.).   Additionally, it may be possible that the 

dynamic mass range could be higher for MF-TD-TOF-MS than in OA-MS without 

the sacrifice of duty cycle if interleaving would be appropriate.  The transmission for 

this technique was not explicitly studied, but historical NRL-TEAMS measurements 

using a single mass suggest transmission will be better than 50% for multiple masses, 
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through the Pretzel magnet.  This number is, of course, variable, as it may be lower if 

masses are filtered.  A MF-TD-TOF-MS system may therefore offer advantages 

where it is important to achieve very high transmission of analyte.  This is true in 

certain nuclear forensic investigations where sample material is limited. Additionally, 

further development of the technique may improve mass resolution to a more useful 

level. 

Section 7.5: Future Directions 

While this work has validated the MF-TD-TOF-MS concept and provided 

experimental and simulated evidence that such a technique can offer distinct 

advantages to TOF-MS analysis, many areas of research remain.  

 One key question is the ability of the Pretzel magnet to compensate for energy 

spread. The main advantage of reflectron TOF analysis is the ability of the instrument 

to perfectly time focus an ion beam with different energy, over a reasonable range. 

This contributes to the technique’s high mass resolving power. The Pretzel magnet 

should have some ability to compensate for energy spread, because the geometric 

shape of an ion trajectory is given by momentum, a component of which is energy. 

Thus an ion with slightly higher energy will have slightly longer flight path. Because 

this ion is traveling slightly faster, due to its higher energy, this may serve as a time 

focus. The extent to which this phenomenon is present and able to provide a time 

focus needs to be investigated. If it is not a perfect time focus, then other elements in 

an optimally designed system may be able to be added to provide the time focus, or 

the Pretzel magnet may need to be designed with slightly different parameters to 

provide the time focus. Alternatively, it may be possible to use a Pretzel magnet as 
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the mass analyzer in an OA-MS, thereby combining the benefits of the Pretzel magnet 

with the energy compensation advantage of an OA-MS. 

 In order to design an optimally designed system, several other factors need to 

be taken into consideration. For example, it was shown by simulations in Sec. 4.2, 

that the electrostatic analyzer and the initial angular divergence in the NRL-TEAMS 

system was limiting mass resolution.  An optimal system should be designed in such 

a way that the system elements do not provide limitations to mass resolution. 

 Other, more unique, systems could also be considered. It was mentioned in 

Sec. 2.2 that several groups have been developing multi-turn TOF systems. If a 

Pretzel magnet could be used in such a system, without degrading the time focusing 

abilities, the limitation of Pretzel magnet size could be overcome. By using multiple, 

small Pretzel magnets, it may be possible to magnify the TD effect, while maintaining 

a size significantly smaller than the current Pretzel magnet system. 

 While the NRL-TEAMS system is not an ideal system for MF-TD-TOF-MS, 

it does offer several opportunities for improvement, which if implemented could 

provide complimentary information to the complete NRL-TEAMS system. Currently 

the system has very low mass resolution, however simulations suggest the installation 

of apertures that would limit the initial angular divergence of the system could 

significantly improve mass resolution to a level competitive with standard MS 

instruments. Additionally, although several iterations of pulsing systems and 

detection electronics were used, improvements are still possible. The pulsing system 

should be changed to the “box-type” explained in Chap. 5.1. Commercially available 

detection electronics should be considered to enable the detection of species with 
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TOF longer than 64 μs.  Additionally, some initial experiments using electropositive 

species have been conducted with limited success, but are not included in this thesis. 

This is not surprising, as electropositive species do not form strong negative ion 

beams.  The NRL-TEAMS Cameca 6f recently has been outfitted with a 

duoplasmatron ion source, capable of forming positive secondary ion beams. The 

advantages of MF-TD-TOF-MS presented in this thesis for the electronegative silicon 

and carbon should be extended to electropositive species using this source with a 

positive secondary ion beam. This is particularly vital to the development of this 

technique to nuclear forensic applications, as actinide species are electropositive. 

 These improvements and continued areas of research would further improve 

MF-TD-TOF-MS and its potential to provide a new, novel method of MS analysis. 
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Appendix B: Data Tables for Chap. 2 Figures 

Appendix B.1: Data Table for Fig. 2.1 

 Enrichment Efficiency 
Years 93 %  50 %  5 %  0.7 %  0.5 % 1 % 10 % 50 % 

1 206 111 11 2 2000 1000 100 20 
6 1235 664 66 9 2000 1000 100 20 

10 2059 1107 111 15 2000 1000 100 20 
30 6176 3321 332 46 2000 1000 100 20 
60 12352 6641 664 93 2000 1000 100 20 
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Appendix C: Data Tables for Chap. 3 Figures 

Appendix C.1: Data Table for Fig. 3.1 

Field (G) m/dm Pretzel m/dm Traditional m/dm Total 
500 22843 5298 28141 

1000 15941 5298 21239 

1500 12916 5298 18214 

2000 11125 5298 16423 

2500 9908 5298 15206 

3000 9014 5298 14312 

3500 8320 5298 13619 

4000 7763 5298 13062 

4500 7303 5298 12601 

5000 6914 5298 12213 

5500 6581 5298 11879 

6000 6290 5298 11588 

6500 6034 5298 11332 

7000 5806 5298 11105 

7500 5602 5298 10901 

8000 5418 5298 10716 

8500 5250 5298 10548 

9000 5096 5298 10395 

9500 4955 5298 10254 

10000 4825 5298 10123 

10500 4705 5298 10003 

11000 4592 5298 9891 

11500 4488 5298 9786 

12000 4390 5298 9688 

12500 4298 5298 9596 

13000 4211 5298 9509 

13500 4129 5298 9428 

14000 4052 5298 9350 

14500 3979 5298 9277 

15000 3910 5298 9208 

15500 3844 5298 9142 

16000 3781 5298 9079 

16500 3721 5298 9019 
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Appendix C.2: Data Table for Fig. 3.2 

Mass (u) m/ m Pretzel m/ m Traditional m/ m Total 
5 546 765 1311 

10 924 1081 2006 

15 1258 1325 2582 

20 1565 1529 3095 

25 1855 1710 3565 

30 2130 1873 4003 

35 2395 2023 4418 

40 2651 2163 4814 

45 2899 2294 5193 

50 3141 2418 5559 

55 3377 2536 5913 

60 3608 2649 6257 

65 3834 2757 6591 

70 4056 2861 6917 

75 4274 2962 7236 

80 4489 3059 7548 

85 4701 3153 7854 

90 4910 3244 8154 

95 5116 3333 8449 

100 5319 3420 8739 

105 5520 3504 9024 

110 5718 3587 9305 

115 5915 3668 9583 

120 6109 3746 9856 

125 6302 3824 10126 

130 6493 3899 10392 

135 6682 3974 10655 

140 6869 4047 10915 

145 7054 4118 11173 

150 7239 4189 11427 

155 7421 4258 11679 

160 7602 4326 11928 

165 7782 4393 12175 

170 7961 4459 12420 

175 8138 4524 12662 

180 8314 4588 12903 

185 8489 4652 13141 

190 8663 4714 13377 

195 8836 4776 13612 

200 9008 4837 13844 

205 9178 4897 14075 

210 9348 4956 14304 

215 9516 5015 14531 

220 9684 5073 14757 
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225 9851 5130 14981 

230 10017 5187 15204 

235 10182 5243 15425 

240 10346 5298 15645 

245 10510 5353 15863 

250 10672 5407 16080 

255 10834 5461 16295 

260 10995 5515 16510 

265 11156 5567 16723 

270 11315 5620 16935 

275 11474 5671 17145 

280 11632 5723 17355 

285 11790 5774 17563 

290 11947 5824 17771 

295 12103 5874 17977 

300 12258 5924 18182 
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Appendix C.3: Data Table for Fig. 3.3 

Energy (keV) m/ m Pretzel m/ m Traditional m/ m Total 
0.5 12219 7493 19712 

1 10346 5298 15645 

1.5 9387 4326 13713 

2 8761 3746 12507 

2.5 8304 3351 11655 

3 7948 3059 11007 

3.5 7660 2832 10492 

4 7418 2649 10067 

4.5 7211 2498 9709 

5 7031 2369 9401 

5.5 6872 2259 9131 

6 6730 2163 8893 

6.5 6602 2078 8680 

7 6486 2003 8488 

7.5 6379 1935 8314 

8 6281 1873 8154 

8.5 6190 1817 8008 

9 6106 1766 7872 

9.5 6027 1719 7746 

10 5954 1675 7629 

10.5 5884 1635 7519 

11 5819 1597 7416 

11.5 5757 1562 7320 

12 5699 1529 7228 

12.5 5643 1499 7142 

13 5590 1469 7060 

13.5 5540 1442 6982 

14 5492 1416 6908 

14.5 5446 1391 6837 

15 5402 1368 6770 

15.5 5359 1346 6705 

16 5319 1325 6643 

16.5 5279 1304 6584 

17 5242 1285 6527 

17.5 5205 1267 6472 

18 5170 1249 6419 

18.5 5136 1232 6368 

19 5104 1215 6319 

19.5 5072 1200 6272 

20 5041 1185 6226 
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Appendix C.4: Data Table for Fig. 3.4 

