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ABSTRACT

Title of Dissertation: VLSI Architectures for Real-Time Signal Processing
Chaitali Chakrabarti, Doctor of Philosophy, 1990

Dissertation directed by: Joseph F. JaJ4a, Professor, Electrical Engineering

We address the problems of developing efficient special-purpose VLSI archi-
tectures for computing some important real-time signal processing tasks, namely,
one-dimensional Discrete Hartley (DHT) and Discrete Cosine transforms (DCT),
multidimensional transforms. template matching and block matching. An im-
portant requirement of all these architectures is that they should process huge
amounts of data at very high throughput rates.

The first problem that we address involves developing systolic array archi-
tectures for computing one-dimensional DHT and DCT over N points, when
N is factorizable into mutually prime factors Ny and N;. We map the one-
dimensional transform into a two-dimensional transform over (INy x N3) points
such that the algorithm consists of computing one-dimensional transform over
columns and rows of the two-dimensional data array. The hardware requirement
is considerably reduced because of this mapping. The architecture consists of
simple and regular units which are completely pipelined.

Next we look at the more general problem of computing any (N XN x...xN)
d-dimensional linear separable transform (DXT). Here we develop a family of

optimal architectures with area-time trade-offs. The architecture consists of

one-dimensional DXT(N) transform computation units which compute DXT(N)



over one index, and permutation units which order data so that in the next
iteration DXT(N) can be computed over the next index. The architecture has
an area A = O(N**?*) and computation time T = O(ng—ab) for all @ in the
range 3 logy b < a < g—, where b = O(log M) is the precision.

The third problem that we address is developing efficient architectures for
computing very high input/output (I/0) bandwidth operations, like template
matching and block matching. Here we develop a linear semi-systolic array
architecture which balances computations in the processor array with the I/0
requirements. The /O bandwidth is reduced by storing part of the input image

on-chip in shift registers in each processor, and by circulating the shift registers.

The architecture achieves optimal speed-up.
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Chapter 1

Introduction

Many computational tasks involved in image processing, video processing and
speech processing schemes require the ability to carry out the operations in real-
time. Real-time signal processing tasks involve processing huge amounts of data
at very high throughput rates. To give an estimate of the throughput, consider
the computation of template matching when the image is of size (512 x 512),
the template is of size (8 x 8) and the frame rate is 30 Hz. The number of
multiplication-accumulation operations is then 60 MOPs (million operations per
second). It is not unusual for a real-time application to have a throughput as
high as 1000 MOPs. Clearly such high computational rates cannot be achieved
by sequential systems. In fact, even general-purpose parallel computers cannot
match the speed and volume requirements because of severe system overheads.
The only way to meet the high computational rates of real-time signal processing
tasks is by developing special-purpose architectures which exploit the regularity,

recursiveness and locality of the signal processing algorithms. Architectures



which consist of locally interconnected networks (and thereby circumvent the
communication problem) and which incorporate both parallel processing and
pipelining are well suited for such algorithms. Systolic arrays [32], wavefront

arrays [33] are examples of such architectures.

The organization of the rest of this chapter is as follows. We discuss the de-
sired characteristics of such architectures in Section 1.1 and then briefly review
some architectures which can handle real-time operation in Section 1.2. In Sec-
tion 1.3 we make some remarks about its evaluation. In Section 1.4 we give an
overview of the architectures that we developed for handling the following signal
processing tasks: one-dimensional Discrete Hartley transform (DHT) and Dis-
crete Cosine transform (DCT), multi-dimensional linear separable transforms,
template matching, and block matching. We conclude with the thesis organiza-

tion in Section 1.5.

1.1 Architectural requirements

In this section we briefly describe the requirements of special-purpose architec-

tures for real-time signal processing [32, 33]:

Simplicity and regularity of design: This is an important factor in VLSI
design. If the design is simple, and if it consists of a few different types of
units, then the design cost would be low enough to justify limited applicability.

Moreover such a design is more likely to be modular.



Parallel and pipelined processing: The degree of concurrency in a special-
purpose architecture is determined by the underlying algorithm, and whether
the algorithm can be mapped into an architecture with high degrees of parallel
and pipelined processing. Pipelining increases the throughput rate which is a
very important system performance factor. Pipelining at all levels (bit-level,

word-level and array-level) need to be exploited.

Communication: This is a very critical factor in VLSI design. In fact, inter-
processor communications dominate the cost of parallel algorithms and systems.
Local and regular communication schemes for both data transactions and control

flow are essential to enable efficient implementation.

Balancing computation with input/output: Real-time signal processing
operations are computation-bound, that is, the total number of computations is
larger than the number of input/output (I/O) operations. Thus for applications
with large throughput, multiple computations have to be performed per I/O
access. For some applications repetitive use of data items may require it to be
stored on-chip. Thus the computation rate has to be balanced with both the

external and the internal memory bandwidth.

1.2 Architectures

There are two approaches to the design of special-purpose architectures for real-
time signal processing. One is to design dedicated hard-wired systems and

the other is to design programmable array processor systems. Systolic arrays



and their variations are used in many dedicated systems. In this section we

first briefly review systolic arrays, and then describe some other parallel array

processor systems.

1.2.1 Systolic arrays

A systolic array is defined by Kung and Leiserson [34] as a “network of processors
which rhythmically compute and pass data through the system”. The function of
a processor is analogous to that of a heart. Each processor regularly pumps data
in and out, each time performing some simple computation, so that a regular
flow of data in maintained in the network. A systolic array has the following

important properties [32, 33].

Modularity and regularity: A systolic array consists of simple and modu-
lar processors interconnected in a regular pattern. Examples of such patterns
are linear (one-dimensional), orthogonal (two-dimensional), hexagonal (see Fig-

ure 1.1). The array can be extended indefinitely.

Spatial and temporal locality: The processors communicate with each other
via a local interconnection structure (spatial locality). Signal transactions from

one processor to the next can be completed in one unit time (temporal locality).

Pipelinability: A systolic array has a very high degree of pipelining. Once a
data item is fetched from the memory, it is used to compute/update intermediate

results in each processor while being ‘pumped’ from processor to processor along

the array. Such a data flow scheme is ideal for computation-bound operations,



b)

Figure 1.1: Systolic array configurations: a) Linear array b) Orthogonal array

c) Hexagonal array

where multiple operations are performed on each data item.

Synchrony: In a systolic array the data passes through the array in a regular,

rhythmic pattern. All data movements are synchronized by a global clock.

We illustrate the operation of a systolic array with the help of a matrix-
vector multiplication example. Consider the problem of multiplying a matrix
A with a vector z. Here A has a bandwidth w = p 4+ ¢ — 1 (see Figure 1.2).

The architecture consists of a linear array of w inner product processors. The
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Figure 1.2: Multiplication of banded matrix A (p = 2, ¢ = 4) with vector z of
size 6

data flow through the array is as follows. The y;s move to the left, the ;s
move to the right and the a,;s are fed from the top. Figure 1.3 illustrates the
data flow in an example where p = 4, ¢ = 2, and |z| = 6. We next trace the
computation of y, through this array. y, is initially set to 0 and input from
the right hand side of the array in Step 2. It is updated by PE[2] in Step 4
(y2 = ag1 * 21), by PE[1] in Step 5 (y2 = aa1 * 21 + az2 * 22), and by PE[0] in
Step 6 (y2 = a1 * T4 + a2 * T2 + d23 * x3). In this way the correct value of y; is

output in Step 7.
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Figure 1.3: Data flow through the systolic array during the computation of Steps

2 through 7 of the matrix-vector algorithm



Systolic architectures have a very high performance for any computation-
bound problem that is regular, that is, for applications which involve repetitive
computations on a large set of data. Examples include convolution, filters (I1IR,

FIR, median), transforms, matrix computations, graph algorithms, language

recognition, etc.

Semi-systolic architectures: For many signal processing applications such
a rigorous framework is too rigid. In some applications it is advantageous to
broadcast data or to time-share the processing elements for sequences of differ-
ent operations. In some other applications it is necessary to store data in a dis-
tributed manner (in shift register memories, local pointer addressed memories,
etc.) in the array. Sometimes it is necessary to design efficient I/O interfaces
which are not necessarily fully regular (an example is an interface consisting of
shift registers that have a conditional clock which activates only when new data
is available at the inputs). Architectures which are essentially systolic but which

incorporate such variations are referred to as semi-systolic architectures.

Wavefront arrays [33] are an extension of systolic arrays where the intercell

synchronization is accomplished by local handshakes, instead of a global clock.

1.2.2 Array processor system

An array processor system consists of four major components: host computer,
interface unit, processor array and interconnection network [33]. It is used in

applications where flexible processing is important.

02¢]



The functions of the various components in an array processor system are
as follows. The host computer provides system monitoring, data storage, pro-
gram scheduling. The interface unit is responsible for loading/unloading and
buffering data to the processor array. The processor array consists of a number
of processing elements each equipped with a simple computation unit and (in
most cases) a local memory. The mode of operation is either SIMD (Single In-
struction Multiple Data stream) * or MIMD (Multiple Instruction Multiple Data
stream) 2. The processors communicate with other processors via the intercon-
nection network. Some examples of interconnection network are mesh, binary
tree, pyramid, hypercube, and butterfly. Since communication is expensive in
VLSI, interconnection networks play an important role in the design of array
processor systems. In the rest of this section we present various interconnection
networks and state the signal/image processing applications that are suited for

each of the networks.

Mesh network:

In a d-dimensional mesh, the P processors are logically arranged in a d-dimensional
({'VF x VP x...x% {i/ﬁ) array. The processor at location (i4-1,%4—2,...,%0) is
connected to the processor at location (ig-1,...,2; £1,....%), 0 < j <d— 1

In a 2-dimensional mesh, each internal processor is connected to 4 neighboring

In an SIMD architecture, a single controller broadcasts instruction to all the processors.

The processors then execute the instructions simultaneously.

’In an MIMD architecture each processor reads instructions from its private memory,

decodes them, and executes these instructions.
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Figure 1.4: 2-dimensional mesh of size 16

processors (see Figure 1.4). The strength of such a network lies in the ease of
construction and the high performance of local neighborhood operations. The
weakness lies in algorithms where data have to be moved long distances, in which
case it may take O(v/P) time. Algorithms which require O(v/P) communication
operations but perform only O(log P) calculations are best solved if the mesh
network is augmented with a tree of processors. Such a network is known as
the mesh of trees network (see Section 3.3.1). In a (v/P x v/P) mesh of trees
network, each row of processors as well as each column of processors form the

leaves of a binary tree (see Figure 3.2).

Binary tree network

In a binary tree network, the P = 2¢ —1 processors are connected by a complete

binary tree of depth (d— 1). Each internal processor in the zth level is connected

10



Figure 1.5: Binary tree network of size 15

to its two children in the (2 4 1)th level and to its parent in the (z — 1)th level.
Thus processor j is connected to processor (2j + 1), processor (2 + 2) and
processor |j/2| (see Figure 1.5). (The leaf processors are connected only to
their parents and the root processor is connected only to its children.) Such a
network is suitable for problems which can be decomposed in a hierarchical way
as in dictionary and database problems. Recursive algorithms may also perform

better on this network.

Pyramid network

In a pyramid network, the P = (49! — 1)/3 processors are connected by a
pyramid of depth d, such that the zth level is a mesh connected network with 4
processors, 0 <2 < d — 1. Each internal processor in the :th level is connected
to its 4 children in the (z + 1)th level, to its 4 nearest neighbors in the 7th level
and to its parent in the (2 — 1)th level (see Figure 1.6). All algorithms on the

mesh can be run at the lowest level of the pyramid. Algorithms on mesh of trees

11



Figure 1.6: Pyramid network of size 21

can be run by using only the vertical connections and the horizontal connections
in the base of the pyramid. Such a network is useful in image processing for

analyzing images at multiple levels of resolution.

Hypercube network:

In a hypercube network, the P = 2¢ processors are connected by a d-dimensional
Boolean cube. If the binary representation of 7 is 17_174_5 .. .%o, then processor
i is connected to all processors i/, where i/ is represented by i4_; . Z_J ... 20,
ij =1—13and 0 < j < d— 1. A hypercube has a recursive structure: a
d-dimensional hypercube can be viewed as being two (d — 1)-dimensional hy-
percubes with connections between the corresponding corners of the smaller

hypercubes (see Figure 1.7). A hypercube has a high bandwidth and can solve



4

10

Figure 1.7: 4-dimensional hypercube network

many problems very fast. However they are difficult to build, since there are
log P wires conected to each processor. ShufHle-exchange and cube-connected
cycles have a performance comparable to hypercubes but have fixed number of

interconnections.

Butterfly network:

In a butterfly network, the P = (¢ + 1)2? processors are organized into (¢ + 1)
ranks with 27 processors in each rank. Processors : and " in rank r 4 1 are
connected to processors 7 and 7" in rank r, where " is denoted by ¢4—1 ..., ... g,
0 <r<gq,and 0 <7 < 27. These four connections form a ‘butterfly’ pattern
(see Figure 1.8). This network is ideally suited for computing fast transforms
like FFT (Fast Fourier Transform). It can also be used to solve problems like
merging, sorting, etc. very fast. Actually this network is equivalent to the

shuffle-exchange and is slightly less powerful than the hypercube.

13



rank 0 rank 1 rank 2 rank 3

processor 0

processor 1

processor 2

processor 3

processor 4

processor 5

processor 6

processor 7

Figure 1.8: Butterfly network for ¢ = 3 and P = 4.2°

1.3 Architecture evaluation

Here we would like to make some remarks about the important features in the
evaluation of a VLSI architecture. The basic parameters of any VLSI compu-
tation are chip area A and computation time T. Chip area is a measure of the
fabrication cost and computation time is a measure of the operating cost. While
VLSI designers measure the chip area in mm? of silicon and computation time
in nanoseconds, VLSI computation theorists estimate the area and computation

time asymptotically using the VLSI model of computation.

In the VLSI model of computation [6, 54], a VLSI circuit is a computation

graph whose vertices are nodes which perform simple logical functions, and

14



whose edges are wires which carry signals to and from nodes. The total area
A is the number of unit squares in the smallest rectangle that encloses the
circuit consisting of nodes and wires. The computation time T is the number of
time units between the appearance of the first input bit on some port and the

appearance of the last output bit on some port.

The VLSI model of computation relies on asymptotic analysis to evaluate the
area and time complexities. Such an analysis has the advantage of being very
simple and yet pointing out the bottlenecks of the design. Moreover it provides a
simple framework for the evaluation and explanation of various designs. However
such an analysis does not contain the constant factors that are crucial when the
number of sample points is small. Also, VLSI technology still cannot support the
one-chip design for a large number of sample points. So a theoretically optimal
design may not necessarily be the ‘best’ design in terms of actual hardware
implementation. From a designers’ point of view what is more important is
whether the design is regular and simple, whether all the processors are active
most of the time, whether the communication bandwidth between processors as
well as with the external world is low, whether the data flow is regular, and so on.
In this thesis we develop architectures which are on the one hand realizable using
today’s technology and on the other hand as close as possible to the theoretical

optimality criteria.
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1.4 Main Contributions

In this section we give an overview of the architectures that we developed for
computing some important signal processing tasks, namely, one-dimensional Dis-
crete Hartley and Discrete Cosine transforms, d-dimensional linear separable
transforms, template matching, and block matching. For each of these problems
we briefly describe the importance, the definition, the existing schemes and the

proposed scheme.

1.4.1 Discrete Hartley Transform and Discrete Cosine

Transform

The Discrete Hartley transform (DHT) and the Discrete Cosine transform (DCT)
are important transforms in signal processing. DCT is widely used to encode
speech and video signals in data compression schemes because of its close perfor-
mance to the statistically optimal Karhunen-Loeéve transform. DCT is also used
for realizing filter banks in frequency-division multiplexing and time-division
multiplexing systems. DHT is used in spectral analysis and other signal pro-
cessing schemes. In fact, it has the same potential as the Discrete Fourier
transform (DFT) and can be used in almost all schemes which employ DFT.
DHT and DCT are favored in schemes which require the computation of multi-
dimensional transforms, since both these transforms are real and do not require

computations involving complex arithmetic (as in DFT).
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Problem definition:

The one-dimensional DHT of N points is defined [2] by
1 N-—
H(k —TZ:: cas(f%rnk), 0<k<N-1,

where cas(z) = cos(z)+sin(z). The one-dimensional DCT of N points is defined
[1] by

9 N-1

T ,
= Ze(k 2 (2 2 » _
C(k) Ne(k) n§=0 :c(n)cos[QN(un—i-ll)k], 0<k<N-1,
where
4 ifk=0

1 otherwise

Our aim here is to develop systolic array architectures for one-dimensional

DHT and DCT when N is factorizable into mutually prime factors N; and Ns.

Existing schemes:

There exist linear systolic array architectures [14, 53] as well as two-dimensional
systolic array architectures [14] for computing DCT. While the former is a di-
rect realization of the matrix vector algorithm, the latter computes DCT by
multiplying the output of DFT over (N; X N3) points with appropriate factors.
There also exist general-purpose architectures for DCT [57]. To the best of the

author’s knowledge no systolic array architectures have been proposed for DHT.
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Our contribution:

Our approach for computing one-dimensional DHT and DCT consists of map-
ping the one-dimensional transforms over NV points into two-dimensional trans-
forms over (N; X N3) points, and then realizing them by two-dimensional systolic
arrays. The algorithm consists of computing one-dimensional transforms over
columns and rows of the two-dimensional data array, followed by some adjust-
ments. Our architecture is strictly systolic. All the components are completely

pipelined, resulting in very high throughput.

