
ABSTRACT

Title of dissertation: EXTREME PRECIPITATION PROJECTIONS
IN A CHANGING CLIMATE

Huiling Hu
Doctor of Philosophy, 2019

Dissertation directed by: Professor Bilal M. Ayyub
Department of Civil and Environmental
Engineering

Global climate is changing at an alarming rate, with an increase in heat waves,

wildfires, extreme weather events, and rising sea levels, which could cost the United

States billions of dollars in lost labor, reduced crop yields, flooding, health problems,

and crumbling infrastructure. Reports by hundreds of US climate scientists from

13 federal agencies in the Fourth National Climate Assessment (2018) predict that

the US economy will shrink by as much as 10% by the end of the century if global

warming continues with current trends. Extreme precipitation, in particular, has led

to significant damage through flooding, bridge scouring, land-slides, etc.; therefore,

it is critical to develop accurate and reliable methods for future extreme precipitation

projection. This dissertation proposes new methods of improved projections of such

extremes by appropriately accounting for a changing climate.

First, this dissertation studies how to model extreme precipitation using Markov

Chains and dynamic optimization. By incorporating day-to-day serial dependency

and dynamic optimization, the model improves the accuracy of extreme precipita-



tion analysis significantly.

The dissertation also examines future projections of extreme precipitation.

State-of-the-art methods for future precipitation projections are based on down-

scaled Global Climate Models (GCMs), which are not always accurate for extreme

precipitation projection. This work studies accuracy when using downscaled GCMs

for extreme precipitation and designed new methods based on copulas to improve

the accuracy.

Finally, the above methods are applied to the analysis of future trends of

intensity-duration-frequency (IDF) curves, which, in turn, have extensive applica-

tions in designing drainage systems. To incorporate geographic influence on local

areas, a machine-learning-based solution is proposed and validated. The results

show that the gradient boosting tree can be used to accurately project future IDF

curves for short durations. It is also projected that short-duration intensity will

increase up to 23% for the selected representative stations in this century.

In summary, this dissertation systemically studies different aspects of improve-

ments and applications of extreme precipitation projection. By using mathematical

models, such as copula and Markov Chains as well as various machine-learning

models (i.e., gradient boosting tree), extreme precipitation projection can be made

significantly more reliable for use.
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Chapter 1: Introduction

1.1 Background

Global climate is changing at an alarming rate and scale. The recent release of the

Fourth National Climate Assessment (NCA) report (2018) [2] alerted the community

to the potential risks associated with climate change and the urgency to take action.

As part of its conclusions, the report projected that, over the coming century, the

increase of extreme climate events would continue and may become more severe.

A special report [3] by the Intergovernmental Panel on Climate Change (IPCC),

published in 2018, reached the same conclusion: human actives have caused global

warming of about 1.2◦C compared to the global temperatures prior to industrial-

ization. In addition, the IPCC report further concluded that the impact will climb

to 1.2◦C in the next 20 to 40 years. Among the factors that contribute to climate

change, human activity has dominated, especially since the 1960s. In particular,

excessive use of fossil fuels has resulted in a significant increase in greenhouse gas

(GHG) emissions, which, in turn, influences precipitation, temperature, etc.

Such an increase in global warming has led to a significant rise in the frequency

of extreme weather events and has impacted human property and life in a variety

of ways. Billions of dollars and thousands of lives have been lost due to climate

1



change directly or indirectly [4]. The IPCC also studied, in detail, the trend of

extreme climate events in a recent special report [5]. In particular, it showed that

extreme climate hazards have led to much more damage compared to the increases

in non-extreme climate events. In particular, numerous works show that extreme

precipitation is occurring at an increasing rate in recent decades [6, 7, 8, 9]. Such

increases of extreme precipitation events have caused serious impacts on societies

and the natural environment by means of flooding [10], bridge scouring [11], land-

sliding [12], the eradication of exotic species [13], etc.

1.2 Objectives and Goals

To be better prepared for future extreme precipitation, it is crucial to obtain accu-

rate and reliable future projections or, in other words, an answer to the following

question:

How can we obtain accurate future extreme precipitation projections and use them

to improve practical design?

The main objective of this dissertation is to improve methods related to future

projections of extreme precipitation. However, climate projection is a complicated

topic, involving both theoretical foundation and practical design. Therefore, this

dissertation takes a modular approach and studies three questions that can help to

find an answer to the above question, namely:

1. How can we accurately analyze extreme precipitation for a rich set of extreme

events?

2



2. How can we conduct future extreme precipitation projection reliably?

3. How can we apply extreme precipitation projection to improve practical design?

These questions are closely related to extreme precipitation projection since each

of them corresponds to a different stage toward an answer to the question on how

to obtain and apply future extreme precipitation projections to improve design in

practice. They can be viewed as stepping stones to the main objective of this

dissertation.

1.3 Methodology Review on Extreme Precipitation Research

As discussed in the previous section, there are primarily three questions to address.

In the following, a detailed discussed on the background of each question as well as

the approach taken in this dissertation are discussed.

1.3.1 Extreme Precipitation Analysis

To obtain an accurate projection of precipitation, it is important to first understand

how it behaves and propose models that can be used to analyze its behavior. From

a high-level view, there are two main goals in extreme precipitation analysis: 1)

Understand the historical trend of extreme precipitation and find anomalies; 2) Use

mathematical or empirical methods to summarize the pattern of extreme precipita-

tion. Some previous works have focused on analyzing precipitation in general but

not specifically for extreme precipitation [14, 15]. For example, Adler et al. [16] and

Silva et al. [17] performed time-history analysis of precipitation data on a monthly
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basis. Huffman et al. [18] performed tropical precipitation analysis using satellite

data. Barros [19] studied characteristics of precipitation that are induced by moun-

tainous factors. Various distributions are also studied to model precipitation for

different areas [20, 21, 22]. However, extreme precipitation has many features that

do not otherwise appear: extreme precipitation events are rare; thus, there are

scant observations regarding them, even for a long period of time. This means that

commonly used analysis methods for precipitation may not be suitable for extreme

precipitation.

More recently, many researchers have started to focus on an improved analysis

of extreme precipitation. For example, many have focused on trend analysis for

maximum extreme precipitation events in different areas [23, 24, 25, 26]. Others

proposed different models for extreme precipitation [27, 28, 29]. Min et al. [30]

analyzed extreme precipitation of a Northern Hemisphere land area with a focus

on its correlation with human activities in recent decades. O’Gorman and Schnei-

der [31] focused on the physical basis of climate models for extreme precipitation

analysis. Furthermore, Pfahl et al. [32] studied the regional pattern of extreme

precipitation considering both thermodynamics and dynamics factors. Easterling

et al. [6] analyzed total rainfall distribution and its tail distribution. Libertino et

al. [33] proposed a robust methodology for extreme rainfall estimation with regional-

scale analysis. They, again, confirmed that both precipitation and temperature are

becoming more extreme due to climate change.

The most popular approach in extreme precipitation analysis is to use general-

ized extreme value (GEV) analysis for maximum precipitation analysis. More details
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of GEV analysis are discussed in Chapter 2. For example, Bertoldo et al. [34] per-

formed GEV analysis on four areas in Italy with different geographic features using

30 years of rain gage data. Cheng et al. [35] performed non-stationary extreme value

analysis and return periods using Bayesian inference. Sveinsson et al. [36] studied

maximum precipitation distribution assuming that the precipitation distribution is

stationary. More recent works improved the analysis by introducing non-stationarity

to reflect the effects of climate change [37, 35, 38]. In particular, Jalbert et al. [39]

proposed a spatio-temporal model for extreme precipitation based on GEV. Other

works focused on performing GEV analysis in various regions [40, 41, 42]. In ad-

dition to maximum precipitation, other extreme events have also been proposed,

For example, by the Expert Team on Climate Change Detection, Monitoring, and

Indices (ETCCDMI).

1.3.2 Extreme Precipitation Projection

Due to the effect of climate change, precipitation is highly non-stationary. This

means that the analytical results of historical extreme precipitation may not reflect

future extreme precipitation. It is an important and complicated task to make

projections of future extreme precipitation. Due to complex climate dynamics as

well as the involvement of human activities, future trends of climate change can

hardly be directly described by any mathematical model. On the other hand, an

accurate projection of future climate, especially future extreme climate, is crucial

to mitigate its future risk. To this end, the Coupled Model Intercomparison Project
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(CMIP) was initiated to incorporate climate change in the design of GCMs for the

next century.

GCMs are climate models that incorporate climate dynamics as well as various

emission levels into the analysis. Numerous GCMs have been proposed and studied

as part of CMIP [43, 44, 45]. These GCMs provide results for four Representa-

tive Concentration Pathways (RCPs), each of which represents one possible GHG

emission level in the future. GCM results significantly improve state-of-the-art of

climate science. However, there are still important problems that remain unsolved:

1) GCM results provide coarse-grained climate trend at the state level only but not

an accuracy projection that requires a fine-grained trend; 2) GCM results present

the average climate trend in a large area; therefore, extreme events are less frequent

than in reality.

To solve these issues, researchers have been focused on designing different

downscaling methods for GCM results. Downscaling from a high-level description

is a method that maps global climate trend to a climate trend that is specific to a

local area. Downscaling of a GCM model can be achieved roughly by two different

methods: 1) dynamic downscaling [46, 47], which refers to the use of high-resolution

regional simulations to dynamically extrapolate the effects of large-scale climate

processes to a region; 2) statistical downscaling [48, 47], which refers to the use of

statistical tools to understand the relationship from global model to a region and

apply such transformation to a local area. Due to the stringent requirements of

data and computational resources in dynamic downscaling, statistical downscaling

has become a more practical approach. Popular statistical downscaling methods in-
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clude NASAs Earth Exchange Global Daily Downscaled Projections (NEX-GDDP),

Localized Constructed Analogs (LOCA), and Multivariate Adaptive Constructed

Analogs (MACA) [49, 50, 51].

1.3.3 Extreme Precipitation Application

Applying the results of extreme precipitation projection to design standards is im-

portant, as it can directly impact practice design and reduce the future risks asso-

ciated with extreme precipitation. One of the most widely used tools in extreme

precipitation is the intensity-duration-frequency (IDF) curve. Most of the current

risk management solutions for water infrastructures and drainage systems are de-

signed in accordance to the level of service (LoS) as well as the extremity of rainfall,

often described by IDF curves [52]. As the name suggests, an IDF curve shows

probability in terms of the return period, that a rainfall with an intensity at least i

inches per hour occurs for a duration of t minutes. IDF curves are one of the most

popular tools to quantify the extremity of rainfall in a region. They are particularly

good at representing extreme rainfall for short durations, which is highly relevant

in determining the strength of many areas of drainage systems. Due to this, IDF

curves have become a standard tool in the design of drainage systems.

Most drainage systems are designed with a long service life-cycle of many

decades; however, not all of the designs take into consideration the effects of cli-

mate change [53]. Most design standards used in practice for future infrastructure

are based on IDF curves computed from historical data, which, essentially, assumes
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that climate is stationary. That is, the historical statistics on extreme rainfall re-

main unchanged for future use. However, such a stationary assumption is becoming

more and more ungrounded as human interference in the climate increases: a wors-

ening climate causes more co-occurrences of multiple extreme rainfalls, as well as

cascading extreme events, posing an unprecedented risk to existing and future water

infrastructures, which can then cause social and economic catastrophes. Therefore,

incorporating the instability of climate into the design of IDF curves is both neces-

sary and a popular ongoing work.

1.4 Gaps in Existing Works

Extreme precipitation projection is important and involves research on modeling

extreme precipitation, how to perform projection accurately, and how to apply the

projection results to real design. Prior works have advanced state-of-the-art solu-

tions to these aspects, which have greatly improved engineering practices and risk

reduction in regard to extreme precipitation. However, there are still challenges and

gaps in the existing work, prohibiting further improvements. These research gaps

as well as solutions to solve them are discussed in detail below.

1.4.1 Gaps in Modeling Extreme Precipitation

Most existing works that study extreme precipitation analysis are based on the

GEV method [34, 37, 35, 38]. In GEV analysis, daily precipitations are treated as

independent and identically distributed random variables. The maximum value of a
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set of these random variables can then be computed precisely if the daily distribution

is known. When the maximum is taken over a large number of random variables,

the distribution converges to a specific form regardless of the daily precipitation

distribution. Such an approach is effective on computing maximum precipitation of

a certain duration; however, it may not be as effective in some settings:

1. This method can analyze the maximum precipitation over any length of du-

ration but not other, more complicated events [23, 24, 25]. This is mainly due

to the limitation in GEV analysis, which can only analyze the maximum of a

set of random variables. However, since precipitation is a complex stochastic

process, maximum precipitation may not always be adequate to describe the

extremity of precipitation. For example, GEV cannot effectively study the

number of continuous rainy days

2. The use of GEV analysis also requires that precipitations from different days

follow the same distribution and are independent of each other [34, 35, 40].

This requirement cannot be satisfied in practice. Indeed, it is long observed

and studied that daily precipitation is dependent on each other [54, 55, 56, 57,

58]; for example, a heavy rainy day is more likely to occur after another heavy

rain day. Although this fact is recognized in some papers, adequate models

are unavailable to take this fact into consideration. Some techniques can be

used to avoid independence assumption based on sampling, but many works

have not applied these methods

3. Another challenge in using GEV analysis is the lack of data for formula fitting.
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There are several factors contributing to the lack of data. First, in GEV

analysis, only the maximum value of extreme precipitation is used, and all

other values are discarded since they are not related to the maximum value

distribution. For example, when extreme precipitation is computed annually,

one data point can be obtained from each station per year. The underlying

cause stems from its fundamental methodology, i.e., these models directly

consider the distribution of extreme events Second, GEV analysis is accurate

when the number of random variables to be taken is large, due to the nature of

its asymptotic analysis. Therefore, even more data is required to ensure that

the GEV analysis is applicable As a result, the applicability of GEV analysis is

rather limited to those cases with large amounts of data for the same location,

which is often difficult to meet.

1.4.2 Gaps in Extreme Precipitation Projection

Due to the high variability of future climate, most existing works for future extreme

precipitation projection are based on GCM models, which are, in turn, constructed

based on different RCPs. Although these GCMs are accurate on a global scale,

the resolution is not sufficient to study a local region. There are many different

approaches that can increase the resolution of GCM simulation results [59, 60, 61,

62, 63]. Although these works are based on downscaled GCMs and simulation can be

accurate for the expected or average rainfall distribution, they are far from perfect

when it comes to extreme precipitation. First, no systematic evaluation has been
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conducted to validate the accuracy of downscaled GCMs when used for extreme

precipitation; therefore, it is not clear how reliable downscaled GCMs can be for

extreme precipitation or what the applicability is in terms of the location. More

importantly, there are some issues in the design of downscaled GCMs that affect the

accuracy when used for extreme precipitation projection.

First, most works are based on repeated averaging, which significantly reduces

the number of extreme events in the output. Such an effect has also been studied

and verified by prior works [64, 65], which show that downscaling methods can sig-

nificantly affect extreme precipitation analysis. In more detail, one popular method

that is used by many works related to downscaling is called constructed analog

(CA) [66, 67, 50, 51]. In this method, for each day and location, a set of historical

days are selected that can represent different precipitation cases. A set of weights

are also trained, which minimize the error between actual local precipitation and

the weighted average of precipitation using this set of weights. CA methods as-

sume that this set of weight values do not change from past to future; therefore,

the same set can be used for future downscaling. More precisely, future downscaled

precipitation is computed as the weighted average of a set of global precipitation

values. This method, according to previous works, is able to provide high accuracy

for non-extreme precipitation. However, when it comes to extreme precipitation, the

accuracy is not as high. The biggest difference is that when applying the weighted

average to computing the extreme precipitation, the distribution is reshaped by the

average: the expectation is unchanged, but the variance is much lower. As a result,

downscaled precipitation values are much less extreme

11



Furthermore, in many existing downscaling methods, the results of different

days are computed independently, which reduces the dependency between differ-

ent days for extreme precipitation. However, as demonstrated in Chapter 2, such

day-to-day dependency in daily precipitation is important, especially when studying

climate events that span a duration of time; for example, a number of continuous

rainfall days. For the CA method and others, each day of downscaling is computed

without considering day-to-day dependency. However, such dependency is impor-

tant in many extreme events that involve multiple days of precipitation. Due to this,

there is a significant gap between existing downscaling methods and the requirement

from useful extreme precipitation applications

1.4.3 Gaps in Using Extreme Precipitation Projection in Practical

Design

Applying extreme precipitation analysis and projection for engineering design is

a complex task, involving both a practical need for simplicity as well as accuracy.

Existing frameworks and methods for this topic requires highly complicated analysis.

On the other hand, those that are used in practice tend to be oversimplified. For

example, flooding is one major cause of damage by extreme precipitation [68, 69,

70, 71]. Currently, the best practice that applies extreme precipitation analysis

and projection for drainage systems is based on the IDF chart [72, 73, 74]. Both

the American Society of Civil Engineers (ASCE) 24 standard [75] and the Federal

Highway Administration [76] discussed the basics of using the IDF chart for flood
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Figure 1.1: Outline of this dissertation.

events analysis. For each time period (for example, from 30 minutes to 6 hours), an

IDF chart shows the maximum precipitation that can happen in this period. Various

levels of confidence, i.e., different return periods, can be illustrated as different curves

in the IDF chart.

Currently, one of the best practices is to use downscaled GCM simulations to

compute IDF curves for future trends, but it also has some issues, as most existing

GCM simulations provide rainfall data on a daily basis only. Almost all downscaling

methods improve the resolution on the spatial aspect but not on the temporal aspect;

therefore, it is difficult to use this method to obtain IDF curves on small hour-long

or even sub-hour intervals, which is needed for many applications based on IDF for

drainage design.

In summary, the root of the issue is that existing IDF projection methods are

limited in capability because they cannot be used to project IDF relation for a short

duration for all downscaling GCM simulations. It is a meaningful and important task

to extend IDF curve projection methods to short durations using any downscaled

GCM models desired.
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1.5 Outline and Organization

The outline of this dissertation is summarized in Figure 1.1 and presented in three

chapters. Some overview of each research outcome is introduce below, first. In

Chapter 2, a mathematical model based on the Markov Chain is proposed to im-

prove extreme precipitation analysis. It is observed that many existing analytical

works assume that the precipitation for consecutive time periods are independently

distributed, which may not be true for short duration. To incorporate serial depen-

dency in the analytical model, a Markov Chain is used to model the precipitation in

each day. Dynamic optimization is further used to find concrete analytical results

of the model.

In Chapter 3, the above result is taken one step further to future projection.

Although downscaling incorporates geographic details instability for future projec-

tions, some downscaling methods are not optimal for producing accurate extreme

projections. To enhance existing downscaling GCM results for better extreme pro-

jection, this work initiated a systematic study on using downscaled GCM for future

extreme precipitation. It is found that existing downscaled GCM results can produce

erroneous extreme precipitation results, and the main reason is the lack of depen-

dency incorporation. A method based on copula was further designed to integrate

dependency back to the downscaled GCM results for better projection results.

In Chapter 4, the projection methods, integrated with machine-learning tech-

niques, is applied for future IDF curve projection, particularly for short durations.

It is observed that many downscaling-based IDF curve projection solutions do not
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work well when the duration are shorter than six hours due to lack of data and

invalidity of assumptions. Temporal downscaling is used based on machine-learning

algorithms to produce accurate projections of IDF curves for short durations. Fi-

nally, in Chapter 5, the above efforts are summarized with a discussion on future

directions.