Length (m) m/ m Pretzel m/ m Traditional m/ m Total 
0 10346 0 10346 

0.5 10346 1766 12112 

1 10346 3532 13878 

1.5 10346 5298 15645 

2 10346 7064 17411 

2.5 10346 8830 19177 

3 10346 10596 20943 

3.5 10346 12363 22709 

4 10346 14129 24475 

4.5 10346 15895 26241 

5 10346 17661 28007 

5.5 10346 19427 29773 

6 10346 21193 31539 

6.5 10346 22959 33305 

7 10346 24725 35071 

7.5 10346 26491 36837 

8 10346 28257 38604 

8.5 10346 30023 40370 

9 10346 31789 42136 

9.5 10346 33556 43902 

10 10346 35322 45668 

10.5 10346 37088 47434 

11 10346 38854 49200 

11.5 10346 40620 50966 

12 10346 42386 52732 

12.5 10346 44152 54498 

13 10346 45918 56264 

13.5 10346 47684 58030 

14 10346 49450 59797 

14.5 10346 51216 61563 

15 10346 52982 63329 

15.5 10346 54748 65095 

16 10346 56515 66861 

16.5 10346 58281 68627 

17 10346 60047 70393 

17.5 10346 61813 72159 

18 10346 63579 73925 

18.5 10346 65345 75691 

19 10346 67111 77457 

19.5 10346 68877 79223 

20 10346 70643 80989 
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Appendix D: Data Tables for Chap. 4 Figures 

Appendix D.1: Data Table for Fig. 4.1a 

Energy (eV) Number of Ions 
0 0 
1 13 
2 27 
3 1399 
4 1193 
5 1006 
6 913 
7 718 
8 604 
9 628 

10 427 
11 410 
12 351 
13 274 
14 276 
15 247 
16 219 
17 169 
18 169 
19 142 
20 127 
21 111 
22 89 
23 71 
24 79 
25 44 
26 49 
27 52 
28 40 
29 65 
30 18 
31 21 
32 25 
33 14 
34 10 
35 0 
36 0 
37 0 
38 0 
39 0 
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40 0 
41 0 
42 0 
43 0 
44 0 
45 0 
46 0 
47 0 
48 0 
49 0 
50 0 
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Appendix D.2: Data Table for Fig. 4.1b 

Emission Angle 
(Deg.) 

Number Ions in 
Horizontal Angle 

Number Ions in 
Vertical Angle 

0 0 0 
1 0 0 
2 0 0 
3 0 0 
4 0 0 
5 0 0 
6 0 0 
7 0 0 
8 0 0 
9 0 0 

10 0 0 
11 0 0 
12 0 0 
13 0 0 
14 0 0 
15 163 163 
16 168 156 
17 144 167 
18 133 171 
19 151 141 
20 155 147 
21 153 155 
22 168 148 
23 150 165 
24 180 175 
25 168 163 
26 164 160 
27 180 168 
28 161 160 
29 175 175 
30 179 174 
31 194 182 
32 168 168 
33 193 163 
34 174 184 
35 168 174 
36 183 177 
37 199 150 
38 187 192 
39 162 170 
40 160 196 
41 145 197 
42 156 181 
43 157 170 
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44 200 213 
45 165 183 
46 194 176 
47 161 188 
48 159 180 
49 185 185 
50 175 183 
51 184 186 
52 180 170 
53 166 163 
54 188 162 
55 184 158 
56 181 169 
57 177 197 
58 155 190 
59 144 161 
60 182 185 
61 176 179 
62 163 160 
63 147 142 
64 171 157 
65 204 164 
66 170 167 
67 151 171 
68 125 109 
69 51 47 
70 54 30 
71 39 46 
72 40 46 
73 36 34 
74 31 33 
75 25 16 
76 16 23 
77 27 20 
78 28 35 
79 27 20 
80 18 15 
81 28 19 
82 15 16 
83 28 21 
84 10 12 
85 10 16 
86 16 14 
87 9 12 
88 8 14 
89 6 3 
90 7 3 
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Appendix D.3: Data Table for Fig. 4.2 

 

Field 
(kG) 

Mass Resolution 
Uniform 
Distribution  

Error Uniform 
Distribution 

Mass Resolution 
Based on Gnaser & 
Verdeil, et al. 

Error Gnaser & 
Verdeil, et al. 

4 98.999 3.2330 189.05 13.898 
6 96.414 3.3455 155.54 14.542 
8 93.107 1.5619 148.28 13.440 

10 92.230 2.3971 149.02 17.083 
12 89.484 2.3569 149.68 10.856 
14 86.489 4.0433 140.94 15.412 
16 87.684 2.3599 129.31 16.509 

 

 

Appendix D.4: Data Table for Fig. 4.4 

 

Field 
(kG) 

Mass Res. 
208Pb 

Mass Res. 
208Pb16O 

Mass Res. 
Err. 

208Pb16O 
Mass Res. 

232Th 
Mass Res. 

232Th16O 
Mass 

Res. 238U 
10 100.42 101.14 3.9282 99.694 99.861 100.440 
12 93.838 95.296 4.9157 96.612 96.173 95.215 
14 91.920 93.345 4.0050 92.540 92.889 95.305 
16 89.187 91.513 4.3754 91.177 92.590 91.529 

 

 

Appendix D.5: Data Table for Fig. 4.5 

 

Ion Group Mass Resolution Error Mass Resolution 
1 99.869 5.4750 
2 89.326 6.6777 
3 102.15 4.7032 
4 907.51 60.812 
5 913.36 36.505 
6 279.18 20.857 

 
 

Appendix D.6: Data Table for Fig. 4.7 

 

Field 
(kG) 

Mass Res. 
208Pb 

Mass Res. 
208Pb16O 

Mass Res. 
Err.208Pb16O 

Mass Res. 
232Th 

Mass Res. 
232Th16O 

Mass 
Res. 238U 

10 894.76 865.18 34.425 864.64 889.3 873.16 
12 840.84 855.44 31.839 842.8 851.03 841.15 
14 790.41 802.24 35.4 804.38 809.85 819.97 
16 783.97 789.82 28.402 794.81 796.38 802.27 
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Appendix E: Data Tables for Chap. 5 Figures 

Appendix E.1: Data Table for Fig. 5.5 

 

Current 
(nA) 

Background Corrected 12 u 
Count Rate at 5125 G (kHz) 

Background Corrected 24 u 
Count Rate at 3560 G (kHz) 

0.001 48 39 
0.005 148 75 

0.01 178 113 
0.015 217 136 

0.02 196 144 
0.025 158 154 

0.03 106 148 
0.04 87 140 
0.06 60 128 
0.08 48 89 
0.14 23 83 

 
Appendix E.2: Data Table for Fig. 5.6 and Fig. 5.8 

 

Fig. 4.6 & Fig. 4.8 
Fig. 4.6 

Uses MCP z 
axis 

 Fig. 4.8 

X axis 
(mm) 

Start 
image 
(mm) 

 
Z axis 
(mm) 

MCP 
Position 

(mm) 
End Image 

(mm) 

 Z axis 
(mm) 

End 
Image 
(mm) 

