
ABSTRACT

Title of dissertation: EFFICIENT ALGORITHMS FOR
COORDINATED MOTION IN
SHARED SPACES

Philip Dasler
Doctor of Philosophy, 2020

Dissertation directed by: Professor David M. Mount
Department of Computer Science

The steady development of autonomous systems motivates a number of inter-

esting algorithmic problems. These systems, such as self-driving cars, must contend

with far more complex and dynamic environments than factory floor robots of the

past.

This dissertation seeks to identify optimization problems that are simple

enough to analyze formally, yet realistic enough to contribute to the eventual design

of systems extant in real-world, physical spaces. With that in mind, this work

examines three problems in particular: automated vehicles and unregulated traffic

crossings, a smart network for city-wide traffic flow, and an online organizational

scheme for automated warehouses.

First, the Traffic Crossing Problem is introduced, in which a set of n axis-

aligned vehicles moving monotonically in the plane must reach their goal positions

within a time limit and subject to a maximum speed limit. It is shown that this

problem is NP-complete and efficient algorithms for two special cases are given.

Next, motivated by a problem of computing a periodic schedule for traffic

lights in an urban transportation network, the problem of Circulation with Modular

Demands is introduced. A novel variant of the well-known minimum-cost circulation

problem in directed networks, in this problem vertex demand values are taken from

the integers modulo λ, for some integer λ ≥ 2. This modular circulation problem is

solvable in polynomial time when λ = 2, but the problem is NP-hard when λ ≥ 3.

For this case, a polynomial time approximation algorithm is provided.

Finally, a theoretical model for organizing portable storage units in a warehouse

subject to an online sequence of access requests is proposed. Complicated by the

unknown request frequencies of stored products, the warehouse must be arranged

with care. Analogous to virtual-memory systems, the more popular and oft-requested

an item is, the more efficient its retrieval should be. Two formulations are considered,

dependent on the number of access points to which storage units must be brought,

and algorithms that are O(1)-competitive with respect to an optimal algorithm

are given. Additionally, in the case of a single access point, the solution herein is

asymptotically optimal with respect to density.

EFFICIENT ALGORITHMS FOR
COORDINATED MOTION IN SHARED SPACES

by

Philip Dasler

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2020

Advisory Committee:
Dr. David M. Mount, Chair/Advisor
Dr. William Gasarch
Dr. William Goldman
Dr. Dinesh Manocha
Dr. Dana S. Nau

c© Copyright by
Philip Dasler

2020

Table of Contents

1 Introduction 1
1.1 Unregulated Traffic Crossings . 3
1.2 City-wide Coordination . 4
1.3 Online Warehouse Management . 5

2 Literature Review 7
2.1 Motion Planning Through the Lens of Computational Geometry . . . 7

2.1.1 Kinetic Data Structures . 8
2.1.2 Geometric Motion Planning 11

2.1.2.1 Coordinated Motion 14
2.1.3 Complexity of Motion Planning 16

2.2 Network Flows . 18
2.3 Robotics and Artificial Intelligence 19

2.3.1 Game Theory . 23
2.3.2 Multi-Agent Systems and Traffic 25

2.4 Real-world Traffic Management . 27
2.5 Warehouse Management . 30

3 On the Complexity of an Unregulated Traffic Crossing 33
3.1 Introduction . 33
3.2 Problem Definition . 35
3.3 Hardness of Traffic Crossing . 40

3.3.1 Variable Representation . 41
3.3.2 Final Mechanism for Variable Representation 45
3.3.3 Value Transmission and Timing 50

3.3.3.1 Value Duplication 51
3.3.3.2 Timing and Delays 52

3.3.4 Clause Satisfaction . 54
3.3.5 Complete System Example . 59
3.3.6 Analysis of Reduction Complexity 59
3.3.7 Membership in NP . 61

3.4 Sufficiency of Binary Speed Profiles 65
3.5 A Solution to the One-Sided Problem 69

3.5.1 Intersection Between One-Way Highways 71
3.5.1.1 Merging Obstacles and Growing Collision Zones . . . 72
3.5.1.2 Movement Planning 77

3.5.2 A One-Way Street and a Two-Way Highway Intersection . . . 80
3.5.3 Intersection Between Two-Way Highways 83

3.6 Traffic Crossing in the Discrete Setting 84
3.6.1 The Unit-Delay Problem . 86
3.6.2 The Parity Heuristic . 91
3.6.3 Steady-State Analysis of The Parity Heuristic 92

iii

4 Coordinating City-Wide Traffic with Modular Circulation 99
4.1 Introduction . 99
4.2 Application to Traffic Management 101
4.3 Preliminaries . 108
4.4 Polynomial Time Solution to 2-CMD 109
4.5 Hardness of λ-CMD . 113

4.5.1 Variable Gadget . 113
4.5.2 Clause Gadget . 118
4.5.3 Final Construction . 119
4.5.4 Generalizing for λ > 3 . 121

4.6 Approximation Algorithm . 124

5 Online Algorithms for Warehouse Management 130
5.1 Introduction . 130

5.1.1 Model and Results . 132
5.2 Online Solution to the Attic Problem 137

5.2.1 Hierarchical Model . 137
5.2.2 Online Algorithm for Swapping Motion 138
5.2.3 Online Algorithm for Sliding Motion 144

5.2.3.1 The Nicomachus Layout 145
5.2.3.2 Accessing a Box . 147

5.3 Online Solution to the Warehouse Problem 152
5.3.1 Quadtree Model . 153
5.3.2 Online Algorithm for Swapping Motion 155

5.3.2.1 Container Structure for the Warehouse Problem . . . 157
5.3.2.2 Proving Competitiveness 160

5.3.3 Online Algorithm for Sliding Motion 163

6 Conclusion 166
6.1 On the Complexity of an Unregulated Traffic Crossing 166
6.2 Modular Circulation and Applications to Traffic Management 168
6.3 Online Algorithms for Warehouse Management 170

Bibliography 172

iv

Chapter 1: Introduction

As autonomous systems become more prevalent in everyday life, there is a

growing interest in maximizing their efficiency. Humans are increasingly sharing

physical space with robots, automation, and various forms of ubiquitous computing,

and as these systems continue to require more of our resources, we in turn require

greater efficiency from them. Just as the unprecedented growth of data requires

a revisiting of efficient storage and movement algorithms, so too does the growing

physical presence of automated systems. No longer confined to designated areas free

of the possibility of interaction, the ever-increasing number of autonomous systems

working under the constraints of shared space require gains in efficiency in order to

continue to do their jobs and to do them well.

This need for efficiency motivates a number of interesting algorithmic problems.

Applying techniques of algorithm design and computational geometry to autonomous

systems in physical spaces allows us to analyze how complex these systems are, to

assess the difficulty of the tasks they are attempting to solve, and to determine how

best to devise solutions to these tasks.

Take, for example, the steady development of automated vehicle technology.

Groups of such autonomous agents have the potential to increase the overall efficiency

of entire traffic systems through stronger and more purposeful coordination. The

practical engineering of such solutions will require the consideration of myriad issues,

including the physical limitations of vehicle motion, the complexities of traffic and

1

urban navigation, and human factors. However, underlying these practical issues are

broader, more fundamental theoretical issues of working within a shared space that,

when investigated, could lead to overarching insights into how best to solve these

problems.

Preliminary work has shown that the efficiency of solutions to the problems

of working in physical spaces can be very sensitive to the geometric layout of the

system. While fundamentally this dissertation involves objects moving through

space, it differs from the typical motion planning problem by focusing mainly on

the constraints imposed by the geometry of the spaces and the moving vehicles.

Automatic traffic management, for example, can be viewed at many scales, ranging

from global issues such as vehicle routing through a city [1–4], down to low-level

issues that concern themselves with vehicle kinematics and configuration spaces [5,6],

but the focus of this dissertation lies somewhere in between and draws heavily from

the tools and techniques of computational geometry and algorithmic analysis. Thus,

the goal is to identify optimization problems that are simple enough to analyze

formally, yet realistic enough to contribute to the eventual design of systems rooted

in shared, physical spaces. With that in mind, three problems in particular are

examined: automated vehicles and unregulated traffic crossings, a smart network for

city-wide traffic flow, and an online organizational scheme for automated warehouses.

2

1.1 Unregulated Traffic Crossings

In urban settings, road intersections are regulated by traffic lights or stop/yield

signs. Neither is an especially efficient solution. For example, a traffic light locks

the entire intersection, preventing cross traffic from entering it even when there is

adequate space and time to do so. Automated traffic control has the potential to

realize gains in efficiency. Chapter 3 introduces two algorithmic formulations of

automated traffic control in the form of the Traffic Crossing Problem, a problem that

involves coordinating the motions of a set of vehicles moving through an unregulated

traffic crossing. These simple formulations capture the essential computational

challenges of coordinating crosswise motion through intersections and provide a

foundation from which the work can evolve and grow. In both, vehicles move

monotonically along axis-parallel lines (traffic lanes) in the plane. The objective is to

plan the collision-free motion of these vehicles as they move to their goal positions,

subject to deadlines and a global speed limit.

After a formal definition of the traffic-crossing problem in Section 3.2, three

results are presented. First, it is shown in Section 3.3 that this problem is NP-

complete. Second, in Section 3.5 a constrained version motivated by a scenario in

which traffic moving in one direction (e.g., a major highway) has priority over crossing

traffic is considered, and an algorithm that solves this problem in O(kn log n) time,

for n vehicles and k crossing lanes, is provided. Finally, the problem is viewed in a

discrete setting in Section 3.6, in which a solution is given that limits the maximum

delay of any vehicle and is proven to be asymptotically optimal.

3

1.2 City-wide Coordination

While Chapter 3 is concerned with automating a system of vehicles passing

through a single intersection, Chapter 4 considers the cascading effects of automating

a system of multiple intersections.

Consider an urban transportation network consisting of a grid of horizontal and

vertical roads as laid out on a map. Each pair of horizontal and vertical roads meets

at a unique intersection with a controller that alternates, allowing either horizontal or

vertical traffic through, such that the pattern repeats over a time interval λ. The goal

is to synchronize these periodic systems so that traffic flows smoothly throughout

the city with minimal delay.

Minimum (and maximum) cost network flows and circulations are fundamental

computational problems in discrete optimization and are a natural avenue of attack

for such a problem. Chapter 4 introduces the problem of Circulation with Modular

Demands (or λ-CMD, for short), a variant of the classic circulation problem, where

vertex demand values are taken from the integers modulo λ, for some integer λ ≥ 2.

For example, if λ = 10 a vertex with demand 6 can be satisfied by any net incoming

flow of 6, 16, 26 and so on or a net outgoing flow of 4, 14, 24, and so on.

Section 4.2 discusses the relevance of the λ-CMD problem to traffic management

in an urban grid, Section 4.3 presents some preliminary observations regarding this

problem, and in Sections 4.4–4.6 three main results are given: (a) 2-CMD can be

solved exactly in polynomial time, (b) λ-CMD is NP-hard, for λ ≥ 3, and (c) there

is a polynomial time 4(λ− 1)-approximation to λ-CMD.

4

1.3 Online Warehouse Management

Online shopping has grown rapidly in recent years and, as such, the efficiency

of warehouses and fulfillment centers is increasingly important in meeting customer

demand at scale. Several companies have developed automated systems to help

streamline operations in these warehouses, making use of standardized portable

storage units and robotic retrieval systems. The robots maneuver themselves under

standardized shelving units, lift them from below, and carry them to a location in the

warehouse where a human waits to complete an order with items from the shelf. The

frequency with which each storage unit is accessed varies, and, as access probabilities

vary over time, there is a natural question of how to dynamically organize the

warehouse’s placement of storage units in order to guarantee efficient access at any

time.

From a practical perspective there are many ways in which to model objects

residing in a warehouse. To obtain meaningful theoretical results without imposing

irrelevant technical details, this work proposes a very simple and general model,

which encapsulates the most salient aspects of efficient self-organizing behavior. The

model is based on similar models used for memory caching, but is here applied to

physical storage space in the real world. Storage units, or boxes, are modeled as

movable unit squares on a grid in the plane. In addition to the boxes, there are

designated fixed points, called access points, where boxes are brought on demand.

The problem input consists of a sequence of access requests, each specifying that a

particular box in the system be moved to a given access point.

5

In Chapter 5, two versions of this problem are considered: the attic problem,

where there is a single access point and the warehouse problem, where there are

multiple access points. Additionally, two movement types are considered in each

version: (a) lifting boxes directly and carrying them over the warehouse (as cargo

containers are lifted by an overhead crane) and (b) sliding boxes along the ground,

requiring clear paths in which to do so. For each problem/motion-type pair, an

online algorithm is presented that is competitive with respect to an optimal solution

with complete knowledge of the access sequence.

All three of the presented problems (unregulated traffic crossings, coordinated

city-wide traffic flow, and online organization for automated warehouses) are examples

of applying techniques from algorithm analysis and computational geometry to solve

problems set in a shared physical space. Each example can be considered a case study

of sorts, illustrating the efficiencies that can be gained in real-world physical systems

by considering their theoretical boundaries and complexity. Additional studies of this

kind could further elucidate the intersection of computational theory and physical

systems, improve the efficiency of such systems, and broaden the applicability of

these and similar results by continuing to generalize the models used. Chapter 6

briefly discusses remaining open problems and future avenues of exploration.

6

Chapter 2: Literature Review

This section provides an overview of literature relevant to the three algorithmic

problems presented in their respective chapters. Prior work in these areas ranges

from engineering approaches that are focused on realistic issues to algorithmic

approaches that are very theoretic in nature. Related to many different topics, these

works include publications covering automated traffic management, multiple-agent

motion planning, kinetic algorithms in computational geometry, and dynamic flows in

networks. This survey of works is meant to provide a general overview of applicable

topics; references to sources that are more directly used (such as applying particular

techniques introduced therein) are reserved for their respective chapters.

2.1 Motion Planning Through the Lens of Computational Geometry

As the work presented in this dissertation seeks to examine motion planning

problems on a fundamental level, formally defining them and analyzing them from

the perspective of their computational complexity, this review of the prior arts begins

with (and primarily consists of) a survey of computational geometry techniques for

dealing with moving objects, coordinated motion, and the computational complexity

of motion planning.

7

2.1.1 Kinetic Data Structures

Introduced by Guibas [7] in 1998, Kinetic Data Structures (KDSs) are designed

for solving typical computational geometry problems, but with the added complication

of motion. Consider, for example, the problem of maintaining a data structure for

answering visibility queries for a set of obstacles in motion. Creating a binary

space partition is common for answering such queries, but algorithms to do so (and

structures that store this information) assume that the objects in the space are static.

Any movement of these objects may invalidate already derived structures. What is

necessary, then, is a structure that can efficiently adjust as objects move.

KDSs assume that the motion of objects is known. Typically, they are created

by adapting known algorithms for static problems to handle dynamic data. For

example, Basch, Guibas, and Hershberger [8] focus on adapting algorithms for

maintaining the convex hull and closest pair in a set of moving points. (Guibas

refers to these types of problems which deal with the compactness of a set as extent

problems.) Their technique is in large part a simple plane sweep, except with an

added dimension to represent time. It is across this dimension that the plane actually

sweeps.

These structures are initialized at some point in time, say t0, with the respective

positions and time-parameterized motions of the points and an initial solution to

the problem (e.g., the convex hull of the points in their initial configuration). Next,

a set of certificates is added. These certificates are a set of Boolean conditions

which describe certain necessary properties for a calculated solution to be valid,

8

e.g., all points must lie within the interior of the convex hull. Along with these

certificates is a set of update rules detailing the necessary steps for correcting a

violated certificate. Next, a priority queue is created containing the first point in

time at which each certificate fails. This priority queue provides a structure that

reports which certificates are violated for any queried time t. If none are violated

at this point, then the original solution is reported. If any certificates are violated,

the solution is updated by working through the priority queue, encountering each

certificate violation and applying that certificates update rule, until the solution has

reached the appropriate state for time t.

While this, at first blush, requires the movement of points to be fixed (i.e.,

the velocity of a point does not change), Basch et al. do allow for changes in the

motion of objects by way of an update to the priority queue. This queue is originally

built from the known motion of objects at time t0, but can be modified as needed by

recalculating the failure times of each certificate (though in practice, this is rarely

done as it is a costly operation).

These types of adapted KDS are evaluated across four criteria: responsiveness,

efficiency, compactness, and locality. The responsiveness of a KDS is related to the

computational complexity of repairing the structure after a certificate fails. The

greater the complexity, the less responsive the structure is. Efficiency is the ratio

between certificate failures and necessary changes to the solution. If few changes

are necessary in the face of many certificate failures, the KDS is considered to be

efficient. Compactness measures the size of the certificate set. Solution dependencies

that are easily encapsulated in a small number of certificates lead to a compact KDS.

9

Finally, the locality of a KDS is a measure of the span of certificates. In other words,

if each certificate governs a relatively small number of points in the set, then the

KDS is considered to be relatively local.

The KDS approach has been successfully applied to a number of kinetic

problems in computational geometry including collision detection [9–11], clustering

[12–14], and closest pair calculations [15, 16].

Saltenis et al. tackle the problem of simply keeping track of the positions of a

set of moving objects [17]. Their goal is to create an index that, when queried, will

return all objects that lie within a given range and time interval. This range may

be defined by two d-dimensional ranges, forming a (d + 1)-dimensional trapezoid

between the first and second ranges and across the time interval. The structure

used to support this query is a modified R∗-tree which, at its leaves, stores both the

position of the objects at time t0 as well as a time-parameterized function describing

its motion. Internal nodes store bounding boxes around points in their subtree which

must also be time-paramaterized. Though no formal bounds are proven, experimental

results show this new structure (deemed a time-parameterized R-tree or TPR-tree)

to be capable of supporting queries efficiently and that its performance does not

degrade over time.

Many of these methods may be useful for planning the motion of vehicles in

the traffic crossing problem, but one major drawback of the KDS framework is that

the vehicles are not treated as acting agents. Instead, their motion is assumed to

be unchanging and known a priori. For further discussion on pathfinding involving

multiple agents see Section 2.3.2.

10

2.1.2 Geometric Motion Planning

Motion planning, especially through obstacles, is a topic that has been well

studied within the field of computational geometry.

Ó Dúnlaing, Sharir, and Yap [18] propose the use of Voronoi Diagrams as a

simple motion planning solution to two special cases of the Movers’ Problem. These

cases involve moving either a disc or a line segment through a two-dimensional space

bounded by polygonal obstacles. The solution, in essence, creates a cell structure

such that the edges of the cells are as far from the obstacles as possible. This is a

natural result of the Voronoi Diagram, as each edge is equidistant from the two points

that define it, and, in this case, the points come from the obstacles. Given this, a

motion plan can be created simply by finding the nearest edges on the diagram to the

start and goal positions and then doing simple pathfinding along the diagram’s edges.

This method requires O(n log n) time for preprocessing and can answer path-finding

queries in O(n) time.

Although its primary focus is not on motion planning, the work by Abellanas

et al. is instead a modification to the usual Voronoi Diagram algorithm. This

modification constructs the Voronoi Diagram based on the time to travel between

two points rather than based on Euclidean distances, and the authors illustrate its use

by applying it to the problem of motion planning in the Straight Line Transportation

Model. This model adds a line to the usual point set, representing a highway

through a set of locations. The highway allows vehicles to travel at a greater speed

than anywhere else in the space. The time-based Voronoi Diagram is then used to

11

determine the quickest paths between points. It seems that this time-based Voronoi

Diagram method could be combined with the simple motion planning from the paper

by Ó Dúnlaing, Sharir, and Yap above to create variable speed motion plans that

optimize over travel time, although this is left for future work and not attempted in

this dissertation.

While typical motion planning problems involve planning the paths of one or

more agents from some starting configuration to some goal configuration, there are

other ways to formulate them. One example of this is the milling problem, in which

all points of a polygonal region must, at some point, be covered by a cutting head

(typically circular or square). The task is to find the shortest path for the cutting

head that accomplishes this without the cutting head leaving the region. In a paper

by Arkin et al. [19], the milling problem is shown to be NP-hard. Several years later,

the same authors published a 2.5-approximation algorithm for the problem [20].

The problem of milling has also been considered in the context where milling

tools of various radii can be used [21]. While the milling problem is known to be

NP-hard even when restricted to the case of a single tool, this paper presents a

polynomial-time approximation algorithm for the multiple-tool milling problem.

Although milling may not directly involve the type of coordinated motion

planning necessary to direct traffic, the concept of sweeping a polygon across a space

while avoiding previously swept regions is connected in the sense that the traffic in

a system creates collision zones that must be avoided by polygonal vehicles. Such

zones are constructed and used for motion planning in Chapter 3.

Berger and Klein consider a dynamic motion-panning problem in a similar

12

vein to the one presented in Chapter 3, which is loosely based on the video game

Frogger [22]. In Frogger, players control the eponymous frog, whose goal is to cross

either a busy road or a flowing log flume. In the former, moving vehicles must be

avoided lest the amphibious hero be brought to an untimely end. In the latter, the

only way to cross the flowing water is by using passing logs as platforms. While

both versions are quite similar to one another (one could treat the spaces between

cars as though they were logs in the flume), there are some subtle differences with

regard to game ending states (e.g., one can wait on a log until swept off-screen but

there is much less time between vehicles). Berger and Klein actually focus on the

latter version of the problem, in which moving objects in the space are considered

carriers rather than obstacles. They show that the problem is undecidable for

dimension d ≥ 8, is NP-hard in the plane, and does not even admit a constant-factor

approximation (under the assumption that P 6= NP).

The work of Berger and Klein is based, at least in part, on the work of Arkin,

Mitchell, and Polishchuk [23] in which a group of circular agents must cross a field

of polygonal obstacles. These obstacles are dynamic, but their motion is fixed and

known a priori. Similar to the work by Basch et al., time is treated as an additional

spatial dimension, uniformly discretized. Additionally, rather than discretizing

through a regular grid, each time-slice is discretized by a maximal packing of disks.

Finally, each edge in the graph is assigned a capacity of one and its maximum flow is

found, resulting in a pseudopolynomial-time dual-approximation algorithm. If there

exists paths for K unit disks traveling at unit speed, the algorithm will find K paths

for disks of radius Ω(1) traveling at speed O(1).

13

2.1.2.1 Coordinated Motion

A subset of motion planning, coordinated motion covers movement plans for

multiple agents so that, working together, they can achieve some overarching goal.

Kawamura and Kobayashi [24], for example, consider a multi-agent motion

planning problem involving a set of agents patrolling a linear fence. As seen in

previous papers, time is once again treated as an extra dimension, leading to a

rectangular work space. As agents patrol the fence, they sweep out strips of this

space in much the same way as a cutting head in the milling problem, though there is

no freedom with respect to the velocity in the direction of time. The paper discusses

coordinating the motion of agents so that either the entire space is covered by these

strips (i.e., all points of the fence are under surveillance at all times) or the height of

uncovered areas are minimized (i.e., the length of time an area of the fence is unseen

is minimized).

The work by Pasqualetti et al. [25] is similar to the patrolling work above,

though rather than dealing with a linear fence, a polygonal environment is patrolled.

The paper does away with the environment relatively quickly in favor of a “robotic

roadmap,” i.e., a graph connecting a set of n viewpoints necessary for visibility to all

points of the polygon. Having one robot placed at each of the n points simultaneously

is necessary and sufficient for the entirety of the polygon to be covered. Thus, this is

a patrolling problem across a branching graph rather than a single line.

Chiang et al. [26] study conflict detection and resolution in air traffic man-

agement (ATM). In this problem, planes enter a polygonal airspace at specified

14

locations and must reach one of several runways while avoiding conflicts with no-fly

zones and other airplanes. The authors use the kinetic data structure for Delaunay

triangulations detailed in the paper by Guibas et al. [27]. This allows for conflict

detection in O(n3) in the worst case.

A subset of coordinated motion, swarm robotics deals with coordinating the

motion of multiple agents under the constraints of physical systems. Take, for

example, recent work by Arul et al. [28], which deals with the coordination of a

swarm of quadcopters as they surveil a 3D urban environment. The generated motion

plans provide for local collision avoidance with both static and dynamic obstacles in

the field while taking into account coverage constraints of the space to be monitored,

the dynamics constraints of the quadcopters, and the inevitable uncertainty in vehicle

motion. The system scales linearly with respect to the number of agents, at least up

to a few dozen, although this is demonstrated experimentally rather than through

formal theoretic methods.

More theoretic in nature is the work by Demaine et al. [29] in which a swarm

of robots is reconfigured, moving each robot from a starting position to a goal

position, while minimizing distances travelled. Two models are given. The first,

restricted to a grid, is shown to be NP-hard when looking for optimal paths, but

the approximation algorithm provided yields a constant stretch factor. The second

model uses disc shaped agents in the plane, with the same approximation result.

While this work is quite similar to the work in Chapter 3 of this dissertation, there

are some obvious differences in model definition (such as vehicle geometry) and this

work optimizes distance traveled rather than time taken to reach goal positions as is

15

done in Chapter 3. Additionally, while this dissertation has been submitted after the

work by Demaine et al., the published paper that Chapter 3 is based on predates it.

2.1.3 Complexity of Motion Planning

While the work above focuses mainly on techniques for planning motion, other

works have focused more on theoretic analyses of motion planning in general. For

example, Reif and Sharir [30] look at the computational complexity of what they

refer to as the dynamic mover’s problem. This problem involves planning the motion

of some polygonal body (say, a couch) through a set of moving obstacles (say, a house

party). Again, in this problem the movement of all obstacles is known beforehand.

Reif and Sharir prove that, even with full knowledge of obstacle movement, this

motion planning problem is NP-hard if there are no bounds on the velocity of the

body. Added bounds push the problem into PSPACE-hardness.

Sharma and Aloimonos [31] study a problem called the warehouseman’s problem,

which involves the coordinated motion of objects within a confined space. The intu-

itive analogy presented is that of a warehouse full of boxes that must be rearranged

within the confines of the warehouse to reach a desired configuration. The authors

show that when the problem is defined as a two dimensional problem with rectangu-

lar, axis-aligned objects in a rectangular room, the problem is PSPACE-complete.

Finally, they introduce some constraints on the space that allow for polynomial time

algorithms.

Flake and Baum [32] perform an analysis on a similar problem, the well-known

16

sliding-block puzzle game, Rush Hour. This puzzle involves a set of rectangular

vehicles on a square grid that can move either vertically or horizontally, but not

both. The goal is to find a sequence of moves such that a target vehicle can exit

the grid. Flake and Baum generalize this to an n× n grid and show that deciding

whether or not a set of legal moves exist such that the target car can escape is

PSPACE-complete.

Hearn and Demaine [33] go one step further by generalizing the results above.

Through the nondeterministic constraint logic model of computation, they show that

sliding-block puzzles in general are PSPACE-hard. In particular, they strengthen

the conditions for PSPACE-completeness of the Warehouseman’s Problem and

PSPACE-completeness of Rush Hour.

Work by Gupta and Nau [34] discusses the complexity of planning in the

blocks-world environment. Specifically, they show that planning in this context (and

in several variants of the problem) is NP-hard due to deadlocks. They go on to

provide a simple hill-climbing algorithm that finds an optimal solution in the absence

of deadlocks and explain why deadlocks are so difficult to deal with. Many aspects

of this work seem to parallel the challenges provided by the problems presented in

Chapters 3 and 4. For example, in these problems solutions can be presented as

sets of partial orderings, either determining the order in which blocks are handled or

when vehicles cross through intersections.

17

2.2 Network Flows

Motion planning problems exist at a scale commensurate to the objects for

whom motion is being planned, but inefficiencies at this scale can cascade to those

above. If one street intersection is jammed, there is a reasonable chance it will cause

delays elsewhere in a network as well. To understand how these cascades affect the

network and how they can be mitigated, a new type of optimization problem based

on network flows is introduced in Chapter 4.

Network flow problems, or the more general circulation problems, are a class of

optimization problems in which some commodity must make its way across a network

under certain constraints (e.g., edge capacity limits) and with the goal of maximizing

or minimizing some utility (e.g, the sum of the weights of used edges). The standard

minimum-cost circulation problem is well studied. The reader is referred to any of a

number of standard sources on this topic, for example, [35–40].

Dynamic network flow problems, introduced by Ford and Fulkerson [41, 42],

also analyze traffic through a network, but with the key difference that this analysis

occurs over time rather than in a steady state. Edges in the network are defined by

both a capacity and a travel time, and the goal is to maximize flow to the sink vertex

within some amount of time T . Ford and Fulkerson provide an algorithm for solving

this that identifies bottlenecks in the network (both when and where they occur)

and creates a small set of actions, referred to as chain-flows, that are repeated until

time T and which lead to the maximal flow. This work was extended by Edmonds

and Karp [39], who point out particular situations in which the original algorithm

18

struggles and then provide simple modifications to avoid these situations.

Traditional work on network flows considers the problem in one of two contexts:

discrete time in which networks are time-expanded (i.e., copied for each time step

with edges added between time layers) or continuous time in which capacities and

costs can change over time. Fleischer and Tardos [43], meld these two research tracks

by extending some of the polynomial time algorithms from the discrete setting to

the continuous-time setting. This work, like that of Ford and Fulkerson, allows for

the storage of traffic at nodes, a luxury not afforded to a model meant to model a

physical system like a vehicular road network.

As mentioned previously, much work in dynamic flows is done through the

time expansion of networks, a method by which a discrete time system can be

represented in a single, static graph. While this allows for the use of standard static

graph algorithms, a non-trivial time range leads to a very large network. Fleisher

and Skutella [44] seek to alleviate this by providing methods for condensing these

time-expanded graphs. These condensed graphs discretize time at a lower resolution,

are polynomial in size, and can be used to compute a solution of arbitrary precision

in polynomial time.

2.3 Robotics and Artificial Intelligence

Let us now consider work in the robotics and artificial intelligence communities.

In much of this work, vehicles communicate either with one another or with a local

controller that allows vehicles to pass through an intersection simultaneously if it

19

can be ascertained (perhaps with a small adjustment in velocities) that the motion

is collision-free (see, e.g., [45]). Even though such systems may be beyond the

present-day automotive technology, the approach can be applied to controlling the

motion of parcels and vehicles in automated warehouses [46].

The work by Fiorini and Shiller on velocity obstacles [47] considers motion

coordination in a decentralized context, in which a single agent is attempting to avoid

other moving objects. These obstacles have a predefined motion which is combined

with the agent’s possible velocities to form a velocity obstacle, a set of velocities for

the agent that lead to an inevitable collision (this assumes that the motion of the

agent does not change). To avoid a collision, a velocity outside of this set is chosen.

Furthermore, the selected velocity is restricted by considering limitations on the

agent itself, such as acceleration limits.

To generalize for obstacle trajectories, this same computation occurs at repeated

regular intervals. By searching a tree of these feasible velocities, a near-optimal

collision free path can be found for the agent from the start location to the goal

location. Additionally, a heuristic search can be used to satisfy a prioritized list of

objectives in an efficient manner.

The concept of velocity obstacles introduced above is extended by Van den

Berg et al. [48,49] by considering the behavior of other agents. Rather than treating

them as passively moving obstacles, this formulation views them as reactive agents

making similar collision-avoidance decisions. This type of dual motion planning

without communication may lead to oscillations as agents continually try to predict

and react to each other, but the authors show that their method guarantees safe and

20

oscillation-free motions for the agents. They go on to demonstrate that the concept

is scalable and performs well in real-time by simulating hundreds of agents in densely

populated environments containing static and dynamic obstacles.