There is a considerable reduction in hardware as a result of mapping the one-
dimensional transform into two-dimensions. This is because the same hardware
can be used to compute on multiple columns (rows). The reduction in hardware
is at the expense of a larger computation time. The number of multipliers
in our architecture is considerably less than those of the existing architectures
[13, 14, 55]. This feature is important since the chip area is dominated by the
area occupied by the multipliers. Let f(NN) be the number of multipliers required
to compute an /N point DFT on real data. Then the number of multipliers in
our architecture for DHT is f(N;) + f(N;) and the number of multipliers in
our architecture for DCT is 3f(Ny) + 3f(Nz). In comparison the number of
multipliers in the existing architectures for DCT is 2f(Ny) + 4 f(Nz) + 4N, in
[14], N in [53], and N? in [13]. Moreover the size of the multipliers in our
architecture are smaller compared to those of [14, 55], since the multipliers are

fixed and can hence be embedded in the hardware.
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1.4.2 Multi-dimensional Transforms

Multi-dimensional transforms are a powerful tool for multi-dimensional signal
processing. Some of the important applications of such transforms are in the ar-
eas of spectrum analysis, signal reconstruction, speech processing, tomography,
computer vision and image processing. Examples of such transforms are DFT,

DHT, and DCT. We refer to these transforms as DXT.

Problem definition:

An (N x N x ... x N) d-dimensional linear separable transform is defined by

X(ky,kayoo o ke) = Z e Z Zm(nl, ng,...,ng)oq(ng, ky)ag(ng, kg) - - - ag(na, k),
ng ng Ny

where the «;’s are the one-dimensional transform functions (like DI'T', DHT,

DCT),OSki,n,iSN—lfOI‘lSZ'SCZ.

Our aim here is to develop optimal architectures for computing such trans-
forms. An optimal architecture is one whose AT? matches the AT lower bound

for computing such transforms, where A is the area, T' is the computation time.
The AT? lower bound for d-dimensional DXT is AT? = Q(n?log® M), where

n=N%and M =N +1.

Existing schemes:

The schemes for computing (N x N X ... x N) d-dimensional transforms con-

sist of computing either a sequence of one-dimensional transform each of size
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N, or a matrix-vector product. The architecture of [24] which is based on
the first scheme, has an area A = O(n?), computation time T = O(dlog? n)
and is not optimal. The architecture of [4] which is based on the second

scheme, has an area A = O(n?log? M/T?) and is optimal for all T in the range

[Q(logn), O(v/mTog M),

Our contribution:

Our approach for computing (N XN x...x N) d-dimensional DXT is based on the
first scheme. The architecture consists of one-dimensional DXT(N) computation
units which compute DXT(N) over one index, and permutation units which
order data so that in the next iteration DXT(N) can be computed over the
next index. Our architecture has an area A = O(N%*2?) and computation time
T = O(dN%‘“b) for all a in the range Flogy b < a < %, where b = O(log M) is
the precision. Thus an architecture with small value of @ is one with small area

while an architecture with large value of a is one with small computation time.

Our scheme consists of a family of architectures with area-time trade-offs.
The architecture of [24] (which is for the case when the input data is in a single
file) is a member of this family. For the same single file input data configuration,
the computation time of our design is O(dlog M) compared to O(d log® n) of [24].
The architecture of [4] is optimal for the same range of area and computation
time as our architecture. For the case when d is constant, our architecture is

superior to that of [4] since it is simpler, more regular, more modular, and hence

easier to implement in VLSI. It is not unreasonable to make such an assumption
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about the constancy of d, since for all known applications of multidimensional

transforms, d < 4.

1.4.3 Template Matching

Image template matching is used to find the similarity or disagreement between
a template and an equivalent size area of the input image. It is representative of
many window based image processing tasks. It is used in image location, scene

matching, filtering, edge detection, finding lines, spots, curves, etc.

Problem definition:

Let the input image be of size (N X N) and let the template be of size (K x K),
then template matching is the inner product of the template with an equivalent

size area of the input image.

K~1K~-1
TMi, )= S Ili+m,j+n]*Wm,n], 0<ij<N-K.

m=0 n=0

Our aim here is to develop a systolic architecture for template matching
which efficiently balances the computations in the processor array with the I/0O

bandwidth. The input image is read in the line scan mode 2.

3In line scan mode, the pixels are run left to right and from top to bottom in a frame.



Existing schemes:

The systolic and semi-systolic architectures for template matching which address
the 1/0 bandwidth problem can be divided into two classes: architectures which
store part of the input on-chip, and architectures which store part of the input
in an external memory. The I/O bandwidth for architectures with an external
memory is K pixels per clock cycle [27, 51], while that of architectures with on-
chip storage in only one pixel per clock cycle [17, 41]. The on-chip storage devices
are FIFO line memory [17], shift-buffer pipeline [41], shift registers, RAM, etc.
There are other architectures [28] which balance the large bandwidth of the
first class of architectures and the large on-chip storage of the second class by
including both an external memory and an on-chip storage, albeit smaller. Such

architectures are suitable for large templates.

Our contribution:

Our architecture for computing template matching consists of a semi-systolic
linear array of processors. A part of the input image is stored on-chip in shift
registers distributed among the processors. The number of processors in our
architecture is a function of the frame size, the template size and the internal
clock cycle. This feature makes our architecture more versatile compared to
those of [17, 28, 41], where the number of processors is fixed at K? irrespective
of the frame specifications. An additional advantage of our scheme is that since

the on-chip storage is distributed among the processors, no additional circuitry

is required to ensure regular data flow from the on-chip storage devices to the

SV
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processor array.

1.4.4 Block matching

In many applications of digital image processing like video-phone and telecon-
ferencing, there is very little motion in the entire scene. Thus successive frames
are highly correlated. In such applications, algorithms based on motion compen-
sation can be used to reduce information redundancy, and thereby achieve high
data compression. Block matching is a popular motion compensation algorithm

which is used to remove interframe redundancy.

In block matching the current frame is divided into reference blocks, and for
each reference block, the best matched block in the previous frame is searched. It
is assumed that the best matched block lies in an area surrounding the position
of the reference block. The displacement between the reference block position
and that of the best matched one in the previous frame is called the displacement
vector. The receiver can construct the current frame using the available previous
frame, the displacement vector and the block difference. This scheme results in

tremendous bit rate reduction in interframe coding.

Problem definition

Let the current frame of size (N x N) be divided into reference blocks of size
(K x K). Let B.(i,j) be one such reference block whose top-leftmost coordinate

is (¢, 7). B.(z,7) is matched with candidate blocks in the previous frame which lie



in a search area S(z,5). Let L; ;(Ai, A7) be the block-distance between reference
block B.(z,7) and candidate block B,(? + Az, j -+ Aj)

K-1K-1
Li,j(AiaAj) = E Z |$C(l +m,j+ n) - xxo(i +m+ A, j+n+ Aj)l,
m=0 n=0
-1 < ALAj < 1, The best match criteria is based on the minimum value of
block-distance. The displacement vector (Az, Aj)m' for reference block B.(1,7)

is given by

(A2, A))i; = ﬂi&-lfzm(m, Aj).

Our aim here is to develop a systolic architecture for block matching which
efficiently balances the computations in the processor array with the I/O band-
width. Data from the current frame and the previous frame memory are read

in line scan mode.

Existing schemes

There exist many systolic and semi-systolic architectures for block matching
[7, 18, 20, 30, 61} which compute the displacement vectors very efliciently but
are not so efficient in handling the I/O operations. Block matching, like tem-
plate matching, is an operation with a very high I/O bandwidth. A way of
reducing the large I/0 bandwidth is by storing part of the image which is ac-
cessed multiple times, on-chip in a storage device. Shift registers, RAMs, line
buffers, register chains, etc [7, 18, 30] are popular on-chip storage devices. In

almost all these architectures, the input data is fed from the frame memories

24



into the on-chip storage devices in block scan mode %,

Our contribution

Our architecture for computing block matching consists of a semi-systolic linear
array of processors which handles both the computations and the I/O band-
width problem efficiently. Data from both the current frame and the previous
frame-memory are read in line scan mode and stored on-chip in shift registers
distributed among the processors. For this mode of data access, the linear ar-
ray is a more suitable architecture (compared to the two-dimensional array).
The number of processors in our architecture is a function of the frame speci-
fication (frame size, frame frequency), search area size, and internal clock rate.
Our architecture can be very easily reconfigured for different problem specifica-
tions unlike the existing architectures where the number of processors is fixed
[7, 18, 20, 30]. The data flow in our architecture is very regular. There is no
additional circuitry to ensure that the right data are incident on the proces-
sor array as in [18]. The number of I/O pins in our architecture is only two

compared to 1+ (¢ + K)?/K?* in [7].

“In block scan mode, blocks of (K x I') pixels are run left to right and from top to bottom

in a frame.



1.5 Thesis organization

In this thesis we present the systolic and semi-systolic architectures that we

developed for computing some important real-time signal processing tasks.

In Chapter 2 we develop completely pipelined, bit-serial systolic array ar-
chitectures for computing one-dimensional DHT and DCT when the number of

sample points NN is factorizable into mutually prime factors N; and Nj.

In Chapter 3 we develop a family of optimal architectures with area-time
trade-offs for computing (N x N x...x N) d-dimensional linear separable trans-

forms. The criteria for optimality is as defined by VLSI complexity theory.

In Chapters 4 and 5 we develop semi-systolic linear array architectures for
computing template matching and block matching respectively. The architec-
ture handles the computations as well as the I/O bandwidth requirements effi-

ciently.

In Chapter 6 we summarize the results obtained in this dissertation and

suggest some directions for future research in this area.



Chapter 2

One-dimensional DHT and DCT

2.1 Introduction

In this chapter we address the problem of developing systolic array architec-
tures for computing one-dimensional DHT and DCT over N points, when N is
factorizable into mutually prime factors Ny and N;. The one-dimensional trans-
form over N points is mapped into a two-dimensional transform over (N; X N3)
points, such that the algorithm consists of computing one-dimensional transform
over columns and rows of the two-dimensional data array, followed by some ad-
justments. The hardware requirement is considerably reduced because of this
mapping. The number of multipliers in our architecture is significantly less than
those of the existing architectures [13, 14, 55]. The number of multipliers for
our DHT architecture is f(Ni) + f(N3) and that of our DCT architecture is

3f(N1) + 3f(Nz), where f(N) is the number of multipliers required to compute
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an N point DF'T on real data. Our architecture consists of a few types of regular

and modular units. All the units are completely pipelined, resulting in very high

throughput.

The rest of the chapter is organized as follows. In Section 2.2 we define
one-dimensional DHT and DCT and show how these transforms can be mapped
into systolic architectures. In Section 2.3 we give the index mappings that
map one-dimensional DHT and DCT to two-dimensional DHT and DCT, and
show how the two-dimensional transforms can be mapped into systolic array
architectures with reduced hardware. We give the details of the bit-serial systolic
array implementations in Section 2.4. In Section 2.5 we make some concluding

remarks.

2.2 Preliminaries

2.2.1 One-dimensional Discrete Hartley Transform (DHT)

The one-dimensional DHT of N points, DHT(N), is defined [2] by

- 1 = 27
H(k)=— z(n)cas (—nk), 0<k<N-—-1, (2.1)
\/N;, N

where cas(z) = cos(x)+sin(z). Since the factor ;—7 in equation 2.1 is a constant,

it is sufficient to consider the DHT-like equation

N-1 27
Hk) =Y m(n)cas(ﬁnk), 0<k<N-1 (2.2)

n=0

There are various schemes for computing one-dimmensional DHT [2, 3, 25, 31, 52].

They are based on either decompositions of the form radix-2 decimation-in-time,
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Figure 2.1: Matrices Sy, Cs, Ty in the computation of DHT(4)

radix-2 decimation-in-frequency, split radix, radix-4, or Winograd transform, or
recursion. We choose the Winograd-Hartley transform (WHT) algorithm [52]
because of the reduced number of multiplications (= N). Moreover this algo-
rithm can be mapped into an architecture with reduced number of multipliers.
The WHT algorithm is expressed as H = SNC?NTNx, where Sy 1s an N x J
incidence ! matrix, T is a J x N incidence matrix and Cly is a J x J diago-
nal matrix with real entries, J &~ N for small N algorithms. This algorithm is
very similar to the Winograd Fourier transform (WFT) algorithm [23], which
is expressed as F' = SyCnyTnz. C’N of WHT is related to C'y of WFT by
C’N = Re[Cn] — Im[Cy]. Figure 2.1 describes the matrices Sy, Cy and Ty for

computing DHT(4).

The WHT algorithm can be mapped into a systolic architecture in a way
similar to the mapping of the WFT algorithm in [47]. The incidence matrices
Sy and T are mapped into systolic units, called summation units. These units

consist of arrays of 1-bit adders, 1-bit subtractors or 1-bit delays corresponding

L An incidence matrix is a matrix whose elements are -1, 0 or 1.
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Figure 2.2: Block diagram for computing one-dimensional DHT(N)

to entries +1, -1 or 0 in the incidence matrices. The diagonal matrix Cn is
mapped into a systolic unit, called scaling unit. This unit consists of an one-

dimensional array of J fixed multipliers, corresponding to the J diagonal ele-

ments. Figure 2.2 describes the block diagram of the corresponding architecture.

The bottleneck of this architecture is the large number (~ N) of multipliers
in the scaling unit. The number of multipliers can be reduced to (= Ny +N;) by
mapping the one-dimensional transform into two dimensions. In Section 2.3.1

we describe such a transformation.
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2.2.2  One-dimensional Discrete Cosine Transform (DCT)

The one-dimensional DCT of N points, DCT(N), is defined [1] by

2 e .
C(k) = <e(k) 3 2(n) cos|—(2n + k], 0< k<N —1, (2.3)
N~ 2N
where,
L k=0
e(k)=1{ V?

1  otherwise

Since the factor Ze(k) results only in a slight modification of C'(k), it is sufficient
to consider the DCT-like equation

N-1
Ck)y=Y z(n) cos[—QIN—(Qn +1)A 0<E<N 1. (2.4)

There are various schemes for computing one-dimensional DCT [11, 26, 39, 43,
46, 56]. They are based on either factorization of the DCT matrix, or rotation of
the output of a Fourier or Hartley transform, or recursion. We choose a scheme

based on rotation of the Hartley transform [43].

In the method proposed by Malvar [43], the input z(n) is permuted so that
the cosine argument in equation 2.4 is changed to cos[5%(4n + 1)k]. DIT can

then be used to compute C'(k). Let y(n) be a permutation of z(n) defined by

2(2n) 0<n<[N/2] -1
yin) = (2.5)
(2N —=2n —1) [N/2] <n< N -1
Then
1 kr kn
C(k)= ;)—[H(k)cas(~w) + H(N - k)ca.s(o—)], (2.6)

where H(k) is the DHT of y(n). Let ¥, y(n)cos[55(4n + 1)k} be denoted by
DCT of y(n). Then C(k) in equation 2.6 is the DCT of y(n). We choose the
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Figure~2.3: Block diagram of one-dimensional DCT(N)

Winograd-Hartley transform algorithm to compute DHT of y(n). In that case

the number of multiplications is only ~ 3N.

The above algorithm can be mapped into a systolic architecture in the fol-
lowing way. H(k) can be computed in a systolic manner by the summation and
scaling units as described in Section 2.2.1. C(k) can be computed in a systolic
fashion from H(k) (see equation 2.6) by a systolic unit called the adjust-multiply
unit. This unit consists of an one-dimensional array of NV subunits, each of which
consists of two fixed multipliers and one 1-bit adder. Figure 2.3 describes the

block diagram of this architecture.

In order that the adjust-multiply unit (see Figure 2.3) be systolic, H(k) and

H(N — k) have to be adjacent to each other. This is achieved by modifying Sy
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Figure 2.4: Matrices P, and S:Q in the computation of one-dimensional DCT(4)

to Sy in the following way. Let G = SyCnTye and let G be a permutation
of G, such that G = (G(0)G(1) G(N —1)...G(k) G(N — k)...)T, where G(3)
represents the ¢th row of G, 1 <k < [N/2]|. When N is even, there is only one
G(N/2) in G. G can be expressed as PyG, where Py is a permutation matrix

with the following characteristics :

Prn(0,0) =1
Foreveni:, ©¢#0, Pn(i,N—-1/2)=1

Forodd i.  Py(7,[7/2]) =1

Note that since Py 1s a permutation matrix, Sy 1s an incidence matrix, and
hence can be directly embedded into the summation unit. Figure 2.4 describes

the permutation matrix P, and the incidence matrix Sy = P4.54.

As in the case of DHT, the bottleneck of this architecture is the large number
of multipliers (= N in the scaling unit and ~ 2N in the adjust-multiply unit).
This can be reduced to ~ 3(N; +N,) by mapping the one-dimensional transform

into two dimensions. In Section 2.3.2 we describe such a transformation.
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2.2.3 Related work

We have seen earlier in this section that the existing algorithms for computing
one-dimensional DHT and DCT over N points can be divided into two classes:
N 1s a power of 2 and N is factorizable into mutually prime factors N; and N,.
For the case when N is a power of 2, an FFT-like structure is obtained for both
DHT and DCT. For the case when N = Ny N, and Ny, Ny are mutually prime,
the one-dimensional transform is mapped into a two-dimensional transform over

(N1 x N3) points with appropriate input and output index mappings.

When N is a power of 2, the VLSI architectures for DCT map the butterfly-
like flow diagram of a fast algorithm directly into silicon [12, 29, 53]. The
multipliers are replaced by ROM accumulators which incorporate distributed
arithmetic in the architectures of [12, 53]. The architectures for DHT consist of

CORDIC processors and systolic shuffle units [44], or their pipelined variations

[48].

When N is factorizable into mutually prime factors, the DCT implemen-
tation of [57] is not special-purpose and contains complicated arithmetic and
control units. Recently [14] proposed an algorithm for DCT with the additional
constraint that Ny and Ny are odd. The architecture of [14] consists of two DFT
computation units of [47] and an additional multiplier unit to rotate the DFT
output. The number of multipliersin their architectureis 2f(Ny)+4 f(Ng)+4N,,
where f(N) is the number of multipliers required to compute an N point DFT

on real data.