1.6 Implications

It is urgent to update existing design standards to reflect a changing climate. When

it comes to extreme precipitation, a few practical efforts have been done, partially

due to the unsatisfactory performance of future extreme projection. For example,

New York state is beginning to work on updating IDF incorporating the effect of

climate change, while even more effort has been spent in Canada. The result of this

dissertation can potentially improve existing projections of extreme precipitation,

particularly for IDF curves. As a result, they can be incorporated in future design

standards to accurately reflect climate change.
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Chapter 2: Extreme Precipitation Analysis: Serial Dependency and

Markov Chains

2.1 Overview

An accurate extreme precipitation projection can be built on deep understanding

and modeling of extreme precipitation process only. This chapter introduces a funda-

mental framework for improved extreme precipitation analysis of an extensive num-

ber of extreme precipitation events. To improve the accuracy and applicability of

extreme precipitation analysis, the new approach uses a model with non-stationarity

and serial-dependency. From a high-level view, non-stationarity is incorporated into

the analysis to reflect potential changes in the trend of extreme climate; serial de-

pendency makes the model much more realistic. The proposed model is verified

by two case studies on different areas and extreme precipitation events in the US.

The content of this chapter is based on the materials from a paper published in

the ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A:

Civil Engineering [77].

This study aims to provide enhanced models and analysis for extreme precipi-

tation events with consideration of non-stationarity and serial dependency between
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days. In detail, new methods are proposed to overcome the challenges discussed

earlier and can be used to analyze and predict various extreme precipitation events

with high accuracy. These new methods are based on characteristics of non-extreme

precipitation, which have been well studied in the recent 20 years. This study also

examines and incorporates serial dependency to further improve the accuracy. Fi-

nally, the effectiveness of the methods is verified using 10 decades of data in the

Washington, DC metropolitan area. Predictions are also given for some selected

years in the future till 2100.

Figure 2.1 shows the flowchart to analyze and predict extreme precipitation

events in this chapter. There are three main approaches considered with different

stationarity and dependency assumptions. The non-stationary model with serial

dependency has the highest complexity but also highest accuracy, which is the main

focus of this work. In the next section, more details of some background knowledge

is introduced. Details of the proposed methods are provided after summarizing such

related works, followed by two case studies to examine the accuracy of the proposed

model.

2.2 Background and Literature Review

Extreme events are commonly characterized using generalized extreme value analysis

(e.g., [78]). The goal of extreme value analysis is to find the distribution of the
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Figure 2.1: Flowchart of methods to analyze and predict extreme precipitation
events.

maximum value of a set of random variables, namely

Mn = max
1≤i≤n

{Xi}. (2.1)

In particular, it considers n independent and identically distributed (IID) random

variables that are all sampled from the same distribution with cumulative density

function (CDF) as F (·). The CDF of Mn depends on the CDF of Xi according to

18



the following:

Pr (Mn ≤ x) = Pr

(
max
1≤i≤n

{Xi} ≤ x

)
=
∏

1≤i≤n

Pr (Xi ≤ x) = (F (x))n
(2.2)

According to Fisher-Tippett-Gnedenko theorem [79], when n goes to infinity, the

CDF of Mn always converge to the following form regardless of the CDF of Xi.

lim
n→+∞

Pr (Mn ≤ x) = F (x;µ, σ, ξ)

= exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ} (2.3)

where µ is location parameter; σ is scale parameter; and ξ is shape parameter.

GEV provides a general approach to find the asymptotical distribution of a set

of IID random variables. There are three families of GEV distributions that are

commonly used:

1. Gumbel distribution, where the CDF is

F (x) = exp
{
−e[−(x−µ)/σ]

}
(2.4)

2. Frechet distribution, where the CDF is

F (x) = exp
{
−(1 + ξ(x− µ)/σ)−1/ξ

}
(2.5)
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3. Reversed Weibull distribution, where the CDF is

F (x) = exp
{
−(−1− ξ(x− µ)/σ)1/ξ

}
(2.6)

The preceding GEV analysis can be improved to be more realistic by replacing GEV

parameters with functions that vary according to time, namely µ, σ and ξ. Now the

cumulative distribution function of GEV is also parameterized by time, shown as

follows:

F (x;µ(t), σ(t), ξ(t)) = exp

{
−
[
1 + ξ(t)

(
x− µ(t)

σ(t)

)]−1/ξ(t)}
(2.7)

Previous works have explored this approach assuming µ(t), σ(t) as polynomials of t,

and that ξ(t) is a constant. Villafuerte and Matsumoto studied combining El Nino

Southern Oscillation Index (ENSOI) with GEV parameters [80]. Some other related

works used GEV with parameters changing linearly with time [81, 82, 35, 83]. Katz

et al. instead used sinusoidal and log-sinusoidal functions for GEV parameters [84].

Panagoulia et al. used GEV parameters as third degree polynomials in mountainous

area [85].

Feng et al. [40] used GEV models to study daily and weekly maximum pre-

cipitation from 1951 to 2000. Four different locations in China were studied. Kout-

soyiannis [86] compared the effectiveness of different GEV models to analyze extreme

precipitation in Europe and the United States. A comparison is also provided to dis-

cuss the accuracy of different fitting algorithms. Bertoldo et al. (2015) [34] studied
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the difference when applying GEV to different geographic locations. In particular,

mountains, hills, and flatlands area are studied. The study shows that all three

parameters depend a lot on the type of geographic locations.

2.3 Methodology

This section discusses methods using the stationary model without serial dependency

and newly proposed methods based on non-stationary models for the cases with

or without serial dependency. These methods are able to analyze three extreme

precipitation events in a period of n days. Extreme daily precipitation events in a

year can be obtained by setting n as the number of days in a year, that is, 365 (or

366 for leap years). The analysis can also be used for other periods: if n were set

as 30, the result would be extreme daily precipitation in a month; similarly for a

season.

2.3.1 Extreme Precipitation Events

The main focus of this work is to analyze probabilistic behaviors of extreme daily

precipitation for periods with different numbers of days. Many previous works only

focused on analyzing maximum daily precipitation in a year. However, extreme

precipitation is a complex stochastic process, which requires more than one statistic

to summarize its impact. In this work, two additional extreme precipitation events

that are of interest to engineers are also studied. They are summarized as follows:

1. Maximum daily precipitation in a year. It is denoted using the random variable
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M . More generally, Mn is also used to represent maximum daily precipitation

in a period of n days.

2. Number of days with daily precipitation exceeding k mm in a year. It is de-

noted using the random variable Ek. More generally, Ek,n is used to represent

number of days with daily precipitation exceeding k mm in a period of n days.

3. Maximum number of consecutive days with daily precipitation exceeding k mm

in a year. It is denoted using random variable Ck. More generally, Ck,n is used

to represent maximum number of consecutive days with daily precipitation

exceeding k mm in a period of n days.

2.3.2 Models for Daily Precipitation

Daily precipitation can be viewed as a sequence of random variables each represent-

ing the precipitation of one day, namely X1, ..., Xi, ..., Xn. In order to analyze these

random variables, various assumptions can be made to model the relationship among

them. In general, the following two key assumptions determine the applicability and

complexity of a model.

• Stationarity assumption. This assumption specifies whether the precipita-

tion distributions in different years are the same or not. For example, if climate

change is considered, a non-stationary assumption is justifiable to model the

trending change of precipitation.

• Independence assumption. This assumption specifies whether daily pre-
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cipitation random variables are independent of each other or not. For example,

it is more likely to have rain after a rainy day than after a dry day, which means

that the precipitation distribution of one day depends on the precipitation of

the previous days. Such dependency between different days is referred to as

serial dependency in the rest of the work.

In this work, three models with different combinations of assumptions are studied:

1. Stationary model without serial dependency. Daily precipitation distribution

is assumed to be stationary between different years, and precipitation on dif-

ferent days is independent.

2. Non-stationary model without serial dependency. Daily precipitation distribu-

tion is assumed to be non-stationary between different years, and precipitation

on different days is independent.

3. Non-stationary model with serial dependency. Daily precipitation distribution

is assumed to be non-stationary between different years, and precipitation of

different days can be dependent on each other.

This work focuses on non-stationary models with or without serial dependency. A

stationary model without serial dependency is used as a baseline. The choice of

an appropriate model is a tradeoff between complexity and accuracy, requiring a

case-by-case discussion. A non-stationary model with serial dependency is able to

capture the interdependency of daily precipitation of different days, but the under-

lying stochastic model is complex to analyze. Models that do not account for serial
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dependency, on the other hand, are easier to analyze but the results may not be

as accurate. In the case study, the accuracy of the two non-stationary models is

compared and discussed.

2.3.3 Stationary Model without Serial Dependency

As mentioned earlier, GEV is a popular method used in a stationary model without

serial dependency. However, as also pointed out by Katz [54] and Kharin et al. [87],

GEV is an asymptotical analysis, and is only accurate when n approaches +∞.

Therefore, when used in extreme precipitation analysis, it is only applicable when

computing the maximum of a long period. Further, GEV inherently works to find

the distribution of maximum values, and can only analyze extreme precipitation

events that are expressed as the maximum of a set of IID random variables. Due

to the above limitation, empirical extreme analysis [42, 88, 89] is adopted in the

stationary model, so that all three extreme precipitation random variables, i.e., Mn,

Ek,n, and Ck,n can be analyzed. When data from multiple stations are available, the

empirical analysis of extreme precipitation events is accomplished in two steps:

1. Compute the extreme precipitation events for each station and each year.

2. Take the average over all stations for each year.

When empirical analysis is used as a baseline for future extreme precipitation events,

a stationary assumption is required. Although simple, such an assumption hardly

models the reality accurately, especially over a long period of time. The discrepancy

between this assumption and reality becomes particularly significant given recent
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trends with climate-change attribution. Further, directly analyzing historical data

may not be possible if the extreme events to study are rare. For example, with a

20-year historic record, it may not be statistically significant to analyze an event

with a return period of 50 years.

2.3.4 Non-stationary Model without Serial Dependency

In this section, a general method is discussed to compute various extreme precip-

itation events (Mn, Ek,n, and Ck,n) with climate change considered, assuming no

serial dependency among days. The proposed method produces the distribution

of extreme events, taking the distribution of the daily precipitation as input. The

analysis is mainly based on combinatorial techniques and dynamic optimization [90].

One advantage of this method is that the derivation of the distribution of extreme

events only depends on the CDF of non-extreme daily precipitation, which is gen-

erally available.

The analysis in this section can also be used in the inverse to compute design

values of Mn, Ek,n, and Ck,n, with exceedance probabilities of 0.1, 0.02, 0.01, 0.002,

0.001, etc., which correspond to periods of 10, 50, 100, 500, and 1,000 years.

2.3.4.1 Probabilistic Distribution of Daily Precipitation

It is assumed that the precipitation distribution within each year does not change;

therefore, F (k) is used to denote the CDF of daily precipitation, that is, F (k) =

Pr (X ≤ k). Further, since no serial dependency is assumed, daily precipitation for

each day can be viewed as independent. In this case, extreme precipitation analysis
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is based on a list of IID random variables for daily precipitation. Existing prob-

abilistic analysis is only applied on days with precipitation, ignoring days with no

precipitation [91, 20]. However, the analysis here requires a CDF for daily precipi-

tation, including days with rain and days without any rain. In order to achieve this,

a transformation is performed. If the CDF of rainy days is denoted as F ∗(), and

assuming the probability that one day is rainy is p, then F (k) can be calculated as

F (k) = p× F ∗(k) + (1− p) (2.8)

Assessment and prediction require obtaining the CDF for rainy days using, for

example, gamma distribution, and the probability of having rain (See Appendix A

for more details). The distribution of F (k) can then be computed using Eq. 2.8.

2.3.4.2 Computation of Extreme Precipitation Events

Distribution of Mn. The computation of Mn basically follows the definition.

When the CDF is known, no asymptotical approximation is necessary, and the

CDF of the maximum is:

Pr (Mn ≤ k) = (F (k))n (2.9)

Distribution of Ek,n. The computation of Ek,n is slightly more complicated. The

n-day random process for daily precipitation can be viewed as a sequence of Bernoulli

trials, where the i-th Bernoulli trial determines if the i-th days has precipitation
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greater than k mm or not. Since all Bernoulli trials are identical, Ik,i is introduced

to indicate if the i-th day has precipitation greater than k mm. It can be observed

that
∑n

i=1 Ik,i ∼ Bin(n, 1− F (k)), where Bin() means binomial distribution. Then

the following can be obtained:

Pr (Ek,n ≤ t) = Pr

(
n∑
i=1

Ik,i ≤ t

)

=
t∑
i=0

(
n

i

)
(1− F (k))i(F (k))n−i

(2.10)

Distribution of Ck,n. While serial dependency is not considered, the previous

calculation of Mn and Ek,n are fairly straightforward. However, the analysis of Ck,n

in the following case is much more complex. Indeed, to obtain the exact distribution

of Ck,n, recursive relationships with dynamic optimization is necessary as detailed

later. Mathematically speaking,

Ck,n = max {t|∃j, s.t. 1 ≤ j < n− t and Xi ≥ k for all j < i ≤ j + t}. (2.11)

In order to determine the distribution of consecutive extreme events, the law of

total probability (see for example, [78]) is used to first divide the problem into

small disjoint problems, namely “Ck,n = t and Ek,n = i.” Now each of the simpler
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problems can be solved in turn. Mathematically speaking

Pr
(
Ck
n = t

)
=

n∑
i=t

Pr (Ck,n = t and Ek,n = i)

=
n∑
i=t

#(Ck,n = t and Ek,n = i)(F (k))n−i(1− F (k))i

(2.12)

In the preceding equation, # represents “number of”. Therefore, “#(Ck,n = t and Ek,n =

i)” denotes number of all possible cases that satisfy “Ck,n = t and Ek,n = i.” The

CDF of this event can then be computed in a straightforward manner.

Computing #(Ck,n = t and Ek,n = i) directly is still complex. Therefore, it

is further partitioned into smaller cases, depending on how many consecutive days

from the last day that have precipitation of at least k mm. In more detail, N [n, t, r, i]

is used to denote the number of cases such that Ck,n = t and Ek,n = i, and that

from the last day, there are consecutive r days, each with precipitation of at least k

mm. These statements lead to the following:

#(Ck,n = t and Ek,n = i) =
i∑

j=0

N [n, t, j, i] (2.13)

Now, N [n, t, r, i] can be computed recursively using dynamic optimization with the
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following recursive relationship

N [n, t, r, i] =



0 if t > i or r > t∑t
j=0N [n− 1, t, j, i] if r = 0

N [n− 1, t, r − 1, i− 1] if t > r > 0

N [n− 1, t, r − 1, i− 1] +N [n− 1, t− 1, r − 1, i− 1] if t = r > 0

(2.14)

with the basic cases as follows:

N [1, t, r, i] =


1 if t = 1, r = 1, i = 1

1 if t = 0, r = 0, i = 0

0 otherwise

(2.15)

2.3.5 Non-stationary Model with Serial Dependency

The method introduced earlier assumes that there is no serial dependency; however,

as shown in the case study, there is strong evidence that serial dependency exists

commonly for precipitation. The method introduced herein is able to incorporate

serial dependency into the analysis.

The main idea is based on a hybrid methodology in which random variables

for daily precipitation are decomposed into two separate events and later combined.

The dependency between different days is limited in some specific manner to be

introduced in a subsequent section. As a result, the analysis is not overly complex

but yields more accurate outcomes compared to ones introduced in the previous

29



sections. Similar to the previous section, the analysis in this section can also be

used to compute the value of Mn, Ek,n, and Ck,n for return periods of 10, 50, 100,

500, and 1,000 years.

2.3.5.1 Hybrid Model Based on Markov Chain

Because there is a serial dependency, each day can follow a different precipitation

distribution. Therefore, all days are numbered starting from 1 and Xi is used to

denote the amount of precipitation on the i-th day. Xi is a hybrid random variable,

which consists of two components, namely Ji and Yi: Ji is a random variable indi-

cator that indicates if the i-th day is a wet day (with precipitation) or dry day (no

precipitation). Mathematically speaking,

Ji =


1 if Xi > 0

0 if Xi = 0

(2.16)

Yi represents the amount of precipitation on the i-th day conditioning on the fact

that the i-th day is rainy, that is

Pr (Yi = k) = Pr (Xi = k|Ji = 1) (2.17)

The distribution of the precipitation on the i-th day, namely Xi, can then be com-

puted easily with two cases according to the definition of conditional probabilities
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as follows:

Pr (Xi = k) =


Pr (Yi = k) Pr (Ji = 1) if k > 0

Pr (Ji = 0) if k = 0

(2.18)

Because Yi and Ji fully describe the daily precipitation, they can be used to calculate

the extreme behavior of daily precipitation. Further, both random variables are

simpler than Xi. Nevertheless, there are still additional challenges in evaluating the

hybrid model for extreme events, which is the focus of the subsequent subsections.

The decomposition discussed earlier does not introduce serial dependency into

the model. In order to capture the serial dependency, a Markovian assumption

is added (See Appendix B). Further, instead of directly assuming that Xi’s are

dependent on each other, it is assumed that there are serial dependencies for Yi’s

and Ji’s, respectively.

As mentioned previously, Ji is not independent over different days: raining

after a wet day is more likely to happen than raining after a dry day. One common

way to model such dependency is to use a Markov chain. In general, the probability

that a particular day is a rainy day can be modeled as a function of all previous

days, that is, Pr (Ji|Ji−1, ..., J1, J0), where J0 is the initial state. A m-order Markov

chain assumes that such dependency stops after backtracking m days, that is

Pr (Ji|Ji−1, ..., J1, J0) = Pr (Ji|Ji−1, ..., Ji−m) (2.19)

A reasonable assumption for precipitation modeling is to use Ji as a first order
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(b) Second order Markov model for Ji.

Figure 2.2: Markov models for Ji.

Markov chain (m = 1) for daily precipitation.

Graphic depictions of the first and second Markov chains for Ji are included in

Figure 2.2. To simplify the notation, p10 is used to denote the transition probabil-

ity Pr (Ji = 0|Ji−1 = 1), and similarly for all other transition probabilities. Similar

notations are also used to denote second order transition probabilities: Using p100

to denote the probability Pr (Ji = 0|Ji−1 = 0, Ji−2 = 1). Note that not all transi-

tion probabilities are dependent. In particular, the first order Markov chain in

Figure 2.2a can be described using only p01 and p11, since p00 = 1 − p01 and that

p10 = 1− p11. The second order Markov chain in Figure 2.2b can be described fully

using only p110, p100, p010, and p000, since, for example, p110 = 1− p111.

Some Markovian behavior can also be observed from Yi. For example, it is

more likely to have heavier precipitation if the previous day has a lot of precipitation.

However, since the value of Yi is not binary, such dependency can be complex. In

this work, a restrictive assumption is made: the conditional precipitation of the i-th

day depends on Ji−1, ..., J0. This means the amount of precipitation only depends

on if previous days are wet of dry.
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In detail, the conditional probability of interests is Pr (Yi|Ji−1, ..., J0). Apply-

ing the similar idea from Ji to here, the assumption can be expressed as: Yi only

depends on previous m days, i.e.

Pr (Yi|Ji−1, ..., J0) = Pr (Yi|Ji−1, ..., Ji−m) (2.20)

Note that Yi does not exactly corresponds to a Markov chain because the event to

study is Yi while it is conditioned on Ji, which is not of the same type. Following

notations are introduced for simplification:

F0(k) = Pr (Yi ≤ k|Ji−1 = 0) (2.21)

and

F1(k) = Pr (Yi ≤ k|Ji−1 = 1) (2.22)

for first order relations.