Akella and Hutchinson’s work [50] deals with creating collision free plans for

robots which have overlapping workspaces. The trajectories of the robots are known

beforehand (these are often constrained by the work being performed, e.g., a spray-

painting robot must follow a specified velocity profile in order to appropriately paint

a target). Collision zones are determined for robot motion and linear constraints are

derived and the problem is then solved through the use of an Integer Programming

(IP) software package. The paper suggests that the problem is NP-Complete given

the use of IP, but no formal proof is given.

Given that these works focus on real-world robotics issues, it may be the case

that the time necessary to create a motion plan is greater than the time one has in

which to execute the resulting plan. It may be that the robot needs to act quickly,

lest the information at hand become outdated, rendering any conceived motion plan

invalid. To work around these constraints, Petti and Fraichard introduce the concept

of a Partial Motion Plan (PMP) [51]. Essentially, the system will form as much of

a motion plan as possible in the allotted time. Furthermore, Inevitable Collision

States (ICS) are identified so that no PMP ends leaving the robot in a position such

that the next PMP is unable to advance the robot toward its goal.

Rodriguez et al. [52] provide a framework for planning motion among moving

obstacles that considers two types of obstacle: hard and soft. A hard obstacle is one

with which a collision is strictly prohibited. A soft obstacle, on the other hand, is one

21

where some “collision” is allowed. The example they present is one of a pedestrian

with a safety margin around it. Modeled as a disc, it is highly preferred that no

collisions occur with this disc, but it is not strictly necessary. Motion planning is

done as a two-step process. First, a roadmap is created using Probabilistic Roadmap

Methods or PRM [53]. This roadmap is created around the hard obstacles only,

providing the means to find a motion plan that is collision free with respect to

these obstacles. The second step alters this plan to take into account limitations

on the robot’s movement (e.g., acceleration limits) and to attempt to avoid the soft

obstacles. While the formal complexity of this method is not analyzed, experimental

results are promising, in so far as computation time and soft obstacle avoidance

metrics are concerned.

Yu and LaValle [4] show that multi-agent path planning on graphs can actually

be reduced to network flow problems. Additionally, they prove that when the

problem’s goals are permutation invariant (that is, agents do not have a specific

goal to reach, rather each goal location must be reached by a unique agent), there is

always a solution with a finish time upper-bounded by n+V − 1, for n agents and V

vertices on the graph. An algorithm for finding such a solution in O(nV E) is shown,

where E is the number of edges in the graph. This permutation invariant problem is,

in essence, the escape problem, in which multiple agents are attempting to escape

some space (generally represented as a graph) by reaching any one of multiple exits

(marked as goal vertices) without concern for which exit they reach.

22

2.3.1 Game Theory

Additionally, there has been some work which focuses on the game theoretic

concerns which occur in motion planning problems, often times viewing the problem

in the context of finding strategic equilibria. For example, imposing the need for a

Nash equilibrium in any selected strategy helps to ensure that drivers will follow

it, as it is within their individual best interests to do so. This not only helps to

guarantee the safety of a system (as there is no incentive to “go rogue”), it also

implies some level of quality in the chosen strategy.

The work by LaValle and Hutchinson uses Nash equilibria for the coordination of

multiple robots in the same space [54]. Their approach can be considered somewhere

between centralized planning and decoupled planning. A roadmap is computed

for each independent robot (decoupled), and the paths and motions of the robots

on the roadmap are coordinated (centralized). Rather than focusing on an overall

optimization strategy, LaValle and Hutchinson show that there is a partial ordering

among all viable strategies. This ordering yields a set of maximal strategies, that is,

for all strategies not in this set, there is another strategy in this set that is clearly

equal to or better than it. Given this set, further criteria may be used to select

one of the maximal strategies. As an indication that these strategies provide an

outcome that is acceptable to all (that is, no agent’s well-being is sacrificed in the

name of optimization) it is shown that the strategies in this maximal set are also

Nash equilibria. In other words, it will never be in an agent’s best interest to deviate

from these strategies.

23

Nisan et al. [55] introduce a traffic-crossing-type problem in the context of

game theory. In it, two vehicles have arrived at an intersection simultaneously and

must decide when to cross. If both vehicles cross at the same time, they each suffer

a large penalty. If only one crosses, that vehicles receives some small payout while

the vehicle that waits receives nothing. The concept of a correlated equilibrium [56]

is introduced in which a third party dictates the moves of the players with the

restriction that the strategies provided by the coordinator must be stable strategies,

that is, players will find that these strategies are best for them when acting in their

own self interest and will have no incentive to act differently.

Koch and Skutella [57] apply game theory to network flow problems. They

do so by introducing the concept of a routing game over time, in which a player

determines a route from a source node to a sink node, given a network and a start

time, with the goal of minimizing the cost of reaching the sink node. The authors

analyze Nash equilibria in this setting, particularly by showing that they can be

characterized through a series of static flows with special properties. Finally, it is

shown that these Nash equilibria are optimal and can be computed in polynomial

time.

Kopparty and Ravishankar [58] provide a framework for pursuit evasion games.

In such games, a set of n pursuers are attempting to capture a single evader.

Movement occurs either simultaneously or in turns, is restricted by a maximum

velocity and the possible inclusion of obstacles, and is restricted to a space in Rn,

which may or may not be bounded. While there is not a direct connection between

pursuit and evasion games and the motion and traffic problems in this work, the

24

framework and resultant algorithms provide insight into effective collaboration and

coordinated motion.

In work by Carlino et al. [59], they present an auction based system in which

each vehicle waiting at an intersection bids money so that the lead vehicle in their lane

may be the next vehicle to cross through the intersection. Rather than allowing the

system to be dominated by wealthy drivers, auctions are regulated by a “benevolent

system agent.” Empirical evidence lends mild support to the efficacy of this method,

though in general it seems that the equalizing effect of the system agent renders all

vehicles essentially equal in priority and so the performance of the auction system is

very close to that of a first-in, first-out policy.

2.3.2 Multi-Agent Systems and Traffic

Multi-Agent Systems research focuses on multiple intelligent agents interacting

with each other in a shared environment. Each of the works below take a multi-agent

systems approach to autonomous intersection management (AIM).

In a model by Dresner and Stone [60], cars approach a 4-way intersection

at roughly the same speed and must make their way to the opposite side without

collision. They propose a reservation-based system in which agents announce to

an intersection controller their arrival time, velocity, direction of travel, maximum

velocity, acceleration limits, length, and width. The intersection itself is divided

into an n × n grid of tiles. The information provided by the vehicle allows the

intersection controller to determine which of these tiles will be occupied and when.

25

If these tiles are not already reserved at those times, the controller will confirm the

vehicle’s registration. It is then up to the vehicle to follow the reservation or to send

a cancellation message in the event that it cannot. If the reservation is canceled by

the vehicle or rejected by the controller the vehicle must continue to make reservation

requests as it approaches the intersection, decelerating as it does so to avoid entering

the intersection without a reservation. Using a simulator designed by the authors, it

is shown that this reservation-based system leads to an average delay for vehicles

that is two to three hundred times shorter than the delay incurred by traffic lights.

Dresner and Stone [61] go on to extend their previous model by allowing

vehicles to accelerate through intersections as well as turn within them. Additionally,

they alter the communication protocol such that the vehicles do not need to know

anything about the intersection control policy. In this system, vehicles will, as before,

request a reservation based on their current state (e.g., velocity, time of arrival,

etc.), but the intersection controller has the option of making a counter-offer. This

counter-offer is a new reservation that the vehicle must either adhere to or must

request the cancellation of (if, for example, it is unable to comply). This allows the

controller to coordinate the vehicles in any manner it sees fit without the vehicles

needing to understand the underlying logic, generalizing the protocol to encompass

the reservation system, traditional traffic lights, stop signs, etc. Greater detail is

provided in [45].

Similar to the reservation system used above, work by VanMiddlesworth et

al. [62], uses a reservation-based system for prioritizing vehicle motion through the

intersection. However, rather than requiring a centralized intersection controller,

26

this work provides a peer-to-peer protocol. This protocol requires vehicles to lay

claim to the routes they will use to pass through the intersection. A priority ordering

is established based on the vehicles’ states, so that when conflicts occur it is clear

which vehicle must alter its claim. This peer-to-peer system is intended for use at

intersections with low traffic density as these types of intersections make up the

majority of those in the real-world and the lack of a centralized intersection controller

makes this solution much cheaper to implement.

In a more theoretic vein is the work by Wang and Botea [63] which attempts

to straddle the gap between a centralized and a distributed system, thereby gaining

efficiency while maintaining good scalability. This work identifies classes of multi-

agent path planning problems that can be solved efficiently (i.e., in polynomial time)

using MAPP, a multi-agent path planning algorithm that is theoretically tractable

and scales well with the size of the set of moving agents, but is meant for problems

on undirected graphs rather than in continuous space.

2.4 Real-world Traffic Management

There exists a large body of work studying real-world traffic systems. Of

particular note is work that focuses on intersection management, traffic light policies,

and natural systems related to vehicular traffic. While many of these works concern

themselves with real-world issues, they still provide insight into the behavior of

systems that deal with multiple dynamic agents. Inspiration can be drawn from this,

and general concepts, terminology, and existing solutions may be helpful in formally

27

defining, analyzing, and finding solutions in the theoretic framework put forward in

this dissertation.

Sasaki and Nagatani [64] analyze the efficiency of a traffic-light-regulated

intersection on a single-lane roadway. In their analysis, three separate traffic light

policies are explored and their effects on the density of the roadway are analyzed

(dependent on different starting densities). The first policy is a simple synchronized

strategy in which all traffic lights change simultaneously. The second, known as

the green wave strategy, causes each light to change with a certain delay after the

previous light changes. In this way, a green light will propagate down the road.

The third policy tested was a random switching strategy which would randomly

select a cycle time for each light. For vehicle behavior, the authors use the optimal

velocity model [65], a model in which vehicles will accelerate to some optimal speed

based on the speed limit and the room in front of the vehicle. Through simulation,

the authors discover that saturation of current (that is, the point at which there is

maximum throughput of traffic) occurs at some critical density. The value of this

saturation (i.e., throughput) is not directly dependent on the traffic light strategy

chosen. Instead, the critical density changes as a function of traffic light strategy,

with cycle time being perhaps one of the most influential factors.

Gershenson uses a multi-agent simulation in order to study the efficiency of

three different self-organizing methods of steering traffic through a city to minimize

congestion [66]. With a simple rule set and no communication between agents, these

methods outperformed traditional methods. The first method keeps count of the

vehicles approaching the red light. Once a threshold is reached, the light changes.

28

This threshold will naturally create platoons of vehicles as they build up at each

red light. The second method is similar to the first, but with some minimum time

threshold, preventing the light from oscillating between states too quickly. In the

final method an extra constraint is added to help keep platoons together. If a platoon

is passing through a green light, the light will not change until the platoon is safely

through, regardless of what other conditions are met. Each of these three methods

adapt themselves to the changing traffic patterns and, through empirical evidence,

the authors have shown that they outperform standard traffic light policies. Cools,

Gershenson, and D’Hooghe extend this work to a realistic setting by incorporating

data from a real Brussels avenue into the simulation [67].

A paper by John et al. [68] draws an analogy between a unidirectional flow

of ants on a trail with that of traffic. This paper reports on experimental results,

pointing out differences in vehicular traffic flow and streaming ants, specifically

pointing out why it is that traveling ants never seem to suffer from traffic jams the

way vehicles do. First, ants tend to move together in clusters (the paper refers to

them as platoons) in which the relative velocity of the ants with respect to one

another is quite low. Second, ants never speed up in order to overtake another ant.

Third, the speed at which ants travel appears to be independent of the density of

ants on the trail, a trait that differs greatly from vehicular traffic.

Lammer and Treiber [69] propose a traffic light policy similar to that of

Gershenson in the sense that it involves an adaptive system meant to minimize

congestion. However, traffic lights in this system attempt to be proactive rather than

reactive. In Gershenson’s system, the lights change based on how many vehicles

29

are approaching it. In Lammer and Treiber’s system, the lights will change based

on how many cars are on the roadway beyond it, allowing fewer through if the

next intersection is being overcrowded. One nice property of this approach is its

localized nature. By not requiring global knowledge, it may be the case the overall

computational complexity is relatively low.

2.5 Warehouse Management

The sources thus far have mainly dealt with movement in shared spaces, but

perhaps even more fundamental is the question of how much fits into a space and how

best to utilize this limited resource. There have been a number of papers devoted to

the problem of organizing storage units in real-world warehouses, although much of

the prior work has focused on solving the various engineering challenges involved.

For example, Amato et al. [70] study control algorithms for warehouse robots,

assuming a continuous distribution of item locations throughout the warehouse and

ignoring the benefits of intelligent item placement. In a similar vein, Chang et

al. [71] attempt to minimize unnecessary task repetition using genetic algorithms,

thus shortening robot travel times, but assume a fixed storage scheme regardless

of differing access frequencies. Sarrafzadeh and Maddila [72] use a discrete grid-

based model, as is done in this work, but their focus is still an engineering one,

concerned primarily with robot path-finding and constructing clearings through

which to move. Closer to the work herein, Pang and Chan [73] address the question

of where certain items should be stored in the warehouse, proposing a data-mining

30

approach to determine the relationships between products and co-locating those that

are often purchased together. Experimental analysis shows that their methodology

outperforms a simple greedy policy, but they do not present any formal proofs on

the performance of their approach.

The word “warehouse” has been used for various optimization problems. In the

context of operations research, the warehouse problem was proposed by Cahn [74] and

later refined and extended by Charnes and Cooper [75] and Wolsey and Yaman [76].

This may sound related to the work done in this dissertation, but its focus is on the

logistics of managing a warehouse’s stock in the face of changing demand. The word

is also used in the context of coordinated motion planning under the name of the

warehouseman’s problem. As mentioned in Section 2.1.3, this is a multi-agent motion

planning problem amidst obstacles. It has been shown to be PSPACE-hard [33,77],

but efficient solutions exist for restricted versions (see, e.g., [31]).

While the approach used in this dissertation is theoretic in nature, the high

complexity of the warehouseman’s problem is avoided by restricting the shapes of

boxes (to unit squares) and the allowed layout of boxes (by introducing additional

empty working space throughout to facilitate easy motion). The problems studied

in Chapter 5 are less focused on motion planning and more on how to organize the

warehouse’s contents to ensure efficient processing of a series of access requests.

More closely related to this work, however, is the dial-a-ride problem [78]. In

this problem, a set of users must be conveyed from source locations to specified

destinations in a metric space. The goal is to plan a route (or routes, in the case

of multiple vehicles or the more general k-server problem [79]) that satisfies all

31

transportation requests while minimizing total distance traveled. One key difference

is that the source locations are fully specified by the problem input, whereas in the

warehouse problem presented in Chapter 5 the location of requested boxes can be

adjusted according to need, and how best to do so is central to the problem.

Additionally, while packing problems are well studied, both as static [80,81]

or online problems [82], the focus of this work is more on reducing retrieval times

by organizing storage units based on their online access frequency and is similar in

spirit to online algorithms for self-organizing memory structures [83, 84]. Further

details on this connection can be found in Chapter 5.

32

Chapter 3: On the Complexity of an Unregulated Traffic Crossing

3.1 Introduction

As autonomous and semi-autonomous vehicles become more prevalent, there is

an emerging interest in algorithms for controlling and coordinating their motions

to improve traffic flow. The steady development of motor vehicle technology will

enable cars of the near future to assume an ever-increasing role in the decision

making and control of the vehicle itself. In the foreseeable future, cars will have the

ability to communicate with one another in order to better coordinate their motion.

This chapter considers two algorithmic formulations of a simple and fundamental

geometric optimization problem involving coordinating the motion of vehicles through

an intersection.

Traffic congestion is a complex and pervasive problem with significant economic

ramifications, costing drivers in the United States over $305 billion in 2017 alone [85].

Practical engineering solutions will require consideration of myriad issues, including

the physical limitations of vehicle motion and road conditions, the complexities

and dynamics of traffic and urban navigation, external issues such as accidents and

break-downs, and human factors. This chapter is focused on an algorithmic problem,

called the traffic-crossing problem, that involves coordinating the motions of a set

of vehicles moving through an intersection. In urban settings, road intersections

are regulated by traffic lights or stop/yield signs. Like an asynchronous semaphore,

33

a traffic light locks the entire intersection preventing cross traffic from entering it,

even when there is adequate space to do so. Some studies have proposed a less

exclusive approach in which vehicles communicate either with one another or with

a local controller that allows vehicles, possibly moving in different directions, to

pass through the intersection simultaneously if it can be ascertained (perhaps with

a small adjustment in velocities) that the motion is collision-free (see, e.g., [45]).

Even though such systems may be beyond the present-day automotive technology,

the approach can be applied to controlling the motion of parcels and vehicles in

automated warehouses [46].

Prior work on autonomous vehicle control has generally taken a high-level view

(e.g., traffic routing [1–4]) or a low-level view (e.g., control theory, kinematics, etc.

[5, 6]). Between these extremes, there has been a great deal of work on decentralized

models of crowd motion, including methods based on velocity obstacles [47], reciprocal

collision avoidance [49], and implicit crowds [86]. Much closer to the approach

presented in this chapter is the work on autonomous intersection management

(AIM) [45,59–62,87,88]. This work, however, largely focuses on the application of

multi-agent techniques and deals with many real-world issues. As a consequence,

formal complexity bounds are not proved.

Consider, instead, a simple problem formulation of the traffic-crossing problem,

which captures the essential computational challenges of coordinating crosswise

motion through an intersection. Vehicles are modeled as line segments moving

monotonically along axis-parallel lines (traffic lanes) in the plane. Vehicles can alter

their speed, subject to a maximum speed limit, but they cannot reverse direction

34

nor make turns. The objective is to plan the collision-free motion of these segments

as they move to their goal positions.

After a formal definition of the traffic-crossing problem in Section 3.2, three

results are presented. First, Section 3.3 shows that this problem is NP-complete.

While this is a negative result, it shows that this problem is of a lower complexity

class than similar PSPACE-complete motion-planning problems, like sliding-block

problems [33]. Second, in Section 3.5 a constrained version is considered in which

vehicles travel vertically at a fixed speed. This variant is motivated by a scenario

in which traffic moving along one axis (e.g., a major highway) has priority over

crossing traffic (e.g., a small road). An algorithm based on plane-sweep is presented

that solves this problem in O(n log n) time. Finally, the problem is considered in

a discrete setting in Section 3.6, which simplifies the description of the algorithms

while still capturing many of the interesting scheduling elements of the problem.

As part of this consideration, a solution to the problem is provided that limits the

maximum delay of any vehicle and it is proven that this solution is asymptotically

optimal.

3.2 Problem Definition

The traffic-crossing problem is one in which several vehicles must cross an

intersection simultaneously. For a successful crossing, all vehicles must reach the

opposite side of the intersection without colliding, and they must do so in a reasonable

amount of time. This time-based restriction exists to encourage an improvement in

35

efficiency over the traffic light regulated crossing. Here, a “reasonable amount of time”

is short enough that the traffic cannot simply take turns crossing the intersection

(i.e., using the manner in which a traffic light regulates intersections) but instead

forces some amount of simultaneity.

This problem can be posed either as one of optimization (how quickly can

all the cars get across without colliding) or as a decision problem (can all vehicles

cross, collision-free, within a particular time limit). Here, it is treated as a decision

problem so that its parallels with other hard decision problems, such as Boolean

satisfiability, can be more easily illustrated.

Formally, an instance of traffic crossing is defined as a tuple C = (V, δmax),

comprised of a set V of n vehicles, which exist in R2, and a positive real δmax, which

represents a global speed limit. Each vehicle is modeled as a vertical or horizontal

directed line segment that moves parallel to its orientation. It will simplify matters

to assume that these segments are open. Like a car on a road, each vehicle moves

monotonically, but its speed may vary between zero and the speed limit. Assume

that vehicles do not make turns. Even with this no-turn assumption, it is possible to

capture many of the complexities of managing traffic at an intersection and, as will

be shown later, the problem remains computationally difficult. A vehicle’s position

at any time is specified by the location of its leading point (relative to its direction).

36

Each vehicle vi ∈ V is defined as a set of properties, vi = {li, p`i , pai , t`i , tai }1,

defined as follows (see Figure 3.1(a)):

• li: The length of the vehicle’s line segment.

• p`i : The starting position of the vehicle, i.e., the vehicle’s position prior to its

start time (see below). The position is defined as a point and represents the

leading edge of the vehicle.

• pai : The goal position of the vehicle. The vehicle is considered to have suc-

cessfully reached its goal if its leading point reaches this position either on or

before its deadline (see below).

• t`i : The starting time of the vehicle. The vehicle may not move prior to this

time.

• tai : The deadline for the vehicle. This is an absolute point in time by which

the vehicle must reach its goal position.

σi(t)

p`i pai

li
vi

(a) (b)

vi

(c)

p`i pai

t`i

tai

t (time)

pi(t)

Figure 3.1: (a) Specification of a vehicle vi, (b) modeling traffic as an instance of
traffic crossing, and (c) position as a function of time.

1The notational use of ` and a set above a variable (e.g., α`) represent the beginning and end
of a closed interval, respectively (e.g., start and end times).

37

The set V of vehicles and the global speed limit δmax define the problem and

remain invariant throughout. Planning the movement of a set of vehicles over a

grid-based road network can be modeled as an instance of the traffic-crossing problem

(see Figure 3.1(b)).

The objective is to determine whether there exists a collision-free motion of

the vehicles that respects the speed limit and satisfies the goal deadlines. Such

a motion is described by a set of functions, called speed profiles, that define the

instantaneous speed of each vehicle as a function of time. This set of functions is

defined as D = {δi(t) | i ∈ [1, n],∀t, 0 ≤ δi(t) ≤ δmax}. A vehicle’s direction of

travel is a unit length vector di directed from its initial position to its goal. Given its

speed profile, the position of a vehicle at time t is pi(t) = p`i + di

[∫ t
0
δi(x)dx

]
, and

the vehicle vi inhabits the open line segment between pi(t) and pi(t)− dili, which is

denoted by σi(t). The position as a function of time can be expressed as a graph (see

Figure 3.1(c)). Formally, a set D of speed profiles is valid if it satisfies the following

conditions for each vehicle vi ∈ V :

• Stationary outside its time interval: ∀t /∈
[
t`i , t

a
i

]
, δi(t) = 0

• Satisfies the speed limits: ∀t ∈
[
t`i , t

a
i

]
, δi(t) ∈ [0, δmax]

• Does not collide with other vehicles: ∀t and ∀vj 6= vi, σi(t) ∩ σj(t) = ∅

• Reaches its goal: pi(t
a
i) = pai

A traffic crossing instance C is solvable if there exists a valid set of speed profiles D.

For any vehicle vi, the line segment swept out by the vehicle as its position

38

varies from p`i to pai is called its travel segment. (Its length is li + ‖p`i pai ‖.) The

point at which two perpendicular travel segments meet is called an intersection.

Collisions can arise in two different ways: a T-bone collision involves two vehicles with

perpendicular orientations that collide at an intersection, and a rear-end collision

involves two collinear vehicles with equal orientations, where the following vehicle

overtakes the leading vehicle.2

While this definition places no restriction on the speed profile functions, it

will be convenient to assume that they have a simple form in which each speed

profile is piecewise constant, alternating between zero and δmax. Furthermore, it

may be assumed that vehicles stop for one of three possible reasons. First, they may

be stopped because the current time is outside the vehicle’s time interval,
[
t`i , t

a
i

]
.

Second, the vehicle may be waiting just prior to entering an intersection. Third, it

may be part of a chain of collinear vehicles, where the first vehicle in the chain is

stopped for one of the two previous reasons. Such a speed profile is said to be binary.

A solution is binary if all its speed profiles are binary. It is not hard to see that,

through the introduction of auxiliary stopping points, there is no loss in generality in

assuming that a valid solution is binary, but for the sake of completeness, a formal

proof is provided in Section 3.4.

2There is a third possibility, namely a head-on collision, which involves two collinear vehicles
with opposite orientations. It is easy to see, however, that this occurs if and only if the input
contains two overlapping collinear travel segments of opposite orientation. Such inputs are simply
forbidden, since they are not solvable.

39

3.3 Hardness of Traffic Crossing

This section shows that determining whether an instance of the traffic-crossing

problem is solvable is NP-complete. In Section 3.3.7 it will be proven that the

problem is in NP, but first hardness is established through the following reduction.

Lemma 3.3.1. Given a Boolean formula F in 3-CNF, there exists a traffic crossing

C = (V, δmax), computable in polynomial time, such that F is satisfiable if and only

if there exists a valid set of speed profiles D for C.

Throughout the reduction, it will be assumed that time and distances are

scaled so that δmax is one unit distance per unit time. The input to the reduction is

an instance of 3-SAT, that is, a Boolean formula F in 3-CNF. Let {z1, . . . , zn} denote

its variables and {c1, . . . , cm} denote its clauses. A key element of the reduction is

the manner in which variable truth assignments are modeled by vehicle speed profiles.

In light of the remarks at the end of Section 3.2, speed profiles are assumed to be

binary.

Before presenting the reduction, it is helpful to begin with an explanation of

the convention used to illustrate motion over time in the figures. The presented

mechanisms will constrain each vehicle’s motion to one of two types: moving to the

goal at full speed without delay or delaying exactly one time unit and then moving at

full speed to the goal. The latter form of movement will be visualized by drawing the

vehicle one unit of length behind its starting position (see vehicle v2 in Fig. 3.2(a)).

Otherwise, the vehicle will be drawn at its natural starting position. This way, one

40

can visualize either situation as the vehicle moving at full speed from its natural

starting time from this adjusted starting position.

To see why this convention is used, consider two vehicles v1 and v2 moving

along perpendicular travel segments as shown in Fig. 3.2(b), where v1 is moving

downwards and v2 is moving to the right. Consider a diagonal strip at a 45◦ angle

projected from v1 towards v2 relative to their adjusted positions described in the

previous paragraph (shown in blue in the figure). Observe that if the two vehicles

start at the same time from their adjusted positions and move at the same speed, they

will collide if and only if v2 overlaps this strip. Thus, in order to create ensembles of

collision-free vehicle motions, it suffices to avoid such overlaps.

(a) (b)

v1

v2

v1

v2

p`2

p`1

Figure 3.2: (a) This dissertation’s convention of illustrating vehicles, where v2 has
been displaced behind its starting position to indicate its initial delay by one time
unit. (b) Vehicle v2 lies within the diagonal strip projected from v1 if and only if
these two vehicles will collide in the future.

3.3.1 Variable Representation

This section resumes the presentation of the reduction. Each variable zi in the

Boolean formula F is represented by a pair of vehicles whose motion encodes the

41

variable’s truth value. The vehicles of this pair, referred to as value vehicles, travel

downward in a coordinated manner along two vertical lines that are separated by a

distance of one unit.

As mentioned above, the system is designed so that vehicles can move in

essentially just two ways in any valid solution: (1) proceed at full speed directly to

the final destination, arriving one time unit before its deadline or (2) delay for one

time unit and then proceed at full speed to the goal. These two movement types

will be referred to as delay-last policy and delay-first policy, respectively. In order to

force this behavior, additional helper vehicles are introduced.

Because the final mechanism is a bit complex, a simplified version is first

introduced here, which operates under the restriction that each vehicle delays by

exactly zero or one time unit. The simplified mechanism consists of two downward-

moving value vehicles vi and v′i and two additional right-moving helper vehicles ui

and u′i, each of unit length (see Fig. 3.3(a)). Consider which combinations of motion

types are possible. There are four possible delay configurations for the value vehicles

vi and v′i. First one of the two vehicles might delay and the other does not. In this

case, the delays of the helper vehicles ui and u′i are staggered in a complementary

manner to avoid collisions (see Fig. 3.3(b) and (c)). The first configuration where vi

delays corresponds to setting the variable zi to True and the configuration where v′i

delays corresponds to setting zi to False. Otherwise, both vi and v′i delay or neither

does (see Fig. 3.3(d) and (e)). These cases are invalid, because one of the two helper

vehicles cannot avoid a collision.

Unfortunately this simple construction is not correct when general vehicle

42

(a) (b) (c)

vi v′i

ui

u′i

vi

v′i vi

v′i

ui

u′i

ui

u′i

vi delays v′i delaysStarting configuration

(d) (e)

vi v′i

vi v′i

ui

u′i

ui

u′i

Neither delaysBoth delay

(d)

zi = true zi = false

(Invalid) (Invalid)

Figure 3.3: The simplified variable-setting mechanism.

motion is allowed. For example in the scenario where neither vehicle delays, it is

possible for v′i to enter the intersection and remain in the gap between ui and u′i for

one time unit, which allows u′i to avoid a collision.3 To remedy the problem, a more

complex mechanism can be employed that avoids this error. The full mechanism

and its correctness is presented in Section 3.3.2. For now, it suffices to describe the

remainder of the construction using the simple mechanism.

To represent all of the variables in {z1, . . . , zn} multiple instances of the mech-

anism described above are created, one for each variable, stacked vertically atop each

other to form a single variable stream (see Fig. 3.4). The value vehicles’ positions

are initialized so that each member in a pair is collinear with the respective members

of all other pairs of value vehicles. Additionally, the starting positions are spaced

a distance of s ≥ 7 units apart. This padding is to allow for the later insertion of

3The author is indebted to Nil Mamano and Michael Goodrich for pointing this out.

43

additional mechanisms used in the reduction.

Variable Stream

Helper
Vehicles

Figure 3.4: An example of value vehicles arranged into a variable stream representing
four variables.

The variable stream is conceptually divided into blocks of length s|V |, long

enough to accommodate all of the value vehicles and their requisite spacing. Every

clause in F is associated with two of these blocks (one for the positive literals and

one for the negative literals), requiring 2|C| such blocks (see Fig. 3.5). Two extra

blocks are added, one at either end of the variable stream, to accommodate the

initialization of the value vehicles with the helper vehicles. Truth values for the

appropriate literals will be copied and transferred out of each block to a mechanism

which adjusts their relative timing. This adjustment prepares the vehicles for a final

mechanism that validates the satisfaction of the associated clause.

So, given a formula F with |C| clauses and |V | variables, each variable zi is

44

C1

C2

Timing
Adjustment

Timing
Adjustment

Literals

Variable
Values

s|V |

2s|V |

2s|V |

s|V |

x+

y+

Figure 3.5: An overview of a reduction from 3-SAT to an instance of the traffic-
crossing problem.

represented by a vehicle vi with the following parameters:

p`i = (0, si) (3.1a)

pai = (0, 2s|V |(|C|+ 1) + si) (3.1b)

t`i = 0 (3.1c)

tai = 2s|V |(|C|+ 1) + 1 (3.1d)

In addition, the vehicle v′i is created with similar parameters, but shifted one unit to

the right.

3.3.2 Final Mechanism for Variable Representation

This section presents the detailed mechanism for representing each variable

of the formula. Recall from the simplified mechanism given in Section 3.3.1 that

45

each variable zi is represented by a pair of value vehicles, which travel downward

in a coordinated manner along two vertical lines that are separated by a distance

of one unit, and each can endure a delay in the interval [0, 1]. The movement of

each pair of value vehicles is constrained by a pair of helper vehicles, which travel

together horizontally, are separated vertically by the unit distance, and are placed so

that they intersect the value vehicles’ paths. Their goal positions, start times, and

end times are all set so that they must interact with the value vehicles. All of these

vehicles are of length 1− ε, for a constant 0 < ε < 1
2

to be specified later.