34



Both DHT and DCT can be implemented by a systolic architecture based
on the matrix-vector algorithm. There exist linear array architectures for DCT
[14, 53] which consist of N multipliers. The data flow of the DCT coeflicients
for both these architectures is complicated. The architecture of [13] is a CCD

implementation of the matrix-vector algorithm and consists of N? fixed multi-

pliers.

2.3 Mapping into two dimensions

Any one-dimensional linear transform over N points,

f(k) = Za(k,n):r(n), 0<nk<N-1 (2.7)

n

can be mapped into a two-dimensional transform over (N; x N,) points, N =
NiN,y, by choosing the input and output index mappings appropriately. We
assume that Ny and N, are mutually prime. Let N be the set of integers 0
through N — 1, let M be the set of integers 0 through Ny — 1 and let A, be
the set of integers 0 through Ny — 1. Let ¢1(n) = (n1,n2) be the input index
mapping from N to Ny x Ny, n € N, ny € N7, ng € Ny and let go(k) = (k1, k2)
be the output index mapping from N to N7 x Ny, k € N, ky € Ny, ko € No.
If g1 and gy are one-to-one, then f(k) can be mapped into a two-dimensional

function f(ki, k;), where

f(k17k2) - ZZa(kl,kg,nl,ng)w(‘TZth). (28)

nz m

The main motive behind this transformation is to map the computation into

a systolic two-dimensional array of size (N7 X N;). The ideal transformation
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would be such that expression 2.8 can be computed by a set of column(row)
operations on the two-dimensional data followed by a set of row(column) opera-
tions. The number of bit-serial systolic steps ? will then be reduced from O(bN)
to O(b(N1+ N2)), where b is the precision. In this section we briefly discuss such
transformations for one-dimensional DHT and DCT and then sketch procedures

to execute them by systolic arrays.

2.3.1 Mapping of DHT

One-dimensional DHT, H(k), can be mapped into a two-dimensional DHT,
H(ky, ka),
No—1 Np—1

s
]pl,k'z Z Z 711,712 (1\7 'I’Lllul + ’)’2,2]1 ) (29)

np=0 ny=0

with the following input and output index mappings [2]

n = N2nl —I— N1712 mod N

k = (N{1 mod Ny)Noky + (Nl_l mod N2)Nyke mod N. (2.10)

Since in general, cas(a + 8) # cas(a)cas(B), equation 2.9 is not a simple DHT

over columns of z(ny,n,) followed by a DHT over rows.

Figure 2.5 illustrates the input and output index mappings for an example
where N = 20 (Ny = 4, Ny = 5). The mappings are represented in the form

of tables with Ny rows and N, columns, such that location (ny,n) of the input

ZA bit-serial systolic step is a 1-bit computation step (add, subtract, delay) in bit-serial

systolic architectures.
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n2
- 0 1 2 3 4
0 0 4 8 12 | 16
1 5 9 |13 | 17T | 1
2 [ 10 |14 | 18 | 2 6
3 {15119 3 7 11
n table

Figure 2.5: Input and output index mappings for DHT over (4 x 5) points

index mapping table contains n and location (%, k2) of the output index mapping

table contains k& (re?fer to equation 2.10).

Sorensen, et.al. [52] proposed a method of computing H (%, k2) by computing
DHT(N;) over columns of the data array, followed by combining some of the
elements of the intermediate array and then computing DHT(/NV;) over rows of
the resulting array. The method proposed by Bracewell, et.al. [3], on the other
hand, consists of computing DHT(V;) over columns of the data array followed
by DHT(N,) over rows of the intermediate array and then combining some of

the elements of the resulting array.

o

0 1 2 3 4

0 {16 12| 8 4

5 1 1171134} 9

10 6 2 |18 | 14

15 |11 | 7 3 119
k table

The scheme proposed in [52] is summarized as follows. Let

N1—1
A(ky,ng) = > z(ng,ns)cas

ni =0
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be the outcome after computing DHT(N;) of the columns, and let

B(k17n2) = (A(k'l, 712) + A(Nl — kl, 7’1,2) + A(kl,N2 — 7'12)

b | =

—A(]Vl — kl* N2 — nz))‘ . (212)
Then H(ky, k) is obtained by computing DHT(N,) over rows of array B.

Np—1 9
H(ki ko) = S B(kiina)eas (-]“Vinzb) (2.13)
2

ny=0

The algorithm for DHT(NV) [52] can then be expressed as follows.

1. Compute DHT(Ny) over columns.

2. Compute B from A (equation 2.12).

3. Compute DHT(N;) over rows.

Steps 1 and 3 can be mapped directly into a systolic architecture consisting of
summation and scaling units (refer to Section 2.2.1). Step 2 can be computed

by a systolic unit after modifying Steps 1 and 3 appropriately [8].

We next describe the scheme proposed by [3] for computing H(ky, k). We
will describe it in details because of its similarity with the DCT algorithm (see
Section 2.3.2). Let T'(ky, k2) be the temporary outcome obtained after comput-

ing DHT of the columns followed by DHT of the rows.

7
ng=0 nq =0 A 1 N

No—1 [N1—1 2r 2r
T(kl,kQ) = Z Z ;17(77]1,7212)6(&8('—7’&1161) C(l.S(—nrzkz) (2]1)

Then H(k1, ks) can be expressed as the sum of four temporary outcomes.

(T(ky, ko) + T(Ny — kyy k2) + T'(ky, Ny — k2)

SR

}I(]Cl, kz) -

~T(Ny =k, Ns — k) (2.15)
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Tn,

!

Scaling
Cw,

!

Summation
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Transpose

Summation
T,

!

Scaling

Cw,

!

Summation
Sn,

!

Adjust
-add

H(ky, k2)

Figure 2.6: Block diagram for computing two-dimensional DHT over (N; x Ns)

points, where Ny, N, are mutually prime

Note that H(Ny — ki, k3), H(ky, Ny — k;) and H(Ny — ky, No — k3) can also

be expressed as sums of T'(ky, ky), T (N1 — k1, k2), T'(k1, Ny — k) and T(N; —

ki, Ny — k;). The algorithm for DHT(N) [3] is as follows.

o

. Compute DHT(V;) over columns.
. Compute DHT(/V;) over rows.

. Compute H from T (equation 2.15).

Steps 1 and 2 can be mapped directly into summation and scaling units (refer

to Section 2.2.1).

Since DHT(V;) is computed over columns and DHT(N,)

is computed over rows, a systolic transpose unit is needed to transpose the
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intermediate result obtained after computing DHT(N;) over columns. Step 3
can be mapped into a systolic unit called the adjust-add unit. Figure 2.6 shows
the interconnections of the various units for DHT over (NVy x N,) points, where

Ny, N, are mutually prime.

We next describe the modifications in the algorithm for DHT (V) that are
required in order that the adjust-add unit (see Figure 2.6) be systolic. The
algorithm has to be tailored so that T'(ky, k2), T'(Ny — k1, ka), T'(k1, No — k3) and
T(N; — k1, Ny — ko) are adjacent to each other. This can be done by permuting
the rows of Y (ky,ns) after computing Step 1 of the algorithm and by permuting
the columns of T'(ky, k) after computing Step 2. The row permutation is such
that Y (ky,nq) and Y(Ny — ky,ng) are adjacent to each other for 1 < kb <
[N1/2] =1, 0 < ny < Ny — 1. Such a permutation is possible by embedding
S N, (instead of Sy, ) in the summation unit of DHT(Ny), where ‘§N1 = Pn,Sn,
(refer to Section 2.2.2). Similarly the column permutation is such that T'(k1,ny)
and T'(ky, Ny — ng) are adjacent to each other for 0 < k& < Ny —1 and 1 <
ny < [Ny/2] — 1. This is possible by embedding Sn, (instead of Sy,) in the
summation unit of DHT(N;), where S’NQ = Pn,Sn,. Note that since Py, and

Py,

, are permutation matrices, Sy, and Sy, are incidence matrices and hence

can be directly mapped into summation units. Figure 2.7 illustrates the row
permutation in intermediate data array Y as a result of embedding Sy in the

summation unit in the computation of DHT(4) over columns for the example

where N = 20 (Ny = 4, Ny = 5).

The next step in the procedure is to efficiently compute H(ky, b2}, H(Ny —
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Figure 2.7: Row permutation in intermediate data array Y after computing

DHT(4) over columns during the computation of DHT over (4 x 5) points

ki, ky), H(ky, Ny — ky) and H(Ny — by, Ny — ky) from T'(ky, ko), T(Ny — ky, k),
T'(k1, Ny — ky) and T'(Ny — k1, Ny — ky) using a systolic unit. Let A = T'(ky, k),
B = T(Ny = k1, ke), C = T(ky, Ny — ky), D = T(Ny — ky, Ny — kp). Then
H(ky, ky) = 2(A+ B+ C — D). In the algorithm proposed by (3], H(ki, ks) is
obtained by computing the ‘diagonal excess’ defined by F = 1/2[(A+ D)— (B +
C)] and then doing in-place replacement of the form A «— A— E, B «+— B+ E,
C—C+FEand D« D — E. Though this algorithm employs only seven adds
and one shift per four outputs, the systolic implementation is cuambersome. Since
the adjustments for A, B, C' and D are different, an additional control input
line is required to distinguish between data 1'(ky, k3) and T'(Ny — k1, k2) for all
ke, that is, between A and B, C and D. This increases the complexity of the

circuit.

Here we suggest a method to compute H from 7' with simpler systolic im-

plementation. Let Z be the new temporary outcome defined by

1
Z(ki, k) = = [T(ky,k2) + T(ky, No — ky)]

¢

Z(k’1, N2 h ]»2) = [T(kl, kz) - T(]\?l,NQ — kQ)] (216)

O] = DD
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for 1 <k <Ny —1and 1 <hky <[Ny/2] —1. Then H can be defined by

H(ki,ky) = Z(ki, ko) + Z(N1 — ki, Ny — k)

f](kl,IVQ - ]\/2) = Z(kl, ]\,2) - Z(Nl - qu]\/vg - ATz). (217)

Note that H(k,0) = Z(ky,0) = T'(k1,0), H(0, k) = Z(0, k) = T(0, ky) and in
addition, if Ny is even, H(N1/2, ko) = Z(N1/2, k) = T(N1/2, k2), and if Ny is
even, H(ky, No/2) = Z(ky, N5 /2) = T(ky, No/2). This scheme employs only one
add per output. Moreover no additional control input line is required. There is

no need for an extra unit to compute Z from 7' (equation 2.16). Z(ky, ks) can
be obtained at the end of Step 2 (instead of T'(ky, k»)) by modifying the matrix

»§N2 that is embedded in the summation unit of DHT(N;) in the following way.

Let T' = SNQ A'N2 Tn,Y, where T is a permutation of the temporary matrix 7'
such that T'(ky. k2), T(Ny — kv, ko), T (k1. Ny — ko) and T'(Ny — ky, Ny — ko) arve
adjacent to each other, Y is the output after computing DHT(NVy) over columns
and S Nys CAr'N2 and Ty, are defined as before. Z can be expressed as () NET, where

the matrix ¢y, has the following characteristics :
QNQ (070) =1

For odd i,  Qu,(i,4) = 0.5. On, (3,1 4+ 1) = 0.5

For even ¢ and i # 0,  Qn,(1,1) = —0.5, @, (1,1 —1) = 0.5,

1 < i< N, —1. In addition, if Ny is even, Q(Ny — 1, Ny — 1) = 1. Thus by

modifying ,§'N2 to .§N2, where S’NQ = Qn, S'Nz, 7 (ky, ko) is obtained at the
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Figure 2.8: Matrices Q5 and S5 in the computation of DIHT(5)

end of Step 2. The nature of Qn, and ‘§A72 3 is such that their product is an
incidence matrix. This means that S’Nz can be mapped into a summation unit.
Figure 2.8 describes the matrices Q5 and S5. Figure 2.9 describes the column
permutation in data array Z as a result of embedding S5 in the summation
unit in the computation of DHT(5) over rows for the example where N = 20

(]\71 - 4:, ]VQ = 5) Note that Z(kl,kg), Z(N1 - 1171.,]\}3)., Z(lﬂhj\rg — /L)) ZLHd

Z(Ny — ki, Ny — ky) are adjacent to each other.

The ‘adjust-add’ unit in Figure 2.6 is a systolic unit which computes H from
Z (see equation 2.17). Its design is simpler than that of the systolic unit which

computes H from T. We will describe it in Section 2.4.

3For all known small N algorithms, Sy is such that either both or none of the (&, 7)th and
(i+1,7)th element 1s 0, for 7 odd and 1 < ¢ < N — 2. This i1s because Sy is such that cither

both or none of the (¢, j)th and (N — 1, j)th element is 0, 1 < i < [N/2] - 1.
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Figure 2.9: Column permutation in intermediate data array Z after computing

DHT(5) over rows during the computation of DHT over (4 x 5) points

2.3.2 Mapping of DCT

The existing algorithms for prime-factor decomposed DCT computation consists
of computing DCT(Ny) over columns, followed by computing DCT(N;) over
rows, followed by combining the elements of the resulting data array [39, 57].
We develop a systolic architecture based on a modified version of the algorithm
proposed by Lee [39]. Let T'(ky, kq) be the output after computing DCT(Ny)

over columns followed by DCT(Nz) over rows [39].

ny=0 | n;=0 ~d V2

Np—1 [ Ny—1 - -
T(kiks) = > ¢ > a(ni,no) COS[QNl(in + 1) k] COS[QN (2ng + 1)k2]
(2.18)
We have seen in Section 2.2.2 how one-dimensional DCT can be computed from

T

one-dimensional DHT if the cosine argument is cos[5%(4n 4 1)&] (instead of
cos[57(2n + 1)k]). The cosine argument can be changed by appropriate choice

of input index mapping.
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n table :

na

ny

Figure 2.10: Input index mapping for DCT over (4 x 5) points

We propose the following input index mapping g1(n) = (n1,n,). Let

ny

na

n mod 21V,

n mod 2N,
ny/2 if 7y is even

Ny —(n1+1)/2 otherwise

/2 if 7 is even

(2.19)

Ny — (fg +1)/2 otherwise

It can be easily shown that g is a one-to-one mapping. Figure 2.10 describes the

input index mapping for an example where NV = 20 (NV; =4, N; = 5). The index

mapping is represented in the form of a table with N; rows and V; columns,

where location (ni,n.) of the table contains n (see equation 2.19). With this

index mapping let T(kl, k2) be the new temporary outcome defined by

na=0

T

™

) No—1 (N1 -1
T(ky ko) = > { > z(ny,ng) COS[?V (4ny + 1)k1]} COS[OM (4ng + 1)k,
[Pant el

ny =0

(2.20)



ky 0 1 2 3 4 kl\kz 0 1 2 3 4
0 0 4 8 | 12 | 16 0 0 4 8 | 12 | 16
1 5 9 |13 |17 | 19 1 5 1 3 7T |11
2 |10 | 14 | 18 | 18 | 14 2 |10 6 2 2 6
3 [ 15119117 13| 9 3 | 15111 7] 3 1

k table: k table :

Figure 2.11: Output index mapping for DCT over (4 x 5) points

Thus T(kl, k2) is the output obtained after computing DCT over columns fol-

lowed by DCT over rows.

We define the output index mapping along the same lines as the input index

mapping of [39]. Let f and f be mappings from N x A, to A such that

|Fy

ki Ny + ko Ny

if kll\/vg -+ ]\32]\[1 < N

2N — (klfVQ + ngl) otherwise

Ny — k2N1l

(2.21)

Note that when ky or ky = 0, B =k otherwise, i = k. Since f(Nl —_

ki, Ny — ko) = f(kl, k3), the number of distinct values mapped by f when &y or

ky £ 0 is (N — 1)(NV2 — 1)/2. Similarly the number of distinct values mapped

by f when ky or ks # 0 is (N, — 1)(IV, — 1)/2.

Since & # k when k or

ky # 0, the total number of values mapped by a combination of f and f is

2(Ny — 1)(N2 = 1)/2 + Ny + N; — 1 = N. Figure 2.11 describes the output
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index mapping for the example where N = 20 (N; = 4, N, = 5). As before the
mapping is represented in the form of tables with N; rows and Ny columns. The
J-table contains F(ker, k2) in location (ky, ky) of the table. Similarly the k-table

contains f(ki, ka) in location (kq, k2) of the table. For more details see {39].

When &y or ko = 0,

C(f(klqu)) - C(f(lul,lyg)) T(k17],32)
otherwise,
C(F(kika)) = Ty, k) + TANy — ki, Ny — k)

C(f<k1>k2)) - 3(7’»’17 kz){T(kh 732) - T(Nl - 7317]\[2 - /32)}

1 i By Ny + ke Ny < N
where s(ky, ko) = (2.23)

—1 otherwise
When N is even, C(f(N1/2,k;)) and C(F(Ny/2, ky)) are functions of

T(N1/2, k) and T(N1/2, Ny — k). Similarly when Ny is even, C(f(ki, N2/2))
and C(f(ky, N2/2)) are functions of T'(ky, No/2) and T(Ny — ky, No/2). Notice
that the value of s(ki,ky) is essential only for the computation of C(f(ky. ks)).
For instance, for the example where N = 20 (N; = 4, N, = 5), (j( 2)) =
C(7) = T(3,2) + T(1,3) and C(f(3,2)) = C(17) = 5(3,2){T(3,2) — T(1,3)} =
7(1,3) — 1(3,2).

