
ABSTRACT

Title of dissertation: DIRECTED CELL MIGRATION:
FROM SINGLE CELLS
TO COLLECTIVELY MOVING
CELL GROUPS

Can Guven, Doctor of Philosophy, 2014

Dissertation directed by: Professor Wolfgang Losert
Department of Physics

Unlike molecules, which are driven thermally by Brownian motion, eukaryotic

cells move in a particular direction to accomplish designated tasks that are involved

in diverse biological processes such as organ development and tumor progression.

In this dissertation, I present experiments, analysis, and modeling of directed in-

dividual and collective cell migration. At subcellular scale, the migration of cells

can be guided via the interaction of the cell cytoskeleton with the surrounding nan-

otopographic elements. I show that mechanical waves of actin polymerization are

involved in this guidance–known as contact guidance–as dynamic sensors of surface

nanotopography. The dynamics of guided actin waves were measured to build and

test predictive models of contact guidance. The distributions of actin-wave prop-

agation speed and direction were obtained from experimental observations of cell

migration on nanotopographic surfaces as a function of the spacing between adja-

cent features (varying between 0.8 and 5 microns). I show that actin polymerization

is preferentially localized to nanoscale features for a range of spacings. Addition-



ally, the velocity of actin polymerization waves moving parallel to the direction of

nanoridges depends on the nanoridge spacing. A model of actin polymerization

dynamics in which nanoridges modify the distribution of the nucleation promoting

factors captures these key observations. For individual cells, the question is how

the intracellular processes result in directed migration of cells. I introduce a coarse-

grained model for cell migration to connect contact guidance to intrinsic cellular

oscillations.

The guidance of collective cell migration can be dictated via intercellular com-

munication, which is facilitated by biochemical signals. I present a coarse-grained

stochastic model for the influence of signal relay on the collective behavior of mi-

grating Dictyostelium discoideum cells. In the experiment cells display a range of

collective migration patterns including uncorrelated motion, formation of partially

localized streams, and clumping, depending on the type of cell and the strength

of the external concentration gradient of the signaling molecule cyclic adenosine

monophosphate (cAMP). The collective migration model shows that the pattern of

migration can be quantitatively described by considering the competition of two

processes, the secretion of cAMP by the cells and the degradation of cAMP in the

gradient chamber. With degradation, the model secreting cells form streams and

efficiently traverse the gradient, but without degradation the model secreting cells

form clumps without streaming. This observation indicates that streaming requires

not only signal relay but also degradation of the signal. In addition, I show how

this model can be extended to other eukaryotic systems that exhibit more complex

cell-cell communication, in which the impact on collective migration is more subtle.
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Chapter 1: Introduction

1.1 Cell migration

Our overall aim is characterization of directed cell migration. Cell migration is

a ubiquitous phenomenon observed in a wide range of processes including embryonic

development [1], wound healing [2], and tumor progression [3,4]. The social amoeba,

Dictyostelium discoideum, serves both as a biological and a mathematical model

system for the study the individual components of the multicellular processes listed

above. These components include signaling pathways that are involved in the sensing

of chemical gradients and the cell cytoskeleton, which plays a crucial role in cell

motion [5].

The dynamics of the migration of the slime mold D. discoideum has been stud-

ied as a model for chemotaxis [6–8], individual amoeboid motion [9–11], and group

migration [12,13]. Studying these phenomena provides insights into human inflam-

matory response to wounds and infections as well as into cancer cell migration [14].

1



1.2 A model organism: D. discoideum

D. discoideum cells both sense and secrete the same chemoattractant, cyclic

adenosine monophosphate (cAMP), providing a bias towards coordinated motion in

neighboring cells. For low densities or strong external chemoattractant gradients,

uniformly distributed D. discoideum cells move independently. However, other con-

ditions allow for chemical signaling between cells, resulting in the formation of chains

of migrating cells called “streams” [8, 15,16].

When food is plentiful, D. discoideum cells exist as single cells and chemo-

tax towards the bacterial metabolic product folic acid. When food is removed, D.

discoideum transitions from single cell to collective behavior - through the spon-

taneous secretion and detection of cAMP (Fig. 1.1 shows stages of this transition

from unicellular phase to the multicellular phase). The cooperative behavior of

this spontaneous transition was found to follow Winfree synchronization [17] and

the emergence of pulsatile, signaling centers is beautifully described in [18]. These

pulses travel through a population of D. discoideum in spiral waves [19, 20]. Secre-

tion of the extracellular phosphodiesterase (PDE1) is essential for the spontaneous

transition [21]. Each pulse of external cAMP detected by cells results in an increase

in gene expression promoting collective behavior [22], and after 4-6 hours of cAMP

mediated development, cells begin to aggregate. In order to determine the essen-

tials for chemotaxis and streaming separate from those needed for development,

researchers often provide exogenous pulses of cAMP [22,23].

From the previous studies, it has been found that cAMP secretion is essential

2



Figure 1.1: D. discoideum can exist in either in unicellular or in multi-
cellular phases. (Figure reused under GFDL and CC BY-SA licenses.)

for streaming, but not for chemotaxis. Cells lacking adenyl cyclase A, the enzyme

primarily responsible for internal cAMP production during aggregation, will chemo-

tax to cAMP without forming streams [24]. Development and chemotaxis to cAMP

in cells lacking the gene for PDE1 can be rescued through periodic addition of par-

tially purified PDE1. Cells lacking PDE1 secretion will chemotax to cAMP and

form transient streams to a central source of cAMP, although in linear gradients,

the streams appear thicker than wild type [25]. Spontaneous aggregation by de-

veloped PDE1 null cells can be recovered with the addition of a uniform bolus of

exogenous PDE1, although the addition of exogenous PDE1 is insufficient to recover

the spatial extent of the streams.

Aside from the collective aspects of their migration, individual D. discoideum

3



Figure 1.2: (a) Overlayed image of actin binding protein limE-∆coil
tagged with red fluorescent protein and coronin (another actin binding
protein) tagged with green fluorescent protein for three time points. (b)
Fluorescence intensity of the tagged proteins along the direction of pro-
trusion. Propagation of the polymerization wave front is evident. Time
is indicated in seconds. Scale bar is 5 µm. (Figure reproduced from
Ref. [26] under Elsevier user license.)

cells move by generating protrusions that are primarily concentrated at their front.

These protrusions are large deformations on the plasma membrane and emerge due

to the reorganization of the cell’s cytoskeleton.

1.3 Migration at subcellular scale

Actin is an essential component of the cellular cytoskeleton. Its dynamic poly-

merization and depolymerization cycle not only maintains the integrity of the cell’s

cytoskeleton but also results in generation of the sufficient forces that push against

the cell membrane and facilitate movement. Many co-factors assist actin polymeriza-

4



tion and modify the spatial organization of the polymerized actin filaments [27–29].

In vivo, the polymerization of actin exhibits reaction-diffusion waves [30,31]. These

waves of polymerizing actin and their interactions with the cellular environment

guide the motion of neutrophils [31,32] and D. discoideum [26,30]. Fig. 1.2 shows a

traveling actin polymerization wave in a D. discoideum cell. Here, two actin-binding

proteins (limE and coronin) are shown for three snapshots. LimE binds to the poly-

merizing actin and is tagged with a red fluorescent marker. The expression of this

protein is at a maximum close to the plasma membrane (Fig. 1.2a). The profile

of the intensity of limE along the direction of cell motion (depicted with white ar-

rows) is shown in Fig. 1.2b, which illustrates the propagation of the wave front. In

this dissertation, we investigate how these subcellular waves contribute to directed

migration.

1.4 Directed migration

Cells orchestrate complex processes such as identifying external guidance cues

and modifying their cytoskeleton to arrive at a target destination, which is dictated

presumably by an external chemical or mechanical cue (i.e., a signal) [33, 34]. The

preferential migration of cells is known as directed migration and is essential in single

cell motion and multicellular processes. A characteristic behavior of the cells that

perform directed migration is persistence of their motion [8]. Even in the absence of

external cues that provide a preferential direction, cells undergo persistent motion,

which becomes random motion over long timescales [9,35]. Of the external cues that

5



guide cell motion two are prominent: (i) guidance by chemoattractant gradients [36,

37] (chemotaxis) and (ii) guidance of motion via the interaction between the cell

cytoskeleton and the surrounding mechanical restrictions [38] (contact guidance).

1.5 Chemotaxis and collective motion

Eukaryotic cells frequently transduce external chemical gradients into directed

cell migration [6], a phenomenon known as chemotaxis. Work in the last few decades

has identified components of the intracellular biochemical networks that mediate

cellular response to external chemical gradients. It has been found that responsive

components such as the phosphoinositide lipids (PIPs), PI3K, and PTEN are highly

conserved across cell types. In these efforts, the model organism D. discoideum has

been a useful source for the discovery of biochemical network components and the

development of quantitative models exploring plausible mechanisms for mediating

directional sensing.

D. discoideum cells transduce the chemoattractant gradient through G-protein

coupled receptors [36,37]. These receptors are uniformly distributed on the cell mem-

brane (Fig. 1.3a). Other intracellular biochemicals are distributed anisotropically

in response to the external chemoattractant gradient. For example, in the pres-

ence of an external chemoattractant gradient the cytosolic regulator of adenosine

cyclase (CRAC) is localized at the cell front (Figs. 1.3a-b). The local excitation

global inhibition model (LEGI) recapitulates this localization of biochemicals as-

sociated with the gradient sensing [39]. In this model the binding of a ligand to

6



Figure 1.3: (a) In a chemoattractant gradient, G-proteins are uniformly
distributed, whereas PH-Crac proteins exhibit spatial asymmetry. (b)
Intracellular distribution of GFP-labeled PH-Crac in an externally im-
posed chemoattractant gradient. (c) Local excitation global inhibition
model. (Figure reproduced from Ref. [37] under the CC BY license.)
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Figure 1.4: In response to an external chemoattractant gradient the
membrane-bound excitation and the cytosolic inhibition of the response
biochemical results in a spatial anisotropy in its concentration. (Figure
reproduced from Ref. [36].)

a receptor triggers simultaneous expression of the excitation and inhibition of the

response biochemical (e.g., CRAC). The excitation is local meaning that it only

diffuses on the plasma membrane. The inhibitor, on the other hand, diffuses in the

cytosol, and is therefore global. This difference in the diffusion of the excitation

and inhibition biochemicals establishes a delay between the positive and negative

feedforwards (Fig. 1.3c). Additionally, the excitation timescale is faster than the

inhibition timescale. The combined difference in the timescales of excitation and

inhibition provides an excitable system for the dynamics of the response chemical

(Fig. 1.4).

Despite the considerable similarities in gradient detection among D. discoideum

and mammalian cells including neutrophils and neurons, D. discoideum chemotaxis
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displays striking collective behavior not often found in other cell types; D. dis-

coideum cells responding to the extracellular chemical signal cyclic-AMP (cAMP)

tend to migrate in a head-to-tail fashion in what are termed streams [24]. In response

to an external cAMP cue, D. discoideum cells synthesize and secrete cAMP, thereby

relaying the initial signal to nearby cells. Many cell types, including neutrophils,

macrophages, and epithelial cells, have potential signal relay loops, but they do not

tend to migrate in streams in a standard chemotaxis assay. In this dissertation, I

introduce a simple model to analyze how the sensing and signal relay mechanisms

affect the collective dynamics of cells.

1.6 Modeling amoeboid migration

Modeling the individual and group migration of D. discoideum can provide

an understanding of the significance of physical processes that are involved in its

motion. Considering that the cells are performing directed migration in response

to extremely noisy cues, the dynamics of cell migration is also an interesting prob-

lem from a physics perspective. The dynamics of the pre-aggregation stage of D.

discoideum development was analyzed by Potel and Mackay [13], who observed

the motion of cells and calculated various dynamic quantities, such as the mean

speed and the mean square displacement of cells and used Furth’s persistent motion

model [35, 40] to explain their observations. Futrelle et al. [41] investigated chemo-

tactic response to an external signal for early, middle and late developed cells for

different durations and frequencies of cAMP pulses. In particular, the chemotactic
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index and the speed of the cells during development were analyzed, and significant

timescales that define the dynamics were extracted, including the response time to

a change in cAMP gradient (which they estimated to be on the order of 20 seconds).

Gingle [42] measured the smallest cell density, above which collective motion occurs

(≈ 2500 cells/mm2). Gingle and Robertson [43] showed that this limiting density

depends on the development time of the cells. McCann et al. quantified the de-

pendence of cell-cell coordination (in particular formation of “cell-streams”) with

respect to the average distance between cells [8].

The spontaneous emergence of traveling waves in a population of D. dis-

coideum cells has attracted the interest of the mathematics and physics communities

and has led to the development of several computational models to test hypotheses

for mechanisms involving signal transduction, signal relay, and gradient sensing. Pi-

oneering work by Martiel and Goldbeter used a differential equation approach based

on the receptor activation and desensitization dynamics [44] to explain the pulses

of cyclic AMP. Subsequent models studied mechanisms in D. discoideum chemo-

taxis including wave propagation of cAMP signals in an inhomogeneous excitable

medium [19, 45–48], directional sensing via receptor activation followed by further

intracellular signaling [39, 49, 50], and physical forces that regulate cell-cell or cell-

surface interactions [51–54]. In most of these studies, the physical forces of interest

arose from cell-cell contact or tension due to membrane deformation. In this dis-

sertation, I present a coarse-grained model for mechanically-guided cell migration

that identifies forces due to the interaction between internal cellular oscillations and

periodic nanotopographic features in cell’s environment.
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1.7 Contact guidance

Mammalian cells conduct many tasks that require motion, such as develop-

ment, immune response or wound healing while embedded in an extracellular matrix

(ECM) [55–57]. The interaction between cells and the ECM is in part biochemical,

and involves modulation of specific and non-specific adhesion [58] and modification

of the actin scaffolding [59]. However, the ECM also presents a prominent nanoto-

pographic structure through collagen fibrils, which have a characteristic diameter

of approximately 300 nm and can elongate for tens of micrometers [60]. Cells can

detect and respond to such topography of their environment by altering key biolog-

ical functions, such as polarization or migration, in a phenomenon that is known as

contact guidance [38]. In this dissertation, we show how cells can detect features

comparable in size to collagen fibrils even when the cells lack the focal adhesions

that typically bind them directly to the collagen fibrils. We further show that the

contact guidance efficiency, i.e., the degree to which a cell responds to nanotopog-

raphy, depends on the spacing between nanotopographic features and appears to

involve the intrinsic actin dynamics of amoeboid cells [61].

1.8 Outline

Being able to following directional cues and adjusting their motion accordingly

is crucial for cells to accomplish specific tasks. Detecting chemoattractant gradients

facilitates directed cell migration and the key components of chemotaxis have been
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identified through experiments and modeling. Recently, it has been observed that

different mechanical cues can also result in directed migration [62–64]. Although

mechanical cues act differently than chemical stimuli (e.g., effect of contact forces

are immediate, in contrast with the finite timescales in receptor-ligand binding and

subsequent signal transduction) the underlying physical and chemical mechanisms

of the cellular behavior in response to these different stimuli exhibit an intricate

interplay [65].

In this dissertation, we will first show in Chapter 2 how actin polymerization

waves are guided by the externally imposed periodic nanotopography. Detailed anal-

ysis and microscopic modeling of actin waves implicates preferential polymerization

of actin as a potential mechanism for the mechanical guidance of cells. Based on

an actin-polymerization model, we propose microscopic mechanisms for the actin-

substrate coupling that recapitulate the observed characteristics of actin waves in

the presence of external mechanical stimuli. To investigate the significance of de-

polymerization of actin in this coupling, we changed the model parameters to mimic

the effect of a drug that alters depolymerization. These results are compared to ex-

perimental observations of cells under similar conditions. In Appendices A and B

the details of the automated analysis of actin polymerization waves are provided.

Also, a guide to the analysis software is included with detailed figures that explain

the logic of tracking the actin waves and extracting the position of nanoscale features

when they are periodic.

In Chapter 3, we present experiments, analysis and modeling of the modi-

fication of intrinsic cellular oscillations, when cells are migrating in the presence
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of nanotopography. There are two main sections in this chapter. In Section 3.2,

we introduce a cellular oscillations model that investigates how intrinsic cellular

oscillations are modified in the presence of nanotopography. In contrast with the

actin polymerization model introduced in Chapter 2, this model investigates cellu-

lar dynamics at a larger scale. We show experimental data that agrees well with

the predictions of the cellular oscillation model. The cellular oscillations are also

compared to the oscillatory levels of internal actin polymerization observed in other

recent experiments introduced in Ref. [67]. We show that the optimal contact guid-

ance can be achieved when the interaction timescale is matched to the characteristic

timescale of actin polymerization dynamics. Interestingly, these timescales overlap

substantially with the timescales of membrane protrusions (i.e., average duration

of each protrusion and period between protrusions on different ends of the leading

edge of the cell). In Section3.5, through analysis of cells that are confined in one-

dimensional microchannels, we demonstrate that these protrusions can be organized

in a way that greatly increases the persistence of the cell motion.

The other aspect of directed cell migration is the chemical guidance via chemoat-

tractant gradients that are either abundant in nature (e.g., as a source of nutrition)

or established by secreted chemoattractant molecules (e.g., byproducts of bacterial

synthesis). In Chapter 4, we present a collective migration model that is minimal and

recapitulates experimentally observed patterns of group migration of D. discoideum

in the presence of an externally imposed chemoattractant gradient. The model is

utilized to understand the competition between neighboring streams of cells and

the strength of cell-cell communication through comparison of controlled external
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chemoattractant gradients. We use this model to discuss the competition between

the different processes that contribute to cell-cell communication and compare the

results of the model to existing results from the literature.

As discussed in Refs. [65,68], cells can integrate chemical and mechanical cues

by utilizing the associated mechanochemical transduction mechanisms. In Chap-

ter 5, we present an extension of the minimal model that was introduced in Chap-

ter 4 to enable the study of the competition between chemical and mechanical inputs

to the direction of guidance of the cell. Finally, we discuss ongoing work about in-

tegrating multiple chemical and mechanical inputs, as are present in the natural

environment of almost all eukaryotic cells.
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Chapter 2: Actin wave guidance via periodic nanotopography

2.1 Overview

The natural environment of eukaryotic cells is composed of complex nanoto-

pographic elements that facilitate directed migration. Guidance of cell motion is

required in diverse biological processes such as wound healing, embryonic develop-

ment, immune response, and tumor growth. An essential component of directed

cell migration is actin-based motility. Here, we elucidate how contact guidance

is achieved through the dynamic sensing of nanotopography by mechanical waves

of actin polymerization. We quantify the dynamics of actin waves traveling on

nanoridges and use these data to build and test predictive models of contact guid-

ance, and more generally of the dynamic actin cortex. The actin polymerization

model identifies the enhanced nucleation probability of filaments as a potential key

factor in contact guidance.

Contact guidance of amoeboid cells involves not chemoattractant gradients,

but rather sensing of the local nanotopography. Nevertheless, some or all of the

same feedback loops that drive actin polymerization and migration in chemotaxis

may be involved in sensing and responding to surface topography [69]. Recent work

on the feedback loops that drive actin polymerization has shown that cytoskeletal
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regulatory elements (including SCAR/WAVE, Arp 2/3 and additional actin-binding

proteins) can generate a range of features including waves and undulations of the cell

boundary, or oscillatory, spatially stationary actin foci [70]. Ref. [70] concluded that

the oscillatory components are organized by the upstream chemotactic pathways to

yield a large membrane deformation, which regulates the motion of the cell.

In this chapter we show that control of actin waves is also involved in the

contact guidance of amoeboid cells. Through a combination of quantitative obser-

vations and simulations we demonstrate that surface topography guides cell migra-

tion by preferential nucleation and guidance of actin polymerization waves. Some

of the experimental data presented in this chapter were acquired by Xiaoyu Sun,

who also fabricated all of the nanotopographic structures used in the experiments.

Additionally, I acknowledge the assistance from Joshua Parker regarding the initial

adaptation of the actin polymerization model for simulating actin polymerization

on nanotopography.

2.2 Experimental observations

2.2.1 Preferential actin polymerization on nanoridges

To investigate the interaction between actin polymerization and surface to-

pography, we placed starved D. discoideum cells on surfaces with spatially periodic

nanoridges. The dark regions in the bright-field images shown in Fig. 2.1A are crests

that have a constant width of 200-300 nm and a height between 0.4 µm and 1 µm,

depending on the sample. The bright regions are the grooves, which separate the
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nanoridges by a distance, d. We investigated values of d ranging from 0.8 to 5.0

µm. This range is centered around the characteristic length scale of actin polymer-

ization waves found in prior studies (1 to 2 µm) [71]. After adhesion to the surface,

cells were exposed to a spatially uniform cyclic adenosine monophosphate (cAMP)

signal to initiate migration. In this work, we used limE-∆coil-GFP cells, which over-

express limE. The concentration of limE, which is fluorescently labeled, is increased

at sites of polymerization of cortical actin [30, 72], enabling the direct visualization

and analysis of actin polymerization waves. Although limE labels actin indirectly

by binding to polymerizing actin, it has been shown that there is no substantial

difference between the dynamics of limE versus those of directly labeled actin [72]

within the 100- to 200-nm-thick membrane-bound actin filament network [73].

To focus on the actin activity near the surface in contact with the nanoridges,

we imaged cell motion using confocal microscopy with an approximate voxel height

of 1 µm (i.e., ranging roughly from the bottoms to the tops of the nanoridges). We

observed a visual bias in actin polymerization along the nanoridges, resulting in

streaks of limE activity running parallel to the nanoridges (see Fig. 2.1A). As the

spacing between nanoridges increases, the number of streaks is reduced. For large

spacings (5 µm), actin polymerization mediated by the leading edge is more appar-

ent than actin polymerization along the ridges. We imaged multiple confocal slices

separated by 1 µm to analyze the three-dimensional structure of these actin poly-

merization waves (Fig. 2.1B). We found that polymerizing actin filaments surround

the tops of the nanoridges.
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Figure 2.1: (a) Overlayed image of actin binding protein limE-∆coil
tagged with green fluorescent protein and bright field. Actin polymeriza-
tion on crests of the periodic nanotopography (nanoridges) is enhanced.
(b) Confocal slices separated by 1 µm indicate engulfing of nanoridges
with polymerizing actin. (c) Snapshots from a cell moving perpendic-
ularly to nanoridges (depicted with yellow dashed lines) for every two
seconds (top panel). The corresponding actin dynamics (bottom panel)
exhibit an incoming polymerization wave being split by a ridge (depicted
with yellow full line). The scale bar represents 3 µm. (d) Propagation of
an actin polymerization wave on the substrate for four instances sepa-
rated in time (6 seconds between instances). The apparent flow of actin
polymerization is tracked through clustering of flow vectors obtained via
optical flow. All scale bars represent 3 µm.
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2.2.2 Quantification of actin polymerization waves

In addition to the preferential actin polymerization parallel to the nanoridges

that is steered by the topography, actin waves that nucleate independently of the

nanoridges are guided when they encounter nanoridges. A representative example

of such an interaction is shown in Fig 2.1C. Here, an actin wave that propagated

approximately perpendicularly to a ridge split into two waves with opposite orienta-

tions that were aligned parallel to the ridge. More complex wave/ridge interactions,

such as waves fracturing into more waves or merging after being split, are shown in

Figs. A.1-A.4.

In contrast to a physical flow, actin waves involve reaction-diffusion processes

and propagate with a velocity that is determined by growth via treadmilling [26].

