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Coastal marshes are considered as important features of the landscape that are 

at risk of loss.  Accurately assessing their prospects for survival is difficult in view of 

the wide possible causes of loss, the large areas involved and that most research is

done on relatively small parcels.  This project examined the probability of conversion 

of marsh surface parcels to open water as a function of distance from roadways across 

marshes, tidal creeks, and upland areas, and the distance upstream, and the size of a 



marsh parcel.  These are understood to be stand-ins for hydrology, elevation and other 

factors that are more difficult to measure.

  The study area was divided into a MidAtlantic coastal region and a large 

bays region comprising the Chesapeake and Delaware Bays.  A semi-automated 

system was developed for measuring the extent and severity of coastal marsh loss 

using Thematic Mapper (TM) data.  The data derived from the TM analysis were 

used to develop algorithms to examine the impacts of the five factors listed above.  

The factors were examined individually using ordinary least squares (OLS) 

regression, and collectively using logistic regression.  The OLS regression revealed 

that distance from uplands and distance from the nearest tidal creek were highly 

correlated with marsh loss in both areas.  For the Atlantic Coast, however, the loss 

was negatively related to distance from tidal creeks, the opposite of what was 

expected.  Distance upstream was negatively correlated with marsh loss as predicted.  

The relationship between distance from roads and marsh loss indicated that marshes 

are healthier near roads than farther away.  The relationship between parcel size and 

marsh loss was non-linear, with small and large marshes having a lower probability of 

degradation than mid-sized marshes.  The logistic regression model is useful for 

identifying areas with higher probabilities of conversion to open water.  Sea level rise 

(SLR), tidal range, easting and northing were examined for use with the logistic 

models.  SLR and tidal range added no information to the bay areas, but sea level rise 

was weakly negatively correlated with marsh loss on the Atlantic Coast and tidal 

range was weakly positively related.  
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Chapter 1: Introduction 

Objective:

Research into coastal marsh loss has tended to focus on point or small plot 

measurements (e.g., Bricker-Urso et al., 1989; Cahoon and Reed, 1995; Craft and 

Broome, 1993; Bryant and Chabreck, 1998).  These studies typically use a variety of 

techniques to estimate the ability of the marsh surface to keep up with changing sea 

levels, and involve historical analyses involving radioactive materials or stable 

isotopes (Chmura and Aharon, 1995; DeLaune et al., 1983a; Kearney, 1996),  

measurements of thickness of substrate, placing markers on the surface and 

measuring deposition at the point where the marker is placed over some period of 

time.  These efforts have been critically important in developing an understanding of 

how marshes function.  However, they cannot, by themselves, adequately address the 

underlying question of what is happening to coastal marshes and why.  It is often 

difficult, or impossible, to relate findings at one location to other locations in the 

same marsh, much less locations in distant marshes.  In addition, the methods tend to 

be very time and effort intensive.  

Turner (1997) notes that the lack of clearly stated hypotheses for testing, 

quantification and prediction hinders good decision making for management.  

Further, due to not having carefully stated, testable hypotheses, researchers made 

diametrically opposed recommendations to the Louisiana government as to what 

actions would resolve the marsh loss in the Mississippi delta.  This dissertation builds 
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on the knowledge gained from earlier studies, looks at factors that may lead to coastal 

marsh loss and that extend across all marshes, and the considers possibility of 

quantifying the influence of these factors.  In doing so, it proposes five specific 

hypotheses to test.

The purpose of this research is to develop an understanding of the interaction 

between five factors, which can influence the conversion of coastal marshes to open 

water.  The factors chosen to develop a multivariate spatial model are: 1) distance 

from the nearest road; 2) distance from the nearest tidal stream; 3) distance upstream 

from oceanic forcing such as the Atlantic Ocean or a major bay (such as the 

Chesapeake) where sea level rise could dominate the loss of marshes; 4) distance 

from the nearest upland; 5) total size of the parcel.  These factors were chosen 

because they affect hydrology and sediment loading to the marsh surface and they, in 

turn, reflect subtle changes in elevation that are often on the order of a few 

centimeters.  Their selection reflects the underlying assumption that hydrology, 

sediment supply, and elevation are key factors in marsh loss.  These five factors will 

be discussed in more detail in the next section followed by a more general discussion 

of the interplay between marsh hydrology, sediment dynamics and marsh loss in 

Chapter 2.  In addition, the factors chosen can all be derived from readily available 

information such as existing maps and remotely sensed data rather than requiring 

intensive and time-consuming field techniques that are often point-specific.  

The specific factors examined in this dissertation reflect current thinking on 

tidal wetland loss and the value of coastal marshes (Cahoon and Reed, 1995; 

Kearney, 1996; Orson, 1996; Stevenson and Kearney, 1996; Van der Molen, 1997; 
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Bryant and Chabreck, 1998; Esselink et al., 1998; Evers et al., 1998; Boggs and 

Shepherd, 1999; Hazelden and Boorman, 1999;Kuhn et al., 1999; Roulet, 2000; 

Hartig et al., 2002; Kearney et al., 2002; Morris et al., 2002; Anastasiou and Brooks, 

2003;Sun et al., 2003).  The value of coastal marshes and factors affecting loss are 

discussed in Chapter 2.  

The separate question of the rate of marsh vertical accretion versus sea level 

rise is not examined directly.  However, if a marsh area is accreting at the appropriate 

rate, it will maintain itself as healthy marsh.  If not, it will eventually drown.  The 

expansion of marshes outside the study area is not examined, as areas outside the 

bounds of the study area are not examined.

Hypotheses:  

The probability of a parcel of marsh being open water is directly related to 

specific landscape and related hydrological factors.  This proposition can be rewritten 

as five specific hypotheses, as shown below.  The null hypothesis for each of these 

specific hypotheses can be simply stated as follows: “The conversion of marsh 

surface to open water is a completely stochastic process, and it is not possible to infer 

that ponds are more or less likely to form in certain places based on this factor.”

The hypotheses for testing the five factors are: 

Hypothesis 1.  The probability of a parcel being completely open water will be 

negatively related to the distance of the parcel from a road.

Hypothesis 2.  The probability of a parcel being completely open water will be 

positively related to the distance the parcel is from the nearest tidal creek or man-
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made ditch (e.g. mosquito ditches). 

Hypothesis 3.  The probability of a parcel being completely open water will be 

negatively related to the distance the marsh system containing the parcel is upstream.

Hypothesis 4.  The probability of a parcel being completely open water will be 

positively related to the distance of the parcel from the upland.

Hypothesis 5:  The probability of a parcel being completely open water will 

be negatively related to the size of the marsh parcel containing the grid cell.

These factors will be conditioned by the introduction of tidal range and local 

relative sea level rise to the model.  The detailed rationales underlying the selection of 

these specific hypotheses are explained in subsequent sections.

Rationales for Selection of Hypotheses

Hypothesis 1:

Hypothesis 1 is that the installation of a paved road across a marsh encourages 

marsh loss in the vicinity of the road, but outside a buffer zone around the road where 

marsh stability may actually be enhanced.  A road across a marsh may actually 

increase structural integrity in its immediate vicinity due to installation of materials 

suitable for road construction.  The weight of a road constructed across a marsh may 

also push the immediately surrounding marsh up (Stevenson, pers. com, 1999).  In 

addition, roads may be built on the most stable part of the marsh and often connect 

islands within the marsh.

There are two possible modes of response involved.  Structures that prevent 

flow can limit the supply of inorganic material to the marsh surface.  For example, 
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Allen and Rae (1988) found that marshes on opposite sides of a seawall along the 

Severn River in the U.K. had an average height difference of 1.2 meters, with the 

section of marsh that was still subjected to tidal flooding being higher.  This may be 

due to drying of the peat on the non-tidal side (Bryant and Chabreck, 1998), resulting 

in compaction (Bricker-Urso et al., 1989) or lack of inorganic sediment input or both.  

Stevenson and Kearney (1996) note that building roads across marshes may limit 

their ability to trap sediment.  In the absence of inorganic sediment input, the marsh 

surface can only accrete vertically via deposition of leaf and stem litter (above ground 

biomass) and development of rhizome systems (below ground biomass) (Boesch et 

al., 1994; Stevenson et al., 1988).  The inorganic portion of the sediment may be more 

important as a nutrient than for its actual bulk volume (Bricker-Urso et al., 1989).

Bryant and Chabreck (1998) examined the impact of impoundments on 

marshes in Louisiana.  They found that marshes impounded behind levees did not 

accrete as rapidly as areas of the same marsh outside the impoundments.  They 

attribute this to several factors, principally a lack of inorganic sediment input, but also 

drying the marsh, which increases the oxidation rate of the organic fraction of the 

sediment.  Where there is an impoundment, they further speculated that the only 

times the marsh surface would be nourished with mineral sediment was during storm 

events that overtopped the levees.  Floods of this size, however, could easily remove 

the organic debris that forms much of the bulk of the marsh.  

In other situations, roads may promote marsh loss through trapping water on 

one side of the road.  If water becomes impounded behind a causeway, the soil will 

become anoxic and organisms may be subjected to longer periods of higher salinity.  
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Under extremely anoxic conditions sulfate is reduced to toxic sulfide (Kerner, 1993).  

Stevenson and Kearney (1996) suggest that the formation of oozes with "negligible 

structural integrity," such as underlie much of Blackwater National Wildlife refuge, 

may be a result of sulfate reduction and nitrate additions.  These oozes contribute to 

the erodability of the marsh once the root mat is gone.  Low plant productivity may 

be caused by the stress of anaerobic conditions (DeLaune et al., 1983b), which then 

causes reduced production of biomass.  This can be especially problematic when low 

organic sediment input to the marsh is coupled with the low inorganic sediment input 

(due to the less effective trapping of mineral sediment from reduced aboveground 

biomass).

On the other hand, some flooding and the resulting anoxic soil conditions may 

actually improve the vertical accretion rate because organic debris in the oxic layer 

degrades rapidly and most of the bulk is lost.  Degradation of peat under anoxic 

conditions is much slower than under oxic conditions (Halupa and Howes, 1995).   

Hypothesis 2:

Hypothesis 2 is that formation of ponds will tend to take place away from tidal 

creeks, man-made ditches and similar sources of sediment-laden overwash.  Several 

studies have plotted regressions of marsh vertical accretion rates vs. distance to 

nearest tidal creek (Esselink et al., 1998; French and Spencer, 1993; Hatton et al., 

1983).  All three showed vertical accretion rates are related to proximity to a stream, 

at least for short distances.  This phenomenon reflects the rapid trapping of mineral 

sediment by the culms of the plants adjacent to tidal creeks, as marsh surfaces are 
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flooded during high tide (see Leonard and Reed, 2000).

However, this effect may be confounded by topography, as studies also find 

topography and vertical accretion rates to be correlated (Esselink et al., 1998; French 

and Spencer, 1993; Letzsch and Frey, 1980).  In a study of a Louisiana salt marsh, 

Cahoon and Reed (1995) concluded that marsh topography exerted a strong influence 

on hydroperiod, with areas of lower topographic relief in some areas contributing to 

dramatic increases in hydroperiod, yielding greater accretion during extended 

flooding events.  Nonetheless, despite  the potential for increased flooding and 

deposition, the lowest areas of the marsh were found to be deteriorating rapidly, 

largely due to the fact that the lowest areas are interior marsh areas where limited 

influx of mineral sediments yields low rates of vertical accretion.   

Similarly, the development of submerged upland marshes tends to result in 

marshes with poorly developed tidal creek systems.  As the marshes spread inland, 

areas away from the tidal creeks can actually receive less inorganic sediment, relying 

solely on peat accumulation for vertical accretion (Stevenson and Kearney, 1996).  

Hypothesis 3:

Hypothesis 3 is that coastal marsh loss is directly related to distance 

downstream.  Coastal marsh loss, in the absence of anthropogenic factors,  has been 

shown to be related to sea level rise (DeLaune et al., 1983, Downs et al., 1994).  If 

this is true, then there should be a trend for downstream marshes (which are closer to 

both sea level and the sea) to disappear faster than upstream marshes.  As sea level 

rises, the hydroperiod and salinity of lower marshes will change more than those 
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upstream.  The plant communities in upstream marshes are more diverse and can still 

convert to salt-tolerant species.  Downstream marshes are already likely to be 

maximally adapted to salinity and more regular hydroperiods with a few plant species 

that are already under stress.  Therefore, when the salinity and hydroperiod increase, 

the marsh will be more likely to die (Nyman et al., 1995). 

In the Great Lakes, where water levels can rise or fall over periods of decades, 

Keough et al. (1999) report in a review article that, in fact, this progression is what 

takes place.  As the water rises, the more water-adapted species at the water’s edge 

are forced to shift back into the marsh, with subsequent displacement of less water 

tolerant species.  

In one study, species distribution in terms of total numbers of species and in 

the species present changed abruptly going from fresh to oligohaline conditions.  The 

numbers dropped dramatically from 18 species in the freshwater site, to three in 

oligohaline conditions and five in mesohaline areas (Latham et al., 1991). 

A preliminary study of four sites along the Patuxent River, MD, (Rogers, 

unpublished data ) found that species richness was weakly correlated (0.38) with 

distance upstream from the river mouth.  However, the marsh farthest upstream had 

twice the species richness as the most downstream marsh.  

Hypothesis 4:  

Hypothesis four is that the probability of a parcel being completely open water 

will be positively related to the distance of the parcel away from the nearest upland 

area.  Upland should provide several benefits to the marsh immediately adjacent to it.  
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One, of course, is simply elevation:  the marsh adjacent to the upland is generally 

higher than the rest of the marsh farther away since the marsh surface rises in 

elevation inland.  Secondly, if the marsh was formed by deposition onto a substrate as 

sea level rose over the last few millennia, then the depth of peat will be less near the 

upland and this may provide more stability to the marsh.  In addition, there will be 

fresh water runoff, which will both provide sediment and reduce the salinity of the 

adjacent marsh.  The logic behind this hypothesis is that near the upland, there will be 

both a slight elevation change and that the marsh substrate may be shallower with 

firmer soil underneath near the upland.

The distance to the nearest upland was added as a parameter after a brief 

preliminary study (Rogers unpublished data) looked at 24 plots spread along four 

transects along the Patuxent River.  In this study, four parameters - salinity, soil 

redox1 potential, amount of bare soil and the plant species richness  - were measured 

and related to distance upstream and distance from the shore.  Six 1-meter-square 

plots were sampled in pairs along each transect line at 0, 15 and 30 meters from the 

shore.  The plots in each pair were five meters from either side of the transect.  The 

expectation in collecting these was that redox potential would decrease moving from 

the shore (where there is often a levee) into the interior, which often retains water 

between tidal cycles.  Also, the salinity and percent bare soil were expected to 

increase along each transect.  These expectations were not met, however.  Salinity did 

1 “Redox potential: The tendency of oxidation – reduction reactions to occur.  An oxidation –

reduction reaction occurs when an oxidizing agent, often oxygen, acquires electrons from a reducing 

agent such as carbon or hydrogen.”
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increase in some cases, but it was not consistent.  This may reflect the difference in 

the sizes of the marsh areas sampled, with some being narrower strips between the 

adjacent upland and the river.  

This study also found that redox potential was weakly correlated with distance 

from the Patuxent River.  However, the redox potential was highest near the river 

shore (perhaps a levee effect due to greater sediment influx), lower 15 meters inland 

and higher again at 30 meters for the marsh where the distance from shore to upland 

was shortest.  This may indicate that the proximity of the upland helped reduce the 

soil anoxia by greater aeration due to flushing from the upland gradient of 

soil/substrate pore water by throughflow.  Due to the above observations, distance 

from the nearest upland was added as a factor to be tested.

Hypothesis 5:

Hypothesis 5 is that marsh loss rates are negatively related to total parcel area.  

As parcels of a marsh become smaller and smaller, the edge exposed to erosion 

becomes much greater compared to the amount of marsh that is left to erode.  Based 

on this reasoning, small parcels should disappear faster than large parcels.  

Conversely, small parcels of marsh may be resistant to loss, because no part of the 

marsh is far from the sediment input sources.  Also, small marshes are likely to be the 

least erodible areas of a larger marsh that have been left behind and may tend to 

represent areas that are linked closely to uplands.  Only large parcels have enough 

interior area to develop ponds with sufficient surface area for waves to develop.  

Similarly, newly-formed channels can help remove sediment more expeditiously from 
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the marsh (DeLaune et al., 1983a), as well as serving as loci for interior pond 

formation (see Kearney et al., 1988).   

This hypothesis is distinctly different from the others in several ways.  Effects 

related to size of the parcel are liable (as noted above) to be related to a variety of 

other effects.  This hypothesis was introduced to determine how selection of the size 

of a marsh parcel in a study affects conclusions about its vulnerability.  If there is no 

size dependency, then studies of small marshes can be applied to large marshes and 

vice versa.  If there is a size dependency, then this has to be considered in making 

comparisons across marsh size ranges.  

Effects of Scale:

Measurements of the same property at different scales may yield different 

causal relationships.  For example, local biological dynamics can dominate at small 

scales, but physical processes tend to dominate at larger scales (Wiens, 1989).  

Furthermore, quite different effects can explain the same phenomena at different 

scales.  For example, leaf litter decomposition at the local level is explained by the 

properties of the litter and the decomposers.  However, at regional scales, climatic 

variation accounts for most of the difference (Meentemeyer, 1984).  In terrestrial 

ecosystems, physical factors tend to operate at regional or continental scales, whereas 

these physical effects are overcome by biological drivers at local scales.  However, 

plant communities can influence climate at regional scales and plant growth can be 

affected by microtopography and edaphic factors (Wiens, 1989).  These effects will 

be discussed in separate sections below.
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This principle can be seen to operate in coastal marshes.  Plant canopies in 

experimental flumes affect water velocity and, therefore, deposition and erosion of 

sediment (Shi et al., 1995).  Moreover, they are largely responsible for the organic 

fraction of the vertical accretionary budget (Kearney et al., 1988).  However, 

ultimately both factors are modulated by sea level rise.  On the other hand, two 

identical inputs can have completely different relationships at different scales (Wiens, 

1989).  Wiens notes, for example, that Least Flycatcher and American Redstart 

populations are negatively correlated on local scales, but positively correlated on 

regional scales.  This is presumably because of interspecific competition at small 

scales, but usage of identical habitats that dominates at regional scales.

In addition, Wiens identifies “grain” and “extent” as limits on scale.  The 

grain is the smallest parcel size that is measured; the extent is the total study area.  In 

this study, the grain size is 28.5 meters and the largest extent is approximately 1000 

kilometers.  This means that any variation smaller than 28.5 meters is invisible to this 

project.  No tidal creeks smaller than 28.5 meters were used as inputs and small 

bodies of water were not recorded as such.  The formation of small ponds, as long as 

they do not occupy over 50% of a pixel, is not observed.  The trends measured by 

Rogers (unpublished) in chemistry, species richness, salinity, and bare soil across the 

marshes would not be visible in this study, although the trends going upstream are 

visible.  In addition, while the impact of large populations of herbivores would be 

visible, small eat-outs might not be.  The overall result of this is that the biotic, 

inorganic and microtopographic drivers of the beginnings of pond formation cannot 

be observed at the scale of this study.   
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The five factors proposed for examination as part of the hypothesis would be 

expected, like the weak, strong, electromagnetic and gravitational forces, to act over 

different ranges with different strengths.  If there is a correlation of loss with size, that 

would be strictly related to the immediate parcel of marsh.  The impact of roads, 

causeways, levees and similar structures that block water and sediment movement 

would be expected to be greatest over distances of tens to hundreds of meters.  

Distance from the nearest tidal creek would be a factor that would operate at most at 

the scale of a single marsh.  The distance of the marsh upstream, on the other hand, 

would certainly influence the sedimentary dynamics of individual marshes, but as a 

phenomenon probably is best observed over the length of an entire river system.  
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Chapter 2: Coastal Marshes

The Value of Coastal Salt Marshes

Coastal marshes are important for a number of reasons.  In brief, marshes are 

viewed as traps for various pollutants and CO2 (Craft and Broome, 1993, Roulet, 2000) 

as well as sediment (Hutchinson et al., 1995).  Under some circumstances, they can also 

be sources of sediment  (Stevenson et al., 1988; Wang et al., 1993) and nutrients 

(Childers et al., 1993).  The current focus on global carbon cycles makes carbon 

sequestration an especially important value.  As long as coastal marshes maintain 

themselves with regard to rising sea level, they will continue to sequester carbon, because 

they have to build substrate.  

It has been widely believed that detritus from marshes contributes to the 

estuarine/marine food webs (Odum et al., 1995; Peterson and Howarth, 1987).  Wetlands 

provide habitat for a variety of resident species, both plant and animal, including nursery 

areas for young fish and shellfish (Browder, 1985; Minello et al., 1994; Rozas, 1995; 

Schenker and Dean, 1979).  Marshes are also critical habitat for many migratory bird 

species (Daborn et al., 1993; Erwin, 1996, Gabrey et al., 1999). 

Coastal Salt Marsh Loss Factors

Coastal salt marshes are often considered to be geologically transient systems 

(Dame and Childers, 1992) that are sensitive to any changes in hydrology, hydroperiod or 

salinity (Kuhn et al., 1999; Morris et al., 2002) and are currently being lost (Figure 1).  

Some of the factors contributing to this loss are the position of a marsh in the landscape, 
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chemistry, sediment supply, marsh structure, sea level rise, anthropological impacts, 

fauna, flora, and history.

Each of these factors will be discussed below, however, not all of these factors are 

examined as part this dissertation.

Landscape Position

The position of a marsh in the landscape will determine much about the 

hydrology, hydroperiod and salinity (Morris et al., 2002).  For example, in any one 

marsh, the high marsh will, by virtue of its slightly higher elevation and distance from the 

stream channels, have a lower hydroperiod than the areas of the marsh at lower elevation 

and closer to sea level.  The high marsh, however, 

  may have areas subject to very high salinity stresses if tidal water is trapped and 

evaporates, especially above the MHW mark, because it may be several weeks before 

another tide comes in and dilutes it back to normal seawater salinity (Frey and Basan, 

1985).  Deposition rates and tidal range are positively correlated (Letzsch and Frey, 1980; 

Stevenson et al., 1986) with tidal range affected by several factors, including coastal 

setting, and local topography.  

Chemistry

The chemistry of estuarine intertidal marsh soils has some common 

characteristics, which distinguish it from other soils.  The salinities tend to be high, as do 

concentrations of sulfide ion, and reducing conditions tend to prevail over oxidizing 

conditions below the soil surface (Anastasiou and Brooks, 2003).  On a local scale, marsh 
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chemistry is strongly influenced by hydroperiod and salinity.  Although tidal water can 

sometimes be trapped in the upper marsh and become highly saline as the water 

evaporates, the overall incoming tidal water will be lower in salinity farther upstream.  

Increasing salinity tends to make particulates flocculate and precipitate.  This 

occurs at relatively low salinities, however, so that fresh water coming downstream will 

have its sediment load stripped relatively far upstream.  This causes marshes upstream to 

have relatively more sediment input than marshes downstream (see Kearney and Ward, 

1986), but more at the margins than the interiors.  For example, Jug Bay in Maryland has 

been filling in for over a century (Heinle and Flemer, 1976) as marshes grow from the 

edges of the bay.  Thus, one effect of being at the freshwater-saltwater interface is that 

marshes will tend to be expanding. 

Sediment Supply

Stevenson and Kearney (1996)) suggest that regional variations in sediment 

supply may be a major factor in marsh loss and survival in the Chesapeake Bay.  Marshes 

of the western shore of the Chesapeake, where sediment influx is undoubtedly higher due 

to physiography (the Fall Line) and extensive land clearance, tend to be stable or growing 

while the relatively sediment-starved marshes of the Eastern Shore are being lost.  In the 

Baie du Mont Saint Michel, France, there is a positive sediment budget.  The salt marshes 

are growing at a current estimated rate of 90,000 meters2 per year (Haslett et al., 2003), 

so even in the face of rising sea level, with enough sediment supply marshes can still 

grow.  
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Marsh Structure

Tidal marshes have a characteristic structure dominated by the interaction 

between tidal range and marsh topography (Stevenson et al., 1986).  In tidal marshes, , 

the incoming tide flows over the creek banks, and because the sediment carrying capacity 

is directly related to velocity, the bulk of the sediment is deposited on the creek banks, 

building stable levees with a large percentage of inorganic material (Esselink et al., 1998; 

French and Spencer, 1993; Hatton et al., 1983; (Kearney et al., 1988)).  However, if 

insufficient sediment is available for transport, or for other reasons, levee building may 

not always occur, as has been reported for marshes along the lower Nanticoke River in 

Maryland (Kearney et al., 1988).

The interior of the marsh typically receives little inorganic input (Kearney et al., 

1988, 1994; French and Spencer, 1993), and the sediment there frequently consists of 

organic material derived from local plant production, although some organic material 

may be imported by flooding (Cahoon and Reed, 1995).  

These landscape features are important in the face of sea level rise.  If the low 

marsh areas fail to keep up with sea level rise, they will likely drown first.  However, 

rising sea level may eventually convert the high marsh to low marsh.

Kearney et al. (1988) discuss three geomorphic types of land loss.

"(1) shoreline retreat (Figure 2)

 (2) widening of tidal creeks (Figure 3)

 (3) interior ponding" (Figure 4 and Figure 5) 

Shoreline retreat is a result of wave erosion and is thought to account for only 1% 

of coastal marsh loss in the U.S. (Gosselink and Baumann, 1980).  Widening of tidal 
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creeks (Figure 3) is caused by erosion along tidal creek banks, which is most prevalent in 

estuarine meander marshes where growth of tidal networks can be promoted (Kearney, et 

al., 1988; Gammill and Hosier, 1992).  It is similar to creek bank erosion just before 

bankfull stage in rivers, but in this case probably reflects rising tidal prisms due to sea 

level rise.  Burrowing animals, such as crabs and bivalves, may play a role by weakening 

the marsh sediments (the root mat) and  facilitating erosion (Frey and Basan, 1985).  In 

some coastal marshes of the Chesapeake Bay, creek bank erosion has accounted for as 

much as 20 - 30 percent of total marsh loss since 1938 (Kearney et al., 1988).    