The algorithm for DCT(N) can be summarized as follows.
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z(ny, na) Summation Summation
TN; TN2
Sc?.ling Scaling
CN,, CNQ
l Transpose l
Sum{nation Summation
S, SN,
Adjust Adjust
-multiply -multiply
Adjust _C(’kl: k2)
-add

Figure 2.12: Block diagram for two-dimensional DCT over (N; x N;) points,

where Ny, NV, are mutually prime

1. Compute DCT(MV;) over columns.
2. Compute DCT(V;) over rows.

3. Compute C from 7' (equations 2.22,2.23).

Steps 1 and 2 can be mapped directly into a systolic architecture consisting
of summation, scaling and adjust-multiply units (refer to Section 2.2.2). In
order that the adjust-multiply unit of DCT"(J\G) be systolic, S”Nl is embedded in

the summation unit of DCT(Nl) (instead of Sy, ), where gNl is related to Sy,



Too o1 Tos 1oy Togs

Figure 2.13: Data array T after computing DCT(%L) over columns followed by

2

DCT(5) over rows during the computation of DCT over (4 X 5) points

by SNI = Ppn, SN, (vefer to Section 2.2.2). Similarly, in order that the adjust-
multiply unit of DCT(NQ) be systolic, S n, 18 embedded in the summation unit
of DCT(N;) (instead of Sy,). where Sy, = Py, Sn,. As in the case of DHT, a
systolic transpose unit is needed to transpose the intermediate result obtained
after computing DCT(Nl) over columns. Figure 2.12 shows the interconnection
of the various units for two-dimensional DCT over (N; x Ny) points, where Vy,

Ny are mutually prime.

By embedding matrices S N, and S N, in the summation units of DCT(Nl)
and DCT(NZ) respectively, T(kl, ks), T(N —ky, ka). T(kl, Ny — kq) and T(N, —
ky, Ny — ky) are adjacent to each other at the end of Step 2 of the algorithm.
Figure 2.13 illustrates the row and column permutations of data array T ob-
tained after computing DCT(ZL) over columns followed by DCT(5) over rows in
the example where N = 20 (N, = 4, N, = 5). The adjust-add unit in Figure 2,12
is a systolic unit which computes C' from T (see equations 2.22, 2.23). Though

this unit is very similar to the adjust-add unit of DHT, it needs an additional

control input s corresponding to s(ky, k2) in equation 2.23. We will describe it
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Figure 2.14: Skewed data array X of size M x N

in the next section.

2.4  Bit-Serial Systolic Implementation

In this section we discuss the svnchronous bit-serial syvstolic array implementa-
tions of the two-dimensional schemes for computing DHT and DCT. We clioose
to use this mode because the area of the adders. subtractors and multipliers is
reduced by & 1 of its word counterpart. Another advantage is that the com-
munication within and between chips i1s more efficient. The disadvantage of
decrease in throughput (since the bit-serial units have to be clocked b times
for each time their word counterparts are clocked once) can be remedied by
clocking at a faster rate [16]. This is possible because the hit-serial units have
simpler logic compared to their word counterparts. In this seciion we give a

brief description of the various units listed in Figures 2.6, 2.12.

The data flow through all the units 1s input-output consistent. The elements
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Figure 2.15: Bit level description of rows 0, 1, 2 of the data array

of the data array are fed in a skewed manner as shown in Figure 2.14. The
hardware design is based on least significant bit (LSB) first binary arithmetic.
Figure 2.15 describes the skewed data array at the bit level. (z; ;)i represents
the kth LSB of the data element z;;. The control input r indicates that the
first bit of the element is being supplied. Thus r = 1 for the least significant bit

of the b-hit word and is 0 otherwise.

Summation Unit:

This unit performs the operation Z = Sp; X, where S 1s an incidence matrix
of size {J x M), X is the input matrix of size (M x N) and Z is the output matrix
of size (J x N). Since the values of Sys are predefined, they can be embedded
into this unit. Thus the summation unit can be constructed with three types
of subunits, 1-bit adder (s;; = 1). 1-bit subtractor (sij = —1). and 1-bit delay
(s; = 0) [47]. The on-line delay in these subunits is 1. Consequently the data
array is 1-bit skewed for efficient pipelining. The time delay between when the

first bit of the input is supplied to the unit and when the first bit of the output
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Figure 2.16: Data flow through the summation unit

is generated by the unit is M. Figure 2.16 shows the data flow through this

unit.

Scaling Unit:

This unit performs the operation Z = Cpr X, where 'y is a diagonal matrix
of size (M x M), X and Z are the input and output matrices of size (A1 x N).
Since the elements of Cps are known beforehand, they can be built into this unit
[47). Thus the jth subunit consists of a fixed multiplier corresponding to ¢;;.

The subunit ic eceentially a bit-gerial multiplier [42]. The time delav hetween

<t
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Figure 2.17: Data flow through the scaling unit

when the first bit of the input is supplied to the unit and when the first bit of
the output is generated by the unit is . Figure 2.17 shows the data flow through

this unit.

Transpose Unit:

This unit performs the operation Z = X7, where X and Z are the input
and output matrices of sizes (M x N) and (N x M) respectively. The subunits
are arranged in the form of a two-dimensional array of size (¢ X ¢), where ¢ =
max (M, N). Each subunit consists of a shift register of size O(0) and control
switches ¢ and @ to regulate the direction of flow of data. When a is on, the
data in the ith block is read in and the data in the (¢ — 1)th block is read out
both along the east-west direction. When @ is on, the data in the 7th block is
read out and the data in the (¢4 1)th block is read in both along the north-south

direction. Thus alternate blocks are read in/read out along the east-west/north-
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Figure 2.18: Data flow through the transpose unit

south directions. There are delays at the input and the output to adjust the bit
skewness of the data. The time delay between when the first bit of the input
1s supplied to the unit and when the first bit of the output is generated by this
unit is bmax (M, N)+ M 4+ N — 2. Figure 2.18 shows the data flow through this

unit.

Adjust-add unit of DHT:

This unit combines the elements of the data after computing DHT(N;) over

columns followed by DHT(N,) over rows. to compute the DHT output (see
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Hee



« Zny-10 Zap0 Zgo —> | — o |~ -v Hyy—10 Hip  Hop
° ZN1—1,1 211 ZO.I — > | HN1—1,1 Hia Ho,l
~+ ZNy=1,N3~121,N3~1Z0,Ny—1 — | e | —e - Hy o1, Nvg -1 Hi ng -1 Ho, g1
— | = l— | —a
. Zo’er/Q‘l — | o | o e HO,(N2/2]

Figure 2.19: Data flow through the adjust-add unit of DHT

Figure 2.6). Equation 2.17 describes the relation between the input H and the

output Z. Figure 2.19 describes the data flow through this unit.

The adjust-add unit consists of (| No/2] + 1) subunits. The ([k/2])th sub-
unit operates on four adjacent inputs, Z(ky, ko), Z(Ny — ki, ka), Z(ky, Ny — k)
and Z(N; — ki, N3 — k2) to compute four adjacent outputs, H(k;, ko), H(N; —
ki, ke)y H(ki, Ny — ko) and H(Ny — ki, Ny — ko), 1 < kg < [N1/2],1 <k <
[N;/2]. The remaining subunits (corresponding to ky = 0 and ky = Ny/2)
operate on one input Z(ky, ko) to compute H(ky.ky).

The ([ky/2])th subunit, 1 < ky < [N — 2/2] — 1, consists of b-bit and
2b-bit shift registers, 1-bit adder, ljbit subtractor, two 1-bit delay units and
some additional circuitry to compute H{q, kq), ¢ = {0, N;/2}. The time delay
between when the first bit of the input is supplied to the unit and when the first

bit of the output is generated by the unit is (b + 2).
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Figure 2.20: Data flow through the second adjust-multiply unit of DCT

Adjust-multiply unit of DCT:

This unit combines the elements of the data array after computing DHT over
rows(columns) to compute DCT over rows(columns) (see equation 2.6). Here
we describe the adjust-multiply unit of DCT(NQ) (see Figure 2.12). The input
1s V(ky, ko) (the output after computing DHT(N) over rows in Step 2) and the
output is T(kl, k2). The adjust-multiply unit of DCT(Z\G) is very similar to this

one. The data flow through this unit is illustrated in Figure 2.20.

The adjust-multiply unit consists of (| Ny/2] + 1) subunits. The ([k2/2])th
subunit operates on inputs V(z, ko) and V(i. Ny — ky) to compute T(z k) and
T(i,NQ —ky), 0 <ky <Ny —1,1< ko £[N,/2] — 1. The remaining subunits
(corresponding to ko = 0 and ky = N,/2) operate on one input (¢, ko) to

compute T'(%, k).
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Figure 2.21: Data flow through the adjust-add unit of DCT

The ([k2/2])th subunit, 1 < ky < [Ny/2] — 1, consists of two cas(——éif\%)
multipliers, two cas(%\,?r—?) multipliers, two 1-bit adders, two 1-bit delays and
some additional circuitry to compute 7'(1, ko), I = {0,Ny/2}. The time delay
between when the first bit of the input is supplied to the unit and when the first

bit of the output is generated by the unit is (b + 2).

Adjust-add unit of DCT:

This unit combines the elements of the data array obtained after computing
-+
DCT(Ny) over columns followed by computing DCT(N,) over rows, to compute

the DCT output. Equation 2.22 describes the relation between the input T and

the output C'. Figure 2.21 illustrates the data flow through this unit.
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The adjust-add unit consists of a total of (| V2/2] + 1) subunits. The first
subunit operates on T(kl,()) to compute C(f(k1.0)). The next ([No/2] = 1)
subunits (corresponding to k» = 1 through k; = [Ny/2] — 1) operale on four
adjacent inputs T(kl, ke), 1 (]\ —ky, ky), T(kl, Ny —ky) and T(Nl — k1, No— k)
to compute four adjacent outputs, C(f(ki, k»)), C(f Flhky, ko), (7?( — Ry, k)
and C'(f(Ny — ky, ky)). If Ny is even, the last subunit operates on T(ky, Ny /2)

and T(Nl — ky, N3/2) to compute O(f(kl,Ng/Q)) and C(f(Nl — k1, Naoj2)).

The control input s takes up the value of s(ky, k) (see equation 2.23). It is
essential for the computation of C’(f(kl, k3)). Since these values can be deter-
mined apriori, they are stored in Np-bit shift registers and fed to the subtractor
in the subunit. Note that the only values of s(kq.ky) that are required are the

values in the range 1 < ky < [ No/2].

The ([k2/2])th subunit, 1 < ky < [Ny/2] = 1, consists of b-bit and 2b-bit
shift registers, 1-bit adder, two 1-bit subtractors, two 1-bit delays and some
additional circuitry for the computation of C’(f((), k5)) and C'(f(0, Ny — k) and
if N, is even, the computation of C'(f(N,/2, ko)) and C(ﬂNﬁ‘Z, k9)). The time

delay between when the first bit of the input is supplied to the unit and when

the first bit of the output is generated by the unit is (b 4 3).



2.5 Conclusion

In this chapter we have presented bit-serial systolic array implementations for
computing DHT and DCT when the transform size N is factorizable into mu-
tually prime factors, Ny and N;. We mapped the two-dimensional formulations
for DHT [3] and DCT [39] into two-dimensional systolic arrays after modifying
them appropriately. The total number of systolic steps in the architectures for
both DHT and DCT is O(b( Ny + N3)). This is clearly optimal since feeding the

data in bit-serially will require the same order of steps.

The building blocks for the proposed architectures consist of summation,
scaling, transpose, adjust-add and adjust-multiply units. The total nuumber of
adders/subtractors is approximately (4N + Ny) for DHT and (4N 4+ 2N, + Ny)
for DCT. The total number of multipliers is approximately (N + Ny) for DHT
and 3(Ny + N,) for DCT. The total number of shilt registers is approximately
(N 4+ N3) for both DHT and DCT. The total number of input pads is (N1 + ¢),

where ¢ is a constant (4 or 5).

The algorithm that we developed here can be extended to the case when N 1s
factorizable into any number of relatively prime factors. Let N = Ny Ny ... Ny,
such that the N;s are relatively prime, 1 < ¢ < d. Then the transform over N
points can be mapped into a d-dimensional transform over (Ny x Ny x ... x Ny)
points, by appropriate choice of input and output index mappings. The al-
gorithm then consists of computing the transform over Ny points along one

dimension. followed by computing the transform over N, points along another



dimension, and so on for all d dimensions. The corresponding architecture con-
sists of 1-D transform computation units and permutation units, which permute
the data appropriately for computation over the next dimension. Though the
mapping of such an algorithm into VLSI is easy for the case when d = 2, it is

not so for arbitrary d. We address this problem in the next chapter.
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Chapter 3

Multidimensional Transforms

3.1 Introduction

In this chapter we describe a family of optimal VLSI architectures for computing
d-dimensional linear separable transforms (or equivalently d-dimensional DXT).
The optimality criteria is based on VLSI complexity theory [54]. An architecture
for computing d-dimensional DXT over n = N¢ points is said to be optimal if
its AT? = O(n?log? M), where A is the area, 1" is the computation time and all
computations are over the ring of integers Zp;, M = N + 1. Our architecture
consists of one-dimensional DXT(N) computation units which compute DXT(N)
over one index, and permutation units which order data so that in the next
iteration DXT(NN) can be computed over the next index. The architecture has

an area A = O(N*?) and computation time 7' = O(dN%-%b) for all « in the

range logy b < a < %, where b = O(log M) is the precision. All architectures
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in this range of a achieve the AT? bound of O(n?b?) for constant d. When
a = g our architecture has the same input data organization as that of [24].
For this case the computation time of our architecture is O(log M) compared to
O(log® n) of [24]. The architecture of [4] is optimal for the same range of area and

computation time as our architecture. However our architecture has the added

advantage that it is simple, regular and hence suitable for VLSI implementation.

The rest of the chapter is organized as follows. In Section 3.2 we state the
definitions and assumptions for the computation of d-dimensional DXT. We then
briefly review the VLSI model of computation. In Section 3.3 we first describe
an architecture when the input is in a single file and then develop a family of

architectures with area-time trade-offs. We make some concluding remarks in

Section 3.4.

3.2 Preliminaries

3.2.1 Definitions

Let n be the total number of data elements that are to be organized in a d-
dimensional data cube. Then each element can be represented by d indexes

ny,Ng,...,Nng. A d-dimensional linear separable transform is defined by

X(kl, kyyo. o, kd) = Z T sz(nlan% oyngjag(ng, ]ﬁ)az(nz, ka) - - ag(ng, kd);
nd

"y N
where the a;’s are the transform functions, 0 < k;j,n; < N; —1 for 1 <
i < dand n = NyNy...Ny. For instance, oy(ng, ki) = ea'p(——j—?\—%n;ki) for
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d-dimensional DFT, a;(n;, k;) = cos[?\,—fniki] + stn [—%nﬂc,] for d-dimensional
DHT and «;(n;, k;) = cos [-2%1—(27% + 1)k;] for d-dimensional DCT. A straightfor-

ward way of computing X (kq, ks, ..., k4) consists of computing one-dimensional

transform over each of the d dimensions. We use this approach to compute

d-dimensional DXT.

In order to simplify our analysis we assume

e Ny=N,=+-.=N;=N. Thus n = N°.

o All computations involve fixed point arithmetic with b bits of precision,

where b = Q(log M).

3.2.2 Model of computation

In this section we briefly review the VLSI model of computation [6, 54]. A VLSI
circuit is a computation graph G = (V, E) whose vertices V are nodes and whose
edges E are wires. A node is a localized set of switching elements which perform
a simple logical function. A wire carries signals from the output of one node
to the input of another. The unit of area in this model is determined by the
‘minimum feature width’ of the processing technology. The unit of time is equal

to the system clock for synchronous circuits. This model is characterized by a

set of rules concerning layout, timing. etc. We list some of the rules here.

Wires are one unit wide. At most two wires may cross at any point in the
plane. A node occupies O(1) area. A node has at most O(1) input and O(1)

output wires. Wires cannot cross over nodes. The total area A of a collection of

63



nodes and wires is the number of unit squares in the smallest enclosing rectangle.

Wires have unit bandwidth. Nodes have O(1) delay. The propagation time
through the wires is O(1) irrespective of the length of the wire [6] (synchronous
model). (There are other models where the propagation time through a wire
of length % is O(log k) [54] (capacitive model) or even O(k).) The computation
time is the number of units between the appearance of the first input bit on

some port and the appearance of the last output bit on some port.

The I/O assumptions are as follows. Each input is received only once and at
exactly one input port. Each I/O variable is available in a prespecified sequence

at a prespecified port for all instances of the problem.

AT? bounds:

The two main aspects of VLSI computation theory are proving lower bounds for
a particular problem and constructing upper bounds. An optimal design is one
in which the upper bound matches the lower bound. The lower bounds of area
and computation time are usually based on information storage or information
flow concepts. The performance metric is of the form (area) * (time)**, where
0 < o < 1. Such lower bounds have been established for a large number of
problems. The upper bounds are VLSI designs for which the area and the
computation time can be determined by the VLSI model of computation. Once
the lower bound is known, the designer tries to develop an algorithm and the
corresponding layout such that the area*time® limits of the design are as close

to the theoretical limit as possible.
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Thompson [54] proposed a scheme for obtaining the area-time lower bounds
of a problem based on the information exchange I, where I is defined as the
minimum number of bits that two processors must exchange in order to solve
a problem. It is assumed that half of the input variables are available to each
processor at the beginning of the computation. The area-time complexities of
a problem with information exchange I satisfies the bound AT? = Q(I?) [54].
Bilardi, Hornick and Sarrafzadeh [4] established the AT? lower bounds for d-

dimensional DFT.

Theorem [4] : The information exchange [ of an (N x N x ... x N)-point
d-dimensional DFT on the finite ring Zj; satisfies the relation I > E—Z—llog M,

where M is a prime and M = N + 1.

Thus the AT? lower bound for d-dimensional DFT on Zy; is Q(n? log® M).
Since d-dimensional DFT can be obtained from d-dimensional DHT and DCT
and vice versa without any increase in the area and time complexities, one can
show that the lower bound on AT? for d-dimensional DHT and DCT is also

Q(n?log? M).

3.2.3 Related work

The two main schemes for computing (N x N x...xN) d-dimensional transforms
consist of either computing a sequence of one-dimensional transforms each of size
N or computing a matrix-vector product. In the first scheme the number of mul-

tiplications is M = dN*1 M, where M; denotes the number of multiplications
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required for a one-dimensional transform. For instance for DFT, M; = N log N
and M = nlogn, where n = N?. The architectures of [9, 24] are based on this
scheme. The straightforward implementation of the second scheme, (which may
not be applicable to all multi-dimensional transforms), consists of M = n® mul-
tiplications. The architecture of [4] for computing d-dimensional DFT is based

on this scheme.

