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Abstract:

Many strategies for improving performance of distributed programs can be described
abstractly in terms of an application’s overall configuration. But previously those
techniques would need to be implemented manually, and the resulting programs,
though yielding good performance, are more expensive to build and much less easy
to reuse. This paper describes research towards an automatic system for introduc-
ing performance improvement techniques based upon an application’s configuration
description.
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1 INTRODUCTION

Writing distributed programs is difficult for programmers, and even more difficult when high per-
formance is required. Many mechanisms to achieve better performance in distributed program-
ming have been proposed [3, 12, 13, 14, 19]; however, in practice these mechanisms are hard to
utilize, and do not take into account the burden placed on programmers who already encounter
difficulty in writing functionally correct programs. Furthermore, most of these mechanisms are
expressed by special programming language constructs for specifying the exact semantics on
communication and synchronization [3]. Such languages are not good at accommodating the
programming skills of those who are already accustomed to conventional programming languages

like C.

A great deal of this difficulty in developing large distributed programs arises at the early stages
of program development, when the relationship between modules’ functionality, their interactions
and overall performance is hard discern. For a given module’s functionality as dictated by some
design, it is possible to implement many program units, each having some different calling conven-
tions, servicing style and communication properties, yet all maintaining the same functionality.
Previously this flexibility in how to implement the module resulted in burden to the programmer,
who was tasked with selecting one of the implementations based upon too little information, and
who then would be faced with great programming burden should one of those decisions need to
be changed later. We now show how to exploit that flexibility.

Many of the individual mechanisms for improving performance, as cited above, have been imple-
mented experimentally in the past, albeit without considering the programmer or designer cost.
However, fewer have been implemented for evaluation in broader execution environments. Since
many mechanisms can be expressed in terms of the high-level configuration of application mod-
ules, we sought to derive a practical adaptation system for configuration level programming. This
approach would allow programmers to express performance improvement techniques abstractly
(in terms of the configuration, instead of the low-level implementation), and then prepare appro-
priate implementations automatically.

Module interconnection activity is understood to be an essentially distinct and different intellec-
tual activity from that of implementing individual modules, that is “programming-in-the-large”
is distinct from “programming-in-the-small” [9]. Analogously, this observation applies to per-
formance programming as well. Decisions concerning how a configuration might be adapted in
order to allow use of performance improvement mechanisms are inherently different from the task
of tailoring individual program units and their interfaces to execute as dictated by the abstract
decision. Thus, each module is written to satisfy its functional requirements while each con-
figuration program is written to specify performance related as well as interconnection related
information. Many existing performance oriented mechanisms can be achieved by using ordinary
modules with proper configuration programs and source-to-source translation techniques. This
frees programmers from making extensive amounts of manual adaptations for various performance
configurations.



The objective of our research has been to provide an adaptation system, to allow practical
employment of existing performance improvement techniques; to suggest new techniques; and to
allow programmers the freedom to study the impact of various techniques — in concert with one
another, as desired — upon the application. As the programmer’s original implementation of a
module is translated under this system, each RPC statement is translated into a set of fine grained
message passing primitives, and the source is translated to introduce the particular techniques
specified at the configuration level. This builds upon the MIL (Module Interconnection Language)
approach [5, 21] for distributed programming, where the original MIL specification is intended
for structural presentation of interfaces between interacting processes. We append performance
related specifications onto each interface specification in a MIL. As the performance factors are
isolated from the module programming level, changing that information in order to fine tune the
performance requires not whole changes in source modules, but regeneration of new executables
for the performance configuration.

As a result of this work, programmers will have a practical and straight forward way to employ
optimization techniques which previously were costly to introduce, and very costly to subse-
quently change. This will let them tune and experiment with the impact of techniques on their
application, ultimately with benefits to both performance and development costs. From a re-
search point of view, we hope to have a practical way to evaluate many proposed mechanisms for
performance improvement, using real systems. In addition, we are studying the possibility that
unwanted interference and interaction may arise when several optimization steps are employed
simultaneously. The purpose of this paper is to describe the overall concept of configuration
level optimization, motivate the requirements for our experimental system and to describe the
evaluation activity in progress.