To correct the error mentioned in Section 3.3.1, for each value/helper vehicle

group, an additional set of smaller vehicles is created whose purpose is to prevent

other vehicles from stopping in the intersection. These vehicles are of length ε and

are allowed no delay (by setting tak − t`k = ‖pak − p`k ‖/δmax). Thus, their motion is

constrained to travel at full speed until reaching their goal positions. There is one

such ε-vehicle for each of the vehicles (value and helper) described above.

More formally, one can define the requisite vehicles for representing a generic

variable by first defining a reference point (x, y), and positive axes to the right and

down for x and y, respectively. Let (x, y − ε) and (x+ 1, y − ε) denote the positions

of the leading points of a value vehicle pair (v1, v
′
1) at time t (see Fig. 3.6). Next,

define a value ∆ as a function of the number of variables and clauses in the original

Boolean formula and set the value vehicles’ goal positions to (x, y − ε + ∆) and

(x+ 1, y− ε+ ∆), respectively. The value of ∆ is set so that the value vehicles travel

far enough to accommodate the necessary gadgets for each clause.

Place a helper vehicle pair (u′1, u1) at (x, y) and (x, y+1), respectively, set their

46

goal positions to (x+2, y) and (x+2, y+1), their start times to t, and their deadlines

to t+ 3. Similarly, place another helper vehicle pair (w′1, w1) at (x, y + ∆− 1) and

(x, y+∆), respectively, set their goal positions to (x+2, y+∆−1) and (x+2, y+∆),

their start times to t+ ∆− 1, and their deadlines to t+ 2 + ∆ (here, ∆ is added to

account for the arrival time of the value vehicles).

(a) (b)

x+
y+ vi v′i

u′i

ui

zi = True

vi v′i

u′i

ui

zi = False

(x, y)

Figure 3.6: (a/b) Value vehicles taking on opposing values, allowing for valid paths
for the helper vehicles. (See the remarks at the start of Section 3.3.1 on figure
layouts.)

Finally, for each intersection between pairs of vehicles, four vehicles of length ε

are created, one for each vehicle crossing the intersection. These ε-vehicles will prevent

their matching vehicle (either value or helper) from delaying inside the intersection

(see Fig. 3.7). For the value vehicles, place two ε-vehicles at (x + 0.5, y − 0.5 + ε)

and (x+ 0.5, y − 1.5 + ε), set their goal positions to (x+ 0.5, y + 2.5 + ε+ ∆) and

(x+ 0.5, y + 1.5 + ε+ ∆), their start times to t+ ∆, and their deadlines to t+ 3 + ∆.

Notice these deadlines allow for no delay in the motion of the ε-vehicles.

Similarly, for the helper vehicles (u′1, u1), place two ε-vehicles at (x−0.5, y+0.5)

and (x−1.5, y+0.5), set their goal positions to (x+2.5, y+0.5) and (x+1.5, y+0.5),

47

their start times to t, and their deadlines t+ 3. Two similar ε-vehicles are created for

the helper vehicles (w′1, w1), only ∆ units lower so that they lie between the vehicle

pair.

(a) (b)

x+
y+ vi v′ivi v′i

u′i

ui

u′i

ui

Invalid Invalid

Figure 3.7: If both value vehicles select the same delay policy, then there is no valid
speed profile for one of the helper vehicles, as in figure (a), or a collision occurs, as
in figure (b) when vi must delay to avoid ui and collides with an ε-vehicle.

Lemma 3.3.2. Given the pairs (v1, v
′
1), (u′1, u1), (w′1, w1), and the ε-vehicles as

defined above, the value vehicles v1 and v′1 must each adopt one of the following two

movement policies:

(a) delay for exactly one unit of time and then move beyond the paths of (u′1, u1)

at speed δmax (i.e., delay-first); or

(b) move beyond the paths of (w′1, w1) at δmax without delay (i.e., delay-last).

Additionally, v1 and v′1 may not select the same policy.

Proof. First, notice that for a value vehicle there are two perpendicular ε-vehicles

with which it will interact. These vehicles, set between the helper vehicles, have

no freedom of movement and so force the value vehicle to either delay for one time

48

unit before encountering them or to pass by them at full speed without delay (see

Fig. 3.8). A corollary to this is the fact that the spacing between vehicles is tight, so

that even a small delay before encountering the ε-vehicles requires the value vehicle

to stop until its accumulated delay is exactly one time unit before it can successfully

pass.

1

Figure 3.8: A value vehicle is limited to one of two movement options by the fully
constrained ε-vehicles.

Second, if the value vehicle is to delay before reaching the ε-vehicles, it must

actually delay before reaching the helper vehicles, as there is not enough room

between the epsilon and helper vehicles in which to wait. Next, because v1 and u′1

begin within a vehicle’s length of the point at which their paths cross, they will

collide if neither one delays. Instead, they must choose different movement profiles

so that one delays first, allowing the other to pass.

Finally, notice that a delay of v′1 necessitates a similar delay of u′1. This is

because it takes one time unit for u′1 to reach the point at which their paths intersect.

If v′1 was to delay one time unit yet u′1 was to leave immediately, they would reach

this point together and collide.

Given that u′1 must delay if v′1 does, and v1 cannot enact the same movement

49

policy that u′1 does, it must be the case that both value vehicles cannot choose

to delay for one time unit at this point. A similar dependency exists between the

value vehicles and u1, though this dependency prevents v1 and v′1 from both leaving

immediately and continuing forward at constant speed.

The logic above also holds for the second helper pair, (w′1, w1), constraining

the value vehicles to opposing movement policies until they have moved beyond the

paths of these helper vehicles. This also prevents the value vehicles from swapping

movement policies, i.e., altering their Boolean values. To do so would require the

lagging vehicle (i.e., the vehicle that adopted the delay-first policy) to speed up while

the lead vehicle slows down. However, given the constraints placed on the vehicles,

they are already traveling at the speed limit δmax, so the lagging vehicle may not go

any faster.

3.3.3 Value Transmission and Timing

Henceforth, the full variable mechanism from Section 3.3.2 will be assumed,

even though the figures will be based on the simple mechanism. For each clause, the

three literal values will need to be carried to the appropriate clause mechanisms so

that they arrive in the correct place at the correct time. This requires the introduction

of two new mechanisms: one that copies truth values, and one that can adjust the

timing of when a value reaches a particular location.

The first mechanism uses a pair of vehicles whose movement is constrained

by a perpendicular pair of vehicles in the same way as the helper vehicles do. The

50

second mechanism uses a snaking path to induce a delay by increasing the distance

traveled.

3.3.3.1 Value Duplication

In order to perform clause verification the variable values must be able to be

transmitted freely around the space. To do so, a new pair of parallel vehicles is

created, separated by a distance of one unit, whose purpose is to copy these values

from the variable stream and carry them elsewhere. This pair is placed so that its

starting position lies on the leftmost side of the variable stream, traveling to the

right, and its start time t`i is the time at which the leading edge of the appropriate

value pair reaches the vertical position of the uppermost vehicle (see Fig. 3.9). Just

like the helper vehicles, each of these copy vehicles has their deadlines set so that

they may delay for one time unit at most, and because of this, the vehicles become a

negative copy of the original value vehicles, with the negation on top and the original

variable value on the bottom. These values can continue to be copied in order to

carry them through the traffic space, taking orthogonal turns each time a copy is

made. Any copies along this path that travel vertically will carry the variable’s value

on the left and the negation on the right. Any horizontal copy carries the negation

on top and the original value below.

Each of a clause’s positive literal values will be copied off of the variable stream

simultaneously. The negative literals are copied similarly. By chaining vehicle copies

across the space, the literal values can be routed to any location as necessary.

51

(a) (b) (c)

v1

v′1

Figure 3.9: (a) An example of transferring a truth value at start time t`i for the
copying vehicles (For the sake of legibility, ε-vehicles are excluded from this and
future images). In this example, the variable z1 is True, making v1 and v′1 True
and False, respectively. (b) At time t`i + 1, notice that in the orthogonal copy the
upper vehicle will take on the value of the negation while the lower vehicle takes the
original value. (c) Time t`i + 2.

3.3.3.2 Timing and Delays

The routing of values may require that they travel different distances to reach

certain points. By the structure of the presented reduction, except when stopped, all

vehicles travel at the same speed. Because of this, any difference in path length will

cause a difference in timing that may need to be corrected. This is done through the

introduction of a delay mechanism. This mechanism is inserted into the path of every

copy coming off of the variable stream and can be configured to delay a vehicle pair’s

leading edge by an arbitrary amount. This delay does not affect the values carried by

the vehicles. Essentially, the value is routed through an S shape in the mechanism,

doubling back on itself (see Fig. 3.10). The size of this S determines the extra

distance that must be traveled and thus the total amount of delay. A parameter d

represents the extra distance added to the S in order to tune the mechanism, leading

to a delay of 2d (as described below). Vehicle pairs are arranged in the mechanism

as follows (see the heavy arrowed lines in Fig. 3.10), with the first and last referred

52

to as the incoming pair and outgoing pair, respectively:

• Eastbound at (x, y) and (x, y + 1) at time t,

• Southbound at (x+ 2 + d, y) and (x+ 3 + d, y), with a start time of t+ 2 + d,

• Westbound at (x + 3 + d, y + 2) and (x + 3 + d, y + 3), with a start time of

t+ 4 + d,

• Southbound at (x, y + 2) and (x+ 1, y + 2), with a start time of t+ 6 + 2d,

• Eastbound at (x, y + 4) and (x, y + 5), with a start time of t+ 8 + 2d,

• Northbound at (x+ 5 + d, y + 5) and (x+ 6 + d, y + 5), with a start time of

t+ 13 + 3d,

• Eastbound at (x+5+d, y) and (x+5+d, y+1), with a start time of t+17+3d.

li

l′i

d

x0 +1 x0 + d + 2 x0 + d + 5

Figure 3.10: A diagram tracing the path a single pair of truth values (z′i, zi) take
through the delay mechanism. The dotted vertical line represents where the mecha-
nism can be expanded, separating the vehicles on either side by a distance of d and
thus increasing the induced delay. Note: for clarity, ε-vehicles are not shown.

The distance between the incoming vehicle pair and the outgoing vehicle pair

53

is 5 +d, so, if the incoming pair were to continue on, both pairs would be in the same

position at t+5+d. Since the outgoing pair starts at time t+17+3d, the mechanism

induces a delay in the transmission of the incoming pair of 12 + 2d. Adding the

delay mechanism to all copies made from the variable stream enables the adjustment

of the relative timing of each vehicle pair by adjusting the value of d in each delay

mechanism.

3.3.4 Clause Satisfaction

This section demonstrates how clauses are modeled. For each clause ci ∈ F , a

mechanism is created that forces a collision if, and only if, all three literals are False.

This mechanism checks the positive and negative literals separately, then combines

the results in order to determine whether the clause is satisfied. The mechanism

consists of two parts: one for the positive literals and one for the negative literals.

Each part contains vehicle pairs representing the literals and their negations, blocking

vehicles to appropriately constrain movement, and a verifying vehicle. If the set of

literals do not satisfy the clause, each verifying vehicle is constrained to a single

speed profile and they will collide. The following analysis will first look at the half

that verifies the negative literals.

Define a point r = (x, y) to be a reference point from which all other positions

will be defined at a reference time t (see Fig. 3.11). Next, assume three pairs of

incoming vehicles (l′1, l1), (l′2, l2), and (l′3, l3), each a copy of the appropriate variables.

These pairs travel horizontally, one unit apart vertically, with their leading edges 4

54

units behind the previous pair. Thus, the leading edges of the pairs are (x, y) and

(x, y+ 1), (x− 4, y+ 2) and (x− 4, y+ 3), and (x− 8, y+ 4) and (x− 8, y+ 5). Note

that each pair of vehicles has a pair of ε-vehicles between them as defined previously.

Next, place two blocking vehicles, each of length 1, at (x− 2.5, y + 1.5) and

(x − 6.5, y + 3.5). These vehicles have a start time of t, travel horizontally to the

right, and have their deadlines set so that they must travel at δmax with no delays.

Finally, place a verifying vehicle v at (x, y − ε) with a start time of t and traveling

downward. The deadline for the verifying vehicle is set so that it can delay up to 5

time units.

Lemma 3.3.3. Given the vehicle pairs, blocking vehicles, and verifying vehicle

defined above, the verifier must delay for 5 time units if all of the literals are False

but may delay for less if at least one is True.

Proof. First, notice that every horizontal vehicle in the mechanism is on a possible

collision course with the verifying vehicle. Thus, if the slope of the line between one

of these vehicles and the verifying vehicle has a magnitude of 1 (or if their positions

are equal), the vehicle will collide with the verifying vehicle v if both continue without

delay.

If each variable zi is True then its negative copy l′i is False, taking a delay-last

movement policy. This places l′1 at (x, y) and l1 at (x− 1, y − 1) at time t, which

would lead to a collision with v. While l′1 could still delay for one unit, l1 no longer

has this freedom as it has adopted the delay-first policy. Thus, to avoid a collision, v

must delay for at least one time unit.

55

(a) (b)

(x, y)

Blockers

l1

l′1

l2

l′2

l3

l′3

v

Figure 3.11: (a) The initialization of the negative half of a clause verifier for the
clause (¬z1 ∨ ¬z2 ∨ ¬z3) and with each variable zi = True. (b) The verifier with
z2 = False and z1 = z3 = True. For the sake of clarity, ε-vehicles have been omitted.

• At time t+ 1, the first blocking vehicle has moved to (x− 1.5, y + 1.5). The

blocking vehicles’ deadlines allow for no delay, so again v must delay.

• At time t+ 2, l′2 has moved to (x− 2, y + 2) and l2 has moved to (x− 3, y + 3).

Just as with l1, v is forced to delay to avoid a collision.

• At time t+3, the second blocking vehicle is at (x−3.5, y+3.5), forcing another

delay of v.

• Finally, at time t + 4, l′3 has moved to (x − 4, y + 4) and l3 has moved to

(x− 5, y + 5), forcing one last delay of v.

Thus, if all of the variables zi are True, making the negative literals l′i all

False, the verifying vehicle v must delay for 5 units of time in order to avoid a

collision.

56

If any of the variables are False, their resultant copies l′i and li will have shifted

horizontal positions, no longer lying on the line of collision with v (i.e., their slopes

are no longer of magnitude 1), allowing v to delay for less than 5 units and slip

between them.

The positive half of the mechanism works in the same manner, with slight

changes to the incoming literal vehicles and some added vehicles to account for these

changes. First, the incoming literal pairs are not staggered with respect to each other

but instead arrive with collinear leading edges and one unit apart (see Fig. 3.12(a)).

Next, a copy of each literal pair is made, traveling downward. The first copy pair is

placed at (x + 5, y − ε) and (x + 6, y − ε) and has a start time of t + 5. The next

pair is placed at (x+ 3, y + 2− ε) and (x+ 4, y + 2− ε) with a start time of t+ 3.

The third pair is placed at (x+ 1, y + 4− ε) and (x+ 2, y + 4− ε) and has a start

time of t+ 1.

Next, two blocking vehicles, each of length one and traveling downward, are

added at (x+ 2.5, y + 9.5) and (x+ 4.5, y + 5.5), both with a start time of t+ 9.

Finally, a verifying vehicle traveling to the right is added at (x + 1, y + 12),

with a start time of t+ 9 and deadline allowing for a delay of up to 5 time units. As

before, the vehicle will be forced to delay for 5 time units if the clause is not satisfied

by any of the positive literals.

A clause will never have more than three literals, so it will never be the case

that both the positive and negative halves of the clause verifier will have three literals.

Blocking vehicles are added to take the place of missing literals in each half and

57

(a) (b)

l1

l′1

l2

l′2

l3

l′3

(x, y)

Figure 3.12: (a) The initialization of the positive half of a clause verifier for the
clause (z1 ∨ z2 ∨ z3) and with each variable zi = False. (b) The verifier at time t+ 9.

their deadlines are set so that no delay is allowed. In this way, the verifying vehicles

are still forced to delay for 5 units when their associated set of literals do not satisfy

the clause.

The positive and negative halves of the mechanism are placed so that the paths

of the verifying vehicles intersect. However, the time at which each half processes its

literals may differ, dependent on which variables are being evaluated and the distance

their values must travel to reach the mechanism. This can be compensated for in

the delay mechanisms so that the verifying vehicles will collide with one another if

both delay for 5 time units. In this way, if a clause is not satisfiable, a collision is

inevitable, rendering the traffic crossing unsolvable. If the clause is satisfiable, one

or both of the verifying vehicles will have at least two movement options, allowing

them to avoid a collision.

58

3.3.5 Complete System Example

In the complete system, all of the variables are stacked on top of one another

to form a variable stream. The appropriate literals are extracted, passed through

a delay mechanism, and routed to their clause verifier halves. These mechanisms

output a vehicle that will have delayed for 5 time units if the variable assignments

do not satisfy their respective clauses. The verifier vehicles from each clause will

collide if neither set of literals satisfies them. An example of a 3-SAT reduction for

the formula (¬z1 ∨ z2 ∨ ¬z3) can be seen in Fig. 3.13.

3.3.6 Analysis of Reduction Complexity

Every variable in the formula F requires 12n vehicles: one for the variable,

one for its negation, the two helper pairs, and an ε-vehicle for each of these. Next,

when considering each of the m clauses, the greatest number of vehicles is necessary

when all of the literals are positive. 27 are needed for the positive verifier, 15 for

the negative verifier, 28 for each of the two delay mechanisms, and 24 for routing,

for a total of at most 94 vehicles per clause. The complexity of translation is then

12n+ 94m and is therefore on the order of O(n+m).

As described above, the constructed mechanisms will only allow for a valid set

of speed profiles if the formula F is satisfiable. Given this and the polynomial time

needed to create the reduction, the traffic-crossing problem is NP-hard.

59

d = 3.5

d = 0

Positive Literal Verifier

Negative Literal Verifier

d = 2

Delay Mechanism

t = 21

t = 42

t = 63

Leading edges of value

Data
Stream Value

Vehicles

Helper
Vehicles

x3

x2

x1

x3

x2

x1

x3

x2

x1

x3

x2

x1

Delay Mechanism

Delay Mechanism

vehicles at time t = 0

Figure 3.13: An example of a 3-SAT problem with F = (¬z1 ∨ z2 ∨ ¬z3), expressed
as a traffic crossing. As before, the ε-vehicles are not shown.

60

3.3.7 Membership in NP

Having shown the reduction from satisfiability, this section establishes NP-

completeness by showing that Traffic Crossing is in NP. Given an input instance of

the traffic-crossing problem C = (V, δmax), consisting of n vehicles in V , where all

numeric values are given with b bits of precision, this section demonstrates a certificate

of size O(n2) from which it is possible to validate a solution in O(n4(b+ log n)) time.

Certificate : For each pair of orthogonal vehicles, vi, vj , their paths cross at a single

intersection. The certificate provides a priority for each such pair, specifying

which vehicle crosses through the intersection first. This requires O(n2) bits.

Let D be any valid set of speed profiles. Let P (D) denote the associated

certificate providing vehicle priorities. To validate D, consider a specific instance

called the full-speed profiles as follows:

• Each vehicle v moves at full speed (i.e., δmax) until either (1) arriving at an

intersection, (2) it is about to collide with the rear end of a stopped vehicle in

the same lane, or (3) it has reached its destination.

• If arriving at an intersection, the vehicle waits until all vehicles which have

priority over it, according to P , have passed through the intersection. The

vehicle will proceed through the intersection at full speed once the last of these

vehicles has passed.

• If the vehicle has stopped in order to avoid a collision with the vehicle in front

of it, it will proceed at full speed once the blocking vehicle has as well.

61

• If the vehicle has reached its destination it will stop as, of course, there is no

more to be done.

This instance of D is referred to as Dfull . To establish correctness, it suffices to

show (1) Dfull is valid if D is valid, and (2) Dfull can be simulated in O(poly(n, b))

time to determine its validity. This is shown in the following two lemmas.

Lemma 3.3.4. If D is a valid set of speed profiles then Dfull is also valid.

Proof. Define a significant event (for either profile) to be the time at which some

vehicle vi enters and leaves some intersection χj. These events will be referred to

as t−(i, j) and t+(i, j), respectively, for the original set of speed profiles D. The

significant events for the full-speed profile will be denoted as t−full(i, j) and t+full(i, j).

To establish correctness, it suffices to show the following:

(i) There are no collisions in Dfull .

(ii) For all i and j, t±full(i, j) ≤ t±(i, j) (that is Dfull moves vehicles through

intersections as early as possible).

(iii) With Dfull , the arrival times at destinations are earlier than or equal to those

in D.

To establish (i), observe that no rear-end collision can occur by definition of the

Dfull policy. Also, no T-bone collisions can occur between crossing vehicles because

(by priority) one is required to wait for the other.

Assertion (ii) is established by induction over the times of significant events.

Initially, both profiles are in the same configuration, as given by the problem definition

62

C. Suppose toward contradiction that there exists a significant event concerning

vehicle vi and intersection χj where t−full(i, j) > t−(i, j). Consider the first such event.

There are two possible reasons why vi did not enter intersection χj at time t−(i, j)

in profile Dfull :

(a) It is waiting for some crossing vehicle vk to exit the intersection (see Fig. 3.14(a)).

By definition, vk must have a higher priority in D (i.e., it passes prior to vi in

D), but vk must have exited the intersection prior to t−(i, j). This contradicts

the induction hypothesis that t−full(i, j) > t−(i, j).

(a) (b)

j

D

vk

vi

Dfull

vk

vi

j′

vk′ vk′
vi′

vi′
j

vi
vi

D Dfull

Figure 3.14: A figure comparing relative event times illustrating the cases in which
(a) t−full(i, j) > t−(i, j) and (b) a traffic jam occurs.

(b) Vehicle vi cannot proceed because it would rear-end the previous stopped

vehicle (see Fig. 3.14(b)). In this situation, there is a chain of one or more

vehicles stopped in front of vi, where the first vehicle in the chain vi′ is waiting

at some intersection χj′ for some vehicle vk′ with priority to pass. In this case,

the argument above can be applied to vi′ , χj′ , and vk′ .

Finally, the same holds for each t+ value as they are each equal to the t− values

63

offset by the constant length of the vehicles. In other words, for vehicle vi:

t+full(i, j) = t−full(i, j) + length(vi) and t+(i, j) = t−(i, j) + length(vi).

To establish (iii), from (ii) it follows that t+full(i, j) ≤ t+(i, j). Given this, adding

the constant distance from the last intersection to the destination to each value does

not change this relationship. Therefor, vehicles following Dfull will arrive at a time

equal to or earlier than vehicles following D.

Lemma 3.3.5. Given an instance of the traffic-crossing problem of size n, b and

certificate P , Dfull can be simulated in O(n4(b+ log n)) time.

Proof. Assume without loss of generality that the maximum speed is one unit per

second. Recall the notion of significant events from Lemma 3.3.4. Simulation of the

system using P is a simple discrete time event simulation in which time advances

from one significant event to the next. Observe that given suitable data structures,

each significant event can be processed in O(n2) time (ignoring numeric issues). The

issue that remains is the number of bits of precision needed to represent the times

at which each significant event occurs. Significant event times can be computed as

follows:

t+full(i, j) = t−full(i, j) + length(vi)

Let χj′ denote the next intersection along the lane in which vehicle vi is moving.

64

The time at which vi hits intersection χj′ is:

t+full(i, j) + dist(χj, χj′)

At this time, the vehicle will either continue directly through the intersection,

thus implying that the value of t−full(i, j
′) is equal to the value above, or it will be

forced to wait for some other significant event before it can move. Observe, then, that

each significant event time is the sum of the vehicle length and the distances between

consecutive intersections. If all coordinates are b-bits precise, then each time involves

an O(n)-fold sum of b-bit numbers, or O(b+ log n) bits, for a total of O(n2(b+ log n))

bit operations. Finally, each vehicle can pass through at most O(n) intersections for

a total of O(n2) significant events. Thus, overall, the number of bit operations is

less than or equal to the number of significant events, times the processing time for

each, times the number of bits for each or O(n2n2(b+ log n) = O(n4(b+ log n)).

In summary it follows that:

Lemma 3.3.6. The traffic-crossing problem is in NP.

By combining this with Lemma 3.3.1, the main result of this section is therefore:

Theorem 3.3.1. The traffic-crossing problem is NP-complete.

3.4 Sufficiency of Binary Speed Profiles

Recall that a speed profile is binary if vehicles move in the following restricted

manner: first, they alternate between being stationary and moving at the speed

65

limit, δmax, and second, vehicles stop only for one of three possible reasons: (a) the

current time is outside the vehicle’s time interval, (b) the vehicle is waiting to enter

an intersection, and (c) the vehicle is part of end-to-end chain of collinear vehicles,

where the chain’s leader is stopped due to either (a) or (b). In this section it is

shown that it suffices to assume that the speed profiles have this structure.

Let D be any solution to the given traffic-crossing problem. It will now be

shown how to convert the speed profile for each vehicle into binary form. The

approach presented here is to move each vehicle forward as rapidly as possible

subject to two constraints: (1) the vehicle avoids rear-end collisions with the vehicle

directly in front of it, and (2) if the vehicle’s travel segment crosses a perpendicular

travel segment, the time interval that the vehicle will spend in this intersection in

the new solution will be a subinterval of that of the original solution. Constraint (1)

implies that there are no rear-end collisions and constraint (2) implies that there are

no T-bone collisions.

Begin by subdividing the vehicles into “traffic lanes.” Given two vehicles vi

and vj, vi is said to follow vj if

• the travel segments for these vehicles are collinear and overlap each other,

• vj’s starting position lies ahead of vi’s (relative to vi’s direction of travel), and

• there is no collinear vehicle whose starting position is between them.

As observed above, one may assume that vi and vj are traveling in the same direction,

since otherwise a head-on collision is unavoidable. It is easy to see that each vehicle

66

can follow at most one other vehicle, and therefore this “following relation” partitions

V into chains of one or more vehicles all moving collinearly in the same direction.

Consider any such chain V ′ = 〈v1, . . . , vk〉, where vi follows vi−1. For the sake

of concreteness, assume that the vehicles of V ′ are moving horizontally to the right

(see Figure 3.15(a)). The construction is by induction on k. For any vehicle vi, for

1 ≤ i ≤ k, assume inductively that the speed profiles of all of the preceding vehicles

(v1 through vi−1) have already been converted into binary form. Consider the vertical

travel segments that cross the line segment from p`i to pai sorted from left to right.

Let 〈a1, . . . , ami
〉 denote the positions along vi’s segment where these crossings occur

(see Figure 3.15(b)). For 1 ≤ j ≤ mi, let tj be the time according to the original

solution D where vi first intersects aj. (Because vehicles are open line segments, tj

is actually the infimum of the set of times at which vi intersects this point.)

v4

(a)

v3 v2 v1 vi

(b)

a1 a2 a3 a4

p`i pai

Figure 3.15: Proof of the sufficiency of binary profiles.

The new speed profile is defined as follows. First, the speed is limited throughout

to avoid a rear-end collision with vi−1. Since the speed profile of this preceding

vehicle has already been converted to binary form, this imposes a binary upper

bound on vi’s speed profile. Subject to this restriction, starting at time t = 0 vi

moves forward at the maximum speed δmax until its right endpoint coincides with a1.

By the assumption that vehicles are open line segments, no collision can arise with

vehicles traveling vertically through a1. Because vi travels at maximum speed, the

67

original solution cannot arrive at this point any earlier than vi has. The vehicle waits

here until time t1, at which time vi again travels at maximum speed until reaching a2.

The vehicle continues in this manner (recalling the constraint of avoiding rear-end

collisions with vi−1) until arriving at the goal position pai . Let D′ denote the resulting

set of binary speed profiles.

Because vehicle vi enters aj at the same time as in solution D, and it moves

as rapidly as possible, its position in the presented solution will never lag behind

its position in the original solution. (There is an implicit induction here. Vehicle

vi may be delayed to avoid rear-ending vi−1, but by induction vi−1 cannot lag.) It

follows that the time interval that each vehicle spends within a given intersection

for solution D′ is a subinterval of the corresponding time interval for the same

vehicle-intersection pair in D. Combined with the rear-end constraint, it follows that

D′ is collision-free. Finally, because vehicles move as fast as possible and D satisfies

all the vehicle deadlines, D′ also satisfies these deadlines. In conclusion, D′ is a valid

binary solution, as desired.

It is apparent from the above proof that the number of breakpoints in the

resulting binary solution can be bounded above by a function of the number of

vehicles, and in fact it is quadratic in the number of vehicles. To see why, observe

that the first vehicle of each chain stops at each of the intersections with perpendicular

travel segments, of which there are at most n. The second vehicle of each chain also

stops at each of its intersections with perpendicular segments, but it may also stop

to avoid a rear-end collision each time the first vehicle stops, for a total of at most

2n stops. An easy induction argument implies that the last vehicle in a chain of

68

length k stops at most kn = O(n2) times. Therefore, any solvable instance with n

vehicles has a binary solution of combinatorial complexity O(n3).

3.5 A Solution to the One-Sided Problem

While the generalized traffic-crossing problem is NP-complete, it is possible

to solve a constrained version of the problem more efficiently. The complexity of

the generalized traffic-crossing problem arises from the interplay between horizontal

and vertical vehicles, which results in a complex cascade of constraints. To break

this interdependency, the vertically traveling vehicles are given priority, allowing

them to continue through the intersection at a fixed speed. In this variant, called

the one-sided problem, the horizontal vehicles can plan their motion with complete

information and without fear of complex constraint chains.

First, the assumption is made that the vertically traveling vehicles are invariant

and are all traveling at the same speed, sn. With vertical vehicle motion now fixed,

there is no way for horizontal vehicles to affect one another and movement profiles

for each can be found in isolation. Finally, all vehicles are assumed to be of length l

and in general position.

69

For the purpose of illustration, a simplified version of the problem is presented

first, and then, over the course of three cases, restrictions are relaxed until what is

left is a solution to the original problem under the fixed, one-sided policy described

above. These three cases are:

Intersection Between One-Way Highways

• Vertical vehicles approach from the North only.

• Horizontal vehicles approach from the West only.

• Each vehicle is in its own lane (i.e., no two vehicles are collinear).

Intersection Between a One-Way Street and a Two-Way Highway

• Vertical vehicles approach from the North and the South.

• Horizontal vehicles approach from the West only.

• There is a single horizontal lane (i.e., all horizontal vehicles are collinear)

and one or more vertical lanes.

Intersection Between Two-Way Highways

• Vertical vehicles approach from the North and the South.

• Horizontal vehicles approach from the West and the East.

• There are k horizontal lanes, one or more vertical lanes, and vehicles may

be collinear.

70

3.5.1 Intersection Between One-Way Highways

Formally, vehicles from the North are in the subset N ⊂ V and their direction

of travel is dn = (0,−1), whereas vehicles from the West are in the subset W ⊂ V

with a direction of travel of dw = (1, 0). Again, the only task is to find valid speed

profiles for vehicles coming from the West.

To begin, the problem space is transformed so that the vehicles in W are

represented as points rather than line segments. This makes movement planning

simpler while maintaining the geometric properties of the original space. Every

vehicle in W is contracted from left to right, until it is reduced to its leading point.

In response, the vehicles in N are expanded, transforming each into a square obstacle

with sides of length l (see Fig. 3.16) and with their left edges coincident with the

original line segments.

(a) (b)
Figure 3.16: (a) A random traffic-crossing problem as viewed from a single active
vehicle. (b) The resulting space after the point transformation.