Note that Katz [54] also modeled daily precipitation as a Markov chain. How-

ever, it was only used to obtain the asymptotical behavior of maximum precipita-

tion. In this work, an enhanced distribution is computed using dynamic optimiza-

tion without asymptotical approximation. Further, distributions of three different

extreme precipitation events are studied.
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2.3.5.2 Computation of Extreme Precipitation Events

In the following paragraphs, three extreme precipitation events are analyzed based

on the model introduced previously. Since there is a serial dependency, simple com-

binatorial methods do not work anymore, because the analysis needs to incorporate

the precipitation in previous days.

Distribution of Mn. Since Markov process relies on the status of the initial

state, the original problem Pr (Mn ≤ k) can be decomposed into two sub-problems

Pr (Mn ≤ k|J0 = 0) and Pr (Mn ≤ k|J0 = 1) . Assuming that the initial state has

probability of p to be a dry day, the final result can be computed using the law of

total probability as follows:

Pr (Mn ≤ k) = (1− p)× Pr (Mn ≤ k|J0 = 0) + p× Pr (Mn ≤ k|J0 = 1) (2.23)

Because the computations of the two terms are similar, the focus herein is on com-

puting Pr (Mn ≤ k|J0 = 0), without loss of generality. To facilitate the computation,

some new random variables are introduced: Wn and Dn, which indicate number of

wet-wet days (i.e., a wet day followed by another wet day) and number of dry-wet

days (i.e., a dry day followed by a wet day) across the period to study (n days).
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According to law of total probability, it can be obtained that

Pr (Mn ≤ k|J0 = 0)

=
n∑
i=0

n∑
j=0

Pr (Wn = i and Dn = j|J0 = 0)× Pr (Mn ≤ k|Wn = i,Dn = j, J0 = 0)

(2.24)

Note that the distribution of daily precipitation does not depend on the order of the

days. It only depends on if the previous days are rainy days or dry days. For any

different day i and day j, with precipitation ki and kj, it is true that

Pr (Yi = ki|Ji−1) Pr (Yj = kj|Jj−1)

= Pr (Yi = ki|Ji−1 and Yj = kj|Jj−1)
(2.25)

Therefore, the second term can be computed as follows:

Pr (Mn ≤ k|Wn = i,Dn = j, J0 = b)

= Pr (X1 ≤ k, ..., Xn ≤ k|Wn = i,Dn = j, J0 = b)

= Pr (Yl ≤ k|Jl−1 = 1)i Pr (Yl ≤ k|Jl−1 = 0)j

= F1(k)iF0(k)j

(2.26)

The focus now is to compute Pr (Wn = i and Dn = j|J0 = b). To simplify the no-

tation, P [i, j, b, n] is used to denote the probability that across n days, there are

i number of wet-wet days and j number of dry-wet days conditioning on that the
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initial state is b, or mathematically

P [i, j, b, n] = Pr (Wn = i and Dn = j|J0 = b) (2.27)

Because of the memoryless property of Markov chain, shifting the initial state does

not change the probability. Inspired by this observation, this probability can be

computed recursively using dynamic optimization. Depending on the initial state,

the following two equations can be used

P [i, j, b, n] =


P [i, j, 0, n− 1]p00 + P [i, j − 1, 1, n− 1]p01 if b = 0

P [i, j, 0, n− 1]p10 + P [i− 1, j, 1, n− 1]p11 if b = 1

(2.28)

The base cases are

P [i, j, b, 1] =



p11 if b = 1, i = 1, j = 0

p01 if b = 0, i = 0, j = 1

p10 if b = 1, i = 0, j = 0

p00 if b = 0, i = 0, j = 0

0 otherwise

(2.29)

The intuition of this recursion is to consider different cases according to the precip-

itation on the first day. Without loss of generality, let’s focus on P [i, j, 0, 1]. Recall

that P [i, j, 0, 1] represents the probability that there are i wet-wet days and j dry-

wet days in a n-day period with J0 = 0 as the initial state. There are two subcases

to consider: (1) the 1st day is a dry day and (2) the 1st day is a wet day. Later they
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are combined together using the law of total probability, as shown in the following

equations and Figure 2.3.

Pr (Wn = i,Dn = j|J0 = 0)

= Pr (Wn = i,Dn = j|J1 = 0, J0 = 0) Pr (J1 = 0|J0 = 0)

+ Pr (Wn = i,Dn = j|J1 = 1, J0 = 0) Pr (J1 = 1|J0 = 0)

= Pr (Wn = i,Dn = j|J1 = 0, J0 = 0) p00 + Pr (Wn = i,Dn = j|J1 = 1, J0 = 0) p01

(2.30)

If the first day is a dry day, then in the next n− 1 days, there needs to be i wet-wet

days and j dry-wet days. This essentially means that

Pr (Wn = i,Dn = j|J1 = 0, J0 = 0) = Pr (Wn−1 = i,Dn−1 = j|J0 = 0) (2.31)

If the first day is a wet day, then in the next n− 1 days, there needs to be i wet-wet

days and j − 1 dry-wet days. That is

Pr (Wn = i,Dn = j|J1 = 1, J0 = 0) = Pr (Wn−1 = i,Dn−1 = j − 1|J0 = 1) (2.32)

Using this recursive relationship, the exact value of P [i, j, b, n] can be computed.

The maximum precipitation can then be computed accurately for this scenario.

Distribution of Ek,n. It is also possible to obtain the exact distribution for the

random variable Ek,n. By using the law of total probability, the original probability
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is partitioned into smaller ones:

Pr (Ek,n = t|J0) =
∑
i,j

Pr (Wn = i,Dn = j|J0) Pr (Ek,n = t|Wn = i,Dn = j) (2.33)

Since Pr (Wn = i,Dn = j|J0 = b) = P [i, j, b, n] is already computed in the previous

discussion, the focus herein is how to compute the second term. To compute the

second term, it is further divided into cases, depending on how many extreme days

happen in wet-wet cases and how many extreme days happen in dry-wet days. The

detail is shown in the following equation:

Pr (Ek,n = t|Wn = i,Dn = j) =
0 if i+ j < t∑

s

(
i
s

)(
j
t−s

)
F1(k)i−s(1− F1(k))sF0(k)j−t+s(1− F0(k))t−s otherwise

(2.34)

Distribution of Ck,n. The analysis for consecutive extreme events becomes even

more complex. To simplify the computation while still obtaining accurate results,

Monte Carlo simulation is used to find the results. In detail, in each run of simu-

lation, one year of precipitation is generated according to the non-stationary model

with serial dependency, as mentioned in previous sections. The final distribution

can be obtained by running the simulation for a large enough number of times.

Note that the Markov chain has a small number of states; therefore, the effect of

local-trap is not significant.
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P[i, j, 0, n]

J0 = 0 J1 = 0 J2 Jn

…

P[i, j, 0, n-1]p00

P[i, j, 0, n]

J0 = 0 J1 = 1 J2 Jn

…

P[i, j-1, 1, n-1]p01

Figure 2.3: Reducing P [i, j, 0, n] into two sub problems.

2.4 Case Study: Extreme Precipitation Events Prediction in Wash-

ington D.C. Area

In this section, a case study is conducted using ten decades of data from the Wash-

ington metropolitan area, centered on Washington, D.C., the capital of the United

States. Both of the proposed methods are applied and compared with stationary

empirical analysis based on the annual extreme daily precipitation events, including

M , E15, E30, and C10. The probability distributions of ratios among selected cases

are also computed showing that serial dependency is able to further improve the

accuracy of analysis, avoiding underestimation in many cases.

2.4.1 Data Selection

Data are obtained from National Oceanic and Atmospheric Administration (NOAA) [1].

More description can be found in Appendix E. Ten decades of data are collected con-

sisting of more than 350 stations, which includes rainfall and melted snow. Due to

historical reasons, some stations contain more years of data than other stations and

many stations are relatively recent (with less than 20 years of data). In Figure 2.4,

the spatial and temporal distributions of the stations are shown. Figure 2.4a shows
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the locations of all stations studied. NOAA associates this set of stations to this area

according to the U.S. Climatological Division [92]. These stations are all located in

the climate division MD-3, MD-4, MD-6, VA-4 and the District of Columbia. In

Figure 2.4b, each horizontal bar represents the time duration of one station. For

example, a bar from 1960 to 2000 means that data is available in this station from

the year 1960 to the year 2000. It can be observed that many stations are set up

after the year 2000.
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Figure 2.4: Spatial and temporal distributions of stations in the Washington
metropolitan area.

M (mm) E15 (day) E30 (day) C10 (day)

Time period Mean SD Mean SD Mean SD Mean SD

2006-2015 73.74 30.60 25.10 5.99 8.00 2.28 3.00 1.55
1991-2015 68.02 24.46 26.56 5.49 8.56 3.23 2.68 1.09
1960-2015 66.30 22.10 22.35 5.46 7.13 2.81 2.35 0.93

Table 2.1: Stationary analysis: extreme precipitation events based on data from
selected time periods. (SD stands for standard derivation.)
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2.4.2 Analysis under Stationary Model without Serial Dependency

As mentioned in previous sections, statistics from empirical data can be used to

make estimations for the future under the stationary assumption. The results of

the stationary empirical analysis are shown in Table 2.1. Three historical time

periods are selected. For each time period, average values of M , Ek, and Ck are

presented. One can observe from the table that, for example, the average value of

M is higher if the averages are taken over a shorter period. This is because the

overall trending of M is increasing in the past 50 years. When comparing with

non-stationary analysis in the following discussion, values based on the period 1960

- 2015 are used as a baseline. It can be seen that the number of stations (sample

size) is different from different years. In order to eliminate the effect of time-varying

sample size, the results in Table 2.1 are obtained in two steps. First, the averages

of extreme precipitation events are computed across different stations for each year.

Then for different time periods, the averages of different years are computed. This is

an unbiased estimator for the extreme precipitation events considered in this work.

2.4.3 Analysis and Prediction under Non-stationary Model without

Serial Dependency

2.4.3.1 Parameter Extraction

The first step in the proposed analysis is to obtain F (k), that is, the CDF of daily

precipitation for each year. This is obtained by aggregating all data from all stations

41



according to year. The probability of raining (p) and gamma distribution parameters

(α, β) can then be obtained. CDF can be computed using Eq. 2.8. In Figure 2.5,

the trends of shape (α) and scale (β) parameters from the year 1900 are shown.

The decrease of shape and increase of scale indicates a trend toward more extreme

precipitation.
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Figure 2.5: Trend of gamma distribution parameters from 1900 to 2015.

2.4.3.2 Analysis Assessment

To assess the accuracy of the analysis, a comparison is conducted between the ob-

served extreme precipitation and the distribution computed from the analysis. In

detail, all data but those from station USC00185111 are aggregated and used to

compute F (k), which is further used to compute extreme precipitation distribu-

tions. Figures 2.6a, 2.6c, and 2.6e show the results for different events. It can be

observed that the extreme precipitation events from station USC00185111 are close

to the expectation computed from the analysis. This indicates that the model is of

high accuracy.

Figure 2.6a shows the analysis results for distribution of annual maximum
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daily precipitation (M). Light area represents the range with probability 5% - 95%;

Dark area represents the range with probability 20% - 80%. The expectation from

the analysis is shown as the solid line, whereas the dotted line shows the observed

annual maximum daily precipitation observed from station USC00185111. This

station is chosen for validation because the data is available for a long time from

1900 to 2015. As shown in the figure, the solid line and dotted line are close to each

other for most of the years, and it falls into the 20 - 80% range for almost all years.

Therefore, the result under the non-stationary model without serial dependency is

accurate for computing extreme event M .

Figure 2.6c shows the analysis result for extreme events E15 and E30. Similar

to the previous figure, the expectation and the actual results are also shown as solid

lines and dotted lines, which indicate that the accuracy of the model is high in the

last decades.

Similar analysis is also conducted for extreme event C10, as shown in Fig-

ure 2.6e. The expected value alters between 2 and 3 days during the past decades.

There is no obvious increasing or decreasing trend according to the distribution. It

can also be observed that there is an underestimation: the observed results from

the selected station go beyond 1 - 99% for many years. The main reason is that in

the analysis of continuous extreme events, the dependency between different days

plays an important role. In this model, such dependency is ignored, leading to an

underestimation in the analysis. In the next section, it is shown that non-stationary

model with serial dependency is able to provide better analysis.
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Figure 2.6: Analytical distribution of different events under non-stationary models
vs. observation from the selected station.

2.4.3.3 Prediction of Extreme Events

The preceding validation means that if F (k) for each year is predicted accurately,

then the result from the proposed non-stationary model without serial dependency
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Year Shape (α) Scale (β) Raining Prob. (p)

Baseline - - -
2020 0.65 14.97 0.369
2050 0.58 16.32 0.419
2080 0.51 17.67 0.468
2100 0.46 18.56 0.502

Table 2.2: Prediction of parameters (α, β, p) linearly in future years based on non-
stationary model without serial dependency. (SD stands for standard derivation.)

M (mm) E15 (day) E30 (day) C10 (day)

Year Mean SD Mean SD Mean SD Mean SD

Baseline 66.30 22.10 22.35 5.46 7.13 2.81 2.35 0.93
2020 68.25 18.34 29.23 5.16 9.08 2.93 4.08 1.17
2050 72.83 19.15 32.03 5.36 10.52 3.18 4.02 1.12
2080 77.68 21.29 33.75 5.49 11.54 3.30 3.89 1.07
2100 78.93 21.54 33.82 5.56 11.76 3.39 3.73 1.02

Table 2.3: Prediction of extreme events (M,E15, E30, C10) in future years based on
non-stationary model without serial dependency. (SD stands for standard deriva-
tion.)

is close to the observed value. Therefore, in order to obtain accurate results, one

needs to obtain the prediction of F (k). For each year, related parameters (p, α,

β) are obtained from the precipitation in that year. As an initial approximation, a

linear trend is used for future prediction of parameters, based on data since 1960.

These parameters, in turn, determine the future precipitation distribution.

In Table 2.2 Table 2.3 and , the result of the prediction along with the baseline

from Table 2.1 is shown. The baseline in Table 2.2 is based on Table 2.1. Compared

with stationary analysis, predictions under the non-stationary model are higher.

For example, the M value for the year 2050 is about 9% higher compared with the

stationary baseline and the value for the year 2100 is about 18% higher.
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2.4.4 Analysis and Prediction under Non-stationary Model with Se-

rial Dependency

2.4.4.1 Chi-square Test for Serial Dependency

Statistical hypothesis testing is firstly performed to assess the accuracy of modeling

Ji as a first order Markov chain. The first step is to check if Ji and Ji−1 are

independent or not. In particular, the chi-square test is used, which is a popular

statistical hypothesis test for dependency of two random variables. For each year, the

occurrence of precipitation for all consecutive two days are collected and counted.

Chi-square tables are constructed and the values are computed out of the tables

using standard method. The 2× 2 contingency table for the year 2000 is shown in

Table 2.4.

Ji = 0 Ji = 1 Total

Ji−1 = 0 184 59 243
Ji−1 = 1 59 64 123

Total 243 123 366

Table 2.4: The 2x2 contingency table for year 2000.

The chi-square value can be calculated as follows. Here, Oi,j are observed

values; Ei,j are expected values. More details about chi-square test can be found in
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(see, for example, [93]).

χ2 =
2∑
i=1

2∑
j=1

(Oi,j − Ei,j)2

Ei,j

=
(184− 161.3)2

161.3
+

(59− 81.7)2

81.7
+

(59− 81.7)2

81.7
+

(64− 41.3)2

41.3

= 28.3

(2.35)

Figure 2.7a shows chi-square values of each year calculated from station USC00185111.

The same test is also applied to other stations, where the results are similar. Three

thresholds are also shown for comparison. For example, if the chi-square value is

greater than the threshold for 99%, then with at least 99% confidence, Ji and Ji−1

are not independent. The figure shows that for almost all years, confidences of 99%

are obtained and that for more than half of all years, such confidence is as high as

99.9%. These are strong evidence that serial dependency exists between Ji and Ji−1.

The next step is to check if a first order Markov chain is sufficient, that is if

a second Markov chain is needed. In detail, the goal is to compute the dependency

between Ji and Ji−2, with Ji−1 fixed. In Figure 2.7b, results for this chi-square test

are shown when Ji−1 is fixed as 0 and 1, respectively. The results indicate that

there is no strong evidence to conclude that Ji and Ji−2 have dependency even only

for 90% confidence. When comparing with the values in Figure 2.7a, the values in

Figure 2.7b are also much smaller. This means that the dependency between Ji and

Ji−2, if exists, is much less than the dependency between Ji and Ji−1.
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Figure 2.7: Chi-square tests.

2.4.4.2 Parameter Extraction

Gamma distribution parameters and Markov transition probabilities (p11, p01) are

needed for each year in the non-stationary model with serial dependency. In Fig-

ure 2.8, the observed values of p01 and p11 are shown, aggregated from all stations

for each year. According to the figure, there is a significant difference between the

chances of rain after a rainy day compared to one after a dry day. This again shows

that the precipitation of one day depends on whether the previous day is rainy or

not. It can also be observed that there is an increasing trend for the probability of

rain.

2.4.4.3 Analysis Assessment

In Figure 2.6b, Figure 2.6d, and Figure 2.6f, results are shown in a similar manner

to verify the accuracy of non-stationary model with serial dependency. It can be

seen that the computed distribution matches the real results closely. Further, by
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Figure 2.8: Trend of transition probabilities (p01, p11) from 1900 to 2015.

comparing with the results from non-stationary analysis without serial dependency,

the new results match real extreme precipitation better. In particular, expectations

for M and C10 are significantly better. The expected values for E15 and E30 are at

the same level compared to the results from the non-stationary model without serial

dependency. However, there is an observable difference in terms of the range for 5

- 95%.

The main reason why this model has higher accuracy stems from its ability

to incorporate dependency. Such dependency causes more extreme precipitation,

which is not captured in the non-stationary model without serial dependency.

2.4.4.4 Prediction of Extreme Events

Table 2.5 shows the prediction under the non-stationary model with serial depen-

dency. As expected, the predicted values are slightly higher than the ones under the

non-stationary model without serial dependency. When compared with the baseline,
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a higher increase is also found. For example, the M value for the year 2100 is about

21% higher than the stationary baseline.

M (mm) E15 (day) E30 (day) C10 (day)

Year Mean SD Mean SD Mean SD Mean SD

Baseline 66.30 22.10 22.35 5.46 7.13 2.81 2.35 0.93
2020 68.31 18.33 29.40 5.43 9.13 2.98 4.09 1.17
2050 73.11 19.18 32.75 5.69 10.77 3.26 4.04 1.13
2080 78.50 21.27 35.39 5.95 12.08 3.48 3.92 1.07
2100 80.00 21.61 36.26 6.07 12.62 3.58 3.78 1.02

Table 2.5: Prediction of extreme events (M,E15, E30, C10) in future years based on
non-stationary model with serial dependency. (SD stands for standard derivation.)

2.4.5 Contribution of Serial Dependency in Non-stationary Models

To explore the contribution of serial dependency to the analysis, distributions of ra-

tios between extreme precipitation events with serial dependency and ones without

serial dependency are computed. In general, it is difficult to compute the exact ratio

distribution; therefore, Monte Carlo simulation is used to obtain an approximation.