2 MOTIVATION

This section presents a concrete example to motivate the optimization of RPC-based distributed
programs. The example we will discuss involves DNA sequences, an conceptually straight forward
problem whose solutions, though very intricate in implementation, are conceptually simple and
may admit several types of parallelism.

This is essentially a data structure problem: when a new DNA sequence is discovered, geneticists
want to find out how and which previously known sequences the new one resembles. Suppose we
have tens or hundreds of newly discovered sequences that are to be compared to a large database
of existing sequences. Suppose the length of each sequence is variant, and so is the comparison
time. Figure 1 (a) is a client (or master) module that initiates the required number of comparison
tasks.

Two basic parallelizing approaches to the DNA example illustrate the problems that we are
dealing with: one approach performs many sequential comparisons simultaneously as shown in
Figure 1 (b), which is known as a master/workers model (database is replicated to each server),



client()
/[* get next sequence to compare */ ; !
for (i = 0; i < NUM_NEW_SEQUENCE; i++) 5 '
seq[i] = get_next_seq();
[* compare a sequence with each sequences */
/* in adatabase */
for (i =0; _i < NUM_NEW__SEQUENCE; i++)
result[i] = compare(seq[i]); (b) Master-Worker style
[* update result */
for (i =0; i <NUM_NEW_SEQUENCE; i++)
if (real_max < result[i].max) {
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}

Figure 1: Simple DNA sequence search

and the other constructs a pipeline of a series of sub-comparison modules by decomposing a large
database to many small ones as shown in Figure 1 (¢). The former reflects “data parallelism”
and the later, “functional parallelism”.

RPC [4, 8] is a popular paradigm for distributed programming since it simplifies distributed
program construction by abstracting away from details of communication and synchronization.
However, it inhibits us from expressing many useful considerations like scheduling, load bal-
ancing, stream computation and so forth, which are crucial to improving the performance of a
distributed program. The problems for this example, which make direct use of conventional RPC
inappropriate to high performance distributed computing, may be summarized as follows:

1. Load balancing: Server replication is a basic way to improve throughput. However, the
performance of a replicated server can be degenerated to that of the bottleneck process(or)
unless a proper load balancing scheme is used. In Figure 1 (b), no workers should be
idle while others are busy. So far, RPC in itself does not make any association with load
balancing. Previous RPC systems for multiple servers like PARPC [20] and MultiRPC [22]
have been devised, but they do not deal with load balancing since their main purpose is
fault tolerance rather than good performance.

2. Scheduling: In our example, the length of each DNA sequence varies, so does comparison
time. In this situation, if the longest sequence is assigned to an unfortunate process at a
late time near the end of all computations, only that process will be busy while others sit
idle. This problem can be solved if the longest sequence is serviced first. To do this, the
RPC server must be constructed to service tasks with respect to their given priorities.

3. Parallelism: RPC is synchronous in nature. A client must wait to get a response for its



module client { module server {

source = "C" "local" :: source = "C" '"remote'" ::

entrypoint = "main" :: define interface compare

use interface compare : pattern = { string }
: pattern = { string } : returns = { integer }
: accepts = { integer } : interface = "null" ::
: interface = "stdio" :: ¥

module DNA_seq_search {
instance client ::
instance server: standalone ::
bind client compare server compare ::
interface = '"stdio" ::

}

Figure 2: Basic configuration for DNA sequence search example

call before calling another server. Preparing multiple servers or multi-stage pipelines may
not be of much use if a synchronous RPC is used for remote interaction as then only one
server may be activated by a client. Parallelism can be sought if the gap between send and
receive primitives is widened to allow more useful computations during the wait for a result.

