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Cis-acting mRNA elements that promote programmed -1 ribosomal frameshifting (-1 

PRF) redirect a fraction of translating ribosomes into a new translational reading 

frame.  In viruses, these signals typically direct the translation of alternative protein 

products from a single mRNA. However, programmed frameshifts could also direct 

elongating ribosomes to premature termination codons, in which case the mRNAs 

could become targets for degradation by the nonsense mediated mRNA decay 

pathway (NMD). Computational analyses revealed the presence of 10,340 consensus 

-1 PRF signals in the Saccharomyces cerevisiae genome. Of the 6,353 yeast open 

reading frames (ORFs) included in this study, 1,275 are predicted to have at least one 

strong and statistically significant -1 PRF signal. In contrast to viral frameshifting, the 

predicted outcomes of nearly all of these genomic frameshift signals would direct 

ribosomes to premature termination codons, in theory making these mRNAs 

substrates for NMD. Nine of these predicted -1 PRF signals were tested empirically, 



  

eight of which promoted efficient levels of PRF in vivo. This study also demonstrates 

that viral -1 PRF signals are sufficient to target a reporter mRNA for degradation via 

NMD. Furthermore, several of -1 PRF signals from the yeast genome were also 

shown to act as NMD-dependent mRNA destabilizing element. Importantly, these 

signals are found in genes whose mRNAs are known to be natural targets for NMD. 

These findings support the hypothesis that PRF may be used by cellular mRNAs to 

initiate “mRNA suicide”.  A model is presented in which programmed frameshifting 

acts as a general post-transcriptional regulatory mechanism to control gene expression 

by regulating mRNA abundance. 
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Chapter 1: Literature Review 

 

 

Introduction 

The broad based integration of previously divergent disciplines has positioned the 

life sciences as a hub of multidisciplinary scientific research.  As a result, the 

mechanisms governing cellular processes, their regulation, and the flow of information at 

the molecular level within the cell are being revealed in increasingly greater levels of 

detail and complexity.  Interdisciplinary discoveries in the last decade have revealed a 

new view of the cell; one that represents an entangled system where most processes, 

genes, and pathways seem to have multifunctional roles. An emerging view of the cell is 

one where the cellular processes themselves are pleiotropic in addition to the genes which 

serve as their principle components. As entwined as these networks are, however, 

technological advances are helping to make the cell into a glass box, and these new 

connections are opening avenues that allow an even deeper understanding of the 

regulation gene expression.  This dissertation seeks to describe one of these new 

connections, joining together two previously unrelated processes in the eukaryotic cell: 

programmed -1 ribosomal frameshifting, and the nonsense mediated mRNA decay 

pathway.  
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Programmed -1 Ribosomal Frameshifting 

Background 

Programmed ribosomal frameshifting (PRF) is a translational recoding 

phenomenon historically associated with viruses and retrotransposons.  A PRF signal 

stochastically redirects translating ribosomes into a new reading frame (i.e. by +1 or -1 

nucleotide) and, in the typical viral context, these signals allow ribosomes to bypass the 

usual in-frame stop codon and continue synthesis of a C-terminally extended fusion 

protein, as shown in Figure 1 below. Although many well-characterized methods of 

translational recoding have been identified, this dissertation focuses solely on 

programmed -1 ribosomal frameshifting as the target. Other methods of recoding exist 

and are reviewed elsewhere, such as programmed +1 ribosomal frameshifting, 

translational hoping, and ribosome shunting (Farabaugh, 1996; Harger et al., 2002; Namy 

et al., 2004). 

Stop codon bypass by actively translating ribosomes via frameshifting was first 

suggested by Jamjoom et al. (1977) as a possible mechanism capable of producing two 

proteins from a single mRNA in eukaryotes (Jamjoom et al., 1977). It was not for several 

years, however, until Jacks & Varmus (1986) demonstrated that ribosomal frameshifting 

was indeed the mechanism used by Rous sarcoma virus (RSV) to direct the translation of 

both the gag structural protein and the gag-pol polyprotein from a single mRNA. They 

were able to generate a [
35

S]-labeled 76-kilodalton (kD) gag protein and a 108-kD gag-

pol polyprotein using a rabbit reticulocyte lysate system for in vitro transcription and 

translation that had been charged with unspliced RSV mRNA. Furthermore, deletion 
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analysis of the RSV transcriptional cassette identified a 34-nucleotide window that was 

responsible for ribosomal slippage. Later studies also demonstrated that other retroviruses 

used programmed -1 ribosomal frameshifting, including the human immunodeficiency 

virus 1, HIV-1 (Jacks et al., 1988b), and the mouse mammary tumor virus, MMTV (Jacks 

et al., 1987). It was not until three years after the initial study of RSV frameshifting, that  

the “simultaneous slippage model” (SSM) was proposed as the mechanism for -1 PRF 

(Jacks et al., 1988a). In this later study, Jacks et. al. (1988) used radiolabeled amino acid 

sequencing, coupled with site-directed mutagenesis, to identify a “slippery” heptamer 

sequence in the region of overlap between the gag and pol ORFs of RSV. Interpretation 

of the data led them to propose that the mechanism of -1 PRF involved the simultaneous 

slippage of both the A- and P-site tRNAs occupying the ribosome during a pause in 

translation elongation. Deletion analysis confirmed that a second element required for -1 

PRF was a strong secondary structure present in the viral mRNA immediately 

downstream (3’) from the slippery site.  In this same publication, Jacks et al. (1988) 

stated that -1 PRF is not expected to be limited to viral genes and that the heptameric 

slippery sites required for ribosomal slippage are found in many cellular viral and genes. 

In line with their predictions, it has become increasingly apparent that -1 PRF is much 

more widespread and is likely employed by organisms representing every branch in the 

tree of life (Baranov et al., 2002; Cobucci-Ponzano et al., 2005; Harger et al., 2002; 

Namy et al., 2004). Thus, the seminal work in the 1980’s paved the way for future studies 

into -1 PRF and helped opened the door further into research directed towards 
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understanding ribosome structure function, translational fidelity, and post-transcriptional 

of gene expression. 

An important benefit reaped from investigations into the various mechanisms of 

PRF in general has been a vast improvement in our understanding of the kinetics of 

translation elongation and of key structures in the ribosome important for maintaining 

fidelity. The various mechanisms that promote programmed frameshifting (e.g. -1 or +1) 

shed light on the kinetics of translation in unique ways. They have provided conceptual 

platforms from which the translational community has found a unifying model of 

translation elongation (Harger et al., 2002). Towards this end, the SSM originally 

proposed by Jacks et al. (1988) has been a subject of intensive study. Interestingly, after 

almost two decades of research, the basic tenants of the SSM are still essentially correct 

(Namy et al., 2004).  

-1 PRF Motifs and the Simultaneous Slippage Model 

The most well defined -1 PRF phenomena are directed by an mRNA sequence 

motif composed of three important elements: 

1. a “slippery site” composed of seven nucleotides where the translational shift in 

reading frame actually takes place; 

2. a short spacer sequence of usually less than 12 nucleotides; and 

3. a downstream stimulatory structure, usually a pseudoknot. 

A typical -1 PRF signal is shown in Figure 2 below.  In eukaryotic viruses, the slippery 

site has the heptameric motif N NNW WWH (Harger et al., 2002).  Current models posit 

that aminoacyl- and peptidyl-tRNAs are positioned on this sequence while the ribosome 
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pauses at the downstream secondary structure (Kontos et al., 2001; Lopinski et al., 2000; 

Plant and Dinman, 2005; Plant et al., 2003; Somogyi et al., 1993).  The nature of the 

slippery sequence enables re-pairing of the non-wobble bases of both the aminoacyl- and 

peptidyl-tRNAs with the -1 frame codons, as shown in Figure 3 (Plant et al., 2003).  

While it is generally accepted that mRNA pseudoknots are the most common type of 

downstream stimulatory structures, other mRNA structures are capable of filling this role 

as well (Baril et al., 2003; Kollmus et al., 1996b).  Nonetheless, it is thought that the 

essential function of the stimulatory structure is to provide a kinetic barrier to a 

translating ribosome  to promote a momentary pause in translation (Lopinski et al., 2000). 

Nonsense Mediated mRNA Decay 

Background 

The rapid and specific destruction of a nonsense containing mRNA was first 

discovered by Losson & Lacroute (1979) (Losson and Lacroute, 1979) in a mutant allele 

of the orotidine 5-phosphate decarboxylase gene (URA3) in Saccharomyces cerevisiae.  

A similar phenomenon was also revealed a few years later in human cell-lines 

(Kinniburgh et al., 1982) where a nonsense mutation in ß-globin resulted in substantially 

lower mRNA levels and a specific disease phenotype, ßº-thalassemia (Maquat et al., 

1981).  Additional examples of “nonsense mediated decay” (NMD) soon followed in 

additional yeast (Pelsy and Lacroute, 1984) and mammalian genes (Daar and Maquat, 

1988), implying that a general mRNA decay pathway was responsible for the 

surveillance of multiple gene transcripts.  NMD-like processes were soon discovered in a 
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number of additional model organisms including Caenorhabditis elegans (Pulak and 

Anderson, 1993), Drosophila melanogaster (Chia et al., 1985; Kreitman, 1983), Gylcin 

max (Jofuku et al., 1989), Oryza sativa (Isshiki et al., 2001), and Phaseolus vulgaris 

(Voelker et al., 1990).  It is now widely accepted that NMD is an ancient, broadly 

conserved pathway likely to be central to the normal processing and surveillance of 

mRNAs in most, if not all, eukaryotes. What is most interesting, however, are the details 

and variations of the how NMD actually functions in each of these organisms. 

The NMD Model in Yeast: Core Surveillance Conserved 

The mechanism of how nonsense-mediated mRNA decay operates has been an 

intensely studied topic since the early 1990’s. Several models have been proposed, and 

subsequently debunked. Even today there are two fundamentally different models for 

NMD with evidence for and against both; referred to here as the EJC model (Maquat, 

2004b), and the faux UTR model (Amrani et al., 2004). Fortunately, the major division in 

the two models lies in the fact that the first model is generally applied to “higher 

eukaryotes” and the second applies more generally to S. cerevisiae
1
. It remains to be 

demonstrated clearly in plants how NMD functions and how this agrees with what is 

known about NMD in other eukaryotes. The yeast model of NMD is shown in Figure 4 

(Gonzalez et al., 2001). 

                                                
1
 As a result, readers are cautioned that the literature is replete with references to of NMD “in yeast”, or “in 

mammals”. 
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Regardless of which model is “correct”, an important feature of NMD in general 

is the requirement of three proteins, encoded by the UPF1, UPF2, and UPF3 genes that 

serve as the core of the pathway.  This core is functionally conserved in all systems in 

which NMD has been identified.  The model of how these proteins interact, and the role 

they play in targeting mRNAs for decay, is also generally conserved. In yeast, the system 

under study in this dissertation, premature termination is immediately followed by the 

disassembly of poly-ribosome mRNPs, the association of  the premature termination 

codon containing (PTC+) mRNA with the surveillance complex
2
, and the rapid 

degradation of the transcript.  The association of the surveillance complex with the PTC+ 

mRNA is thought to be mediated by an interaction of Upf1p with Hrp1p (Gonzalez et al., 

2000), which binds a weakly defined downstream cis-element (DSE) or by Upf1p-mRNA 

interaction.  Once an mRNA has been marked as aberrant by NMD there is a complete 

reorganization of the mRNP which in turn results in the mRNA exiting the pool of 

actively translated transcripts (Muhlrad and Parker, 1999) and the subsequent 

sequestering of the transcript in specific processing bodies found elsewhere in the 

cytoplasm (Brengues et al., 2005; Sheth and Parker, 2003).  In yeast, NMD facilitates 

mRNA decay primarily by accelerating the deadenylation and subsequent decapping of 

mRNAs, followed by their rapid 5’ and 3’ degradation by Xrn1p and the exosome 

complex respectively (Hagan et al., 1995; Mitchell and Tollervey, 2003; Muhlrad and 

                                                
2
 The surveillance complex refers to the interacting complex of UPF1, UPF2, and UPF3 proteins that 

serves as the core molecular machinery of NMD. 
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Parker, 1994).  It should be noted, however, that the mechanisms and transcript selection 

methods of NMD vary across species (Maquat, 2004a). 

In yeast, the faux UTR model best describes our current understanding of how 

mRNAs are targeted to NMD (Amrani et al., 2006).  Briefly, the faux UTR model posits 

that the kinetics of translation termination at a premature termination codon, PTC, is 

extremely inefficient relative to the rate of termination at the proper stop codon.  

Furthermore, the model suggests that this inefficiency is related to the proximity of the 

stop codon to the downstream untranslated region, 3’-UTR (Cao and Parker, 2003). 

Inefficient premature termination is due to the lack of the proper termination “context” 

and the absence of factors bound to the 3’-UTR that are known to facilitate efficient 

termination events.  Using mRNA toe-printing assays (Sachs et al., 2002), Amrani et al. 

(2004) demonstrated that ribosomes terminating translation at premature termination 

codons were stalled much longer than those that terminated at the normal downstream 

stop codon, and they postulated that the difference in termination kinetics acts as the 

driving force for recruitment of the mRNA by NMD.  Furthermore, by introducing a faux 

3’-UTR with a tethered poly(A)-binding protein immediately downstream from a PTC, it 

was possible to have nonsense containing mRNAs evade the NMD machinery (Amrani et 

al., 2004). Finally, Amrani et al. (2004) suggest that exon-junction complexes in 

metazoans or the yeast protein Hrp1p, may serve simply as functional analogues to 

factors bound to the 3’UTR of mRNAs in yeast.  
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Natural mRNA Targets of NMD 

It has been argued for nearly two decades that the primary role of NMD is to 

serve as a control point for unwanted expression of truncated or otherwise aberrant 

proteins (Maquat, 2004b).  This view has been supported by the “pioneer-round” model 

of translation (Chiu et al., 2004; Ishigaki et al., 2001; Lejeune et al., 2003) in which 

PTC+ mRNAs are subjected to NMD only during the first round of translation.  Hence, 

the general view of NMD has been one of quality control and mRNA transcript 

surveillance.  However, this view has been challenged recently by several groups that 

have shown that NMD is responsible for the normal expression of genes in C. elegans, S. 

cerevisiae and in mammalian cell systems (Dahlseid et al., 2003; Green et al., 2003; He 

et al., 2003; Hillman et al., 2004; Kebaara et al., 2003; Lelivelt and Culbertson, 1999; 

Mendell et al., 2004; Rehwinkel et al., 2005; Wittmann et al., 2006).  These studies have 

demonstrated that there is a broad class of mRNAs, estimated between 10 - 20% of the 

eukaryotic transcriptome, that are primary and secondary targets for NMD-dependent 

expression.  Furthermore, in an evolutionary context, NMD significantly increases the 

tolerance and retention of PTC+ containing genes in diploid organisms, thereby reducing 

negative selection against them, primarily because a second copy of the gene is still 

present and functional (Lynch and Kewalramani, 2003; Xing and Lee, 2004).  The 

components of NMD have also been traced back to the “last universally common 

ancestor” (LUCA) and the pathway as a whole is believed to have been present in the 

earliest of eukaryotes (Anantharaman et al., 2002; Mendell et al., 2004; Wilkinson, 
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2005).  Together, these findings strongly suggest that the role of NMD in the cell is much 

more than just a transcript surveillance mechanism.  

In general terms, five classes of mRNA substrates have been identified as so-

called natural NMD targets in S. cerevisiae. First, transframe or missense exonic 

mutations that result in nonsense containing mature mRNAs are the most widely studied 

target for NMD (Leeds et al., 1991). Second, inefficiently or erroneously spliced pre-

mRNAs, such as those encoded by CYH2 (He et al., 1993), are targeted to NMD upon 

translation in the cytoplasm.  Third, mRNAs with small upstream open reading frames, 

(uORFs) have been shown to be stability regulated NMD substrates (Ruiz-Echevarria and 

Peltz, 2000). Fourth, primary NMD targets are mRNAs whose stability is directly 

influenced by the activity of the core NMD proteins despite any identifiable sequence 

aberrations, such as the mRNA encoded EST2 (Dahlseid et al., 2003).  Fifth, secondary 

targets of NMD are mRNAs whose downstream transcript levels are affected by the 

expression of a primary NMD target, such URA1, URA2, and URA4 in yeast whose 

transcription is under the regulation of the transactivator Ppr1p (Losson et al., 1983). 

Interestingly, the mRNA encoded by PPR1 has been shown to be a direct target of the 

NMD pathway, although the mechanism of this regulation has yet to be unraveled 

(Kebaara et al., 2003).  

The first genomic study that identified natural targets for NMD applied high-

density oligonucleotide microarrays (HDOA) against RNA isolated from wild-type, 

upf1", upf2" and upf3" yeast strains (Lelivelt and Culbertson, 1999).  Lelivelt and 

Culbertson found that 529 mRNAs, approximately 9% of the transcriptome, were 
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between 1.2- and 11-fold overexpressed in a UPF-dependent manner.  Interestingly, there 

was no correlated effect with the presence or absence of introns in each of these genes 

which suggested that alternative splicing is not the primary source of NMD substrates in 

yeast
3
.  After directly testing several candidate NMD targets by Northern analysis, 

Lelivelt and Culbertson concluded, however, that the majority of upregulated mRNAs 

were the result of secondary effects from the misregulation of transcription 

transactivators.  This earlier study nonetheless fueled the search for primary NMD targets 

and additional genomic studies aimed at identifying them.  A second genomics study in 

yeast identified 545 ORFs being identified as NMD-dependent (He et al., 2003)
4
. Using 

additional genetic knockouts of DCP1 and XRN1
5
, it was surprising that He et al. (2003) 

concluded that the majority of mRNAs targeted for NMD were primary targets.  

Recently, Atkin and colleages (Taylor et al., 2005) have sought to settle these conflicting 

views of natural NMD targets by analyzing and integrating the results from the two 

previous microarray studies and identifying coregulated sets of genes based on known 

transcription factors and their putative binding sites.  They concluded that there are 

                                                
3
 It should be noted that S. cerevisiae is known to have relatively few intron containing genes compared to 

other eukaryotes and that, as previously mentioned, NMD is thought have played a significant role in the 

proliferation of intron containing genes in metazoans. 

4
 Interestingly, the intersection of the two studies by the Culbertson and Jacobson groups did not produce 

an identical list of genes whose expression was NMD-dependent. 

5
 DCP1 and XRN1 are genes encoding the decapping enzyme and the primary 5’-3’ exonuclease in yeast, 

both of which are downstream from NMD transcript selection. Using these knockouts in conjunction with 

upf1", upf2" and upf3", He et al. (2003) were able to identify targets through epistasis. 
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indeed primary and secondary targets of NMD, but the lack of sequence motifs for 

transcription binding sites limited them to the analysis of genes with known functions. 

Since approximately 46% of the transcripts upregulated in the He et al. (2003) data set 

have unknown function, the results from Atkin and colleages remains largely 

inconclusive.  Finally, similar reports spurred by the relative success in S. cerevisiae have 

since been published detailing the NMD-dependent repression of large classes of mRNAs 

in human cell lines (Mendell et al., 2004), C. elegans (Mitrovich and Anderson, 2000), 

and D. melanogaster (Rehwinkel et al., 2005). 
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Summary 

Described above are two examples of biological processes thought to be involved 

in the expression of genes that are “exceptions to the rule”. Programmed -1 ribosomal 

frameshifting was thought to be primarily a viral phenomenon associated specifically 

with bicistronic mRNAs encoding transframe ORFs. Nonsense mediated mRNA decay is 

a pathway that specifically targets aberrantly spliced or nonsense containing mRNAs for 

rapid degradation. Both of these processes, however, have been demonstrated to be 

involved in the normal expression of many genes, albeit in unusual and as yet 

uncharacterized ways. This dissertation seeks to connect these two fields together. 

