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ABSTRACT

Design optimization is an important engineering design activity. When used during the
development of a new product, the overall profitability of that product depends upon the quality
of the solution that the optimization model returns as well as the time and cost of using
optimization. There exist many different ways to use optimization. The design engineer wants
to select the most appropriate optimization model to create a profitable design. This paper
discusses this meta-design (or meta-reasoning) problem and presents a method for selecting the
best (most profitable) optimization model from a set of candidate optimization models. The
approach allows multiple ways to handle uncertainty about the optimization models. We

demonstrate the approach by considering the optimization of a universal electric motor.

1. Nomenclature

E,, Fql. = lower and upper cumulative probability bounds for solution quality for M;
E.,F, =lower and upper cumulative probability bounds for time for M;

M = the set of candidate optimization models

Cp = design cost of a motor design

Ck = capacity cost of a motor design

CL = labor cost of a motor design

Cm = material cost of a motor design

Li;, Ly = lower bounds for the p-box for solution quality for optimization model M;
M; =i® optimization model

R = vector of performance attributes for a motor design

Ui, Up = upper bounds for the p-box for solution quality for optimization model M;



w = vector of weights for scaling performance attribute deviations
Z = vector of performance attribute targets

Ci = cost of optimization model M;

d = demand for a motor design

p = price for a motor design

g = solution quality of optimization model M;

Jai» qoi = lower and upper bounds on solution quality for optimization model M;
s = population size

t; = time for optimization model M;

tai, toi = lower and upper bounds on time for optimization model M;

Vi = half-width of uniform distribution for solution quality for optimization model M;
n = number of candidate optimization models

. = term by term vector multiplication

Il 1|2 =l norm

I = profitability of optimization model M;

II,,IT, =lower and upper bounds on the expected profitability of M;

Wi = beta value of the k™ customer attribute

T = profitability of a motor design

v = attraction value for a motor design

2. Introduction

Design optimization is an important engineering design activity. In general, design
optimization determines values for design variables such that an objective function is optimized
while performance and other constraints are satisfied [1]. The use of design optimization in
engineering design continues to increase, driven by more powerful software packages and the
formulation of new design optimization problems motivated by the decision-based design
framework [2].

Like other types of modeling, formulating a design optimization model is a subjective
process that requires engineering judgment and technical skills. In a given design situation, there
are likely to be many variables, parameters, constraints, and criteria related to different
performance attributes, costs, and customer preferences. Thus, there are a variety of relevant

optimization models from which to choose. Moreover, a large problem can be decomposed into



smaller problems, and, instead of a traditional optimization model, heuristics and rules of thumb
can be applied to further simplify matters.

Consider, for example, the design of a motor. The overall product development objective is
to maximize the profitability of the motor, which depends upon attributes such as the motor’s
mass and efficiency. These attributes are functions of the motor design variables. Given
sufficient information about how the design variables affect the attributes and how the attributes
affect profitability, a design engineer can formulate an integrated design optimization problem to
maximize profitability (such a problem is sometimes called an “enterprise model”). On the other
hand, the design engineer could, as a heuristic for maximizing profitability, choose to minimize
mass and maximize efficiency and then formulate the corresponding optimization problem. This
simpler optimization problem does not require detailed knowledge about how mass and
efficiency affect profitability. Other approaches are possible.

In practice, designers rely upon their experience and insight to choose an appropriate design
optimization model, especially in complex multidisciplinary optimization settings [3]. As more
options become available, selecting the most appropriate approach becomes more difficult.
Enterprise models promise to identify superior designs by accounting for a variety of
engineering, cost, manufacturing and marketing concerns. Still, the advantages of better designs
must be weighed against the time and cost of formulating and solving these models. Some
formulations may require gathering additional data to create the needed relationships or estimate
the necessary parameters in the model. Increasing development time and cost can significantly
reduce a product’s profitability [4]. Heuristics, rules of thumb, low-fidelity approximations, and
decomposition can simplify and accelerate the product development process, leading quickly and

cheaply to a more profitable product.



