
Con�guration-level optimization ofRPC-based distributed programsTae-Hyung KimJames M. PurtiloComputer Science Department and Institutefor Advanced Computer StudiesUniversity of MarylandCollege Park, MD 20742Abstract:Many strategies for improving performance of distributed programs can be describedabstractly in terms of an application's overall con�guration. But previously thosetechniques would need to be implemented manually, and the resulting programs,though yielding good performance, are more expensive to build and much less easyto reuse. This paper describes research towards an automatic system for introduc-ing performance improvement techniques based upon an application's con�gurationdescription.
With oversight by O�ce of Naval Research, this research is supported by ARPA/ISTO in con-junction with the Common Prototyping Language project.1

1 INTRODUCTIONWriting distributed programs is di�cult for programmers, and even more di�cult when high per-formance is required. Many mechanisms to achieve better performance in distributed program-ming have been proposed [3, 12, 13, 14, 19]; however, in practice these mechanisms are hard toutilize, and do not take into account the burden placed on programmers who already encounterdi�culty in writing functionally correct programs. Furthermore, most of these mechanisms areexpressed by special programming language constructs for specifying the exact semantics oncommunication and synchronization [3]. Such languages are not good at accommodating theprogramming skills of those who are already accustomed to conventional programming languageslike C.A great deal of this di�culty in developing large distributed programs arises at the early stagesof program development, when the relationship between modules' functionality, their interactionsand overall performance is hard discern. For a given module's functionality as dictated by somedesign, it is possible to implement many program units, each having some di�erent calling conven-tions, servicing style and communication properties, yet all maintaining the same functionality.Previously this
exibility in how to implement the module resulted in burden to the programmer,who was tasked with selecting one of the implementations based upon too little information, andwho then would be faced with great programming burden should one of those decisions need tobe changed later. We now show how to exploit that
exibility.Many of the individual mechanisms for improving performance, as cited above, have been imple-mented experimentally in the past, albeit without considering the programmer or designer cost.However, fewer have been implemented for evaluation in broader execution environments. Sincemany mechanisms can be expressed in terms of the high-level con�guration of application mod-ules, we sought to derive a practical adaptation system for con�guration level programming. Thisapproach would allow programmers to express performance improvement techniques abstractly(in terms of the con�guration, instead of the low-level implementation), and then prepare appro-priate implementations automatically.Module interconnection activity is understood to be an essentially distinct and di�erent intellec-tual activity from that of implementing individual modules, that is \programming-in-the-large"is distinct from \programming-in-the-small" [9]. Analogously, this observation applies to per-formance programming as well. Decisions concerning how a con�guration might be adapted inorder to allow use of performance improvement mechanisms are inherently di�erent from the taskof tailoring individual program units and their interfaces to execute as dictated by the abstractdecision. Thus, each module is written to satisfy its functional requirements while each con-�guration program is written to specify performance related as well as interconnection relatedinformation. Many existing performance oriented mechanisms can be achieved by using ordinarymodules with proper con�guration programs and source-to-source translation techniques. Thisfrees programmers frommaking extensive amounts of manual adaptations for various performancecon�gurations. 2

The objective of our research has been to provide an adaptation system, to allow practicalemployment of existing performance improvement techniques; to suggest new techniques; and toallow programmers the freedom to study the impact of various techniques { in concert with oneanother, as desired { upon the application. As the programmer's original implementation of amodule is translated under this system, each RPC statement is translated into a set of �ne grainedmessage passing primitives, and the source is translated to introduce the particular techniquesspeci�ed at the con�guration level. This builds upon the MIL (Module Interconnection Language)approach [5, 21] for distributed programming, where the original MIL speci�cation is intendedfor structural presentation of interfaces between interacting processes. We append performancerelated speci�cations onto each interface speci�cation in a MIL. As the performance factors areisolated from the module programming level, changing that information in order to �ne tune theperformance requires not whole changes in source modules, but regeneration of new executablesfor the performance con�guration.As a result of this work, programmers will have a practical and straight forward way to employoptimization techniques which previously were costly to introduce, and very costly to subse-quently change. This will let them tune and experiment with the impact of techniques on theirapplication, ultimately with bene�ts to both performance and development costs. From a re-search point of view, we hope to have a practical way to evaluate many proposed mechanisms forperformance improvement, using real systems. In addition, we are studying the possibility thatunwanted interference and interaction may arise when several optimization steps are employedsimultaneously. The purpose of this paper is to describe the overall concept of con�gurationlevel optimization, motivate the requirements for our experimental system and to describe theevaluation activity in progress.2 MOTIVATIONThis section presents a concrete example to motivate the optimization of RPC-based distributedprograms. The example we will discuss involves DNA sequences, an conceptually straight forwardproblem whose solutions, though very intricate in implementation, are conceptually simple andmay admit several types of parallelism.This is essentially a data structure problem: when a new DNA sequence is discovered, geneticistswant to �nd out how and which previously known sequences the new one resembles. Suppose wehave tens or hundreds of newly discovered sequences that are to be compared to a large databaseof existing sequences. Suppose the length of each sequence is variant, and so is the comparisontime. Figure 1 (a) is a client (or master) module that initiates the required number of comparisontasks.Two basic parallelizing approaches to the DNA example illustrate the problems that we aredealing with: one approach performs many sequential comparisons simultaneously as shown inFigure 1 (b), which is known as a master/workers model (database is replicated to each server),3