Chapter 2 presents evidence that programmed -1 frameshift signals are widespread in the 

yeast genome and that the expected result of these frameshift signals is the premature 

termination of translation.  The statistical properties of an assay system to measure 

frameshifting in vivo are explored in Chapter 3. Following in Chapter 4 is empirical 

evidence supporting the notion that many of these predicted frameshift signals are 

functional in vivo and act as mRNA destabilizing elements dependent on the functioning 

of the nonsense mediated decay pathway.  Finally, in Chapter 5, we conclude with a  

model of “mRNA suicide” which describes how functional frameshift signals can direct 

mRNAs to NMD. The coupling of these two processes poses a potentially novel mode of 

post-transcriptional control of gene expression. 
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Chapter 1 Figures 

 

Figure 1: The Viral Context for Programmed Ribosomal Frameshifting 

In the above example, the gag and pol ORFs occupy the same mRNA and are out of 

frame with respect to one another. A programmed frameshift signal, indicated by the 

black triangle, directs 5% of translating ribosomes to bypass the zero-frame stop codon at 

the end of the gag ORF and continue translation into the pol ORF. The translation 

products from this mRNA are two proteins whose stoichiometric ratio are determined by 

the efficiency of the frameshift signal itself.  
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Figure 2: A Typical -1 PRF Signal 

Typical -1 PRF signals consist of a heptameric slippery site that fits the motif N 

NNW WWH (spaces indicate zero frame codons), a short spacer region and an 

mRNA pseudoknot with two stem and three loop regions (S1, S2, and L1 – L3 

respectively). 
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Figure 3: Overview of Programmed -

1 Ribosomal Frameshifting 

This figure and legend adapted from 

Plant et. al. (2003). (Top) An mRNA 

pseudoknot induces elongating 

ribosomes to pause with their A- and P-

site tRNAs positioned over the 

heptameric X XXY YYZ ‘‘slippery 

site’’ (red arrow). The incoming frame 

is indicated by spaces. (Middle) While 

paused at the slippery site, if the 

ribosome shifts by 1 base in the 5' 

direction, the non-wobble bases of both 

the A- and P-site tRNAs can re-pair 

with the new –1 frame codons. 

(Bottom) The mRNA pseudoknot is 

denatured (arrow), and elongation continues in new reading frame. 
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Figure 4: A Model of Nonsense Mediated mRNA Decay in Yeast 

This figure and the following legend have been adapted from Gonzalez et al. (2001) (1) 

Upf1p associates with translation release factors eRF1 and eRF3 during the termination. 

(2) Dissociation of eRF1 from the ribosome allows Upf2p to bind the eRF3-Upf1p 

complex. (3) Upf3p joins the complex and displaces eRF3. Failure to displace Hrp1 from 

the DSE during translation allows the trimeric Upf complex to recognize the DSE marker 

as a signal that promotes the rapid decaping and subsequent exonucleolytic degradation. 
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Chapter 2: Computational Identification of Programmed 
-1 Ribosomal Frameshift Signals in Saccharomyces 
cerevisiae  
 

 

Introduction 
A growing number of examples now exist of PRF signals in expressed eukaryotic 

genes (Bekaert et al., 2005; Manktelow et al., 2005; Matsufuji et al., 1996; Morris and 

Lundblad, 1997; Shigemoto et al., 2001; Wills et al., 2006).  The existence of these PRF 

signals in a wide variety of viral and prokaryotic genomes suggests an ancient and 

possibly universal mechanism for controlling the expression of actively translated 

mRNAs.  There have been several published reports aimed at the in silico identification 

of “recoding signals” using a wide variety of computational approaches (Bekaert et al., 

2003; Bekaert et al., 2005; Gao et al., 2003; Gurvich et al., 2003; Hammell et al., 1999; 

Harrison et al., 2002; Moon et al., 2004; Namy et al., 2003; Shah et al., 2002).  While the 

methodologies of each study covered a broad range of bioinformatics techniques, with 

the exception of Hammell et al. (1999), the general goal of each of these was 

fundamentally the same.  Searches were directed to first find out-of-frame ORFs 

followed by the identification of PRF signals in the overlapping region between them that 

could act to potentially redirect ribosomes from the upstream ORF into the downstream 

ORF, thereby resulting in the translation of a fusion protein.  The results of these 

investigations suggest that PRF signals are more widespread than previously anticipated 

and that their distribution is not limited to viral or prokaryotic genomes.  This 

computational strategy is based on the assumption that PRF outcomes should mimic 
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those observed in viral genomes.  The strength of this approach is that it can identify new 

classes of cis-acting signals capable of directing efficient PRF.  However, its weakness is 

that it cannot identify new functional outcomes of frameshifting. 

In contrast, while an “outcome-neutral” approach using mRNA motifs known to 

promote efficient PRF cannot identify new frameshift signals, it can enable an expansion 

of our understanding of functional uses for PRF.  In this vein, the first computational 

search for eukaryotic -1 PRF signals (Hammell et al., 1999) did not focus solely on 

identifying two overlapping out-of-frame ORFs, but instead aimed to find these motifs 

throughout the entire CDS of the yeast genome.  This early study identified some 260 

putative -1 PRF signals in the annotated portion of the Saccharomyces cerevisiae 

genome.  An unexpected finding was that the vast majority of “genomic” -1 PRFs were 

dramatically different from viral frameshifts: greater than 99% of such events were 

predicted to direct elongating ribosomes to premature termination codons.  This 

observation engendered the hypothesis that PRF could be used to post-transcriptionally 

regulate gene expression through the nonsense-mediated mRNA decay pathway.  Proof 

of this principle was  later demonstrated in yeast by monitoring the effects of a well-

defined viral -1 PRF signal on the stability of the resulting reporter genes’ mRNA, the 

details of which are in Chapter 4 below and Plant et al. (2004).  The shortcomings of the 

Hammell et al. (1999) study were its limitation by incomplete annotation of the yeast 

genome and relatively insufficient computational resources available at the time (ca. 

1995-98).  Thus, in order to achieve a more comprehensive approach, a new set of 
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informatics tools were developed and applied using faster and more robust computational 

platforms.  The results of the bioinformatics presented here in Chapter 2 show that: 

1. pattern matching approaches coupled with a predictive method for folding RNA 

sequences provide a dramatic improvement in the results; 

2. -1 PRF motifs are widespread in the genome of S. cerevisiae; and 

3. many of the putative signals identified have predicted secondary structures with 

statistically significant measures of free energy. 

This method of identifying putative signals was also tested on the genome of a recently 

sequenced virus, the SARS coronavirus, and successfully identified a novel -1 PRF signal 

that was later confirmed experimentally. Finally, the results from the yeast genome are 

stored in the PRFdb, a publicly accessible Internet resource, created to house the 

computational results of this search for “context-neutral” -1 PRF signals in yeast  

Materials & Methods 

Hardware & Software Used 

All software was compiled and run on one or more of the following systems: Dell 

Precision 620, 2 x PIII XEON 866 MHz running Mandrake Linux 10.x; Apple Power 

Macintosh, 2 x G4 1.4 GHz PowerPC running OS X Tiger; SGI Cluster 64x MIPS R14K 

600MHz running Irix 6.5; SGI Altix 3000, 64x 1.5 GHz Itanium II running Linux-64.  

Supercomputing resources were made available courtesy of The National Cancer 
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Institute’s Advanced Biomedical Computing Center (ABCC)
6
.  Unless otherwise noted, 

data mining and analysis was carried out using scripts written in PERL, each of which are 

available on request.  In all cases, data is stored in a mySQL relational database referred 

to as the PRFdb. The permanent Internet address of the PRFdb is 

http://dinmanlab.umd.edu/prfdb. 

Pattern Matching  

RNAMotif (Macke et al., 2001) was utilized for finding subsequences in the 

coding regions of Saccharomyces cerevisiae that serve as potential translational 

frameshift signals.  The descriptor of the putative programmed frameshift signal motif 

was created ad hoc from analysis of 56 known viral -1 PRF signals from the RECODE 

(Baranov et al., 2003) database.  The RNAMotif descriptor had the following 

requirements: 

1. define slippery sites as “N NNW WWH”, where spaces indicate zero-frame codon 

boundaries. N, W and H are standard IUPAC codes and represent triplet repeats; 

2. allow any sequence between 0 – 12 nucleotides in length to serve as the spacer 

between the slippery site and the pseudoknot; 

3. allow G:U base pairing in pseudoknot stems; 

4. each stem in the pseudoknot must be between 4 – 20 nucleotides in length; 

5. stem 1 must have at least 50% GC content; 

                                                
6
 The computational resources of the ABCC are available to any NIH funded research program. Their 

Internet address is http://www.abcc.ncifcrf.gov. 
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6. the first loop must be between 1 – 3 nucleotides in length; 

7. the second loop is optional and can be no longer than 3 nucleotides 

8. the third loop must be at least as long as one-half the length of the first stem and 

no longer than 100 nucleotides.  

The relationship of these features with regards to a typical -1 PRF signal is illustrated in 

Figure 2 above on page 15. 

Whole Genome Randomization Methods 

The complete coding sequence (CDS) of S. cerevisiae was randomized 100 times 

using seven different methods for sequence randomization
7
.  Each method of 

randomization was conducted such that each genome had the same number of ORFs of 

identical lengths of the natural S. cerevisiae genome.  In addition, each random genome 

was generated such that stop codons were only present in the terminal 3’ position
8
.  

Beyond these similarities, the seven methods for randomization included:  

1. noBias - randomized ORFs with unbiased nucleotide bias; 

2. nShuffle - nucleotides from each natural ORF are shuffled by triplicate 

mononucleotide permutations; 

3. nBias - randomized ORFs using the natural CDS single-nucleotide frequency;  

4. cShuffle - codons from each natural ORF are shuffled by triplicate monocodon 

permutation; 

                                                
7
 700 random genomes total. 

8
 In other words, no in-frame termination codons were allowed for any of the randomly generated ORFs. 
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5. sBias - a silent bias where the codons are randomized in place so as to maintain 

protein coding sequence; 

6. cBias - randomized ORFs using the observed CDS codon usage bias; and  

7. dnNuc - randomized ORFs generated using the observed CDS dinucleotide 

frequency. 

As was done for the natural S. cerevisiae genome, RNAMotif was used to search each of 

these randomized genomes. 

RNA Secondary Structure Prediction 

Pknots (Rivas and Eddy, 1999) was used to predict the minimum free energy 

“fold” of each motif hit identified by RNAMotif.  Each motif hit identified by RNAMotif 

was folded by pknots and assigned a predicted minimum free energy value (MFE in 

kcal/mol) and a predicted secondary structure. The structural calculations and predictions 

were carried out using the supercomputing hardware at the ABCC. 

Data Redundancy Elimination 

 PERL scripts were created and parsed the entire PRFdb for structurally redundant 

-1 PRF signals; i.e. any record that was structurally identical with any other record 

associated with the same slippery site in the same gene was removed. Specifically, the 

criteria for record elimination was simply that to find any sequence that was a complete 

subset of any other sequence for the same PRF signal was removed, leaving the larger of 

the two in the PRFdb. This reduced the overall size of the PRFdb from 173,452 sequence 

windows, motifs first identified by RNAMotif, to a smaller dataset of 66,842 sequence 
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windows that were non-redundant in terms of their predicted secondary structures and 

MFE values. 

PRF Signal Randomization & Statistical Analysis 

Each folded motif hit was randomly shuffled and refolded 100 times using pknots, 

producing a distribution of random MFEs specific for each of the motif hits.  

Distributions of random MFE values using pknots with pseudoknots folding disabled 

were in general not statistically different from those generated using pknots with this 

option enabled (data not shown), but had considerably shorter generation time, identical 

energy parameters, and could be run on the same computing platform.  Motif hits were 

then compared to the resulting distribution and assigned a z-score: 

! 

z
R

=
X " x 

#  
[ 1 ] 

where X is the predicted MFE value for each sequence, 

! 

x  is the estimate of the mean for 

the distribution of MFE values obtained from 100 randomizations, and ! is the standard 

deviation of random structure MFE values.  The normalized value of zR (z-random) 

obtained provides an estimate of the statistical significance and uniqueness of the 

predicted structure for the natural sequence: i.e. is the sequence more or less stable than 

we might expect by chance (Chamary and Hurst, 2005; Freyhult et al., 2005; Le et al., 

1989; Le et al., 2001; Le et al., 2002; Schultes et al., 1999; Seffens and Digby, 1999; 

Tuplin et al., 2002). 
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Computational Analyses of the SARS-CoV -1 PRF Signal 

The SARS-associated coronavirus -1 PRF signal was identified from the complete 

genome sequence, using a combined approach. First, the pattern matching descriptor of 

known -1 PRF signals was used in conjunction with RNAMotif to identify the nucleotide 

sequence corresponding to the frameshift signal's slippery site. Second, pknots was 

employed to fold the motif hits immediately 3# to the slippery site and to produce a 

predicted MFE value in kilocalories per mole for the sequence. The statistical 

significance of the lowest energy MFE value of the sequence window was tested by 

generating 500 randomly shuffled sequences derived from the native sequence, refolding 

each of these, and calculating their MFE values using pknots. This resulted in a normal 

distribution of MFE values, against which the native sequence could be compared and a 

zR score calculated. FASTA3 (Pearson, 2000) was used to initially identify sequences 

homologous to the SARS -1 PRF signal based on primary sequence similarity. The search 

space included 1,724 viral genome sequences downloaded using the National Center for 

Biotechnology Information's Entrez Taxonomy Browser (Wheeler et al., 2000). The 

resulting pairwise alignments produced by FASTA3 were collated to produce a multiple-

sequence alignment using Clustal W (Thompson et al., 1994). An unrooted phylogenetic 

tree was created from this alignment and visualized using Tree View (Page, 1996). 
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Results 

RNAMotif and the canonical -1 PRF signal 

The main differences between this study and the previous work by Hammell et al. 

(1999) are: 

1. the availability of a completely annotated yeast genome;  

2. significantly more powerful computational resources;  

3. application of more sophisticated statistical analyses; and 

4. a different parameter was employed for the -1 PRF motif. 

RNAMotif (Macke et al., 2001) was exploited, and an appropriate albeit somewhat 

relaxed, “descriptor” of known viral -1 PRF signals was developed by analysis of a 

database of experimentally confirmed recoding signals (Baranov et al., 2003).  The 

results of this pattern matching approach identified 10,340 slippery sites in the 6,353 

annotated coding sequences (CDS) of the yeast genome, 6,016 of which are followed by 

at least one pseudoknot motif.  In total, RNAMotif identified 173,452 sequence windows 

that matched the specified parameters
9
. 

Whole Genome Randomization, prevalence in yeast 

To determine the statistical significance of the above results, they were compared 

to what would be expected by chance.  One method of identifying statistically significant 

                                                
9
 The large number of motif hits made by RNAMotif is the result of many overlapping sequence windows 

for each match. Each sequence fulfills the criteria for a -1 PRF signal in multiple ways. 
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motifs in nucleic acid sequences is to repeat the initial motif search using a large set of 

randomized sequences.  The frequency of finding the motif in randomized sequences can 

provide some insight into the likelihood that a match in a natural sequence occurs by 

chance.  In this chapter, a conservative approach was applied by randomizing the entire 

yeast CDS genome using seven different strategies so as to not introduce bias due to the 

choice of any one randomization method.  All of the randomized genomes contained the 

same number of ORFs (rORF) as the natural yeast genome and the same number of total 

nucleotides in the CDS sequence space.  Furthermore, rORFs with in-frame premature 

termination codons were discarded and randomly re-generated until full length read-

through sequences were obtained.  A total of 100 randomized replicate genomes were 

generated for each of the seven methods.  Each random genome was then searched for the 

occurrence of potential -1 PRF signals with RNAMotif using the same descriptor 

described in the Materials & Methods.  The results in Table 1 below show that the actual 

number of motif hits found is statistically different when compared to any of the seven 

randomized datasets
10

; suggesting that the prevalence of -1 PRF signals may be under 

multiple selective pressures. 

Each of the randomization types that seek to mimic the natural CDS of yeast 

(cShuffle, sBias, cBias, and dnBias) generated genomes that harbored more -1 PRF 

signals than were actually found in the natural genome.  This suggests selective pressure 

against the acquisition of spurious -1 PRF signals in yeast; i.e. the yeast genome would 

be expected to have more -1 PRF signals than were actually observed.  This is consistent 

                                                
10

 Each of the tests had a p-value $ 0.02 by a two-sample Student’s t-test (Devore J. L. ,2000). 
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with the notion that -1 PRF signals can lead to aberrant translation and, most likely, 

dysfunctional proteins.  In contrast, randomization strategies that mimicked the overall 

genome-wide or individual CDS nucleotide bias (nBias and nShuffle respectively) 

produced random genomes with significantly fewer -1 PRF signals than were actually 

observed.  If there were strong and genome-wide evolutionary pressures against the 

presence of any -1 PRF signals, then they would be expected to be relatively non-existent 

in the yeast genome and statistically indistinguishable from the nShuffle and nBias 

randomization datasets.  This is, however, not the case.  This set of comparisons suggest 

that there may be evolutionary pressure for the maintenance of certain classes of existing 

frameshift signals.  In addition, randomized genomes using an unbiased nucleotide 

frequency (noBias) were generated as a negative control.  These random genomes 

contained far fewer -1 PRF signals than observed for the actual yeast genome and far less 

than any of the other randomization strategies, supporting the hypothesis that the function 

of -1 PRF has been positively selected for.  In sum, the number of slippery sites followed 

by at least one pseudoknot motif (6,016) present in the actual yeast genome is statistically 

significant when compared to the number of expected -1 PRF signals for all of the 

randomization strategies employed.  Therefore, although unexpectedly large, the number 

of putative signals identified can not be ruled out as entirely artifactual. 

Secondary Structure Prediction 

The next step was to assign additional layers of predictive metrics to the dataset 

so as to enhance the ability to identify functional -1 PRF signals for empirical testing.  

The first task was to assign a minimum free energy (MFE) value to each motif hit 
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identified by RNAMotif (Macke et al., 2001).  This was not a trivial matter since nearly 

all known -1 PRF signals require an mRNA pseudoknot (Plant et al., 2003) and RNA 

pseudoknot prediction represents a well known and computationally difficult problem 

(Lyngso and Pedersen, 2000).  However, pknots (Rivas and Eddy, 1999), an algorithmic 

extension of the popular mfold (Mathews et al., 1999), is capable of predicting 

pseudoknots of the type that are generally found associated with functional -1 PRF 

signals.  Coupled with a set of scripts written in PERL (Wall et al., 2000), pknots was 

able to fold every potential RNAMotif hit
11

 in approximately 5000 CPU hrs. using the 

computational resources available at the ABCC.  Once the initial folding was completed, 

the dataset was then reduced to a structurally non-redundant dataset of 66,842 structures 

through the use of several additional scripts written in PERL.  The nearly 3-fold 

reduction in the data was possible due to the huge number of overlapping motif hits 

initially made by RNAMotif.  These analyses provide each non-redundant RNAMotif 

match with a predicted RNA secondary structure and MFE value. 

The overall distribution of all MFE values determined by pknots for the most 

stable predicted secondary structures
12

 for each structure 3’ from the slippery motif is 

                                                
11

 All 173,452 sequence windows that were initially identified by RNAMotif. 

12
 The most stable subsequence immediately downstream of a given slippery site is the sequence window of 

RNA that, when folded by pknots, results in the lowest MFE value in kcal/mol as compared to every other 

sequence window associate with the same slippery site. 
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shown in Figure 5 below and fits a normal distribution
13

.  The distribution of base-pair 

counts for each structure fits an extreme-value distribution and is shown in Figure 6 

below.  The statistical correlation of MFE, length, base pair counts and zR scores for the 

entire set of candidate PRF signals is shown in Table 2. The summary statistics of the 

same structures are shown in Table 3. 

Randomization of RNA structures 

To identify statistically significant motif hits, z-scores (zR) were calculated for 

each predicted RNA secondary structure folded by pknots.  For each candidate signal, the 

MFE value of the predicted structure was compared to the distribution of MFE values 

obtained from 100 permutations of the same sequence using an implementation in PERL 

of a similar algorithm previously described (Seffens and Digby, 1999).  The 

randomization approach disrupts the nucleotide base order and any potential secondary 

structure for each input sequence but preserves the exact mononucleotide count of each 

base within the shuffling window.  Significance scores derived from permutation 

shuffling approaches such as this have previously been successful in finding biologically 

meaningful RNA structures from primary sequence data both by this author (Plant et al., 

2005) and several other research groups (Barrette et al., 2001; Le et al., 1989; Le et al., 

2001; Seffens and Digby, 1999).  Furthermore, it is expected that this measure of 

                                                
13

 Probability plot-correlation coefficient (PPCC) % 0.98. See Chapter 3 and Filliben (1975) for PPCC 

values and their use in determining how well a distribution of observed data actually fits a normal 

distribution.  
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significance is sufficient since functional secondary structures in mRNA sequences are 

considered more stable than random sequence and are under selective pressure (Chamary 

and Hurst, 2005; Katz and Burge, 2003; Ringner and Krogh, 2005; Schultes et al., 1999).  