Because actin waves and the dynamic phenomena related to them are often highly

disordered, it is difficult to analyze the wave dynamics via deterministic properties

such as wave speed, frequency, and shape. Furthermore, such properties do not pro-

vide an extensive database for comparing theory and experiment. For this reason,

we developed an algorithm for the quantitative evaluation of the statistics of guided

actin waves directly from experimental videos. The algorithm is applied directly

to entire videos, and thus avoids the danger of “cherry-picking” features from the

data. This feature is crucial for obtaining an unbiased comparison of simulation

and experiment. The algorithm is based on optical flow, and compares individual

pixels in successive time-lapse images of actin polymerization to measure the distri-

bution of wave speed and direction. Actin flux vectors are clustered using Tarjan’s
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Figure 2.2: (a) Total speed distribution of actin waves on the nanoridges.
(b) Joint probability density of the actin waves with respect to their
speed, v, and centroid distance from the closest ridge, r, shown for cells
moving on 5 µm-spaced nanoridges. The marginal probability densities
are shown in the corresponding axes. (c) Mean actin wave speed, 〈v〉,
versus mean relative distance of the actin wave centroid from the closest
ridge, 2〈r〉/d, plotted for four different ridge spacings. Error bars cor-
respond to standard error. All results are obtained from experimentally
observed actin waves.

connected-components algorithm [74]. Connections are defined based on the parallel

component of a flux vector with respect to its nearest neighbors in space-time (see

Appendix A.1). Thus, a cluster of actin flux vectors yields a tracked actin wave.

A representative example of a tracked wave is shown in Fig. 2.1D. Tracked clusters

in each snapshot are shown with colored dots, which represent the pixels that are

in the cluster. Here, snapshots separated by 6 seconds were taken from an actin

polymerization wave that propagated parallel to the nanoridges.
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Using this technique, we can extract wave velocity distributions from the dis-

placement of the mean cluster position over two consecutive frames and measure

both speed and alignment distributions (filtering out contributions from split and

fractured waves). We define the alignment of a wave as the average alignment of the

flux vectors within a cluster with respect to the nanoridge direction. Histograms of

total actin wave speeds for different ridge spacings, shown in Fig. 2.2A, indicate a

difference of the speed for waves that are propagating on 0.8-µm- and 5-µm-spaced

nanoridges (p < 0.05 using Mann-Whitney-U test).

2.2.3 Localization of actin wave activity

To determine the position of actin waves relative to the ridges, we calculated

the distance of the initiation point of actin waves from the nearest ridge, r (see

Appendix A.3). We measured the joint probability density of actin waves as a func-

tion of actin wave speed and distance from the ridge, P (v, r) as shown in Fig. 2.2B

(for other spacings see Fig. A.6). For this large nanoridge spacing the wave activ-

ity is close to the nanoridges with an average total wave speed of approximately

35 µm/min, which is similar to the speed of membrane curvature waves [11]. The

average propagation speed of the actin waves appears to decrease slightly with in-

creasing distance from the ridge. Actin waves on uniform substrates have been

reported to propagate with a lower speed of 10 µm/min for cells recovering from

depolymerization via latrunculin A [30].

To compare the location and speed of actin polymerization for different ridge
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spacings, we plot the average total speed 〈v〉 versus the average scaled distance of the

wave center (normalized by the maximum possible distance from a ridge, d/2, see

Fig.2.2C). Although there seems to be a small increase in the average wave speed

with increasing nanoridge spacing, this trend is not statistically significant. The

average actin-wave location shifts away from the ridge with increasing ridge spacing.

This behavior is consistent with our observation that, at large ridge spacings, actin

waves appear in the flat regions between the ridges.

2.2.4 Effects of cell-nanoridge interaction

Actin wave propagation speed varies as a function of the location and direction

of the wave, as already noted qualitatively in Fig. 2.2B. We analyzed the wave prop-

agation speed for the subset of waves that were within 200 nm of a nanoridge. We

further distinguished waves based on their alignment, specifically θ ∈ (0, π/2), which

determines how parallel a wave is with respect to the ridge direction (0 and π/2 cor-

respond to perfect parallel and perpendicular alignment respectively). We divided

the near-ridge actin waves into two groups: parallel waves (i.e., π/3 < θ ≤ π/2) and

perpendicular waves (i.e., 0 ≤ θ < π/6). We plot the average speed of these groups

in Fig. 2.3A. Waves that are aligned parallel to the nanoridges propagate more

rapidly as the ridge spacing increases, whereas the speed of perpendicularly aligned

waves depends less strongly on the nanoridge spacing (inset of Fig. 2.3A). A poten-

tial mechanism for the slower propagation observed along more closely spaced ridges

is the increased depletion of actin or nucleation promotion factors (e.g., Arp2/3) by
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other polymerization events in the adjacent nanoridges.

We calculated the probability density of the wave orientation, θ, in the vicinity

of the nanoridges (i.e., r ≤ 200 nm) and in the grooves (i.e., 200 nm < r ≤ d/2, see

Fig. 2.3B). Compared to the waves that are in the grooves (inset of Fig. 2.3B), waves

closer to the nanoridges tend to align with the ridges. This observation suggests that

waves travel preferentially along the nanoridges. The wave alignment distributions

for waves on different nanoridge spacings are shown in Fig. A.7.

When actin waves are coupled to the nanoridges, the waves can be considered

to be quasi-one-dimensional. However, in the grooves, the waves can propagate in all

directions. In Fig. 2.3C we show the joint probability density of wave alignment and

wave speed for different nanoridge spacings. On closely spaced nanoridges (d = 800

nm), both the average wave speed and its variance are small. The variance of wave

propagation speed and the variance in wave alignment increases with increasing ridge

spacing as shown in Fig. 2.3C. The increase in the variation of the wave propagation

speed and the wave alignment suggest that nanoridges constrain actin waves and

influence their characteristics.

2.3 Stochastic modeling of actin polymerization

Actin waves are generally believed to result from reaction-diffusion mechanisms

involving autocatalytic positive feedback. Recent reviews of modeling work are given

in Refs. [75, 76]. More recent models include those of Refs. [67, 70, 77–80], which in

general discuss the feedbacks involved in the generation of the actin polymerization
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Figure 2.3: (a) Average total wave speed for waves that are in the vicinity
of the nanoridges and propagate parallel (black circles) to the nanoridges.
The inset shows the same quantity for waves that propagate perpendic-
ular to the ridges (gray squares). (b) Conditional probability distri-
bution of the actin wave alignment with respect to the nanoridges for
waves that have a centroid distance to the nearest ridge less than 0.2
µm (θ = (0, π/2) is the angle between the wave vector and the ridge
axis). The inset shows the conditional probability density of θ for waves
that have a centroid distance greater or equal to 0.2 µm. Both of the
distributions are from the 5 µm-spaced nanoridges. (c) Joint probability
distribution of total wave speed and wave alignment for all waves on dif-
ferent spacings. All results are obtained from experimentally observed
actin waves. Red is associated with the maximum of the probability
density. The maximum probabilities for the plots from left to right are
0.042, 0.034, 0.028, and 0.025.
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waves. We simulate the polymerization dynamics of actin using realistic biochemical

rates, nucleation promoting factors (NPFs) and actin filament severing dynamics

as described previously [66]. For details of the actin polymerization model and

implementation for a finite domain, see Appendix A.4.

To capture the observed variation in actin filament nucleation due to surface

nanotopography shown in Figure 2.1A in our simulations, we modulated the ac-

tivity of NPFs in a periodic manner, with increased activity of NPFs on stripes

mimicking nanoridges. This approach simulates a potential effect of nanoridges on

actin polymerization dynamics without the explicit inclusion of the topography in

the simulation. Simulations were performed in a rectangular domain of size 8 µm

× 5 µm.

We define knuc as the NPF-mediated actin nucleation rate, which has units

of µM−1s−1. In our actin polymerization model, we fixed kr and kg, the actin

nucleation activity on the ridges and in the grooves, respectively. The existence of

two local rates causes the overall actin nucleation rate to depend on ridge spacing.

In the limit of large ridge spacings, the actin nucleation rate approaches kg. In

the small-ridge-spacing limit, the average nucleation rate approaches kr. We found

that we could not capture key experimental observations if we assumed that the

average actin nucleation rate is independent of ridge spacing (see Fig. A.9). This

observation indicates that enhancement of actin nucleation along nanoridges, rather

than a simple redistribution of the location of polymerization activity, is key to the

observed contact guidance (the results of an alternative actin polymerization model,

where the total NPF activity is kept constant are discussed in Appendix A.4).
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Figure 2.4: (a) Probability density function of polymerizing actin (limE-
∆coil-GFP intensity) with respect to the normalized distance from the
ridge for different ridge spacings. (b) limE-∆coil-GFP intensity from
a cell moving on 1.5 − µm-spaced nanoridges. (c) A snapshot from
actin simulations on modeled nanoridges (d = 1.5 µm). Simulations
are performed in a two-dimensional domain, where nucleation promo-
tion factor intensity is enhanced on nanoridges with an effective width,
w, and unperturbed in the grooves of length, g. (d) Kymograph of the
shaded region shown in (c). A wave is initiated on the nanoridges fol-
lowed by motion parallel to the nanoridges. (e) Probability density of
actin polymerization obtained from experiments (gray line) and numeri-
cal simulations (black line). (f) Probability of actin in the vicinity of the
nanoridges as a function of the ridge spacing for experiment and model
results. The dashed red line shows the same quantity for uniformly dis-
tributed polymerized actin.
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In Fig. 2.4A the calculated rescaled probability density function, P (2r/d), is

plotted against the normalized distance from the ridge center, 2r/d. Compared to

d = 800 nm and d = 5 µm, the number of actin waves with 2r/d < 0.1 increases in

the vicinity of the nanoridges for 1.5−µm and 3−µm spacings. We compare the sim-

ulation results with recorded images of limE-∆coil-GFP (Fig. 2.4B) by transforming

the simulated F-actin density with a Gaussian kernel matching the resolution of our

confocal microscope images. In Fig. 2.4C, a snapshot from our simulations is shown.

The simulated actin polymerization dynamics bear a qualitative resemblance to the

experimental results (cf. Fig. 2.4B). In Fig. 2.4D, we illustrate the dynamics of sim-

ulated actin waves using a kymograph of actin polymerization on a ridge (marked

with dashed red lines in Fig. 2.4C). Initially, a wave nucleates on the ridge. After

8 seconds the wave reaches a length of roughly 2 µm. The wave then splits into

two antiparallel waves, one of which leaves the simulation domain and the other of

which propagates on the ridge.

2.3.1 Comparison between experiment and theory

By construction, the simulated actin waves are non-stationary due to the se-

lection of the actin-polymerization-model parameters. Also, the tracking algorithm

can only extract propagating actin waves. Therefore, we compared the actin-wave

profile and total actin activity near the nanoridges for our experimental and numer-

ical results (Figs. 2.4E-F). With increasing ridge spacing the average actin activity

in the vicinity of the nanoridges is in fair agreement with our actin polymeriza-
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tion model, although the simulation results deviate from the experimental results

for narrowly and widely separated nanoridges. Additionally, both the experimental

and numerical results converge to a uniform distribution of polymerized actin for

both narrow and wide nanoridge spacings.

The behavior of the guided actin waves depends on the concentration of the

free actin monomers. Our numerical results show that a reduction of 22% in the

monomer concentration does not affect the preferential polymerization along the

nanoridges (Figs. 2.5A-B). When the free monomer concentration is reduced, the

wave propagation becomes slower (Fig. 2.5C, p < 0.001). We validated these simu-

lation predictions experimentally by observing actin polymerization on nanoridges

for cells that were treated with latrunculin A, which sequesters actin monomers [81].

At 1.25-µM concentration of latrunculin A, cells became more stationary and the

actin activity decreased (Figs. 2.5D-E). Nevertheless, actin still polymerized pref-

erentially parallel to the nanoridges. Results from this perturbation conclude that

neither the localization of actin polymerization nor the preferential polymerization

of actin is qualitatively affected by the impaired polymerization-depolymerization

cycle.

2.4 Discussion

The ability of cells to navigate and migrate in their natural environment is cru-

cial for functions such as wound healing and organ development. Although chemical

cell-cell signaling plays an important role in these processes [16], recent research has
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Figure 2.5: (A) Kymograph of polymerizing actin on a nanoridge ob-
tained from a simulation, in which the number of free monomers are re-
duced. Dashed red lines were used to estimate the average propagation
speed of waves. (B) Superposition of snapshots of actin polymerization
color-coded with respect to time. White stripes at the top show the
location of the nanoridges. (C) Actin wave propagation speed for simu-
lated waves for unperturbed (WT) and perturbed actin polymerization
(LatA). The perturbation simulates the effect of latrunculin A treatment
(*** corresponds to p < 0.001 using Mann-Whitney-U test). (D) Color-
coded snapshots for experimentally observed actin waves obtained from
1.25-µM latrunculin A treated cells. White regions indicate that there is
stationary polymerization activity. (E) Propagation speed distribution
of actin waves for latrunculin-treated cells.
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indicated that the topography of the environment can also facilitate directed cell

migration [61,82,83].

Our detailed analysis of actin dynamics on controlled topographies with bioin-

spired dimensions indicates that contact guidance involves the nucleation and guid-

ance of actin polymerization waves. The waves are steered by nanotopography with

≈300-nm sized features, which is comparable to the dimension of collagen fibrils. We

observe that actin polymerization is enhanced in the vicinity of nanoridges, suggest-

ing that this nanotopography induces nucleation of actin filaments. We showed that

in the vicinity of nanoridges actin polymerization waves are preferentially aligned

along the nanoridges. The speed of these waves increases with increasing distance

between nanoridges. Waves of actin polymerization that do not travel along the

nanoridges are dissipated more quickly than waves traveling along ridges as a result

of multiple splitting events, in which traveling regions of actin polymerization break

up into two regions that travel in opposite directions.

Prior work suggested several mechanisms through which actin dynamics might

be affected by surface topography. A number of studies found that actin waves are

affected by steric hindrance, or “impact” on a surface. Specifically, the extensions

and retraction dynamics of filopodia were found to be guided by obstacles in the

surface topography [84], and actin polymerization waves were found to be inhib-

ited upon contact with a local barrier [31]. However, in our experiments the actin

polymerization waves travel along the top of a ridge. Although there are no appar-

ent obstacles to wave propagation down the ridge and away from the ridge, such

dynamics are not observed.
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Our observation that the nucleation of actin filaments is enhanced along the

ridge tops suggests models of guidance of actin polymerization that are based on a

key characteristic of the ridge top—a highly convex surface curvature. Contact guid-

ance may involve the preferential polymerization of actin on surfaces of high local

curvature. This proposal is consistent with other models of preferential branching

of actin filaments (biased Arp2/3 binding activity) based on the curvature of the

mother filament [85]. The confinement of the plasma membrane on the nanoridges

provides such curvature in the actin cortex, which in turn increases the nucleation

of actin filaments.

To elucidate the nature of the actin waves, we adapted an actin polymeriza-

tion model that gives a fully 3D actin filament structure on the basis of realistic

biochemical rates and molecular components. In silico, we are able to recreate

contact guidance via actin waves by simulating stripes with enhanced activity of

nucleation promoting factor. From additional simulations, we found that reducing

the concentration of actin monomers reduces the overall actin activity.

The success of the modeling in explaining these facets of the experimental data

suggests that the ingredients of the actin polymerization model, including stochastic

actin nucleation, assembly, and disassembly, are key factors involved in determining

the spatial distribution of actin waves. Further work should incorporate a more

detailed treatment of upstream signaling pathways.
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2.5 Materials and Methods

2.5.1 Cell culture and imaging

The limE-∆-coil overexpressing Dictyostelium discoideum cells (in an AX3

background) were cultured in HL-5 medium at 1–4 × 106 cells/mL with 50 mg/mL

hygromyocin B (Sigma-Aldrich H3274). We imaged cells in the pre-aggregate state.

Cells were harvested at 4 × 106 cells/mL and shaken at 150 rpm in a beaker with

a density of 2 × 107 cells/mL. Cells were then developed for 4 hours in develop-

ment buffer (5 mM Na2HPO4, 5 mM NaH2PO4, pH 6.2, 2 mM MgSO4 and 0.2 mM

CaCl2). During development, cells were stimulated every 6 minutes with pulses of 50

nM cAMP. The cells were then washed twice in phosphate buffer (5 mM Na2HPO4,

5 mM NaH2PO4, pH 6.2). To inhibit cell-cell communication, cells were treated

with 2 µM caffeine (Sigma-Aldrich C1778) for 30 minutes, while shaken at 150 rpm.

For imaging, 300 µL of cell solution with density 5 × 105 cells/mL was added to a

multi-well plate. After waiting 5 minutes for the cells to adhere to the surface, 50

µM of cAMP (Sigma A3262) is added to cells to initiate chemokinesis. Latrunculin

A (Sigma L5163) perturbations were performed by addition of the drug to a final

concentration of 1.25 µM (and a final concentration of 0.05% DMSO by volume)

after cells adhered to the substrate. Fluorescence and bright-field images were ob-

tained on a Leica TCS SP5 confocal microscope (Leica TCS SP2 for latrunculin A

experiments) with a 100× objective, and a frame rate of 0.5 frames/second.

32



2.5.2 Nanoridge fabrication

Structures were fabricated by Xiaoyu Sun according to the protocols explained

in Refs. [86,87]. We used a Ti:sapphire laser (Coherent Mira 900 F) to perform mul-

tiphoton absorption polymerization. A region of total size 300 µm × 300 µm was

patterned with 200- to 300-nm-wide nanoridges that had a uniform separation of

0.8, 1.5, 3, or 5 µm. The ridges were fabricated using an acrylic resin contain-

ing tris–(2-hydroxyethyl) isocyanurate triacrylate (SR368, Sartomer), ethoxylated

trimethylolpropane triacrylate (SR499, Sartomer), and Lucirin TPO-L (Ciba). This

process yielded a master structure, which was then developed in dimethylformamide

and ethanol. In experiments, we made replicas of the master structure using a com-

posite PDMS mold.

2.5.3 Image analysis

Images were processed with custom written MATLAB software. To reduce

noise, images and difference images were smoothed with Gaussian filters of different

spread. Smoothed difference images were further thresholded. The apparent actin

polymerization flux was measured using a modified optical flow algorithm, and par-

allel flux vectors were clustered. Nanoridges were detected using either a Hough

or a Radon transform. Details of the actin wave tracking and nanoridge detection

algorithms are explained in Appenix A.1 and Appendix A.3.
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2.5.4 Actin simulations

Simulations were performed using a custom C++ program provided by Anders

Carlsson modified in collaboration with Joshua Parker from the one published in

Ref. [66]. From the simulation results, we measured the actin filament density

within 200 nm from the cell membrane with a planar resolution of 10 nm × 10 nm

and a temporal resolution of 0.5 seconds. We then generated pseudoimages from

the density data. The images were filtered with a Gaussian kernel and spatially

downsampled to mimic the images obtained with the confocal microscope.
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Chapter 3: Dynamic sensing of nanotopography

3.1 Overview

In Chapter 2 we showed how actin dynamics can be guided by the nanotopog-

raphy and suggested preferential actin polymerization as a potential mechanism for

the contact guidance of cells. In this chapter, we will discuss the effect of guided actin

polymerization on the cell membrane and how the biasing of actin-related cellular

oscillations by the surrounding nanotopography can result in guidance of cell migra-

tion. Facilitated by the dynamic organization of cortical actin (polymerizing actin

on the plasma membrane) cells can recognize features in their environment, which

results in an increase in the persistence of their motion. This increased persistence

is achieved via a coupling between natural cellular oscillations and the associated

periodic encounter of nanotopographic elements in their environment.

Figure 3.1 shows such oscillations, when cells are stimulated with the cell-cell

signaling molecule cAMP. Fig. 3.1A presents results of experiments performed by

Westendorf et al. [67], which shows that upon stimulation by a cAMP signal (red

line) the amount of polymerizing actin in the cytosol decreases (black line), whereas

the polymerization of actin on the plasma membrane increases (blue line). The

recruitment of actin to the plasma membrane exhibits different dynamic modes.
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Figure 3.1: (A) Average cortical (blue) and cytosolic (black) LimE-GFP
fluorescence signal in response to a short pulse (red) of cAMP. The re-
sponse time scales were defined by the crossings of the cytosolic signal
with the averaged lower confidence interval (dashed line, crossings high-
lighted by red dots). The averaged confidence interval was calculated
from the individual confidence intervals of each data point before the
pulse was applied (black error bars). (B-D) Time traces of the cytosolic
signal from three different single cells. (B) Example of a strongly damped
response to a short pulse of cAMP. (C) Example of a weakly damped
response to a short pulse of cAMP. (D) Example of a cell that displays
self-sustained oscillations in absence of an external stimulus. (Figure
and caption reused from [67]. “Copyright (2013) National Academy of
Sciences, USA.”)
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Figures 3.1B-D show a wide range of dynamic behavior of actin polymerization

shuttling from the cytosol to the plasma membrane back and forth. In Fig. 3.1B

the excitation of a cell through a cAMP signal at t=30 s is followed by damped

oscillations, which quickly dissipate. A similar cAMP pulse excites a cell and actu-

ates self-sustained oscillations of actin polymerization (Fig. 3.1C). Some cells exhibit

self-sustained oscillations even in the absence of external stimulation (Fig. 3.1D).

The outline of this chapter is as follows: In the first section, we show how the

intrinsic oscillations of polymerizing actin can be mechanically coupled to the nan-

otopography. In the following two sections we compare the cellular oscillation model

results with experimental results and extract biophysical quantities that differentiate

mechanically-induced oscillations from chemically-induced oscillations. The experi-

ments that are shown in this section are performed by Meghan Driscoll. In the last

section, we show additional experimental data to demonstrate mechanically-guided

cell migration. These experiments are performed by Oliver Nagel. In this example–

when confined in one-dimensional microchannels–cells undergo highly-persistent mi-

gration. Analysis shows that the confinement imposes an ordered formation of left

and right pseudopods. Consequently cells “walk” through the microchannel, due to

the formation of spatially-stationary patches of actin polymerization in the vicinity

of microchannel walls. Interestingly, the lifetime of these stationary patches is sim-

ilar to the optimal switch time between biasing events, which is different than the

resonant timescale of chemically-driven oscillations.

37



3.2 Nanotopography-driven cellular oscillations

The shape and surface-adhesion dynamics of migrating cells are oscillatory [11].

In this section we show that a coarse-grained cellular oscillation model of a resonant

interaction between internal force-generating oscillations and the nanoridge grating

can account for our observations of contact guidance.

We model the forces generated by internal oscillations as being biased in the

direction parallel to the nanoridges. The interaction of the internal oscillations

with the surface nanotopography is described as an overdamped harmonic oscilla-

tor, whose dynamics were characterized by a natural frequency ω0 and a damping

coefficient β. We will assume that the interaction between the nanoridges and the

membrane oscillations is in the form of a force that drives the membrane oscillations.

Any oscillation on the membrane has a parallel and a perpendicular component with

respect to the nanoridge orientation. As the cell moves on the nanoridges with an

average speed v0, the perpendicular component of a membrane oscillation encoun-

ters a nanoridge with a frequency τ−1 = v0| sin θ|/L, where θ is the smallest angle

between the centroid position of the membrane undulation from the cell centroid

and the nanoridge alignment. L is the distance between two adjacent nanoridges.

The perpendicular and parallel components of the oscillations are coupled

through the underlying actin polymerization machinery. We assume that the par-

allel component of the oscillations was equally affected by the driven perpendicular

oscillation. However, due to the symmetry along the direction of the nanoridges, the

driving force exerted by the nanoridges can bias the parallel oscillations in either
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direction. Therefore, we model this biasing force from the nanoridge grating, F (t),

as a stochastic cue that mimics a random square-wave signal. F (t) has amplitude a

and correlation time τ , the latter of which is described above.

When the nanoridge spacing approaches zero, the correlation time becomes

zero. In this case, because forcing events are not correlated with one another, the

net force is not biased. For large nanoridge spacings, correlations become large as

well, suggesting the presence of a long-lasting forcing term. However, in this case

the correlation time becomes independent of the angle. Therefore, the average force

again does not result in bias in any direction. For simplicity, in the rest of the

section we will focus only on the perpendicular component of the oscillations (i.e.,

θ = π/2).