The existing architectures for computing two-dimensional DFT are based on
computing one-dimensional DFT on each of the two indexes, that is, if the input
data is in a one-dimensional array, then one-dimensional DFT is computed on
columns and then on rows of the data array. All these architectures [10, 62]
have an AT? of O(n?log®n), where n = N2, Gertner and Shamash [24] general-
ized this approach and proposed an architecture for d-dimensional DFT which
consists of N9~ butterfly arrays for computing one-dimensional DFT(N) and a
rotation network array for permuting the data. The area of their design is O(n?)
and the time complexity is O(dlog®n), resulting in an AT? of O(d*n?log* n).
Recently Bilardi, Hornick and Sarrafzadeh [4] developed a family of optimal ar-
chitectures with AT? = O(n?b*) where b is the precision, b = O(log M). They
showed that for the case when N = PQ, a (N X N x ... x N) d-dimensional
DFT can be expressed as a (P X P X ... x P) d-dimensional DF'T followed by
a (@ x @ x...x Q) ddimensional DFT. They mapped this algorithm into an
architecture consisting of transposers to order the data, a unit consisting of
mesh of trees network (each of which computes a (P x P x...x P) d-dimensional

DFT), and a unit consisting of P mesh of trees network (each of which computes

a (@ xQ x...x Q) d-dimensional DFT).
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3.3 Architectures for d > 2

In this section we first describe an optimal architecture for d-dimensional DXT
when the input data is in a single file and then develop a family of optimal

architectures with area-time trade-offs.

3.3.1 Input is in a single file

Let the input data of size n = N¢ be organized in a single file in the order of
its indexes. Any linear separable transform DXT(n) can be computed in the

following way [24].

1. Repeat steps 2 and 3 d times

2. Perform one-dimensional DXT(N) on each of the N4~ groups

3. Rotate over an index
The analysis of the above algorithm is as follows. In Step 2, one-dimensional
DXT(N) is computed over index n; for each of the N4=1 groups of size N. In
Step 3 the data is rotated over an index so that one-dimensional DXT(N) can be

computed over index n;yy in the next iteration. The above process is repeated

d times, once for each index.

This algorithm can be mapped into an architecture consisting of an input
multiplexer, MUX, a DXT'(n) computation unit which computes DXT(N) on

each of the N%~1 groups, a rotator unit R(n) which permutes data of size n over
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d indexes, and an output demultiplexer, DMUX. The data is circulated through
these units d times, once for each index. Figure 3.1 illustrates the corresponding
architecture. We describe the details of each of these units in the rest of this

subsection.

DXT(n) computation unit :

The DXT(n) computation unit consists of N97' subunits, each of which
computes DXT(N) on a group of size N. We use the mesh of trees (also re-
ferred to as orthogonal trees) network [40, 45] to compute DXT(N). This is be-
cause DXT(N) is a linear transformation and hence can be easily mapped into
this architecture. Moreover this architecture achieves the optimal computation
time T = O(log N). We first present the (N x N) mesh of trees network with
AT? = O(N?log* N) and then show how to compute one-dimensional DXT(N)

optimally with AT? = O(N?log® N).

The (N x N) mesh of trees network consists of N? processors arranged in

the form of an (/N x N) array such that each row and each column of processors
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forms the leaves of a binary tree. Thus processors P[i,j], 0 <4,j < N —1, are
connected by N binary trees along the columns, referred to as C'T(0), CT(1),

.oy CT(N — 1), and by N binary trees along the rows, referred to as RT(0),
RT(1), ..., RT(N —1). The leaves of C'T'(j) are the processors P[0, j], P[1,7],

.., P[N —1,j] and the leaves of RT(¢) are the processors P[:,0], P[i,1], ...,
P[i, N — 1]. Figure 3.2 describes the layout of a (4 x 4) mesh of trees network.
The processors consist of bit-serial multipliers which can be laid out in area
O(b). The nodes of the row and column trees not only communicate between
processors but also carry out simple operations like add, compare. Each node is
of area O(1). Without loss of generality the roots of the column trees are used

as input ports and the roots of the row trees are used as output ports. The

(N x N) mesh of trees network can be laid out in area O(N?log® N) [40, 45].

We next show how DXT(N) can be computed by an (N x N) mesh of trees
network. Since DXT(N) is a linear transformation, it can be expressed as BX,
where B is an (N x N) matrix and X is an (N x 1) column vector. B(i,j) is

embedded in the multiplier of processor P[z, j]. The procedure is as follows.

1. Input z; at the root of C'T(j) and broadcast to all the leaves using the

internal nodes of CT'(j).

O

Multiply x; by B(,j) in processor P[i, j].

3. Add z; x B(i,j) using the internal nodes of RT(¢) and output the result

X; at the root.
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Figure 3.2: (4 x 4) mesh of trees network

In the pipelined bit-serial mode with b = O(log ), the time required to com-
pute DXT(N) is O(log N). Thus AT? for this design is O(N?log* N), which is

O(log? N) away from the optimal.

Since the lower bound of the computation time is Q(log N), in order that AT?
be optimal, the area has to be reduced to O(N?). We now describe an optimal
architecture for DFT(N) [5]. This architecture can be used to compute other
linear transforms like DHT(N) and DCT(N) optimally. The one-dimensional
transform over N points is first map;)ed into a two-dimensional transform over
(N7 X Ny) points, where N = N1 Ny and Ny, N, are not necessarily prime to each

other. By choosing the input index mapping ¢i(n) = (ni,n2) and the output
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Figure 3.3: DXT(N) computation unit with AT? = O(N?log® N)

index mapping go(k) = (k1, k;) appropriately, X (k) can be mapped to };'(kl, ka),

where
Ni—1 Np—1

]»1,]»2 Z Z E(n1,ny a(kl,lxzynhnz)
n1=0 nz=0

0 <k <N —1,0< ky < Ny—1. If a(ky, ka,n1,n,) can be expressed as
the product of Cy(ny,ns, k2) and Ci(ns, ky, k2), then two sets of mesh of trees
network can be used to compute X (ki, k2). The first set of mesh of trees net-
works of size (N, x N,) computes Y(n1, ky) = 3., £(n1,n2)Cs(ny, na, ko) and
the second set of mesh of trees networks of size (N; x Ni) computes X (ki, ks)
= 3., Y(n1,k2)Ci(ny, k1. k2). Such a decomposition is possible for one-dimensional
DFT, DHT and DCT (see Chapter 2). Figure 3.3 illustrates the architecture
for computing DXT(N). We would like to mention here that the scheme of [4] is
a generalization of this decomposition scheme in d-dimensional space. In that

scheme a d-dimensional DFT over (N x N x ... x N) points is mapped into a

d times



2d-dimensional DFT over (NV; x Ny x ... x N; x \Nz X Ny X ... X NQ).

4 times 4 times

The first stage of the DXT(N) computation unit (see Figure 3.3) consists of
a permutation unit, cailed Permuter 1, which routes the data so that elements
with the same value of ny are adjacent to each other. The second stage consists
of Ny (N3 X N3) mesh of trees network such that the n;th network computes
Y(ky,n2), 0 < ny < Ny — 1. The third stage consists of another permutation
unit, called Permuter 2, which routes the data so that the elements with the
same value of ny are adjacent to each other. The fourth stage consists of N,

(V1 x Np) mesh of trees network such that the kyth network computes X’(kl, ky),

0<ky<Ny,—1.

This design has an area of O(N?), computation time of O(log N) and AT?

of O(N?log? N) for N; € [Q(log® N), O(N/ log® N)).
Rotator unit R(n):

The rotator unit is a network which permutes data by rotation over an index
in one step [24]. Thus data x represented by (ni1,n,...,nq) is rotated to place
(n2,m3,...,n4,n1), which is the cyclic left shift of the index representation of
data x. Notice the similarity of the rotator with the perfect shuffle network,
which shuffles data such that data z is shuffled to place &, where Z is obtained

by cyclic left shift of the binary representation of x.

Let a necklace be defined as a collection of nodes which are formed on rotation
of the indexes. For instance for N = 3 and d = 4, the necklace generated by

(2120) is (2120) — (1202) — (2021) — (0212). The rotator unit permutes data with
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Figure 3.4: Layout of a rotator unit for N =3, d = 2

the help of such necklaces. Of these necklaces, a few are cyclic, which means
that the rotation of the indexes of such a necklace causes the value of the rotated
necklace to cycle. The majority of the necklaces are however non-cyclic. While
a cyclic necklace can be laid out in 2 columns, a non-cyclic necklace requires at

most O(d) columns.

The design of the rotator unit for any N (that is, /N not necessarily a power
of 2) is as follows. The area of the ;otator unit is a function of the number of
non-cyclic necklaces. The total number of necklaces is equivalent to the number
of circular permutations of d objects of N kinds, with repetitions allowed. This

1s %qud qﬁ(q).Ng— [50], which is equal to O(’\Td), where ¢ is a divisor of d and
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#(q) is Euler’s function. This implies that the number of non-cyclic necklaces
is at most O(NTd). Since O(d) columns are required to layout each non-cyclic
necklace, the total number of columns is at most O(N?) and the area of the
rotator unit is at most O(N?%) = O(n?). As in the design of [24] the data enter
the rotator in n rows. It is then permuted with the help of load-shift cells placed
at the connection of a row input and its column necklace. The time taken to

permute the data over an index is O(b). Figure 3.4 shows the layout of a rotator

unit for N =3 and d = 2.
Area and time complexities:

The input MUX and the output DMUX can be laid out in O(n) x O(1) area.
The area of the DXT(n) computation unit is O(N%*t!) and that of the rotator
unit is O(n?). Thus A, = O(n?). The time taken to compute DXT(N) as
well as to rotate data over an index is O(b). Thus the total computation time
is O(db), which can be approximated to O(b) for fixed d. The resulting AT of

the design is O(n?b?).

3.3.2 Area-time trade-offs

We describe next how the input data can be pipelined to give a family of archi-
tectures satisfying AT? = O(n?b?) with area-time trade-offs. The initial input
data configuration is obtained by organizing the input data in column major or-
der form in a two-dimensional array I of size N3+ x N 0 <i < L Iffisa

fraction such that N/ is an integer, then this two-dimensional array can be par-
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Figure 3.5: Input data configuration (N =4,d =2,i=0,f = %)

titioned vertically into N¥ blocks, each of size N5+ x N¥=i=f and placed one on
top of each other. The resulting input data array [ is of size N¥+e x Ng““, where
a=1+fand 0 <a < —%. Figure 3.5 illustrates the input data configuration in
an example with N =4, d=2,i=0and f = %

The scheme for computing d-dimensional DXT consists of computing (% -+
¢)-dimensional DXT followed by computing (% — t)-dimensional DXT on the
columns of . Computation of (%+i)~dimensional DXT on columns of size N&+¢
is straightforward. Since a > 1, a set of N7 DXT(N?i'“) computation units can
be used to compute on columns of size NE+ in the N/ vertically stacked blocks
in . In order to compute (% — ¢)-dimensional DXT, the two-dimensional data
array is permuted such that all the elements which were row-adjacent in I are

made column-adjacent. This is done by first partitioning the two-dimensional

data array I, horizontally into N2¢ subblocks and then transposing
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and permuting the subblocks. Later in this subsection we will describe the
significance of these operations. Figure 3.6 shows the subblock configurations
in I, I and after subblock permutation. The subblocks are numbered in column
major order in I. Notice that after subblock permutation, the ordering is in row

major order.

The algorithm for computing d-dimensional DXT on [ is as follows.

1. For each column of a block perform (% + ¢)-dimensional DXT
2. Transpose subblocks
3. Permute subblocks

4. For each column of a block perform (% — ¢)-dimensional DXT

Figure 3.7 illustrates the corresponding architecture.

The analysis of this algorithm is as follows. In the input data array I, all the
elements in the columns have the same values for indexes Mdyiptye s T and all
the elements in the rows have the same values for indexes ny,...,n dig When
this array is reorganized into I, every row of I is split into N/ parts and each
part occurs in a block of I. In particular, the kth row of I occurs in the kth row

of every block of I. Thus there are N¥ rows with the same values for indexes
Niye..,Ngy,; in 7. Moreover all the elements in a column of a block of I have
2

the same value for indexes na, . 4,...,74-1.
2 4241

In Step 1 of the algorithm DXT(N) is computed over each of the indexes

Ni,...,N This is performed by circulating the data on each column of a

B
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Figure 3.7: Architecture for d-dimensional DXT when the input data is a two-

. . . d d_
dimensional array of size N2+ x N2—¢

block (£ + 7) times through a DXT(N%“) computation unit and a R(Ng'”)
rotator unit. The DXT(Ng'“') computation unit consists of N#+i~! DXT(N)
mesh of trees networks. The rotator unit R(N%+) rotates data of size N&+i
over (£ + 1) indexes. Note that there are N7 sets of DXT(N£+) computation
units and R(N%‘”) rotator units. In Steps 2 and 3 of the algorithm, N§-i
elements with the same values for indexes ny.nq,..., ng,; are made adjacent to
each other (note that these elements were adjacent along a row in I). These
two steps are essential for the computation of DXT(NEL") in Step 4. We next
describe the subblock transpose unit which transposes the subblocks in Step 2

and the subblock rotator unit which permutes the subblocks in Step 3.

-

Subblock transpose unit:

The subblock transpose unit consists of N?* subunits. each of which trans-
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Figure 3.8: Subblock transpose unit (N =4,d=2,1=0,f =

poses a subblock. Each of the subunits behave like a conventional transpose
unit, that is, subblock X which is input to a subblock transpose subunit is re-
lated to subblock Z which is output by this subunit by Z = X7. Figure 3.8
illustrates the function of a subblock transpose unit in an example with N = 4,
d=2,1=0and f = % Since a subblock has equal dimensions, the size of the
transposed data array and input data array are the same. The area of this unit

is O(nb) and the computation time is O(NE-2b).

After subblock transpose, the N£-i elements with the same value for indexes
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iy, ...,y are in the same column of the array. These NV §-i clements are
split into N/ groups of size N#=¢ and occur in every N%*ith subblock. In Step
3 the subblock rotator unit permutes the subblocks so that subblocks which are

Nett apart are now adjacent.
Subblock rotator unit:

The subblock rotator unit permutes the subblocks in such a way that the
ordering is changed from column major order to row major order (see Figure 3.6).
The design of the subblock rotator unit is as follows. Let N = ¢™. Then
each of the N?® subblocks can be represented by 2am indexes such that each
index takes on a value between 0 and ¢ — 1. In the subblock rotator unit, the
subblock in position k is rotated to position [, where [ is obtained by rotating
the indexes of k by mf positions to the left. If Zf@ is an integer, then the area
of the subblock rotator unit can be estimated along the same lines as that of
the rotator unit in Section 3.3.1. The number of non-cyclic subblock necklaces
is at most O(%) = O(%) Each non-cyclic subblock necklace can be laid
out in at most O(2a/f) subblock-columns, where a subblock-column consists
of N¥=% columns, one per subblock column element. Thus the total number
of subblock-columns in the subblock rotator unit is O(N?*). Equivalently, any
subblock permutation of size N?* can be accomplished by O(N?*) subblock-
columns. Since the relative position between the elements in a subblock are
unaffected by the permutation, the total number of columns is O(N%Jf“), and the
area of the subblock rotator unit is O(N+2*). The computation time through

this unit is O(Ng‘_“b). Figure 3.9 describes the function of a subblock rotator
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unit in an example with N =9, ¢ = 0 and f = ;. Figure 3.10 illustrates the

corresponding layout.

In Step 4 DXT(N) is computed over rest of the (% — 1) indexes, namely

Ndyigrse s s This is performed by circulating the data on each column of a
block (£—1) times through the DXT(N&+) computation unit and the R(N&+)
rotator unit. The rotator unit that is used to rotate over (% + 1) indexes can be

used to rotate over the remaining (% — 1) indexes, since rotation over an index

is obtained by cyclic left shift of the index representation.

Area and time complexities:

The area of the input MUX and the output DMUX are O(N'g'“). The
area of NJ DXT(Ng'H) computation units and N/ R(N';L“) rotator units are
O(N%‘“”’l) and O(N?F%) respectively. The area of the subblock transpose
unit is O(nb) and that of the subblock rotator unit is O(N+2%). Thus Apey =

O(N4+2) for a > $logy b.

The computation time for the DXT(Ng”) unit and the R(NgH) rotator
unit is O(N%‘“b). The time taken to compute Steps 1 and 4 are O((g——ki)Ng_“b)
and O((£—1)N 5-4p) respectively. The computation time for the subblock trans-
pose unit and the subblock rotator unit is O(Ng"“b). Thus the time taken
to compute Steps 2 and 3 is O(N'g““b). The total computation time T,,, 1S
thus O(dN$=b), which can be approximated to O(N£=2b) for small d. Thus

AT? = O(n?b?) for all ¢ in the range $logy b < a < £ such that N is an integer.



3.4 Conclusion

In this chapter we have presented a family of optimal VLSI architectures for
computing (N x N X ... x N) d-dimensional linear separable transforms with
area-time trade-offs. The architecture consists of one-dimensional DXT(N) com-
putation units which compute DXT(N) over one index, and permutation units
which order data so that when the data is circulated back through the DXT(N)

computation units, DXT(N) can be computed over the next index.

We use the mesh of trees network to compute one-dimensional DXT(N).
Though this network satisfies the optimality criteria of VLSI complexity theory,
it is costly from a VLSI designers’ point of view. Replacing this network by a
systolic array would result in a non-optimal but practical design. The permu-
tation unit consists of a rotator unit, a subblock transpose unit and a subblock

rotator unit. The layout of all these units is very regular.