It should be noted, however, that several reports have indicated that this randomization 

strategy is not accurate for estimating the significance of RNA secondary structures in-

general and that a superior method of randomization lies in preserving both mono- and 

dinucleotide ratios (Clote et al., 2005; Freyhult et al., 2005; Rivas and Eddy, 2000; 

Workman and Krogh, 1999).  Nonetheless, for the purposes of this study the 

randomization strategy employed for the calculation of zR was adequate.  For this dataset, 

the randomization step was limited to 100 permutations per sequence due to the sheer 

number of input sequences that required zR scores.  This reasonably estimated a normal 

distribution of MFE values for each input sequence and a probability plot correlation 

coefficient goodness-of-fit test (Filliben, 1975) was carried out for each distribution to 

statistically verify each estimation of a normal distribution.  A PPCC % 0.98 was found 

for greater than 99% of all the candidate signals in the database indicating that 100 

random shuffles was sufficient for good estimates of zR.  

Any zR $ -1.65 indicates a structure with a p-value $ 0.05 and is therefore more 

stable than expected by chance.  The distribution of zR scores for all candidate PRF 

signals fits a normal distribution with a PPCC % 0.98 and is shown below in Figure 7.  A 

total of 3,228 candidate signals out of 66,842 non-redundant structures include putative 

structures that meet or exceed the criteria for significance, having zR scores in the range 

of 

! 

z
R

= "7.10,"1.65[ ] .  These significant structures are distributed among 2,025 ORFs.  



 

 32 

 

A total of 1,203 individual slippery sites in 751 ORFs are found to have more than one 

significant structure immediately downstream.  Each of these statistically significant 

structures and the associated 5’ slippery sites are considered candidate -1 PRF signals 

(cPRF) open for further investigation.  

An interesting finding from this analysis is that statistically significant motif hits 

do not necessarily have low MFE values; a result that was previously shown to be true for 

structural RNAs in general (Le et al., 1989; Schultes et al., 1999; Seffens and Digby, 

1999).  We therefore sought to filter the list of putative -1 PRF signals further by 

comparing zR scores and MFE values, which are shown to be only weakly correlated in 

Table 2 below with a correlation coefficient of 0.53. Comparing these two features is 

similar to an approach previously employed (Le et al., 2001).  In Figure 8 below, 

energetically strong candidates with statistically significant predicted secondary 

structures are in the lower-left quadrant.  From this analysis, 1,706 strong candidate 

signals were identified with significant zR $ -1.65 and whose MFE values are in the 

lowest 25% (MFE $ 17.3 kcal/mol).  These strong candidate signals are distributed 

among 1,275 individual ORFs, where 320 ORFs have two or more strong signals. 

Nearly all PRFs result in termination 

Analysis of the cPRF signals from the perspective of alternative recoding, shown 

in Figure 9 below, reveals that greater than 99% of the expected outcomes of -1 PRF 

would result in premature termination.  The prevalence of out-of-frame termination 

signals is not unexpected.  The average distance a ribosome can continue elongating in an 

alternative reading frame is ~6 codons in either the +1 or -1 frame for all CDS in yeast, as 
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shown in Figure 10.  Only 10 -1 PRF signals out of 10,340 potential slippery sites shown 

in Figure 9 are predicted to bypass the normal zero-frame termination codon, i.e. -1 PRF 

in the viral context, and encode an alternative C-terminal extension.  However, BLAST 

analyses (Altschul et al., 1990) revealed that none of these extensions are predicted to 

encode functional alternative protein domains
14

.  This suggests that although potential -1 

PRF signals are widespread in the yeast genome, they are almost uniformly predicted to 

direct ribosomes to a premature termination signals.  Thus, these signals would be 

expected to target their native transcripts to the nonsense-mediated mRNA decay 

pathway (Plant et al., 2004). 

Computational Identification of a Novel Viral -1 PRF Signal 

As detailed in Chapter 1, programmed -1 ribosomal  frameshift signals typically 

have a tripartite organization.  From 5# to 3#, these are composed of a heptameric slippery 

site,  a spacer region, and a stable mRNA secondary structure, typically an mRNA 

pseudoknot. The structural arrangement of these features is shown in Figure 2 on page 

15.  A previous analysis of the SARS-CoV -1 PRF signal demonstrated that a sequence 

spanning nucleotide positions 13392 - 13472 satisfied these three requirements and was 

able to promote efficient -1 PRF in rabbit reticulocyte lysates (Thiel et al., 2003). The -1 

PRF signal presented in that study contained a typical mRNA pseudoknot composed of 

two double-helical, Watson–Crick base paired stems connected by two single-stranded 

loops, shown in Figure 11A below. 

                                                
14

 Data not shown. 
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The presence of a long, 29-nt loop 2 seemed to be unusual, prompting additional 

computational analyses in an effort to further define the structure of this mRNA 

pseudoknot. The nucleotide sequence suspected of featuring a -1 PRF signal between 

ORF1a and ORF1b was scanned by RNAMotif (Macke et al., 2001), using the same 

pattern-based description of -1 PRF signals  detailed above in the Materials & Methods. 

As expected, a so-called slippery site “U UUA AAC” and a large H-type pseudoknot 

were identified; the two primary stimulating elements required for efficient ribosomal 

slippage. This analysis was subsequently coupled with pknots (Rivas and Eddy, 1999) as 

described above  and the most thermodynamically stable structure was predicted for each 

RNAMotif hit found 3’ of the identified slippery site. The predicted structure for the 

SARS-CoV frameshift signal was extremely stable, with a calculated MFE of !26.68 

kcal/mol. The surprising result was that the 29-nt sequence designated loop 2 by Thiel et 

al. (2003) was predicted to form a third helix, nested within the sequences defined by 

stems 1 and 2, as shown in Figure 11B. Though a small, internally nested third helix 

(helix-3) has been shown to be present in the HIV-1 group O frameshift signal(Baril et 

al., 2003), such an extensive base pairing pattern had not been demonstrated for any other 

viral frameshift signal. To determine the statistical significance of this finding, a 

distribution of MFE values taken from 500 randomly shuffled SARS-CoV frameshift 

signals was created. Each of the randomly shuffled sequences was folded using pknots, as 

described above. The resulting normal distribution had a mean MFE of -21.12  ± 2.67 
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kcal/mol, revealing that the predicted three-stemmed pseudoknot structure of the native 

sequence is highly significant
15

 with a zR score of -2.05 and p = 0.02. 

Conservation of mRNA Pseudoknots in Coronaviruses 

To address the question of whether the potential to form a three-stemmed mRNA 

pseudoknot is unique to the SARS-CoV, structures were searched in all of the known 

viral -1 PRF signals listed in the RECODE 2003 database (Baranov et al., 2003), as well 

as the putative frameshift signals in all of the sequenced members of the Order 

Nidovirales
16

. The SARS-CoV frameshift signal itself is homologous to all of the nine 

other frameshift signals for coronaviruses whose genomes have been fully sequenced. A 

multiple sequence alignment of the ten coronavirus frameshift signals is presented in 

Figure 12. This shows that both stems 1 and 2 are highly conserved, with a strong 

conservation of base complementation in the cores of both stems 1 and 2; blue and red 

sequences respectively. This analysis also shows all of the coronavirus frameshift signals 

have the potential to form a third helix, although the structures and sequences are less 

well conserved, as shown in Figure 12 in green. In addition, the potential of sequences 

located approximately 200 nt downstream of the slippery site to form long-range “kissing 

loop” interactions with the 5# half of stem 2 was previously noted for HCoV-229E 

(Herold and Siddell, 1993) and TEGV (Eleouet et al., 1995) viruses. The alignment in 

Figure 12 suggests this property was only conserved among the group 2 coronaviruses. A 

                                                
15

 p value calculated using a one-tailed Student’s t-test Devore J.L. (2000). 

16
 This Order includes both coronaviruses and arteriviruses. 
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phylogenetic tree of the -1 PRF signals constructed from the multiple sequence alignment 

is presented in Figure 13. As expected, the group 1 and group 2 coronaviruses cluster 

together, and neither the SARS-CoV nor the avian infectious bronchitis virus (AIBV) 

frameshift signals cluster with either group. Of particular interest, however, is that very 

similar mRNA pseudoknot structures are predicted to occur within groups, but not 

between them. 

The PRFdb 

The PRFdb (http://dinmanlab.umd.edu/prfdb) is a publicly available database that 

stores the results of the bioinformatics data presented.  This online resource allows 

interested researchers to search for and analyze candidate -1 PRF signals in the genome 

of S. cerevisiae.  The PRFdb also contains a list of strong candidate -1 PRF signals that 

may warrant further empirical investigations. 

Discussion 

Programmed ribosomal frameshifting was first identified as a translational 

phenomenon in the Rous sarcoma virus over two decades ago (Jacks and Varmus, 1985).  

Since then, it has been shown to be a general mechanism of gene regulation utilized by a 

wide variety of RNA viruses (Baranov et al., 2002; Cobucci-Ponzano et al., 2005; Harger 

et al., 2002; Namy et al., 2004).  Frameshifting has also been demonstrated to be 

functionally important for the expression of a growing list of prokaryotic (Blinkowa and 

Walker, 1990; Sekine and Ohtsubo, 1989; Tsuchihashi and Kornberg, 1990), 

archaeal(Cobucci-Ponzano et al., 2003), and eukaryotic genes (Shigemoto et al., 2001; 
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Wills et al., 2006).  Thus, it is becoming increasingly apparent that PRF is a fundamental 

mechanism of post-transcriptional gene regulation and is present in every branch of the 

tree of life.  The need to identify PRF signals in higher organisms has grown in 

importance as we have become more aware of their prevalence.  In response, there have 

been numerous computational studies aimed at identifying PRF signals (Bekaert et al., 

2003; Gao et al., 2003; Gurvich et al., 2003; Hammell et al., 1999; Harrison et al., 2002; 

Moon et al., 2004; Namy et al., 2003; Shah et al., 2002).  Furthermore, at least one study 

has aimed to find PRF signals present in chromosomal intergenic regions (Bekaert et al., 

2005).  Each study has met with varying degrees of success, but empirical testing of 

predicted PRF signals suggest that there are indeed functional, and previously 

unannotated, PRF signals in a variety of contexts within the coding regions of genes 

derived from higher organisms.  With the exception of the earliest study by Hammell et 

al., all of these studies have focused on recoding in the “viral-context”: i.e. they were 

aimed towards finding PRF signals predicted to direct ribosomes into a new reading 

frame so as to produce functional alternative C-terminal extensions of the native proteins.  

The study by Hammell et al., was context neutral, focusing instead on searching for 

mRNA motifs that resembled known viral -1 PRF signals.  While the current study 

revisits the original question posed by Hammell et al. (i.e. how often are functional -1 

PRF signals present in the yeast genome?), it also asks an important second question: are 

genome encoded -1 PRF signals capable of promoting -1 PRF, and if so, how does this 

affect the expression of the mRNAs encoding them?  
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The outcome independent approach taken in this study searched for -1 PRF 

signals irrespective of the expected result of translation after the frameshift.  A model for 

functional -1 PRF signals was developed from analysis of the RECODE database, and 

RNAMotif was employed to find all relevant motif hits in the yeast genome.  A virtual 

avalanche of results was returned by the initial RNAMotif search, unveiling over 170,000 

successful matches in the yeast genome.  The resulting pattern matches were then each 

folded using pknots, a secondary structure prediction algorithm that “folds” RNA 

sequences so as to minimize the overall free energy value of each sequence.  This 

software has the distinct advantage of being able to fold RNA sequences into pseudoknot 

conformations, a feature that is missing from the more popular mfold algorithm.  This 

added benefit, which was essential for this study, comes with a significant penalty in 

terms of time and computational resources.  Fortunately, pknots was run on a large super-

computing cluster that allowed it to complete its calculations for every motif hit 

identified by RNAMotif in less than 6 months.  While more time efficient heuristic 

algorithms have become more recently developed (Dirks and Pierce, 2004), pknots was 

the only algorithm capable of such computations available at the start of this project. 

Once pknots had completed folding every motif hit, the dataset was reduced to 

approximately one-third of its original size by the automated removal and reduction of 

redundant structures occupying the same sequence space.  This “boiling down” of the 

data resulted in a non-redundant dataset of some 66,842 structures located downstream 

(3’) from 10,340 slippery sites.  The “strongest” structure with the lowest MFE value 

immediately downstream of each of the slippery sites were dubbed “candidate -1 PRF 
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signals”, cPRF, and were marked for further study.  With over ten thousand candidate 

signals to consider for empirical testing, a second layer of predictive metrics was applied 

to aid in further filtering the dataset.  Each of the candidate -1 PRF signals were 

randomly permutated and refolded 100 times to produce a distribution of randomized 

MFE values specific for each native sequence.  The MFE value from each folded native 

sequence was compared each distribution to assess the significance, or uniqueness, of 

each fold and assigned a zR score.  The combination of MFE value and zR score, coupled 

with the additional feature statistics from folding each structure permitted further 

reduction of the dataset to a smaller list of 1,706 strong candidate -1 PRF signals 

distributed among 1,275 ORFs. 

As a proof of principle, these techniques were applied to identify the specific 

location and nature of the -1 PRF signal present between ORF1a and ORF1b in the 

recently sequenced SARS Coronavirus genome (Marra et al., 2003).  Surprisingly, not 

only was the approach presented in this Chapter able to correctly identify the SARS-CoV 

-1 PRF signal, but it predicted a completely new structure unlike any previously 

characterized. Furthermore, these computational predictions were later validated and the 

novel three-stemmed pseudoknot structure was confirmed by nuclease mapping and 2D 

nuclear magnetic resonance studies (Plant et al., 2005). In short, this venture into 

studying the SARS-CoV frameshift signal demonstrated that the techniques presented in 

this Chapter were robust enough  to legitimize empirical investigation of computationally 

identified -1 PRF signals in the yeast genome. 
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As a final note, the PRFdb was constructed to serve as a repository for all the 

predicted structures, slippery sites and statistical data gathered from analysis of the yeast 

genome.  A website and interactive database designed to supplement this Chapter is 

accessible via the Internet, http://dinmanlab.umd.edu/prfdb.  Currently, visitors are 

limited to searching for putative -1 PRF signals in the yeast genome only, or to download 

a batch text-file of candidate PRF signals.  It is expected, however, that under the 

supervision of Dr. Jonathan Dinman, the methodology presented in this chapter will 

continue to evolve over time and that the scope will be expanded to include additional 

genomes including: seven additional budding yeast species, the human genome, and 

several other “model system” genomes. 
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Chapter 2 Tables 

 Match Count stdev p-value 

S. cerevisiae 6,016 - - 

noBias 3,044 64.07 < 0.01 

nShuffle 4,567 70.84 < 0.01 

nBias 4,660 65.89 < 0.01 

cShuffle 6,551 85.13 0.02 

sBias 6,580 82.13 0.02 

cBias 6,639 86.52 0.02 

dnBias 6,774 88.16 0.01 

Table 1: The Number of -1 PRF Motifs in Yeast is Not Random 

The yeast genome has a significant number of putative programmed -1 ribosomal 

frameshift signals compared to randomized genomes created using any one of seven 

different randomization strategies when searched using RNAMotif with a defined 

descriptor of functional -1 PRF signals (Macke et al., 2001). The 6,016 matches for the S. 

cerevisiae genome represent the number of slippery sites that are followed by at least one 

pseudoknot motif.  The p-value for each method is the result of a two-sample Student’s t-

test (Devore, 2000).  The description of each randomization strategy can be found in the 

Materials & Methods section of Chapter 2 on page 22. 
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 Correlation 

 zR MFE Length 

Pairs -0.32 -0.81 0.86 

Length -0.21 -0.73  

MFE 0.53   

Table 2: Correlation Coefficients of Secondary Structure Feature Statistics 

Correlation of statistical features for the most stable (lowest MFE) predicted structures 

immediately 3’ of the 10,340 individual slippery sites identified in the yeast CDS.  zR, 

predicted secondary structure significance of each native RNA sequence as compared to 

100 shuffled permutations; MFE, minimum free energy value; Length, the total number 

of nucleotides folded by pknots (Rivas and Eddy, 1999) corresponding to the sequence 

window initially identified by RNAMotif (Macke et al., 2001); Pairs, the total number of 

AT, GC, or GU base pairs present in each predicted secondary structure. 
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 mean stdev [min, max] 

Pairs 19.0 6.0 [1, 35] 

Length 73.1 16.3 [14, 92] 

MFE -13.6 5.4 [-34.1, 1.5] 

zR -1.2 1.3 [-7.1, 75.5] 

Table 3: Descriptive Statistics for Predicted Structure Features 

The mean, standard deviation, minimum and maximum values for features gathered from 

analysis of 10,340 of the most stable secondary structures found immediately 3’ of each 

slippery site. 
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Chapter 2 Figures 

 

Figure 5: The Distribution of MFE Values 

The distribution of minimum free energy values (MFE, in kcal/mol) for the lowest 

energy secondary structure predictions found immediately 3’ of each slippery site in 

the PRFdb closely fits a normal distribution (dotted line) with a PPCC % 0.98. 

Structures with pseudoknotted base pairing positions are shown in black. 
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Figure 6: The Distribution of Base-Pair Counts 

The number of base pairs for the most stable 3’ predicted structures fits an extreme value 

distribution (dotted line) with a PPCC % 0.97.  Structures with pseudoknotted base 

pairing positions are shown in black. 
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Figure 7: The Distribution of zR Scores 

zR for all the strongest structures found immediately 3’ of each slippery site in the PRFdb 

fits a normal distribution (dotted line). 
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Figure 8: Scatterplot of MFE vs. zR Score 

Scatter plot of MFE values vs. zR scores for 10,340 candidate -1 PRF signals 

demonstrates the weak correlation between these two feature statistics.  The red 

diamonds and associated labels indicate the location and parental gene names of nine 

sequences empirically tested for frameshifting. 
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Figure 9: Frameshifting Outcomes Result in Premature Termination 

The CDS of S. cerevisiae is not prone to lengthy out-of-frame translation.  The 

relative positions of candidate -1 PRF signals from the start codon of each ORF 

compared to the expected overall change in peptide length if a frameshifting event 

were to occur.  These data indicate that there are no examples in the PRFdb of 

frameshifting into a functional alternative protein coding sequence. 
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Figure 10: Frequency of Lengths for Translatable Out-of-Frame Codons 

Frequency of lengths for out-of-frame translation for the CDS of S. cerevisiae.  

Independent of specific sites of translational frameshifting, the number of out of frame 

codons a ribosome can translate rarely exceeds ten. 
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Figure 11: Different Representations of the SARS-CoV Frameshift Signal 

Alternative views of the SARS-CoV -1 PRF secondary structure. This caption and the 

figure above have been adapted from Plant et al. (2005). (A) Two-stemmed H-type 

mRNA pseudoknot proposed by Thiel et al. (2003). (B) Three-stemmed mRNA 

pseudoknot structure investigated in this study.  
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Figure 12: Multiple Sequence Alignment of Coronavirus !1 PRF Signals 

Adapted from Plant et al. (2005). AIBV, avian infectious bronchitis virus; BCoV, bovine 

coronavirus; HCoV-229E, human coronavirus 229E; HCoV-HKU1; HCoV-NL63, 

human coronavirus NL63; HCoV-OC43, human coronavirus OC43; MHV, murine 

hepatitis virus; PEDV, porcine epidemic diarrhea virus; SARS, SARS coronavirus; TGV, 

transmissible gastroenteritis virus. Slippery sites are indicated in brown; dashes indicate 

gaps in the alignments; base pairing positions involved in the consensus first, second, and 

third helices are denoted by blue, red, and green nucleotides, respectively  
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Figure 13: Phylogenetic Tree of Coronavirus !1 PRF Signals 

Unrooted tree constructed based on the multiple sequence alignment from Figure 12. This 

caption and the figure above have been adapted from Plant et al. (2005). 
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Chapter 3: The Statistics of Bicistronic Assay Systems 

 

 

Introduction 

In the last decade, polycistronic reporter assays have generally become a mainstay 

in molecular biology. In particular, various bicistronic systems have been widely adopted 

as standard experimental techniques in the fields of translation initiation (Coleman et al., 

2003; Imbert et al., 2003; Venkatesan et al., 2003), elongation (Meskauskas et al., 2003; 

Novac et al., 2004), recoding (Grentzmann et al., 1998; Harger and Dinman, 2003; 

Horsburgh et al., 1996; Kollmus et al., 1996a), and termination (Keeling et al., 2004). 

The ratiometric nature of the data produced from these experiments requires careful 

statistical treatment that is often lacking in the literature. The goal of the work presented 

in this Chapter was to propose a standardized statistical analysis pipeline for polycistronic 

reporter data and to provide researchers with a solid foundation on which to build their 

analyses. 