Given the global speed limit δmax, there are regions in front of each obstacle in

which a collision is inevitable (this concept is similar to the obstacle avoidance work

71

done in [51]). These triangular zones (referred to as collision zones) are based on

the speed constraints of the vehicles and are formed by a downward extension of the

leading edge of each obstacle. The leftmost point of this edge is extended vertically

and the rightmost point is extended at a slope derived from the ratio between δmax

and the obstacle speed. As one last concession to clarity, the axes of the problem

space are scaled so that this ratio becomes 1. Formally, a collision zone ZO for the

obstacle O is the set of all points p, such that there is no path originating at p with

a piecewise slope in the interval [1,∞] that does not intersect O.

Expanding the vehicles in N into rectangular obstacles may cause some to

overlap, producing larger obstacles and, consequently, larger collision zones. This

merging and generation of collision zones is done through a standard sweep line

algorithm and occurs in O(n log n) steps, where n is the number of obstacles, as

described below.

3.5.1.1 Merging Obstacles and Growing Collision Zones

This process is done using a horizontal sweep line moving from top to bottom.

While the following is a relatively standard application of a sweep line algorithm, it

is included for the sake of completeness. First, the event list is populated with the

horizontal edges of every obstacle, in top-to-bottom order, requiring O(n log n) time

for O(n) obstacles. The sweep line status stores a set of intervals representing the

interiors of disallowed regions (e.g., the inside of an obstacle or collision zone). Each

interval holds three pieces of information: the location of its left edge, a sorted list

72

of the right edges of any obstacles within the interval, and the slopes of these right

edges. These slopes will be either infinite (i.e., the edges are vertical) or will have a

slope of 1.

In addition to horizontal edge positions, the event list must keep track of three

other events which deal with the termination of the sloped edges of the collision

zones. These edges begin at the bottom right edge of an obstacle and terminate

in one of three ways: against the top of another obstacle, against the right edge

of another obstacle, or by reaching the left edge of an interval. The first case is

already in the event list as the top edges were added at the start of this process. The

remaining two cases are added as the sweep line progresses through the obstacles.

Figure 3.17: An example illustrating the need to redefine collision zones when
obstacles overlap. Here, the collision zones for each individual obstacle (represented
as shaded triangles) are insufficient as the merger creates a larger area that vehicles
must avoid (seen here as the unfilled triangle).

So, when merging obstacles, the sweep line must handle the following events:

Top Edge Encounter :

When the sweep line encounters the top edge of an obstacle it must either

create a new interval or add this obstacle to an existing interval. The creation

73

of a new interval is straightforward as the endpoints of the edge are all that

need to be added (see Fig. 3.18(a)).

If the top edge intersects an existing interval, however, there is a little more

work to be done. First, if the leftmost point of the edge does not lie within the

interval then it becomes the new leftmost edge of the interval (see Fig. 3.18(b)).

If the sloped edge of a collision zone has already formed for this contiguous

block of obstacles (see Bottom Edge Encounter for a description of how

these form), then the termination point of the sloped edge may need to be

updated to account for a shift in the leftmost edge. Second, the rightmost

point of the encountered edge is inserted into the list of right edges in left-right

order. The new edge may become the new rightmost edge and if the previous

rightmost edge was sloped then it is removed from the edge list. For example,

in Fig. 3.18(d) this has just occurred within the set of obstacles on the left. If

the newly added right edge does not replace the sloped edge and the sloped

edge intersects the newly added edge, the point at which they intersect is

added to the list of events to be processed (this occurs in Fig. 3.18(c) on the

right side). If there is an existing event in the event list for the sloped edge’s

intersection with another obstacle, it must be deleted as the addition of the

newest obstacle will truncate the edge before it reaches that event.

Bottom Edge Encounter :

When the bottom edge of an obstacle is encountered, the obstacle’s right edge

is found in the interval’s edge list. If it is not the rightmost, it is removed from

74

the edge list (this occurs in Fig. 3.18(e) on the left, denoted by the grey slope

arrow). If the edge to be removed is the rightmost edge in the list, rather than

removing it, its slope is changed to that of the ratio between the vehicles’ speed

limit and the speed of the vehicles, δmax

sn
. Next, the termination point for this

sloped edge is added to the event list. This is the point at which the leftmost

edge of the interval and the sloped edge meet. This point is illustrated in

Fig. 3.18(e), though it was added when the previous bottom edge was processed.

As noted above, this event may need to be updated if a top edge is encountered

that moves the leftmost edge of this interval.

Sloped Edge Termination :

When the sloped edge terminates against a right edge, it is deleted from the

edge list. This makes the edge with which it collided the new rightmost edge.

Interval Termination :

In this case, the sloped edge of the collision zone has met the leftmost edge of

the interval. When this is the case, the interval has finally closed and can be

removed from the sweep line status (see Fig. 3.18(f)).

The initial population of the event list occurs in O(n log n). As the sweep

line progresses through the obstacle space, it adds and removes the right edges of

obstacles to the appropriate intervals. These lists of edges are built incrementally in

sorted order, requiring only O(log n) time. Finally, as there is a constant number of

possible events per obstacle (a single top edge, a single bottom edge, and a single

termination of its sloped edge), there are at most O(n) events to be processed. Thus,

75

(c) (d)

(e) (f)

(a) (b)

Figure 3.18: A sweep line merging obstacles and creating collision zones. Note: these
illustrations do not show every step in the sweep line process. Some are skipped in
order to save space. (a) Encountering the first top edge and adding an interval to the
sweep line status. (b) Encountering the next top edge, which increases the interval
size. (c) Encountering bottom edges changes the rightmost slope of the collision zone.
Notice on the right that an internal right edge is stored in the status. (d) Sloped
edges encounter the top of an unprocessed obstacle and the rightmost edge of an
obstacle in an interval. (e) Encountering the bottom edge of an internal obstacle.
Its rightmost edge is deleted from the sweep line status. (f) Reaching the point of
convergence for a collision zone. The interval is deleted from the sweep line status.

76

the sweep line processes the obstacle space in O(n log n) time.

3.5.1.2 Movement Planning

Once the obstacles have been merged and grown appropriately, speed profiles

allowing each vehicle to safely cross the intersection need to be found. This is done

with the same obstacle-filled space that has been used thus far, though with a small

change in perspective. Currently, vehicles are only allowed horizontal movement and

obstacles only move vertically. Instead, the obstacles are treated as static objects

and a vertical velocity component is added to the vehicles equal to the obstacles’

speed. So, for example, a vehicle moving at the maximum speed will actually follow

a path with a slope of sn
δmax

whereas a stationary vehicle will travel vertically. Again,

the axes have been scaled so that this ratio is 1, imposing on the vehicle monotonic

movement with a slope in the interval [1,∞]. With this understanding, a path

through the obstacles can now easily be found while obeying the speed constraints

of the vehicles.

The vehicle will travel at its minimum slope (equivalent to its maximum speed)

until it either reaches its goal position or encounters an obstacle. If an obstacle is

encountered, the vehicle travels vertically until it is no longer blocked (this vertical

motion corresponds to stopping and waiting for the obstacle to pass). Once this

occurs, the vehicle continues on its way at its maximum speed until it has covered the

distance to its goal (measured horizontally, as vertical movement no longer represents

spatial translation).

77

The path created by the above behavior can be efficiently found through the

use of another line sweep. First, notice that every edge that is locally to the left of an

obstacle (referred to as a left edge) is a vertical line segment. Since the vehicles move

monotonically, they will only ever encounter an obstacle at one of these left edges. So,

to find a path for each vehicle traveling at speed δmax, a sweep line perpendicular to

the vehicles’ trajectories is created and swept from the upper-right to the lower-left

(see Fig. 3.19(a)). This perpendicular line’s status will maintain a list of obstacle

occlusions with respect to the vehicles’ direction of travel by adding an interval for

each obstacle as it is encountered during the sweep. More specifically, it stores the

point where the sweep line first encountered the obstacle’s left edge, the horizontal

position of the left edge, and the point where the sweep line last encountered the

edge.

During the sweep, a tree is built representing a set of all paths through the

obstacle field that encounter an obstacle. Vehicles will either encounter an obstacle

in the tree or are free to travel at full speed without collision until their goal is

reached. Each obstacle is a vertex in the tree and edges represent the path taken

after encountering this obstacle. The edge will either lead to an encounter with

another obstacle or will lead to the root. The root is the only vertex which does not

represent an obstacle but instead signifies an open path to the goal.

The event list for the sweep line is populated with the upper and lower ends of

each left edge. Whenever an upper end is encountered, it is inserted into the list of

intervals in the sweep line status and the obstacle is inserted into the path tree. If

the insertion point does not lie within an existing interval, then an edge between the

78

(a) (b) (c)

(d) (e) (f)

5

1 1

4

5

4

5

22
3

4

5

33

4 5

1

2

2

3

4 5

1

2

2

3
4

1

2

2

3

1

2

Figure 3.19: (a) A sweep line for path finding, traveling perpendicular to the direction
of travel of a vehicle moving at speed δmax. (b) The sweep line encountering vertical
edge 1. As there is no interval on the sweep line where it occurs, this line’s path
goes directly to the goal at speed δmax. Edges to the root of the path tree are
represented by arrows going off to infinity. (c) The sweep line encountering edge 3.
This encounter lies in the interval for edge 1. (d) Encountering edge 5, creating a
path from it to edge 4. (e) Encountering the first vehicle, which lies in the interval
for edge 3. Thus, the final path for the vehicle is to travel at maximum speed until it
reaches edge 3, wait for the edge to pass, travel to 1, wait, and finally travel to the
goal position. (f) The sweep line encountering the second vehicle at an open interval.
Thus, this vehicle can travel at speed δmax until it reaches its goal position.

79

obstacle and the root is created (see Fig. 3.19(b)). If the insertion point lies within

an interval, that interval is split by the inserted point and an edge between the new

obstacle and the interval’s obstacle is added (see Fig. 3.19(c)).

Whenever the lower end point of an obstacle’s left edge is encountered, the

interval ending for that obstacle is added to the list. If an event occurs before an

interval has completed, the interval’s intermediate size can be determined using the

position of the sweep line, the start point of the interval, and the position of the

obstacle’s left edge (this occurs in Fig. 3.19 between (c) and (d)). Finally, when a

vehicle is encountered, its position along the sweep line determines its path. If it is

in an interval, then its path begins by traveling to the associated obstacle and, using

the path tree, travels to that obstacle’s parent obstacle, repeating this process until

it has reached its goal position.

So, in the example in Fig. 3.19(e), the upper vehicle encounters obstacle 3,

waits for it to pass (i.e., travels vertically till the end is reached), moves at the

maximum speed until it encounters obstacle 1, then continues on until it reaches

its goal position. The lower vehicle, having been inserted into the interval list in

between intervals, is free to travel at the maximum speed until its goal position is

reached (see Fig. 3.19(f)).

3.5.2 A One-Way Street and a Two-Way Highway Intersection

In this case, vertical vehicles approach from the North and the South while

horizontal vehicles travel in a single lane.

80

To account for the bidirectional vertical vehicles the space is folded along the

horizontal lane. This rotates the northbound traffic to an equivalent southbound set

of vehicles (see Fig. 3.20). This only requires an O(n) transformation. Using the

plane sweep algorithm above yields a combined obstacle space.

(a) (b) (c)

Figure 3.20: (a) An example of bidirectional cross-traffic. (b) To account for how
these vehicles interact when they reach a horizontal lane, the space can be folded
along the lane, rotating one set of vehicles about the fold. (c) Then, the same space
transformation and obstacle merger detailed above is performed.

Finally, vehicles must be prevented from rear-ending each other. Once the

lead vehicle has found a motion plan through the obstacles, it creates a new set of

constraints for the vehicles behind it. The monotonic path of the lead vehicle is

stored in a binary search tree, allowing for easy collision queries.

To begin with, the lead vehicle’s path needs to be added to the tree. However,

because the lead vehicle is represented by a single point coincident with the front of

the vehicle, the path being stored needs to be shifted leftward by an amount equal to

the vehicle’s length (see Fig. 3.21(b)). The next vehicle in the lane must not collide

with this newly created boundary.

In the simplest case, the trailing vehicle can simply adopt the same movement

policy as prescribed by the algorithm in Section 3.5.1.2. However, this solution needs

to be modified in the following two cases: (i) when the lead vehicle’s shifted path

81

pierces an obstacle, closing off any space through which the trailing vehicle could

follow or (ii) when the trailing vehicle would collide with the rear of the lead vehicle.

In case (i), the concern is the creation of overhangs in the obstacle space. In

Section 3.5, overhangs were eliminated through the merging of obstacles. In this case,

however, vertical portions of a lead vehicle’s path may pierce an obstacle, recreating

such overhangs. While the merging algorithm could be used to eliminate them once

again, doing so for each vehicle is too costly.

Instead, for each obstacle, it is noted which other obstacle, if any, lies directly

below its left edge (this can be found during the obstacle merge plane sweep or

through ray shooting). If an obstacle is pierced by the leading vehicle’s path then

the space below it can no longer be part of a viable path, as any vehicle entering

this space will become trapped. If another obstacle lies directly below the first, it

will need to close off the space below itself as well. It is possible for this operation to

cascade down through multiple obstacles, but once an obstacle has closed off the

space below it, it will never need to make this update again. Thus, this update only

requires O(n) time. This cascading path is then added to the boundary created

above, pruning a portion of the search tree and replacing it with the new path (see

Fig. 3.21(c)).

For case (ii), the trailing vehicle must check for a collision with the boundary

when traveling at full speed (i.e., any time it leaves the upper corner of an obstacle

and travels at slope 1). Given the binary search tree in which this boundary is stored,

one can query for collisions in O(log n) time for each obstacle the trailing vehicle

encounters. If a collision occurs, the trailing vehicle simply follows the boundary

82

from that point forward. Because overhangs were eliminated above, this leads to the

fastest collision free motion plan for the trailing vehicle. As each obstacle will be

subsumed by the boundary once the trailing vehicle has determined its motion plan,

this query will only ever occur once for each obstacle, leading to a time complexity

of O(n log n).

(a) (b) (c) (d)

Figure 3.21: An example of two vehicles in the same lane planning their motion
through a set of obstacles. (a) As before, the lead vehicle projects its path and
queries the first encountered obstacle for the remainder of the motion plan. (b) The
path taken by the lead vehicle’s rear end is used to create a boundary for the vehicles
behind it. (c) This boundary creates overhangs which are eliminated by bending it
around the obstacle(s) that create the overhang. (d) The motion planning algorithm
used in Section 3.5.1.2 is used here, taking the new boundary into account.

In the end, one can still account for shared lanes without a running time greater

than O(n log n).

3.5.3 Intersection Between Two-Way Highways

Finally, this case combines the two above, allowing for bidirectional movement

horizontally and vertically, with multiple lanes along each axis.

The vehicles approaching from the East are independent of those approaching

from the West, presenting a symmetric problem that can be solved with the techniques

discussed above. The addition of horizontal lanes, however, impacts the running

83

time of the algorithm. Previously, the bidirectional vertical traffic was accounted

for by folding the obstacle space along a single horizontal lane, but in this case,

because the position of the vertical vehicles relative to each other is different at any

given intersection with a horizontal lane, the folding must occur individually for each

lane. Thus, the algorithm runs in O(kn log n), for k horizontal lanes. In general, k

is assumed to be a relatively small constant.

3.6 Traffic Crossing in the Discrete Setting

This section considers the problem in a simple discrete setting where vehicles

move along the points of a grid. While this formulation is less realistic than the

continuous one, it avoids some of the cumbersome elements of the continuous

formulation. This admits a much clearer view of the sources of computational

complexity while still capturing the most salient elements of the original traffic-

crossing problem.

It is assumed that each vehicle occupies a point on the integer grid in the plane,

Z2. Time advances discretely in unit increments, and at each time step a vehicle

may either advance to the next grid point or remain where it is. A collision occurs if

two vehicles occupy the same grid point.

The discrete traffic-crossing problem is defined in much the same manner as

in the continuous case. The problem is presented as a set V of n vehicles on the

integer grid. Each vehicle vi is represented by its initial and goal positions p`i and

pai , respectively, both in Z2. Also given are a starting time t`i and deadline tai , both

84

in Z+ (where Z+ denotes the set of nonnegative integers). A vehicle’s direction di

is a unit length vector directed from its initial position to its goal, which is either

horizontal or vertical. Time proceeds in unit increments starting at zero. The motion

of vi is specified as a function of time, δi(t) ∈ {0, 1}. Setting δi(t) = 0 means that at

time t vehicle i remains stationary, and δi(t) = 1 means that it moves one unit in

direction di. Thus, vi’s position at time t ≥ 0 is pi(t) = p`i + di
∑t

x=0 δi(x).

Generalizing the problem definition from Section 3.2, the objective is to compute

a speed profile D = 〈δ1, . . . , δn〉 involving all the vehicles that specifies a collision-free

motion of the vehicles in such a manner that each vehicle starts at its initial position

and moves monotonically towards its goal, arriving there at or before its given

deadline. Similar to road networks, the assumption is made that along any horizontal

or vertical grid line, the vehicle direction vectors are all the same.

In this context a natural optimization problem can be considered, namely,

scheduling traffic to minimize the maximum delay experienced by any vehicle in

the discrete setting. For each vehicle, consider only its initial and goal positions.

It is assumed that all vehicles share the same starting time at t = 0. A vehicle vi

experiences a delay at time t if it does not move at this time (δi(t) = 0). Otherwise,

it is assumed to move one unit forward (δi(t) = 1). The total delay experienced by a

vehicle is the total number of time instances where it experiences a delay until the

end of the motion simulation. The maximum delay of the system is the maximum

total delay experienced by any vehicle.

While a formal proof is omitted, it is not hard to demonstrate that the NP-

hardness reduction of Section 3.3 can be transformed to one showing that it is

85

NP-hard to minimize maximum delay in the discrete setting. Intuitively, the reason

is that the reduction involves purely discrete quantities: integer vehicle coordinates

and starting times, vehicles of unit length, and unit speed limit. The system described

in the reduction is feasible if and only if the maximum delay is at most five time

units.

3.6.1 The Unit-Delay Problem

The above hardness result for the 5-unit delay problem raises the question of

whether it is possible to efficiently answer the question for any positive delay value

smaller than five. This section will show that (subject to some assumptions on the

starting configuration) it is possible to determine efficiently whether it is possible to

schedule traffic in order to achieve a delay of at most one unit.

It is helpful to introduce a useful concept first, before stating the result. A

sequence of vehicles lying on the same road is said to form a caravan if they occupy

consecutive positions on the grid (similar to the platoons introduced by Besa Vial et

al. [89]). Caravans are significant in the discrete setting because once any vehicle

of the caravan suffers a delay, all subsequent vehicles of the caravan immediately

suffer the same delay to avoid read-ending each other. Observe that in the unit-delay

setting this effect is limited to a single caravan, since if the last vehicle from one

caravan delays and assumes a position at the front of a caravan that is following one

unit behind, it cannot delay again, and hence it cannot affect the motion of vehicles

in the following caravan.

86

Very long caravans cause problems. Suppose that a horizontal caravan is so

long that it spans two or more intersections on the same road. If a vehicle near

the front of the caravan delays, then this delay will propagate back to previous

intersections, impeding traffic on the crossing vertical road. If this causes a delay in

a very long vertical caravan, the delay may propagate to another horizontal road,

and so on. It is easy to see that this could result in a cycle of delays, resulting in a

gridlocked state in which no vehicle can advance.

In order to avoid a lengthy digression into how to handle cyclic dependencies

(which is left as an open problem), the problem is overcome via a simple assumption.

The input is said to satisfy the short-caravan assumption if the length of any caravan

in the input configuration along any road is strictly smaller than the distance between

two intersections along this road. Intuitively, this assumption implies that delays

suffered by vehicles passing through one intersection cannot “back up” into earlier

intersections. This allows for the independent processing of intersections.

Theorem 3.6.1. Subject to the short-caravan assumption, there exists an algorithm

that solves the 1-unit maximum delay traffic-crossing problem in the discrete setting.

The algorithm runs in time O(nm), where n is the total number of vehicles and m is

the maximum number of intersections crossed by each vehicle.

The rest of this section is devoted to proving this theorem by showing that the

problem can be reduced to an instance of 2-SAT in O(nm) time and space. The

result follows from the fact that 2-SAT can be solved in linear time [90]. We use the

easy observations that clauses of the form (x⇒ y) (implies) and (x⊕y) (exclusive-or)

87

can both be expressed in 2-SAT form.

Since the maximum delay is one unit, throughout the motion process each

vehicle may be in one of two states, either having not experienced any delay up

to that point or having experienced a single delay. For each vehicle vi and each

intersection k it passes through, create a Boolean variable xi,k, whose value will be

True to signify that this vehicle has experienced a delay on entry to intersection k,

and otherwise its value is False.

A 2-SAT instance is generated with the following clauses, which together enforce

the conditions of a solution with a maximum delay of one unit:

(i) For each vehicle vi and each pair of consecutive intersections k and k′ that vi

passes through, if vi is delayed on entering k, then it is still delayed on entering

k′. Add the clause (xi,k ⇒ xi,k′).

(ii) For each intersection k, if two vehicles vi and vj , one horizontal and one vertical,

pass through k, and their starting positions are equidistant from k, they cannot

both be in the same state when arriving at this intersection, for otherwise they

would collide. Add the clause (xi,k ⊕ xj,k).

(iii) For each intersection k, if two vehicles vi and vj , one horizontal and one vertical,

pass through k, and vi is one unit closer to k than vj, if vi delays on entering

k, then vj must delay as well to avoid a collision. Add the clause (xi,k ⇒ xj,k).

(iv) For each pair of vehicles vi and vj in the same lane such that vi’s initial position

is one unit before vj ’s initial position, if vi delays then vj must delay as well to

88

avoid rear-ending vi. For all intersections k through which these vehicles pass,

add the clause (xi,k ⇒ xj,k).

Note that when long caravans are present, rule (iv) is not complete. It operates

on only a single intersection, and hence it does not consider the effect of how a delay

suffered by one vehicle within a caravan could propagate backwards to induce a

delay on a vehicle following within the same caravan at a prior intersection. The

short-caravan assumption saves us, because it implies that such propagations cannot

occur.

Because only one-unit delays are tolerated, all instances of potentially colliding

vehicles are handled by cases (ii), (iii), and (iv). It is easy to see that if there is a

unit-delay solution to the given Traffic Crossing instance, then one can assign truth

values to satisfy the 2-SAT formula.

To complete the proof, the converse is shown, namely that if the above formula

is satisfiable, then there exists a unit-delay solution to the given Traffic Crossing

instance. Consider any vehicle vi. Let ci denote the number of vehicles before it

within its starting caravan, that is, let ci be the largest integer such that at time

t = 0, the ci positions in front of p`i are occupied by other vehicles. (If vi is not part

of a caravan, one can think of it as being at the head of a trivial caravan of length

one, and ci = 0.) The speed profile of vi is defined as follows. Let k be the first

intersection such that xi,k is True. If no such k exists, then vi moves without delay

to its goal position. Otherwise, let `i,k denote the distance between vi’s starting

position and intersection k. This vehicle moves at full speed until it is ci units from

89

k, then delays one time unit, and then continues without delay to its destination.

(That is, di(t) = 1 except at t = `i,k − ci, where di(t) = 0.) This motion profile is

consistent with rule (i), since once a vehicle is delayed at intersection k, it is delayed

at all subsequent intersections k′.

Clearly, each vehicle suffers at most a single time unit of delay under the

resulting speed profile. It will be shown that, by the satisfiability of the 2-SAT

formula, no collisions occur. By rules (ii) and (iii) in combination with the short-

caravan assumption, which allows dependencies between intersections to be ignored,

vehicle vi cannot collide with any vehicle that is traveling perpendicular to it. All that

remains to show is that vi is not “rear-ended” by the vehicle immediately following

it on the same road. Let vj be this vehicle. If vi starts at least two units ahead of

vj, then even if vi delays and vj does not, they are still at least one unit apart and

so no collision can occur. (Observe, for example, that vi may be the last vehicle

of a caravan and vj is the first vehicle of an immediately following caravan with a

gap of one unit between them. It is possible that vi delays and vj does not, thus

causing these two caravans to effectively merge. Since vi cannot delay again, there

is no possibility for a collision between these caravans.) Otherwise, vi is directly

ahead of vj at the start. It follows that cj = ci + 1 and `j,k = `i,k + 1, and therefore

`j,k− cj = `i,k− ci. If these vehicles are going to collide, it would occur at the instant

that vi first delays (and vj has not yet delayed). By rule (iv) and the fact that

xi,k = True, it is the case that xj,k = True. Therefore at time t = `i,k−ci = `j,k−cj ,

vehicle j has also delayed, and hence the “rear-ending” event cannot occur. (Vehicle

vj delays exactly at this time instant if this is the first k such that xj,k = True, and

90

otherwise it delayed at a prior intersection and so is still delayed.)

The formula clearly involves O(nm) variables and O(nm) clauses and therefore

the reduction runs in O(nm) time. This establishes Theorem 3.6.1.

3.6.2 The Parity Heuristic

In the discrete setting it is possible to describe a simple common-sense heuristic.

Intuitively, each intersection will alternate in allowing horizontal and vertical traffic

to pass. Such a strategy might be far from optimal because each time a vehicle

arrives at an intersection, it might suffer one more unit of delay. To address this,

whenever a delay is imminent, a vehicle is chosen to delay in a manner that will avoid

cross traffic at all future intersections. Define the parity of a grid point p = (px, py)

to be (px + py) mod 2. Given a horizontally moving vehicle vi and a time t, say that

vi is on-parity at t if the parity of its position at time t equals t mod 2. Otherwise, it

is off-parity. Vertically moving vehicles are just the opposite, being on-parity if the

parity of their position is not equal to t mod 2. Observe that if two vehicles arrive at

an intersection at the same time, one moving vertically and one horizontally, exactly

one of them is on-parity. This vehicle is given the right of way, as summarized below.

Parity Heuristic: If two vehicles are about to arrive at the same intersection at the

same time t, the vehicle that is on-parity proceeds, and the other vehicle waits

one time unit (after which it will be on-parity, and will proceed).

The parity heuristic has a number of appealing properties. First, once all

the vehicles in the system are on-parity, every vehicle may proceed at full speed

91

without the possibility of further collisions. Second, the heuristic is not (locally)

wasteful in the sense that it does not introduce a delay into the system unless a

collision is imminent. Finally, the rule is scalable to large traffic systems, since a

traffic controller at an intersection need only know the current time and the vehicles

that are about to enter the intersection. No global information need be maintained.

While this idealized setting is admittedly limited, these properties would be desirable

for more realistic traffic management systems.

3.6.3 Steady-State Analysis of The Parity Heuristic

Delays may be much larger than a single time unit under the parity heuris-

tic. (For example, a sequence of k consecutive vehicles traveling horizontally that

encounters a similar sequence of k vertical vehicles will result in a cascade of delays,

spreading each into an alternating sequence of length 2k. It is easy to see that no

matter how they are scheduled, at least one vehicle will suffer a delay of k.) This

is not surprising given the very simple nature of the heuristic. It is not difficult to

construct counterexamples in which the maximum delay of the parity heuristic is

arbitrarily large relative to an optimal solution. It will be shown, however, that the

parity heuristic is asymptotically optimal in a uniform, steady-state scenario (to be

made precise below).

Consider a traffic crossing pattern on the grid. Let mx and my denote the

numbers of vertical and horizontal lanes, respectively. Each lane is assigned a

direction arbitrarily (up or down for vertical lanes and left or right for horizontal).

92

Let R denote a W ×W square region of the grid containing all the intersections (see

Fig. 3.22(a)). In order to study the behavior of the system in steady-state, imagine

that R is embedded on a torus, so that vehicles that leave R on one side reappear

instantly in the same lane on the other side (see Fig. 3.22(b)). Equivalently, one can

think of this as a system of infinite size by tiling the plane with identical copies (see

Fig. 3.22(c)). Assume that W is even.

R

(a) (b)

W

W

(c)

Figure 3.22: Analysis of the Parity Heuristic.

If the system is sufficiently dense, the maximum delay of the system will

generally grow as a function of time. Given a scheduling algorithm and a discrete

traffic crossing, define its delay rate to be the maximum delay after t time units

divided by t. Define the asymptotic delay rate to be the limit supremum of the

delay rate for t→∞. The objective is to show that, given a suitably uniform traffic

crossing instance on the torus, the asymptotic delay rate of the parity algorithm is

optimal.

A traffic crossing on the torus is said to be uniform if every lane (within

the square R) has an equal number of vehicles traveling on this lane. Letting n′

denote this quantity, the total number of vehicles in the system is n = n′(mx +

my). (The total number of positions possible is W (mx + my) − mxmy, and so

93

n′ ≤ W − mxmy/(mx + my).) The initial positions of the vehicles within each

of the lanes is arbitrary. Let p = n′/W denote the density of vehicles within each

lane. Let ρpar
∞ = ρpar

∞ (W, p,mx,my) denote the worst-case asymptotic delay rate of

the parity heuristic on any uniform discrete traffic crossing instance of the form

described above, and let ρopt
∞ = ρopt

∞ (W, p,mx,my) denote the worst-case asymptotic

delay for an optimum scheduler.

The approach will be to relate the asymptotic performance of parity and the

optimum to a parameter that describes the inherent denseness of the system. Define

χ = max(0, 2p − 1) to be the congestion of the system. Observe that 0 ≤ χ ≤ 1,

where χ = 0 means that the density is at most 1/2 and χ = 1 corresponds to placing

vehicles at every available point on every lane (which is not really possible given that

n′ < W). To demonstrate that the parity heuristic is asymptotically optimal in this

setting, it can be shown that ρpar
∞ ≤ χ/(1 + χ) ≤ ρopt

∞ . This is a consequence of the

following two lemmas, whose proofs are given below.

Lemma 3.6.1. Given any uniform traffic crossing instance on the torus with con-

gestion χ, ρpar
∞ ≤ χ/(1 + χ).

Proof. Consider intersection q in the system and any lane passing through q. By

unwrapping the torus within the plane, one can think of the vehicles moving towards

q as an infinite sequence of blocks that repeats with period W . For any k ≥ 1,

consider the vehicles in this lane whose initial positions are within distance kW of

q and are directed towards q. There are kn′ = kWp such vehicles, organized into

identical blocks of length W . For 1 ≤ j ≤ kn′, let xj denote the distance from the

94

initial position of the jth vehicle to q.

To obtain an upper bound on the delay, allow each of these vehicles to pass

through q only if it is on-parity. (The parity algorithm may allow off-parity vehicles

to pass through if there is no imminent collision, so this assumption results in the

highest possible delay.) Let tj denote the time at which vehicle j passes through q

according to the parity heuristic.

The following bound on tj is established first:

tj ≤ max
1≤i≤j

(xi + 1 + 2(j − i)).

This follows by a simple induction argument. If j = 1, then tj ≤ xj + 1, which

matches the time for this vehicle to reach q together with one optional unit of delay

if it is out of parity. Otherwise, observe that if the delays prior to vehicle j do not

affect it, then tj ≤ xj + 1. If they do, then vehicle j will pass through q two units

after tj−1, thus yielding

tj ≤ max(xj + 1, tj−1 + 2)

≤ max(xj + 1, max
1≤i≤j−1

(xi + 1 + 2(j − 1− i)) + 2)

= max(xj + 1, max
1≤i≤j−1

(xi + 1 + 2(j − i))) = max
1≤i≤j

(xi + 1 + 2(j − i)).

