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This dissertation improves existing Bayesian statistical methodologies and ap-

plies these improvements to a variety of important public policy questions. The

manuscript is divided into six chapters. The first chapter provides an overview

of the various chapters of the dissertation. The second chapter improves existing

Bayesian binary logistic regression methodologies using polynomial expansions as an

alternative to existing Markov Chain Monte Carlo (MCMC) methods. Our improve-

ments make the estimation technique quite useful for a variety of applications. We

also demonstrate the methodology to be considerably faster than existing MCMC

methods. These computational gains are quite useful for models analyzing large

data sets involving high-dimensional parameter spaces. We apply this methodology

to a child poverty data set to analyze the potential causes of child poverty. The next

chapter improves upon a well-known technique in semiparametric modeling known

as density ratio estimation. This methodology is useful in principle; however, it

suffers from one primary limitation - The technique has thus far been incapable



of modeling individual-level heterogeneity. Modeling heterogeneity is important as

there is often no a priori reason to believe that different individuals (or observations)

in a data set will behave in an identical manner. We ameliorate this limitation in

the third chapter of this dissertation by adapting density ratio estimation methods

to accommodate individual-level heterogeneity. We apply this new methodology to

an analysis of the efficacy of medical malpractice reform across the country. In the

fourth chapter of this dissertation, we shift our focus toward improving Bayesian

credible interval estimation via semiparametric density ratio estimation. We do so

by applying an innovative adaptation of the methodology, known as out of sample

fusion, to posterior samples from a hierarchical Bayesian linear model looking at

the efficacy of the welfare reform of the 1990s. In the fifth chapter, we extend the

application of this methodology to credible interval estimation of a hierarchical gen-

eralized linear model used for analyzing terrorism data in a number of major conflicts

across the globe. We use our results to offer some prescriptive policy suggestions

regarding counterterrorism policy. The final chapter concludes the dissertation and

offers a number of suggestions for further research. We emphasize that the modeling

contributions presented in this dissertation are useful in myriads of other applied

problems beyond just the public policy applications presented here.
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Chapter 1: Introduction

1.1 Introduction

In public policy research, questions abound about the direction of our country.

In recent years, rigorous statistical analysis has been a useful tool for answering many

of these questions [42]. This dissertation looks at a number of such policy questions

improving existing statistical methodologies in the process.

For example, in our next chapter, we look at the determinants of child poverty

and improve existing Bayesian estimation techniques to do so. Understanding the

root causes of poverty is a fundamental question that has consistently plagued policy

researchers for decades. With nearly $16 trillion spent on federal welfare programs

since President Lyndon Johnson began his War on Poverty and with the Obama

Administration expected to spend over another $10 trillion over the course of the

next decade, millions of American children continue to live in poverty [131]. Any

meaningful policy proposals should be based on addressing the causes of poverty

and not just the apparent symptoms.

Although a number of studies have attempted to identify these causes, no

studies, to our knowledge, have done so including individual-level heterogeneity in

the associated statistical models. Incorporating heterogeneity is very important as

different families will almost surely respond differently to potential causes. Unfor-



tunately, however, for the binary logistic regression models typically called upon to

help answer this question, positing a distribution for heterogeneity does not really

allow for closed-form inferences. As a result, researchers often have to resort to

numerical techniques such as Markov Chain Monte Carlo (MCMC) methods to es-

timate the associated models. These methods can be difficult and time consuming

to obtain convergence, particularly for large data sets.

We address this issue in Chapter 2 by presenting an alternative Bayesian es-

timation technique for binary logistic regression using polynomial expansions that

allows for closed form inferences, enabling researchers to make direct inferences

about the population. Miller, Bradlow, and Dayaratna (2006) also presented a sim-

ilar method; however, their result was quite limited as it was restricted to using a

single-sided prior distribution [108]. We assuage this limitation by allowing the re-

searcher to draw from one of the most flexible and commonly used prior distributions

- the normal distribution. After deriving our polynomial expansions, we present a

number of numerical simulations to illustrate the usefulness and advantages of our

approach. We also estimate our model on a large poverty data set from the Current

Population Survey to study the determinants of child poverty. In particular, we

find that marital status of parents, parental age, parental education, whether the

parents are working full time, and the number of children living in a household all

significantly influence whether a child grows up in poverty. We discuss the resulting

policy implications and conclude with a discussion of potential avenues for future

research.

In Chapter 3, we examine the efficacy of medical malpractice reforms instituted

throughout the country over the course of the last decade. In the process, we

improve on existing semiparametric density ratio estimation methodologies. Density

ratio estimation (DRE) is a well-known semiparametric modeling technique that has

been around for decades. Although the DRE method has proven to be very useful

2



in statistical modeling, it suffers from one primary limitation. In particular, the

method has thus far been incapable of modeling individual-level heterogeneity.

We ameliorate this limitation in Chapter 3 to enable DRE methods to model

individual-level heterogeneity. We perform a series of numerical simulations, along

with goodness of fit computations, to illustrate the efficacy of our approach. We

show that this new approach outperforms existing semiparametric density ratio esti-

mation methods. After our numerical simulations, we apply our approach to medical

malpractice loss data from the previous decade to quantify the probability of ex-

treme losses. Our results indicate the success of some recently instituted medical

malpractice reforms.

Subsequently, in our fourth chapter, we shift our focus toward welfare policy,

conducting a rigorous Bayesian analysis of the welfare reform of the 1990s, providing

some improvements to Bayesian credible interval estimation techniques in the pro-

cess. First popularized by Ronald Reagan in his classic 1964 “A Time for Choosing”

speech, the concept of welfare reform has been a hot topic of public policy research

for decades [127]. The Personal Responsibility and Work Authorization Act of 1996

was one of the nation’s most comprehensive efforts at welfare reform [118]. The law’s

primary aim was to transform one of America’s major welfare programs away from

a system fostering dependency and into a program providing temporary assistance

to enable people to become contributing members of society.

In Chapter 4, we utilize hierarchical Bayesian linear modeling to rigorously

quantify the impact of this law. In the process, we improve upon existing Bayesian

interval estimation methods by calling upon semiparametric DRE method thus far

used only for frequentist statistical modeling. We find that the welfare reform of

the 1990s was quite successful in getting people back to work and can be improved

upon even further. We conclude by discussing the resulting policy implications.

In Chapter 5, we shift our focus to foreign policy, particularly toward combat-

3



ing terrorism. Terrorism has been around for generations and understanding how

to fight terrorists has been a question vexing policymakers throughout the world.

In Chapter 5, we rigorously analyze terrorist attack data from four major conflicts

across the globe - from Afghanistan, Iraq, Sri Lanka, and Northern Ireland - to

help policymakers answer this very question. We utilize both parametric and non-

parametric (hence generalized) Bayesian logistic regression techniques to do so, and

again improve upon Bayesian credible interval estimation in the process by using

semiparametric DRE methods. We thus extend the application of the semipara-

metric DRE method used in Chapter 4 for linear models to this generalized linear

model. Our study helps shed light on the factors that influence the success of terror-

ist attacks in each conflict, providing policymakers with advice about how to more

effectively combat this very dangerous enemy.

Finally, in Chapter 6, we discuss some conclusions as well as potential avenues

for future research. We emphasize that the modeling contributions presented here

are applicable to myriads of other fields beyond just the public policy applications

looked at in this dissertation.
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Chapter 2: A Rigorous Examination of the Determinants of Child

Poverty in America via Closed-Form Bayesian Inferences

with Implications for Welfare Reform

2.1 Introduction

2.1.1 What are the Causes of Child Poverty?

Ever since President Lyndon Johnson began his War on Poverty in 1964, the

U.S. Federal Government has spent an exorbitant amount (estimated to be as much

as $15.9 trillion) on welfare programs and on other forms of cash assistance to the

poor. Such programs include means-tested welfare programs such as Temporary

Assistance for Needy Families (TANF), the Earned Income Tax Credit (EITC),

Supplemental Security Income (SSI), food stamps, public housing, and Medicaid

among others [131]. As millions of Americans continue to live in poverty today,

some researchers have argued that many of these programs have been largely inef-

fective and have the potential to trap people in poverty. In his 1984 seminal work

Losing Ground, for example, Charles Murray of the American Enterprise Institute

suggested that many of these welfare programs were actually encouraging depen-

dence and ironically crippling the people they were intended to help [111]. Many

such researchers have consequently argued that meaningful public policy proposals



on these issues should be grounded on an understanding of the root causes of poverty

and not just the mere symptoms [130,136].

Although some studies have attempted to identify these causes, no such re-

search, to our knowledge, have incorporated individual-level heterogeneity in its

statistical modeling [130,145]. Incorporating heterogeneity is of utmost importance

in these models as there is no a priori reason to believe that all families will respond

to potential causes in the same manner. From a statistical perspective, assuming

homogeneous response coefficients in a model can lead to the researcher ignoring

potential variability and can consequently result in misleading statistical inferences.

We fill this gap in the extant literature by examining the potential causes of

child poverty via Bayesian logistic regression. The contribution of our study is two

fold. From a policy perspective, we look at the determinants of child poverty, while

incorporating individual-level heterogeneity into our model. Our incorporation of

individual-level heterogeneity allows us to make more informative statistical infer-

ences compared to methods that simply just assume homogeneity. Methodologically,

our approach makes Bayesian estimation involving large data sets, such as the child

poverty data set examined here, much more feasible.

2.1.2 Improvements to Bayesian Computation

From fields ranging from economics to public policy to medicine to professional

sports, logistic regression has become one of the most widely used tools in applied

statistical research. For example, logistic regression models have been used to help

understand the determinants of depression and suicide, examine consumer choice

in marketing research, model medical outcomes pertaining to various illnesses, and

shed light on baseball player hitting performance among others [1, 7, 11, 58–60, 133,

164,167].

With improvements in statistical computing power over the course of the past
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two decades, incorporating heterogeneity in these and other models has become

increasingly common in the applied statistical literature. Researchers have incor-

porated heterogeneity by choosing amongst a variety of methodologies, including

a parametric Bayesian approach, a non-parametric Bayesian approach, or even a

frequentist finite mixture approach [49, 72, 74, 100]. Parametric Bayesian models

are often used to incorporate individual-level heterogeneity. Generally, with limited

data per individual in a data set, assuming a different parametrization for each

individual renders a model statistically unidentifiable, making estimation virtually

impossible. Researchers will typically assume that these individual response coeffi-

cients are all drawn from their own lower-dimensional probability distribution. They

can then estimate these models from an empirical Bayesian perspective or from a

fully Bayesian perspective by imposing priors on the parameters of the heterogeneity

distributions themselves [49,110].

Although “nice” in principle, incorporating individual-level heterogeneity is

often concomitant with the drawbacks of the computational complexity associated

with numerical computation. For example, numerical methods such as quadrature,

simulated maximum likelihood, and Markov Chain Monte Carlo (MCMC) methods

can be difficult and time consuming to estimate, especially for large data sets in-

volving high-dimensional parameter spaces [50, 138]. Additionally, commonly-used

MCMC methods suffer from the drawback of sensitivity to starting values and can

consequently result in a significant amount of simulation error.

As a result, a number of researchers have approached alternative techniques

to make Bayesian computation more feasible. For example, Everson and Bradlow

(2002) used polynomial expansions to approximate the posterior distributions of

the beta-binomial random variables using a class of prior distributions previously

considered non-conjugate [39]. Similarly, Bradlow et al (2002) used polynomial

expansions to improve on researchers’ ability to make posterior inferences about the
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negative binomial distribution [9]. In subsequent research, McShane et al (2008)

used similar techniques to improve on Weibull count model estimation [105].

Miller et al (2006) used polynomial expansions to solve the problem looked at

in this research, namely for binary logistic regression [108]. Their approach, however,

suffered from a serious limitation by requiring that the prior distribution be single-

sided. Consequently, their result, although nice in principle, is very limited in scope

as it is often difficult to know a priori the signs of the coefficients beforehand. We

assuage this limitation by looking at the same problem but instead allowing the

researcher to draw from the one of the richest and most commonly used two-sided

prior distributions - The normal distribution.

In particular, we derive a marginalized likelihood for the binary logit model us-

ing polynomial expansions. We begin by reviewing the Miller et al (2006) approach

and its subsequent limitations. We then proceed by ameliorating these limitations,

assuming that the response coefficients are drawn from independent normal distri-

butions. We subsequently generalize this result by allowing correlations amongst

the coefficients. Afterwards, we allow for dependence of the prior distributions on

various covariates and then subsequently allow for the choice of non-normal prior

distributions.

Our model can be estimated via the method of maximum marginal likelihood

(MML) from which empirical Bayesian inferences can be made, allowing us to make

direct inferences about the population [110,147]. We present a number of numerical

simulations to illustrate the usefulness of our approach as well as its advantages

over existing MCMC methods. We also utilize our approach to answer an impor-

tant question in public policy research; particularly, identifying the causes of child

poverty.
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2.2 Problem Formulation

Consider a data set obtained from i ∈ {1, . . . , I} individuals (units) having j ∈

{1, . . . , J} categories (e.g. illness, product brand, etc) measured on t ∈ {1, . . . , Ni}

occasions (repeated measures). As is standard, we define

yijt =


1 if outcome occurs for individual i pertaining to category j at time t

0 otherwise,

(2.1)

where pijt = Prob(yijt = 1) is the probability of a particular outcome occurring (e.g.

living in poverty, purchase of a product, mortality of a patient) for the ith individual

pertaining to the jth category on the tth occasion. Additionally, let p = 1, . . . , P

represent a set of attributes pertaining to the covariates, with corresponding values

xijt,p ≥ 0 such that XT
ijt = (xijt,1, . . . , xijt,P ). To account for residual effects not

manifested in the coefficient estimates for the explanatory variables, we can allow

xijt,1 = 1 defining category-level intercepts.

Multiplying over all individuals, categories, and occasions, we obtain the stan-

dard logit likelihood of the data, Y = (yijt):

P (Y |β) =
I∏
i=1

J∏
j=1

Ni∏
t=1

eyijtX
T
ijtβi

1 + eX
T
ijtβi

, (2.2)

where βi = (βi,1, . . . , βi,P ) is the coefficient vector for the ith individual with pth

variable-specific coefficient, βi,p and β = (β1, . . . , βI).

Allowing our model to accommodate heterogeneity is quite important in mod-

eling real world phenomena, as there is no reason to believe that all individuals will

behave in an identical manner. For example, in modeling consumer purchase behav-

ior, customers purchasing a product will almost surely differ in how they respond to
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prices or promotions. In modeling baseball hitting performance, different sluggers

will respond differently to different pitching styles. Additionally, in public policy

research, looked at in this study, different families will respond differently to various

factors that may or may not contribute to them living in poverty.

We can model heterogeneity across individuals by allowing each βi,p to be

drawn from probability distributions. To start out, we discuss the Miller et al

(2006) approach and the limitations of their result. Subsequently, we ameliorate

these limitations and make the mode much for useful for applying to real-world

problems.

2.2.1 Polynomial Expansions of the Binary Logit Model

We are interested in the following marginalized likelihood which we intend to

maximize over our parameter space:

P (Y |Ω) =

∫
β

P (Y |β)N(β|Ω)dβ. (2.3)

In the above equation, P (Y |β) is our standard logit likelihood with a prior dis-

tribution N(β|Ω) and Ω represents the parameters of our prior distribution. As men-

tioned above, we have non-negative explanatory variables XT
ijt = (xijt,1, . . . , xijt,P )

and binary dependent variables Y = (yijt). We intend to maximize the above

marginalized likelihood over our prior distribution’s parameter space. Specifically,

our logit likelihood is:

P (Y |β) =
I∏
i=1

J∏
j=1

Ni∏
t=1

eyijtX
T
ijtβi

1 + eX
T
ijtβi

, (2.4)

It is the heterogeneity across i = 1, ..., I individuals in their βi,p coefficients that

we are modeling by allowing these parameters to follow N(β|Ω). Due to the fact

that the βi appears in both the numerator and denominator of (2.4), performing
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the integration in (2.3) analytically for most choices of heterogeneity distributions

without any numerical approximations is essentially impossible.

We can take a series expansion approach to this problem and rewrite P (Y |β)

as follows:

P (Y |β) =
I∏
i=1

J∏
j=1

Ni∏
t=1

eyijtX
T
ijtβi

1 + eX
T
ijtβi

=
I∏
i=1

J∏
j=1

Ni∏
t=1

eyijtX
T
ijtβi

I∏
i=1

J∏
j=1

Ni∏
t=1

1

1 + eX
T
ijtβi

P (Y |β) = P1(Y |β)P2(Y |β). (2.5)

We refer to the second factor above as P2(Y |β) although it does not depend on

Y. If we assume XT
ijtβi < 0, we can expand P2(Y |β) via a geometric series expansion

as follows [108]:

P2(Y |β) =
I∏
i=1

J∏
j=1

Ni∏
t=1

1

1 + eX
T
ijtβi

=
I∏
i=1

J∏
j=1

Ni∏
t=1

∞∑
kijt=0

(−1)kijtekijtX
T
ijtβi . (2.6)

Putting together the pieces, we therefore have when XT
ijtβi < 0:
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P (Y |β) =
I∏
i=1

J∏
j=1

Ni∏
t=1

eyijtX
T
ijtβi

1 + eX
T
ijtβi

=
I∏
i=1

J∏
j=1

Ni∏
t=1

eyijtX
T
ijtβi

I∏
i=1

J∏
j=1

Ni∏
t=1

1

1 + eX
T
ijtβi

=
I∏
i=1

J∏
j=1

Ni∏
t=1

eyijtX
T
ijtβi

I∏
i=1

J∏
j=1

Ni∏
t=1

∞∑
kijt=0

(−1)kijtekijtX
T
ijtβi

=
I∏
i=1

J∏
j=1

Ni∏
t=1

∞∑
kijt=0

(−1)kijteyijtX
T
ijtβi+kijtX

T
ijtβi

=
I∏
i=1

J∏
j=1

Ni∏
t=1

∞∑
kijt=0

(−1)kijte(yijt+kijt)X
T
ijtβi

P (Y |β) =
I∏
i=1

J∏
j=1

Ni∏
t=1

∞∑
kijt=0

(−1)kijte(yijt+kijt)
∑P
p=1 xijt,pβi,p . (2.7)

If, on the other hand, we assume XT
ijtβi > 0, we can also use a geometric series

expansion:

P2(Y |β) =
I∏
i=1

J∏
j=1

Ni∏
t=1

1

1 + eX
T
ijtβi

=
I∏
i=1

J∏
j=1

Ni∏
t=1

e−X
T
ijtβi

1 + e−X
T
ijtβi

=
I∏
i=1

J∏
j=1

Ni∏
t=1

e−X
T
ijtβi

1

1 + e−X
T
ijtβi

=
I∏
i=1

J∏
j=1

Ni∏
t=1

e−X
T
ijtβi

I∏
i=1

J∏
j=1

Ni∏
t=1

∞∑
kijt=0

(−1)kijte−kijtX
T
ijtβi

=
I∏
i=1

J∏
j=1

Ni∏
t=1

∞∑
kijt=0

(−1)kijte−X
T
ijtβi−kijtXT

ijtβi

P2(Y |β) =
I∏
i=1

J∏
j=1

Ni∏
t=1

∞∑
kijt=0

(−1)kijte−(1+kijt)
∑P
p=1 xijt,pβi,p . (2.8)
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And again putting together the pieces:

P (Y |β) =
I∏
i=1

J∏
j=1

Ni∏
t=1

eyijtX
T
ijtβi

1 + eX
T
ijtβi

=
I∏
i=1

J∏
j=1

Ni∏
t=1

eyijtX
T
ijtβi

I∏
i=1

J∏
j=1

Ni∏
t=1

1

1 + eX
T
ijtβi

=
I∏
i=1

J∏
j=1

Ni∏
t=1

eyijtX
T
ijtβi

I∏
i=1

J∏
j=1

Ni∏
t=1

∞∑
kijt=0

(−1)kijte−(1+kijt)X
T
ijtβi

=
I∏
i=1

J∏
j=1

Ni∏
t=1

∞∑
kijt=0

(−1)kijteyijtX
T
ijtβi−(1+kijt)XT

ijtβi

=
I∏
i=1

J∏
j=1

Ni∏
t=1

∞∑
kijt=0

(−1)kijte(yijt−1−kijt)X
T
ijtβi

P (Y |β) =
I∏
i=1

J∏
j=1

Ni∏
t=1

∞∑
kijt=0

(−1)kijte(yijt−1−kijt)
∑P
p=1 xijt,pβi,p . (2.9)

In the next section we utilize these series expansions to derive closed-form ex-

pressions from which we can make Bayesian inferences.

2.2.2 Closed-Form Bayesian Inference via Polynomial Expansions as Described In

Miller et al (2006)

Ideally, one would like to allow each βi,p to follow two sided prior distribu-

tion, under such circumstances we would have a combination of both of the above

situations, as well as when XT
ijtβi = 0:
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P (Y |β) =

I∏
i=1

J∏
j=1

Ni∏
t=1

eyijtX
T
ijtβi

1 + eX
T
ijtβi

=

I∏
i=1

J∏
j=1

Ni∏
t=1

[
eyijtX

T
ijtβi

1 + eX
T
ijtβi

(1)

]

=
I∏
i=1

J∏
j=1

Ni∏
t=1

[
eyijtX

T
ijtβi

1 + eX
T
ijtβi

[
I(XT

ijtβi > 0) + I(XT
ijtβi < 0) + I(XT

ijtβi = 0)
]]

P (Y |β) =
I∏
i=1

J∏
j=1

Ni∏
t=1

[
eyijtX

T
ijtβi

1 + eX
T
ijtβi

I(XT
ijtβi > 0) +

eyijtX
T
ijtβi

1 + eX
T
ijtβi

I(XT
ijtβi < 0)

+
eyijtX

T
ijtβi

1 + eX
T
ijtβi

I(XT
ijtβi = 0)

]
.

This can be rewritten as:

P (Y |β) =

I∏
i=1

J∏
j=1

Ni∏
t=1

 ∞∑
kijt=0

(−1)kijte(yijt−1−kijt)
∑P
p=1 xijt,pβi,pI(

P∑
p=1

xijt,pβi,p > 0)

+

∞∑
kijt=0

(−1)kijte(yijt+kijt)
∑P
p=1 xijt,pβi,pI(

P∑
p=1

xijt,pβi,p < 0)

+
eyijt

∑P
p=1 xijt,pβi,p

1 + e
∑P
p=1 xijt,pβi,p

I(

P∑
p=1

xijt,pβi,p = 0)

]
. (2.10)

As a result, the marginalized likelihood is:

P (Y |Ω) =

∫
β

P (Y |β)N(β|Ω)dβ

=

∫
β

I∏
i=1

J∏
j=1

Ni∏
t=1

eyijtX
T
ijtβi

1 + eX
T
ijtβi

N(β|Ω)dβ

=

∫
β

I∏
i=1

J∏
j=1

Ni∏
t=1

eyijtX
T
ijtβi

1 + eX
T
ijtβi

dP βi,p

P (Y |Ω) =

∫
β

P (Y |β)dP βi,p

14



where Pβi,p is the measure induced by βi,p on measurable space (Si,p, Fi,p).

When Miller et al (2006) looked at this problem, the authors attempted to

integrate each βi,p individually for every potential value of i and p [108]. For a two-

sided heterogeneity distribution, such as a normal heterogeneity distribution, this

marginalization would involve:

P (Y |Ω) =

∫
β

P (Y |β)N(β|Ω)dβ

=

∫
β

I∏
i=1

J∏
j=1

Ni∏
t=1

 ∞∑
kijt=0

(−1)kijte(yijt−1−kijt)
∑P
p=1 xijt,pβi,pI(

P∑
p=1

xijt,pβi,p > 0)

+

∞∑
kijt=0

(−1)kijte(yijt+kijt)
∑P
p=1 xijt,pβi,pI(

P∑
p=1

xijt,pβi,p < 0)

+
eyijt

∑P
p=1 xijt,pβi,p

1 + e
∑P
p=1 xijt,pβi,p

I(

P∑
p=1

xijt,pβi,p = 0)

]
·
P∏
p=1

1√
2πσp

· e
−(βi,p−µp)

2

2σ2p dβi,p.(2.11)

As the range of βi,p is the entire real line, the limits of the integration space

differ for the first and second integrals depending on whether
∑P

p=1 xijt,pβi,p < 0 or∑P
p=1 xijt,pβi,p > 0. Miller et al (2006) noted that integrating over both spaces

would result in “numerous, complicated subdivisions of the integration space.”

These subdivisions, they argued, rendered the integration “untenable” and pre-

cluded the derivation of “tractable closed-form expansions.” As a result, the au-

thors restricted their model to adhere to only one of the above cases, particularly

XT
ijtβi < 01 and required that the density N(β|Ω) being integrated over be a one-

sided probability distribution. Making the assumption that N(β|Ω) was composed

of independent gamma distributions g(βi,p|bp, np) with parameters bp and np (i.e.

N(β|Ω) =
∏P

p=1 g(βi,p|bp, np)), they derived the marginalized likelihood as follows:

1 Miller et al (2006) actually parametrized their logit likelihood in a slightly different functional

form as P (Y |β) =
∏I
i=1

∏J
j=1

∏Ni
t=1

e
−yijtX

T
ijtβi

1+e
−XT

ijt
βi

and hence equivalently assumed that XT
ijtβi > 0

and βi,p ≥ 0 ∀ i, p.
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P (Y |Ω) =

∫
β

P (Y |β)N(β|Ω)dβ

=

∫
β

I∏
i=1

J∏
j=1

Ni∏
t=1

 ∞∑
kijt=0

(−1)kijte(yijt+kijt)
∑P
p=1 xijt,pβi,p

P∏
p=1

g(βi,p|bp, np)dβi,p


=

I∏
i=1

∞∑
ki11=0

· · ·
∞∑

kiJNi=0

(−1)
∑J
j=1

∑Ni
t=1 kijt

P∏
p=1

∫ ∞
βi,p=0

e−
∑J
j=1

∑Ni
t=1(yijt+kijt)xijt,pβi,p

· 1

bpΓ(np)

(
βi,p
bp

)np−1
e−βi,p/bpdβi,p

=

I∏
i=1

∞∑
ki11=0

· · ·
∞∑

kiJNi=0

(−1)
∑J
j=1

∑Ni
t=1 kijt

P∏
p=1

(
1

1 + bp
∑J
j=1

∑Ni
t=1(yijt + kijt)xijt,p

)np

Having made assumptions that the explanatory variables Xijt,p were restricted

to the set of non-negative integers, Miller et al (2006) borrowed some tools from an-

alytic number theory to rewrite the above equation in terms of solutions to a system

of Diophantine equations, which made estimating the model significantly more fea-

sible from a computational perspective [109]. The interested reader is referred to

Miller et al (2006) for a complete discussion of this methodology [108].