In detail, the analysis is first performed without considering serial dependency, and

for the second time considering serial dependency using the proposed method. From

the analysis results, a ratio on the contribution of serial dependency can be com-

puted. The ratio distribution for M , E15 and C10 are shown in Figure 2.9. For M

and C10, when considering serial dependency, the resulted distribution is about 16%

and 7% more extreme than the distribution computed without serial dependency

respectively. Histograms summarizing all ratios from previous years are also pro-

vided. The ratio of E15 fluctuates around 1, meaning that serial dependency does
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Figure 2.9: Contribution of serial dependency for three extreme precipitation events.

not affect the result a lot. Note that the contribution of serial dependency may vary

depending on the area of study. Studying the serial dependency in other areas is an

interesting future direction.
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2.5 Case Study: Comparative Extreme Precipitation Analysis of

Three US cities

In this section, a detailed comparative study is further performed on three cities

across the US. The comparison is focused on 1) studying the differences of extreme

precipitation between three cities, 2) analyzing new extreme precipitation events

introduced with a focus on climate change, and 3) studying the effect of serial

dependency on different events over different periods.

2.5.1 Representative Extreme Precipitation Events

Compared to the previous section, three additional extreme precipitation events,

including Tl, Dp, and Wl, are studied, to fully study more aspects of extreme pre-

cipitation. All values are computed for each year and compared in time series to

see how they change as the effect of climate change. The detailed definitions, units,

and values used in the case study are also listed in Table 2.6.

It is worth noting that different events in the above table measure different

aspects of the extremity of daily precipitation. For example, Tl shows the absolute

extremity of an area: high value means heavier precipitation, regardless of the av-

erage precipitation level; on the other hand, Dp shows the relative extremity of an

area. It shows how the precipitation is distributed in a year. Particularly, an area

with a lower value of Tl may have a higher value of Dp; this corresponds to a case

where an area has less precipitation but the daily precipitation distribution is highly
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Event Definition Unit Case Study

M Maximum daily precipitation in a year mm M
Tl Total amount of precipitation of top l most

heavy-rain days in a year
mm T15

Wl Maximum total precipitation from any con-
secutive l days in a year

mm W2,W7

Ek Number of days with daily precipitation ex-
ceeding k mm in a year

mm E15,E30

Ck Maximum number of consecutive days with
precipitation exceeding k mm in a year

day C10

Dp Least number of days with total precipitation
more than p percent of annual precipitation

day D0.5

Table 2.6: Definitions of extreme precipitation events studied.

skewed. Due to this fact, the overall extremity of an area is application-dependent

and requires a case-by-case evaluation.

2.5.2 Data Selection

Three areas are selected for analysis, including the Washington metropolitan area

(DC), New York City (NYC), and San Francisco (SFO). All data are downloaded

from the National Oceanic and Atmospheric Administration (NOAA) and further

cleaned up for this analysis. Data from all stationed in the past 11 decades are

used for the analysis to show the applicability of the methods in a long period of

time. Missing and invalid data are excluded from the analysis. For each area, a

representative station is selected, of which the data is excluded from the analysis.

Instead, it is used to compare against the analysis. Excluding it from the analysis

makes sure that our analysis is valid and that it does not “use the data to analyze

itself”. Data from other stations are used to fit a single set of parameters per year,
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which later were used in the analysis. Important details of the data used are shown

in Table 2.7. The geographic distributions of all stations used in this study are also

shown in Figure 2.10.

Area New York (NYC) Washington (DC) San Francisco (SFO)

Number of station 205 332 149
Longitude Range [-74.483, -73.317] [-77.6, -76.443] [-122.717, -121.875]
Latitude Range [40.267, 41.15] [38.467, 39.633] [37.375, 38.210]

Representative Station ID USW00094728 USC00185111 USW00023272
Analysis Period 1900 - 2015 1900 - 2015 1921 - 2015

Table 2.7: Detailed information about the areas and stations to study.

(a) New York (NYC) (b) Washington (DC) (c) San Francisco (SFO)

Figure 2.10: Geographic distributions of stations in areas studied.

2.5.3 Comparative Analysis

For each area and each year, all daily precipitation data except the representative

station are selected to compute parameters in the non-stationary with serial depen-

dency model. The comparison between the model with serial dependency and the

one without serial dependency is studied at the end of this section. The analysis pre-

sented here does not consider seasonal variations. Exploring the effect of seasonal

variations on the results can be an interesting future pursuit. These parameters

include the probability that one day is wet, the conditional probability of raining
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given the state of the previous day, as well as the cumulative distribution of the

daily precipitation given the state of the previous day. The distributions of various

extreme events are then computed or simulated. To evaluate the accuracy of the

model, the outcome is then compared to the representative station: if the distribu-

tion from the analysis is close to the distribution from the representative station,

then it indicates that the methods are accurate and suitable for future projection.

The characteristics of extreme precipitation between NYC, DC and SFO are

also studied. In particular, three basic extreme events and three newly defined

extreme events as described above are studied and compared on these areas. In

summary, it is found that the extremity of precipitation is about the same level

between NYC and DC. However, due to the difference in geographic characteristics,

the extreme precipitation in SFO behaves differently. In the remainder of this sec-

tion, detailed analysis and comparison are discussed for all six extreme precipitation

events, assuming a non-stationary model with serial dependency. In Figure 2.11, the

solid line and shaded areas represent the analytical distribution of annual maximum

daily precipitation (M) in history in the DC area. In detail, the solid line is the

expected maximum daily precipitation in a year. The light and dark areas indicate

5th to 95th percentile and 20th to 80th percentile respectively. The dash line shows

the observed data from the representative station in the area. From this figure, the

dash line matches the expectation closely and falls within the range of 20th to 80th

percentile. This validates the accuracy of the non-stationary with serial dependency

model. Figure 2.11 (b) can be interpreted similarly to Figure 2.11 (a) except that it

is generated using the data from New York City. Comparing the observation from
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the representative station and the analytical distribution, it is found that they also

match closely. Comparing Figure 2.11 (a) and Figure 2.11 (b), it is found that gen-

erally speaking, the annual maximum daily precipitation for both DC and NYC are

within a similar range. However, the variation of observed data is higher in NYC

than DC. Figure 2.11 (c) shows extreme precipitation event M for SFO, which has

much lower value compared to the results in NYC and DC.

Figure 2.12 shows the total amount of precipitation of the top 15 most heavy-

rain days in each previous year (T15) for the three selected areas. These figures

again prove the accuracy of the non-stationary with serial dependency model. On an

average level, the total amount of top 15-day precipitation is in the range between

400 mm and 600 mm for both DC and NYC. The values in NYC, however, are

slightly higher than DC, which indicates that the precipitation is more extreme.

SFO has much lower values due to the geographical difference.

The last extreme precipitation indicator Wl is shown in Figure 2.13. In par-

ticular, W2 and W7 are picked for analysis for these three areas. From these figures,

it is found that the variation of representative data in NYC is a little bit higher

than that in DC and SFO. Further, the 2-day and 7-day total precipitation in SFO

is much less extreme than the other two cities.

Figure 2.14 presents another extreme precipitation event Ek. Specifically, two

thresholds are selected for analysis: E15 and E30, representing the number of days

with daily precipitation greater than 15 mm and 30 mm on an annual basis, respec-

tively. On average, the number of days with daily precipitation greater than 30 mm

is 12 days for the past 11 decades in both DC and NYC. The same indicator has
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values around 5 days, much lower than DC and NYC. This means that from the

absolute sense, the precipitation in SFO is less extreme. However, since SFO has

less precipitation on average, it does not mean that the distribution is less uniform.

Similarly, Figure 2.15 shows the maximum number of consecutive days with

daily precipitation greater than 10 mm (C10). From these figures, one can observe

that on an average level, the maximum number of consecutive days with precipita-

tion greater than 10 mm is 2 to 5 days, for NYC, DC, and SFO. There is no obvious

increasing trend in the time history.

Figure 2.16 shows the least number of days with total precipitation more than

half (50%) of annual total precipitation (D0.5) in each year. Somewhat surprisingly,

for most years studied, precipitation from less than 18 days in a year contributes

to more than half of the total annual precipitation. The values for DC and NYC

are within the same range on average, and the values for SFO is lower than these

two areas. This indicates that the precipitation in SFO is distributed less uniformly

than the other two cities, and thus relatively more extreme than the other two cities.

Summary of Key Observations. From the above analysis, the following key

observations can be made:

1. For all events examined, the model performs well and is able to produce ac-

curate results in general for all cities for different precipitation extremity.

2. It is observed that, for all three cities and all extreme precipitation events,

an increasing trend can generally be observed starting from the year 1960,

although the rate of increase varies. It means that the effect of climate change
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also impacts the extremity of precipitation.

3. It is known that the average precipitation in SFO is much lower than the other

two cities. However, it does not necessarily mean that the precipitation in SFO

is less extreme. It can be observed that for some extreme precipitation events,

for example, M and C10, SFO is as extreme as other cities. For other events,

for example, E15, D0.5, and W2, SFO has a lower value.

4. Although climate change is observed in all cities, different cities are affected

to different extent in terms of how extremity of precipitation changes.
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Figure 2.11: Analytical distribution of M generated from model vs. observation
from the selected station.
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Figure 2.12: Analytical distribution of T15 generated from model vs. observation
from the selected station
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Figure 2.14: Analytical distribution of E15 and E30 generated from model vs. ob-
servation from the selected station.
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Figure 2.15: Analytical distribution of C10 generated from model vs. observation
from the selected station.
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Figure 2.16: Analytical distribution of D0.5 generated from model vs. observation
from the selected station.
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2.5.4 Effectiveness of Serial Dependency

To look into how serial dependency affects the accuracy of the analysis, the ratio of

impact are calculated and studied.

ratio =
Results with serial dependency

Results without serial dependency
(2.36)

Ratios for all six extreme precipitation events from three cities are calculated

and summarized in the Table 2.8. From the table, it can be observed that, for some

extreme events, serial dependency does not have a huge impact on the accuracy

of the analysis, while for some other extreme events, serial dependency is crucial

to be included. In detail, M , E15, T15, D0.5 do not rely on serial dependency,

where considering serial dependency only improves the results by a small margin.

On the other hand, for C10 and W2, considering serial dependency is important

for an accurate analysis: up to 50% improvement is observed for SFO, and 10%

improvement can be observed for other cities or events too. Compare these two

sets of extreme precipitation events, an important difference can be observed: the

first set of indicators describe extreme daily precipitation at the scale of a year;

while the second set of indicators focus more on a short period, for example, 2-day

extreme precipitation or weekly extreme precipitation. When a short period of time

is concerned, serial dependency is of huge importance.

To further study how serial dependency affects the accuracy of the analysis,

an additional analysis is performed. For different value of l, the analysis on Wl both
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with serial dependency and without serial dependency is performed and the ratio

of impact is calculated. Figure 2.17 shows the ratio of impact with different value

of l for all three cities. It can be seen that when considering Wl for a short period

of time, for example within a week, the ratio of impact is high, indicating that the

serial dependency affects the analysis a lot. When considering a period of 3 months

or more, such effect is much less. Since for most cases, the main concern of extreme

precipitation is when a great amount of precipitation happens in a short period of

time, serial dependency is generally important.

New York (NYC) Washington (DC) San Francisco (SFO)

Mean SD Mean SD Mean SD

M 1.0017 0.0148 0.9984 0.0201 1.0021 0.0175
T15 1.0005 0.0075 0.9996 0.008 1.0019 20.0092
W2 1.0408 0.0249 1.0559 0.0284 1.1262 0.0305
E15 1.0018 0.0091 1.0011 0.0093 1.0126 0.0137
C10 1.1283 0.0461 1.141 0.051 1.5138 0.1164
D0.5 1.0012 0.0061 1.0018 0.0074 1.0093 0.0119

Table 2.8: Prediction of extreme events (M,E15, E30, C10) in future years based on
non-stationary model with serial dependency. (SD stands for standard derivation.)
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Figure 2.17: Ratio of impact of Wl for different values of l and all three cities.
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2.6 Discussions and Conclusions

This chapter focus on how to accurately analyze various extreme precipitation events

using information based on non-extreme precipitation, which is much easier to ob-

tain. The proposed methods are based on a non-stationary assumption with or

without serial dependency, both of which capture the effect of changing climate.

The methods use Markov models and techniques related to dynamic optimization

so that exact distributions of various extreme events can be computed.

The proposed methods provide accurate analysis for the last 10 decades and

future prediction. The case study shows that non-stationary models capture chang-

ing climate much better than the stationary model. Further evaluation also reveals

strong evidence about the existence of serial dependency in the area of study. It

shows that the non-stationary model with serial dependency further increases the

accuracy for extreme analysis by up to 16%.
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Chapter 3: Extreme Precipitation Projection: Copula and Down-

scaling

3.1 Overview

Chapter 2 discussed how serial dependency helps to improve extreme precipitation

analysis. This chapter instead focuses on improving extreme precipitation projection

using copulas for serial dependency. Most existing works on future extreme precipi-

tation are based on the Global Climate Models (GCMs), or downscaled GCMs, none

of which are designed specifically for extreme climate. The results of this chapter

improve the accuracy for extreme precipitation from downscaled GCMs using cop-

ulas. The content of this chapter is based on a paper accepted to ASCE Journal of

Hydrologic Engineering [94].

As mentioned in Chapter 1, climate change influences human life in every

aspects [5, 95]. One important countermeasure to mitigate impacts of extreme

precipitation and reduce its potential risk is preventative protection, e.g., strength-

ening design standards to factor in the effect of increasing extreme precipitation[96].

However, this approach is effective only if an accurate and long-term projection of

extreme precipitation is available as a guideline. To address this issue, the Coupled
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Model Intercomparison Project (CMIP) was initiated to incorporate climate change

in the design of Global Climate Models (GCMs) for the 21-th century. Since then,

numerous GCMs have been proposed and studied [43, 44, 45, 97, 98]. These GCMs

provide results for each Representative Concentration Pathways (RCPs).

The primary goal of this chapter is to propose a systemic way to evaluate, an-

alyze and improve existing downscaling GCMs results for better analysis of extreme

precipitation. The method relies on the underlying GCMs to consider physical ef-

fect of the climatology. In the following sections, details of the methodology are

discussed with necessary background knowledge. To validate this method, it is fur-

ther applied to historical observed data in the Washington metropolitan area. It is

shown that the assumptions based in this work are true even over a long period of

time, and that the improvement leads to a huge reduction on the analysis error.

3.2 Background and Literature Review

Climate downscaling refers to the procedure that maps global trend of climate to a

local trend with more geographic-related details. Most of these approaches can be

categorized into two classes: 1) dynamic downscaling, where high solution simula-

tion is performed on the region of interests to extrapolate the fine-grind effect from

global GCMs [99, 100, 101]; and 2) statistical downscaling, where different statisti-

cal methods are used to capture the statistical relationship between global climate

models and the behavior in the local area. [102, 66, 103] These two methods have

different features:
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• Dynamic downscaling is able to incorporate physical principles into the anal-

ysis easily, but are computationally intensive and sensitive to bias.

• Statistical downscaling are much efficient but requires that the statistical

model learned from history applies to the future climate .

This chapter mainly focuses on methods based on statistical downscaling. A lot of

different statistical downscaling methods has been proposed in the recent years [49,

50, 51], including bias correction with spatial disaggregation (BCSD), bias correction

with constructed analogs (BCCA), global daily downscaled projections (GDDP),

localized constructed analogs (LOCA), multivariate adaptive constructed analogs

(MACA), etc. Note that other classification of downscaling methods also exists.

For example, [104] categorizes downscaling techniques as deterministic [105], semi-

deterministic [106] and stochastic approaches.

All downscaling methods follow a similar high-level approach as follows [49,

50, 51]:

1. Regridding. This step reinterprets GCM results and maps them into a smaller

scale directly.

2. Bias correction. Results in all grids are aligned using observed history as a

baseline. One popular method for bias correction is quantile mapping.

3. Spatial Downscaling. This step incorporates geographic influence into consid-

eration. The three downscaling methods studied in this work mainly differ in

this step.
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3.3 Methodology

This study presents a new framework to project extreme precipitation based on

downscaled GCM and mathematical concept called copulas (See Appendix C for

more details on copulas). Figure 3.1 illustrates the overall structure of methodology.

The high-level ideas are summarized as follows.

1. First, eighteen state-of-the-art downscaled GCM results are compared against

observed data in the context of extreme precipitation. The assessment reveals

that existing downscaled GCMs do not reproduce observed extreme precipi-

tation, and therefore do not project appropriately future extremes.

2. Then, a copula-based method is applied to explore possible ways to improve

downscaled GCM results for better analysis and projection of extreme pre-

cipitation. The results show that marginal distributions of daily precipitation

extracted from downscaled GCM results are relatively accurate. However, the

day-to-day serial dependency copulas from downscaled GCMs differ signifi-

cantly compared to the one from observed data.

3. Finally, further analysis of observed data shows that, although the distribution

of daily precipitation changes over years, the underlying copula model stays

unchanged even over a long period. Based on this observation, a proposed

model that combines marginal distribution from downscaled GCM results and

the copula from observed data. This new model reduces the error for extreme

precipitation analysis and is used to perform future extreme precipitation pro-
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jection.

 Exploration

 Improvement
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Downscaled Global 
Climate Models

Marginal distributions 
from downscaled GCM 

results

Copula from downscaled 
GCM results

Downscaled GCM results with 
serial dependency

Improved future extreme 
precipitation projection

Observed data from 
Washington 

metropolitan area

Extreme precipitation 
analysis results from 

observed data

Extreme precipitation 
analysis results from 

downscaled GCM results

Compare

Copula from observed 
data

Marginal distributions 
from observed data
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Figure 3.1: The assessment-exploration-improvement framework for extreme precip-
itation analysis and projection with serial dependency. Assessment: Downscaled
GCM results and observed data are both used for extreme precipitation analysis, and
the analysis results are compared to assess the accuracy. Exploration: Marginal
distributions and day-to-day serial dependency copulas are extracted from down-
scaled GCM results separately. Their accuracy are compared against real ones.
Improvement: Historical copulas and projected marginal distributions are com-
bined for better analysis and projecting extreme precipitation.
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3.3.1 Historical Assessment

3.3.1.1 GCMs and Downscaling GCMs

The assessment is based on three downscaling methods: GDDP, MACA, and LOCA

with datasets available to access from different sources. Details about the three

datasets can be found in Appendix E. Although there are more than 15 GCMs in

CMIP5, each downscaling method studies a different subset of them. To be able to

compare across all three GCMs, this work focuses on GCMs that have downscaled

results available for all three methods. As a result, six GCMs are selected, and the

details of them are summarized in Table 3.1.

Model acronym Model full name Institution

CCSM4 CCSM4 National Center for Atmospheric Research
(NCAR), USA

MIROC MIROC-ESM-CHEM
The University of Tokyo and
National Institute for Environmental
Studies, Japan

GFDL GFDL-ESM2G Geophysical Fluid Dynamics Laboratory,
USA

CNRM CNRM-CM5 Centre National de Recherches Meteo-
rologiques, Meteo-France, France

CSIRO CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial
Research Organization, Australia

CanESM2 CanESM2 Canadian Centre for Climate Modeling
and Analysis, Canada

Table 3.1: Six Global Climate Models studied

3.3.1.2 Extreme Precipitation Indices

Previous work studied various aspects of precipitation by comparing methods for

downscaling GCM results. Wilby et al. [107], for example, studied the average,
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median, and standard deviation of daily precipitation, and different conditional and

unconditional probabilities of raining. These precipitation indices do not represent

extreme precipitation cases. Even for those that studied extreme precipitation [40,

85], it was largely restricted to maximum daily precipitation. However, it describes

one of its aspects only and multiple indices are necessary in order to fully characterize

extreme precipitation events. For example, in the context of flooding, the amount

of precipitation across multiple days is a more important indicator of the underlying

risk.