Interior ponding (Figure 4 and Figure 5) begins with the formation of small 

pannes which can form from eat-outs by ducks, geese, and muskrats, but are likely a 

response to slow rates of vertical accretion begins with the formation of small pannes 

(Stevenson et al., 1985).  When water stays on the surface in these pannes too long, plant 

roots are subjected to stress due to the long periods of anoxic soil conditions.  The 

prolonged exposure to higher salinity and anoxia may kill the plants whose roots hold the 

substrate together.  Once the plants die, the sediment can become resuspended due to 

tidal or storm action and removed with the ebb tide.  Bryant and Chabreck (1998) discuss 

this removal of plant detritus from impounded areas.  The mobility of sediments in and 

out can make a large difference in this process.  If sediments are readily available for 

import, the panne may be refilled (Mitsch and Gosselink, 2000), especially when 

sediment is remobilized after hurricanes.

Eventually, the panne may become a permanently filled pond.  At this point, the 

pond can begin to grow as more plants at the periphery die, and more sediment is 

resuspended and removed during storm events.  Eventually, neighboring ponds will begin 



19

to coalesce and become large enough that storm-driven waves can begin to actively erode 

the edges (Kearney et al., 1988, Stevenson et al., 1985).  

Sea level rise

Rates of sea-level rise for much of the Eastern Seaboard and Gulf Coast are 

generally held to be the underlying cause (Dame and Childers, 1992; Kearney et al., 

1988; Kearney et al., 2002; Stevenson and Kearney, 1996) for the dramatic decline 

(approximately 50%) in marsh acreage since 1900 (Gosselink and Baumann, 1980).   

Marshes in some places cannot migrate inland due to land form constraints such as the 

Pleistocene Talbot terrace landward of some Nanticoke River marshes (Kearney et al., 

1988) or due to human intervention, such as bulkheads (Titus, 1998), or by being 

completely surrounded by the sea, such as Bloodsworth Island (Downs et al., 1994).  The 

studies of the relationship of marsh development to sea level rise raise concerns about 

marsh survival in the 21st century, when the global sea level trend may accelerate due to 

greenhouse warming (Nyman et al., 1995).  Reflecting this uncertainty, Bricker-Urso et 

al. (1989) concluded that the New England marshes might be characterized by a 

maximum vertical accretion rate that, if exceeded by local relative sea level rise, will 

cause these marshes to disappear.  

The impact from sea level rise is not distributed evenly over the course of a tidal 

river.  Figure 6 shows that maximum sediment input will occur where the tidal range is 

highest (Morris et al., 2002), which is not necessarily at one end of the river system.  As 

relative sea level rises, water that is more saline will move into the system, hydroperiods 

will increase, resulting in increased duration of hypoxic soil conditions.  Plants at the 
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lower end of the river are already the most salt-tolerant species.  Therefore, as the 

hypoxia kills the existing plant community, there are no other plants capable of replacing 

it.  At the fresh water end, however, plant community shifts can allow the marsh system 

to continue.  Even S. alterniflora, among the most adapted of coastal marsh plants to 

rising salinity, will eventually succumb to drowning (Mendelssohn et al., 1982). 

Anthropological Impacts

However, coastal marshes are also being threatened by a variety of human 

activities including oil and gas extraction (Dijkema, 1997; White and Morton, 1997; 

White and Tremblay, 1995), urban development, sediment diversion, and possibly other 

factors, such as road construction (Stevenson and Kearney, 1996).  Marsh management 

techniques may also promote loss (Gabrey et al., 1999).  Such techniques include marsh 

burning in fall or winter, or structural marsh management (SMM), which uses levees and 

water control systems to regulate the hydroperiod of enclosed areas (Gabrey et al., 1999; 

Kuhn et al., 1999).    Both approaches can limit the vertical accretion by reducing detrital 

inputs (in the case of marsh burning) or mineral sediment inputs (in the case of levees and 

other hydroperiod controls).  In a study of four hypotheses explaining loss of marshes in 

Louisiana, the losses correlated with canals and accompanying dredge spoil levees lining 

the canals (Turner, 1997).  The combination of canals, which drain water, and levees, 

which prevent overwash, has the double impact of lowering the water table in the 

wetlands while simultaneously preventing tidal overwash from reaching the marsh

surface with nutrients and sediment.
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Fauna

In addition to these factors, animal populations may influence the health of 

marshes in various ways.  Snow geese (Gabrey et al, 1999) and Nutria (Carter et al., 

1999) both eat the plant roots.  At Jug Bay Wetlands Sanctuary in Maryland, carp are 

implicated in consuming young wild rice plants (Baldwin, pers. com.), and year-round 

resident Canada geese eat the seedpods as they are growing in the spring.  Oyster reefs 

may, in some cases, significantly change water – flow and sediment dynamics.  This may 

help nutrient retention, aiding the development of bar-built estuarine marshes (Dame and 

Childers, 1992).

Nutria, an invasive species, may cause destruction of the marsh substrate by 

grubbing for roots.  Evers et al. (1998) found that, although Nutria could not be shown to 

be more destructive than waterfowl, they can cause reductions in plant biomass and 

productivity.  They also found that areas grazed by both waterfowl and Nutria tend to be 

more affected than areas grazed by only one.  Grace and Ford (1996) discussed the 

impact of Nutria on Louisiana marshes from the findings of numerous other scientists 

and their own work.  Their finding, using simulated herbivory, was that some marsh 

plants (Sagittaria lancifolia in particular) can recover quickly even after suffering stress 

from storm-induced salt water intrusion.

Flora          

The interaction between plants and marsh degradation can be quite complex.  

Plant communities can help to stabilize the marsh by trapping sediment and providing 

litter (Morris et al., 2002).  For Spartina alterniflora, the maximum growth occurs when 



22

the plants are below the mean high tide (MHT).  In North Inlet, South Carolina, much of 

the S. alterniflora is above its optimal position and is stunted.  However, as sea level 

rises, plants respond with more growth, which traps more sediment, which maintains the 

elevation (Morris et al., 2002).

The high marsh is only slightly higher than the low marsh, but the elevation 

difference is just sufficient to decrease the hydroperiod so that different plant species 

grow there.  For example, Phragmites australis tends to grow in the high marsh and 

invade low marsh areas (if salinities are very low).  Even in the low marsh areas P.

australis produces more biomass than Spartina patens in the same environment, and the 

material is more resistant to microbial degradation (Windham, 2001).  It follows from 

this that P. australis can contribute more inorganic material to the marsh surface than S. 

patens, at least under some conditions.  

Stribling and Cornwell (2001) note that upper marsh areas - where salinity 

stresses are lower - are often subjected to high fluctuations in nutrients, especially from 

farm run off.  While the fluctuations present an additional stress, the additional nutrients 

support increased plant growth.  Increased plant production would cause an increase in 

sediment trapping.  

This dissertation will not look at the impacts of different plant communities or 

different  biomass production rates specifically because plant communities cannot be 

differentiated by the remote sensing techniques used.  However, plant community 

interactions to marsh topography are part of what drives the effects being studied.  In 

examining the proposed five factors, both the influence of plant communities and the 

drivers of plant community development in the salt marsh are being reviewed indirectly.
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Histories

The marsh areas under study have different histories.  The salt marshes of the 

Delaware Bay were dissected by mosquito control ditches dug in the 1930’s by the 

Civilian Conservation Corp.  Areas were impounded in the 1950’s and 1960’s to provide 

habitat for waterfowl and some areas were historically used for salt hay farming.  About 

4% of the tidal wetlands along the Delaware Bay have been filled for residential, 

commercial or industrial uses since 1950.  This low rate (about 0.1% per year) of loss is 

associated with limited human population below the Delaware Memorial Bridge and 

large amounts of wetlands held in public and private preserves (Sullivan et al., 1991). 

The Delaware Inland Bays have in excess of 6,573 acres of tidal wetlands 

(Weston, Inc., 1992).  Over 2,000 acres were lost from 1938 – 1973 (Weston, Inc., 1992).  

Natural losses are attributed to sea level rise, natural succession, the hydrologic cycle, 

erosion, sedimentation and fire.  Human induced losses are attributed to drainage and 

channelization, filling for development, dredging, pond construction, timber harvesting, 

and water pollution and waste disposal (Tiner, 1985).

The Albemarle-Pamlico Sound is the largest sound formed behind barrier beaches 

on the East Coast (Stanley, 1993).  Although the region is relatively undeveloped, human 

activities such as draining, dredging and filling in connection with agriculture, housing 

development and forestry still change the marshes (Stanley, 1993).  In 1962, there were 

an estimated 4,897 hectares of salt marsh in Pamlico Sound and none in Albemarle 

Sound (Wilson, 1962).  There are eight times as many acres of nontidal and brackish 

marshes as salt marshes in Pamlico Sound.  Large areas of marsh were previously altered 

by mosquito ditches and creating impoundments for waterfowl.  A moratorium on 
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ditching has been in place and future losses from direct human impacts should be 

minimal (Kuenzler and Marshall, 1973; Steel, 1991). 

The different histories for each of these areas will cause differences in outcomes 

as to rates and locality of marsh loss.  However, by averaging data from the entire East 

Coast, the general trends will be isolated and impact of the individual histories will be 

lessened in the aggregation.
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Figure 1.  Variations in Annual Marsh Loss Rates along the East Coast.
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Figure 2.  Shoreline Erosion

This figure shows erosion along the western shore of the Delaware Bay.
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Figure 3. Tidal Creek Widening

The gray-scale is a March, 1992, aerial photograph of the area.  The picture shows 

how the CMP data relates to areas of change in the photograph.
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Figure 4. Pond Expansion.  

This figure shows the current area of some ponds in Bombay Hook, 
Delaware.  The Coastal Marsh Project analysis of the same area is shown in 
Figure 5.  The light blue areas in Figure 5 show the area of the ponds at the 
time of the NWI.
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Figure 5. Pond Growth Seen in Coastal Marsh Project Data.  

This is the same area shown in Figure 4.  The growth of ponds and 
appearance of new ponds can be identified as shown by the arrows in 
Figure 5.
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Figure 6. Changing Impact of Sea Level Rise along a River.  

This picture is only an example.  The maximum tide could be in other 
places along the system, including the freshwater portion.
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Chapter 3 Remote Sensing: 

Problems in Assessing the Risk of Loss

The Need for a Remote Sensing Method

Marsh loss has been shown to occur through the processes of pond formation and 

growth, tidal creek expansion and shoreline erosion discussed above.  These processes 

produce distinctive large and small-scale physical changes in the marsh surface (Kearney 

and Stevenson, 1989).  Based on the different stages of marsh loss, Kearney et al. (1988) 

developed a marsh surface condition index (MSCI) to classify marshes in the Nanticoke 

River estuary according to their degree of degradation.  This classification recognized 

five categories of marsh surface condition ranging from intact “healthy” marsh to 

completely degraded marshes (essentially open water).  Assessing whether a marsh 

belongs in one category or another is based on the presence, relative location, and number 

of key attributes that are generally identifiable on high quality aerial photographs 

(preferably large-scale color photography).  Although several of the intermediate 

categories employ tonal or textural characteristics, this method relies on gross pattern 

recognition and, thus, determining the absolute size or position of the individual features 

is neither fundamental nor critical.  It avoids one of the major pitfalls of conventional 

change detection approaches that inherently rely on a high degree of planimetric 

precision: inaccurate registration of base points between different generations of images.  

However, aerial photography is very expensive to update despite its advantages in terms 

of accuracy and ability to record species differences (Rice et al., 2000).
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Satellite data are available on a regular schedule at a comparatively moderate 

price.  This MSCI does not work well with Thematic Mapper (TM) satellite imagery, 

however.  The visual analysis is time-consuming and susceptible to interpreter bias.  

More importantly, from the perspective of marsh conservation, purely visual inspection 

of TM imagery, which lacks the detail of large-scale aerial photography, generally cannot 

detect reliably the very earliest stages of marsh loss when remediation efforts may be 

most successful.

 Spatial limitations of field-work based studies

Most studies of marsh loss and related topics such as vertical accretion rates, 

examine only small areas, even if the individual plots are spread over a wide area.  Gross 

et al. (1993), for example, studied above-ground and below-ground Spartina alterniflora

biomass production at five sites scattered from Nova Scotia to Georgia.  For many other 

studies, sample sizes ranged from 2 to 27 sites with study areas ranging from 20 meters to 

100 km. (Bricker-Urso et al., 1989; Craft and Broome, 1993; Dame and Childers, 1992; 

Esselink et al., 1998; French and Spencer, 1993; Hatton et al., 1983; Halupa and Howes, 

1995; Hutchinson et al., 1995; Kaye and Barghoorn, 1964; Ke et al., 1994; Kearney et al., 

1988; Kearney et al., 1994; Kelley et al., 1995; Kokot, 1997; Leonard et al., 1995; 

Morrison et al., 1990, 1990; Murray and Spencer, 1997;  Netto and Lana, 1997; Nyman et 

al., 1995; Orson et al., 1990; Orson and Howes, 1992; Osgood and Santos, 1995; Pethick, 

1981; Ramsey et al., 1997a; Van der Molen, 1997; Wang at al., 1993; Wray et al., 1995).  

The small size of these studies is appropriate because it is a scale on which humans can 

make detailed measurements of chemistry, current velocities, sedimentation rates and
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other parameters.  However, it is difficult to integrate the data across larger areas, in part 

because the parameters measured can fluctuate widely over small distances (Rogers, 

unpublished data).  Using such data, and the numerous data points collected by other 

researchers, does not lend itself to aggregation of losses and reliable estimation of losses 

in areas not sampled.  Moreover, the rapidity of marsh loss processes in its later stages 

(cf. Kearney et al., 1988), even for those areas for which relatively recent information is 

available, can quickly make site investigations and aerial photography data outdated.  

Updating the status of marsh condition involves organizing and conducting new 

and often time-consuming field or aerial surveys.  Moreover, because the data derived in 

this manner is generally not immediately amenable to digital analysis, incorporation in 

broader synoptic assessments of coastal marsh change can involve further lengthy 

processing.  For many areas, such as the Atlantic coastline where there are hundreds of 

thousands of hectares of marsh, the scale of such a task is clearly daunting. 

Only two studies, the CoastWatch Change Analysis Program (C-CAP) program 

(NOAA) and the National Wetlands Inventory done by the U.S. Fish and Wildlife

Service, are comparable in size to the output of this project – they are both, in fact, much 

larger, and are the subject of debate.  Both of these are extremely labor intensive 

requiring 1000’s of person-hours to accomplish.  As late as 1994, it was stated, “The 

CoastWatch program will be national in scope and require ... many agencies and 

investigators ...” (Civco et al., 1994).  Therefore, a study comprising the area used here 

has never been undertaken with the ease and repeatability of this study.
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Image Analysis

Remotely sensed data are difficult to interpret, especially in areas where the pixels 

are likely to be highly mixed composites of surface types (Mathieu et al., 1994; Foody 

and Cox, 1994; Huete, 1986). In most marshes, there is vegetation of various types, bare 

soil and open water in various size patches mixed heterogeneously.  At any site, for 

example, surface water may be visible between the shoots of emergent, erectophile 

vegetation, or may occur in large open ponds or creeks.  At larger scales, patches of 

vegetation may vary in size from a few meters to several hectares.  

Mixture modeling has the potential to recover actual percent coverages despite 

this complexity (Mathieu et al. 1994; Foody and Cox, 1994).  Nevertheless, mixture 

modeling has certain inherent limitations.  Traditionally, a linear model is assumed, but a 

linear combination of spectra does not necessarily reproduce measured composite scene 

spectra (Borel and Gerstl, 1994).  

Linear mixture modeling is based on certain assumptions.  The most important 

assumption is that the signal received at the satellite from any ground parcel is simply the 

additive sum of the reflectances of all the surface covers in the parcel, weighted by the 

fraction of the parcel occupied by each surface cover.  The standard linear mixture model 

for three endmembers and three spectral bands may be represented as:

Equation 1.

Ri = ∑ ρijfj + ei, summed from j = 1 to n.

where n is the number of bands, ρij represents the reflectance of surface cover 

type j in band i, f represents the fraction of the pixel covered by cover type j and e 
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represents random error in band i.  The following restrictions are assumed in linear 

mixture modeling:

1) Any pixel on the ground is made up of a composite of spectrally pure cover 

types - the spectra of these cover types are used as endmembers in the analysis.

2) The signal received at the satellite is the linear, weighted sum of the radiances 

from each cover type in the pixel.

3) The percent of the pixel that each cover type occupies can be recovered by 

inverting Equation 1 and solving for each fj.

4) The number of endmembers cannot exceed the number of spectral bands used.

5) All the fj's must sum to one.

6) 0 < fj < 1 for all fj's.

To make sense, the endmembers must be selected from the boundary of the data 

space (Mathieu-Marni et al. 1996) and must be consistently in the same place.  

Analysis of remotely sensed images is often done by a classification scheme that 

assigns a single cover type to each pixel or polygon in an output map.  In a supervised 

classification, spectral signatures are developed by having an analyst choose pixels in the 

satellite image that contain the feature of interest.  The computer then generates a 

signature for that cover type.  In unsupervised classification, the computer analyzes the 

image and breaks it into spectral classes.  In either supervised or unsupervised 

classification, once the spectral signatures are calculated, every pixel in the scene is 

tested to determine which spectra it matches most closely. 

Mixture analysis techniques, in contrast to traditional classification systems, can 

assign more than one value to a pixel.  Most pixels are mixtures of various surface covers 
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(Huete, 1986) and mixture modeling attempts to calculate the fractional covers.  

Donoghue et al. (1994) compared linear unmixing and maximum likelihood classification 

(MLC) and found that both were 90% accurate in delimiting the intertidal vegetation.  

While both produced poorer results in the intertidal zone, linear unmixing proved better 

able to map pioneer vegetation such as Spartina anglica and Salicornia fragilis than the 

MLC.  

Mixture models and classification procedures often have serious inherent flaws.  

They are not reproducible across scenes, and they cannot properly interpret the 

sometimes excessive number of soil and vegetation endmembers present in a scene 

(Smith et al., 1994; Williamson et al., 1994) nor do they include non-linear scattering 

(Borel and Gerstl, 1994).  To overcome the high variability inherent in scenes, the 

tendency in many efforts is toward more complexity in the models (e.g., Roberts et al., 

1993).  This approach can only work to the extent that the inputs are linear and there are 

no more actual endmembers than input independent data channels.  

Typical mixture modeling is based on the assumptions of linearity outlined above 

(Fung and LeDrew, 1987; Bierwirth et al., 1990a,b; Gong et al., 1991; Mackin et al., 

1990;  Holben and Shimabukuro, 1993; Roberts et al., 1993; Settle and Drake, 1993; 

Cherchali and Flouzat, 1994; Foody and Cox, 1994; Puyou-Lacassies et al., 1994; Smith 

et al., 1994; Williamson, 1994; Mathieu-Marni et al.,1996a,b).  Most of these authors and 

others (Harsanyi and Chein, 1994) rely on rotating the data matrices and scene-by- scene 

ground referencing to improve reliability.  Obviously, scene-by- scene collection of 

ground reference data reduces the utility of remote sensing to some degree. 
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Selection of endmembers

Endmembers are the required spectral endpoints for unmixing multispectral data.  

There are four general methods for obtaining them.  Spectra can be : 1) collected in a 

laboratory setting (Bierwirth, 1990a,b); 2) collected in the field; 3) extracted from the 

image to be unmixed (Cherchali and Flouzat, 1994; Gong et al., 1991; Mackin et al 

(1990); Puyou-Lacassies et al., 1994); 4) derived, for example, by Varimax rotation of 

the principal components (Mathieu-Marni et al., 1996 a, b).  These can also be combined.  

Williamson (1994) used PCA, the spectral distribution of the data and ground reference

data to select endmembers.  

Novo and Shimabukuro (1994) derived spectra in the field for their three 

endmembers (using a Spectron SE590); however, the endmembers chosen are spectrally 

similar being chlorophyll a, DOM (Dissolved organic material) and TSS (total suspended 

solids).  They state that, although there were confounding factors at each station used for 

a pure endmember, they did not use laboratory spectra because such spectra for 

phytoplankton suspensions typically do not match field spectra.  Spectra were analyzed 

over the range from 400 - 800 nm, and then by analyzing the fractions and residuals from 

unmixing their data, they refined the spectral regions needed to produce the best results.  

Then they developed a regression equation between the model data and measured 

concentrations of their three endmembers.  This method is essentially the same as using 

image-derived data since the SE590 data was what they analyzed. 

Although endmembers gathered in a laboratory offer assurance of consistency and 

accuracy, there is no assurance that they represent endmembers as defined in the spectral 

space of the image (Gong et al., 1991; Smith et al., 1990a, b).  Moreover, there is also no 
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assurance that they match the spectra of real objects in the environment despite the fact 

that those object may be made of the same material (Bierwirth, 1990a).  However, for 

distinguishing between spectrally similar targets, such as various soil types, it has the 

advantage over image-derived spectra of providing the ability to resolve closely related 

spectra.  Image or laboratory derived spectra, to be reliable across scenes, require 

standardization of the scenes with radiometric and atmospheric correction.  Laboratory-

derived spectra have the additional limitation of narrowing the variance associated with 

the cover type sought, perhaps eliminating marginal areas inappropriately.  Endmembers 

selected from the image itself are more likely to represent true endmembers, take into 

account the natural variability of the endmembers and the conditions under which they 

are found, but may not actually represent any given physical material such as could be 

identified in the laboratory.  Nonetheless, regardless of the method by which the spectra 

are derived, ultimately ground referencing is required.

For the purposes of the research only interested in three surface covers – soil, 

water and vegetation – are of interest.  These spectra are quite diverse and well known 

(Richards, 1986).  The water and vegetation endmembers are readily distinguishable by a 

variety of methods including finding relatively pure training sites in the image and 

locating them at predictable places in plots of various spectral bands.

Pixels representing bare soil are also easily identified in the image, although 

identifying them in a spectral plot is not simple.  There are several reasons for this.  The 

spectra of soils, although consistent in shape, can vary considerably in brightness.  For 

instance, the organic soils of the Delmarva Peninsula and sand in South Carolina both 
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exhibit a monotonic increase from Band 1 through Band 5 although the sand is extremely 

bright and the organic soils are not.  

Another complication is that senesced vegetation can look a lot like soil.  

Gausman et al. (1975) plot the spectra of crop residues and soils.  The soils and residues 

have very similar spectra, and the crop residue is very dissimilar to live plant.  In another 

study, crop residues and soils were found to be spectrally similar, only differing in their 

amplitude at given wavelengths.  In fact, wavelengths around 2100 nm were required to 

distinguish crop residue from soil reliably, due to a cellulose/lignin absorption feature at 

that wavelength.  This is much farther into the IR than the NDX bands (Daughtry, 2001).  

If separating senesced vegetation from soil were necessary for this project, this would be 

a good wavelength to use.  However, that separation is unnecessary here.

This could cause confusion, except that for this project there is little consequential 

difference between dead plants and soil.  The main point of interest being that neither is 

water.  In both PCA space and raw spectral space, there is no single endmember that 

captures soil effectively.  When spectral endmembers from one scene were applied to 

different scenes of the same area (Wingate, MD) the results were at least reasonable, even 

though somewhat noisy.  The same endmembers applied to South Carolina, however, 

made the entire North Inlet marsh system appear to be open water.  With ground 

reference data in hand and considerable effort, a soil endmember was finally located in 

the South Carolina image that produced correct results.  Nonetheless, this hardly 

describes a method that can be used by others.  In fact, when several different people 

attempted to select a soil endmember from diverse scenes using PCA, the results were 

extremely disappointing.  One would expect a good correlation between the spectra 
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derived from PCA in different scenes; however, in some cases they were negatively 

correlated with each other.  In addition, the PCA plots featured other pixels as the 

endmembers, not soil.  

Laboratory spectra can be ruled out due to the lack of a reliable water spectrum 

(Kirk, 1994), and because an inordinate number of soil spectra would be required to 

cover all the soil types encountered in this research work.  PCA-derived endmembers are 

not of much use due to the low likelihood of selecting an actual soil endmember – and, 

again, the large number of soil spectra that would be required.  Vegetation ratio indices 

such as the normalized difference vegetation index (NDVI) rely on the soil line in plots 

of red vs. infrared reflectance.  Because most soil spectra fall on or near this line and the 

intercept of the line is close to zero, a wide range of soils will have nearly identical NDVI 

values (Huete, 1989).  

The New Technique

The technique used here is a hybrid of traditional classification and mixture model 

analysis.  Although the resulting classification is a single value for each pixel, the 

classification is based on using mixture modeling to calculate the percentage water in the 

pixel rather than statistical or quasi-statistical manipulations of the spectral data – for 

example, maximum likelihood classification or clustering techniques.  

The power of the technique is based, not on complex mathematical or image 

assessment techniques, but on simplifying the task of the remote sensing to the extent 

possible.  The current work focuses on a single parameter - the percentage of water in a 

pixel rather than a variety of issues such as plant health or community structure.  Because 
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there is no intention to differentiate plant species or soil types, the remote sensing model 

can be greatly simplified.  It is similar to some of the mixture modeling techniques, 

shown above, which are reasonably accurate.  However, the current technique is less 

affected by the variability of soil, water and vegetation spectral responses than a simple 

linear model.

The analysis is further simplified by conversion of the data space so that there are

mathematically only three endmembers.  Automation is possible because it is not 

necessary to extract endmembers from each image, nor are large banks of spectral 

endmembers that might be present in the image necessary.  One set of three endmembers 

can be used with all images to unmix coastal marshes (Rogers and Kearney, 2004).  .