2.2.3 Bayesian Inference via Series Expansions Using a Two-Sided Heterogeneity

Distribution

Although the Miller et al (2006) result is elegant mathematically, it is not

particularly useful to implement in practice as in most applications it is generally

unrealistic to a priori assume that the regression coefficients all have the same sign.

However, for the case when J = 1 and Ni = 1, a simple transformation of variables

leads to very clean and tractable integration, allowing us to integrate within distinct

regions along the real line. Restricting J and Ni in this manner is quite reasonable

for many applied statistical problems including cross-sectional data analysis with a

single category (such as the child poverty application looked at later in this study),

longitudinal analysis of a single individual (such as the baseball player hitting streak
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analysis conducted in Albrght (1993)), or analysis where the heterogeneity can be

assumed across all observations of the data set (such as the terrorist attack data

analysis conducted in Kyung et al (2012) or the data set used in the analysis of

medical outcomes in Wisner (1990)) [1, 90,108,164].

Specifically, if we make the assumption that pi = Prob(yi = 1) is the prob-

ability of a particular outcome occurring (e.g. living in poverty, patient mortality,

purchase incidence, etc) for the ith individual and again let p = 1, . . . , P represent a

set of attributes describing the covariates, with corresponding values xi,p such that

XT
i = (xi,1, . . . , xi,P ) and take the product across all individuals i, the likelihood

function is:

P (Y |β) =
I∏
i=1

eyiX
T
i βi

1 + eX
T
i βi

, (2.12)

where βi = (βi,1, . . . , βi,P ) and β are defined as before. Upon making these assump-

tions, we can recall the marginalization presented in (2.11):

P (Y |Ω) =

∫
β

P (Y |β)N(β|Ω)dβ

=

∫
β

I∏
i=1

[ ∞∑
ki=0

(−1)kie(yi−1−ki)
∑P
p=1 xi,pβi,pI(

P∑
p=1

xi,pβi,p > 0)

+

∞∑
ki=0

(−1)kie(yi+ki)
∑P
p=1 xi,pβi,pI(

P∑
p=1

xi,pβi,p < 0) +
eyi

∑P
p=1 xi,pβi,p

1 + e
∑P
p=1 xi,pβi,p

I(

P∑
p=1

xi,pβi,p = 0)

]

·
P∏
p=1

1√
2πσp

e
−(βi,p−µp)

2

2σ2p dβi,p. (2.13)

In particular, since we are assuming that the βi,p follow independent nor-

mal distributions for p = 1, ..., P (i.e. βi,p ∼ N(µp, σ
2
p)) it follows that zi =∑P

p=1 xi,pβi,p ∼ N(
∑P

p=1 xi,pµp,
∑P

p=1 x
2
i,pσ

2
p). Therefore, if we define Pzi as the mea-

sure induced by zi on measurable space (Ti, Gi) having density with respect to

Lebesgue measure:
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f(zi) =
1√

2π
∑P

p=1 x
2
i,pσ

2
p

e

−(zi−
∑P
p=1 xi,pβi,p)2

2
∑P
p=1 x

2
i,p
σ2
p ,

then:

P (Y |Ω) =

∫
β

P (Y |β)N(β|Ω)dβ

=

∫
β

I∏
i=1

eyiX
T
i βi

1 + eX
T
i βi

N(β|Ω)dβ

=

∫
β

I∏
i=1

eyiX
T
i βi

1 + eX
T
i βi

dP βi,p

P (Y |Ω) =

∫
β

P (Y |β)dP βi,p .

Applying our transformation we can see that [149]:

P (Y |Ω) =

∫
β

P (Y |β)dP βi,p

=

∫
TI

...

∫
T1

I∏
i=1

P (yi|zi)dP zi

=
I∏
i=1

∫
Ti

P (yi|zi)dP zi

=
I∏
i=1

∫
zi

P (yi|zi)
1√

2π
∑P

p=1 x
2
i,pσ

2
p

e

−(zi−
∑P
p=1 xi,pµp)2

2
∑P
p=1 x

2
i,p
σ2
p dzi

P (Y |Ω) =
I∏
i=1

Hi, (2.14)

where:
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Hi =

∫ ∞
−∞

[
∞∑
ki=0

(−1)kie(yi−1−ki)ziI(zi > 0)

+
∞∑
ki=0

(−1)kie(yi+ki)ziI(zi < 0) +
eyizi

1 + ezi
I(zi = 0)

]

· 1√
2π
∑P

p=1 x
2
i,pσ

2
p

e

−(zi−
∑P
p=1 xi,pµp)2

2
∑P
p=1 x

2
i,p
σ2
p dzi.

We can decompose Hi into a sum of three integrals, Hi,1, Hi,2, and Hi,3 where

Hi = Hi,1 +Hi,2 +Hi,3.

Before we proceed, we present a simple integration lemma for integrating an ex-

ponential against a normal distribution with mean µ and variance σ2.

Lemma 2.2.1 (Integrating an Exponential Against a Normal Distribution).

∫ ∞
c

ekx
1√
2πσ

e
−(x−µ)2

2σ2 dx = ekµ+
k2σ2

2 Φ

(
kσ2 − c+ µ

σ

)
(2.15)

∫ c

−∞
ekx

1√
2πσ

e
−(x−µ)2

2σ2 dx = ekµ+
k2σ2

2 Φ

(
−kσ

2 − c+ µ

σ

)
(2.16)

where Φ(x) is the normal cumulative distribution function.

Proof:
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∫ ∞
c

ekx
1√
2πσ

e
−(x−µ)2

2σ2 dx =

∫ ∞
c

1√
2πσ

ekx−
(x−µ)2

2σ2 dx

=

∫ ∞
c

1√
2πσ

e
−1

2σ2 (x−µ)2+kxdx

=

∫ ∞
c

1√
2πσ

e
−1

2σ2 [[x−(σ2k+µ)]2−(σ2k+µ)2+µ2]dx

=
1√
2πσ

e
−1

2σ2 [−(σ2k+µ)2+µ2]

∫ ∞
c

e
−1

2σ2 [x−(σ2k+µ)]2dx

= e
σ2k2

2
+kµ

[
1− Φ

(
c− (σ2k + µ)

σ

)]
∫ ∞
c

ekx
1√
2πσ

e
−(x−µ)2

2σ2 dx = ekµ+
k2σ2

2 Φ

(
kσ2 − c+ µ

σ

)
. (2.17)

The computation of the second integral is quite similar. As a result of (Lemma

2.2.1),

Hi,1 =

∫ ∞
0

∞∑
ki=0

(−1)kie(yi−1−ki)zi
1√

2π
∑P

p=1 x
2
i,pσ

2
p

e

−(zi−
∑P
p=1 xi,pµp)2

2
∑P
p=1 x

2
i,p
σ2
p dzi

=
1√

2π
∑P

p=1 x
2
i,pσ

2
p

∞∑
ki=0

(−1)ki
∫ ∞
0

e(yi−1−ki)zie

−(zi−
∑P
p=1 xi,pµp)2

2
∑P
p=1 x

2
i,p
σ2
p dzi

Hi,1 =
∞∑
ki=0

(−1)kie
(yi−1−ki)

2 ∑P
p=1 x

2
i,pσ

2
p

2
+(yi−1−ki)

∑P
p=1 xi,pµp

·Φ

(yi − 1− ki)
∑P

p=1 x
2
i,pσ

2
p +

∑P
p=1 xi,pµp√∑P

p=1 x
2
i,pσ

2
p

 .

(2.18)
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Hi,2 =

∫ 0

−∞

∞∑
ki=0

(−1)kie(yi+ki)zi
1√

2π
∑P

p=1 x
2
i,pσ

2
p

e

−(zi−
∑P
p=1 xi,pµp)2

2
∑P
p=1 x

2
i,p
σ2
p dzi

=
1√

2π
∑P

p=1 x
2
i,pσ

2
p

∞∑
ki=0

(−1)ki
∫ 0

−∞
e(yi+ki)zie

−(zi−
∑P
p=1 xi,pµp)2

2
∑P
p=1 x

2
i,p
σ2
p dzi

Hi,2 =
∞∑
ki=0

(−1)kie
((yi+ki))

2 ∑P
p=1 x

2
i,pσ

2
p

2
+(yi+ki)

∑P
p=1 xi,pµp

·Φ

−(yi + ki)
∑P

p=1 x
2
i,pσ

2
p +

∑P
p=1 xi,pµp√∑P

p=1 x
2
i,pσ

2
p

 .

(2.19)

Hi,3 = 0 as it is an integral against a density on a set of Lebesgue measure zero.

As a result, as P (Y |Ω) =
∏I

i=1Hi, we estimate our model via maximum likelihood

estimation by maximizing logP (Y |Ω) which is equivalent to:

logP (Y |Ω) = log
I∏
i=1

Hi

=
I∑
i=1

log(Hi)

=
I∑
i=1

log(Hi,1 +Hi,2), (2.20)

where Hi,1 and Hi,2 are defined as above. We state this result as a theorem as it is

the main result of this chapter.

Theorem 2.2.2 (Marginalized Logit Likelihood Assuming Independent Normal

Prior Distributions). The log marginalized likelihood of (2.12) assuming independent

normal heterogeneity distributions, based on a convergent series approximation to

(2.3), is provided by:
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logP (Y |Ω) =
I∑
i=1

log(Hi,1 +Hi,2), (2.21)

where:

Hi,1 =
∞∑
ki=0

(−1)kie
(yi−1−ki)

2 ∑P
p=1 x

2
i,pσ

2
p

2
+(yi−1−ki)

∑P
p=1 xi,pµp

·Φ

(yi − 1− ki)
∑P

p=1 x
2
i,pσ

2
p +

∑P
p=1 xi,pµp√∑P

p=1 x
2
i,pσ

2
p


(2.22)

Hi,2 =
∞∑
ki=0

(−1)kie
((yi+ki))

2 ∑P
p=1 x

2
i,pσ

2
p

2
+(yi+ki)

∑P
p=1 xi,pµp

·Φ

−(yi + ki)
∑P

p=1 x
2
i,pσ

2
p +

∑P
p=1 xi,pµp√∑P

p=1 x
2
i,pσ

2
p

 (2.23)

Theorem 2.2.2 provides the marginalized likelihood, and we can estimate our

parameters µp and σ2
p for p = 1, ..., P by maximizing the above equation and com-

pute associated p-values to determine the statistical significance of the resulting

estimates. This marginalization reduces the parameter space from one of IP dimen-

sions to 2P dimensions, making model estimation on large data sets considerably

easier.
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2.3 Simulations

2.3.1 Numerical Simulations

We illustrate the efficacy of our method by performing a series of numerical

simulations. In particular, we conducted a series of simulations for p = 2, 3, and

4 attributes, allowing I = 1000, JNi = 1, and 300 terms in the series expansion

(i.e. 1000 households, 1 category, and 1 occasion). These simulations are a subset

of a larger number of simulations conducted that is available upon request. For

each vector of parameters (µ1,...,µP ,...,σ2
1,...,σ2

P ), we performed 25 simulations. For

each such simulate, we simulated I = 1000 values of (xi,1, ..., xi,P ), rescaled them

by dividing by a constant to allow for enough 0/1 variation of yi, numerically ap-

proximated P (Y |Ω) via (2.20), and maximized the resulting marginal likelihood as

a function of Ω.

These simulations were run using MATLAB on an AMD 2.2 GHz Triple Core

Processor with 8 GB of RAM. Our results are summarized in Tables 2.1-2.9, con-

sisting of the true values of (µ1,...,µP ,...,σ2
1,...,σ2

P ), the mean and standard deviation

of each of these values, and the corresponding t-statistics. The simulations corre-

sponding to p = 4 attributes is split up into several tables (Tables 2.5-2.9) due to

space constraints. In order to determine whether the values were in numerical cor-

respondence with the true values, we conducted t-tests for each of the parameters.

This resulted in comparing the computed t-statistics to a t-distribution with 24 de-

grees of freedom, as a result of performing 25 simulations for each set of parameter

estimates. After instituting conservative but commonly accepted Bonferroni correc-

tions, we used critical values of 3.791 for p = 2 attributes, 4.051 for p = 3 attributes,

and 4.244 for p = 4 attributes to compare the calculated t-statistics against. All

of our values are well below these critical values. These significance tests therefore

do not suggest any meaningful disparity between the estimated parameter values
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and the true values. As these runs were based on simulated data from a plethora of

normal distributions, these simulations demonstrate the strong accuracy of our poly-

nomial approximations as well as the efficacy of our new technique. Additionally,

the final few terms of the tails of the truncated series approximations were essen-

tially zero (according to MATLAB output) for a variety of choices of truncation

levels. This fact suggested that, at least for these simulations, the truncated series

expansions based on 300 terms were reasonable approximations to the marginalized

likelihood.

Tab. 2.1: Numerical Simulations for P = 2 attributes

(µ1, µ2) (σ2
1, σ2

2) (µ1, µ2) (σ2
1, σ2

2) (σµ1 , σµ2) (σσ2
1
, σσ2

2
)

(-8, -3) (3, 8) (-7.970, -2.972) (2.556, 7.658) (1.581, 1.417) (1.195, 1.387)
(-4, -14) (5, 6) (-3.728, -14.175) (4.772, 6.511) (1.188, 1.236) (1.273, 1.037)
(-7, -5) (5, 3) (-7.300, -5.078) (4.691, 2.710) (1.434, 1.426) (1.582, 1.366)
(5, -4) (4, 5) (4.865, -3.842) (4.265, 5.239) (1.001, 1.210) (1.432, 1.150)
(-5, 4) (4, 5) (-4.801, 4.123) (4.385, 5.072) (1.408, 1.318) (1.252, 1.252)
(5, 4) (4, 5) (5.062, 3.893) (4.429, 5.312) (1.377, 1.279) (1.441, 1.086)

(8, -3) (3, 8) (8.069, -3.232) (2.771, 8.290) (1.742, 1.816) (0.969, 0.636)
(-8, 3) (3, 8) (-7.601, 2.904) (2.942, 8.389) (1.587, 1.414) (0.745, 0.885)
(8, 3) (3, 8) (8.182, 2.970) (2.173, 8.484) (1.329, 1.362) (1.387, 1.873)

(4, -14) (5, 6) (3.779, -14.461) (5.259, 5.584) (1.077, 1.353) (1.242, 1.303)
(-4, 14) (5, 6) (-3.945, 13.877) (5.167, 5.557) (0.945, 1.135) (1.088, 1.012)
(7, -5) (5, 3) (7.061, -4.359) (5.005, 3.416) (1.253, 1.111) (1.686, 1.374)
(-7, 5) (5, 3) (-7.666, 5.115) (4.806, 2.929) (1.036, 1.319) (1.344, 1.542)
(7, 5) (5, 3) (7.327, 4.565) (4.786, 2.678) (1.410, 1.240) (0.858, 1.323)

2.3.2 Comparisons to MCMC Methods

We also assessed the efficacy of our series expansion approach by comparing

the speed of the approach to that of existing MCMC methods [50]. For our MCMC

baseline comparison, we used the bayesm package in R (Rossi and McCullouch

2006) and to ensure a strict “apples-to-apples” comparison of computing times, we

also translated our series expansion approach from MATLAB to R. We ran the
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Tab. 2.2: t-statistics for P = 2 attributes

(µ1, µ2) (σ2
1, σ2

2) t-stat (µ1) t-stat (µ2) t-stat (σ2
1) t-stat (σ2

2)

(-8, -3) (3, 8) 0.095 0.098 1.859 1.232
(-4, -14) (5, 6) 1.147 -0.708 0.897 -2.461
(-7, -5) (5, 3) -1.047 -0.272 0.976 1.063
(5, -4) (4, 5) -0.672 0.652 -0.924 -1.040
(-5, 4) (4, 5) 0.706 0.466 -1.538 -0.289
(5, 4) (4, 5) 0.224 -0.418 -1.490 -1.437

(8, -3) (3, 8) 0.197 -0.640 1.180 -2.275
(-8, 3) (3, 8) 1.257 -0.339 0.392 -2.201
(8, 3) (3, 8) -0.683 0.111 2.981 -1.291

(4, -14) (5, 6) -1.025 -1.704 -1.042 1.597
(-4, 14) (5, 6) 0.292 -0.542 -0.765 2.187
(7, -5) (5, 3) 0.242 2.887 -0.013 -1.514
(-7, 5) (5, 3) -3.212 0.435 0.723 0.230
(7, 5) (5, 3) 1.159 -1.756 1.246 1.216

Tab. 2.3: Numerical Simulations for P = 3 attributes
(µ1, µ2, µ3) (σ2

1 , σ2
2 , σ2

3) (µ1, µ2, µ3) (σ2
1 , σ2

2 , σ2
3) (σµ1 , σµ2 , σµ3 ) (σσ1 , σσ2 , σσ3 )

(-5, -6, -7) (3, 4, 3) (-5.010, -6.298, -6.883) (3.268, 3.973, 3.232) (1.591, 1.453, 1.704) (1.037, 1.091, 0.941)
(5, -6, -7) (3, 4, 3) (5.030, -5.690, -7.658) (3.028, 4.098, 2.679) (1.788, 1.897, 1.382) (1.397, 1.128, 1.357)
(-5, 6, -7) (3, 4, 3) (-5.283, 6.043, -6.691) (2.685, 3.947, 3.189) (1.159, 1.369, 1.617) (1.288, 0.748, 0.923)
(-5, -6, 7) (3, 4, 3) (-4.803, -5.962, 7.247) (2.930, 4.096, 2.885) (1.242, 1.541, 1.396) (1.250, 0.882, 1.139)
(5, -6, 7) (3, 4, 3) (4.745, -5.889, 7.093) (3.130, 3.925, 3.263) (1.295, 1.600, 1.501) (1.054, 1.038, 0.766)
(5, 6, 7) (3, 4, 4) (4.964, 6.290, 6.987) (2.972,4.339, 4.123) (1.542, 1.423, 1.593) (0.970, 1.617, 1.397)

(-15, -4, -6) (2, 7, 4) (-15.347, -3.751, -6.367) (2.116, 7.619, 3.472) (2.045, 1.894, 2.162) (1.009, 2.977, 2.961)
(15, -4, -6) (2, 7, 4) (14.352, -3.913, -5.930) (2.005, 7.058, 4.202) (1.708, 1.568, 1.579) (0.825, 2.255, 1.830)
(-9, -8, 4) (3, 3, 5) (-9.203, -7.712, 3.560) (3.024, 3.637, 4.689) (1.567, 1.737, 1.919) (1.011, 1.888, 1.167)

(-15, -4, 6) (2, 7, 4) (-14.975, -3.882, 5.610) (1.888, 6.995, 4.364) (1.890, 1.528, 1.790) (0.981, 2.478, 2.290)
(15, -4, 6) (2, 7, 4) (14.601, -3.780, 6.152) (1.761, 6.503, 4.535) (2.174, 1.919, 1.853) (0.940, 2.714, 2.688)
(15, 4, 6) (2, 7, 4) (14.818, 4.131, 5.782) (2.169, 6.344, 4.371) (1.891, 2.127, 1.729) (0.986, 2.706, 2.787)

(-9, -8, -4) (3, 3, 5) (-9.039, -8.245, -3.967) (2.721, 2.975, 5.219) (1.641, 1.504, 1.533) (1.989, 2.321, 2.394)
(-9, 8, -4) (3, 3, 5) (-9.112, 8.124, -4.107) (3.191, 3.364, 4.949) (1.205, 1.686, 1.434) (1.022, 0.762, 0.598)
(-9, -8, 4) (3, 3, 5) (-9.203, -7.712, 3.560) (3.024, 3.637, 4.689) (1.567, 1.737, 1.919) (1.011, 1.888, 1.167)
(9, -8, 4) (3, 3, 5) (9.699, -7.759, 3.298) (3.104, 2.810, 4.954) (1.591, 1.361, 1.421) (0.557, 0.782, 0.557)
(-9, 8, 4) (3, 3, 5) (-9.176, 7.820, 4.318) (2.949, 3.260, 5.068) (1.440, 1.403, 1.431) (1.157, 1.054, 0.993)
(9, 8, 4) (3, 3, 5) (9.394, 8.074, 3.907) (2.709, 2.310, 4.487) (1.693, 1.531, 1.629) (2.403, 2.344, 2.304)

Tab. 2.4: t-statistics for P = 3 attributes
(µ1, µ2, µ3) (σ2

1 , σ2
2 , σ2

3) t-stat (µ1) t-stat (µ2) t-stat (µ3) t-stat (σ2
1) t-stat (σ2

2) t-stat (σ2
3)

(-5, -6, -7) (3, 4, 3) -0.030 -1.024 0.342 -1.293 0.125 -1.231
(5, -6, -7) (3, 4, 3) 0.083 0.818 -2.382 -0.101 -0.433 1.185
(-5, 6, -7) (3, 4, 3) -1.221 0.156 0.955 1.222 0.352 -1.023
(-5, -6, 7) (3, 4, 3) 0.791 0.123 0.883 0.279 -0.544 0.507
(5, -6, 7) (3, 4, 3) -0.984 0.347 0.310 -0.614 0.364 -1.717
(5, 6, 7) (3, 4, 4) 0.118 -1.016 0.041 0.147 -1.048 -0.442

(-15, -4, -6) (2, 7, 4) -0.848 0.657 -0.849 -0.572 -1.040 0.892
(15, -4, -6) (2, 7, 4) -1.897 0.279 0.223 -0.031 -0.129 -0.552
(-9, -8, 4) (3, 3, 5) 0.648 -0.829 1.146 0.121 1.686 -1.333

(-15, -4, 6) (2, 7, 4) 0.066 0.385 -1.089 0.570 0.010 -0.794
(15, -4, 6) (2, 7, 4) -0.917 0.573 0.409 1.273 0.916 -0.996
(15, 4, 6) (2, 7, 4) -0.481 0.307 -0.630 -0.856 1.213 -0.666

(-9, -8, -4) (3, 3, 5) 0.118 0.814 -0.107 -0.702 -0.054 0.456
(-9, 8, -4) (3, 3, 5) 0.465 -0.369 0.372 0.932 2.392 -0.423
(-9, -8, 4) (3, 3, 5) 0.648 -0.829 1.146 0.121 1.686 -1.333
(9, -8, 4) (3, 3, 5) -2.197 -0.887 2.472 0.936 -1.215 -0.411
(-9, 8, 4) (3, 3, 5) 0.611 0.640 -1.111 -0.222 1.235 0.342
(9, 8, 4) (3, 3, 5) -1.163 -0.242 0.285 -0.605 -1.472 -1.113
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Tab. 2.5: Numerical Simulations for P = 4 attributes

(µ1, µ2, µ3, µ4) (σ2
1, σ2

2, σ2
3, σ2

4)

(-5, -14, -3, -2) (3,6,4,6)
(-10,-12,-5,-5) (3,3,3,4)

(-7,-5,-5,-3) (4,6,5,4)
(5,-14,-3,-5) (3,6,4,6)
(-5,14,-3,-5) (3,6,4,6)
(-5,-14,-3,5) (3,6,4,6)

(5,14,-3,5) (3,6,4,6)
(5,-14,3,-5) (3,6,4,6)

(5,14,3,5) (3,6,4,6)
(10,-12,-5,-5) (3,4,3,4)
(-10,12,-5,-5) (3,4,3,4)
(-10,-12,5,-5) (3,4,3,4)
(-10,-12,-5,5) (3,4,3,4)
(10,-12,5,-5) (3,4,3,4)
(-10,12,-5,5) (3,4,3,4)

(10,12,5,5) (3,4,3,4)
(7,-5,-5,-3) (4,6,5,4)
(-7,5,-5,-3) (4,6,5,4)
(-7,-5,5,-3) (4,6,5,4)
(7,-5,5,-3) (4,6,5,4)
(-7,5,-5,3) (4,6,5,4)

(7,5,5,3) (4,6,5,4)
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Tab. 2.6: Numerical Simulations for P = 4 attributes (continued)

(µ1, µ2, µ3, µ4) (σ2
1, σ2

2, σ2
3, σ2

4)

(-4.957, -13.727, -3.254, -2.323) (2.368, 6.014, 3.736, 5.074)
(-9.651, -11.951, -5.249, -4.794) (2.753, 3.035, 2.806, 3.984)
(-7.269, -4.924, -5.028, -3.163) (3.523, 5.720, 4.367, 3.839)
(5.088, -14.096, -3.556, -4.840) (2.437, 5.938, 4.067, 6.112)
(-5.618, 14.514, -2.732, -4.960) (2.832, 6.048, 3.760, 5.845)
(-4.707, -14.606, -2.770, 5.084) (2.694, 5.589, 4.116, 6.014)
(-5.120, 14.078, -3.168, 5.304) (3.410, 5.987, 4.348, 5.793)
(4.987, -14.345, 3.140, -4.963) (2.412, 5.604, 3.876, 5.818)

(5.062, 14.542, 2.360, 5.343) (2.597, 5.537, 3.947, 5.476)
(9.624, -11.746, -5.127, -5.109) (2.659, 4.061, 3.088, 3.973)