While the maximum is taken over j choices of i, one can simplify this due to the

periodic nature of the system. Suppose that i is the index that achieves the maximum

in the definition of tj . Let i′ denote the index of the corresponding vehicle in a block

95

that is closer to q. That is, i = i′ + k′n′ and xi = xi′ + k′W , for some k′ ≥ 1. Thus

xi + 1 + 2(j − i) = (xi′ + k′W) + 1 + 2(j − (i′ + k′n′))

= xi′ + 1 + 2(j − i′)− k′(2n′ −W)

= (xi′ + 1 + 2(j − i′))− k′W (2p− 1).

Therefore, if χ = 0 (meaning that 2p− 1 ≤ 0), one may assume that i achieves

its maximum value among the n′ vehicles immediately preceding j, that is j− i ≤ n′.

(Since using values of i′ from earlier blocks can only decrease the value in the max.)

Conversely, if χ > 0 (meaning that 2p− 1 > 0), i achieves its maximum among the

n′ vehicles that are closest to q. Let k′ = dj/n′e denote the index of the block that

contains xj. One can conclude that if χ = 0, then since xi ≤ xj,

tj ≤ xj + 1 + 2n′ ≤ k′W + 1 + 2n′ ≤ k′W + 2W.

On the other hand, if χ > 0, then xi ≤ W , j − i ≤ (k′ − 1)n′ implying that

tj ≤ W + 1 + 2k′n′ ≤ k′(2n′) + 2W = k′W (2p) + 2W.

Note that 2p > 1 if and only if χ > 0. Therefore, one can conclude that

tj ≤ k′W ·max(1, 2p) + 3W ≤ k′W (1 + χ) + 3W.

Because vehicle j is at distance xj from q and every time unit beyond xj contributes

96

to the delay, the delay is tj − xj. The delay rate is (tj − xj)/tj = 1− xj/tj. Since

xj ≥ k′W , the delay rate for each vehicle xj is

1− xj
tj
≤ 1− k′W

k′W (1 + χ) + 3W
= 1− 1

(1 + χ) + 3/k′
.

For the asymptotic delay rate, take the limit as k′ →∞, which is at most

1− 1

1 + χ
=

χ

1 + χ
,

as desired.

Lemma 3.6.2. Given any uniform traffic crossing instance on the torus with con-

gestion χ, ρopt
∞ ≥ χ/(1 + χ).

Proof. Let q be any intersection of the system. By unwrapping the torus within

the plane, one can think of the vehicles moving towards q as an infinite sequence

of blocks that repeats with period W . For any k ≥ 1, consider the vehicles on the

two lanes incident to q whose initial positions are within distance kW . There are

kn′ = kWp vehicles in each lane. At most one vehicle can pass through q at any

time, therefore the total time T for all the vehicles to travel through q is at least

2kn′ = 2kWp.

As observed in the proof of Lemma 3.6.1, the delay experienced by any vehicle

is the difference of its time to arrive at q minus its distance from q. Therefore, at

least one vehicle among this set (in particular, the last vehicle in one of the two

lanes), experiences a delay of at least max(0, T − x), where x is its distance from q.

97

Since x ≤ kW , the maximum delay is at least

max(0, 2kWp− kW) = max(0, kW (2p− 1)) = kWχ.

By Lemma 3.6.1 (where j plays the role of the last vehicle in block k to make it

through q) one has T ≤ kW (1 + χ) + 3W for the parity algorithm, and therefore it

can be no higher for the optimum. The delay rate is the delay divided by the time,

which is at least

kWχ

kW (1 + χ) + 3W
=

χ

1 + χ+ 3/k
.

To obtain the asymptotic delay rate, consider the limit as k tends to infinity, which

yields a lower bound on the asymptotic delay rate of at least χ/(1+χ), as desired.

While the proofs are somewhat technical, the intuition behind them is relatively

straightforward. If χ = 0, then while local delays may occur, there is sufficient

capacity in the system for them to dissipate over time, and hence the asymptotic

delay rate tends to zero as well. On the other hand, if χ > 0, then due to uniformity

and the cyclic nature of the system, delays will and must grow at a predictable rate.

The following main result of this section is an immediate consequence of the above

lemmas.

Theorem 3.6.2. Given a uniform traffic crossing instance on the torus, the asymp-

totic delay rate of the parity heuristic is optimal.

98

Chapter 4: Coordinating City-Wide Traffic with Modular Circulation

4.1 Introduction

Minimum (and maximum) cost network flows and the related concept of

circulations are fundamental computational problems in discrete optimization. This

chapter introduces a variant of the circulation problem, where vertex demand values

are taken from the integers modulo λ, for some integer λ ≥ 2. For example, if λ = 10

a vertex with demand 6 can be satisfied by any net incoming flow of 6, 16, 26 and so

on or a net outgoing flow of 4, 14, 24, and so on. The motivation in studying this

problem stems from an application in synchronizing the traffic lights of an urban

transportation system.

Throughout, let G = (V,E) denote a directed graph, and let λ ≥ 2 be an

integer. Each edge (u, v) ∈ E is associated with a non-negative integer weight,

wt(u, v), and each vertex u ∈ V is associated with a demand, d(u), which is an

integer drawn from Zλ, the integers modulo λ. Let f be an assignment of values

from Zλ to the edges of G. For each vertex v ∈ V , define

fin(v) =
∑

(u,v)∈E

f(u, v) and fout(v) =
∑

(v,w)∈E

f(v, w),

and define the net flow into a vertex v to be fin(v) − fout(v). Define f to be a

circulation with λ-modular demands, or λ-CMD for short, if it satisfies the modular

99

flow-balance constraints, which state that for each v ∈ V ,

fin(v)− fout(v) ≡ d(v) (mod λ).

Observe that a demand of d(v) is equivalent to the modular “supply” requirement

that the net flow out of this vertex modulo λ is λ− d(v).

Define the cost of a circulation f to be the weighted sum of the flow values on

all the edges, that is,

cost(f) =
∑

(u,v)∈E

wt(u, v) · f(u, v).

Given a directed graph G and the vertex demands d, the λ-CMD problem is that of

computing a λ-CMD of minimum cost. (Observe that there is no loss in generality

in restricting the flow value on each edge to Zλ, since the cost could be reduced by

subtracting λ from this value without affecting the flow’s validity.)

The standard minimum-cost circulation problem (without the modular aspect)

is well studied and is discussed in any of a number of standard sources on this topic,

for example, [35–40]. In contrast, λ-CMD is complicated by the “wrap-around” effect

due to the modular nature of the demand constraints. A vertex’s demand of d(u)

units can be satisfied in the traditional manner by having a net incoming flow of

d(u), but it could also be met by generating a net outgoing flow of λ− d(u) (not to

mention all variants thereof that involve adding multiples of λ).

100

The main results of this chapter are:

• 2-CMD can be solved exactly in polynomial time (see Section 4.4).

• λ-CMD is NP-hard, for λ ≥ 3 (see Section 4.5).

• There is a polynomial time 4(λ− 1)-approximation to λ-CMD (see Section 4.6).

In Section 4.2 the relevance of the λ-CMD problem to traffic-management is

discussed, Section 4.3 presents some preliminary observations regarding this problem,

and finally, each of the three main results are given in Sections 4.4–4.6.

4.2 Application to Traffic Management

The motivation in studying the λ-CMD problem arises from an application in

traffic management. In urban settings, intersections are the shared common resource

between vehicles traveling in different directions, and their control is essential to

maximizing the utilization of a transportation network [91]. There are numerous

approaches to modeling traffic flow and diverse computational approaches to solve

and analyze the associated traffic management problems. Dresner and Stone [45]

use a multi-agent systems approach, in which vehicles request a reservation from the

intersection, which in turn allocates each vehicle a time slot. Vehicles must then alter

their speed to cross the intersection during their reserved time. Yu and LaValle [4]

draw a connection between multi-agent path planning on collision-free unit-distance

graphs and network flows. Despite the popular interest in automated traffic systems,

there has been relatively little work on this problem from the perspective of algorithm

101

design.

Chapter 3 considered the problem of scheduling the movements of a collection

of vehicles through an unregulated crossing. The approach was based on the idealized

assumption that the motion of individual vehicles in the system is controlled by

a central server. A more practical approach is based on aggregating vehicles into

groups, or platoons, and planning the motion of these groups [89,92].

The problem is viewed here in this aggregated form, but from a periodic

perspective. Consider an urban transportation network consisting of a grid of

horizontal and vertical roads as laid out on a map. Each pair of horizontal and

vertical roads meets at a unique intersection controlled by a traffic light that alternates

between horizontal and vertical traffic, such that the pattern repeats over a time

interval λ. It is assumed throughout that λ has been discretized to a reasonably

small integer value, say in terms of seconds or tens of seconds.

More formally, a traffic-light schedule is λ-periodic if it repeats every λ time

units. Throughout, consider a traffic management system of the foreseeable future

where the traffic light schedule is transmitted to the vehicles, which in turn may adjust

their speeds to avoid excessive waiting at intersections. While vehicles may turn

at intersections, the schedule is designed to minimize the delay of straight-moving

traffic.

To motivate the connection with modular circulations, consider a four-sided

city block (see Fig. 4.1). Let a, b, c, and d denote the intersections, and let tab,

tbc, tcd, tad denote the travel times between successive intersections along each road

segment. (Practical issues such as acceleration are ignored.) If the road segment is

102

oriented counterclockwise around the block (as shown in the example), these travel

times are positive, and otherwise they are negative. Suppose that the traffic-light

schedule is λ-periodic, and that at time t = ta the light at intersection a transitions

so that the eastbound traffic can move horizontally through the intersection (see

Fig. 4.1(a)). In order for these vehicles to proceed without delay through intersection

b, this light must transition from vertical to horizontal at time tb = ta + tab (see

Fig. 4.1(b)).

t = 0

a b

cd

t = 0

t = tab

a b

cd

tab

tbc

t = tab + tbc

a b

cd

tbc

t = tab + tbc + tcd + tda

a b

cd

tcd

tda

(a) (b) (c) (d)

Figure 4.1: Periodic constraints from a delay-free traffic-light schedule.

Reasoning analogously for the other intersections, it follows that the vertical-to-

horizontal transition times for intersections c and d are tc = tb + tbc and td = tc + tcd,

respectively (see Fig. 4.1(c)). On returning to a (see Fig. 4.1(d)), it can be seen that

ta ≡ ta + (tab + tbc + tcd + tda) (mod λ).

Thus, in order to achieve delay-free flow around the intersection in a λ-periodic

103

context, one must satisfy the constraint

tab + tbc + tcd + tda ≡ 0 (mod λ).

While traffic-light scheduling is essentially cyclic in nature, it should be noted

that the model ignores many practical issues that arise in real traffic-management

systems. Nonetheless, it is noteworthy that even distilled to its simplest elements,

this problem is far from trivial. A natural question involves the choice of the integer

parameter λ. This models the length of the time period shared by the synchronized

traffic lights, but in what units is it expressed? Ideally, a traffic manager would

like to have the greatest degree of flexibility in choosing λ, since delays must be

rounded to integer multiples of λ. For example, if the traffic lights cycle every minute,

then to achieve a resolution of seconds in the delay values, set λ = 60. Because

the approximation bounds degrade as λ increases, it may be better to decrease the

minimum time interval to, say, 15 seconds. Then one could set λ = 60/15 = 4,

resulting in more accurate approximation bounds. The price paid is that delays

would now be rounded up to multiples of 15-second intervals.

Chapter 3 covers what could be considered the special case where λ = 2

and opposite sides of the block have equal travel times, and shows that a simple

alternating strategy is optimal. It is not reasonable, however, to assume that all the

blocks in the city will satisfy this requirement. Furthermore, the assumption that

λ = 2 does not admit a more nuanced timing of the lights. In order to handle the

more general case, an (ideally small) nonnegative delay δij ≥ 0 is introduced along

104

each road segment ij. This yields the new constraint

(tab + δab) + (tbc + δbc) + (tcd + δcd) + (tda + δda) ≡ 0 (mod λ),

or equivalently, if one defines T = tab + tbc + tcd + tda to be the sum of (signed) travel

times of the road segments around this block, it yields

δab + δbc + δcd + δda ≡ − T (mod λ). (4.1)

The upshot is that if vehicles travel at a reduced speed so that the transit time

along each of the road segments includes the associated delay, then the straight-line

vehicular traffic along each road need never pause or wait at any traffic signal. The

objective is to minimize the sum of delay values over all the road segments in the

network, referred to as the total delay.

More formally, the transportation network is modeled as a set of horizontal and

vertical roads. This defines a directed grid graph whose vertices are the intersections,

whose edges are the road segments, and whose (bounded) faces are the blocks of the

city. For each pair of adjacent intersections i and j, let tij denote the delay-free travel

time along this road segment. For each block u, define the total signed travel time

about u to be the sum of the travel times for each of the road segments bounding u,

where the travel time is counted positively if the segment is oriented counterclockwise

about u and negatively otherwise. Let T (u) denote this value modulo λ. A λ-periodic

traffic-light schedule assigns a delay to each road segment so that for each block,

105

these delays satisfy Eq. (4.1). The objective is to minimize the total delay, which is

defined to be the sum of delays over all the segments in the network.

To express this in the form of an instance of λ-CMD, let G = (V,E) denote the

directed dual of the graph, by which it is meant that the vertex set V consists of the

city blocks, and there is a directed edge (u, v) ∈ E if the two blocks are incident to

a common road segment, and the direction of the road segment is counterclockwise

about u (and hence, clockwise about v). The demand of each vertex u, denoted d(u),

is set to T (u), and the weight of each edge is set to unity.

There remains one impediment to linking the λ-periodic traffic-light schedule

and the λ-CMD problems. The issue is that the delay associated with any road

segment (which may be as large as λ− 1) can be significantly larger than the time to

traverse the road segment. If so, the capacity of the road segment to hold the vehicles

that are waiting for the next signal may spill backwards and block the preceding

intersection. In order to deal with this issue without complicating the model, the

assumption that λ is smaller than the time to traverse any road segment is added.

The link between the two problems is presented in the following lemma.

Lemma 4.2.1. Given a transportation network and integer λ ≥ 2, let G be the

associated directed graph with vertex demands and edge weights as described above.

(i) If there exists a λ-periodic traffic-light schedule with total delay ∆, then there

exists a λ-CMD for G of cost ∆.

(ii) If there exists a λ-CMD for G of cost ∆ and for all road segments ij, tij ≥ λ,

then there exists a λ-periodic traffic-light schedule with total delay ∆.

106

Proof. To prove (i), consider any λ-periodic traffic-light schedule. Define a flow on

G where the edge (u, v) carries flow equal to the delay on the associated road. The

net flow into a vertex u of G is equal to the sum of delays for the road segments

oriented clockwise about u and the sum of the negated delays for the road segments

oriented counterclockwise. Given any block with (counterclockwise) intersections a,

b, c, and d, the net flow into the associated node is −(δab + δbc + δcd + δda). By the

same reasoning behind Eq. (4.1), this sum is equivalent to T (u) modulo λ. It follows

directly that f is a λ-CMD. In both cases the cost is the sum of delays.

To prove (ii), let f denote any λ-CMD for the directed dual graph G. Fix any

intersection and set its transition time to 0 modulo λ. The transition times for the

remaining intersections can be set by a simple propagation process. In particular,

if the transition time of an intersection i is known, then the transition time of an

adjacent intersection j is delayed relative to i (modulo λ) by δij, which is the flow

along the associated dual edge. By Eq. (4.1) it follows that whenever this propagation

loops back to an intersection whose delay was set, the propagated transition time

is equivalent (modulo λ) to the original transition time. By the assumption that

tij ≥ λ, the vehicles that entered this road segment during the last traffic-light cycle

have sufficient space1 that they can effectively “park” themselves within the road

segment for δij time units until moving through the next intersection.

1The term “space” is being used abstractly. To relate space and time, introduce a maximum
speed limit, call it σ. Assuming vehicles move at their maximum speed, the total length of a vehicle
platoon that can pass through any intersection in time λ is σλ. To move these vehicles to the next
intersection in time tij at full speed, the road segment between these intersections is of length σtij .
Since tij ≥ λ, then σtij ≥ σλ, and, irrespective of the choice of σ, it follows that there is sufficient
space to park these vehicles, whatever their actual sizes may be.

107

4.3 Preliminaries

This section presents a few definitions and observations that will be used

throughout the rest of the chapter. Given an instance G = (V,E) of the λ-CMD

problem, consider any subset V ′ ⊆ V . Let G′ = (V ′, E ′) be the associated induced

subgraph of G, and let d(V ′) denote the sum of demands of all the nodes in V ′. The

edges in E ′ are referred to as the internal edges of this subgraph, and the edges

of G that cross the cut (V ′, V \ V ′) are referred to as the interface. Given such a

subgraph and any flow f on G, define its internal flow to be only the flow on the

internal edges, and define the internal cost to be the cost of the flow restricted to

these edges. Define the interface flow and interface cost analogously for the interface

edges. Define fin(V ′) to be the sum of flow values on the interface edges that are

directed into V ′, and define fout(V
′) analogously for outward directed edges. The

following lemma provides necessary and sufficient conditions for the existence of a

λ-CMD.

Lemma 4.3.1. Given an instance G = (V,E) of the λ-CMD problem:

(i) For any induced subgraph G′ = (V ′, E ′) and any λ-CMD f ,

fin(V ′)− fout(V
′) ≡ d(V ′) (mod λ).

(ii) If G is weakly connected, then a λ-CMD exists for G if and only if d(V) ≡ 0

(mod λ).

108

Proof. Assertion (i) follows by applying standard results on circulations to the

modular context. The “only if” part of assertion (ii) is a special case of (i), where

G′ = G. To see the “if” part of assertion (ii), consider any path (ignoring the

edge directions) between two vertices u and v of nonzero demand in G. For any

x, 0 ≤ x < λ, one can push x units of flow from u to v by pushing x units of flow

along each forward-directed edge of the path and λ − x units of flow along each

backward-directed edge. (Each intermediate vertex has a net incoming flow of either

0, λ or −λ, depending on the orientation of the incident edges.) By repeating this,

the demands of all the vertices in the graph can be satisfied.

It follows from this lemma that the λ-CMD instance associated with any

traffic-light scheduling problem has a solution. The reason is that each edge (u, v)

contributes its travel time tuv positively to d(u) and negatively to d(v), and therefore

the sum of demands over all the vertices of the network is zero, irrespective of the

travel times.

4.4 Polynomial Time Solution to 2-CMD

This section shows that 2-CMD, referred to here also as binary CMD, can

be solved in polynomial time by a reduction to minimum-cost matching in general

graphs. Intuitively, the binary case is simpler because the edge directions are not

significant. If a vertex is incident to an even number of flow-carrying edges (whether

directed into or out of this vertex), then the net flow into this vertex modulo λ is

zero, and otherwise it is one. Thus, solving the problem reduces to computing a

109

minimum-cost set of paths that connect each pair of vertices of nonzero demand,

which is essentially a minimum-cost perfect matching in a complete graph whose

vertex set consists of the subset of vertices of nonzero demand and whose edge

weights are the distances between vertices, ignoring edge directions. The remainder

of this section is devoted to providing a formal justification of this intuition.

Recall that G = (V,E) is a directed graph, and d(v) denotes the demand

of vertex v. Since λ = 2, for each v ∈ V , it is the case that d(v) ∈ {0, 1}. Let

G′ = (V,E ′) denote the graph on the same vertices as G but with directions removed

from all the edges. One may assume that G′ is connected, for otherwise it suffices to

solve the problem independently on each connected component of G′ and combine

the results. The weight of each edge of G′ is set to the weight of the corresponding

edge of G. If there are two oppositely directed edges joining the same pair of vertices,

the weight is set to the minimum of the two.

Let U = U(G) denote the subset of vertices of V whose demand values are equal

to 1. By Lemma 4.3.1(ii), it can be assumed that d(V) ≡ 0 (mod λ). Therefore,

d(V) is even, which implies that |U | is also even. For each u, v ∈ U , let π(u, v) denote

the shortest weight path between them in G′, and let wt(π(u, v)) denote this weight.

Define Ĝ = (U, Ê) to be a complete, undirected graph on the vertex set U , where

for each u, v ∈ U , the weight of this edge is wt(π(u, v)). (This is well defined by the

assumption that G′ is connected.) Since Ĝ is complete and has an even number of

vertices, it has a perfect matching. The reduction of 2-CMD to the minimum-cost

perfect matching problem is implied by the following lemma.

110

Lemma 4.4.1. Given an instance G = (V,E) of the 2-CMD problem, the minimum

cost of any 2-CMD for G is equal to the minimum cost of a perfect matching in Ĝ.

Proof. Begin with the assertion that any 2-CMD f for G can be mapped to a

collection of paths in the undirected graph G′ corresponding to edges of f that carry

nonzero flow, such that each u ∈ U is incident to at least one such path. This is well

known when dealing with traditional flows, but it does not generally hold for CMDs

when λ > 2. It will be shown that it holds in the binary case.

To establish the assertion, let f denote a 2-CMD for G. Each edge of G carries

either a flow of 0 or 1. Observe that the net flow into each vertex of U (respectively,

V \ U) is odd (respectively, even). Consider the following process, which will output

a collection of paths while gradually reducing f to an empty flow. Start with any

vertex v that is incident to an odd number of flow-carrying edges. Compute any

maximal path in G′ by following edges that carry nonzero flow. (The edge directions

are not important, because any incident edge that carries flow toggles the net flow’s

parity between even and odd.) Clearly, such a path must terminate at a different

vertex u that is also incident to an odd number of flow-carrying edges, and hence is

also in U . Output this path π(u, v) from v to u and modify f by setting the flow

values of the edges along this path to 0.

Observe that the resulting set Π of paths is incident to every vertex of U , and

their total cost is equal to the cost of f . Also, the sum of edge weights along each

path between vertices u and v is at most the cost of the shortest path between them,

that is, wt(π(u, v)).

111

To establish the lemma, the above path-reduction procedure is applied. Each

path between two vertices u and v corresponds to an edge of Ĝ. After reducing

the flow values along the path between such a pair of vertices, these two vertices

are now incident to an even number of edges carrying nonzero flow. Thus, each

vertex of U will appear in exactly one of the output paths, implying that the final

set of paths defines a perfect matching in Ĝ (whose vertex set is U). This yields

cost(f) =
∑

π(u,v)∈Π wt(π(u, v)), which is the cost of the perfect matching.

Conversely, given any perfect matching in Ĝ, one can generate a 2-CMD by

pushing a single unit of flow along the edges of the shortest path between u and v,

for each pair (u, v) of the matching. This is a valid 2-CMD, since each vertex of U

is incident to an odd number of edges carrying one unit of flow, and each vertex of

V \ U is incident to an even number of edges carrying one unit of flow. Note that if

paths share common edges, then the total flow value along this edge may exceed 1,

but if so it can be reduced to either 0 or 1. It follows that the cost of the 2-CMD is

no larger than the cost of the matching.

This approach is similar to the classical solution by Edmonds and Johnson [93]

to the Chinese-Postman Problem. Vertices of odd demand here play the same role

as vertices of odd degree in their work. Since Ĝ is dense, a minimum-cost perfect

matching can be constructed in O(|U |3) time. The graph can be computed in O(n3)

time, where n = |V |, by applying the Floyd-Warshall algorithm for computing

shortest paths [36]. Thus, the overall running time is O(n3), yielding the following

result:

112

Theorem 4.4.1. It is possible to solve the 2-CMD problem in O(n3) time on any

instance G = (V,E), where n = |V |.

4.5 Hardness of λ-CMD

This section presents the following hardness result for λ-CMD:

Theorem 4.5.1. For λ ≥ 3, the λ-CMD problem is NP-hard.

The reduction is from positive 1-in-3-SAT [94]. For the sake of brevity and

simplicity, the proof for the case λ = 3 is shown first, but the method easily

generalizes, as shown in Section 4.5.4.

To begin, let F denote a boolean formula in 3-CNF, where each literal is in

positive form. Throughout, for α ∈ {0, 1, . . . , λ− 1}, the term α-vertex is used to

denote a vertex whose demand is α. The reduction involves two principal components,

a variable gadget which associates truth values with the variables of F and a clause

gadget which enforces the condition that exactly one variable in each clause is assigned

the value True.

4.5.1 Variable Gadget

Before discussing the general gadget, a fundamental building block from which

all variables will be constructed is described. The block consists of six vertices, three

1-vertices and three (λ− 1)-vertices (i.e., 2-vertices), connected together with edges

as shown in Figure 4.2(a). Edges connecting 1-vertices have weight wt(u, v) = 1.5,

while all other edges are of weight wt(u, v) = 1.

113

If a flow of 1 is sent from each 2-vertex to its connected 1-vertex, the 2-vertices

overflow and all demands are satisfied with cost(f) = 3 (see Figure 4.2(b)). This

flow, in which there is no flow across the interface edges, represents a logical value of

False.

If instead a flow of 1 is sent across the interface edges, then the demands of

the 2-vertices are satisfied. A flow of 1 across each edge originating at the central

1-vertex will cause it to overflow and will satisfy each of the connected 1-vertices.

This flow, in which each interface edge carries a flow of 1, represents a logical value

of True and again has cost(f) = 3 (see Figure 4.2(c)).

TrueFalse

(a) (b)

1.5 1.5 1.5 1.5

2 2 2 2 2

1 11 1 11

1 1 11 1 1

1 1 1

1 1

2

1.5 1.5

2 2 2

1 11

(c)

Figure 4.2: (a) The fundamental building block used to build variable gadgets.
Interface edges are dashed gray segments. (b,c) CMDs representing the assignment
of False and True values, respectively, with the flow values in boxes.

If every interface edge of a variable gadget carries the same flow and that flow

is either 0 or 1, that variable is said to be interface-consistent. If all variables are

consistent for a given flow, then that flow is said to be variable-consistent. Notice

that both logical values above are realized via interface-consistent flows.

Lemma 4.5.1. Given a fundamental block, a satisfying flow has cost ≤ 3 if and

only if that flow is interface-consistent.

Proof. Each 2-vertex can only be satisfied by: (1) sending a flow of 1 across one of

114

its edges or (2) sending a flow of 2 across both of its edges (in both cases the vertex’s

demand overflows).

In the second case, the 2-vertex sends a flow of 2 to its neighboring 1-vertex.

As per Lemma 4.3.1(i), that vertex now requires a flow of 2 across its other edge in

order to have its demand satisfied. Together these flows come at a cost of 5 (one

of these edges has a weight of 1.5), therefore no 2-vertex may be satisfied by a flow

greater than 1 without a cost greater than 3.

There exists a satisfying flow for a fundamental block if and only if the total flow

across its interface edges is equivalent to 0 (mod λ) (see Lemma 4.3.1). Given this

and the fact that no single interface flow may equal 2, the flows across the interface

edges must either all be 0 or all be 1, i.e., the overall flow must be interface-consistent

for it to be a satisfying flow.

As variables may appear in multiple clauses, a mechanism by which existing

variables can be expanded is required. For this, an expansion module is created, any

number of which can be added to a variable so that there are three interface edges

for each clause in which that variable appears.

To understand how this module functions, first look at the case in which two

fundamental blocks are connected together. This connection occurs through a shared

2-vertex, so that what was an interface edge for one block becomes the connection

between a 2-vertex and 1-vertex in the other block (see Figure 4.3). Recall that

the value assignment of a variable is determined by the direction of flow from the

2-vertices, with flow along the interface representing True and internal flow (i.e.,

115

flow to the connected 1-vertices) representing False. Because the outgoing edges of

the shared 2-vertex are simultaneously an interface edge of one block and an internal

edge of the other, pushing a flow across either edge will assign opposing values to

the blocks.

1 11

1 112 2 2

2 2

1 1

1

11
1 1

(a) (b)

1 11

1 112 2

2 2

2

Figure 4.3: Two fundamental blocks connected via a shared 2-vertex, with figure (b)
showing a flow that is satisfying but not interface-consistent.

Knowing this, the module is constructed as a double-negative, ensuring that

it is assigned the same value as the variable it extends. A fundamental block is

used as a hub, and to this hub is attached two more fundamental blocks (see Figure

4.4). When attached to a variable, this module creates four new interface edges and

consumes one, thus extending the variable by three interface edges.

1 1

1 112 2 2

2

1 11

2 2
1

1

1

1 11

2 2

2

2

1 1

1

2

2 2

1 11

2 2

(a) (b)

1 11

2 2 2

1
1.5 1.5 1.5 1.5

1.5
1.5

1.5
1.5

Figure 4.4: (a) A fundamental block with a single expansion module attached. (b)
The same structure rearranged to emphasize the two clause outputs, each with three
interface edges.

116

While the structure of the fundamental blocks is as described above, the

weighting must be adjusted to maintain equal costs between the True and False

states. Rather than each fundamental block having two edges of weight 1.5, only the

rightmost block in the expansion module has such edges; all others are of weight 1.

In this way, the minimal cost of a consistent satisfying flow across the module is 8,

regardless of the value assigned to the variable. This is easily verified by assigning a

truth value to the gadget (fixing an interface-consistent flow on the interface edges

of 0 or 1) and then traversing the structure, satisfying the demand in each vertex by

assigning flow to its unused edge.

Given this, Lemma 4.5.1, and the fact that the expansion module is constructed

from fundamental blocks, yields the following:

Lemma 4.5.2. Given an expansion module, there exists an interface-consistent flow

of internal cost 8 (in either the True or False cases), and any other satisfying flow

has a strictly larger internal cost.

To construct a gadget for a variable vi, appearing in c(vi) clauses, begin with a

fundamental block and connect c(vi)− 1 expansion modules to it (see Figure 4.5).

Doing so provides c(vi)λ interface edges and yields the following result:

Lemma 4.5.3. Given a variable gadget, there exists an interface-consistent flow

of internal cost 3 + 8[c(vi)− 1] (in either the True or False cases), and any other

satisfying flow has a strictly larger internal cost.

117

1

1

1

1 11

2 2

2

2

1 1

1

2

2

2

1 11

2 2

1.5

1.5

1.5

1.5

1 11

2

1 1

1

2

2 2

1 11

2

1.5

1.5

1 11

2

1 1

1

2

2

2

1 11

2 2

1.5

1.5

1 11

2

1 1

1

2

2

2

1 11

2

1.5

1.5

2 2

Figure 4.5: An example of a large variable gadget with five clause outputs.

4.5.2 Clause Gadget

The basis for the clause gadget is a single 1-vertex with three incoming edges,

one for each literal. These edges have a weight wt(u, v) = γ and are connected to

the appropriate variables as their outgoing interface edges. If a single literal is True,

one of these edges will carry a flow of 1, satisfying the demand of the clause vertex.

If more literals are True, the demand underflows and the vertex is left unsatisfied.

It is possible to satisfy the vertex by creating flows on these edges greater than 1,

but such flows can be made cost-prohibitive by setting the edge weights γ sufficiently

high.

Recall that each variable gadget produces λ copies of its respective variable

(three interface edges in this example) per clause in which it appears. Because of

this, the clause gadget must also be created in triplicate. Every clause consists of

three 1-vertices, each with an incoming edge from its three literals (see Figure 4.6).

Their weighting and behavior are as described above. Since there are no internal

edges in the clause gadgets, they do not contribute to the cost of the flow (but their

interface edges will).

118

1

1

1

γ
γ

γ
γ

γ
γγ

γ
γ

Figure 4.6: A full clause gadget, with three inputs from each of three literals.