We consider the problem of selecting the most profitable design optimization model.
Because optimization is only one way to make a decision, we will use the term “model” in a very
general way. The “model” may be a heuristic or some other procedure that is used to generate a
solution. It is not limited to quantitative mathematical relationships, and it might involve
generating a set of alternatives from which the designer selects a solution based on unspoken
criteria.

In general, the problem of selecting a design optimization model is a specific example of the
meta-design problem [5] that is, in turn, a type of meta-reasoning problem. The meta-design
problem is the problem of designing the design process, which requires determining the best set
of design activities to perform. The selection of a design optimization model is an especially
interesting and important meta-design problem because it directly affects the value of the
resulting solution.

This paper specifically addresses the question of selecting design optimization models for
product development. A significant feature of our approach is its consideration of the impact of
this decision on the time required to complete the product development process and, furthermore,
how those delays affect the product’s profitability. This approach can be generalized to consider

other meta-design problems as well.

3. Related Work

Although design optimization is an important tool for engineering design decision-making,
designers do not always explicitly formulate and solve design optimization problems. They
often make their decisions in other ways. In general, bounded rationality implies that limits on
the amount of information and computational power that are available make complete

optimization infeasible. Thus, satisficing can be an appropriate strategy. Similarly, Gigerenzer



et al. [6] have shown that people can make good decisions with little information by using simple
rules or heuristics and that this approach is rational considering the resources and time spent to
make the decision and the impossibility of completely removing uncertainty in our dynamic
universe.

Given a variety of ways to approach a design problem, then, a designer must decide which
approach to take. The term “meta-reasoning” refers to thinking about which action to take next
when searching for a solution [7]. Actions are contingent on multiple attributes: the amount of
time required, the quality of the solution returned, the certainty of the solution being satisfactory,
and the usefulness of a partial solution (if the action is interrupted). Each action has some utility
based on the value of time and whether it leads to a better action. A rational meta-reasoning
strategy is to perform the action with the maximal expected utility until there exist none with a
positive utility. At that point, commit to the best action found so far.

The term “meta-design™ refers to meta-reasoning about engineering design. Designing the
design process is also known as design process planning. O’Donovan et al. [8] review
approaches to design process planning that focus on the tasks that need to be performed and
approaches for sequencing them, which more closely resembles scheduling than the problem of
selecting the best way to perform a task. Nogal et al. [9] presented an approach for constructing
a decision support system that solves meta-design problems for selecting design alternatives to
evaluate, determining when to perform sensitivity analysis, and guiding the iterative design
process. The objective is to maximize the user’s multiattribute utility function for the design.
Their example utility function included cost, weight, and deflection. Time was not included as a

consideration.



Roser et al. [10] present a method for evaluating the impact that potential design changes
have on the profitability of a product. In particular, they consider the additional costs due to the
direct cost of the change, costs of the delay caused by the change, and increases in unit cost.
They do not consider any change in sales as a result of the change because their approach
focuses on the removal of a serious defect that must be resolved (or else the product is not
produced and sold). Radhakrishnan and McAdams [11] discuss the selection of engineering
analysis models, such as those used to estimate the stiffness of a mechanical component. A
model is selected to maximize a utility function that is based on estimates of the error and the
cost of each candidate model. Time and profitability are not considered in the approach.

Another important meta-design problem is the general problem of information gathering
(“should I get more information?”), which leads to the well-known concept of value of
information [12]. More recently, Ling et al. [13] present an approach for estimating the value of
information when the needed probabilities are imprecise.

Finally, decomposition is an important part of product development [14], and selecting the
appropriate decomposition is a type of meta-design problem. For example, Cramer et al. [15]

discuss different decomposition techniques for multidisciplinary aerospace design optimization.