4. Length of communication paths: RPC can lengthen communication paths unnecessar-
ily if involved modules form a computation network (like the t¢rellis model in Chapter 8
of [7]) because of its two-way communication protocol. For instance, in Figure 1 (¢), an in-
termediate result in each stage of the compare module must go back to the client first before
being delivered to the next stage. An optimization step that eliminates such unnecessary
communication paths is called for.

This example illustrates the several dimensions open to programmers, and serves to help us state
simply our objective: since each of the above types of improvement admits several strategies
for success, and also each can be characterized in terms of the application’s configuration level
description, we seek a development environment where developers may implement modules in
terms of RPC interfaces (which are comparatively simple constructs), yet separately be able to
express performance improvement strategies in terms of the configuration description. Figure 2
shows the basic configuration program for the example of Figure 1; it represents (in the notation
of our system to be described) the conceptual starting point for configuration programmers who
wish to experiment with different optimization techniques. After programmers express directions
in terms of this configuration, the system should tailor all executables to be consistent with both
specifications.



3 REQUIREMENTS FOR CONFIGURATION OPTIMIZATION

Section 2 exposed some limitations of using RPC for high performance distributed programs, and
in doing so suggested some dimensions by which improvement can be achieved. This also makes
it clear that we can separate what programmers should be able to do and what tools can do as
follows:

1. High-level decisions regarding performance factors that affect overall performance should be
specified in the programming-in-the-large level so that module reusability can be enhanced,
especially in the process of performance tuning. Programmers should be able to specify
those decisions independently.

2. High-level decisions regarding performance factors should be automatically realized and
optimized with low-level message passing primitives.

The purpose of this section is to discuss in greater detail the various strategies by which perfor-
mance can be improved by configuration level annotation. This will identify which features will
be used for optimal realization of RPC (Section 3.1) and expression of the load balancing scheme
(Section 3.2).

3.1 Performance Factors

Performance benefits are realized as latency and throughput improvements. A distributed pro-
gram is composed of clients, servers and their interactions. We distinguish the task of performance
improvement of a distributed program from the perspectives of its three components. Namely,
clients should be able to make multiple requests (parallelism), load must be balanced among
servers (load balancing), and interprocess communication and its overhead must be minimized
(communication optimization). We will elaborate on factors that affect performance and what
we can do to improve performance in the following subsections. Sections 3.1.1, 3.1.2 and 3.1.3
present those factors from the viewpoints of clients, servers and their interactions, respectively.
All of these factors are related in module interactions rather than functionality; thus they will
be represented at the interconnection programming level. When these factors are separated from
individual module construction, the modules themselves can be more easily programmed as well
as more reusable [9].

3.1.1 Calling Style A synchronous call is a call whereby the client blocks the call until the
server completes it [4]. An asynchronous call does not block the client, and replies can be
received as they are needed. To date, the decision on calling style is not the programmer’s (for
example, calls may be synchronous only [4] or they may be asynchronous only [2, 19, 24]), or
the decision has to be made at module programming level by use of different library routines [8].
If we let this decision be separate from RPC statement, the modules will remain reusable for
different calling styles. Therefore, in devising requirements for a configuration level optimization



system, an asynchronous RPC should be implemented by separating the send_request primitive
and the receive_result primitive to allow other useful operations in the midst of remote service.
Synchronous calls would be implemented by their placement in sequence in a client module. Thus,
a server module does not distinguish whether a server is called synchronously or asynchronously.
It implies that the same server can be called asynchronously for one client and synchronously for
another client in the same application.