Towards this end, we applied rigorous statistical methods to datasets originating 

from several sets of dual luciferase assays designed to measure the efficiency of -1 PRF 

signals in Saccharomyces cerevisiae. A -1 PRF signal is a cis-acting mRNA element that 

redirects translating ribosomes into a new reading frame after encountering a so-called 
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“slippery site”
17

. The efficiency of frameshifting depends on the PRF signal in question, 

typically between 1 - 10%, and can be measured in vivo using a dual luciferase reporter 

(DLR) assay system (Harger and Dinman, 2003). 

Briefly, the dual luciferase assay (DLA) simultaneously measures the 

luminescence (e.g. expression) of both the Renilla and firefly luciferase enzymes 

synthesized from a single bicistronic mRNA. In an experimental frameshift reporter 

construct, the two genes are separated by a functional -1 PRF signal and the downstream 

firefly gene is placed into the -1 frame relative to the upstream Renilla gene. The relative 

expression of firefly to Renilla is normalized by a zero-frame control plasmid that lacks 

frameshift signal and has firefly in the zero frame. The resulting ratiometric data from our 

DLA is inherently sensitive to the propagation of error and therefore requires a careful 

statistical workup. The data are similar to the ratiometric data produced by other 

bicistronic assay systems despite the dissimilarity between the actual protocols producing 

it. This allows the methods presented in this report to be applied and extended to any 

polycistronic system that produces ratiometric data. Our analysis pipeline is designed to: 

1. systematically identify and eliminate erroneous outliers; 

2. confirm that the data is normally distributed; 

3. establish the minimum number of replicates for each data set; 

4. minimize the propagation of error when calculating ratiometric statistics; and 

5. provide a solid statistical foundation for comparing datasets from different 

experiments. 

                                                
17

 For reviews, see Harger et al. (2002) and Plant et al. (2003). 
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We have supplemented this study with a set of Microsoft Excel spreadsheets that 

automate the analysis and an online tutorial to help guide the reader through the analysis 

pipeline (http://dinmanlab.umd.edu/statistics). It is our hope that the methods presented in 

here will be adopted by researchers who utilize bicistronic reporters. 

Materials & Methods 

Genetic methods and plasmid construction 

Escherichia coli strain DH5" was used to amplify plasmids, and E. coli 

transformations were performed using the high efficiency method(Inoue et al., 1990). 

YPAD and synthetic complete medium (H-) were used as described previously (Dinman 

and Wickner, 1994). Yeast strain JD932 (MATa ade2-1 trp1-1 ura3-1 leu2-3,112 his3-

11,15 can1-100) (Peltz et al., 1999) was used for in vivo measurement of programmed -1 

ribosomal frameshifting. Yeast cells were transformed using the alkali cation method (Ito 

et al., 1983). The dual luciferase reporter plasmid pJD375 was used as a zero-frame 

control as it does not contain a functional frameshift signal. The plasmid pJD376 was 

used as a positive control frameshifting and contains the -1 PRF signal from the 

endogenous yeast L-A virus (Harger and Dinman, 2003). Putative frameshift signals from 

Saccharomyces cerevisiae genes BUB3 and TBF1 were cloned into the multiple-cloning 

site (MCS) of pJD375. The construction of these two new plasmids, pJD519 and pJD478, 

was done using the following strategy. Each pair of forward and reverse oligonucleotides 

shown in Table 9 on page 132 were combined in 1:1 molar ratios, heated to 95ºC, and 

allowed cool to room temperature. The annealed doubled stranded DNA duplexes were 
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subsequently purified on 2% agarose by gel extraction
18

. Annealing the forward and 

reverse oligonucleotides left overhanging single stranded DNA complementary to SalI 

and BamHI restriction sites
19

. The resulting double stranded DNA was ligated into p2mci 

(Grentzmann et al., 1998), thus creating pJD519 and pJD478. The frameshift signal was 

sub-cloned as a SalI-EcoRI fragment into similarly digested pJD375. The ORF 1a-1b 

frameshift signal from the SARS-associated Coronavirus was also cloned; 

oligonucleotides were annealed, gel purified and cloned into BamHI and SacI restricted 

p2mc (Grentzmann et al., 1998). This was further subcloned into a pJD375-based 

plasmid where the reading frame was corrected using site directed mutagenesis
20

 to add a 

cytosine downstream of the BamHI restriction site to produce plasmid pSARS. In vivo 

dual luciferase assays for programmed -1 ribosomal frameshifting were performed as 

previously described in yeast strain JD1158 (Harger and Dinman, 2003), detailed in 

Table 7 on page 129. Luminescence readings were obtained using a TD20/20 

luminometer
21

. Reactions were carried out using the Dual-Luciferase
®
 Reporter Assay 

                                                
18

 Gel extraction and purification of duplex DNA was done using the QIAEX II Gel Extraction Kit from 

Qiagen Inc., Valencia, CA. 

19
 All DNA restriction digests were carried out using enzymes and standard protocols from Fermentas Inc., 

Hanover, MD. unless otherwise noted.  

20
 The QuikChange® II XL Site-Directed Mutagenesis Kit from Stratagene Inc. (La Jolla, CA.) was used 

with a standard protocol. 

21
 Turner Designs Inc. Sunnyvale, CA. 
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System
22

. Yeast cells were grown in the absence or presence of 20 &g/ml of anisomycin
23

 

in the appropriate media. 

Calculation of Luminescence Ratios 

The relative expression ratio of firefly luminescence (FRLU) to Renilla 

luminescence (RRLU) for the dual-luciferase reporter assay system is given by: 

 

! 

x
i
=
F
RLU

R
RLU  [ 2 ] 

where each xi is the ratio obtained from an individual luminometer reading.  For each of 

the frameshift reporters studied in this chapter, the values of x1 - xn comprise pooled 

datasets of size n.  The statistics of this report are based on sets of ratiometric 

luminescence values (x1-xn) taken from multiple experiments and cell lysates. 

Identification & Exclusion of Outliers 

For outlier exclusion we first determine the boundaries of each of the four 

quartiles within each DLR dataset: the maximum (Qmax), the 75th percentile (Q75), the 

median (

! 

˜ x ), the 25th percentile (Q25), and the minimum values (Qmin) for each dataset of 

x1- xn is shown in Table 4. The fourth spread (fs) is calculated by  

 

! 

fs =Q
75
"Q

25 [ 3 ] 

The standard upper and lower outlier boundaries are then calculated by 

                                                
22

 Promega Corporation, Madison, WI. 

23
 Anisomycin was obtained from Sigma-Aldrich, St. Louis, MO. 
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! 

OU = ˜ x + (1.5 " fs)  [ 4 ] 

 

! 

OL = ˜ x " (1.5 # fs)  [ 5 ] 

Data points that lie above or below these boundaries are considered outliers. For 

example, the solid data points in Figures 8 – 12 below are considered outliers that are 

excluded from further analysis (Devore, 2000).  

Descriptive Statistics 

We use standardized statistical expressions for the calculation of sample mean 

(

! 

x ), sample median (

! 

˜ x ), sample variance (

! 

s
N"1

2 ), sample standard deviation (

! 

s
N"1

), and 

the standard error of the sample mean (

! 

s
e
) from each single variable dataset of size n 

(Devore, 2000): 
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Probability Plot Correlation Coefficients 

Probability plots were constructed and the corresponding normal probability plot 

correlation coefficients (PPCC) were determined for each set of DLR data (Chambers, 

1983; Filliben, 1975). Briefly, the ratiometric values of firefly to Renilla luminescence (xi 

- xn, Eq. [2] above) are rank-ordered within each dataset and each ratio is assigned a 

standard normal observed, zObs, according to the following expression: 

 

! 

z
Obs

=
x

i
" x 

s
N"1  [ 11 ] 

In addition, the expected z-score, zExp, for each value of xi is calculated from the inverse 

standard normal distribution function for a given percentile rank
24

 of xi. The paired data, 

xi and zExp,  is then plotted on a graph. Linear least squares regression is used to plot a 

linear trend line fitted onto the data (Devore, 2000). The trend line’s derived formula 

provides an expected ratio value (yi) for each observed value (xi) for a given value of zExp. 

                                                
24

 The expected z-score for each data point is simply a measure of the standard deviation from the mean the 

i
th

 value has for any distribution of values that are rank-ordered, smallest to largest, with respect to one 

another. For example, if there were 100 values in a dataset that was perfectly normally distributed (PPCC = 

1.0), then, after rank-ordering the dataset, the 50
th

 value would have a z-score of -0.01, the 51
st
 value a z-

score of +0.01.  Furthermore, the smallest and largest values in this dataset would have a z-scores of -2.33 

or +2.33 respectively. Thus, by comparing the observed data to a hypothetical dataset of expected values it 

then becomes possible to observe the degree of correlation between the two. The correlation coefficient, 

PPCC, represents how well the observed data fits a idealized normal distribution with the same mean and 

standard deviation. 
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The correlation between the observed and expected values is given by the probability plot 

correlation coefficient, or PPCC: 

 

! 

PPCC(X,Y ) =

xi " x ( ) yi " y ( )
i=1

n

#

xi " x ( )
2

i=1

n

# yi " y ( )
2

i=1

n

#
 [ 12 ] 

Where X and Y are the paired sets of expected and observed luciferase ratios, 

! 

x  and 

! 

y  

are sample means, and a PPCC = 1.0 would indicate a perfect correlation between X and 

Y; i.e. a perfect normally distributed dataset. Another method for calculating the same 

PPCC value uses the correlation of paired values of zObs and zExp directly without the 

need for constructing a probability plot
25

. The PPCC is compared to a lookup table of 

critical values for a specified significance level
26

 and sample size (n) in order to accept or 

reject the hypothesis that the data is normally distributed (Filliben, 1975). The PPCC 

critical values for rejection are shown in Table 13, Appendix E: PPCC Critical Values. 

Minimum Sample Size 

For a given confidence level (e.g. ! = 0.05) and predetermined limit on the 

numerical error, the minimum uncorrected sample size for a given dataset is calculated as 

follows (Devore, 2000): 

                                                
25

 A tutorial of how to use an alternative, non-graphical method for PPCC calculation is available on the 

Internet at http://dinmanlab.umd.edu/statistics.   

26
 For this study, a 5% significance level was set a priori. 



 

 61 

 

 

! 

˜ N = 2z" / 2
#

s
N$1

E

% 

& 
' 

( 

) 
* 

2+ 

, 
, 

- 

. 

. 

 [ 13 ] 

where 

! 

˜ N  is the minimum uncorrected sample size, z"/2 is the standard normal coefficient 

for a given value of "/2, 

! 

s
N"1

 is the sample standard deviation, and E is the amount of 

acceptable error in estimating the mean, usually 10% of

! 

x ). It was previously shown that 

the use of expression [13] for minimum sample size estimation substantially 

underestimates the number of trials needed for a given confidence interval (Kupper and 

Hafner, 1989). However, once 

! 

˜ N  is calculated, the minimum corrected sample size (N*) 

can be found by consulting Table 14 in Appendix F: Minimum Corrected Sample Size. 

Each dataset must have no fewer than N* replicates in order for further analysis to be 

well substantiated. 

Ratiometric Statistics 

The relative expression (

! 

x 
R
) of each experimental reporter and its corresponding 

control is: 

 

! 

x 
R

=
x 

E

x 
C   [ 14 ] 

where in the case of dual luciferase assays 

! 

x 
E
 and 

! 

x 
C
 are the sample mean firefly to 

Renilla luminescence ratios for experimental and control reporters respectively. The 

estimated sample variance (

! 

s
R

2 ) for 

! 

x 
R
 is given by (Kendall et al., 1994): 

 

! 

s
R

2 =
s

E

2

x 
C( )

2
+

x 
E( )

2

s
C

2

x 
C( )

4

 [ 15 ] 



 

 62 

 

where 

! 

x 
E
 and 

! 

x 
C
 are the sample means from expression [6] above and the sample 

variances 

! 

s
E

2  and 

! 

s
C

2  are from expression [8]. Expression [15] makes the assumption that 

! 

x 
C
" 0  and the sample variances (

! 

s
E

2  and 

! 

s
C

2 ) do not overlap zero (Kendall et al., 1994). 

Researchers should take care to make sure these are valid for each dataset. From 

expression [15], it follows that the sample standard deviation (sR) of 

! 

x 
R
 is (Fersht, 1999): 
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s
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s
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Finally, the standard error se(

! 

x 
R
) of 

! 

x 
R
 is calculated using the following expression, 

which correctly accounts for the propagation of error for independent samples of different 

sizes (Koopman, 2004): 

 

! 

s
e

x
R( ) = x 

R
"

s
E

2

N
E

x 
E( )

2
+

s
C

2

N
C

x 
C( )

2

 [ 17 ] 

The number of replicates from each DLA dataset is specified by NE and NC for the 

experimental and control datasets respectively.  

Comparing Datasets 

We are often interested in finding the statistical significance of two differing 

experimental conditions, a and b. For bicistronic reporter assay data, it is appropriate to 

use an unpaired two-sample t-test since it is designed for small, continuous datasets 

(Devore, 2000). For example, when comparing experiments a and b, the degrees of 

freedom for the t-test, va,b , can be estimated, even if the number of replicates differs 

between the two datasets, using Expression 18: 
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The t statistic is then calculated by  

 

! 

t
a,b

=
x 

Ra

" x 
Rb

s
Ra

2

n
a

+
s

Rb

2

n
b  [ 19 ] 

The values of 

! 

s
R
a

2 and 

! 

s
Rb

2  are the estimated sample variances from Expression [15] for 

each ratio 

! 

x 
R

a

 and 

! 

x 
R

b

. The sample sizes na and nb correspond to the sample sizes of each 

dataset for the experimental frameshift reporters under each experimental condition a and 

b. Once the t statistic is computed, it can then be compared to a table of critical values, 

such as those found in (Devore, 2000), to either accept or reject each hypothesis.  

Results 

Data Visualization 

The first step for data post-processing is to visualize the raw data. At the very 

minimum, good visualization techniques provide a qualitative understanding of the data’s 

robustness before any descriptive or inferential statistics have been calculated. Here, the 

quality and linearity of the data can be ascertained immediately by plotting the relative 

luminescence units, Renilla RLU vs. firefly RLU, from each trial for a set of identical 

experiments such as those found in Figure 14 - Figure 17 below. The linear relationship 
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between Renilla and firefly expression in the context of the dual luciferase assay system 

has been well characterized and can be used as a first-hand measure of data quality 

(Harger and Dinman, 2003; Sherf et al., 1996). For example, the linearity of the assay can 

be clearly seen in the datasets from the “zero-frame” control (ZFC) pJD375 and in the L-

A frameshift pJD376 reporters, despite the large differences in scale. Three outliers are 

also immediately and visually identifiable in the pJD519 frameshift reporter data shown 

in Figure 16. Furthermore, the pJD478 frameshift reporter data in Figure 17 demonstrates 

an unexpected scattering of the data.  

Identification & Exclusion of Outliers 

While some outliers occasionally can be identified at the visualization step, it is 

usually preferred to use a statistical based method to quantitatively rule them out. This is 

useful because standardized methods eliminate human bias across data sets, and they 

make no assumptions about the underlying distribution of the data. In our analysis, we 

use expressions [3], [4], and [5] above to exclude data beyond the bounds of the standard 

outlier boundaries OU and OL. Outliers identified using this method can be seen as solid 

data points in Figure 14 – 12. The resulting data is hereafter considered “trimmed” from a 

statistical point of view. This provides a simple and consistent method to identify outliers 

and, when applied uniformly, some data points can be identified as outliers that may have 

not been previously obvious from simple visual inspection, e.g. so called “hidden 

outliers”, as is the case in Figure 14 below. 
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Descriptive Statistics 

We employ standardized expressions for the usual descriptive statistics on each 

data set. This includes determining the sample mean (

! 

x ), sample median (

! 

˜ x ), sample 

variance (

! 

s
N"1

2 ), sample standard deviation (sN-1), and the standard error of the sample 

mean (se) for samples of size n (Devore, 2000). Each of these statistics are presented in 

Table 4 on page 77 for the data relative to this chapter. 

Probability Plots 

After outliers have been excluded, the next step is to determine if the data is 

normally distributed. This is an essential step because all of the subsequent statistical 

measures depend on the assumption that the data comes from a normal distribution. A #2
 

goodness-of-fit test for normality to either reject or accept this hypothesis is often used 

for this calculation (Croarkin and Tobias, 2004). However, this is not an appropriate test 

for bicistronic data because: 

1. there are typically too few data points for the #2
 to be valid; and 

2. whereas a #2
 test is generally only appropriate for discrete data, bicistronic data is 

continuous. 

A simple solution is to construct a histogram of the ratiometric data and visually inspect 

each set’s distribution. While histograms provide a qualitative view of the data and a 

visual estimate for the goodness-of-fit of the data to a normal distribution, they do not 

provide a quantitative means for excluding, i.e. rejecting, any particular dataset.  



 

 66 

 

For a more rigorous approach, a normal probability plot is created for each dataset 

and a normal probability plot correlation coefficient (PPCC) is determined (Chambers, 

1983; Filliben, 1975). This coefficient allows for the formal rejection or acceptance of the 

hypothesis that a potentially small, continuous dataset is normally distributed by 

comparing the value of the PPCC to a table of critical values. A sufficiently high 

coefficient indicates that the data is normally distributed. Using this approach, the data 

collected from experiments done with plasmids pJD375, pJD376, and pJD519 is 

acceptable because each dataset has a PPCC that passes the critical value in Table 4. In 

contrast, the data from pJD478 is rejected because its PPCC value does not meet or 

exceed the critical value. Rejection can occur for many reasons, including poor-data 

collection, corrupted experimental conditions, or insufficient sample size. The probability 

plots for each of these datasets is shown in Figure 18 – 21. The strong “heavy tail” of 

Figure 21 is a clear indicator that the data are not normally distributed as it does not align 

with its expected values. 

Minimum Sample Size 

Experiments in molecular biology are often limited to three replicate trials due to 

limitations in time, financial resources or experimental complexity. Nonetheless, 

triplicate experiments do not typically satisfy the requirements of proper statistical 

analysis. Thus, the question remains as to how many replicate experiments should be 

done. Expression [12] is commonly used to answer this question (Devore, 2000), but 

Kupper and Hafner (20) previously showed that the use of this expression for sample size 

estimation greatly underestimates the number of trials needed for a desired confidence 
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interval, further exacerbating the problem. The corrected minimum sample size (N*) can 

be found by consulting Table 14 in Appendix F: Minimum Corrected Sample Size, which 

assumes 

1) the data are normally distributed; 

2) a desired confidence level has been determined a priori; and 

3) the amount of experimental error was decided a priori. 

Generally, the acceptable amount of error for the estimate of the mean is 5% – 10% of its 

true value. For example, the pJD376 dataset has a sample mean (

! 

x ) and sample standard 

deviation (sN-1) of 0.0263 and 0.0017 respectively. Our goal is to perform enough trials to 

be at least 95% confident that the sample mean is at least within 10% of the true value of 

the mean. Using expression [13], we find that the minimum uncorrected number of trials 

is 

! 

˜ N = 7 . However, using Kupper & Hafner’s method for sample size correction, the 

minimum corrected sample size is N* = 13. With 40 samples, the pJD376 dataset is of 

sufficient size. The values of 

! 

˜ N , N*, and the actual sample size N for each dataset are 

reported in Table 4. 

Ratiometric Statistics 

Once each ratiometric dataset has been trimmed of outliers, passed a test for 

normalcy, and found to be of sufficient size, it is then possible to begin calculating the 

ratiometric efficiency (

! 

x 
R
) of an experimental reporter relative to that of its 

corresponding control reporter (see expression [14]). The reporters we use in our 

laboratory typically measure translational frameshifting: thus, in this case, 

! 

x 
R
 is a 

measure of the frameshift efficiency of the -1 PRF signal present in the experimental 
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DLR reporter constructs pJD376, pJD519, pJD478, pSARS. However, in other 

translational contexts 

! 

x 
R
 could be e.g., the frequency of IRES-promoted initiation, or 

read-through suppression. A serious pitfall associated with 

! 

x 
R
 is the potential for the 

propagation of error in its estimation since it is derived from a ratio of two estimates, 

! 

x 
E
 

and

! 

x 
C
which are each ratios themselves. The correct reporting of the error on this 

measurement and its estimated variance should therefore be treated with care. 

Expressions [15]-[17] take the propagation of error into account and determine best-

estimates for the sample variance 

! 

s
R

2 , sample standard deviation sR, and the standard error 

se(

! 

x 
R
) of the sample mean 

! 

x 
R
. Each Exp. [15]-[17] assumes two, independent and 

normally distributed data sets that are related by the ratio 

! 

x 
R
 and each component dataset 

has potentially unequal sample sizes N. The importance of the estimation of 

! 

s
R

2  in Exp. 