4. Optimization Model Selection Procedure

We now present a procedure for selecting the optimization model that has the best impact on
the product’s profitability, taking into account not only the cost and quality of the product design
that results from solving the model but also the cost and time needed to formulate and solve the

optimization problem.



Our procedure has the following steps, which are described in the following paragraphs:

1. Identify the candidate optimization models.

2. Estimate the time, cost, and solution quality of each candidate model.

3. Evaluate the profitability of each candidate model.

4. Select the most profitable model.

5. Formulate and solve the selected model.

6. Develop the product design that results from the selected model.

Identifying the candidate optimization models requires thinking about the different ways the
designer can solve the design problem. As mentioned before, there may be many variables,
parameters, constraints and objectives to consider. For instance, in a discussion of the
aeroelastic optimization problem, Cramer et al. [15] identify various formulations, including
minimizing weight subject to a constraint on drag, minimizing drag subject to a constraint on
weight, minimizing some combination of drag and weight, or minimizing operating cost (which
both drag and weight affect). Panchal et al. [5] present four strategies for designing a linear
cellular alloy, and Logan [16] presents two different approaches to a multidisciplinary aircraft
design optimization problem.

Formulating and solving the optimization model may be only part of the effort requrired.
Post-optimal parametric studies on bounds or weights may be needed [1]. Recall that the
“model” may not be a model at all. Instead, it may be a heuristic or some other procedure that is
used to generate a solution. Moreover, some of the candidates could be combinations of the

other candidates, where two or more optimization models are used in parallel (similar to the idea

of set-based design).

Let M = {M Loeees M ”} be the set of all candidate models. Estimating the time, cost, and

solution quality of each candidate model can be a difficult task, especially if the candidates

include optimization approaches that are unfamiliar to the designer. Although cost and time



measurements are generally straightforward, describing the quality of the solution that the
candidate model generates is more subtle and could require multiple attributes (such as unit cost
and different performance metrics). The quality measures used should be related to the value of

the product. We will let ¢,, ¢,, and g, be the cost, time, and solution quality of each candidate
model M,. Moreover, we initially assume that there 1s no uncertainty in these estimates. Later,

we will consider the case when uncertainty exists.

Evaluating the profitability of each candidate model requires a method for relating each
candidate’s cost, time, and solution quality to its profitability. If available, one could use a
sophisticated approach that determines sales, revenue, and costs based on the attributes of the
solution. A less sophisticated but still useful approach is to take advantage of a product profit
model or the tradeoff rules derived from a product profit model [4]. In general, the profitability
should increase as the solution quality improves, decrease as the time-to-market is delayed by the

time needed to formulate and solve model M, and decrease due to the cost of formulating and

solving model M,. Conceptually, this can be expressed as follows:

I Zf(tﬁci?q[')

Selecting the most profitable model is simply identifying the model M. that has the greatest
profitability:

i" = arg max {Hi}

i=l,...n

The last two steps follow clearly from there.



5. Example

A universal electric motor example originally developed by Simpson [17] will be used to
demonstrate the model selection procedure. Simpson used this example to demonstrate new
techniques in product family design. The following example ignores the product family aspect
and deals with only a single motor design.

The optimization model for the universal electric motor problem includes nine design
variables, four customer attributes, twenty-three intermediate engineering attribute calculations,
six constraints, and seven fixed engineering parameters. Except for the intermediate engineering
attributes (which are listed in Appendix A), the equations used to represent the universal electric
motor problem will be listed here. The derivations of the equations and other background
information on universal electric motors can be found in [17]. The nomenclature and equations

for the design variables, fixed model parameters, customer attributes, and constraints are listed

below.

Design Variables

Ne Number of turns of wire on the armature

Ns Number of turns of wire on the stator, per pole
A Cross sectional area of armature wire [mmz]
Agw Cross sectional area of stator wire [mm?’]