The calling style should be easily prescribed by programmers in terms of a use clause in the
module specification. Consider the module client in Figure 2, which calls the remote procedure
compare. If programmers want to specify an asynchronous call, they should be able to state it in
the callstyle expression as follows:

use interface compare

: callstyle = ”async”

: pattern = { string }

: accepts = { integer } ::

3.1.2 Servicing Style When the length of a service queue is long, throughput can be improved
by the choice of a good “servicing style.” Servicing style can be characterized by scheduling policy
and server replication. Scheduling policy determines the desirable order of requests to be serviced.
Usually the order of service is fixed by arrival time. Scheduling generalizes the order —i.e. other
parameters besides arrival time are considered to determine the order of service. For example,
the length of a DNA sequence to be compared may be a parameter that determines such an order
as mentioned in section 2. Server replication improves throughput as well because the load is
distributed among replicated servers, although load balance is crucial to good performance.

As with calling style, the module specification for expressing scheduling and replication features
should be simple for programmers to assign. Illustrating one way this might appear for the
introductory example, is

module server {
source = 7C” "remote” ::
define interface compare
: priority = "strlen(x)”
: replication = ”harvey.cs.umd.edu,bugs.cs.umd.edu,thumper.cs.umd.edu”
: pattern = { string }
: returns = { integer }
. interface = "null” ::

Here the priority attribute is an expression, which would use valid syntax within the module
compare in order to evaluate a priority. As we hoped to assign a higher priority to the longer
sequence, evaluating strlen(x) produces the right order of priorities. The compare module is
replicated in its simplest form here, while load balancing will be considered in section 3.2.



3.1.3 Communication Style A communication pattern in distributed programs occurs in three
different forms: intermittent, incremental and bulk rate data transfer. A conventional RPC
protocol covers only the case of intermittent data transfer, i.e. when the number of messages
between client and server is not too big or too frequent. An incremental pattern of communication
occurs when we try to exploit pipeline concurrency for a chain of clients and servers as in Figure 1
(c) and Figure 3. This pattern, which forces a single computation to be decomposed into a series
of distinct RPCs, reduces the server’s performance since it is inactive between calls unless the
synchronous behavior of RPC has been changed. Also, if we want to send bulk data by a
series of RPCs, the communication performance is severely limited since it is not possible to
aggregate data of successive procedure calls from a single client. Even worse, contemporary RPC
systems are optimized to transmit limited amounts of data (usually less than 10% bytes) per
call. To support the incremental and bulk rate data transfer, wherein conventional RPC systems
performance suffers severely, a new communication model called remote pipe [15] has been devised.
In the framework we are motivating, these patterns may be efficiently handled with automatic
communication optimization if programmers specify which communication pattern will appear.

Once that information has been provided, there would be three ways to improve communication
performance: (1) choice of proper transport, (2) reduction of kernel overhead by data aggregation
and (3) elimination of unnecessary communication. The best transport protocol depends on
the amount of data to be transferred. In other words, the connection-less transport protocol
(UDP: User Datagram Protocol) works best for the intermittent data transfer pattern, and the
connection-oriented transport protocol (TCP: Transmission Control Protocol) for the incremental
and bulk rate data transfer pattern. Data aggregation allows us to amortize the overhead of
kernel calls. If the size of aggregated data is increased, the throughput is increased, and if it is
decreased, then the latency is reduced. Programmers can control high throughput vs. low latency
by assigning the size of aggregated data to a particular server. Unnecessary communication is
unavoidable in conventional RPC implementation as illustrated in Figure 3. Figure 3 (b) is
optimized to (c) by elimination of the unnecessary communication paths. Figure 4 illustrates
optimization to communication parallelization. A value ‘v’ is supposed to be transmitted to
two destinations. Figure 4 (c) is optimized because module ‘A’ can receive ‘v’ independently of
module ‘g’; moreover, the value ‘v’ can be multicast if multicasting primitives are available in
the underlying message passing environments.