The technique relies on high-quality atmospheric correction (Fallah-Adl et al., 

1996; Liang et al., 1997; Donoghue et al., 1994) and the use of spectral indices similar to 

the Normalized Difference Vegetation Index (NDVI).  Although normalized differences 

are used for vegetation mapping (e.g. Baret and Guyot, 1991) and have been used for 

water mapping (McFeeters, 1996), spectral indices have not been used in a mixture 

model analysis previously.  

The transformed indices (Kearney et al., 2002; Rogers and Kearney, 2004) are 

calculated as follows for the Normalized Difference Water Index (NDWI), Normalized 

Difference Vegetation Index (NDVI) and the Normalized Difference Soil Index (NDSI): 

Equation 2. NDWI

NDWI = (Band3 - Band5) / (Band3 + Band5) 

Equation 3. NDVI

NDVI = (Band4 - Band3) / (Band4 + Band3) 
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Equation 4. NDSI

NDSI = (Band5 - Band4) / (Band5 + Band4).

All bands refer to Thematic Mapper band numbers.  These bands represent 

reflectance ranges of 630 - 690 nm (Band 3), 760 - 900 nm (Band 4) and 1,550 – 1,750 

nm (Band 5).  Because the technique relies on several normalized difference indices, it is 

referred to hereafter as the NDXI technique.

This transformation redistributes the data points so that NDWI places surface 

covers that are brighter in Band 3 than Band 5 at the top of the scale.  The NDSI and 

NDVI behave similarly for band pairs 5 and 4, and 4 and 3, respectively.  Because of the 

characteristics of surface reflectance, this will normally result in soil-dominated pixels 

having the highest values on the NDSI, green vegetation-dominated pixels having the 

highest values on the NDVI, and water-dominated pixels having the highest values on the 

NDWI.  Non-photosynthetic or senesced vegetation may be confused with soil and a few 

soils maybe confused with vegetation.  However, as the purpose of this process is to 

separate water from everything else, potential confusion of the vegetation and soil 

endmembers is expected to have limited impact on the overall model.  The resulting 

indices are then unmixed using the principles of linear unmixing already described. 

The output of this remote sensing technique is the input for the risk model.  

Various Issues with the NDXI Technique

Normalized Difference Indexes

Quarmby et al. (1992) state that the NDVI cannot be used in a mixture model 

because, being a ratio, it violates the assumptions of mixture modeling.  Principally, it is 
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not expected to scale with changing area.  However, tests with real data have shown that 

it does scale with changes in area (see Rogers and Kearney, 2004).  On the other hand, 

randomly assigned pixel values do not produce normalized difference indices that scale 

when averaged over different areas.  This would indicate that the NDXI technique 

measures real properties of the surface, and that the real properties are fractional 

coverages of the various scene components.  The NDVI has been shown to be 

functionally related to absorbed photosynthetically active radiation (Asrar, 1984; Sellers 

1985, 1987), which is of interest in global vegetation studies.  The NDVI is used for 

global vegetation monitoring because it helps compensate for changing illumination, 

surface slope and other extraneous factors (Lillesand and Kiefer, 1994).  

Consider the case for water:

In a pool of infinitely deep, uniform water, the illumination at any depth would be 

given by

Equation 5.

kz
z eII −= *0 , where z = depth and k is the extinction coefficient

The backscattered irradiance from a layer at any depth would be

zIρ
where ρ is the reflectance of a thin layer. 

The upwelling light just below surface from a layer at depth z would be:

Equation 6.

kz
zs eII −= *ρ
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and the total upwelling light just below the surface from the entire water column 

for a particular wavelength is then

Equation 7.

dzeIR
z

kz∫ −=
0

2
0ρ

or

Equation 8.

)2/()( 02
0 keeIR kz −−= −ρ

or

Equation 9.

keIR kz 2/)1( 2
0

−−= ρ .

For an infinitely deep pool, e-2kz -> 0.

Therefore,

Equation 10.

kIR 2/0ρ= .

Putting this into the normalized difference form, 

Equation 11.

)/()( 2121 RRRRNDXI +−=

and assuming that the incident radiation has been corrected for atmospheric haze 

and illumination angle, gives:

Equation 12.

)/()( 22112211 IIIINDXI ρρρρ +−=
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which, for pure water, is a constant.  This research, of course, deals with estuarine 

water, which is more variable.  

The above calculations ignore the effects of the light entering the water and 

leaving the water.  For the moment, we will assume that on average this is constant as 

well.  In Equation 12, the below surface upwards radiance is for a point.  If each of the 

radiances were integrated over an area, the area would simply cancel.  The same basic 

logic would also apply to pixels of pure, homogeneous vegetation or pure, homogeneous 

soil.  Further, for mixtures of soil, vegetation and water the radiance in each pixel for one 

band would be

Equation 13.

∑= n

iifTotalAreaRTotalArea
0

** ρ

where n is the number of surface cover types.  In the normalized difference, the 

TotalArea would again divide out.  

Several factors may affect the reflectance.  Among these are the non-Lambertian 

properties of leaves, soil and water.  The resulting anisotropic reflectance function is 

called the bidirectional reflectance distribution function (BRDF).  For TM data, the 

change in view angle on each sensor sweep is about 7.5 degrees off nadir.  According to 

Myneni and Asrar (1994), the change in top of the atmosphere NDVI over this range of 

view angles is negligible.   

Secondly, the solar zenith angle will affect both the irradiance and the 

refraction/reflectance of light at the surface.  The atmospheric correction algorithm 

compensates for the changes in irradiance on a seasonal and latitudinal basis.  The 
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Fresnell equation and Snell’s law predict how much light will be reflected and how 

strongly the light that does penetrate the surface will be refracted (Ingle and Crouch, 

1988).  The solar angle for latitudes of interest in this work will vary between 30 and 48 

degrees during the late spring to early autumn time frame of the images used.  This will 

cause a change of approximately 30% in surface reflection and approximately 1%

decrease in transmission into the body of water.  Because most of the reflection will be 

specular2, it will not enter into the satellite sensor’s field of view.  The 1% change in 

transmission into the water will not cause a significant change in upwelling light.  

The depth of the water and bottom reflectance will also affect the results.  The 

above calculations hold for infinitely deep water, so the question arises: How deep does 

the water have to be before it can be considered to be of infinite optical depth?  Given 

that the TM data are quantized as eight bits, the smallest change detectable would be 

1/256 of the reflected radiation.  Any change in reflectance smaller than that amount will 

not be recordable.  For the three TM bands used in the NDXI technique, the “infinite” 

depths are calculated based on where the 
kze 2−

 term falls below 1/256 of the reflected 

radiation using the data in Table 1.  Using values of 10%, 50% and 30% (estimated from 

Townshend et al., 1988) as the reflectance values for Bands 3, 4 and 5 respectively, gives 

the values in the “Infinite depth” column of Table 1.

Pure water was used for Bands 4 and 5 because measurements of absorption in 

estuarine waters at those wavelengths are unavailable, for the obvious reason that not 

2 Specular reflection occurs when the angle of reflectance of a ray of light from a surface equals its 

angle of incidence.  A mirror is a specular reflector.
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much light is returned.  For these bands, bottom reflectance will only be a factor in Band 

3 and of some consequence in Band 4.  For Band 5, however, by the time a body of water 

gets as shallow as 3 µ it is, arguably, not a body of water any more.  What this means is 

that for shallow, clear water, there will be a bottom reflectance component in Band 3.  

For the three indices chosen, Band 3 – Band 5, Band 4 – Band 5 and Band 3- Band 4, this 

will only affect the NDWI signal.  The key to the NDWI signal is that it interprets surface 

covers that are brighter in Band 3 than Band 5 as being water.  If the water were more 

algae or sediment laden, Band 3 would be brighter than Band 5.  If the water is perfectly 

clear in a pixel, Band 3 will be brighter than Band 5.  The calibration will be different for 

these two cases, but the overall effect should be that water will look like water.

Table 1. Absorption Properties of Water at Various Wavelengths

Lambda 
(nm)

absorption Infinite 
depth 
(meters)

Thematic 
Mapper 
Band

λ �(nm) Water 
Type

Source

650 0.5  / m 3 8 Band 3 630 -
690 

Estuarine 
water

Prieur and 
Sathyendranath, 
1981

760 0.0256 / 
cm

0.9 Band 4 760 -
900 

Pure 
water

Shifrin, 1988

1500 10000 / 
cm

2 E-07 Band 5 1,550 
–
1,750 

Pure 
water

Shifrin, 1988

3 This extinction coefficient is for 1 gram chlorophyll a per cubic meter which is 

low for the Chesapeake Bay.  (Rogers, 1994)
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NDVI

The normalized difference vegetation index (NDVI) was developed based on the 

spectral response of vegetation in the red and NIR, specifically Bands 1 (0.58 - 0.68µ) 

and 2 (0.725 - 1.1 µ) of NOAA's Advanced Very High Resolution Radiometer 

(AVHRR).  The index is defined as (NIR - Red) / (NIR + Red), where NIR equals the 

reflectance of the surface being measured in the near infrared and Red is the reflectance 

in the red region of the spectrum.  The reflectance of vegetation in these spectral regions 

is dominated by two factors.  The reflectance is very low in the red region due to 

absorption by chlorophyll (Gates et al., 1965).  Reflectance in the NIR is dominated by 

scattering from the interfaces between cell walls and air spaces in the leaf (Peterson and 

Running, 1989; Gausman et al., 1969).  Leaf reflectance spectra are also affected by 

water absorption bands and other properties, but these are either not within the spectral 

range of interest here or are of less significance than the chlorophyll absorption and 

mesophyll (Walter-Shea et al., 1992) scattering.  For instance, leaf NIR optical properties 

are little affected by pigments (Maas and Dunlap, 1989).  However, leaf water content 

may directly affect NIR scattering.  As leaves lose water, this reduces cell turgor, which 

can affect the relative cell surface, intracellular air spaces, and consequently reduce NIR 

reflectance (Levitt and Ben Zaken, 1975).

Separating Plant and Algae-Laden Water Signals

Because green plant reflectance in the IR is dominated by structure of the plant, 
there is no corresponding increase in water reflectance even at high algal 
concentrations.  The reflectance of water in the IR is dominated by the absorption of 
water and the particulate load (Tyler and Stumpf, 1989) and although there is an 
increase in reflectance associated with increased particulate counts in the water, it is 
unlikely ever to exceed the reflectance of the same water body in the red region.  
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Figure 7 shows calibrated radiances for nine locations in the Patuxent River 
collected in June 1992, by the author.  It is not possible to calculate exact TM-
comparable NDVI's for these without applying a spectral response function for the 
TM's sensors.  However, an approximation can be obtained by summing across the 
spectral bands and ratioing the results.  It can be seen (Table 2) that there is some 
variation in the NDVI based on the changes in the water column.  If NDVI 
exclusively were used to extract results, this would pose a more serious problem.  
However, with three endmembers the water with higher sediment and/or algae 
concentrations will be shown not to be pure water when it is unmixed.  It is obvious, 
however, that no matter how much algae is added to the water, it will not look like a 
mixture of vegetation and water.  For NDXI, measurements are all made with 
Bands 3, 4 and 5.  Bands 4 and 5 are well beyond the reflectance maximum of water 
containing chlorophyll a and its various derivatives and gelbstoffe (the combination 
of long-chain fulvic and humic acids that give natural water its yellow - brown 
color).  The region between the absorption maxima of various photopigments is 
where the highest variability in water reflectance typically occurs (

Figure 7).
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Effects of Tides and Rain

Field spectra are of great value in understanding the likely impact of various 

changes on the received spectrum.  For example, Stutzer (1997) measured the changes in 

reflectance of wetland plants as water depth changed over the expected microtidal range 

in Blackwater National Wildlife Refuge and surrounding marshes as part of his work for 

the Coastal Marsh Project.  The result showed that the 0 -10 % range of water in a 

vegetated area could not be differentiated from the 10 - 20% range, due to tidal 

fluctuations.  However, tides in the microtidal range could not raise water levels high 

enough to make healthy vegetated areas look like they were moderately deteriorated (20 -

30% water),.   

Endmembers

How accurate are the endmember spectra?  Table 3 lists NDVI values for open 
water calculated from the two images.  The mean values are at the low end of the 
range in Table 2, which are calculated from the spectra in 

Figure 7.  This means that the spectra represented in Table 2 with higher 

chlorophyll concentrations would be correctly unmixed as having other properties.  These 

numbers are scaled 0 - 255, so the difference in means represented in Table 3 is about 
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2%.  The number of replicate pixels makes it clear that we have captured the signature of 

water very reliably.

Table 4 shows the spectra for all three endmembers in both TM bands and 

normalized difference bands.  The normalized difference transformation reduces the 

standard deviations in most cases.  Spectra extracted from various scenes match well with 

published spectra (e.g., Richards, 1986).

General Improvement Over Standard Linear Unmixing:

The four panels of Figure 8 show spectral data from a computer-generated set of 

pixel values.  The data actually comprises 7 spectrally distinct endmembers, three soils 

(red), two waters (blue) and two vegetations (green).  The data was generated from three 

spectral bands representing the Thematic Mapper Bands 3, 4 and 5.  A problem arises 

immediately in trying to interpret the data because there are only three bands of input 

data but seven spectral endmembers.  One might think of adding extra TM bands to the 

data input, but this has severe limitations.  There are only 7 bands in TM data, and there 

is information overlap between them (Townshend et al., 1988).  Due to the variability of 

reflectances of different materials, this situation of having more spectral endmembers 

than input channels is liable to persist even with larger numbers of bands.  Because there 

are only three spectral channels available, only three spectral endmembers can be 

assessed at one time. 

In this case, two of the soil endmembers closely resemble each other, as do the 

pairs of vegetation and water endmember spectra.  The problem can then be reduced to 

four endmembers.  Standard linear mixture modeling still cannot cope with the number of 
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endmembers present in a typical scene.  In fact, every endmember selection will be 

wrong (Figure 8).   

If you select the actual endmembers on the graph, you will always get a wrong 

answer.  For example, if the soil endmember on the upper right in the PCA plot were 

chosen, the soil endmember on the lower left would be unmixed as though it were some 

proportion of the upper right soil endmember.  Similarly, the soil endmember in the 

middle of the Band 3, 4, 5 plot would show unmix as 50 percent soil using standard 

techniques.  

 The NDXI transformed data, however, are much better behaved.  The water and 

vegetation endmembers do not get closer to each other, but the soil endmembers are now 

almost identical (Figure 8).
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Table 2. Pseudo NDVIs Calculated for 
Spectra in 

Figure 7. 

Spectrum Pseudo-NDVI
1 90.01136
2 82.9563
3 94.03216
4 93.00153
5 90.94593
6 96.68848
7 90.25289
8 76.38511
9 69.02303

Mean 87.03
Std. Dev. 9.129

Figure 8 Panels b, c and d compare the results of unmixing synthetic data with 

both a linear model and the NDX transformation.  Based on this one might argue for the 

linear model.  However, the strength of the NDX model is in its consistency.  Table 5

shows this.  The table shows the results of applying the same mixing algorithm to several 

1000 pixels with randomly assigned fractional cover values.  Although each unmixed

dataset gives a strong linear relationship with the input fractional covers, for the linear 
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method the regression coefficients change significantly every time.  The NDX 

coefficients remain relatively consistent.  The pixels were mixed using a non-linear 

model with variation built-in.

Table 3. NDVI’S for Open Water From Images

Mean NDVI Std. Dev. n (samples)
Scene 1 75.1 1.48 376
Scene 2 70 2.1 2520

Table 4. NDXI values calculated from TM data.

Cover Type Channel Mean Standard Deviation
Water 3 43.08 3.04

4 44.33 3.41
5 21.27 1.62  
NDWI 167.35 2.08 
NDVI 126.71 2.48 
NDSI 81.07 1.72

Vegetation
3 39.6 0.89
4 194.26 3.09
5 92.29 2.64
NDWI 75.12 1.48
NDVI 207.76 1.00
NDSI 80.49 1.62

Soil
3 67.33 13.74
4 108.94 21.11
5 163.39 31.21
NDWI 72.94 1.13
NDVI 154.72 1.24
NDSI 150.11 0.46
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Potential Problems with the Method

There are several potential problems with the technique used.  Because the scene 

is converted so that there are only three endmembers, substances such as clouds, cloud-

shadows, roads, and, in fact, everything will be placed somewhere in this spectral space.  

Because we operate on the assumption that the three endmembers represent soil, water 

and vegetation, other surface covers must be removed by other means.  The National 

Wetlands Inventory (NWI) classified data are used to remove the non-marsh areas.  

Clouds and cloud-shadows are removed largely by hand.  In areas for which there are 

multiple images, clouds and cloud shadows can also be removed by image overlays, 

replacing the bad pixels in one scene with clear pixels from another.  

Table 5. Variations in output using computer-generated in input for PCA and 

normalized difference (NDX) transformations.

Method Intercept Slope R-square
PCA -18.047 1.13486 0.80
PCA -64.417 1.385 0.89
PCA -28.26 1.20489 0.83
NDX 20.499 0.7589 0.91
NDX 16.248 0.77568 0.90
NDX 16.0323 0.78364 0.90
This represents three scenes created randomly from standard inputs.  Each scene was 
unmixed by the two different techniques and the results are shown here.  The input 
data for all scenes were created using the same endmember spectra and 
randomization techniques for generating pixel values.  The PCA output is quite 
different between scenes, whereas the NDXI values remain constant.  All are scaled 0 
- 255.

Secondly, although there should be no problem differentiating water from the 

other two endmembers in general, at the margins there are problems in assigning meaning 

to the interpretation.  Particularly the cases of very shallow water vs. very wet mud, or 
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very sediment-laden water vs. very wet mud are problematic.  IR radiation is highly 

absorbed by water, which is why the IR bands were chosen for the much of the work.  

This means that even in relatively shallow water bottom reflectance will not have much 

effect (because Band 3 will still be brighter than Band 5).  However, as the water depth 

approaches zero, there will be a depth at which the underlying soil becomes very 

apparent, even in the IR.  It is not yet clear how to separate this from the case of very wet 

mud. 

Essentially, these two questions transcend the scope of image analysis, because 

neither is entirely clear from ground observations.  One is, at what water depth should the 

surface classification change from wet mud to water over sediment?  The second is, what 

is the proportion of water: sediment at which the change from mud to sediment-laden 

water occurs?  Because of this, an arbitrary cutoff was used that excluded areas featuring 

less than 10% vegetation and more soil than water.  

Remote Sensing Validation:

Several of the authors combined data sources in a GIS (Donoghue et al., 1994; 

Hinson et al., 1994; Ramsey and Laine, 1997).  Ramsey and Laine (1997) combined 

aerial photography with TM data as a means of validating the TM.  They found that the 

TM classifications were 77 - 81 % accurate, but performed poorly in change analysis of a 

complex marsh system.  Hinson et al. (1994) compared the use of ground reference data 

with NWI data as a means of assessing the accuracy of remotely sensed image 

classification.  They found that ground reference data always gave a higher accuracy for 
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the image analysis than was found from comparing the imagery directly to the NWI.  

NWI data are used in the current study to classify the marsh, not assess the results.    

Legend for Figure 7
Color Line
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Figure 7. Patuxent River Spectra (June 2, 1992)

The curves represent different hyperspectral scans of the Patuxent River 
collected with an SE590 scanning spectrometer mounted on a boom on a 
boat, approximately 1 meter above the water.  Point 8 is missing from the 
map.
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Panel a.  The actual fractions of 
soil, water and vegetation in each pixel.
A perfect unmixing of the data would 
look exactly like this, and, in fact, this 
diagram is what all unmixing algorithms 
are based on for three endmembers.
Each point in this graphic represents two 
or three different combinations of the 
spectral endmembers, but constant 
proportions of soil, water and vegetation.

Panel b. Principal Component 
Analysis (PCA) transformation of the 
data.  The data is split into two planes.  
No matter which endmembers are 
selected, many of the pixels will be 
misinterpreted.  PCA numbers are 
arbitrary.

Panel c. Untransformed Band 3, 4 
and 5 data.  Note the separation between 
the soil endmembers.  One soil 
endmember is at the extreme right; the 
other two appear in the middle.
Whichever soil endmember is picked will 
give incorrect results for the other types 
of soil.  Band 3 is perpendicular to the 
panel surface.

Panel d. NDXI transformed data.
The endmembers of each type lie 
relatively close to each other and all the 
data lies within one slightly curved 
plane.  There is, however, some 
distortion.  The lumpiness is caused by 
the pixels of identical fractions but with 
different endmembers only slightly 
separating from each other.

Figure 8. Four different views of the dataspace.  

Explanations accompany each panel. The axes in each panel meet at the 
origin.  The arrows point in the positive direction.

NDWI

NDSI

NDVI

Vegetation Soil

Water

Band 4

Band 5Band 3

PCA 1

PCA 2PCA 3

PCA 3
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Chapter 4: Methods

Definition of Study Area

The study area is the MidAtlantic Region of the U.S.  ( Figure 9), defined here as the 

East Coast between approximately 34 ° to 40 ° North latitude where Coastal Marsh 

Project data exists.  Legislation defining the MidAtlantic Region for the purposes of 

the MidAtlantic Regional Marine Research Program defined the area as the coastal 

area from Cape May, New Jersey, to Cape Fear, North Carolina.  The area in this 

study matches that definition very closely, extending slightly farther both North and 

South.  The study area is split into two zones.  The Chesapeake and Delaware Bays 

comprise one zone.  The other zone contains the Atlantic Coast barrier island  marsh, 

the mainland marshes along Pamlico and Currituck Sounds and Great Egg Harbor.  

The mainland marshes could have been put in the inland marsh group with the large 

bays, but due to their narrowness and proximity to the coast were left in the coastal 

group.

This study area was chosen to minimize variation related to climate and other 

variables while defining an area containing a large amount of data.  In particular, the 

MidAtlantic marshes lie on the coastal plain, differentiating them from the 

geomorphology of New England marshes to the north (Mitsch and Gosselink, 2000).  

South of the MidAtlantic region, there are changes in productivity, tidal regimes, and 

climate.  Furthermore, marsh loss rates decline precipitously below North Carolina 

(Gosselink and Baumann, 1980).  



63

Coastal marshes under consideration are those classified as “estuarine 

intertidal” and subclassified as either emergent or scrub-shrub (Cowardin et al., 1979) 

by the U.S. Fish and Wildlife Service in the National Wetlands Inventory (NWI).

The Chesapeake and Delaware estuaries are defined as drowned river valleys 

(Pritchard, 1967).  The marshes along the Atlantic Coast, however, have different 

origins.  The Albemarle and Pamlico Sounds are “bar-built” estuaries, either former 

shallow marine areas or flooded coastal plains (Pritchard, 1967).  On this basis, the 

study area was divided into two large subsets – the bay area, comprising the 

Chesapeake and Delaware Bays, and the Atlantic Coast – comprising everything else.

A test area, comprising the Blackwater, Transquaking, Nanticoke and 

Wicomico rivers and the surrounding area, was selected for development of 

algorithms.  It was chosen as a test area because the area enclosed has a very high 

fraction of marshes, the area has been well studied and is known to the author.

Effects Investigated in the Study

Five hypothesized effects are studied in this dissertation, along with other 

effects included for completeness of the model in Chapter 6.  The effects 

hypothesized to impact marsh health are distance from land, distance from roads, 

distance from tidal creeks, distance upstream from the nearest major bay or ocean, 

and marsh parcel size.  The additional effects are sea level rise, mean tide, northing 

and easting.  The term “effect” in this chapter refers to one of these 9 items unless 

otherwise specified or made obvious by the context.  These are fully detailed in 

Chapter 1.
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Factors Not Investigated in the Study

 Some factors that were included in the proposal were not included in the final 

study.

Nutria

Nutria are thought to have an impact on the survival of wetlands (Carter et al., 

1999).  However, no numerical data on Nutria densities were found that could be 

used in a model such as was developed for this research.  Moreover, it is not known 

how pervasive Nutria impacts are on other marshes in the middle Atlantic Region, or 

even what population numbers are involved.

Management regime

Informal conversations with staff at BNWR led to the conclusion that accurate 

management data reflecting any significant length of time would be difficult to locate.  

Additionally, this is not amenable to numeric interpretation.  For example, if a parcel 

of marsh was not burned for three years and then not burned for five years, how 

would this scenario compare to a marsh that had been flooded to create ponds and 

then drained?  Each management regime would have to be treated as a separate binary 

input, most of which would be ones for only small areas.  Utilizing binary input codes 

on management regimes would not reflect differences due to the scale of this project.

Age of roads

It was proposed that older roads would have more time to impact to marsh 

health then newly constructed ones and that, therefore, the age of roads should be
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included as a parameter.  However, two things led to dropping this as a parameter.  

First, it was discovered that thousands of road segments were involved, making 

collection of accurate data difficult.  Furthermore, should the road be dated from 

when it was an unpaved shell road or when it was paved?  

Secondly, using the date of the roads implies somehow retrogressing the 

marshes to their state when the roads were built.  USGS maps of Blackwater show 

that there were ponds present at the time the Shorter’s Wharf Road was paved.  Did 

the paving cause the ponding or had these ponds formed previously?  It was not 

feasible to ascertain the marsh condition prior to road building; therefore, an 

alternative approach was utilized.  The National Wetlands Inventory (NWI) coverage 

was delineated as time zero for the studied marshes.  Using the NWI provided a 

concrete temporal base line against which to make measurements.  

Ditches

A search of the on-line databases found only one article on ditches.  

Therefore, this was dropped as a topic.  