The architecture has an area A = O(N9+??) and computation time T =
O(dN'g‘“b) for b = Q(log M) bit precision, ;logyb < a < %. Thus there
exists a family of architectures with different values of @ which are optimal with
AT? = O(n?b?) for small d. It is reasonable to assume that d is a small constant.
To the best of the author’s knowledge, d < 4 for almost all known applications

requiring multi-dimensional transforms.
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Chapter 4

Template Matching

4.1 Introduction

In this chapter we propose a semi-systolic architecture consisting of a linear
array of P processors to compute template matching between an input image of
size (N x N) and a template of size (A x K). The input data is read in the line
scan mode. This necessitates either storing part of the input image off-chip or on
storage devices on-chip. In our architecture the on-chip storage device consists
of shift registers in each processor. The shift registers are circulated so that the
processor array can access the same input multiple times. For computation of
real-time template matching, the number of processors in our architecture is a
function of the the frame size, the template size and the internal clock cycle.
This feature makes our architecture more versatile compared to the architectures

of [17, 28, 41] where the number of processors is fixed (irrespective of the frame
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specifications). The data flow in our architecture is very regular. Moreover
no additional circuitry is required to ensure smooth data flow from the on-chip
storage devices to the processor array. Our architecture achieves optimal speed-

up.

The rest of the chapter is organized as follows. In Section 4.2 we give the
preliminaries for real-time template matching. In Section 4.3 we give an overview
of the proposed architecture and algorithm and then give a detailed description

in Section 4.4. We make some concluding remarks in Section 4.5.

4.2 Preliminaries

In this section we define template matching and give an estimate of the minimum
number of processors that are required for its real-time computation. We then

give a brief description of the existing schemes for template matching.

4.2.1 Definition

Let the input image I be an array of size (N; x Ny). If W is a template of size
(K x K), then the template matching of W with I is defined by
K-1K-1

TMi, 7] = Z S Ili+m, j+ n]x Wm,n],

m=0 n=0
0<i<N,—K,0<j<N,— K. Figure 4.1 shows an (N; x N;) input image,
a (K x K) template and a particular match configuration. We assume that the

position of the template is defined by the coordinates of the input image covered

30



f o
R
'

»|
T
N,
I
-y
Input image I Template W

Figure 4.1: Input image I, template W and a particular match configuration

by the upper left corner of the template. Let SUB(¢, 7) be the input block of size
(K x K) whose upper left corner is (¢, j) as shown in Figure 4.1. The template
is matched against every sub area SUB(z,7), and for each such configuration

TM]z, 5] is computed.

Template matching is an extremely time consuming process since i'? multipli
cation-accumulation ! operations have to be computed for each of the (N; — A +
1)(Ny — K + 1) match configurations in a frame. The total computation time
per frame is thus T = (N; — K + 1)(N, — K + 1) K*aT,, where T, is the internal
clock period, a is a constant such that a7, is the pipelined time required to
compute one multiplication-accumulation. If the number of processors is P,
and if the speed-up is optimal, then‘ for real-time processing, the P-processor

T

computation time % is related to the frame frequency fr by % < 7]; Thus

the minimum value of P for real-time processing is given by P = [(N; — K +

IThe operation Z = Z + A * W is known as multiplication-accumulation and the corre-

sponding computation unit is known as multiplier-accumulator.

0]
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1)(N; — K + 1)K?aT.fr]|. In 1.6 micron technology, if 7, = 50ns and if the
operations are bit parallel with 8 bits per word, then the pipelined time required
to compute one multiplication-accumulation is 400ns. For the case when the size
of the template is (8 x 8), the minimum number of processors required for Video
Telephone Standard (N; = 288, Ny = 352, fr = 10Hz) is 25 and for NTSC

video signal (Vy = 512, Ny = 480, fr = 10Hz) is 62.

4.2.2 Related work

There are a large number of systolic and semi-systolic architectures for comput-
ing template matching [17, 21, 22, 27, 32, 35, 36, 37, 51]. These architectures
differ in the number of processors. in the algorithms and in the mappings of the
algorithms into the architectures. In all these architectures the computations in

the processor array are very efficient. However not all these architectures handle

/0 efficiently.

In most image processing applications, the input is fed in the line scan mode.
In this mode the neighboring pixels along a column are separated in time by
a whole line duration. This also means that in order to compute template
matching with a (K x K) template, a part of the input image (in fact (K —1)
rows) and/or intermediate results have to be stored. There are two classes of
architectures depending on whether the (' — 1) rows of the input image are

stored in an external memory or on-chip.

In the class of architectures which consist of an external memory, there are

0]
0.0]



some with a high I/O bandwidth of A pixels per clock cycle [27, 51]. In these
architectures the template shifts by one column in every clock cycle. There are
others which have an even larger 1/O bandwidth and complicated data flow,

since the same input has to be fed to different processors at different times

[21, 37].

The architectures with on-chip storage have an I/O bandwidth of one pixel
per clock cycle. The data is stored in a FIFO line memory [17], shift-buffer
pipeline [41], etc. When the size of the template is large, on-chip storage takes
up a significant amount of the chip area. Thus there exists a trade-off between
high I/O bandwidth and internal storage requirements. Recently Jutand et al
[28] proposed an architecture which tries to establish a balance between the two
by incorporating both external memory and on-chip storage. The size of the
on-chip storage in their architecture is only K? pixels and the I/O bandwidth is
two pixels per clock cycle. The number of processors in all these architectures
is however fixed at K2%. Thus these architectures are not versatile enough to
compute template matching in real-time for any frame specification. Moreover
additional circuitry is required in order that the data flow from the on-chip

storage to the processor array is regular.

4.3 Overview

4.3.1 Model
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Figure 4.2: P-processor architecture

We propose an architecture consisting of a linear array of P processors. Fach
processor essentially consists of a multiplier-accumulator, a few storage registers
and two unidirectional shift registers as shown in Figure 4.2. A single number
can be stored in a storage register. Each shift register consists of a linearly
connected array of storage cells. When the shift register is clocked, the output
of the tth storage cell is transferred to the (i — 1)th storage cell in 1 clock cycle,
where 1 < ¢ < L and L is the length of the shift register. When ¢ = 0, the
outputl of the shift register is transferred to a storage register. The input to
the shift register is usually data from a storage register. A part of the input
image is stored in the shift register, data ring (see Figure 4.2). The storage is

essential because data from the input image is read only once and the same data
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Figure 4.3: A match configuration during the computation of template matching

outputs of row ¢

is required for the computation of multiple outputs. The data ring is circulated
so that the processors can compute on the same input multiple times. The
intermediate template matching outputs are stored in another shift register,
output ring (see Figure 4.2). This unit is necessary. since the input is fed in line
scan mode, the number of processors is less than the size of a row, and as a
result each processor has to compute multiple intermediate template matching
outputs per row. The output ring is circulated so that the intermediate templa,te‘

matching outputs can be updated.

4.3.2 Algorithm and Mapping for Template Matching

Let Y[i,j,m] = SR I+ m,j + n] * Wm,n], that is, Y4, 7, m] is the row-

n=0

inner-product of the mth row of the template and the mth row of SUB(7, 7).
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Then TM[i,j] = A2 Y[, 4, m], that is, TM][i, ;] is the sum of K row-inner-
products (corresponding to /{ rows of the template). Without loss of generality
we assume that Ny = N; = N. The algorithm for template matching can be

summarized as follows.

Algorithm temp.match :

1. for each row 1 of input image do

2. for each row m of template do

3. for each position j of row (i +m) of input image do

4, Compute Y7, j,m] over row (¢ + m) of input image
5. Set TMIi,j] = TMIz,j]+ Y]i,j,m]

The order of the for loops in algorithm temp.match is important. During
the computation of template matching outputs of row ¢, the mth row of the
template is matched with the (¢ 4+ m)th row of the input image for each m,
0 <m < K (see Figure 4.3). Thus rows i through (i + K — 1) of the input image

are required for the computation of template matching outputs of row z.

The mapping of algorithm temp.match into the P processor architecture is
as follows, P > K and P divides N evenly. The input image is read in line
scan mode and stored in cyclic mode in the data rings of the P processors. This
means that I[z,7] of the input image is read into the data ring of processor
p=jmod P,0<1i,j< N. Thus each row i of the input image is divided into
N/P sections and each section of P consecutive elements is stored in the data
rings of P processors. The P processors compute template matching outputs

for each row 7 of the input image in the following way. The processors compute
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a set of (N — I{ + 1) row-inner-products between the (2 +m)th row of the input
image and the mth row of the template for each m, 0 < m < K (steps 2, 3 and 4
of temp.match). These row-inner-products are used to update the intermediate
template matching outputs stored in the output rings. After K updates, the

output ring of processor p = j mod P contains the template matching output

TMli, 7).

4.4 Detailed description

In this section we give the details of the processor architecture and algorithm
for template matching. We first discuss the operations at the processor level

and then elaborate on the I/O issues.

4.4.1 Processor Architecture

In the previous section we have seen that each processor consists of a multiplier-
accumulator, a few storage registers, a data ring to store data from the input
image and an output ring to store the intermediate template matching outputs.

Figure 4.4 illustrates the design of a single processor.

The data rings of the P processors store I rows of the input image. This is
necessary since the the pixels of the input image are read only once, and since

the rows of the input image that are required for the computation of template

matching outputs of two consecutive rows overlap by (& —1) rows. Thus a data
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ring is of size KX N/P. The elements in the data ring are partitioned into K
blocks, such that each block contains N/P elements of the input image which
were in the same row. Figure 4.5 shows the elements in the data rings prior to
the computation of template matching outputs of row 1, in an example where
the image is of size (8 x 8), the template is of size (3 x 3) and the number of

processors is 4. We refer to this example as example A.

The template values are broadcast to the processors via the W line (see

Figure 4.4). The same template value is broadcast to all the processors.

The size of the output ring is [ﬂ:—{;‘—il—} = ]—}X—, since each processor computes

at most [&}—Ig‘—ﬂ—] intermediate template matching outputs along a row. The
intermediate template matching outputs are stored in cyclic mode in the output

ring and are updated K times (once for each of the K rows of the template).

4.4.2 Processor Algorithm

We next discuss the operations of processor p in the computation of template
matching outputs TAM[7,j], where p = jmod P and 0 < ¢,5 < N — K. At
the beginning of the computation of the template matching outputs of row s,
the data ring in each processor contains the elements corresponding to rows
i through (s + K — 1) of the input image in blocks 0 through (K — 1) (see
Figure 4.5). For each of the K rows of the template (0 < m < K), processor p
computes a set of [&I—I,‘—J“—l] Y[¢,j,m]s, where j = yP+pand 0 < v < [%’—u—}

In other words, processor p computes [l-—{;—ﬂ] row-inner-products of the mth
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Data ring configuration prior to the computation of Y[1,*,0]:

row #3 1[3,4] I{3,5] 113,6] 1(3,7]
block #2 1{3,0] 13,1] 13,2] 1(3,3]
row #2 1(2,4] 1(2,5] 1(2.8] 112,7]
block #1 12,0 12,1 112,2] 112,3]
row #1 1{1,4] 1[1,5] 1{1,8] I[1,7}
block #0 1[1,0] 01,1 I[1,2] 1(1,3]

A

A

A

PE[1] PE(2]

l— PE[0] PE(3] ‘—]

Register contents during the computation of Y[1,*,0]:

c I1,4] I1,5] 18] I17]
A I[L0] I1L1] 1,2 11,3]

A*wW  I1,01*W(0,0] I[1,1]*W[0,0] I[1,2]*W[0,0] I[1,3]*WI0,0]

A I11] I12] I1,3] I14]

A*W  If1,1]*Wi0,1] I1,2]*W(0,1] H1,31*Wi0,1] I[1,4]*WI0,1]

c I1,6] I347] - -
A I1,2] I1,3] I14] 1,51

AW I(1,2]*Wi0,2] I[1,3]*W[0,2] I(1,41*W[0,2] I{1,5]*W(0,2]

Y(1,0,0] Y(1,1,0] Y[1,2,0] Y11,3,01

Figure 4.5: Data ring configuration prior to the computation of ¥[1.%.0} and

contents of registers A and C during the computation of ¥'[1,*,0] in example A
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1. load A, C' from data ring
load Y from output ring

2. forq:=0to K —1 do

3. broadcast W[m,q]
4. Y=Y+ AxW  (if flag = 0)
3. Shift-left A and ' by 1

6. load Y into output ring

The time taken to compute a row-inner-product is N aT,.. The control input
flag is set to 1 in processors (K —1) to (P — 1) in the N/Pth iteration so that
no invalid outputs are computed. The data ring and the output ring are shifted
and the above process is repeated (%-‘ = % times. Recall that processor

p has to compute [¥ _}Ij"“'] row-inner-products of the mth row of the template

and the (¢ + m)th row of the input image. The data ring is clocked at KoT.

4.4.3 1I/0 operations

We next discuss how the input image is loaded into the data ring. While the
template matching outputs of row 7 are being computed, row (¢ + K) is read
from the input image into the input buffers (see Figure 4.1) of the P processors.
Thus a row of the input image is loaded into the input buffers in the time taken
to compute all the template matching outputs of a row. We propose two input
loading schemes which differ in the way the data is loaded from the input bulfer

into the data ring.
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1% 1nz,”) Io,*] I1,* 2,7 13,% 11,4 2,%
110,*] I, I12,%) 110,*] I, 12,4 1(3,*] n,*
PE[p] PE(p] PE[p] PE :
v_vi P W:{ q L T’L [pl] ;;{ PE[p]] W‘.{ PE[p]] o PE[p]] - PL[p]J
TMIO,*] TMI1,*]
1t4,*] 12, 13,*] I14,%] 1(5,4] 13, 14, I(5,%]
113,] It4,%] I2,*] 3| - I4,*] 1(6,*] 13,*] 14,
12,7 113, It4,*] 2" 13,*] 1(4,%] I15,*] 113,%)
—s PElp] PE[p] PE(p]| —f PE[p] —» PElp]| —s PEp] PE[pl| =~ PE[p]
Y % " - Yo h Wy -
TMIZ,*] TM(3,*]

Figure 4.6: Data ring configuration of processor p during the computation of

TMI0, ], TM[1,%], TM[2,*], TM[3,*] by Scheme 1 in example A

Scheme 1:

In this scheme the data ring is circulated (K +1)/N/P times for the computation
of the template matching outputs of row 7, 0 < 7 < N — K. It is circulated
K N/P times so that all the elements of the data ring corresponding to rows i
through (7 + A — 1) are incident on the processor array (and can be used for the
computation of template matching outputs of row ¢) and then for another N/P
times so that the elements correspon;ling to row ¢ are once again in block 0. In
the next step the elements corresponding to the (i + K )th row are shifted in

from the input buffer (while the elements corresponding to the 2th row are shifted

out). At the end of this step the data ring contains elements corresponding to
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rows (z+1) through (¢4 K), which are required for the computation of template
matching outputs of row (¢ 4+ 1). The above scheme is illustrated in Figure 4.6

in example A ((8 x 8) image, (3 x 3) template and 4 processors).

Let W; be the jth row of the template. The sequence of W;s that are
broadcast to the processor array are the same for all rows (see Figure 4.6).
The input buffer is of size N/P. The time taken to compute all the template
matching outputs of a row is K(/ + 1)aT.N/P. Note that this scheme does
not achieve optimal speed-up. This is because the processor array is idle for

KoT.N/P time for every K%aT.N/P time that it is active.

Scheme 2:

This scheme achieves optimal speed-up by pipelining the data in the following
way. Row (¢ + I + j) is loaded into the data ring from the input buffer during
the computation of Y[i + j,*,j], where ¢ = SK, § is an integer in the range
0<p< L—]\%J, and 0 < j < . Recall that Y[i+7, *, j] is the jth row-inner-
product in the computation of template matching outputs of row (z + 7). Thus
row (14 K), row (i + K +1), ..., row (¢ + 2K — 1) are loaded into the data ring
during the computations of Y7[i,*,0], Y[z + 1%, 1], ..., Y[i + K — 1, %, K — 1]
respectively. The above scheme is illustrated in Figure 4.7 in example A ((8 x 8)
image, (3 x 3) template and 4 processors). Here rows 3, 4, 5. and 6 are written
into the data ring during the computation of Y'[0,%,0], Y[1,*.1], Y[2, %,2], and
Y[3,*,0] respectively. The input buffer is of size 2N/P since the elements of

two rows, row (i + 2K — 1) and row (i + 2K), are loaded into the data ring one
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12,*] 13, I+ 12+ 13,1 14,
1,% 12,*] 13,% 1,7 112,% n3,*
110, 1% n2,* 13,*] 11,1 12,
PE[p] PE[p] — PE[p] PE[p] PE[p} PE[p}
W % w2 Wo % W‘
TMIO,*] TM(1,%]
12,9 13,7 I(4,*] 15,7 IT6,*) 14,*]
14,%] I2,%] Ii3,*] I14,*] 115,%] 16,7
13,*] 14,4 Ii2,% 1(3,%] I14,%3 It5,*1
PE[p] PE[p] PE[p] PE[p] PE[p] PE[p]
W W2 Wo Wo W, -v;'j
TM[2,*] TMI3,*]

Figure 4.7: Data ring configuration of processor p during the computation of

TM0,*], TM[1,*], TM[2, ], TM[3,*] by Scheme 2 in example A
after the other 3.

The sequence of W;s that are broadcast to the processor array are not the
same for the computation of template matching outputs of all rows. There
are K different W; sequences, such that the sequence for T M|z, %] is the same
as that for TM[i + K,*]. The sequence of ;s that are broadcast to the
processor array for the computation of template matching outputs of rows ¢

through (z + K — 1), where ¢ = K and 0 < 8 < L%\‘“J, is as follows:

3Row (i + 2K ~ 1) is loaded during the computation of ¥'[f + K — 1,%, K — 1] (the last
row-inner-product in the computation of template matching outputs of row (i + K — 1)) and
row (i + 2/) is loaded during the computation of Y[i 4+ A, *,0] (the first row-inner-product

in the computation of template matching outputs of row (i + i')).
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(I’Vo, ‘/Vl, ey I’V[{..l), (I/V](_l, I/Vo, ey WI{...Q), ...... y KW17 W2, ceey WQ),

.