The position of these stochastically driven oscillations, x, is described by the

damped harmonic oscillator equation:

d2x

dt2
+ β

dx

dt
+ ω2

0x = F (t) (3.1)

where the average force is zero and consecutive driving events are correlated with a

timescale τ ,

〈F 〉 = 0 , 〈F (t)F (t′)〉 = a2e−|t−t
′|/τ . (3.2)
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3.2.1 Homogenous solution

The homogenous solution of Eq. (3.1) is in the form of xh ∼ eiΩt. Evaluating

this solution in Eq. (3.1) we obtain:

−Ω2 + iβΩ + ω2
0 = 0 . (3.3)

The two roots for Eq. (3.3) are Ω± = (iβ/2) ±
√
−β2/4 + ω2

0. In the over-

damped case β > 2ω0. We define ω :=
√
β2/4− ω2

0, which is real and positive.

Using this definition, Ω± = i(β/2± ω).

The homogenous solution is the superposition of the two frequencies, Ω+ and

Ω−:

xh(t) = C+e
iΩ+t + C−e

iΩ−t

= e−βt/2
(
C+e

−ωt + C−e
ωt
)

(3.4)

Using the initial conditions x(0) = A and ẋ(0) = B, we obtain

C± =
A

2

(
1∓ β

2ω

)
∓ B

2ω
(3.5)

Finally, the homogenous solution shown in Eq. (3.4) becomes:

xh(t) = e−βt/2
(
A cosh(ωt) +

(
B +

Aβ

2

)
sinh(ωt)

ω

)
. (3.6)
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3.2.2 Non-homogenous solution

The non-homogenous solution of Eq. (3.1) can be obtained with the Green’s

function of the overdamped harmonic oscillator [88],

xp(t) =

∫ t

0

G(t− s)F (s)ds , (3.7)

where

G(t) = e−βt/2
sinhωt

ω
. (3.8)

In the rest of this section we will be focusing on the resonant characteristics of

the oscillations, and especially on the power generated by the driven oscillations.

For that purpose we only require the solution to Eq. (3.1) in the form of x(t) =

xh(t) + xp(t).

3.2.3 Power generated by oscillations

The average power generated by the oscillations is defined as 〈P (t)〉 := 〈ẋ(t)F (t)〉.

To obtain this expression, we first calculate the speed of the membrane oscillations,

ẋ = ẋh + ẋp. The derivative of the homogenous part is

ẋh(t) = −β
2
xh(t) + e−βt/2

(
Aω sinhωt+

(
B +

Aβ

2

)
coshωt

)
. (3.9)

The second term in the speed is the derivative of the non-homogenous solution,

which is calculated using the Leibniz rule
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ẋp(t) =
d

dt

∫ t

0

G(t− s)F (s)ds

=

∫ t

0

(
∂G(t− s)

∂t
F (s) +G(t− s)∂F (s)

∂t

)
ds+G(0)F (t) . (3.10)

Since ∂F (s)/∂t = 0 and G(0) = 0, Eq. (3.10) reduces to

ẋp(t) =

∫ t

0

∂G(t− s)
∂t

F (s)ds

=

∫ t

0

e−β(t−s)/2
(
− β

2ω
sinhω(t− s) + coshω(t− s)

)
F (s)ds

=

∫ t

0

(
−β

2
G(t− s) + e−β(t−s)/2 coshω(t− s)

)
F (s)ds

= −β
2
xp(t) +

∫ t

0

e−β(t−s)/2 coshω(t− s)F (s)ds . (3.11)

Combining Equations (3.9) and (3.11) we obtain

ẋ(t) = κ(t)− β

2
x(t) +

∫ t

0

e−β(t−s)/2 coshω(t− s)F (s)ds , (3.12)

where κ(t) := e−βt/2(Aω sinhωt + (B + Aβ/2) coshωt). This is the only term that

depends on the initial conditions A and B. Since we will be interested in the steady

state oscillations the initial conditions are not important and can be chosen zero

without loss of generality [89]. Therefore κ becomes zero as well. Next, we calculate

the power generated by steady state oscillations:

〈P 〉 = −β
2
〈x(t)F (t)〉+

∫ t

0

e−β(t−s)/2 coshω(t− s)〈F (s)F (t)〉ds . (3.13)

The first term in the equation above consists of two terms: −(β/2)〈xh(t)F (t)〉 =

−(β/2)xh(t)〈F (t)〉 = 0 and
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−β
2
〈xp(t)F (t)〉 =

∫ t

0

G(t− s)〈F (s)F (t)〉ds

= −a
2β

2

∫ t

0

G(t− s)e−|t−s|/τds . (3.14)

Using Eq. (3.8) and performing the integral for t → ∞ (for steady state)

Eq. (3.14) yields

− a2β/2(
β
2

+ 1
τ

)2 − ω2
. (3.15)

Similarly the second term in Eq. (3.13) at steady state yields

a2
(
β
2

+ 1
τ

)(
β
2

+ 1
τ

)2 − ω2
. (3.16)

In calculating both terms we used the condition for the overdamped case, β/2 >

ω, which provided the convergence of the results. Next, we add Equations (3.15)

and (3.16) and obtain a simplified expression for Eq. (3.13)

〈P 〉 =
a2/τ(

β
2

+ 1
τ

)2 − ω2

=
a2τ

1 + βτ + (ω0τ)2
, (3.17)

where we used the relation ω2 = β2/4− ω2
0.

3.2.4 Normalization

We normalize the average power with the amplitude of the stochastic force

and the average speed of the cell 〈P ′〉 = 〈P 〉/(av0). We substitute the correlation
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time τ with the spacing between nanoridges using τ = L/v0:

〈P ′〉 =
aL

v2
0

(
1 + β

v0
L+

(
ω0

v0
L
)2
)

=
a′L

1 + β′L+ (ω′0L)2 , (3.18)

where we define β′ := β/v0, ω′0 := ω/v0, and a′ := a/v2
0. With this choice of

normalization factors, all of the cellular-oscillation-model parameters has units of

inverse distance.

3.2.5 Resonance

The normalized power exhibits a resonance for L = 1/ω′0. This resonance

implies that the power generated by the internal oscillations is maximized, when

the correlation time between subsequent biasing events matches to the characteristic

time of the internal oscillations. In Fig. 3.2 the normalized average power given in

Eq. (3.18) is plotted against the nanoridge spacing.

To obtain this plot we make the following assumptions to estimate the cellular-

oscillation-model parameters. 2/β is defined as the decay time of oscillations, which

we relate to the average duration of the protrusions. This timescale is measured

around 10 seconds [90, 91]. ω0 is the resonant frequency of the chemically-driven

oscillations of polymerizing actin, which is approximately 20 seconds [67]. The

inverse of the normalized amplitude of the force (1/a′) has also units of length.

Ref. [92] reported that the contact guidance of melanocytes depends on the height
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Figure 3.2: Predicted normalized average power generated by oscillations
(Eq. (3.18)). In this plot we used biophysical quantities for the cellular-
oscillation-model parameters (see text). The cellular oscillation model
predicts a resonance for the contact guidance between 1-2 µm.

of the micron scale ridges. Therefore, we associated 1/a′ with the height of the

nanoridges (≈ 0.5 µm).

3.3 Measuring contact guidance

To observe whether the resonance of the internal oscillations leads to a guid-

ance in the overall cell motion, we assayed cell migration on nanoridges with a

variety of spacings. We used gratings with spacings of 0.4, 0.6, 0.8, 1.0, 1.2, 1.5,

2, 3, 5, and 10 µm. Fig. 3.3A shows the distributions of the alignment of the cell

long axis with respect to the ridge direction (weighted by eccentricity) for several

of the nanoridges. We found that the nanoridges with the larger spacings induce

little contact guidance. On average, cells are 10 to 20 µm long and 5 µm wide.
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Figure 3.3: Alignment, weighted by eccentricity, of cells migrating on
nanoridge gratings with ridge spacings of 0.4, 1.5, 3, and 10 µm. (Fig-
ure reproduced with permission from [61]. Copyright (2014) American
Chemical Society.)

A reduction in contact guidance is expected when the nanoridge spacing is greater

than cell width. We also found that gratings with nanoridge spacings smaller than 1

µm exhibit reduced contact guidance. The distributions of cell alignments (weighted

by eccentricity) fit well to a Gaussian with periodic boundary conditions. Unlike a

regular Gaussian distribution, a circular Gaussian has only one fitting parameter,

which is proportional to the inverse variance of the distribution. This single fitting

parameter, which we term the contact guidance efficiency, can be used to charac-

terize the cell alignment distributions. Analyzing D. discoideum migration, we find

that the contact guidance efficiency is greatest for nanoridge spacings between 1.0

and 2.0 µm (see Fig. 3.3C).
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To fit the weighted orientations of cell orientation with respect to eccentric-

ity (see Fig. 3.3), we used a stochastic cellular oscillation model for the dynam-

ics of cell orientation that is developed by Kemkemer et al. [92]. In this coarse-

grained orientatio-sensing model it is assumed that cells identify the orientation of

the nanoridges with respect to their orientation and turn towards the ridge align-

ment. This situation is described by the following differential equation

∂φ

∂t
+ p sin 2φ = ξ(t) , (3.19)

where φ is the average cell orientation with respect to the ridge alignment. As

shown in Eq. (3.19), this coarse-grained orientation-sensing model has a feedback

mechanism that turns the cell towards the ridge alignment. The amount of turning

depends on the orientation of the cell non-linearly. Also, due to the symmetry of

the ridges, cells can turn towards the ridges independent of their direction of the

motion (the turning amount is independent under the transformation φ → φ + π).

The cell turning rate is described by p, which is a function of the topographical

signal. The stochastic term, ξ(t), models fluctuations in the cells determination of

the surface topography. The introduced noise, ξ(t), is white, and so has zero average

(i.e., 〈ξ(t)〉 = 0). Its amplitude q, is given by the relation

〈ξ(t)ξ(t′) = qδ(t− t′)〉 , (3.20)

where the brackets are an average over all cells, and δ is the Dirac-delta function. In

our experiments we measure the probability density of the orientation angle, P (φ),
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which is less noisy than the dynamics of the orientation angle. Therefore, instead

of using Eq. (3.19) directly, we consider the corresponding Fokker-Planck equation,

which determines the time evolution of the probability density of the orientation

angle, P (φ, t) [93]

∂P

∂t
(φ, t) =

∂

∂φ

(
p sin 2φ+

q

2

∂

∂φ

)
P (φ, t) . (3.21)

The steady-state solution of this equation yields the observed probability den-

sity of the orientation angle

P (φ) =
e(p/q) cos 2φ

2πI0(p/q)
, (3.22)

where I0 is the modified Bessel function of the first kind of order zero. We used the

probability densities of the weighted orientations to find the fit parameter σ = p/q.

Fig. 3.4 shows representative fits to orientation distribution of cells weighted by

their eccentricity moving on nanoridges with different spacing. This fit parameter

resembles a signal-to-noise term and can be used as a measure to determine the

ability of the cells to detect the nanotopography. We define this quantity as the

contact guidance efficiency.

3.4 Comparing experiments and cellular oscillation model

We suggest that the normalized power is a useful quantity for comparing the

efficiency of contact guidance to the efficiency of internal oscillations. Fitting the

normalized averaged power, Eq. (3.18), to the contact guidance efficiencies mea-
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Figure 3.4: To measure the surface contact guidance efficiency, weighted
alignments from individual experiments (black dots) were fit to a stochas-
tic orientation-sensing model of cell guidance (red lines) for cells moving
on nanoridges with different spacing. The orientation-sensing model pre-
dicts the cell alignment in the form of Eq. (3.22). (Data courtesy Meghan
Driscoll).

sured for a broad range of nanoridge spacings, we find length and time scales that

characterize the cell’s interaction with the nanoridges.

The contact guidance efficiencies and the fit are shown in Fig. 3.4. The three

scales correspond roughly to the spatial resonance length scale (the peak position in

Fig. 3.5), a damping length scale (the width of the peak), and the signal strength (the

height of the peak). We find a resonance in the interaction of the cellular oscillations

with the nanoridge grating at 1/ω0 = 1.7 µm, which is comparable to the size of

protrusions and actin waves in D. discoideum cells [30]. To interpret the remaining

parameters extracted via the cellular oscillation model, we set v0 = 10 µm/min,

which is the average speed of the cells [8], the speed of protrusions relative to the

cell, and the speed of actin waves [30].

From the fit, we find a damping coefficient of 1/β′ ≈ 1.17µm, which leads to

an oscillation decay time of 2v0/β
′=14 s. This timescale is roughly the duration of
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Prediction

Measurement

Model fit

Figure 3.5: Surface contact guidance efficiencies of various nanoridge
gratings shown in black dots as a function of the inverse ridge spacing,
with the fit to the stochastic harmonic oscillator model shown in red.
The predicted curve was shown with blue dashed lines. (Data courtesy
Meghan Driscoll).
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protrusions [90,91]. The amplitude of the signal received by the cell is 1/a′ ∼= 0.5 µm.

The fit yields a natural frequency coefficient of 1/ω′0 ≈ 0.57 µm. Using v0, we can

also interpret this spatial resonance scale as a time scale. The mean sensing time is

the frequency at which the intrinsic cellular oscillations sense the up-down symmetry

of the ridges via the stochastic signal. The probability density of the biasing force

to switch from one direction to the opposite direction is given by λe−λt, where λ−1

is defined as the switching time [89]. This time is calculated as λ−1 = 2/(ω′0v0) ≈7

s. This is the optimal duration between biasing events for a protrusion to be guided

best by the nanoridges during its lifetime.

In the next chapter, we will show that the duration of stationary actin patches,

which form in response to an interaction with a microchannel wall peaks around 10

seconds. The resonance timescale of localization of actin to the plasma membrane is

in response to chemical inputs and is around 20 seconds [67]. There are no chemical

signals involved in the contact guidance of the cells used in our experiments. There-

fore, we can conclude that the mechanically-induced resonance timescale is roughly

a factor of two faster than the chemically-induced resonance of actin localization.

“This section is adapted with permission from [61]. Copyright (2014) American

Chemical Society.”

3.5 Geometry-driven persistent motion

In this section, we show that persistent motion can also emerge from the

confinement of cells in lower-dimensional geometries. The natural environment of
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eukaryotic cells consists of narrow interstitial spacings. Cells developed different

strategies to move in different environments. For example when confined in stiff

environments such as tissue, neutrophils (a type of immune cell) generate focal ad-

hesion sites. In these regions actin is rich and mediated via receptors that can

identify extracellular molecules on the sites of contact. On the other hand, their

migration in blood stream resembles amoeboid-type motion, which they utilize to

swim [10]. Interestingly, D. discoideum cells can also undergo persistent migration

in confined geometries even though they lack focal adhesions. In one-dimensional

microchannels, these cells maintain contact with the two sides of the microchan-

nel walls and exhibit increased persistence (five times more than their measured

persistent motion in planar surfaces) by organizing their protrusion in a controlled

manner. Additionally, detailed analysis of the actin cytoskeleton revealed that dur-

ing their enhanced persistent migration, stationary patches of actin emerge at the

sites of contact with microchannel walls. The average lifetime of these patches are

15 seconds.

3.5.1 Experimental observations

Figure 3.6 shows the persistent motion of a D. discoideum cell in when it is

moving in a microchannel. The persistence time for this example is greater than

15 minutes, which is more than two times the characteristic persistence time of D.

discoideum motion on planar surfaces. A large portion of the cell body maintains

a quasi-rectangular shape throughout the migration. However, the leading edge of
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Figure 3.6: When confined in microchannels, cells move more persis-
tently in a direction. Scale bar 10 µm. (Experimental data and figure
courtesy Oliver Nagel and Carsten Beta)
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cells exhibits large membrane fluctuations. Specifically, the both edges that are in

contact with the side walls of the microchannel elongate in the direction parallel to

the cell motion.

We quantify these dynamic regions at the leading edge by a tailored edge-

detection algorithm (details of this algorithm is explained in Section 3.6.1). Using

this algorithm we track the position of the four corners of a cell that is in contact

with the microchannel walls. For one cell, the position of the front and back corners

in corresponding comoving frames were shown in Fig. 3.7 as a function of time. We

observe that the front corners oscillate with respect to the average position of the

front of the cell. Additionally, these oscillations are out of phase (i.e., with respect

to the direction of motion of the cell when one corner is maximally stretched from

the average location of the cell front in the positive direction, the opposite front cor-

ner stretches maximally in the negative direction vice versa). The autocovariance

function of the oscillation of each front corner shows exponential decay, whereas the

cross-covariance between front corners exhibits definite periodic behavior. These

observations indicate that the pseudopod activity depends on the activity of the

opposite pseudopod. Confinement of cells in these 1D microchannels may result

similar sloshing of polymerizing actin between the side walls. In the previous chap-

ter, we showed similar dynamics of actin polymerization in response to interaction

with nanoridges (see Fig. 2.1d).

In contrast with the dynamic behavior of the front corners, the back corner

of the cell move uniformly with respect to the average location of the back of the

cell (Fig. 3.7). This monotonic motion at the back is sustained throughout the
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Figure 3.7: Positions of the front and back corners of the cell in con-
tact with the side walls of the microchannel (see cartoon for the spatial
definition of a corner). The positions are measured in the cell reference
frame. Front corners exhibit oscillations, whereas back corners exhibit
steady retraction. (Experimental data courtesy Oliver Nagel)
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migration of the cell in the microchannel. The behavior of front and back corners

suggest that cells maintain their mechanical polarity (i.e., the asymmetry in the

cytoskeletal dynamics that yields highly dynamic protrusions at the cell’s front and

uniform retraction at the cell’s back) due to the persistent interaction with the

side walls of the microchannel. Since there are no chemical gradients inside the

microchannel, we defined the asymmetric distribution of actin polymerization as

mechanically-induced polarity (cf. chemically-induced polarity during chemotaxis).

Next, we analyze how the dynamics of actin polymerization associated with the

mechanically-induced polarity are different from those of the chemically-induced

polarity.

In Section 3.4 we saw evidence of discrepancy between the characteristic

timescales of mechanically- and chemically-driven actin polymerization. We now

quantify the actin polymerization dynamics of cells undergoing motion with mechanically-

induced polarity. We analyze polymerizing actin in a small cellular region close to

the microchannel wall (Fig. 3.8A). We average the intensity in the direction per-

pendicular to the direction of cell motion. This averaging results in a characteristic

profile of actin polymerization shown in Fig. 3.8B. Fig. 3.8C shows this averaged

profile as a function of time for one cell. We observe that the cell is undergoing

uniform motion. However, we also observe multiple high-intensity regions of poly-

merizing actin that remain stationary with respect to the lab reference frame. In

fact, almost all of the high-intensity regions exhibit stationary behavior to a certain

extent.

We have developed an algorithm to measure the duration of these spatially-
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A B

C D

Figure 3.8: (A) Cartoon of a cell showing the definitions used in the
analysis of actin polymerization. (B) A representative actin polymeriza-
tion profile as a function of the position on the cell membrane in contact
with the microchannel wall (averaged over δ shown in (A)). Inset shows
a kymograph of these profiles. (C) Kymograph of actin polymerization
profile in detail. Spatially-stationary patches of high actin polymeriza-
tion are evident. (D) Duration of the spatially-stationary polymerizing
actin patches. The distribution was obtained from 10 cells. (Experimen-
tal data courtesy Oliver Nagel)
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stationary actin polymerization patches (defined as actin streaks). Details of the

algorithm are provided in Section 3.6.2. We have measured the distribution of the

lifetime of these actin streaks for n=10 cells (Fig. 3.8D). The average lifetime of

the actin streaks is approximately 10 seconds. This timescale is faster than the

resonance timescale of chemically-driven actin polymerization oscillations.

Our observations suggest that there are multiple mechanisms that can drive

actin polymerization. Chemotaxis pathways are well studied and the connection

between chemoattractant-gradient sensing biochemicals and actin polymerization

has been suggested by several research groups (PIPs, PTEN, PI3K etc.) [36,69,78].

These studies suggest that actin polymerization is ultimately guided by the spatial

asymmetry of these biochemicals. We show that compared to the chemically-guided

actin polymerization, modulation of actin with physical forces is faster. Our analysis

shows that physical forces that feedforward to actin polymerization have a much

more direct impact on the preferential polymerization of actin, which is observed

either as guided waves or spatially-stationary patches. It is likely that cells integrate

chemical and mechanical signals that provide a directional cue. We will explore the

interplay between these signals in the following chapters.

3.6 Methods

3.6.1 Detection and analysis of the cell boundary regions

To find the cell boundary regions that are in contact with the microchannel

walls, we use a gradient-based edge detection algorithm. We first find the position
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of the microchannel walls from the summed fluorescence intensities of the actin and

myosin II markers. We average the summed intensity with respect to time and

position x (the direction parallel to the motion of the cell). The time average gives

the average contact region of the cell with the microchannel wall, and the x-average

minimizes the noise. This averaging yields a typical intensity profile that is narrow

and rapidly decreasing close to the microchannel wall. We find pixels that are close

to the microchannel wall by selecting those which have an intensity below 1% of the

total intensity. Next, we calculate the derivative of the intensity for these points.

Then we look for a sudden change in the derivative by performing a unidirectional

search that starts from outside the microchannel all and scans towards the cell

cytoplasm. The sudden change in the derivative ranges from 0.0005 to 0.005. We

choose a different value for each cell, because the fluorescence intensity of the labeled

proteins depends on the expression level and varies from cell to cell.

Next, we find the front-most and back-most boundary points, where the cell

is in contact with the microchannel wall, see Fig. 3.8A). At each x-position, we sum

the total intensity starting from the microchannel wall over a distance of 6 pixels (≈

1.44 µm) into the cytoplasm. An example of the resulting intensity profile along the

channel wall is shown in Fig. 3.8B. We next employ a similar unidirectional search

as above for the locations of the anterior and posterior contact. We search for 5

consecutive points that each have an intensity above a threshold value. For each

cell, we individually choose a threshold intensity in the range of [0.002, 0.005]. The

time evolution of the front-most and back-most locations of the cell contact with

the microchannel are shown as red outlines in the inset in Fig. 3.8B and in Fig. 3.8C
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for another cell.

3.6.2 Measuring the lifetime of actin foci

To obtain the lifetime of the actin foci on the cell membrane in contact with

the microchannel wall (at a given boundary position), we consider actin intensities

that are greater than ε = 78% of the maximum intensity (thresholding). Next, we

calculate the average and the standard deviation of the intensity in the thresholded

region over time. We then smooth the actin intensity using “locally weighted scatter

plot smooth” method in Matlab’s smooth function. We monitor the deviation of

this smoothed intensity at each time point in the region from the time-averaged

intensity and count the number of frames during which the deviation is within

∆ = 2% of the average intensity. The values of ε and ∆ are picked such that

the distribution obtained from one kymograph has maximum similarity with the

one that is manually obtained (p ≈ 0.85 using Kolmogorov-Smirnov test). For the

remaining kymographs, we utilized the algorithm to obtain the distribution of actin

foci lifetime shown in Fig. 3.8D (n = 10 cells).
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Chapter 4: Signal relay in noisy directed migration of cell groups

4.1 Overview

Collective cell migration is observed in various biological processes including

angiogenesis, gastrulation, fruiting body formation, and wound healing. D. dis-

coideum, for example, exhibits highly dynamic patterns, such as streams and clumps

during its early phases of collective motion, and has served as a model organism for

the study of collective migration. In this chapter, facilitated by experiments, we

develop a conceptual, minimalistic, computational collective migration model to an-

alyze the dynamical processes leading to the emergence of collective patterns and

the associated dependence on the external injection of a cAMP signal, the inter-

cellular cAMP secretion rate, and the cAMP degradation rate. We demonstrate

that degradation is necessary to reproduce the experimentally observed collective

migration patterns, and show how our collective migration model can be utilized

to uncover the basic dependence of migration modes on cell characteristics. Our

numerical observations elucidate the different possible types of motion and quantify

the onset of collective motion. Thus, the collective migration model allows us to

distinguish noisy motion guided by the external signal from weakly correlated mo-

tion. The experiments presented in this chapter were performed by Erin Rericha.
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Modeling of the experimental data was done in collaboration with my co-advisors

Edward Ott and Wolfgang Losert.