To Outer radius of the stator [m]

ts Thickness of the stator [m]

1 Electric current [Amperes]

L Stack length [m]

Fixed Engineering Parameters

1, Length of air gap=7.0x 10* m

Vi Terminal voltage =115V

p Resistivity of copper = 1.69 x 10® Ohmsem
Ko Permeability of free space = 47 x 10”7 H/m
Pst Number of stator poles =2

Ceopper  Cost of copper =2.2051 $/kg
Cateel Cost of steel = 0.882 $/kg



Customer Attributes
T Torque [Nm], calculated as follows: T=Ke¢I

P Power [W], calculated as follows: P=P, -P_,
n Efficiency [%], calculated as follows: 77 = P/P,
M Mass [kg], calculated as follows: M=M  +M_ +M,

Constraints and Bounds
H <5000 A turns/m

To > 1

P=300W
T=0.05Nm

n=0.15

M<2kg

Table 1: Bounds on Design Variables.
Bounds on the Design Variables
NC NS Aaw ASW r0 tS I L
LB | 100 1 10.01 {0.01 |0.01 | 0.0005 [0.1 |0.01

UB | 1500 | 500 10| 1.0 0.1 0.01 6 0.2
Unit | turns | turns | mm? | mm? | m m Al m

The cost equations were originally derived in Wassenaar and Chen [18]. We simplified
the equations slightly. The design cost Cp is assumed to be fixed at $500,000 while the material

cost Cyy, labor cost C,, and capacity cost Cx vary with demand and engineering attributes.

C,, =500,000

CM = d (M chopper + (M s + M r ) Csteel )
3

CL = 7 CM

C, =50((d ~500,000)/1000)°

To predict demand, we used discrete choice analysis (DCA) and synthetic spline
functions for customer preference. The total demand (d) is the population size (s) multiplied by
the probability that a consumer will select a particular design (i.e. estimated market share). We
set s = 1,000,000. The following equation shows the common DCA equations developed in [19,

20].
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d=sée [1+e“]71
v="(M)+¥,(m)+¥,(p)

The attraction value v is calculated from the following spline functions for the mass, efficiency,
and price attributes:

¥ (M)=05(1-M)
W, (m)=n-05

25-4
‘P3(p)= 5 P

The profit © of a motor design is a function of the demand (d), price (p), and the costs

discussed above.
w=dp—-(C,+C, +C,+Cy)
Step 1: Identifying Candidate Optimization Models
Five different models (M1, M2, M3, M4, and M5) were created using the motor example in
order to have a basis for comparing the information requirements and solution quality. In
general, M1, M2, M3, and M4 optimize product performance, while M5 optimizes profit using
an enterprise model that combines the marketing and engineering disciplines. The following

equations list the objective functions for each model.
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M1:

M?2:

M3:

M4:

M5:

Minf=M-n@

P =300W,T =0.05Nm
Min f =M —n+|Weo(R-Z)|

Z =[300 0.05]

W =[1 6000]
Minf=M

P =300W,T =0.05Nm
Min f =-n

P =300W,T =0.05Nm
Min f =—7+|W o(R-Z)|

5

(©6)

Z =[300 0.05]
W =1 6000]

M1 seeks to maximize efficiency while minimizing mass. The equality constraints shown

force the torque and power to meet the specifications. In M2, the equality constraints on torque

and power are removed. Instead, the objective function penalizes deviations from the torque and

power requirements. The vector R = [P T describes the power and torque of the motor design,

while the vector Z = [300 0.05] represents the power and torque requirements. (The vector W =

[1 6000] is used to scale the deviations.) M3 minimizes mass, and M4 maximizes efficiency.

Again, the equality constraints shown force the torque and power to meet the specifications.

Finally, MS is a multidisciplinary optimization incorporating marketing decisions simultaneously

with engineering decisions. The all-at-once (AAOQO) approach seeks to maximize profit while

penalizing deviations from the torque and power requirements. The penalty function was used

because attempts to maximize profit with equality constraints on torque and power failed to find

any feasible solutions.