TM[i%] TM[i+1,%] TM[i+K —1,%]
(Wo,Wa,...,Wk_1),.... The template values in a row are broadcast in row

TMi+ K %]
major order. In the example illustrated in Figure 4.7, there are 3 sets of W;

sequences, namely, (Wo, Wy, Wa), (Ws, Wy, W1), and (Wy, Wa, W), Figure 4.8

describes the details of this algorithm.

4.5 Conclusion

In this chapter we have described a semi-systolic architecture consisting of a
linear array of P processors to compute template matching when the input is
fed in the line scan mode. The I/O bandwidth problem is handled by storing
part of the input image in shift registers in each processor, and by circulating

the shift registers.

The performance of the architecture that we have developed can he affected
by the delay in broadcasting the template values. An alternative scheme consists
of storing the template values in shift registers in each processor and clocking
them to the multiplier-accumulator. While this scheme is useful in applications
of adaptive filtering, it results in an additional on-chip storage. Another pos-
sibility is to partition the processor array into « groups, such that each group
stores a set of template values which are locally broadcast to the processors of

that group.



begin  {algorithm}
fori:=0to N~ K do begin
Initialize output ring;
form :=0to K — 1 do begin
forr:=0to N/P —1 do begin
Y = Routv: A = Routa; C = Routc;
Shift data ring and output ring;
if ((i — m) mod K =0)
then data ring reads from input buffer;
else data ring reads from R;,4;
Rina = 4;
forq:=0to K —1 do begin
V=Y +A«W  (if flag=0)
Shift-left A and C' by 1;
end  {of g-loop}
Riny =Y
end  {of r-loop}
end  {of m-loop}
end  {of i-loop}
end  {algorithm}

Figure 4.8: Algorithm for computing template matching when the size of the

image is (N x N), the size of the template is (K x K), and the number of

processors 18 P

The number of processors required for real-time template matching is quite
large. Though it is not unreasonable to assume that a single chip implementa-
tion is possible with submicron technology, it is interesting to investigate how
the processors can be organized into multiple chips such that the inter-chip

communication overhead is minimum.
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Chapter 5

Block Matching

5.1 Introduction

In this chapter we propose a semi-systolic architecture consisting of a linear
array of P processors to compute full-search block matching when the frames
are of size (N x N), the blocks are of size (K x K), and the search area is of
size (K 4 q) x (K + ¢). The computation unit in each processor consists of a
comparator-accumulator and a few registers. Data from the current frame and
previous frame-memory are read in line scan mode. Since block matching 1s a
window based operation, this necessitates storing part of the input data either
off-chip or on-chip in storage devices. The intermediate results have to be stored
too, since the computations are split over I lines. As in the case of template
matching, the on-chip storage device consists of shift registers in each processor.
For computation of real-time block matching, the number of processors in our

architecture is a function of the frame size, the block size, and the internal clock
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rate. This makes our architecture more versatile compared to the architectures
with fixed number of processors [7, 18, 20, 30]. The data flow in our architecture
is very regular. Moreover no additional circuitry is required to ensure smooth

data flow from the on-chip storage devices to the processor array.

The rest of the chapter is organized as follows. In Section 5.2 we give the
preliminaries for full-search block matching. In Section 5.3 we give an overview
of the proposed architecture and algorithms and then give a detailed description

in Section 5.4. We make some concluding remarks in Section 5.5.

5.2 Preliminaries

In this section we define full-search block matching and give an estimate of the
minimum number of processors that are required for its real-time computation.

We then give a brief description of the existing schemes for block matching.

5.2.1 Definition

Full-search block matching determines a displacement vector for every reference
block in the current frame, by comparing it with all candidate blocks in a search
area surrounding the position of the reference block in the previous frame. Let
the current frame I, of size (N7 x N3) be partitioned into reference blocks of
size (K x K). Thus there ate NyN,/I'? disjoint reference blocks in a frame.
Let B.(i,7) be a reference block of I, whose top-leftmost coordinate is (3, 7),
and let the corresponding search area S(z, ) in the previous frame I, be of size

(K +¢) % (K +4q). Let B,(¢ +Aid,j+ Aj) be a candidate block in S(z,7) whose
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Figure 5.1: Reference block B(7,7) and candidate blocks B,(7,7), Bp(1+ Az, 5+

Aj) in search area S(z,7)

top-leftmost coordinate is (i + Ad,j + Ajf), —¢/2 < Ai, Aj < g/2. Figure 5.1
shows the relation between B.(7,7) and its candidate blocks in S(i,7). Let
L; (A1, Aj) be the block-distance between reference block B.(7,7) and candidate
block B,(i + A1, j + Ag), that is, Li;(Ar, Aj) is the sum of absolute difference
between pixels of B.(1,7) and Bp(i + Ad,j + Ag).

K-1K~1
L; ;(A1,Aj) = Z E lz.(i+m,j+n)—a,(z+m+ Ai,j+n+ A7),

m=0 n=0

where z, are the pixels of current frame I. and z, are the pixels of previous frame
I,. Let (Aé,Aj);,; be the vector corresponding to the candidate block B,(z +
Ai,7 + Ay), and let (A7, AJ);; be the vector corresponding to the candidate

block with minimum block-distance. that is,
(A;, A_; )i,j = mill_—lL{,j(A'L', A])
ALDg
The vector (A7, A7)i; is then the displacement vector for B.(i.7).

Block matching is a computationally intensive operation. Here (g+1)? block-
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distances have to be computed for each of the N;N,/K? displacement vectors
in a frame. This results in Ny Ny(g 4 1) comparison-accumulation ! operations
per frame and a total computation time of T' = Ny Ny(q + 1)*aT., where T, is
the internal clock period, a is a constant such that aT. is the pipelined time
required to compute one comparison-accumulation operation. If the number of
processors is P, and if the speed-up is optimal, then the minimum value of P for
real-time processing is given by P = [Ny Ny(¢+1)*aT.fr|, where fF is the frame
frequency. If T, = 50ns and if the operations are bit parallel with 8 bits per
word, then the pipelined time required to compute one comparison-accumulation
is 100ns. For the case when ' = 8 and ¢ = 8, the number of processors required
for Video Telephone Standard (Ny = 288, Ny = 352, fr = 10Hz) is 9 and for
NTSC video signal (Ny = 512, N, = 480, fr = 10Hz) is 20.

The high computational rate of full-search block matching can be reduced by
applying search strategies where lesser number of candidate blocks are searched.
One such strategy is hierarchical block matching, which adopts block size and
maximum displacement depending on the image properties. Hierarchical block
matching is useful for applications where the objects move rapidly and a fixed

displacement is not sufficient to determine the displacement vector.

5.2.2 Related work

The existing systolic or semi-systolic architectures for computing block match-
ing [7, 18, 20, 30, 61] differ in the number of processors, and consequently in

the mappings of the block matching algorithm into the processor array. In all

IThe operation Z = Z+|A —~ B] is known as comparison-accumulation and the correspond-

ing computation unit is known as comparator-accumulator.
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these architectures the computations in the processor array are very efficient.
Unfortunately not all these architectures handle the I/O bandwidth problem

efficiently.

The I/O bandwidth can be reduced if the search area data and the reference
block data are read as few times as possible from off-chip sources. One way of
realizing this is by storing the data in local memories on-chip. On-chip storage

also results in reduced number of 1/0 pins.

The I/O bandwidth problem is handled in [61] by reading in the data through
one input port and by broadcasting data from the current (or previous) frame-
memory to all the processors. In the architecture of [7], the reference block
data is input through one input port and is duplicated by shift registers on-chip.
However in this architecture [7], the search area data is read multiple times from
the previous frame-memory and the number of input ports is 14+ (A +¢)*/K?. In
the architecture of DeVos et al [18] the local memory consists of line buffers and
register chains or memory blocks. The register chains in the two-dimensional
processor array are replaced by a memory block in the linear array architecture.
Though the number of transistors in the memory block architecture is less, an
additional pointer circuitry is required in order that appropriate data are written

into and read from the memory block.

5.3 Overview

5.3.1 Model
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Figure 5.2: P-processor architecture

We propose an architecture consisting of a linear array of P processors. Each
processor consists of a a comparator-accumulator, a few storage registers and
three unidirectional shift registers, as shown in Figure 5.2. It is essential to
store data from the previous and current frames, since such data are read only
once, and the same data is required for the computation of multiple outputs.
Data from the previous frame is stored in the shift register, previous-data ring,
and data from the current frame is stored in the shift register, current-data
ring (see Figure 5.2). The previous-data ring and the current-data ring are
circulated so that the processors can access the same input multiple times. The
intermediate block matching outputs‘are stored in the shift register, output ring
(see Figure 5.2). This unit is necessary since the input is fed in line scan mode,
the pumber of processors is less than the size of a row, and as a result each

processor has to compute multiple block matching outputs per row.
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5.3.2  Algorithm and Mapping for Block Matching

Let Y,;[A¢ Aj,m) = S5 ao(m,n) — 2p(m + Aiyn+ Aj)], that is,

Yi;[A%, Aj,m] is the row-distance between the pixels of the mth row of B.(i,7)
and the pixels of the mth row of B,(i + Ai,j + Aj). Then L; ;[A1, Aj] =
SR A YiilAL, Aj,m], that is, L; ;IA7, Aj] is the sum of K row-distances (cor-
responding to the K rows of the reference block). The displacement vector
(A%, A})M 1s computed by first computing the vector corresponding to the best
match over all Aj and then over all A7, Without loss of generality we assume
that Ny = N, = N. The algorithm for block matching can be summarized as

follows.

Algorithm block.match :

1. fori =0,K,2K,... of the current {rame do

2. for each row (7 + A7) of the previous frame do

3. for each row m of the reference block do

4. forj =0,K,2K,... of row 7 of the current frame do

5. for each position (7 + Aj) of row (i + Az 4+ m) of the

previous frame do

6. Compute Y; ;[A7, Aj,m]

—~I

Set Li’j[AZ', A]] = Li’j[AZ., AJ] -+ Y;][Al, A]q 77’L]
8. Set (A7, AJ)i; = min~ {min{L; (A7, AJ), Li j(Ai, Aj)}}

We chose this order of the for loops in algorithm block.match since the input
from the current frame as well as the previous frame are read in line scan mode.
Figure 5.3 describes a particular match configuration during the computation of

displacement vector (Az, AJ)i; corresponding to reference block B.(3, 7).
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Figure 5.3: A match configuration during the computation of (A%, ADi;

The mapping of algorithm block.match into the P processor architecture is as
follows. The input from the current frame is read in line scan mode and stored
in cyclic mode in the current-data rings of the P processors. Thus I [z, j] of
the current frame is read into the current-data ring of processor p = j mod F,
0 <¢,j < N. The previous frame is appended with a ring of zeroes of width %
so that the same procedure can be used to compute all the displacement vectors.
Thus the size of the previous frame is increased to N x N, where N =N+ q.
The input from the previous frame is also read in line scan mode and stored in
cyclic mode in the previous-data rings of the P processors. Thus I,[¢, j] of the
previous frame is read into the previous-data ring of processor p = j mod P,

where 0 < 7,5 < N.

The P processors compute N/K displacement vectors (corresponding to
N/K reference blocks of a row) in e;fery L'th row 7 of the current frame (2 =
0,K,2K,...). For each Az, the N/K reference blocks with top-leftmost coordi-
nate in row ¢ of the current frame are matched with their candidate blocks with

top-leftmost coordinate in row (i + A{) of the previous frame in the following
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way. A set of (¢ 4+ 1)N/K row-distances (or sum of absolute differences over
a row) is computed between the (¢ + m)th row of the current frame and the
(¢ + m + A¢)th row of the previous frame for each m, 0 < m < K (Steps 3
through 7 of block.match). These row-distances are used to update the inter-
mediate block-distances (or sum of absolute differences over a block) which are
stored in the output rings of the processors. After K updates (corresponding to
the K rows of the reference block), the output rings contain the correct value of
(¢ + 1)N/K block-distances between N/ reference blocks whose top-leftmost
coordinates are in row ¢ of the current frame and their candidate blocks whose
top-leftmost coordinates are in row (¢ + Az) of the previous frame. We refer
to this set of block-distances as blk.dist(i,7 + A¢). The processors then up-
date the temporary displacement vector for each of the N/K reference blocks
of a row (Step 7 of block.match). Steps 2 through 7 are repeated for each Az,
—% < Ai < 4. After (¢ + 1) updates (corresponding to (¢ + 1) values of A),

the displacement vectors for N/K reference blocks of a row are computed.

5.4 Detailed description

In this section we give the details of the processor architecture and algorithm
for block matching. We first discuss the operations at the processor level and

then elaborate on the I/O issues.



5.4.1 Processor Architecture

The P processors in a processor array can be partitioned into § groups, with K
processors per group. Thus P = §K. Each group of processors is responsible
for computing the displacement vector of N/P reference blocks of a row. There

are two processor array configurations, depending on whether K > ¢q or K < q.

When K > ¢, there are two types of processors, processors of type A and
of type B. While all the processors contain previous-data rings, current-data
rings, and storage registers, only processors of type A contain comparator-
accumulators and output rings. Out of the K processors in a group, (¢ + 1)
processors are of type A and (K — ¢ — 1) processors are of type B. The (¢ + 1)
processors of type A in a group compute the block-difference of (¢ + 1) candi-
date blocks corresponding to each of the reference blocks that are assigned to
that group. The processors of type B are involved only with the flow of data
from/to the previous-data rings and current-data rings. Figure 5.4 illustrates
the processor array configuration in an example with a (4 x 4) reference block,
a (6 x 6) search area and 4 processors. We refer to this example as example B.
Note that in Figure 5.4 PFE[3] which is of type B does not contain an output

ring. Figure 5.5 illustrates the design of a processor of type A.

When K < ¢, all the processors are of type A. The I processors in a group
now compute the block-difference of (¢ + 1) candidate blocks corresponding to
the reference block assigned to that group. Thus each processor computes the
block-differences of at most [(¢+1)/K] candidate blocks for each of the reference

blocks assigned to that group.
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Figure 5.4: Processors of types A and B in example B

The algorithms for the case when K > ¢ and when A < ¢ are quite similar.
In the rest of this chapter we assume that X' > ¢. We will however point out

the modifications in the algorithm for the case when K <g.

The previous-data rings of the P processors store I rows of the previous
frame. This storage is required since the pixels of the previous frame are read
only once from the external memory, and since the rows of the previous frame
that are required for the computation of blk.dist(i,7+ A7) and blk.dist(v, 1+ A+
1) overlap by (K — 1) rows. Thus a previous-data ring is of size K [N/P). The
elements of the previous-data ring are partitioned into A blocks, such that a
block contains the [N /P elements \x;hich were in the same row in the previous

frame (see Figure 5.6).

The current-data rings of the P processors store A" rows of the current frame.

As in the case of the previous-data ring, the storage is required since the pixels
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of the current frame are read only once, and since the rows of the current frame
that are required for the computation of blk.dest(e,2 + Ae) and blk.dist(i,1 +
At + 1) overlap by (K — 1) rows. The minimum size of the current-data ring is
K N/P. Since the previous-data ring is circulated (K + 1)[N/P] times for the
computation of blk.dest(i,7 + A7), and since it is desirable to clock the current-
data ring and the previous-data ring at the same rate, the size of the current-data
ring is increased to (K + 1)[N/P]. The elements of the current-data ring are
partitioned into (/' + 1) blocks, such that a block contains the [N/P] elements
which were in the same row in the current frame. The current-data ring has N/ P
valid data (and 1 invalid data) in each of its & blocks and [N /P] invalid data in
its (K + 1)th block. Figure 5.6 illustrates the data organization in the previous-
data ring and current-data ring prior to the computation of blk.dist(0,—1) in
example B ((8 x 8) image, (4 x 4) reference block, (6 x 6) search area and 4

processors).

The contents of the current-data ring of the leftmost processor in a group is
broadcast locally to all the processors of type A of that group via the W line

(see Figure 5.5).

We have seen earlier that each group of processors is responsible for com-
puting displacement vectors of N/P reference blocks of a row. Moreover, each
group of processors computes (¢ + 1) block-distances of (¢+ 1) candidate blocks
for each reference block. Thus for the case when K > ¢, each processor of type
A computes N/P block-distances. This means that the size of the output ring
should be at least N/P. In the proposed architecture, the size of the output
ring is [N/P] =14 N/P so that the output ring can be clocked at the same

rate as the data ring. For the case when K < ¢, each processor computes at
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Figure 5.6: Previous-data ring and current-data ring configurations prior to the

computation of blk.dist(0,—1) in example B
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most [(¢+1)/K]N/P block-distances for the N/P reference blocks assigned to

it. The size of the output ring in this case is [(¢+1)/K[N/P. Also, it is clocked

at a rate different from that of the data rings.

5.4.2 Processor Algorithm

We next discuss the operations of a processor of type A in the computation
of a displacement vector for the case when K > ¢. Recall that for each Az,
the processors compute blk.dist(z,i + A7) (which is a set of (¢ + 1) N/ block-
distances between the N/ K reference blocks whose top-leftmost coordinates are
in row ¢ of the current frame and their candidate blocks whose top-leftmost
coordinates are in row (¢ + A:) of the previous frame) and then each group
of processors updates the temporary displacement vectors corresponding to the

N/ P reference blocks that are assigned to it.