[15] cannot be overstated. This value is of particular importance when determining the 

statistical difference between two experiments; e.g. it is used in the t-test below.  

Comparing Datasets 

The final stage is to determine if two experiments, each with their own respective 

values of 

! 

x 
R
 and 

! 

s
R

2 , are statistically different. The published record of studies utilizing 

various bicistronic reporters shows a wide variety of methods including fold-change, z-

tests, or #2
-tests. For comparisons between datasets, a z-test is appropriate only for larger 

datasets with at least 40 samples each. Datasets for bicistronic reporter systems are 

usually not this large. Furthermore, a #2
-test is inappropriate as it requires both large 

sample sizes and that the data be separated of into discrete categorical values. We instead 
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use the unpaired two-sample t-test, Exp. [18] and  Exp. [19],  since it is more appropriate 

for relatively small continuous datasets (Devore, 2000). The requirements of this test are 

that the data must be normally distributed and independent, which are satisfied by the 

bicistronic assay datasets presented here. The hypothesis tested against states that two 

datasets (X & Y) come from the same population. A rejected hypothesis therefore affirms 

that the two datasets are indeed statistically different at some predefined confidence level. 

In the context of the experiments presented here, a 95% confidence level was used. The 

p-value obtained from this test is an estimation of the probability of an incorrect 

conclusion (Devore, 2000). 

Two Working Examples 

Our first set of frameshift reporters comprises pJD376, pJD519, and pJF478, each 

of which was compared to the zero-frame control reporter pJD375 to measure the 

efficiency of programmed -1 frameshifting attributable to each frameshift signal. Each of 

these experimental reporters contains a -1 PRF signal that was either previously 

characterized (Dinman et al., 1991) or that was computationally identified. Our results 

show that the PRF signals in reporters pJD376 and pJD519 are “well-behaved” in that 

they pass several tests for statistical reliability. The frameshift efficiency of pJD376, the 

L-A virus gag-pol PRF signal, is shown in Table 4 to promote relatively high levels of 

frameshifting (8.0% ± 0.2%). By contrast, the PRF signal in from the BUB3 gene, 

(pJD519) is shown to be less efficient with only 0.70% ± 0.02% frameshifting. 

Furthermore, the efficiency of frameshifting for signal present in pJD478 from the TBF1 

gene was not calculated in Table 4 because the data itself failed two important statistical 
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reliability tests
27

. Without the techniques presented in this report, the recoding efficiency 

of pJD478 may have be erroneously calculated and subsequently reported incorrectly as 

being ~1.86%
28

. This important, and often overlooked, aspect of the reliability testing 

experimental measurements demonstrates the importance of quantitatively determining 

the linearity, minimum sample size, and normalcy of each dataset studied. 

In our second example, we begin with two dual-luciferase reporters: a zero-frame 

control, pJD375, and a frameshift reporter, pSARS, representing the functional SARS-

associated Coronavirus ORF 1a-1b frameshift signal identified in Chapter 2. The 

experiment is designed to study the efficiency of ribosomal frameshifting in the presence 

or absence of the drug anisomycin. This well characterized translational inhibitor is 

known to suppress programmed -1 ribosomal frameshifting in vivo (Dinman et al., 1997). 

The initial dataset of raw luminescence values for each construct (with and without drug) 

was plotted as described in the Materials & Methods and the raw data was found to be 

linear. Outliers were then identified and excluded. Furthermore, each data set passed the 

PPCC test for being normally distributed. The values of 

! 

x 
R
 ± se(

! 

x 
R
), i.e. -1 PRF 

efficiency, are 2.6% ± 0.2% in the presence of 20 &g/mL anisomycin and 3.3% ± 0.5% in 

                                                
27

 Subsequently, pJD478 was reampliflied from freshly transformed E. coli and 10 individual clones were 

resequenced by Macrogen Inc..  Furthermore, resequencing of the pJD478 plasmid sample used for the 

yeast transformants in this chapter showed degenerate sequence present in the -1 PRF sequence region, 

most likely as a result of contamination. Data from all subsequent experiments with pJD478 presented in 

Chapter 4 was found to be “well-behaved” in that it was normally distributed and passed the PPCC test. 

28
 The -1 PRF efficiency of pJD478 was later determined to be ~5.2%; see Chapter 4. 
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its absence. If we had simply relied on “fold-change” statistics, we would have only 

reported an approximate 21% reduction in recoding efficiency. Furthermore, if we had 

calculated the frameshift efficiencies for pSARS with and without anisomycin using 

previously published techniques (Grentzmann et al., 1998; Harger and Dinman, 2003), 

the observed ~21% reduction in PRF efficiency would have been determined to be 

statistically insignificant (p = 0.804, data not shown). However, using the unpaired two-

sample t-test in Exp. [18] and [19], we find t = 8.92 with 18 degrees of freedom (v = 18) 

for the effects of anisomycin on -1 PRF. A significance level of " = 0.001 indicates a 

critical value of t = 3.92 (Devore, 2000). Thus our results soundly reject the null 

hypothesis in favor of the alternative hypothesis that anisomycin affects programmed -1 

ribosomal frameshifting. Numerical computation of the p-value of this finding yields p = 

5.04 " 10
-8

; an highly significant result.  

Online Tutorial 

A tutorial detailing each of the statistical methods presented in this report has 

been made available on the Internet at http://dinmanlab.umd.edu/statistics. The tutorial 

provides step-by-step instructions and screen-shots on how to use these methods using 

Microsoft Excel. 

Discussion 

In this chapter, a statistical analysis pipeline has been outlined for ratiometric data 

potentially derived from a wide variety of polycistronic reporter assay systems. As an 

example, the methods outlined above were successfully applied to eight datasets 
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originating from a series of dual luciferase assays designed to measure programmed -1 

ribosomal frameshifting. The reporter plasmids vary only in the nature of recoding 

element positioned between the Renilla and firefly open reading frames. This statistical 

analysis pipeline can be applied to other dual reporter systems and easily extended to any 

polycistronic assay system that relies on ratiometric data. The importance of the proper 

statistical analysis of any dataset cannot be overstated. At a minimum, this chapter brings 

to light the statistical issues surrounding bi- or polycistronic reporter data and opens the 

door to more rigorous treatment of this particular data type. It is hoped that the synthesis 

of methodologies presented here will serve as a white paper for researchers who utilize 

polycistronic reporter systems in general. Addressed below are several key features for 

analysis of bicistronic data in particular and a summary of the findings.  

First, the nature of most bicistronic reporter assays present researchers with two 

components of information for each experiment that are further combined into a ratio. 

The data are most often reported as a ratio of gene X to gene Y expression. The goal is 

usually to measure the expression ratio of genes X/Y in an experimental construct and 

observe any differences in ratio of genes X/Y expression compared with a known control. 

Since the data are both ratiometric and continuous in nature, propagation of error in the 

datasets is a primary issue that must be addressed carefully. We address this issue with 

expressions [15] – [17] for estimates of the sample variance, sample standard deviations, 

and the standard error of the sample mean for a ratio of two normally distributed sample 

means. Only once an appropriate measure of the combined variance and corresponding 
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error is found, is it then possible to determine if two independent datasets are statistically 

different.  

Second, methods designed to systematically rule out certain data points as outliers 

have largely gone unreported in the life sciences literature; suggesting that outlier data is 

all too often dealt with on an ad hoc basis. Outliers can severely impact the quality and 

subsequent analysis of any dataset. Thus, their systematic exclusion should be an 

important first step in any analysis pipeline. Presented in this chapter is a simple, 

standardized method for outlier exclusion that makes no assumptions about the 

underlying distribution of the data using Exp. [3] – [5]. By exploiting the property of 

fourth spreads (Exp. [3]), we are able to systematically exclude data points that  are 

significantly above or below the median. This method does not necessarily always result 

in the exclusion of data; frequently the maximum or minimum values for any dataset are 

well within the outlier boundaries. The net result is a robust, trimmed dataset that is less 

affected by the presence of a few outliers; a vulnerability in means calculated from 

untrimmed datasets. 

Third, a common assumption is that data are normally distributed. This is 

necessary because common statistical analyses rely on this assumption in order to remain 

valid. However, biological data is often not normally distributed due to the tendency of 

living cells to either maximize or minimize the efficiency of any given process. 

Surprisingly, there has not been a single publication utilizing a bicistronic reporter assay 

system that has reported attempts to check the validity of this assumption. This chapter 

presents a procedure for constructing probability plots of each dataset, and a statistically 
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sound method for determining the normalcy of the data using probability plot correlation 

coefficients. No subsequent statistical analysis that is fundamentally based on the 

properties of a normal distribution would be valid without first confirming that the data 

actually fits a normal distribution. Failure to do this quantitatively could lead researchers 

to reach false conclusions.  

Fourth, as a rule-of-thumb molecular biology experiments are typically carried 

out in triplicate. This is often a reality that is expected and unavoidable because many 

experiments are time consuming, expensive, or both (e.g. blots, gel shift assays, etc). We 

suggest that the “Three’s a Charm” rule-of-thumb should be reconsidered when 

experiments are relatively simple and rapid. Most bicistronic reporter assays fit these 

criteria because they usually take advantage of the specific activity of a pair of easily 

assayable enzymes. In expression [13], we present a straightforward method to calculate 

the minimum corrected sample size (N*) needed to achieve a specific level of confidence 

in the results. The researcher needs only to decide a priori what the acceptable level of 

error is for their data. 

Using a metric to determine minimum sample size, however statistically sound, 

may seem unreasonable or simply cost prohibitive to some, particularly for smaller labs 

with limited resources. However, consider the following example. Typically, with respect 

to the dual luciferase assay system in E. coli (Grentzmann et al., 1998) or S. cerevisiae 

(Harger and Dinman, 2003), it is not unusual for cell lysates to be collected over a course 

of three days and for three luminescence readings (firefly and Renilla) to be averaged 

together on each day. This produces only a single luminescence ratio each day for each 
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reporter. Not only does this approach inadvertently create another layer of error 

propagation, i.e. an average of averages at the experiments end, but it is both cost and 

time prohibitive if the goal is to gather enough data points to satisfy Kupper & Hafner’s 

test for minimum corrected sample size. A suitable compromise is to pool individual 

reads from each lysate into a larger data set before excluding outliers and calculating any 

statistics. In this case, the scenario outlined above would produce 9 data points each for 

Renilla and firefly luciferase; 3 for each cell lysate for each of 3 days. If the cell types, 

reporters used, and experimental conditions are identical, pooling the data in this way 

builds a rigorous data set that is more resistant to experimental bias. Furthermore, if three 

separate cell cultures were grown in parallel on each day, then 27 data points would then 

be collected for each experimental condition in same amount of days. By pooling the raw 

data together, it becomes possible to build a larger data set in less time.  

The rigorous statistical analysis presented here also has significance for the field 

of frameshifting because the confirmation that anisomycin inhibits this process is 

important in helping to define the mechanism of PRF. We previously proposed a 

mechanistic model based on structural and biochemical data in which the -1 frameshift 

occurs after accommodation of the aminoacyl-tRNA (aa-tRNA) into the ribosomal A-site 

(the A/A hybrid state), and prior to peptidyltransfer (Plant et al., 2003). Recently, another 

group suggested that the shift occurs prior to accommodation when the aa-tRNA occupies 

the A/T hybrid state, i.e. while the anticodon of the aa-tRNA is in the decoding center A-

site, but the 3’ acceptor end has not yet been positioned into the peptidyltransferase 

center (Leger et al., 2004). Anisomycin binds in the A-site of the peptidyltransferase 
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center (Hansen et al., 2003) inhibiting binding of the acceptor end of the aa-tRNA into 

the peptidyltransferase center (Carrasco et al., 1973; Grollman, 1967). The observation 

that -1 PRF is inhibited by anisomycin is consistent with our model in that inhibiting the 

formation of the proposed substrate for the shift (i.e. inhibiting formation of the aa-tRNA 

in the A/A hybrid state) decreased the frequency of the reaction.   In contrast, anisomycin 

does not affect the interaction of the aa-tRNA anticodon with the decoding center, i.e. 

does not impact on the formation of the aa-tRNA in the A/T hybrid state, and would not 

be predicted to affect -1 PRF if this were the substrate for the shift. In sum, the 

application of the rigorous statistical analyses to genetic data reinforces prior structural 

and biochemical analyses, strengthening the argument that programmed -1 ribosomal 

frameshifting occurs after accommodation of the aa-tRNA into the A/A hybrid state. 
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Chapter 3 Tables 

Table 4: DLR Data for Development of the Statistical Analysis Protocol 

Summary of the dual luciferase reporter assay datasets. C1 and C2, zero-frame control 

reporters; F1 - F4, frameshift reporters; Qmax, maximum ratio; Q75, 75
th

 percentile; Q25, 

25
th

  percentile; Qmin, minimum ratio; 

! 

˜ x , median; fs, fourth spread; OU, standard upper 

outlier boundary; OL, standard lower outlier boundary; PPCC, normal probability plot 

correlation coefficient; 

! 

x , sample mean; 

! 

s
N"1

2 , sample variance; 

! 

s
N"1

, sample standard 

deviation; 

! 

s
e
, standard error of the sample mean; 

! 

˜ N , minimum uncorrected sample size; 

! 

N *, minimum corrected sample size; 

! 

N , actual sample size; 

! 

x 
R
, estimate of sample 

mean for the ratio of the 

! 

x  of experimental frameshift reporter to 

! 

x  of control reporter 

(i.e. frameshift efficiency); 

! 

s
R

2 , sample variance for 

! 

x 
R
; 

! 

s
R
, sample standard deviation of 

! 

x 
R
; 

! 

s
e

x 
R( ) , standard error of the sample mean 

! 

x 
R
; n/c, no calculated. 
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Table 4: DLR Data for Development of the Statistical Analysis Protocol 

(continued from previous page)  

 Sample Data No Drug 20 "g/mL Anisomycin 

 pJD375 pJD376 pJD519 pJD478 C2 F4 C2 F4 

QMAX 0.485 0.033 0.0028 0.078 0.347 0.0119 0.346 0.0091 

Q75 0.379 0.028 0.0025 0.025 0.331 0.0112 0.333 0.0087 

! 

˜ x  0.320 0.027 0.0023 0.011 0.310 0.0104 0.329 0.0086 

Q25 0.285 0.025 0.0021 0.005 0.307 0.0099 0.324 0.0083 

QMIN 0.252 0.023 0.0005 0.004 0.260 0.0076 0.310 0.0078 

fs 0.092 0.003 0.0004 0.020 0.024 0.0013 0.009 0.0004 

OU 0.459 0.031 0.0029 0.041 0.346 0.0123 0.343 0.0091 

OL 0.182 0.022 0.0017 0.000 0.274 0.0085 0.316 0.0080 

Outliers? 3 3 3 6 3 1 3 4 

! 

x  0.330 0.026 0.002 0.013 0.316 0.011 0.327 0.009 

! 

s
N"1

2
 2.9x10

-3
 3.0x10

-6
 5.9x10

-8
 1.1x10

-4
 2.9x10

-4
 6.6x10

-7
 3.7x10

-5
 5.4x10

-8
 

! 

s
N"1

 5.4x10
-2

 1.7x10
-3

 2.4x10
-4

 1.0x10
-2

 1.7x10
-2

 8.1x10
-4

 6.1x10
-3

 2.3x10
-4

 

! 

s
e
 5.9x10

-3
 2.8x10

-4
 4.7x10

-5
 1.4x10

-3
 4.4x10

-3
 2.0x10

-4
 1.6x10

-3
 6.2x10

-5
 

! 

˜ N  42 7 18 939 5 10 1 2 

! 

N * 54 13 26 433 11 17 6 7 

! 

N  84 40 27 51 15 17 15 14 

Sufficient Sampling? YES YES YES NO YES YES YES YES 

PPCC 0.98 0.99 0.99 0.92 0.93 0.99 0.98 0.97 

Cut-off  0.98 0.96 0.94 0.97 0.91 0.92 0.91 0.90 

Normal? YES YES YES NO YES YES YES YES 

! 

x 
R

 - 0.080 0.007 n/c - 0.034 - 0.026 

! 

s
R

2
 - 2.0x10

-4
 1.8x10

-6
 n/c - 9.8x10

-6
 - 7.4x10

-7
 

! 

s
R

 - 1.4x10
-2

 1.4x10
-3

 n/c - 3.1x10
-3

 - 8.6x10
-4

 

! 

s
e

x 
R( )  - 1.7x10

-3
 1.9x10

-4
 n/c - 7.8x10

-4
 - 2.3x10

-4
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Chapter 3 Figures 

 

Figure 14: Comparing Luminescence Values from pJD375 

Visualization of Renilla and firefly luminescence data from control reporter pJD375 in a 

wild-type yeast strain JD1158. Outliers are shown by solid data points. 
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Figure 15: Comparing Luminescence Values from pJD376 

Visualization of Renilla and firefly luminescence data from L-A viral frameshift reporter, 

pJD376, in a yeast strain JD1158. Outliers are shown by solid data points. 
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Figure 16: Comparing Luminescence Values from pJD519 

Visualization of Renilla and firefly luminescence data using a putative -1 PRF signal 

from BUB3 (pJD519) in a strain JD1158. Outliers are shown by solid data points. 
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Figure 17: Comparing Luminescence Values from pJD478 

Visualization of Renilla and firefly luminescence data using a putative -1 PRF signal 

from TBF1 (pJD478) in a strain JD1158. Non-parametrically determined outliers are 

shown by solid data points; although it is apparent that these data display a high 

degree of  nonsystematic error. 
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Figure 18: Probability Plot of Luminescence Ratios for pJD375 

Visualization of Renilla and firefly luminescence ratios from control reporter pJD375 in 

wild-type yeast strain JD1158.  After outlier exclusion, the linearity of the above 

probability plot demonstrates that the  ratiometric values for pJD375 are normally 

distributed since the PPCC for this data is 0.98, which is at the cut-off level for normalcy. 
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Figure 19: Probability Plot of Luminescence Ratios for pJD376 

Visualization of Renilla and firefly luminescence ratios from the L-A frameshift reporter 

pJD376 in strain JD1158.  After outlier exclusion, the linearity of the above probability 

plot demonstrates that the ratios for pJD376 are normally distributed.  
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Figure 20: Probability Plot of Luminescence Ratios for pJD519 

Visualization of Renilla and firefly luminescence ratios from a putative -1 PRF signal 

cloned from BUB3 (pJD519) and expressed in strain JD1158.  After outlier exclusion, 

the linearity of the above probability plot demonstrates that the ratios for pJD519 are 

normally distributed. 
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Figure 21: Probability Plot of Luminescence Ratios for pJD478 

Visualization of Renilla and firefly luminescence ratios from a putative -1 PRF signal 

cloned from TBF1 (pJD478) in strain JD1158.  After outlier exclusion, the above 

probability plot systematically demonstrates that the data for pJD478 is not normally 

distributed, and therefore should be used for further consideration. On Table 4 above is a 

PPCC = 0.92 for this data, but with a cut-off of 0.97 it fails to meet the minimum criteria 

for being normally distributed.  
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Chapter 4: Computationally Identified -1 PRF Signals 

Can Promote Efficient Frameshifting & Function as 

mRNA Destabilizing Elements 

 

 

Introduction 

The results of the bioinformatics search presented in Chapter 2 provided strong 

evidence that functional -1 PRF signals are widespread throughout the yeast genome. 

Coupled with the results of several additional independent bioinformatics studies 

(Bekaert et al., 2003; Bekaert et al., 2005; Cobucci-Ponzano et al., 2005; Gurvich et al., 

2003; Hammell et al., 1999; Manktelow et al., 2005; Moon et al., 2004; Shah et al., 

2002), the data suggest that not only are -1 PRF signals present yeast, but also are 

prevalent in many distantly related organisms.  This suggests a uniform means-to-an-end, 

whereby -1 PRF signals are functioning to control post-transcriptional gene expression. 

In Chapter 1, we reviewed the basic molecular process of -1 PRF in eukaryotes as well as 

the mechanism of nonsense mediated decay in yeast. This chapter will bring these two 

processes together and provide evidence that -1 PRF signals  are not limited to recoding 

protein translation, but can also act to destabilize mRNAs in an NMD-dependent manner. 