Software:

The work was undertaken using Environmental Systems Research Institute’s 

ArcView, ArcInfo 7.x and ArcGIS 8.2 products, and PCI Inc.’s image analysis 

software.  The statistics in Chapter 5 were calculated with SAS JMP statistical 

software.  The statistics in Chapter 6 were calculated using ArcGIS.
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Data Sources and Preparation

The raw inputs to the data model are National Wetlands Inventory (NWI) 

data, U.S. Census Bureau TIGER files for road data, Thematic Mapper (TM) satellite 

imagery and ground observations.  The TM and NWI data were combined to create 

the Coastal Marsh Project (CMP) data.  The National Atmospheric and Oceanic 

Administration (NOAA) provided Tidal and sea level rise (SLR) data 

(www.noaa.gov).  These datasets, combined with some ground reference data and 

aerial photography, comprise the inputs to this research.  CMP or NWI data are used 

interchangeably for areas outside the marsh (open water or upland).

The CMP data were created with a semi-automated image processing and 

interpretation technique to classify TM pixels representing coastal marshes in the test 

area with respect to their degree of deterioration (Kearney et al, 2002; Rogers and 

Kearney, 2004).  The pixels represent 28.5-meter square parcels on the ground.  

Data sources

Landsat Thematic Mapper (TM) satellite imagery (specify path and row, 

and dates)

Any TM images that were acquired without georeferencing were 

georeferenced using the USGS quad maps.  Registration was done to less than 1 TM 

pixel (28.5 meters) accuracy in both the horizontal and vertical axes.  A second-order 

polynomial fit was used with approximately 40 ground control points for each image 

to project the unmixed data applying the values of the nearest neighbor in the input to 

the output pixels.
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Prior to rectification, Thematic Mapper images were atmospherically 

corrected using the method of Fallah-Adl et al., (1996).  The resulting data are in 

reflectance units after correcting for haze, solar zenith angle, and solar distance from 

the earth.  This allows the remaining steps to be standardized for all scenes.  Image 

data were put into a PCI database and transformed into three normalized difference 

indices the Normalized Difference Water Index (NDWI, Equation 2), Normalized 

Difference Vegetation Index (NDVI, Equation 3) and Normalized Difference Soil 

Index (NDSI, Equation 4) (Rogers and Kearney, 2004) as described in Chapter 2.  

Several diverse TM images were transformed and endmembers selected using 

PCI’s scatterplot (SPL) and visual outlier removal (VOR) subroutines.  Pixels 

representing each of the three endmembers selected were located in the image and, by 

examining their spectra and using positional data from the scene were determined, in 

fact, to represent water, soil, or vegetation.  From these image-derived spectra, one set 

of endmembers was chosen to represent the most extreme endmembers and these 

were applied to all images.  

The three normalized difference indices were unmixed using PCI’s unmix 

subroutine to create three percent cover channels - one each for soil, vegetation and 

water.  Pixel values that would have fallen below 0 were reset to 0.  Pixels where the 

vegetation is less than 10% and there is more soil than water were flagged as outside 

the scope of the wetlands model (Rogers and Kearney, 2004).  

Clouds were masked by selecting any pixel with a DN greater than 80 in TM 

band 1.  The value of 80 was based on preliminary analysis of the images.  Remaining 

clouds and cloud shadows were masked by hand.  Ground reference data from 
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fieldwork and aerial photography were used to create a calibration curve to convert 

the mixture model results into actual percentages.  The images used were late spring 

to early fall, so there was no snow cover; and buildings, roads and other non-marsh 

surface covers were all removed by applying a mask based on the NWI polygons.  

Ramsey et al. (2001) made a similar use of NWI masks to perform analysis of coastal 

marshes for the Coastal Change Analysis Program (C-CAP).  They used NWI masks 

to separate classes that could not be separated spectrally in TM images such as 

estuarine and palustrine marshes. 

After processing, the individual images were combined into larger coverages.  

To do this, it is assumed that all interferences with the recorded signal (atmospheric 

haze, high tide, recent rainfall) make the marsh in the pixel look more degraded than 

it is.  Therefore, to assign a value where images overlap, the lowest percentage water 

value from the input pixels was assigned to the output pixel.  In this way, incorrectly 

classified pixels can be corrected, and pixels that were covered by clouds or shadows 

in one image may be replaced by clearly viewed pixels from another to produce a 

final product.  

Where bodies of water meet the land surface of the marsh, pixels will tend to 

be mixed.  This is unavoidable and will cause an overestimation of marsh loss along 

shorelines and creek banks.  Because there is no way to know if this is really 

happening, or if the pixels aligned correctly with stream banks, such points cannot be 

rejected outright, but cannot be taken too seriously, either.



69

National Wetlands Inventory Data

NWI digital wetlands data were available as 7.5-minute orthophotoquads, 

stored in Digital Line Graph Level 3 Optional (DLG-3 Optional) format.  Many are 

now available as Arc/Info exchange files.  The coverages were digitized using 

Arc/Info software with the NWI classification codes assigned as attributes.  These 

maps were produced by the U.S. Fish and Wildlife Service and delineate most of the 

wetlands in the U.S.

  A mask was made of the NWI data.  It separates the estuarine intertidal 

marshes of scrub shrub or emergent plants from uplands, open water and other 

wetlands.  This NWI mask was converted to a grid and combined with the TM data so 

that all non-marsh, open water or unusable pixels were flagged in the final output and 

the remaining marsh pixels were categorized by the fraction of the pixel that is open 

water as calculated from the scene.  The mask was used for the calculations of 

distance from uplands.

Updated coverages were downloaded from the NWI website in December, 

2002 and inserted into the NWI coverages that had been compiled by the Coastal 

Marsh Project.  However, in most cases the NWI data was not used directly, but the 

finished Coastal Marsh Project data, which already incorporated the NWI data, was 

used instead.  

The USGS provides general metadata for the NWI maps.  The metadata states, 

among other things, that reference files from 1902 to 1995 were used.  However, the 

aerial photography on which it is based ranges in date from Feb. 1971 to Nov. 1997.  

Further, they state that the NWI system does not correspond with other jurisdictional 
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wetlands maps, it does not include wetlands that were not readily visible in the aerial 

photography and there is a size limit based on the scale of the input maps, which was 

variable.  

U.S. Geological Survey (USGS) orthophoto quad maps

USGS Orthophotoquad paper maps were used to georeference images and 

provide detailed information on various areas when on-line sources were not 

available.

U.S.  Census Bureau TIGER Files

U.S.  Census Bureau TIGER Files were downloaded from the ESRI website in 

1999.  These files were used to provide locations of streets and roads throughout the 

study area.  An attempt was made to use TIGER water boundaries to supplement the 

NWI water boundaries, however there were conflicts between the datasets so TIGER 

files were dropped from the water boundary processing.

Field sites

During the course of the marsh project several field sites were investigated 

(Figure 10).  The techniques ranged from simply looking at the site and estimating the 

percentage water to going over the site with a line marked at one-meter intervals and 

noting whether the marsh under the rope was water, land or vegetation at each point.  

The transects were chosen randomly.  Field sites were located predominantly in the 

test area defined above, North Inlet, South Carolina, and the Delaware Bay marshes 

on the western side of the bay.  None of these sites, including the North Inlet site, is 

good representatives of the marshes in North Carolina.
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Aerial photography.

USGS aerial photographs were obtained from http://terraserver-usa.com/ and 

used in mapping and verification of some data as shown in some figures.

Tide Gauge Data 

Mean tide and sea level rise data (Figure 11) were obtained from the National 

Oceanic and Atmospheric Administration (NOAA) and used in the marsh loss model 

(Appendix B).

 Creating the distance data:

All the distances were calculated using ESRI’s costdistance function.  This 

function takes two inputs: a mask and a cost grid.  The cost grid assigns a resistance 

value or cost for traversing each unit of surface area.  In this study, the units are 

meters.  The mask contains a set of discrete source points in a grid.  The non-source 

points in the grid must be NULL values.  The costdistance function calculates the 

least cost path from each gridcell in the output grid to each source in the input grid 

using the costs assigned in the cost grid.  If the entire costgrid were set to 1, then the 

distance calculated will be the actual physical distance.  For example, using the marsh 

data and a resistance of 1, the cost of traversing one grid cell from side to side would 

be 28.5, the width of a cell in meters multiplied by the cost per meter.  If the same cell 

were traversed on the diagonal, the cost would be 28.5 * 21/2.  Any NULL values in 

the cost grid are treated as impenetrable cells, and the least cost path must go around 

them.
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Although the costdistance function requires the non-source points in the mask 

to be NULL values, many ESRI functions, which use the same information, require 

the masks to use 0 instead of NULL values.  In the amls listed in Appendix C, the 

masks are often converted from the null to the zero form for this reason.

A separate mask had to be generated for distance from each effect type (land, 

tidal creek, downstream limit and roads).  In the stream mask, all water bodies that 

had no discernible connection to tidal streams were removed because they would not 

be suppliers of sediment or oxygenated, estuarine-salinity water to the surrounding 

marsh surface.  The tidal creek hypothesis is based on the view that creeks supply 

nutrients, sediment and flushing to the marsh.  Bodies of water that are not connected 

to the tidal creek network (or that are only marginally connected) would not be 

expected to supply incoming tidal water at sufficient velocity to carry sediments to 

the surrounding marsh surface, if, indeed, they flush the marsh surface at all.  

However, they were left in the road and upland mask files, because they would still 

act as barriers to hydrological impacts.  Each effect type, due to the grid cell size, has 

a minimum thickness of 28.5 meters.  

Distance upstream:

Distance upstream was calculated in three steps, excluding the creation of 

various masks.  The first step was to determine the furthest point downstream.  This 

was determined in a somewhat subjective manner by drawing a line that roughly 

paralleled the shoreline, with the exception of river mouths were it was drawn as a 

straight line (Figure 12).  On areas such as the Outer Banks, the line went almost 

completely around the barrier islands.  The purpose of this line was to establish a 



73

reference that represented a hydrostatic minimum for the adjacent land and 

waterways.  Once the baseline downstream position was determined, it was converted 

to a grid, along with a mask of the shoreline including a cost grid.  The ESRI function 

costdistance was then used to calculate the distance to every grid cell upstream within 

the river and creek boundaries from the nearest point on the downstream line for a 

line following the tidal creeks.  

To assign a value to pixels in the marsh a similar mask was applied and the 

eucdistance function was applied.  This function applies the nearest value from a 

mask (the river and stream edges, in this case) to each cell in the output grid.  The 

results of this are shown in Figure 12. 

Before running the costdistance function, the streams were clipped wherever 

they became only 1 pixel wide.  This served to eliminate ponds that were attached to 

the main channel by a narrow creek, as well as narrow meandering creeks.  

Distance from nearest tidal creek:

The NWI data were used to define all tidal creeks.  First, a mask was created 

showing areas on the marsh surface that were water, road or upland 

(streammask2.aml).  Then the water_process.aml was run.  The upstream distance 

calculation was used as the beginning of this operation.  The clipping of small 

channels and calculation of upstream distances allowed easy removal of many interior 

ponds.  Those not visibly connected with a channel or that were clipped off, simply 

had no distance upstream calculated and could be removed.  The algorithm after that 

is much more convoluted and is included in whole in Appendix C.  Once tidal creeks 

were defined, the distance from each point in the marsh to the nearest creek had to be 
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calculated.  The output of water_process.aml is a file called allcreeks, which is an 

attempt to remove ponds while leaving as much of the creek system as possible.  The 

possibility of doing this by hand was examined, but discarded because of the hugely 

subjective interpretation it creates. 

Allcreeks was used with a cost grid to create the distance grid.  For creeks it 

was determined that their influence would end at other water bodies, roads or 

uplands.  

None of the amls turned out to be complete, so some manipulation by hand 

was undertaken at the completion of some of the amls.  These steps were kept the 

same and are outlined in the “Processing Steps for All Input Grids” section of 

Appendix C. 

Distance from nearest road:

The road distance calculation also started with the creation of a mask.  This 

mask process was designed to differentiate between roads that crossed marshes and 

those that merely touched them.  The first step was to identify all road segments that 

touched a marsh.  The second step was to eliminate those that coincided with upland 

or that merely came to the marsh edge and ended there.  This mask was then used as 

input to a number of functions.  For the road distance calculation, the next step is

“road_process.aml”.  This aml further processes the mask and attempts to 

differentiate between roads that impede water flow and those that do not.  This step 

was necessary as the hypothesis was based on the assumption that roads affect 

hydrology.  Those that do not affect hydrology are of no interest in this analysis.  In 

brief, a costgrid is created in which each water pixel has a resistance value of 1 and 



75

each marsh pixel was assigned a resistance of 100.  The value of 100 was chosen after 

trying several different values for resistance to flow across the marsh.  This value 

caused the model water flow to stay within the creek banks more rather than flowing 

long distances over the marsh to reach a pixel.  This allowed an approximation of a 

flow distance to be calculated.  The costdistance function always calculates the least 

cost path.  In this case, there will be a trade off between coming farther upstream 

versus calculating across diagonals of the marsh pixels.  The costdistance will be 

minimized somewhere between

Distance = Nwater + Nmarsh * 100

And

Distance = (N – Y)water +  (Y2 + Nmarsh2)1/2 * 100

Where Nwater refers to the distance upstream to the stream point nearest the 

marsh pixel in units of pixels.  The Nmarsh is the number of pixels in the shortest 

distance from the marsh pixel to the water and N – Y is the distance along a stream 

that would give the shortest costdistance to the marsh pixel in question if traversing 

marsh and traversing water had the same cost.  This also assumes, for simplicity, a

relatively straight stream, which is not likely in a marsh.  This formulation simulates 

the flow of tidal water in and out of the marsh, by assuming that flood tide water 

reaching a point in the marsh will get there by the least cost path.    

Use of this function allows the algorithm to determine which roads impede the 

flow of water by comparing the costdistance to pixels on either side of the road.  

After some examination of the data in the test zone, a difference of 13,000 was found 

to be effective in separating the roads into two categories.  This value implies an 
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actual difference of 4.5 pixels traversed.  The actual calculation was accomplished by 

placing a 5x5 window over each grid cell that contains road surface, and then 

comparing the minimum and maximum values.  The expected maximum difference 

(maximum – minimum), if the water is flowing parallel to the road on both sides, 

would be 28.5 * 4 * 100 (width of a pixel, times 4 pixels, times the resistance due to 

traveling over ground).  If the road runs diagonal to all the pixels, it may get included 

as having an effect because the diagonal maximum difference expected would be 

16,207, or slightly larger than the cutoff value in some cases.  However, making the 

cutoff larger would also exclude road segments that should be included.  

The road cost grid was defined by assuming that the influence of a road, being 

primarily hydrological in nature, would end at another road, stream or upland area.  

These areas were set to NULL, which terminates the cost function calculation in that 

direction.

Distance from nearest upland

The landmask was created by reassigning the CMP marsh upland category a 

value of 1 and all other categories a value of NULL.  The impact of uplands being 

modeled includes both runoff and structure.  In Blackwater National Wildlife Refuge, 

for example, the marsh substrate clearly thins as you approach the various islands, 

much as the water around an island gets shallower closer to shore.  Because it is not 

possible to know how far this effect stretches, the effect of uplands was determined 

not to be influenced by surface features such as streams or roads.  Therefore, the cost 

function was set to 1 for all pixels.  
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Distance from Random Points

To test if randomly spaced sources would produce a regression with 

probability of marsh loss, approximately 5% of the marsh surface cells were 

randomly assigned to be sources and distances were measured from these points just 

as for the other effects, such as roads or land boundaries.  This was done to test 

whether or not the processing itself or other unknown processes were affecting the 

outcome of the regressions of probability of loss on distance from some effect.  It was 

done after the other regressions were performed, and many produced very high R2

values.

Size of Marsh Parcel

To calculate the size of a parcel of marsh, the CMP data were converted from 

a grid to a polygon coverage, the four marsh health categories were set to 1, and 

everything else was set to zero.  Polygons of like value were then merged using the 

merge function.  Each polygon in a coverage has an attribute containing the area of 

the polygon.  The polygons were converted back to grids using the area attribute as 

the value assigned to each cell.

Sea Level Rise

Sea level rise data were acquired from NOAA for points (Appendix B) along 

the coast.  These data were interpolated using inverse distance weighting to give a 

value to every marsh pixel based on the two nearest actual measurements.  Along 
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parts of the North Carolina coast, this meant some points were calculated from points 

as much as 200 km distant.  

Tidal Range

Tidal range data were acquired from NOAA for the East Coast 

(www.noaa.gov).  These data were also interpolated using inverse distance weighting 

to assign a value to each marsh pixel based on the two nearest actual measurements.

Dependent variable

To perform the analysis it was necessary to compute the probability of marsh 

loss.  One way to do this was simply to use the percent water in each pixel as the 

dependent variable.  However, according to the original formulation of the MSCI, a 

certain amount of open water is good in a healthy marsh.  There will be small ponds 

creeks.  Furthermore, small amounts of water on the marsh may be a result of recent 

rain events or simply the tide being high at the time of the data collection.  Therefore, 

the numbers at the low end of the scale were not meaningful.  Only about 2 – 5% of 

the marsh exceeded 50% water in any given pixel, so at the high end of the scale, data 

were virtually non-existent.  To be consistent with the Coastal Marsh Project analysis, 

any parcel estimated to be 50% or more open water was considered "totally degraded" 

or "open water" for the purposes of this research.  All other pixels were considered to 

be “not totally degraded”.

Testing the Individual Effects (Chapter 5)

The response variable being examined here is the probability of becoming 

open water, and was calculated as follows.  For each effect type, (distance from a 
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road, distance from upland, parcel size, etc.) the distances (or size of parcel) were 

normalized to a scale of 1 – 100, and converted to integers to yield 100 categories 

(this was represented by an integer grid containing the values 1 – 100).  In ArcInfo 

terminology, a zone is defined as a set of grid cells all having the same value, whether 

or not they are contiguous, therefore each integer value defines a zone.  For each 

zone, the number of cells in category 4 (totally degraded) was calculated as well as 

the zonal area.  From this the probability of a point in the marsh becoming open water 

could be calculated from: 

P = area degraded / total area in zone.

The normalized distances and the probabilities were then converted to natural 

logarithms and plots were made of the regression of the probabilities on the distances.  

This explains why the distances were scaled from 1 – 100, instead of 0 – 100, as zero 

has no natural log.  The distance from land zones are shown in Figure 13.  

The conversion  to natural logarithms is necessary to give the data a Gaussian 

distribution.  The data are almost all based on distances from some feature, so the 

input data can be thought of as source cells and target cells.  The number of target 

cells per source cell diminishes with distance from the source cells, hence, each zone, 

defined as all the cells at some distance plus ∆x from a source cell will have a number 

of cells defined by 

Equation 14. Distribution of target cells

)/(∫= xdxgy

where g() accounts for other factors in the number of cells, y is the total number of 

cells in a zone, x is distance, and the definite integral over dx is implied.  Therefore, y 
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= g(ln(x)).  Defining the zones on equal widths of ln(distance) tends to redistribute 

the number of cells per zone more normally.  Because total degradation is a rare 

condition, based on the total marsh surface area, the distribution of probability values 

will tend to follow a non-Gaussian distribution, also.  In particular, they will tend to 

follow an e-x distribution, which can also be corrected to a Gaussian distribution by 

the natural logarithm function.

Statistics: Chapter 5

Autocorrelation

When dealing with spatial data, the question of autocorrelation becomes important.  

Cliff and Ord (1973) define spatial autocorrelation as “If the presence of some 

quantity in a county (sampling unit) makes its presence in neighboring counties 

(sampling units) more or less likely, we say that the phenomenon exhibits spatial 

autocorrelation”.  Anselin (1988) and Davis (2003) stress that this is a functional 

relationship.

Equation 15. Autocorrelation

y = ρWy + Χβ + ε.
β is a vector of parameters for the exogenous variable matrix, X, ρ is the 

coefficient of the spatially lagged dependent variable, y,  and ε is a, possibly 

autocorrelated, disturbance term.  W is the weight matrix (Anselin, 1988).  

For this analysis, the W matrix may be thought to contain several interpretable 

influences (the subjects of the hypotheses) plus others that are not known.  Particularly, 

in the presence of a road, where y = p(deterioration), the weight matrix values would be 
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hypothesized to increase as the distance from the road increased, if that were the only 

influence.  Several factors may be in operation in a given area.  To extract the one of 

interest, the data are organized by the effect being studied.  This essentially becomes an 

exercise in signal extraction.  By summing the data in a way to emphasize the signal of 

interest and to average the rest, the signal of interest will be amplified and non-

correlated inputs (noise) will be reduced by the averaging.  This applies both to the other 

influences in the W1 matrix, as well as the exogenous inputs included in Xβ.  Any

autocorrelation due to measurement error has been reduced through resampling of the 

original data, atmospheric and solar angle correction, and the NDXI technique, which 

tends to reduce  between-band autocorrelation.  

The possibility of endogeniety arises with the regression of distance from 

roads on marsh health.  Roads are likely to be built where the surface or subsurface is 

solid.  For a regression of marsh health on distance from roads, the health of the 

marsh may have been an important factor in the location of the road.

 Modeling Landscape Effects in Coastal Marsh Loss (Chapter 6)

To develop a model using the topography-related effects examined in Chapter 

5, the data were examined to find the most relevant inputs.  These were assembled 

into stacks in ESRI’s Grid program.  Each stack was then converted to a set of 

principal components using the princomp function.  The CMP marsh data was 

converted to a grid that had the value of 1 wherever the marsh was totally degraded, 0 

everywhere else there was marsh and “no value” past the edges of the marsh.  This 

marsh grid and the principal components were written to a sample file by the grid 
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program Sample, where the all the values in each grid are aligned geographically.  

This sample file then was used as the input for Grid’s regression command, which 

was run using the “logistic” and “brief” options.  This procedure produces the 

coefficients for a logistic regression (discussed in detail in Chapter 6) and the rms and 

chi-square values.  

Model grids were then calculated and compared to the original data to check 

for goodness-of-fit.  A standard G-adjusted value was calculated for each result and 

compared to the chi-square values.  The sample for the Bay areas model was a subset 

of approximately 1000th of the entire data set, randomly chosen but weighted to 

increase the number of totally degraded pixels.  The sample for the Atlantic Coast 

was the entire dataset.  These choices were based on which method produced the best 

results.  

Statistics: Chapter 6

Principal Components 

To ensure that the independent variables used in the regression model are 

independent, principal components of a matrix of the measured variables were 

calculated (Hosmer and Lemeshow, 2000).  These are guaranteed to be orthogonal.  

Because principal components analysis (PCA) was not used to reduce the number of 

variables by compressing the bulk of the variability into a few variables, all the PCA 

variables were used in the final analysis (Davis, 2003).  
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Autocorrelation

Autocorrelation is not specifically addressed in Chapter 6 and will have some 

impact on these results. 

Regression

The data used for this research has several characteristics that make ordinary 

least squares (OLS) regression of the raw variables inappropriate.  The dependent

variable being investigated is best expressed as a simple binary choice - the marsh is 

either totally degraded or it is not.  Logistic regression calculates the probability of an 

event occurring or not occurring.  A linear model is not appropriate for this type of 

response variable for several reasons.  The error terms are heteroskedastic.  The 

variance of e = p (1-p), where p is the probability that degradation = TRUE.  P is 

dependent on X, so the assumption that the error term does not depend on the Xs is 

violated.  As P can have only two values, the error terms are not normally distributed.  

Linear regression, of course, uses a range of y that is not bounded by one and zero.  

Hence, if used for probability calculations it can return probabilities greater than 1 

Logistic Model

The logistic model is: 

ln[p/(1-p)] = a + BX + e 

where: 

a is the constant term coefficient, 

B is a vector of coefficients on the independent variables, 

X represents the vector of independent variables
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e is the error term

p = probability(Y=1) 

The probability, p, is calculated by: 

p = [e(a + BX)]/[1 + e(a + BX)] 

or 

p = 1/[1 + e(-a - BX)] 

If a + BX equals 0, then p = 0.5; as a + BX gets larger, p asymptotically approaches 1, 

and as a + BX gets smaller, p asymptotically approaches 0.

Model Fitting

Estimation by maximum likelihood 

The goal of maximum likelihood estimation (MLE) is to find the parameter values 

that make the observed data most likely. If P(X|p) represents the probability of an 

event X given the model parameters p, then L(p|X) represents the likelihood of the 

parameters given the data.  Logistic regression finds a best fitting equation by using a 

maximum likelihood method.  This maximizes the probability of getting the observed 

results given the fitted regression coefficients.  As a result, different tests of statistical 

significance are required for logistic regression than are used in OLS regression.

The likelihood function (L) 

L = Π(X = xj)
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calculates the likelihood of predicting the dependent variable values observed 

given a set of parameters for the model (Upton and Cook, 2002).  As the  function 

increases, the probability of observing the Xs in the sample increases.  MLE is used 

to find the coefficients (a, B) that maximizes the log of the likelihood function (LL < 

0).

Overall model performance 

Several statistics can be used for comparing alternative models or evaluating 

the performance of a single model.  One of these, the model likelihood ratio (LR), or 

chi-square, statistic is 

LR[i] = -2[LL(a) - LL(a,B) ] 

where the model LR statistic is distributed chi-square with i degrees of 

freedom, and where i is the number of independent variables.  The "unconstrained 

model", LL(a, Bi), is the log-likelihood function evaluated with all independent 

variables included and the "constrained model" is the log-likelihood function 

evaluated with only the constant included, LL(a).  The Model Chi-Square statistic is 

used to determine if the overall model is statistically significant.  