12



Step 2: Estimating Time, Cost, and Solution Quality

For the purposes of this example we will estimate the time and cost of each model as follows.
We assume that the power and torque requirements are already known.

MI requires gathering information on how the design variables affect the mass and
efficiency, formulating the problem, and solving it. Say this takes 90 days and costs $100,000.

M2 requires everything done for M1 but also requires solving the problem multiple times
with different weights in the objective function. Say this takes 100 days and costs $105,000.

M3 and M4 require the same time and cost as M1 because they require the same information
and effort.

M3 requires everything done for M1 as well as a marketing survey (which costs $100,000) to
determine how customer demand depends upon the mass and efficiency attributes. In addition,
the optimization problem is more complex, and it also requires solving the problem multiple
times with different weights in the objective function. Say this takes 150 days and costs
$200,000.

Evaluating solution quality can be a complex issue, especially for multi-objective
optimization problems. Wu and Azarm [21] developed a set of five metrics that can be used to
evaluate the quality of a solution set in a multi-objective optimization. For this example, the
solution quality will be based on the actual achievable profit of each solution. Because the goal
of this paper is to explore the selection of optimization models, we compute the quality of the
actual solutions for the various models rather than estimate it as described in Step 2 above
(Radhakrishnan and McAdams [11] proceed in the same way to demonstrate their methodology
for comparing design models). The five models were solved using the fmincon function included

in the MATLAB optimization toolbox. Within each model various input parameters were

13



changed, such as weighting coefficients and initial solutions. Seven initial solutions [22] were
used for each of the five setups. The feasibility of each initial solution was determined by
entering the values into a spreadsheet model to check for constraint violation prior to running
any optimizations.

The results of models M1 through M4 were entered into a price optimization to determine the
solution quality of each design. The solution quality of M35 is determined simultaneously with
the design variables in the all-at-once optimization. Table 2 shows the actual solution quality of

each of the five models.

Step 3: Determining Profitability of Each
At this point, we estimate the profitability of each model as follows:
I1, = g, —1000¢, —c, @)
This simple profitability estimate capture the essential relationships of product development.
Namely, increasing solution quality increases profitability, increasing development time reduces
profitability, and additional costs reduce profitability. Table 2 displays the results of all five

models.
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Table 2: Example of Time, Cost, Solution Quality and Profitability Estimates

Motor Design (T = 0.05 Nm)
Model Estimated Parameters 11, ($)

Mi ti (days) ci ($) ai (%) '

M1 90 100,000 2,691,980 2,501,980
M2 100 105,000 2,249,784 2,044,784
M3 90 100,000 2,314,632 2,124,632
M4 90 100,000 1,445,608 1,255,608
M5 200 200,000 2,641,217 2,241,217

Step 4: Select the Most Profitable Model
As indicated in Table 2, the most profitable model is M1. Of the five available models a
designer should choose the M1 modeling approach for the motor design and use it to determine

the final design variable values (Steps 5 and 6).

6. Addressing Estimate Uncertainty

There may be uncertainty in the estimates of the cost and time needed to formulate and solve
each candidate model and in the estimates of solution quality. No matter what profitability
evaluation technique is used, these uncertainties cause uncertainty in the profitability measure

II,. Moreover, the profitability evaluation technique may have error due to its abstraction,

which introduces certain approximations, and the actual profitability of the resulting design is a
random variable that is affected by a large number of exogenous variables, including the cost of
raw materials and labor, economic conditions that affect demand, and many other such factors.
Research on decision-making under uncertainty has yielded a large number of various
techniques whose suitability depends upon the amount of information that the designer has about
the distribution of possible outcomes.
If there is sufficient information about the probabilities for each possible outcome for each

candidate model as well as the designer’s risk attitude, the designer can employ decision analysis
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techniques to determine the expected utility of each candidate model and select the optimization
model that maximizes expected utility [23]. Since this is a well-known topic, no further
information needs to be provided here. However, if little information about the probabilities is
available, the designer could use imprecise probabilities to find an imprecise probability
distribution for each candidate model’s profitability.