138.2 141.2  200 140   208.13 139.69 
138.23 141.2  200.0 140.25   208.11 139.69 

138.261 141.2  200.0 139.75   208.11 139.69 
138.291 141.2  200.0 140.5   208.12 141.27 
138.321 141.2  200.0 139.5   208.12 141.27 
138.352 141.2  200.0 140.75   208.09 139.69 
138.382 141.2  200.0 139.25   208.09 139.69 
138.412 141.2  200.0 141   208.08 139.69 
138.442 141.2  200.0 139   208.08 139.69 
138.473 141.2  200.0 141.25   208.08 141.27 
138.503 141.2  200.0 138.75   208.08 141.27 
138.533 141.2  200.1 141.5   208.06 139.69 
138.564 141.2  200.1 138.5   208.06 139.69 
138.594 141.2  200.1 141.75   207.11 141.27 
138.624 141.2  200.1 138.25   207.11 141.27 
138.655 141.2  200.2 142   208.04 139.69 
138.685 141.2  200.2 138   208.04 139.69 
138.715 141.2  200.2 142.25   208.05 141.27 
138.745 141.2  200.2 137.75   208.05 141.27 
138.776 141.2  200.3 142.5   208.02 139.69 
138.806 141.2  200.3 137.5   208.02 139.69 
138.836 141.2  200.3 142.75   207.07 141.27 
138.867 141.2  200.3 137.25   207.07 141.27 
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138.897 141.2  200.4 143   206.10 141.27 
138.927 141.2  200.4 137   206.10 141.27 
138.958 141.2  200.5 143.25   208.01 139.69 
138.988 141.2  200.5 136.75   208.01 139.69 
139.018 141.2  200.6 143.5   208.01 141.27 
139.048 141.2  200.6 136.5   208.01 141.27 
139.079 141.2  200.7 143.75   207.99 139.69 
139.109 141.2  200.7 136.25   207.99 139.69 
139.139 141.2  200.8 144   207.04 141.27 

139.17 141.2  200.8 136   207.04 141.27 
139.2 141.2  200.9 144.25   206.07 141.27 

139.23 141.2  200.9 135.75   206.07 141.27 
139.261 141.2  201.0 144.5   207.97 139.69 
139.291 141.2  201.0 135.5   207.97 139.69 
139.321 141.2  201.2 144.75   207.98 141.27 
139.352 141.2  201.2 135.25   207.98 141.27 
139.382 141.2  201.3 145   208.02 139.69 
139.412 141.2  201.3 135   208.02 139.69 
139.442 141.2  201.4 145.25   208.98 139.77 
139.473 141.2  201.4 134.75   208.98 139.80 
139.503 141.2  201.6 145.5   208.98 139.83 
139.533 141.2  201.6 134.5   208.98 139.87 
139.564 141.2  201.8 145.75   208.98 139.93 
139.594 141.2  201.8 134.25   208.98 140.02 
139.624 141.2  202 146   208.98 140.15 
139.655 141.2  202 134   208.98 139.77 
139.685 141.2  202.1 146.25   208.98 139.80 
139.715 141.2  202.1 133.75   208.98 139.83 
139.745 141.2  202.4 146.5   208.98 139.87 
139.776 141.2  202.4 133.5   208.98 139.93 
139.806 141.2  202.6 146.75   208.98 140.02 
139.836 141.2  202.6 133.25   208.98 140.15 
139.867 141.2  202.8 147   208.98 139.69 
139.897 141.2  202.8 133   208.98 139.69 
139.927 141.2  203.1 147.25   208.98 139.74 
139.958 141.2  203.1 132.75   208.98 139.90 
139.988 141.2  203.3 147.5   208.98 139.96 
140.018 141.2  203.3 132.5   208.98 139.99 
140.048 141.2  203.6 147.75   208.98 140.06 
140.079 141.2  203.6 132.25   208.98 140.09 
140.109 141.2  204 148   208.98 140.12 
140.139 141.2  204 132   208.98 140.28 

140.17 141.2  204.3 148.25   208.98 139.74 
140.2 141.2  204.3 131.75   208.98 139.90 

140.23 141.2  204.7 148.5   208.98 139.96 
140.261 141.2  204.7 131.5   208.98 139.99 
140.291 141.2  205.1 148.75   208.98 140.06 
140.321 141.2  205.1 131.25   208.98 140.09 
140.352 141.2  205.6 149   208.98 140.12 
140.382 141.2  205.6 131   208.98 140.28 
140.412 141.2  206.2 149.25   208.98 139.35 
140.442 141.2  206.2 130.75   208.98 139.39 



129 

140.473 141.2  206.8 149.5   208.98 139.42 
140.503 141.2  206.8 130.5   208.98 139.45 
140.533 141.2  207.7 149.75   208.98 139.48 
140.564 141.2  207.7 130.25   208.98 139.55 
140.594 141.2  210 150   208.98 139.58 
140.624 141.2  210 150   208.98 139.61 
140.655 141.2  210 130   208.98 139.64 
140.685 141.2  210 130   208.98 139.67 
140.715 141.2  211.2  143.225  208.98 139.71 
140.745 141.2  211.2  143.225  208.98 140.18 
140.776 141.2  211.2  143.224  208.98 140.22 
140.806 141.2  211.2  143.224  208.98 140.25 
140.836 141.2  211.2  143.224  208.98 140.38 
140.867 141.2  211.2  143.224  208.98 139.35 
140.897 141.2  211.3  143.223  208.98 139.39 
140.927 141.2  211.3  143.223  208.98 139.42 
140.958 141.2  211.3  143.223  208.98 139.45 
140.988 141.2  211.3  143.223  208.98 139.48 
141.018 141.2  211.3  143.222  208.98 139.55 
141.048 141.2  211.3  143.222  208.98 139.58 
141.079 141.2  211.4  143.222  208.98 139.61 
141.109 141.2  211.4  143.222  208.98 139.64 
141.139 141.2  211.4  143.221  208.98 139.67 

141.17 141.2  211.4  143.221  208.98 139.71 
141.2 141.2  211.4  143.221  208.98 140.18 
138.2 141.2  211.4  143.221  208.98 140.22 

138.23 141.2  211.5  143.22  208.98 140.25 
138.261 141.2  211.5  143.22  208.98 140.38 
138.291 141.2  211.5  143.22  208.98 139.07 
138.321 141.2  211.5  143.22  208.98 139.16 
138.352 141.2  211.5  143.219  208.98 139.23 
138.382 141.2  211.5  143.219  208.98 139.26 
138.412 141.2  211.6  143.219  208.98 139.29 
138.442 141.2  211.6  143.219  208.98 139.32 
138.473 141.2  211.6  143.218  208.98 139.51 
138.503 141.2  211.6  143.218  208.98 140.31 
138.533 141.2  211.6  143.218  208.98 140.34 
138.564 141.2  211.6  143.218  208.98 140.41 
138.594 141.2  211.7  143.217  208.98 140.44 
138.624 141.2  211.7  143.217  208.98 140.47 
138.655 141.2  211.7  143.217  208.98 140.50 
138.685 141.2  211.7  143.217  208.98 139.07 
138.715 141.2  211.8  143.216  208.98 139.16 
138.745 141.2  211.8  143.216  208.98 139.23 
138.776 141.2  211.8  143.216  208.98 139.26 
138.806 141.2  211.8  143.216  208.98 139.29 
138.836 141.2  211.8  143.216  208.98 139.32 
138.867 141.2  211.8  143.216  208.98 139.51 
138.897 141.2  211.9  143.215  208.98 140.31 
138.927 141.2  211.9  143.215  208.98 140.34 
138.958 141.2  211.9  143.215  208.98 140.41 
138.988 141.2  211.9  143.215  208.98 140.44 
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139.018 141.2  211.9  143.214  208.98 140.47 
139.048 141.2  211.9  143.214  208.98 140.50 
139.079 141.2  212.0  143.214  208.98 138.94 
139.109 141.2  212.0  143.214  208.98 138.97 
139.139 141.2  212.0  143.213  208.98 139.01 

139.17 141.2  212.0  143.213  208.98 139.04 
139.2 141.2  212.0  143.213  208.98 139.10 

139.23 141.2  212.0  143.213  208.98 139.13 
139.261 141.2  212.1  143.212  208.98 139.20 
139.291 141.2  212.1  143.212  208.98 140.53 
139.321 141.2  212.1  143.212  208.98 138.94 
139.352 141.2  212.1  143.212  208.98 138.97 
139.382 141.2  212.1  143.212  208.98 139.01 
139.412 141.2  212.1  143.212  208.98 139.04 
139.442 141.2  212.2  143.211  208.98 139.10 
139.473 141.2  212.2  143.211  208.98 139.13 
139.503 141.2  212.2 149.75   208.98 139.20 
139.533 141.2  212.2 130.25   208.98 140.53 
139.564 141.2  212.2  143.211  207.00 141.27 
139.594 141.2  212.2  143.211  207.00 141.27 
139.624 141.2  212.2  143.21  208.98 138.88 
139.655 141.2  212.2  143.21  208.98 138.91 
139.685 141.2  212.3  143.209  208.98 140.57 
139.715 141.2  212.3  143.209  208.98 140.60 
139.745 141.2  212.3  143.209  208.98 140.63 
139.776 141.2  212.3  143.209  208.98 140.66 
139.806 141.2  212.3  143.208  208.98 140.69 
139.836 141.2  212.3  143.208  208.98 140.73 
139.867 141.2  212.4  143.208  208.98 140.76 
139.897 141.2  212.4  143.208  208.98 138.88 
139.927 141.2  212.4  143.207  208.98 138.91 
139.958 141.2  212.4  143.207  208.98 140.57 
139.988 141.2  212.4  143.207  208.98 140.60 
140.018 141.2  212.4  143.207  208.98 140.63 
140.048 141.2  212.5  143.206  208.98 140.66 
140.079 141.2  212.5  143.206  208.98 140.69 
140.109 141.2  212.5  143.206  208.98 140.73 
140.139 141.2  212.5  143.206  208.98 140.76 