Another evaluation of the model is to use a contingency table to determine the 

accuracy of the predictions.  The percent correct statistic is calculated on the 

assumption that if p > 0.5, then the pixel is degraded.  Otherwise, the pixel is assumed 

not totally degraded.  There is no equivalent to the OLS regression R2 statistic in 

logistic regression (Hosmer and Lemeshow, 2000).
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Remote Sensing

 Synthetic Data

 Several sets of synthetic data were created for this modeling effort using 

SAS-JMP® on a Macintosh® computer.  Three cover fractions were created (f1, f2, 

f3).  To insure a high probability of a pure pixel for any of the three surface cover 

types, and evenly distribute the potential for any one cover type to be either high or 

low in any given pixel, they were calculated by first generating a random variable, x1, 

that was between 0 and 1.  This random variable was skewed toward 1, with a mean 

value of 0.6.  A second random variable, x2, was calculated between 0 and 1 - x1.  A 

third number, x3 = 1 - x1 - x2, was calculated for each pixel.  One third of the values 

of each variable were then assigned to the water, vegetation and soil fractions.  Once 

the surface cover fractions were determined, synthetic reflectance data had to be 

calculated.  Two methods were used: simple linear mixing and non-linear mixing 

with noise added to both.

Noise was added to the reflectance spectra to test whether it could be 

successfully removed by the NDXI procedure.  Noise in the reflectance spectra was 

added to the linear mixture model above by: 

Equation 16. Multiple Scattering.

ssissisivviviviwwiwiwii fefeSfeSR ))'(()()( ρρρρρ +−++++=

where the e’s represent random variation in the endmembers and ρ’si - ρsi

represent the bright and dark soil spectra, swi , and svi represent standard deviations of 
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water and vegetation, and ρwi and ρvi represent the reflectances of water and 

vegetation.

The non-linear model used is a modification of one of the models of Borel and 

Gerstl (1994).  Borel and Gerstl’s model incorporated one cover type (soil) beneath 

the vegetation.  This model allows the substrate to vary between 100% soil and 100% 

water in each pixel.  As a first-order approximation, each pixel in this model is treated 

as though the mixture of soil and water is completely homogeneous and constant 

across the pixel.  The reflectance immediately above the leaf layer is given by:

Equation 17.

gvf RRR +=
.

The individual components Rv and Rg are given by:

Equation 18. Scattering from Vegetation.

))1/())1(1(* wsvvwsvvvv fffR ρρτρτρ −−++=

Equation 19. Scattering from Soil/Water.

))1/())1(*1( wsvvvwsg ffR ρρτρ +−+=
.

where 

ρws = ρwfw/(fw+fs) + ρsfs/(fw+fs).

Rv and Rg represent the reflectances of the leaf layer and the substrate, τ� is the 

transmissivity of the leaf layer, fv is equal to LAI (Leaf Area Index) for LAI less than 

1, ρws is the average reflectance of water and soil in any pixel.  Borel and Gerstl 

(1994) also modeled reflectance for LAI ≥ 1, but that model was not applied here.
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Datasets of ten thousand points were created using the non-linear model and 

unmixed using PCI’s unmix algorithm with two different procedures.  In one 

procedure, the principal components were calculated, endmembers selected in PCA 

space, and then the endmembers were used in TM space to unmix the pixels using 

bands 3, 4, and 5.  This is referred to as the “PCA” procedure.  The second procedure 

was to run the NDX transformation on TM bands 3, 4 and 5, use the NDWI and the 

NDSI to select endmembers and then unmix the data in the NDX data space (referred 

to as the NDX procedure).

Identification of endmembers from real images was undertaken using PCI’s 

Imageworks® and EASI/PACE® programs.  When using principal components, the 

first two principal components of the dataset were calculated and a scatterplot made 

of them.  The points in the two-dimensional scatterplots representing water, soil and 

vegetation were identified at the extrema of the data, flagged, and the actual pixel 

locations identified.  These pixels were used as training sites to create spectra for the 

three endmembers.  The reflectance data were then unmixed using PCI’s unmix 

algorithm (Gong et al. 1991) and subsequent analysis performed with SAS-JMP®.  

The unmix program uses singular value decomposition to solve for the unknown 

percentage cover fractions.  For the NDX operation, a set of standard endmembers 

were extracted from actual scenes and applied across all synthetic datasets.  

To examine the effects of non-linear mixing directly on the data, one set of 

498 points was generated with reflectances calculated both with and without non-

linear mixing.  No random variations were permitted in this dataset, so that only the 

difference between linear and non-linear mixing could be examined.  
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Non-linear reflectance in water or soils was not modeled because the spectral 

bands chosen have very little reflectance from water, except Band 3.  The latter band 

may penetrate sufficiently into water to produce significant backscatter from bottom 

sediments.  However, detection of water depends on Band 3 being brighter than 

Bands 4 and 5, which should make the water look more like water in the NDXI 

transformation.  This is important because if the reflectance is sufficiently bright in 

Band 3, it may cause a pixel to appear like more than 100% water.

Real Data

The method of defining endmembers used here is similar to that of 

Williamson (1994), who used PCA, the spectral distribution of the reflectance data 

and ground reference data to select endmembers.  The points representing 

endmembers were carefully screened after being selected in two-dimensional 

scatterplots.  They were all examined spectrally to determine the degree to which they 

fit expectations for the various spectra, and they were also examined geographically 

within the context of the image.  Water and vegetation pixels were relatively easy to 

find, as large expanses of open water and forests characterized most of the images.  

By comparison, soil spectra were a little more difficult to obtain.  Sandy beaches 

provided the one ready source; the rest had to be carefully examined.  Knowledge of 

the area being examined was used to support choices of individual pixels.  It was 

found that even for the PCA method, the quickest way to identify potential 

endmembers accurately was to use plots of NDWI versus NDSI.  Pixels flagged by 

this method could be used to find and identify the training pixels in the PCA space.  
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A subset of 67,600 points was extracted from an atmospherically corrected 

Thematic Mapper Scene, 16/37 1992, and used either as TM image data or 

transformed according to the NDX algorithms above.  Two sets of one thousand 

random points were selected from this subscene.  The first set was truly random, but 

did not have many soil-dominated pixels.  The second set was weighted, based on 

their spectra, to contain more soil-dominated pixels.

The preliminary field validation and image processing used to provide the 

data here are discussed in Kearney et al. (1995).  Ground reference data were 

collected in Blackwater NWR, Maryland, and Winyah Bay, South Carolina, by 

visually assessing areas on the ground and estimating the percentage water.  The 

assessed locations were geographically located with GPS and then referenced back to 

the analyzed images.   

To determine whether the transformed TM data would scale spatially or not 

several TM scenes were tested.  For the first half of the test, each NDX value was 

calculated and then the pixel values averaged together in 10 by 10 squares to get the 

following equation:

Equation 20.  NDX Average

100/)])/()[((
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Alternatively, the TM pixel values were averaged in 10 by 10 squares and 

subsequently transformed into NDX axes for the following equation: 

Equation 21.  TM Average
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The results of these two transformations were then regressed against each 

other to show that the NDX results scale with changes in geographic extent (Rogers 

and Kearney, 2004).  

The preceding discussion covers work that was done for the Coastal Marsh 

Project from 1992 – 1996 as well as work that was done strictly by the author in the 

period 1996 to the present.  
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 Figure 9. The two zones of the study area

The Chesapeake and Delaware bays, where the marshes are larger and 
more insolated from the ocean, were put in one zone.  The barrier island 
marshes and the mainland marshes behind Cape Hatteras were put in 
the second zone.  
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Figure 10. Validation Sites 

The dots shown represent general sites where the remote sensing 
technique was calibrated or validated.
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Figure 11. Tide Gauges and Sea Level Rise Data Points.  

This shows the location of NOAA’s tide gauges, which are the source of the sea 
level rise, and tidal range data used in this dissertation.
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Figure 12. Upstream Distance in the Chesapeake Bay

The dark line along the coast in this figure is the line defined to be the 
downstream limit from which distances were measured.  The colored 
zones represent bands of marsh at different distances upstream from 
the nearest point on this line.
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Figure 13.  Distance from land represented as zones.

The colored bands represent the zones of marsh that are all a constant 
distance from the nearest upland.
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Chapter 5:  Testing the Hypotheses

One goal in this study is to test several hypotheses regarding factors that 

might be correlated with marsh loss.  The other is to develop a multiple regression 

model of marsh loss using those same factors.  The results of the multiple regression 

model will be presented and discussed in Chapter 6.  This chapter focuses solely on 

the testing of the four hypotheses presented in the proposal, plus an additional one 

added later.  The hypotheses are discussed fully in Chapter 2, but are restated below 

for convenience.  Each section in this chapter consists of the hypothesis, the Bay Area 

(Chesapeake and Delaware Bays) results, the Atlantic Coast results and a conclusion.  

The Coastal Marsh Project assessed the condition of coastal marshes from 

New England to northern Florida.  This study uses the results from the middle of New 

Jersey to southern North Carolina as shown in Figure 14.  The study area covers both 

Atlantic Ocean coastal areas and estuarine marshes, principally on the Chesapeake 

and Delaware Bays, but some smaller ones are scattered along the coast.  The 

coloration of Figure 14 is based on the Coastal Marsh Project output but has been 

reduced to show two categories of pixels – those below 50% open water and those 

50% and above open water.  The two-class system shown in Figure 14 shows the data 

actually used to calculate the probabilities of total deterioration.  

The descriptive text associated with Figure 14 is based on the Marsh Surface 

Condition Index, which in turn is based on how estuarine marshes are thought to 
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deteriorate (Kearney et al., 1988).  This may have nothing to do with backbarrier 

island marshes or those on the far side of Currituck Sound, which are barely separated 

from the open ocean by a thin chain of islands.  The back barrier marshes may also be 

stable with much higher amounts of open water in ponds and streams than the 

estuarine marsh systems.  In addition, marshes that are developing may look exactly 

like marshes that are disappearing in remotely sensed data.  However, for purposes of 

this discussion, the terms deteriorated and degraded  will be applied to both marsh 

systems to denote marshes that have become 50% open water after the delineation of 

the NWI data.    

Coastal marshes under consideration are those classified as “estuarine 

intertidal” and subclassified as either emergent or scrub-shrub (Cowardin et al., 1979) 

by the U.S. Fish and Wildlife Service in the National Wetlands Inventory (NWI).

Validation

Limited new validation of the Coastal Marsh Project dataset was done.  

However, the original validation is very encouraging as to the accuracy of this 

analysis.  In one study on the Delaware Bay, it was found that the CMP classification 

was 83% accurate for classification into four classes (Stevens, 1997).  This analysis 

compares the percent water calculated by the remote sensing model with percent 

water observed by analysis of aerial photographs, which was backed up with visits to 

ground sites.  For a two-level classification (Table 6) the accuracy is nearly 100%.  

Other efforts have further validated the work (Kearney et al., 2002).
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Table 6. Validation of Coastal Marsh Loss Project Data on the Delaware Bay

Actual Row Totals

Healthy Degraded

Healthy 178 1 179
Assessed

Degraded 0 6 6

Column 

Totals 178 7 185

Percent assessed correctly

Healthy 99 G-Adjusted 47.2051

Degraded 100 Chi-square value 10.828

Total 99

Level of 

Significance 0.001

1 A value of 10-15 was added to the zero-valued cell in the contingency table to 

calculate the G value because the calculation involves a logarithm.  The 100% correct for 

assessed degraded reflects the fact that all six pixels assessed as degraded were, in fact, 

degraded.

Hypothesis 0.  (Random points as causes of marsh loss)

Before examining the stated hypotheses, the results of using randomly 

assigned pixels as an effect needs to be addressed.  Figure 15 shows a clear 

relationship between probability of marsh loss and distance from randomly chosen 

points.  What Figure 15 demonstrates is that the distribution of degraded pixels is 



100

clumpy and that they are rare.  Because total degradation is a rare event, 

(approximately 5% of the pixels are degraded) any randomly chosen location is likely 

to be far away from a degraded pixel.  This graph has three notable sections.  From 0 

to about 100 meters there is no strong trend.  From about 100 meters to 300 meters, 

there is a strong increase in probability of degradation (p(degradation)).  After that 

point, there is very little continuing relationship.  Three kilometers is the maximum 

distance possible from one of these random points in the marsh.  This was tested on 

the Atlantic Coast marshes.

Hypothesis 1.  (Roads as causes of marsh loss)

The probability of a parcel being completely open water will be negatively 

related to the distance of the parcel from a road, with the caveat that close to the road 

the marsh may be healthy for the reasons stated in Chapter 1.  Therefore, the 

deleterious impact may be expected to start some distance from the road.  This was 

tested on both the Atlantic Coastal region and the Bay Area.  Regressions of the data 

for this hypothesis are shown in Figure 16 and Figure 17.

In both Figure 16 and Figure 17, the marsh nearest the road is the least likely 

to have degraded in the recent past.  Contrasting Figure 16 and Figure 17 with Figure 

15, p(degradation) increases immediately adjacent to the road but not next to the 

random pixels.  The pattern  remains coherent to a distance of 3 km in both Figure 16

and Figure 17, but this probably is because it is possible to be farther from a road in 

the marsh, then it is to be from one of the randomly chosen pixels.  Overall, the 

regression of probability of marsh loss on distance from roads in the bay area does 
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not look significantly different from the random effects in Figure 15, except that the 

R2 is lower.  It also directly refutes the hypothesis.

One complication of the method used is that degradation that occurred prior to 

the NWI analysis must be included as existing open water.  It is beyond the scope of 

this study to attempt to regress the landscape to what it was in some pristine state.  

Therefore, areas like Blackwater National Wildlife Refuge (BNWR), which show 

serious degradation close to the road, relative to 1938, will not show up as degraded 

areas in this study.  

Bay Area

For the bays, the distance to maximum degradation is about 400 meters.  

Figure 18, Figure 19 and Figure 20 show close ups of two areas.  In Figure 18 and 

Figure 20 p(degradation) data are mapped.  Each figure has a hypothetical transect, 

marked with various distances.  In Figure 18, the two lines mark the beginning and 

the end of the plateau in Figure 16.  There seems to be some impact up to about three 

kilometers.  After that, the graph (Figure 16) no longer forms a coherent line, although 

there is still a strong increase in marsh degradation with distance.  Figure 18 and 

Figure 20 map the wide swings in probability of loss after that distance.  

Figure 19 is the same area as Figure 18, but in this figure the marsh health 

index is shown.  The two-hatched boxes represent the approximate bounds of the data 

“plateau”.  The box to the east of Shorter’s Wharf Road clearly captures the bulk of 

the recent marsh loss in that direction.  There is less loss to the west of the road, but 

much of it is captured by the box on that side.  Just to the west of this map, however, 
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is a large area of marsh loss in the midst of the lake in BNWR.  This probably 

accounts in part for the scatter towards the right side of the graph in Figure 16.

Atlantic Coast

Figure 17 shows a similar result with marsh health decreasing with distance 

from the road until a dramatic shift in probability of loss at about 3 km.  It is quite 

tempting to attribute this result to the same factors as in the bays.  However, an 

examination of the available data leads to the conclusion that this is a result of other 

correlates discussed below.  

Figure 21 shows a typical coastal marsh.  Many of them form narrow strips 

along the shoreward side of barrier islands, or strips along the coast of the mainland.  

Typically, they have much more of their total edge open to a large body of water than 

the estuarine marshes of the bays.  This means that is unlikely for hydrological 

impacts from a road to spread very far.  The transect along the small island in Figure 

21 makes this point.

The roads in the Atlantic Coast area themselves are different in that they are 

usually closely associated with upland areas so it is quite natural that the marsh will 

be healthy near the road.  Presumably, the road was built there because the marsh was 

stable.  In Figure 22, there are numerous roads with marsh on both sides connecting 

the mainland and the barrier islands between Cape May and Great Egg Harbor.  

Examination of aerial photos and USGS orthophotoquads indicates that there may be 

more marsh present than is seen in the Coastal Marsh Project/NWI dataset.  However, 

the roads do form points of stability in the marsh so the marsh immediately adjacent 
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to them is healthy.  This is an area heavily managed by humans, so the result may not 

be incidental.  Because the marshes are healthy near the roads, it then must follow 

that degraded areas are going to be further away and this will produce the trend seen 

in Figure 17.  

Figure 22 also shows the mainland marshes south of Great Egg Harbor.  These 

marshes exhibit some of the longest distances from a road to the end of the marsh in 

this dataset.  However, the roads are far up in the marsh.  Note the position of Route 

585 where it crosses the marsh.  It may have some influence in limiting freshwater 

input into the lower marsh, but it stretches credulity to imagine that it could have an 

impact on areas bordering the major river 8 kilometers away.  It may well be a factor 

in the degradation upstream, however,  if it prevents drainage from the upper marsh 

areas.  

Figure 22 also illustrates another interesting feature of this analysis.  There are 

roads crossing the marsh farther upstream than Route 585 but they do not show up in 

this analysis.  That is because Route 585 would have been considered a solid barrier 

to water movement and therefore, even though the roads cross the marsh upstream, 

they would not be shown to impact the ebb and flow of tidal waters.  

An additional complication of the method is that there is an inherent decrease 

in the amount of data available at longer distances.  Every grid cell on a road has at 

least one and possibly two grid cells in the surrounding marsh that are closer to it than 

to any other grid cell on the road.  This means that for extreme distances only a few 

marshes, or perhaps one, will dominate the characterization of the marsh.  In this 
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case, the marsh on Great Egg Harbor and two in North Carolina seem to dominate 

this measurement.

Conclusion to Hypothesis 1

The evidence for the estuarine marshes of the Delaware and Chesapeake Bays 

does not support the hypothesis and are indistinguishable from random inputs.  For 

the Atlantic coast marshes, the evidence would suggest that roads do not have any 

demonstrable negative impact on the surrounding marshes and may serve to stabilize 

them.

Hypothesis 2.  (Distance from large tidal streams)

The probability of a parcel being completely open water will be positively 

related to the distance of the parcel from the nearest tidal creek.  Tidal creeks were 

defined as those that occupied in excess of one pixel width for their entire length and 

were present in the NWI data.

Bay Area

Figure 23 shows two strong trends.  At the immediate creek edge, the marsh is 

more degraded and p(degradation) drops quickly for about 150 meters.  Immediately 

next to the water body, this is probably an artifact of misregistration and the 

impossibility of spectrally distinguishing the water in the river from ponds on the 

marsh.  Often there are degraded areas immediately behind the levee of a river, and 

these may be responsible for the higher level of degradation at 50 – 100 meters from 

the creek edge.  From 250 meters to 3 km the anticipated increase in p(degradation) 

toward the interior of the marsh occurs.  The two regression lines drawn represent the 
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two independent processes operating on marsh degradation with respect to sources of 

water.  After 3 km, there is no longer a discernible pattern.  Figure 24 shows the 

pattern of calculated degradation for the entire two bay area.  Predictably, BNWR 

appears as a very degraded area.  In Figure 25 and Figure 26, the tidal stream effects-

related loss can be compared directly to the Coastal Marsh Project output.  There is a 

good deal of correspondence, particularly in the upper reaches of the streams.  It is 

not expected that there would be a perfect match.

Atlantic Coast

Figure 27 shows the result of regressing the ln(probability of being open 

water) on the ln(distance from the nearest tidal creek or water source).  This is a very 

strong regression, showing continual declines in p(degradation) over the entire 

breadth of the marsh.  This graph shows quite powerfully that Figure 15 is not the 

only possible outcome and that real effects are being detected.  The Atlantic Coast 

marshes appear very wet at the edges and get healthier going inland for about 800 

meters, on average.  This does not agree with the hypothesis.  The bulk of the 

marshes in this category have their edges almost entirely exposed to open bays rather 

than tidal streams, or other wetlands or uplands (Figure 28).  This large exposure 

means that areas being actively eroded, plus edge placement error will account for 

much of the marsh degradation.  The tidal regimes tend to be different for these 

marshes as well, with the tidal ranges being somewhat higher along the ocean coast 

(Appendix B).  The marshes therefore have fewer tidal streams with levees per unit 
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area, relative to the amount of higher energy tides, than the inland marshes of the bay 

area. 

A close up of the North Carolina coast south of Cape Lookout shows more 

clearly what is happening in these coastal marshes (Figure 29).  The distance from the 

edge to the center of the largest marsh (center of map) is approximately 800 meters.  

In fact, the distance from the edge to center of many of these marshes tends to be in 

the 0.5 to 3 km  range.  The next range of distances appears to be dominated by some 

extreme areas in the Great Egg Harbor area.

Conclusion 

The hypothesis is supported for the bay area, but is rejected for the Atlantic 

Coastal area.  This may be related to the fact that the Atlantic Coast marshes are 

substantially different from the Chesapeake and Delaware marshes in size, tidal creek 

development and exposure to edge erosion. 

Hypothesis 3.  (Distance upstream as a cause of loss)

The probability of a parcel being completely open water will be negatively 

related to the distance the upstream of the marsh system that contains the parcel.  This 

hypothesis, resting on the assumption that sea level rise is driving coastal marsh loss, 

is well supported in both regions.

Bay Area

Taking the bay area first (Figure 30), there is a general trend toward decreased 

degradation going from the downstream extreme of each river system to the farthest 
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reach of estuarine marsh.  An overview of the entire area (Figure 31) shows that the 

pattern is followed closely in areas near to the shore.  The rivers of the Chesapeake 

Bay, which are much longer than those of the Delaware Bay, show a repeated 

fluctuation in degradation with increased distance upstream.  Certainly, there are 

fluctuations in every river system; however, that these fluctuations make a consistent 

pattern, rather than averaging to the mean line, indicates that there is potentially some 

driver that operates on many river systems, such as where the maximum tidal 

sediment delivery occurs.  Figure 32 compares the conditions at several upstream 

distances on the Choptank and Nanticoke Rivers.   

The wide disparity in river lengths allows the Potomac River to dominate the 

entire pattern for any distances over about 70 kilometers.  In other cases, there is no 

expectation that there will be real impacts at distances of 70 or more kilometers with 

many of the effects being studied in this paper.  However, in this case the effect is 

caused by the rivers as they import both tidal water and fresh water to the borders of 

the wetlands.  Therefore, impacts can be reasonably connected to the effect of 

distance upstream.  However, when only one river system is involved, it hardly poses 

any general effects.  Furthermore, as the mean is driven by fewer and fewer actual 

marsh parcels, the data cease forming a coherent line.

Atlantic Coast

The data for the Atlantic Coast support the hypothesis that distance upstream 

impacts marsh health (Figure 33).  The regression closely resembles the regression 

for the bay areas.  The narrowness of the Atlantic marshes and nearness to sea level, 
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however, puts most of them in the category of high probability of being open water 

(Figure 34) based on effect of distance upstream.  The marsh systems up some river 

systems are likely to be healthy based on this factor.  Because the barrier islands force 

Currituck Sound and Chincoteague Bay to be long and narrow, the back-barrier 

marshes will appear to be upstream from the inlets through the barrier islands.  The 

upstream assessment indicates that marshes that are farther upstream are likely to be 

healthy.

Conclusion

The hypothesis that marsh health is related to distance upstream is supported 

for both systems.  This conclusion also supports the hypothesis that sea level rise is a 

driving factor in marsh loss.

Hypothesis 4.  (Distance from upland as a cause of loss)

The probability of a parcel being completely open water will be positively 

related to the distance of the parcel from the upland.  For the purposes of this study, 

although the term upland is used, in actuality it is distance from whatever is in the 

“other” (see map legends) class that could be anything except for the wetland type 

under consideration.  Much of the estuarine marsh in BNWR borders on forested 

swampland.  This will be different from upland, but it will provide two of the effects 

of upland that are postulated here to benefit marshes.  First, swamps can act as a 

source of freshwater to the downstream marsh.  Secondly, as the swamp substrate is 

solid enough to support trees, it must be reasonably stable.  The distance to the 

nearest upland could have been calculated using the uplands and measuring across the 
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freshwater swamps and marshes, but this study was more interested in what was 

happening in the estuarine marshes.  Therefore, the bounds of the data in the Coastal 

Marsh Project were used as the marsh boundaries. 

Bay Area

There is a strong regression of ln(probability of being open water) on 

ln(distance from an upland area.  The first point (Figure 35) probably reflects edge 

error artifacts, and that point could have been omitted from the regression as an 

outlier.  A cursory glance at Figure 36 shows how clear this effect is.  The BNWR, 

Nanticoke River area, and the marsh islands all stand out in this map, which is 

correct, as they are hotspots of marsh loss.  The marshes along the York River (Figure 

37) show that this loss is focused on either the seaward edge or interior of the marsh.

Atlantic Coast 

Of the effects examined in this paper, this is one of the most important for the 

Atlantic Coast (Figure 38).  Like the bay area marshes, this effect ends at 

approximately 3 km, meaning that 3 km is the longest distance you can go in a coastal 

marsh from an upland area.  There is an interesting result at about 500 meters, where 

the steady increase in deterioration is suddenly reversed briefly.  This is especially 

interesting because it matches a similar feature in Figure 27.  This is the distance from 

the edge to the center of many of the small back barrier marshes and it seems to 

represent the upper size limit for many of the Atlantic Coast marshes.  

In Figure 39, the general location of the most deteriorated marshes can be 

seen.  Besides the usual locations at Great Egg Harbor and near Cape Lookout, there 
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is a major area of deterioration north of Cape Charles.  Close examination of this 

marsh system (Figure 40) shows that any point there has a very high probability of 

being open water.  The very high probability value of -0.000042 likely reflects the tip 

of a single marsh that is heavily degraded.

Conclusion

The hypothesis that distance from upland is strongly correlated with marsh 

loss is strongly supported for both systems.

Hypothesis 5:  

The probability of a parcel being completely open water will be negatively 

related to the size of the marsh parcel containing the grid cell.    

Bay Area

The regression here is much less clear (5-27).  The data clearly suggests that 

there is a little trend up to about e10 meters or 22 hectares, after which the trend is 

toward more deterioration with increasing size.  This is likely driven by interior 

ponding, which increases as the marsh interior gets farther from the edge.

The distribution of these marshes around the bay area is much different from 

for the other effects (Figure 42).  The previous effects tended to show up in bands.  