To illustrate this approach, which is less well-known, consider the example from Section 3,
which required estimates for the cost, time, and solution quality of each model. Suppose a
design engineer recognizes that there exists substantial uncertainty in the time and solution
quality estimates. However, he is unable to provide precise probability distributions on these

quantities (which we assume are independent). Instead, for model M;, he is willing to say only

that the time will be in a certain interval [tm.,tb,.] and the solution quality (profitability) has a

uniform distribution with a width of 2y; but the mean may be anywhere in the interval [qai,qb,.].

We can model each of these imprecise probability distributions as a p-box (see, for example,
[24]). Each p-box is specified by two functions: a lower cumulative probability bound and an
upper cumulative probability bound.

The following functions are the lower and upper cumulative probability bounds for the time

(see also Figure 1):
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Figure 1: Probability Bounds for Time

To define the p-box for the solution quality, we will need the following values:

Ly =q, -
Ujy=q,+Y,
L, =q,~Y
U =@+

The following functions are the lower and upper cumulative probability bounds for the solution

quality (see also Figure 2):

0,x<L,
x—L,

F(x)= =,L,<x<U,
—(ﬂ( ) 2yl 2 2
Lx2U,
0,x<L,

= x—L,
Fqi(x): 7 '1>LHSXSU[1
Lx2U,
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Figure 2: Probability Bounds for Time

The distribution of I1; is imprecise. (One can show that its p-box has a shape similar to the
one shown in Figure 2.) Therefore, the expected profitability of the model is unknown.

However, we can set bounds IT,,T1. on the expected profitability based on the above. Based on

our definition of model profitability, introduced in Section 5, the lower bound on the expected
profitability can be found by determining the lower bound on the expected value of the solution
quality and the upper bound on the expected value of time. The lower bound on the expected
value of the solution quality is g,;. The upper bound on the expected value of the solution quality
is 1. Likewise, the upper bound on the expected profitability comes from determining the upper
bound on the expected value of the solution quality (which is g;;) and the lower bound on the

expected value of time, which is #,;. Therefore,

For the purposes of this example suppose the design engineer can provide the following values:
1. For M1, the time will be between 80 and 100 days, and the mean solution quality will be
between $2,500,000 and $2,900,000.
2. For M2, the time will be between 90 and 110 days, and the mean solution quality will be

between $2,000,000 and $2,500,000.
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3. For M3, the time will be between 80 and 100 days, and the mean solution quality will be
between $2,100,000 and $2,500,000.

4. For M4, the time will be between 80 and 100 days, and the mean solution quality will be
between $1,000,000 and $1,800,000.

5. For M5, the time will be between 140 and 200 days, and the mean solution quality will be
between $2,600,000 and $2,700,000.

Table 3 summarizes the information and shows the upper and lower bounds on the expected

profitability of each model.

Table 3: Example of Expected Profitability Bounds

Bounds on mean solution . Bounds on expected model
Model quality ($) Interval for time (days) profitabrﬁity (9)
Lower Upper Min Max Lower Upper
M1 $2,500,000 | $2,900,000 80 100 $2,300,000 | $2,720,000
M2 $2,000,000 | $2,500,000 90 110 $1,785,000 | $2,305,000
M3 $2,100,000 | $2,500,000 80 100 $1,900,000 | $2,320,000
M4 $1,000,000 | $1,800,000 80 100 $800,000 | $1,620,000
M5 $2,600,000 | $2,700,000 140 200 $2,200,000 | $2,360,000

Although M4 is clearly dominated, the other four models are pairwise nondominated. The
decision is indeterminate. However, in order to select a single model, the design engineer must
use a decision policy. Many such policies exist. If the design engineer prefers the model with
the best worst-case performance, he will choose the one that maximizes II,. (This risk-averse
policy is also known as the I' -maximin solution policy.) In this example, M1 has the largest

lower bound on expected profitability.