The data below demonstrates that: 
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1. a functional viral -1 PRF signal acts as an NMD-dependent mRNA destabilizing 

element;  

2. computationally identified -1 PRF signals endogenous to a variety of S. cerevisiae 

genes promote efficient recoding when tested in vivo; and 

3. several yeast -1 PRF signals are also capable of acting as mRNA destabilizing 

elements in a similar manner as the viral -1 PRF signal. 

The significance of these findings suggest a new model for post-transcriptional control of 

gene expression, “mRNA suicide”, that couples genome encoded PRF signals with the 

rapid degradation of native mRNAs.  

Materials & Methods 

Genetic methods and plasmid construction 

Plasmid amplification and transformations were performed as previously 

described in Chapter 3. YPAD and synthetic complete medium (H
-
) were used as 

described previously (Dinman and Wickner, 1994).  Isogenic ResGen yeast strains, 

detailed in Table 7, derived from BY4742 were used for in vivo measurement of 

programmed -1 ribosomal frameshifting and for quantitation of steady state PGK1 

reporter mRNA.  All yeast cells were transformed using the alkali cation method (Ito et 

al., 1983).  Dual luciferase plasmids pJD375 and pJD376 have been described previously 

(Harger and Dinman, 2003).  

Computationally identified putative -1 PRF signals derived from BUB3, CTS2, 

EST2, FKS1, FLR1, NUP82, PPR1, SPR6, and TBF1 were designed with the appropriate 
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restriction sites on the 5’ and 3’ ends. Naturally occurring termination codons were 

eliminated from the -1 reading frame by shortening the spacer region between slippery 

site and the putative downstream stimulatory structure by a single nucleotide when 

appropriate. PAGE purified oligonucleotides corresponding to each -1 PRF signal were 

annealed and gel purified. The oligonucleotides used for this construction are shown in 

Table 10 on page 133.  pJD375, the “zero-frame” control dual-luciferase frameshift 

reporter plasmid, was used as a vector backbone and each putative PRF signal was cloned 

into unique SalI and BamHI restriction sites located in the MCS between the Renilla and 

firefly luciferase open reading frames.  The resulting new PRF-reporter vectors were 

verified by DNA sequencing
29

. 

Plasmid pJD741
30

 was used as the vector backbone for construction of PGK1 

reporter mRNA plasmids containing putative -1 PRF signals.  Oligonucleotide primers 

for the 5’ and 3’ flanking positions of each PRF signal
31

 were used to PCR amplify 

fragments from each parental gene directly from JD1158 genomic DNA.  The primers 

were engineered with restriction sites (BamHI and SalI) that allowed amplified fragments 

to be sub-cloned into pJD375 as described above.  A second set of oligonucleotide 

primers were designed with overhanging KpnI restriction sites such that PCR reactions 

with the newly constructed pJD375-derived clone used as template would result in 

amplification of a fragment for cloning into pJD741.  These amplified fragments that 

                                                
29

 Macrogen Inc. Seoul, Korea. 

30
 pJD741 was previously reported in the literature as pW9 (Plant et al., 2004). 

31
 The sequence of these primers can be found in Appendix C: Oligonucleotides. 
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contained a KpnI restriction sites on the 5’ end, 36 nucleotides from 3’ portion of the 

Renilla ORF, 29 nucleotides from the 5’ end of the firefly ORF, and a second KpnI 

restriction site.  This final fragment was then cloned into a unique KpnI restriction site 

found in PGK1 in plasmid pJD741.  Restriction analysis, directional PCR, and DNA 

sequencing verified the correct orientation of each cloned insert.  The “read-through 

control” (RTC) was constructed in a similar manner directly from the dual-luciferase 

zero-frame control (ZFC) vector pJD375.  The premature termination codon (PTC) 

containing construct was engineered directly from the RTC by cutting at a unique AvrII 

restriction site in the MCS, backfilling the overhanging ends using Klenow fragment, 

followed by blunt-end ligation.  This resulted in a PTC clone identical to the RTC clone 

only with the addition of an in-frame stop codon.  In all of these -1 PRF signal containing 

clones, frameshifting results in premature termination at a -1 frame termination codon 

present in the amplified genomic fragment immediately 3’ of the signal.  

Accession Numbers 

The primary SGD accession numbers of genes from which the entire CDS or a 

subsequence of the CDS was used in this study are: BUB3 (#S000005552), CTS2 

(#S000002779), EST2 (#S000004310), FLR1 (#S000000212), FKS1 (#S000004334), 

NUP82 (#S000003597), PGK1 (#S000000605), PPR1 (#S000004004), SPR6 

(#S000000917), and TBF1 (#S000006049).  
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NMD modeling 

In silico modeling of NMD was carried out in a manner similar to that of Cao & 

Parker (2001) with the additional goal of separating out the pioneer round of translation 

for each message from subsequent rounds. Thus, decay of cellular mRNAs was modeled 

according to each ‘round of translation’ as opposed to overall time of decay (Cao and 

Parker, 2001; Cao and Parker, 2003). One successful round of translation represents, in 

terms of the in silico model presented here, the complete cycle of initiation, elongation 

and termination events. The following assumptions were devised for simplification and 

reduction of parameters: 

1. rates of these individual translational events were considered uniform for each 

mRNA in the pool;  

2. premature termination of a ribosome directs an mRNA to the NMD pathway with 

an efficiency of 98% (Cao and Parker, 2003); 

3. mRNAs in the pool are exposed to a 1% constitutive rate of decay (pCRD) 

independent of translational accuracy or fidelity; and 

4. the probability of frameshifting (pPRF) per translational round ranged from 1 to 

4% for each message. 

Modeling of the pioneer round of translation was also done using the same parameters, 

except that pPRF was set to 0% after the first round of translation. The degradation of 

wild-type mRNAs assumed pPRF = 0% for those messages. A background rate of non-

programmed frameshifting was introduced at 0.01% (pNPRF = 0.0001) (Dinman et al., 
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1991). For each simulation, a starting pool of 10,000 mRNAs was used. The 

computational model was developed in PERL and the source code is available on request. 

Dual Luciferase Assay System 

Renilla to firefly luciferase ratios, i.e. frameshift efficiency, was determined for 

nine putative -1 PRF signal containing dual luciferase reporters, as well as the L-A viral 

frameshift control reporter pJD376. All calculated -1 PRF efficiencies were normalized to 

the pJD375 zero-frame control reporter as previously describe in Chapter 3 and in 

(Harger and Dinman, 2003). A minimum of 12 replicate assays were carried out for each 

candidate -1 PRF signal.  Statistical analyses of each luciferase dataset followed the 

protocol established in Chapter 3 aimed at identifying outliers and at validating the 

statistical assumptions implicit in the DLR system (Jacobs and Dinman, 2004). All of the 

datasets passed the required statistical tests with a varying number of replicate 

experiments for each.  

Preparation of RNA and cDNA Samples 

Strains JD1158 and JD1181 were transformed with each of the PGK1-PRF 

vectors, the RTC and PTC vector.  Cell cultures were grown at 30ºC in synthetic dropout 

media (ura-) for 16 - 24 hours until reached exponential growth and an OD595 between 

1.0 and 2.0.  A 1 mL aliquot of cells was collected from each culture, immediately 

centrifuged, decanted and frozen in liquid N2.  All collected aliquots of cells were then 
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stored at -80ºC.  Total RNA was later isolated from frozen aliquots
32

 and diluted to final 

total RNA concentration of 100 ng/µL.  RNA samples were checked for quality by gel 

electrophoresis followed by ethidium bromide staining.  Synthesis of cDNA was carried 

out using the isolated RNA as template with a single round reverse-transcriptase reaction 

that utilizing random hexamer primers
33

. 

Quantitative Real Time PCR 

The relative quantitation of PGK1 reporter mRNA from each sample was 

determined by using quantitative real-time PCR (qPCR) with prepared cDNA as starting 

template
34

.  Specific primers for qPCR, shown in Table 12 in Appendix C: 

Oligonucleotides, were designed to take advantage of a 37 nucleotide fragment of the 

Renilla ORF present in the PGK1 reporter mRNA.  Control experiments using pJD741 as 

an empty vector control or cDNA amplified from untransformed yeast cells never 

resulted in amplification of the endogenous copy of PGK1 on in any other reproducible 

secondary amplicon.  A second set of qPCR primers were designed for 18S rRNA, which 

was used for normalization. Input cDNA concentrations and primer concentration were 

first optimized for linearity using the RTC, pJD753. The system was found to be linear 

                                                
32

 RNA was purified on silica bead filters using the RNeasy® Mini Kit from Qiagen Inc., Valencia, CA. 

33
 The iScript cDNA Synthesis Kit from Bio-Rad Laboratories (Hercules, CA) is specifically designed for 

the amplification of cDNAs for qPCR experiments. 

34
 qPCR experiments were carried out using an ABI7700 Prism Sequence Detector from Applied 

Biosystems Inc. (Foster City, CA). The iTaq SYBR Green Supermix with ROX system for qPCR were 

supplied by Bio-Rad Laboratories (Hercules, CA). 
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across 6 logs of starting RNA concentrations, as shown in Figure 22, with 50 nM of 

primers per reaction. Similar results were found for the detection of 18S rRNA, although 

the CT values were substantially lower
35

.  

Melting curves of qPCR end-products were carried out in order to ensure that 

amplification was specific and only a single amplicon was produced from each reaction. 

The melting curves were determined as follows. Completed qPCR reactions were cooled 

to room temperature and then gradually heated to 95ºC over a period of 20 minutes. 

SYBR Green fluorescence was recorded over time between 60ºC and 95ºC. Rapid 

reductions in the total observable SYBR Green fluorescence indicated the melting of 

double stranded DNA present in the reaction mixture. By plotting the rate of fluorescence 

change across a range of temperatures, a spike represents rapid duplex melting. In Figure 

23, are representative melting curves of RTC and 18S rRNA amplicons generated from 

ten qPCR samples.  The results indicate that non-specific amplification does not occur 

with either primer set for any of the qPCR results presented here. The data collected from 

each qPCR experiment was analyzed using the previously described comparative CT 

method (Livak and Schmittgen, 2001). 

                                                
35

 Data not shown. 
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Results 

Computational modeling of PRF-dependent NMD 

Although the in vivo efficiency of the L-A frameshift is only 2–9% depending on 

the assay system used (Dinman et al., 1991; Harger and Dinman, 2003; Jacobs and 

Dinman, 2004), a PGK1 reporter mRNA containing this signal was only 2-fold more 

stable than a zero frame nonsense-containing mRNA (Plant et al., 2004). An in silico 

approach was devised to address how such low levels of frameshifting could have such 

strong effects on mRNA stability. Theoretical mRNA decay rates based on several 

different models were computationally generated to address this question. Beginning with 

several pools of 10,000 identical mRNAs of equal length, each mRNA in each pool was 

assumed to be subject to a constitutive rate of decay, independent of translation, that was 

arbitrarily set at 1% of the messages capable of entering a decay pathway after each 

successful round of translation. This model also assumes all messages in a given pool 

have a number of identical features, including maximal ribosome load, one -1 PRF signal 

(except wild-type, which has none), and that if any of the loaded ribosomes shifted frame 

there would be a 98% chance that the mRNA will be recognized as aberrant and degraded 

by NMD (Cao and Parker, 2003). Finally, the process of translational elongation was 

considered error-free for the purposes of this simulation. 

Several computationally generated solutions are depicted in Figure 24, each 

depending on whether or not NMD remains active after the “pioneer round” (Ishigaki et 

al., 2001) of translation. The decay profile predicted for a wild-type message, i.e. no PRF, 

is shown in Figure 24 as solid black lines and follows a shallow, approximately linear 
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negative slope. A previous in vitro study suggested that approximately half of ribosomes 

that pause at the wild-type L-A -1 PRF signal actually shifted (Lopinski et al., 2000). 

Assuming that 50% of ribosomes shift during the pioneer round of translation, and that 

NMD may be inactivated after this first round (Ishigaki et al., 2001), the calculated decay 

profile shows that, although roughly half of the mRNAs are eliminated from the pool at 

the first round of translation, the trajectories and decay rates of the remaining mRNAs 

parallel that of the wild-type mRNA (yellow lines). In contrast, if -1 PRF efficiency 

occurs at an efficiency of 2%, and if NMD remains active beyond the pioneer round 

(Maderazo et al., 2003; Keeling et al., 2004), then calculated decay profile is observed to 

fit an exponential trajectory and the theoretical decay rate of such an mRNA is 

significantly greater than that of the wild-type mRNA (green lines). Further, the data in 

Figure 24 predicts that rates of mRNA decay would follow an inverse proportionality 

relationship with -1 PRF efficiency, as shown by the red and blue lines. This is based on 

the notion that efficient PRF signals would direct messages to the NMD pathway with 

greater effectiveness. 

Figure 25 plots the empirical decay profiles of the PGK1 reporter mRNAs shown 

in Plant et al. (2004), Figures 1 and 3. The data for the in-frame control p3131 follows the 

predicted shallow linear negative slope. The decay profiles for the frameshift reporters
36

 

follow the typical ‘biphasic’ decay profiles of nonsense-containing mRNAs observed 

with the nonsense-containing controls p3082 and pJD255 (Leeds et al., 1991). The first 

phase of these decay profiles follow the logarithmic trajectories predicted by the model of 

                                                
36

 pJD269, pJD274 and pJD273 are all described previously (Plant et. al. 2004). 
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continuous NMD, providing independent support for the model that the NMD apparatus 

remains active beyond the pioneer round of translation in yeast. It is notable, however, 

that whereas logarithmic mRNA decay proceeds to zero in the computational model, this 

decay function abates at ~30% of time zero, after which the shallow negative linear 

function is observed. Given that NMD is only active on actively translating ribosomes, 

we suggest that only 70% of the PGK1 test mRNAs were initially present in the pool of 

actively translated mRNAs. The remaining 30% would not be actively translated, and 

thus only subject to degradation by non-NMD processes. 

These results establish that a functional -1 PRF signal can act as an mRNA 

destabilizing element, and that this effect is largely dependent on NMD (Plant et al., 

2004). Therefore, it was important to test the hypothesis that an endogenous -1 PRF 

signal, such as any of the ones identified computationally in Chapter 2, could also have 

the same effect on it’s encoding mRNA.  

The Selection of Candidates for Empirical Testing 

Bioinformatics studies generally benefit from the infusion of experimental bench 

data.  To this end, nine candidate signals possessing a wide range of feature statistics 

were selected from the PRFdb for empirical testing.  First and foremost, -1 PRF signals 

were selected from genes having scorable phenotypes when under- or over-expressed.  

Second, eight of the nine candidate signals chosen are predicted to fold into a 

pseudoknot, the exception being the signal chosen from FKS1.  Nearly all known 

functional -1 PRF signals described in the literature have this requirement for a 

pseudoknot structure. Third, not all the selected signals should fully meet the criteria 
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outlined in Chapter 2 for strong candidate signals.  For example, the two signals from 

FLR1 and SPR6 met all of the criteria for strong-candidate -1 PRF signals having zR $ -

1.65 and predicted MFE values in the lowest 25% of all structures in the PRFdb
37

. 

Signals identified in the genes CTS2, EST2, NUP82, and TBF1 meet less stringent criteria 

in that, although they are not in the first quartile of the most stable structures, they 

nonetheless are considered significant with zR $ -1.65.  Candidate signals from BUB3 and 

PPR1 were chosen because they specifically do not meet any of the criteria above except 

that they have a predicted slippery site and pseudoknot structure.  The predicted slippery 

sites and associated secondary structures for each of these candidate signals are shown in 

Figure 26.  The feature statistics of each candidate signal are summarized in Table 5 on 

page 107. 

Testing for Frameshifting 

Each of the nine candidate -1 PRF signals were cloned into pJD375, the zero-

frame dual-luciferase frameshift reporter, and the ability of each signal to promote -1 

PRF was measured in a wild-type yeast strain, JD1158, as previously described (Harger 

and Dinman, 2003).  Briefly, the ratio of firefly to Renilla luciferase expression promoted 

by -1 PRF signal containing reporters is normalized to a “zero-frame” control reporter 

pJD375, and these ratios are statistically tested for reliability as previously described 

(Jacobs and Dinman, 2004).  At least ten replicate experiments were carried out for each 

reporter.  The results, shown in Figure 27 and Table 6 below, indicate that every signal 

                                                
37

 The reader is referred to pages 28 and 30 in Chapter 2. 
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containing a predicted mRNA pseudoknot promoted -1 PRF at levels that significantly 

exceeded non-programmed (or background) frameshifting.  In contrast, the sequence 

derived from FKS1, which is not predicted to contain a pseudoknot, did not promote 

frameshifting to any measurable degree.  In a broad sense, the experimental data divides 

the signals into high- and low-efficiency -1 PRF signals.  The signals cloned from CTS2, 

EST2, and PPR1 promoted -1 PRF at approximately 64%, 56%, and 43% respectively.  

The remaining functional signals promoted -1 PRF at levels between 0.4% - 5.2%.  For 

purposes of comparison, the well-characterized -1 PRF signal from the yeast L-A virus 

promoted 9.1% frameshifting. 

Some, but not all, PRF signals can destabilize mRNA  

It was previously demonstrated that the -1 PRF signal derived from the yeast L-A 

virus could function as an mRNA destabilizing element when cloned into a PGK1 

reporter mRNA (Plant et al., 2004).  To examine whether functional -1 PRF signals 

derived from chromosomally encoded genes could have similar in vivo activities, six of 

the nine such signals were cloned into an episomal PGK1 reporter plasmid.  Specific 

detection of the PGK1 reporter mRNA was carried out using quantitative real-time PCR 

for each clone in isogenic wild-type and upf3! yeast strains
38

.  In Figure 28, the three 

signals from EST2, PPR1, and SPR6 effectively reduced the steady state abundance of 

the reporter PGK1 mRNA to as little as ~30% of the read-through control.  In addition, as 

shown in Figure 29, these three signals had no distinguishable effects on reporter PGK1 

                                                
38

 The reader is referred to page 93 in the Materials & Methods, Quantitative Real Time PCR, above.  
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mRNA levels as compared to the read-through control (RTC) in the NMD deficient 

upf3" strain.  Interestingly, while the strong -1 PRF signal derived from CTS2 did not act 

to reduce steady mRNA levels in the wild-type strain (94% of control), there was a strong 

and reproducible derepression of PGK1-CTS2 mRNA levels in the upf3! strain (p $ 0.05; 

Student’s T-test).  The nearly 2-fold increase in PGK1-CTS2 levels indicates that this 

message is a substrate for NMD in general, despite the strong constitutive expression of 

the PGK1 promoter present in reporter plasmid.  Unexpectedly, the -1 PRF signals from 

BUB3 and TBF1 not only seemed to increase the steady-state levels of PGK1 reporters 

into which they were cloned, but the resulting mRNAs were also insensitive to NMD.  

Overall, four of the six PGK1 reporter mRNAs tested were shown to be derepressed 

between 1.2 – 2.2 fold in the upf3! strain when compared to the degree of derepression 

of the control mRNA, as shown in Figure 30. While modest, these changes nonetheless 

indicate that the reporter mRNAs are targeted for degradation by the NMD pathway at 

steady state. Interestingly, as shown in Table 5, the native mRNAs from the genes 

containing the above -1 PRF signals have all been previously shown to be natural 

substrates for NMD (He et al., 2003; Lelivelt and Culbertson, 1999) and are among the 

least stable in yeast transcriptome (Wang et al., 2002).  Together, these findings suggest 

that four out of six genomic -1 PRF signals tested may have the capacity to act as 

regulatory elements by directing mRNAs to the NMD pathway for degradation. 

Discussion 

This Chapter demonstrates that computationally identified endogenous -1 PRF 

signals found in the yeast genome can promote efficient frameshifting in vivo, and that a 
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subset of these can act to destabilize mRNAs in a manner that is dependent on the 

functionality of the NMD pathway. Support of this finding originates from data that 

answers four fundamental questions: 

1. Does the NMD pathway act on messages beyond the “pioneer” of translation? 

2. Can a -1 PRF signal act as an NMD-dependent mRNA destabilizing element? 

3. Do putative, computationally identified -1 PRF signals promote efficient 

frameshifting in vivo? 

4. Can an endogenous -1 PRF signal from yeast act as an NMD-dependent mRNA 

destabilizing element? 

The affirmative answers to each of these questions, and the supporting data presented 

previously in this Chapter, is discussed further below. 

The extremely efficient nature of the NMD apparatus on nonsense-containing 

mRNAs has hampered our ability to determine whether the NMD can happen on mature 

mRNAs after the first round of translation. Here, we have addressed the issue by inserting 

-1 PRF signals into a PGK1 reporter mRNA so that ribosomes encounter nonsense 

codons at low frequencies; effectively creating a conditional PTC+ mRNA. Comparison 

of the resulting reporter mRNA decay profiles with computationally modeled ones 

supports the findings of Maderazo et al. (2003) and Keeling et al. (2004) by providing an 

independent, less invasive way to address the question of whether or not NMD can 

remain active after the pioneer round of translation. 