(-10.161, 12.526, -4.934, -5.120) (3.124, 4.026, 3.069, 4.073)
(-10.167, -12.214, 4.796, -4.899) (2.685, 3.774, 3.066, 3.636)
(-9.792, -11.717, -5.133, 4.834) (3.243, 4.206, 3.034, 3.243)
(10.076, -11.867, 5.134, -4.972) (2.969, 4.024, 2.934, 4.088)
(-9.833, 12.462, -5.085, 4.123) (2.964, 3.948, 3.008, 3.934)
(10.432, 11.902, 5.244, 4.756) (3.054, 4.280, 2.398, 3.640)
(7.045, -5.497, -4.710, -3.204) (4.347, 6.055, 4.975, 3.883)
(-7.097, 5.174, -5.122, -2.976) (3.875, 5.943, 4.816, 3.799)
(-6.715, -5.053, 5.164, -3.247) (4.037, 6.064, 4.898, 4.066)
(7.361, -4.920, 4.834, -2.846) (3.907, 5.966, 5.073, 3.997)
(-7.234, 4.965, -5.234, 3.456) (4.026, 5.923, 5.091, 4.172)

(6.766, 5.419, 5.249, 3.109) (3.757, 5.210, 4.864, 4.174)
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Tab. 2.7: Numerical Simulations for P = 4 attributes (continued)

(σµ1 , σµ2 , σµ3 , σµ4) (σσ2
1
, σσ2

2
, σσ2

3
, σσ2

4
)

(1.956, 1.762, 1.672, 1.712) (1.231, 1.878, 1.525, 1.599)
(1.938, 1.898, 1.712, 1.827) (2.301, 2.506, 2.298, 2.501)
(1.652, 1.479, 1.743, 1.574) (1.845, 2.094, 2.099, 2.007)
(1.595, 1.482, 1.471, 1.601) (1.593, 0.967, 0.737, 1.153)
(1.277, 1.576, 1.337, 1.517) (1.365, 0.934, 0.749, 0.565)
(1.382, 1.612, 1.570, 1.670) (0.914, 1.146, 0.939, 0.492)
(1.707, 1.542, 1.451, 1.287) (1.502, 0.906, 1.061, 0.875)
(1.440, 1.811, 1.365, 1.349) (1.132, 0.789, 0.786, 0.724)
(1.380, 1.726, 1.839, 1.850) (1.822, 2.091, 2.155, 2.075)
(1.372, 1.680, 1.645, 1.379) (1.313, 0.848, 1.171, 0.761)
(1.588, 1.542, 1.434, 1.666) (0.740, 0.549, 0.887, 0.660)
(1.805, 1.776, 1.723, 1.866) (1.928, 2.108, 2.050, 2.163)
(1.798, 1.769, 1.545, 1.692) (1.936, 1.835, 1.826, 1.678)
(1.656, 1.866, 1.496, 1.623) (0.502, 0.479, 0.235, 0.294)
(1.564, 1.680, 1.755, 1.518) (0.780, 0.575, 0.763, 0.775)
(1.753, 1.815, 1.588, 1.806) (2.352, 2.435, 2.215, 2.432)
(1.138, 1.449, 1.528, 1.654) (1.340, 0.880, 1.124, 1.040)
(1.519, 1.793, 1.945, 1.562) (1.009, 0.880, 0.857, 0.854)
(1.681, 1.850, 1.458, 1.728) (0.469, 0.898, 0.277, 0.689)
(1.294, 1.450, 1.624, 1.433) (0.657, 0.267, 0.215, 0.528)
(1.376, 1.826, 1.736, 1.493) (1.185, 0.630, 0.966, 0.527)
(1.590, 1.671, 1.557, 1.679) (1.903, 2.122, 2.165, 2.243)
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Tab. 2.8: Numerical Simulations for P = 4 attributes (continued)

t-stat (µ1) t-stat (µ2) t-stat (µ3) t-stat (µ4)

0.111 0.774 -0.758 -0.942
0.899 0.129 -0.727 0.563

-0.813 0.257 -0.079 -0.519
0.276 -0.325 -1.891 0.500

-2.419 1.631 1.003 0.132
1.060 -1.881 0.731 0.250

-0.351 0.254 -0.580 1.180
-0.045 -0.951 0.513 0.138
0.225 1.570 -1.740 0.928

-1.370 0.756 -0.387 -0.396
-0.508 1.705 0.231 -0.360
-0.463 -0.603 -0.591 0.272
0.580 0.799 -0.431 -0.491
0.230 0.356 0.449 0.085
0.534 1.375 -0.241 -2.889
1.233 -0.269 0.768 -0.675
0.199 -1.713 0.949 -0.616

-0.320 0.486 -0.313 0.078
0.848 -0.144 0.562 -0.715
1.394 0.274 -0.512 0.538

-0.849 -0.097 -0.674 1.526
-0.737 1.255 0.801 0.324
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Tab. 2.9: Numerical Simulations for P = 4 attributes (continued)

t-stat (σ2
1) t-stat (σ2

2) t-stat (σ2
3) t-stat (σ2

4)

2.568 -0.038 0.866 2.897
0.537 -0.070 0.421 0.032
1.294 0.668 1.508 0.400
1.768 0.324 -0.452 -0.485
0.615 -0.255 1.606 1.372
1.675 1.792 -0.616 -0.147

-1.366 0.070 -1.639 1.183
2.597 2.513 0.790 1.255
1.107 1.106 0.124 1.262
1.300 -0.359 -0.376 0.175

-0.841 -0.236 -0.388 -0.555
0.817 0.537 -0.160 0.841

-0.627 -0.560 -0.094 2.255
0.306 -0.248 1.405 -1.490
0.229 0.455 -0.054 0.425

-0.115 -0.576 1.360 0.741
-1.294 -0.310 0.112 0.563
0.622 0.326 1.072 1.177

-0.392 -0.354 1.841 -0.481
0.708 0.628 -1.689 0.028

-0.108 0.608 -0.471 -1.629
0.638 1.860 0.314 -0.388
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MCMC sampler for 20,000 iterations, after allowing for 5,000 burn-in iterations. In

particular, we simulated data and estimated our model on this simulated data for

I = 1000 individuals, letting p = 2, 3, or 4 attributes, and JNi = 1. We truncated

our series expansions after 300 terms, which was shown to be quite sufficient in the

previous section. The computing times in minutes for each method is presented in

Table 2.10.

Tab. 2.10: Comparisons of Computing Time for closed-form Series Expansion Approach
versus MCMC Methods (in minutes)

Series Expansions MCMC Methods

p = 2 attributes 2.20 69.20
p = 3 attributes 11.29 69.60
p = 4 attributes 10.98 69.30

As Table 2.10 illustrates, our new technique clearly outperforms existing MCMC

methods. Autocorrelations of draws from the posterior suggested that the number of

iterations performed (20,000 along with 5,000 for burn-in) was necessary in order to

begin having a sense of the entire posterior distribution, although running the sam-

pler for more iterations (and hence for a longer amount of time) would be advisable

in practice. Thus, it is quite clear that our non-iterative series expansion approach

outperforms existing MCMC methods in computing time. These computational

gains can be quite substantial for large data sets.
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2.4 A Few Generalizations

2.4.1 Incorporating covariances: Positing Heterogeneity from a Multivariate

Normal Distribution

Previously, we had assumed that our parameters βi,1, ..., βi,p were drawn from

independent normal distributions. It is possible, however, to generalize this assump-

tion and allow for correlations amongst the different response coefficients. In some

applications, allowing for correlations is an important assumption to make; for ex-

ample, in modeling consumer choice of products, a consumer’s price sensitivity may

be related to sensitivities to other marketing-related covariates, such as the presence

of a promotion or even the time of year.

Still retaining our initial assumption that all households are independent, we

can allow βi = (βi,1, ..., βi,p) to be drawn from a multivariate normal distribution

with mean µ and variance-covariance matrix Σ:

P (Y |β) =
I∏
i=1

eyiX
T
i βi

1 + eX
T
i βi

,

where (βi,1, ...βi,p) ∼MVN(~µ,Σ). (2.24)

The diagonal elements of Σ represent variances σ2
1, ...σ

2
p and the off-diagonal

elements ρm,n for m 6= n allow us to model correlations amongst the various coeffi-

cients. The result is a more general integral to evaluate. As we did earlier, we can

define zi =
∑P

p=1 xi,pβi,p. Now that we have covariances in our model, however, it

follows that zi ∼ N(
∑P

p=1 xi,pµp,
∑P

p=1 x
2
i,pσ

2
p +

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn).

Therefore, if we define Pzi as the measure induced by zi on measurable space

(Ti, Gi) having density with respect to Lebesgue measure:
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f(zi) =
1√

2π
∑P
p=1 x

2
i,pσ

2
p +

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn

e

−(zi−
∑P
p=1 xi,pβi,p)

2

2
∑P
p=1 x

2
i,p
σ2p+

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn ,

then we can again integrate Hi as defined in (2.20):

Hi =

∫ ∞
−∞

[
∞∑
ki=0

(−1)kie(yi−1−ki)ziI(zi > 0)

+
∞∑
ki=0

(−1)kie(yi+ki)ziI(zi < 0) +
eyizi

1 + ezi
I(zi = 0)

]
f(zi)dzi.

We can again decompose Hi into a sum of three integrals, Hi,1, Hi,2, and Hi,3 where

Hi = Hi,1 +Hi,2 +Hi,3. And once again, as a result of Lemma 2.2.1,

Hi,1 =

∫ ∞
0

∞∑
ki=0

(−1)kie(yi−1−ki)zi
e

−(zi−
∑P
p=1 xi,pβi,p)2

2
∑P
p=1 x

2
i,p
σ2
p+

∑
m6=n,m,n≤P xi,mxi,nρm,nσmσn√

2π
∑P

p=1 x
2
i,pσ

2
p +

∑
m6=n,m,n≤P xi,mxi,nρm,nσmσn

dzi

=
1√

2π
∑P

p=1 x
2
i,pσ

2
p +

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn

∞∑
ki=0

(−1)ki
∫ ∞
0

e(yi−1−ki)zi

·e
−(zi−

∑P
p=1 xi,pβi,p)2

2
∑P
p=1 x

2
i,p
σ2
p+

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn dzi

Hi,1 =
∞∑
ki=0

(−1)kie
(yi−1−ki)

2(
∑P
p=1 x

2
i,pσ

2
p+

∑
m6=n,m,n≤P xi,mxi,nρm,nσmσn)

2
+(yi−1−ki)

∑P
p=1 xi,pµp

·Φ

(yi − 1− ki)(
∑P

p=1 x
2
i,pσ

2
p +

∑
m6=n,m,n≤P xi,mxi,nρm,nσmσn) +

∑P
p=1 xi,pµp√∑P

p=1 x
2
i,pσ

2
p +

∑
m6=n,m,n≤P xi,mxi,nρm,nσmσn

 .

(2.25)
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Hi,2 =

∫ 0

−∞

∞∑
ki=0

(−1)kie(yi+ki)zi
e

−(zi−
∑P
p=1 xi,pβi,p)2

2
∑P
p=1 x

2
i,p
σ2
p+

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn√

2π
∑P

p=1 x
2
i,pσ

2
p +

∑
m6=n,m,n≤P xi,mxi,nρm,nσmσn

dzi

=
1√

2π
∑P

p=1 x
2
i,pσ

2
p +

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn

∞∑
ki=0

(−1)ki
∫ 0

−∞
e(yi+ki)zi

·e
−(zi−

∑P
p=1 xi,pβi,p)2

2
∑P
p=1 x

2
i,p
σ2
p+

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn

Hi,2 =
∞∑
ki=0

(−1)kie
(yi+ki)

2(
∑P
p=1 x

2
i,pσ

2
p+

∑
m6=n,m,n≤P xi,mxi,nρm,nσmσn)

2
+(yi+ki)

∑P
p=1 xi,pµp

·Φ

−(yi + ki)(
∑P

p=1 x
2
i,pσ

2
p +

∑
m6=n,m,n≤P xi,mxi,nρm,nσmσn) +

∑P
p=1 xi,pµp√∑P

p=1 x
2
i,pσ

2
p +

∑
m6=n,m,n≤P xi,mxi,nρm,nσmσn

 .

(2.26)

Hi,3 = 0 as it is once again an integral against a density on a set of Lebesgue

measure zero. As a result, as P (Y |Ω) =
∏I

i=1Hi, we can again estimate our model,

now incorporating correlations amongst the coefficients, via the method of marginal

maximum likelihood by maximizing logP (Y |Ω) which is equivalent to:

logP (Y |Ω) = log
I∏
i=1

Hi

=
I∑
i=1

J∑
j=1

Ni∑
t=1

log(Hi)

=
I∑
i=1

J∑
j=1

Ni∑
t=1

log(Hi,1 +Hi,2). (2.27)

The parameter space is now considerably larger given the need to estimate the off-

diagonal coefficients ρm,n but can still be optimized over using standard optimization

routines.
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2.4.2 Allowing dependence on other factors

Some researchers may want to allow the mean of βi to depend on certain co-

variates (Zi,1, . . . , Zi,k) that may represent K demographic factors for each particular

individual [141]. Under such a model, we would have:

P (Y |β) =
I∏
i=1

eyiX
T
i βi

1 + eX
T
i βi

,

where (βi,1, ...βi,p) ∼MVN(~∆,Σ), (2.28)

where ~∆ = (
∑K

k=1 Zi,kµ1,k, ...,
∑K

k=1 Zi,kµP,k) and once again, the diagonal elements

of Σ represent variances σ2
1, ...σ

2
p and the off-diagonal elements ρm,n for m 6= n

allow us to model correlations amongst the various coefficients. The density for

zi =
∑P

p=1 xi,pβi,p with which we integrate our series expansions with respect to is

now a bit different:

zi ∼ N(
P∑
p=1

xi,p

K∑
k=1

Zi,kµp,k,
P∑
p=1

x2i,pσ
2
p +

∑
m 6=n,m,n≤P

xi,mxi,nρm,nσmσn). (2.29)

Therefore, we can now redefine Pzi as the measure induced by zi on measurable

space (Ti, Gi) having density with respect to Lebesgue measure,

f(zi) =
1√

2π
∑P
p=1 x

2
i,pσ

2
p +

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn

e

−(zi−
∑P
p=1 xi,p

∑K
k=1 Zi,kµp,k)2

2
∑P
p=1 x

2
i,p
σ2p+

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn

then again:
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Hi =

∫ ∞
−∞

[
∞∑
ki=0

(−1)kie(yi−1−ki)ziI(zi > 0)

+
∞∑
ki=0

(−1)kie(yi+ki)ziI(zi < 0) +
eyizi

1 + ezi
I(zi = 0)

]
f(zi)dzi.

Once again decomposing Hi into a sum of three integrals, Hi,1, Hi,2, and Hi,3 where

Hi = Hi,1 +Hi,2 +Hi,3 and utilizing Lemma 2.2.1,

Hi,1 =

∫ ∞
0

∞∑
ki=0

(−1)kie(yi−1−ki)zi
e

−(zi−
∑P
p=1 xi,p

∑K
k=1 Zi,kµp,k)2

2
∑P
p=1 x

2
i,p
σ2p+

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn√

2π
∑P
p=1 x

2
i,pσ

2
p +

∑
m6=n,m,n≤P xi,mxi,nρm,nσmσn

dzi

=
1√

2π
∑P
p=1 x

2
i,pσ

2
p +

∑
m6=n,m,n≤P xi,mxi,nρm,nσmσn

∞∑
ki=0

(−1)ki
∫ ∞
0

e(yi−1−ki)zi

·e
−(zi−

∑P
p=1 xi,p

∑K
k=1 Zi,kµp,k)2

2
∑P
p=1 x

2
i,p
σ2p+

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn dzi

Hi,1 =

∞∑
ki=0

(−1)kie
(yi−1−ki)

2(
∑P
p=1 x

2
i,pσ

2
p+

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn)

2 +(yi−1−ki)
∑P
p=1 xi,p

∑K
k=1 Zi,kµp,k

·Φ

 (yi − 1− ki)(
∑P
p=1 x

2
i,pσ

2
p +

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn) +

∑P
p=1 xi,p

∑K
k=1 Zi,kµp,k√∑P

p=1 x
2
i,pσ

2
p +

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn

 .

(2.30)
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Hi,2 =

∫ 0

−∞

∞∑
ki=0

(−1)kie(yi+ki)zi
e

−(zi−
∑P
p=1 xi,p

∑K
k=1 Zi,kµp,k)2

2
∑P
p=1 x

2
i,p
σ2p+

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn√

2π
∑P
p=1 x

2
i,pσ

2
p +

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn

dzi

=
1√

2π
∑P
p=1 x

2
i,pσ

2
p +

∑
m6=n,m,n≤P xi,mxi,nρm,nσmσn

∞∑
ki=0

(−1)ki
∫ 0

−∞
e(yi+ki)zi

·e
−(zi−

∑P
p=1 xi,p

∑K
k=1 Zi,kµp,k)2

2
∑P
p=1 x

2
i,p
σ2p+

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn

Hi,2 =

∞∑
ki=0

(−1)kie
(yi+ki)

2(
∑P
p=1 x

2
i,pσ

2
p+

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn)

2 +(yi+ki)
∑P
p=1 xi,p

∑K
k=1 Zi,kµp,k

·Φ

− (yi + ki)(
∑P
p=1 x

2
i,pσ

2
p +

∑
m 6=n,m,n≤P xi,mxi,nρm,nσmσn) +

∑P
p=1 xi,p

∑K
k=1 Zi,kµp,k√∑P

p=1 x
2
i,pσ

2
p +

∑
m6=n,m,n≤P xi,mxi,nρm,nσmσn

 .

(2.31)

As before, Hi,3 = 0. We utilize these equations to maximize (2.20), which again now

has a slightly larger parameter space as a result of βi,p’s dependence on Zi,k.

2.4.3 Arbitrary Priors

There is no reason to solely restrict ourselves to normal prior distributions. If

we look at the pertinent integration, we can nicely generalize our result provided

we have an analytic expression for the probability density function representing

zi =
∑P

p=1 xi,pβi,p:

Hi =

∫ ∞
−∞

[
∞∑
ki=0

(−1)kie(yi−1−ki)ziI(zi > 0)

+
∞∑
ki=0

(−1)kie(yi+ki)ziI(zi < 0) +
eyizi

1 + ezi
I(zi = 0)

]
f(zi)dzi.

It is easy to notice that this is simply just a linear combination of incomplete mo-

ment generating functions corresponding to f(zi). Thus provided that a closed-form

density for f(zi) exists:
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Hi =
∞∑
ki=0

(−1)kiIMGF1(yi − 1− ki) +
∞∑
ki=0

(−1)kiIMGF2(yi + ki), (2.32)

where IMGF1 and IMGF2 are the incomplete moment generating functions corre-

sponding to f(zi), integrated from 0 to ∞ and from −∞ to 0 respectively. For an

arbitrary prior, we can use these incomplete moment generating functions to rewrite

our marginalized likelihood and maximize the function accordingly, provided that a

closed-form density corresponding to f(zi) exists.

2.5 Application to Analyzing Potential Causes of Child Poverty

Understanding the potential causes of child poverty is an important issue in pub-

lic policy research. With trillions of dollars being thrown at welfare programs for

decades, it is paramount for policy researchers to analyze potential determinants

of child poverty to evaluate the efficacy of such programs [131]. We do so in this

Chapter.

2.5.1 Data

We used 2009 Current Population Survey (CPS) Data, compiled by the United

States Census Bureau [156]. The CPS data is used for a variety of purposes including

for providing the United States Federal Government’s monthly jobs report. From the

CPS Data, we extracted children under the age of 18 and information of whether

they were below the poverty level (1 if they were below the poverty level and 0

otherwise), education of the head of the household (hereafter referred to as head

parent), marital status of the parents, the head parent’s age, whether the head
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parent was working full time, and how many people were living in the household.

The resulting data set consisted of slightly more than 60,000 observations.

In existing policy research, these covariates have been considered significant

factors in determining whether a child grows up in poverty [63, 130, 134, 145]. Al-

though logistic regression has been used to analyze poverty data [150], no policy

research, to our knowledge, has looked at this question using models that allow for

individual-level heterogeneity. Allowing for heterogeneity is important as there is

no a priori reason to believe that some individuals would not respond differently

to these factors than others. Furthermore, ignoring heterogeneity can result in the

researcher ignoring potential variability in the model and can therefore lead to mis-

leading statistical inferences.

We therefore used the closed-form expansion derived in the previous sections

to estimate a Bayesian binary logistic regression model with child poverty as a

binary categorical dependent variable and all the other variables mentioned above

as explanatory variables. In order to simplify our model estimation, we assumed no

correlations amongst our coefficients.

Data was rescaled and coefficients were multiplied again by a constant to

ensure for sufficient terms in the series expansion to allow for reasonable approx-

imations. Due to the rapid convergence of the series expansions associated with

this data set indicated by looking the final few terms of the truncated series ap-

proximations for a variety of choices of truncated terms, only 50 terms in our series

expansion were necessary.

2.5.2 Estimation Results

Our estimation results are depicted in Table 2.11. The use of our closed-form

polynomial expansion approach reduced the dimensionality of our problem from

approximately 350,000 parameters to simply just 12 parameters. P-values were
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determined by performing likelihood ratio tests and utilizing Wilk’s Theorem:

Tab. 2.11: Empirical Bayesian Logistic Regression Estimation Results on Child Poverty
Data

Parameter (µp) p-value (σ2
p) p-value

Intercept 0.955 < 0.001 0.000025 < 0.001
Parents Married -2.006 < 0.001 2.902 < 0.001

Head Parent College Educated -1.889 < 0.001 1.869 < 0.001
Head Parent Working Full Time -1.711 < 0.001 2.577 < 0.001

Head Parent Age -0.030 < 0.030 0.000025 < 0.001
Number of Children in the Household 0.345 < 0.001 0.380 < 0.001

Our results shed light on potential factors influencing child poverty. All of our

coefficient estimates are highly significant. In particular, of the covariates looked

at, marital status of the parents is an influential predictor of child poverty, as well

as the educational level of the head parent, and whether the head parent is working

full time. Parental age and the number of children living in the household are also

significant factors influencing whether a child lives in poverty. Our variance esti-

mates also indicate there is a substantial amount of heterogeneity in the population

in how these factors combine to influence child poverty.

The significance of our explanatory variables coincides with common sense -

Two working parents have the potential to bring in more income to a household

than simply just one parent. Additionally, more educated parents have more job

opportunities and therefore have greater potential to comfortably support a family

than less educated parents. Older parents are typically more mature and understand

the challenges associated with having children and often wait until they are ready

to do so. Similarly, more responsible parents will also often wait until they are

financially ready to have additional children.
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2.5.3 Policy Implications

Our results are in line with research produced by both the Heritage Foundation

and the Brookings Institution [130, 132, 145]. Both think tanks have argued that

marriage is a powerful antidote to child poverty. Recent research, for example, has

argued that marriage in the American society has declined in recent years while

out of wedlock births have steadily increased [130]. In 1964, for example, 93% of

children were born to married parents while in 2007 only 59% of children were born

to married parents. On the other hand, in the mid 1960s, less than 10% of children

were born out of wedlock, while in 2007, this number skyrocketed to 40.6%. As

our results here indicate, children born out of wedlock are overwhelmingly far more

likely to live in poverty than children born to married parents [130,145].

These results have a number of important policy implications. Our results,

along with work from both Heritage and Brookings, suggest that increasing marriage

can significantly reduce child poverty [134]. In order to do so, state and local policy-

makers could consider establishing a campaign of public advertising and education

on teenage abstinence as well as the consequences of child bearing outside of mar-

riage. These campaigns could also work toward communicating the practical issues

faced by single parents, the importance of delaying having children until one is older

and more mature, as well as the importance of waiting until one finds a suitable

partner before doing so [67]. These campaigns could set normative expectations for

younger generations, encouraging young people to become well-educated, to delay

having children until marriage, to work full time to support any children they have,

and to limit their family size to what they can afford [145]. Just as policymakers

have established anti-smoking, anti-drinking, and staying in school campaigns, the

impact of such “pro-marriage campaigns” could be quite significant [130].

Additionally, our results also suggest that welfare programs could benefit from

significant reform. Currently, many means-tested welfare programs such as food
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stamps, public housing, and Temporary Assistance to Needy Families (TANF) are

structured in a manner that disincentivizes marriage. In particular, many of these

programs have penalties for marriage because welfare benefits decline as a family’s

income rises. Thus, for many low-income mothers, marriage signifies a decline in gov-

ernmental assistance and consequently an overall reduction in the couple’s combined

income. These problems with the welfare system can be ameliorated by reforming

the Earned Income Tax Credit for married couples with children to counteract the

anti-marriage penalties associated with welfare programs [130].

Furthermore, policymakers could also consider strict work and/or study re-

quirements for able-bodied welfare recipients. Such “workfare” requirements not

only have the potential to increase personal income but also encourage only those

truly in need to apply for welfare [129]. Additionally, “workfare” helps enable wel-

fare recipients to acquire valuable training that could be useful in finding subsequent

full time work. In the 1990s, for example, AFDC programs were fundamentally re-

structured into TANF around these ideas, and the result was a rise in employment

as well as a marked decline in child poverty. There are many other American wel-

fare programs that could benefit from similar reforms [135]. The right reforms could

transform many of these programs from the broken safety nets that they currently

are into trampolines that foster growth and success.

2.6 Conclusions and Future Research

With millions of Americans remaining in poverty despite the federal govern-

ment’s endless spending on welfare programs, it is important that policymakers

understand the fundamental causes of poverty. Our study has looked at this issue

and offers a number of informative suggestions. In particular, our results suggest
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that policies that work toward educating young people about marriage and having a

family could have a significant capacity to reduce child poverty. Additionally, work

requirements for able-bodied welfare recipients could also be particularly helpful.