client

compare1

compare2

compare3

compare1 compare2 compare3client

client()

{

 seq[i] = get_next_seq();

 result[i] = compare(seq[i]);

 if (real_max < result[i].max) {
 real_max = result[i].max;

 }
}

(a)

 /* get next sequence to compare */
 for (i = 0; i < NUM_NEW_SEQUENCE; i++)

 /* compare a sequence with each sequences */

 for (i = 0; i < NUM_NEW_SEQUENCE; i++)

 /* update result */
 for (i = 0; i < NUM_NEW_SEQUENCE; i++)

 real_max_id = result[i].db_id;

/* in a database */

(b) Master-Worker style

(c) Pineline styleFigure 1: Simple DNA sequence searchand the other constructs a pipeline of a series of sub-comparison modules by decomposing a largedatabase to many small ones as shown in Figure 1 (c). The former re
ects \data parallelism"and the later, \functional parallelism".RPC [4, 8] is a popular paradigm for distributed programming since it simpli�es distributedprogram construction by abstracting away from details of communication and synchronization.However, it inhibits us from expressing many useful considerations like scheduling, load bal-ancing, stream computation and so forth, which are crucial to improving the performance of adistributed program. The problems for this example, which make direct use of conventional RPCinappropriate to high performance distributed computing, may be summarized as follows:1. Load balancing: Server replication is a basic way to improve throughput. However, theperformance of a replicated server can be degenerated to that of the bottleneck process(or)unless a proper load balancing scheme is used. In Figure 1 (b), no workers should beidle while others are busy. So far, RPC in itself does not make any association with loadbalancing. Previous RPC systems for multiple servers like PARPC [20] and MultiRPC [22]have been devised, but they do not deal with load balancing since their main purpose isfault tolerance rather than good performance.2. Scheduling: In our example, the length of each DNA sequence varies, so does comparisontime. In this situation, if the longest sequence is assigned to an unfortunate process at alate time near the end of all computations, only that process will be busy while others sitidle. This problem can be solved if the longest sequence is serviced �rst. To do this, theRPC server must be constructed to service tasks with respect to their given priorities.3. Parallelism: RPC is synchronous in nature. A client must wait to get a response for its4

module client { module server {source = "C" "local" :: source = "C" "remote" ::entrypoint = "main" :: define interface compareuse interface compare : pattern = { string }: pattern = { string } : returns = { integer }: accepts = { integer } : interface = "null" ::: interface = "stdio" :: }} module DNA_seq_search {instance client ::instance server: standalone ::bind client compare server compare ::interface = "stdio" ::}Figure 2: Basic con�guration for DNA sequence search examplecall before calling another server. Preparing multiple servers or multi-stage pipelines maynot be of much use if a synchronous RPC is used for remote interaction as then only oneserver may be activated by a client. Parallelism can be sought if the gap between send andreceive primitives is widened to allow more useful computations during the wait for a result.4. Length of communication paths: RPC can lengthen communication paths unnecessar-ily if involved modules form a computation network (like the trellis model in Chapter 8of [7]) because of its two{way communication protocol. For instance, in Figure 1 (c), an in-termediate result in each stage of the compare module must go back to the client �rst beforebeing delivered to the next stage. An optimization step that eliminates such unnecessarycommunication paths is called for.This example illustrates the several dimensions open to programmers, and serves to help us statesimply our objective: since each of the above types of improvement admits several strategiesfor success, and also each can be characterized in terms of the application's con�guration leveldescription, we seek a development environment where developers may implement modules interms of RPC interfaces (which are comparatively simple constructs), yet separately be able toexpress performance improvement strategies in terms of the con�guration description. Figure 2shows the basic con�guration program for the example of Figure 1; it represents (in the notationof our system to be described) the conceptual starting point for con�guration programmers whowish to experiment with di�erent optimization techniques. After programmers express directionsin terms of this con�guration, the system should tailor all executables to be consistent with bothspeci�cations. 5