The focus of this chapter is on modeling, simulating, and analyzing collec-

tive motion arising from chemotaxis and signal relay. Although collective motion,

chemotaxis, and signal relay have all been investigated before, this section focuses on

collective behavior in the presence of a linear gradient without fluid flow. The linear,

no-flow gradient geometry has been used in conjunction with Zigmond chambers and

under-agar assays but was cumbersome and often replaced with point sources, such

as a micropipette, which leads to convergent cell trajectories even in the absence

of signal relay. A linear gradient has been recently incorporated into a microflu-

idic system that can simultaneously monitor multiple gradient conditions and cell

lines (using EZ-TAXIScan system (ECI, Japan) [94]). By monitoring many parallel

conditions we are able to analyze signal relay and differentiate different types of

collective motion. It also allows us to validate metrics for detection of collective

behavior that should be useful for the analysis of a number of other investigations

of cell signaling that are starting to be carried out in this signal geometry. Linear

gradients have been introduced for quantitative studies of gradient sensing, but re-

cent work in microfluidic devices has been carried out in chambers with fluid flow

that flushes out signal relay (e.g., in Refs. [95, 96]).

The controlled linear gradient allows us develop a quantitative phenotype for

the onset of signal relay between cells. We are able to tune the relative strength

of signal relay continuously, by varying the linear gradient strength. This capa-

bility allows us to measure collective behavior based on correlations between cell
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trajectories. We anticipate that our systematic studies will be valuable for a broad

range of investigations of collective cell behavior. Indeed, cell trajectories in such

linear gradient chambers are starting to be collected to investigate signaling path-

ways that regulate chemotaxis in various types of cells (e.g., D. discoideum [97],

neutrophils [98,99], eosinophils [100], and osteoclasts [101]).

Building on previous work [18, 102–104], we develop a minimalistic collective

migration model for D. discoideum migration and signal relay in a linear gradient.

Our collective migration model incorporates recent experimental measurements on

cell migration persistence [8], independence of signal strength [18], and the migration

mechanism and lag in reorientation in response to signals [11]. We use the collective

migration model to study which aspects of the signal relay loop promote streaming.

We find that a balance between fast secretion and degradation is needed to match

experimental observations. To constrain the migration parameters, we measure the

time autocorrelations and the fluctuations of the cell motion from our experimental

systems. We propose the use of these metrics to find evidence of signal relay in

cells that do not display streams. Our efforts are motivated by recent experiments

on D. discoideum, that show a notable visual distinction between cells that relay

signals, and cells that both relay and degrade the signal. Wild-type cells, which

both emit and degrade cAMP, can form streams in which cells are aligned head to

tail, whereas mutant PDE1- cells that are unable to degrade cAMP form transient,

aberrant streams that lead to clusters [25].

Other models of chemotaxis focus on stochastic aspects of the cellular pro-

cesses. These models discuss mechanisms that include stochastic dynamics of direc-
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tional sensing and speed control [9, 102, 105–107], “memory” associated with mem-

brane deformations [108–110], and extension of new pseudopods conditional on the

locations of existing ones [91,111]. Recent models of chemotaxis study the effects of

noise due to fluctuations in receptor binding as well as the noise arising from sub-

sequent internal responses [95, 96, 104, 112–114]. In the simplest models directional

sensing is represented as stochastic dynamics of a single angular variable (which

represents the density asymmetry of both the occupied receptors and further down-

stream processes such as PIP3 regulation). Schienbein et al. [105] showed that the

dynamics of the stochastic angle agrees well with the directional sensing dynamics

of granulocytes during galvanotaxis. The stochastic angle model was also imple-

mented for D. discoideum chemotaxis by including receptor kinetics and chemical

gradient steepness [104]. In this work we choose to capture the stochastic effects by

associating the stochasticity of the previously described angular variable with the

measured fluctuations in the direction of motion.

4.2 Experimental observations

Experiments in linear chemical gradient classify the collective response of relay sys-

tems to externally imposed signals. The EZ-TAXIScan system uses an etched sili-

con chip to form 6 separate channels for chemotaxis experiments in a linear geome-

try [94]. Each channel contains two buffer wells on opposite sides of a thin, terraced

gap (260 microns long, 1.2 mm wide and 5 microns deep). Cells are gently pipetted

into one well and allowed to settle to the glass surface. The opposite channel is
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filled with cAMP and diffusion sets a linear gradient in the channel within 5 min-

utes. Cells, responding to the external signal, enter the terraced region and travel

260 microns towards the other side. Parallel to the edges of the terrace are small

columns (20 microns long, 8 microns apart) that set the vertical spacing, but provide

little impedance to cell motion. If not modulated by cAMP or by PDE1 secreted

by the cells, the imposed gradient stays constant at least for 60 minutes [94, 100].

This type of setup provides a good signaling geometry for separating the effect of

intercellular communication and an imposed gradient. Fig. 4.1A and Fig. 4.1B show

time lapse images of wild-type cells and mutant cells under the influence of a linear

(downward in the figures) cAMP gradient. At t = 0 cells placed in a reservoir with-

out cAMP begin to move into the chamber (at the top boundary in the figures).

Although the cells are initially introduced uniformly in the horizontal direction (5

min panel of Fig. 4.1A and Fig. 4.1B), wild-type cells are attracted to each other

and form streams (32 min panel of Fig. 4.1A), which in this example evolve to

swirling groups (60 min. panel of Fig. 4.1A). The mutual attraction of the cells is

due to the enzyme adenyl cyclase A (ACA) localized at the back of the cells [24].

ACA synthesizes intracellular cAMP, which diffuses into the extracellular medium.

As shown in Fig. 4.1B, mutant cells (aca-), lacking ACA, do not exhibit collective

motion and, throughout the time-course of the experiment, move without streaming

or clumping in the direction of the external cAMP gradient.

To analyze these observed migratory behaviors, we use a cell-tracking algo-

rithm to determine, over a short time interval ∆t, displacement vectors of the po-

sition of the center of the imaged intensity of each cell. We define a motion angle
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Figure 4.1: (A) Wild-type cells can relay the signal by secreting cAMP
from their tails. They form streams that are unstable towards swirling
clumps. (B) The mutant cells (aca-) lacking the ACA enzyme cannot
secrete cAMP and thus undergo uniform motion in the direction of the
external cAMP gradient. (C) Some representative tracks of aca- cells
obtained with the tracking algorithm. Vector displacements along the
tracks are color coded according to real time. (D) Distributions of the
angle representing the displacement of cells exposed to different constant
gradient amplitudes with respect to the vertical axis. The panel labels
(5 nM to 5 µM) denote the cAMP concentration in the reservoir.
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θ as the angle of a cell’s displacement vector with respect to the imposed cAMP

gradient. Fig. 4.1C shows representative tracks of cells during chemotaxis (color

coded according to real time). Fig. 4.1D shows the distributions of the angle θ for

aca- cells, subject to four different external cAMP gradient strengths, increasing by

a factor of 10 from panel to panel. The spread of θ reflects the competition between

noise and the ability of cells to sense and react to the gradient. Note that the width

of the distributions first decreases with increasing gradient strength then decreases,

indicating the existence of an optimum. This finding agrees with observations of

Fuller et al. [95], which show that the chemotactic response is limited by external

noise (noise due to receptor-ligand binding) for a small local cAMP concentration

and by internal noise (noise due to subsequent internal signaling) for a higher local

cAMP concentration.

The distributions in Fig. 4.1D show that the cells do not always orient in

the direction of the extracellular gradient (θ = 0). As discussed in Ref. [115], the

gradient-sensing mechanism is stochastic, with many sources of noise that can cause

random deviation from the direction of the external gradient. Our data for the

angular distributions suggest that above a threshold gradient the cell orientation

is independent of the gradient strength. Below this threshold (e.g., see the 5 nM

panel of Fig. 4.1D), the width of the θ distribution increases with decrease of the

gradient [95]. In the following we focus on the regime in which the cell migration is

less sensitive to the gradient strength.

For several representative cells, Figs. 4.2A-C show the time autocorrelation

of C(τ) = 〈cos [θ(t)− θ(t+ τ)]〉 − 〈cos2 θ(t)〉, where the angle brackets denote an
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Figure 4.2: (A-C) 〈C(τ)〉 versus τ for three different imposed cAMP gra-
dient strengths corresponding to cAMP concentrations of 50 nM (black
bullet), 0.5 µM (black square) and 5 µM (black triangle) in the reservoir
on the cell exit side of the gradient chamber. The solid lines are best
fits to 〈C(τ)〉 = e−τ/τ0 yielding values for τ0 of 0.84 min, 0.94 min and
1 min. Autocorrelations are obtained from n = 33, n = 47, and n = 79
cells, respectively. Error bars represent the standard deviation. (D) The
variance 〈C(0)〉 ∼= δθ2, versus the distance y from the cell input side of
the gradient chamber for the three gradient strengths in Figs. 4.2A-C
is plotted using the same symbols black bullet, black square and black
triangle.
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average over time for cells that are located in the region between the cell exit plane

and the mid plane of the gradient chamber (lower half of the panels in Figs. 4.1A

and B, (the number of cells are n = 33, n = 47, and n = 79, respectively)). The

reason for restricting the averaging to the half of the chamber on the cell exit side

is to eliminate any bias of the cell orientation angle distribution due to influence

of the process of entry into the chamber. For small angles (cos θ ≈ 1 − θ2/2) the

autocorrelation is C(τ) ≈ 〈θ(t)θ(t + τ)〉. The variance of θ, δθ2 ≈ C(0), is plotted

as a function of the distance from the starting point of the cells in Fig. 4.2D for

the three different gradient strengths. In the next section we develop a collective

migration model that estimates the level of the fluctuations in the displacement

(dashed line in Fig. 4.2D). Previous studies on eukaryotic HaCaT cells highlight

the dependence of velocity autocorrelations on two time scales [108]. Nevertheless,

we see from Figs. 4.2A-C that 〈C(τ)〉 can be well fitted to a dependence of the

form e−|τ |/τ0 parametrized by the single characteristic time τ0. The fits for the

average correlations 〈C(τ)〉 for the individual gradient strengths are displayed in

Figs. 4.2A-C. The single time scale, τ0, is approximately constant over the two

orders of magnitude in the external cAMP gradient strengths (τ0 = 0.84 min, 0.94

min and 1 min for Fig. 4.2A, Fig. 4.2B, and Fig. 4.2C). This time scale is roughly

consistent with the dynamics of contractions of cells [53].
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4.3 Modeling signal relay

Modeling collective migration of D. discoideum in a linear gradient chamber enables

quantitative description of collective responses to externally imposed signals. The

characteristic size of eukaryotic cells is an order of magnitude larger than that of

bacterial cells. In contrast to bacterial cells, eukaryotic cells can sense the difference

in chemoattractant concentration between the front and the back of a cell, thus

detecting spatial gradients without moving. For D. discoideum, gradient sensing

is accomplished via a G-protein coupled receptor and downstream signaling path-

ways [36]. Models of chemotaxis treating the cAMP signal transduction mechanism,

including the biochemical details such as receptor desensitization [44] and adapta-

tion [116], demonstrate the emergence of the experimentally observed cAMP waves.

In this dissertation our modeling approach will differ somewhat from past works

(e.g., Refs. [19,45,47,117]) in that we seek a collective migration model that is sim-

ple enough that its relatively few parameters can be inferred from experiments, yet

is still capable of capturing the distinctions between streams and clumps seen in our

experiments on D. discoideum.

We model cells as self-propelled soft disks of radius r0 = 7.5µm. For each cell

i we specify the location of its center and its orientation by the two-dimensional

vectors ri(t) and ni(t) (by definition |ni| = 1). We specify locations of the cells

using a Cartesian coordinate system, where the chamber in which the cells move

is located in 0 ≤ y ≤ Ly. In the experiment, the chamber boundaries, y = 0

and y = Ly, have perforations and are thus permeable to transport of cells and
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cAMP. The speed of each cell, v0, is assumed to be well-approximated as constant

in time (12µm/min), independent of signal strength, in agreement with controlled

chemotaxis experiments [8]. The cAMP concentration field is denoted C(x, y, t). In

the experiment the cells are deposited in a large reservoir (corresponding to y < 0

in the collective migration model) in which there is no externally injected cAMP.

This experimental condition is modeled by a Dirichlet boundary condition on the

cAMP concentration, C(x, 0, t) = 0 at y = 0, and by introducing individual discrete

cells at y = 0 with a uniform flux JD cells per unit time per unit length in x (each

newly introduced cell’s orientation is initially in the y − direction). In addition,

the experiment has an aqueous solution of cAMP in a large reservoir on the other

side of the chamber (corresponding to y > Ly in the collective migration model),

and the cAMP concentration in this reservoir stays constant during the course of

the experiment. This is modeled by a Dirichlet boundary condition at y = Ly,

C(x, Ly, t) = C0, along with the removal of cells when they reach y = Ly. We

applied periodic boundary conditions in x, such that C(x, y, t) = C(x+Lx, y, t) and

each cell that leaves the chamber at a lateral boundary, x = 0 or at x = Lx, reenters

the chamber at the other end. Using these definitions, we propose the following

minimal, agent-based collective migration model for cell motion in our experimental

setup,

dri
dt

= v0ni (4.1)

dni
dt

= ωni ×
[(
∇C
|∇C|

+ ξi + fi

)
× ni

]
(4.2)
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∂C

∂t
= D∇2C − νC + s

∑
i

δ(r− ri) . (4.3)

The equation (4.1) corresponds to the constant speed assumption. The equa-

tion (4.2) dictates that the unit vector specifying the cell’s orientation ni(t) is at-

tracted toward the direction of the vector,

gi(t) =
∇C
|∇C|

+ ξi + fi , (4.4)

with relaxation time ω−1. This relaxation time may be thought of as including

both the chemically determined time for a cell to ‘perceive’ the gradient, as well

as the time it takes the cell to mechanically turn its orientation. The first term

in gi is a unit vector in the direction of the cAMP gradient. Note that, in accord

with the observed similarity of the second, third, and fourth panels of Fig. 4.1D,

this term is independent of the level of cAMP (i.e., invariant to the transformation

C(x, y)→ (const.)× C(x, y)). The second term ξi = (ξxi , ξ
y
i ) in gi is white noise,

〈ξli(t)〉 = 0 , 〈ξli(t)ξl
′

i′(t
′)〉 = ηδii′δll′δ(t− t′) ; l ∈ {x, y} . (4.5)

The third term fi in gi is a repulsive ‘force’ modeling a soft two-body contact inter-

action between neighboring cells,

fi = f0
f̂i

|f̂i|
, f̂i =

∑
rj∈Si

ri − rj
|ri − rj|

(
1− |ri − rj|

2r0

)
, (4.6)

where Si is the region |r − ri| ≤ 2r0. In Eq. (4.6) we have taken the form of the

repulsive force to decrease linearly with distance from the center of the cell. We have
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also tried other forms for the |ri − rj| dependence of the repulsive force and found

that no qualitative differences occurred. Szabo et al. [118] and Chate et al., [119]

discussed the effect of adding cohesive (i.e., attractive) forces in modeling tissue

cells. The parameter f0 determines the strength of the repulsion force.

Eq.(4.3) is the diffusion equation governing the evolution of the distribution of

the cAMP density, with constant diffusivity D = 400µm2/sec [120]. The parameter

s is the cAMP secretion rate of a cell. The cAMP decays at a rate ν, which can

be spatially nonuniform and is approximately proportional to the concentration of

the degradation enzyme phosphodiesterase PDE1 [48]. We introduce a degradation

inhomogeneity suitable for our experimental setup in the following section.

4.3.1 Role of degradation in signal relay

cAMP degradation has a non-linear profile due to the experimental conditions. The

cAMP degradation rate ν in Eq. (4.3) is meant to account for the presence of the

cAMP-degrading enzyme PDE1, with ν assumed to be proportional to the enzyme

density CPDE1. Since PDE1 is secreted by the cells themselves and then diffuses,

we can expect that CPDE1, and hence ν, are time- and space-dependent quantities

obeying an equation similar to Eq. (4.3) for the cAMP density C(x, y, t), but with

the term analogous to the degradation in Eq. (4.3) omitted. In the interest of

simplicity, for our minimalist collective migration model, we wish to circumvent a

full time-dependent diffusion equation model for CPDE1. Instead, we assume that a

time-independent steady state that is homogeneous in x is established for the CPDE1
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(we show in Appendix C.1 that this assumption is justified for the conditions of our

experimental setup). This situation corresponds to ν depending on y but not x and

t, ν = ν(y). Furthermore, in steady state, the x-averaged cell flux in the y-direction

must, by conservation of cell number, be independent of y in the linear gradient

chamber, and its value everywhere in the chamber must be the same as the cell

injection flux JD at y = 0. In the simplest case, without clumps, the x− t averaged

density of cells in the external linear gradient region will thus be roughly uniform

in y and of the order of JD/v0. Thus the x − t averaged PDE1 density C̄PDE1(y),

satisfies a one-dimensional, time-independent diffusion equation of the form

DPDE1
d2

dy2
C̄PDE1 + SPDE1 = 0 . (4.7)

Here we approximate SPDE1 as constant in y and given by sPDE1JD/v0 where sPDE1

is the production rate of the PDE1 per cell per unit time; DPDE1 is the diffusivity

of the PDE1 and is approximately 100 µm2/sec [121]. In addition, we will argue

that the appropriate boundary conditions on the PDE1 density are C̄PDE1(y) = 0

at y = 0 and y = Ly. Solution of Eq.(4.7) with these boundary conditions leads to

the model,

ν(y) = 4ν0
y

Ly

(
1− y

Ly

)
. (4.8)

That is, ν(y) varies parabolically in y; ν(0) = ν(Ly) = 0, and has its maximum

value ν0 in the center of the chamber, y = Ly/2. In our numerical explorations we

mostly use the model for cAMP degradation given in Eq. (4.8). We also note that
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in other experiments, depending on the experimental setup, ν(y) may have different

dependence on y. For comparison, we repeated our numerical runs with the spatially

constant form ν(y) = 2
3
ν0, where the numerical prefactor (2/3) is chosen so that the

total amount of PDE1 in 0 ≤ y ≤ Ly is the same as for Eq. (4.8) (i.e.,
∫ Ly

0
νdy is the

same). The spatially constant form for ν was used in other models of D. Discoideum

chemotaxis [19, 44, 45, 47]. The results (shown in Appendix C.3) are qualitatively

similar to the results presented here.

We now outline how we motivate the use of the boundary conditions

CPDE1(0) = CPDE1(Ly) = 0 (4.9)

(more detailed quantitative justification is given in Appendix C.1). In our experi-

ments, cells are placed in the reservoir located at y < 0. The cells then rapidly sink

to the bottom of the reservoir (z = 0). The reservoir has a vertical thickness that

is more than 2 × 103 times larger than the vertical thickness of the linear gradient

chamber. The same dimensions apply for the reservoir in y > Ly. The bottom glass

surface (z = 0) of the reservoir at y < 0 extends into y > 0, where it forms the

bottom plane of the linear gradient chamber and of the reservoir in y > Ly. Cells

that are on the bottom of the y < 0 reservoir supply a source of cells for entry

at y = 0 into the linear gradient chamber. The cAMP-degrading-enzyme PDE1,

secreted by cells in the y < 0 reservoir are assumed to be transported vertically up-

ward by small convection flows in the reservoir fluid into the vertically large region

z > 0 of the reservoir. In contrast, the distribution of the PDE1 emitted by the
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cells in 0 ≤ y ≤ Ly is constrained to the much thinner vertical region defined by

the chamber dimensions. Thus, in the linear gradient chamber the PDE1 density

cannot be attenuated to low levels by spreading vertically. As shown quantitatively

in Appendix C.1, based on this consideration, the enzyme density in y < 0 and

y > Ly is much less than in the interior of the chamber. This situation leads to our

previously stated approximate boundary conditions, CPDE1(0) = CPDE1(Ly) = 0,

used in obtaining Eq. (4.8).

4.3.2 Normalization of parameters

In order to systematically determine the essential dependence of the behav-

ior of the collective migration model on its parameters, we introduce appropriate

nondimensional variables. We define the dimensionless spatial coordinates (x′, y′)

by x′ := x/Ly and y′ := y/Ly. The dimensionless time scale t′ is defined as t′ := ωt,

and the dimensionless cAMP density C ′ is defined as C ′ := C/C0. With the rescaled

variables, the cAMP boundary conditions become, C ′(1, t′) = 1 and C ′(0, t′) = 0.

Additionally, the white noise is transformed to 〈ξi(t′1)ξi(t
′
2)〉 = η′δ(t′1 − t′2), where

η′ := ωη. The collective migration model equations with the rescaled variables and

Eq. (4.8) for ν(y) can now be written as

dr′i
dt′

= v′0ni (4.10)

dni
dt′

= ni × (gi × ni) (4.11)

∂C ′

∂t′
= D′∇′2C ′ − 4ν ′0y

′(1− y′)C ′ + s′

N̄

∑
i δ(r

′ − r′i) , (4.12)
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where v′0 := v0/(ωLy), D
′ := D/(ωL2

y), ν
′
0 := ν0/ω, N̄ := JDL

2
y/v0, and s′ :=

sJD/(ωC0v0). The integral of the summation
∑

i δ(r
′−r′i) over the square 0 ≤ x′ ≤ 1,

0 ≤ y′ ≤ 1 is the number of cells in the unnormalized square 0 ≤ x ≤ Ly, 0 ≤ y ≤ Ly

and is roughly equal to N̄ . In the situations we investigate N̄ is always large

compared to unity. Thus the term N̄−1
∑

i δ(r
′ − r′i) roughly plays the role of

a normalized density whose nominal value is one. With these normalizations, the

parameters in our collective migration model are D′, ν ′0, s
′, v′0, η′, and N̄ . We wish to

explore the variation of the system behavior as a function of parameters. This task is

clearly an impossible task to carry out for the full set of 6 dimensionless parameters.

Thus, we now seek to restrict our detailed considerations to the parameters whose

influence is, we think, the most interesting. If we regard ω for the cells as fixed,

then the parameter D′ is dictated by the experimental setup. Experimentally, the

typical cell speed v0, and hence v′0, is observed to be roughly the same for wild-type,

and mutant cells [8], and we therefore take v′0 as fixed. The noise term η′ will be

fixed by the experimental observations (e.g., Fig. 4.1D), which imply that it does

not vary significantly across the different experimental conditions investigated (see

Appendix C.2). Thus, we will keep D′, v′0 and η′ fixed at the appropriate estimated

values. Furthermore, we expect that the qualitative behavior of the system will be

insensitive to the precise value of N̄ so long as N̄ � 1 (the situation in which we

are interested). Thus our main numerical collective migration model explorations

will focus on how the collective migration model behavior depends on ν ′0 and s′.

We now further discuss our reason for interest in varying ν ′0 and s′. First, with

respect to ν ′0, in reference [25] a genetic perturbation to the cells resulted in mutants
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lacking the ability to produce the degradation enzyme PDE1 (but still emitting

cAMP). In our collective migration model this situation corresponds to setting ν ′0 =

0. In our numerical experiments we will explore a continuous dependence on ν ′0,

partly because ν0 is not well determined, but also to understand the difference

between mutant cells that do not emit PDE1 (i.e., pdsA-/PEC cells) and wild-

type cells. We also suggest that it may be useful for future experiments to explore

continuous dependence on PDE1 secretion rate (i.e., ν ′0) which might be realized by

introducing a mixture of wild-type and mutant PDE1- cells. Regarding variations

of s′, we note that the secretion of cAMP from cells s, is biologically inhibited for

another type of mutant, the aca- cells. Also, in our experiments, we change the

external concentration of cAMP, C0. The biological and chemical changing of the

parameters, s and C0, both yield change of s′ = sJD/(ωC0v0). (Also, s′ could be

tuned by changing the y < 0 reservoir cell density and hence JD, but we have kept

JD constant in our experiments.)