Methodologically, we now also have an approach for obtaining closed-form

Bayesian inferences for the binary logit model utilizing polynomial expansions, al-

lowing for the use of rich two-sided normal prior distribution. These series expan-

sions can be made arbitrarily close depending on how many terms the researcher

chooses to use in the truncated approximations. Our simulations demonstrate the

efficacy of our technique as well as the fact that our method outperforms existing

MCMC methods. The speed of our approach provides an attractive alternative to

MCMC methods, particularly for large data sets, such as the child poverty data

set used here. Our analysis of this child poverty data set suggests that marriage,

parental age, parental education, and parental work status are significant factors

influencing child poverty. Our findings are in line with extant policy research, and

we suggest a number of policy implications and suggestions based on our results

coupled with these studies.

Although we have focused our application of this model to public policy re-

search, there is no reason that this model cannot be applied to other fields where

logistic regression is used including marketing, economics, biostatistics, criminology,

and professional sports among others. Methodologically, there are also many poten-

tial avenues of future research that this study should encourage. For example, we

made the assumption in this study that JNi = 1. Future research should look into

weakening this restriction. Additionally, a potential avenue of future research is to

explore other methods of polynomial expansions and compare them to the approach

using geometric series expansions here. Furthermore, although we primarily con-

centrated on one particular model - the binary logit model, and one class of priors,

the normal distribution, we hope this study spurs research on closed-form Bayesian
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inferences for other models as well. In particular, a nice aspect about members

of the exponential family is that each member has a certain conjugate prior. It

could be useful from a computational perspective to use polynomial expansions to

approximate posterior distributions within this family for a choice of priors previ-

ously considered non-conjugate. Additionally, the binary logit model discussed here

belongs to a larger class of generalized linear models (GLMs). A potential avenue

of future research could be to utilize polynomial expansions to allow researchers to

make closed-form Bayesian inferences based on other GLMs. Additionally, deriving

a polynomial expansion approach for the multinomial logistic regression model, a

workhorse model in applied economics research, would also be a worthy endeavor of

future research [58,99].

It is always useful to have a variety of methods to draw inferences from sta-

tistical models, especially for large data sets. We hope the polynomial expansion

approach presented here adds significant value to the applied statistician’s toolbox.
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Chapter 3: Closed-form Bayesian Inferences for Semiparametric Den-

sity Ratio Modeling with Applications to Tort Reform

3.1 Introduction

3.1.1 Tort Reform

Medical doctors belong to one of the most highly-respected professions in

America. Yet they are at risk of facing unnecessary lawsuits everyday. From sur-

geons to obstetricians to general practitioners, virtually all doctors fear the risk

of lawsuit abuse. These risks have been considered by policymakers on both sides

of the aisle to be an important component in reforming our nation’s health care

system [73].

One aspect of the American health care system that is worthy of attention

is medical malpractice reform. The potential for fraud and abuse of the medical

malpractice system unnecessarily raises health care costs by impacting physician

supply and forcing doctors to engage in defensive medicine [19, 85, 151]. Medical

malpractice reform falls into a larger class of reforms of the civil justice system,

known as tort reform. According to Black’s Law Dictionary, a tort is defined as

“... a legal wrong committed upon the person or property independent of contract

...” [46]. In settling these disputes, compensation may be awarded to the victims.

America has always been a highly litigious country with many frivolous law-



suits and unnecessary abuses of the civil justice system. Such a climate has been

shown to impose hidden costs on consumers as well as on business, including, but

not limited to, the health care, automotive, agricultural, and retail sectors of the

American economy [103]. Tort reform seeks to to reduce tort costs by fundamentally

reforming the civil justice system to prevent abuse, thereby reducing unnecessary

litigation. Recent research has illustrated that tort reform can significantly improve

the business climate in America leading to more jobs, better health care, and a more

prosperous economy [104].

Policymakers have sought to pursue tort reform in a number of ways. One

approach has been to impose monetary caps, which limit the amount of money that

a jury may award a plaintiff. These caps may apply to appeal bonds, non-economic

damages, punitive damages, or monetary damage awards. Other approaches have

been to direct reforms toward other aspects of the civil justice system such as class

action lawsuits, imposing statutes of limitations, and requiring attorney fee limita-

tions among others.

In this chapter, we quantify the impact of medical malpractice reforms by esti-

mating the probabilities of extreme tort losses. Computation of these probabilities,

however, is not an elementary statistical problem as different states exhibit different

degrees of litigiousness. Alaska and Texas have been shown, for example, to be

considerably less litigious than other states such as New York and California [104].

Additionally, different localities within states may also exhibit a certain degree of

heterogeneity. For example, New York City and various towns in upstate New

York may differ how litigious they are. In order to capture this type of state-level

heterogeneity in our model, we improve on existing semiparametric density ratio

estimation methodologies. A series of numerical simulations, along with goodness

of fit computations, illustrates the efficacy of our approach.
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3.1.2 Bayesian Parametric methods

With the rapid improvements in statistical computing power over the course

of the last three decades, incorporating heterogeneity in parametric models has

become increasingly common in the statistical literature. These days, researchers

can choose from a variety of methodologies such as a parametric Bayesian approach,

a non-parametric Bayesian approach, a finite mixture approach, or a combination

of the finite mixture modeling coupled with Bayesian modeling [74,90,92,140].

Modeling individual-level heterogeneity is often important as there is gener-

ally no a priori reason to assume that all individuals (or observations) in a data

set behave in an identical manner. However, as data sets often contain limited in-

formation about each individual, it is quite difficult, if not impossible, to estimate

models incorporating heterogeneity from a frequentist perspective. The Bayesian

approach allows the statistician to assume individual-level parameters adhere to a

lower dimensional probability distribution and perform statistical inferences based

on the parameters of these lower dimensional distributions either via an empirical

Bayesian approach or a fully Bayesian approach [48,110]. By reducing the problem’s

dimensionality, estimation of these statistical models becomes quite feasible.

In this chapter, we adapt such a Bayesian approach to semiparametric method-

ology used thus far only for frequentist statistical modeling. Our approach enables

these models to accommodate individual-level heterogeneity with high-dimensional

parameter spaces. We discuss this semiparametric methodology in the following

section.

3.1.3 Density Ratio Estimation

Density ratio estimation (DRE) methods were first suggested over thirty years

ago. In their 1997 paper, following Prentice and Pyke (1979) and others, Qin and

Zhang suggested instead of making the typically strict parametric assumptions about
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distributions of data sets, that a researcher only make assumptions about the ratios

of probability densities (known as tilts) based on subsamples within the data sets.

Qin and Zhang (2005) assumed exponential tilts and recommended estimation of

these models via the method of empirical likelihood [116,122,124,125].

Over the years, DRE has had many applications in statistical research. For

example, Gilbert et al (1999) improved on DRE’s methodologies and applied these

improvements to understanding the efficacy of HIV vaccine trials. Several years

later, Kedem et al (2008) applied DRE to time series forecasting [52, 81]. In par-

ticular, their study used DRE to develop distributional assumptions necessary to

forecast mortality rates for various age groups within the United States. Kedem et

al (2009) and Voulgaraki et al (2012) applied DRE to cancer research [80,160]. Both

studies were able to utilize DRE to determine the significance of certain risk factors

for cancer. In addition to these studies, there have been many other studies that

have utilized the semiparametric benefits of the DRE approach [43,44,80,119,122].

Fokianos and Qin (2008) employed importance sampling in connection with

DRE, which required the generation of artificial data [45]. Prior to that, however, all

research using DRE was based on within-sample data. Specifically, data was always

divided into smaller subsets (such as cohorts) and comparisons would be made

between these subsets. Recent research proposed a innovative adaptation of density

ratio estimation known as “out of sample fusion.” Based on the idea of having one

primary data set as a reference, and a secondary artificial (potentially simulated)

data set, this research illustrated that more accurate inferences can be made about

the primary data set by applying DRE to both samples [78,82,168]. Earlier in this

dissertation, we illustrated that that this methodology can be particularly useful for

making Bayesian inferences when applied to posterior samples.

To date, however, although a few studies have applied Bayesian methods to

empirical likelihood problems, no studies have done so uniting the semiparametric
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DRE method with Bayesian methods to model individual-level heterogeneity [91,

106,146,165]. We ameliorate this limitation in this chapter. In particular, we adapt

the Bayesian approach mentioned in the previous section to the semiparametric

DRE method to model individual-level heterogeneity. We apply this methodology

to a data set used in a tort reform study conducted by the Pacific Research Institute

to understand overall distributional properties of tort losses throughout the country

[19].

3.2 Problem Formulation

Suppose that we have a data set consisting of i = 1, ..., I samples and define

j = 1, ..., ni observations within each ith sample, such that we have the following P -

dimensional vectors xi,j = (xi,j,1, xi,j,2, ..., xi,j,P ) with
∑I

i=1 ni = N . Let M = I + 1

and define probability density functions gi such that:

xi,j ∼ gi. (3.1)

Additionally, we can also define gI+1 ≡ g as our reference probability density, de-

scribing another sample of size nI+1. Assume the densities gi satisfy the following

relationship regarding their ratios:

gi(xi,j)

g(xi,j)
= w(θi,xi,j), (3.2)

where θi is a vector-valued statistical parameter to be estimated. Without loss of

generality, we assume exponential tilts, defining w(θi,xi,j) ≡ eαi+β
′
ih(xi,j), where we

are currently assuming h : RP → RP . We allow αi ∼ N(µα, 1) and βi ∼ N(µβ,Σβ)
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where β′i = (βi,1, ..., βi,P ) be our heterogeneity distributions.1 By allowing our

model’s coefficients to vary for each sample, we enable our model to capture “sample-

level” (or individual-level if each sample represents an individual) heterogeneity.2

We begin by assuming that Σβ is a diagonal matrix and hence that the random

variables βi,p are statistically independent of each other. Additionally, we make the

assumption that ni = 1 ∀ i = 1, . . . , I (to assume a single observation for every

individual in a data set) and nI+1 = nM = N .

3.2.1 Bayesian Density Ratio Estimation

Let G(x) = GI + 1(x) be the reference CDF and define pij = dG(xi,j) =

dGI+1(xi,j). We can utilize the method of constrained empirical likelihood and

estimate gi and θi as follows. We can write the empirical likelihood function, based

on our pooled data xij :

L(θ, GM) =
M∏
i=1

ni∏
j=1

pij

I∏
i=1

ni∏
j=1

eαi+β
′
ih(xi,j), (3.3)

where θ = (α1, . . . , αI , β1,1, . . . , βI,P ).3 As stated above, we make the assumption

that ni = 1 ∀ i = 1, . . . , I and nI+1 = nM = N = I. As a result, the second prod-

uct in the exponential terms does not contribute to multiplication of the distortion

function. We marginalize the empirical likelihood function to generate a “marginal-

ized empirical likelihood” by integrating the above empirical likelihood against the

heterogeneity distributions:

1 For example, one potential choice for h is h(x) = x as in Voulgaraki et al (2012) [160]. This
definition can be generalized, however, and the dimension of β′

i would consequently also need to
be altered.

2 We assume the above parameterization for αi (with a constant variance) to ensure statistical
identifiability of the model after marginalization.

3 Chapter 4 contains some theoretical discussion regarding empirical likelihood estimation in-
volving density ratios.
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ML(µα,µβ,Σβ, GM ) =

∫ +∞

−∞
...

∫ +∞

−∞
L(θ, GM )

I∏
i=1

1√
2π
e(
−(αi−µα)2

2
)dαi

·
P∏
p=1

1√
2πσ2βp

e
(
−(βi,p−µβp )2

2σ2
βp

)

dβi,p

=

∫ +∞

−∞
...

∫ +∞

−∞

M∏
i=1

ni∏
j=1

pij

I∏
i=1

ni∏
j=1

eαi+β
′
ih(xi,j)

1√
2π
e(
−(αi−µα)2

2
)dαi

·
P∏
p=1

1√
2πσ2βp

e
(
−(βi,p−µβp )2

2σ2
βp

)

dβi,p

=

M∏
i=1

ni∏
j=1

pij

I∏
i=1

ni∏
j=1

∫ +∞

−∞
. . .

∫ +∞

−∞
eαi+β

′
ih(xi,j)

1√
2π
e(
−(αi−µα)2

2
)dαi

·
P∏
p=1

1√
2πσ2βp

e
(
−(βi,p−µβp )2

2σ2
βp

)

dβi,p

ML(µα,µβ,Σβ, GM ) =
M∏
i=1

ni∏
j=1

pij

I∏
i=1

ni∏
j=1

eµα+
1
2 eµβ

′h(xi,j)+
1
2
h(xi,j)

′Σβh(xi,j) (3.4)

As a result, we have the following theorem:

Theorem 3.2.1 (Marginalized Empirical Likelihood for Density Ratio Model As-

suming Normal Prior Distributions). The marginalized log-likelihood function of

(3.3), assuming normal heterogeneity distributions, is provided by:

LL(µα,µβ,Σβ, GM ) = logML(µα,µβ,Σβ, GM )

=

M∑
i=1

ni∑
j=1

log pij +

I∑
i=1

ni∑
j=1

(µα +
1

2
+ µβ

′h(xi,j) +
1

2
h(xi,j)

′
Σβh(xi,j)).

This result is simply due to taking the logarithm of (3.4).

One maximizes the above marginalized likelihood subject to constraints anal-

ogous to those used in Voulgaraki et al 2012 [160]: pij ≥ 0,
∑M

i=1

∑ni
j=1 pij = 1,

and
∑M

i=1

∑ni
j=1 pije

µα+
1
2
+µβ

′h(xi,j)+
1
2
h(xi,j)

′Σβh(xi,j) = 1.4 One can perform the opti-

4 This constraint is easy to see after integration of both sides of the constraint imposed in
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mization of the empirical likelihood function numerically to estimate µα, µβ, and

Σβ.

3.2.2 Advantages of Marginalization

The marginalization of the empirical likelihood function in equation (3.3)

serves a few important purposes. Firstly, in data sets where ni is small, each ob-

servation will contain very limited information regarding each αi and βi. As a

result, marginalizing the empirical likelihood function by integrating over this high-

dimensional parameter space, enables us to markedly reduce the dimensionality of

the problem, to a considerably less intricate model involving just µα,µβ, and Σβ.

Note that this reduction in dimensionality occurs because the marginalization

essentially transforms our model from one density ratio into another. In particular,

after starting with I different samples, each of size 1, using a sample of size N = I

as a reference, and integrating over the parameter space, the density ratio becomes

another exponential with a slightly different functional form. As a result, this new

density ratio compares two different distributions, each of sample size N .

As the regularity conditions outlined in Fokianos (2004) clearly hold for our

marginalized empirical likelihood, our empirical likelihood estimators are statisti-

cally unbiased and asymptotically normal [43]. A researcher can test the null hy-

pothesis that each coefficient is equal to zero against the alternative that it is non-

zero. As illustrated in Kedem et al (2009), the likelihood ratio of each null model

to the full model asymptotically follows a chi-squared distribution [80].

3.2.3 Derivation of Distributions

We can use the results from our optimization to estimate the distributions.

In particular, we can define γ ≡ λ/2N , where λ is a Lagrange multiplier. We can

Voulgaraki et al (2012):
∑M
i=1

∑ni
j=1 pije

αk+β
′
kh(xi,j) = 1 over the heterogeneity distributions F,

providing us with
∫ ∑M

i=1

∑ni
j=1 pije

αk+β
′
kh(xi,j) dF =

∫
1 dF ∀ k = 1, . . . , I.
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subsequently replace γ, µα,µβ, and Σβ by their estimators. As a result, following

the derivations in Voulgaraki (2011) [159], estimators of p̂ij and Ĝ(x) are provided

by:

p̂ij =
1

2N

1

1 + γ̂[eµ̂α+
1
2 eµ̂

′
βh(xi,j)+

1
2
h(xi,j)

′Σ̂βh(xi,j) − 1]
(3.5)

and:

Ĝ(x) =
M∑
i=1

ni∑
j=1

p̂ijI(xij ≤ x)

=
1

2N

M∑
i=1

ni∑
j=1

I(xij ≤ x)

1 + γ̂[eµ̂α+
1
2 eµ̂

′
βh(xi,j)+

1
2
h(xi,j)

′Σ̂βh(xi,j) − 1]
. (3.6)

Furthermore, for the “marginalized distribution,” which we will hereafter refer

to as Ĥ, we have:

Ĥ(x) =
M∑
i=1

ni∑
j=1

p̂ije
µ̂α+

1
2
+µ̂′

βh(xi,j)+
1
2
h(xi,j)

′Σ̂βh(xi,j)I(xij ≤ x)

=
1

2N

M∑
i=1

ni∑
j=1

eµ̂α+
1
2
+µ̂′

βh(xi,j)+
1
2
h(xi,j)

′Σ̂βh(xi,j)I(xij ≤ x)

1 + γ̂[eµ̂α+
1
2 eµ̂

′
βh(xi,j)+

1
2
h(xi,j)

′Σ̂βh(xi,j) − 1]
. (3.7)

For researchers interested in estimating the probability density function of the

sample, kernel density estimators can be constructed by smoothing the increments

of Ĥ [43, 125, 160]. This research in fact illustrated that one can arrive at more

efficient kernel density estimates as a result of combining data. As mentioned earlier

in this dissertation, optimal bandwidth selection for the kernel density estimation

is discussed in detail in Voulgaraki et al (2012) [160].
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3.3 Numerical Simulations

To demonstrate the efficacy of our approach, we simulated data sets of size

100 from a variety of distributions (gamma, Weibull, and exponential). The gamma

and Weibull distributions were parametrized with shape parameter αi and scale

parameter βi while the exponential distribution was parameterized by αi. These

parameters were drawn from normal distributions, with αi ∼ N(µα, σ
2
β) and βi ∼

N(µβ, σ
2
β). This stochastic nature of our distributions’ parameters enabled us to

simulate datasets that, as described earlier, are “heterogeneous” in nature.

Assuming the density ratio to follow (3.2) having linear exponential tilts

w(αi, βi;xi) = eαi+βixi and only one observation per sample (i.e. ni = 1 ∀ i),

we fused this simulated data with a random draw of equal sample size from a spec-

ified distribution that served as a reference distribution. Specifically, we took our

sample of size 100 and fused it with another sample (a reference distribution) of size

100 from a probability distribution (gamma, uniform, or normal) chosen a priori.

When fusing with a gamma distribution, we fit our original sample to a gamma dis-

tribution, estimated the gamma distribution’s parameters via standard maximum

likelihood techniques, and used a sample of size 100 from this gamma distribution as

a reference. When fusing with a uniform distribution, we fused our distribution with

a sample over the range of our original sample’s data and used a sample of size 100

from this uniform distribution as a reference. Finally, when fusing with a normal

distribution, we fused our simulated data with a sample of size 100 from a normal

distribution with sample mean and sample variance equal to that of the original

sample. We then estimated the distribution of both samples from the combined

data using the method of constrained empirical likelihood.
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Given the limited information per sample in the simulated data set (as ni = 1),

the marginalization of the empirical likelihood discussed in Section 3.2 enables a

significant reduction of the dimensionality of the model’s parameter space (from 200

to 3) and is consequently quite useful for understanding distributional properties

of the data. To quantify our model’s ability to understand these distributional

properties, we used a diagnostic statistic recommended in Voulgaraki et al (2012)

[160]:

R2
α,k = 1− exp

[
−
(

xα
m− xα

)k]
. (3.8)

In the above equation, m is defined as the number of times the estimated

semiparametric cumulative distribution function falls inside the estimated 1 − α

confidence interval obtained from the corresponding empirical cumulative distribu-

tion function, both functions being evaluated at the sample points. Additionally,

k is a prespecified constant, set by the statistician. Since we fused our data with

a reference sample from a known distribution, we estimated (3.8) on our reference

distribution. If our semiparametric density ratio model were inappropriate, then

our estimates would ruin the integrity of this reference distribution, resulting in

inaccurate estimates and consequently poor goodness of fit results. We estimated

(3.8) for our simulations over choices of k = 1 and k = 2.

Following the notation pertaining to (3.2), we refer to our simulated dataset

as x1 = (x1,1, x2,1, . . . , xi,1, . . . , xI,1) (that is, ni = 1 and p = 1 ∀ i = 1, . . . , I and p =

1, . . . , P ) and the sample with which we are fusing as x2 = (x1,2, x2,2, . . . , xi,2, . . . , xI,2).

In the following tables, α̂MLE and β̂MLE denote the maximum likelihood estimators

of x1 when the data are fused with a gamma distribution, x(1,1) and x(I,1) denote

the minimum and maximum values of x1 respectively when the data are fused with
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a uniform distribution, and x̄1 and s2x1
denote the mean and variance of x1 when

the data are fused with a normal distribution.

Our results are depicted in Tables 3.1-3.3. We notice that our Bayesian ap-

proach clearly fits better than, if not as well as, the existing DRE method as R2

under our standard DRE approach is always less than or equal to R2 under our new

Bayesian DRE approach. Additionally, we also notice that the choice of x2 with

which we fuse our sample with, also affects the goodness of fit results. For example,

at least in these simulations, we notice that fusing our data with a uniform distribu-

tion results in identical results when comparing the DRE approach to the Bayesian

DRE approach. In some cases, such as for our exponentially distributed samples, we

notice an identical goodness of fit (and hence the standard DRE approach is just as

effective); however, for other cases, such as Weibull samples, fusing with a uniform

distribution results in quite poor goodness of fit. These results suggest that when

using out of sample fusion to make statistical inferences about a particular data set,

the researcher should choose from a variety of different distributions from which to

fuse her data with and compare goodness of fit diagnostics to optimally determine

the distribution’s best estimate.

These results demonstrate a number of important points. Firstly, the den-

sity ratios before the marginalization were slightly misspecified to begin with. For

example, the proper ratio in equation (3.2) for a gamma distribution (fused with

another gamma or uniform distribution) should be of the form w(αi, βi,1, βi,2;xi,1) =

eαi+βi,1xi,1+βi,2log(xi,1) whereas we used a density ratio have functional form eαi+βixi

instead. The proper ratios for the other distributions examined are also slightly

different from what was examined here. In reality, however, when presented with a

data set, a researcher generally does not have any detailed specifications regarding

the distribution of the data. Making the simple specification as we have here, with

an elementary linear tilt function and the marginalization of the resulting empirical
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Tab. 3.1: First Simulation Set - Out of Sample Fusion with Gamma Distribution, Sample
Size I = 100

DRE Bayesian DRE

xi,1 µα σ2
α µβ σ2

β xi,2 R2
0.95,1 R2

0.95,2 R2
0.95,1 R2

0.95,2

Γ(αi, βi) 10 4 10 4 Γ(α̂MLE , β̂MLE) 0.957 0.976 0.964 0.982

Γ(αi, βi) 30 25 10 25 Γ(α̂MLE , β̂MLE) 0.886 0.917 0.902 0.929

Γ(αi, βi) 10 4 30 4 Γ(α̂MLE , β̂MLE) 0.980 0.994 0.980 0.994

Γ(αi, βi) 100 100 30 100 Γ(α̂MLE , β̂MLE) 0.934 0.975 0.950 0.979

Γ(αi, βi) 30 25 100 25 Γ(α̂MLE , β̂MLE) 0.993 1.000 0.993 1.000

Weibull(αi, βi) 10 4 10 4 Γ(α̂MLE , β̂MLE) 0.829 0.871 0.847 0.882

Weibull(αi, βi) 30 25 10 25 Γ(α̂MLE , β̂MLE) 0.837 0.876 0.856 0.893

Weibull(αi, βi) 10 4 30 4 Γ(α̂MLE , β̂MLE) 0.582 0.552 0.598 0.576

Weibull(αi, βi) 100 100 30 100 Γ(α̂MLE , β̂MLE) 0.637 0.624 0.639 0.626

Weibull(αi, βi) 30 25 100 25 Γ(α̂MLE , β̂MLE) 0.475 0.368 0.502 0.410

Exponential(αi) 10 4 NA NA Γ(α̂MLE , β̂MLE) 0.952 0.974 0.952 0.974

Exponential(αi) 30 25 NA NA Γ(α̂MLE , β̂MLE) 0.944 0.965 0.944 0.965

Exponential(αi) 10 4 NA NA Γ(α̂MLE , β̂MLE) 0.948 0.972 0.948 0.972

Exponential(αi) 100 100 NA NA Γ(α̂MLE , β̂MLE) 0.936 0.971 0.936 0.971

Exponential(αi) 30 25 NA NA Γ(α̂MLE , β̂MLE) 0.965 0.987 0.965 0.987

Tab. 3.2: Second Simulation Set - Out of Sample Fusion with Normal Distribution, Sample
Size I = 100

DRE Bayesian DRE

xi,1 µα σ2
α µβ σ2

β xi,2 R2
0.95,1 R2

0.95,2 R2
0.95,1 R2

0.95,2

Γ(αi, βi) 10 4 10 4 N(x̄1, s
2
x1

) 0.870 0.905 0.876 0.906

Γ(αi, βi) 30 25 10 25 N(x̄1, s
2
x1

) 0.730 0.738 0.743 0.754

Γ(αi, βi) 10 4 30 4 N(x̄1, s
2
x1

) 0.952 0.984 0.955 0.987

Γ(αi, βi) 100 100 30 100 N(x̄1, s
2
x1

) 0.808 0.827 0.822 0.844

Γ(αi, βi) 30 25 100 25 N(x̄1, s
2
x1

) 0.988 0.999 0.988 0.999

Weibull(αi, βi) 10 4 10 4 N(x̄1, s
2
x1

) 0.881 0.922 0.897 0.936

Weibull(αi, βi) 30 25 10 25 N(x̄1, s
2
x1

) 0.898 0.947 0.922 0.966

Weibull(αi, βi) 10 4 30 4 N(x̄1, s
2
x1

) 0.589 0.550 0.604 0.571

Weibull(αi, βi) 100 100 30 100 N(x̄1, s
2
x1

) 0.664 0.666 0.704 0.723

Weibull(αi, βi) 30 25 100 25 N(x̄1, s
2
x1

) 0.511 0.431 0.514 0.439

Exponential(αi) 10 4 NA NA N(x̄1, s
2
x1

) 0.782 0.824 0.786 0.830

Exponential(αi) 30 25 NA NA N(x̄1, s
2
x1

) 0.853 0.913 0.853 0.913

Exponential(αi) 10 4 NA NA N(x̄1, s
2
x1

) 0.797 0.850 0.801 0.855

Exponential(αi) 100 100 NA NA N(x̄1, s
2
x1

) 0.859 0.910 0.859 0.910

Exponential(αi) 30 25 NA NA N(x̄1, s
2
x1

) 0.832 0.891 0.832 0.891
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Tab. 3.3: Third Simulation Set - Out of Sample Fusion with Uniform Distribution, Sample
Size I = 100

DRE Bayesian DRE

xi,1 µα σ2
α µβ σ2

β xi,2 R2
0.95,1 R2

0.95,2 R2
0.95,1 R2

0.95,2

Γ(αi, βi) 10 4 10 4 Unif(x(1), x(N)) 0.960 0.980 0.960 0.980
Γ(αi, βi) 30 25 10 25 Unif(x(1), x(N)) 0.704 0.699 0.704 0.699
Γ(αi, βi) 10 4 30 4 Unif(x(1), x(N)) 1.000 1.000 1.000 1.000
Γ(αi, βi) 100 100 30 100 Unif(x(1), x(N)) 0.791 0.826 0.791 0.826
Γ(αi, βi) 30 25 100 25 Unif(x(1), x(N)) 1.000 1.000 1.000 1.000

Weibull(αi, βi) 10 4 10 4 Unif(x(1), x(N)) 0.308 0.177 0.308 0.177
Weibull(αi, βi) 30 25 10 25 Unif(x(1), x(N)) 0.303 0.170 0.303 0.170
Weibull(αi, βi) 10 4 30 4 Unif(x(1), x(N)) 0.144 0.037 0.144 0.037
Weibull(αi, βi) 100 100 30 100 Unif(x(1), x(N)) 0.143 0.032 0.143 0.032
Weibull(αi, βi) 30 25 100 25 Unif(x(1), x(N)) 0.107 0.020 0.107 0.020

Exponential(αi) 10 4 NA NA Unif(x(1), x(N)) 1.000 1.000 1.000 1.000
Exponential(αi) 30 25 NA NA Unif(x(1), x(N)) 1.000 1.000 1.000 1.000
Exponential(αi) 10 4 NA NA Unif(x(1), x(N)) 1.000 1.000 1.000 1.000
Exponential(αi) 100 100 NA NA Unif(x(1), x(N)) 0.981 0.999 0.981 0.999
Exponential(αi) 30 25 NA NA Unif(x(1), x(N)) 1.000 1.000 1.000 1.000

likelihood function, still enables us to reasonably estimate our distributions’ data,

as our goodness of fit results illustrate. The fact that misspecified tilt functions can

still lead to reasonable distributional estimates has been illustrated in Katzoff et al

(2013) [78].