3 REQUIREMENTS FOR CONFIGURATION OPTIMIZATIONSection 2 exposed some limitations of using RPC for high performance distributed programs, andin doing so suggested some dimensions by which improvement can be achieved. This also makesit clear that we can separate what programmers should be able to do and what tools can do asfollows:1. High-level decisions regarding performance factors that a�ect overall performance should bespeci�ed in the programming-in-the-large level so that module reusability can be enhanced,especially in the process of performance tuning. Programmers should be able to specifythose decisions independently.2. High-level decisions regarding performance factors should be automatically realized andoptimized with low-level message passing primitives.The purpose of this section is to discuss in greater detail the various strategies by which perfor-mance can be improved by con�guration level annotation. This will identify which features willbe used for optimal realization of RPC (Section 3.1) and expression of the load balancing scheme(Section 3.2).3.1 Performance FactorsPerformance bene�ts are realized as latency and throughput improvements. A distributed pro-gram is composed of clients, servers and their interactions. We distinguish the task of performanceimprovement of a distributed program from the perspectives of its three components. Namely,clients should be able to make multiple requests (parallelism), load must be balanced amongservers (load balancing), and interprocess communication and its overhead must be minimized(communication optimization). We will elaborate on factors that a�ect performance and whatwe can do to improve performance in the following subsections. Sections 3.1.1, 3.1.2 and 3.1.3present those factors from the viewpoints of clients, servers and their interactions, respectively.All of these factors are related in module interactions rather than functionality; thus they willbe represented at the interconnection programming level. When these factors are separated fromindividual module construction, the modules themselves can be more easily programmed as wellas more reusable [9].3.1.1 Calling Style A synchronous call is a call whereby the client blocks the call until theserver completes it [4]. An asynchronous call does not block the client, and replies can bereceived as they are needed. To date, the decision on calling style is not the programmer's (forexample, calls may be synchronous only [4] or they may be asynchronous only [2, 19, 24]), orthe decision has to be made at module programming level by use of di�erent library routines [8].If we let this decision be separate from RPC statement, the modules will remain reusable fordi�erent calling styles. Therefore, in devising requirements for a con�guration level optimization6

system, an asynchronous RPC should be implemented by separating the send request primitiveand the receive result primitive to allow other useful operations in the midst of remote service.Synchronous calls would be implemented by their placement in sequence in a client module. Thus,a server module does not distinguish whether a server is called synchronously or asynchronously.It implies that the same server can be called asynchronously for one client and synchronously foranother client in the same application.The calling style should be easily prescribed by programmers in terms of a use clause in themodule speci�cation. Consider the module client in Figure 2, which calls the remote procedurecompare. If programmers want to specify an asynchronous call, they should be able to state it inthe callstyle expression as follows: use interface compare: callstyle = "async": pattern = f string g: accepts = f integer g ::3.1.2 Servicing Style When the length of a service queue is long, throughput can be improvedby the choice of a good \servicing style." Servicing style can be characterized by scheduling policyand server replication. Scheduling policy determines the desirable order of requests to be serviced.Usually the order of service is �xed by arrival time. Scheduling generalizes the order { i.e. otherparameters besides arrival time are considered to determine the order of service. For example,the length of a DNA sequence to be compared may be a parameter that determines such an orderas mentioned in section 2. Server replication improves throughput as well because the load isdistributed among replicated servers, although load balance is crucial to good performance.As with calling style, the module speci�cation for expressing scheduling and replication featuresshould be simple for programmers to assign. Illustrating one way this might appear for theintroductory example, ismodule server fsource = "C" "remote" ::de�ne interface compare: priority = "strlen(x)": replication = "harvey.cs.umd.edu,bugs.cs.umd.edu,thumper.cs.umd.edu": pattern = f string g: returns = f integer g: interface = "null" ::gHere the priority attribute is an expression, which would use valid syntax within the modulecompare in order to evaluate a priority. As we hoped to assign a higher priority to the longersequence, evaluating strlen(x) produces the right order of priorities. The compare module isreplicated in its simplest form here, while load balancing will be considered in section 3.2.7