140.17 141.2  212.5  143.205  208.98 138.85 
140.2 141.2  212.5  143.205  208.98 140.79 

140.23 141.2  212.6  143.204  208.98 140.82 
140.261 141.2  212.6  143.204  208.98 138.85 
140.291 141.2  212.6  143.204  208.98 140.79 
140.321 141.2  212.6  143.204  208.98 140.82 
140.352 141.2  212.6  143.203  208.98 138.72 
140.382 141.2  212.6  143.203  208.98 138.75 
140.412 141.2  212.7  143.203  208.98 138.78 
140.442 141.2  212.7  143.203  208.98 138.81 
140.473 141.2  212.7  143.203  208.98 140.85 
140.503 141.2  212.7  143.203  208.98 140.88 
140.533 141.2  212.7  143.202  208.98 140.92 
140.564 141.2  212.7  143.202  208.98 140.95 
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140.594 141.2  212.8  143.202  208.98 140.98 
140.624 141.2  212.8  143.202  208.98 141.01 
140.655 141.2  212.8  143.201  208.98 141.04 
140.685 141.2  212.8  143.201  208.98 138.72 
140.715 141.2  212.8  143.201  208.98 138.75 
140.745 141.2  212.8  143.201  208.98 138.78 
140.776 141.2  212.9  143.2  208.98 138.81 
140.806 141.2  212.9  143.2  208.98 140.85 
140.836 141.2  212.9  143.2  208.98 140.88 
140.867 141.2  212.9  143.2  208.98 140.92 
140.897 141.2  212.9  139.672  208.98 140.95 
140.927 141.2  212.9  139.672  208.98 140.98 
140.958 141.2  212.9  139.672  208.98 141.01 
140.988 141.2  212.9  139.672  208.98 141.04 
141.018 141.2  212.9  143.199  208.98 138.69 
141.048 141.2  212.9  143.199  208.98 141.08 
141.079 141.2  213.0  139.672  208.98 138.69 
141.109 141.2  213.0  139.672  208.98 141.08 
141.139 141.2  213.0  139.672  208.98 138.62 

141.17 141.2  213.0  139.672  208.98 138.65 
141.2 141.2  213.0  143.199  208.98 141.11 
138.2 139.7  213.0  143.199  208.98 141.14 

138.215 139.7  213.0  139.672  208.98 141.17 
138.23 139.7  213.0  139.672  208.98 141.20 

138.245 139.7  213.0  139.672  208.98 138.62 
138.261 139.7  213.0  139.672  208.98 138.65 
138.276 139.7  213.0  143.198  208.98 141.11 
138.291 139.7  213.0  143.198  208.98 141.14 
138.306 139.7  213.0  139.672  208.98 141.17 
138.321 139.7  213.0  139.672  208.98 141.20 
138.336 139.7  213.0  139.672  208.98 138.56 
138.352 139.7  213.0  139.672  208.98 138.59 
138.367 139.7  213.0  143.198  208.98 141.24 
138.382 139.7  213.0  143.198  208.98 138.56 
138.397 139.7  213.1  139.672  208.98 138.59 
138.412 139.7  213.1  139.672  208.98 141.24 
138.427 139.7  213.1 149.5   208.98 141.27 
138.442 139.7  213.1 130.5   208.98 141.27 
138.458 139.7  213.1  139.672  208.98 138.49 
138.473 139.7  213.1  139.672  208.98 138.53 
138.488 139.7  213.1  143.197  208.98 141.27 
138.503 139.7  213.1  143.197  208.98 138.49 
138.518 139.7  213.1  139.672  208.98 138.53 
138.533 139.7  213.1  139.672  208.98 141.27 
138.548 139.7  213.1  139.672  208.98 138.34 
138.564 139.7  213.1  139.672  208.98 138.37 
138.579 139.7  213.1  143.197  208.98 138.40 
138.594 139.7  213.1  143.197  208.98 138.43 
138.609 139.7  213.1  139.672  208.98 138.46 
138.624 139.7  213.1  139.672  208.98 138.34 
138.639 139.7  213.1  139.672  208.98 138.37 
138.655 139.7  213.1  139.672  208.98 138.40 
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138.67 139.7  213.1  143.197  208.98 138.43 
138.685 139.7  213.1  143.197  208.98 138.46 

138.7 139.7  213.2  139.672  208.98 138.30 
138.715 139.7  213.2  139.672  208.98 138.30 

138.73 139.7  213.2  139.672  208.98 138.27 
138.745 139.7  213.2  139.672  208.98 138.27 
138.761 139.7  213.2  143.196  208.98 138.18 
138.776 139.7  213.2  143.196  208.98 138.21 
138.791 139.7  213.2  139.672  208.98 138.24 
138.806 139.7  213.2  139.672  208.98 138.18 
138.821 139.7  213.2  139.672  208.98 138.21 
138.836 139.7  213.2  139.672  208.98 138.24 
138.852 139.7  213.2  143.196  208.98 138.15 
138.867 139.7  213.2  143.196  208.98 138.15 
138.882 139.7  213.2  139.672  208.98 138.11 
138.897 139.7  213.2  139.672  208.98 138.11 
138.912 139.7  213.2  139.672  206.03 141.27 
138.927 139.7  213.2  139.672  206.03 141.27 
138.942 139.7  213.2  143.195  208.00 139.69 
138.958 139.7  213.2  143.195  208.00 139.69 
138.973 139.7  213.3  139.672  208.96 139.69 
138.988 139.7  213.3  139.672  208.96 139.69 
139.003 139.7  213.3  139.672  208.01 141.27 
139.018 139.7  213.3  139.672  208.01 141.27 
139.033 139.7  213.3  143.195  207.99 139.69 
139.048 139.7  213.3  143.195  207.99 139.69 
139.064 139.7  213.3  139.672  208.94 139.69 
139.079 139.7  213.3  139.672  208.94 139.69 
139.094 139.7  213.3  139.672  206.97 141.27 
139.109 139.7  213.3  139.672  206.97 141.27 
139.124 139.7  213.3  143.194  208.95 141.27 
139.139 139.7  213.3  143.194  208.95 141.27 
139.155 139.7  213.3  139.672  206.00 141.27 

139.17 139.7  213.3  139.672  206.00 141.27 
139.185 139.7  213.3  139.672  207.97 139.69 

139.2 139.7  213.3  139.672  207.97 139.69 
139.215 139.7  213.3  143.194  208.92 139.69 

139.23 139.7  213.3  143.194  208.92 139.69 
139.245 139.7  213.4  139.672  207.97 141.27 
139.261 139.7  213.4  139.672  207.97 141.27 
139.276 139.7  213.4  139.673  207.95 139.69 
139.291 139.7  213.4  139.673  207.95 139.69 
139.306 139.7  213.4  143.193  208.91 139.69 
139.321 139.7  213.4  143.193  208.91 139.69 
139.336 139.7  213.4  139.673  207.00 141.27 
139.352 139.7  213.4  139.673  207.00 141.27 
139.367 139.7  213.4  139.673  208.91 141.27 
139.382 139.7  213.4  139.673  208.91 141.27 
139.397 139.7  213.4  143.192  205.96 141.27 
139.412 139.7  213.4  143.192  205.96 141.27 
139.427 139.7  213.4  139.673  207.93 139.69 
139.442 139.7  213.4  139.673  207.93 139.69 



133 

139.458 139.7  213.4  139.673  208.89 139.69 
139.473 139.7  213.4  139.673  208.89 139.69 
139.488 139.7  213.4  143.192  207.94 141.27 
139.503 139.7  213.4  143.192  207.94 141.27 
139.518 139.7  213.5  139.673  207.92 139.69 
139.533 139.7  213.5  139.673  207.92 139.69 
139.548 139.7  213.5  139.673  208.87 139.69 
139.564 139.7  213.5  139.673  208.87 139.69 
139.579 139.7  213.5  143.191  206.97 141.27 
139.594 139.7  213.5  143.191  206.97 141.27 
139.609 139.7  213.5  139.673  208.87 141.27 
139.624 139.7  213.5  139.673  208.87 141.27 
139.639 139.7  213.5  139.673  206.00 141.27 
139.655 139.7  213.5  139.673  206.00 141.27 