4.3.3 Parameters

Aside from s and ν0 the parameters we used in our simulations are summarized

in Table 4.1. We assume that the cell parameters in this table (i.e., r0, v0, D, ω,

η, f0) are the same for wild-type cells (s 6= 0) and mutant cells (s = 0). In the

absence of mutual attractions through cellular secretion of cAMP, a Fokker-Planck

version of Eqs.(4.1)-(4.6) can be solved analytically (see Appendix C.2), and ηω

in Eq. (4.5) can be determined by matching the analytical result to experimental
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observations of mutant cells. Also, we estimate ω as being of the order of τ−1
0 as

determined from our experimentally observed time-autocorrelation of the orientation

vector (Fig. 4.2A), where τ0 is defined at the end of the previous section. This time

scale is comparable to the contraction rate of D. discoideum cells, which in the work

of Satulovsky et al. [53] is considered as the bulk relaxation time. We note that the

real cells’ secretion rates of cAMP and of PDE1 are not well quantified and can be

varied by drug treatment or by the use of mutant cells. Thus, we will regard s and

the PDE1-level-dependent parameter ν0 as variable parameters and investigate how

the dependence of the collective cell dynamics depends on them.

Table 4.1: Parameters used in the numerical simulations

Symbol Description Value

r0 Cell radius 7.5 µm
v0 Self-propulsion speed 12 µm/min
D Diffusion constant of cAMP 0.024 mm2/min
ω−1 Response time 1 min
η Amplitude of Gaussian white noise 0.33 min

f0 Repulsive force constant (dimensionless)
√

10
Lx Width of the simulation box 1 mm
Ly Length of the simulation box 0.33 mm

Except for the force constant f0, all the cell parameters in this table (i.e., r0, v0,
D, ω and η) are obtained from experiment. The response time is obtained from the
autocorrelations of the displacement vector. The noise amplitude η was calculated
from the variance of the θ distribution, where the angle θ represents the orientation
of the associated displacement vector.
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4.3.4 Comparison between experiment and collective migration model

results

Results of numerical simulations capture experimentally observed migration pat-

terns. The collective migration model equations, Eqs. (4.1)-(4.6) are simulated

numerically. Figs. 4.3A-4.3C show representative cell tracks for three different val-

ues of the normalized cAMP secretion rate s′. For all three of these cases ν ′0 is

fixed at ν ′0 = 2.25, which we estimate to be consistent with previous experimental

measurements [44]. The color at a given point on a cell track in Figs. 4.3A-4.3C

indicates the time that the cell making the track was at that point; red corresponds

to the beginning of the simulation and blue corresponds to the end of the simu-

lation. Figs. 4.3D-4.3F show representative snapshots, where the position and the

orientation n of the cell is indicated by an ellipse (at normalized time t′ = 71 for D,

E, and F). In the top panels of Fig. 4.3 (Figs. 4.3A and 4.3D), the relative cAMP

secretion rate is small (i.e., s′ � 1). This regime mimics the aca- mutant cells, and

our numerical results agree qualitatively with the experimental observations of aca-

cells (cf., 32 min panel of Fig. 4.1B). For larger values of s′, and depending on t′, our

numerical results can be classified under two main categories, streams (Fig. 4.3E)

and clumps (Fig. 4.3F). At moderate s′ (Fig. 4.3E) streams are evident. At higher

s′, Fig.4.3F shows that multiple clumps of cells form. From the corresponding tracks

of cells shown in Fig. 4.3C, it is seen that the cells stay within the clumps and the

clumps have almost no motion in the y′ direction.
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Figure 4.3: (A) For a relatively slow cAMP secretion rate (s′ = 0.083)
the cells move independently, showing no sign of collective motion. (B) If
the cAMP secretion is moderate (s′ = 0.665) cells form streams. (C) For
high relative cAMP secretion rate (s′ = 1.327) cells exhibit aggregation
and therefore form clumps. Panels (D-F) are snapshots from the same
simulations exhibiting the spatial organization of the cells.

Dynamics of collective migration is quantified by the mean progression speed and the

cell density. To go beyond the visual comparison of our simulation results with our

experimental observations, a quantitative description of the three modes of group cell

motion described above (i.e., uncorrelated motion, streams, and clumps) is desirable.

We define the normalized mean progression M(y′, t′), by M(y′, t′) = |〈n(t′)〉|, where

the angle brackets denote an average of cells in the region between y′ − ∆/2 and

y′ + ∆/2, where ∆ = 0.05 (cf., [122, 123]). We denote by M̃(t′) the average of

M(y′, t′) over 0 ≤ y′ ≤ 1, and we denote by M(y′) the time average of M(y′, t′)

taken over the last quarter of the simulation (82.5 < t′ < 110). Another useful

measure is the normalized averaged cell density ρ(y′), computed by averaging over

the region y′−∆/2 to y′+∆/2 with ∆ = 0.05 and normalized so that
∫ 1

0
ρ(y′)dy′ = 1.
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First, Fig. 4.4A shows the ensemble average of M̃(t), denoted by M̃ ′(t), for

the aca- cell experiment (in gray) and for a single model simulation (in black). The

collective-migration model parameters for the run are ν ′0 = 2.25 and s′ = 0.033,

which correspond to the aca- mutant cells. To make a fair comparison, for the

experimentally obtained M̃ ′(t) we filtered out cells that move at a slower speed

than what we considered in our collective migration model (i.e., v < v0). We

calculate M̃ ′(t) for a group of randomly selected cells in the 0 < y′ < 1 region.

Since our tracking algorithm cannot track all the cells available in this region, the

experimentally obtained M̃(t) is represented by this ensemble average. To compare

our experimental result to our numerical simulation results, we calculate M̃ ′(t) from

our simulation by sampling cells in the simulation so as to match the number of

cells for which M̃ ′(t) is experimentally calculated.

We show in Figs. 4.4B and 4.4C how M(y′), and ρ(y′) vary with the distance

from the cell reservoir, y′, for the three values of s′ used to obtain the cell tracks

shown in Fig.4.3 with ν ′0 fixed at the same value used for Fig. 4.3. In these plots,

M(y′), and ρ(y′) are averaged over several runs (this average is denoted by [M̃(t)]),

where the error in the mean is shown by vertical error bars, which is calculated by

the standard deviations of the runs divided by the square root of the number of

runs. In the low s′ regime (solid curves in Figs.4.4B and 4.4C), corresponding to

Figs. 4.3A and 4.3D, Fig. 4.4A shows that, M(y′) saturates to 0.9 in the upper half

of the gradient chamber, y′ & 0.5, whereas Fig. 4.4B shows that ρ(y′) ∼= 1± 10% is

approximately uniform. The density profiles measured from the time lapse images

(a rough estimate calculated from the image intensity) are in fair agreement with
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Figure 4.4: (A) M̃(t) is used to compare experimental data (aca- with
C0 = 5µM) with a representative single run that is obtained with
collective-migration model parameters that mimic the experimented aca-
mutant cells. (B) and (C) show respectively, M(y′), and ρ(y′) as a func-
tion of the distance from the cell reservoir for ν ′0 = 2.25, and three
different cAMP secretion rates. Error bars are obtained from different
realizations with the same simulation parameters for each curve and rep-
resent the standard error of the mean. (D) The maximum ρ(y′) in the
region y′ > 0.5 is plotted against its corresponding M(y′). Each point
corresponds to a single numerical run. For (A), when the cells enter the
chamber at y′ = 0, we initialize the cell orientation vectors ni for cell i
according to a distribution of the angle θ with respect to the y − axis,
where this distribution is uniform in the range, −π/2 < θ < π/2. This

process is used for approximate matching of the experimental M̃(t) at
t ∼= 0.
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those obtained from our simulations. For PDE1- cells, our collective migration

model suggests that the cAMP secretion levels are small compared to those of the

wild-type cells exposed to the same imposed gradient. The density profiles measured

from the time lapse images (a rough estimate calculated from the image intensity)

are in fair agreement with those obtained from our simulations. For PDE1- mutant

cells, our collective migration model suggests that the cAMP secretion levels are

small compared to the wild-type cells exposed to the same imposed gradient. In

determining the cAMP secretion rate we assumed same noise level compared to the

wild-type cells. Therefore, in conjunction with findings from our collective migration

model, our experimental observations suggest that the lack of degradation of external

cAMP results in either reduced signal relay or increased noise level in gradient

sensing (corresponding to receptor desensitization). The comparison and the details

of the density estimate are shown in Appendix C.4.

As shown in Figs. 4.3B and 4.3E, for t′ = 71, streams emerge in the regime

of moderate s′ (plotted as the gray dashed curves in Figs. 4.4B and 4.4C). These

streams start to aggregate in the upper half of the gradient chamber, which results

in a decrease in M and a corresponding increase in ρ. Compared to the low s′

regime, the streams cause an increase in the cell density (the peak at y′ ∼= 0.8).

In the high s′ regime (plotted as the black dashed curves in Figs. 4.4B and

4.4C), ρ(y′) is even more peaked than in the moderate s′ regime. This situation

apparently leads to a peak in the cAMP density which leads cells to start aggregating

in the lower half of the gradient chamber. Streams form close to the reservoir, where

cells enter the gradient chamber. To form streams, newly entering cells acquire
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laterally (x-directed) converging velocity components. Because the cell speeds are

fixed at v0, M(y′) decreases (see the region 0.2 . y′ . 0.5 in Fig. 4.4B) and ρ(y′)

increases. This situation apparently leads to a more localized secretion of cAMP,

which overcomes the externally imposed cAMP concentration causing the clumping

seen in Figs. 4.3C and 4.3F.

In Fig. 4.4D the maximum ρ(y′) in the region 0.5 ≤ y′ ≤ 1 is plotted versus the

corresponding M(y′). Each point in this figure is obtained from a single numerical

run. The points are color coded with respect to the ν ′0 and s′ used in the numerical

run. Fig. 4.4D shows that points are clustered in two regions. The first region, in

which ρ is large and M is small [(ρ & 3), M . 0.3], corresponds to large clumps,

while the second region, in which ρ is small and M is large [(ρ ∼= 1), M ∼= 0.9],

corresponds to the uncorrelated motion. The points between these two regions

correspond to runs in which cells form streams that either generate clumps (i.e.,

points closer to the first region) or move through the 0.5 ≤ y′ ≤ 1 region and leave

the gradient chamber (i.e., points closer to the second region).

Stream formation is robust when external cAMP is degraded. We explored the

effect of the two timescales, the cAMP degradation rate and the local cAMP pro-

duction rate, ν−1 and s−1, respectively. Fig. 4.5 shows results for M(y′, t′) averaged

over 0 ≤ y′ ≤ 1 and 82.5 ≤ t′ ≤ 110 (i.e., the last quarter of the simulation), as

well as over a large number of model simulations (∼ 1000). These averages are

labeled {M} in the figure. The top panel of Fig. 4.5A shows {M} as a function of

s′ for ν ′0 = 2.25. Fig 4.5A shows that {M} decreases as s′ increases. In the region
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Figure 4.5: (A) {M} as a function of s′. Error bars are obtained from
multiple numerical realizations (between 10−30) and represent the stan-
dard error of the mean. In the top panel, the degradation rate is compa-
rable to the experimentally obtained degradation rate of the phosphodi-
esterase. In the bottom panel, we used a small cAMP degradation rate
to model mutant PDE1- cells, which are incapable of secreting the en-
zyme that degrades cAMP. (B) {M} as a function of the relative cAMP
secretion and relative cAMP degradation rates. The red regions corre-
spond to uncorrelated motion. The dynamically unstable regions of the
(ν ′0, s′) phase space, in which streams are likely to form, are labeled with
yellow and white. Blue regions are associated with aggregate formation.
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0.8 & s′ & 0.5, where {M} decreases fastest, streams occur, but clumps are rare

(e.g., Figs 4.3B and 4.3E). The bottom panel of Fig. 4.5A is for a small value of

ν ′0 (0.015), to model mutant cells that cannot degrade cAMP. In this case we see

that there is a sharp decrease in {M} in the range 0.3 & s′ & 0.2. Below this range

the simulations show roughly uniform cell density, whereas above this range clumps

occur. Compared to the slow degradation regime, in the fast degradation regime

(top panel of Fig. 4.5A) the streaming behavior is robust. In the slow degradation

regime, the streams form for only a short period, which is followed by formation

of clumps. Recent experiments demonstrate that stream formation is impaired if

cells cannot degrade external cAMP [25]. Fig. 4.5B summarizes results for our sim-

ulations (color coded), as a function of s′ (plotted on the horizontal axis) and ν ′0

(plotted on the vertical axis). The data in the top (bottom) panel of Fig. 4.5A

correspond to a horizontal cut through Fig. 4.5B at the arrow, ν ′0 = 2.25 (0.015),

on the vertical axis of Fig. 4.5B. Fig. 4.5B shows that the width of the range of s′

in which streams occur decreases as ν ′0 is lowered. Additionally, the onset of stream

generation with respect to s′ becomes smaller with decreasing ν ′0.

4.4 Discussion

Our collective migration model explains different observed modes of collective

motion of motile cells. Our main new finding is that signal relay alone is not enough

to arrange migrating cells into collectively moving streams. However, when the sig-

nal is both relayed and also degraded, stable streams form. Our collective migration
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model is minimal, involving a relatively small number of potentially experimentally

deducible parameters.

Based on our numerical results, we suggest experiments in which the transition

between streaming and clumping can be experimentally tested by changing the

effective values of our collective-migration model parameters. One suggestion is

that the value of ν can be effectively reduced by either mixing wild-type and PDE1-

mutants or by changing the amount of PDE1 added during the PDE1- mutant cell

development.

The relaxation time ω−1 obtained from our experimental observations is asso-

ciated with the membrane retraction time scale. In addition, the time scale corre-

sponding to the noise amplitude η ≈ 20 sec is associated with the formation time of

pseudopods [90]. These parameters could be altered by adding drugs or changing

the developmental procedures. For example, introducing a drug that inhibits the

PI3 kinase reduces the pseudopod generation frequency [90] and hence both ω and

η−1. Additionally, recent studies show drastic change in the collective motion behav-

ior of wild-type cells when they are prepared over a longer development time [124].

In this case ω and η−1 are reduced in agreement with the observed reduction of

stream formation [124]. Thus, we believe that our collective migration model can

be utilized to quantify changes in the collective motion in response to modifications

of cell characteristics.

In our collective migration model, we have focused only on the extracellular

cAMP dynamics given in Eq. (4.3), with the objective of reproducing the patterns

in Fig. 4.1 with as few physical processes as possible. We modeled the motion of the
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cells according to the the dynamics of sensing the signal with the phenomenological

equation (4.2). Models that include additional processes are capable of explaining

additional phenomena. E.g., models of cAMP signal transduction including recep-

tor desensitization [44] and adaptation [116] show the generation of experimentally

observed cAMP waves including spiral waves [19,103,117]. In addition, the observed

rotating vortex structure of the aggregates can be explained by other self-propelled

particle models that allow cells to adjust their propulsive force [125]. In the future

we plan to modify our collective migration model to investigate the rate of dynamic

cell-cell adhesion in stabilizing both stream formation and aggregation.

Our collective migration model can be extended to include competition be-

tween the gradient steepness, |∇C|, and the local cAMP concentration, C, by mod-

ifying Eq. (4.4) and introducing a competition between the noise intensity and the

concentration of the cAMP. A simple approach is to impose the following limits: For

small local cAMP concentration, the noise (second term in Eq. (4.4)) will have a

higher effect in the directionality compared to the guidance from the cAMP gradient

(i.e. independent random motion). In contrast, for high local cAMP concentration,

the contribution from the noise to local cAMP concentration ratio should be small

compared to the gradient steepness to local cAMP concentration ratio. When the

collective migration model is extended to include this competition, we can define an

organization time scale as a measure of cellular organization. Thus, we can measure

the efficiency of stream formation not only with respect to signal relay but also with

respect to the efficiency of directional sensing.

We believe that the simplified approach used here for D. discoideum can be
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extended to more complex cells exhibiting signal relay, such as neutrophils [98,126].

For neutrophils, signal relay is less well understood [98]. However, our numerical

simulations can be utilized to distinguish uncorrelated motion from weak signal

relay. Using our simulations in conjunction with linear gradient experiments in

which cells do not converge naturally to an external signal, we can calculate the

effect of signal relay on the mean progression speed, as well as on the development

of an inhomogeneous density due to cell-cell attraction, even in the case of signal

relay that is not sufficient to lead to discernible clumps or streams. Moreover, our

collective migration model can potentially be extended to include the dependence

of signal relay on cell density, in order to compare the dynamics to those observed

in Ref. [127], which proposes a quorum sensing mechanism that can quantify the

persistent random walk of D. discoideum at different phases of development as well

as at different densities. Another potential use of our collective migration model is to

characterize migration in which subpopulations of cells have different signal sensing,

and signal relay capabilities. A prominent example of such collective migration is

the motion of neural crest cells, a collective process during embryonic development.

Recent experiments suggest that mathematical models of the neural crest migration

require subpopulations having different chemotactic responses [128].
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4.5 Methods

4.5.1 Experiments in linear cAMP gradient

To examine the chemotactic dose response, cell migration was recorded at 12

second intervals for 1 hour in the EZ-TAXIScan chamber (Effector Cell Institute,

Tokyo, Japan). In the absence of wild-type cells the device establishes a well-

defined, stable cAMP gradient during the course of the experiment [94]. Wild-type

Dictyostelium discoideum cells (ax3) and ACA null mutant cells (aca-) were prepared

as described in Ref. [8]. PDE1- cells were prepared as described in Ref. [25].

4.5.2 Computational implementation

There are two modules in our numerical simulation code, the first module

consists of the equations of motion given in Eqs. (4.1)-(4.3) which defines the position

and the direction of motion of cells based on the local gradient in the neighborhood

of each cell. The second module calculates the diffusive time evolution of cAMP

due to the external signal and dynamic local intercellular signals and provides the

updated gradient vector field for use in the first module. Simultaneous evaluation

of these two modules generates cell tracks. The diffusion equation for the cAMP

(Eq. (4.3)) is solved explicitly on a square grid with spacing ∆x = ∆y = 3.3 µm

using a forward time and central space Euler method. In the numerical simulations

the time step is ∆t = 0.235(∆x)2/D ≈ 0.007 seconds, which is well in the stable

range of the numerical algorithm. For implementing the numerical evaluation of
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C ′ the diffusion equation is discretized with ∆x′ = ∆x/Ly and ∆t′ = ω∆t. The

Laplace operator can be replaced by the discretized Laplace operator and the Dirac

δ function is discretized in one dimension as δ(x′ = n∆x′) → δ(i, n)/∆x′, where

δ(i, n) is the Kronecker δ function, which is zero except for i = n. Thus, the value

of the cAMP field at x′ = n∆x′ and y′ = m∆x′, where n and m are integers, is

updated according to

C ′(x, y, t+ ∆t) = C ′(x, y, t) + µ′ (CD − Cν + Cs) (4.13)

CD = D′
(
C ′(x+ ∆x′, y′, t′) + C(x′ −∆x′, y′, t′)

+ C ′(x′, y′ + ∆x′, t′) + C(x′, y′ −∆x′, t′)

− 4C ′(x′, y′, t′)
)

(4.14)

Cν = ν ′y′(1− y′)(∆x′)2C ′(x′, y′, t′) (4.15)

Cs = s′
∑
i

δ(n, ‖x′i/∆x′‖)δ(m, ‖y′i/∆x′‖) , (4.16)

with µ′ := ∆t′/(∆x′)2. In Eq. (4.13), ‖x′i/∆x′‖ rounds its argument to the nearest

integer. The same ∆t′ is used in evaluating the equations of motion (Eqs. (4.1) and

(4.2)). Table 4.1 shows the definitions and values of the parameters used in the

numerical simulations.

“This section is reproduced from Ref. [16] under CC BY-NC license”
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Chapter 5: Distinguishing patterns of collectively migrating cells

5.1 Overview

So far we have investigated the mechanically- and chemically-guided cell mi-

gration independently. Howeve, a cell’s natural environment comprises both types

of directional cues, and cells often integrate directional signals from various sources.

In this chapter, we will investigate the impact of changes in the mechanical cell-

cell and cell-surface interactions on collective migration. To identify the differences

in the dynamics of the collective motion we introduce topological measures that

elucidate cell-cell coordination. We elaborate the model introduced in the previous

chapter to include mechanical guidance cues and use this model to demonstrate that

the “chemotactic index”–a measure of individual chemotaxis efficiency–is not suffi-

cient to distinguish coordinated motion from the individual cell migration. On the

other hand, monitoring the total projected area and the size of the largest connected

component in the binarized images of the cells resolves the characteristic patterns

formed during the group migration. We then apply these measures to two sets

of experimental data representing both genetic and mechanical perturbations. We

demonstrate that the topological measures not only distinguish complex patterning

structures but also provide insight into how the perturbations affect the migration
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efficiency of the cell population.

A current push in experimental and theoretical cell biology is investigating

which factors affect the structure and facility of these streams [16, 129]. These

transient, local regions of coherence are visible to the eye, but quantification of

streaming behavior is an open area of research. The most common measure used is

the “chemotactic index” [113,130,131], which is the average cell orientation relative

to the direction of a globally applied signal, such as a needle disbursing chemoat-

tractant. Although chemotactic index is a good measure for assessing the efficiency

of individual chemotaxis, it ignores local coordination and correlation of alignment

between cells. Additionally, this measure requires accurate information about the

cell’s position over time, which presents experimental challenges.

Stream formation is crucial for D. discoideum aggregation, and therefore has

strong physical and biological implications for the survival of the organism. Changes

in cell-cell communication or defects in the mechano-transductive ability of the cells

have been shown to inhibit stream formation [24, 25]. E.g., mutant cells with

diminished cell-substrate interactions do not form streams and cluster in smaller

aggregates, which results in aberrant sporulation (Fig. 2.1(e)).

Here, we demonstrate the use of topological measures on the binarized images

of D. discoideum to distinguish variation in group migration. First, we introduce a

phenomenological cell migration model to obtain the migratory modes observed in

no-flow gradient chambers. Using the synthetic data from the model we show that

even with absolute location information, the chemotactic index fails to distinguish

between the two modes of cell migration observed in this assay: individual motion
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(a) (b)

(d) (e)

(c)

100 μm

Figure 5.1: (a) Initial state of cells (uniformly distributed). (b-c) Cells
moving in streams. (c) Final configuration of wild-type cells is a large
aggregate. (d) Mutant cells that cannot stream form smaller aggregates
in their final configuration.

and streaming. On the other hand, the onset of collective motion can be precisely

determined by using topological metrics, specifically the total projected area and

the size of the largest connected component. Then, with live-cell experiments, we

explore the robustness of collective behavior by comparing the topological measures

among cells with internal defects and cells that are migrating in different environ-

ments. We show that our prescribed topological measures not only distinguish group

motion in every condition discussed, but also elucidate the modified characteristics

of the group-coordination efficiency of cell populations.

The experiments that are presented in this chapter are performed by Chenlu

Wang (except the experiments that were published in Ref. [129]). Joshua Parker

and myself have equal contributions for both performing numerical simulations and
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analyzing both experimental and numerical data.

5.2 Quantifying streaming

To introduce both the problem and our solution for quantifying streaming mo-

tion, we here discuss a phenomenological model for collective migration of D. dis-

coideum cells. In this model, the dynamics of a single cell are described with three

modules, gradient sensing (Eqs. (5.1) and (5.2)), membrane protrusions (Eqs. (5.3)

and (5.4)), and center-of-mass motion (Eqs. (5.5) and (5.6)), supplemented by an

equation (Eq. (5.7)) for the diffusion, production, and degradation of the chemoat-

tractant. Each cell i is represented as a motile disk with a defined front and back,

corresponding to the direction of its motion. The cell responds to the external cAMP

concentration field, C(r, t) by aligning its target direction, gi(t), to a perceived gra-

dient direction via the following two equations (where |gi(t)| = 1):

ġi(t) = ωφgi(t)× (Hi(t)× gi(t)) (5.1)

and

Hi(t) =
L∇C(ri(t), t)

〈C(ri(t), t)〉local +KD

+
√
ηφξφ(t) . (5.2)

According to Eq. (5.1), gi(t) orients itself with the vector Hi(t) on a relaxation time

scale ω−1
φ . The deterministic contribution to Hi(t) (first term on the right hand side

of (5.2)) is proportional to the cAMP gradient if C is low and saturates to l(∇C/C)

when C is large (C � KD), consistent with experimental observations [113] (L is

the characteristic size of the migration chamber). According to Eq. (5.2), Hi(t)

has a stochastic component modeled by two-dimensional white noise of amplitude
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ηφ (〈ξjφ〉 = 0, 〈ξjφ(t)ξj
′

φ (t′)〉 = δjj′δ(t − t′), where j = x, y indicates the directional

component). This approximation models the stochastic nature of the binding and

unbinding of cAMP molecules to receptors [95, 113,115,132].