3.1.3 Communication Style A communication pattern in distributed programs occurs in threedi�erent forms: intermittent, incremental and bulk rate data transfer. A conventional RPCprotocol covers only the case of intermittent data transfer, i.e. when the number of messagesbetween client and server is not too big or too frequent. An incremental pattern of communicationoccurs when we try to exploit pipeline concurrency for a chain of clients and servers as in Figure 1(c) and Figure 3. This pattern, which forces a single computation to be decomposed into a seriesof distinct RPCs, reduces the server's performance since it is inactive between calls unless thesynchronous behavior of RPC has been changed. Also, if we want to send bulk data by aseries of RPCs, the communication performance is severely limited since it is not possible toaggregate data of successive procedure calls from a single client. Even worse, contemporary RPCsystems are optimized to transmit limited amounts of data (usually less than 103 bytes) percall. To support the incremental and bulk rate data transfer, wherein conventional RPC systemsperformance su�ers severely, a new communication model called remote pipe [15] has been devised.In the framework we are motivating, these patterns may be e�ciently handled with automaticcommunication optimization if programmers specify which communication pattern will appear.Once that information has been provided, there would be three ways to improve communicationperformance: (1) choice of proper transport, (2) reduction of kernel overhead by data aggregationand (3) elimination of unnecessary communication. The best transport protocol depends onthe amount of data to be transferred. In other words, the connection-less transport protocol(UDP: User Datagram Protocol) works best for the intermittent data transfer pattern, and theconnection-oriented transport protocol (TCP: Transmission Control Protocol) for the incrementaland bulk rate data transfer pattern. Data aggregation allows us to amortize the overhead ofkernel calls. If the size of aggregated data is increased, the throughput is increased, and if it isdecreased, then the latency is reduced. Programmers can control high throughput vs. low latencyby assigning the size of aggregated data to a particular server. Unnecessary communication isunavoidable in conventional RPC implementation as illustrated in Figure 3. Figure 3 (b) isoptimized to (c) by elimination of the unnecessary communication paths. Figure 4 illustratesoptimization to communication parallelization. A value `v' is supposed to be transmitted totwo destinations. Figure 4 (c) is optimized because module `h' can receive `v' independently ofmodule `g'; moreover, the value `v' can be multicast if multicasting primitives are available inthe underlying message passing environments.3.2 Load BalancingFox et al. [11] demonstrated that the SPMD model is a natural paradigm for a large number ofproblems in science and engineering. This model can similarly be expressed by RPC paradigmwith the aid of replication expressions in con�guration programs, but load must be balancedamong workers to insure good performance. We provide a systematic way to customize properload balancing schemes for an RPC to replicated servers. Once programmers decide task dis-tribution ratio, task migration paths for load balancing, and load balancing policies, then theresulting codes are automatically generated. 8

compare

compare3

compare2

compare1

compare

compare1

compare2

compare3

{

}

(a) (b)

 r1 = compare1(x);

 r2 = compare2(r1);

 r3 = compare3(r2);

(c)

compare(Seq_Type x)

r1
r1

r2
r2

r3

x
r1

r2
r3

x

Figure 3: Communication optimization for �gure 1 (c)
f

v

v

g

h

(c)

f(int v)

{

 /* no def of v */

 a = g(v);

}

g(int v)

{

 /* no def of v */

 a = h(v);

}

h(int v)

{

}

(a)

v v
f g h

(b)

Figure 4: Communication paths for a sequence of RPCs3.2.1 Solution 1: Static load distribution Static load distribution is a simple approach to loadbalance. The tasks generated by master process are distributed to the pool of worker processesaccording to the statically de�ned task distribution ratio, which is decided by programmers basedon the average performance of participating workstations. The task distribution ratio is the onlyparameter in this scheme. Since load distribution is a client side concern, an attribute loadratiois needed in the use clause. The ratio description is matched with the replication attribute inthe corresponding de�ne clause as follows:use interface compare: callstyle = "async": loadratio = "1:2:3"... de�ne interface compare: replication = "harvey.cs.umd.edu,bugs.cs.umd.edu,thumper.cs.umd.edu"... 9