4.5.3 Final Construction

Each variable in F is represented by a fundamental block connected to c(vi)− 1

expansion modules, creating c(vi)λ outputs. Thus, λ outputs are linked to each of

the appropriate clause gadgets (see Figure 4.7). The size of the variable gadget is a

linear function of the number of clauses in which that variable appears and can thus

be constructed in polynomial time.

1

1

1

x

2 2 2

1 11

y

2 2 2

1 11

2 2

2

1

1

1

1 1 1

2

11 1

2 2 2

2

1

1

1

2

z

1

1

1

a

2 2 2

1 11

b

2 2 2

1 11

(x ∨ y ∨ z) (z ∨ a ∨ b)

Figure 4.7: An example of a reduction from the formula F = (x∨ y ∨ z)∧ (z ∨ a∨ b).
Note that the weights have been removed for legibility.

If F is satisfiable, then a 3-CMD exists that is variable-consistent. In this case,

each fundamental block incurs a cost of 3, and each expansion module incurs an

119

additional cost of 8 for a flow representing a consistent truth value across its interface

and the interfaces of the modules/fundamental block to which it is attached, as per

Lemma 4.5.2.

For each clause, create λ 1-vertices, each connected to the clause’s three literals

by incoming edges. As there are no edges between these vertices, there is no flow

possible within the clause gadget, resulting in an internal cost of 0. The size of the

clause gadget is constant.

Finally, the flow on the edges between the variable gadgets and clause gadgets

has yet to be counted as they are interface edges for both gadgets. Each clause

gadget contains λ 1-vertices, with each receiving a flow of 1 across edges of weight γ.

Thus, these add a cost of 3|C|γ, where |C| is the number of clauses in F .

If F is not satisfiable, then some set of variables must have inconsistent outputs

in order to create a valid CMD. As shown in Lemma 4.5.1, these inconsistencies will

always lead to a strictly greater cost. Thus:

Lemma 4.5.4. Given a positive boolean formula F in 3-CNF, in polynomial time it

is possible to construct an instance of 3-CMD that has a satisfying flow with

cost(f) ≤
∑
vi∈V

(3 + 8[c(vi)− 1] + 3|C|γ)

if and only if F is 1-in-3 satisfiable.

120

4.5.4 Generalizing for λ > 3

Fundamental blocks are constructed in the same manner as described in the

λ = 3 example in Section 4.5.1, but for completeness, they are described here in

their general form. A fundamental block begins with λ 1-vertices, connected as a

star graph (i.e., a central vertex connected to each of the remaining vertices) with

edges directed outward. Each 1-vertex is also connected to a (λ− 1)-vertex via an

incoming edge. Finally, these (λ− 1)-vertices each have an outgoing interface edge

(Fig. 4.8).

1

1

1 1

3

3

5 1

1

1 1 5

5

5

1

5

1

5

3 3

(a) (b)

Figure 4.8: Fundamental blocks with (a) λ = 4 and (b) λ = 6.

The expansion module, too, remains largely unchanged. It consists of a central

fundamental block with λ interface edges. A fundamental block is then connected

to all but one of these edges, with the remaining edge reserved for connecting to

the existing variable gadget. For each expansion module added to a variable gadget,

(λ−1)2−1 interface edges are added (one interface edge is consumed when connecting

to the variable gadget, hence the −1 in the equation). See Figure 4.9. Just as before,

the weights of a small subset of edges must be adjusted so that True and False

assignments incur the same cost. To do so, arbitrarily select a fundamental block

121

that is not the hub (i.e., not the fundamental block which connects to the existing

variable gadget) and set the outgoing edges from its central 1-vertex to a weight of

2λ−3
λ−1

.

(a) (b)

FB

FB

FB

FB

FB FB

FBFB

FB FB

Figure 4.9: Expansion modules built from fundamental blocks (FB) with (a) λ = 4
and (b) λ = 6. Edges between fundamental blocks are represented with a disc and
no direction as a reminder that the blocks are connected via a shared (λ− 1)-vertex.

Recall that the variable gadget described in Section 4.5.1 creates c(vi)λ interface

edges. In truth, the fundamental block creates λ interface edges while each of the

c(vi) − 1 expansion modules add (λ − 1)2 − 1 interface edges. When λ = 3, these

formulae are equivalent, each variable has c(vi)λ interface edges, and each of the

c(vi) clause gadgets will connect to λ interface edges.

When λ > 3, the variable gadgets will have λ+[c(vi)− 1] [(λ− 1)2 − 1] interface

edges. As this is not evenly divisible by c(vi), connecting to the clause gadgets

becomes problematic. To correct for this, a modified expansion module, called a

seed module, is used to start each variable gadget rather than a fundamental block.

Rather than connecting to an existing variable gadget, the edge that was previously

reserved for this connection is instead attached to one of the existing interface edges

122

(recall that in actuality a (λ− 1)-vertex is being shared, not that two edges are being

connected directly). Doing so creates a seed module that has (λ− 1)2 − 1 interface

edges (Fig. 4.10) and, when used in conjunction with unaltered expansion modules,

creates a variable gadget with c(vi) [(λ− 1)2 − 1] interface edges.

Clause gadgets are constructed as described in Section 4.5.2, with the caveat

that they require (λ− 1)2 − 1 vertices rather than λ. Each vertex will still only have

three incoming edges, as each clause will only ever have three literals, and a demand

of 1.

(a) (b)

FB

FB

FB

FB

FB FB

FBFB

FB FB

Figure 4.10: Seed modules for creating variable gadgets with (a) λ = 4 and (b)
λ = 6.

Despite a small increase in the size of each gadget, the reduction can still be

done in polynomial time.

Finally, the cost threshold in Lemma 4.5.4 must be generalized. In the general

form, if F is satisfiable there will be a satisfying flow with

cost(f) ≤
∑
vi∈V

[
(λ2 − 1)c(vi) + λ|C|γ

]

123

4.6 Approximation Algorithm

This section presents a 4(λ−1)-factor approximation to the λ-CMD problem for

λ ≥ 2. Before presenting the algorithm, some terminology is introduced. Consider

an instance G = (V,E) of the λ-CMD problem, with vertex demands d. Let

G′ = (V,E ′) be (as defined in Section 4.4) the undirected version of G. Assume

that G′ is connected. Let U = U(G) denote the subset of vertices of V whose

demand values are nonzero. Define SMT (U) to be a Steiner minimal tree in G′

whose terminal set is U (that is, a connected subgraph of G′ of minimum weight

that contains all the vertices of U).

As in Section 4.4, define Ĝ = (U, Ê) to be the complete, undirected graph over

the vertex set U , where for each u, v ∈ U , the weight of this edge is the weight of

a minimum weight path between u and v in G′. Given any U ⊆ V , let MST (U)

denote any minimum spanning tree on the subgraph of G′ induced on U . Standard

results on Steiner and minimum spanning trees yields the following:

Lemma 4.6.1. For any U ⊆ V , wt(MST (U)) ≤ 2 · wt(SMT (U)).

Define a balanced partition to be a partition {U1, . . . , Uk} of U such that for

1 ≤ i ≤ k, the total demand within Ui (that is, d(Ui)) is equivalent to zero modulo λ.

By Lemma 4.3.1(ii), one may assume that d(V) ≡ 0 (mod λ), and so there is always

a trivial partition, namely {V } itself. Define cost(Ui) to be cost(SMT (Ui)), and

define the cost of a balanced partition to be the sum of costs over its components.

A minimum balanced partition for G is a balanced partition of minimum cost. The

124

following lemma establishes the connection between balanced partitions and minimum

modular circulations.

Lemma 4.6.2. Consider an instance G = (V,E) of λ-CMD. Let Ψ = (U1, . . . , Uk)

denote a minimum balanced partition of G, as defined above, and let f denote any

minimum cost λ-CMD for G. Then cost(Ψ) ≤ |f | ≤ (λ− 1) · cost(Ψ).

Proof. Given any λ-CMD f for G, let E ′f ⊆ E ′ denote the corresponding edges

of the undirected graph G′ that carry nonzero flow. This set of edges induces a

set of connected components such that each vertex of U lies within one of these

components. These components define a partition of U . By Lemma 4.3.1(i), the sum

of demands within each connected component is a multiple of λ, which implies that

these connected components define a balanced partition for G; call it Ψf . Since each

edge that carries flow carries at least one unit of flow, it follows that |f | ≥ cost(Ψf).

This establishes the lower bound on |f |.

In order to prove the upper bound, the mapping of Ψ into a λ-CMD that

satisfies the desired bound will be shown. The construction builds a separate flow

fi for each subset Ui, and the final flow is simply the sum of all these flows. Let

Ti = SMT (Ui). It will simplify matters to first describe the construction in terms of

the undirected graph G′, and then modify it to apply to G.

Begin by rooting Ti at any one of the vertices of Ui. The construction operates

in a bottom-up manner by performing a post-order traversal of Ti. For each vertex

u visited, let f(u) denote the net flow into u from its children (or 0 if u is a leaf).

If d(u) − f(u) < 0 (this is a net-supply vertex), direct (d(u) − f(u)) mod λ units

125

of flow from u to its parent, and if d(u)− f(u) > 0 (this is a net-demand vertex),

direct (d(u)− f(u)) mod λ units of flow from its parent to u. Because the sum of

demands within this component is a multiple of λ, the net flow into the root r must

equal d(r) modulo λ. It is easy to see that the net flow into every vertex of Ti is

equivalent to zero modulo λ, and thus it is a valid λ-CMD. It follows directly that by

applying the process to every component of Ψ one obtains a λ-CMD for G′, which is

denoted by f ′Ψ. Because each edge carries a flow of at most λ − 1, it can be seen

that |f ′Ψ| ≤ (λ− 1) · cost(Ψ).

One can convert f ′Ψ to a λ-CMD for the directed graph G as follows. Consider

any edge (u, v) of any subtree Ti where u is the child and v is the parent. If the

direction of this edge in G matches the direction of the flow, then there is no change.

Otherwise, replace the flow value of x on this edge with the flow value of λ − x,

essentially negating the value of the flow. It is easy to see that the resulting flow

satisfies the modular balance constraints at each vertex, and therefore the result is a

λ-CMD for G. By the same reasoning as above, |fΨ| ≤ (λ− 1) · cost(Ψ).

By the above lemma, it suffices to compute a balanced partition for G of low

cost. Next, a simple approximation algorithm that outputs a balanced partition

whose cost is within a factor of 4 of the optimum is presented.

The construction begins with the metric closure Ĝ defined above. In a manner

similar to Kruskal’s algorithm, sort the edges of Ĝ in increasing order, and start with

each vertex of Ĝ in a separate component. All these components are labeled as active.

Process the edges one by one, letting (u, v) denote the next edge being processed. If

126

u and v are in distinct components, and both components are active, merge these

components into a single component. If the sum of the demands of the vertices

within this component is equivalent to zero modulo λ, label the resulting component

as finished, and output its set of vertices. Because the total sum of demands of all

the nodes is equivalent to zero modulo λ, it follows that every vertex is placed within

a finished component, and therefore the algorithm produces a balanced partition of

Ĝ (and by extension, a balanced partition of G).

This algorithm has the same running time as Kruskal’s algorithm. (Observe

that one can associate each component with its sum of demands, thus enabling the

ability to determine the sum of merged components in constant time.) The following

lemma establishes the approximation factor for this construction.

Lemma 4.6.3. Let Ψ′ denote the balanced partition generated by the above algorithm,

and let Ψ denote the optimum balanced partition. Then cost(Ψ′) ≤ 4 · cost(Ψ).

Proof. The proof begins by modifying the optimum balanced partition Ψ into a form

that will be easier to analyze. Let {U1, . . . , Uk} denote the subsets of Ψ, and for

1 ≤ i ≤ k, let Ti denote the minimum spanning trees of the induced subgraph of Ui

within the metric closure Ĝ. By standard results on Steiner trees, it follows that

cost(Ti) ≤ 2 · cost(Ui). Henceforth, costs are measured in terms of the minimum

spanning trees over the components. In particular, define cost′(Ψ) =
∑

i cost(Ti),

and so cost′(Ψ) ≤ 2 · cost(Ψ). Because the cost of the minimum Steiner tree does

not exceed the cost of the minimum spanning tree, cost(Ψ′) ≤ cost′(Ψ′).

For each pair of components of Ui, Uj ∈ Ψ, let wi and wj denote the maximum

127

weights of any edges of Ti and Tj, respectively. If there exists an edge of Ĝ that

connects two vertices, one in Ui and one in Uj, such that the weight of this edge

is not greater than min(wi, wj), then merge the vertices of Ui and Uj into a single

component. Repeat this process until there is no inter-component edge that satisfies

this property. Clearly, the resulting set of components, denoted by Ψ′′, is a balanced

partition.

The claim, then, is that cost′(Ψ′′) ≤ 2 · cost′(Ψ). This follows from a simple

charging argument. Consider the smallest weight edge that satisfies the merging

condition. Each of the two components Ui and Uj that are connected by this edge

each have edges with weights wi and wj, respectively, both of which are as large as

the connecting edge. Add this connecting edge and charge it to the smaller of wi and

wj. The other edge remains to be charged for future merges. In this manner, every

time two components are merged, an edge from one of the components pays for the

newly added connecting edge, and the other remains for future charges. Therefore,

only the original edges are charged, and no edge is charged more than once. It follows

that cost′(Ψ′′) ≤ 2 · cost′(Ψ), as desired.

Consider the following assertion: Ψ′ is a refinement of Ψ′′, meaning that each

set U ′i of Ψ′ is a (not necessarily proper) subset of some set U ′′j of Ψ′′. This is proven

by contradiction. Suppose that there was an edge (u, v) such that u and v are in the

same subset Ψ′, but they are in different components of Ψ′′. Assume that (u, v) is a

minimum weight edge with this property. By definition of Ψ′′, the weight of (u, v) is

strictly smaller than the weights of all the edges of either U ′′i or U ′′j (possibly both).

Assume without loss of generality that U ′′i satisfies this property. It follows that at

128

the time that edge (u, v) is considered by this algorithm, all the edges of MST (U ′′i)

have been considered, which implies that the algorithm has discovered all the edges

of this spanning tree. Since (u, v) is the smallest inter-component edge, there can be

no other vertices that are part of this component. Since Ψ′′ is a balanced partition,

the sum of the vertices in this component sum to zero modulo λ, which implies that

this component would have been labeled as finished by the algorithm, contradicting

the hypothesis that the edge (u, v) was considered for insertion by the algorithm.

By the above assertion, each component of Ψ′ is a subset of some component

of Ψ′′, implying that cost′(Ψ′) ≤ cost′(Ψ′′). In conclusion,

cost(Ψ′) ≤ cost′(Ψ′) ≤ cost′(Ψ′′) ≤ 2 · cost′(Ψ) ≤ 4 · cost(Ψ),

as desired.

Combining Lemmas 4.6.2 and 4.6.3(ii), it follows that the presented algorithm

achieves an approximation factor of 4(λ − 1). While obtaining the best running

time has not been a focus of this work, it is easy to see that this procedure runs

in polynomial time. Let n = |V |. The graph Ĝ can be computed in O(n3) time by

the Floyd-Warshall algorithm [36]. The Kruskal-like algorithm for computing the

balanced partition can be performed in O(n2 log n) time, as can the algorithm of

Lemma 4.6.2. Thus, the overall running time is O(n3).

Theorem 4.6.1. Given an instance G = (V,E) of the λ-CMD problem for λ ≥ 2,

it is possible to compute a 4(λ− 1)-approximation in time O(n3), where n = |V |.

129

Chapter 5: Online Algorithms for Warehouse Management

5.1 Introduction

Online shopping has grown rapidly in recent years and, as such, the efficiency

of the warehouses and fulfillment centers that support it plays an increasingly

important role. Several companies have developed automated systems to help

streamline operations in these warehouses, drive down the costs of order fulfillment,

and increase overall efficiency. The introduction of automation comes with the

opportunity for new theoretical models and computational problems with which to

better understand and optimize such systems.

These systems often maintain a warehouse of standardized portable storage

units, which are stored and retrieved by robots [95, 96]. For example, Amazon’s

Kiva robots and Alibaba’s Quicktron robots help to streamline the order-fulfillment

process. The Amazon robots are 16 inches tall, weigh almost 145 kilograms, can

travel at 5 mph, and carry a payload weighing up to 317 kilograms. These robots

maneuver themselves under standardized shelving units, lift them from below, and

carry them to a location in the warehouse where a human waits to complete an order

with items from the shelf.

The frequency with which each storage unit is accessed varies, and so, intuitively,

units that are accessed more often should be placed closer to the access points than

those that are less frequently accessed. As access probabilities vary over time, there

130

is a natural question of how to dynamically organize the warehouse’s placement of

storage units in order to guarantee efficient access at any time. The work presented

here develops simple computational models for a “self-organizing warehouse”, and

subsequently presents online algorithms for solving them. It will be demonstrated

that these algorithms are competitive with optimal algorithms. This work can be

viewed as a geometric variant of online algorithms for self-organizing lists and virtual

memory management systems [83,84].

From a practical perspective there are many ways in which to model objects

residing in a warehouse. In order to obtain meaningful theoretical results without

imposing irrelevant technical details, what is proposed here is a very simple and

general model, which encapsulates the most salient aspects of efficient self-organizing

behavior. Storage units, or boxes, are modeled as movable unit squares on a grid in

the plane. In addition to the boxes, there are designated fixed points, called access

points, where boxes are brought on demand. The input consists of a sequence of

access requests, each specifying that a particular box in the system be moved to a

given access point.

There are two natural ways in which to move boxes in a planar setting, picking

them up (as an overhead crane might) and sliding them along the ground (like the

aforementioned robotic systems). The former is simpler to describe and analyze. The

latter is more realistic and is consistent with other motion-planning models [33,77].

Another issue is the geometrical configuration of the warehouse and the locations

of the access points. This work presents clean and simple models based on infinite

and semi-infinite grids and shows how to generalize these solutions to rectangular

131

warehouses.

Two versions of the problem are considered: the attic problem, where there is

a single access point, and the warehouse problem, where there are multiple access

points. In each version and for each motion type, an online algorithm is presented

that is competitive with respect to an optimal solution that has knowledge of the

entire access sequence. Details of the problem formulations and results are given in

the following section.

5.1.1 Model and Results

In this work, a warehouse is modeled as a rectangular subset Ω of Z2, the

square grid in the plane. Throughout, distances are measured in the `1 metric (the

sum of absolute differences in x and y coordinates). As well, there is a finite set

A = {a1, . . . , am} ⊆ Ω of stationary access points and a (significantly larger) finite

set B = {b1, . . . , bn} of portable storage units, called boxes. Each box is a unit square.

At any time, a box’s lower left corner coincides with a grid point in Ω, called its

location. A point of Ω that contains a box is said to be occupied, and otherwise it is

unoccupied. No two boxes may occupy the same location at the same time.

The initial layout of the boxes is specified in the input. This is followed by

a sequence of access requests, each being a pair (b, a), which involves moving box

b ∈ B from its current location to access point a ∈ A. Access requests are processed

sequentially, meaning that each request is completed before the next one is started.

Since the access point may already be occupied, it will be necessary to reorganize

132

box locations. This reorganization should be performed with care, keeping frequently

accessed boxes near the access point and moving less frequently accessed boxes to

the periphery. The challenge is that one does not know the future access sequence,

and yet one wishes to be competitive with an optimal algorithm that does.

In general, the reorganization following each access request will involve a

sequence of box movements. The box at the access point is displaced to a nearby

location, the box at this location is then displaced to a new location, and so on.

This chain of box movements continues until the last box in the chain arrives at

an unoccupied square of the grid, possibly the original location of the requested

box. More formally, let p0 denote the original location of b, and let p1 denote the

location of a. If a is not occupied, b is simply moved here, and the sequence is

complete. Otherwise, the algorithm determines a chain p2, . . . , pk of locations, where

p2, . . . , pk−1 are occupied and pk is unoccupied (see Fig. 5.1(a)). (Note that p0 is

considered to be unoccupied, because its box has been moved to the access point.)

Call this a reorganization chain. If pk 6= p0, this is an open chain (see Fig. 5.1(b)),

and otherwise it is a closed chain (see Fig. 5.1(c)).

(a) (c)

Request

(b)

Open chain

b p0

p1

p2
p3

p4

p5

a

Closed chain

p0

p1

p2
p3

p4

Figure 5.1: Processing a request.

For the sake of presenting the devised algorithms, it will be useful to describe

133

the relocation process in terms of a sequence of motion primitives. In the case where

boxes can be picked up (as by an overhead crane), the primitive operation is a swap,

which exchanges the contents of two grid squares. The cost of the operation is the `1

distance between the two locations. The aforementioned reorganization involving a

chain 〈p0, . . . , pk〉 (whether open or closed) can be executed by swapping boxes in

reverse order along the chain, that is, pk ↔ pk−1 ↔ · · · ↔ p0 (see Fig. 5.2(a)).

(a) (b)

p1

p2
p3

p4
p1

p2
p3

p4

p0 p0

SlidingSwapping

p1
p2

p3

p4

p0

p1
p2

p3

p4

p0

Figure 5.2: Motion primitives.

Alternatively, when boxes are moved along the ground the associated primitive

operation is called sliding. As with swapping, the contents of two grid locations

are exchanged, but the boxes are moved along a rectilinear path of unoccupied grid

locations (see Fig. 5.2(b)). The cost of the operation is the `1 length of the path,

which may generally be much higher than the `1 distance between the two locations.

Sliding motion is more relevant in contexts where the boxes are being moved

by robots, but it is complicated by the need to create empty space in which to move

boxes. This work will first present a simple swapping-based solution and then show

how to adapt this to sliding motion without significantly increasing the cost. These

two primitives provide a conceptually clear and simple model of motion costs. Of

course, in practice, many other realistic issues would need to be considered.

134

The following problem formulations involve a problem instance, which consists

of a specification of the domain Ω and the locations of the m access points A. An

input to a given instance consists of the initial locations of the n boxes followed by a

sequence S of access requests. For each access request, the output consists of the

sequence 〈p0, . . . , pk〉 along which motion primitives are applied (either swapping

or sliding, depending on the model). Since the current focus is on reorganization

strategies, a number of issues needed for a complete model are being ignored, such

as how to coordinate the movement of multiple robots. This work focuses on two

versions of the problem depending on the number of access points (see Fig. 5.3):

Attic Problem: Ω is an axis-aligned rectangle containing a single access point.

Warehouse Problem: Ω is an axis-aligned rectangle with access points along its

bottom side.

boxes

a1 a2 a3 a4 a5 access points

access point

Attic Problem Warehouse Problem
Ω

Ω

Figure 5.3: Problem versions.

The above problems are being considered in an online setting, which means that

each access request is processed without knowledge of future requests. In contrast,

in an offline setting the entire access sequence is known in advance. An online

algorithm is said to be c-competitive for a constant c ≥ 1, called the competitive

135

ratio, if for all sufficiently long access sequences S, the total cost of this algorithm is

at most a factor c larger than the cost of an optimal offline solution for the same

sequence. An algorithm is competitive if it is c-competitive for some constant c,

independent of m, n, the size of the domain, and the length of the access sequence.

(The competitive ratios that result from these analyses are relatively high, and are

likely far from tight. Reducing them would involve establishing better lower bounds

on the optimum algorithm, and this seems to be quite challenging.) The notion of

“sufficiently long access sequence” allows start-up issues to be ignored, such as the

initial locations of the boxes.

The main results are competitive online algorithms for these two problems in

both the swapping- and sliding-motion models (presented in Theorems 5.2.1, 5.2.2,

5.3.1, and 5.3.2). The result for the attic problem has the additional feature of being

asymptotically optimal with respect to box density. (The precise definition will be

given in Section 5.2.3.) These online algorithms exploit an intriguing connection

between the presented warehouse problems and the task of maintaining hierarchical

memory systems [83]. Hierarchical memory systems are linear in nature, and

the geometric context of the problems studied in this dissertation introduces novel

challenges, since the reorganization must take into account the 2-dimensional locations

of the boxes. Also, when sliding is involved, it is necessary to manage the set of

unoccupied squares to guarantee short access paths.

136

5.2 Online Solution to the Attic Problem

This section presents an online algorithm for the attic problem (single access

point). It will be shown that the resulting scheme is competitive with respect to

an optimal algorithm. As mentioned above, this is achieved by utilizing ideas from

hierarchical memory systems. In such systems, memory consists of objects called

pages, which are organized into blocks, called caches. Successive caches have higher

storage capacity but higher access times. A common method for organizing such

memory structures involves a block-based version of the least-recently used (LRU)

policy, called Block-LRU by Aggarwal et al. [83]. In this policy, whenever a page is

accessed it is brought to the lowest level cache, and the page that has resided in this

cache for the longest time is evicted to the next higher level cache. The process is

repeated until reaching the lowest cache that has space to hold this page, possibly the

cache that contained the originally requested page. The following section describes

how the Block-LRU algorithm can be adapted to the geometric setting herein.

5.2.1 Hierarchical Model

In hierarchical memory systems, the cost of accessing an object is purely a

function of each cache’s speed. In the presented geometric context, the cost depends

on the total cost of the motion primitives, which depends on the `1 distances between

the locations of the boxes in the reorganization chain. The principal challenge is

adapting the cache-based cost to the geometric setting. The presented approach to

the attic problem is based on surrounding the access point by collections of nested

137

regions, called containers. Analogous to caches in the hierarchical memory systems,

containers that are closer to the access point provide faster access but have lower

storage capacity compared with those farther out.

It will simplify matters to describe the solution first for the infinite grid. The

following hierarchical model is defined: an infinite sequence of nested containers,

C0, C1, . . ., where C0 consists only of the origin (the access point), and for k ≥ 1, Ck

consists of the points of Z2 whose `1 distance from the origin varies from 2k−1 + 1

to 2k (see Fig. 5.4 below). Whenever a box b is requested, it is first moved to the

access point, and then a series of evictions takes place, where, for k = 0, 1, . . ., a box

from container Ck is moved to container Ck+1. The precise manner in which this

is done for swapping and sliding motions is explained in Sections 5.2.2 and 5.2.3,

respectively.

5.2.2 Online Algorithm for Swapping Motion

This section presents an online algorithm solving the attic problem in the case

of swapping motion, called Block-LRUA. Consider a request for a box b. If the access

point is unoccupied, the box is simply moved there. Otherwise, in order to make

space for b, the least-recently accessed box from C0, C1, and so on is evicted until one

encounters the first container Ck that has at least one unoccupied location (including

possibly b’s location at the time of the request). More formally, let pb denote b’s

location, let p0 denote the access point (origin), and let p1, . . . , pk−1 denote the

locations of the least-recently used boxes of containers C1 through Ck−1, respectively.

138

Finally, let pk ∈ Ck denote the final unoccupied location (possibly the former location

of b). As described in Section 5.1.1, this is achieved by performing swaps in reverse

order pk ↔ pk−1 ↔ · · · ↔ p0 ↔ pb (see Fig. 5.4(a)). The cost is the sum of the `1

distances between consecutive pairs.

C1

C3
C2

C4 C5
pb

(a) (b)

C1

C5pk

pk−1

pk

pk−1

pb
C4

C3
C2

p0 p0

Figure 5.4: (a) Nested containers for the attic problem and (b) restriction to a
rectangular domain.

In order to apply this to a rectangular domain Ω, the boundary of the containers

is simply clipped at the limits of Ω (see, e.g., Fig. 5.4(b)). Next, this will be shown

to be competitive.

Theorem 5.2.1. For any instance of the attic problem and any sufficiently long

access sequence S, the cost of Block-LRUA(S) is within a constant factor of the cost

of an optimal solution, assuming swapping motion.

Proof. Consider an input S consisting of the initial box placements and a sequence

of access requests. Let Topt(S) and Tlru(S) denote the total cost of the optimum and

Block-LRUA solutions, respectively, on this input. It will be shown that there exists

a constant c and quantity f(S) that does not grow with the length of the access

sequence, such that Tlru(S) ≤ cTopt(S) + f(S). Since f(S) does not grow with the

139

length of the access sequence, for all sufficiently long access sequences its impact on

the total cost will be negligible compared to Topt(S).

The following analysis will be based on an auxiliary statistic. Given any

container Ck, define an eviction to be an event in which a box lying within this

container is moved to a location in an enclosing container Ck′ , for k′ > k. For the given

access request sequence S, define Elru(S, k) to be the total number of evictions from

container Ck performed by Block-LRUA. Let Wlru(S) =
∑

k≥0 2kElru(S, k) denote

the weighted cost of these evictions. It will be shown that there exist constants c1

and c2 and quantities f1(S) and f2(S) that do not grow with the length of the access

sequence, such that the following two inequalities hold:

(1) Tlru(S) ≤ c1Wlru(S) + f1(S) and (2) Wlru(S) ≤ c2Topt(S) + f2(S).

First, inequality (1) is proven. Observe that the cost of processing a request

involving a box b in Block-LRUA consists of two parts, the cost of moving b to the

access point (i.e., the `1 distance between b and the access point) plus the cost of

performing the evictions caused by this move. It suffices to bound only the latter

quantity. To see why, consider two consecutive requests to b. Just after the first

request, b is located at the access point. When the second request occurs, if b is not

at the access point, it has been moved away due to various evictions involving b that

have occurred due to intervening access requests. By the triangle inequality, the

sum of the costs of these evictions involving b is at least as large as the `1 distance

of b from the access point at the time of the second request. Thus, the cost of

moving b to the access point for the second request is not greater than the cost of

140

evictions involving b due to intervening requests. All the requests for b except the

first can thereby be accounted for. Define f1(S) to be the sum of the `1 of every

box’s initial location to the access point. Clearly, f1(S) depends only on the initial

box placements.

It remains to bound the cost needed to process the evictions. Each time

Block-LRUA evicts a box from some container Ck to the enclosing container Ck+1,

the cost is bounded above by the maximum distance between any point of Ck to

any point in Ck+1. Clearly, this is not greater than the diameter of Ck+1, which

is 2k+2. Summing over all accesses and all containers, it follows that the total

cost of Block-LRUA evictions is at most
∑

k≥0 2k+2Elru(S, k) = 4Wlru(S). By the

earlier observation that the cost of bringing boxes back to the access point is

bounded above by the sum of f1(S) and the total eviction cost, it follows that

Tlru(S) ≤ c1Wlru(S) + f1(S), where c1 = 2 · 4 = 8, thus establishing (1).

To prove inequality (2), a technique will be applied similar to one given by

Sleator and Tarjan [84] and Aggarwal et al. [83] for hierarchical memory systems.

For any k ≥ 0, define Ck =
⋃
j≤k Cj (that is, the set of points within distance 2k of

the origin). Also define mk = |Ck| and mk = |Ck|, denoting the total capacities of

these sets. For each k ≥ 2, the weighted eviction cost of Block-LRUA on container

Ck with respect to the cost of box movements will be related to the optimal solution

within container Ck. The overall analysis comes about by summing over all container

levels.

Fix any k ≥ 2. Partition the access request sequence into contiguous segments,

such that within any segment (except possibly the last), Block-LRUA performs mk

141

evictions from container Ck. (The last segment will not be analyzed, but since there

is only one such segment for each k from which an eviction was performed, it follows

that for all sufficiently long access segments, the impact on the overall cost of these

segments is negligible. See Sleator and Tarjan [84] for more details.) Consider any

complete segment. The contribution of the evictions of this segment from Ck to the

weighted eviction cost Wlru(S) is 2kmk. In Block-LRUA every container Cj for j ≤ k

evicts the least recently accessed box, and this implies that any box evicted from

container Ck is the least recently accessed box not only from Ck, but from Ck as well.