To this end, the assessment in the work is based on six different extreme

precipitation indices: Max, M2d, R20mm, CWD, LDP0.5 and LDP0.25. Details

of these indices are summarized in Table 3.2. Among these six indices, R20mm

and CWD are also used in the Expert Team on Climate Change Detection and

Indices (ETCCDI) [108]. The first four indices do not fully describe how extreme

the precipitation is within a year. For example, the index value of a tropical city

may be much higher than a city near a desert. However, it does not necessarily

mean that the tropical city has more extreme precipitation. A more meaningful

index should show how concentrate the precipitation is in a year. To reflect this

fact, another two indices (LDP0.5 and LDP0.25) are also studied.

In addition to maximum daily precipitation (Max) that is commonly used in

previous works, other indices also describe key aspects of extreme precipitation. For

example, M2d represents scenarios where a large amount of precipitation happening

in a short period of time (2 days). R20mm measures the number of days in a

year with heavy daily precipitation. LDP0.5 and LDP0.25 measure in one year the
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Index Explanation

Max Maximum daily precipitation within a year
M2d Maximum 2-consecutive day precipitation within a year
R20mm Annual count of days when precipitation ≥ 20mm
CWD Maximum number of consecutive wet days within a year
LDP0.5 Least number of days with total precipitation more than half

of annual precipitation
LDP0.25 Least number of days with total precipitation more than 25%

of annual precipitation

Table 3.2: Six extreme precipitation indices studied

extent of skewness in the daily precipitation distribution is. Lower values of these

latter indices mean that the distributions are more skew, which means that the

precipitation is more extreme with higher variance.

3.3.1.3 Error Metrics for Quantitative Comparison

To completely assess extreme precipitation results across all combinations of GCMs

and downscaling methods, relative error metrics across time series are computed.

Note that by computing error metrics across the whole time series, it integrates the

uncertainty in the prediction for the whole history. Two error metrics are used to

measure the accuracy of each downscaled GCM in the context of extreme precipi-

tation. Denoting the observation value for each year in time series as o1, . . . , on and

the downscaled values in time series as d1, . . . , dn, the normalized mean absolute

error (NMAE) is defined as follows:

NMAE =

∑n
i=1 |di−oi|

n∑n
i=1 oi
n

(3.1)
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The normalized root-mean-square error (NRMSE) is defined as follows:

NRMSE =

√∑n
i=1(di−oi)2

n∑n
i=1 oi
n

(3.2)

Both NMAE and NRMSE are popular measures of the differences between values

predicted by a model and the values actually observed. The values of these two error

metrics have a range from 0 to positive infinity, with smaller values indicating higher

accuracy. Note that these error calculations are also important metrics to measure

goodness-of-fit between analytical results and the observed results [109, 110, 111].

For example, compared to R2, NRMSE uses the average of observation values as

the normalization factor instead of the variance.

3.3.2 Exploration of Marginal Distribution and Serial Dependency

This work features in a creative way to use copula to analyze precipitation distri-

bution. In addition to the marginal distribution of the precipitation, day-to-day

dependency is also taken into consideration. The dependency is incorporated into

the analysis based on copula.

There are many applications of copula for hydrological analysis [112, 113, 114,

115]. Here copula is used to study serial dependency in extreme precipitation anal-

ysis. Note that all properties of extreme precipitation can be fully described using

a joint distribution of all daily precipitation random variables in a year. However,

such a 365-dimension joint distribution (assuming non-leap year) is too complex to

analyze. In this study, it is assumed that the precipitation in a day depends on
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its previous day, therefore day-to-day serial dependency represented as a bivariate

copula, and marginal distribution of the whole year together can describe the whole

process. Previous works [77] have demonstrated that two-day dependency can al-

ready lead to high accuracy. However, the method proposed here can be generalized

to copula with higher dimensions if necessary.

Note that here copulas are computed on a yearly basis, which assumes that

the copula stays stationary within a year. It is left as a future work to extend the

analysis to a seasonal basis and study the variation between different seasons.

3.3.3 Improvements of Extreme Precipitation Projection based on

Copulas

This section focuses on the approach used to improve the accuracy of extreme pre-

cipitation analysis based on downscaled GCM results, using theories of copula.

3.3.3.1 Stationarity of Historical Copulas

The key idea behind the improvement is the observation that copula and marginal

distribution are completely decoupled. Therefore, if copula stays stationary over

the time, it is possible to replace the inaccurate copula by the historical copula,

which is accurate. To be more specific, for any bivariate distribution between X1

and X2, the marginal distributions are completely decoupled and independent from

the copula of X1 and X2. Therefore, a bivariate distribution can be determined from

the marginal distribution and the copula. The previous section demonstrated that
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it is mainly the copula that causes inaccuracy in the results. Therefore one effective

way to improve the downscaling results is to replace the inaccurate copula model to

an accurate copula model as determined in this work.

In more detail, let FX1,X2(x1, x2) be the joint distribution between first-day

precipitation and second-day precipitation. Let F (x) be the marginal distribution

of the first day and the second day. Note that this work does not consider a seasonal

variation of precipitation within a year, therefore the marginal distribution of any

day follows the same distribution. Now the copula for X1 and X2 can be written as

CX1,X2(u1, u2) = Pr(F (X1) ≤ u1, F (X2) ≤ u2) (3.3)

Assuming that an unbiased and accurate projection of marginal distribution is F ′(·)

and that the real copula is CX1,X2(u1, u2), an approximation of the joint distribution

can be obtained via:

F ′X1,X2
(x1, x2) = CX1,X2(F

′(x1), F
′(x2)) (3.4)

F ′X1,X2
(·, ·) is an unbiased and accurate approximation of FX1,X2(·, ·), which means

that replacing the copula in the downscaling methods to the generated one in this

work results in an accurate approximation of the joint distribution.

3.3.3.2 Overall Improvement Procedure

The proposed overall procedure is defined by the following steps:
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1. Compute marginal distribution. For each year of interests, the marginal dis-

tribution is computed using downscaled GCM results. Note that an empirical

marginal distribution is usually not accurate enough for prediction due to

lack of data, therefore, interpolation based on Gamma distribution is used

to enhance accuracy. The Gamma distribution is a commonly used tool in

statistical analysis of precipitation to model the marginal distribution of pre-

cipitation. [91, 116]. It is popularly used in modeling precipitation due to its

accuracy and applicability.

2. Compute an empirical copula. Given the historical data at a small region,

compute an empirical copula based on the data. This empirical copula can be

used both for validation as well as future projection.

3. Monte Carlo simulation. Now given the above result, Monte Carlo simulation

can be used to produce an improved projection for each GCM. The crucial

part here is how to simulate the second-day precipitation given the first-day

precipitation. This is done further in three steps:

(a) Perform probability integral transformation on the first-day precipitation

to obtain transformed values.

(b) Using these values to find the corresponding marginal distribution from

the empirical copula computed in the previous step. Sample uniformly

one value from that marginal distribution.

(c) Perform an inverse transform sampling using the marginal distribution
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and the value obtained above.

3.4 Case Study and Results

3.4.1 Details of the Study Area

Our study focuses on the Washington metropolitan area and the observation station

is located at Ronald Reagan Washington National Airport (DCA), with station

number USW00013743. Daily precipitation data are obtained from the National

Oceanic and Atmospheric Administration (NOAA). Although observed station data

is available up to the year 2017, downscaling results are available only up to the year

1995, therefore this study focuses on the period from 1950 to 1995. According to

the data explanation document from NOAA, the daily precipitation data collected

by NOAA include rainfall and melted frozen rainfall but not snowfall. Figure 3.2

shows the location of the selected observation station.

GDDP: NASA Earth Exchange Global 
Daily Downscaled Projections

LOCA: Localized 
Constructed Analogs

MACA: Multivariate Adaptive 
Constructed Analogs

Observed station

MD

DC

VA

Figure 3.2: Spatial locations of observed station and three different downscaled grids
in the Washington metropolitan area.

Figure 3.2 also shows the grid sizes of the three downscaled model mentioned
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above. The observation station is covered by all three downscaled grids with different

sizes. In particular, MACA method provides the highest resolution while GDDP

method provides the lowest resolution among three downscaling methods.

3.4.2 Historical Assessment

3.4.2.1 Time Series Comparison

This work analyzes three downscaling methods each combined with six GCMs.

Due to space limitation, the presentation focuses on the time series comparison

of two GCMs: CCSM4 and MIROC, that is, 6 combinations of downscaled GCMs:

CCSM4-GDDP, CCSM4-LOCA, CCSM4-MACA, MIROC-GDDP, MIROC-LOCA,

and MIROC-MACA. For example, CCSM4-GDDP refers to GDDP downscaling

method applied on top of CCSM4 Global Climate Model.

Figure 3.3 shows the comparison among observed results and each downscaled

GCM results based on CCSM4 model. Similar results based on MIROC model is

shown in Figure 3.4. In each figure, solid lines represent an extreme precipitation

index computed from the observed data; dotted lines represent the same extreme

precipitation index computed from the downscaled GCM results.

For all combinations of downscaling methods and GCMs, the analysis results

differ greatly compared to the observed results especially for extreme precipitation

indices CWD, LDP0.5 and LDP0.25. Some combination of GCM and downscaling

method produces particularly inaccurate results, for example, MIROC-GDDP has

the lowest accuracy for almost all indices compared to others. Some other combina-
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(c) Annual count of days when precipitation ≥ 20mm (R20mm)

Figure 3.3: Comparison of historical extreme precipitation performance among ob-
served data (solid lines) and three different downscaled data (dashed lines) from
CCSM4 Global Climate Model.

tion, for example, MIROC-MACA, produces overall better results than other cases.

In the remainder of this section, four figures are analyzed in detail and interpreted

for illustration. Other figures can be interpreted similarly.

Figure 3.3a shows the annual maximum daily precipitation (Max) computed

from observed data and three downscaled GCM data. In these three figures, CCSM4-

MACA combination produces the closest results to observed values compared to

CCSM4-GDDP and CCSM4-LOCA. In the middle figure, it can also be noted that
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(d) Annual maximum number of consecutive wet days (CWD)
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(e) Least number of days with total precipitation more than half of annual precipitation
(LDP0.5)
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(f) Least number of days with total precipitation more than 25% of annual precipitation
(LDP0.25)

Figure 3.3: Comparison of historical extreme precipitation performance among ob-
served data (solid lines) and three different downscaled data (dashed lines) from
CCSM4 Global Climate Model.

CCSM4-LOCA is not able to predict many peak annual maximum daily precipita-

tions from the year 1950 to 1980. For example, the actual maximum precipitation in

1972 is more than 150 mm; however, the projected annual maximum precipitation

from CCSM4-LOCA is round 50 mm. This is an error of about 100 mm. Fig-

ure 3.3b shows the annual maximum two-day precipitation and can be interpreted

in a similar way as Figure 3.3a.
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Figure 3.3c shows the total number of days in a year with precipitation greater

than 20 mm, and it shows that all model combinations show great consistency

compared to the observed results. However, when it comes to the annual maximum

number of wet days as shown in Figure 3.3d, the results is different. Both GDDP

and MACA slightly overestimate the results, while LOCA overestimates the results

by a huge margin.

Figure 3.3e shows the analysis results of LDP0.5 computed from observed data

and from three downscaled GCM data. As shown in the left figure, the results from

observed data and CCSM4-GDDP data are closely aligned, which means the com-

bination CCSM4-GDDP produces relatively accurate results for LDP0.5. However,

as shown in the middle and right figures, CCSM4-LOCA and CCSM4-MACA do

not provide good results for this extreme precipitation index.

Similar analysis can be performed on MIROC and results are presented in

Figure 3.4. It is found that the analysis results in Figure 3.4a, Figure 3.4b and

Figure 3.4c are similar to the results for CCSM4 as discussed above. However,

the results in the other three indices are different. For CWD, it can be found in

Figure 3.4d that GDDP is far off the observed results while LOCA and MACA are

slightly over-estimated. This is also the case for LDP0.5 and LDP0.25 that GDDP

is significantly worse when downscaling MIROC models.

In summary, the accuracy of downscaled GCM results is not high when used for

extreme precipitation. The comparison also indicates that the accuracy of extreme

analysis highly depends on the combination of downscaling methods and GCMs.

Therefore, using existing downscaled GCMs to analyze extreme precipitation is in-
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sufficient and can lead to inaccurate results.

GCMs
Downscaling

Max M2d R20mm
Methods

CanESM2
GDDP 0.49 (0.64) 0.49 (0.64) 0.38 (0.53)
LOCA 0.47 (0.63) 0.50 (0.64) 0.41 (0.55)
MACA 0.39 (0.53) 0.40 (0.56) 0.38 (0.50)

CCSM4
GDDP 0.38 (0.50) 0.41 (0.54) 0.38 (0.51)
LOCA 0.38 (0.52) 0.39 (0.49) 0.42 (0.53)
MACA 0.41 (0.55) 0.38 (0.51) 0.37 (0.48)

CNRM
GDDP 0.47 (0.62) 0.43 (0.63) 0.46 (0.60)
LOCA 0.41 (0.56) 0.43 (0.57) 0.44 (0.56)
MACA 0.45 (0.57) 0.46 (0.61) 0.39 (0.53)

CSIRO
GDDP 0.35 (0.46) 0.38 (0.48) 0.38 (0.49)

LOCA 0.46 (0.58) 0.47 (0.57) 0.43 (0.55)
MACA 0.41 (0.54) 0.42 (0.52) 0.37 (0.49)

GFDL
GDDP 0.46 (0.63) 0.46 (0.60) 0.37 (0.52)
LOCA 0.45 (0.57) 0.49 (0.58) 0.43 (0.55)
MACA 0.44 (0.58) 0.42 (0.54) 0.37 (0.51)

MIROC
GDDP 0.48 (0.63) 0.44 (0.62) 0.38 (0.55)
LOCA 0.37 (0.51) 0.45 (0.54) 0.43 (0.50)
MACA 0.49 (0.64) 0.45 (0.59) 0.40 (0.53)

Note: Underlined values indicate the least error cases per extreme
precipitation index.

Table 3.3: Performance of 18 different downscaled GCMs in the context of extreme
precipitation using two error metrics: Normalized mean absolute error (NMAE) and
normalized root-mean-square error (NRMSE)

3.4.2.2 Quantitative Comparison

Table 3.3 and Table 3.4 shows these two errors metrics for all 18 downscaled GCMs

and all six extreme precipitation indices. For each downscaled GCM, the two error

metrics for six extreme precipitation indices are computed and presented in the form

of NMAE (NRMSE). The results in the CCSM4 and MIROC rows are consistent

with results shown in Figure 3.3 and Figure 3.4. For example, GDDP-MIROC
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GCMs
Downscaling

CWD LDP0.5 LDP0.25
Methods

CanESM2
GDDP 0.59 (0.66) 6.44 (6.93) 1.35 (1.40)
LOCA 0.33 (0.44) 1.68 (1.89) 0.42 (0.50)
MACA 0.31 (0.37) 0.82 (1.00) 0.32 (0.42)

CCSM4
GDDP 0.30 (0.38) 0.75 (0.89) 0.19 (0.24)
LOCA 0.34 (0.46) 1.34 (1.50) 0.41 (0.46)
MACA 0.35 (0.43) 0.66 (0.79) 0.37 (0.43)

CNRM
GDDP 0.26 (0.33) 1.25 (1.44) 0.28 (0.36)

LOCA 0.35 (0.42) 1.47 (1.68) 0.48 (0.55)
MACA 0.26 (0.33) 0.62 (0.76) 0.34 (0.39)

CSIRO
GDDP 0.33 (0.42) 1.80 (2.04) 0.39 (0.45)
LOCA 0.34 (0.41) 1.40 (1.55) 0.41 (0.47)
MACA 0.30 (0.37) 0.61 (0.73) 0.34 (0.41)

GFDL
GDDP 0.43 (0.53) 2.72 (2.93) 0.68 (0.74)
LOCA 0.30 (0.38) 1.40 (1.66) 0.41 (0.46)
MACA 0.29 (0.37) 0.59 (0.75) 0.33 (0.38)

MIROC
GDDP 0.57 (0.65) 6.14 (6.59) 1.25 (1.29)
LOCA 0.33 (0.42) 1.40 (1.57) 0.41 (0.47)
MACA 0.33 (0.40) 0.58 (0.76) 0.33 (0.38)

Note: Underlined values indicate the least error cases per extreme
precipitation index.

Table 3.4: Performance of 18 different downscaled GCMs in the context of extreme
precipitation using two error metrics: Normalized mean absolute error (NMAE) and
normalized root-mean-square error (NRMSE)

has the highest error for many extreme precipitation indices CWD, LDP0.25, and

LDP0.5.

3.4.3 Exploration

3.4.3.1 Marginal Distributions

For each downscaled GCM, the marginal distribution of daily precipitation obtained

from downscaled GCM data is compared against the one obtained from the observed
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(c) Annual count of days when precipitation ≥ 20mm (R20mm)

Figure 3.4: Comparison of historical extreme precipitation performance among ob-
served data (solid lines) and three different downscaled data (dashed lines) from
MIROC Global Climate Model.

data. Similar to the previous section, two downscaled GCMs (CCSM4 model and

MIROC model) are presented, in Figure 3.5 and Figure 3.6. Each figure is a quantile-

quantile plot of daily precipitation for the period from the year 1950 to the year 1995.

According to these figures, dotted lines are slightly below the solid lines, which

means that the marginal distributions extracted from downscaled GCM results are

slightly less extreme compared to the one obtained from the observed data. However,

overall marginal distributions from the downscaled GCM align well with the one
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(e) Least number of days with total precipitation more than half of annual precipitation
(LDP0.5)

1950 1960 1970 1980 1990
Year

0

5

10

15

20

LD
P0

.2
5 

(N
um

be
r o

f d
ay

s)

Observed Data GDDP

1950 1960 1970 1980 1990
Year

0

5

10

15

20

LD
P0

.2
5 

(N
um

be
r o

f d
ay

s)

Observed Data LOCA

1950 1960 1970 1980 1990
Year

0

5

10

15

20

LD
P0

.2
5 

(N
um

be
r o

f d
ay

s)

Observed Data MACA

(f) Least number of days with total precipitation more than 25% of annual precipitation
(LDP0.25)

Figure 3.4: Comparison of historical extreme precipitation performance among ob-
served data (solid lines) and three different downscaled data (dashed lines) from
MIROC Global Climate Model.

from observation. The exception is MIROC-GDDP, which differs significantly from

the observation. The comparison indicates that marginal distribution is unlikely to

be the main reason for the observed inaccuracy in extreme precipitation results in

the previous section.
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Figure 3.5: Historical Quantile-Quantile plots of daily precipitation from: (a) ob-
served data vs. CCSM4-GDDP downscaled data; (b) observed data vs. CCSM4-
LOCA downscaled data; and (c) observed data vs. CCSM4-MACA downscaled
data.
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Figure 3.6: Historical Quantile-Quantile plots of daily precipitation from: (a) ob-
served data vs. MIROC-GDDP downscaled data; (b) observed data vs. MIROC-
LOCA downscaled data; and (c) observed data vs. MIROC-MACA downscaled
data

3.4.3.2 Serial Dependency

Figure 3.7 and Figure 3.8 show the copulas obtained from CCSM4 model and

MIROC model, respectively. The results from models (in green, blue and orange

curves) are compared with results from observed historical data (in black curves).