7. A General Approach to Meta-Design Problems

Although this paper has focused on the selection of an optimization model for a design
problem, the approach presented above can be generalized to other meta-design problems. It is

certainly relevant to decisions about the architecture of a design process, since this is what
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decomposes the overall design problem into a network of decisions, design activities, and
information flow [5, 14, 25]. In any case, the basic idea is the same: identify alternatives,
estimate the time, cost, and solution quality of each alternative, and select the one that leads to

the most profit.

8. Summary

In this paper, we have introduced the problem of selecting a design optimization model and
presented a procedure for solving the problem. The importance of this procedure is to
demonstrate that one can approach the selection of an optimization model using a rigorous
mathematical procedure instead of depending upon one’s intuition. Furthermore, this paper
shows that the choice of a design optimization model is a meta-design decision that affects the
profitability of the product. It is not necessarily the case that the most sophisticated optimization
model is the best choice.

In many cases, heuristics or rules of thumb can play a critical role when estimating the
profitability of a model. For the motor example, Brochtrup shows that, as the torque requirement
increases to T=0.50 Nm, the solution quality for M3 (which minimizes mass) exceeds all four
other models [22].

It is possible to extend this approach to selecting a portfolio of optimization models. That is,
given a set of distinct candidates, the designer may select more than one optimization model and
use those in parallel, taking the best solution that results from the ones selected. The selection
problem must find the optimal set of optimization models to use. Such an approach would be
useful if there were a large number of feasible combinations. Otherwise, the approach presented

here should be sufficient.
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More generally, the procedure can be adapted for other meta-design choices, leading to better
decisions about the choices that designers make.

Finally, this procedure could be used to guide the development of new optimization models
that are designed for profitability.
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APPENDIX A

Intermediate Engineering Calculations

H Magnetizing intensity [Ampere turns/m] H=N _I/(1 .+, +21 )

le Mean path length within the stator [m] 1 =72+t )/2

1 Diameter of armature [m] 1, =2(r,-t-1,)

Pin Input power [W] P _=VI

Pout Power losses due to copper and brushes [W] P, =I*(R,+R )+2I
law Armature wire length [m] 1, =2L+4(x,-t, -1, )N,

lsw Stator wire length [m] 1 =p, (2L+4(xr,-t,))N,

R, Armature wire resistance [Ohm] R, = pl /A |

Rs Stator wire resistance [Ohm] R, = pl /A

M, Mass of windings [kg] M, =(1,, A, 1, AL )P.0per

M; Mass of stator [kg] M, = zL(r,” (1, 1,)*)P, .,

M, Mass of armature [kg] M, = zL(r,-t,-1,)* p,,.,

K Motor constant [dimensionless] K=N_/7z

3 Magneto magnetic force [A turns] I =N

R Total reluctance of the magnetic circuit [A turns/Wb] R =R _+R +2R,

Rs Reluctance of stator [A turns/Wb] R, =1/(2u,,,.1t,A,)
Ra Reluctance of armature [A turns/Wb] R, =1/(x, 1, A,)
R, Reluctance of one air gap [A turns/Wb] R, =1,/(x,A,)

A Cross sectional area of stator [m*] A_=t L
A, Cross sectional area of armature [m?] A =1L
A, Cross sectional area of air gap [m°] A =L

Msteel Relative permeability of steel [dimensionless]
L,y ==02279H* +52.411H +3115.8 H <220

M., =11633.5-1486.33In(H) 220< H <1000
. =1000 H >1000
0} Magnetic flux [Wb] ¢ =3J/R
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