In the following section, we discuss a few nice extensions of our theoretical

results.

3.4 A Few Generalizations

3.4.1 Arbitrary Prior Distributions and Tilt Functions

Although we assumed normal heterogeneity distributions, there is no a priori

reason to restrict ourselves to this parametric family. In particular, if we generalize

our assumptions and posit an arbitrary prior distribution and tilt function, we notice

that that the marginalized empirical likelihood function simply just involves the mo-
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ment generating function of the prior measure. Mathematically, we can quite easily

derive this generalization again under the assumption that ni = 1 ∀ i = 1, . . . , I and

nI+1 = nM = N . Following the density ratio in (3.2), and supposing that αi follows

a distribution with density P (αi|θα) with respect to Lebesgue measure and that

each βi,p follows a distribution, statistically independent of αi and of each other,

with density P (βi,p|θβp), we can generalize our marginalized empirical likelihood as

follows:

ML(θα,θβ1 , . . . ,θβP , GM ) =

∫ +∞

−∞
...

∫ +∞

−∞
L(θ, GM )

I∏
i=1

P (αi|θα)dαi

P∏
p=1

P (βi,p|θβp)dβi,p

=

∫ +∞

−∞
. . .

∫ +∞

−∞

M∏
i=1

ni∏
j=1

pij

I∏
i=1

ni∏
j=1

eαi+β
′
ih(xi,j)P (αi|θα)dαi

·
P∏
p=1

P (βi,p|θβp)dβi,p

=

M∏
i=1

ni∏
j=1

pij

I∏
i=1

ni∏
j=1

∫ +∞

−∞
. . .

∫ +∞

−∞
eαi+β

′
ih(xi,j)P (αi|θα)dαi

·
P∏
p=1

P (βi,p|θβp)dβi,p

ML(θα,θβ1 , . . . ,θβP , GM ) =
M∏
i=1

ni∏
j=1

pij

I∏
i=1

ni∏
j=1

MGF (θα; 1)
P∏
p=1

MGF (θβp ;h(xi,j)), (3.9)

where θ = (α1, . . . , αI , β1,1, . . . , βI,P ) as in (3.3). The result is thus in terms of the

moment generating functions of our prior distributions (MGF ) and the tilt function

h(xi,j). The log-likelihood, subject to the appropriate constraints (similar to those

imposed on Theorem 3.2.1), can be optimized to estimate the model. Of course,

prior distributions need to be chosen to ensure statistical identifiability.
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3.4.2 Assuming homogeneity in the intercepts

To make estimation easier, the researcher may prefer to restrict assumptions

regarding heterogeneity of coefficients corresponding to the explanatory variables

only. We can do so by assuming that the intercepts follow a delta mass at a particular

constant cα such that αi ∼ δ(cα) :

ML(cα,θβ1 , . . . ,θβP , GM ) =

∫ +∞

−∞
...

∫ +∞

−∞
L(θ, GM )

I∏
i=1

δ(cα)dαi

P∏
p=1

P (βi,p|θβp)dβi,p

=

∫ +∞

−∞
...

∫ +∞

−∞

M∏
i=1

ni∏
j=1

pij

I∏
i=1

ni∏
j=1

eαi+β
′
ih(xi,j)δ(cα)dαi

·
P∏
p=1

P (βi,p|θβp)dβi,p

=
M∏
i=1

ni∏
j=1

pij

I∏
i=1

ni∏
j=1

∫ +∞

−∞
. . .

∫ +∞

−∞
eαi+β

′
ih(xi,j)δ(cα)dαi

·
P∏
p=1

P (βi,p|θβp)dβi,p

ML(cα,θβ1 , . . . ,θβP , GM ) =

M∏
i=1

ni∏
j=1

pij

I∏
i=1

ni∏
j=1

ecα
P∏
p=1

MGF (θβp ;h(xi,j)). (3.10)

In the following section, we apply our approach to a fundamental aspect of

the American civil justice system with applications to health care reform.

3.5 An Application: Tort Reform

In this section, we analyze tort loss data across all fifty states. Recent research

has found that tort reform has had a significant impact on reducing insurance premi-

ums as well as on tort losses throughout the country. We utilize the Bayesian DRE

approach in this study to quantify the probability of tort losses exceeding a specified
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threshold [19] for 2004 and 2006. Computation of these probabilities enables us to

understand on how litigious the country indeed is, thereby shedding light on the

efficacy of recently instituted tort reforms.

3.5.1 Data

Our dataset was the same data used in the Crain et al (2009) study and was

provided to us by two of the paper’s authors [19]. We examined per capita tort

losses defined as the ”payments by defendants (or their insurance companies) for

judgments, settlements, attorney fees, and administrative expenses in tort lawsuits

...”, in thousands of (real 2006) dollars per capita, of each of the fifty U.S. states in

2004 and 2006 [19]. For this analysis, we adhered to examining medical malpractice

tort losses, although analysis of other aspects of the civil justice system (such as

automobile insurance, product liability insurance, and homeowners insurance among

others) are worthwhile endeavors for future research.

Our data is denominated in losses per capita to enable comparable analysis

across the different states. The data set consisted of one observation for each of the

fifty states (for a total sample size of 50 for each year), similar to what we assumed

in the simulation above. As different states and localities throughout the country

have the potential to be more litigious than others, it is important to be able to

capture this heterogeneity in estimating the probability of tort losses exceeding a

particular threshold. This fact, coupled with the fact that our data set contains only

one observation per state, makes our semiparametric Bayesian approach particularly

useful for reducing the dimensionality of the problem.

3.5.2 Estimation

We examined 2004 and 2006 separately, treating each datum within each year

as an independent single-observation sample with its own unique parametrization.

It is worthwhile to compare the distributions of per capita tort losses between 2004

61



and 2006 to understand the efficacy of tort reforms that had been recently insti-

tuted around that time period [19]. In particular, we used the following model

specification:

gi(x)

g(x)
= eαi+βix; i = 1, . . . , 50 (3.11)

and let αi ∼ N(µα, 1) and βi ∼ N(µβ, σ
2
β) as we did in Section 3.2. By allowing

our model’s coefficients to vary for each state, we enable our model to capture

state-level heterogeneity. We estimated the marginalized distribution by fusing the

sample with data regarding tort losses from 1996. After estimating our marginalized

distribution, we then used the cumulative distribution outlined in (3.7) to compute

the probabilities of extreme tort losses. These probabilities better enable us to

understand the risks associated with litigation across the country.

Additionally, we used a bootstrap approach to develop 95% confidence in-

tervals around these point estimates. Specifically, we resampled our dataset (with

replacement) 1000 times and re-estimated our probabilities for each sample. We used

the resulting set to generate our interval estimates. Our results are are outlined in

Tables 3.4-3.7.

Tab. 3.4: Coefficient Estimates - 2004, Using Bayesian DRE Approach

Coefficient Estimate Lower 95% CI Upper 95% CI

µα -1.3514 -2.0632 -0.5848
µβ 0.0419 -0.0300 0.0765
σ2
β 0.0003 0.0000 0.0031

Tab. 3.5: Coefficient Estimates - 2006, Using Bayesian DRE Approach

Coefficient Estimate Lower 95% CI Upper 95% CI

µα 0.4196 -0.2142 1.0331
µβ -0.1102 -0.1896 -0.0368
σ2
β 0.0044 0.0066 0.0076
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Tab. 3.6: Analysis of 2004 Tort Loss Data, Using Bayesian DRE Approach

Probability Estimate Lower 95% Limit Upper 95% Limit

P(Tort Losses > 35000) 0.100 0.010 0.148
P(Tort Losses > 45000) 0.085 0.005 0.104
P(Tort Losses > 55000) 0.019 0.000 0.060

Tab. 3.7: Analysis of 2006 Tort Loss Data, Using Bayesian DRE Approach

Probability Estimate Lower 95% Limit Upper 95% Limit

P(Tort Losses > 35000) 0.068 0.010 0.144
P(Tort Losses > 45000) 0.045 0.005 0.102
P(Tort Losses > 55000) 0.019 0.000 0.060

We also estimated the goodness of fit diagnostic statistics outlined in Table

3.8 for k = 1 and k = 2, comparing it to the existing DRE method. These results

are outlined in Table 3.8. Additionally, Figures 3.1-3.4 depict plots comparing the

estimated distributions of per capita tort losses Ĥ from (3.7) versus the correspond-

ing empirical CDFs for 2004 and 2006. The plots suggest that the comparative fit

between the two models is quite comparable in 2004 (as there is near perfect agree-

ment between the estimated and empirical CDFs) but substantial improvement as

a result of the Bayesian approach compared to the standard approach in 2006.

Tab. 3.8: Goodness of Fit Diagnostics

DRE Bayesian DRE

R2
0.95,1 R2

0.95,2 R2
0.95,1 R2

0.95,2

2004 0.915 0.998 0.911 0.997
2006 0.108 0.129 0.607 0.582

Our results illustrate that the Bayesian DRE approach substantially improved

model fit in 2006 suggesting that there was unobserved heterogeneity across the

country during that year that the standard DRE approach was unable to properly

model. Although there are not really any noticeable differences between the two

approaches in 2004 (in fact the standard DRE model performs slightly better), this
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Fig. 3.1: Plot of Ĥ vs. H̃ - DRE, 2004 Per Capita Tort Loss Data

Fig. 3.2: Plot of Ĥ vs. H̃ - Bayesian DRE, 2004 Per Capita Tort Loss Data
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Fig. 3.3: Plot of Ĥ vs. H̃ - DRE, 2006 Per Capita Tort Loss Data

Fig. 3.4: Plot of Ĥ vs. H̃ - Bayesian DRE, 2006 Per Capita Tort Loss Data
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similarity can be explained by the fact that in 2004, the 50 states may have been

considerably more homogeneous in nature regarding litigation. In terms of per

capita tort losses, the probabilities of extreme losses clearly declined between 2004

and 2006.

In terms of actual tort losses, we notice a reduction in the probabilities of

extreme losses in 2006 compared to 2004. These results, in conjunction with the

results from Crain et al (2009), illustrate the efficacy of the number of state-based

medical malpractice reforms, many of which had been instituted around this time

period [19]. Such reforms have included attorney fee limitations, requirements for

pre-trial screening, standards regarding expert witnesses, imposition of strict statute

of limitations for filing lawsuits, and economic damage caps. These results may also

be explained by the fact that existing tort laws, not necessarily recently instituted,

may have become more stringently enforced in 2006 compared to 2004. As a side

note, although the coefficient estimates of σ2
β appear to be low, they should not be

taken to imply that there is no heterogeneity in the model. As the units of our

data are in thousands of dollars per capita, seemingly small per capita differences

between states imply substantial variation in litigiousness amongst the states.

3.5.3 Policy Implications

A 2004 study conducted by the non-partisan Congressional Budget Office

found that state-based tort reform reduced the number of lawsuits filed, decreased

the number of damage awards, and lowered insurance claims [17]. Our results above

also illustrate that the risks associated with the civil justice system notably de-

clined between 2004 and 2006. These reductions were primarily due to state-based

tort reforms that were instituted throughout the country, including economic caps,

appeal-bond caps, and standards regarding expert witnesses [19].

Although these results illustrate the efficacy of certain malpractice reforms
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instituted around this time period, considerably more can be done to reform the

civil justice system including passing tort reforms in states where important laws

are lacking and more stringently enforcing existing laws [19, 103]. Scholars at the

Heritage Foundation, the Cato Institute, the American Enterprise Institute, and

the Brookings Institution have discussed the benefits of malpractice reform, noting

that such reforms have the potential to improve the environment for physicians to

practice, benefiting patients in the process [18,93,139,142].

These benefits are quite well-known. For example, a 2005 study published

in the Journal of the American Medical Association found that malpractice reform

increased physician supply, particularly with specialties associated with high mal-

practice costs [86]. The authors found that without appropriate reforms, the medi-

cal malpractice climate had been encouraging early retirements in and discouraging

entry to particularly risky specialties such as obstetrics, anesthesiology, radiology,

and surgery. Additionally, such an environment results in the practice of defensive

medicine, causing physicians to order unneeded tests due to the fear of lawsuits,

unnecessarily increasing health care costs [85, 151].

3.6 Conclusions and Future Research

Our study illustrates the efficacy of medical malpractice reform in reducing the

probabilities of extreme tort losses. Medical malpractice reform is of course by no

means a “silver bullet” for fixing our nation’s broken health care system. Such

reforms, however, are a very helpful component of the supply side of health care.

On the demand side, policymakers should seek to instill free market competition in

the industry, which will notably reduce costs and improve quality of care [13,20,21]

Methodologically, our study provides a notable contribution to both Bayesian
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estimation methodologies as well as to semiparametric modeling. In particular, we

have applied empirical Bayesian methods to semiparametric density ratio modeling,

allowing statisticians to incorporate individual-level heterogeneity in such models.

An interesting aspect of this approach is that our marginalization yields a closed-

form expression allowing us to make direct statistical inferences about the population

without having to resort to the numerical approaches typically concomitant with

Bayesian methods. As discussed in Chapter 2, these numerical approaches such as

MCMC methods, can be quite computationally intensive, particularly for large data

sets with high-dimensional parameterizations [50].

Additionally, although we focused our application on medical malpractice re-

form, there is no reason that this approach cannot be used in other settings where

modeling individual-level heterogeneity is important without being forced to adhere

to strict parametric assumptions. In particular, the approach outlined here can be

useful in many application areas including medical research [160], economics [56],

understanding athletic performance [24, 107], and other areas within public policy

research [19, 136] among others. Regardless of the application, we believe that the

Bayesian approach outlined here can be yet another useful tool for statisticians to

use.
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Chapter 4: Bayesian Inferences of Welfare Reform with Improved

Credible Interval Estimation via Semiparametric Out of

Sample Fusion

4.1 Introduction

4.1.1 “Ending Welfare as We Know it”

Welfare reform is a hot topic of debate amongst policymakers in America [61,

135,152]. The welfare state can be defined as a government system aimed at helping

the disadvantaged by providing benefits such health care, pensions, and financial

programs aimed to help those in need [14]. The first Chancellor of Germany, Otto

von Bismarck, constructed the beginnings of the modern European welfare state

in the late 1800s, creating programs such as old age pensions, accident insurance,

and medical care. In the early 20th century, the welfare state came to Britain with

the introduction of pension programs, free school meals, and unemployment and

health benefits. Shortly afterwards, the welfare state began to grow throughout

other European countries [14].

Although the United States does not have an overarching welfare state that

many European countries do, the country does offer a variety welfare programs [14].

Initiated in the United States in the early 1900s, federal welfare programs were



designed with the intention of operating as safety net programs to aid the disad-

vantaged. President Theodore Roosevelt, for example, proposed a number of such

ideas as part of his ‘New Nationalism’ platform. During that time period, Roosevelt

believed it was incumbent upon the federal government to institute programs such

as a National Heath Service; social insurance for the unemployed, disabled, and

elderly; and to provide workers’ compensation to those with certain work-related

injuries [84].

As a component of his New Deal, President Franklin Delano Roosevelt in-

stituted a number of federal cash assistance programs to assist the poor. These

programs included Social Security, Aid to Dependent Children (ADC), and unem-

ployment compensation programs among others. Several decades later, President

Lyndon Johnson instituted the War on Poverty to further expand America’s welfare

state with the goal of eradicating poverty. In particular, he expanded President

Roosevelt’s ADC programs (which by this time were known as Aid to Families with

Dependent Children or AFDC programs), began food stamp programs, public hous-

ing, Medicare, and Medicaid, all of which were intended to be “safety nets” for those

in poverty [14].

In Losing Ground, Charles Murray of the American Enterprise Institute rig-

orously evaluated the effects of these types of welfare programs [111]. He concluded

that without doubt many of these programs had the potential to foster dependency

and cripple those they intend to help. Murray’s work shattered much of the political

capital advocates had for open-endedly expanding America’s welfare state.

In 1992, Presidential Candidate Bill Clinton campaigned to “end welfare as

we know it,” [16]. Two years later, Congressional Republicans made welfare reform

a fundamental component of their Contract with America [53]. The goal of these

reforms were to transform welfare away from a system that encouraged endless

dependence on taxpayer dollars and instead transform it into a system providing
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temporary assistance to get people back to work and become active contributing

members of society.

In 1996, Congressional Republicans worked with President Clinton to reform

AFDC Programs [53]. Intended to operate as a safety net for those in poverty,

AFDC programs were simply a government handout to qualifying single mothers.

The government mailed checks to recipients who had virtually no responsibilities in

return. In 1996, President Clinton signed into law the Personal Responsibility and

Work Authorization Act (PROWA), restructuring AFDC programs into a more re-

strictive program known as Temporary Assistance to Needy Families (TANF) [118].

Under TANF, state governments were required to impose federal work standards

on welfare recipients. In particular, TANF required recipients to work or study as

a condition for receiving welfare. In addition, TANF also limited receipt of welfare

benefits to a five year time frame. These requirements, although not particularly

rigorous, were intended to transform the welfare program from a system that fos-

tered dependency into a springboard that gave the disadvantaged temporary help

to become contributing members of society [137].

It is important for policymakers to be able to rigorously examine such funda-

mental changes to government programs. Many reforms, including PROWA, have

been constructed to provide states a certain degree of flexibility in implementing the

law. As a result, different states have the potential to manifest different responses

to the law. Although a number of policy studies have made some quantitative

evaluations of PROWA, no studies, to our knowledge, have done so capturing this

state-level heterogeneity in the associated statistical models [61,132,152].

We perform such an analysis in this study. In particular, we statistically

evaluate the success of PROWA in helping to get people back to work. We do

so by estimating hierarchical Bayesian linear models to rigorously compare AFDC

programs (before welfare reform) to TANF programs (after welfare reform). We find
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that TANF was considerably more successful than AFDC in getting people back to

work, illustrating the success of the PROWA.

In the process of our analysis, we improve on existing Bayesian statistical es-

timation techniques. In particular, standard Bayesian estimation techniques suffer

from a number of significant limitations. Specifically, standard Markov Chain Monte

Carlo (MCMC) methods used to estimate Bayesian statistical models can require

a significant amount of time to adequately sample a posterior density, especially

for large data sets involving high-dimensional parameter spaces [50]. Furthermore,

despite diagnostic checks, it is difficult to truly know whether an MCMC sampler

has adequately sampled the parameter space. As a result, posterior inferences based

on MCMC sampling may or may not necessarily reflect reality. We provide a novel

adaptation of a semiparametric estimation technique, used thus far only for frequen-

tist statistical models, to more accurately summarize the posterior by providing more

precise estimates of the density’s credible intervals [160].

The contribution of this study is therefore twofold. Firstly, we statistically

examine the efficacy of the welfare reform of the 1990s. Secondly, we improve

on standard Bayesian estimation techniques for hierarchical linear models. As we

discuss, our improvements to Bayesian computation are useful for a variety of models

beyond just the hierarchical linear model structure studied here.

4.2 Statistically Modeling the Impact of Welfare Reform

4.2.1 A Hierarchical Bayesian Model Allowing for State-Level Heterogeneity

We are interested in understanding the efficacy of the Personal Responsibility

and Work Opportunity Reconciliation Act of 1996 [118]. This law imposed a five
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year time limit on welfare benefits and imposed some, albeit not particularly oner-

ous requirements, on individuals to either work or study as a condition of receiving

welfare. To understand the efficacy of this reform, we looked at the effect of the

total number of welfare caseloads in each state on the number of employment re-

lated discontinuances of receiving welfare. Mathematically, this relationship can be

modeled over i ∈ {1, . . . , 53} territories (50 states as well as Guam, Puerto Rico,

and the District of Columbia) (units) over t ∈ {1, . . . , T} years.

Consider a data set consisting of i ∈ {1, . . . , I} observations (in our case

state/territories) over t ∈ {1, . . . , T} occasions. We define our dependent vector

valued variable to be yi = (yi,t)
T
t=1, which represents the welfare caseload discontin-

uances due to employment for state/territory i at time t. We define our explanatory

vector valued variable, xi = (xi,t′)
T ′

t′=1, as a vector of dimension equal to yi represent-

ing the total number of welfare caseloads at time t′ (for t′ < t) as we wish to relate

yi,t to past covariates. Thus, xi represents a lagged number of welfare caseloads.

As the PROWA imposed a new five year time limit for TANF recipients, which had

previously not been present for AFDC programs, we conducted our analysis for lags

of 1,2, 3, 4, and 5 years.
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yi ∼ MVN(βi,0 + βi,1xi,1,Σ) (4.1)

βi,0 ∼ N(µ0, σ
2
0) (4.2)

βi,1 ∼ N(µ1, σ
2
1) (4.3)

Σ−1 ∼Wishart(Φ0, ν0) (4.4)

µ0 ∼ N(0, 10) (4.5)

µ1 ∼ N(0, 10) (4.6)

σ−20 ∼ Γ(10, 10) (4.7)

σ−21 ∼ Γ(10, 10) (4.8)

Σ is a T -dimensional variance-covariance matrix that enables us to capture

cross-year correlations (for example caseloads reductions in one particular state

in one year may have a strong correlation with caseload reductions in that same

state the following year). Another way of viewing this model would be to esti-

mate a hierarchical Bayesian linear model defined as yi,t = βi,0 + βi,1xi,t + εi,t for

i = 1, . . . , I, t = 1, . . . , t − 1 with the prior structure discussed above and with

non-zero covariances between εi,t′ and εi,t ∀t, t′ ≤ T .

To ensure statistical identifiability of our model, we requred β1,0 ≡ 0.1 In

the next section, we discuss estimation of this model, including improvements to

estimating the posterior density’s credible intervals.

4.2.2 The Limitations of Bayesian Computational Methods

Typically, these types of hierarchical Bayesian models lack an analytic form for

their posterior functionals and are therefore estimated numerically using standard

1 This coefficient pertains to the intercept regarding Alabama as our data was organized alpha-
betically.
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Markov Chain Monte Carlo (MCMC) methods [50]. Researchers use the resulting

MCMC samples to generate a variety of statistical estimators such as posterior

means, posterior standard deviations, and endpoints depicting credible intervals.

There are a number of limitations associated with MCMC sampling, however.

In particular, MCMC sampling can be computationally intensive, particularly for

models involving high-dimensional parameter spaces. Recent research has developed

alternative approaches for Bayesian estimation that attempt to address this issue.

In particular, there are approaches using variational approximations to posterior

densities, polynomial expansion approaches, and alternative sampling approaches

among others [9, 10,39,57,108].