From these figures, it can be found that copulas obtained from downscaled GCMs

are significantly different from the ones obtained from the observation. For MIROC-
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Figure 3.7: Historical copulas extracted from: (a) Observed data vs. CCSM4-GDDP
downscaled data; (b) Observed data vs. CCSM4-LOCA downscaled data; and (c)
Observed data vs. CCSM4-MACA downscaled data
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Figure 3.8: Historical copulas extracted from: (a) Observed data vs. MIROC-GDDP
downscaled data; (b) Observed data vs. MIROC-LOCA downscaled data; and (c)
Observed data vs. MIROC-MACA downscaled data

LOCA, even the shape is deformed, which may partially explain why this combina-

tion leads to worse results than others. Another observation is that CCSM4-GDDP

is closer to the observation than CCSM4-LOCA model, but MIROC-GDDP is worse

than MIROC-LOCA model. This also indicates that different downscaling methods

can yield higher accuracy for a specific GCM. As for similarities, it can be observed

that the copula values are close when values are higher than 0.75, which corresponds

to a small region in the whole copula.

In summary, most copulas obtained from downscaled GCM results differ sig-
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nificantly from the one obtained from observed data. The inaccuracy of copula is

the major contributor to the inaccuracy of the extreme precipitation results from

these models.
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Figure 3.9: Historical copulas extracted from different periods of observed data.
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3.4.4 Improvement of Downscaling Results via Copula

3.4.4.1 Validation on Stationarity of Historical Copulas

As mentioned in the previous section, it is crucial to validate the assumption if

the historical copula stays stationary over a long period of time. Figure 3.9 shows

historical copulas from 1950 for each 5-year period obtained from observed data.

Although the amount of precipitation changes, this figure shows that the day-to-

day serial dependency stays mostly the same for the past 45 years from 1950 to

1995.

To further explore the amount of change in copulas quantitatively, the relative

difference between copula in each 5-year period and the overall 45-year copula is also

computed. The computation is based on NMAE and NRMSE as applied previously.

Table 3.5 presents the results. It can be observed that the variation of copulas in

different period is small. Therefore, it is appropriate to assume that the day-to-day

serial dependency is time-invariant with the projection timeframe.

Start Year 1950 1955 1960 1965 1970 1975 1980 1985 1990

NMAE 0.008 0.004 0.007 0.007 0.0004 0.004 0.0003 0.0003 0.008
NRMSE 0.066 0.047 0.066 0.066 0.002 0.046 0.001 0.001 0.065

Table 3.5: Normalized mean absolute error (NMAE) and normalized root-mean-
square error (NMRSE) between copulas from every five years and the overall copula

3.4.4.2 Assessment of the Improved Analysis

Similar to the previous section, the same assessment is also repeated on downscaled

GCMs with improved serial dependency. In addition, the NMAE and NRMSE are
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computed in the same manner over the same historic period. The improvement

ratio is further computed as the improvement in terms of NMAE and NRMSE. In

detail, denoting NMAE1, NRMSE1 as the relative error before improvement and

NMAE2, NRMSE2 as the relative error computed after applying the improvements

mentioned, improvement ratio is defined to be the ratio of these values respectively.

For example, if a downscaled GCM has NMAE decreased from NMAE1 = 0.6 to

NMAE2 = 0.3, and NRMSE decreased from 1.2 to 0.8, the improvement ratio of

NMAE is computed as 0.6
0.3

= 2, and the improvement ratio of NRMSE is computed

as 1.2
0.8

= 1.5.

Improvement ratio of NMAE (NRMSE) for all indices
Methods Max M2d R20mm CWD LDP0.5 LDP0.25

GDDP 8.13 (7.09) 1.44 (1.39) 2.06 (2.02) 2.7 (2.55) 3.99 (3.64) 7.94 (6.88)
LOCA 2.66 (2.53) 2.3 (2.11) 2.57 (2.41) 2.52 (2.32) 2.36 (2.3) 2.34 (2.18)
MACA 1.72 (1.75) 1.66 (1.58) 1.62 (1.57) 1.62 (1.57) 1.57 (1.57) 1.6 (1.6)

Table 3.6: Improvement ratio of the improved downscaling results in terms of two
error metrics: Normalized mean absolute error (NMAE) and normalized root-mean-
square error (NRMSE)

In Table 3.6, the improvement ratio for downscaled CCSM4 models, which

represent the best results after improvement. From the table, it can be concluded

that, by incorporating historical serial-dependency, the accuracy of different models

are increased ranging from 1.2× to 8×, depending on the combination of GCMs and

downscaling methods. For more than half of the model, at least 2× improvement

can be observed. This verifies the effectiveness of the method proposed. Table 3.7

and Table 3.8 shows the same error metrics for improved downscaling results after

applying the improvement described in this work. From the tables, one can see
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that for Max, M2d, and R20mm, the error stays roughly the same compared to

the results before the improvement. However, huge improvement can be found for

CWD, LDP0.5, and LDP0.25, where the events are more related to the dependency.

GCMs
Downscaling

Max M2d R20mm
Methods

CanESM2
GDDP 0.65 (0.78) 0.65 (0.79) 0.92 (0.98)
LOCA 0.44 (0.62) 0.47 (0.64) 0.66 (0.74)
MACA 0.37 (0.54) 0.38 (0.56) 0.40 (0.50)

CCSM4
GDDP 0.37 (0.51) 0.39 (0.52) 0.52 (0.62)
LOCA 0.45 (0.60) 0.46 (0.62) 0.66 (0.74)
MACA 0.39 (0.55) 0.39 (0.55) 0.40 (0.52)

CNRM
GDDP 0.42 (0.57) 0.43 (0.58) 0.59 (0.65)
LOCA 0.43 (0.59) 0.44 (0.61) 0.65 (0.72)
MACA 0.36 (0.51) 0.36 (0.50) 0.40 (0.49)

CSIRO
GDDP 0.43 (0.59) 0.43 (0.59) 0.70 (0.77)
LOCA 0.46 (0.59) 0.46 (0.63) 0.64 (0.71)
MACA 0.38 (0.53) 0.39 (0.55) 0.40 (0.48)

GFDL
GDDP 0.55 (0.70) 0.55 (0.72) 0.82 (0.88)
LOCA 0.45 (0.61) 0.46 (0.64) 0.64 (0.72)
MACA 0.39 (0.53) 0.41 (0.56) 0.4 (0.51)

MIROC
GDDP 0.64 (0.77) 0.65 (0.79) 0.91 (0.97)
LOCA 0.44 (0.61) 0.46 (0.63) 0.64 (0.72)
MACA 0.4 (0.56) 0.39 (0.55) 0.42 (0.53)

Table 3.7: Performance of 18 different downscaled GCMs in the context of extreme
precipitation using two error metrics after improvement: Normalized mean absolute
error (NMAE) and normalized root-mean-square error (NRMSE)

3.5 Discussions and Conclusions

Global warming has led to an increase of extreme precipitation in recent years,

which increases the risk of damage in various form. This chapter presents a complete

study of extreme precipitation analysis and future projection based on downscaled
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GCMs
Downscaling

CWD LDP0.5 LDP0.25
Methods

CanESM2
GDDP 0.19 (0.24) 0.15 (0.18) 0.16 (0.22)
LOCA 0.18 (0.23) 0.13 (0.16) 0.17 (0.23)
MACA 0.18 (0.25) 0.17 (0.21) 0.19 (0.25)

CCSM4
GDDP 0.21 (0.26) 0.28 (0.32) 0.29 (0.34)
LOCA 0.18 (0.23) 0.13 (0.16) 0.16 (0.22)
MACA 0.20 (0.25) 0.18 (0.23) 0.22 (0.27)

CNRM
GDDP 0.20 (0.24) 0.18 (0.23) 0.23 (0.28)
LOCA 0.18 (0.23) 0.13 (0.17) 0.18 (0.22)
MACA 0.18 (0.24) 0.18 (0.22) 0.21 (0.27)

CSIRO
GDDP 0.18 (0.23) 0.21 (0.25) 0.24 (0.28)
LOCA 0.18 (0.22) 0.14 (0.18) 0.18 (0.23)
MACA 0.18 (0.25) 0.16 (0.20) 0.2 (0.26)

GFDL
GDDP 0.18 (0.24) 0.17 (0.21) 0.22 (0.26)
LOCA 0.19 (0.24) 0.15 (0.18) 0.19 (0.24)
MACA 0.18 (0.24) 0.17 (0.21) 0.22 (0.27)

MIROC
GDDP 0.17 (0.22) 0.13 (0.17) 0.16 (0.21)
LOCA 0.17 (0.22) 0.11 (0.15) 0.17 (0.21)
MACA 0.18 (0.24) 0.17 (0.22) 0.22 (0.27)

Table 3.8: Performance of 18 different downscaled GCMs in the context of extreme
precipitation using two error metrics after improvement: Normalized mean absolute
error (NMAE) and normalized root-mean-square error (NRMSE)

Global Climate Models. It first assesses the accuracy of existing downscaled Global

Climate Models when used for extreme precipitation analysis. The results show that

existing models are not accurate for several extreme precipitation indices considered.

In order to explore ways to improve analysis accuracy, this work uses copulas to

separately study marginal distribution and day-to-day serial dependency. It shows

that the day-to-day serial dependency, represented as a copula, is the major cause

of inaccuracy.

Based on this, this work proposes a method to improve the accuracy of down-
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scaled GCMs when used for extreme precipitation projection. The main observation

is that although precipitation changes over years, the serial dependency between

days stays stationary. The results show that using copulas is an effective way to

incorporate serial dependency into downscaled Global Climate Models.
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Chapter 4: Extreme Precipitation Application: Machine Learning

and Intensity-Duration-Frequency Curves

4.1 Overview

Intensity-Duration-Frequency Curves are crucial in infrastructure design, but exist-

ing works of IDF curve projection are not capable of producing reliable IDF curves

especially for durations shorter than 12 hours. This chapter proposed a framework to

fill this gap with two important features: 1) it integrates the projection procedures

using machine learning to reduce the error; 2) it performs temporal downscaling

on the data to generate IDF curves for short duration. The results are validated

across two thousand stations across the US. The content of this chapter is based on

a paper published to Geosciences: Special Issue on Climate Prediction of Extreme

Events [117].

A method based on machine learning is proposed, which enables reliable IDF

curve projection with resolution as small as 30 minutes. See Appendix D for more

details on Machine Learning. The key observation is to adopt the idea of geograph-

ical downscaling to temporal downscaling of the data. To ensure high accuracy,

machine learning is used to automate and integrate the process, producing future
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IDF curves directly. In the next section, a technical discussion of the method is

presented. Then, this method is applied to study the IDF curves of four different

cities in the US. The trend of IDF curves is analyzed and summarized.

4.2 Background

4.2.1 Intensity–Duration–Frequency Curves

As discussed in the introduction section, IDF curves are fundamental to the design

of water infrastructures and drainage systems to make them resilient to extreme

precipitation and flash floods. However, it is a non-trivial task to obtain IDF curves

that reflect the intensity of extreme precipitation accurately. There are primarily

two approaches to compute IDF curves, each with different advantages.

The first method used to produce IDF curves is to make assumptions on the

precipitation distribution and then use mathematical tools to derive a formula for

the IDF curves [118]. This method has become a popular way to compute IDF

curves, and it is widely used in practice. Many prior works have explored what

types of distribution can be used to use to get a higher accuracy when this method

is applied to analyze IDF curves. One important family of distribution is the Gen-

eralized Extreme Value (GEV) distribution family. For example, Tfwala et al. [119]

assumed that the precipitation distribution for each time interval follows the GEV

distribution. Then, they computed the IDF curve based on the assumed distribu-

tion for each intensity and duration. Bougadis and Adamowski [120] studied scale

invariances for disaggregating daily rainfall to hourly rainfall based on the scaling
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of GEV. Blanchet et al. [121] developed a GEV simple-scaling model to correct ex-

tremes of aggregated hourly rainfall. The use of GEV assumes that the precipitation

levels over consecutive time intervals are independent of each other. This can be

guaranteed by, for example, using a subsampling method [122, 123].

The second method is based on empirical analysis. The empirical analysis of

an IDF curve directly makes assumptions about the formulas of IDF curves, which

are summarized from historical observations. These formulas usually come with two

or more degrees of freedom. Then, empirical results are gathered from historical

results to fit the above formulas and determine the parameters in the formulas.

There are many IDF empirical formulas, and some of the popular ones are listed

below:

I(t) =
a

(t+ c)n
(4.1)

I(t) =
a

tn + c
(4.2)

I(t, p) =
apm

(t+ c)n
. (4.3)

In the above equations, I represents the intensity of the precipitation, t represents

the duration, and p is the return period. Other parameters must be decided and

can vary depending on the time and location. Equation 4.1 was initially proposed

94



by Sherman [124] when studying precipitation in the Boston area. Equation 4.2 was

studied by Chow et al. [125]. Note that these two equations do not have a return

period as the input and thus can be used for a specific return period only. If more

than one of the IDF curves is needed, then multiple fitting using their respective

historical data is required.

The most widely used formula was initially proposed by Bernard [126] and is

shown in Equation 4.3. Different from Equations 4.1 and 4.2, it also incorporates

the return period and thus, needs one fitting to model all return periods. This

equation is based on the fact that the tail distribution of the intensity follows the

power law. When it comes to short durations, Haerter et al.[127] studied when

such assumption is true. They concluded that power law holds when the duration

is longer than 30 minutes. This study mainly focuses on durations longer than 30

minutes when Equation 4.3 is reliable. If using this equation for durations much

shorter than 30 minutes, a higher error is more likely to appear. The empirical ap-

proach has attracted much attention in the computing of IDF curves. For example,

Singh and Zhang [128] explored the use of Equation 4.3 for empirical analysis in

the context of urban drainage design. Jain and Pandey [129] reviewed numerous

empirical methods, including both Equation 4.1 and Equation 4.3; they also stud-

ied a copula-based method for IDF curve formation. Dar et al. [130] studied the

application of Equation 4.3 with fitted parameters to study various areas in India.
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4.2.2 Spatial Downscaling

Projecting future climate is a difficult task because it depends on the human activ-

ity level, which is highly unpredictable. Additionally, the global climate system is

complicated, and it is difficult to model all variables in the system. Therefore, future

projection of climate requires a significant amount of effort, which has led to the

formation of the Coupled Model Intercomparison Project (CMIP), where numerous

GCMs have been proposed. These models usually make a set of global simulations

that are openly available to download for each Representative Concentration Path-

way (RCP), and these simulations are one of the most reliable sources for the future

projection of climate. One major drawback of these GCM simulations is that they

are usually available on a daily basis and at a coarse spatial resolution, which limits

their usage to the study of local areas. Downscaling is a commonly used procedure

to incorporate localized spatial influence to the GCM simulation to obtain future

projections with high spatial resolution. One popular approach is dynamic down-

scaling, where a simulation of high resolution is performed on the regions of interest

to extrapolate details from global GCMs [99, 100, 101]. It is able to incorporate

physical principles into the analysis easily, but it is computationally intensive and

sensitive to bias.

Statistical downscaling is another popular approach for downscaling, which

views the downscaling process from a statistical perspective to find the relational

properties between global climate and local climate. Most existing statistical down-

scaling methods adopt an ad-hoc way to find the downscaling relationship. Existing
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statistical downscaling methods all follow a similar paradigm, as summarized below:

1. Find a parameterized model to abstract the downscaling relationship between

the global climate and local climate. The model is usually parameterized by

a set of values.

2. Use historical data to fit the model and find the parameters for the model.

These parameters are assumed not to change over time. Perform bias correc-

tion to the results using methods like the Constructed Analogue method [103].

3. Compute the local climate data using the model with fitted parameters and

the future global climate.

This paradigm has been used by many popular downscaling works, including the

Bias Corrected Constructed Analogue (BCCA) [103], the Multivariate Adaptive

Constructed Analogs (MACA) [51], LOCA [50, 131], and NEX-GDDP [49]. They

are mainly different in the way of bias correction. This study uses downscaled

GCM simulation results from the NEX-GDDP downscaling project to improve the

geographic resolution. Other downscaling methods and GCM simulations can be

used by the proposed method in a similar way.

4.3 Methodology

4.3.1 Overview

The main goal of this study was to compute precipitation intensity over a short

duration using only daily downscaled GCM simulation data by means of temporal
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downscaling. Because the complexity of temporal downscaling can be high and

that temporal data is not as abundant as spatial data, some extra procedures are

required. First, instead of obtaining downscaled hourly precipitation data for the

duration of study, the downscaling is designed such that it can directly output the

intensity of the precipitation for different lengths of time. This simplification hugely

eliminates unnecessary steps. To compute such a mapping from projected daily data

to the intensity of short durations, machine learning algorithms are adopted that

can perform non-linear learning efficiently. A summary of the comparison among

machine learning, spatial downscaling, and the proposed temporal downscaling is

provided in Table 4.1.

Method
Known Known Projection Projection
property target property target

Machine Train data Train data Test data Test data
Learning features label features label

Statistical Historical Historical Future GCM downscaled
downscaling GCM data downscaled data GCM data GCM data

Temporal Historical downscaled Historical Future downscaled Future
downscaling GCM daily data 15-minute intensity GCM daily data 15-minute intensity

Table 4.1: Comparison of machine learning, statistical downscaling, and the pro-
posed temporal downscaling.

All three procedures follow a similar sequence of steps, as follows:

1. Obtain some number of entries with both properties and targets. Taking

these entries as the input, compute a description of the relationship between

the entry properties and the targets.

2. Make the assumption that the relationship between properties and targets

holds for the projected entries.
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Figure 4.1: Overview of the proposed method

3. Use the above relationship as well as the properties for the projected entries,

and then compute the target value of the projected entries.

The method discussed in the following text also works for the three steps above but

in the context of short-duration intensity projection.

4.3.2 Detailed Steps

In the following, all steps of the proposed method are discussed in detail. In Fig-

ure 4.1, an overview of the procedure is illustrated.
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4.3.2.1 Step I: Historical Feature Selection

The first step is to select features for the use of machine learning training. Every

station represents a different data entry, and a set of features is extracted. The

source of data used to extract the feature is downscaled GCM simulation data,

which provides better a geographic resolution. In principle, it is possible to use the

downscaled GCM data directly as features; however, in this case, the dimensions of

the feature vector were too high for any machine learning algorithm to perform well.

To reduce the dimensions of the features without affecting the learning accuracy, a

set of features related to extreme precipitation and spatial information was selected.

First, the following seven features were computed across all years for each station.

1. One-day and two-day precipitation intensities of the events with return periods

of 2, 5, and 10 years.

2. Average daily precipitation.

The precipitation intensities are highly related to the short-duration intensities,

because of the power law. The average precipitation provides a baseline on the

average level of the precipitation.

Then, the average of the following 29 features across all years was computed

for each station.

3. Number of rainy days.

4. Top 20 heaviest daily precipitation amounts in descending order.
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5. Number of days with a daily precipitation of more than 5, 10, 15, 20, 30, 40,

50, and 60 mm.

The above three sets of features further describe some extra properties of the distri-

bution of extreme precipitation. For example, the top heaviest daily precipitation

provides more insights on how extreme precipitation tail distribution looks. The

number of days with precipitation more than certain levels sketches the general

trend of daily precipitation distribution.