3.2 Load Balancing

Fox et al. [11] demonstrated that the SPMD model is a natural paradigm for a large number of
problems in science and engineering. This model can similarly be expressed by RPC paradigm
with the aid of replication expressions in configuration programs, but load must be balanced
among workers to insure good performance. We provide a systematic way to customize proper
load balancing schemes for an RPC to replicated servers. Once programmers decide task dis-
tribution ratio, task migration paths for load balancing, and load balancing policies, then the
resulting codes are automatically generated.
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Figure 4: Communication paths for a sequence of RPCs

3.2.1 Solution 1: Static load distribution Static load distribution is a simple approach to load
balance. The tasks generated by master process are distributed to the pool of worker processes
according to the statically defined task distribution ratio, which is decided by programmers based
on the average performance of participating workstations. The task distribution ratio is the only
parameter in this scheme. Since load distribution is a client side concern, an attribute loadratio
is needed in the use clause. The ratio description is matched with the replication attribute in
the corresponding define clause as follows:

use interface compare define interface compare
: callstyle = ”async” : replication = ”harvey.cs.umd.edu,bugs.cs.umd.edu,
: loadratio = 71:2:3” thumper.cs.umd.edu”



3.2.2 Solution 2: Demand-driven load distribution Simple dynamic load balancing can be
achieved through demand-driven load distribution, which does not need to migrate tasks among
workers. When a master process receives a result from a worker, it sends another task to the
worker as the load situation of the worker has decreased due to the recent finish, i.e. receiving
a result is regarded as a demand for another task. This scheme contains two problems. First,
the master process can generate a bottleneck [16]. For example, if there are 1000 workers and
a master needs 1073 second to prepare and send a task, the master would create a bottleneck
unless the average time for each worker to finish a task is greater than a second. Furthermore,
if all workers took the same amount of time to finish their own tasks, the finish replies would
come in burst, and this would cause a bottleneck, too. Second, the scheme does not allow overlap
between communication and computation because the next task can not be issued unless the
current one has been finished.

To alleviate these problems, watermarking can be used. It was originally used to control over-
load [7], but it can also be used to avoid underload, which is caused by latency. Good water-
mark enables a master to send a stream of task service requests; as a result, a worker does not
sit idle while demanding more tasks. This requires a change in calling style, represented by
“async-demand(num)”, where num is a watermark value. In the following module specification,
client! and client2 use static and demand-driven load distribution, respectively.

module clientl {
module server {

use interface compare source = 7C” "remote” ::
: callstyle = ”async” define interface compare
: loadratio = 71:1:1” : priority = "strlen(x)”
: replication = ”harvey.cs.umd.edu,
} bugs.cs.umd.edu,
module client2 { thumper.cs.umd.edu”
: pattern = { string }
use interface compare : interface = "null” :
: callstyle = ”async-demand(5)” }
}

3.2.3 Solution 3: Dynamic load balancing When load balance cannot be reached through the
above load distribution methods, tasks should migrate. Many dynamic load balancing algorithms
have been devised for such an efficient migration [6, 10, 17, 18, 23]; they are characterized by
the following parameters which distinguish them. Load balancing algorithms can be fine tuned
when programmers can change those factors conveniently.

¢ Topology: Topology determines the shape of task migration paths. A fully connected
topology provides a way to gain load balance in any case, but with some system overhead
due to periodic load state exchange. The overhead can be cut through simplified topology.
A compromise must be sought between reduced overhead and load balancing gains.

10



e Transfer policy: Transfer policy determines whether load has to migrate at a particular
load state. The decision can be made based on local or global load information.

¢ Location policy: Location policy determines which process initiates the migration and
which process should be the source or the destination in this migration: sender-initiated,
receiver-initiated or mix of them.!

e Selection policy: Selection policy determines how many work load units are to migrate.

Ideally, a replication attribute would consists of a list of the following expression, which describes
a customized topology, transfer, location and selection policy.

M (ocy, uer ) # My ((oc, uey ) = [v]?

i

At least one condition out of “ocy, wey, ocy, uecy” must appear, otherwise the task migration

cannot be initiated. The following two examples illustrate the use of a replication expression.