Another limitation of MCMC methods is that although there are some eval-

uatory tools (e.g. Gelman and Rubin 1992) to assess convergence of the chain,

these measures are simply just diagnostics, and it is difficult to determine with

certainty if the MCMC chain has sufficiently navigated the posterior distribution’s

parameter space [51]. Although MCMC samplers theoretically do converge under

reasonable conditions, this convergence is only guaranteed to occur asymptotically

over an infinitely large number of draws [154]. In reality, however, the Bayesian

MCMC samplers need to eventually be truncated. As a result, researchers are of-

ten rightfully concerned with whether their posterior sample based on truncation

of the MCMC sampler truly represents the posterior density. A classic pathologi-

cal example demonstrating this phenomenon involves MCMC sampling of the so-

called “witch’s hat,” where the MCMC sampler can get stuck in a particular area

of the posterior distribution [141]. Premature truncation of the MCMC sampler

can consequently result in misleading statistical inferences regarding the posterior

distribution.

We can mitigate this problem considerably by applying a semiparametric

methodology, known as density ratio estimation, to posterior samples [123–125,160].
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This estimation technique can enable a researcher to more accurately estimate cred-

ible intervals. Although this semiparametric approach has been used in a variety

of settings, no researchers, to our knowledge, have applied this method to Bayesian

estimation.

4.2.3 Statistical Inferences Based on Density Ratio Estimation

Density ratio estimation (hereafter referred to as DRE) is a semiparametric

statistical estimation technique. This technique has been applied to many settings

including AIDS vaccine trials, the analysis of variance, mortality rate prediction,

cluster detection, and cancer research among others [43,44,52,80,81,83]. In the one

dimensional case, there are i = I + 1 random samples xi with sample size ni such

that
∑I+1

i=1 ni = n:

xi = (xi,1, . . . , xi,ni),

with probability density functions gi, such that:

xi,j ∼ gi, i = 1, . . . , I, I + 1, j = 1, . . . , ni. (4.9)

In utilizing this method, the statistician a priori assumes that gI+1 ≡ g defines

a reference probability density with a particular ratio between gi and g ∀ i = 1, . . . , I.

In many cases, this ratio is an exponential involving a vector-valued function h(x),

known as a tilt function:

gi(x)

g(x)
= eαi+β

′
ih(x). (4.10)

If both gi(x) and g(x) are densities belonging to the exponential family having

functional form:
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g(x,θ) = d(θ)S(x)exp
[ J∑
j=1

cj(θ)Tj(x)
]

= exp

[ J∑
j=1

cj(θ)Tj(x) + log
[
d(θ)S(x)

]]
, (4.11)

where θ is a parameter to be estimated, then the densities of any two such members

will clearly have a ratio satisfying (4.15), as will the ratio of a single truncated

such member coupled with the density of a uniformly distributed random variable.

Some examples of special cases resulting in commonly used tilt functions are h(x) =

(x, x2)′ (appropriate for normally distributed data):

gi(x)

g(x)
= eαi+βix+γix

2

, (4.12)

h(x) = (x, log(x))′ (appropriate for data coming from a gamma distribution), and

gi(x)

g(x)
= eαi+βix+γilog(x), (4.13)

h(x) = (xτ , log(x))′ (appropriate for potentially more heavily-skewed data coming

from a generalized gamma distribution):

gi(x)

g(x)
= eαi+βix

τ+γilog(x). (4.14)

Parametric assumptions regarding densities, however, are sufficient but not

necessary conditions for density ratios, such as those above, to be able to properly

model real-world phenomena. Recent research, for example, has shown that the

distributions described in (4.13) and (4.14) are useful in modeling situations where

the data does not necessarily adhere to the strict parameterizations described by

known parametric distributions [78,82,168].

77



4.2.4 Empirical Likelihood Estimation in Semiparametric Density Ratio Models

Suppose we assume the density ratio outlined in (4.15) with tilt function h(x),

gi(x)

g(x)
= eαi+β

′
ih(x). (4.15)

If we let G(x) be the reference CDF and define probability masses pij =

dG(xi,j) = dGI+1(xi,j), then we can utilize the method of constrained empirical

likelihood to estimate gi and the associated parameters as follows. We can write

our empirical likelihood function, parametrized by θ = (α1, . . . , αI ,β1, . . . ,βI) (a

vector of dimension Id), based on our pooled data:

L(θ, G) =
I+1∏
i=1

ni∏
j=1

pij

I∏
i=1

ni∏
j=1

eαi+β
′
ih(xi,j). (4.16)

The resulting log-likelihood is given by:

l = log L =
I+1∑
i=1

ni∑
j=1

log pij +
I∑
i=1

ni∑
j=1

(
αi + β′ih(xi,j)

)
, (4.17)

subject to the following constraints:

pij > 0,
I+1∑
i=1

ni∑
j=1

pij = 1,
I∑
i=1

ni∑
j=1

pije
αk+β

′
kh(xi,j) = 1, for k = 1, . . . , I. (4.18)

The following conditions, as discussed in Fokianos (2004) and Qin and Law-

less (1995) as cited by Voulgaraki (2011) ensure the existence of an empirical

likelihood estimator [43, 123, 159]. Specifically, if we let f(x, θ̂) = (eα̂1+β̂1h(x) −

1, . . . , eα̂I+β̂Ih(x) − 1)′, then given the following conditions, there exists, with prob-

ability approaching one, an extremum in a ball around the true parameter vector

θ0:
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Lemma 4.2.1. Under the assumptions that:

(a) E(f(x,θ0)f ′(x,θ0)) is positive definite,

(b) ∂f
∂θ

is continuous in a ball around the true value of θ0

(c) ||∂f
∂θ
|| and ||f(x,θ)||3 are bounded by an integral function with respect to G

in this ball,

(d) E
(
∂f
∂θ

)
is of rank Id,

where E is the expectation with respect to the probability measure corresponding to

G, then the coefficients αi and βi, as well as the discrete estimators of Gi(x) ∀ i =

1, . . . , I+1 can be estimated by optimizing (4.17) subject to the constraints outlined

in (4.18) via a two step estimation procedure utilizing the method of Lagrange

multipliers. Specifically, if we can define µk ≡ λk/n, where λk is the pertinent

Lagrange multiplier we find the following estimators, p̂ij and Ĝi(x) for i = 1, . . . , I+

1, as follows:

p̂ij =
1

n

1

1 +
∑I

k=1 µ̂k[e
α̂i+β̂

′
ih(xij) − 1]

(4.19)

and:

ĜI+1(x) =
I+1∑
i=1

ni∑
j=1

p̂ijI(xij ≤ x)

=
1

n

I+1∑
i=1

ni∑
j=1

I(xij ≤ x)

1 +
∑I

k=1 µ̂k[e
α̂i+β̂

′
ih(x) − 1]

. (4.20)

We can generalize this result to distributions Ĝi for i = 1, . . . , I to generate

the following estimators:
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Ĝk(x) =
I+1∑
i=1

ni∑
j=1

p̂ije
α̂k+β̂

′
kh(x)I(xij ≤ x)

=
1

n

I+1∑
i=1

ni∑
j=1

eα̂k+β̂
′
kh(x)I(xij ≤ x)

1 +
∑I

k=1 µ̂k[e
α̂i+β̂

′
ih(x) − 1]

, for k = 1, . . . , I. (4.21)

Furthermore, estimators of the probability densities gi(x) can be obtained via

kernel density estimation applied to the jumps of Ĝi ∀ i = 1, . . . , I + 1 . The inter-

ested reader should refer to Voulgaraki et al (2012), which provides a methodology

for a complete discussion of the approach including techniques for determining the

optimal bandwidth needed for accurate kernel density estimation [160].

Additionally, as long as the following properties hold, our estimators are statis-

tically unbiased and asymptotically normal as illustrated in the following theorem.

In particular, by defining the vector µ ≡ (µ1, . . . , µI) as the Lagrange multipliers

for the optimization of the empirical likelihood function subject to the constraints

outlined in (4.18) (just as has been done above) and by letting µ0 denote the true

value of µ, then, we can state the following theorem:

Theorem 4.2.2. Suppose the following conditions hold:

(a) ∂2f
∂θ∂θ′

is continuous in a ball around the true value of θ0

(b) There exists an integrable function with respect to G bounding || ∂2f
∂θ∂θ′

||

(c) The four conditions outlined in Lemma 4.2.1 hold.

Then:

√
n

(
θ̂ − θ0

µ̂− µ0

)
⇒ P, (4.22)

where ⇒ denotes weak convergence to a probability measure P, induced by a mul-

tivariate normal random vector with mean 0 and a particular variance-covariance
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matrix Σ.

The details of the structure of Σ are complicated and derived in detail in

Fokianos (2004). Lu (2007) contains a comprehensive proof of Theorem 4.2.2 [43,96].

One of the most appealing aspects about this semiparametric approach is that

it can more accurately determine probability distributions from data compared to

its more restrictive parametric counterparts. This advantage is due to the fact

that the combined sample of larger size is used rather than any particular sample

consisting of a smaller number of elements. In Section 4.2.2, we discussed many of

the limitations of present day standard Bayesian computational methods. In the

following section, we illustrate how this semiparametric density ratio technique can

be used to ameliorate these limitations.

4.2.5 Numerical Simulations

In this section, we present a series of numerical simulations to illustrate the

efficacy of using DRE to generate accurate estimates of percentiles from a variety

of different samples. In particular, we applied the DRE method, assuming the ratio

described in (4.12) through (4.14) to samples from known parametric distributions

(normal, student-t, gamma, and Weibull) to determine the samples’ 2.5th and 97.5th

percentiles. Since the supports of these distributions are infinite, fusing a sample

from any of these distributions with a uniformly distributed sample signifies that

the density ratio model holds approximately.

Specifically, we applied the DRE approach outlined in Section 4.2.3 with I = 1

(i.e. 2 samples), taking a sample from one of our known distributions, given a

particular choice of parameters, and fused this sample with a random sample drawn

from a uniform distribution with support including this sample’s entire range. This

uniformly distributed sample served as our reference distribution. This methodology,

known as “out of sample fusion,” was first introduced by Zhou (2013) as a tool for
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estimating small probabilities [168].

We used the DRE approach to estimate the 2.5th and 97.5th percentiles

(DREk,2.5 and DREk,97.5) of our original distribution over the course of k = 1, . . . , K

simulations. We compared these estimates to the true (2.5th and 97.5th) percentiles

of our original population, Qk,2.5 and Qk,97.5, by computing the squared difference

between the two.

We performedK = 100 such simulations for each choice of parameters, summed

these squared differences for each percentile, and computed averages across all sim-

ulations. We hereafter refer to these mean squared differences as MSEDRE,2.5 and

MSEDRE,97.5:

MSEDRE,2.5 =

∑K
k=1 (DREk,2.5 −Qk,2.5)

2

K
(4.23)

and:

MSEDRE,97.5 =

∑K
k=1 (DREk,97.5 −Qk,97.5)

2

K
. (4.24)

The use of known parametric distributions enables us to understand the effi-

cacy of using DRE for estimating low and high level quantiles of distributions. As

a result, these simulations shed light on the usefulness of using the DRE approach

for credible interval estimation of Bayesian regression coefficients.

Zhou (2013) also developed an approach for quantifying the efficacy of using

out of sample fusion for estimating probabilistic thresholds [168]. Zhou’s work found

that out of sample fusion results in shorter confidence intervals compared to using

empirical distributions solely based on within sample data. These confidence inter-

vals, however, are inherently frequentist in nature, based on the assumption that

each sample is the single realization of a long-run frequency of an asymptotically

large number of samples. This approach, although not completely useless, is not
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philosophically compatible with the Bayesian philosophy of statistical estimation.

As a result, although such an approach sheds light on the efficacy of out of sample

fusion, the approach presented here provides further verification as well as a more

legitimate basis for applying the DRE method to Bayesian estimation.

Our results are outlined in the Tables 4.1-4.10, which we conducted for sam-

ples of size 600, 1000, 5000, 10000, 15000, 20000, and 25000. DRE2.5 and DRE97.5

represent the estimates of the 2.5th and 97.5th percentiles using the DRE method,

averaged over the 100 simulations, and E2.5 and E97.5 represent these same averages

using the samples’ empirical CDFs. For the Weibull quantile estimation, we esti-

mated via maximum likelihood estimation an estimator for τ assuming the data were

a random sample from a generalized gamma distribution. We then fixed this esti-

mate as the value for τ in the density ratio and proceeded with the semiparametric

estimation.

We notice that for all of the sample sizes and distributions examined, MSEDRE2.5

andMSEDRE97.5 are substantially lower thanMSEE2.5 andMSEE97.5 . Thus, by sim-

ply fusing samples from known distributions with uniformly distributed data and

estimating the sample’s distribution using the semiparametric DRE approach with

the combined data based on a reasonable choice of a tilt function, we are able to more

accurately determine the 2.5th and 97.5th percentiles. As our analysis illustrates,

for data that appears to be normally distributed (i.e. symmetric and unimodal, the

tilt function h(x) = (x, x2)′ is reasonable, whereas for skewed data a tilt function of

the form h(x) = (x, log(x))′ or more generally h(x) = (xτ , log(x))′ is acceptable.
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Tab. 4.1: Simulation Results based on Samples from a Normal Distribution with mean
µ and standard deviation σ, fused with uniformly distributed sample over xmin

and xmax, assuming tilt function h(x) = (x, x2)′

N µ σ MSEDRE2.5 MSEDRE97.5 MSEE2.5 MSEE97.5

600 0 1 0.006 0.007 0.012 0.011
600 10 2 0.030 0.018 0.041 0.042
600 5 3 0.076 0.084 0.143 0.111
600 -2 5 0.176 0.190 0.234 0.222

1000 0 1 0.004 0.005 0.008 0.008
1000 10 2 0.015 0.020 0.021 0.027
1000 5 3 0.046 0.040 0.070 0.066
1000 -2 5 0.101 0.119 0.164 0.204
5000 0 1 0.001 0.001 0.001 0.002
5000 10 2 0.018 0.015 0.027 0.031
5000 5 3 0.039 0.041 0.056 0.066
5000 -2 5 0.103 0.114 0.159 0.184

10000 0 1 < 0.001 0.001 0.001 0.001
10000 10 2 0.017 0.017 0.034 0.029
10000 5 3 0.038 0.044 0.060 0.068
10000 -2 5 0.118 0.118 0.164 0.184
15000 0 1 < 0.001 < 0.001 0.001 < 0.001
15000 10 2 0.001 0.001 0.002 0.002
15000 5 3 0.003 0.003 0.004 0.005
15000 -2 5 0.008 0.007 0.012 0.010
20000 0 1 < 0.001 < 0.001 < 0.001 < 0.001
20000 10 2 0.017 0.014 0.029 0.029
20000 5 3 0.041 0.031 0.075 0.070
20000 -2 5 0.090 0.116 0.195 0.161
25000 0 1 < 0.001 < 0.001 < 0.001 < 0.001
25000 10 2 0.017 0.017 0.035 0.024
25000 5 3 0.051 0.042 0.066 0.079
25000 -2 5 0.113 0.067 0.234 0.143
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Tab. 4.2: Further simulations based on Samples from a student-t Distribution with varying
degrees of freedom, fused with uniformly distributed sample over xmin and xmax,
assuming tilt function h(x) = (x, x2)′

N df MSEDRE2.5 MSEDRE97.5 MSEE2.5 MSEE97.5

600 10 0.0127 0.0139 0.0253 0.0234
600 15 0.0114 0.0094 0.0191 0.0190
600 20 0.0089 0.0110 0.0146 0.0165
600 25 0.0101 0.0107 0.0147 0.0157
600 30 0.0076 0.0113 0.0140 0.0200
600 35 0.0069 0.0070 0.0118 0.0140
600 40 0.0087 0.0079 0.0148 0.0128

1000 10 0.0127 0.0139 0.0253 0.0234
1000 15 0.0114 0.0094 0.0191 0.0190
1000 20 0.0089 0.0110 0.0146 0.0165
1000 25 0.0101 0.0107 0.0147 0.0157
1000 30 0.0076 0.0113 0.0140 0.0200
1000 35 0.0069 0.0070 0.0118 0.0140
1000 40 0.0087 0.0079 0.0148 0.0128
5000 10 0.0020 0.0017 0.0026 0.0027
5000 15 0.0014 0.0015 0.0024 0.0021
5000 20 0.0015 0.0013 0.0024 0.0023
5000 25 0.0012 0.0013 0.0023 0.0022
5000 30 0.0010 0.0010 0.0016 0.0016
5000 35 0.0011 0.0018 0.0019 0.0016
5000 40 0.0010 0.0010 0.0020 0.0017

10000 10 0.0018 0.0019 0.0012 0.0011
10000 15 0.0017 0.0016 0.0012 0.0010
10000 20 0.0016 0.0016 0.0019 0.0011
10000 25 0.0015 0.0014 0.0019 0.0017
10000 30 0.0016 0.0016 0.0017 0.0010
10000 35 0.0015 0.0014 0.0017 0.0017
10000 40 0.0015 0.0015 0.0018 0.0017
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Tab. 4.3: Further simulations based on Samples from a student-t Distribution with varying
degrees of freedom, fused with uniformly distributed sample over xmin and xmax,
assuming tilt function h(x) = (x, x2)′

N df MSEDRE2.5 MSEDRE97.5 MSEE2.5 MSEE97.5

15000 10 0.0017 0.0017 0.0019 0.0019
15000 15 0.0015 0.0015 0.0018 0.0017
15000 20 0.0014 0.0014 0.0017 0.0015
15000 25 0.0014 0.0014 0.0018 0.0016
15000 30 0.0014 0.0014 0.0015 0.0015
15000 35 0.0014 0.0013 0.0016 0.0015
15000 40 0.0014 0.0014 0.0016 0.0016
20000 10 0.0018 0.0016 0.0019 0.0017
20000 15 0.0014 0.0013 0.0015 0.0015
20000 20 0.0012 0.0013 0.0015 0.0015
20000 25 0.0012 0.0013 0.0013 0.0014
20000 30 0.0013 0.0013 0.0014 0.0015
20000 35 0.0012 0.0013 0.0013 0.0015
20000 40 0.0012 0.0012 0.0013 0.0013
25000 10 0.0016 0.0015 0.0016 0.0016
25000 15 0.0013 0.0013 0.0014 0.0014
25000 20 0.0012 0.0013 0.0013 0.0014
25000 25 0.0012 0.0012 0.0014 0.0014
25000 30 0.0012 0.0013 0.0013 0.0015
25000 35 0.0012 0.0012 0.0014 0.0014
25000 40 0.0012 0.0013 0.0014 0.0014
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Tab. 4.4: Simulations based on Samples from a Gamma Distribution with parameters α
and β, assuming tilt function h(x) = (x, log(x))′

N α β MSEDRE2.5 MSEDRE97.5 MSEE2.5 MSEE97.5

600 1 2 0.001 1.367 0.001 2.040
600 3 2 0.092 2.170 0.116 2.655
600 5 2 0.235 2.898 0.279 3.644
600 1 4 < 0.001 0.297 < 0.001 0.366
600 3 4 0.030 0.495 0.032 0.601
600 5 4 0.065 0.642 0.078 0.979
600 7 4 0.104 0.898 0.122 1.073
600 1 8 < 0.001 0.083 < 0.001 0.095
600 3 8 0.005 0.149 0.005 0.167
600 5 8 0.021 0.240 0.024 0.254
600 7 8 0.030 0.255 0.037 0.304

1000 1 2 0.001 0.671 0.001 1.006
1000 3 2 0.053 0.930 0.058 1.287
1000 5 2 0.167 1.693 0.248 2.331
1000 1 4 < 0.001 0.174 < 0.001 0.232
1000 3 4 0.011 0.324 0.013 0.427
1000 5 4 0.046 0.339 0.049 0.467
1000 7 4 0.068 0.559 0.083 0.896
1000 1 8 < 0.001 0.066 < 0.001 0.070
1000 3 8 0.003 0.085 0.003 0.112
1000 5 8 0.013 0.116 0.015 0.138
1000 7 8 0.016 0.148 0.021 0.191
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Tab. 4.5: Further simulations based on Samples from a Gamma Distribution with param-
eters α and β, assuming tilt function h(x) = (x, log(x))′

N α β MSEDRE2.5 MSEDRE97.5 MSEE2.5 MSEE97.5

5000 1 2 < 0.001 0.133 < 0.001 0.211
5000 3 2 0.010 0.214 0.012 0.251
5000 5 2 0.035 0.251 0.041 0.423
5000 1 4 < 0.001 0.042 < 0.001 0.053
5000 3 4 0.003 0.070 0.003 0.087
5000 5 4 0.009 0.093 0.011 0.107
5000 7 4 0.014 0.113 0.018 0.148
5000 1 8 < 0.001 0.010 < 0.001 0.013
5000 3 8 0.001 0.021 0.001 0.022
5000 5 8 0.002 0.024 0.002 0.026
5000 7 8 0.004 0.021 0.004 0.034

10000 1 2 < 0.001 0.074 < 0.001 0.098
10000 3 2 0.004 0.110 0.005 0.161
10000 5 2 0.013 0.160 0.016 0.257
10000 1 4 < 0.001 0.019 < 0.001 0.025
10000 3 4 0.002 0.041 0.002 0.052
10000 5 4 0.004 0.037 0.005 0.047
10000 7 4 0.008 0.051 0.009 0.071
10000 1 8 < 0.001 0.005 < 0.001 0.006
10000 3 8 < 0.001 0.008 < 0.001 0.010
10000 5 8 0.001 0.012 0.001 0.014
10000 7 8 0.002 0.014 0.002 0.016
15000 1 2 < 0.001 0.047 < 0.001 0.063
15000 3 2 0.004 0.070 0.005 0.084
15000 5 2 0.011 0.107 0.013 0.161
15000 1 4 < 0.001 0.015 < 0.001 0.017
15000 3 4 0.001 0.019 0.001 0.023
15000 5 4 0.003 0.036 0.004 0.045
15000 7 4 0.005 0.034 0.006 0.048
15000 1 8 < 0.001 0.004 < 0.001 0.005
15000 3 8 < 0.001 0.006 < 0.001 0.007
15000 5 8 0.001 0.008 0.001 0.009
15000 7 8 0.001 0.010 0.001 0.011
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Tab. 4.6: Further simulations based on Samples from a Gamma Distribution with param-
eters α and β, assuming tilt function h(x) = (x, log(x))′

N α β MSEDRE2.5 MSEDRE97.5 MSEE2.5 MSEE97.5

20000 1 2 < 0.001 0.047 < 0.001 0.065
20000 3 2 0.003 0.055 0.003 0.079
20000 5 2 0.007 0.088 0.009 0.123
20000 1 4 < 0.001 0.010 < 0.001 0.011
20000 3 4 0.001 0.023 0.001 0.026
20000 5 4 0.001 0.020 0.002 0.024
20000 7 4 0.004 0.024 0.004 0.033
20000 1 8 < 0.001 0.002 < 0.001 0.002
20000 3 8 < 0.001 0.004 < 0.001 0.005
20000 5 8 0.001 0.006 0.001 0.007
20000 7 8 0.001 0.007 0.001 0.008
25000 1 2 < 0.001 0.027 < 0.001 0.035
25000 3 2 0.002 0.051 0.003 0.068
25000 5 2 0.007 0.082 0.009 0.133
25000 1 4 < 0.001 0.006 < 0.001 0.007
25000 3 4 0.001 0.013 0.001 0.018
25000 5 4 0.001 0.016 0.002 0.026
25000 7 4 0.002 0.018 0.003 0.024
25000 1 8 < 0.001 0.002 < 0.001 0.002
25000 3 8 < 0.001 0.003 < 0.001 0.004
25000 5 8 < 0.001 0.005 0.001 0.005
25000 7 8 0.001 0.007 0.001 0.009
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Tab. 4.7: Simulations based on Samples from a Weibull Distribution with parameters α
and β, assuming tilt function h(x) = (xτ , log(x))′

N α β MSEDRE2.5 MSEDRE97.5 MSEE2.5 MSEE97.5

600 1 1 0.004 6.345 0.005 6.585
600 1.2 1 0.009 2.726 0.011 3.660
600 1.5 1 0.016 0.955 0.021 1.134
600 2.5 1 0.052 0.140 0.063 0.201
600 1 1.2 0.005 6.388 0.005 7.254
600 1.2 1.2 0.015 2.450 0.016 2.679
600 1.5 1.2 0.024 1.150 0.029 1.790
600 2.5 1.2 0.079 0.212 0.099 0.266
600 1 1.5 0.010 10.454 0.011 10.995
600 1.2 1.5 0.022 4.000 0.028 5.585
600 1.5 1.5 0.049 2.727 0.064 2.945
600 2.5 1.5 0.087 0.364 0.118 0.491
600 1 2.5 0.033 29.605 0.035 39.361
600 1.2 2.5 0.068 12.825 0.072 16.565
600 1.5 2.5 0.124 5.034 0.142 8.541
600 2.5 2.5 0.274 1.023 0.370 1.202

1000 1 1 0.003 2.524 0.003 3.272
1000 1.2 1 0.006 1.417 0.008 1.653
1000 1.5 1 0.010 0.551 0.013 0.722
1000 2.5 1 0.021 0.079 0.033 0.119
1000 1 1.2 0.004 3.900 0.005 5.232
1000 1.2 1.2 0.009 1.838 0.009 2.516
1000 1.5 1.2 0.015 0.727 0.019 1.008
1000 2.5 1.2 0.034 0.125 0.041 0.129
1000 1 1.5 0.006 7.696 0.006 9.494
1000 1.2 1.5 0.015 2.571 0.017 3.905
1000 1.5 1.5 0.025 1.546 0.033 1.871
1000 2.5 1.5 0.068 0.181 0.084 0.232
1000 1 2.5 0.012 15.829 0.012 22.411
1000 1.2 2.5 0.041 8.823 0.048 12.399
1000 1.5 2.5 0.081 3.573 0.101 4.808
1000 2.5 2.5 0.198 0.662 0.236 0.755
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Tab. 4.8: Further Simulations based on Samples from a Weibull Distribution with param-
eters α and β, assuming tilt function h(x) = (xτ , log(x))′