Finally, the following 4 geographic features were extracted for each station.

6. Altitude of the location. This was obtained from the National Oceanic and

Atmospheric Administration Climate Data Online (NOAA CDO).

7. The coordinates of the location, that is, latitude and longitude.

8. Climate division of the location. Since there are 344 climate divisions for the

contiguous US [92], this feature had a value from 1 to 344. The use of climate

division is to reenforce the geographic proximity between stations.

All features above provide insights on relative distance between different stations.

The main intuition is that stations with geographic proximity should share similar

intensity curves. Due to this reason, stations from different regions of the US can

be distinguished by the model as their climate divisions are different. The above

features are popular in the analysis of extreme precipitation, including the US Cli-

mate Extremes Index (CEI) and the Expert Team on Climate Change Detection

and Indices (ETCCDI). They result in a feature vector with 40 dimensions for each
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station. Note that due to the use of machine learning, it will be fairly easy to add

more features in future research. This procedure needs to be performed for both

historical observation stations as well as the stations used for future projections.

4.3.2.2 Step II: Label Selection

This study uses the IDF formula based on Equation 4.3, where IDF curves for all

durations can be expressed as a single equation: for a given duration t and return

period p, the intensity I(t, p) is

I(t, p) =
apm

(t+ c)n
.

For most regression models, the output label is a scalar number, but Equation 4.3

has 4 parameters to be determined. To be able to determine all parameters, the

proposed method selects four different points on the IDF curve as the label (Y ).

In the proposed method, the four selected points are (1) return period 2 years,

duration 30 minutes, (2) return period 2 years, duration 120 minutes, (3) return

period 5 years, duration 30 minutes, and (4) return period 5 years, duration 120

minutes. The precipitation intensity for these four points needs to be extracted

from the training data. It is done by calculating the precipitation intensity of the

corresponding events from the historical data directly.

Note that choosing any 4 or more points can be used to fit Equation 4.3.

However, if points are selected to be separated as much as possible then the resulting

curves are more robust to potential noise in the data. The above four points are
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selected to be separated at the same time still located in short durations, which is

the focus on this study.

Another potential method for selecting ML labels is to select parameters in

Equation 4.3 directly, namely the values of a, c,m, n. In this potential method, all

four parameters would be optimized by independent ML models. However, this

can easily lead to local optimum parameter values that are far from being globally

accurate. Therefore, this method is not selected, and the method based on the

intensities of four selected points are used instead.

4.3.2.3 Step III: Model Selection

This step is used to select the ML model to learn the mapping from features to

labels. Due to the nature of the projection, the machine learning algorithm should

be able to work with continuous values, which means a regression algorithm is

desired. The most powerful repression algorithms in machine learning are the Deep

Neural Network (DNN) and the Gradient Boosting Tree (GBT) (see Appendix D).

However, the DNN usually requires a large amount of data because all layers of the

neural network need to be fitted. Given these considerations GBT is used as the

main regression algorithm in this study.

4.3.2.4 Step IV: Future Feature Selection

This step is similar to Step I except that the feature selection is performed on future

downscaled GCM data instead of the historical observation data.
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4.3.2.5 Step V: Model Training

For each observation station, the features and label values are collected and used to

train four models selected in previous steps. Each model can be used for projecting

one data point on the future IDF curve.

4.3.2.6 Step VI: Machine-Learning Projection

To perform ML projection using GBT, three ML hyperparameters need to be de-

cided: (1) the number of trees, which specifies the number of decision trees in the

model; (2) the learning rate, which specifies the amount of contribution from each

tree; and (3) the maximum depth, which specifies the maximum possible depth al-

lowed in each decision tree. These hyperparameters can be determined by grid search

with cross-validation, which is a common way for hyperparameter optimization and

is supported in many ML software packages. After hyperparameters are decided,

the model parameters can be decided as in the previous step. Note that due to the

use of hyperparameter optimization, the validation is not completely independent

to the data. There are numerous ways for validation to be conducted, which have

been discussed in prior works in the context of hydrologic applications [132]. This

work uses k-fold cross validation (see detailed discussion in Section 4.3.3). For each

combination of model parameters, the validation is applied to find the best model

parameters. After the model parameters have been selected and trained, projections

are conducted on them. As a result, four data points on the projected IDF curves

are obtained.

104



4.3.2.7 Step VII: IDF Curve Reconstruction

The last step is to use curve fitting to compute the IDF curves based on the four data

points obtained above. The fitting algorithm used in this work is the expectation-

maximization (EM) method with bounded conditions.

After step VI and the curve fitting as mentioned above, the parameters in

Equation 4.3 are determined. Now the precipitation intensity for other combinations

of return periods and durations can be computed from the equation directly. This

study assumes that all combinations of return periods and durations follow this

equation, which may not always be true. This assumption is validated in the next

section before it is applied in the analysis.

4.3.3 Validation

4.3.3.1 k-fold Cross Validation

A k-fold cross-validation method is applied, since it is widely used and has extensive

software support. The detailed steps are as follows:

1. Collect data from n stations. For a station, the data contains the downscaled

GCM simulations of daily precipitation data and locally observed precipitation

data with better resolution.

2. Partition n stations of data into k disjoint and equal-sized sets, namely S1, ..., Sk.

Repeat the following step (step 3) k times.

3. In the i-th repetition, use the i-th dataset as the test data (namely Si), and the
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remaining data are used as training data (namely {Sj}j 6=i). Use the training

data to train a machine learning model as described in the previous section

and apply it to compute an IDF curve for stations in Si. Calculate the error

based on the local precipitation testing data.

4. Find the average of all errors in all k iterations above.

4.3.3.2 Validation of IDF Curves

Validation of the fitted IDF curves is performed by comparing the fitted precipitation

intensity against the reference precipitation intensity provided from NOAA Atlas

14 [133], which provides the precipitation intensity for almost all states in the US.

The normalized root mean square error (NRMSE) metric and normalized mean

absolute error (NMAE) are used, both of which measure the goodness-of-fit between

the intensity from Atlas and the fitted ones. Similar metrics have been used to

measure accuracy in prior works. For example, Chai et al. [110] compared RMSE and

MAE when used for precipitation data and argued that both should be used when

reporting errors. However, RMSE and MAE tend to be biased on data points with

higher values. To avoid this bias, this study uses these metrics with normalization

where the relative differences are computed.

The definition of NRMSE is as follows: suppose Oi,p is the intensity of precipi-

tation with the time interval i and return period p in the observation; suppose Ei,p is

the same value computed from the analysis. For I = {0.5 hours, 1 hours, 2 hours}
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Figure 4.2: Geographic distribution of all observation stations used to train the
gradient boosting tree model. All data were obtained from the National Oceanic
and Atmospheric Administration Climate Data Online (NOAA CDO) [1].

and P = {2 years, 5 years, 10 years, 50 years},

NRMSE =

√√√√ 1

|I| × |P |
∑

i∈I,p∈P

(
Oi,p − Ei,p

Oi,p

)2

. (4.4)

The definition of NMAE is similar and can be computed as

NMAE =
1

|I| × |P |
∑

i∈I,p∈P

∣∣∣∣Oi,p − Ei,p
Oi,p

∣∣∣∣ . (4.5)

4.4 Analysis and Results

4.4.1 Data and Model Selection

Observation data were obtained from the data portal at the National Oceanic and

Atmospheric Administration Climate Data Online (NOAA CDO) [1]. They provide

historical year-round observations of data from 1970 to 2014 with a timescale of 15
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Station ID Name State Latitude Longitude

COOP:043093 Florence Lake California 37.27389 -118.97333
COOP:096879 Pearson Georgia 31.2928 -82.8422
COOP:177325 Rumford Maine 44.53083 -70.53722
COOP:234825 Lebanon Missouri 37.68502 -92.69388
COOP:410569 Bay City Texas 28.9798 -95.9749
COOP:253185 Genoa Nebraska 41.4513 -97.7644
COOP:024586 Keams Canyon Arizona 35.8109 -110.1932
COOP:447338 Rocky Mount Virginia 36.9769 -79.8961

Table 4.2: Information about the eight representative stations

minutes. Among all observation stations, only those with more than 25 years of

observation were selected. The spatial distribution of all stations selected is shown

in Figure 4.2. In total, 1936 stations were selected. In this work, the study of IDF

curve is performed on stations across the US so that there are enough data to train

the ML model with high accuracy. The proposed method is applicable to a local

region if enough data can be gathered to train a reliable model.

Reference precipitation intensity data used for validation were obtained from

NOAA Atlas 14 project [133], where precipitation intensity data were available

from all states except Washington, Oregon, Montana, Wyoming, and Idaho. These

reference precipitation intensities were estimated by NOAA and were consistent with

the actual precipitation intensity. More descriptions of the dataset can be found in

Appendix E.

The downscaled GCM simulation data were based on Community Climate

System Model 4 (CCSM4) with the NEX-GDDP downscaling method. The RCP

8.5 trajectory was extracted. The timescale of data was on a daily basis. The

historical data were collected from 1970 to 2014, and the future period was from
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2040 to 2099. The CCSM4 was developed by the National Center for Atmospheric

Research (NCAR) in the USA. It consists of four different models, each simulating

one component on the Earth’s atmosphere, ocean, land surface, and sea-ice; it also

includes one central coupler component. Note that the downscaled GCM simulation

results were used instead of the GCM results so that the obtained results had a better

spatial resolution. All downscaling data can be obtained from NASA website [134].

Since this study mainly focused on the methodology, only one downscaled GCM

result was used. Note that model-to-model variation can be high and can potential

influence the projection results.

The GBT models were trained based on data from 1936 stations. Eight repre-

sentative stations were selected to show the projection results. They were selected to

be spatially distributed across the US and have different IDF curve shapes. Details

of the stations are summarized in Table 4.2.

4.4.2 Validation and Historical IDF curves

Figure 4.3 shows the historical IDF curves for all eight representative stations. There

are three sets of data shown in each figure:

1. The ◦-shape data points represent precipitation intensity extracted from the

historical data from NOAA CDO, with intensities of 30, 60, 90, and 120 min-

utes and return periods of 2 and 5 years.

2. The solid lines are IDF curves fitted based on the above observed data using

Equation 4.3. This equation was used for all return periods, and four IDF
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Figure 4.3: Historical Intensity–Duration–Frequency (IDF) curves. “◦” are observed intensities;
“×” are Atlas 14 intensities; All solid lines were fitted using the observation intensity (in ◦) and
plotted for high return periods.
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curves were plotted for return periods of 2, 5, 10, and 50 years.

3. The ×-shape data points represent the precipitation intensity obtained from

NOAA Atlas 14.

Since short-duration intensity is the focus of this study, duration was plotted from

30 minutes up to 120 minutes. The figure indicates that the shape of the IDF curves

greatly depends on the location of the observation. Nevertheless, it is shown that

the IDF curve for all figures fits well with the observed data and that the obtained

IDF curves are consistent with the Atlas 14 precipitation intensity.

Each individual figure represents the historical precipitation intensity level

in each region. The observation stations at Pearson, GA and Bay City, TX have

the most extreme short-duration precipitation intensity, and with a 50-year return

period, their 30-minute intensity could be as high as 150 mm/hr. Keams Canyon,

AZ has a much lower level of precipitation intensity. Their 50-year return period

30-minute intensity is about 50 mm/hr.

To further quantitatively validate this approach, a comparison between fitted

IDF curve and the IDF data from NOAA Atlas 14 was performed. A relative differ-

ence ratio was computed as follows, where positive values represent overestimates

and negative values represent underestimates.

Difference Ratio =
Fitted intensity − Atlas intensity

Atlas intensity
(4.6)

Table 4.3 summarizes the computed ratios for all eight stations picked in this study.
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Duration Return Period
CA GA ME MO TX AZ NE VA(minutes) (year)

30 2 21% -1% -12% 2% -12% 3% 0% -12%
30 5 10% 2% -14% 4% -10% -2% 0% -10%
30 10 6% 7% -13% 7% -6% -5% 0% -6%
30 50 9% 23% -5% 19% 6% -4% 5% 11%

60 2 1% 1% -16% 2% -15% -3% -3% -7%
60 5 -7% 6% -18% 4% -14% -9% -3% -8%
60 10 -10% 10% -18% 5% -11% -12% -4% -5%
60 50 -8% 26% -11% 15% 0% -11% 0% 8%

120 2 -8% -10% -23% -6% -19% -14% -3% -7%
120 5 -14% -6% -23% -5% -20% -19% -4% -8%
120 10 -15% -2% -22% -3% -19% -21% -4% -6%
120 50 -13% 11% -13% 4% -12% -21% -2% 4%

Table 4.3: Relative difference between fitted IDF intensity and NOAA Atlas 14
intensity.

It can be observed from the table that most fitted intensity values are within 15% of

the Atlas 14 intensity values. Even for cases where a higher difference is observed,

they are still within the 25% of the difference. It is also observed that the difference

ratios for 120-minutes duration is higher than shorter durations in general. Because

the intensities for 120-minutes are much smaller than shorter durations, the resulting

difference ratios becomes larger given the same error in intensity. TX and ME have

the largest error where many intensities are below the Atlas 14 intensities, resulting

in negative difference ratios. For these locations, the observed intensities are also

much less than the Atlas 14 intensities. This is believed to be the reason that causes

a larger error for these locations.

Table 4.4 shows the goodness-of-fit between the IDF curve fitted from the

observations and the intensity data from NOAA Atlas 14. As discussed in Sec-

tion 4.3.3, NRMSE and NMAE were used. Smaller values of NRMSE and NMAE
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CA GA ME MO TX AZ NE VA

NRMSE 0.117 0.121 0.170 0.085 0.137 0.033 0.127 0.084
NMAE 0.107 0.092 0.163 0.068 0.124 0.028 0.108 0.081

Table 4.4: NRMSE and NMAE between fitted IDF intensity and the NOAA Atlas
14 intensity.

means higher accuracy. The table shows that the fitting errors are relatively small

compared to the actual values of intensity. In Table 4.5, 44 stations from different

states in the US are examined in a similar way with NRMSE and NMAE presented.

NOAA Atlas 14 data from 5 states are not available and thus not included. AK

is also not included due to lack of data. This table shows that even across a wide

selection of areas, the error is relatively small with an average NRMSE and NMAE

about 0.1.

4.4.3 Projection Results

Future precipitation intensity was projected following the steps described in the

previous section. The projected results are shown in Figure 4.4 for years 2040 to

2069 and in Figure 4.5 for years 2070 to 2099. The historical IDF curves are also

shown with dotted lines for comparison. These figures show that the precipitation

intensities are projected to increase in all locations, although the amount of increase

is different. In more detail, Bay City, TX, and Pearson, GA are projected to suf-

fer from greater increases in precipitation intensity. The intensity will increase by

around 50 mm/hour. The increases in Florence Lake, CA, and Keams Canyon, AZ

are projected to be the smallest.
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Station Location State NRMSE NMAE

010140 ALBERTA AL 0.109 0.077
034839 MILLWOOD DAM AR 0.122 0.11
026119 ORACLE 2 SE AZ 0.057 0.051
048025 SAWYERS BAR RANGER STATION CA 0.145 0.117
052790 EVERGREEN CO 0.111 0.104
066942 ROCKVILLE CT 0.09 0.077
076410 NEWARK UNIVERSITY FARM DE 0.142 0.12
083538 GRACEVILLE 1 SW FL 0.067 0.062
093312 FARGO GA 0.133 0.117
510055 AHUIMANU LOOP HI 0.061 0.053
130608 BELLEVUE L AND D 12 IA 0.087 0.075
114355 ILLINOIS CITY DAM 16 IL 0.064 0.06
120830 BLUFFTON 6 N IN 0.149 0.128
146024 ONAGA 12 SSW KS 0.049 0.04
153929 HODGENVILLE LINCOLN KY 0.169 0.12
161411 CALHOUN RES STATION LA 0.144 0.134
190998 BUFFUMVILLE LAKE MA 0.182 0.174
180700 BELTSVILLE MD 0.11 0.078
170273 AUGUSTA ME 0.048 0.039
200662 BELLAIRE MI 0.06 0.054
218323 TRACY MN 0.111 0.107
230204 APPLETON CITY MO 0.076 0.065
227276 RALEIGH 6 N MS 0.052 0.045
311241 BURLINGTON NC 0.126 0.118
325993 MINOT EXPERIMENT STATION ND 0.048 0.044
250075 ALBION 7 W NE 0.107 0.089
273182 FRANKLIN FALLS DAM NH 0.085 0.075
281351 CAPE MAY 2 NW NJ 0.155 0.141
292700 EAGLE NEST NM 0.215 0.207
264698 LOVELOCK NV 0.2 0.193
309442 WHITNEY POINT DAM NY 0.058 0.049
332272 DOVER DAM OH 0.103 0.097
340179 ALTUS IRIG RES STATION OK 0.07 0.062
369367 WAYNESBURG 1 E PA 0.136 0.126
375215 NEWPORT ROSE RI 0.209 0.208
383468 GEORGETOWN 2 E SC 0.158 0.146
391452 CARPENTER 4 NNE SD 0.066 0.06
406170 MONTEREY TN 0.157 0.129
414679 JUSTIN TX 0.105 0.077
420086 ALTON UT 0.14 0.123
446475 PAINTER 2 W VA 0.108 0.1
433914 HIGHGATE FALLS VT 0.101 0.09
473038 GENOA DAM 8 WI 0.049 0.044
463238 FREEMANSBURG 5 NE WV 0.096 0.074

Average 0.110 0.097

Table 4.5: NRMSE and NMAE between fitted IDF intensity and the NOAA Atlas 14 intensity.

114



2-year, Projected
2-year, Historical

5-year, Projected
5-year, Historical

10-year, Projected
10-year, Historical

50-year, Projected
50-year, Historical

30 45 60 75 90 105 120
Duration (minutes)

0

50

100

150

200

In
te

ns
ity

 (m
m

/h
ou

r)

(a) Florence Lake, CA

30 45 60 75 90 105 120
Duration (minutes)

0

50

100

150

200

In
te

ns
ity

 (m
m

/h
ou

r)

(b) Pearson, GA

30 45 60 75 90 105 120
Duration (minutes)

0

50

100

150

200

In
te

ns
ity

 (m
m

/h
ou

r)

(c) Rumford, ME

30 45 60 75 90 105 120
Duration (minutes)

0

50

100

150

200

In
te

ns
ity

 (m
m

/h
ou

r)

(d) Lebanon, MO

30 45 60 75 90 105 120
Duration (minutes)

0

50

100

150

200

In
te

ns
ity

 (m
m

/h
ou

r)

(e) Bay City, TX

30 45 60 75 90 105 120
Duration (minutes)

0

50

100

150

200

In
te

ns
ity

 (m
m

/h
ou

r)

(f) Genoa, NE

30 45 60 75 90 105 120
Duration (minutes)

0

50

100

150

200

In
te

ns
ity

 (m
m

/h
ou

r)

(g) Keams Canyon, AZ

30 45 60 75 90 105 120
Duration (minutes)

0

50

100

150

200

In
te

ns
ity

 (m
m

/h
ou

r)

(h) Rocky Mount, VA

Figure 4.4: Projected IDF curves with a time period from 2040 to 2069. Dotted
lines are for historical IDF curves; solid lines are for projected IDF curves.
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Figure 4.5: Projected IDF curves with a time period from 2070 to 2099. Dotted
lines are for historical IDF curves; solid lines are for projected IDF curves.
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The increase ratio is further calculated based on the projection, which demon-

strates the relative amount of increase across short durations. These ratios are

shown in Table 4.6. From the table, it is observed that the ratio of increase is higher

for locations with historically higher precipitation intensity (e.g., GA, TX, MO).