The large tract of marsh south of BNWR is assessed as very healthy, which it is, and 

the peninsula between the Nanticoke River and Fishing Bay is assessed to be 

moderately deteriorated, which is same assessment as made by the Coastal Marsh 

Project data, although parts of it are heavily degraded.
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Atlantic Coast

The Atlantic Coast shows a more pronounced shift from low probability of 

deterioration, to a high level at mid-sized marshes (162 hectares) and then drops 

precipitously again (Figure 43).

In contrast to the Bay area marshes, most of the Atlantic marshes fall in the 

low probability of deterioration category (Figure 44).  Notable exceptions are the area 

north of Cape May and the area near Cape Lookout and Cape Hatteras.  These areas 

seem to show up relatively often.

Conclusion**

The hypothesis that probability of being open water will decrease with 

increasing marsh size is clearly not supported.  This hypothesis, however, was 

included to test whether studies done in one size of a marsh would be applicable to 

marshes of different sizes.  These data would indicate that there are other factors that 

are more critical in determining whether results of work in one marsh are transferable 

to another. 

Comparison of Effects

The five effects have been examined in isolation.  Before moving to creating a 

model, it is useful to know how the models relate to each other.  In examining Figure 

45 and Figure 46, a few caveats are in order.  The five effects measured here are 

grouping broad areas of the study area together and calculating an expected value for 

the entire category.  Although some places may be expected to have similar 

probabilities of being open water under different effects, the likelihood that there will 
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be an exact correspondence is low.  Second, although all the scales run from low 

probability to high probability, the maximum and minimum for each effect is unique, 

so an actual equal probability of deterioration may be colored differently for different 

effects.  In addition, not every area of marsh is connected to a road.  Areas that are 

not directly connected to a road will not be represented on the map showing road 

effects.

The data for each study area is arranged in 6 windows.  The first window is 

the Coastal Marsh Project data reduced to a categorization of either totally degraded 

(magenta) or not totally degraded (green).  This is the data on which all the rest of the 

analysis in this chapter is based.  Each of the other windows has a key word to 

identify the effect being represented and they are arranged (left to right, top to 

bottom) in the same sequence as in the preceding discussion.  

Bay Area

The maps (Figure 45) are focused on the area including BNWR and the 

Nanticoke River.  Common features include peninsula west of the Nanticoke River 

being classified as moderately likely to be degraded.  The area in BNWR that features 

a large number of degraded points in the CMP map is consistently classified as 

degraded.  The Wingate area has a variety of classifications, but in most cases it is 

classified as less likely to be degraded than the area of BNWR.  Similarly, the area 

west of BNWR has a variety of classifications, but is consistently healthier than 

BNWR and is about the same as Wingate.  
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Atlantic Coast

This area of the outer banks (Figure 46) is shown in fine detail.  The areas 

labeled A, B, and C tend to be the focus of degradation, although the exact pattern 

varies.  The marsh at C is clearly highly degraded, but only shows up in some scenes.  

The south end of marsh B is also highly degraded (as shown by the concentration of 

magenta points in the CMP frame) and is consistently assessed to be degraded in the 

other views.  The water effect is clearly not consistent with the other map views, 

because the model shows degradation around the water’s edge of all these marshes, 

whether or not the marsh shows deterioration overall.  

Conclusion

The evidence given in the preceding sections supports the data in Table 7.  

This kind of signal processing technique clearly produces regressions that indicate 

that most of the effects studied have consistent, demonstrable influences on coastal 

marshes, whether in the major bays or on the Atlantic Coast.  This does not, however, 

make them particularly good assessors individually because there is too much 

variability introduced by the other factors.  Having shown that there are individual 

influences, the next step is to combine them into a model.  The effects as studied here 

cannot, however, be put directly into a model because the response variable is 

calculated by zones defined by the test variable.  Therefore, each response variable is 

unique to its test and they cannot be combined.  In Chapter 6, a model will be 

discussed that does use a single response variable. 
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Table 7. Results of Hypothesis Tests

Area Hypothesis Correlation Conclusion

Bay Negative Rejected

Atlantic
Distance from Roads

Negative Rejected

Bay Positive Not rejected

Atlantic
Distance from Tidal Creeks

Positive Rejected

Bay Negative Not rejected

Atlantic
Distance Upstream

Negative Not rejected

Bay Positive Not rejected

Atlantic
Distance from Upland

Positive Not rejected

Bay Negative Rejected

Atlantic
Area

Negative Rejected
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hes in the MidAtlantic Region

Marsh health status based on Coastal Marsh Project data, but reduced to 
two categories.  This categorization is the basis for the data in this chapter.

Figure 15. Effect of non-random distribution of degraded areas in the 
Atlantic Coast marshes.  
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This graph shows the increase in probability of degradation with distance 
from a set of randomly selected points in the marshes.
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Figure 16. Distance from Roads vs. Marsh Loss in the Bays.

This graph shows the increase in probability of degradation with distance 
from the nearest road.
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Figure 17. Distance from Roads vs. Marsh Loss on the Atlantic Coast.

This figure shows the regression of probability of marsh loss on distance 
from the nearest point on a road in the marsh to a point in the marsh.  Only 
the black points are used in the regression.
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Figure 18. Expected Marsh Loss in BNWR as a Function of Distance from 
the Nearest Road

The colored bands represent the probability of loss in each distance zone.
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Figure 19. Marsh loss in BNWR as estimated by the Coastal Marsh Project.
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Figure 20. Expected marsh loss related to distance from the nearest road.

This figure shows the probability of marsh loss in various distance zones 
from the roads on the New Jersey coast.
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Figure 21. Expected marsh loss related to distance from the nearest road.  
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Figure 22. Expected marsh loss related to distance from the nearest road.
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Figure 23. Effect of tidal creeks in the Chesapeake and Delaware Bays
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Only the black points were used in the regression.  The figure shows that 
from 100 – 1000 meters from the creek the marsh health deteriorates.

Figure 24. Probability of marsh loss as a function of distance from the 
nearest tidal creek in the Chesapeake and Delaware Bay area.  
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Figure 25. Probability of marsh loss as a function of distance from the 
nearest tidal creek in upper Delaware Bay marshes.

This is calculated as specified in Chapter 4.
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Figure 26. Marsh loss calculated from Thematic Mapper imagery for the 
upper Delaware Bay marshes.

Data was calculated by the Coastal Marsh Project as discussed in Chapters 
3 and 4.
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Figure 27. Regression of Probability of Marsh Degradation on Distance 
from Tidal Creeks on the Atlantic Coast.

The regression shows that the hypothesis of marsh loss increasing away 
from tidal creeks is not supported for the Atlantic Coast.
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Figure 28. Expected marsh loss as a function of distance from the nearest 
major water source on the Atlantic Coast.

This is the analog of the distance from tidal creeks in the bays.  Loss here 
seems to be driven more by distance from the ocean shore than by distance 
from tidal creeks.
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Figure 29. Expected marsh loss as a function of distance from the nearest 
water in Onslow County, North Carolina.

The expected degradation is focused on the edges of the marsh in this map.
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Figure 30. Regression of probability of marsh degradation on distance 
upstream for the Chesapeake and Delaware Bays area.  
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Figure 31. Expected marsh loss as a function of distance upstream in the 
Chesapeake and Delaware Bay area. 

The distance upstream is measured along the major river systems from the 
downstream boundary.
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Figure 32. Expected marsh loss as a function of distance upstream on the 
Eastern Shore of Maryland.

The lines on the marsh are isolines of marsh loss.  They are intended to 
show how the different rivers look at the same distance upstream.  There is 
actually degradation on the Choptank at 45 km, just as on the Nanticoke.
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Figure 33. Regression of Probability of Marsh Loss on Distance Upstream 
in Atlantic Coast Marshes
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Figure 34. Expected marsh loss as a unction of distance upstream on the 
Atlantic Coast.

The black boundary line along the Atlantic shoreline and in Pamlico Sound 
is the downstream limit for measuring distance upstream. 
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Figure 35. Regression of probability of degradation on distance from the 
nearest upland for marshes in the Chesapeake and Delaware Bays
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Figure 36. Expected marsh loss as a  function of distance from the nearest 
upland area.  

This map depicts the probability of any randomly selected point in the 
marsh being degraded as calculated based on distance  from the upland 
marsh edge.
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Figure 37. Detail of expected marsh loss as a function of distance from the 
nearest upland area in the lower Chesapeake.

This map depicts the probability of any randomly selected point in the 
marsh being degraded as calculated based on distance  from the upland 
marsh edge.
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Figure 38. Regression of probability of degradation on distance from 
Uplands for Atlantic Coast Marshes
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Figure 39. Expected marsh loss as a function of distance from the nearest 
upland  area.

This map depicts the probability of any randomly selected point in the 
marsh being degraded as calculated based on distance  from the upland 
marsh edge.
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Figure 40. Expected marsh loss as a function of distance from the nearest 
upland area.

This map depicts the probability of any randomly selected point in the 
marsh being degraded as calculated based on distance  from the upland 
marsh edge.
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Figure 41. Regression of probability of marsh degradation on marsh size in 
the Chesapeake and Delaware Bays

This figure shows the relationship between the size of a marsh parcel and 
the probability that any pixel in it will be degraded.
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Figure 42. Expected marsh loss as a function of marsh size in Chesapeake 
and Delaware Bays

This map depicts the probability of any randomly selected point in the 
marsh being degraded as calculated based on the size of the marsh parcel 
that contains the point.
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Figure 43. Effect of marsh size on Atlantic Coast Marshes

This figure depicts the probability of any randomly selected point in the 
marsh being degraded as calculated based on the size of the marsh parcel 
that contains it.
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Figure 44. Expected marsh loss as a function of marsh size on the Atlantic 
Coast

This map depicts the probability of any randomly selected point in the 
marsh being degraded as calculated based on the size of the marsh parcel 
that contains it.
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Figure 45. Comparison of Various Effects in Dorchester County, Maryland.

This figure compares the probability of marsh loss calculated by the five 
different methods in the Chesapeake and Delaware Bays.
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Figure 46. Comparison of analyses for Atlantic Coast Marshes
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Chapter 6:  Modeling Marsh Loss

Introduction

This section shows the results of a multiple logistic regression model of the 

various landscape features and other correlates on marsh loss.  In this chapter, the 

landscape model for assessing marsh loss is analyzed using the Coastal Marsh Project 

(CMP) dataset.

Additional Variables

In this chapter several additional independent variables are introduced – sea level 

rise, mean tide range, UTM northings and eastings.  Relative sea level rise is, of course, 

one of the factors that would cause marsh loss directly.  NOAA records a number of tidal 

data for various points, but the mean range was chosen because it represents the 

hydroperiod that most of a marsh will be experience better than other measures.  Easting 

and northing were included as proxies for any environmental conditions that might be 

keyed to geography such as temperature changes on a north-south axis.

Sea level rise and tides were not formally included in a hypothesis but were 

included as possible additional factors.  However, given the data available, these factors 

turn out to have only slight relevance (Table 8) for the bay areas.  Given the low R2

values of either factor in the Chesapeake and Delaware Bays in the bay landscape model, 

they were not used in further analysis.  This low correspondence was probably because 

the tidal and sea level rise data are for the coastal regions, but most of the bay area 

marshes are upstream and inland.  Tides, in particular, are sensitive to many things so that 
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the coastal tides may not accurately represent local inland tides.  Also, the high degree of 

spatial variation in tidal range may not be well mirrored in the available tide gauge 

records (Kearney, pers. com.).  Similarly, if relative sea level rise is a result of eustatic 

sea level rise and land subsidence, erosion or accretion, then the sea level rise measured 

at a certain point may not accurately reflect the relative sea level rise in more inland 

areas.  

Table 8.  Regression of Sea Level Rise and  Mean Tidal Range on 

Probability of Marsh Loss

Factor Area R2 Slope
Bay Area 0.002Sea Level

Rise Atlantic Coast 0.28 -1.99
Bay Area 0.002Tidal Range
Atlantic Coast 0.1 0.0003

Models

Bay model 1: Land, Water, Roads, Area, Upstream, Northing, Easting.

Bay model 2: Land, Water, Area, Upstream, Northing, Easting.

Atlantic Model: Land, Water, Upstream, Tide, Sea level rise, Northing, Easting.  

The regression parameters for all models are listed in Table 9. 
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Bay Area Model

The Bay Area landscape model had to be constructed in two pieces.  The roads 

are modeled as only having an impact on parcels of marsh that they actually touch.  Many 

areas of marsh are not actually touched by a road.  Two separate models were run, one 

including the road factor and covering a smaller area, and one not including the road 

factor and covering a larger area.  The two were then combined so that any areas not 

included in the road model would be added from the non-road model.  Small areas of 

marsh were lost from the analysis because the data available at this scale did not show 

any connection between them and the major bodies of water.

The major contributors to each principal component are shown in Table 10 and 

11.  The complete loadings and other information about the principal components 

analysis are in the Appendix D.  

Table 9. Landscape model Coefficients and Values

Coefficient/Value.  Bay with 
Roads

Bay without 
Roads

Total Bay 
Model

Atlantic

β0 -5.227 -7.091 NA 70.511
β1 0.053 0.018 NA -0.179
β2 0.437 0.372 NA 0.100
β3 -0.213 0.190 NA 0.562
β4 -0.532 0.419 NA 0.516
β5 0.699 0.681 NA -0.662
β6 -0.493 0.123 NA 0.137
β7 0.057 NA NA -0.548
RMS error 0.439 0.440 NA 0.312
Model Chi Square 180.466 214.524 NA 171,166
G adjusted NA NA 5206 71,238
Chi Square of Significance NA NA 10.828 10.828
Significance Level NA NA 0.001 0.001
The β-values are logistic regression coefficients.  The chi-square values are very high, in 
part, due to the fact that the numbers involved are very large.
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These tables show that there is much similarity between the two models.  For 

example, Model 1, PC 6 matches Model 2 PC 1.  PC’s 3, 4 and 5 in both models are very 

similar in terms of major loadings.  Figure 47 compares the principal component five in 

each of the two bay models in their full extent.  This component is dominated by distance 

from land.  It is not possible to represent faithfully the full detail because smaller features  

are lost at this resolution.  However, it can be seen that for areas that both cover, there is 

not a great deal of difference, but there are differences.  

Figure 48 shows a close up of Blackwater National Wildlife Refuge using the 4th 

principal component from each model.  In this case, Northing was swapped for Roads 

and three others factors have almost equal input as shown in Table 10 and 11.  Again, the 

models are very similar, but it can be seen that the areas covered by high values are larger 

in Model 2.  Therefore, the distance from roads adds information to the regression.

The results of the combined assessments are shown in Table 12.  The results show 

that the model does identify the areas of degradation in the marsh – but not very 

accurately.  However, considering that only 5% of the marsh is in the degraded category, 

then only 1.2% of the degraded marsh pixels and 70% of the healthy pixels would be 

assessed correctly.  The results of this landscape model are much better than that.  The 

significance of the model results are shown in Table 9

The global result for the Bay model is shown in Figure 49.  The Bay area 

landscape model is compared with the full range of the CMP model here for several 

reasons.  The CMP model was most developed and most heavily validated in this region.  

The areas that the landscape model mischaracterizes as being totally lost can also be 
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interpreted as “predicted to be lost”.  As most of the mischaracterization involves pixels 

that the CMP had designated as partly or severely degraded, this makes sense. 

Some of the results can be examined in detail in Figure 50 and Figure 51.  In the 

BNWR area, several areas are mischaracterized by the landscape model.  In particular, 

the tip of the peninsula between Fishing Bay and the Nanticoke River appears much more 

degraded in the landscape model than in the CMP data, with other mismatched areas 

scattered over the map.  In one sense, these may be errors, but in looking at it as a 

predictive model, the area by the Nanticoke River (area A) is certainly at high risk.  There 

are numerous creeks and internal ponding already is in progress.  In Areas B and C, the 

same thing is true.  Although the CMP data classifies many areas of the marsh as healthy, 

in among the healthy patches of marsh are distributed many ponds and creeks, which 

could lead to further deterioration.  The same reasoning could apply to the large parts of 

Area D that are characterized as degraded by the landscape model, but do not look 

degraded in the CMP data.  However, from an overall perspective, given the uncertainties 

of the model, it is noteworthy most areas are correctly classified by the landscape model.

Table 10. Bay Model 1 Primary Principal Component Loadings

Principal Component
1 Northing
2 Upstream Area
3 Water Land
4 Water Upstream Area Roads
5 Land
6 Easting
7 Roads Area

In the map of the central Delaware Bay, the same kinds of situations exist.  The 

marsh at Egg Island Point is mostly classified as Severely Degraded by the CMP data, so 
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the landscape model is not far off in showing it as total loss.  On the other hand, Bombay 

Hook does not appear nearly as degraded by the CMP data, yet is shown as almost totally 

lost by the landscape model.  Between Egg Island Point and Ben Davis Point and on up 

the eastern side of the Delaware Bay, the whole side is classified as total loss by the 

landscape model, but shows very high variability in the CMP data.  This would suggest 

that large parts of it are at high risk.

Table 11. Bay Model 2

Principal 
Component
1 Easting

2 Northing Upstream

3 Water Land

4 Northing Water Upstream Area

5 Land
6 Area Upstream

Table 12. Accuracy of Bay Area Model

Actual Pixel Values Row Totals
Healthy Degraded

Healthy 1,497,225 64,829 1,562,054
Assessed Pixel Values

Degraded 532,961 37,750 570,711
Column Totals 2,030,186 102,579 2,132,765
Percent of pixels assessed correctly
Healthy 73.7
Degraded 36.8
Total 72.0

Atlantic Model

The Atlantic Coast model did not need to be run in pieces as roads were omitted 

and all other factors were assumed to be global in nature.  These marshes tend to exist in 
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a relatively narrow band parallel to the coast, therefore assuming that the factors are 

global in nature is reasonable.  This narrowness also may explain why sea level rise and 

mean tides had a measurable (though still minute) correlation in the Atlantic coastal 

region but not in the bay area.

The results of the landscape model are compared with the CMP data in Figures 

Figure 52, Figure 53, Figure 54 and Table 13.  These data are not compared with all the 

categories in the CMP data as the bay data were.  The CMP model of marsh evolution 

was designed for low-energy, protected areas such as the Chesapeake Bay, not for higher 

energy environments such as Winyah Bay, South Carolina, where the tides can rise 4 

meters.

Table 13. Accuracy of Atlantic Model 

Actual Pixel Values
Row 
Totals

Healthy Degraded
Healthy 1,490,005 213,109 1,703,114Assessed Pixel 

Values Degraded 22,503 35,201 57,704
Column 
Totals 1,512,508 248,310 1,760,818
Percent of pixels Assessed 
correctly
Healthy 98.5
Degraded 14.2
Total 86.6

On the Atlantic Coast, while roughly 14% of the area is degraded, the model only 

assesses 3% to be degraded.  This is more than likely a failure of calibration.  It does 

indicate that the model is working, however.  Given 14% and 3%, random chance would 

result in only 0.4% degraded marsh pixels correctly identified and only 83% of healthy 

pixels correctly assessed.  The model results far exceed both those expectations.  
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Moreover, of the areas assessed as degraded, 61% are, in fact, degraded and for healthy 

marsh assessments, 88% are correct.  For anyone using this data to work in a marsh, there 

is a 0.87 probability that when they investigate an area, they will encounter what the 

model indicates.

The Atlantic Model map (Figure 51) shows the Atlantic study area.  Most of the 

area is in the less than 50% degraded category and is correctly classified.  However, the 

second largest class represents areas that are actually more than 50% water, but are 

classified as healthy.  Much of this area is transitional zones, a mixture of partly degraded 

areas with totally degraded areas.  The areas shown here as greater than 50% open water 

were classified as intact marsh in the NWI.  This means that there is a presumption that 

the areas classified as totally degraded do in fact represent loss of marsh.  However, it 

cannot be presumed that the partly degraded areas are moving toward total loss because, 

unlike for the estuarine marshes, there is no model or tested data that concludes that there 

is a constant progression from healthy to partly deteriorated to completely deteriorated.  

In Figure 53, the general pattern can be seen in more detail on the Delmarva 

Peninsula.  Figure 54 shows the area around Pamlico Sound, where there are also areas of 

complete loss that are characterized correctly.

Conclusion

The logistic regression clearly shows that the elements identified in the five 

original hypotheses, plus the factors added in this chapter, can model marsh loss to a 

limited extent.  The accuracy is far better than would be expected from chance alone.
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Figure 47. Comparison of eigenvalue 5 for the two different bay models

Bay Model 1 includes roads while Bay Model 2 does not.  This figure shows 
the different  areas covered by the two Bay Area models, as well as the fact 
that they are not identical.  Adding the roads does add information.
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Figure 48. Comparison of eigenvalue 4 for the two different bay models

Bay Model 1 includes roads while Bay Model 2 does not.  This figure shows 
the different results for this eigenvalue based on that difference.  Adding 
the roads does add information.
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Figure 49. Landscape model results for marsh loss in the Chesapeake and 
Delaware Bays

This figure shows the predicted marsh loss based on the combination of Bay 
Models 1 and 2, done by using Bay Model 1 where it exists, and Bay Model 
2 everywhere else.
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Figure 50. Model of marsh loss in the middle Eastern Shore of Maryland.  
At A, B, C and D healthy pixels were determined by the Landscape Model 
to be degraded.  However, the healthy pixels are interspersed with 
degraded areas.

A

B

C

D
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Figure 51. Landscape model validation in Delaware Bay

This figure shows that although the model is not a perfect pixel by pixel 
classifier, it does pick out areas of high degradation, even if not all the 
points in it are highly degraded/,
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Figure 52. Atlantic Coast marsh loss model showing expected degradation 
due to all factors except distance from roads.  
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Figure 53. Landscape model validation on the lower Delmarva Peninsula

This figure shows the relative accuracy of the model in this particular area.  
The green areas are healthy areas that were predicted by the model to be 
healthy.
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Figure 54. Landscape model validation on the Outer Banks
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Chapter 7: Discussion and conclusion 

Significance of results

The starting point for this research is the hypothesis that the probability of a 

parcel of marsh being open water is directly related to its position in the landscape.  This 

proposition was broken into five specific hypotheses, briefly restated below.  Although 

the null hypothesis for the original hypothesis is that: “The conversion of marsh surface 

to open water is a completely stochastic process, and it is not possible to infer that ponds 

are more or less likely to form in certain places based on position in the landscape” each 

of the tested hypothesis was stated as a one-tailed test.  Had they been stated as two-tailed 

tests, virtually all could have been accepted.  The actual results with R2 values are shown 

in Table 14 below.  The results in Chapter 5 indicate that there is a very strong signal 

exerted upon marsh loss by some of the five landscape factors examined.  When 

combined, these same factors model the marsh loss reasonably well.  While it is not a 

surprise that landscape factors impact marsh development and loss, these particular 

measures are of some interest.    

The work of the Coastal Marsh Loss project was based on the Marsh Surface 

Condition Index, which was based on studies of the Nanticoke River estuary and other 

marshes on the Chesapeake Bay.  These microtidal systems are different from the meso 

and macrotidal regions of the Atlantic Coast.  The MSCI may not be meaningful in these 

areas.  The Coastal Marsh Project data used here are affected by this.  Although the 

remote sensing algorithm was shown to be accurate (Stevens, 1997), it is not clear what 

the amount of water on the marsh surface means in some areas.  For example, the 
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categories were determined to be accurately assessed for microtidal areas because the tide 

never got high enough to make healthy areas of the marsh look degraded.  This is clearly 

not the case for areas where the tidal range is in excess of a meter and can cover short 

plants such as Wilmington, North Carolina.  In these areas a presumption has to be made 

that most of the area was not at high tide during the time of acquisition.  

Review of the Hypotheses

An additional hypothesis was tested, that degradation in the marsh should have no 

relation to distance from randomly selected points.  The results from this test show that 

degradation is a rare event and clumped.  It also gives a picture to compare or contrast 

with the other hypotheses.  In particular, the marsh loss from roads in the Bay areas looks 

very similar to the pattern related to random points.  The others do not.  Also, most 

results that shared the same positive slope have much higher R2.  The random hypothesis 

was only tested for the Atlantic Coast, but the result may have been similar for the Bay 

areas.  This hypothesis was only to test whether or not other unmeasured factors could 

influence the regression and, if so, how.     

Hypothesis 1 states that the probability of a parcel being completely open water 

will be negatively related to the distance of the parcel from a road.  The hypothesis that 

roads had a correlation with marsh loss on the Atlantic Coast marshes was rejected 

because it seemed to be more confounded with upland effects.  The roads in the bay 

areas, on the other hand, are not so strongly tied to upland areas, because they are often 

built in submerging landscapes (i.e., Dorchester, Somerset and Wicomico counties in 

Maryland).  
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The regressions involving the other factors all support the general hypothesis, 

even if the particular one-tailed tests failed.  The results with distance from tidal creeks 

are a good example.  Hypothesis 2 states that the probability of a parcel being completely 

open water will be positively related to the distance the parcel is from the nearest tidal 

creek or man-made ditch (e.g. mosquito ditches).  For the Bay areas, the regression at 

short distances actually did not support the hypothesis.  However, measured deterioration 

immediately adjacent to creeks is probably as much due to misregistration as it is to any 

actual losses on the ground.  This may be augmented by the fact that in some locations, 

Bloodsworth Island, for example (Downs et al., 1994) , shoreline erosion is an important 

process.  From about 150 meters to 2  km, there is a very strong trend (0.92 R2 for that 

region)  and the tendency toward increasing degradation continues to about 5 km, with 

some variations.  This provides general support to the concept that the interiors of 

marshes are more degraded than the areas adjacent to tidal creeks or shores.  