The “membrane protrusion” module models the cell’s protrusive response ni(t)

to its target direction of motion, and with the net direction of new protrusions

corresponding to the two equations

ṅi = ωθni × (Gi × ni) (5.3)

and

Gi = gi +
√
ηθξθ(t) . (5.4)

That is, the unit vector ni(t) responds to a noise-corrupted goal direction Gi(t)

(with noise amplitude ηθ) on a time scale ω−1
θ .

Finally, the center-of-mass motion of cell i, located at point ri and moving

with velocity vi, is modeled by the equations,

v̇i(t) = −βvi(t) + κv0ni(t) +
∑
j 6=i

fij (5.5)

and

fij = k

(
1− dij

2r0

)
ri − rj
d3
ij

Θ(2r0 − dij) . (5.6)

Here, fij is a “force” with strength k (Θ is the unit step function) that prevents

the cells (assumed to be of size r0) from occupying the same space. In the ab-

sence of mechanical interactions (i.e., k = 0), Eq. (5.5) can be integrated to yield

vi(t) = κv0

∫ t
−∞ e

−β(t−t′)ni(t
′)dt′. This approximation identifies the center-of-mass

motion as a “sum over protrusions” [11] with a characteristic time scale β−1, where
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κ is a time-independent parameter selected so that the speed |vi| suitably averaged

over cells is v0 (see supplementary information). Because the aim of this chapter

is to demonstrate stream quantification, we chose model parameters with values

that exaggerate the streaming behavior of this extension of the collective migration

model.

We simulate Eqs. (5.1)-(5.6) in a square chamber with side L = 0.33 mm, cell

density ρ, and periodic boundary conditions for the cell motion (thus, if a cell leaves

through one of the four boundaries, it is reintroduced at the opposite boundary).

The cells are initially distributed to be not in contact but otherwise random, and the

simulation is allowed to run sufficiently long to reach steady state. The dynamics

of the chemoattractant inside the chamber are governed by the diffusion equation,

∂tC = D∇2C − ν(y)C + s
∑
j

δ(r− rj) . (5.7)

The first term on the right hand side of Eq. (5.7) represents diffusive spreading of

the chemoattractant with diffusivity D. The second term represents global degra-

dation of the cAMP field by phosphodiesterases secreted by the cells. The third

term represents a constant secretion of cAMP from each cell with rate s [24]. We

choose the form of ν(y) and the boundary conditions on C(x, y, t) to mimic be-

havior experiments performed in no-flow gradient chambers [16]. The boundary

conditions are C(x, 0, t) = 0, C(x, L, t) = C0, C(x + L, y, t) = C(x, y, t), whereas

ν(y) = 4ν0y/L(1− y/L) where ν0 is a coefficient reflecting the rate of degradation.

Figs. 5.2(a-c) show model simulations of the three steady state phases of this

model (individual motion, streaming, and aggregation) for a representative set of
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Figure 5.2: (a-c) Snapshots of the simulations demonstrating the three
steady state dynamic modes: individual motion, streaming, and aggre-
gates (ρ = 750 mm−2) (d-e) The chemotactic index fails to distinguish
the individual motion from streaming while the two topological measures
a and G correctly distinguish all migratory modes
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parameters and three values of reservoir concentration of the chemoattractant, C0.

For high C0, the production of cAMP by cells has minimal contribution to the total

cAMP gradient, therefore cells move in the y direction (Fig. 5.2a). For moderate

C0, the cell’s secretion of cAMP results in a large stream (Fig. 5.2b). For low C0,

streams become unstable and fold into aggregates (Fig. 5.2c).

The chemotactic index for the these three scenarios is shown in Fig. 5.2d. Al-

though the cells are coordinating their migration upwards by forming streams, their

overall orientation is almost indistinguishable from that of individual motion. There-

fore, the chemotactic index cannot capture the coordination among cells because it

is a measure for the efficiency of individual chemotactic behavior. To elucidate

the cell-cell coordination it is necessary to measure high-order spatial correlations

among migrating cells.

The three migratory modes of this model can be quantified with two topo-

logical measures. The first measure is the first Minkwoski number of the image,

a(t), which is defined as the total binarized area of the cell images, normalized by

the area from the first frame 1. The second measure is the fraction of the total

area taken up by the largest connected component in the image, which is defined as

G(t). This measure is borrowed from studies of percolation in networks [134, 135],

where moderate values of G(t) suggest the presence of a “giant component”, i.e. a

dominant structure representing the majority of interactions. Both measures were

implemented with custom scripts in MATLAB.

1This measure (along with the other two Minkowski numbers) have found recent application in

distinguishing sets of protein point patterns, see Ref. [133]
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Figs. 5.2(e-f) show these two measures over time for the three modes of the cell

migration model. For non-interacting cells the total projected area remains roughly

constant and there is no giant component (a ≈ 1, G(t) ≈ 0). For streaming motion,

the size of the largest component progressively increases with time and eventually

saturates to 1. The onset of collective motion can be identified by the size of the

giant component. The total projected area is starkly diminished when cells form an

aggregate, which is the only and largest component in the entire system (A << 1,

G(t) = 1). Therefore, the combination of the topological measures can identify the

different migratory modes that are observed in the model results.

5.3 The individual’s role during coordinated motion

Mutant cells that lack key regulators of cell migration (e.g., chemoattractant

degradation [25], signal relay [8], and cell-substrate adhesion [129]) exhibit aberrant

streaming and collective migration. Fig. 5.3a shows time-lapse images of Ax3/WT,

Ax2/talA-, and Ax3/aca- cells migrating towards a needle, notated with the white

asterisks. Wild-type cells form streams that enhance the reach of the global signal

emanating from the needle and aggregate at the tip of the needle. The talA- mutants

lack the protein Talin, which modulates the interaction between the actin skeleton

and the plasma membrane [136]. These mutant cells cannot move in streams and

therefore only generate small clumps. These clumps are distributed around the

needle and their size increase over time. However, clumps cannot merge into a large

aggregate similar to the one that the wild-type cells form. The mutant aca- cells
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Figure 5.3: Snapshots of cell migration assays with a chemoattractant
needle present (the white asterisk denotes needle location). The two
mutations, one to adhesive ability and one to signal relay, both diminish
the migratory efficiency of the cells
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Figure 5.4: (a) Our topological measures for the needle experiments. The
combination of the two numbers successfully delineate each experiment
(b) Parameter trajectories for the three needle experiments, elucidating
key biological processes such as signal propagation and recruitment

do not have the enzyme Adenaline Cyclase A, which is the essential component of

chemical signal relay [24]. In contrast with the talA- mutants, the aca- mutants have

no significant migratory deficiencies based on the comparison of their individual

chemotaxis efficiency with wild-type cells [8]. However, Aca- cells do not form

either local clumps or streams, but merely migrate in the direction of the externally

imposed gradient. The lack of signal relay reduces the recruitment of many cells to

the needle, because the reach of the chemoattractant signal is spatially limited.
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All of the characteristics of the cell-cell coordination of genetically defected

cells were quantified with the two topological measures a(t) and G(t). The projected

area is normalized by the first frame of the movie when the cells are dispersed.

Therefore, the apparent sharp increase in a suggests both strong response by the

cells in spreading onto the surface (thus being more reflective) and in the recruitment

of other cells that were initially outside the image boundary, and the overall increase

in G corresponds to an emergence of a dominant connected component in the image.

In contrast, both aca- and talA- mutant cells exhibit negligible recruitment. Both

of the genetic mutations result in a loss of a dominant structure. This inability for

long-range communication suggests that the overall migratory efficiency towards the

needle is diminished. However, cell-cell coordination of the two mutant cell types was

distinguished by a. For talA- mutants, the steady decrease in this measure shows

the formation of small clumps that never aggregate into a dominant component.

These characteristics are better separated visually on a parametric plot of the two

measures (time in shades of gray), seen in Figs. 5.4(c-e). All three experiments

begin at the same point (a(0) = 1, G(0) ≈ 0), but their progression from this point

is visually distinguishable.

5.4 Effect of environmental perturbations on cell-cell coordination

Recently, the migratory dynamics of D. discoideum cells were investigated,

when cells were plated on surfaces with different chemical properties [129]. Fig.

5.5 shows time lapse images from self-aggregation experiments on normal glass and
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Figure 5.5: Snapshots of self-aggregation cell migration assays involving
cells plated on surfaces with different adhesive capacities. Both glass
and BSA form large streams quickly and fewer aggregates while PLL
and FCC seem to have diminished streaming capacity and form smaller
aggregates, suggesting surface adhesion plays a notable role in the migra-
tory efficiency of the cells. The figure is generated from data published
in Ref. [129].
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glass coated with three different chemicals: bovine syrum albumin (BSA), poly-L-

lysine (PLL), and perfluorinated carbon chains (FCC). Ref. [129] concluded that

although there were significant differences in adhesive capacity of the surfaces, there

were no significant migratory differences on the individual cell level. Nevertheless,

surfaces with stronger adhesive properties (PLL and FCC) seemed to slow aggre-

gation. Experimentally, measuring the chemotactic index is challenging, due to the

lack of a defining the direction of the chemoattractant gradient and segmenting cells

in contact.

Fig. 5.6(a-b) shows the two topological measures for these experimental condi-

tions, both over time and as a parametric plot. These combined measures distinguish

the different experiments and quantify the cell-cell coordination under different ex-

ternal conditions. The projected area, a(t) is always greater for cells that are mov-

ing on FCC than on the other surface coatings. This observation agrees with the

shaken-assay results reported in Ref. [129] (cells spread and adhered to FCC the

most strongly). The inset of Fig. 5.6 shows that the cell-cell coordination rate is

faster for cells moving on surfaces with lower adhesion. The progression of G(t)

shows that both PLL and FCC have shallower initial slopes and its peak value is

much lower than cells migrating on non-coated surface or BSA coating, suggesting

the lack of large streams forming bridges to local aggregate centers. Although in-

dividual cell characteristics are similar, the large-scale organization of cells depends

on a variety of internal and external factors.
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5.5 Discussion

Quantifying complex pattern formations seen in biological systems is crucial

for understanding biological phenomena. These patterns are often not spurious in

nature, but have biological implications. D. discoideum, for example, forms large

streams, which serve as roads that efficiently recruit more cells from long distances.

This recruitment increases the local population of cells and is subsequently followed

by proper sporulation and organismic survival. In this work, we have introduced a

robust pair of topological measures for quantifying what effect experimental varia-

tions have on streaming patterns.

The combination of chemical (i.e., Eq. (5.1)) and mechanical (i.e., Eq. (5.3))

directional sensing modules in conjunction with the suggested phase space of topo-

logical measures provide a framework for the modeling and analysis of neutrophil

chemotaxis, which requires both chemical and mechanical inputs [83]. Neutrophils

respond to multiple chemoattractants [137]. Although neutrophils relay some of the

perceived chemoattractants, unlike D. discoideum their collective motion does not

result in visually detectable modes of migration [98]. To reach an infectious zone,

neutrophils are exposed to multiple chemoattractant gradients, yet they succeed

integrating these interfering/conflicting signals efficiently. Recent modeling has at-

tempted to investigate signal transduction through a competition between multiple

chemoattractants in the absence of relay and mechanotransduction [138]. Our model

can be generalized to include multiple chemical inputs (e.g., a linear composition

of many equations in the form of Eq. (5.1)). Also, adhesive/repulsive cell-substrate
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interactions can be included in Eq. (5.6). Using an effective interaction distance for

nearby neutrophils, we can extend the cell-cell cooperation analysis to investigate

the lengthscales associated with the neutrophil collective migration.

The phase space defined by the topological measures enables comparison of

collective migration for a wide range of organisms. Because the chemotactic index

determines the efficiency of individuals, it is not a suitable measure for comparing

cells that have different natural environments. However, the giant component size

and the relative area occupied by the cells are properly normalized measures that do

not depend on information on individual cell migration. We believe that comparison

trajectories and steady states on the (a,G) phase space will enable classifying the

collective motion phenotype in systems ranging from swarming cells to flocking birds.
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Chapter 6: Outlook

6.1 Conclusion

In this dissertation–with a combination of experiments, quantitative analy-

sis, and modeling–I have discussed mechanisms for the guidance of cell migration

from subcellular to multicellular scales. Specifically, my contributions are: (i)

Conducting some of the experiments presented in Chapter 2, (ii) developing the

preferential-actin-polymerization model presented in Chapter 2 by modifying the

actin-polymerization model introduced in Ref. [66], (iii) performing numerical sim-

ulations of the preferential-actin-polymerization model presented in Chapter 2, (iv)

developing analysis tools and analyzing both the experimental and numerical data

presented in Chapter 2, (v) developing analysis tools and analyzing experimental

data presented in Chapter 3, (vi) developing the cellular-oscillation model presented

in Chapter 3, (vii) analyzing both experimental and numerical data presented in

Chapter 4, (viii) developing the collective-migration model presented in Chapter

4, (ix ) implementing model equations and performing numerical simulations of the

collective-migration model presented in Chapter 4, (x ) developing the extension of

the collective-migration model presented in Chapter 5, (xi) developing tools for the

analysis of the experimental and numerical data presented in Chapter 5, and (xii)
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conducting the experiments that are presented in Chapter 6.

In Chapter 2 and Chapter 3, I have shown how mechanical guidance cues may

result in directed migration of individual cells. By analyzing actin wave propaga-

tion on nanotopography I have suggested subcellular mechanisms for mechanically-

guided cell migration. In summary, these mechanisms are:

— Actin polymerization localizes around the tops of the nanoridges, suggesting

that the polymerization of actin is promoted preferentially through the positive

curvature imposed by the nanoridges.

— The spacing of the nanoridges affects the polymerization rate of actin, which

is reflected in the measured speed of propagation of actin waves. In particular,

waves induced by the closely-spaced nanoridges propagate more slowly than

waves induced by widely-spaced nanoridges. The slower wave propagation

speed is potentially due to the competition for finite resources such as ATP or

free actin monomers.

— If waves align perpendicularly with respect to the nanoridge orientation and

traverse multiple ridges, they dissipate or get split by nanoridges and propa-

gate parallel to the orientation of nanoridges. As a result, the average wave

orientation becomes aligned with the nanoridge orientation.

— The preferential polymerization of actin on nanoridges can be explained by a

difference in nucleation rates of actin on and off the nanoridges. Simulations

with increased nucleation of actin on nanoridges compared to flat surfaces yield
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anisotropic wave propagation parallel to the nanoridges that is comparable to

experimentally observed waves in size and localization.

At a larger scale, nanotopography guides cell migration. In Chapter 3, we

showed how guidance of cells can be quantified by a contact guidance efficiency

parameter and introduced a phenomenological model that connects larger-scale di-

rected migration to cellular oscillations modulated by the nanotopography. At larger

scale the interaction between the nanotopography and the cell can be modeled as a

stochastic resonance. This model indicates that the timescale of internal dynamics–

which is yet to be associated with actin dynamics–determines the characteristic

lengthscale of the topography sensed by the cell. Hence, sensing is dynamic. We

showed that if a protrusion encounters new ridges approximately every 10 seconds,

its extension along the nanoridges is maximized. The guidance of protrusions via the

mechanical forces exerted on polymerizing actin is more direct than the preferential

motion of cells during chemotaxis. The connection between the guided oscillations

and observed persistent waves is an open question that needs to be explored in

future work.

The protrusion is roughly a factor of two faster than the chemically-induced

oscillations of actin recruitment to the plasma membrane. Figure 6.1 shows a sug-

gested model for chemically-mediated actin polymerization. The main pathway that

is suggested in this example is that of PI3K, which generates an asymmetric distribu-

tion of the chemicals PIP2 and PIP3. The slower timescale of the chemically-induced

directed migration is justified by the additional biochemical reactions embedded in
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Figure 6.1: The suggested model for the chemically-mediated actin poly-
merization and chemotaxis. Domains of G-proteins result in an asym-
metry in PIP2/3 concentrations, which regulate actin polymerization.
Figure reproduced from Ref. [69]. (Sasaki et al., 2007. Originally pub-
lished in Journal of Cell Biology. doi:10.1083/jcb.200611138)

multiple signal transduction pathways [139].

In Chapter 3, we also introduced another example of mechanically-induced di-

rected migration: the persistent migration of cells confined in microchannels. Anal-

ysis revealed that the persistence time of the cell’s motion is increased due to or-

dering of left/right protrusions. Comparing auto-covariance of these protrusions to

the cross-covariance between protrusions, we observed that the ordered protrusions

were interdependent. In particular, protrusions are not autocatalyzed, but rather are

promoted by the extinction of the opposite protrusion. Furthermore, we analyzed

the underlying actin polymerization dynamics inside these protrusions and found

that the unidirectional migration of the cells is associated with spatially-stationary
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patches of actin polymerization that have an average lifetime of 10 seconds. Com-

paring this result to the resonant timescale obtained in the previous section, we

concluded that physical forces not only can mediate actin polymerization but their

impact is also much more direct compared to that of signal-transduction-mediated

directed migration.

In Chapter 4, we looked at the effect of the directed single cell motion on

the migration of groups of cells. Based on our previous findings we developed a

coarse-grained model for the persistent migration of individual cells to investigate

the directed migration of cells that emerges from intercellular communication. We

measured the cell-cell communication by investigating cell motion in a linear ex-

ternal chemoattractant gradient. We modeled this type of directed migration to

extract the amplitude of the noise in cell’s perception of the chemoattractant gra-

dients. We found that the timescale associated with this noise corresponds to the

resonant timescale of chemically-induced directed migration. We then incorporated

cell-cell communication processes in our model and found that the collective migra-

tion of cells depends on the competition between the rates of signal production and

signal degradation. By quantifying the efficacy of signal relay we characterized the

competition between multiple “streams” that lead to formation of large aggregates.

From the results of the collective-migration model, we found that when the

dispersion length of the chemoattractant is large, cell groups aggregate quickly and

become entrapped in small local aggregates. For strong external gradients, cells are

drawn to the global attractor, which could either be a needle that steadily injects

chemoattractant to the cell medium or a large aggregate of cells. The efficacy
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Figure 6.2: Graphical summary of the chemically- and mechanically-
induced directed migration. We have shown that mechanical cues can
provide a feedforward to actin polymerization dynamics. The connection
between the chemical signal transduction and mechanical guidance cues
at individual and multicellular levels remains as an open question.

of cell-cell communication is maximized when cells are able to form and maintain

streams. This mode of migration emerged when the cell-cell communication strength

is comparable to the strength of the externally imposed chemoattractant gradient.

In Chapter 5, we extended the model introduced in Chapter 4 to include

mechanical modulation of actin polymerization. We analyzed simulations of collec-

tive motion with novel topological measures to assess the cooperation between cells

during their large-scale organization. Using these measures we compared the ensem-

ble communication efficiency of mechanically-defective cells to chemically-defective

cells and concluded that mechanical defects have less impact on the ensemble’s long-

distance communication ability. We also showed that the steady state of collective

cellular migration is robust under the change of the mechanical properties of the

environment. Despite comparable steady-state behavior, the transient aggregation
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is heavily dependent on the interaction strength between the cell membrane and the

substrate. Cells that are slowed down by high adhesion to the substrate demon-

strated better communication compared to cells that are more motile because they

are on surfaces with less adhesion. This quantification was enabled by reducing the

collective dynamics information of the ensemble to a two-dimensional phase space

defined by the topological measures (Figs. 5.4 and 5.6).

6.2 Future directions

Our results raise two significant questions that need to be addressed. We have

concluded that physical forces modulate actin polymerization. In Fig. 6.2 a pro-

posed interaction diagram shows the connection between chemical sensing and actin

polymerization. As shown in Fig. 6.1, some of these connections are very well iden-

tified. An interesting question is how much of the guidance of actin polymerization

via the nanotopography propagates to the signal transduction through feedbacks

from actin polymerization? Do physical forces also modulate reactions that yield

waves of PIP2 phosphorylation?

In Fig. 6.3 preliminary results of PIP3 waves propagating on 1.5-µm-spaced

nanoridges are shown. Observations of the interaction between PIP3 waves and

nanotopography suggest hints for addressing the previously posed questions. PIP3

waves are also guided by the nanotopography, however their behavior is different

from the preferential polymerization waves of actin. The initial elongation of PIP3

waves parallel to the orientation of nanoridges is followed by a perpendicular split.
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Figure 6.3: A representative example of PIP3 waves propagating on 1.5-
µm-spaced nanoridges. Compared to the fast dynamics of actin poly-
merization waves on nanoridges, PIP3 waves are quasi-stationary. The
waves exhibit both parallel and perpendicular propagation with respect
to the orientation of the nanoridges.

Remarkably, the timescale that defines the duration of a potentially nanoridge-

induced PIP3 wave is long compared to that of actin polymerization dynamics. My

ongoing research aims at quantifying and understanding the effect of nanoridges on

upstream chemical sensing pathways.

The other question is, under what circumstances can mechanically-induced

directed migration dominate chemically-induced directed migration and vice versa?

The competition between the different types of directed migration can be examined

by directionally-independent chemoattractant and contact guidance inputs. For ex-

ample, by measuring the contact guidance index in the presence of a linear cAMP

gradient the mechanical guidance can be compared with chemical guidance in a con-

trolled way. Having answers to these questions will provide experimental connec-
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tions to understanding how cells navigate in their natural environment individually

or collectively by integrating signals from multiple sources.
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Appendix A: Supplementary information for “Actin wave guidance

via periodic nanotopography”

A.1 Tracking of actin polymerization waves

A.1.1 Obtaining flux vectors

To track actin waves, we developed a tracking algorithm based on the apparent

flow of actin. Our algorithm was implemented as custom-written Matlab software.

This algorithm, which is similar to an optical flow algorithm, results in flux vectors,

Ki, that correspond to the apparent flow of actin between two time frames i and i+1.

We began by measuring at each pixel the flux of fluorescence intensity from frame to

frame. For each time frame, we consider two successive images from the fluorescence

channel, Ai and Ai+1. First, we smooth Ai using a Gaussian kernel with a standard

deviation of σs pixels. Next, we calculate the gradient of the smoothed image and

normalize the gradient vectors by their magnitude. If the dynamics of the measured

entity (i.e., actin polymerization) were only diffusive, we could obtain flux vectors

using Fick’s law, Ki = −D∇Ai, where D is the diffusivity of the entity. However,

actin polymerization is not purely diffusive. We thus obtain flux vectors by masking

the gradient of the first image with the difference image (Ai+1−Ai). This difference
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image is further smoothed with a Gaussian kernel of standard deviation σt and

thresholded at ε of the maximum allowed image intensity. The smoothing associated

with σt reduces image noise, whereas the smoothing associated with σs spreads

information across space. A discrete numerical implementation of the following

series of operations yield the vector field, Ki, that represents the flux vectors at

frame, i:

∆Ai = Ai+1 − Ai (A.1)

∆Ai ← ∆Ai ⊗G(σt) (A.2)

∆Ai ← (∆Ai > εI) (A.3)

Ai ← Ai ⊗G(σs) (A.4)

Ki = − ∇Ai
|∇Ai|

×∆Ai , (A.5)

where G(σ) := e
x2+y2

2σ2 /(2πσ2) is a two-dimensional Gaussian function with standard

deviation σ and I is the maximum allowed intensity in the entire image stack.