3.2.2 Solution 2: Demand-driven load distribution Simple dynamic load balancing can beachieved through demand-driven load distribution, which does not need to migrate tasks amongworkers. When a master process receives a result from a worker, it sends another task to theworker as the load situation of the worker has decreased due to the recent �nish, i.e. receivinga result is regarded as a demand for another task. This scheme contains two problems. First,the master process can generate a bottleneck [16]. For example, if there are 1000 workers anda master needs 10�3 second to prepare and send a task, the master would create a bottleneckunless the average time for each worker to �nish a task is greater than a second. Furthermore,if all workers took the same amount of time to �nish their own tasks, the �nish replies wouldcome in burst, and this would cause a bottleneck, too. Second, the scheme does not allow overlapbetween communication and computation because the next task can not be issued unless thecurrent one has been �nished.To alleviate these problems, watermarking can be used. It was originally used to control over-load [7], but it can also be used to avoid underload, which is caused by latency. Good water-mark enables a master to send a stream of task service requests; as a result, a worker does notsit idle while demanding more tasks. This requires a change in calling style, represented by\async-demand(num)", where num is a watermark value. In the following module speci�cation,client1 and client2 use static and demand-driven load distribution, respectively.module client1 f� � �use interface compare: callstyle = "async": loadratio = "1:1:1"� � �gmodule client2 f� � �use interface compare: callstyle = "async-demand(5)"� � �g
module server fsource = "C" "remote" ::de�ne interface compare: priority = "strlen(x)": replication = "harvey.cs.umd.edu,bugs.cs.umd.edu,thumper.cs.umd.edu": pattern = f string g: interface = "null" ::g3.2.3 Solution 3: Dynamic load balancing When load balance cannot be reached through theabove load distribution methods, tasks should migrate. Many dynamic load balancing algorithmshave been devised for such an e�cient migration [6, 10, 17, 18, 23]; they are characterized bythe following parameters which distinguish them. Load balancing algorithms can be �ne tunedwhen programmers can change those factors conveniently.� Topology: Topology determines the shape of task migration paths. A fully connectedtopology provides a way to gain load balance in any case, but with some system overheaddue to periodic load state exchange. The overhead can be cut through simpli�ed topology.A compromise must be sought between reduced overhead and load balancing gains.10

� Transfer policy: Transfer policy determines whether load has to migrate at a particularload state. The decision can be made based on local or global load information.� Location policy: Location policy determines which process initiates the migration andwhich process should be the source or the destination in this migration: sender-initiated,receiver-initiated or mix of them.1� Selection policy: Selection policy determines how many work load units are to migrate.Ideally, a replication attribute would consists of a list of the following expression, which describesa customized topology, transfer, location and selection policy.M1 (oc1, uc1) # M2 (oc2, uc2) : [
]2At least one condition out of \oc1, uc1, oc2, uc2" must appear, otherwise the task migrationcannot be initiated. The following two examples illustrate the use of a replication expression.Example 1: \harvey.cs.umd.edu(oc=(load>=10))#bugs.cs.umd.edu:[1/2]"There is a task migration path between \harvey" and \bugs". The task migration will occurwhen the amount of load is more than 10 units. It is sender-initiated. Half (
 = 1=2) of theremaining work loads will migrate.Example 2: \harvey(oc=(load>=10))#bugs(uc=(load==0)):[1/2]"Same as above except \bugs" can initiate task migration, which is a receiver-initiated policy,when it sits idle (load==0).In summary, a server module speci�cation is given below, which forms a dynamic load balancingscheme that has a circular topology and sender-initiated task migration policy.module server fsource = "C" "remote" ::de�ne interface compare: priority = "strlen(x)": replication = "harvey.cs.umd.edu(oc=(L>=10))#bugs.cs.umd.edu:[1/2],bugs.cs.umd.edu(oc=(L>=20))#thumper.cs.umd.edu:[1/3],thumper.cs.umd.edu(oc=(L>=10))#harvey.cs.umd.edu:[1/4]": pattern = f string g: interface = "null" ::g1With a sender-initiated policy, an overloaded process will look for a destination to export load to. With areceiver-initiated policy, an underloaded process will look for a destination to import load from.2M1, M2: host address that has one replica of the server module.oci, uci: a condition that decides overloading or underloading for Mi, respectively.`#': a linkage between M1 and M2.
: the number of load units to migrate (fraction). 11