N α β MSEDRE2.5 MSEDRE97.5 MSEE2.5 MSEE97.5

5000 1 1 < 0.001 0.459 < 0.001 0.559
5000 1.2 1 0.001 0.256 0.001 0.353
5000 1.5 1 0.003 0.097 0.003 0.122
5000 2.5 1 0.005 0.021 0.007 0.025
5000 1 1.2 0.001 0.931 0.001 1.274
5000 1.2 1.2 0.002 0.452 0.002 0.722
5000 1.5 1.2 0.004 0.184 0.004 0.253
5000 2.5 1.2 0.008 0.029 0.009 0.036
5000 1 1.5 0.002 1.319 0.002 2.066
5000 1.2 1.5 0.002 0.452 0.002 0.722
5000 1.5 1.5 0.004 0.280 0.004 0.351
5000 2.5 1.5 0.011 0.035 0.016 0.037
5000 1 2.5 0.003 0.626 0.003 0.759
5000 1.2 2.5 0.007 1.608 0.008 1.826
5000 1.5 2.5 0.010 0.585 0.016 0.693
5000 2.5 2.5 0.045 0.116 0.054 0.169

4.3 The Impact of Welfare Reform

4.3.1 Data

We obtained data of AFDC (1982-1996) monthly caseloads and annual dis-

continuances in caseloads due to employment from the Quarterly Public Assistance

Statistics [157]. The TANF data (1997-2009) was obtained from the HHS website

as well as the each of program’s annual reports to Congress [25–33]. Because the

data consisted of thousands of caseloads and discontinuances for each each state,

we changed the units of our data to thousands of caseloads to make our estima-

tion easier. Additionally, we divided the annual discontinuance by 12 to represent

average monthly discontinuances to have both covariates have the same units of

measurement. Across all 53 territories, AFDC programs had slightly more than

75,000 caseloads with approximately 7,500 discontinuances due to employment over
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Tab. 4.9: Further simulations based on Samples from a Weibull Distribution with param-
eters α and β, assuming tilt function h(x) = (xτ , log(x))′

N α β MSEDRE2.5 MSEDRE97.5 MSEE2.5 MSEE97.5

10000 1 1 < 0.001 0.319 < 0.001 0.392
10000 1.2 1 < 0.001 0.124 0.001 0.154
10000 1.5 1 0.001 0.059 0.001 0.063
10000 2.5 1 0.003 0.008 0.003 0.009
10000 1 1.2 0.002 3.210 0.002 4.069
10000 1.2 1.2 0.001 0.186 0.001 0.267
10000 1.5 1.2 0.002 0.092 0.002 0.113
10000 2.5 1.2 0.004 0.014 0.005 0.020
10000 1 1.5 0.001 0.634 0.001 0.761
10000 1.2 1.5 0.001 0.339 0.001 0.456
10000 1.5 1.5 0.003 0.095 0.003 0.152
10000 2.5 1.5 0.005 0.024 0.006 0.029
10000 1 2.5 0.002 1.924 0.002 2.693
10000 1.2 2.5 0.003 0.733 0.004 1.172
10000 1.5 2.5 0.006 0.276 0.008 0.361
10000 2.5 2.5 0.016 0.071 0.018 0.090
15000 1 1 < 0.001 0.222 < 0.001 0.284
15000 1.2 1 < 0.001 0.106 < 0.001 0.134
15000 1.5 1 0.001 0.034 0.001 0.043
15000 2.5 1 0.002 0.009 0.003 0.010
15000 1 1.2 < 0.001 0.282 < 0.001 0.476
15000 1.2 1.2 < 0.001 0.108 0.001 0.154
15000 1.5 1.2 0.001 0.049 0.001 0.077
15000 2.5 1.2 0.003 0.009 0.003 0.012
15000 1 1.5 < 0.001 0.377 < 0.001 0.515
15000 1.2 1.5 0.001 0.196 0.001 0.265
15000 1.5 1.5 0.002 0.082 0.002 0.108
15000 2.5 1.5 0.004 0.014 0.005 0.020
15000 1 2.5 0.001 1.260 0.001 1.896
15000 1.2 2.5 0.002 0.432 0.002 0.633
15000 1.5 2.5 0.005 0.197 0.006 0.304
15000 2.5 2.5 0.009 0.039 0.011 0.075
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Tab. 4.10: Further simulations based on Samples from a Weibull Distribution with pa-
rameters α and β, assuming tilt function h(x) = (xτ , log(x))′

N α β MSEDRE2.5 MSEDRE97.5 MSEE2.5 MSEE97.5

20000 1 1 < 0.001 0.175 < 0.001 0.201
20000 1.2 1 < 0.001 0.059 < 0.001 0.075
20000 1.5 1 0.001 0.024 0.001 0.032
20000 2.5 1 0.001 0.006 0.001 0.007
20000 1 1.2 < 0.001 0.307 < 0.001 0.348
20000 1.2 1.2 0.001 0.100 0.001 0.124
20000 1.5 1.2 0.001 0.039 0.001 0.061
20000 2.5 1.2 0.002 0.009 0.003 0.011
20000 1 1.5 < 0.001 0.307 < 0.001 0.442
20000 1.2 1.5 0.001 0.129 0.001 0.186
20000 1.5 1.5 0.001 0.061 0.001 0.072
20000 2.5 1.5 0.003 0.014 0.003 0.015
20000 1 2.5 0.001 0.861 0.001 1.124
20000 1.2 2.5 0.002 0.377 0.002 0.505
20000 1.5 2.5 0.004 0.191 0.004 0.265
20000 2.5 2.5 0.008 0.030 0.009 0.041
25000 1 1 < 0.001 0.125 < 0.001 0.150
25000 1.2 1 < 0.001 0.045 < 0.001 0.065
25000 1.5 1 0.001 0.019 0.001 0.025
25000 2.5 1 0.001 0.004 0.001 0.005
25000 1 1.2 < 0.001 0.146 < 0.001 0.208
25000 1.2 1.2 < 0.001 0.089 < 0.001 0.118
25000 1.5 1.2 0.001 0.030 0.001 0.035
25000 2.5 1.2 0.001 0.007 0.002 0.008
25000 1 1.5 < 0.001 0.170 < 0.001 0.277
25000 1.2 1.5 < 0.001 0.103 < 0.001 0.137
25000 1.5 1.5 0.001 0.045 0.001 0.063
25000 2.5 1.5 0.003 0.009 0.003 0.010
25000 1 2.5 0.001 0.946 0.001 1.090
25000 1.2 2.5 0.001 0.403 0.001 0.482
25000 1.5 2.5 0.003 0.118 0.004 0.181
25000 2.5 2.5 0.007 0.027 0.009 0.044
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a fifteen year time horizon. TANF, on the other hand, had over 40,000 caseloads

with over 7,000 discontinuances due to employment over the course of thirteen years.

4.3.2 Analysis of the PROWA Using Bayesian Lagged Regression

Using our data, we regressed our dependent variables, yt discontinuances in

caseloads due to employment at year t, against our explanatory variable, total

caseloads in a previous year t′, xt′ . We estimated ten instances of the model defined

in equation 3. In particular, we estimated separate regressions regarding the impact

of each of the five previous year’s caseloads (t − 1, t − 2, t − 3, t − 4, and t − 5)

on discontinuances due to employment for [1] AFDC programs and for [2] TANF

programs as TANF had instituted a five year time limit.2

We used WinBUGS to run a Bayesian MCMC sampler over the parameter

space of the hierarchical model outlined in equations (4.1) to (4.8) to sample the

posterior distribution [50, 97]. We ran our MCMC sampler for 30,000 draws, using

the first half for “burn-in” to dissipate initial conditions. In the above model, Φ0

and ν0 of equation 6 were randomly generated. We ran our simulations several

times over different random choices of Φ0 and ν0 and found similar results. These

results suggested that the random generation of Φ0 and ν0 had no impact on the

results generated by our MCMC sampler. Additionally, our posterior samples overall

had a low degree of autocorrelation, indicating that we had likely not oversampled

particular regions within our density.

After completion of the MCMC sampler, we estimated posterior means, stan-

dard deviations, and 95% credible intervals of all posterior samples.3 Since we had

truncated the MCMC sampler after 30,000 draws, however, there is still some con-

2 Concatenating the explanatory variables across multiple lags for a larger multiple regression
analysis resulted in multiciollinearity issues due to correlations between lagged caseloads and hence
was not performed as part of this analysis.

3 A 95% credible interval for a univariate sample is a Bayesian interval estimator and denotes
an interval bounded by the 2.5th and 97.5th percentiles of the posterior sample, serving as an
estimate for the interval bounded by the 2.5th and 97.5th quantiles of the distribution.
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Fig. 4.1: Histogram of Posterior Sample for Posterior Intercept Mean Coefficient (µ0),
TANF regression, Lag 1

cern about missing information in the posterior sample. We therefore used the DRE

method to improve upon our posterior sample. The posterior densities for µ0 and

µ1 were symmetric and unimodal and were therefore appropriate for analysis using

the tilt function h(x) = (x, x2)′ described in (4.12). The posterior densities of σ2
0

and σ2
1, however, appeared to be slightly skewed and we therefore more appropriate

for analysis using the tilt function h(x) = (x, log(x))′ described in (4.13). The plots

for a few selected coefficients are depicted in Figures 4.1-4.4 illustrating the reason

for our choices of tilt functions:

For our posterior samples of µ0 and µ1, we took each sample of the marginal

posterior (sample size 15,000), used as a reference density a random sample of equal

size from a uniform distribution over the posterior sample’s range, and applied

the DRE method to estimate the cumulative distribution function (CDF) of the

marginal posterior for this new sample of size 30,000. We then equated the CDF to
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Fig. 4.2: Histogram of Posterior Slope Mean Coefficient (µ1), TANF regression, Lag 1

Fig. 4.3: Histogram of Posterior Intercept Variance Coefficient (σ20), TANF regression,
Lag 1
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Fig. 4.4: Posterior Slope Variance Coefficient, TANF regression (σ21), Lag 1

0.025 and solved the resulting equation to generate a lower limit for the 95% credible

interval. We took a similar approach, equating the CDF to 0.975, to generate an

upper estimate for the credible interval. We refer to this newly estimated region,

based on semiparametric out of sample fusion, as the posterior density’s 95% credible

interval. Our results are outlined in Tables 4.11-4.30.

Tab. 4.11: AFDC Regression of Discontinuances as a Function of Caseloads - One Year
Time Lag

Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

µ0 0.072 0.173 -0.263 0.417
µ1 0.009 0.075 -0.136 0.155
σ2
0 0.773 0.188 0.486 1.227
σ2
1 0.290 0.049 0.208 0.400
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Tab. 4.12: AFDC Regression of Discontinuances as a Function of Caseloads, Interval Es-
timates and Refinements - One Year Time Lag

95% Credible Interval 95% Credible Interval Refined 95% Credible Refined 95% Credible
Lower Limit Upper Limit Interval Lower Limit Interval Upper Limit

µ0 -0.263 0.417 -0.264 0.411
µ1 -0.136 0.155 -0.136 0.156
σ2
0 0.486 1.227 0.471 1.192
σ2
1 0.208 0.400 0.204 0.396

Tab. 4.13: TANF Regression of Discontinuances as a Function of Caseloads - One Year
Time Lag

Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

µ0 0.068 0.151 -0.228 0.365
µ1 0.014 0.075 -0.132 0.163
σ2
0 0.630 0.142 0.408 0.961
σ2
1 0.292 0.050 0.209 0.406

Tab. 4.14: TANF Regression of Discontinuances as a Function of Caseloads, Interval Es-
timates and Refinements - One Year Time Lag

95% Credible Interval 95% Credible Interval Refined 95% Credible Refined 95% Credible
Lower Limit Upper Limit Interval Lower Limit Interval Upper Limit

µ0 -0.228 0.365 -0.228 0.364
µ1 -0.132 0.163 -0.135 0.162
σ2
0 0.408 0.961 0.398 0.947
σ2
1 0.209 0.406 0.206 0.401

Tab. 4.15: AFDC Regression of Discontinuances as a Function of Caseloads - Two Year
Time Lag

Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

µ0 0.272 0.183 -0.094 0.624
µ1 0.001 0.074 -0.146 0.149
σ2
0 0.761 0.186 0.479 1.196
σ2
1 0.290 0.050 0.208 0.405
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Tab. 4.16: AFDC Regression of Discontinuances as a Function of Caseloads, Interval Es-
timates and Refinements - Two Year Time Lag

95% Credible Interval 95% Credible Interval Refined 95% Credible Refined 95% Credible
Lower Limit Upper Limit Interval Lower Limit Interval Upper Limit

µ0 -0.094 0.624 -0.088 0.628
µ1 -0.146 0.149 -0.145 0.148
σ2
0 0.479 1.196 0.462 1.172
σ2
1 0.208 0.405 0.204 0.399

Tab. 4.17: TANF Regression of Discontinuances as a Function of Caseloads - Two Year
Time Lag

Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

µ0 0.240 0.151 -0.059 0.535
µ1 0.000 0.076 -0.148 0.150
σ2
0 0.578 0.125 0.380 0.870
σ2
1 0.292 0.050 0.210 0.404

Tab. 4.18: TANF Regression of Discontinuances as a Function of Caseloads, Interval Es-
timates and Refinements - Two Year Time Lag

95% Credible Interval 95% Credible Interval Refined 95% Credible Refined 95% Credible
Lower Limit Upper Limit Interval Lower Limit Interval Upper Limit

µ0 -0.059 0.535 -0.059 0.534
µ1 -0.148 0.150 -0.149 0.150
σ2
0 0.380 0.870 0.372 0.854
σ2
1 0.210 0.404 0.207 0.399

4.3.3 Statistical Inferences Based on Hierarchical Bayesian Analysis of PROWA

Although our overall coefficient estimates are small in magnitude, the reader

should be reminded of the fact that the data set analyzed consisted of observations

in units of thousands. Therefore, slight differences between the coefficients signify

notable differences. For the first year time lag model, the marginal posterior mean

for µ1 is quite higher in Table 4.11 than in Table 4.13. A two sample Kolmogrov

Smirnov test of the sample of the two posterior samples rejects the null hypothesis

of distributional equality at p < 0.001, suggesting that there is a marked difference
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Tab. 4.19: AFDC Regression of Discontinuances as a Function of Caseloads - Three Year
Time Lag

Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

µ0 0.196 0.196 -0.184 0.582
µ1 0.000 0.076 -0.147 0.150
σ2
0 0.765 0.201 0.465 1.237
σ2
1 0.292 0.050 0.210 0.406

Tab. 4.20: AFDC Regression of Discontinuances as a Function of Caseloads, Interval Es-
timates and Refinements - Three Year Time Lag

95% Credible Interval 95% Credible Interval Refined 95% Credible Refined 95% Credible
Lower Limit Upper Limit Interval Lower Limit Interval Upper Limit

µ0 -0.184 0.582 -0.189 0.583
µ1 -0.147 0.150 -0.148 0.150
σ2
0 0.465 1.237 0.448 1.212
σ2
1 0.210 0.406 0.206 0.401

Tab. 4.21: TANF Regression of Discontinuances as a Function of Caseloads - Three Year
Time Lag

Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

µ0 0.390 0.167 0.069 0.719
µ1 -0.005 0.075 -0.153 0.143
σ2
0 0.716 0.172 0.449 1.121
σ2
1 0.291 0.050 0.208 0.405

Tab. 4.22: TANF Regression of Discontinuances as a Function of Caseloads, Interval Es-
timates and Refinements - Three Year Time Lag

95% Credible Interval 95% Credible Interval Refined 95% Credible Refined 95% Credible
Lower Limit Upper Limit Interval Lower Limit Interval Upper Limit

µ0 0.069 0.719 0.065 0.720
µ1 -0.153 0.143 -0.154 0.143
σ2
0 0.449 1.121 0.437 1.095
σ2
1 0.208 0.405 0.204 0.399
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Tab. 4.23: AFDC Regression of Discontinuances as a Function of Caseloads - Four Year
Time Lag

Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

µ0 0.149 0.212 -0.26 0.563
µ1 0.003 0.076 -0.147 0.153
σ2
0 0.722 0.175 0.453 1.13
σ2
1 0.292 0.05 0.211 0.407

Tab. 4.24: AFDC Regression of Discontinuances as a Function of Caseloads, Interval Es-
timates and Refinements - Four Year Time Lag

95% Credible Interval 95% Credible Interval Refined 95% Credible Refined 95% Credible
Lower Limit Upper Limit Interval Lower Limit Interval Upper Limit

µ0 -0.26 0.563 -0.265 0.562
µ1 -0.147 0.153 -0.146 0.152
σ2
0 0.453 1.13 0.441 1.108
σ2
1 0.211 0.407 0.206 0.401

Tab. 4.25: TANF Regression of Discontinuances as a Function of Caseloads - Four Year
Time Lag

Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

µ0 0.44 0.171 0.111 0.788
µ1 -0.008 0.075 -0.156 0.141
σ2
0 0.821 0.194 0.513 1.266
σ2
1 0.293 0.051 0.21 0.407

Tab. 4.26: TANF Regression of Discontinuances as a Function of Caseloads, Interval Es-
timates and Refinements - Four Year Time Lag

95% Credible Interval 95% Credible Interval Refined 95% Credible Refined 95% Credible
Lower Limit Upper Limit Interval Lower Limit Interval Upper Limit

µ0 0.111 0.788 0.106 0.782
µ1 -0.156 0.141 -0.156 0.141
σ2
0 0.513 1.266 0.5 1.246
σ2
1 0.21 0.407 0.206 0.403
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Tab. 4.27: AFDC Regression of Discontinuances as a Function of Caseloads - Five Year
Time Lag

Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

µ0 0.269 0.241 -0.203 0.742
µ1 -0.002 0.076 -0.15 0.145
σ2
0 0.822 0.213 0.501 1.325
σ2
1 0.292 0.051 0.21 0.407

Tab. 4.28: AFDC Regression of Discontinuances as a Function of Caseloads, Interval Es-
timates and Refinements - Five Year Time Lag

95% Credible Interval 95% Credible Interval Refined 95% Credible Refined 95% Credible
Lower Limit Upper Limit Interval Lower Limit Interval Upper Limit

µ0 -0.203 0.742 -0.207 0.74
µ1 -0.15 0.145 -0.15 0.145
σ2
0 0.501 1.325 0.483 1.296
σ2
1 0.21 0.407 0.206 0.402

Tab. 4.29: TANF Regression of Discontinuances as a Function of Caseloads - Five Year
Time Lag

Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

µ0 0.541 0.175 0.205 0.889
µ1 -0.013 0.075 -0.159 0.138
σ2
0 0.744 0.191 0.458 1.19
σ2
1 0.292 0.05 0.21 0.404

Tab. 4.30: TANF Regression of Discontinuances as a Function of Caseloads, Interval Es-
timates and Refinements - Five Year Time Lag

95% Credible Interval 95% Credible Interval Refined 95% Credible Refined 95% Credible
Lower Limit Upper Limit Interval Lower Limit Interval Upper Limit

µ0 0.205 0.889 0.198 0.886
µ1 -0.159 0.138 -0.161 0.136
σ2
0 0.458 1.19 0.444 1.171
σ2
1 0.21 0.404 0.207 0.401
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between the two posterior distributions.4

Overall, these result suggests that the previous year’s caseloads for TANF had

a notably stronger impact in getting people off the welfare rolls and back to work

than the previous year’s caseloads for AFDC programs did. The other models with

the longer lagged covariates suggest that total caseloads had either a negligible or

even a negative effect on employment-based discontinuances.

There are also significant differences in using DRE to refine the 95% credible

intervals. For example, the interval estimates regarding µ1 are altered by a factor of

several thousand discontinuances per caseload, depending on the year. Additionally,

the posterior distributions of the variances are also altered substantially. Regardless,

however, the posterior estimates of σ2
0 and σ2

1 all remain relatively small, suggesting

that there is not much uncertainty pertaining to the relationship between caseloads

and discontinuances.

An additional fully frequentist statistical analysis is included in this chapter’s

Appendix. This analysis also finds similar results to those above.

4.4 Additional Analysis

In addition to the analysis above, we conducted further analysis to examine

the efficacy of transforming AFDC to TANF. As our data of caseloads and discon-

tinuances spanned from 1982-2009, we conducted another rigorous Bayesian analysis

over the entire time horizon, with categorically-coded coefficients representing time

in terms of year. Comparisons of these coefficient estimates from before the PROWA

4 As mentioned earlier, autocorrelations of the sample were quite low, suggesting that indepen-
dence of the sample, a sufficient condition for being able to apply the Kolmogorov Smirnov test,
was not an unreasonable assumption.
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to after the PROWA can enable us to understand the efficacy of the reforms them-

selves.

Again, following the notation corresponding to our previous model, we can

again define this new hierarchical Bayesian model over i ∈ {1, . . . , 53} territories

(50 states as well as Guam, Puerto Rico, and the District of Columbia) (units) over

t ∈ {1982, . . . , 2008} years as follows:

yi ∼MVN(βi,0 + βi,1xi,1 + βt,Σ) (4.25)

βi,0 ∼ N(µ0, σ
2
0) (4.26)

βi,1 ∼ N(µ1, σ
2
1) (4.27)

βt ∼ N(0, 10) (4.28)

Σ−1 ∼Wishart(Φ0, ν0) (4.29)

µ0 ∼ N(0, 10) (4.30)

µ1 ∼ N(0, 10) (4.31)

σ−20 ∼ Γ(10, 10) (4.32)

σ−21 ∼ Γ(10, 10) (4.33)

This model is quite similar to the model we examined earlier, but runs across

the data set’s entire time horizon and also contains a term βt that quantifies the

impact of time t′ on caseload reduction at time t. A posterior examination of this

coefficient before and after the introduction of TANF can enable us to understand

the impact of the 1996 reform. Just as we did earlier, we defined β1,0 = 0 as well

as β1982=0 to ensure statistical identifiability of our model. We ran this Bayesian

MCMC sampler for 30,000 iterations, using first half to dissipate our initial con-

ditions and the remaining half for statistical inference. Our Bayesian posterior
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estimates are outlined in Tables 4.31-4.32. As our posterior samples of µ0, µ1, and

βt appeared to be symmetric and unimodal we again utilized our DRE approach to

improve the estimation of our Bayesian credible intervals.

Tab. 4.31: Additional Analysis

Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

µ0 0.093 0.167 -0.231 0.428
µ1 0.006 0.074 -0.139 0.150

β1983 0.042 0.067 -0.091 0.174
β1984 -0.008 0.062 -0.131 0.113
β1985 -0.028 0.073 -0.175 0.114
β1986 0.010 0.080 -0.146 0.165
β1987 0.011 0.077 -0.142 0.160
β1988 0.032 0.082 -0.130 0.191
β1989 0.015 0.081 -0.146 0.175
β1990 0.048 0.082 -0.116 0.206
β1991 0.086 0.087 -0.091 0.256
β1992 0.076 0.082 -0.091 0.232
β1993 0.064 0.091 -0.120 0.240
β1994 0.199 0.100 0.005 0.394
β1995 0.189 0.086 0.019 0.356
β1996 0.573 0.183 0.201 0.919
β1997 0.512 0.158 0.191 0.811
β1998 0.290 0.123 0.044 0.531
β1999 0.294 0.111 0.074 0.511
β2000 0.249 0.104 0.040 0.451
β2002 0.272 0.115 0.048 0.498
β2003 0.305 0.116 0.079 0.534
β2004 0.294 0.115 0.069 0.518
β2005 0.344 0.134 0.084 0.613
β2006 0.382 0.162 0.060 0.702
β2007 0.298 0.151 -0.003 0.589
β2008 0.256 0.157 -0.059 0.568
σ2
0 0.778 0.164 0.508 1.151
σ2
1 0.288 0.049 0.207 0.397

We see a noticeable increase in our coefficient estimates pertaining to time

after 1997, once the law had become fully enacted. In fact, the small posterior

estimates of βt from the 1980s and early 1990s suggest that AFDC programs at the
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Tab. 4.32: Additional Analysis, Interval Estimates and Refinements
95% Credible Interval 95% Credible Interval Refined 95% Credible Refined 95% Credible

Lower Limit Upper Limit Lower Limit Upper Limit

µ0 -0.231 0.428 -0.234 0.427
µ1 -0.139 0.150 -0.138 0.151

β1983 -0.091 0.174 -0.091 0.173
β1984 -0.131 0.113 -0.130 0.113
β1985 -0.175 0.114 -0.173 0.116
β1986 -0.146 0.165 -0.148 0.166
β1987 -0.142 0.160 -0.140 0.161
β1988 -0.130 0.191 -0.129 0.193
β1989 -0.146 0.175 -0.145 0.175
β1990 -0.116 0.206 -0.114 0.208
β1991 -0.091 0.256 -0.089 0.256
β1992 -0.091 0.232 -0.087 0.235
β1993 -0.120 0.240 -0.117 0.241
β1994 0.005 0.394 0.004 0.393
β1995 0.019 0.356 0.019 0.357
β1996 0.201 0.919 0.210 0.926
β1997 0.191 0.811 0.198 0.818
β1998 0.044 0.531 0.046 0.532
β1999 0.074 0.511 0.074 0.513
β2000 0.040 0.451 0.042 0.453
β2002 0.048 0.498 0.047 0.496
β2003 0.079 0.534 0.076 0.535
β2004 0.069 0.518 0.069 0.518
β2005 0.084 0.613 0.082 0.608
β2006 0.060 0.702 0.061 0.700
β2007 -0.003 0.589 0.001 0.590
β2008 -0.059 0.568 -0.053 0.567

σ2
0 0.508 1.151 0.500 1.134

σ2
1 0.207 0.397 0.203 0.392

time were essentially just a poverty trap, lulling people into poverty and hindering

upward mobility. These posterior estimates increase notably in the 1990s, especially

after the law was introduced in 1996.