The slope of this regression for the Atlantic Coast was diametrically opposed to 

the prediction.  This may be related to the fact that the Atlantic Coast marshes tended to 

be smaller and, therefore, had less developed tidal creek systems that could bring 

nutrients into the interior of the marsh.  Also, fully degraded areas tend to cluster along 

the coast.  This could indicate that either the marshes in this system are eroding at the 

edge more than deteriorating at the center due to interior ponding.  This would have some 

implications for comparing results of studies done in marshes in different coastal 

environments.  For the Atlantic Coast shoreline erosion seems to be the only significant 

process indicated by this hypothesis test, and this seems to be a key difference between 

these systems.
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Hypothesis 3 states that the probability of a parcel being completely open water 

will be negatively related to the distance the marsh system containing the parcel is 

upstream.  The regressions for upstream distance vs. degradation are not very strong, and 

the variations clearly have a cyclical component.  However, this cyclicity may be a result 

of tidal flooding, which can be higher upstream than downstream.  There is a fair amount 

of scatter, which may be related to the grossness of the measurement.  The distance 

upstream was only measured for major rivers and creeks, and part of the presumption is 

that where freshwater meets brackish water, sediment will precipitate.  This can occur 

anywhere along a river or major creek, where a smaller stream joins.  However, the 

general trend supports the hypothesis in both regions.  

For the distance upstream, Hypothesis 3 was based, in part, on the fact that plant 

communities change with distance upstream and that relative sea level rise will alter 

marshes along a river by drowning the downstream marshes and killing species that are 

less tolerant to salt and anaerobic conditions further upstream.  Because seawater is a 

source of sulfate ions, the seaward marshes on a river would tend to have high sulfide 

content, as anaerobic bacteria convert sulfate to sulfide, although high sulfide can occur 

in other areas.  As both high salinity and high sulfide concentrations are generally toxic to 

plants (Koch et al., 1990), this would reduce the number of species able to survive in the 

more saline and high sulfide conditions at the seaward end of a river.  In addition, anoxic 

conditions can limit plant growth (Anastasiou and Brooks, 2003).  Coupled with higher 

inputs of sediment for the marshes closest to fresh water, this makes a coherent picture of 

the relationship seen between distance upstream and probability of marsh loss.



168

Hypothesis 4 states that the probability of a parcel being completely open water 

will be positively related to the distance of the parcel from the upland.  This hypothesis 

was strongly supported for both areas.  Distance from uplands obviously, like the other 

variables, is a stand in for some other factors.  One these factors may simply be elevation.  

If so, the distance from upland is a more useful measurement than elevation for studying 

large areas of wetlands.  Elevation is extremely time consuming and difficult to measure 

for a sufficient number of points to build a good model of a marsh.  Upland boundaries 

are mapped already, and only require mapping a single line at the edge of each marsh if a 

new datum is required.  There are likely other factors involved as well, including 

sediment and nutrient supply, and freshwater runoff to reduce salinity.

Hypothesis 5 states that the probability of a parcel being completely open water 

will be negatively related to the size of the marsh parcel containing the grid cell.  This is 

naturally potentially confounded with hypotheses 2 and 4 as either upland or a creek will 

be the boundary of most marsh parcels.  The results here are similar for both study areas, 

and there is a relationship between marsh loss and the size of the parcel.  The relationship 

is a little hard to understand, however.  If edge erosion, either shoreline or tidal creek 

bank, were the primary process, a regression with small parcels being at the most risk

would be expected.  This is because the ratio of edge to marsh area could be expected to 

decrease as parcel size increases, if the parcel is convex.  If interior ponding is the 

primary mechanism of loss, then a regression showing large parcels as the most at risk 

would be expected because the ratio of area available for loss compared to the total size 

diminishes as the overall parcel size drops.  If these two mechanisms operate together, it 

might be anticipated that large and small parcels would be the most at risk.  However, in 



169

actuality the regression shows that for both study areas, the mid-size parcels are the most 

at risk.  The midsize parcels at the most risk are about 2.2 hectares for the Bay Areas and 

16.3 hectares for the Atlantic Coast.  One possible explanation is that marsh loss 

probability as a function of  interior ponding and the  loss as a function of edge to interior 

ratio overlap. 

Table 14. Results of Hypothesis Tests Revisited

Area Hypothesis Predicted 
Correlation

R-Square Degree Conclusion

Atlantic Distance 
from 
Random

none 0.544676 1st Not 
Rejected

Bay Negative 0.419392 3rd Rejected
Atlantic Distance 

from Roads
Negative 0.97685 1st. for 100 

meters – 1000 
meters

Rejected

Bay Positive 0.990931 2nd Not 
rejected

Atlantic

Distance 
from Tidal 
Creeks Positive 0.971589 1st Rejected

Bay Negative 0.264358 1st Not 
rejected

Atlantic
Distance 
Upstream Negative 0.237701 1st Not 

rejected
Bay Positive 0.871136 1st Not 

rejected
Atlantic

Distance 
from 
Upland Positive 0.88531 1st Not 

rejected
Bay Negative 0.280912 2nd Rejected
Atlantic

Area
Negative 0.391991 2nd Rejected

Primary drivers in marsh loss

The fact that the hypotheses are supported across landscapes and marsh types 

indicates that there is a great deal of consistency across these marshes.  For example, the 

same primary factors – distance from land and distance upstream - impact both Atlantic 
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Coast marshes and Chesapeake and Delaware Bay marshes, although the distances 

involved are different.  This would indicate that the same drivers apply in both systems.  

These results raise several interesting questions.  One question is in the area of 

defining the primary drivers in marsh loss.  If the primary drivers are factors that are 

related to landscape position, then altering the plant and animal species present at a given 

location may not have much impact on marsh longevity.  On the other hand, if landscape 

topography merely sets conditions that make an area susceptible to loss (assuming other 

factors are present such as Nutria), then altering the biota of an area will clearly have a 

positive impact on marsh longevity.  Money is spent on wetland mitigation banks, for 

example, where the local topography is changed and desirable species are planted.  If the 

general topography of a site will eventually override the local changes, then the money 

may not be well spent and the environment may be poorly served if the created or 

restructured wetlands are only required to be kept in order for five years.  

   Management

The main result of this research is to show that marsh processes are influenced by 

events happening at the landscape scale.  As noted previously, most marsh studies take 

place on very small scales.  This may not be appropriate to understanding the function of 

salt and brackish marshes.  The landscape model presented here cannot identify exact 

points of marsh loss.  However, it may be possible to better identify where disintegration 

of a marsh will start, or which direction it will move using landscape parameters than 

local measurements of fluctuating sediment height.  
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Some crucial management questions can be addressed with this model.  Evers 

(1998) showed that in the absence of Nutria marshes will regrow.  It would be useful to 

attempt to predict if this regeneration is likely to be long-term or short-lived.  If marsh 

loss is mainly driven by its position in the landscape, then it may be preferable to build 

exclosures or take other measures to reduce Nutria impacts in areas where degradation is 

not predicted to occur for landscape reasons.  If the landscape drivers only predispose an 

area to loss given the action of some other impact, then removing Nutria would be useful 

in preserving high-risk areas.

For the Bay, the overall accuracy in correctly identifying pixels is 72%, with 37% 

of the degraded pixels correctly identified.  On the flip side, of the pixels predicted to be 

degraded, only 7% were actually degraded.  This means that a manager or researcher 

looking for degraded points in the marsh may have difficulty using these data, except 

that, as shown in Figure 50, the model tends to pick areas where degradation is occurring.  

Given this, the results would help in identifying areas of future loss.   

For the Atlantic Coast, the results are somewhat different.  The model correctly 

identifies 14% of the degraded pixels.  On the other hand, 60% of the pixels identified as 

degraded are, in fact, degraded.  This means that the same manager going into an Atlantic 

Coast marsh looking for degraded pixels has a very high likelihood of finding one based 

on these data.  The problem is reversed from the Bay area.  On the Atlantic Coast, the 

problem would be finding more than a small percentage of the degraded pixels.  The 

clumpiness of degradation would help with this, however.  Because marsh loss is more 

likely in some places than others, finding some degraded points will lead the manager to 

associated degraded areas.
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  The Bay area marshes seem to be impacted by the presence of roads, but this is 

not as strong a correlation as hoped.  There are several possible reasons for this.  One is 

that the effect is too localized.  A second is that the marsh areas where roads are built 

may have been chosen because they were more stable areas to begin with and may be 

maintained by anthropological inputs of material and energy.  In addition, some roads 

have culverts under them to allow drainage from one side to the other.  Lastly, much of 

the damage in areas like BNWR was apparently done before the NWI data were 

collected, so that the major historical component of damage from roads was missed.  The 

only other source of marsh loss examined here that is arguably anthropogenic in nature is 

sea level rise.  Though it is difficult to know how much of sea level rise is actually 

anthropological in nature and how much has other causes, there is a growing consensus 

that the acceleration in the sea level rise since the early decades of the 20th century 

reflected anthropogenic global warming. 

This does not alleviate the need for understanding, monitoring and modifying 

human impacts on coastal marsh systems.  As with biology, there is no way to know if 

localized human impacts -- ranging from management techniques to pollution or 

reduction of freshwater and sediment inputs -- are able to drive the large scale processes 

leading to marsh loss.  Nor is there is any real way to determine if they merely amplify 

landscape drivers in marsh loss, while having minimal impact where the landscape and 

other natural mechanisms encourage marsh development and sustainability.  Direct 

impacts such as filling a marsh, of course, have impacts on the marsh destroyed.  From 

the fact that uplands tend to make the marshes next to them more stable, it would be 

useful to see what happens to neighboring marsh parcels when one area is filled.  
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Assuming no further human encroachment occurs, this would likely reduce erosion and 

supply nutrients to the areas adjacent to the fill.  However, it might also precipitate 

penetration of the marsh by invasive species such as Typhus sp. or P. australis.

Questions for further study

What resolution of imagery would be best for both the Coastal Marsh Project 

analysis and the landscape analysis?  Would finer resolution data (like Ikonos) give a 

clearer understanding on such a large scale?  For example, in order to differentiate tidal 

creeks that are sources of tidal water and sediment from those that are loci of marsh loss, 

would it be appropriate to use imagery of sufficient detail to see where creek bank 

slumping was occurring?  On a project of this scale, that level of detail might overwhelm 

the resources available to analyze them.  Similarly, if mapped at a higher resolution, the 

impact of different plant species on the longevity of the marsh could be assessed 

statistically.

An uncontrolled factor was allowed into the analysis by not differentiating 

between different types of land cover that border the marsh.  As long as the land covers 

were not estuarine intertidal marsh, they were considered upland.  Presumably, it makes a 

difference if the neighboring land cover is palustrine marsh, a swamp, an old sand dune, 

or a hill.  Uplands were hypothesized to have an impact on the marsh both through 

hydrology and by providing stability.  The amount of water flowing into a marsh from its 

landward edge may be more a result of climate than whatever land cover exists there, 

although the sediment and nutrient load and rate variability will be affected   However, 

the stability provided will be less if the intervening non-estuarine wetland is large.  This 
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provides some degree of uncertainty in the results.  However, adding in other cover types 

would have simply expanded the number of factors, but not necessarily added more 

information.

Once done, most of the hard work of developing this model for an area does not 

need to be repeated.  Additional factors could be added as new geographic layers at the 

resolution of 28.5 meters.  For example, Nutria population density could be added and 

the statistical tests performed to determine the impact of this factor.

One good question, especially from the management point of view, would be 

rates.  Knowing that two areas are at equal risk of loss does not help much if the expected 

rates of loss are unknown.  This research, ultimately based on the NWI, which is a 

variable starting point, does not have the possibility of giving rates.  However, multiple 

images taken over 5 to ten year intervals, for example, 1984, 1989, 1994, 1999, and 2004 

would give an excellent time series from which to derive rates.  This would help with 

smoothing out errors caused by tidal fluctuations and weather events that can make an

area look more degraded than it is.  In Moreover, to accomplish this end, multiple scenes 

should be collected each year during the growing season.

A decision tree approach might have produced more useful results and be easier 

to update.  One way to go about this would be to start with marsh parcel size.  This would 

allow a manager to see directly how different factors related to marsh health.  For the 

type of decision tree shown in Figure 55  the data must be broken into categories.  This 

process would help clarify the inputs and outputs.  For example, the probability of 

degradation based on size of the marsh parcel can be divided into two groups.  For the 

Atlantic Coast, those marsh pixels in a parcel that is between 1 and 500 hectares, have an 



175

approximately 0.16 probability of being degraded.  Pixels in marsh parcels that are not in 

that size range have a much smaller likelihood of being degraded.  Dividing the distance 

from upland into three categories yields the tree in the figure.  From this it is very easy to 

see that areas within 100 meters of an upland that are in a small or large parcel are much 

less likely to be degraded than an area more than 1000 meters from the upland in a parcel 

between 1 and 500 hectares in size.

.  
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Figure 55.  Simplified Model Decision Tree for Analysis of Marsh Health

P is the probability of degradation given the conditions described in the 
box.  

Marsh Health

500 ha < Area < 1 ha
P = 0.03
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Uplands 
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< 100 m
P = 0.10
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P = 0.13

Uplands 
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> 1000 m
P = 0.20

Uplands 
Distance 
< 100 m
P = 0.10

100 m < 
Uplands 
Distance 
< 1000 m
P = 0.13

Uplands 
Distance 
> 1000 m
P = 0.20
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Appendices

Appendix A (Rogers unpublished data)

This was done as a research project for Dr. Andrew Baldwin’s Wetlands course in 

1999, titled “Impact of Position in the Landscape on the Health of Wetlands”  The 

investigators were Andy Rogers, Deanna Guerieri, Nicole Hale, and Chris Rogers.

Figure 56. Transect locations for study done by Rogers et al., 1999.
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Table 15. Data Collected for the Patuxent Study

Site Distance
Upstream (m)

Distance
Inland (m)

Fraction
Bare

Species
Richness

Salinity REDOX
(mV)

1 74624 0 15 2 2 -273
1 74624 0 0 5 3 64.2
1 74624 15 15 3 1 -205.75
1 74624 15 97.5 4 0.5 -181
1 74624 30 3 4 1 -281
1 74624 30 62.5 3 1.5 -221
2 50072 0 37.5 1 7 -195.5
2 50072 0 62.5 1 7 -206.25
2 50072 15 15 1 8 -346
2 50072 15 3 1 7 -196.5
2 50072 30 85 1 7 -203
2 50072 30 85 2 8 -181
3 34948 0 62.5 2 14 38.5
3 34948 0 62.5 1 16
3 34948 15 37.5 3 15 -211.5
3 34948 15 0.5 2 16 -106.5
3 34948 30 37.5 4 15 -214.25
3 34948 30 15 3 15 -188.25
4 18870 0 15 2 16 156.33
4 18870 0 15 1 15 162.75
4 18870 15 15 2 17 9.25
4 18870 15 37.5 2 16 28.25
4 18870 30 15 2 17 105
4 18870 30 0.5 3 17 64.75
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Appendix B Tide and Sea Level Rise Data

Table 16. Data for Tide and Sea Level Rise Calculations

Station Name Latitude Longitude Date
Established

Mean
Range
(feet)

Sea 
Level 
Rise

Annapolis 
MD

38.98333333 -76.48 Sep 14 1978 0.97 3.53

Atlantic City 
NJ

39.355 -74.41833333 Aug 15 1911 4.02 3.98

Baltimore 
MD

39.26666667 -76.57833333 Jul 1 1902 1.14 3.12

Beaufort NC 34.72 -76.67 Jun 4 1964 3.11 3.71
Brandywine 
Shoal Light 
DE

38.98666667 -75.11333333 Mar 18 1984 4.73

Burlington 
Delaware 
Rive NJ

40.08 -74.87333333 Feb 21 1977 7.3

Cambridge 
MD

38.57333333 -76.06833333 Oct 21 1980 1.62 3.52

Cape 
Hatteras 
Fishing Pie 
NC

35.22333333 -75.635 May 24 1973 2.99

Cape May NJ 38.96833333 -74.96 Oct 25 1965 4.85 3.88
Chesapeake 
Bay Bridge 
Tun VA

36.96666667 -76.11333333 Jan 26 1975 2.55 7.01

Colonial 
Beach VA

38.25166667 -76.96 Jan 7 1972 1.63 5.27

Delaware 
City DE

39.58166667 -75.58833333 Oct 8 2001 5.28

Duck NC 36.18333333 -75.74666667 Dec 1 1977 3.22
Gloucester 
Point VA

37.24666667 -76.5 May 16 1950 2.38 3.95

Kiptopeke 
VA

37.16666667 -75.98833333 Aug 22 1951 2.6 3.59

Lewes DE 38.78166667 -75.12 Jan 14 1919 4.08 3.16
Lewisetta 
VA

37.995 -76.465 Oct 20 1970 1.24 4.85

Money Point 36.77833333 -76.30166667 Dec 17 1997 2.86



180

VA
Ocean City 
Inlet MD

38.32833333 -75.09166667 Jun 5 1978 2.19

Oregon Inlet 
Marina NC

35.795 -75.54833333 Aug 14 1974 0.89

Reedy Point 
DE

39.55833333 -75.57333333 Jul 30 1956 5.34

Sandy Hook 
NJ

40.46666667 -74.01 Jan 7 1910 4.7 3.88

Sewells Point 
VA

36.94666667 -76.33 Jul 1 1927 2.43 4.42

Ship John 
Shoal NJ

39.305 -75.375 Oct 30 1997 5.6

Solomons 
Island MD

38.31666667 -76.45166667 Nov 5 1937 1.17 3.29

Springmaid 
Pier SC

33.655 -78.91833333 Sep 28 1976 5.02

Tacony-
Palmyra 
Bridge NJ

40.01166667 -75.04333333 May 7 2002 6.5

Tolchester 
Beach MD

39.21333333 -76.245 Jun 24 1971 1.2

Wachapreagu
e VA

37.60666667 -75.68666667 Jun 28 1978 4.02

Wilmington 
NC

34.22666667 -77.95333333 Jan 1 1908 4.28 2.22

Windmill 
Point VA

37.615 -76.29 Jun 24 1970 1.16
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Appendix C Arc Macro Language Scripts

AMLS

This comprises all the amls actually used in processing the data for this project.

Numbers in the titles, such as streammask2.aml are design numbers.  Streammask1 was 

not used in the final output.  Some of these amls are bare-bones scripts, a few are full 

implementations including subroutines to cleanup temporary files, usage statements that 

are printed when incomplete command lines are typed.  In most, the line “&severity 

&error &ignore” is used at the beginning, usually followed later by a “&severity &error 

&fail.”  These tell the routine what to do when it encounters an error.  The ignore option 

is used when the routine is removing files that may or may not have been left behind by a 

previous run of the same program, or when one of the first commands is “grid”.  If the 

aml was run from grid, encountering the “grid” command or attempting to delete a file 

that is not there will cause it to fail unnecessarily.

Eucdist_proc.aml

/* this aml takes in the water data produced by combining all

/* the water data from NWI and clips off all the

/* streams that are less than 3 pixel wide.  It then uses these

/* major streams to calculate how far upstream a given parcel of marsh is.

/* Inputs required

/*  wetmask (watermask of area) in first line after initial cleanup

/*  downstreamg  (boundary marking downstream limit)



182

&args wetmask downstreamg parms:res

&if [NULL %downstreamg%] &then

  &call usage

&else

  &call water_process

&return

&routine water_process

&call cleanup

&severity &error &ignore

kill eucdistance all

grid

&severity &error &routine terminate

setcell %wetmask%

keeptmp = focalsum(%wetmask%,rectangle,3,3,data)

if(keeptmp > 4 & %wetmask% == 1) 

streamcliptmp = 1

else

streamcliptmp = 0

endif

&type "Just made streamcliptmp"

streamclip = setnull(streamcliptmp <> 1,streamcliptmp)

/* kill streamcliptmp all

updist = costdistance(%downstreamg%,streamclip)
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/* kill streamclip all

updistint = int(updist)

kill updist all

/* Eucdistance is the upstream distance required for 

/* analysis of effects from being upstream from low tide

eucdistance = eucallocation(updistint)

&return

/***************************************************************

/***************************************************************

&routine cleanup

/***************************************************************

/*************************************************************** 

&severity &error &ignore

/* This removes files left over if the program

/* crashed on its previous run

kill backlink all

kill backlink2 all

kill creeks all

kill dorcmars2 all

kill dorcmars3 all

kill dorcmask all

kill dorcnotwater all

kill dorcnotwater2 all
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kill eucdistance all

kill fc3max all

kill fc3min all

kill flowdir all

kill flowlen all

kill flowlen2 all

kill fmax all

kill fmin all

kill keeptmp all

kill keeptmp2 all

kill keeptmp3 all

kill keeptmp4 all

kill keeptmp5 all

kill majority all

kill majstreams all

kill maxwidth all

kill narrow_water all

kill outgrid all

kill outgrid2 all

kill outgridave all

kill outgridb all

kill outgridb2 all

kill outgridc all
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kill streamclip all

kill streamcliptmp all

kill streamclptmp2 all

kill tmpcreeks all

kill updist all

kill updist2 all

kill updistint all

kill upstreamcrk2 all

kill upstreamcrks all

kill upstreamdist all

kill upstreamdist1 all

kill upstreamtmp all

kill width all

&severity &error &fail   

&return

/***************************************************************

/***************************************************************

&routine terminate

/***************************************************************

/*************************************************************** 

q

&return &error
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&routine usage

 &type USAGE: water_process wetmask downstreamg 

&return
===============================================================
=========
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mask.aml

/* This file creates stream, road and land masks to do 

/* costdistance calculations with.

/* updated 10/8/01 so that kernels for stripping out roads are defined on left

/* and right or top and bottom halves, and each half must contain an upland

/* value to remove the road.

/* The wetmasks were replaced by the output from streammask2.aml

&args health streams roads parms:rest

&call cleanup

&severity &error &ignore

kill roadmask all

kill wetmask all

kill landmask all

&severity &error &fail

&call road

&call cleanup

&return

&routine road

grid

if(isnull(%health%))

jm = %health%

else if(%health% == 6)
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jm = 1

else if(%health% == 7)

jm = 9

else

jm = 4

endif

&type Passed first grid

landmask = setnull(jm ^= 9,1)

&type Passed landmask

if(isnull(%streams%))

jm2 = jm

else 

jm2 = 1

endif

wetmask = setnull(jm2 ^= 1, 1)

if(isnull(%roads%))

jm3 = jm2

else

jm3 = 2

endif

/* strip out roads across dry land in one direction.

/* possible values for jm4 are 1,2,9,4

/* 4 = marsh
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/* 2 = road

/* 9 = upland

/* 1 = open water

jm4 = focalmax(jm3,irregular,../kernels/kernel1x5r,DATA)

jm41 = focalmax(jm3,irregular,../kernels/kernel1x5l,DATA)

jm42 = focalmax(jm3,irregular,../kernels/kernel5x1t,DATA)

jm43 = focalmax(jm3,irregular,../kernels/kernel5x1b,DATA)

if(jm4 == 9 & jm41 == 9) 

jm5 = jm2

else if(jm42 == 9 & jm43 == 9)

jm5 = jm2

else if(jm42 == 4 & jm43 == 4)

jm5 = jm3

else if(jm4 == 4 & jm41 == 4)

jm5 = jm3

else if(jm4 == 9 | jm41 == 9 | jm42 == 9 | jm3 == 9)

jm5 = jm2

else 

jm5 = jm3

endif

roadmask = setnull(jm5 ^= 2, 1)

q

&return
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/* End of routine land

/***************************************************************

/***************************************************************

&routine cleanup

/***************************************************************

/***************************************************************

&severity &error &ignore

kill jm all

kill jm2 all

kill jm3 all

kill jm4 all

kill jm41 all

kill jm42 all

kill jm43 all

kill jm5 all

&severity &error &fail  

&return

/***************************************************************

prjtiger.aml

/* This aml reprojects TIGER line files from geographic to UTM NAD83

&args cover parms:rest

project cover %cover% %cover%p

input 
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projection geographic

datum nad83

units dd

parameters

output

projection utm

datum nad83

units meters

zone 18

parameters

end

/***************************************************************
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probability2.aml

/* Inputs:

&args distance_file input_prob output_probability parms:res

/* distance_file is any of the various distance files

/* input_prob is simply the MSCI marsh coverage from the Coastal Marsh Project

/* Output_probability is the name of the grid being created.

/* This file normalizes the distances into 100 integer units.

/* It then calculates the probability of a marsh pixel being totally degraded

      /* in each zone.

/* It then converts both the input distance file and the out_probability file

/* into natural logarithms

&if [NULL %output_probability%] &then

  &call usage

&else

  &call process

&return

&routine process

&call cleanup

kill %output_probability% all

grid

&severity &error &fail

/* The describe command puts all of the data about the coverage
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/* into variables in memory that can be accessed in the script.

/* In this case, the minimum and maximum values are of interest.

&describe %distance_file%

ingrid = setnull(isnull(%input_prob%),%distance_file%)

tmpgrd1 = ((ingrid - %GRD$ZMIN%) * 100)/(%GRD$ZMAX% -

%GRD$ZMIN%) + 0

/* zonal functions only work on integer grids

tmpgrdint = int(tmpgrd1)

kill tmpgrd1 all

/* calculate the area of each zone

tmpzonalarea = zonalarea(tmpgrdint)

/* convert the input marsh grid into 1’s or 0’s.

tmpprob = con(%input_prob% == 4,1,0)

/* calculate the total number of totally degraded cells in each zone.

tmpprob1 = zonalsum(tmpgrdint,tmpprob)

/* calculate the zonal probability of a square meter being totally

/*  degraded and convert to natural logarithm.