a.cfgclient.cserver.c =) Makefile client.cl server.cl all.clx.client.c x.client.hx0.server.c x0.server.h x1.server.c x1.server.hx2.server.c x2.server.h x3.server.cx3.server.hFigure 5: Generated �les from user provided modules using CORD4 DEVELOPING APPLICATIONS IN CORDThe previous section has characterized the various forms of optimization which are possible todiscuss in terms of an application con�guration. We have been developing a support environmentcalled CORD (Con�guration-level Optimization for RPC-based Distributed programs) to allowus to experiment with introduction of such adaptations at low cost.The CORD system is primarily an integration e�ort at the University of Maryland, and buildsextensively upon prior results in the area of software interconnection. The con�guration lan-guage chosen for expressing modules and their compositions is derived from the Polylith moduleinterconnection language, and the distributed run time environment chosen is likewise the soft-ware bus behind Polylith. Basic tools for preparing applications to run in this environment arealready available within the Polygen system [5], although they are to be tailored to attain oursource translation (rather than stub generation) principle. Therefore the principle thrust of oure�ort has been to add a source translator (gen trans) to the suite of Polygen tools. The sourcetranslator operates di�erently depends on whether a module is a client or a server from givenRPC's viewpoint: for a client module, it performs data
ow analyses to place message passingprimitives optimally, and for a server module, it generates proper codes to implement particularservicing styles described in con�guration programs. Though we have omitted the statement ofalgorithms from this paper in the interests of space, the translation is straight forward, becausewe can decide the earliest time to send a request and the latest time to receive a result based onDUCl (De�nition-Use-Chain of l-value) and UDCr (Use-De�nition-Chain of r-value) sets, thatcan be evaluated through use-def and def-use analyses [1].The development of an application in CORD consists of a number of steps. At some point, eachmodule used in the application must be given an implementation, each dealing with interfaces ingeneric RPC terms, of course. Since performance decisions that occur in module interactions aredecoupled from the module programming level, module functionality is the only concern in thisstep.The second step is to de�ne an application using the module interconnection and performancecon�guration. In the next step, CORD generates all necessary �les for an executable automati-cally with respect to the con�guration program. Figure 5 shows the automatically generated �lesfrom the user provided �les, which are source programs client.c, server.c and the con�gura-tion program a.cfg, using CORD. (In the �gure, it is assumed that the server.c is replicated12

% con�g < a.cfg > a.pl% prolog < a.pl > a.pkg% gen imake < a.pkg > Imake�le% imake -T "Imake.tmpl"% makegen header client < a.pkg > client.hgen header server < a.pkg > server.hgen trans client.c < a.pkg > x.client.cgen trans server.c< a.pkg > x.server.cgen module client < a.pkg > client.clgen module server < a.pkg > server.clgen cluster < a.pkg > all.clcsc client.clcsc server.clcsc all.clcsl -o all client.co server.co all.cocc -o client x.client.c -lithcc -o server x.server.c -lith...

Initially the user has source codes (\client.c, server.c") and con�g-uration �le (\a.cfg")Creates prolog assertions for the con�gurationGiven inference engine (\package.pl"), generates the packaging in-formation (\a.pkg") to satisfy the packaging goal according to thegenerated assertionsCreates Imake�le �le from the packaging informationCreates Make�le using a prepared Imake template (\Imake.tmpl")Creates executables according to the interface generation, sourcetranslation, and compilation information in the Make�leThe following output is from commands called from the make�legenerates a header �le for the client.cgenerates a header �le for the server.ctranslates from the original user code client.c to x.client.ctranslates from the original user code server.c to x.server.cgenerates the client speci�cationgenerates the server speci�cationgenerates the application speci�cationcompiles the client speci�cation into client.cocompiles the server speci�cation into server.cocompiles the application speci�cation into all.cocreates a root executable that executes client and servercompiles the x.client.c component and creates clientcompiles the x.server.c component and creates server...Figure 6: Script for the design (user commands pre�xed by a % prompt)to four distinct machines.) This step follows the similar packaging process in Polygen, whichdeals with automatic adaptations for divergent structural and geometric con�gurations. Theinteraction between modules in distinct sites, which is an RPC, is resolved by generating clientand server stubs automatically by Polygen. CORD does not generate stubs but translates sourcecodes in which every RPC is replaced with a set of message passing primitives interspersed forthe purpose of optimization. The script of the entire process, which includes both user commandsand the execution of the con�guration program, is shown in Figure 6. The tools that are involvedin this process, are summarized as follows:� con�g generates prolog assertions (a.pl), which encodes facts about the modules andbindings in the con�guration, from user provided con�guration (a.cfg).� prolog: After reading the assertions (a.pl), the CORD uses prolog inferencing mechanismto search for satisfying the goal, which asks the possibility to create an application for the13