It is asserted here that during this segment, the number of distinct boxes accessed

must be at least mk. To see why, observe that either all of the boxes evicted during

this segment are distinct, or some box was evicted twice during the sequence. If there

are mk distinct evictions, then there are at least mk distinct boxes requested. On

the other hand, if a box is evicted twice, then by the nature of Block-LRUA, between

these two evictions, every one of the mk boxes in Ck must have been accessed in

order for this box to transition from the most recent to the least recent.

Now consider how the optimum algorithm deals with the mk distinct box re-

quests that have occurred during this segment. Intuitively, because of the exponential

increase in container sizes, most of the mk distinct accessed boxes cannot fit within

Ck−1, and hence they must spill out into the surrounding region. The work needed

for the spillover will be charged for but be limited to Ck (to avoid double counting).

It will simplify matters to ignore boundary issues for now and consider the

unbounded case where Ω = Z2. Define Ĉk to be the set of points of the infinite

grid that lie within `1 distance (3/4)2k of the access point. Since k ≥ 2, therefore

142

Ck−1 ⊂ Ĉk ⊂ Ck. Let m̂k = |Ĉk|, yielding m̂k ≤ c′mk, where c′ ≈ (3/4)2 ≤ 2/3.

Thus, a fraction of 1−c′ or roughly one-third of the mk distinct boxes accessed during

this sequence must spill out from Ck−1 to an `1 distance of at least (3/4)2k − 2k−1 =

(1/2)2k−1 = 2k−2 beyond Ck−1’s outer boundary. It follows that the contribution to

the cost of Topt(S) of these boxes is at least (mk/3)2k−2 = 2kmk/12. Because all of

these box motions are contained within Ck, there is no double counting of this cost

between containers.

The generalization to the case of a bounded rectangular domain Ω is straight-

forward but tedious. The key difference is that, due to the bounded nature of Ω,

the sizes of consecutive containers may grow only linearly, not quadratically, with

the `1 radius of the container. (This happens, for example, if the domain is a long,

thin strip.) Further, the size of the last container may even be smaller than its

predecessor as one approaches the outer edges of the domain. However, the key is

that, since the radius value grows exponentially, consecutive container sizes differ by

a constant factor for all but a constant number of containers, and this is all that the

above analysis requires.

Let sk denote the number of complete segments for level k. Summing all the

segments and all the levels of the hierarchy, one obtains

Topt(S) ≥
∑
k≥2

sk2
k−2mk.

Adding in a term f2(S) to account for the final (incomplete) segments, noting that

m0 and m1 are both constants, and combining with the earlier bound on Wlru(S),

143

results in the following, for a suitable constant c3.

Wlru(S) ≤
∑
k≥0

sk2
kmk + f2(S) = s0m0 + s12m1 +

∑
k≥2

sk2
kmk + f2(S)

≤ c3(s0 + s1) + 4Topt(S) + f2(S).

The term c3(s0 + s1) is just a constant times the total number of access requests

and is not dominant. It follows that there is a constant c2 such that Wlru(S) ≤

c2Topt(S) + f2(S), which establishes inequality (2). Note that f2(S) does not grow

with the length of the access sequence.

Finally, by combining inequalities (1) and (2), one obtains

Tlru(S) ≤ c1Wlru(S) + f1(S) ≤ c1(c2Topt(S) + f2(S)) + f1(S)

≤ c1c2Topt(S) + (c1f2(S) + f1(S)) ≤ cTopt(S) + f(S),

for some constant c ≥ c1c2 ≥ 32 and quantity f(S) that does not grow with the

length of the access sequence. For all sufficiently long access sequences, this final

term will be negligible. This completes the proof.

5.2.3 Online Algorithm for Sliding Motion

In order to accommodate the added constraints involved in sliding boxes

around the space, the manner in which boxes are arranged throughout the domain is

constrained. An obvious solution would be to arrange the boxes in rows connected by

empty corridors, as in typical warehouses. However, this is not efficient asymptotically,

144

because it implies that the number of unoccupied squares in any region of space is

at least a constant fraction of the available space. A more space-efficient approach is

adopted herein by packing distant boxes more densely. While these distant boxes

will require more cost to access, this cost can be amortized against the cost incurred

by their distance from the access point.

To make this formal, a layout scheme is defined to be a subset of the integer

grid Z2, which can be thought of as a subset of the unit squares. For each integer s,

define n(s) to be the number of squares of the layout that lie within an s× s square

that is centered about the origin. Define the asymptotic density to be the limiting

ratio of the fraction of squares in the layout lying within such origin-centered squares,

that is, lims→∞ n(s)/s2. For example, the layout that places boxes at every point of

the grid has an optimal asymptotic density of 1, and a layout that places boxes only

on the white squares of an infinite chessboard has an asymptotic density of 1/2.

In this section, a layout that achieves the optimal asymptotic density of 1 is

described, and it is shown how to convert the swapping-based Block-LRUA algorithm

to the sliding context at the expense of an additional constant factor in cost.

5.2.3.1 The Nicomachus Layout

The presented layout scheme is inspired by a well-known visual proof of

Nicomachus’s Theorem [97], which is shown in Fig. 5.5(a).1 The grid is partitioned

1Nicomachus’s Theorem states that
∑n

k=1 k
3 =

(∑n
k=1 k

)2
. If both sides of the equation are

multiplied by 4, the layout of Fig. 5.5(a) provides a proof, where the left side arises by summing
the number of blocks ring-by-ring (the kth ring has 4k blocks, each with k2 squares) and the right
side comes from the overall area (since the side length of the nth ring is n(n+ 1) = 2

∑n
k=1 k).

145

into expanding concentric rings of square regions, denoted r1, r2, The innermost

ring, r1, consists of 4 unit squares. Ring r2 consists of eight copies of a 2× 2 square

region surrounding r1. In general, rk consists of 4k copies of a k × k square region

surrounding rk−1.

(a) (b) (c)

Figure 5.5: (a) A geometric tiling based on Nicomachus’s Theorem, (b) the associated
layout scheme, and (c) restricted to a rectangular domain.

The layout for the warehouse problem presented here, called the Nicomachus

layout, is constructed as follows. For each ring rk of the aforementioned structure and

for each k×k square region of this ring, the (k−1)×(k−1) unit squares are included

in the upper left corner in the layout (shaded in Fig. 5.5(b).) Each of these is called

a block. The upper-left cell of ring r1 is designated as the access point. Finally, to

accommodate a rectangular domain Ω, the layout is clipped to the boundary of the

rectangle and the layout squares touching the domain’s boundary are removed, thus

creating corridors along the domain walls (see Fig. 5.5(c)). Observe that each block

is surrounded by corridors that are one square wide. It is next shown that this layout

achieves an optimal asymptotic density.

Lemma 5.2.1. The Nicomachus layout achieves an asymptotic density of 1.

146

Proof. It suffices to show that the asymptotic wastage, that is, the asymptotic density

of the complement of the Nicomachus layout, is equal to zero. To see this, consider

the first ` ≥ 1 rings of the layout. Each ring rk, 1 ≤ k ≤ `, consists of 4k blocks, each

of size (k− 1)× (k− 1). The unused space per block is k2− (k− 1)2 = 2k− 1. Thus,

the total wasted space for ring k is 4k(2k − 1). Summing over all rings, the total

wastage is
∑`

k=1 4k(2k − 1) = 8`3/3 +O(`2). The first ` rings fill an origin-centered

square of side length `(` + 1), which yields a total area of at least `4. Therefore,

ignoring lower-order terms, the wastage for these rings is at most (8`3/3)/`4 = 8/3`.

Clearly, this tends to zero in the limit. (Expressed as a function of n, the asymptotic

density is the limit of 1− 8/(3n1/4).)

5.2.3.2 Accessing a Box

In order to access a box in the warehouse a robot must first travel to the block

in which that box resides, retrieve it from the block, and then return it to the access

point. The depth d of a box is defined to be the minimum number of boxes between

it and the boundary of the block that contains it. So, a box on the perimeter of

a block has depth d = 0, while one at the center of a block in ring ri has depth

d =
⌊
i−2

2

⌋
. (When the domain Ω is bounded, this is an upper bound, since peripheral

blocks may be clipped.)

In the Nicomachus layout, the cost of reaching a box in the arrangement and

retrieving it from a block are both a function of the ring in which it resides. Let

M(ri) denote the maximum cost of moving the robot from the access point to any

147

cell adjacent to a block of ring ri, and let C(ri) be the maximum cost of retrieving a

box from a block in ring ri. First, consider the travel cost of reaching a cell on the

perimeter of a block of boxes.

Lemma 5.2.2. Travelling from the access point to any cell adjacent to a block in

ring ri requires at most i2 + i steps.

Proof. To reach a box on the perimeter of a block in ring ri from the access point, a

robot must traverse each ring k ≤ i by circumnavigating one of its blocks. It is easy

to see that a robot can move between any two cells adjacent to a (k − 1)× (k − 1)

block of ring rk in 2k steps, from which it is concluded that the total travel time is

M(ri) ≤
i∑

k=1

2k = i(i+ 1) ≤ i2 + i.

An equivalent distance is traveled to return the requested box to the access

point.

Next, define a primitive Replace(d) that allows for the swapping of a box bi

placed in the aisle adjacent to a block B with a box bj ∈ B at depth d. For now

this primitive will be used to establish an upper bound on the cost of accessing a

box, while the need for actually swapping boxes will not become apparent until later.

Conceptually, the Replace primitive must unbury the target box by moving the d

boxes in the way. It does so by moving them each d+ 1 spaces away, retrieving the

target box, and then replacing them for a total cost O(d2). A more careful analysis

148

yields the following.

Agent box movement agent movement

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

2

1

2 2

1 1 2 1

2

2 1 2 1 2 1 1

2

1

2 1

Figure 5.6: Swapping a pair of boxes, where the original box is at depth d = 2 within
a 7× 7 block in ring r8.

Lemma 5.2.3. The cost of Replace(d) is at most 4d2 + 8d+ 6, where d is the depth

of box bj.

Proof. First, number the boxes inward from box bj’s nearest boundary from 1 to d.

Assume that the robot begins adjacent to box 1 and that box bi is adjacent to the

robot. Next, iteratively move each of the d+1 boxes (the d labeled boxes plus bj) to a

location that is d+2 units away along the side of the block (see Fig. 5.6). Accounting

for the time to reach each box, pick it up, move it, put it down, and return to a

position adjacent to the next box to be moved, each iteration has a total cost of 2d+3,

except the last, which does not require moving to the next box and so only costs

d+ 2. In total, moving these boxes costs d(2d+ 3) + (d+ 2) = 2d2 + 4d+ 2. Next, the

process is reversed at the same cost, replacing box bj with box bi and restoring boxes

1 through d to their original positions. This process is briefly interrupted to move

box bj out of the way, adding a cost of 2 (Fig. 5.6(h)). Thus, in total, swapping a new

box with an interior box comes at a cost of 2(2d2 + 4d+ 2) + 2 = 4d2 + 8d+ 6.

149

The depth of a box is bounded by the radius of the block in which it resides.

Specifically, a box in ring ri has a depth d ≤ i−2
2

and so, along with Lemma 5.2.3,

there is the following corollary:

Corollary 5.2.4. Retrieving a box from a block in ring ri has a cost of C(ri) ≤ i2 +2.

Combining this corollary and Lemma 5.2.2, the total cost to move to a box in

ring ri, retrieve it, and return to the access point is at most

(i2 + i) + (i2 + 2) + (i2 + i) = 3i2 + 2i+ 2 (5.1)

Next, consider retrieval cost as a function of distance from the access point.

Lemma 5.2.5. If a box is at `1 distance δ from the access point then it lies in a

ring ri, such that i ≤
√

3δ.

Proof. To reach the highest ring level possible at a distance δ, travel orthogonally

in a straight line, traversing each ring’s width in turn. As ring ri has width i, the

farthest ring that can be reached is the first ring ri such that

δ ≤
i∑

j=0

j =
i2 + i

2
(5.2)

Solving for i yields i ≥
√

2δ + 1
4
− 1

2
.

It is easily seen that for all δ ≥ 1,
√

3δ ≥
√

2δ + 1
4
− 1

2
, thus i =

√
3δ suffices

as an upper bound for the greatest ring index at a distance no more than δ.

150

By combining Eq. (5.1) and Lemma 5.2.5, the following is obtained.

Lemma 5.2.6. In the Nicomachus layout, retrieving a box at `1 distance δ from the

access point is O(δ).

Proof. Eq. (5.1) shows that retrieving a box in ring ri has a maximum total cost

of 3i2 + 2i + 2 and Lemma 5.2.5 shows that a box at distance δ will be in some

ring ri, where i ≤
√

3δ. So, retrieving a box at distance δ incurs at most a cost of

3(
√

3δ)2 + 2
√

3δ + 2 = 9δ + 2
√

3δ + 2, which is O(δ).

From this it is concluded that trading the positions of two boxes can be done at

a cost proportional to the sum of their `1 distances from the access point. A simple,

näıve algorithm could use the access point as an intermediary, accessing both boxes

at cost O(δ), and returning them to their opposing rather than original positions.

Thus, the following:

Corollary 5.2.7. If two boxes bi and bj are at `1 distances δi and δj from the access

point, respectively, then the cost of swapping them is no more than c(δi + δj), for

some constant c.

Given this corollary, it can now be shown that Block-LRUA is competitive in

the sliding model. From the proof of Theorem 5.2.1 and the structure of Block-LRUA,

it suffices to bound the cost of evictions from each of the containers. For any k ≥ 0,

consider an eviction from container Ck to Ck+1. The contribution of this eviction

to Wlru(S) is 2k. By Corollary 5.2.7, the cost of sliding one to the other is at most

c(2k−1 + 2k) < 2c2k, implying that the sliding cost is within a constant factor of the

151

eviction cost (roughly 4). From the proof of Theorem 5.2.1 the eviction cost can be

used as a proxy for its actual cost, and therefore the sliding cost is at most a constant

factor more than the actual cost of Block-LRUA in the case of swapping motion. This

implies that the cost of Block-LRUA in the sliding motion model is competitive with

the optimum solution in the swapping motion model. The actual cost of the optimum

algorithm in the sliding model cannot be lower than the actual cost of the optimum

algorithm in the swapping model. With a roughly factor-4 cost ratio between the

sliding and swapping models, the overall ratio is roughly 128. While this competitive

ratio may be rather high, the analysis thus far has assumed worst case scenarios

across multiple factors and the focus has been to prove the general competitiveness

rather than finding the best competitive ratio. An empirical experiment would likely

show that the average case scenario has a much more favorable competitive ratio.

Regardless, as a consequence of the above discussion:

Theorem 5.2.2. For any instance of the attic problem and any sufficiently long

access sequence S, the cost of Block-LRUA(S) is within a constant factor of the cost

of an optimal solution, assuming sliding motion.

5.3 Online Solution to the Warehouse Problem

This section presents an online algorithm for the warehouse problem. As

before, the algorithm for swapping motion is presented and then generalized to

sliding motion. Recall that the warehouse problem differs from the attic problem

in that there are multiple access points, all of which lie on the bottom side of the

152

rectangular domain Ω, which is assumed to lie on the x-axis. The presented algorithm,

called Block-LRUW , will be similar in spirit to online algorithms for hierarchical

memory systems, but the combination of spatial locations and multiple access points

adds considerable complexity. As with the attic problem, it will simplify matters

to describe the algorithm first in an infinite context, where boxes may be placed

anywhere above the x-axis, and then adjust the solution to the case of a rectangular

domain. The approach will be to define containers based on a quadtree-like structure

above the x-axis, and to evict boxes up the quadtree from child to parent. Each

quadtree cell will be treated as if it were a cache in a memory hierarchy, with the

least-recently used box evicted whenever more space is needed.

5.3.1 Quadtree Model

As mentioned above, the online solution to the warehouse problem presented

here employs a quadtree subdivision over the positive-y halfspace. The leaves of the

quadtree, or level 0, consist of the unit squares whose lower left corners are the grid

points on the x-axis, that is, (x, 0) for x ∈ Z. Level 1 consists of the 2× 2 squares

lying immediately above whose lower left corners are located at (2x, 1) for x ∈ Z. In

general, for k ≥ 0, level-k consists of the 2k × 2k squares whose lower left corners lie

on (2kx, 2k − 1), for x ∈ Z. Each level-k node u has a parent p(u) of twice the side

length lying immediately above on level k+ 1 (see Fig. 5.7(a)), and two children each

of half the side length lying immediately below on level k−1. The set of unit squares

associated with each node of the quadtree is called its cell. This structure covers the

153

infinite grid lying above the x-axis. Given a rectangular domain Ω whose lower side

lies along the x-axis, clip the above structure to this rectangle (see Fig. 5.7(b)).

a1 a2 a3 a4 a5

u

p(u)

(a)

aj

(c)

bi

Quadtree model Processing a request

(b)

a1 a2 a3 a4 a5

Restriction to Ω

Figure 5.7: Quadtree layout.

To simplify the analysis of this solution, a variant of the warehouse problem

with an alternate cost function based on this quadtree structure is first defined,

which is called the quadtree model. Of course, an optimal solution does not need to

follow this model, and later, the cost of the standard solution will be related to this

variant. The processing of requests in this model differs from the standard model

(described in Section 5.1.1) in that, after moving the box to the desired access point,

the reorganization chain is allowed to move a box within its current quadtree cell, or

it may move the box to the quadtree cell of an ancestor, but no other movements

are allowed (see Fig. 5.7(c)).

More formally, consider a request for a box b to access point a. Let Q0(a)

denote the quadtree cell containing a, and let Q1(a), Q2(a), . . . denote the successive

quadtree ancestor cells of Q0(a). If a is unoccupied, the box is simply moved there.

Otherwise, in order to make space for bi, a chain of swaps is performed along some

locations p0, p1, . . . , pk such that p0 = a, pk is unoccupied (possibly the former

154

location of b), and if pi ∈ Qj(a), then pi+1 is the same cell or an ancestor, that is,

pi+1 ∈ Qj′(a) for j′ ≥ j. As described in Section 5.1.1, swaps are performed (in

reverse order) along the resulting chain. Each swap that moves a box out of its

current quadtree cell is called an eviction.

Costs are defined as follows in this model. A box may be moved within its

quadtree cell free of charge, but when it is moved to an ancestor cell, it is charged 2k,

where k is the level of the quadtree cell into which the box is moved. (The analogy

with hierarchical memory systems should be evident, where one can think of each

quadtree cell as a cache, and eviction to an ancestor is analogous to moving a page

to a larger cache in slower memory.)

5.3.2 Online Algorithm for Swapping Motion

This section presents a model for the warehouse problem, which is called

Block-LRUW . Consider a request (b, a) to bring box b to access point a. If this access

point is unoccupied, the box is simply moved there. Otherwise, in order to make

space for b, a sequence of evictions is performed from Q0(a), Q1(a), and so on until

one encounters the first quadtree ancestor Qk(a) that has at least one unoccupied

location (possibly b’s location at the time of the request). More formally, let pb

denote b’s location, let p0 = a denote the access point, and let p1, . . . , pk−1 denote the

locations of the least-recently used boxes of quadtree cells Q0(a) through Qk−1(a),

respectively. Finally, let pk ∈ Qk(a) denote the final unoccupied location (or former

location of b). As described in Section 5.1.1, swaps are performed (in reverse order)

155

along the chain 〈pb, p0, . . . , pk〉. The main result of this section is showing that this

algorithm is competitive.

Theorem 5.3.1. For any instance of the warehouse problem and any sufficiently

long access sequence S, the cost of Block-LRUW (S) is within a constant factor of the

cost of an optimal solution, assuming swapping motion.

Observe that Block-LRUW satisfies the requirements in the quadtree model.

For the sake of the above theorem, its cost is computed in the standard manner, as

the sum of the `1 distances of all swaps performed. Later, it will be shown that this

is proportional to its cost in the quadtree model.

The remainder of this section is devoted to proving this theorem. First, consider

how the behavior of a general solution to the warehouse problem can be simulated

in the quadtree model. Rather than focusing on individual access requests, this will

be done on a box-by-box basis. Consider input sequence S and any box b. Let S ′

denote a contiguous segment of S, which starts and ends at two consecutive access

requests involving b. Denote these access points by a1 and a2, respectively. (For

the segment prior to b’s first access, set a1 to the closest access point to b’s initial

location, and for the segment following b’s last access, a2 can be set arbitrarily to

any access point.)

When the standard solution completes the processing of the first access request,

b will reside at a1. As a result of subsequent access requests in S ′, b may be moved to

new locations in the domain as a result of swap operations. Let 〈p0, . . . , pk〉 denote

the sequence of locations through which b moves during S ′, so that p0 = a1, and pk is

156

the location of b just prior to the upcoming access request at a2. Since this is in the

standard model, the points of this sequence are arbitrary. To perform the simulation,

a function π is defined that maps the location of b at any time to the cell of some

quadtree ancestor of a1 in a manner such that, under this function, b will move in

accordance with the quadtree model. This mapping is presented in the next section.

5.3.2.1 Container Structure for the Warehouse Problem

Before giving the details of the aforementioned mapping, it is helpful to

start with an intuitive explanation. For each access point a let Qk(a) denote

the quadtree cell associated with a’s ancestor at level k. Define a collection of

nested regions of exponentially increasing sizes, called containers, surrounding a and

denoted C0(a) ⊂ C1(a) ⊂ · · · (see Fig. 5.8(a)). (Note that, unlike the containers

of Section 5.2.1, which were pairwise disjoint, here each container includes all the

squares of its predecessors.)

a

(a)

a

(b)

Containers

C2(a)
Q3(a)

Q2(a)

Q4(a)

C1(a)

C0(a)

π2

π1

π0

Figure 5.8: Intuitive structure of containers for the warehouse quadtree model.

For each container Ck(a), define a 1–1 function πk that maps each point in

Ck(A) to a point within the cell of some quadtree ancestor of a. (For example,

157

in Fig. 5.8(a), πk maps boxes from Ck(a) to Qk+2(a).) In order to simulate the

movement of a box that has been accessed most recently by a, its movement will

be tracked through these containers. On first entering a container Ck(a) at some

point p, the box is mapped to the associated point πk(p) in the quadtree cell. When

the box moves to a new point p′ within the same container, the box is moved to

πk(p
′). Observe that because the containers are nested, even if the box moves into a

location in a smaller container, it will still be considered as lying within Ck and so

will remain in the same quadtree cell in the simulation. Recall that in the quadtree

model, movements within the same quadtree cell are free of charge, and hence there

is no need to account for movements within a given container. Whenever the box is

first moved into a new, larger container Ck′ , it will be charged the eviction cost of

2k
′′
, where Qk′′(a) is the associated quadtree cell.

The containers and the associated functions will now be defined more formally.

One complication that arises is that the functions πk associated with two nearby

access points may map locations to the same quadtree cell. When this happens, it

must be guaranteed that two distinct locations in their containers are not mapped

to the same location in this quadtree cell. To handle this, the container structure

is carefully designed so that access points that map to the same quadtree cell will

share the same container and the same mapping function.

To make this precise, consider any access point a and any quadtree ancestor

of a at level k. The function πk for a will map points from a’s container Ck(a) to

Qk+2(a). This implies that the four grandchildren of Qk+2(a) at level k will do the

same. So, all of them will be given a common container and a common function. (In

158

Fig. 5.9(a), the container C2(a) is shared by four 4× 4 quadtree cells drawn in heavy

black lines.) The associated container is defined as follows. First, imagine a square

grid of side length 2k covering the plane that is aligned with the quadtree cells. The

container consists of the 16 grid cells that are `1 neighbors of the four grandchildren.

(In Fig. 5.9(a), this container C2(a) is shaded in dark gray and includes the squares

of C0(a) and C1(a). Note that the lowest tier of these grid squares falls one unit

below the x-axis, but these nonexistent squares are simply ignored in the mapping.)

The number of squares is at most 16 · 2k = 2k+2, and so there is sufficient space to

map the squares of the container into Qk+2(a) (see Fig. 5.9(b)). πk is defined for

this container to be any such function. (It is not required that this function preserve

distances, because according to the quadtree model, movements within a quadtree

cell are free.)

Q4(a)

Q3(a)

Q2(a)

C2(a)

C1(a)C0(a)

(a) (b)

a a

π2

π1

π0

Figure 5.9: Actual structure of containers for the warehouse quadtree model.

159

5.3.2.2 Proving Competitiveness

This section presents a proof of Theorem 5.3.1.

Given an access sequence S, define Topt(S), Tlru(S) to be the (standard) costs for

Opt and Block-LRUW , respectively. Define Wlru(S) to be the cost of Block-LRUW in

the quadtree cost model, and define Wopt(S) to be the cost of the quadtree-simulated

version of Opt in the quadtree cost model.

The analysis follows a similar structure to the one given in Theorem 5.2.1, and

so this section will focus on just the major differences. The analysis is based on three

inequalities, where c1, c2, and c3 are constants and f2(S) and f3(S) are quantities

that do not grow with the length of the access sequence:

(1)Tlru(S) ≤ c1Wlru(S) (2)Wlru(S) ≤ c2Wopt(S)+f2(S) (3)Wopt(S) ≤ c3Topt(S)+f3(S)

• Tlru(S) ≤ c1Wlru(S): Block-LRUW is running in the quadtree model, but it

uses the standard (`1) costs, not the eviction costs. Also, it evicts from child

to parent, never skipping ancestors. When moving a box from quadtree cell

Qk−1 to Qk the actual cost is at most the worst-case `1 distance between these

cells, which is at most 2 · 2k = 2k+1, and the quadtree model assesses a charge

of 2k. Thus, setting c1 = 2 yields the desired bound.

• Wlru(S) ≤ c2Wopt(S) + f2(S): Let mk = 22k denote the number of boxes in

a quadtree cell Qk at level k. Let mk be the sum of mk for a quadtree cell

and all its descendants (which is roughly 2mk). Focus on a single quadtree

160

cell at level k, call it Qk. Consider the two child cells at level k − 1, Q′k−1

and Q′′k−1. Let A′ and A′′ denote the subsets of access points descended from

these two quadtree nodes, respectively. Now, break up the access sequence

into contiguous segments, such that Qk witnesses mk evictions in the running

of Block-LRUW . Consider a single segment S ′. Observe that, with respect to

access points A′∪A′′, Block-LRUW is effectively running an LRU algorithm on

the union of Qk and the cells of all its children. (To see why, observe that the

least-recently used boxes of each descendent are evicted to their parents and

eventually up to to Qk, and the least-recently used box within Qk is evicted.)

Over segment S ′, at least mk distinct box accesses have been processed by the

access points A′ ∪A′′ combined. Now, consider how Wopt(S) handles the same

requests, but from the perspective of Q′k−1 and Q′′k−1. These two together (and

their descendant cells) have a total capacity of mk−1 + mk−1 ≈ mk/2. Thus,

the remaining roughly mk/2 boxes must be evicted from these children by Opt.

They may be evicted up one level to Qk or up multiple levels. For the sake

of simplicity, consider the case where they are evicted up just one level to

Qk. (The other case involves splitting the charge among the nodes along the

path according to a geometric series.) Each evicted box is assessed a charge

of 2k, for a total of roughly 2kmk/2 = 2k−1mk. Therefore, the total charge

assessed to Wopt(S) during this segment is at least 2k−1mk, while the total

charge assessed to Qk in Wlru(S) is 2k+1mk. Summing over all the levels (and

letting f2(S) account for the charges in the partial segment at the end of S)

161

yields Wlru(S) ≤ c2Wopt(S) + f2(S), where c2 is roughly 4.

• Wopt(S) ≤ c3Topt(S) + f3(S): The analysis focuses on the activity involving a

single box b between two consecutive accesses to a and a′, say. (The additional

f3(S) term handles the cost prior to the initial request for b and after the

final request.) Observe that Wopt(S) does not charge for movements within a

quadtree cell, and (since this is the quadtree model) it never demotes a box to

a lower level of the quadtree. It charges an eviction cost of 2k whenever the

box enters a quadtree cell at level k. This event corresponds to an event in

standard Opt when this box enters Ck(a) \ Ck−1(a) for the first time. Let k∗

denote the highest container index into which Opt moves this box (formally,

the highest k such that the box enters Ck(a) \ Ck−1(a)). Since this box might

be evicted into all the containers from level 1 up to k∗, this box contributes

at most
∑k∗

k=1 2k ≤ 2k
∗+1 to Wopt(S). On the other hand, Opt has to move

this box from the access point to some point in Ck∗(a) \ Ck∗−1(a). It is easy

to see that this involves a distance of at least 2k
∗

+ 1. It follows that this box

contributes more than 2k
∗

to Topt(S) and at most 2k
∗+1 to Wopt(S). Therefore,

setting c3 = 2 yields the desired result.

Together, the three inequalities imply that

Tlru(S) ≤ c1Wlru(S) ≤ c1(c2Wopt(S) + f2(S))

≤ c1(c2(c3Topt(S) + f3(S)) + f2(S)) ≤ cTopt(S) + f(S),

162

where c = c1c2c3 = 16 and f(S) = c1c2f3(S) + c1f2(S). This completes the proof of

Theorem 5.3.1.

5.3.3 Online Algorithm for Sliding Motion

This section shows that the competitiveness of Block-LRUW in the case of

swapping motion can be used to prove that the sliding version of the same algorithm

is competitive. As in the attic problem, the approach will be to describe a layout of

boxes that is amenable to efficient sliding motion.

This analysis makes use of a Nicomachus-like box layout. Rather than rings

centered about the access point, rings are flattened into layers stacked above the

x-axis. As before, the arrangement begins with a layer of 1× 1 cell regions. Above

this is a row of 2×2 regions, then 3×3, and so on, with each i× i region containing a

block of (i−1)× (i−1) boxes (see Fig. 5.10). This is called the flattened Nicomachus

layout.

δ

yi yjx

Figure 5.10: A flattened version of the Nicomachus layout for the warehouse problem,
with a conceptual example of swapping two boxes. Pathfinding is ignored in this
illustration, but accounted for in the supporting lemma.

Once again, one can make use of a simple näıve algorithm that can efficiently

trade the positions of two boxes in the sliding model. More formally, the following is

163

proven:

Lemma 5.3.1. If two boxes bi and bj are at `1 distances δ from each other and at

vertical distances yi and yj from the x-axis, respectively, then the cost of swapping

them in the flattened Nicomachus layout is no more than c(δ + yi + yj), for some

constant c.

Proof. A näıve algorithm can swap the two boxes bi and bj by: (1) bringing them

to the x-axis, (2) swapping their positions along the x-axis, and (3) returning them

to their new vertical positions. Notice that the cost of retrieving/replacing a box

and bringing it to the x-axis is equivalent to the retrieval cost of a box positioned

directly above the access point in the Attic Problem with Sliding Motion. As per

Lemma 5.2.6, this access cost in both contexts is O(y), where y is the distance to

the x-axis or singular access point, respectively. Given this, both steps (1) and (3) of

the algorithm occur at a constant factor of (yi + yj). Clearly the horizontal distance

traveled along the x-axis, x is less than or equal to δ, therefore, the total cost of

swapping the two boxes must be no greater than c(δ + yi + yj), for some constant

c.

This lemma can be used to relate the cost of trading two elements in the

swapping and sliding models. The following summarizes the main result.

Theorem 5.3.2. For any instance of the warehouse problem and any sufficiently

long access sequence S, the cost of Block-LRUW (S) is within a constant factor of the

cost of an optimal solution, assuming sliding motion.