%output_probability% = ln(28.5 * 28.5 * tmpprob1 / tmpzonalarea)

/* calculate natural logarithm of input file

%distance_file%ln = ln(%distance_file%)

q

&call cleanup

&severity &error &fail
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&return

&routine usage

 &type USAGE: distance input_probability (marsh surface index 1 - 4) 

output_probability_file_name

&return

&routine cleanup

&severity &error &ignore

kill tmpgrd0 all

kill tmpgrd1 all

kill tmpgrdint all

kill tmpprob all

kill tmp_prob0 all

kill tmpprob1 all

kill ingrid all

kill tmpzonalarea all

&return
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putfile0.aml

/* creates a new file and populates it with lines from another file

&args cover output parms:rest

ae

ec %cover%  

ef arc

select all

put %output%

q

putfile.aml

/* combines two line coverages, by adding lines from the cover to the output.

&args cover output parms:rest

ae

ec %cover%  

ef arc

select all

put %output%

y

q

putpoly.aml

/* combines two polygon coverages.
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&args cover output parms:rest

ae

ec %cover%  

ef poly

select all

put %output%
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road_process.aml

/* This aml improves the initial roadmask made by eliminating roads on upland 

/* borders and incorporating stream data.  This script additionally calculates 

/* whether a given road segment impedes by determining if the difference 

/* in the distance required for water to flow to points on opposite sides of 

/* the road is greater than expected for parallel flows on each side.

/* Inputs required

       &args wetmask downstreamg roadmask landmask parms:res

/* Remove any temporaty files left by previous runs

&call cleanup

&severity &error &ignore

kill roadout3 all

grid

&severity &error &routine exit 

setcell %roadmask%

/* Determine whether roads that match up with upland areas

/* are roads across the marsh or more likely roads on a narrow strip

/* of upland.

&type "Performing width calculations"

if(isnull(%landmask%))

 tlandmask = 0



198

else

 tlandmask = %landmask%

endif

if(tlandmask == 0)

 notland = 1

else

 notland = 0

endif

notland2 = setnull(notland == 0,1)

/* This just creates a background layer of all 1's

/* that defines the extent and cost in the cost

/* distance function

if(isnull(%roadmask%))

 troadmask = 0

 else

 troadmask = %roadmask%

endif

if(troadmask == 0)

 tmpmask = 1

else

 tmpmask = 1

endif

landwidth = costdistance(notland2,tmpmask)
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kill notland all

kill notland2 all

maxwidth = focalmax(landwidth,rectangle,7,7,data)

kill landwidth all

&type "Completing width calculation" 

/* This sets non road areas to null as well as areas

/* of roads that are on broad expanses of land

/* and codes the remaining road segments as 1

/* 255 is used here similary to NULL or zero in other places

if((troadmask == 0) | (maxwidth > 75)) 

 roadout = 255

else

 roadout = 1

endif

&type "calculated maxwidth"

kill maxwidth all

/* use a wetmask to run the distance calculation on. 

/* It will supercede roads where they cross.

/* roads and uplands will be combined to provide 

/* a boundary otherwise distance will flow up from 

/* the downstream boundary too far

/* This sets road values to 255 (inpenetrable) and

/* all else to 100 restricted flow)
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/* one implies road is present

if(troadmask == 1)

 tmp1 = 255

else

 tmp1 = 100

endif

&type "calculated tmp1"

/* This sets all land pixels to 255 and brings over the

/* road values (assumes that a value of 1 in landmask =

/* land is present and that there are no NULL values

if(tlandmask == 1)

 tmp2 = 255

else

 tmp2 = tmp1

endif

kill tmp1 all

&type "calculated tmp2" 

/* This sets any non-water pixel to the value

/* of the previous set, either 255 or 100

/* Water pixels are assigned a resistance of 1

if(%wetmask% == 0)

 tmp3 = tmp2

else
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 tmp3 = 1

endif

kill tmp2 all

&type "calculated tmp3" 

tmp4 = setnull(tmp3 == 255, tmp3)

&type "calculated tmp4" 

kill tmp3 all

/* the following just thickens road lines making them

/* more impervious to being crossed at thin points

/* by the cost function

tmp5 = focalmajority(tmp4,nodata)

kill tmp4 all

&type "calculated tmp5"

distance = costdistance(%downstreamg%,tmp5)

kill tmp5 all

&type "calculated distance"

tmp1 = con(isnull(distance),0,distance)

kill distance all

&type "calculated tmp1" 

downstreammin = focalmin(tmp1,rectangle,5,5,data)

downstreammax = focalmax(tmp1,rectangle,5,5,data)

&type "calculated downstreammax" 

kill tmp1 all
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if(((downstreammax - downstreammin) > 13000) & (roadout == 1))

 roadout3 = 1

else if(roadout == 1)

 roadout3 = 2

else

 roadout3 = 255

endif

&type "calculated roadout3" 

kill roadout all

kill downstreammin all

kill downstreammax all

q 

&return

/****************************************************************

/****************************************************************

&routine cleanup

/****************************************************************

/****************************************************************

&severity &error &ignore

/* This removes files left over if the program

/* crashed on its previous run

kill tlandmask all

kill troadmask all
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kill notland all

kill notland2 all

kill tmpmask all

kill maxwidth all

kill landwidth all

kill roadout all

kill roadout2 all

kill roadout3 all

kill downstreammin all

kill downstreammax all

kill dorcnwigmax all

kill tmp1 all

kill tmp2 all

kill tmp3 all

kill tmp4 all

kill tmp5 all

kill distance all

kill downstreammin all

kill downstreammax all

kill roadout all 

&severity &error &fail  

&return

/****************************************************************
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/****************************************************************

&routine exit

/****************************************************************

/****************************************************************

q

&return &error
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Streammask2.aml

/* This aml converts a set of road and marsh water grids into

/* a single mask suitable for calculating distance

&severity &error &ignore

/* remove previous temp files

kill jm all

kill jm3 all

kill jm4 all

&args water roads outmask parms:rest

/* remove the previous output

kill %outmask% all

&severity &error &fail

grid

/* if the marsh coverage, which is the water input, is 1,2 or 3

/* it represents marsh land.  

if(%water% > 0 and %water% < 4)

jm = 4

/* a marsh code of 7 = upland

else if(%water% == 7)

jm = 10

else
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/* values 4 or 6 represent open water

jm = 9

endif

/* take a look at the road grid.  If it has a null value, just use the value calculated 

above.

if(isnull(%roads%))

jm3 = jm

/* otherwise, if a road is present, assign it to class 10, not marsh and

/* not water.

else

jm3 = 10

endif

/* replace road pixels with water pixels if they intersect

jm4 = min(jm,jm3)

/* this creates a mask that is null, 4,9 or 10

%outmask% = jm4

/* The water_process routine requires a mask that is null or 1.

if(%outmask% == 9)

  %outmask%_proc = 1

else

  %outmask%_proc = 0

endif

q
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kill jm all

kill jm3 all

kill jm4 all

==========================================================
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water_dist.aml

/* This aml uses the output of water_process and calculates the distance from 

each point in the marsh to the nearest stream.

&type need allcreeks and roadout3

grid

ALLCREEKSZERO = CON (ISNULL(ALLCREEKS),0,allcreeks)

TMPWETCOST = CON (ALLCREEKSZERO == 0,1,1)

TMPCOST = CON (ISNULL(LANDMASK),1,roadout3)  

tmpcost = con(isnull(landmask),1,roadmask5) or

wetcost = setnull(tmpcost == 255,tmpwetcost)

allcreeks is output from water_process.aml

allcreeksnull = setnull(allcreeks == 0, allcreeks)

waterdist = costdistance(allcreeksnull,wetcost)

q
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water_process.aml

/* this aml takes in the water data produced by combining all

/* the water data from NWI and clips off all the

/* streams that are less than 1 pixels wide.

/* Inputs required

/*  wetmask (watermask of area) in first line after initial cleanup

/*  downstreamg  (boundary marking downstream limit)

&args wetmask downstreamg landmask parms:res

&call cleanup

&severity &error &ignore

kill allcreeks all 

kill upstreamdist2 all

&severity &error &fail  

grid

setcell %wetmask%

keeptmp = focalsum(%wetmask%,rectangle,3,3,data)

/* restrict water mask to water bodies that occupy 

/* more than half of a moving five x five window.

if(keeptmp > 4 & %wetmask% == 1) 

  streamcliptmp = 1

else

  streamcliptmp = 0
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endif

&type "Just made streamcliptmp"

/* set non-water pixels to NULL

streamclip = setnull(streamcliptmp <> 1,streamcliptmp)

kill streamcliptmp all

/* Calculate the distance upstream for every point on the connected water bodies

updist = costdistance(%downstreamg%,streamclip)

kill streamclip all

/* This step just reduces data storage issues.  Occasionally,

/* the program ran out of disk space doing this set of calculations.

updistint = int(updist)

kill updist all

/* allocate the value of the nearest water pixel to each marsh pixel

eucdistance = eucallocation(updistint)

/* If the stream is connected to the Bay or ocean directly

/* give it a value of 1, else 0

if(updistint > 0 )

  majstreams = 1

else

  majstreams = 0

endif

&type "Performing width calculations"

/* Created an inverted water mask
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if(%wetmask% == 0)

  dorcnotwater = 1

else

  dorcnotwater = 0

endif

/* Now set the non water pixels to null and all else to 0.

dorcnotwater2 = setnull(dorcnotwater == 1,0)

/* This just creates a background layer of all 1's

/* that defines the extent and cost in the cost

/* distance function

if(%wetmask% == 0)

  dorcmask = 1

else

  dorcmask = 1

endif

kill dorcnotwater all

/* using the watermask, this essentially calculates the half-width of a body 

/* of water by calculating the shortest distance to a shoreline.

/* Backlink gives a value for the current cell which shows the previous cell

/* in the least cost path.

width = costdistance(dorcnotwater2,dorcmask,backlink)

/* This just saves disk space

tmp = int(width)
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kill width all

rename tmp width

kill dorcmask all

kill dorcnotwater2 all

/* These steps extract the directions of least cost paths from a block

/* of pixels.

fmax = focalmax(backlink,rectangle,3,3)

fmin = focalmin(backlink,rectangle,3,3)

fc3max = focalmax(backlink,irregular,../kernels/kernel_circle_3)

fc3min = focalmin(backlink,irregular,../kernels/kernel_circle_3)

/* For a 3x3 rectangle, assigns the maximum width calculated to the center cell.

maxwidth = focalmax(width)

tmp = int(maxwidth)

kill maxwidth all

rename tmp maxwidth

/* Used to call flow.aml

&type "Running flow calculation"

flowdir = flowdirection(width)

/* upstream is a keyword in the command below, not a file name

flowlen = flowlength(flowdir,%wetmask%,upstream)

kill flowdir all

/* used to call width2
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&type "Completing width calculation" 

/* If the water body is < 3 pixels wide, assign the width value to the output,

/* otherwise assign 0.

if((fmin == 0) & (maxwidth < 60))

  outgrid = width

else

  outgrid = 0

endif

kill maxwidth all

/* This was designed to deal with some issues in the way 

/* backlink represents neighboring cells.  IN particular, the numbers go 

/* continuously around the cell from 1 – 8. but there is a disconuity 

/* at the juncture of 8 and 1.

if((backlink == 8) & (fc3min > 6))

  outgridb = 0

else if((backlink == 8) & (fc3max == 1))

  outgridb = 0

else if((backlink == 1) & (fc3max < 3))

  outgridb = 0

else if((backlink == 1) & (fc3min == 8))

  outgridb = 0

else if((fmax - fmin) < 2)

 outgridb = 0
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else 

outgridb = width

endif

kill backlink all

kill fmax all

kill fmin all

kill fc3max all

kill fc3min all

kill width all

/* eliminate null values

if(isnull(outgridb))

  outgridb2 = 0

else

  outgridb2 = outgridb

endif

kill outgridb all

if(outgrid > 0)

  outgridc = outgrid

else

  outgridc = outgridb2

endif

kill outgrid all

kill outgridb2 all



215

outgridave = focalmean(outgridc)

kill outgridc all

outgrid2 = setnull(outgridave == 0, outgridave)

kill outgridave all

&type "Calculating creeks"

narrow_water = setnull(outgrid2 > 50,outgrid2)

kill outgrid2 all

creeks = setnull(isnull(narrow_water) | (%wetmask% == 0) | (flowlen < 50) 

,narrow_water)

kill narrow_water all

kill flowlen all

if(isnull(creeks))

  tmpcreeks = 0

else

 tmpcreeks = creeks

endif

kill creeks all

upstreamcrks = setnull((tmpcreeks + majstreams) == 0, 1)

kill majstreams all

kill tmpcreeks all

if(isnull(%downstreamg%))

  upstreamcrk2 = upstreamcrks

else
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  upstreamcrk2 = 1

endif

&type "Calculating distance updist2"

updist2 = costdistance(%downstreamg%,upstreamcrk2)

kill upstreamcrk2 all

if(updist2 > 0)

 allcreeks = 1

else

 allcreeks = 0

endif

q

&return

/***************************************************************

/***************************************************************

&routine cleanup

/***************************************************************

/*************************************************************** 

&severity &error &ignore

/* This removes files left over if the program

/* crashed on its previous run

kill backlink all

kill backlink2 all

kill creeks all
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kill dorcmars2 all

kill dorcmars3 all

kill dorcmask all

kill dorcnotwater all

kill dorcnotwater2 all

kill eucdistance all

kill fc3max all

kill fc3min all

kill flowdir all

kill flowlen all

kill flowlen2 all

kill fmax all

kill fmin all

kill keeptmp all

kill keeptmp2 all

kill keeptmp3 all

kill keeptmp4 all

kill keeptmp5 all

kill majority all

kill majstreams all

kill maxwidth all

kill narrow_water all

kill outgrid all
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kill outgrid2 all

kill outgridave all

kill outgridb all

kill outgridb2 all

kill outgridc all

kill streamclip all

kill streamcliptmp all

kill streamclptmp2 all

kill tmpcreeks all

kill updist all

kill updist2 all

kill updistint all

kill upstreamcrk2 all

kill upstreamcrks all

kill upstreamdist all

kill upstreamdist1 all

kill upstreamtmp all

kill width all

&severity &error &fail   

&return

==========================================================

================
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A.1 Processing Steps for All Input Grids

A.1.1 Upstream Distance

1. eucdistance (upstream distance) comes directly out of the water processing aml or can be 

generated by the eucdistance_proj.aml. 

A.1.2 Distance from Water

2. waterdist = costdistance(allcreeksnull,wetcost)

a. allcreeksnull = setnull(allcreeks == 0, allcreeks)

i. allcreeks is output from water_process.aml

b. wetcost = setnull(tmpcost == 255,tmpwetcost)

i. tmpcost = con(isnull(landmask),1,roadmask5) or

ii. TMPCOST = CON (ISNULL(LANDMASK),1,roadout3)  

iii. TMPWETCOST = CON (ALLCREEKSZERO == 0,1,1)

1. ALLCREEKSZERO = CON (ISNULL(ALLCREEKS),0,allcreeks)

3. ROADDIST = costdistance(roadmask5,roadcost2)

a.  ROADCOST2 = CON (ISNULL(DORCMARS),roadcost,1)

i. dorcmars is the marsh coverage in 4 categories, leaving out existing open 

water

ii. ROADCOST = setnull(tmproadcost2 == 1,1)

1. tmproadcost2 = con(wetshoremax == 0,tmproadcost,wetshoremax)

a. tmproadcost = con(isnull(landmask2),0,1)
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i. landmask2 = setnull(focalmax(roadmask4,data) == 

1,landmask)

ii. roadmsk4 (see below)

b. wetshoremax = focalmax(wetshoremask)

i. wetshoremask = 

con(isnull(dorcshorepg),0,dorcshorepg == 0,0,1)

1. polygrid dorcshorep dorcshorepg grid-code

2. build dorcshorep

3. project cover dorcshore dorcshorep utmproj

4. clip mdshore dorchclip dorcshore

5. import cover mdshore mdshore

b. ROADMASK5 = setnull(roadmask4 == 0,roadmask4)

i. ROADMASK4 = CON (ROADMASK3 == 1 or roadmask3 == 2,1,0)

1. ROADMASK3 = CON (ISNULL(REMOVE-

ROADSG),roadout3,0)

2. roadout3 is product of road_process.aml

3. remove-roadsg is hand-created coverage to remove residual 

undesirable roads.

4. LANDDIST = costdistance(landmask,landcost)

a. rename dorclandmask landmask

i. DORCLANDMASK = SELECTPOLYGON(../delmarva/landmask, 

dorchclip)

ii. LANDCOST = con(isnull(landmask),1,1)



221

5. dorcareaint = int(dorcareanorm + 0.5)

a. dorcareanorm = datanormalization dorcarealn

i. dorcarealn = ln(dorcareainv)

1. dorcareainv = 1 / dorcareatru2

a. dorcareatru2 = setnull(isnull(marsh),dorcareatrue)

i. dorcareatrue = con(dorcarea > 

600000000,0,dorcarea)

1. DORCAREA = 

polygrid(dorcnwidis,area,#,#,28.5)

A.2 Calculating the Probabilities

/* indicates a comment

%xxx% indicates a variable grid name, either the inputs or outputs.

tmpxxx are grids used only in these calculations which are then discarded.

/* First convert the distance file to natural logs

%distance_file%ln = ln(%distance_file%)

/* convert the logarithms to 100 categories 1 - 100.

tmpgrd1 = ((%distance_file%ln - distanceMIN) * (99 ))/(distanceMAX -
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distanceMIN) + 1

/* round the converted logs to the nearest integer to actually create

categories.

tmpgrdint = int(tmpgrd1)

/* Calculate the total area of each zone

tmpzonalarea = zonalarea(tmpgrdint)

/* calculate the total number of pixels that are open water in each zone

tmpprob1 = zonalsum(tmpgrdint,%input_prob%,data)

/* calculate the probability of a square meter being open water.

/* Since the zonal area is in meters and the probability is in pixels,

/* the number of pixels has to be multiplied by the pixel size in meters.

%output_probability%ln = ln(28.5 * 28.5 * tmpprob1 / tmpzonalarea)

To create the graphs, the numbers are processed by.

tmp = int(100 * lndistance)

sampeffectbay = sample(tmp,effectprobbayln)

kill tmp all
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Appendix D Landscape Model Eigenvalue Loadings

Bay Model 1

Table 17. Bay Model 1 Covariance Matrix

Layer Land Water Roads Area Upstream Northing Easting
Land 0.02986 -

0.00245
-
0.00525

0.00857 0.00554 0.02195 0.00476

Water -
0.00245

0.03624 0.00143 0.00675 0.00949 0.01808 -
0.00091

Roads -
0.00525

0.00143 0.02534 -
0.02242

-0.01691 0.01745 0.00173

Area 0.00857 0.00675 -
0.02242

0.05555 0.04639 -0.01045 -
0.00335

Upstream 0.00554 0.00949 -
0.01691

0.04639 0.08635 -0.02395 -
0.00661

Northing 0.02195 0.01808 0.01745 -
0.01045

-0.02395 0.23746 0.01364

Easting 0.00476 -
0.00091

0.00173 -
0.00335

-0.00661 0.01364 0.01496

Table 18. Bay Model 1 Correlation Matrix

Layer Land Water Roads Area Upstream Northing Easting
Land 1.00000 -0.07447 -0.19078 0.21051 0.10917 0.26063 0.22512
Water -0.07447 1.00000 0.04720 0.15041 0.16959 0.19486 -0.03924
Roads -0.19078 0.04720 1.00000 -0.59742 -0.36154 0.22493 0.08874
Area 0.21051 0.15041 -0.59742 1.00000 0.66979 -0.09100 -0.11637
Upstream 0.10917 0.16959 -0.36154 0.66979 1.00000 -0.16725 -0.18404
Northing 0.26063 0.19486 0.22493 -0.09100 -0.16725 1.00000 0.22890
Easting 0.22512 -0.03924 0.08874 -0.11637 -0.18404 0.22890 1.00000
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Table 19. Bay Model 1 Eigenvalues and Eigenvectors

Layer 1 2 3 4 5 6 7
Eigenvalue
s

0.24890 0.1247
1

0.0393
1

0.0273
4

0.02190 0.01263 0.0109
6

Eigenvecto
rs
Land 0.08661 0.1462

4
-
0.5256
6

-
0.1506
2

0.76104 -0.28574 0.1062
6

Water 0.07037 0.1547
2

0.7222
7

-
0.5681
7

0.34443 -0.04090 -
0.0794
3

Roads 0.09776 -
0.2256
1

0.3167
0

0.4013
9

0.27143 0.12808 0.7668
5

Area -
0.10077

0.5709
1

-
0.2012
7

-
0.4055
1

-0.33203 0.17149 0.5650
7

Upstream -
0.17677

0.7338
9

0.2026
6

0.5643
9

0.16822 0.02383 -
0.2041
9

Northing 0.96559 0.1948
1

-
0.0119
5

0.0795
8

-0.14245 -0.02484 -
0.0479
4

Easting 0.06496 -
0.0359
7

-
0.1413
7

-
0.0639
3

0.26397 0.93257 -
0.1762
1
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Bay Model 2

Table 20. Bay Model 2 Covariance Matrix

Layer Land Water Area Upstream Northing Easting
Land 0.02986 -0.00245 -0.00525 0.00857 0.00554 0.02195
Water -0.00245 0.03624 0.00143 0.00675 0.00949 0.01808
Area -0.00525 0.00143 0.02534 -0.02242 -0.01691 0.01745

Upstream 0.00857 0.00675 -0.02242 0.05555 0.04639 -0.01045
Northing 0.00554 0.00949 -0.01691 0.04639 0.08635 -0.02395
Easting 0.02195 0.01808 0.01745 -0.01045 -0.02395 0.23746

Table 21. Bay Model 2 Correlation Matrix

Layer Land Water Area Upstream Northing Easting
Land 1.00000 -0.07447 -0.19078 0.21051 0.10917 0.26063
Water -0.07447 1.00000 0.04720 0.15041 0.16959 0.19486
Area -0.19078 0.04720 1.00000 -0.59742 -0.36154 0.22493
Upstream 0.21051 0.15041 -0.59742 1.00000 0.66979 -0.09100
Northing 0.10917 0.16959 -0.36154 0.66979 1.00000 -0.16725
Easting 0.26063 0.19486 0.22493 -0.09100 -0.16725 1.00000

Table 22. Bay Model 2 Eigenvalues and Eigenvectors

Layer 1 2 3 4 5 6
Eigenvalues 0.24791 0.12457 0.03879 0.02728 0.02122 0.01102
Eigenvectors

Land 0.08590 0.14750 -0.51332 -0.13978 0.82726 0.05894
Water 0.07130 0.15384 0.74234 -0.54587 0.33950 -0.08339
Area 0.09772 -0.22652 0.31914 0.41512 0.24295 0.77842

Upstream -0.09993 0.57195 -0.19963 -0.41642 -0.32752 0.58512
Northing -0.17530 0.73474 0.20771 0.57583 0.12736 -0.19617
Easting 0.96813 0.19052 -0.02433 0.07198 -0.13367 -0.05278
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Atlantic Model

Table 23. Atlantic Model Covariance Matrix

Upstream Land SLR Tide Easting Northing Water

Upstream 5.50e-3 
-8.57e-
4

-2.32e-
5

-3.13e-
4

1.86e-4 6.78e-5 1.71e-3 

Land -8.57e-4 9.80e-3 1.08e-4 
-1.38e-
3

1.44e-4 1.82e-3 2.12e-3 

SLR -2.32e-5 1.08e-4 1.81e-1 5.93e-5 -2.51e-4 1.15e-3 4.66e-4 

Tide -3.13e-4 
-1.38e-
3

5.93e-5 7.42e-3 -1.10e-4 1.00e-3 8.42e-4 

Easting 1.861e-4 1.44e-4 
-2.51e-
4

-1.10e-
4

5.59e-4 5.03e-5 1.20e-3 

Northing 6.781e-5 1.82e-3 1.15e-3 1.00e-3 5.03e-5 2.23e-2 2.94e-2 
Water 1.711e-3 2.12e-3 4.66e-4 8.42e-4 1.20e-3 2.94e-2 5.60e-2 

  Table 24. Atlantic Model Correlation Matrix

Upstream Land SLR Tide Easting Northing Water
Upstream 1.00000 -

0.11676
-
0.00074

-
0.04894

0.10613 0.00613 0.09747

Land -0.11676 1.00000 0.00256 -
0.16233

0.06134 0.12301 0.09040

SLR -0.00074 0.00256 1.00000 0.00162 -
0.02496

0.01817 0.00463

Tide -0.04894 -
0.16233

0.00162 1.00000 -
0.05422

0.07801 0.04129

Easting 0.10613 0.06134 -
0.02496

-
0.05422

1.00000 0.01425 0.21441

Northing 0.00613 0.12301 0.01817 0.07801 0.01425 1.00000 0.83219
Water 0.09747 0.09040 0.00463 0.04129 0.21441 0.83219 1.00000
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Table 25. Atlantic Model Principal Component Layers

1 2 3 4 5 6 7
Eigenvalues

1.8e-1 7.3e-2 1.0e-2 7.4e-3 5.4e-3 4. 6e-3 4.7e-4 
Input Layer Eigenvectors
Upstream 7.96e-5 2.18e-2 1.52e-1 4.20e-1 5.62e-1 6.96e-1 1.72e-2 
Land 7.86e-4 4.25e-2 9.04e-1 2.35e-1 3.50e-1 5.34e-2 1.82e-2 
SLR 10.00e-1 9.13e-3 6.29e-4 2.20e-3 2.48e-3 3.04e-3 9.79e-4 
Tide 4.13e-4 1.76e-2 3.91e-1 7.82e-1 4.84e-1 4.89e-3 6.46e-3 
Easting 1.36e-3 1.48e-2 7.23e-3 5.33e-2 7.74e-2 6.91e-2 9.93e-1 
Northing 8.35e-3 5.00e-1 5.24e-2 3.32e-1 5.08e-1 6.09e-1 9.19e-2 
Water 5.71e-3 8.64e-1 6.32e-2 2.08e-1 2.51e-1 3.72e-1 6.90e-2 
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