harvey rim�re thumper highpowerSync 216 103 86 57Async 125 59 52 30(a) Single server case Type 1 Type 2 Type 3ALL 34 26 17(b) Multi-server with various con�gurationsTable 1: Measured time (in seconds) to compute Mandelbrot set on [0.5,-1.8] to [1.2,-1.2] with200� 200 pixel window usedcon�guration described in a.cfg by means of the available tools in the environment. Thisinference results in a package information (a.pkg) if successful.� gen imake: Using the package information (a.pkg), gen imake generates an Imakefileto create a Makefile for an application. A UNIX imake is used to generate a Makefilefrom a provided template in CORD.� gen poly module generates a MIL program (.cl) for the module descriptions3.� gen poly cluster generates a MIL program (.cl) for the application description.� gen poly hdr generates a header �le for each module if necessary.� gen trans generates translated source code to realize RPCs using message passing primi-tives, and proper codes for scheduling and/or load balancing.The �nal step is to execute the application, identify performance bottlenecks using a performancemeasurement tool, and repeat the process from the second step until the resulting performanceis satisfactory.The evaluation of CORD's e�ectiveness overall is currently under way, as is our study of thepotential for unintended interference between various con�guration level optimization strategies.Nevertheless, it is already possible at this date to suggest the potential for CORD in helpingprogrammers to discover desirable optimization opportunities at low cost. We do illustrate thisusing the Mandelbrot example, using a generically coded C implementation built in the Polylithsystem. In this implementation, a sub-task is to compute the set for one row in 200 � 200 pixelwindow, therefore 200 RPCs will be made to complete the whole computation. This formulationof the problem increases tra�c beyond that of alternative implementation, but makes the e�ectof any optimization strategies more easily measured for illustration.Table 1 shows timing results when we execute this Mandelbrot program for various performanceimprovement alternatives, where the programmer may select each mechanism by making only asimple attribute change in the module speci�cation as in Figure 7. Table 1 (a) compares the3The components of the MIL program are the module descriptions and the application description. See [21].14

Load Balancing

Expressions

loadratio = "1:1:1:1"

replication = "harvey.cs.umd.edu, rimfire.cs.umd.edu,

 thumper.cs.umd.edu, highpower.cs.umd.edu" ::

 ::

replication = "harvey.cs.umd.edu(oc=(L>=10)#rimfire.cs.umd.edu,

 rimfire.cs.umd.edu(oc=(L>=10)#thumper.cs.umd.edu,

 thumper.cs.umd.edu(oc=(L>=15)#highpower.cs.umd.edu ::

loadratio = "1:1:1:1" ::

replication = "harvey.cs.umd.edu(oc=(L>=10)#rimfire.cs.umd.edu,

 rimfire.cs.umd.edu(oc=(L>=10)#thumper.cs.umd.edu,

 thumper.cs.umd.edu(oc=(L>=15)#highpower.cs.umd.edu,

 highpower.cs.umd.edu(oc=(L>=25)#harvey.cs.umd.edu" ::

module server {

 source = "C" "server" ::

 define interface calculate

 pattern = { int }

 returns = { int(200) } ::

 interface = "null"

}

Type 1

Type 2

Type 3Figure 7: Module speci�cation for various load balancing schemesperformance between synchronous and asynchronous RPC where the computation is run on eachof several di�erent servers in turn. (To be concrete, `harvey' is SparcStation IPC, `rimfire' isSparcStation IPX, `thumper' is SparcStation 2, and `highpower' is SparcStation 10: the broadspectrum of computing power in these machines is intentional to cause load imbalance in the laterload balancing test.) Asynchronous RPC is better because it allows to overlap server computationwith communication. Table 1 (b) shows timing results when all four machines are cooperatingfor the computation. Each row in the Table 1 (b) indicates the type of load balancing among fourservers. Type 1 is when tasks are distributed equally in spite of divergence in computing power{ the performance is degenerated to that of harvey, the slowest machine (see \34 � 125=4").Type 2 is when the task migration paths are linearly connected, i.e. \client ! harvey ! rim�re! thumper ! highpower." Type 3 is when the paths are circular and the client distributes theequal number of tasks to all servers initially. The CORD system allows us to track down thesecon�gurations towards better performance without having to worry about extensive amount ofmanual adaptations. Each of the execution scenarios shows performance that is comparable to amanually coded counterparts, yet these were achieved without extensive manual intervention onthe part of programmers.5 CONCLUSIONWe have described a system called CORD that allows con�guration-level optimization of RPC-based distributed programs. Because it automatically adapts the application at the source level,CORD encourages programmers to experiment with various performance improvement strate-gies in order to discover the best for their environment and data. Programming directly interms of message passing primitives may still give programmers the maximum ability to write15