Example 1: “harvey.cs.umd.eduoc=(load>=10))#bugs.cs.umd.edu: [1/2]”

There is a task migration path between “harvey” and “bugs”. The task migration will occur
when the amount of load is more than 10 units. It is sender-initiated. Half (y = 1/2) of the
remaining work loads will migrate.

Example 2: “harvey(oc=(1load>=10))#bugs (uc=(load==0)):[1/2]”
Same as above except “bugs” can initiate task migration, which is a receiver-initiated policy,
when it sits idle (load==0).

In summary, a server module specification is given below, which forms a dynamic load balancing
scheme that has a circular topology and sender-initiated task migration policy.

module server {

source = 7C” "remote” ::

define interface compare

: priority = ”strlen(x)”

: replication = ”harvey.cs.umd.edu(oc=(L>=10))#bugs.cs.umd.edu:[1/2],
bugs.cs.umd.edu(oc=(L>=20))#thumper.cs.umd.edu:[1/3],
thumper.cs.umd.edu(oc=(L>=10))#harvey.cs.umd.edu:[1/4]”

: pattern = { string }

. interface = "null” ::

1

YWith a sender-initiated policy, an overloaded process will look for a destination to export load to. With a
recetver-initiated policy, an underloaded process will look for a destination to import load from.

2M1, M>: host address that has one replica of the server module.
oci, uc;: a condition that decides overloading or underloading for M;, respectively.
‘#’: a linkage between M1 and M.

v: the number of load units to migrate (fraction).

11



Makefile client.cl server.cl all.cl

a.cfg
client.c x.client.c x.client.h
server.c x0.server.c x0.server.h xl.server.c xl.server.h

X2.server.c x2.server.h x3.server.c
x3.server.h

Figure 5: Generated files from user provided modules using CORD

4 DEVELOPING APPLICATIONS IN CORD

The previous section has characterized the various forms of optimization which are possible to
discuss in terms of an application configuration. We have been developing a support environment
called CORD (Configuration-level Optimization for RPC-based Distributed programs) to allow
us to experiment with introduction of such adaptations at low cost.

The CORD system is primarily an integration effort at the University of Maryland, and builds
extensively upon prior results in the area of software interconnection. The configuration lan-
guage chosen for expressing modules and their compositions is derived from the Polylith module
interconnection language, and the distributed run time environment chosen is likewise the soft-
ware bus behind Polylith. Basic tools for preparing applications to run in this environment are
already available within the Polygen system [5], although they are to be tailored to attain our
source translation (rather than stub generation) principle. Therefore the principle thrust of our
effort has been to add a source translator (gen_trans) to the suite of Polygen tools. The source
translator operates differently depends on whether a module is a client or a server from given
RPC’s viewpoint: for a client module, it performs data flow analyses to place message passing
primitives optimally, and for a server module, it generates proper codes to implement particular
servicing styles described in configuration programs. Though we have omitted the statement of
algorithms from this paper in the interests of space, the translation is straight forward, because
we can decide the earliest time to send a request and the latest time to receive a result based on
DUC; (Definition-Use-Chain of [-value) and UDC, (Use-Definition-Chain of r-value) sets, that
can be evaluated through use-def and def-use analyses [1].

The development of an application in CORD consists of a number of steps. At some point, each
module used in the application must be given an implementation, each dealing with interfaces in
generic RPC terms, of course. Since performance decisions that occur in module interactions are
decoupled from the module programming level, module functionality is the only concern in this
step.