The observed mRNA decay profiles shown in Figure 25 are also important 

because they address the question of whether an mRNA pseudoknot can re-form on an 
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mRNA after it has been denatured by an elongating ribosome. For example, a pioneer 

ribosome that does not shift and continues to translate the message in the 0-frame would 

denature the mRNA pseudoknot. If the pseudoknot were not able to re-form, then the –1 

PRF signal would be rendered non-functional and the mRNAs would be stable. Similar to 

the scenario described above for the case of NMD confined to the pioneer round of 

translation, if this were the case then the observed decay plots would follow linear rather 

than exponential trajectories. The observed mRNA decay profiles clearly show 

continuous frameshifting on –1 PRF-competent mRNAs. Thus, even if the first ribosome 

fails to shift and denatures the mRNA pseudoknot, the ability of subsequent ribosomes to 

shift demonstrates that the mRNA pseudoknot is able to re-form. This hypothesis is also 

in accordance with recent findings that actively translated mRNAs are not maximally 

loaded with ribosomes (Arava et al., 2005; Arava et al., 2003) and that considerable 

secondary structure is present in the coding regions of actively translated mRNAs 

(Chamary and Hurst, 2005; Katz and Burge, 2003; Meyer and Miklos, 2005). 

Nine candidate signals were chosen for empirical testing of frameshift efficiency.  

Each was chosen for a variety of reasons that reflected: 

1. the diversity of feature statistics from the PRFdb; 

2. genes whose native transcripts were relatively unstable; and 

3. genes who native transcripts were found to be upregulated in the absence of a 

functioning NMD pathway.  
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All but one candidate -1 PRF signal promoted efficient frameshifting in vivo
39

.  In 

addition, six of the nine signals were also examined for their effects on mRNA stability.  

Four of these were shown to have from weak to strong NMD-dependent mRNA 

destabilizing activities.  We believe that the powerful PGK1 promoter that was used to 

drive transcription in the reporter plasmids may have significantly masked the 

destabilizing effects of the -1 PRF signals.  A brief consideration of these four signals 

follows. 

The signal from CTS2 was considered a strong candidate -1 PRF signal since it is 

predicted to feature a spacer of an appropriate size, a better than expected number of base 

pairs, and a statistically significant MFE value.  The full-length mRNA of CTS2 is 

naturally unstable and was found to be derepressed in the absence of a functioning NMD 

pathway, indicating that its mRNA is likely a natural target for NMD (He et al., 2003; 

Lelivelt and Culbertson, 1999; Wang et al., 2002).  The candidate -1 PRF signal from 

CTS2 was found to promote frameshifting at very high levels,  63.7%, and targeted the 

PGK1 reporter mRNA to the NMD pathway as evidenced by the apparent strong degree 

of depression in a upf3! strain.  

The -1 PRF signal cloned from EST2 exhibits many of the same features listed 

above for CTS2, and was also found to promote frameshifting at surprisingly high levels, 

56.4%.  The signal from EST2 had only a weak effect on PGK1 reporter mRNA 

abundance in a wild-type strain, reducing the mRNA to 77% of RTC levels
40

.  However, 
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 The exception being the signal from FKS1, which is the only one not predicted to fold into a pseudoknot. 

40
 two-sample Student’s t-test indicates p = 0.06, which is marginally significant at best. 
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in a upf3! strain, the levels of the PGK1-EST2 mRNA was upregulated to approximately 

93% of the RTC levels, making it statistically indistinguishable from the RTC
41

.  Overall, 

this represented a reproducible, albeit weak, 22% repression by the NMD apparatus . 

The sequence from PPR1 promoted 43.2% frameshifting despite containing a 

relatively weak and statistically insignificant pseudoknot structure
42

.  The PPR1 

candidate signal’s ability to direct highly efficient -1 PRF is likely due to the presence of 

three tandem, overlapping, slippery sites which give translating ribosomes three 

opportunities to shift reading frame.  Thus, when the effects of mRNA destabilization 

were assayed using qPCR, this signal was shown to reduce the levels of PGK1-PPR1 

mRNA to 55% of the RTC in a wild-type strain
43

.  These mRNA levels rose to 86% of 

the RTC in a upf3! which translates to a 1.6-fold increase relative to wild-type.  The 

PPR1 mRNA has previously been shown to be upregulated in an NMD deficient strain 

background and is known to be an extremely difficult to detect transcript in wild-type 

strains (He et al., 2003; Kebaara et al., 2003; Lelivelt and Culbertson, 1999; Wang et al., 

2002).  Also interesting is that this -1 PRF signal lies in a sequence region of PPR1 

previously indicated to be responsible for a 3.6 fold derepression of full-length mRNA 

transcript levels in a upf1! strain (Kebaara et al., 2003). 

Examination of the signal derived from the SPR6 gene led it to be considered a 

strong candidate -1 PRF signal for many of the same reasons cited for the signals derived 
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 p = 0.45 by two-sample Student’s t-test. 

42
 The pseudoknot from the PPR1 signal is predicted to have an MFE of -7.8 kcal/mol, and zR = 0.6. 

43
 p $ 0.01 by two-sample Student’s t-test. 
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from CTS2 and EST2.  The SPR6 signal was not, however, a “high efficiency” frameshift 

signal when tested in vivo with the dual-luciferase reporter assay system as it only 

promoted 0.4% frameshifting.  However, it is possible that the necessary base deletion in 

the predicted spacer region of this PRF signal negatively affected recoding efficiency as 

measured by the DLR system. Nonetheless, this signal reduced the levels of steady state 

PGK1-SPR6 mRNA to 30% of the RTC mRNA in a wild-type strain background
44

, and 

in a upf3! strain these levels rose to 66% of the RTC mRNA.  This represents a 2.2-fold 

derepression of mRNA levels, indicating that this signal specifically targets the reporter 

transcript for degradation by NMD. 

The findings presented by this study suggest that PRF signals can function 

efficiently in a number of different ways.  For example, while sequences that are 

predicted to fold into strong, statistically significant, pseudoknotted mRNA structures 

serve as efficient stimulators of -1 PRF (e.g. signals from CTS2, EST2), the presence of 

multiple overlapping slippery sites can also have an equally strong effect, even if the 

stimulatory structure is not ideal (e.g. signals from BUB3, PPR1, NUP82).  Most 

importantly, it appears that the presence of a pseudoknot as the “most stable” structure 

following a slippery site is critical, providing further support for the “torsional restraint” 

model of -1 PRF (Plant and Dinman, 2005).  This is further evidenced by the fact that the 

very energetically favorable and highly significant structure derived from FKS1 failed to 

promote detectable -1 PRF in vivo.  This last point may be because there is no predicted 

                                                
44

 p = 0.02 by two-sample Student’s t-test. 
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pseudoknot structure with an MFE value lower than that of the predicted non-

pseudoknotted structure immediately following the slippery site of interest in FKS1. 
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Chapter 4 Tables 

Table 5: Features of Nine Candidate -1 PRF Signals 

ORF, the parental ORF for the putative -1 PRF signal; pos, the starting nucleotide 

position immediately after the slippery site relative to the ORF’s start codon; Slippery 

Site, the heptameric slippery sequence expected to be the site of translational recoding, 

spaces between nucleotides indicate zero-frame codons (BUB3 and NUP82 contain two 

overlapping slippery sites, and PPR1 contains three); Spacer Length, the distance 

between the last nucleotide of each slippery site and the first nucleotide involved in base 

pairing of the downstream predicted secondary structure, multiple entries indicate spacers 

for each possible slippery site; Pairs, the predicted number of base pairs for the 

downstream structure; MFE, the predicted minimum free energy in kcal/mol; zR, the 

statistical significance of the MFE value compared to 100 randomized sequences; PK, 

indicates whether the predicted structure a pseudoknot; NMD!1, independently 

determined fold change of mRNA levels for the corresponding gene averaged across 

three strains defective in nonsense mediated mRNA decay (He et al., 2003); NMD!2, an 

earlier measurement of fold change for mRNA levels in an nmd" strain (Lelivelt and 

Culbertson, 1999); T1/2, independently determined half-life for the full-length mRNA for 

each ORF after transcriptional arrest (Wang et al., 2002).  The average half-life for all 

mRNAs was 26 minutes; n.d., not detected; n.a., data was not available.   
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ORF pos Slippery Site 

Spacer 

Length Pairs MFE zR PK? NMD1 NMD2 T1/2 

BUB3 858 A AAA AAU UUC 6 , 9 14 -4.8 0.5 Yes 0.8 2.9 10 m 

CTS2 1245 A AAA AAU 7 20 -14.4 -3.6 Yes 2.2 1.3 15 m 

EST2 1653 A AAA AAU 6 27 -16.9 -3.1 Yes 1.5 2.4 n.d. 

FKS1 3768 A AAA AAC 3 23 -22.2 -3.9 No n.a. 1.4 n.d. 

FLR1 228 A AAA AAU 5 30 -21.8 -2.0 Yes 1.2 3.9 17 m 

NUP82 1545 U UUA AAA AAC 7, 10 16 -11.3 -2.0 Yes 1.1 1.0 n.d. 

PPR1 1182 U UUU UUU UUA AAC 3, 6, 9 18 -7.8 0.6 Yes 1.6 2.0 n.d. 

SPR6 279 A AAA AAA 8 27 -20.3 -1.6 Yes 1.1 2.7 16 m 

TBF1 1521 A AAU UUA 5 11 -8.3 -2.1 Yes 0.8 2.9 5 m 

Table 5: Features of Nine Candidate -1 PRF Signals (cont.) 
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 ZFC L-A BUB3 CTS2 EST2 FKS1 

pJD# pJD375 pJD376 pJD519 pJD485 pJD522 pJD523 

! 

x  0.2896 0.0263 0.0023 0.1845 0.1632 2.6 x 10
-5

 

! 

s
N"1

2  6.6x10
-4 

3.0x10
-6 

4.9x10
-8 

6.5x10
-5 

0.0040
 

1.1x10
-10 

N 61 40 26 11 31 27 

! 

x 
R
 - 9.08% 0.80% 63.71% 56.4% <0.01% 

se(

! 

x 
R
) - 0.14% 0.02% 1.11% 3.96% <0.01% 

 

 FLR1 NUP82 PPR1 SPR6 TBF1 

pJD# pJD522 pJD477 pJD476 pJD520 pJD478 

! 

x  0.0015 0.0025 0.1252 0.0012 0.0152 

! 

s
N"1

2  3.4x10
-8 

5.5x10
-8 

5.5x10
-5 

5.3x10
-8 

1.3x10
-5 

N 28 24 18 21 12 

! 

x 
R
 0.53% 0.85% 43.24% 0.42% 5.23% 

se(

! 

x 
R
) 0.01% 0.02% 0.78% 0.02% 0.36% 

Table 6: Frameshifting Statistics of Yeast -1 PRF Signals 

Summary of the dual luciferase reporter assay data from nine endogenous -1 PRF signals 

identified in S. cerevisiae. ZFC, zero-frame control pJD375 to which the other 

Renilla/firefly ratios were normalized; L-A, data for the -1 PRF signal from the yeast L-A 

virus. BUB3, CTS2, EST2, FKS1, FLR1, NUP82, PPR1, SPR6, and TBF1 are the 

encoding genes from which each -1 PRF signal originates; 

! 

x , sample mean of Renilla to 

firefly luciferase activity ratios; 

! 

s
N"1

2 , sample variance; 

! 

N , sample size; 

! 

x 
R
, normalized 

frameshift efficiency of each; 

! 

s
e

x 
R( ) , standard error of frameshifting. 
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Chapter 4 Figures 

 

Figure 22: Total RNA Template Dilutions for qPCR of PGK1 

Total RNA was isolated from strain JD1158 as described in the Materials & Methods of 

Chapter 4. The qPCR system for detection of the reporter copy of PGK1 was determined 

be linear between 0.4 pg of 50 ng.  
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Figure 23: Melting Curves for PGK1 and 18S qPCR Amplicons 

Data from five representative experiments are presented for both PGK1 (in red) and 18 

rRNA (in black) amplicon. The results above indicate that only a specific PCR 

amplification product was produced by each primer set. X axis – temperature; Y axis – 

Rate of change of  baseline subtracted florescence intensity. 
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Figure 24: In Silico Modeling of NMD 

The predicted decay profile of an mRNA lacking a PRF signal (0% PRF) is shown as 

black lines. The decay profile of an mRNA in which 50% of ribosomes shift at the 

pioneer round, and where NMD was inactivated after this first round, is shown as yellow 

lines. The calculated decay profile of an mRNA where –1 PRF efficiency was set at 2% 

efficiency and NMD remained active after the pioneer round is depicted by green lines. 

When NMD remained active after the pioneer round of translation and –1 PRF 

efficiencies were set at 4% or 1%, the calculated decay profiles followed the trajectories 

shown as blue and red lines respectively. 
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Figure 25: NMD Remains Active After the Pioneer Round of Translation 

PGK1 reporter mRNA decay profiles corresponding PTC, -1 PRF signal, and control 

plasmids. p3131, read-through control message. p3082, nonsense containing message. 

pJD255, nonsense containing mRNA with functional -1 PRF signal. pJD269, read 

through mRNA with a -1 PRF signal. pJD274, read through mRNA with a high-

efficiency -1 PRF signal. pJD273, read through mRNA with a low efficiency -1 PRF 

signal. pJD269 + anisomycin, read through mRNA with a -1 PRF signal and cells grown 

in the presence of 4 &g/mL of anisomycin. The figure above and this legend are adapted 

from Plant et. al. (2004) Figure 5B. 
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Figure 27: Frameshift Efficiencies of Nine Candidate -1 PRF Signals 

A) High-efficiency and B) Low-efficiency frameshifting. The parental genes of each 

signal are indicated with the -1 PRF efficiency as was measured using a dual-luciferase 

reporter assay system (Harger and Dinman, 2003; Jacobs and Dinman, 2004). 
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Figure 28: Wild-type UPF1 Repression of Reporter PGK1 mRNA  

Reporter mRNAs harboring a premature termination codon (PTC) or one of the candidate 

-1 PRF signals from EST2, PPR1, and SPR6 are measurably down regulated in a wild-

type strain background JD1158 as measured by quantitative real-time PCR. No change 

was detected in the read through control reporter (RTC). The empty-vector control PGK1 

reporter (VC) was not detectable. All data was normalized to the levels of 18S rRNA 

present in each sample. 
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Figure 29: PGK1 Reporter mRNA in a upf3! Strain 

Reporter mRNAs encoding a premature termination codon (PTC) or one of the candidate 

-1 PRF signals from CTS2, EST2, PPR1, or SPR6 increase in a upf3! strain. No change 

was detected in the read through control reporter (RTC). The empty-vector control PGK1 

reporter (VC) was not detectable. All data was normalized to the levels of 18S rRNA 

present in each sample. 

 



 

 118 

 

 

 

Figure 30: Relative Derepression of Reporter PGK1 mRNA in upf3! 

The relative fold-change of expression between wild-type and upf3! strains for reporter 

mRNAs comparing the data between Figure 28 and Figure 29.  The levels of read-

through control mRNA (RTC) between yeast strains was unchanged.  The steady state 

levels of PTC containing reporter mRNA was derepressed approximately 6.5 fold in a 

upf3! strain. 
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Chapter 5:  mRNA Suicide 

 

Future Directions 

Empirical studies are an important requirement for testing broad-based 

bioinformatics predictions. With regard to the research presented in this dissertation, 

there are many possible directions along which this work could be extended that serve 

this purpose. Most importantly, however, this author expects the greatest short-term 

benefit to this project will come from two specific experiments. 

Functional Genomics of mRNA Suicide 

Just as microarray experiments have been used to identify natural mRNAs 

targeted by NMD, it is not difficult to envision an experimental set up that utilizes similar 

approaches to identify transcripts that are subject to mRNA suicide. For example, a 

microarray time course assay can be designed to measure mRNA half-lives in 

transcriptionally arrested cells using both a wild-type and NMD deficient strains. Despite 

the excellent work of Culbertson, Jacobson and their respective colleages, they failed to 

measure mRNA half-lives for the microarray experiments they conducted (He et al., 

2003; Lelivelt and Culbertson, 1999). Despite attempts to sort out primary and secondary 

targets from the existing data using bioinformatics approaches, measuring mRNA half-

lives is a critical experiment that must be carried out in order to clearly define transcripts 
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that are primary targets of NMD (Taylor et al., 2005). Primary NMD targets should not 

only be upregulated in a upf1", upf2" or upf3" strain but also should have vastly 

different rates of decay. 

In addition, numerous mutant alleles of various components of the large 

ribosomal subunit have been identified in the Dinman lab. Many of these alleles have 

specific trans-dominant effects on programmed frameshifting in a wild type strain, which 

makes the experimental setup straight forward. Although, the transcript levels of PRF 

signal containing mRNAs are not currently known in strains harboring these mutations, 

we expect them to be inversely affected by changes in PRF efficiency.  Plasmids 

encoding trans-dominant alleles of 5S rRNA (Kiparisov et al., 2005) can simply be 

transformed in both wild-type and NMD" strains. Transcripts whose steady state levels 

are epistatically affected by the functionality of the NMD pathway could be identified in 

this way. Thus, data of this sort would provide valuable insight into which cellular 

transcripts are influenced by mRNA suicide. 

Finally, the two antibiotics anisomycin and sparsomycin are known to affect the 

ribosome’s ability to maintain reading frame (Dinman et al., 1997). The introduction of 

these drugs into cell culture media is expected to differentially affect the decay rates of 

mRNAs subject to mRNA suicide because their respective PRF signals would have a 

altered efficiencies. Microarray time-course experiments aimed at measuring the 

differential rates of decay in the presence and absence of both +1 and -1 frameshift 

specific antibiotics could identify transcripts whose stability is dependent on the 

ribosomes ability to maintain reading frame. 
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Data garnered from the above three microarray experiments could then be 

integrated and compared across experiments.  The resulting data set would aid in the 

identification of transcripts whose decay rates are the result of mRNA suicide. These 

candidates would be expected to have the following characteristics: 

1. steady state derepression in a upf1", upf2", or upf3" strain background; 

2. mRNA half-lives would be markedly reduced in an NMD deficient strain;  

3. ribosome mutants exhibiting frameshifting defects would demonstrate altered 

steady state levels of PRF signal containing transcripts which would be 

suppressed for mRNA suicide transcripts in strains lacking NMD; and 

4. mRNA suicide transcripts would have altered half-lives in the presence of 

antibiotics that interfere with translation elongation which would be largely 

abrogated in the absence of NMD. 

Cessation of transcription would be essential for the experiments outlined above. 

Fortunately, in yeast, there are several genetic mutants that allow for transcriptional arrest 

after heat-shock, RPO21 (Nonet et al., 1987) and RPB4 (Miyao et al., 2001)
45

. In 

addition, to avoid possible complications from initiation-mediated mRNA decay as a 

result from heat-shock induction (Heikkinen et al., 2003), antibiotics such as 

actinomycin-D (Schindler and Davies, 1975) or thiolutin (Herrick et al., 1990) could be 

used to force transcriptional arrest as a secondary method. These experiments would no 

doubt yield a wealth of information, not only about the probable targets of mRNA 

                                                
45

 RPO21 has been recently renamed. It was previously known as RPB1. 
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suicide, but also in terms of how translation in general affects the stability of mRNAs 

themselves.  

Analysis of Model Targets of mRNA Suicide 

Functional genomic studies will aid in the identification of transcripts that are 

subject to mRNA suicide.  Analysis of individual mRNAs will also be critical for 

understanding the interplay of PRF and NMD in terms of the control of their expression. 

Finding good candidate genes to serve as model targets will likely be easier once the 

genomics experiments described above are carried out. Fortunately, however, there is 

independent evidence for two candidate genes whose mRNAs may turn out to be targets 

for mRNA suicide, PPR1 and EST2. 