At the beginning of the computation of blk.dist(z,: + Az), the previous-
data ring contains elements of rows (i + Ai) through (7 + A¢ + K — 1) of the
previous frame in blocks 0 through (X — 1), and the current-data ring contains
rows ¢ through (z + K — 1) of the current frame in blocks 0 through (A" —1). In
Figure 5.6 the previous-data ring contains elements of rows —1, 0, 1, and 2 of the
previous frame and the current-data ring contains elements of rows 0, 1, 2, and 3
prior to the computation of blk.dist(0.—1). Each processor computes the block-
difference of one candidate block for each reference block. The procedure consists
of summing K row-differences (corresponding to the K rows of a reference block).
In fact, processor p computes N/P row-differences between the (i + m)th row

of the current frame and the (¢ + m + Ai)th row of the previous frame. In
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particular, it computes Y;;[A¢, Aj,m], for each row m of the current block,

where 0 <m < K, p=jmod P+ Aj + 2,0 <7 < N and j is a multiple of K.

The procedure to compute one such row-difference is as follows. The previous-
data ring loads two elements into registers A and C such that
A := prevdata.ring[0] and C := prevdata.ring[l]. The current-data ring loads
an element into register Ry such that Ry := currdata.ring[0]. The contents of
Ryw of the leftmost processor in a group is broadcast via the 1V line. The output
ring loads an intermediate block-distance value into register Y. The absolute
difference of the contents of register A and W gives one of the terms needed
to compute a row-difference. The contents of registers A, C' and W are shifted
and a new term is computed. The above process is repeated for each of the A
entries in a row of the reference block. Note that by shifting the contents of Ry
K times, the K elements in a row of the reference block are incident to all the
processors of type A of that group. The updated intermediate block-difference
value is then loaded back into the output ring. Figure 5.7 illustrates the pro-
cedure during the computation of ¥50[—1,—1,0], ¥56[—1,0,0], Yo0[—1,1,0] in
example B ((8 x 8) image, (4 x 4) reference block, (6 X 6) search area and 4
processors). See Figure 5.6 for the data ring configurations prior to the com-
putation of ¥5o[—1,#,0]. Notice that in this example PFE(3) is a processor of
type B and so does not participate in the computation of any Y. The series of

operations to compute a row-difference are summarized as follows.
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PE(0) PE(1)  PE®) PE(3)

C Ip(-1,3] Ipl-1,4] Ip(-1,5] Ip(-1,6]
A Ipl-1,-1] Ipi-1,0] Ipl-1,1] Ipl-1,2]
R 1c[0,0] Icf0,1] 1cf0,2] Ic[0,3]
w 1c[0,0] 1c[0,0] 1c{0,0] _

C Ipl-1,4] Ipl-1,5] Ipl-1,6] -

A Ip(-1,0] Ipl-1,1] Ip(-1,1] Ipl-1,3]
R Ic[0,1] 1c{0,2] Ic[0,3] _

w Ie0,1] Icf0,1] Icf0,1] _

C Ip(-1,5] Ip(-1,6] - -

A Ipl-1,1] Ip(-1,2] Ip(-1,3] Ipl-1,4]
R 1c[0,2] Icl0,3] - -

w Icf0,2] 1c[0,2] Icf0,2] _

C Ipl-1,6] - - -

A Ipi-1,2] Ip(-1,3] Ip(-1,4] Ipl-1,5]
R 1c[0,3] - -

w 1cf0,3] Ic[0,3] Ic[0,3]

VoolL-L01 Y, 110,01 ¥, (-1,1,0] _

Figure 5.7: Contents of registers A, €, Rw during the computation of

Yo.0[—1, *,0] in example B

120



1. load A and C from previous-data ring
load Rw from current-data ring

load Y from output ring

2. fort:=0to K —1 do
3. Y:=Y+|A-W]| (i flag =0)
4. shift-left A, ', Rw by 1

5. load Y into output ring

The time taken to compute a row-difference is KaT,. Note that flag is set
to 1 when invalid data is loaded from the current-data ring. The previous-data
ring, current-data ring and the output ring are shifted and the above process
is repeated fN/P_I times. Recall that processor p has to compute N/P block-
distances corresponding to N/ P reference blocks of a row. The previous-data

ring and the current-data ring are clocked at KoT..

After the computation of blk.dist(i,i + At), each group of processors up-
dates the temporary displacement vector of the reference blocks assigned to it
in the following way. Processors of type A compute the minimum value of block-
difference of the (¢+1) candidate blocks for each reference block. This is used to
update the contents of the comparator which stores the minimal value of block-
difference along with the corresponding displacement vector. The minimal value
of block-difference is computed in parallel with the first set of row-differences
of blk.dist(i,1+ Ai +1). The value of the comparator is updated in successive
iterations of A:, so that at the end of (¢ + 1) iterations of Ae¢, this register
contains the minimum value of block-difference and the corresponding displace-
ment vector. Note that each group contains N/ P comparators since each group

ccnnpu)(,es ‘che displacemen{: VQC{;OI‘S O{ j\f/p reference ]’)10C1{S in a2 TOW.
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5.4.3 I/O operations

The input from the current frame and previous frame external memory are
loaded into the current-data ring and previous-data ring in the following way.
During the computation of displacement vectors of row ¢, & rows of both the
current frame as well as the previous frame are read in. In fact, rows (7 +
K) through (¢ + 2K — 1) of the current frame and rows (i + K — £) through
(¢4 2K — £ —1) of the previous frame are read in. All K" rows of the current
frame are stored in the current-data buffers (see Figure 5.5) of the P processors.
These rows need to be stored for the computation of displacement vectors of
row (2 + K'). While the same number of rows of the previous frame are read in
during the same time, only (I — ¢) rows are stored in the previous-dala buffers
(see Figure 5.5) of the P processors. Out of the K rows of the previous frame
that are read in, ¢ rows are required for the computation of displacement vectors
of row 7, and the remaining (K — ¢) rows need to be stored for the computation

of displacement vectors of row (i + IU').

The previous-data ring is circulated (K +1)[N/P] times for the computation
of blk.dist(i,i + Az), for each Ai. It is circulated i [N/P] times so that every
element of rows (i + A7) through (¢ + Az + K — 1) of the previous frame are
incident on the processor array and then for another [N /P] times so that the
elements of row (i + A7) of the previous frame are once again in block 0. In the
next step the elements of the (i 4+ A7+ K )th row are shifted in from the previous-
data buffer while the elements of the (i + A7)th row are shifted out. At the end
of this step the previous-data ring contains elements of rows (¢+ Az 4 1) through
(i + Ai + K) which are required for the computation of blk.dist(i,i + Ai + 1).

This procedure is repeated ¢ times, once for each Az, =2 < Ai < <~ 1. In this
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way the elements of g rows (rows (¢ + K — £) through (i + K + £ — 1)) of the
previous frame are loaded into the previous-data ring. In order that the delay
between the computation of blk.dist(i,z + Z) (the last set of block-distances of
row i) and blk.dist(i + K,t + K — %) (the first set of block-distances of row
(¢4 K)) is minimum, the elements of (X — g) rows are loaded into the previous-
data ring from the previous-data buffer. The elements of row (2 + K + %) are
loaded at the end of the computation of blk.dist(z,i + %) and the elements of
rows (¢ + K + £+ 1) through (2 + 2K — £ — 1) are loaded during the adjustment
time. At the end of the loading operation, the previous-data ring contains
elements of rows (¢ + A" — £) through (i + 2K — £ — 1) which are required for
the computation of blk.dist(i + K,i + K — ). The above process is illustrated
in Figure 5.8 in example B ((8 x 8) image, (4 x 1) reference block, (6 x 6) search
area and 4 processors). Here rows 3, 4, 5 of the previous frame are loaded during
the computation of blk.dist(0,—1), blk.dist(0,0), blk.dist(0,1) respectively, and
row 6 is loaded during the adjustment time. The processors do not compute

anything during the adjustment time. The adjustment time is for a duration of

(K —q—1)[N/P].

The elements of the K rows of the current frame are loaded from the current-
data buffer into the current-data ring in the following way. The elements of
rows (i + K) through (s + K + ¢ + 1) are loaded during the computation of
blk.dist(i,i+ %) and the elements of rows (i + ' + ¢ +2) through (1 4+2K —1)
are loaded during the adjustment time. At the end of the loading operation,
the current-data ring contains elements of rows (2 + K ) through (¢ 4+ 2K — 1)
which are required for the computation of displacement vectors of row (¢ + V).
In Figure 5.8 rows 4, 5, 6, and 7 of the current frame are loaded during the

computation of blk.dist(0,1). The current-data ring is shifted once during the
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Figure 5.8: Rows of the previous frame and current frame in the data rings of a
processor during the computation of blk.dist(0, —1), blk.dist(0,0), blk.dest(0,1),

and blk.dist(4,3) in example B



begin  {algorithm}
fori:=0to N —1 in multiples of K do begin
Initialize output ring
for Ai:=—% to £ do begin
form :=0to K do begin
forr =0 to [N/P] do begin
Y = Rouwty; A = Routa; C = Rourc; Rw = Rownwv;
if (m = 0) then Ry =Y, Y = 0; update displacement vector;
Shift previous-data ring, current-data ring, output ring;
if (Al = L)and(m > K — ¢ — 2))
then current-data ring reads from current-data buffer;
else current-data ring reads from R;,w;
if (m = K)
then previous-data ring reads from previous-data buffer;
else previous-data ring reads from R, 4;
fort :==0to A —1 do begin
Z:=Z4+|A-W]| (if flag = 0);
Shift-left A, C', Rw by 1;
end  {of t-loop}
end  {of r-loop}
end  {of m-loop}
end  {of Ai-loop}
fors:=0to K —q—2 do begin
forr:=0to [N/P] do begin
Previous-data ring reads from previous-data buffer;
Current-data ring reads from current-data buffer;
end  {of r-loop}
end  {of s-loop}
end  {of i-loop}
end  {algorithm}

Figure 5.9: Algorithm for computing block matching when the size of the image
is (N x N), the size of the block is (A x L), the size of the search area in the

previous frame is (K + ¢) X (K + ¢) and the number of processors is P



adjustment time so that block (K + 1) contains invalid data.

The time required to compute N/K displacement vectors of a row is Trow =
((g+1)(K +1)+ K — g~ 1)KaT.[N/P] and the total computation time T' =
(¢+ 2)KaT.N[N/P]. Let the optimal computation time be T,,;. Then T ~
%&%Tow. For K > ¢, T > T,,;. Figure 5.9 describes the algorithm for the case

when K > gq.

5.5 Conclusion

In this chapter we have described a semi-systolic architecture consisting of a
linear array of P processors to compute block matching when data from both
the current frame and previous frame are fed in line scan mode. This input
mode necessitates storing part of the data from current and previous frames as
well as intermediate results on-chip. The intermediate results need not have
been stored, had the data been fed in block scan mode. The on-chip data
storage consists of shift registers distributed among the P processors. While
shift registers are suitable for regular data flow algorithms like full-search block
matching, they are not suitable for algorithms with conditional data flow like

hierarchical block matching. RAMS are better suited for such applications.



Chapter 6

Conclusion

In this dissertation, we have studied the problem of developing efficient VLSI
architectures for some important real-time signal processing tasks, namely, one-
dimensional Discrete Hartley and Discrete Cosine Transforms, multi-dimensional
linear separable transforms, template matching and block matching. We chose
systolic architectures to compute these tasks since they satisty the real-time
signal processing architectural requirements of design simplicity and regularity,
high degree of concurrency, locality and regularity of communication, and bal-
ancing of computation with I/O. In the rest of the chapter we give a summary
of our contribution and discuss some of the related open problems and possible

improvements for each of these tasks.

Discrete Hartley and Discrete Cosine Transforms:

The Discrete Hartley transform (DHT) and the Discrete Cosine transform (DCT)

arc iml’)ortant transfornls ;.11 sl>eecll encoc151157 data COlljl)reSS;Oll7 sPectral a,na,lysis
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and other signal processing schemes. In Chapter 2 we described a systolic archi-
tecture for computing these transforms over N points, where N is factorizable
into mutually prime factors N; and N,. We mapped the one-dimensional trans-
form over N points into a two-dimensional transform over (N x N;) points, and
then realized them by two-dimensional systolic arrays. The resulting algorithm
consisted of computing the one-dimensional transform over columns and rows
of the two-dimensional data array, followed by some adjustments. All the units

in our architecture are completely pipelined, resulting in very high throughput.

The number of multipliers in our architecture for computing DCT is 3(f(Ny)+
f(N2)), where f(N) is the number of multipliers required to compute an N point
DFT on real data (f(IN) = N, for small N). It would be interesting to find a
decomposition for DCT which is like the Winograd-Fourier or the Winograd-

Hartley transform. In that case the number of multipliers would be reduced to

F(ND) + [(V2).

The algorithm that we developed here can be extended to the case when
N is factorizable into (say) d relatively prime factors. The transform over
N = NiN;...Ny points can then be mapped into a d-dimensional transform
over (Ny X Ny X...x Ny) points by choosing the input and output index mappings
appropriately. The resulting algorithm consists of computing the transform over
N; points along one (:H‘mension7 followed by computing the transform over N,
points along another dimension, and so on for all d dimensions. This algorithm
can be realized by an architecture consisting of one-dimensional transform com-
putation units and permutation units. The permutation unit is the bottleneck
of this architecture. It would be interesting to design an eflicient permutation

unit which is easily realizable in VLSIL.
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Multi-dimensional linear separable transforms:

Multi-dimensional transforms have important applications in the areas of spec-
trum analysis, signal reconstruction, speech processing, tomography, computer
vision and image processing. DFT, DHT and DCT are examples of such trans-
forms. We refer to them as DXT. In Chapter 3 we described a family of opti-
mal architectures with area-time trade-offs for computing (N X N x ... x N)
d-dimensional DXT. The optimality criteria is as defined by VLSI complex-
ity theory. Our architecture consists of one-dimensional DXT(/N) computation
units which compute DXT(NN) over one index, and permutation units which
order data so that in the next iteration DXT(N) can be computed over the
next index. The architecture has an area A = O(N9t??) and computation time
T = O(dN%‘“b) for all @ in the range 2logy b < a < £, where b = O(log M) is

the precision, M = N + 1.

The architecture that we developed for d-dimensional DXT can be used as
a building block for computing d-dimensional convolution. Recall that the con-
volution of two sequences z(n) and y(n) can be obtained by computing inverse-
DFT of the point-by-point product of DFT(z(rn)) and DFT(y(n)). Thus the
architecture for d-dimensional convolution consists of two d-dimensional DFT
units, one d-dimensional inverse-DFT unit, and a multiplier unit to compute
point-by-point product. The architecture for d-dimensional inverse-DFT is iden-
tical to that of d-dimensional DFT except for the value that is embedded in the

multipliers of the DFT(N) computation units.

In our architecture we have assumed that all computations involve fixed point

arithmetic with b = O(log M) bits of precision. The fixed point multipliers and
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the adders in the DXT(N) computation unit can be replaced by modulo-M
multipliers and adders as in [4] without increasing the asymptotic area and time

complexities.

There are a couple of issues regarding the actual implementation of our
architecture in VLSI. Though our architecture is optimal according to VLSI
complexity theory, it is not so from a VLSI designers’ point of view. For instance,
we use the mesh of trees network to compute one-dimensional DXT(N). Such
a network is costly when it comes to actually laying it out in silicon. One can
compromise by replacing the mesh of trees network by a systolic array. This
would result in a theoretically non-optimal but an easily realizable architecture.
Another design issue concerns the layout of the rotator and the subblock rotator
units. Though the layout of both these units is very regular, it contains long
wires. Though our circuit is synchronous, the delay through the long wires
can affect the performance. It may be necessary to incorporate drivers at the

expense of a larger delay and increased circuit complexity.

Template matching:

Template matching is a fundamental operation in many window based image
processing tasks such as image location, scene matching, edge detection, filtering.
In Chapter 4 we described a semi-systolic linear array architecture which handles
the high 1/0 bandwidth requirement of template matching by storing part of
the input on-chip in shift registers in each processor, and by circulating the shift
registers so that the processor array can compute on the same input multiple
times. Our architecture can be easily extended to compute real-time template

matching for any problem specification, since the number of processors is a
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function of the frame size, the template size and the internal clock rate. Our

architecture achieves optimal speed-up.

In our architecture the input is fed in the line-scan mode. Since template
matching is a window based operation and since the computations are now split
over K lines, the intermediate results have to stored. This is not the case if the
input is fed in the block scan mode. However for block scan mode, the entire

input image has to be stored in a frame memory.

The template values in our architecture are broadcast to all the processors.
If P is large then the delay in broadcasting may affect the performance of the
circuit. One way to get around this problem is to store the template values
in each processor and to clock them to the multiplier-accumulator. Another
alternative is to store a set of template values in a group of processors and

locally broadcast to the processors of that group.

Another important issue is what happens when the size of the processor
array is so large that the whole array does not fit into one chip. It is interesting
to investigate how the processors can be organized into multiple chips such that
the inter-chip communication overhead is minimum. Since the shift registers are
clocked at a rate I times slower than the inter-processor communication rate,
it may be necessary to house the shift registers and the communication units in

separate chips. This would be at the expense of an increase in the number of

1/O pins.
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Block matching:

Block matching is a motion compensation algorithm which is used to remove in-
terframe redundancy in some applications of digital image processing like video-
phone and teleconferencing. In Chapter 5 we described a semi-systolic linear
array architecture which handles the high I/O bandwidth requirement of block
matching by storing part of the input from the current frame and the previous
frame-memory in shift registers in each processor. This architecture is similar
to the architecture that we developed for template matching. Our architecture
is versatile since the number of processors is a function of the frame size, the
block size and the internal clock rate. The data flow in our architecture is very

regular.

As in the case of template matching, the input is fed in the line scan mode
and consequently the intermediate results have to be stored in the output ring.

The output ring is not necessary if the input is fed in the block scan mode.

We chose shift registers to store data on-chip because they are suitable for
regular data flow algorithms like full-search block matching. In hierarchical
block matching there is no regularity in the sequence in which data from the
previous and the current frames are accessed. For such applications RAMs are

better suited than shift registers.

Another interesting problem is how to partition the processor array when it
does not fit into a single chip. The processor array then spans over multiple chips.
The partitioning should be such that the inter-chip communication overhead is

minimum.
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