The second step is to define an application using the module interconnection and performance
configuration. In the next step, CORD generates all necessary files for an executable automati-
cally with respect to the configuration program. Figure 5 shows the automatically generated files
from the user provided files, which are source programs client.c, server.c and the configura-
tion program a.cfg, using CORD. (In the figure, it is assumed that the server.c is replicated
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%
%

%
%
%

config < a.cfg > a.pl
prolog < a.pl > a.pkg

gen_imake < a.pkg > Imakefile
imake -T "Imake.tmpl”

make

gen_header client < a.pkg > client.h
gen_header server < a.pkg > server.h
gen_trans client.c < a.pkg > x.client.c
gen_trans server.c < a.pkg > x.server.c
gen_module client < a.pkg > client.cl
gen_module server < a.pkg > server.cl
gen_cluster < a.pkg > all.cl

csc client.cl

csc server.cl

csc all.cl

csl -o all client.co server.co all.co

cc -o client x.client.c -lith

cc -o server x.server.c -lith

Initially the user has source codes (“client.c, server.c”) and config-
wration file (“a.cfg”)
Creates prolog assertions for the configuration
Given inference engine (“package.pl”), gemerates the packaging in-
formation (“a.pkg”) to satisfy the packaging goal according to the
generated assertions
Creates Imakefile file from the packaging information
Creates Makefile using a prepared Imake template (“Imake.tmpl”)
Creates executables according to the interface gemeration, source
translation, and compilation information in the Makefile
The following output s from commands called from the makefile
generates a header file for the client.c
generates a header file for the server.c
translates from the original user code client.c to z.client.c
translates from the original user code server.c to xz.server.c
generates the client specification
generates the server specification
generates the application specification
compiles the client specification into client.co
compiles the server specification into server.co
compiles the application specification into all.co
creates a root executable that evecutes client and server
compiles the x.client.c component and creates client

compiles the w.server.c component and creates server

Figure 6: Script for the design (user commands prefixed by a % prompt)

to four distinct machines.) This step follows the similar packaging process in Polygen, which
deals with automatic adaptations for divergent structural and geometric configurations. The
interaction between modules in distinct sites, which is an RPC, is resolved by generating client
and server stubs automatically by Polygen. CORD does not generate stubs but translates source
codes in which every RPC is replaced with a set of message passing primitives interspersed for
the purpose of optimization. The script of the entire process, which includes both user commands
and the execution of the configuration program, is shown in Figure 6. The tools that are involved
in this process, are summarized as follows:

e config generates prolog assertions (a.pl), which encodes facts about the modules and
bindings in the configuration, from user provided configuration (a.cfg).

¢ prolog: After reading the assertions (a.pl), the CORD uses prolog inferencing mechanism
to search for satisfying the goal, which asks the possibility to create an application for the
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|| || harvey | rimfire | thumper | highpower ||
Sync 216 103 86 57 ||

| Type 1 | Type 2 | Type 3 ||

Async 125 59 52 30 [LALL | 34 | 26 | 17
(a) Single server case (b) Multi-server with various configurations

Table 1: Measured time (in seconds) to compute Mandelbrot set on [0.5,-1.8] to [1.2,-1.2] with
200 x 200 pixel window used

configuration described in a.cfg by means of the available tools in the environment. This
inference results in a package information (a.pkg) if successful.

¢ gen_imake: Using the package information (a.pkg), gen_imake generates an Imakefile
to create a Makefile for an application. A UNIX imake is used to generate a Makefile
from a provided template in CORD.

¢ gen_poly_module generates a MIL program (.cl) for the module descriptions®.
¢ gen_poly_cluster generates a MIL program (.cl) for the application description.
¢ gen_poly_hdr generates a header file for each module if necessary.

¢ gen_trans generates translated source code to realize RPCs using message passing primi-
tives, and proper codes for scheduling and/or load balancing.

The final step is to execute the application, identify performance bottlenecks using a performance
measurement tool, and repeat the process from the second step until the resulting performance
is satisfactory.