A⊗G(σ) represents a convolution of the image A with the Gaussian kernel:

1

2πσ2

∫ ∞
−∞

dx′dy′A(x, y)e
(x−x′)2

σ2
+

(y−y′)2

σ2 . (A.6)

A×B (or A
B

) indicate element-by-element multiplication (or division), which is

obtained by multiplying (or dividing) each pixel value in the first image, A(x, y), with

each pixel value in the second image B(x, y). ∇ represents the gradient operator.

|∇A| := |∇A(x, y)| represents the magnitude of the gradient vector at each pixel,

(x, y).
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A.1.2 Clustering flux vectors

The flux vectors are clustered according to their orientation with respect to

their nearest neighbors in both space and time. Each pixel, (x, y), in an image Ai

has six nearest neighbors. Four of these neighbors are spatial neighbors in the same

image and have coordinates (x ± 1, y) and (x, y ± 1). The other two neighbors are

temporal neighbors and have coordinates (x, y) in the images Ai−1 and Ai+1. We

link a pixel to its neighbor if the dot product of the normalized flux vectors defined

at these pixels is greater than 0.1. Next, we define a graph in which the nodes are

pixels and the edges are links and represent that graph as a sparse adjacency matrix.

Using Tarjan’s algorithm [74], we find the connected components of this graph and

define each connected component as a cluster of flux vectors.

A.1.3 Refining clusters

With our imaging conditions actin waves are sampled more frequently in space

than they are in time. The clustering procedure described in the previous paragraph

is thus performed twice. To link flux vectors in time, we first cluster flux vectors

obtained from excessively smoothed images. In this first clustering, we used σs = 24

pixels, σt = 4 pixels, and ε = 6% of the maximum allowed image intensity. We

further morphologically erode the temporal links between each pair of subsequent

frames using a disk of radius 4 pixels as a structuring element. To link flux vectors

in space, we again cluster the vectors using σs = 3 pixels, σt = 2 pixels, and ε = 12%

of the maximum allowed image intensity. Next, the eroded temporal links from the
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Figure A.1: An incident actin wave is split by a nanoridge (result from
experiments). The reflected portion of the wave diminishes. The re-
fracted portion partially engulfs the nanoridge and is subsequently split
by the nanoridge once again. One wave continues to propagate parallel
to the nanoridge whereas the other wave is diminished. (A) and (B)
show the waves and the centroid motion of the waves, respectively.

first clustering are combined with the spatial links from the second clustering to

form a single graph. We define each connected component of this graph as a refined

cluster of flux vectors.

A.2 Actin wave splitting

In our algorithm, if a parent actin wave splits into multiple spatially discon-

nected children waves, then both the parent and the children are clustered together

as one wave. Splitting events often occur when waves collide with nanoridges. We

calculate the speed of the wave from the positions of the waves centroid positions,

and so we must account for the wave splitting. For events that split from one wave

in two fragments, we calculate the speed of these fragments as the displacement

of the fragment centroid from the centroid of the previous cluster. These speeds

122



A B

3 
μ

m

Figure A.2: Initially, an experimentally observed wave is confined be-
tween two nanoridges that are separated by 3 µm and propagates paral-
lel to the nanoridges. After contacting with a nanoridge, the wave splits
into two waves. The surviving wave is again confined in the groove. (A)
and (B) show the waves and the centroid motion of the waves, respec-
tively.
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Figure A.3: Two experimentally observed actin waves merge and con-
tinue propagating as a single wave. The waves and the centroid motion
are show in (A) and (B) respectively. Yellow dashed lines correspond to
the location of the nanoridges that are separated by 1.5 µm.
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Figure A.4: (A) An experimentally observed actin wave dissipates as it
is propagating perpendicular to the 1.5 µm spaced nanoridges. (B) The
centroid motion of the actin waves shown in (A). There are two splitting
events.

are included in the speed distributions. We discarded the higher order splitting

events, due to the uncertainty in the wave centroid (all fragments have their own

centroid and the mean position of these centroids does not represent a wave). In

Figs. A.1-A.4 we show some representative examples of the splitting events.

A.3 Positions of the nanoridges

To find the positions of the nanoridges, we use slightly different algorithms

to obtain the centers of the nanoridges for large spacings (i.e., 3 and 5 µm) and

for small spacings (i.e., 0.8 and 1.5 µm). For large spacings, we first convolve the

bright field images with a Laplacian of a Gaussian filter, in which the Gaussian has

a standard deviation of 0.2 pixels. For large ridge spacings (i.e., 3 and 5 µm), we

then use a Hough transform to obtain the coordinates of the lines (i.e., nanoridges)
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in the images. For small ridge spacings (i.e., 0.8 and 1.5 µm), we use a Radon

transform instead of a Hough transform. For each image, the applied transform

yields the angle between the lines and the x axis, φ (obtained with a resolution of

0.01 degrees). We determine the orientation of the nanoridges as the median of the

φ distribution. To measure the exact ridge spacing, we rotate the image by −φ to

align the nanoridges perpendicular to the x-axis. We then average the image along

the y axis and obtain a one-dimensional profile for the nanoridges. Next, to achieve

subpixel resolution, we interpolate this profile using a cubic spline with a step size of

0.005 pixels. We then calculate the autocovariance function of this profile (the lag

of the autocovariance corresponds to a spatial separation). The distance between

the first two peaks of the autocovariance is the nanoridge spacing, ρ. We model

nanoridges as a sequence of rectangles that are separated by a distance ρ and have

an orientation φ with respect to the x-axis. We then calculate the cross-correlation

between the model nanoridges and the nanoridge profile to measure the spatial offset

of the nanoridges, δρ. The three variables, φ, ρ, and δρ determine the position of

each nanoridge. In Fig. A.5, we show the estimated spatial offset as a function of

the frame number for each ridge spacing (these plots correspond to the drift of the

microscope stage).
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Figure A.5: The measured spatial offset of the ridges as a function of
the frame number. A representative data set is shown for each nanoridge
spacing.
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A.4 Simulation Methods

A.4.1 Activity patterning model

In our simulation, we model the effect of the nanoridges by patterning the

nucleation activity on the membrane. This patterning is motivated by the recently

seen effects of curvature on Arp2/3 induced branching [85]. We define the activity

density of binding events on the ridges and off the ridges as kr and kg, respectively.

This quantity has units of min−1µM−1. The total membrane nucleation activity

density in the simulation chamber, Ktotal is calculated as

Ktotal = wλkr + (1− wλ)kg . (A.7)

Here w is the width of a single ridge and λ is the number density of nanoridges (i.e.,

number of nanoridges per µm). We modeled the increased activity of nucleation

promotion factors on the nanoridges by choosing kg < kr. For the two rate densities

held constant, increasing λ increases the total activity of actin within the cell. This

model results in behavior consistent with that seen in the experiments. As an

alternative model, we limit the total nucleation promotion activity within the cell

(i.e., simulation domain). This constraint can be achieved if the activity rates on and

off of the nanoridges are chosen as kr = (1/2)Ktotal/(wλ) and kg = (1/2)Ktotal/(1−

wλ), respectively. In Fig. A.8 we show the activity densities as a function of the

nanoridge spacing for both kr and kg, normalized by the total activity density given

in Eq. (A.7). Our simulation results show sharp disagreement between this version of
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the model and experimental results for large nanoridge spacings. This disagreement

suggests that actin activity is not constrained (Fig. A.9). Results from the two

models become comparable and similar to a uniform distribution of polymerized

actin for spacings less than 1 µm. All of the parameters in this model are the

same as in Ref. [66] except the parameters shown in Tables S1 and S2. We choose

these parameters to optimize the visual fit between the numerical simulations and

experiments. We increased the area of the simulation domain to look at actin

dynamics on a scale comparable to the size of the plasma membrane that is in

contact with the substrate. With strong attractive force between the membrane and

actin filaments, we observed an increased number of “parasitic” dendritic clusters.

When the force is weak, such events are rarer, which reduces the noisiness of the the

spatial distribution of actin polymerization. The remaining parameters are changed

to mimic the effect of genetic and drug treatment perturbations, as explained in the

following section.

Table A.1: Parameters used in simulations that differ from those used in Ref. [66].
Note that there are two actin nucleation rates depending on the location (kr on
nanoridges and kg on grooves).

Parameter (units) Ref. [66] Non-limited Limited
latrunculin A

treatment

Lx (µm) 3 8 8 8
Ly (µm) 3 5 5 5
fatt (kBT/nm) -0.275 -0.22 -0.22 -0.22

knuc (µM−1s−1) 0.001
0.001 grooves variable 0.0005 grooves
0.002 ridges (see Table. A.2) 0.001 ridges

[Gactin] (µM) 0.45 0.45 0.45 0.25 – 0.45
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Table A.2: Values of the nucleation rate, knuc, on nanoridges (kr and on grooves kg
used in simulations of the limited model.

Spacing (µm) # nanoridges
knuc on ridges knuc on grooves
(1/s) ×10−3 (1/s) ×10−3

0.6 13 1.02 0.97
0.8 10 1.33 0.8
1 8 1.66 0.71

1.5 6 2.22 0.65
2 4 3.33 0.59

2.5 4 3.33 0.58
3 3 4.44 0.56
4 2 6.66 0.54
5 2 6.66 0.54

A.4.2 Perturbations to model parameters

We used our actin polymerization model to investigate the change in the behav-

ior of the wave coupling in response to changes to actin polymerization machinery.

Experimentally, this perturbation can be achieved by treating cells with latrunculin

A. We tested a decrease of 22% in the free actin monomers to see the effect of an

intermediate dose of the drug. When free actin monomer concentration is reduced

by 33% polymerization of actin is entirely disabled.

We quantified the effect of the perturbations by measuring the parallel compo-

nent of the wave velocity from the kymographs. Latrunculin A perturbation slows

down the waves. Under this perturbation the average wave speed decreases from 5.8

µm/min to 4.2 µm/min. This difference is statistically significant (p < 10−4 using

Mann-Whitney-U test).
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Figure A.6: Joint probability density of experimentally observed actin
wave speed and centroid location with respect to the nearest nanoridge.

A.4.3 Implementation of the activity of nucleation promotion factors

in a finite domain.

For a finite domain of size Lx×Ly, λ takes discrete values of λ = n/Lx, where

n, the number of ridges, is a function of the ridge spacing, g. Since only a limited

number of ridges can fit in a finite simulation domain with fixed ridge spacing,

increasing g introduces more off-ridge activity, deviating from the value expected

by (A.7). This effect was accounted for in our analysis by choosing ridge spacings

large enough that n changes with each g chosen.
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cation is determined by the position of the wave centroid.
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Figure A.8: Activity density of nucleation promotion factors as a
function of the nanoridge spacing on the nanoridges (A) and off the
nanoridges (B) used in models. The activity density is normalized by
the total activity density. Black lines correspond to the model without
any biochemical constraints. Gray lines correspond to another model, in
which the activity densities on and off the nanoridges are changed such
that the total activity within the simulation domain is kept constant.
The dashed line indicates the width of the nanoridge, which sets a lower
limit for the nanoridge spacing.
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Figure A.9: Cumulative probability, CDF, of actin polymerization with
respect to position for (A) 5-µm-spaced and (B) 3-µm-spaced nanoridges.
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model simulation results, where the total actin activity is increased due
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dark gray line represents results from an alternative model, in which the
actin activity is increased on sites in contact with the nanoridges and
the total actin activity is limited.

A.5 Role of depolymerization

To observe how sequestration of free actin monomers affects the preferential

polymerization, we monitored the actin waves after addition of 1.25 µM of latrun-

culin A. Ref. [30] showed that for accommodation of actin polymerization waves the

polymerized (F-actin) and actin monomers should be continuously cycled. Further-

more, Ref. [30] showed that despite the global deficiency of actin monomers, actin

can still assemble locally at the sites of the plasma membrane that are in contact

with the substrate. By impairing the cycling between F- and G-actin we observe

how much nanoridges can locally enrich the actin activity. We observe that under

this perturbation actin still polymerizes preferentially along the nanoridges. How-
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ever, the lack of monomers results in a decrease in the overall actin activity, which

is reflected in the wave speed (average speed of 5.2 µm/min).
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Appendix B: A guide to wave tracking software

B.1 Actin wave tracking software

In this section details of the actin wave tracking code are provided. The soft-

ware clusters actin flux vectors based on alignment of neighboring vectors obtained

from the fluorescent images.

B.1.1 Input

The input variables include parameters that are related to the location of the

stored images and parameters that correspond to the physical quantities of actin

polymerization. The function that tracks the actin waves has the format:

function fluxClusterDoubleClusterErode(path_name,

file_short, num_digits, number_frames, noiseSmoothRadius,

informationSmoothRadius, erodeRadius, lower_threshold,

save_on, save_path)

The first four input parameters enables determination of the image stack that

will be processed by the actin-wave tracking code. The remaining four parameters

are related to the physical quantities of actin polymerization and will be explained
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below. The last two parameters determine whether the analysis outputs will be

saved in the system.

B.1.2 Actin flux calculation

To track actin waves, we need first to calculate the flux vectors from the

fluorescent images. The outline of this process was explained in Appendix A.1. The

operations explained in that section are performed as follows:

filename = [path_name file_short];

to_filename = [’%0’ num2str (num_digits) ’u.tif’];

% run once with inflated filters

noiseSmoothRadiusP = 2.0*noiseSmoothRadius;

informationSmoothRadiusP = 8.0*informationSmoothRadius;

lower_thresholdP = 15;

% initialize first iteration

timeFlag = true;

indexLR=[];

indexUD=[];

indexFB=[];

% noise smoothing filter

136



gauss_filter _noise =

fspecial(’gaussian’, round(10*noiseSmoothRadiusP), noiseSmoothRadiusP);

% information smoothing filter

gauss_filter _info =

fspecial(’gaussian’, round(10*informationSmoothRadiusP),

informationSmoothRadiusP);

% iterate through the frames

for f=1:number_frames-1

% read the images from each frame and the next

filename1 = sprintf(to_filename, f);

image1 = double(imread([filename filename1]));

filename2 = sprintf(to_filename, f+1);

image2 = double(imread([filename filename2]));

% create the diference image

imageDif = image2-image1;

% smooth the diference image

imageDif = imfilter(imageDif, gauss_filter _noise, ’replicate’);
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% smooth the first image

smoothed_image1 = imfilter(image1, gauss_filter _info, ’replicate’);

% set a lower threshold on the differance image (threshold)

imageDif = imageDif.*(imageDif>lower_thresholdP);

% take the gradient of the smoothed image

[grad_x, grad_y] = gradient(smoothed_image1,1);

% normalize the gradient (threshold)

normalization = sqrt(grad_x.^2 + grad_y.^2);

grad_x _normal = grad_x./normalization;

grad_y _normal = grad_y./normalization;

% multiply the image difference by the gradient

measure_x = imageDif.*(-1*grad_x _normal);

measure_y = imageDif.*(-1*grad_y _normal);

% find the measure magniture and direction at every pixel

measureDir = mod(atan2(-1*measure_y, measure_x), 2*pi);
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B.1.3 Clustering of actin flux vectors

The quantity measureDir is the vector field that corresponds to the flux vectors

based on the apparent flow of actin. In this section, the code for clustering of these

vectors is provided. The clustering is performed based on how parallel the flux

vectors are with respect to their neighbors.

% threshold for defining parallel vectors

epsilon = 0.1;

% filter for non-zero elements

measureFilter = measureDir > 0;

% initialize variables

timeFlag = true;

indexLR=[];

indexUD=[];

indexFB=[];

[rowNum, colNum] =

size(double(imread([filename sprintf(to_filename, 1)])));

% make a left right shift and find edges

edgesLR = cos(measureDir - circshift(measureDir,[0 -1]))>epsilon;

139



% filter 0-0 interactions to the left

edgesLR = edgesLR.*measureFilter;

% modify the filter to eliminate 0-0 interactions to the right

filterLR = circshift(measureFilter,[0 -1]);

% eliminate the 0-0 interactions

edgesLR = edgesLR.*filterLR;

% eliminate false interactions

edgesLR = [edgesLR(:,1:end-1) zeros(rowNum,1)]’;

% find corresponding indices

indexLR = [indexLR indexList(edgesLR(:)>0)];

% make an up down shift and find edges

% run filters similar to LR edges

edgesUD = cos(measureDir - circshift(measureDir,[-1 0]))>epsilon;

edgesUD = edgesUD.*measureFilter;

filterUD = circshift(measureFilter,[-1 0]);

edgesUD = edgesUD.*filterUD;

edgesUD = [edgesUD(1:end-1,:); zeros(1,colNum)]’;
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indexUD = [indexUD indexList(edgesUD(:)>0)];

% make a time shift and find temporal edges

if timeFlag

measureDirOld = measureDir;

measureMagOld = measureMag;

measureFilterOld = measureFilter;

timeFlag = false;

else

edgesFB = cos(measureDir - measureDirOld)>epsilon;

edgesFB = edgesFB.*measureFilter;

edgesFB = edgesFB.*measureFilterOld;

edgesFB = edgesFB’;

indexFB = [indexFB indexList(edgesFB(:)>0)];

measureDirOld = measureDir;

measureMagOld = measureMag;

measureFilterOld = measureFilter;

end

% end the frame iteration

end
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These edges are only defined from one node to another (i.e., they are direc-

tional). To cluster them the adjacency network needs to be bidirectional. Therefore,

we need to add new edges by reversing the direction of the existing edges.

% collect all edges

indexSparse1 = [indexLR, indexUD, indexFB];

% flip the direction of former edges

indexSparse2 = [indexLR+1, indexUD+colNum, indexFB-rowNum*colNum];

% generate a sparse adjacency matrix

sparseIndex = sparse([indexSparse1 indexSparse2],

[indexSparse2 indexSparse1], 1);

Next, we find the clusters in the adjacency matrix.

% find clusters in the adjacency matrix

[~, C] = graphconncomp(sparseIndex);

% padding

C = [C zeros(1,rowNum*colNum*(number_frames-1)-length(C))];

% convert clusters to a data cube

C = permute(reshape(C,[colNum rowNum number_frames-1]), [2 1 3]);
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Finally, we only select the temporal connections from the initial clustering

process

% filter for keeping non-zero elements

goodFilter = C>0;

% find the temporal links

filterTmp = (C(:,:,1:end-1)-C(:,:,2:end))==0;

filterTmp = filterTmp.*goodFilter(:,:,1:end-1);

B.1.4 Refining the clusters

First, we erode the temporal links obtained in the first clustering process

% initialize temporal links

indexFB = [];

% erosion filter

erosion_filter = strel(’disk’,erodeRadius);

% erode the inflated clusters in each time frame

for f=1:number_frames-2

indexList = (f-1)*rowNum*colNum+1:1:f*rowNum*colNum;

edgesFB = imerode(filterTmp(:,:,f),erosion_filter);
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edgesFB = edgesFB’;

indexFB = [indexFB indexList(edgesFB(:)>0)];

end

Using the eroded temporal links, we perform a secondary clustering with

smaller smoothing kernels.

% initialize spatial links

indexLR=[];

indexUD=[];

% noise smoothing filter

gauss_filter _noise =

fspecial(’gaussian’, round(10*noiseSmoothRadius),

noiseSmoothRadius);

% information smoothing filter

gauss_filter_info =

fspecial(’gaussian’, round(10*informationSmoothRadius),

informationSmoothRadius);

% iterate through the frames

for f=1:number_frames-1
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% read the images from each frame and the next

filename1 = sprintf(to_filename, f);

image1 = double(imread([filename filename1]));

filename2 = sprintf(to_filename, f+1);

image2 = double(imread([filename filename2]));

% create the diference image

imageDif = image2-image1;

% smooth the diference image

imageDif = imfilter(imageDif, gauss_filter _noise, ’replicate’);

% smooth the first image

smoothed_image1 = imfilter(image1, gauss_filter _info, ’replicate’);

% set a lower threshold on the differance image (threshold)

imageDif = imageDif.*(imageDif>lower_threshold);

% take the gradient of the smoothed image

[grad_x, grad_y] = gradient(smoothed_image1,1);

% normalize the gradient (threshold)
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normalization = sqrt(grad_x.^2 + grad_y.^2);

grad_x _normal = grad_x./normalization;

grad_y _normal = grad_y./normalization;

% multiply the image difference by the gradient

measure_x = imageDif.*(-1*grad_x _normal);

measure_y = imageDif.*(-1*grad_y _normal);

% find the measure magniture and direction at every pixel

measureDir = mod(atan2(-1*measure_y, measure_x), 2*pi);

% make a left right shift and find edges

edgesLR = cos(measureDir - circshift(measureDir,[0 -1]))>epsilon;

edgesLR = edgesLR.*measureFilter;

filterLR = circshift(measureFilter,[0 -1]);

edgesLR = edgesLR.*filterLR;

edgesLR = [edgesLR(:,1:end-1) zeros(rowNum,1)]’;

indexLR = [indexLR indexList(edgesLR(:)>0)];

% make an up down shift and find edges

edgesUD = cos(measureDir - circshift(measureDir,[-1 0]))>epsilon;

edgesUD = edgesUD.*measureFilter;

filterUD = circshift(measureFilter,[-1 0]);
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edgesUD = edgesUD.*filterUD;

edgesUD = [edgesUD(1:end-1,:); zeros(1,colNum)]’;

indexUD = [indexUD indexList(edgesUD(:)>0)];

end

% generate a sparse adjacency matrix

indexSparse1 = [indexLR, indexUD, indexFB];

indexSparse2 = [indexLR+1, indexUD+colNum, indexFB+rowNum*colNum];

sparseIndex =

sparse([indexSparse1 indexSparse2],

[indexSparse2 indexSparse1], 1);

% cluster spatial neighbors

[~, C] = graphconncomp(sparseIndex);

C = [C zeros(1,rowNum*colNum*(number_frames-1)-length(C))];

C = permute(reshape(C,[colNum rowNum number_frames-1]), [2 1 3]);

% make a left-right comparison

filtTemp = (C(1:end-1,:,:)-C(2:end,:,:))==0;

goodFilterLR = [filtTemp; false(1,colNum,number_frames-1)];

goodFilterRL = [false(1,colNum,number_frames-1); filtTemp];
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% make an up-down comparison

filtTemp = (C(:,1:end-1,:)-C(:,2:end,:))==0;

goodFilterUD = [filtTemp, false(rowNum,1,number_frames-1)];

goodFilterDU = [false(rowNum,1,number_frames-1), filtTemp];

% make a temporal comparison

filterTmp = (C(:,:,1:end-1)-C(:,:,2:end))==0;

goodFilterFB =filterTmp;

goodFilterFB(:,:,number_frames-1) = false(rowNum,colNum,1);

goodFilterBF(:,:,1) = false(rowNum,colNum,1);

goodFilterBF(:,:,2:number_frames-1) = filterTmp;

% combine all the filters

goodFilter =

goodFilterLR | goodFilterRL |

goodFilterUD | goodFilterDU |

goodFilterFB | goodFilterBF;

C = C.*goodFilter;

% relabel cluster id’s

listCluster = unique(C);

for i=1:length(listCluster)

C(C==listCluster(i)) = -i;
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end

C = abs(C);

% save clusters

if save_on

save([save_path ’clusterCube’], ’C’, ’-v7 .3’);

end

The variable C contains the spatio-temporal position of each cluster element.

B.2 Ridge detection software

In this section details of the ridge detection code are provided. The software

extracts the position of nanoridges from the bright-field images in which both cells

and nanoridges are visible.

B.2.1 Input

The software only uses the directory and the format of the bright-field images

as input. A few parameters are carefully chosen for the appearance of nanoridges

in bright-field microscopy. The procedures estimate the spacing between adjacent

nanoridges, the orientation of nanoridges, the width of the nanoridges and the offset

of the first nanoridge with respect to the origin of the image. The name of the

function that performs all these procedures is:

function [spacing, width, angle, offset] =
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modelNanoridges(path_name, num_images, small_switch)

Here, the first input is the name of the folder in the system, where the images

are located. The second input is the total number of images in the stack. The

software assumes that the images are located in a subfolder named “bright” and

are named as “tXXXX.tif”, where XXXX is a four-digit number denoting the time

point of the image in the stack (e.g., t0001.tif, t0177.tif etc.)