164

Proof. From Theorem 5.3.1 and the structure of Block-LRUW , it suffices to bound

the cost of evictions from one quadtree node to its parent. Assuming that the node

is at quadtree level k− 1, and its parent is at level k, this swap incurs a cost of 2k in

the quadtree model. Letting y1 and y2 denote the vertical distances of these locations

from the x-axis, then y1 ≤ 2k and y2 ≤ 2k+1. Also, they are separated from each

other by an `1 distance of δ ≤ 2k+2. By Lemma 5.3.1, the cost of sliding one to the

other is at most c(δ+yi+yj) ≤ c(2k+2 + 2k + 2k+1) = 7c2k, implying that sliding cost

is within a constant factor of the quadtree cost. From the proof of Theorem 5.3.1

and the structure of Block-LRUW , the quadtree cost of Block-LRUW can be used as

a proxy for its actual cost, and therefore the sliding cost is at most a constant factor

more than the actual cost of Block-LRUW assuming swapping motion. This implies

that the cost of Block-LRUW in the sliding motion model is competitive with the

optimum solution in the swapping motion model. The actual cost of the optimum

algorithm in the sliding model cannot be lower than the actual cost of the optimum

algorithm in the swapping model. With a roughly factor-7 cost ratio between the

sliding and swapping models, the overall ratio is roughly 112. As before, this is based

on many worst-case assumptions and can likely be improved upon.

165

Chapter 6: Conclusion

The goal of this dissertation has been to identify optimization problems that

are simple enough to analyze formally, yet realistic enough to contribute to the

eventual design of systems rooted in shared, physical spaces.

While other works tackle the low-level engineering challenges involved in

designing such systems or the high-level decision problems one might face, the focus

herein has been somewhere in between, drawing heavily from the tools and techniques

of computational geometry and algorithmic analysis.

By applying these techniques to shared-space autonomous systems, their com-

plexity has been explored, assessing the difficulty of the tasks to be solved, gaining

insights into methods for finding efficient solutions, and, ultimately, demonstrating

such solutions.

In particular, three problems have been presented in their respective chapters:

automated vehicles and unregulated traffic crossings, a smart network for smooth

city-wide traffic flow, and an online organizational scheme for automated warehouses.

A summary of the results follows, along with some discussion on future avenues

of exploration.

6.1 On the Complexity of an Unregulated Traffic Crossing

Chapter 3 introduced the Traffic Crossing Problem (TCP). After formally

defining it in Section 3.2, three results are given: this problem is proven NP-complete

166

(Section 3.3), a constrained version is solved in O(n log n) time (Section 3.5), and,

in a discrete setting, an asymptotically optimal solution is provided that limits

maximum delay of any vehicle (Section 3.6).

The definition of the TCP in this work is, of course, an abstraction of a true,

real-world traffic crossing. While the formulations used may be less realistic than a

more complex one, they avoid some of the more cumbersome elements of one that

attempts to capture every conceivable detail. This admits a much clearer view of the

sources of computational complexity while still capturing the most salient elements

of a traffic crossing.

However, to be more generally applicable, the model will need to evolve

to encompass many types of traffic conditions/situations. So, for example, the

movement model for vehicles in the system is fairly restrictive, as it only allows

for linear, monotonic motion within a global speed interval. Allowing for nonlinear

motion, non-monotonicity, or per vehicle/lane speed limits may have a dramatic

effect on the behavior of traffic in the system or the efficacy of current solution

methods.

Additionally, in the model, streets are laid out on a unit grid. Not all real-world

street networks are laid out in such a convenient manner and even those that are

are likely to contain slight angular and distance differences that may be enough to

disturb the provided algorithms. The model would need to handle curving or turning

roads, roads that lie in arbitrary locations and orientations on the plane, over/under

passes, and so forth, to be more generally applicable and robust.

Other assumptions have been made with regard to the general traffic patterns,

167

as well. For example, in the unit-delay solution the assumption is made that no

caravan of vehicles is long enough to overflow into an adjacent intersection. This

so-called short-caravan assumption was made to avoid a lengthy digression into how

to handle cyclic dependencies in city blocks, but is a relatively common occurrence

in urban traffic settings.

So too is imperfect knowledge. Having a priori knowledge of all vehicles provides

a sizable advantage that is atypical of real-world systems. Instead, a solution to an

online version of the problem that could, for example, take preventative measures

rather than suffering the consequences of reactive strategies would be a very powerful

tool.

Finding solutions to the TCP free of these assumptions and model restrictions

would go a long way toward bridging the gap between the theoretical results presented

here and their real-world application.

6.2 Modular Circulation and Applications to Traffic Management

Chapter 4 built upon the well-known circulation problem, by introducing a

variant referred to as the λ-CMD problem. Given a directed graph G and vertex

demands d ∈ Z (mod λ), the λ-CMD problem is that of computing a minimum-cost

flow that satisfies the modular demands of every vertex. A modular demand d is

satisfied by an inbound flow of d or an outbound flow of λ− d.

This chapter showed that 2-CMD can be solved exactly in polynomial time as,

thanks to the nature of modular demands, edge direction is irrelevant and finding

168

a minimum-cost satisfying flow is equivalent to finding a minimum-cost perfect

matching between vertices (see Section 4.4 for details).

Additionally, by way of a reduction from positive 1-in-3-SAT, it was shown

that λ-CMD is NP-hard for λ ≥ 3. This reduction is first illustrated with an example

of a reduction to 3-CMD (see Section 4.5) and later generalized for larger values

of λ through a simple extension of the gadgets used in the λ = 3 example (see

Section 4.5.4).

The final result is a polynomial time 4(λ− 1)-approximation to λ-CMD. This

approximation employs a Kruskal-like algorithm to build balanced neighborhoods

that can satisfy their demands without costly external flows. To do so, however,

requires that the edge directions are ignored, which induces a λ factor penalty to

the approximation (see Section 4.6).

Future work could be done to do away with this limitation and decrease the

approximation factor, perhaps removing the λ factor entirely. Additionally, the

reduction used in the hardness proof of λ-CMD is for generalized directed graphs,

meaning that these graphs are not necessarily planar. While studies of actual road

networks have shown that crossings are not uncommon [98], in many urban road

networks the fraction of crossings to total intersections is very small [99]. It would

therefore be of interest to know whether the λ-CMD problem is hard even for planar

graphs. Although there are planar variants of satisfiability, which make use of

cross-over gadgets to eliminate non-planar elements (see, e.g., [100]), such a gadget

was not discovered in the λ-CMD context in the course of the work described in this

dissertation. An open problem, therefore, is whether planar λ-CMD is NP-hard as

169

well.

Finally, as before, this work could be extended by generalizing it to more robust

models of traffic flow, including but not limited to multi-lane roads, bidirectional

streets, mixed blocks with differing numbers of sides (particularly a mix of even-

and odd-numbered sides, as this disrupts the periodic patterns), and vehicles that

exhibit more complex behaviors such as turning at intersections, changing lanes, etc.

6.3 Online Algorithms for Warehouse Management

Chapter 5 presented a model for an automated warehouse management system

containing a set of standardized portable storage units or boxes, a robot that moves

these boxes around the warehouse in one of two ways (swapping or sliding), and a set

of access points where requested boxes must be delivered. It then presented online

algorithms for two natural instances of the warehouse problem, one involving a single

access point within a rectangular domain and the other involving a sequence of access

points along the bottom side of a rectangular domain. The algorithms presented

in this chapter were proven to be competitive with respect to an optimal (offline)

algorithm with full knowledge of the access sequence. However, the competitive

ratios are relatively high, and are likely far from tight, but tightening these bounds

will involve either significantly more complex algorithms or better lower bounds.

Some interesting open problems are left for future work. Recall that the model

presented assumes that access requests are processed sequentially. This simplifying

assumption removes the extremely difficult issue of motion coordination, which

170

arises when multiple robots are present [31, 33, 77]. Clearly, any realistic solution

should consider an environment with multiple robots where requests are processed

concurrently. Because the layout of boxes in the domain is controlled, it may

be possible to insert additional slack space into the layout to facilitate efficient

motion coordination. Another interesting question in this vein is how to handle

the insertion/deletion of boxes from the collection. Perhaps memory management

schemes such as [101], which efficiently handle the reallocation of 2D memory, could

be further leveraged.

Also, how does competitiveness change, if at all, when the model becomes less

uniform? In the currently presented model, all actions taken by the robot are of unit

cost, regardless of factors like whether or not the robot is laden or what sort of path

a robot takes to retrieve a box. Çelik and Süral [102], for example, show that the

number of turns a robot makes in a parallel-aisle warehouse can have a significant

impact on retrieval efficiency. Fekete and Hoffmann [82] look at the online problem of

packing differently sized squares into a dynamically-sized square container. Applying

this work to a warehouse which does not use standardized containers would be a

natural continuation of the work presented here. Further generalizing the presented

model to account for differing action costs and box dimensions would increase its

real-world applicability and may lead to some interesting insights.

171

Bibliography

[1] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,” Management
Science, vol. 6, no. 1, pp. 80–91, Oct. 1959.

[2] G. Clarke and J. W. Wright, “Scheduling of vehicles from a central depot to a
number of delivery points,” Oper. Res., vol. 12, no. 4, pp. 568–581, Aug. 1964.

[3] M. M. Solomon, “Algorithms for the vehicle routing and scheduling problems
with time window constraints,” Oper. Res., vol. 35, no. 2, pp. 254–265, Apr.
1987.

[4] J. Yu and S. M. LaValle, “Multi-agent path planning and network flow,” in
Algorithmic Foundations of Robotics X: Proc. 10th Workshop Algorithmic
Foundations Robotics, E. Frazzoli, T. Lozano-Perez, N. Roy, and D. Rus, Eds.,
2013, pp. 157–173.

[5] R. Fenton, G. Melocik, and K. Olson, “On the steering of automated vehicles:
Theory and experiment,” IEEE Trans. Autom. Control, vol. 21, no. 3, pp.
306–315, Jun. 1976.

[6] R. Rajamani, Vehicle Dynamics and Control, 2nd ed., ser. Mechanical Engi-
neering Series. New York: Springer, 2012.

[7] L. J. Guibas, “Kinetic data structures: A state of the art report,” in Robotics:
The Algorithmic Perspective: 3rd Workshop Algorithmic Foundations Robotics,
P. Agarwal, L. Kavraki, and M. Mason, Eds., Aug. 1998, pp. 191–209.

[8] J. Basch, L. Guibas, and J. Hershberger, “Data structures for mobile data,” J.
Algorithms, vol. 31, no. 1, pp. 1–28, Apr. 1999.

[9] D. Kirkpatrick, J. Snoeyink, and B. Speckmann, “Kinetic collision detection
for simple polygons,” in Proc. 16th Annu. Symp. Computational Geometry,
2000, pp. 322–330.

[10] P. K. Agarwal, J. Basch, L. J. Guibas, J. Hershberger, and L. Zhang, “De-
formable free-space tilings for kinetic collision detection,” Int. J. Robot. Res.,
vol. 21, no. 3, pp. 179–197, Mar. 2002.

[11] J. Basch, J. Erickson, L. J. Guibas, J. Hershberger, and L. Zhang, “Kinetic
collision detection between two simple polygons,” Computational Geometry,
vol. 27, no. 3, pp. 211–235, Mar. 2004.

172

[12] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu, “Discrete mobile
centers,” in Proc. 17th Annu. Symp. Computational Geometry, 2001, pp. 188–
196.

[13] J. Hershberger, “Smooth kinetic maintenance of clusters,” in Proc. 19th Annu.
Symp. Computational Geometry, 2003, pp. 48–57.

[14] Y. Li, J. Han, and J. Yang, “Clustering moving objects,” in Proc. 10th ACM
SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Aug. 2004, pp.
617–622.

[15] J. Basch, L. Guibas, and L. Zhang, “Proximity problems on moving points,”
in Proc. 13th Annu. Symp. Computational Geometry, 1997, pp. 344–351.

[16] P. K. Agarwal, H. Kaplan, and M. Sharir, “Kinetic and dynamic data structures
for closest pair and all nearest neighbors,” ACM Trans. Algorithms, vol. 5,
no. 1, pp. 4:1–4:37, Dec. 2008.

[17] S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez, “Indexing the
positions of continuously moving objects,” ACM SIGMOD Rec., vol. 29, no. 2,
pp. 331–342, May 2000.

[18] C. Ó Dúnlaing, M. Sharir, and C. K. Yap, “Retraction: A new approach to
motion-planning,” in Proc. 15th Annu. ACM Symp. Theory Computing, Dec.
1983, pp. 207–220.

[19] E. M. Arkin, S. P. Fekete, and J. S. Mitchell, “The lawnmower problem,” in
Proc. 5th Canadian Conf. Computational Geometry, Aug. 1993, pp. 461–466.

[20] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell, “Approximation algorithms
for lawn mowing and milling,” Comput. Geom., vol. 17, no. 1, pp. 25–50, Oct.
2000.

[21] S. Arya, S.-W. Cheng, and D. M. Mount, “Approximation algorithm for
multiple-tool milling,” Int. J. Comput. Geom. Appl., vol. 11, no. 03, pp. 339–
372, Jun. 2001.

[22] F. Berger and R. Klein, “A traveller’s problem,” in Proc. 26th Annu. Symp.
Computational Geometry, Jun. 2010, pp. 176–182.

[23] E. M. Arkin, J. S. Mitchell, and V. Polishchuk, “Maximum thick paths in
static and dynamic environments,” in Proc. 24th Annu. Symp. Computational
Geometry, Jun. 2008, pp. 20–27.

[24] A. Kawamura and Y. Kobayashi, “Fence patrolling by mobile agents with
distinct speeds,” Distrib. Comput., vol. 28, no. 2, pp. 147–154, 2015.

[25] F. Pasqualetti, A. Franchi, and F. Bullo, “On cooperative patrolling: Optimal
trajectories, complexity analysis, and approximation algorithms,” IEEE Trans.
Robot., vol. 28, no. 3, pp. 592–606, Jun. 2012.

173

[26] Y. Chiang, J. Klosowski, C. Lee, and J. Mitchell, “Geometric algorithms for
conflict detection/resolution in air traffic management,” in Proc. 36th IEEE
Conf. Decision and Control, vol. 2, Dec. 1997, pp. 1835–1840.

[27] L. J. Guibas, J. S. B. Mitchell, and T. Roos, “Voronoi diagrams of moving
points in the plane,” in WG 1991: Graph-Theoretic Concepts Computer Science,
ser. Lecture Notes in Computer Science, G. Schmidt and R. Berghammer, Eds.,
vol. 570. Springer, 1992, pp. 113–125.

[28] S. H. Arul, A. J. Sathyamoorthy, S. Patel, M. Otte, H. Xu, M. C. Lin, and
D. Manocha, “LSwarm: Efficient collision avoidance for large swarms with
coverage constraints in complex urban scenes,” IEEE Robot. Autom. Lett.,
vol. 4, no. 4, pp. 3940–3947, Oct. 2019.

[29] E. D. Demaine, S. P. Fekete, P. Keldenich, H. Meijer, and C. Scheffer, “Coordi-
nated motion planning: Reconfiguring a swarm of labeled robots with bounded
stretch,” SIAM J. Comput., vol. 48, no. 6, pp. 1727–1762, Jan. 2019.

[30] J. Reif and M. Sharir, “Motion planning in the presence of moving obstacles,”
J. ACM, vol. 41, no. 4, pp. 764–790, Jul. 1994.

[31] R. Sharma and Y. Aloimonos, “Coordinated motion planning: The warehouse-
man’s problem with constraints on free space,” IEEE Trans. Syst. Man Cybern.,
vol. 22, no. 1, pp. 130–141, Jan. 1992.

[32] G. Flake and E. Baum, “Rush Hour is PSPACE-complete, or “Why you should
generously tip parking lot attendants”,” Theor. Comput. Sci., vol. 270, no. 1-2,
pp. 895–911, Jan. 2002.

[33] R. A. Hearn and E. D. Demaine, “PSPACE-completeness of sliding-block
puzzles and other problems through the nondeterministic constraint logic
model of computation,” Theoretical Computer Science, vol. 343, no. 1, pp.
72–96, Oct. 2005.

[34] N. Gupta and D. S. Nau, “On the complexity of blocks-world planning,”
Artificial Intelligence, vol. 56, no. 2, pp. 223–254, Aug. 1992.

[35] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Englewood Cliffs, NJ, USA: Prentice Hall,
1993.

[36] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 3rd ed. Cambridge, MA, USA: MIT Press, 2009.

[37] J. Kleinberg and É. Tardos, Algorithm Design. Boston, MA, USA: Addison-
Wesley, 2005.

[38] A. V. Goldberg and R. E. Tarjan, “Finding minimum-cost circulations by
canceling negative cycles,” J. ACM, vol. 36, no. 4, pp. 873–886, Oct. 1989.

174

[39] J. Edmonds and R. Karp, “Theoretical improvements in algorithmic efficiency
for network flow problems,” J. ACM, vol. 19, no. 2, pp. 248–264, Apr. 1972.

[40] J. B. Orlin, “A polynomial time primal network simplex algorithm for minimum
cost flows,” Math. Program., vol. 78, pp. 109–129, 1997.

[41] L. R. Ford and D. R. Fulkerson, “Constructing maximal dynamic flows from
static flows,” Oper. Res., vol. 6, no. 3, pp. 419–433, May 1958.

[42] D. R. Ford and D. R. Fulkerson, Flows in Networks. Princeton, NJ, USA:
Princeton University Press, 2010.

[43] L. Fleischer and É. Tardos, “Efficient continuous-time dynamic network flow
algorithms,” Oper. Res. Lett., vol. 23, no. 3–5, pp. 71–80, Oct. 1998.

[44] L. Fleischer and M. Skutella, “Quickest flows over time,” SIAM J. Comput.,
vol. 36, no. 6, pp. 1600–1630, Jan. 2007.

[45] K. Dresner and P. Stone, “A multiagent approach to autonomous intersection
management,” J. Artif. Intell. Res., vol. 31, no. 1, pp. 591–656, Mar. 2008.

[46] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of
cooperative, autonomous vehicles in warehouses,” AI Mag., vol. 29, no. 1, pp.
9–19, Mar. 2008.

[47] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using
velocity obstacles,” Int. J. Robot. Res., vol. 17, no. 7, pp. 760–772, Jul. 1998.

[48] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal Velocity Obstacles
for real-time multi-agent navigation,” in 2008 IEEE Int. Conf. Robotics and
Automation, May 2008, pp. 1928–1935.

[49] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body
collision avoidance,” in Robotics Research, ser. Springer Tracts in Advanced
Robotics, B. Siciliano, O. Khatib, F. Groen, C. Pradalier, R. Siegwart, and
G. Hirzinger, Eds. Berlin, Germany: Springer, 2011, no. 70, pp. 3–19.

[50] S. Akella and S. Hutchinson, “Coordinating the motions of multiple robots with
specified trajectories,” in Proc. 2002 IEEE Int. Conf. Robotics and Automation,
May 2002, pp. 624–631.

[51] S. Petti and T. Fraichard, “Safe motion planning in dynamic environments,”
in 2005 IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS 2005),
Aug. 2005, pp. 2210–2215.

[52] S. Rodriguez, J. Lien, and N. Amato, “A framework for planning motion
in environments with moving obstacles,” in 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2007), Oct. 2007, pp.
3309–3314.

175

[53] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” IEEE
Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, Aug. 1996.

[54] S. LaValle and S. Hutchinson, “Path selection and coordination for multiple
robots via Nash equilibria,” in Proc. 1994 IEEE Int. Conf. Robotics and
Automation, vol. 3, May 1994, pp. 1847–1852.

[55] N. Nisan, T. Roughgarden, É. Tardos, and V. V. Vazirani, Algorithmic Game
Theory. Cambridge, UK: Cambridge University Press, Sep. 2007.

[56] R. J. Aumann, “Acceptable points in general cooperative n-person games,” in
Contributions to the Theory of Games, ser. Annals of Mathematics Studies,
A. W. Tucker and R. D. Luce, Eds. Princeton, NJ, USA: Princeton University
Press, 1959, vol. 4, no. 40, pp. 287–324.

[57] R. Koch and M. Skutella, “Nash equilibria and the price of anarchy for flows
over time,” Theory Comput. Syst., vol. 49, no. 1, pp. 71–97, 2011.

[58] S. Kopparty and C. V. Ravishankar, “A framework for pursuit evasion games
in Rn,” Inf. Process. Lett., vol. 96, no. 3, pp. 114–122, Nov. 2005.

[59] D. Carlino, S. D. Boyles, and P. Stone, “Auction-based autonomous intersection
management,” in 16th Int. IEEE Conf. Intelligent Transportation Systems,
Oct. 2013, pp. 529–534.

[60] K. Dresner and P. Stone, “Multiagent traffic management: A reservation-based
intersection control mechanism,” in Proc. 3rd Int. Joint Conf. Autonomous
Agents and Multiagent Systems (AAMAS 2004), vol. 2, 2004, pp. 530–537.

[61] ——, “Multiagent traffic management: An improved intersection control mech-
anism,” in Proc. 4th Int. Joint Conference Autonomous Agents and Multiagent
Systems (AAMAS 2005), Jul. 2005, pp. 471–477.

[62] M. VanMiddlesworth, K. Dresner, and P. Stone, “Replacing the stop sign:
Unmanaged intersection control for autonomous vehicles,” in Proc. 7th Int.
Joint Conf. Autonomous Agents and Multiagent Systems (AAMAS 2008), 2008,
pp. 1413–1416.

[63] K. C. Wang and A. Botea, “MAPP: A scalable multi-agent path planning
algorithm with tractability and completeness guarantees,” J. Artif. Intell. Res.,
vol. 42, pp. 55–90, Sep. 2011.

[64] M. Sasaki and T. Nagatani, “Transition and saturation of traffic flow controlled
by traffic lights,” Physica A: Statistical Mechanics and its Applications, vol.
325, no. 3, pp. 531–546, Jul. 2003.

[65] T. Nagatani, “The physics of traffic jams,” Rep. Prog. Phys., vol. 65, no. 9, pp.
1331–1386, Aug. 2002.

176

[66] C. Gershenson, “Self-organizing traffic lights,” Complex Syst., vol. 16, no. 1,
pp. 29–53, 2005.

[67] S.-B. Cools, C. Gershenson, and B. D’Hooghe, “Self-organizing traffic lights: A
realistic simulation,” in Advances in Applied Self-Organizing Systems, 2nd ed.,
ser. Advanced Information and Knowledge Processing, M. Prokopenko, Ed.
London, UK: Springer, 2013, pp. 45–55.

[68] A. John, A. Schadschneider, D. Chowdhury, and K. Nishinari, “Trafficlike
collective movement of ants on trails: Absence of a jammed phase,” Phys. Rev.
Lett., vol. 102, no. 10, p. 108001, Mar. 2009.

[69] S. Lammer and M. Treiber, “Self-healing networks: Gridlock prevention with
capacity regulating traffic lights,” in IEEE 6th Int. Conf. Self-Adaptive and
Self-Organizing Systems Workshops (SASOW), Sep. 2012, pp. 61–65.

[70] F. Amato, F. Basile, C. Carbone, and P. Chiacchio, “An approach to control
automated warehouse systems,” Control Eng. Pract., vol. 13, no. 10, pp.
1223–1241, Oct. 2005.

[71] F.-L. Chang, Z.-X. Liu, Z. Xin, and D.-D. Liu, “Research on order picking
optimization problem of automated warehouse,” Syst. Eng. - Theory Pract.,
vol. 27, no. 2, pp. 139–143, Feb. 2007.

[72] M. Sarrafzadeh and S. R. Maddila, “Discrete warehouse problem,” Theor.
Comput. Sci., vol. 140, no. 2, pp. 231–247, Apr. 1995.

[73] K.-W. Pang and H.-L. Chan, “Data mining-based algorithm for storage location
assignment in a randomised warehouse,” Int. J. Prod. Res., vol. 55, no. 14, pp.
4035–4052, Jul. 2017.

[74] A. Cahn, “The warehouse problem [abstract 505],” in Bulletin of the American
Mathematical Society, vol. 54. American Mathematical Society, Nov. 1948, p.
1073.

[75] A. Charnes and W. W. Cooper, “Generalizations of the warehousing model,”
Oper. Res. Q., vol. 6, no. 4, pp. 131–172, 1955.

[76] L. A. Wolsey and H. Yaman, “Convex hull results for the warehouse problem,”
Discrete Optim., vol. 30, pp. 108–120, Nov. 2018.

[77] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of mo-
tion planning for multiple independent objects: PSPACE-hardness of the
“warehouseman’s problem”,” Int. J. Robot. Res., vol. 3, no. 4, pp. 76–88, 1984.

[78] J.-F. Cordeau and G. Laporte, “The Dial-a-Ride Problem: Models and algo-
rithms,” Ann. Oper. Res., vol. 153, no. 1, pp. 29–46, Sep. 2007.

177

[79] E. Koutsoupias, “The k-server problem,” Comput. Sci. Rev., vol. 3, no. 2, pp.
105–118, May 2009.

[80] A. Lodi, S. Martello, and M. Monaci, “Two-dimensional packing problems: A
survey,” Eur. J. Oper. Res., vol. 141, no. 2, pp. 241–252, Sep. 2002.

[81] K. Stephenson, Introduction to Circle Packing: The Theory of Discrete Analytic
Functions. New York, NY, USA: Cambridge University Press, 2005.

[82] S. P. Fekete and H.-F. Hoffmann, “Online square-into-square packing,” Algo-
rithmica, vol. 77, no. 3, pp. 867–901, Mar. 2017.

[83] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir, “A model for hierarchical
memory,” in Proc. 19th Annu. ACM Symp. Theory of Computing, Jan. 1987,
pp. 305–314.

[84] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and paging
rules,” Commun. ACM, vol. 28, no. 2, pp. 202–208, Feb. 1985.

[85] G. Cookson, “INRIX global traffic scorecard,” INRIX Research, Kirkland, WA,
USA, Tech. Rep., Feb. 2018.

[86] I. Karamouzas, N. Sohre, R. Narain, and S. J. Guy, “Implicit crowds: Opti-
mization integrator for robust crowd simulation,” ACM Trans. Graph., vol. 36,
no. 4, pp. 136:1–136:13, Jul. 2017.

[87] T.-C. Au and P. Stone, “Motion planning algorithms for autonomous intersec-
tion management,” in Workshop 24th AAAI Conf. Artificial Intelligence, Jul.
2010, pp. 2–9.

[88] D. Fajardo, T. Au, S. Waller, P. Stone, and D. Yang, “Automated intersection
control,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2259, no. 1, pp. 223–232,
Dec. 2011.

[89] J. J. B. Vial, W. E. Devanny, D. Eppstein, and M. T. Goodrich, “Scheduling
autonomous vehicle platoons through an unregulated intersection,” in 16th
Workshop Algorithmic Approaches Transportation Modelling, Optimization,
and Systems (ATMOS 2016), ser. OpenAccess Series in Informatics (OASIcs),
M. Goerigk and R. Werneck, Eds., vol. 54. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2016, pp. 1–14.

[90] B. Aspvall, M. F. Plass, and R. E. Tarjan, “A linear-time algorithm for testing
the truth of certain quantified boolean formulas,” Inf. Process. Lett., vol. 8,
no. 3, pp. 121–123, Mar. 1979.

[91] R. Tachet, P. Santi, S. Sobolevsky, L. I. Reyes-Castro, E. Frazzoli, D. Helbing,
and C. Ratti, “Revisiting street intersections using slot-based systems,” PLOS
ONE, vol. 11, no. 3, p. e0149607, Mar. 2016.

178

[92] S. I. Guler, M. Menendez, and L. Meier, “Using connected vehicle technology to
improve the efficiency of intersections,” Transp. Res. Part C Emerg. Technol.,
vol. 46, pp. 121–131, Sep. 2014.

[93] J. Edmonds and E. L. Johnson, “Matching, Euler tours and the Chinese
postman,” Math. Program., vol. 5, pp. 88–124, 1973.

[94] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co.,
1979.

[95] D. Jain and Y. Sharma, “Adoption of next generation robotics: A case study
on Amazon,” Perspect. Case Res. J., vol. III, pp. 9–23, 2017.

[96] C. Lee, “Development of an Industrial Internet of Things (IIoT) based smart
robotic warehouse management system,” in CONF-IRM 2018 Proc., ser. 43,
2018.

[97] R. B. Nelsen, Proofs Without Words: Exercises in Visual Thinking. Washing-
ton, DC, USA: The Mathematical Association of America, 1993.

[98] D. Eppstein and S. Gupta, “Crossing patterns in nonplanar road networks,”
in Proc. 25th ACM SIGSPATIAL Int. Conf. Advances Geographic Information
Systems, Nov. 2017, pp. 1–9.

[99] G. Boeing, “Planarity and street network representation in urban form analysis,”
Environ. Plan. B Urban Anal. City Sci., Nov. 2018.

[100] D. Lichtenstein, “Planar formulae and their uses,” SIAM J. Comput., vol. 11,
no. 2, pp. 329–343, May 1982.

[101] S. P. Fekete, J.-M. Reinhardt, and C. Scheffer, “An efficient data structure for
dynamic two-dimensional reconfiguration,” J. Syst. Archit., vol. 75, pp. 15–25,
Apr. 2017.

[102] M. Çelik and H. Süral, “Order picking in a parallel-aisle warehouse with turn
penalties,” Int. J. Prod. Res., vol. 54, no. 14, pp. 4340–4355, Jul. 2016.

179

	Introduction
	Unregulated Traffic Crossings
	City-wide Coordination
	Online Warehouse Management

	Literature Review
	Motion Planning Through the Lens of Computational Geometry
	Kinetic Data Structures
	Geometric Motion Planning
	Complexity of Motion Planning

	Network Flows
	Robotics and Artificial Intelligence
	Game Theory
	Multi-Agent Systems and Traffic

	Real-world Traffic Management
	Warehouse Management

	On the Complexity of an Unregulated Traffic Crossing
	Introduction
	Problem Definition
	Hardness of Traffic Crossing
	Variable Representation
	Final Mechanism for Variable Representation
	Value Transmission and Timing
	Clause Satisfaction
	Complete System Example
	Analysis of Reduction Complexity
	Membership in NP

	Sufficiency of Binary Speed Profiles
	A Solution to the One-Sided Problem
	Intersection Between One-Way Highways
	A One-Way Street and a Two-Way Highway Intersection
	Intersection Between Two-Way Highways

	Traffic Crossing in the Discrete Setting
	The Unit-Delay Problem
	The Parity Heuristic
	Steady-State Analysis of The Parity Heuristic

	Coordinating City-Wide Traffic with Modular Circulation
	Introduction
	Application to Traffic Management
	Preliminaries
	Polynomial Time Solution to 2-CMD
	Hardness of -CMD
	Variable Gadget
	Clause Gadget
	Final Construction
	Generalizing for > 3

	Approximation Algorithm

	Online Algorithms for Warehouse Management
	Introduction
	Model and Results

	Online Solution to the Attic Problem
	Hierarchical Model
	Online Algorithm for Swapping Motion
	Online Algorithm for Sliding Motion

	Online Solution to the Warehouse Problem
	Quadtree Model
	Online Algorithm for Swapping Motion
	Online Algorithm for Sliding Motion

	Conclusion
	On the Complexity of an Unregulated Traffic Crossing
	Modular Circulation and Applications to Traffic Management
	Online Algorithms for Warehouse Management

	Bibliography