The evaluation of CORD’s effectiveness overall is currently under way, as is our study of the
potential for unintended interference between various configuration level optimization strategies.
Nevertheless, it is already possible at this date to suggest the potential for CORD in helping
programmers to discover desirable optimization opportunities at low cost. We do illustrate this
using the Mandelbrot example, using a generically coded C implementation built in the Polylith
system. In this implementation, a sub-task is to compute the set for one row in 200 x 200 pixel
window, therefore 200 RPCs will be made to complete the whole computation. This formulation
of the problem increases traffic beyond that of alternative implementation, but makes the effect
of any optimization strategies more easily measured for illustration.

Table 1 shows timing results when we execute this Mandelbrot program for various performance
improvement alternatives, where the programmer may select each mechanism by making only a
simple attribute change in the module specification as in Figure 7. Table 1 (a) compares the

®The components of the MIL program are the module descriptions and the application description. See [21].
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" loadratio = "1:1:1:1"
' replication = "harvey.cs.umd.edu, rimfire.cs.umd.edu,

module server { thumper.cs.umd.edu, highpower.cs.umd.edu" ::

source ="C""server"
T ‘ §replicationz"harvey.cs.umd.edu(ocz(L>=10)#rimfire.cs.umd.edu, }

Load Balancing — rimfire.cs.umd.edu(oc=(L >=10)#thumper.cs.umd.edu,
| Bpresions Q’ez T thumper. csumd edu(oc=(L>=15)highpower csumd.edu =
defineinterface calculate N\ .
pattern = { int } loadratio="1:1:1:1" ::
returns = { int(200) } ::  replication = "harvey.cs.umd.edu(oc=(L>=10)#rimfire.cs.umd.edu,
interface = "null” Type3 1 rimfire.cs.umd.edu(oc=(L>=10)#thumper.cs.umd.edu,
} thumper.cs.umd.edu(oc=(L >=15)#highpower.cs.umd.edu,

highpower.cs.umd.edu(oc=(L >=25)#harvey.cs.umd.edu” ::

Figure 7: Module specification for various load balancing schemes

performance between synchronous and asynchronous RPC where the computation is run on each
of several different servers in turn. (To be concrete, ‘harvey’ is SparcStation IPC, ‘rimfire’ is
SparcStation IPX, ‘thumper’ is SparcStation 2, and ‘highpower’ is SparcStation 10: the broad
spectrum of computing power in these machines is intentional to cause load imbalance in the later
load balancing test.) Asynchronous RPC is better because it allows to overlap server computation
with communication. Table 1 (b) shows timing results when all four machines are cooperating
for the computation. Fach row in the Table 1 (b) indicates the type of load balancing among four
servers. Type 1 is when tasks are distributed equally in spite of divergence in computing power
— the performance is degenerated to that of harvey, the slowest machine (see “34 =~ 125/4”).
Type 2 is when the task migration paths are linearly connected, i.e. “client — harvey — rimfire
— thumper — highpower.” Type 3 is when the paths are circular and the client distributes the
equal number of tasks to all servers initially. The CORD system allows us to track down these
configurations towards better performance without having to worry about extensive amount of
manual adaptations. Each of the execution scenarios shows performance that is comparable to a
manually coded counterparts, yet these were achieved without extensive manual intervention on
the part of programmers.

5 CONCLUSION

We have described a system called CORD that allows configuration-level optimization of RPC-
based distributed programs. Because it automatically adapts the application at the source level,
CORD encourages programmers to experiment with various performance improvement strate-
gies in order to discover the best for their environment and data. Programming directly in
terms of message passing primitives may still give programmers the maximum ability to write
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high-performance programs in distributed systems, but this freedom comes at a high price in
programmer time and effort, and reduces the programmer’s freedom to port, upgrade or reuse
the component program units.

Though this description is still one of work in progress, the availability of CORD places us
well on our way to supporting an overall hypothesis: that isolating many types of performance
factors from the module programming level, and deferring such decisions to the configuration
level, can decrease the cost of developing and tailoring application programs, while at the same
time achieving overall performance comparable to manually tailored counterparts. Programmers
can have conceptual simplicity and high performance at the same time.
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