139.67 139.7  213.5  143.191  208.85 139.69 
139.685 139.7  213.5  143.191  208.85 139.69 

139.7 139.7  213.5  139.673  207.90 139.69 
138.2 139.7  213.5  139.673  207.90 139.69 

138.215 139.7  213.5  139.673  207.90 141.27 
138.23 139.7  213.5  139.673  207.90 141.27 

138.245 139.7  213.5  143.19  208.84 139.69 
138.261 139.7  213.5  143.19  207.88 139.69 
138.276 139.7  213.6  139.673  208.84 139.69 
138.291 139.7  213.6  139.673  207.88 139.69 
138.306 139.7  213.6  139.673  206.93 141.27 
138.321 139.7  213.6  139.673  206.93 141.27 
138.336 139.7  213.6  143.189  208.84 141.27 
138.352 139.7  213.6  143.189  208.84 141.27 
138.367 139.7  213.6  139.673  205.96 141.27 
138.382 139.7  213.6  139.673  205.96 141.27 
138.397 139.7  213.6  139.673  208.82 139.69 
138.412 139.7  213.6  139.673  208.82 139.69 
138.427 139.7  213.6  143.189  207.86 139.69 
138.442 139.7  213.6  143.189  207.86 139.69 
138.458 139.7  213.6  139.673  207.87 141.27 
138.473 139.7  213.6  139.673  207.87 141.27 
138.488 139.7  213.6  139.673  207.85 139.69 
138.503 139.7  213.6  139.673  207.85 139.69 
138.518 139.7  213.6  143.188  208.80 139.69 
138.533 139.7  213.6  143.188  208.80 139.69 
138.548 139.7  213.7  139.673  206.90 141.27 
138.564 139.7  213.7  139.673  206.90 141.27 
138.579 139.7  213.7  139.673  208.81 141.27 
138.594 139.7  213.7  139.673  208.81 141.27 
138.609 139.7  213.7  143.188  208.78 139.69 
138.624 139.7  213.7  143.188  207.83 139.69 
138.639 139.7  213.7  139.673  208.78 139.69 
138.655 139.7  213.7  139.673  207.83 139.69 

138.67 139.7  213.7  139.673  207.83 141.27 
138.685 139.7  213.7  139.673  207.83 141.27 

138.7 139.7  213.7  143.187  207.81 139.69 
138.715 139.7  213.7  143.187  207.81 139.69 



134 

138.73 139.7  213.7  139.673  208.77 139.69 
138.745 139.7  213.7  139.673  208.77 139.69 
138.761 139.7  213.7  139.673  206.86 141.27 
138.776 139.7  213.7  139.673  206.86 141.27 
138.791 139.7  213.7  143.187  208.77 141.27 
138.806 139.7  213.7  143.187  208.77 141.27 
138.821 139.7  213.7 149.25   207.79 139.69 
138.836 139.7  213.7 130.75   207.79 139.69 
138.852 139.7  213.8  139.674  208.75 139.69 
138.867 139.7  213.8  139.674  208.75 139.69 
138.882 139.7  213.8  139.674  207.80 141.27 
138.897 139.7  213.8  139.674  207.80 141.27 
138.912 139.7  213.8  143.186  207.78 139.69 
138.927 139.7  213.8  143.186  207.78 139.69 
138.942 139.7  213.8  139.674  206.83 141.27 
138.958 139.7  213.8  139.674  206.83 141.27 
138.973 139.7  213.8  139.674  208.73 139.69 
138.988 139.7  213.8  139.674  208.73 139.69 
139.003 139.7  213.8  143.186  208.74 141.27 
139.018 139.7  213.8  143.186  208.74 141.27 
139.033 139.7  213.8  139.674  207.76 139.69 
139.048 139.7  213.8  139.674  207.76 139.69 
139.064 139.7  213.8  139.674  208.71 139.69 
139.079 139.7  213.8  139.674  208.71 139.69 
139.094 139.7  213.8  143.185  207.76 141.27 
139.109 139.7  213.8  143.185  207.76 141.27 
139.124 139.7  213.9  139.674  207.74 139.69 
139.139 139.7  213.9  139.674  207.74 139.69 
139.155 139.7  213.9  139.674  208.70 139.69 

139.17 139.7  213.9  139.674  208.70 139.69 
139.185 139.7  213.9  143.185  206.79 141.27 

139.2 139.7  213.9  143.185  206.79 141.27 
139.215 139.7  213.9  139.674  208.70 141.27 

139.23 139.7  213.9  139.674  208.70 141.27 
139.245 139.7  213.9  139.674  208.68 139.69 
139.261 139.7  213.9  139.674  208.68 139.69 
139.276 139.7  213.9  143.184  207.72 139.69 
139.291 139.7  213.9  143.184  207.72 139.69 
139.306 139.7  213.9  139.674  207.73 141.27 
139.321 139.7  213.9  139.674  207.73 141.27 
139.336 139.7  213.9  139.674  208.66 139.69 
139.352 139.7  213.9  139.674  208.66 139.69 
139.367 139.7  213.9  143.184  207.71 139.69 
139.382 139.7  213.9  143.184  207.71 139.69 
139.397 139.7  214.0  139.674  206.76 141.27 
139.412 139.7  214.0  139.674  206.76 141.27 
139.427 139.7  214.0  139.674  208.67 141.27 
139.442 139.7  214.0  139.674  208.67 141.27 
139.458 139.7  214.0  143.183  208.64 139.69 
139.473 139.7  214.0  143.183  207.69 139.69 
139.488 139.7  214.0  139.674  208.64 139.69 
139.503 139.7  214.0  139.674  207.69 139.69 



135 

139.518 139.7  214.0  139.674  207.69 141.27 
139.533 139.7  214.0  139.674  207.69 141.27 
139.548 139.7  214.0  143.183  208.63 139.69 
139.564 139.7  214.0  143.183  208.63 139.69 
139.579 139.7  214.0  139.674  207.67 139.69 
139.594 139.7  214.0  139.674  207.67 139.69 
139.609 139.7  214.0  139.674  208.63 141.27 
139.624 139.7  214.0  139.674  208.63 141.27 
139.639 139.7  214.0  143.182  206.72 141.27 
139.655 139.7  214.0  143.182  206.72 141.27 

139.67 139.7  214.1  139.674  208.61 139.69 
139.685 139.7  214.1  139.674  208.61 139.69 

139.7 139.7  214.1  139.675  207.65 139.69 
138.2 138.2  214.1  139.675  207.65 139.69 
138.2 138.23  214.1  143.182  207.66 141.27 
138.2 138.26  214.1  143.182  207.66 141.27 
138.2 138.29  214.1  139.675  208.59 139.69 
138.2 138.32  214.1  139.675  208.59 139.69 
138.2 138.35  214.1  139.675  207.64 139.69 
138.2 138.38  214.1  139.675  207.64 139.69 
138.2 138.41  214.1  143.181  206.69 141.27 
138.2 138.44  214.1  143.181  206.69 141.27 
138.2 138.47  214.1  139.675  208.60 141.27 
138.2 138.50  214.1  139.675  208.60 141.27 
138.2 138.53  214.1  139.675  208.57 139.69 
138.2 138.56  214.1  139.675  207.62 139.69 
138.2 138.59  214.1  143.181  208.57 139.69 
138.2 138.62  214.1  143.181  207.62 139.69 
138.2 138.65  214.1  139.675  207.62 141.27 
138.2 138.68  214.1  139.675  207.62 141.27 
138.2 138.71  214.2  139.675  208.56 139.69 
138.2 138.74  214.2  139.675  208.56 139.69 
138.2 138.77  214.2  143.18  207.60 139.69 
138.2 138.80  214.2  143.18  207.60 139.69 
138.2 138.83  214.2  139.675  206.65 141.27 
138.2 138.86  214.2  139.675  206.65 141.27 
138.2 138.89  214.2  139.675  208.56 141.27 
138.2 138.92  214.2  139.675  208.56 141.27 
138.2 138.95  214.2  143.18  208.54 139.69 
138.2 138.98  214.2  143.18  208.54 139.69 
138.2 139.01  214.2  139.675  207.58 139.69 
138.2 139.04  214.2  139.675  207.58 139.69 
138.2 139.07  214.2  139.675  207.59 141.27 
138.2 139.10  214.2  139.675  207.59 141.27 
138.2 139.13  214.2  143.179  208.52 139.69 
138.2 139.17  214.2  143.179  208.52 139.69 
138.2 139.2  214.2  139.675  207.57 139.69 
138.2 139.23  214.2  139.675  207.57 139.69 
138.2 139.26  214.3  139.675  206.62 141.27 
138.2 139.29  214.3  139.675  206.62 141.27 
138.2 139.32  214.3  143.179  208.53 141.27 
138.2 139.35  214.3  143.179  208.53 141.27 