% create filename variables

num_digits = 4;

filename = [path_name ’bright/t’];

to_filename = [’%0’ num2str (num_digits) ’u.tif’];

% initiate output variables

angle = zeros(1,num_images);

spacing = angle;

width = angle;

offset = angle;

spacingTest = angle;

% define parameters

spline_stepSize = 0.005;

edge_cutoff = 100;
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Based on these assumptions all of the images in the stack are loaded and later

processed with a for loop

for i = 1:num_images

% display progress

if mod(i,10) == 1

disp([’ ’ num2str (i) ’ of ’ num2str (num_images) ’ frames’])

end

% open the image

filenameEnd = sprintf(to_filename, i);

image = imread([filename filenameEnd]);

% measure orientation and rough spacing

[angle(i), spacingTest(i)] = measureAngle(image);

% measure spacing at subpixel resolution

imageRot = rotateImageNaN(imadjust(image), -angle(i));

spacing(i) = measureRidgeSpacing(imageRot,

spacingTest(i), spline_stepSize, edge_cutoff);

% measure width at subpixel resolution
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width(i) = measureRidgeWidth(imageRot,

spacing(i), spline_stepSize, edge_cutoff);

% measure offset

offset(i) = estimateOffset(imageRot,

spacing(i), width(i), spline_stepSize, edge_cutoff);

end

The subfunctions that estimate the spacing, orientation, width and offset were

explained in the following sections.

B.2.2 Estimating the orientation of nanoridges

In the first procedure, we detect the orientation of the nanoridges and make a

rough estimate of the nanoridge spacing using the function measureAngle. In this

procedure we first perform “Prewitt” edge detection to extract the lines from the

image.

function [orientation, roughSpacing] = measureAngle(image)

% edge detection

BW = edge(image,’prewitt’);

We then perform a Hough transformation (alternatively one can also run a

Radon transformation) on BW to estimate the orientation of nanoridges:
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Figure B.1: The orientation of nanoridges measured over 900 frames,
using the measureAngle function. The measurement is consistent over
the course of the experiment.

% hough transform and find peaks

thetaRange = -90:0.1:89;

[H,T,R] = hough(BW,’RhoResolution’,0.5,’Theta’,thetaRange);

P = houghpeaks(H,30);

% most-likely orientation

orientation = mode(T(P(:,2)));

This algorithm can determine the orientation of the nanoridges with a reso-

lution of 0.1 degrees. The distribution from an experiment is shown in Fig. B.1.
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Finally, using the positions of the lines extracted by the Hough transform we esti-

mate the nanoridge spacing with

% calculate rough spacing for cross-check

spacingDist = R(P(:,1));

spacingDist = sort(spacingDist, ’ascend’);

spacingTmp = diff(spacingDist);

roughSpacing = mode(spacingTmp);

end

In this approach, we calculate the difference between the adjacent lines that

are obtained from the peaks extracted from the Hough transformation. Then we

estimate the spacing as the most frequent distance between the adjacent nanoridges.

This distance does not have subpixel resolution. However, it provides a simple cross-

check value for the estimated spacing.

B.2.3 Estimating the nanoridge spacing

The function that estimates the spacing between adjacent nanoridges is called:

function spacing = measureRidgeSpacing(image,

spacingTest, spline_stepSize, edge_cutoff)

This function requires a rotated bright-field image such that the nanoridges

are parallel to the vertical axis. In the main function, this rotation is provided by

the rotateImageNaN function, which is a custom-written function that rotates an
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Figure B.2: After projecting the image in th vertical direction and per-
forming spline, nanoridges can be approximated with aa square-wave
signal.

image and fills the padded regions with NaN’s. This function is not written as a

subprocedure. Instead it is saved in the same directory as the main function. The

code for rotateImageNaN is provided later in this subsection.

Next, we will estimate the nanoridge spacing with the following operations.

First, we will average over the rows to obtain a square-wave signal that corresponds

to the nanoridges. Then, we will interpolate this function with spline to attain

subpixel resolution.

% find the y-projection of the image
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%(that means average over y i.e. rows)

meanCol = nanmean(image,1);

% fit a spline to the projection

xxCol = 0:spline_stepSize:

length(meanCol(edge_cutoff:end-edge_cutoff));

meanColEdge = meanCol(edge_cutoff:end-edge_cutoff);

yyCol = spline(1:length(meanColEdge), meanColEdge, xxCol);

An example for the square-wave-like signal representing the nanoridges is

shown in Fig. B.2. Then we use the autocovarience function to extract the spacing:

% find the auto-correlations of the x- and y-projections

[meanColCor, lags] = xcov(yyCol);

% find the periodicity

[~, colLocs] = findpeaks(meanColCor, ’SORTSTR’, ’descend’);

spacing = abs(colLocs(1) - colLocs(2))*spline_stepSize;

A representative covariance function of this signal is shown in Fig. B.3. The

peaks in the covariance function correspond to a good match between the original

signal and the shifted signal, which is shifted with a delay associated with the peak.

Therefore, by calculating the distance between the two largest peaks we can estimate

the nanoridge spacing.
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Figure B.3: Autocovariance function of the nanoridges. The spacing of
the nanoridges is obtained from the distance between adjacent peaks.
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In the final step, we compare the spacing to a rough estimate of the spacing

obtained from the Hough transformation. This estimate is calculated in measure-

Angle function. If the discrepancy between the two values is fairly large (greater

than 20%), we recalculate the spacing using the statistics of the distribution of all

distances between all adjacent peaks.

% cross-check with rough spacing.

% Do statistical analysis if the discrepancy is not tolerable

epsilon = 1;

peakRange = 0.8*spacingTest;

peakDistance = round(peakRange/spline_stepSize);

% check if peakDistance is positive

if peakDistance <= 0

% try spacing instead of spacingTest

peakDistance = round(0.8*spacing/spline_stepSize);

end

% if spacing doesn’t work, default to 1

if peakDistance <= 0

peakDistance = 1;

end

if abs(spacing-spacingTest) > epsilon
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[~, colLocs] = findpeaks(meanColCor,

’MINPEAKDISTANCE’, peakDistance, ’SORTSTR’, ’descend’);

properDist = sort(lags(colLocs));

spcTmp = zeros(1,length(properDist)-1);

for i=1:length(properDist)-1

spcTmp(i) = abs(properDist(i)properDist(i+1))*spline_stepSize;

end

spacing = mean(spcTmp);

end

end

This method is a fairly robust way of estimating the nanoridge spacing. The

distribution of the measured values for the spacing over an experiment is shown in

Fig. B.4.

Finally, we show the code for rotateImageNaN function, which rotates an

image with a given angle in the clockwise direction and fills the padded regions with

NaN’s:

function imageRotated = rotateImageNaN(image, angle)

% rotate image

imageRotated = imrotate(image+100, -angle, ’bilinear’, ’loose’);

% replace padded zeros with NaN’s

imageRotated(imageRotated == 0) = NaN;
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Figure B.4: The distribution of measured values for the nanoridge spac-
ing. The algorithm is capable of measuring the spacing with a small
uncertainty.
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% pad edges with NaN’s too

imageRotated = imageRotated - 100;

edge_mask = isnan(imageRotated);

se = strel(’square’, 3);

edge_mask = imdilate(edge_mask,se);

imageRotated(edge_mask == 1) = NaN;

end

B.2.4 Measuring the nanoridge width

The width of the fabricated nanoridges is around 200-300 nm, which is close

to the diffraction limit. For simplicity we can assume the width as two pixels (in the

experiments images are oversampled by a factor of two). However, for generality,

the algorithm for measuring the nanoridge width is provided in this section. The

procedure is similar to measuring the nanoridge spacing. The function that measures

the nanoridge width is:

function width = measureRidgeWidth(image,

spacing, spline_stepSize, edge_cutoff)

% find the y-projection of the image

% (that means average over y i.e. rows)

% to find the width peaks in the derivative are used
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Figure B.5: To measure the nanoridge width the derivative of the square-
wave signal is used. The width is estimated from the distance between
crests and troughs of this signal.

meanCol = nanmean(image,1);

meanCol = diff(meanCol(edge_cutoff:end-edge_cutoff));

Instead of the square-wave, we will analyze its derivative, which has a charac-

teristic form shown in Fig. B.5. Nanoridges appear dark in the bright-field images.

The intensity difference between two neighboring pixels is large when these two

pixels are in the transition region from a groove to a nanoridge and vice and versa.

Therefore, the width can be estimated from the distance between crests and troughs

of the derivative of the signal. We look at the autocovariance function of the deriva-

tive of the square-wave signal.
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% fit a spline to the projection

xxCol = 0:spline_stepSize:length(meanCol);

yyCol = spline(1:length(meanCol), meanCol, xxCol);

% find the auto-correlations of the x- and y-projections

[meanColCor, lags] = xcov(yyCol);

% find the periodicity

[~, colLocs] = findpeaks(-meanColCor, ’SORTSTR’, ’descend’);

width = abs(lags(colLocs(1)))*spline_stepSize;

The autocovarience between a crest and a trough is negative and maximum

in absolute value. Therefore, the lag that corresponds to the minimum autocovari-

ance yields the estimate for the nanoridge width. A representative autocovariance

function of the derivative of the square-wave signal is shown in Fig. B.6.

Similar to the estimation of the spacing, we perform a statistical test for the

measured width to ensure that the measured value is within a reasonable interval.

% do a statistical check

% if statistically obtained value deviates 20% from the one obtained

% from maximum anticorrelation, trust the statistically obtained value

epsilon = 0.2;

maxAntiCorrelation = -min(meanColCor);

[~, colLocs] = findpeaks(-meanColCor,

163



Figure B.6: The widths of the nanoridges are estimated from the lag
associated with the minimum autocovariance, which corresponds to a lag
between crests and troughs of the derivative of the square-wave signal.
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’MINPEAKHEIGHT’, 0.5*maxAntiCorrelation);

properDist = lags(colLocs)*spline_stepSize;

widthDist = mod(properDist, spacing);

widthTmp = mean([mean(widthDist(widthDist<0.5*spacing)),

spacing - mean(widthDist(widthDist>0.5*spacing))]);

if abs(widthTmp - width) > epsilon*width

width = widthTmp;

end

end

The distribution of measured width is shown in Fig. B.7.

B.2.5 Estimating the offset

To recreate the nanoridges precisely, we need the offset of the first nanoridge

from the origin. This quantity can be estimated in a manner similar to the one

used to obtain the nanoridge spacing. First, we generate a square wave with zero

offset using the nanoridge spacing and nanoridge width that were extracted from

the bright-field images.

function offset = estimateOffset(image,

spacing, width, spline_stepSize, edge_cutoff)

% find the y-projection of the image
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Figure B.7: The distribution of the measured nanoridge widths.
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%(that means average over y i.e. rows)

meanCol = nanmean(image,1);

% fit a spline to the projection

xxCol = 0:spline_stepSize:length(

meanCol(edge_cutoff:end-edge_cutoff));

meanColEdge = meanCol(edge_cutoff:end-edge_cutoff);

yyCol = spline(1:length(meanColEdge), meanColEdge, xxCol);

yyCol = (yyCol - min(yyCol))/(max(yyCol) - min(yyCol));

signalLength = length(yyCol);

% Second, construct a square wave

% from measured spacing and width

modelSignal = zeros(1,signalLength);

widthPx = round(width/spline_stepSize);

spacingPx = round(spacing/spline_stepSize);

groovePx = spacingPx - widthPx;

repLength = floor(1.0*signalLength/spacingPx);

grooveStart = (widthPx:spacingPx:widthPx+repLength*spacingPx)+1;

grooveEnd = grooveStart + groovePx - 1;

for i=1:length(grooveStart)-1

groovePattern = grooveStart(i):1:grooveEnd(i);

modelSignal(groovePattern) = 1;
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end

residue = signalLength - grooveEnd(end-1);

if residue>=spacingPx

groovePattern = grooveStart(end):1:grooveEnd(end);

modelSignal(groovePattern) = 1;

elseif residue>widthPx

groovePattern = grooveStart(end):1:signalLength;

modelSignal(groovePattern) = 1;

end

The original square wave and the reconstructed square wave are shown in

Fig. B.8. The mismatch between the two signals corresponds to the offset. Next,

we will calculate the covariance function of this signal with respect to the measured

signal to obtain the offset.

% Correlate the two signals and find the phase gap

[signalCov, lags] = xcov(modelSignal,yyCol);

[~, phase] = max(signalCov);

phase = mod(lags(phase), spacingPx);

% calculate offset

offset = -phase*spline_stepSize;

end

168



Figure B.8: A square-wave signal was constructed from the measured
spacing and width in order to model the nanoridges (green). The model
signal was compared with the original signal (blue). The mismatch be-
tween the two signals corresponds to the offset.
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Figure B.9: The covariance function of nanoridges with modeled
nanoridges. The lag of the maximum covariance corresponds to the
offset between the two signals.

The covariance function is maximized when one of the signals has the greatest

overlap with the other signal for a given lag. A representative covariance function

is shown in Fig. B.9.

From this lag, we determine the offset. The corrected square wave that models

the nanoridges is plotted in Fig. B.10.

The measured offset as a function of time is shown in Fig. B.11. We can see

the drift of the microscope stage from the time series of this quantity. These four

variables—spacing, width, offset, and orientation—completely model the nanoridges.

Using these variables we can analyze the localization of actin waves with respect to
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Figure B.10: The corrected square-wave that models the nanoridges
(red) compared with the original square-wave signal obtained from the
nanoridges (blue).
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Figure B.11: The offset is plotted as a function of time. The jitter and
the drift of the microscope stage can be seen. The measured offset does
not exhibit any significant discontinuities. This observation suggests
that the offset estimation is accurate.

the closest nanoridge.
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Appendix C: Supplementary information for “Signal relay in noisy

directed migration of cell groups”

In this section, details regarding the assumptions used in our signal relay

model are provided. In addition, we compare numerical results with experimental

observations presented in Chapter 4.

C.1 Nonuniform hydrolysis profile approximation

To observe aggregation, cells are starved in a shaking flask with low concen-

tration cAMP pulses for 5 hours. During this period the cells differentiate and

secrete chemicals as a byproduct of the development process. Phosphodiesterase

(PDE) which hydrolyzes the signaling molecule cAMP, is secreted at a relatively

constant rate during the preparation [140]. The activity of the PDE inhibitor is

reduced for our method of pulsing [141]. Thus, we approximate the PDE density

as nPDE = ncellsPDET , where ncell is the cell density, sPDE is the rate of PDE

production per cell per unit time (assumed to be constant), and T = 5 hours is

the total preparation time. Once the cells are placed in the y < 0 reservoir they

settle quickly to its bottom surface. After settling is complete the cell surface den-

sity is n̄cell = ncellLz, where Lz = 1 cm is the height of the reservoir [94]. In the
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0 ≤ y ≤ Ly region, the dynamics of the enzyme PDE reaches a steady state in about

(Ly/2)2/DPDE ∼ 4 min. The x− t average of the diffusion equation describing the

dynamics of the PDE concentration C̄PDE is

DPDE
d2

dy2
C̄PDE + sPDEn̄cell = 0 . (C.1)

The vertical thickness of the chamber is small, lz = 5 µm. Therefore, within the

chamber, the PDE concentration is considered uniform in this direction. As previ-

ously discussed, we assume the boundary conditions

C̄PDE(0) = 0 (C.2)

and

C̄PDE(Ly) = 0 . (C.3)

The solution of Eq. (C.1) subject to the boundary conditions in Eqs. (C.2) and (C.3)

is

C̄PDE(y) =
sPDEn̄cell

2DPDE

L2
y

y

Ly

(
1− y

Ly

)
. (C.4)

Next, to justify (C.2) we argue that C̄PDE(Ly/2) � C̄PDE(0) holds in our experi-

mental setup. The PDE concentration at y = 0 is estimated by matching it to an

estimate of the PDE concentration in the reservoir at y < 0, which is ncellsPDET .

Thus, Eq. (C.2) is valid if
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(ncellsPDET )lz �
sPDEn̄cell

8DPDE

L2
y , (C.5)

where the factor lz on the left hand side of this inequality results from the fact that

C̄PDE is a surface density rather than a volume density. With n̄cell = ncellLz, the

cell density and the unknown PDE production rate sPDE cancel, and the inequality

becomes

T � Lz
lz

L2
y

8DPDE

. (C.6)

Using the dimensions of the experimental setup and an estimate of the diffusivity

of the PDE in Eq. (C.6), we obtain

T = 5hours� 1mm

5µm

9× 104µm2

8× 100µm2/sec
≈ 56hours . (C.7)

Therefore, the boundary condition assumed in Eq. (C.2) is reasonable. The other

boundary condition, Eq. (C.3), is even better justified because: (i) the number of

cells in the y > Ly reservoir is much smaller than the number of cells in the y < 0

reservoir, and (ii) the experimental time (≈ 1 hour) is shorter than T .

C.2 Fokker-Planck equation for aca- mutant cells

In this section we describe the steady-state behavior of the model in the contin-

uum approximation. For the non-interacting aca- cells, the cAMP density gradient

always points toward the y > Ly reservoir (i.e., ∇C/|∇C| = ŷ). Additionally, we

set f → 0 for the continuum limit, and thus the attractor vector in Eq. (2) reduces
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to g = ξxx̂ + (1 + ξy)ŷ. Since |n| = 1, Eq. (2) reduces to

dθ

dt
= −ωθ + ωξx , (C.8)

where θ is the angle between n and the y axis. The steady-state, spatially uniform

version of the Fokker-Planck equation corresponding to (1) and (C.8) is

∂

∂θ

(
ωθρ+

ηω2

2

∂ρ

∂θ

)
= 0 , (C.9)

where ρ = ρ(x, y, θ; t) is the probability density of the cells in (x, y, θ) space. Multi-

plying Eq. (C.9) by θ2 and integrating over θ from θ = −π to θ = π with ρ assumed

small away from θ ≈ 0 we obtain

〈θ2ρ〉
〈ρ〉

= ηω/2 . (C.10)

C.3 Results for uniform degradation scheme

In our model we considered a non-uniform cAMP degradation scheme, which

is justified by the boundary conditions of the setup and the initial conditions deter-

mined by the cell preparation. In this section we show results for which we apply

uniform cAMP degradation in the 0 < y′ < 1 region. The degradation for the exter-

nal cAMP is treated as being spatially uniform in most of the other chemotaxis and

collective cell migration models [19, 44, 47, 116]. We summarize our results for the

constant degradation scheme in Fig. S1, where we show M(y′) and ρ(y′) for ν0 = 3.

Compared to the results obtained using the non-uniform cAMP degradation scheme
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Figure C.1: (A) The degradation rate as a function of the distance from
the cell reservoir, where ν0 = 3. (B) M(y′) is shown for three representa-
tive relative cAMP secretion rates, whose dynamics is shown in Fig. 4.3.
(C) ρ(y′) for the same relative cAMP secretion rates used in the upper
panel. (D) Maximum ρ(y′) in the 0.5 ≤ y′ ≤ 1 region, is plotted against
its corresponding M for all numerical simulations with constant degra-
dation scheme. Each point represents a single numerical realization and
is color coded with respect to s′. (E) {M} is plotted against s′, where
the each data point is obtained from averaging many numerical realiza-
tions (10− 30). The vertical bars represent the error in the mean, which
is calculated by the standard error from many realizations.
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(Figs. 4.4B-D, and 4.5A), the results of the uniform cAMP degradation do not differ

qualitatively.

C.4 Comparison of density profile measured from experiments

Tracking individual cells within a stream is technically difficult. However,

because the depth of the experimental region is approximately the same as the

thickness of the cell, we can infer the local cell number from the images. More

precisely, we thresholded and binarized the time-lapsed images to determine the

z-projected area of the stream. We estimate this area is proportional to the number

of cells within the stream. Figure C.2 shows the local density obtained from ex-

periments and simulations as a function of distance from the cell reservoir. Overall,

both experiments with wild-type cells and simulations show an increase in density

along the gradient direction and a peak density close to the high cAMP reservoir

(Figs. C.2A and C.2B), with a stronger peak when the external cAMP concen-

tration is low. The experiments and simulations disagree in the low external cAMP

case near the cell reservoir. In the simulations, signal relay begins when the cells

enter the thin gradient chamber. In the experiments, signal relay is not restricted,

and in low cAMP regions such as the cell influx well, the cells may begin to form

streams. Mutant cells that do not secrete cAMP have a uniform density in the gra-

dient chamber (Fig. C.2C). To match the experimental density curve for the PDE1-

cells, we lowered the cell secretion rate (Fig. C.2D). This result suggests a testable

prediction from our studies.
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Figure C.2: The density, ρ(y′), is plotted against the distance from the
cell reservoir for wild-type cells moving in low cAMP concentration in
the reservoir (left), wild-type cells moving in high cAMP concentration
in the reservoir (center) and aca- mutant cells moving in high cAMP
concentration in the reservoir (right). The density profile is obtained
both from experiments and simulations of the model for (A) ν ′0 = 3,
s′ = 0.665 , (B) ν ′0 = 3, s′ = 0.528, (C) ν ′0 = 3, s′ = 0.033, (D) ν ′0 =
0.015, s′ = 0.265. Each simulation data point is obtained from averaging
many numerical realizations. The vertical bars in both experimental and
simulation data represent the standard error of the mean.
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tenz der Bewegungsrichtung. Mit Anwendungen auf die Bewegung lebender
Infusorien. Zeitschrift für Physik, 2:244–256, 1920.

[41] Robert P Futrelle, J Traut, and W George McKee. Cell behavior in Dic-
tyostelium discoideum: preaggregation response to localized cyclic AMP
pulses. J. Cell Biol., 92(3):807–21, March 1982.

[42] Alan R Gingle. Critical density for relaying in Dictyostelium discoideum and
its relation to phosphodiesterase secretion into the extracellular medium. Jour-
nal of cell science, 20(1):1–20, 1976.

[43] Alan R Gingle and A Robertson. The development of the relaying competence
in Dictyostelium discoideum. Journal of cell science, 20(1):21–27, 1976.

[44] Jean-Louis Martiel and Albert Goldbeter. A model based on receptor desen-
sitization for cyclic amp signaling in dictyostelium cells. Biophysical journal,
52(5):807–828, 1987.

[45] Herbert Levine and William Reynolds. Streaming instability of aggregating
slime mold amoebae. Phys Rev Lett, 66(18):2400–2403, May 1991.

[46] Oliver Steinbock, Florian Siegert, Stefan C Muller, and Cornelis J Weijer.
Three-dimensional waves of excitation during Dictyostelium morphogenesis.
Proc Natl Acad Sci U S A, 90(15):7332–5, August 1993.

183



[47] David A Kessler and Herbert Levine. Pattern formation in dictyostelium via
the dynamics of cooperative biological entities. Physical Review E, 48(6):4801,
1993.

[48] Eirikur Palsson and Edward C Cox. Origin and evolution of circular waves
and spirals in Dictyostelium discoideum territories. Proceedings of the National
Academy of Sciences, 93(3):1151–1155, 1996.

[49] Marten Postma and Peter JM Van Haastert. A diffusion–translocation model
for gradient sensing by chemotactic cells. Biophysical Journal, 81(3):1314–
1323, 2001.

[50] Herbert Levine, David A Kessler, and Wouter-Jan Rappel. Directional sensing
in eukaryotic chemotaxis: a balanced inactivation model. Proc. Natl. Acad.
Sci. U.S.A., 103(26):9761–6, June 2006.

[51] Eirikur Palsson and Hans G Othmer. A model for individual and collective cell
movement in Dictyostelium discoideum. Proceedings of the National Academy
of Sciences, 97(19):10448–10453, 2000.

[52] Nicola J Armstrong, Kevin J Painter, and Jonathan A Sherratt. A contin-
uum approach to modelling cell-cell adhesion. J. Theor. Biol., 243(1):98–113,
November 2006.

[53] Javier Satulovsky, Roger Lui, and Yu-li Wang. Exploring the control circuit
of cell migration by mathematical modeling. Biophys J, 94(9):3671–83, May
2008.

[54] Inbal Hecht, Monica L Skoge, Pascale G Charest, Eshel Ben-Jacob, Richard A
Firtel, William F Loomis, Herbert Levine, and Wouter-Jan Rappel. Acti-
vated membrane patches guide chemotactic cell motility. PLoS Comput Biol,
7(6):e1002044, June 2011.

[55] Elizabeth D Hay. Extracellular matrix, cell skeletons, and embryonic devel-
opment. Am. J. Med. Genet., 34(1):14–29, September 1989.

[56] Katarina Wolf, Regina Müller, Stefan Borgmann, Eva-B Bröcker, and Peter
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