The PPR1 gene, a zinc-finger transcriptional activator of the uracil biogenesis 

pathway, encodes an approximately 2.6-kb mRNA (Losson et al., 1983). This large 

transcript is highly unstable and only one or two copies are thought to be present in wild-

type yeast cells at any given time. The extremely low abundance of the PPR1 mRNA 

usually results in its absence from microarray datasets because it is thought to be below 

the signal to noise ratio. Nonetheless, using other methods of detection, the mRNA 

encoded by PPR1 has been found to be a direct target for nonsense mediated decay 

(Kebaara et al., 2003; Lelivelt and Culbertson, 1999). The exact mechanism is thought to 

be the result of a short six codon uORF that overlaps with the natural AUG start codon 

(Pierrat et al., 1993). Using heterologous reporters of PPR1, Atkin and colleages have 

identified that not only is the 5’ UTR of the mRNA required for NMD-dependent decay, 

but the first 92 nucleotides of the CDS is  required as well (Kebaara et al., 2003). 
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Furthermore, they also reported that inclusion of the first 1250 nucleotides exacerbated 

this effect and they observed a 3.6-fold increase in upf1" strain. They conclude that the 

predominate effect of NMD-dependent decay is the result of a Upf-dependent element, 

UDE, in the 5’ end of the gene and could not explain the stronger depression in the 

reporter possessing the large 1250 nucleotide fragment. 

Interestingly, the CDS of PPR1 is predicted to have eight slippery sequences, 

three of which are tandemly overlapping at positions 1182, 1185, and 1188. The details 

of all of PPR1 slippery sequences are available in the PRFdb. The predicted secondary 

structure positioned downstream from the slippery sites at positions 1182-1188, i.e. the 

tandem slippery site, is shown in Figure 26 on page 114. The PRF efficiency of the 

tandem slippery site was shown to be highly efficient in this study and this signal alone is 

capable of targeting transcripts to NMD. It may be that the stability of the PPR1 mRNA 

is controlled by two elements, uORFs and PRF signals, that are both targeting it for 

destruction. This would also explain it’s extremely low transcript copy number. 

A second potential model transcript may lie in the mRNA produced by EST2, the 

principle telomerase subunit in yeast. The EST2 mRNA levels, and telomere length in 

general (Lew et al., 1998), has been previously shown to be under the influence of NMD 

(Lelivelt and Culbertson, 1999). Berman and colleages have also demonstrated that EST2 

mRNA is a direct target for NMD (Dahlseid et al., 2003), but do not provide an 

explanation for NMD-dependent regulation.  

Similar to what was found in PPR1, the EST2 CDS has multiple slippery sites and 

several highly promising putative PRF signals. As described in Chapter 4, the PRF signal 
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in EST2 at position 1653 promotes highly efficient PRF and is capable of affecting the 

stability of mRNAs in an NMD-dependent way. Mutagenesis of individual slippery sites 

or of putative structural elements in the full length gene could be useful in determining if 

PRF in the natural transcript is indeed a substrate for NMD. 

Conclusions  

The results obtained by this study provide evidence that functional -1 PRF signals 

are present in the yeast genome and that they do not function to solely direct ribosomes 

into alternative reading frames.  Moreover, functional -1 PRF signals present in the 

coding regions of the yeast genome can function to destabilize their encoding mRNAs in 

a manner that is dependent on the functioning of the nonsense-mediated mRNA decay 

pathway.  This process is illustrated by a novel model, “mRNA suicide”, which couples 

the ability of the mRNA to redirect ribosomes into alternative reading frames with the 

nonsense-mediated mRNA decay pathway as shown in Figure 31 below.  Implicit in this 

model is that modulation of PRF efficiency could be used as the controlling effecter of 

transcript degradation rates.  The efficiency of frameshifting could, in theory, be 

regulated by several means including: 

1. alterations in the interactions between trans-acting factors and the ribosome (Cui 

et al., 1998; Dinman and Kinzy, 1997; Muldoon-Jacobs and Dinman, 2006); 

2. changes in post-transcriptional modifications of rRNAs (Baxter-Roshek J.L. and 

Dinman J.D., unpublished data), or in the post-translational modification status of 

specific ribosomal proteins (Mazumder et al., 2003; Williamson et al., 1997); 

3. expression of alternative forms of 5S rRNA (Kiparisov et al., 2005); 
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4. trans-acting factors that interact directly with the mRNA to either stabilize or 

destabilize stimulatory structures capable of affecting translation (Kollmus et al., 

1996b); 

5. alterations to translational accuracy or ribosome fidelity in response to changes in 

environmental stimuli (Stahl et al., 2004; Barak et al., 1996); or by 

6. modulation of the sensitivity of the NMD apparatus to premature termination 

events at various locations throughout an mRNA (Weil and Beemon, 2006). 

Regulation models such as these can be applied to a variety of biological examples where 

the stability of individual mRNAs or whole classes of mRNAs require a flexible stability 

threshold responsive to environmental cues.  Furthermore, natural mRNA substrates for 

NMD that do not contain PTCs have been discovered in both the yeast and human 

transcriptomes (He et al., 2003; Kim et al., 2005; Lelivelt and Culbertson, 1999; Mendell 

et al., 2004; Moriarty et al., 1998; Pan et al., 2006; Taylor et al., 2005; Wittmann et al., 

2006), suggesting that regulation of mRNA expression by NMD is broadly conserved and 

is used to regulate a variety of physiological processes. 

It has also recently been suggested that specific sequences present in coding 

regions of mRNAs are capable of translationally stalling ribosomes long enough to direct 

them to be endonucleolytically cleaved and specifically degraded in both prokaryotic and 

eukaryotic organisms (Doma and Parker, 2006; Sunohara et al., 2004), a process termed 

“No-go decay”.  Many of the predicted candidate -1 PRF signals identified in the current 

work are predicted to be more stable than the mRNA structure used by Doma & Parker 

(data not shown) and thus would be expected to be similarly capable to stall translating 
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ribosomes.  Thus, it is also possible that mRNAs containing these extremely stable 

mRNA structures identified in the current study may also be targeted for No-go decay 

independent of PRF.  Conversely, it is possible that the presence of a slippery site just 

upstream from strong secondary structures may be the specific feature that allows for 

such mRNAs to evade being subject to this pathway (Plant et al., 2003).  Nevertheless, it 

is reasonable to envision that a general function of PRF signals in the coding regions of 

eukaryotic mRNAs is to act as post-transcriptional capacitors of gene expression. 
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Chapter 5 Figures 

 

Figure 31: A Model of mRNA Suicide 

The simplistic model above proposes that actively translating ribosomes may shift 

reading frame at functional recoding signals present in the mRNA, which in turn forces 

the premature termination of translation and the targeting of the transcript for degradation 

by NMD.  
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Appendix A: Yeast Strains 

The table below summarizes the strains of S. cerevisiae referenced throughout this 

thesis. Please refer to the relevant pages for their specific use. 

Table 7: Yeast Strains 

Strain Description 

BY4742 MAT" his3!1 leu2!0 lys2!0 ura3!0 

JD932 MATa ade2-1 trp1-1 ura3-1 leu2-3,112 his3-11,15 can1-100 

JD1158 MAT" his3!1 leu2!0 lys2!0 ura3!0 

JD1181 MAT" upf3::KanR his3!1 leu2!0 lys2!0 ura3!0 
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Appendix B: Plasmids 

The table below summarizes the cloning plasmids referenced throughout this 

thesis.  Please refer to the relevant pages for their specific use. 

Table 8: Plasmids 

Plasmid 

Name 

Parental 

Vector 

Description 

pJD375 p2mc
46

 A zero-frame control (ZFC) dual luciferase reporter (DLR) expressing a 

bicistronic mRNA encoding a fusion of Renilla and firefly luciferase. This 

vector was previously described in (Plant et al., 2004). 

pJD376 p2mci
46

 A viral frameshift signal containing dual luciferase reporter (DLR) 

expressing a bicistronic mRNA. This vector encodes a fusion of Renilla and 

firefly luciferase. This vector was previously described in (Plant et al., 

2004). 

pJD476 pJD375 DLR vector with a synthetically derived PPR1 -1 PRF signal cloned into the 

multiple cloning site (MCS) between Renilla and firefly luciferase. 

pJD477 pJD375 DLR vector with a synthetically derived NUP82 -1 PRF signal cloned into 

the MCS between Renilla and firefly luciferase. 

pJD478 pJD375 DLR vector with a synthetically derived TBF1 -1 PRF signal cloned into the 

MCS between Renilla and firefly luciferase. 

pJD485 pJD375 DLR vector with a synthetically derived CTS2 -1 PRF signal cloned into the 

MCS between Renilla and firefly luciferase. 

pJD519 pJD375 DLR vector with a synthetically derived BUB3 -1 PRF signal cloned into 

the MCS between Renilla and firefly luciferase. 

pJD520 pJD375 DLR vector with a synthetically derived SPR6 -1 PRF signal cloned into the 

MCS between Renilla and firefly luciferase. 

                                                
46

 Grentzmann, G., Ingram, J. A., Kelly, P. J., Gesteland, R. F., and Atkins, J. F. (1998). A dual-luciferase 

reporter system for studying recoding signals. Rna 4, 479-486. 
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Plasmid 

Name 

Parental 

Vector 

Description 

pJD521 pJD375 DLR vector with a synthetically derived EST2 -1 PRF signal cloned into the 

MCS between Renilla and firefly luciferase. 

pJD522 pJD375 DLR vector with a synthetically derived FLR1 -1 PRF signal cloned into the 

MCS between Renilla and firefly luciferase. 

pJD523 pJD375 DLR vector with a synthetically derived FKS1 -1 PRF signal cloned into the 

MCS between Renilla and firefly luciferase. 

pJD741 pW9
47

 Full-length PGK1 gene on a low-copy URA3-based vector. Identical to the 

previously described pW9 vector (Plant et al., 2004). Used as starting 

material for vectors aimed studying the NMD-dependent effects of -1 PRF 

signals using qPCR. Also used directly as a negative empty-vector control 

for qPCR. 

pJD753 pJD741 The MCS of pJD375 was cloned into the KpnI site of PGK1 as described in 

Chapter 4: Materials and Methods on page 93. The insertion of the MCS of 

pJD375 included the 3’ end of Renilla and the 5’ end of firefly luciferase in 

order to specifically detect the PGK1 mRNA generated from these vectors 

in the presence of the background expression of PGK1 from the endogenous 

gene. This vector served as a read-through control (RTC) for PGK1 

expression for all qPCR experiments. 

pJD748 pJD753 An mRNA stability vector derived from pJD753. The PRF signal region of 

SPR6 was amplified from genomic DNA isolated from yeast strain JD1158 

and cloned into the MCS pJD753 PGK1. 

pJD754 pJD753 An mRNA stability vector derived from pJD753. The PRF signal region of 

EST2 was amplified from genomic DNA isolated from yeast strain JD1158 

and cloned into the MCS pJD753 PGK1. 

pJD755 pJD753 An mRNA stability vector derived from pJD753. The PRF signal region of 

BUB3 was amplified from genomic DNA isolated from yeast strain JD1158 

and cloned into the MCS pJD753 PGK1. 

pJD756 pJD753 An mRNA stability vector derived from pJD753. The PRF signal region of 

TBF1 was amplified from genomic DNA isolated from yeast strain JD1158 

and cloned into the MCS pJD753 PGK1. 
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Plasmid 

Name 

Parental 

Vector 

Description 

pJD757 pJD753 An mRNA stability vector derived from pJD753. The PRF signal region of 

CTS2 was amplified from genomic DNA isolated from yeast strain JD1158 

and cloned into the MCS pJD753 PGK1. 

pJD759 pJD753 An mRNA stability vector derived from pJD753. The PRF signal region of 

PPR1 was amplified from genomic DNA isolated from yeast strain JD1158 

and cloned into the MCS pJD753 PGK1. 

pJD765 pJD753 An mRNA stability vector derived from pJD753. A restriction site in the 

MCS was digested with AvrII, back-filled with Klenow fragment, and re-

circularized with T4 Ligase. This created an in-frame premature termination 

codon in PGK1 mRNA which serves as a positive control for NMD. 

pJD766 pJD753 An mRNA stability vector derived from pJD753. The PRF signal region of 

EST2 was amplified from genomic DNA isolated from yeast strain JD1158 

and cloned into the MCS pJD753 PGK1. 
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Appendix C: Oligonucleotides 

The table below summarizes the various oligonucleotides and primers referenced 

throughout this thesis.  All oligonucleotides shown were ordered from Integrated DNA 

Technologies (Skokie, IL).  Please refer to the relevant pages for their specific use. 

Table 9: Oligonucleotides Used in Chapter 3 

Name Sequence 

pJD519 

Forward 

TCGACAAAAAATCATCTTTCAGGGTGGATTGGAACGGCCCCAGTGATCCTGAGAACCCACAA
AACTGGCCCG 
 

pJD519 

Reverse 

GATCCGGGCCAGTTTTGTGGGTTCTCAGGATCACTGGGGCCGTTCCAATCCACCCTGAAAGA
TGATTTTTTG 

pJD478 

Forward 

CGACAAATTTATCTCAAGCATCCTTCATCAGCTGCATCTGCTACTGAAGAG 

pJD478 

Reverse 

GATCCTCTTCTGTAGCAGATGCAGCTGAAGAAGGATGCTGAGATAAATTTG 

pSARS 

Forward 

GATCCTTTTTAAACGGGTTTGCGGTGTAAGTGCAGCCCGTCTTACACCGTGCGGCACAGGCA
CTAGTACTGATGTCGTCTACAGGGCTTTTGAGCT 

pSARS 

Reverse 

CAAAAGCCCTGTAGACGACATCAGTACTAGTGCCTGTGCCGCACGGTGTAAGACGGGCTGCA
CTTACACCGCAAACCCGTTTAAAAAG 
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Table 10: Oligonucleotides Used in Chapter 4 

The oligonucleotides below were used in the construction of PRF signal containing dual-

luciferase plasmids. Upper case, genomic sequence; Underline, restrictions sites; *, 

positions deleted to shift -1 frame stop codons into an alternative reading frame such that 

frameshifting does not result in premature termination; Bold, substitutions made to 

eliminate -1 frame PTCs. 

Parent 

Gene Sequence 

BUB3 

Forward 

ccccgtcgacAAAAAATTTCGCC*AATTTAACGAAGACAGCGTGGTTAAAATTGCTTGTTCGG
ACggatcccccc 

EST2 

Forward 

ccccgtcgacAAAAAATC*AAATGGGTTTTTCGTTAGATCTCAATATTTCTTCAATACCAATA
CAGGTGTATTGAAGTTATTTAATGTTGTTAACGCTggatcccccc 

CTS2 

Forward 

ccccgtcgacAAAAAAT*CAATATTTATCAGTTATGATAACACTAAATCAGTCAAAACTAAGG
CTGAATATGTGACACATAACAATggatcccccc 

FKS1 

Forward 

ccccgtagacAAATTTCCACTACTAAGATTGGTGCTGGTATGGGTGAACAAATGTTATCTCGT
GAATATTATTATCTGGGTACCCAATTACCAGTACggatcccccc 

FLR1 

Forward 

ccccgtcgacAAAAAATCAT*CTTTCAGGGTGGATTGGAACGGCCCCAGTGATCCTGAGAACC
CACAAAACTGGCCCggatcccccc 

NUP82 

Forward 

ccccgtcgacTTTAAAAAACGAAG*TAGTGAAAATCAGTTGGAAATTTTCACGGATATTTCCA
AAGAAggatcccccc 

PPR1 

Forward 

ccccgtcgacTTTTTTTTTAAACAT*ATATTTGCTATTGGCCATGCTACGCAGGTACTTAAGT
CAGATATTACTACTGTCGCGACAggatcccccc 

SPR6 

Forward 

ccccgtcgacAAAAAAAAT*AAGGAAACCAATCACTCTGGAGCATGGTTGCTTGTCAGGACCC
GTGACTCTACGTTTCGGAAATTTTGCAGGAATCAGAGAggatcccccc 

TBF1 

Forward 

ccccgtcgacAAATTTATCTCAAGCATCCTTCATCAGCTGCATCTGCTACTGAAGAGGggatc
ccccc 

 



 

 134 

 

 

Table 11: Primers for Cloning 

PCR primers used in this study for the amplification of genome encoded -1 PRF signals 

from a variety of yeast genes.  Each amplicon was cloned into pJD375.  DLR primers 

were then used to PCR amplify fragments from the dual luciferase reporter which where 

then subcloned into the KpnI site of PGK1 (pJD741).  Shown is the final amplicon size 

inserted into PGK1 at position 497 (relative to the AUG start codon). 

 

Parent 

Gene 

Forward Primer 

(5’ !  3’) 

Reverse Primer 

(3’ "  5’) Amplicon Size 

BUB3 CCCCGTCGACCCTATACACGGCTG
GCTCTG 

CCCCGGATCCATCAGAAG
TTGCCAGACATAG 

222 

EST2 CCCCGTCGACCATACCAAGGATGG
AATGTATG 

CCCCGGATCCTGATAAAT
GAACCGTCCTCAC 

267 

CTS2 CCCCGTCGACGGAGGGCATCTGGC
CTTAC 

CCCCGGATCCAGCTTCAC
CACATGACTCC 

282 

PPR1 CCCCGTCGACGTCAACATGCGTCC
GATAGTTG 

CCCCGGATCCCAATGCCT
CCAACCTGTCTG 

298  

SPR6 CCCCCGTCGACGATGAGTCCAAGT
AGGAAG 

CCCCCGGATCCGGTAGCT
TGCTGACATGCAC 

198 

TBF1 CCCCGTCGACTCAATCTCCAAATT
CGTCAAC 

CCCCGGATCCCATCCCAT
CTTCTAAATGAGG 

276 

DLR CCCCGGTACCTCGTTCGTTGAGCG
AGTTC 

CCCCGGTACCGGCGTCTT
CCATGAGCTC 

Varied 
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Table 12: Primers Used for Quantitative Real-Time PCR 

Parent Gene 

Forward Primer 

(5’ !  3’) 

Reverse Primer 

(3’ "  5’) 

Amplicon 

Size 

PGK1- Renilla GTCGGTCCAGAAGTTGAAGC TGAGAACTCGCTCAACGAAC 226 

18S rRNA GGAATTCCTAGTAAGCGCAAG GCCTCACTAAGCCATTCAATC 99 
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Appendix E: PPCC Critical Values 

Critical values for probability plot correlation coefficients used to determine if 

data is normally distributed. Shown are critical values for both the 1% and 5% 

significance levels for datasets of up to 100  samples (Filliben, 1975). 

Table 13: PPCC Critical Values 

N 0.01 0.05  N 0.01 0.05 

4 0.8234 0.8666  33 0.9505 0.9661 

5 0.8240 0.8786  34 0.9521 0.9671 

6 0.8351 0.8880  35 0.9530 0.9678 

7 0.8474 0.8970  36 0.9540 0.9686 

8 0.8590 0.9043  37 0.9551 0.9693 

9 0.8689 0.9115  38 0.9555 0.9700 

10 0.8765 0.9173  39 0.9568 0.9704 

11 0.8838 0.9223  40 0.9576 0.9712 

12 0.8918 0.9267  41 0.9589 0.9719 

13 0.8974 0.9310  42 0.9593 0.9723 

14 0.9029 0.9343  43 0.9609 0.9730 

15 0.9080 0.9376  44 0.9611 0.9734 

16 0.9121 0.9405  45 0.9620 0.9739 

17 0.9160 0.9433  46 0.9629 0.9744 

18 0.9196 0.9452  47 0.9637 0.9748 

19 0.9230 0.9479  48 0.9640 0.9753 

20 0.9256 0.9498  49 0.9643 0.9758 

21 0.9285 0.9515  50 0.9654 0.9761 

22 0.9308 0.9535  55 0.9683 0.9781 

23 0.9334 0.9548  60 0.9706 0.9797 

24 0.9356 0.9564  65 0.9723 0.9809 

25 0.9370 0.9575  70 0.9742 0.9822 

26 0.9393 0.9590  75 0.9758 0.9831 

27 0.9413 0.9600  80 0.9771 0.9841 

28 0.9428 0.9615  85 0.9784 0.9850 

29 0.9441 0.9622  90 0.9797 0.9857 

30 0.9462 0.9634  95 0.9804 0.9864 

31 0.9476 0.9644  100 0.9814 0.9869 

32 0.9490 0.9652     
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Appendix F: Minimum Corrected Sample Size 

The corrected minimum sample size for normally distributed data can be 

estimated from the table below, assuming a 95% confidence interval and less than 100 

samples in total. For uncorrected sample sizes larger than 100 or for a different 

confidence interval,  please consult the previously published table in Kupper & Hafner 

(1989). 

Table 14: Corrected Minimum Sample Size 

Uncorrected, 

! 

˜ N  Corrected, 

! 

N * 

5 10 

10 16 

15 22 

20 28 

25 34 

30 40 

35 46 

40 51 

45 57 

50 62 

55 68 

60 74 

65 79 

70 85 

75 90 

80 95 

85 101 

90 106 

95 112 

100 117 
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