136 

138.2 139.38  214.3  139.675  208.51 139.69 
138.2 139.41  214.3  139.675  208.51 139.69 
138.2 139.44  214.3  139.675  207.55 139.69 
138.2 139.47  214.3  139.675  207.55 139.69 
138.2 139.50  214.3  143.178  207.55 141.27 
138.2 139.53  214.3  143.178  207.55 141.27 
138.2 139.56  214.3 149   207.53 139.69 
138.2 139.59  214.3 131   207.53 139.69 
138.2 139.62  214.3  139.675  208.49 139.69 
138.2 139.65  214.3  139.675  208.49 139.69 
138.2 139.68  214.3  139.675  206.58 141.27 
138.2 139.71  214.3  139.675  206.58 141.27 
138.2 139.74  214.3  143.178  208.49 141.27 
138.2 139.77  214.3  143.178  208.49 141.27 
138.2 139.80  214.3  139.675  207.51 139.69 
138.2 139.83  214.3  139.675  207.51 139.69 
138.2 139.86  214.4  139.676  208.47 139.69 
138.2 139.89  214.4  139.676  208.47 139.69 
138.2 139.92  214.4  143.177  207.52 141.27 
138.2 139.95  214.4  143.177  207.52 141.27 
138.2 139.98  214.4  139.676  207.50 139.69 
138.2 140.01  214.4  139.676  207.50 139.69 
138.2 140.04  214.4  139.676  208.45 139.69 
138.2 140.07  214.4  139.676  208.45 139.69 
138.2 140.10  214.4  143.177  206.55 141.27 
138.2 140.13  214.4  143.177  206.55 141.27 
138.2 140.17  214.4  139.676  208.46 141.27 
138.2 140.2  214.4  139.676  208.46 141.27 
138.2 140.23  214.4  139.676  207.48 139.69 
138.2 140.26  214.4  139.676  207.48 139.69 
138.2 140.29  214.4  143.176  208.43 139.69 
138.2 140.32  214.4  143.176  208.43 139.69 
138.2 140.35  214.4  139.676  207.48 141.27 
138.2 140.38  214.4  139.676  207.48 141.27 
138.2 140.41  214.5  139.676  207.46 139.69 
138.2 140.44  214.5  139.676  207.46 139.69 
138.2 140.47  214.5  143.176  208.42 139.69 
138.2 140.50  214.5  143.176  208.42 139.69 
138.2 140.53  214.5  139.676  206.51 141.27 
138.2 140.56  214.5  139.676  206.51 141.27 
138.2 140.59  214.5  139.676  208.42 141.27 
138.2 140.62  214.5  139.676  208.42 141.27 
138.2 140.65  214.5  143.175  207.44 139.69 
138.2 140.68  214.5  143.175  207.44 139.69 
138.2 140.71  214.5  143.175  208.40 139.69 
138.2 140.74  214.5  143.175  208.40 139.69 
138.2 140.77  214.5  136.172  207.45 141.27 
138.2 140.80  214.5  143.104  207.45 141.27 
138.2 140.83  214.5  136.172  207.43 139.69 
138.2 140.86  214.5  143.104  207.43 139.69 
138.2 140.89  214.5  136.243  208.38 139.69 
138.2 140.92  214.5  143.033  208.38 139.69 



137 

138.2 140.95  214.5  136.243  206.48 141.27 
138.2 140.98  214.5  143.033  206.48 141.27 
138.2 141.01  214.5  136.314  208.39 141.27 
138.2 141.04  214.5  142.962  208.39 141.27 
138.2 141.07  214.5  136.314  208.36 139.69 
138.2 141.10  214.5  142.962  207.41 139.69 
138.2 141.13  214.5  142.891  208.36 139.69 
138.2 141.17  214.5  142.891  207.41 139.69 
138.2 141.2  214.5  136.385  207.41 141.27 
138.2 138.2  214.5  136.385  207.41 141.27 
138.2 138.23  214.5  142.82  208.35 139.69 
138.2 138.26  214.5  142.82  207.39 139.69 
138.2 138.29  214.5  136.456  208.35 139.69 
138.2 138.32  214.5  136.456  207.39 139.69 
138.2 138.35  214.5  139.676  206.44 141.27 
138.2 138.38  214.5  139.676  206.44 141.27 
138.2 138.41  214.5  136.527  208.35 141.27 
138.2 138.44  214.5  142.749  208.35 141.27 
138.2 138.47  214.5  136.527  208.33 139.69 
138.2 138.50  214.5  142.749  208.33 139.69 
138.2 138.53  214.5  136.598  207.38 141.27 
138.2 138.56  214.5  142.678  207.38 141.27 
138.2 138.59  214.5  136.598  208.31 139.69 
138.2 138.62  214.5  142.678  208.31 139.69 
138.2 138.65  214.5  136.669  206.41 141.27 
138.2 138.68  214.5  136.669  206.41 141.27 
138.2 138.71  214.5  142.608  208.32 141.27 
138.2 138.74  214.5  142.608  208.32 141.27 
138.2 138.77  214.5  136.74  208.30 139.69 
138.2 138.80  214.5  136.74  208.30 139.69 
138.2 138.83  214.5  136.81  207.34 141.27 
138.2 138.86  214.5  136.81  207.34 141.27 
138.2 138.89  214.5  142.537  208.28 139.69 
138.2 138.92  214.5  142.537  208.28 139.69 
138.2 138.95  214.5  136.881  206.37 141.27 
138.2 138.98  214.5  136.881  206.37 141.27 
138.2 139.01  214.5  136.952  208.28 141.27 
138.2 139.04  214.5  136.952  208.28 141.27 
138.2 139.07  214.5  142.466  208.26 139.69 
138.2 139.10  214.5  142.466  208.26 139.69 
138.2 139.13  214.5  137.023  207.31 141.27 
138.2 139.17  214.5  137.023  207.31 141.27 
138.2 139.2  214.5  137.094  208.24 139.69 
138.2 139.23  214.5  142.395  208.24 139.69 
138.2 139.26  214.5  137.094  206.33 141.27 
138.2 139.29  214.5  142.395  206.33 141.27 
138.2 139.32  214.5  139.676  208.25 141.27 
138.2 139.35  214.5  139.676  208.25 141.27 
138.2 139.38  214.5  137.165  208.23 139.69 
138.2 139.41  214.5  142.325  208.23 139.69 
138.2 139.44  214.5  137.165  207.27 141.27 
138.2 139.47  214.5  142.325  207.27 141.27 