high-performance programs in distributed systems, but this freedom comes at a high price inprogrammer time and e�ort, and reduces the programmer's freedom to port, upgrade or reusethe component program units.Though this description is still one of work in progress, the availability of CORD places uswell on our way to supporting an overall hypothesis: that isolating many types of performancefactors from the module programming level, and deferring such decisions to the con�gurationlevel, can decrease the cost of developing and tailoring application programs, while at the sametime achieving overall performance comparable to manually tailored counterparts. Programmerscan have conceptual simplicity and high performance at the same time.References[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.Addison Wesley.[2] A. L. Ananda, B. H. Tay, and E. K. Koh. Astra { An asynchronous remote procedurecall facility. In Proceedings of the 11th International Conference on Distributed ComputingSystems, pages 172{179, 1991.[3] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming languages for distributedcomputing systems. ACM Computing Surveys, Vol. 21(3):260{322, September 1989.[4] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions onComputer Systems, Vol. 2(1):39{59, February 1984.[5] John Callahan and James Purtilo. A packaging system for heterogeneous execution environ-ments. IEEE Transactions on Software Engineering, Vol. 17(6):626{635, June 1991.[6] Clemens H. Cap and Volker Strumpen. E�cient parallel computing in distributed worksta-tion environments. Parallel Computing, Vol. 19:1221{1234, 1993.[7] N. Carriero and D. Gelernter. How to write parallel programs: A �rst course. MIT Press.[8] John R. Corbin. SUN RPC:The art of distributed applications. Springer-Verlag.[9] F. DeRemer and H. Kron. Programming-in-the-large versus programming-in-the-small.IEEE Transactions on Software Engineering, Vol. 2(2), June 1976.[10] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. Adaptive load sharing in homoge-neous distributed systems. IEEE Transactions on Software Engineering, Vol. 12(5):662{675,May 1986.[11] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems onConcurrent Processors, volume 1. Prentice Hall, 1988.[12] N. H. Gehani. Concurrent C. Journal of Software Practice and Experience, Vol. 16:821{844,September 1986. 16

[13] N. H. Gehani. Message passing in concurrent C: Synchronous versus asynchronous. Journalof Software Practice and Experience, Vol. 20(6):571{592, June 1990.[14] W. M. Gentleman. Message passing between sequential processes: The reply primitive andthe administrator concept. Journal of Software Practice and Experience, Vol. 11:435{466,May 1981.[15] D. K. Gi�ord and N. Glasser. Remote pipes and procedures for e�cient distributed commu-nication. ACM Transactions on Computer Systems, Vol. 6(3):258{283, August 1988.[16] J. L. Gustafson, R. E. Benner, M. P. Sears, and T. D. Sullivan. A radar simulation programfor a 1024-processor hypercube. In Proceedings of SuperComputing 1989, pages 96{105, 1989.[17] Philip Krueger and Niranjan G. Shivaratri. Adaptive location policies for global scheduling.IEEE Transactions on Software Engineering, Vol. 20(6):432{444, June 1994.[18] Frank C. H. Lin and Robert M. Keller. The gradient model load balancing method. IEEETransactions on Software Engineering, Vol. 13(1):32{38, January 1987.[19] B. Liskov and L. Shrira. Promises: Linguistic support for e�cient asynchronous proce-dure calls in distributed systems. In Proceedings of the ACM SIGPLAN '88 Conference onProgramming Language Design and Implementation, pages 260{267, June 1988.[20] Bruce Martin, Charles Bergan, and Brian Russ. PARPC: A system for parallel remoteprocedure calls. In Proceedings of the International Conferences on Parallel Processing,pages 449{452, 1987.[21] James Purtilo. The polylith software bus. ACM Transactions on Programming Languagesand Systems, Vol. 16(1):151{174, January 1994.[22] M. Satyanarayanan and E. H. Siegel. MultiRPC: A parallel remote procedure call mechanism.Technical Report CMU-CS-86-139, Carnegie-Mellon University, 1986.[23] Jianjian Song. A partially asynchronous and iterative algorithm for distributed load balanc-ing. Parallel Computing, Vol. 20:853{868, 1994.[24] E. F. Walker, R. Floyd, and P. Neves. Asynchronous remote operation in distributed systems.In Proceedings of the 11th International Conference on Distributed Computing Systems, pages253{259, 1990.
17