The highest ratio of increase is 23% for the selected representative stations. The

ratio of increase in the US can be even higher than these selected stations, which is

an interesting future work. It means that locations that suffers the most from the

damage of extreme precipitation will witness even more extreme precipitation in the

future, possibly because locations with higher intensities will be more vulnerable to

climate change. The ratios are computed following the equation, as the average of

all ratios at different locations on the IDF curves.

ratio =
1

|I| × |P |
×

∑
i∈I,p∈P

Projectioni,p
Historicali,p

(4.7)

where I = {30minutes, 1 hours, 2 hours} and P = {2 years, 5 years, 10 years, 50 years}.

Location CA GA ME MO TX AZ NE VA

Ratio of Increase (2040–2069) 9% 17% 11% 13% 20% 13% 7% 10%
Ratio of Increase (2070–2099) 13% 21% 16% 18% 23% 16% 9% 13%

Table 4.6: Ratio of increase for the projected IDF curves for future periods based
on downscaled GDDP GCM results using the CCSM4 downscaling method.
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4.4.4 Intensity Analysis for a 500-year Return Period

Figure 4.6 shows the historical and projection results when the return period is 500

years. It can be observed that the relative increase is not as high as values for a

smaller return period, but the absolute difference is higher.

4.5 Conclusion

The expected precipitation intensity of short durations significantly affects the de-

sign of drainage systems. This work proposed an alternative method to improve the

projection of IDF curves for short durations. The method is based on a temporal

downscaling approach, which produces information for short durations based on the

information from long durations. In more detail, a machine-learning based approach

is used, where daily precipitation downscaled GCM data are used as feature values,

and the precipitation intensity is used as the label values. By obtaining multiple

intensity points, future IDF curves are projected with different duration and return

period. One caveat of this method is the use of IDF equation to derive precipita-

tion intensity, where it is assumed that the precipitation intensity of different return

periods and durations follow some mathematical equation. This should always be

validated first before used.

By using this method, downscaled GCM simulation data obtained from NASA

NEX-GDDP project were used for future IDF curve projection. The historical pre-

cipitation intensity was obtained from NOAA CDO 15-minute precipitation observed

data. The data and IDF formula were further validated based on eight stations
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across the US. By comparing the fitted precipitation intensity against the Atlas 14

intensity, high accuracy was found. The projection results show that an increase in

precipitation intensity of 10% to 20% may be observed in the next few decades.
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Figure 4.6: IDF curve for 500-year return period. Three curves are for historical,
2040 to 2069, and 2070 to 2099.
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Chapter 5: Conclusions and Future Directions

5.1 Summary of Contribution

This dissertation presents a series of multi-discipline research, using state-of-the-

art mathematical, statistical, and machine-learning technologies to solve important

research questions in extreme precipitation projections. The results of this disserta-

tion reconfirm the increasing trend of extreme precipitation and provide improved

projection of future extreme precipitation.

5.1.1 Improving Extreme Precipitation Modeling for Better Serial

Dependency using Markov Chains

In Chapter 2, an analytical method based on the Markov Chain and dynamic opti-

mization was proposed to incorporate dependency between different days and non-

stationarity. The method assumes that the precipitation in each day is a random

variable where the distribution depends on the precipitation value of the previous

day. The dependency is modeled as a Markov Chain, where different states rep-

resent different precipitation status. The whole precipitation process can then be

described with the help of the Gamma distribution. The analytical framework is
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mostly based on dynamic optimization and Monte Carlo simulation, where the first

method can be used to derive the exact distribution mathematically, and the second

method can be used to find highly accurate approximation for complicated events.

Such a method is able to analyze extreme precipitation events, such as amount of

consecutive precipitation. The validation is performed by analyzing the precipita-

tion distribution of various events for three cities in the US, where in all cities a

high accuracy is obtained. After validating the results based on three areas of the

US, spanning more than five decades, it is concluded that this method can improve

the analysis result significantly.

Many prior works with a similar goal use a GEV-based method, which can be

limited in the types of events that they can analyze. Furthermore, independence

assumption is indeed so that GEV analysis can be applied. Compared to these works,

the new method proposed in this chapter is more flexible since it can analyze a wider

set of events easily. The required assumption of the analysis is Markov assumptions,

which are validated rigorously before being used. Therefore, the methods proposed

in this chapter can be a good complementary analysis to GEV in many situations.

5.1.2 Improving Extreme Precipitation Projection based on Down-

scaled GCM using Copulas

Chapter 3 studies extreme precipitation projection on local areas. Most existing

methods for future climate projections are based on GCM or downscaled GCM sim-

ulations, which are accurate for average-case precipitation. However, the accuracy
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for extreme-case precipitation has not been studied thoroughly. This chapter sys-

temically studies the performance of different downscaled GCM simulations in the

context of extreme precipitation. The main method used in this study is based on

copulas, which make it possible to split the marginal distribution and the interde-

pendency of two correlated random variables. By using a bivariate copula, historical

observed marginal distribution and copula are compared against ones obtained from

the downscaled GCM simulations. It is then observed that, although the marginal

distributions are similar, there is a significant difference between observed copulas

and downscaled GCM copulas, which cause the analysis based on downscaled GCM

inaccurate. To improve the accuracy for downscaled GCM simulations, another fea-

ture from the copula is used, where historical copulas are extracted and combined

with future marginal distribution. This produces a new distribution for future pre-

cipitation with improved reliability. The results are validated in 18 combinations of

downscaled GCM models and improved projection results are provided for the next

century.

This work proposed a novel use of copula in extreme precipitation downscaling.

By using copula to decompose the marginal distribution of the daily precipitation

and the interdependency, this work is able to reduce the downscaling error signif-

icantly especially when used for extreme precipitation analysis. The observation

that interdependency of daily precipitation stays mostly stable while the marginal

distribution is becoming more extreme can be of high value to future research on

understanding extreme precipitation.
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5.1.3 Improving Future Intensity-Duration-Frequency Curve Projec-

tion for Short Periods using Machine Learning

Chapter 4 studies how to perform future projections of IDF curves, especially for

short durations. Most prior works use GCM or downscaled GCM simulations to

compute IDF curves, but these data are provided only on a daily basis for many

recent downscaling methods, including NASA’s openNEX project. Projecting IDF

curves for short periods, such as one hour, using daily data can cause huge error

due to the exponential tail of an IDF curve. Inspired by geographic downscaling,

this chapter presents a method for temporal downscaling that can map precipitation

data for long periods to ones for short periods. By further incorporating machine-

learning, a high accuracy can be achieved. In more detail, the method computes

a feature vector for each station and computes the precipitation intensity for each

station. A machine-learning algorithm is used to model the feature-label relationship

so that future precipitation intensity can be learned directly using future feature

vectors. With the use of an advanced machine-learning algorithm, a high accuracy

can be obtained. The IDF curve for future periods is projected in eight cities in the

US, which are also validated with NOAA Atlas 14 intensity.

Many existing works on IDF curve projection considering climate change are

focused on long-duration precipitation with a duration more than a day. These

results cannot be directly used for short-duration projection because almost all GCM

simulation data provides only daily results. This work provides novel methods based

on ML to solve this problem. The main idea is to perform a temporal downscaling
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and directly use them to obtain precipitation intensities for short durations. This

idea sheds light on better approaches for future extreme IDF curve projections.

5.2 Future Directions

There are many interesting future directions following the results from this disser-

tation:

1. This dissertation mainly focuses on extreme precipitation, but the method

used in this study can be applied to other extreme climate conditions with

ease. Notably, it is believed that more complicated analysis taking multiple

climate events (e.g., precipitation and wind speed) into consideration is also

feasible using the method from this dissertation.

2. Correlation and dependency analysis can also be used to study climate events

and social events. By using copulas, it is possible to explore the risk of climate

change to real life by considering, for example, how car accidents have been

affected by the increase in extreme precipitation.

3. Due to the need of short period precipitation data, a useful and important

future direction is to perform extensive temporal downscaling for future GCM

projection results with high reliability so that IDF curve computation for short

periods can be made easier.

4. The study of extreme precipitation presented in this study mostly focuses on

the accuracy for each station without considering too much about geographic
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consistency. Future work should explore the level of geographic consistency

that the methods provide and how to improve it without reducing the accuracy

per station.
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Appendix A: Gamma Distribution

Gamma distribution is one of the most popularly used distributions to model daily

precipitation [91, 135]. It can be viewed as a general form of Erlang distribution,

which represents the sum of a set of independent exponential distributions. The

probabilistic density function of gamma distribution is

f(x) =
1

Γ(α)

(
x

β

)α−1
e−

x
β (A.1)

where α and β are shape and scale parameters. Note that gamma distribution

cannot take zero values. Therefore, when used to model daily precipitation, days

with no precipitation cannot be included in the distribution.
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Appendix B: Markov Chain Model

Markov chain model is a mathematical tool used to model how a sequence of events

are dependent to each other. There are mainly three main components in a Markov

chain model: 1) the state space; 2) the transitioning relation between different states;

3) the initial state distribution.

Let X1, . . . , Xn is a sequence of events that can be dependent to each other. In

general it is difficult to analyze them if the dependency can be arbitrary. However,

in many cases, the dependency relationship between a sequence of random variables

are regular. In particular, for time-series random variables, the event happening at

time i only depends on the events happened before i, that is to say, Xi only depends

on X1, . . . , Xi−1. Further, such dependency can often be memoryless, that is Xi

only depends on k previous events. If a sequence of events satisfy these conditions,

it is called as a Markov Process and the underlying sequence of events is called a

Markov Chain. Mathematically speaking,

Pr{Xi|X1, . . . , Xi−1} = Pr{Xi|X1, . . . , Xi−k+1}

The state space of a Markov chain can be viewed as a finite set of labels each

corresponds to some concrete events in the system being analyzed. The transiting
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relationship describes how one can move from one state to another state in the

next time-step. One important assumption in the Markov chain model is that

the transition of states only depends on a limited number of prior states. The

transitioning probability and therefore be viewed as a function of the current state

and the prior states. When Xi can only take values from a finite set, such a Markov

Chain is said to have a finite state space. Markov Chain has extensive applications

in reality because of its ability to model dependency relationships.
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Appendix C: Copula

Copula is a mathematical concept used to model the interdependency between two

random variables. Assume that there are d random variables, namely X1, . . . , Xd,

with marginal cumulative distribution functions (CDFs) F1(·), . . . , Fd(·), the joint

CDF of these d random variables are defined to be

F (x1, . . . , xd) = Pr(X1 ≤ x1, . . . , Xd ≤ xd) (C.1)

Given the above, the marginal CDF of each random variable Xi can be written as

Fi(xi) = Pr(Xi ≤ xi) =

∫ ∞
−∞

. . .

∫ ∞
−∞

F (x1, . . . , xd)dx1 . . . dxi−1dxi+1 . . . dxd (C.2)

According to the probability integral transform, for any random variable X with

CDF FX(·), it is always true that FX(X) follows a uniform distribution between 0

and 1. A copula of d random variables X1, . . . , Xd is defined as

C(u1, . . . , ud) ≡ Pr
(
X1 ≤ F−11 (u1), . . . , Xd ≤ F−1d (ud)

)
(C.3)
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Applying probability integral transform, it can be further simplified:

C(u1, . . . , ud) = Pr (F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud)

= Pr (U1 ≤ u1, . . . , Ud ≤ ud)

(C.4)

Here, Ui is integral transformed random variables of Xi following a uniform distri-

bution between 0 and 1, and that ui ∈ [0, 1] for each i ∈ {1, . . . , d}.

According to Sklar’s theorem [136], one important property of copulas is that

the copula function C(·), together with marginal distributions F1(·), . . . , Fd(·),

completely describe the joint distribution of a set of random variables. That is,

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (C.5)

Since marginal distributions do not describe any dependency or correlation, it is

the copula function that contains all dependency information. Copula has been

important in understanding dependency of random variables because copulas are

not related to the distributions themselves but only how distributions are correlated.

For bivariate cases, the above equation can be simplified as follows:

F (x1, x1) = C(F1(x1), F2(x2)) (C.6)

Bivariate copulas can be presented using two-dimensional contour figures. For

example, Figure C.1 shows the 3D plot and corresponding contour plot for the same

copula. The maximum value is 1, which appears at (1, 1). Since copula can take
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values from 0 to 1, contour lines are plotted for 0.15, 0.3, 0.45, 0.6, 0.75, 0.9.
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Figure C.1: Illustration of a bivariate copula function: (a) Contour plot; (b) Three-
dimensional plot

C.1 Archimedean Copulas

Archimedean copulas a class of copulas that are useful in practice. Intuitively,

Archimedean copulas are highly symmetric and have explicitly formulas with only

one degree of freedom. This typically means that the shape of the copula is fixed and

the strength of the copula can be easily tuned using this single parameter, and thus

quantify the dependency beyond simple linear dependencies. Popular Archimedean

copulas include Gumbel copula, Clayton copula and so on [137, 138, 139].

C.2 Empirical Copulas

Archimedean copulas may not always be applicable to all applications due to, for

example, 1) all Archimedean copula models are parametric, but there may not be
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enough data for a reliable fitting to obtain the parameter; and 2) the dependency

between realistic random variables can be irregular and thus causes a high error if

using these popular copula models.

To overcome the above difficulties, an empirical copula can be used instead.

Empirical copulas are nonparametric and can be computed directly using samples

drawn from the joint distribution. In more detail, the empirical marginal distribu-

tion of n pairs of first and the second random variables can be computed as follows

respectively

F1(x) =
1

n− 1

n−1∑
i=1

I (Xi ≤ x)

F2(x) =
1

n− 1

n∑
i=2

I (Xi ≤ x)

(C.7)

In the above equations, I(·) is an indicator random variable that has value 1 if the

condition inside holds, and 0 otherwise. For example, I (Xi ≤ x) is 1 if Xi ≤ x is

true, and 0 otherwise. The summation counts the number of days with precipitation

less than x in the first n− 1 days.

When n is reasonably large, both of them can be approximated using the same

CDF, namely F () as follows:

F1(x) ≈ F2(x) ≈ F (x) =
1

n

n∑
i=1

I (Xi ≤ x) (C.8)

Now the empirical copula can be computed following the discrete version of proba-
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bility integral transform by applying Eq. C.4:

C(u1, u2) =
1

n− 1

n−1∑
i=1

I (F1(Xi) ≤ u1, F2(Xi+1) ≤ u2)

≈ 1

n− 1

n−1∑
i=1

I (F (Xi) ≤ u1, F (Xi+1) ≤ u2)

(C.9)

Although the above empirical copula is nonparametric, the computation cost can

be much higher than a direct fitting to some formulas.
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Appendix D: Machine Learning

Machine learning techniques have been mostly developed in the field of statistics

and computer sciences as ways to learn specific inherent relational properties of the

data without explicitly describing the details of the relationship.

Supervised machine learning is one kind of machine learning algorithm. Such

algorithms can learn a relational property from one dataset and then apply the re-

lation to other datasets to predict how the data should look given the predicted

relation. These algorithms have been used in many related works on studying pre-

cipitation. For example, Foresti et al. [140] used neural networks to model extreme

precipitation; A survey by Vandal et al. [141] used machine learning for statistical

downscaling.

A supervised machine learning algorithm usually uses labeled data as the input

and trains a model from it. This model can be used to predict the label of some

unlabeled data. There are four concepts associated with any supervised machine

learning algorithm:

• Features. Feature (X) refers to the properties of the data that are known for

the training dataset and projection datasets.

• Label. Label (Y) refers to the property that is only known for the training
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dataset and is unknown in the projection dataset. The goal is to predict the

label for projection data using their features.

• Training phase. This is a procedure where a set of data is available, such

that both features and labels are given for each data entry. The training phase

takes these data entries as input and produces a compact description, namely

the ML model, which describes the input–output relationship.

• Prediction phase. This is a procedure where a set of data, namely the

testing data, is given but with features without labels only. The procedure

also takes the model obtained above as input and outputs a label for each

entry of the training data.

A machine learning model is said to be good if the predicted labels are consistent

with their actual values. The task of a supervised machine learning algorithm is to

determine the labels of all data in the testing set by using information from the train-

ing dataset. Depending on the nature of the problem and the structure of the data,

some machine learning algorithms can be more useful than others. State-of-the-art

supervised machine learning algorithms include the supported vector machine, the

gradient boosting tree, the deep neural networks, etc.
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Appendix E: Dataset Description

E.1 Precipitation Observation Dataset

In Chapter 2, 3 and 4, historical precipitation data with different range, duration,

location are used. The Climate Data Online (CDO) platform maintains global

historical weather and climate data (accessible at [1]).

The data are categorized into temperature, precipitation and wind data. These

data are recorded with different durations, including hourly, daily, monthly, seasonal,

and yearly data. Two different durations are used depending on the research focus

in different chapters: observed daily precipitation data are used in Chapter 2 and 3;

observed 15-minutes precipitation data are used in Chapter 4. The variables used in

this research include station id, location information, date and precipitation values.

The data can be downloaded in comma separated values (.csv) file , which can

then be processed using different softwares.

E.2 Downscaled Global Climate Model Dataset

In Chapter 3 and Chapter 4, three sets of publicly accessible downscaled GCM

datasets are used. The Climate Model Data Services (CDS) holds NEX-GDDP
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dataset, which can be accessed at [134]. The US Geological Survey (USGS) Geo Data

Portal holds various downscaling datasets including LOCA and MACA datasets

(accessible at [142]).

Generally, all three downscaled dataset contains outputs from various down-

scaled GCMs of CMIP5. The coverage varies with different spatial resolutions.

The datasets provide results for historical period, and future projection period with

two scenarios (RCP 4.5 and 8.5). Basic information and differences of these three

datasets are summarized in Table E.1.

Data properties GDDP 1 LOCA 2 MACA 3

Historical period 1950 - 2005 1950 - 2005 1950 - 2005
Projection period 2006 - 2100 2006 - 2100 2006 - 2100
Future scenarios RCP 4.5, 8.5 RCP 4.5, 8.5 RCP 4.5, 8.5
Source of models CMIP5 CMIP5 CMIP5
Number of models 21 32 20
Spatial resolution 25 km 6.25 km 4 km
Coverage the whole globe the North America Conterminous USA

1 GDDP: NASA Earth Exchange Global Daily Downscaled Projections
2 LOCA: Localized Constructed Analogs
3 MACA: Multivariate Adaptive Constructed Analogs

Table E.1: Basic information of three downscaled GCM datasets

All three datasets include the following variables:

• pr - Average daily precipitation amount at surface (units: kg/m2/s)

• tasmax - Maximum daily air temperature near surface

• tasmin - Minimum daily air temperature near surface
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E.3 NOAA Atlas 14 Dataset

In Chapter 4, NOAA Atlas 14 dataset is used for comparison. NOAA’s National

Weather Service maintains data for Atlas 14 (accessible at [133]). The dataset

provides precipitation frequency estimates for areas across the US. However, five

states are not available currently: Washington, Oregon, Montana, Wyoming, and

Idaho. This dataset is prepared by NOAA and is believed to be very reliable and

accurate.
The precipitation frequency estimates from the dataset are based on frequency

analysis of partial duration series. For each station, the duration ranges from 5
minutes to 60 days, while the return period ranges from 1 year to 1000 years.
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