138 

138.2 139.50  214.5  137.236  208.21 139.69 
138.2 139.53  214.5  137.236  208.21 139.69 
138.2 139.56  214.5  142.254  206.30 141.27 
138.2 139.59  214.5  142.254  206.30 141.27 
138.2 139.62  214.5  137.307  208.21 141.27 
138.2 139.65  214.5  142.183  208.21 141.27 
138.2 139.68  214.5  137.307  208.19 139.69 
138.2 139.71  214.5  142.183  208.19 139.69 
138.2 139.74  214.5  137.377  207.24 141.27 
138.2 139.77  214.5  137.377  207.24 141.27 
138.2 139.80  214.5  142.113  208.17 139.69 
138.2 139.83  214.5  142.113  208.17 139.69 
138.2 139.86  214.5  137.448  206.26 141.27 
138.2 139.89  214.5  142.042  206.26 141.27 
138.2 139.92  214.5  137.448  208.18 141.27 
138.2 139.95  214.5  142.042  208.18 141.27 
138.2 139.98  214.5  137.519  208.16 139.69 
138.2 140.01  214.5  137.519  208.16 139.69 
138.2 140.04  214.5  141.972  207.20 141.27 
138.2 140.07  214.5  141.972  207.20 141.27 
138.2 140.10  214.5  137.59  208.14 139.69 
138.2 140.13  214.5  141.901  208.14 139.69 
138.2 140.17  214.5  137.59  206.23 141.27 
138.2 140.2  214.5  141.901  206.23 141.27 
138.2 140.23  214.5  137.661  208.14 141.27 
138.2 140.26  214.5  137.661  208.14 141.27 
138.2 140.29  214.5  141.83  208.12 139.69 
138.2 140.32  214.5  141.83  208.12 139.69 
138.2 140.35  214.5  137.732  207.17 141.27 
138.2 140.38  214.5  141.76  207.17 141.27 
138.2 140.41  214.5  137.732  208.10 139.69 
138.2 140.44  214.5  141.76  208.10 139.69 
138.2 140.47  214.5  137.802  206.19 141.27 
138.2 140.50  214.5  137.802  206.19 141.27 
138.2 140.53  214.5  137.873  208.11 141.27 
138.2 140.56  214.5  141.689  208.11 141.27 
138.2 140.59  214.5  137.873  208.09 139.69 
138.2 140.62  214.5  141.689  208.09 139.69 
138.2 140.65  214.5  141.618  207.13 141.27 
138.2 140.68  214.5  141.618  207.13 141.27 
138.2 140.71  214.5  139.676  208.07 139.69 
138.2 140.74  214.5  139.676  208.07 139.69 
138.2 140.77  214.5  137.944  206.16 141.27 
138.2 140.80  214.5  141.548  206.16 141.27 
138.2 140.83  214.5  137.944  208.07 141.27 
138.2 140.86  214.5  141.548  208.07 141.27 
138.2 140.89  214.5  138.015  207.10 141.27 
138.2 140.92  214.5  141.477  207.10 141.27 
138.2 140.95  214.5  138.015  206.12 141.27 
138.2 140.98  214.5  141.477  206.12 141.27 
138.2 141.01  214.5  141.407  207.06 141.27 
138.2 141.04  214.5  141.407  207.06 141.27 
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138.2 141.07  214.5  138.085  206.09 141.27 
138.2 141.10  214.5  141.336  206.09 141.27 
138.2 141.13  214.5  138.085  206.05 141.27 
138.2 141.17  214.5  141.336  206.05 141.27 
138.2 141.2  214.5  138.156  208.13 139.69 

   214.5  141.265  208.13 139.69 
   214.5  138.156  208.11 139.69 
   214.5  141.265  208.11 139.69 
   214.5  141.124  208.12 141.27 
   214.5  141.195  208.12 141.27 
   214.5  141.124  208.09 139.69 
   214.5  141.195  208.09 139.69 
   214.5  138.227  208.08 139.69 
   214.5  141.053  208.08 139.69 
   214.5  138.227  208.08 141.27 
   214.5  141.053  208.08 141.27 
   214.5  138.298  208.06 139.69 
   214.5  140.983  208.06 139.69 
   214.5  138.298  207.11 141.27 
   214.5  140.983  207.11 141.27 
   214.5  138.369  208.04 139.69 
   214.5  140.912  208.04 139.69 
   214.5  138.369  208.05 141.27 
   214.5  140.912  208.05 141.27 
   214.6  138.439  208.02 139.69 
   214.6  140.771  208.02 139.69 
   214.6  140.841  207.07 141.27 
   214.6  138.439  207.07 141.27 
   214.6  140.771  206.10 141.27 
   214.6  140.841  206.10 141.27 
   214.6  138.51  208.01 139.69 
   214.6  138.581  208.01 139.69 
   214.6  140.7  208.01 141.27 
   214.6  138.51  208.01 141.27 
   214.6  138.581  207.99 139.69 
   214.6  140.7  207.99 139.69 
   214.6  138.651  207.04 141.27 
   214.6  140.63  207.04 141.27 
   214.6  138.651  206.07 141.27 
   214.6  140.63  206.07 141.27 
   214.6  138.722  207.97 139.69 
   214.6  138.793  207.97 139.69 
   214.6  140.559  207.98 141.27 
   214.6  138.722  207.98 141.27 
   214.6  138.793  208.02 139.69 
   214.6  140.559  208.02 139.69 
   214.6  138.863  208.98 139.77 
   214.6  138.934  208.98 139.80 
   214.6  139.005  208.98 139.83 
   214.6  139.076  208.98 139.87 
   214.6  140.418  208.98 139.93 
   214.6  140.488  208.98 140.02 
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   214.6  138.863  208.98 140.15 
   214.6  138.934  208.98 139.77 
   214.6  139.005  208.98 139.80 
   214.6  139.076  208.98 139.83 
   214.6  140.418  208.98 139.87 
   214.6  140.488  208.98 139.93 
   214.6  139.146  208.98 140.02 
   214.6  139.217  208.98 140.15 
   214.6  139.288  208.98 139.69 
   214.6  139.358  208.98 139.69 
   214.6  139.146  208.98 139.74 
   214.6  139.217  208.98 139.90 
   214.6  139.288  208.98 139.96 
   214.6  139.358  208.98 139.99 
   214.6  139.429  208.98 140.06 
   214.6  139.5  208.98 140.09 
   214.6  139.57  208.98 140.12 
   214.6  139.641  208.98 140.28 
   214.6  140.347  208.98 139.74 
   214.6  139.429  208.98 139.90 
   214.6  139.5  208.98 139.96 
   214.6  139.57  208.98 139.99 
   214.6  139.641  208.98 140.06 
   214.6  140.347  208.98 140.09 
   214.6  139.676  208.98 140.12 
   214.6  139.676  208.98 140.28 
   214.6  139.712  208.98 139.35 
   214.6  139.782  208.98 139.39 
   214.6  139.853  208.98 139.42 
   214.6  139.923  208.98 139.45 
   214.6  140.206  208.98 139.48 
   214.6  140.277  208.98 139.55 
   214.6  139.712  208.98 139.58 
   214.6  139.782  208.98 139.61 
   214.6  139.853  208.98 139.64 
   214.6  139.923  208.98 139.67 
   214.6  140.206  208.98 139.71 
   214.6  140.277  208.98 140.18 
   214.6  139.994  208.98 140.22 
   214.6  140.065  208.98 140.25 
   214.6  140.135  208.98 140.38 
   214.6  139.994  208.98 139.35 
   214.6  140.065  208.98 139.39 
   214.6  140.135  208.98 139.42 
   214.8 148.75   208.98 139.45 
   214.8 131.25   208.98 139.48 
   215.2 148.5   208.98 139.55 
   215.2 131.5   208.98 139.58 
   215.6 148.25   208.98 139.61 
   215.6 131.75   208.98 139.64 
   216 148   208.98 139.67 
   216 132   208.98 139.71 
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   216.3 147.75   208.98 140.18 
   216.3 132.25   208.98 140.22 
   216.6 147.5   208.98 140.25 
   216.6 132.5   208.98 140.38 
   216.8 147.25   208.98 139.07 
   216.8 132.75   208.98 139.16 
   217.1 147   208.98 139.23 
   217.1 133   208.98 139.26 
   217.3 146.75   208.98 139.29 
   217.3 133.25   208.98 139.32 
   217.5 146.5   208.98 139.51 
   217.5 133.5   208.98 140.31 
   217.8 146.25   208.98 140.34 
   217.8 133.75   208.98 140.41 
   218 146   208.98 140.44 
   218 134   208.98 140.47 
   218.1 145.75   208.98 140.50 
   218.1 134.25   208.98 139.07 
   218.3 145.5   208.98 139.16 
   218.3 134.5   208.98 139.23 
   218.5 145.25   208.98 139.26 
   218.5 134.75   208.98 139.29 
   218.6 145   208.98 139.32 
   218.6 135   208.98 139.51 
   218.7 144.75   208.98 140.31 
   218.7 135.25   208.98 140.34 
   218.9 144.5   208.98 140.41 
   218.9 135.5   208.98 140.44 
   219.0 144.25   208.98 140.47 
   219.0 135.75   208.98 140.50 
   219.1 144   208.98 138.94 
   219.1 136   208.98 138.97 
   219.2 143.75   208.98 139.01 
   219.2 136.25   208.98 139.04 
   219.3 143.5   208.98 139.10 
   219.3 136.5   208.98 139.13 
   219.4 143.25   208.98 139.20 
   219.4 136.75   208.98 140.53 
   219.5 143   208.98 138.94 
   219.5 137   208.98 138.97 
   219.6 142.75   208.98 139.01 
   219.6 137.25   208.98 139.04 
   219.6 142.5   208.98 139.10 
   219.6 137.5   208.98 139.13 
   219.7 142.25   208.98 139.20 
   219.7 137.75   208.98 140.53 
   219.7 142   207.00 141.27 
   219.7 138   207.00 141.27 
   219.8 141.75   208.98 138.88 
   219.8 138.25   208.98 138.91 
   219.8 141.5   208.98 140.57 
   219.8 138.5   208.98 140.60 
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   219.9 141.25   208.98 140.63 
   219.9 138.75   208.98 140.66 
   219.9 141   208.98 140.69 
   219.9 139   208.98 140.73 
   219.9 140.75   208.98 140.76 
   219.9 139.25   208.98 138.88 
   219.9 140.5   208.98 138.91 
   219.9 139.5   208.98 140.57 
   219.9 140.25   208.98 140.60 
   219.9 139.75   208.98 140.63 
   220 140   208.98 140.66 
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Appendix F: Data Tables for Chap. 6 Figures 

Appendix F.1: Data Table for Fig. 6.7 

 

Square 
Root 
Mass 

Time 
4 kG 
(ns)

Time 
6 kG 
(ns)

Time 
8 kG 
(ns)

Time 
10 kG 
(ns)

Time 
12 kG 
(ns)

Time 
14 kG 
(ns)

Time 
16 kG 
(ns)

3.4641 16659 16040 15682 15441 15262 15125 15015 
4.0000 19358 18581 18134 17835 17615 17442 17301 
4.3589 21192 20311 19795 19457 19204 18853 
4.8990 23996 22950 22340 21933 21633 21396 21204 
5.0990 25051 23941 23291 22858 22539 22289 22084 
5.6569 27995 26707 25944 25438 25065 24771 24531 
5.9161 29392 28017 27201 26657 26257 25944 25687 
6.0828 30296 28864 28014 27447 27027 26699 26430 
6.9282 34967 33217 32188 31494 30983 30583 30256 
7.7460 39559 37485 36262 35445 34847 34374 33985 
8.4853 41432 39086 38410 37865 37415 
8.7178 41206 40226 39524 38959 38490 
9.7980 43591 
10.954 49762 49102 
11.662 53238 52516 
14.213 65121 64156 

 

Appendix F.2: Data Table for Fig. 6.8 

 

Mass 
(u) 

Time 
4 kG 
(*10-5 s) 

Time  
6 kG 
(*10-5 s) 

Time  
8 kG 
(*10-5 s) 

Time  
10 kG 
(*10-5 s) 

Time  
12 kG 
(*10-5 s) 

Time  
14 kG 
(*10-5 s) 

Time  
16 kG 
(*10-5 s) 

12 1.67 1.60 1.57 1.54 1.53 1.51 1.50 
16 1.94 1.86 1.81 1.78 1.76 1.74 1.73 
19 2.12 2.03 1.98 1.95 1.92 1.89 
24 2.40 2.30 2.23 2.19 2.16 2.14 2.12 
26 2.51 2.39 2.33 2.29 2.25 2.23 2.21 
32 2.80 2.67 2.59 2.54 2.51 2.48 2.45 
35 2.94 2.80 2.72 2.67 2.63 2.59 2.57 
37 3.03 2.89 2.80 2.74 2.70 2.67 2.64 
48 3.50 3.32 3.22 3.15 3.10 3.06 3.03 
60 3.96 3.75 3.63 3.54 3.48 3.44 3.40 
72 4.14 3.91 3.84 3.79 3.74 
76 4.12 4.02 3.95 3.90 3.85 
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Appendix F.3: Data Table for Fig. 6.12 

 

Field 
(kG) 

Res. 
Both 
16u 

Res. 
12u 

Res. Err.  
12u 

Res. 
16u 

Res. 
36u 

Res. 
60u 

Res. 
96u 

Res. 
156u 

Res. Err. 
156u 

4 172 194 16.6 188 276 305 
6 149 179 20.7 169 238 260 293 
8 154 169 21.1 168 218 239 249 

10 161 169 20.9 178 209 229 238 234 12.8 
12 165 181 17.9 178 201 219 224 214 10.4 
14 166 184 15.2 179 191 210 216 206 3.1 
16 161 172 19.9 174 180 209 215 206 3.1 

 

Appendix F.4: Data Table for Fig. 6.13 

 

Field 
(kG) 

Res. 
Both 
16u 

Res. 
16u 

Res. 
Err. 
16 u 

Res. 
28u 

Res. 
56u 

Res. 
76u 

Res. 
105u 

Res. 
Err. 
105u 

Gnaser/  
Verdiel 

Sim. 
Res. 
28u 

Uni. 
Dist. 
Sim.  
Res. 
28u 

4 172 149 22.9 158 238 189 98.9
6 149 120 31.4 120 221 274 318 74.6 155 96.4
8 154 134 18.4 97 196 243 313 68.3 148 93.1

10 161 141 16.2 107 166 217 281 64.2 149 92.2
12 165 144 13.5 107 139 200 262 57.2 149 89.4
14 166 147 13.7 104 146 203 260 62.3 140 86.4
16 161 149 16.3 101 148 205 251 56.2 129 87.6

 

Appendix F.5: Data Table for Fig. 6.14 

 

Mass 
(u) 

Mass Resolution,  
Graphite Mass 

Spectra 
Mass Resolution Error, 
Graphite Mass Spectra 

Mass Resolution, 
 Graphite Time 

Spectra 
12 169.3 20.9 
16 178 12.7 140.82 
28 106.39 
36 209.1 14.3 
56 165.76 
60 229.9 18.3 
76 215.98 
96 238.2 27.6 

105 283.11 
157 234.6 12.8 
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Appendix G: Sample SIMION Geometry File 

Appendix G.1: Geometry file for reflectron ion mirror 

 

;6 way cross reflectron assembly model 
; 
PA_Define(300,300,300,planar,none,electrostatic)  
Locate(0,0,0,1,0,0,0) 
{ 
;outer beam tube along z axis 
Locate(139.7,139.7,0) 
{  
 electrode (0) 
 { 
  Fill{within{cylinder(0,0,279.4,79,79,279.4)} } 
 } 
} 
;outer beam tube along x axis 
Locate(0,139.7,139.7,1,90,0,0) 
{  
 electrode (0) 
 { 
  Fill{within{cylinder(0,0,279.4,79,79,279.4)} } 
 } 
} 
;outer beam tube along y axis 
Locate(139.7,0,139.7,1,0,0,270) 
{  
 electrode (0) 
 { 
  Fill{within{cylinder(0,0,279.4,79,79,279.4)} } 
 } 
} 
;inner beam tube along z axis 
Locate(139.7,139.7,0) 
{  
 non_electrode () 
 { 
  Fill{within{cylinder(0,0,279.4,73.4,73.4,279.4)} } 
 } 
} 
;inner beam tube along x axis 
Locate(0,139.7,139.7,1,90,0,0) 
{  
 non_electrode () 
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 { 
  Fill{within{cylinder(0,0,279.4,73.4,73.4,279.4)} } 
 } 
} 
;inner beam tube along y axis 
Locate(139.7,0,139.7,1,0,0,270) 
{  
 non_electrode () 
 { 
  Fill{within{cylinder(0,0,279.4,73.4,73.4,279.4)} } 
 } 
} 
;rear reflectron plate 
Locate(139.7,139.7,107.7,1,45,,) 
{ 
 electrode(1) 
 { 
  Fill{Within{cylinder(0,0,3.175,80,54,3.175)} } 
 } 
} 
;halo electrode 
Locate(118.5,139.7,88.5,1,45,,) 
{ 
 electrode(2) 
 { 
  Fill{Within{cylinder(0,0,3.175,100,54,3.175)} } 
 } 
} 
Locate(118.5,139.7,88.5,1,45,,) 
{ 
 non_electrode() 
 { 
  Fill{Within{cylinder(0,0,3.175,70,34,3.175)} } 
 } 
} 
;front reflectron plate 
Locate(97.3,139.7,67.3,1,45,,) 
{ 
 electrode(3) 
 { 
  Fill{Within{cylinder(0,0,3.175,100,54,3.175)} } 
 } 
} 
;faraday cup suppressor 
Locate(139.7,139.7,139.7,1,45,,) 
{ 
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 electrode(5) 
 { 
  Fill{Within{Cylinder(0,0,0,28,28,3.175)} } 
 } 
} 
;Center beam path 
Locate(139.7,139.7,0) 
{  
 non_electrode () 
 { 
  Fill{within{cylinder(0,0,279.4,14,14,279.4)} } 
 } 
} 
;MCP  
Locate(45,139.7,109.7,1,270,0,0) 
{  
 electrode (4) 
 { 
  Fill{within{cylinder(0,0,20,10,10,16)} } 
 } 
} 
;MCP beam path 
Locate(50,139.7,109.7,1,270,0,0) 
{  
 non_electrode () 
 { 
  Fill{within{cylinder(0,0,0,8,8,15)} } 
 } 
} 
;faraday cup 
Locate(148.6,139.7,148.6,1,45,,) 
{ 
 electrode(6) 
 { 
  Fill{Within{cylinder(0,0,0,28,28,3.175)} } 
 } 
} 
} 
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