In Table 32, we present our Bayesian 95% credible intervals and subsequent

refinements. We find that all 95% credible intervals regarding time before the 1996

welfare reform all had negative probability mass, whereas after the law had become

fully enacted, they had no negative mass until β2007 and β2008. After our posterior

refinements, however, all were positive except for β2008. This negativity was due to

our MCMC sampler not properly summarizing the posterior. The higher point and

interval estimates of these “post-welfare reform” coefficients, indicate that the law

had indeed been successful in reducing dependence on government assistance.

4.4.1 Policy Implications

Our analysis clearly illustrates the great success of welfare reform. Specifically,

our Bayesian models suggest that the previous year’s caseloads had a significantly
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more notable impact on getting people off of the welfare rolls and back to work

under the TANF program compared to the AFDC program, particularly within one

year. Subsequent year lags had a negligible or even a detrimental impact on caseload

reductions due to employment.

These general findings are substantiated by research produced by The Her-

itage Foundation, the Cato Institute, and the Brookings Institution. In particular,

research from these well-known think tanks has clearly illustrated that as a re-

sult of welfare reform, caseloads declined, earnings increased, and poverty rates

dropped [61, 128, 145, 152]. More rigorous work standards and time limits would

almost surely improve on these results.

4.5 Conclusions and Future Research

Our study offers a number of significant contributions. Firstly, our work also

sheds light on the efficacy of welfare reform. Although safety nets are an impor-

tant component of society, they should be constructed in a manner to help provide

temporary assistance to get people back to work and become contributing members

of society. If these programs are just an open-ended government handout, recipi-

ents can become overly dependent on them and can subsequently become incapable

of realizing the American dream. As Charles Murray’s Losing Ground illustrated,

these programs have the potential to trap generations upon generations of people in

poverty [111]. Although the PROWA is a case study in successful welfare reform,

the law reformed only one of approximately seventy federal welfare programs [135].

Policymakers should consider similar reforms for these other programs. More fun-

damentally, from a policymaker’s perspective, it is always important to understand

the efficacy of policy reforms and make effective policy recommendations. Future re-
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search should similarly examine other programs including Social Security, Medicare,

Medicaid, public housing, and the Affordable Care Act among others.

Methodologically, we have improved upon Bayesian credible interval estima-

tion by applying semiparametric density ratio estimation to truncated posterior

samples. Although this semiparametric modeling technique has had a number of

applications in frequentist models, we are the first to apply the approach to Bayesian

estimation. These methodological improvements of course need not only apply to

Bayesian models pertaining to public policy research and are worthwhile tools to be

applied in many other applied settings.

4.6 Appendix

4.6.1 An Elementary Frequentist Analysis

As an additional test of our work, we also performed a frequentist analysis

examining the impact of AFDC/TANF caseloads on discontinuances due to employ-

ment. We estimated essentially the same model we estimated earlier, but instead

made the (rather restrictive) assumption of homogeneity amongst the coefficients.

Specifically, we estimated the simple linear model:

yi,t = β0 + β1xi,t + εi,t, (4.34)

where yi,t is the number of employment related discontinuances for state/territory

i at time t and xi,t′ is the number of caseloads at time t′, where t′ < t is a lagged

time. We assumed εi,t ∼ N(0, 1). Our results are presented in Table 4.33.

In all five lagged comparisons, we see that the slope coefficient for TANF

programs is higher than the slope coefficient for AFDC programs, suggesting that

TANF was more successful than AFDC programs in getting people back to work.
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Tab. 4.33: Frequentist Statistical Analysis

Coefficient Estimate Standard Error t-stat P-value Adjusted R2

AFDC Lag 1 β̂0 0.167 0.023 7.427 < 0.001 0.524

β̂1 0.005 0.000 28.807 < 0.001

TANF Lag 1 β̂0 0.184 0.033 5.653 < 0.001 0.561

β̂1 0.011 0.000 28.722 < 0.001

AFDC Lag 2 β̂0 0.172 0.024 7.141 < 0.001 0.513

β̂1 0.005 0.000 27.147 < 0.001

TANF Lag 2 β̂0 0.142 0.030 4.785 < 0.001 0.636

β̂1 0.011 0.000 32.122 < 0.001

AFDC Lag 3 β̂0 0.177 0.026 6.878 0.144 0.495

β̂1 0.005 0.000 25.186 < 0.001

TANF Lag 3 β̂0 0.098 0.028 3.492 0.002 0.690

β̂1 0.011 0.000 34.544 < 0.001

AFDC Lag 4 β̂0 0.185 0.028 6.605 < 0.001 0.478

β̂1 0.005 0.000 23.380 < 0.001

TANF Lag 4 β̂0 0.086 0.030 2.859 0.004 0.684

β̂1 0.011 0.000 32.678 < 0.001

AFDC Lag 5 β̂0 0.197 0.031 6.407 < 0.001 0.457

β̂1 0.005 0.000 21.314 < 0.001

TANF Lag 5 β̂0 0.079 0.033 2.373 0.018 0.670

β̂1 0.011 0.000 29.507 < 0.001

109



To ensure that these differences were not insignificant, we tested the null hypothesis

H0 for each lag that the slope coefficient for TANF programs, β1, was equal to the

slope coefficient for AFDC programs for that same time lag. For example, for TANF

regression results for lag 1, we tested the null hypothesis H0 that β0 = 0.005 against

the two-sided alternative Ha that β0 6= 0.005. Our results are outlined in Table 4.34

for all five lags:

Tab. 4.34: Statistical Significance of Slope Coefficients

Lag t-stat p-value

Lag 1 15.890 < 0.001
Lag 2 19.667 < 0.001
Lag 3 19.333 < 0.001
Lag 4 18.667 < 0.001
Lag 5 15.714 < 0.001

These results indicate a statistically significant difference between the slope

coefficients of the lagged TANF models compared to the coefficients corresponding

to the analogous AFDC models. These results lend further credence to the argument

that TANF programs were more successful than AFDC programs in getting people

off the welfare rolls and back to work.
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Chapter 5: Generalized Bayesian Inferences for Counterterrorism Pol-

icy with Improved Credible Interval Estimation via Semi-

parametric Out of Sample Fusion

5.1 Introduction

5.1.1 Combating Terrorism

From the Siccari during the first century siege of Jerusalem, to the Assassins

during the 11th century in what is today’s Middle East, to the Thugs in India during

the 1400s to 1800s, to the Wall Street bombings of the early 1920s, terrorism has been

an issue endangering civilians for generations [69,126]. Today, myriads of questions

abound regarding counterterrorsim policy throughout the world including questions

pertaining to the U.S. military operations in Iraq and Afghanistan, the Troubles in

Northern Ireland, the post-Suharto years in Indonesia, and the twenty-six year long

civil war in Sri Lanka among others.

Amongst scholars in the field of international relations, terrorism is gener-

ally defined as “the deliberate use or threat of force against noncombatants by a

non-state actor in pursuit of a political goal” [15]. Understanding how to fight ter-

rorists has been an issue that policymakers throughout the world have debated and

grappled with for years. Fighting terrorists is inherently different from many of

the major conflicts of the twentieth century. During World War I and World War



II, for example, both sides had uniformed combatants representing nation-states at

war. During the Cold War, both sides understood the concept of mutually assured

destruction, and consequently did not want to be annihilated in a retaliatory strike.

Terrorists, however, are markedly different from traditional enemy combat-

ants, as they generally blend in with civilians and deliberately target innocent men,

women, and children, as well as military personnel. Many are typically brainwashed

by the belief that a better life awaits them for slaughtering their enemies [38]. As we

continue on into the twenty-first century, fighting terrorism remains an issue, and it

is important to equip policymakers with the tools to be able to do so.

A Google Scholar search of the keyword “terrorism” yields nearly 893,000

studies on the topic. Many of these studies include research statistically examining

the risk of terrorist attacks as well as looking at certain types of terrorist attacks

in particular localities across the globe [40, 71, 77, 117, 120, 155]. In 1971, Hawkes

conducted a cluster analysis of terrorism data [62]. Enders (2007) offers a compre-

hensive review of research on measuring terrorism, the efficacy of counterterroism

policies, and the causes of terrorism and its various manifestations [35]. In the 1980s,

Holden (1986, 1987) examined the “contagion effect” of American aircraft hijack-

ings [65, 66]. Enders and Sandler (1995) examine terrorist behavior from game and

choice theoretic perspectives [36]. Sandler and Arce (2003) discuss game theoretic

analyses of terrorism and their various policy implications [144]. Li and Schaub

(2005) conduct a time series analysis and examine the effect of economic global-

ization on terrorist attacks [95]. Kaplan et al (2005, 2006) look at the impact on

different “counterterror tactics,” on suicide bombings in Israel [75, 76]. Lewis et al

(2012) statistically examine the changes over time in civilian deaths in Iraq as a

result of terrorism [94]. In recent years, a number of researchers have utilized very

sophisticated statistical modeling including negative binomial distribution models

along with self-exiting hurdle models to examine the incidence as well as the prob-
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ability of terrorist attacks [121,162,163]

Although these papers are interesting both mathematically and from a policy

perspective, these studies have typically been restricted to simply just one conflict

or one type of terrorist attack. Additionally, much of the heavily statistical research

in this area provides limited advice to policymakers about how to fortify specific

security measures to prevent various types of terrorist attacks. In this chapter, we

rigorously analyze terrorist attack data from a number of major conflicts throughout

the world. In particular, we utilize Bayesian logistic regression techniques to offer

counterterrorism strategies in four major conflicts across the globe. Kyung et al

(2011) also conducted an analysis of terrorist attack data; however, their statistical

models were not constructed in a way to offer prescriptive policy advice [90]. We not

only present a model capable of providing such advice but also improve on Bayesian

credible interval estimation techniques in the process. Our study helps shed light

on the factors that influence the success of terrorist attacks, providing policymakers

with advice on how to more strategically target their security and resources to help

them battle against this very dangerous enemy.

5.1.2 Dirichlet Process Priors and the Limitations Bayesian Parametric methods

With consistent improvements in statistical computing capabilities over the

last several decades, the use of Bayesian methods has become increasingly com-

mon in applied research. Bayesian methods are an attractive approach for modeling

real-world phenomena for a number of reasons. One reason is that the associated sta-

tistical inferences from such models are based conditionally on existing data rather

than on the distributional properties of estimators or test statistics calculated over a

long-run frequency of many imaginary unobserved samples. Additionally, Bayesian

methods provide us with “exact-sample” results, rather than being rooted in the

typical asymptotic theory that most frequentist statistical estimation methods gen-
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erally assume. Thirdly, and perhaps most importantly, Bayesian methods enable us

to tackle problems with high-dimensional parameter spaces that would generally be

impossible to estimate from a purely frequentist perspective.

One of the most controversial aspects of Bayesian methods, however, is the

formulation of a prior distribution. Typically, prior assumptions about a model’s

parameters are made subjectively by the researcher. Often these prior distributions

belong to well-known parametric families. Normal and uniform distributions are for

instance workhorse examples of priors in the applied Bayesian statistical literature.

A common criticism with these types of parametric prior distributions, how-

ever, is that since they are subjectively chosen by the researcher their distributional

assumptions may therefore not necessarily model reality. The normal distribution,

for example, has a limited degree of flexibility as it is unimodal, does not accom-

modate skewness, and has relatively thin tails. If a normally distributed prior is a

misspecification to begin with, then misleading inferences can result. Other choices

of parametric prior distributions have similar types of limitations.

Dirichlet Process priors (hereafter referred to as DP priors) do not have these

restrictions as they allow researchers to weaken the restrictive assumptions generally

concomitant with Bayesian statistical models [4,41]. These prior distributions have

been used in a number of settings including applied economics research, health policy

research, and examining the incidence of illness among others [3, 72, 88]. DP priors

avoid the typical strict parametric assumptions regarding heterogeneity mentioned

above and instead utilize an unknown distribution G to model heterogeneity. As G

is assumed to be random, a DP Prior can be placed on this distribution. Dirichlet

Processes thus enable the researcher to place a probability distribution over a space

of probability distributions.

Mathematically, we can describe a DP prior G ∼ DP (G|G0, α) consists of two

“parameters:” G0, a parametric baseline probability measure and a concentration
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parameter α. The baseline measure G0 can be considered to be a prior assumption

regarding the population distribution. The Dirichlet Process transforms this baseline

measure into a discrete probability distribution with the concentration parameter α

determining how close the non-parametric distribution G is to the baseline measure.

Smaller values of α indicate greater departure from the baseline measure. In the

limit, as α → ∞, G ⇒ G0 (i.e. the Dirichlet Process converges in the measure to

the baseline measure).

A commonly-used choice for the baseline measure is a normal distribution,

which the Dirichlet Process discretizes. Since discrete probability measures have

non-zero probabilities of observing identical values, they are often used for cluster

analysis. For each particular sample from an MCMC simulation, identical posterior

estimates of parameters believed to be a priori following a Dirichlet Process, are

considered to belong to the same cluster of observations. Thus, a nice aspect of

the Dirichlet Process is that it not only alleviates the strict parametric assumptions

typically associated with parametric prior distributions, but it also alleviates the

similarly restrictive assumptions associated with finite mixture models that a priori

assume a particular number of segments [22, 74].

In this chapter, we employ DP priors to weaken the generally restrictive as-

sumptions associated with commonly chosen parametric prior distributions for a

Bayesian logistic regression model. In addition, we also offer some improvements to

the credible interval estimates generated by our Bayesian estimation. We discuss

the techniques for doing so in the next section.

5.1.3 A Brief Review of Density Ratio Estimation

Density ratio estimation (referred to as DRE throughout this dissertation) is

a semiparametric modeling approach. As discussed in the previous chapter of this

dissertation, this technique has seen myriads of applications ranging from AIDS
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research to mortality rate prediction to cluster detection among many others [43,52,

80, 81, 83]. In the univariate case, we typically assume that there are I + 1 random

samples (xi1, . . . , xini), having probability density functions gi, such that:

xij ∼ gi, i = 1, . . . , I, I + 1, j = 1, . . . , ni. (5.1)

This approach assumes that gI+1 ≡ g defines a reference density having a known ra-

tio between gi and g. In many applications, this ratio is defined to be an exponential

in terms of a vector-valued tilt function h(x):

gi(x)

g(x)
= eαi+β

′
ih(x), i = 1, . . . , I. (5.2)

By assuming a particular ratio, the statistician can estimate the parameters αi

and βi as well as the distributions of Gi and G (the CDFs of gi and g) ∀ i = 1, . . . , I

using the method of empirical likelihood. The methodology has been discussed in

detail in the previous chapter of this dissertation.

5.1.4 Using DRE to Improving on Bayesian Estimation Results

Typically, one would estimate posterior functionals using standard Markov

Chain Monte Carlo (MCMC) methods [50]. Researchers would use the resulting

MCMC samples to generate a variety of statistical estimators such as posterior

means, standard deviations, and credible interval estimates.

As discussed in Chapter 4, however, a common limitation of MCMC meth-

ods stems from computational feasibility. Most Bayesian MCMC samplers need to

be truncated in “real-time.” As a result, it is difficult to understand if we have

properly navigated the posterior distribution. Although we have some diagnostic

checks, such as autocorrelation of draws and convergence of chains [51], these tests

are merely diagnostics that may shed light on the issue, but we never completely
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understand whether our MCMC sampler truly manifests our entire posterior distri-

bution. Therefore, point and interval estimates based on MCMC samples may not

necessarily be sufficiently accurate from which to make statistical inferences.

One can ameliorate this limitation by using the DRE Method [123–125, 160].

Although this semiparametric approach has been used in a variety of settings, this

dissertation is the first to apply the methodology in Bayesian estimation. In the

previous chapter of this dissertation, we applied the methodology to hierarchical

Bayesian linear regression. In that chapter, we illustrated, via a series of numerical

simulations, that the DRE method has the ability to provide more accurate quantiles

of distributions. In this chapter, we extend our application of this methodology to

a generalized lienar hierarchical Bayesian model. The interested reader is referred

to the previous chapter for simulation results demonstrating the efficacy of this

approach.

5.2 Problem Formulation

5.2.1 Model

Consider a data set of terrorist attacks recorded over the course of t ∈ {1, . . . , T}

discrete time occasions. We define the binary outcome variable:

yt =


1 if the terrorist attack is successful at time t

0 otherwise,

(5.3)

where pt = Prob(yt = 1) is the probability that a terrorist attack is successful. We

examined the success of terrorist attacks by estimating the following binary logistic

regression model:
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P (Y |β) =
T∏
t=1

eyt(β0+β1Xt,1+β2Xt,2+βt,3Xt,3)

1 + eβ0+β1Xt,1+β2Xt,2+βt,3Xt,3
, (5.4)

Xt,1 =


1 if the terrorist attack at time t is a suicide attack

0 otherwise,

(5.5)

Xt,2 = (xt,2,1, . . . , xt,2,n2) is a categorically coded explanatory variable denoting the

type of terrorist attack (assassination, hijacking, bombing, etc.) Armed assaults,

defined in the appendix, are used as a benchmark variable to ensure statistical iden-

tifiability of the model. Finally, Xt,3 = (xt,3,1, . . . , xt,2,n3) is a categorically coded

explanatory variable denoting the target of the terrorist attack (airports/airlines,

business, educational institution, food or water supply, government, etc.). For the

analysis of the conflicts in Afghanistan, Iraq, Sri Lanka, and Northern Ireland after

the 1998 Good Friday Agreement, airports/airlines were the benchmark variable.

For analysis of the conflict of Northern Ireland before the 1998 Good Friday Agree-

ment, abortion related targets were the benchmark variable. β2 and βt,3 are of

course n2 and Tn3 dimensional vectors respectively.

We allow β0 ∼ N(µ0, σ
2
0) and β1 ∼ N(µ1, σ

2
1). Additionally, we allow β2 ∼

N(µ2,Σn2×n2) and βt,3 to either follow a normally distributed prior or to follow

a DP prior. Mathematically, our two choices for varying βt,3 are either βt,3 ∼

N(µ3,ΣTn3×Tn3) or βt,3 ∼ G, where G ∼ DP (α,N(µ3,ΣTn3×Tn3)). µ0, µ1, as

well as each component of the vectors µ2 and µ3 all follow a normal distribution

with mean 0 and variance 10. σ2
0 and σ2

1 are each specified to follow an inverse

gamma distribution with shape and scale parameter each equal to 10. Additionally,

for computational simplicity Σn2×n2 and ΣTn3×Tn3 are assumed to be diagonal

matrices, with each component also drawn from an inverted gamma distribution
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with shape and scale parameter each equal to 10.

As discussed earlier, βt,3 to follow a DP prior enables us to weaken the strict

parametric assumptions associated with a normal prior distributions as well as to

cluster our analysis around the types of targets terrorists intend to attack.

5.2.2 Data

Our data sets were obtained from the START GTD Database, a database

compiled by the University of Maryland, containing detailed information on over

113,000 terrorist attacks [54]. We performed a statistical analysis on four different

conflicts - The War in Afghanistan, the War in Iraq, the Civil War in Sri Lanka, and

the Civil War in Ireland. The dependent variable in our Bayesian logistic regression

was whether or not the attack was successful, and our explanatory variables involved

whether the attack was a suicide attack, the type of attack, and the targets of the

attack. All of our explanatory variables were categorically coded. For each conflict,

a few observations could not definitively provide information regarding the details

of the attack (such as whether the attack was a suicide attack or whether the attack

was successful) and hence was excluded from our analysis.

The START database defined the success of a terrorist attack as whether the

type of attack actually took place. For example, a bombing/explosion is considered

successful if the bomb involved actually detonated. More details are contained in

the appendix to this chapter.
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5.3 A Bayesian Analysis of Several Major Conflicts Across the

Globe

5.3.1 Estimation

We rigorously examined four recent conflicts - The War in Afghanistan, the

War in Iraq, the Civil War in Sri Lanka, and the Civil War in Northern Ireland. For

each conflict, we estimated the two Bayesian logistic regression models outlined in

Section 5.2, with one model assuming normally distributed priors for the coefficient

corresponding to the target of the terrorist attack and other assuming the less re-

strictive DP priors. We estimated both models via MCMC methods over the course

30,000 iterations, using the first half for burn in and the remaining half for statistical

inference. For the model assuming normal prior distributions, we ran our MCMC

sampler in WinBUGS [97]. For the model assuming DP priors we ran our sampler

using the R Package DPPackage [70] that used well-known algorithms for MCMC

sampling from non-conjugate priors for DP prior models [37, 98, 112]. Autocorrela-

tions of each marginal posterior sample were low, suggesting reasonable navigation

around the posterior density. As mentioned earlier, however, autocorrelations are

simply just a diagnostic check and cannot truly elicit whether the posterior density

has been adequately sampled. As a result, in addition to our standard Bayesian

analysis, we also present improvements to the Bayesian interval estimates of a few

important posterior coefficients using DRE.

5.3.2 The War in Afghanistan

On September 11, 2001, foreign terrorists struck the United States in the

most devastating attack on American soil since Pearl Harbor. A group of nineteen

terrorists hijacked three U.S. passenger planes, crashing them into the World Trade
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Center in New York and the Pentagon in Washington, D.C. A fourth hijacked plane,

intended for the U.S. Capitol, crashed in rural Pennsylvania that same morning. A

total of over 3,000 innocent Americans died in these attacks.

Shortly thereafter, overwhelming evidence made it quite apparent that the

attacks were perpetrated by the terrorist group al Qaeda, headed at the time by

Osama bin Laden. The Taliban in Afghanistan had been harboring bin Laden,

was known for aiding and abetting al Qaeda, and was infamous for sponsoring

terrorism [79]. After the Taliban refused to hand bin Laden over to American

custody, the United States used military force to remove the Taliban from power,

began efforts toward finding bin Laden, and helped install a democratic Afghan

government that renounces terrorism [153]. Since military operations in Afghanistan

began thirteen years ago, the United States military has maintained a consistent

presence in Afghanistan, providing stability and support to help the relatively new

Afghan government.

Unfortunately, however, terrorist attacks in Afghanistan have continued over

the course of the last several years. Tables 5.1 and 5.2 present a Bayesian statis-

tical analysis of these attacks, using the modeling approach outlined above. The

data used spans from slightly after the September 11th attacks (when U.S. mili-

tary operations in Afghanistan began) through December 2011 consisting of 2887

observations.

Our results are quite informative. In Afghanistan, both models indicate that

suicide attacks, with posterior estimates around -1 in both models, were generally

unsuccessful as were assassination attempts (with posterior mean coefficient esti-

mate -3.147 in the normal model and -2.858 in the DP model), bombings (-0.541 in

the normal model and -0.634 in the DP model), attacks on infrastructure (-0.176

in the normal model and -0.418 in the DP model), and hijackings (-1.931 in the

normal model and -1.787 in the DP model.) These posterior estimates indicate the
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Tab. 5.1: Afghanistan - Hierarchical Bayesian Model Using Normally Distributed Priors
Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

Intercept 4.605 0.553 3.541 5.645
Suicide -1.281 0.236 -1.741 -0.811

Assassination -3.147 0.345 -3.841 -2.506
Bombing/Explosion -0.541 0.327 -1.191 0.081

Facility/Infrastructure -0.176 0.618 -1.321 1.110
Hijacking -1.931 1.472 -4.556 1.276

Hostage Taking - Barricade Incident 2.035 2.199 -1.543 7.024
Hostage Taking - Kidnapping 1.075 0.815 -0.352 2.855

Unknown 1.787 2.238 -1.889 6.706
Mean - Business 0.917 0.798 -0.454 2.528

Mean - Educational Institution -0.767 0.640 -2.011 0.452
Mean - Food or Water Supply 1.329 2.288 -2.595 6.176

Mean - Government (Diplomatic) -0.454 0.695 -1.757 0.958
Mean - Government (General) -0.610 0.493 -1.500 0.321

Mean - Journalists & Media 2.100 2.116 -1.270 6.734
Mean - Maritime 1.347 2.357 -2.746 6.468
Mean - Military -0.318 0.564 -1.345 0.804

Mean - NGO -0.530 0.777 -1.978 0.985
Mean - Other 0.077 1.204 -2.006 2.704
Mean - Police -0.085 0.516 -1.016 0.957

Mean - Private Citizens & Property 1.674 0.679 0.465 2.989
Mean - Religious Figures/Institutions 1.323 0.974 -0.440 3.259

Mean - Telecommunication 2.743 2.274 -0.837 7.969
Mean - Terrorists -0.381 1.089 -2.448 1.827

Mean - Tourists 0.640 2.851 -4.604 6.452
Mean - Transportation -1.085 0.618 -2.256 0.162

Mean - Unknown -2.469 0.696 -3.808 -1.111
Mean - Utilities -1.660 1.017 -3.502 0.498

Variance - Business 1.122 0.399 0.585 2.136
Variance - Educational Institution 1.148 0.406 0.601 2.148
Variance - Food or Water Supply 1.097 0.381 0.583 2.038

Variance - Government (Diplomatic) 1.110 0.394 0.587 2.068
Variance - Government (General) 1.049 0.334 0.577 1.868

Variance - Journalists & Media 1.097 0.379 0.588 2.010
Variance - Maritime 1.101 0.382 0.587 2.070
Variance - Military 1.228 0.459 0.623 2.374

Variance - NGO 1.111 0.392 0.586 2.098
Variance - Other 1.134 0.409 0.594 2.177
Variance - Police 1.032 0.322 0.577 1.814

Variance - Private Citizens & Property 1.106 0.361 0.596 2.020
Variance - Religious Figures/Institutions 1.149 0.427 0.596 2.212

Variance - Telecommunication 1.094 0.383 0.580 2.021
Variance - Terrorists 1.157 0.430 0.597 2.214

Variance - Tourists 1.109 0.388 0.581 2.054
Variance - Transportation 1.095 0.379 0.588 2.043

Variance - Unknown 1.102 0.396 0.579 2.072
Variance - Utilities 1.152 0.430 0.594 2.233

Variance - Unknown 1.112 0.402 0.581 2.109
Variance - Utilities 1.144 0.417 0.594 2.183
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Tab. 5.2: Afghanistan - Hierarchical Bayesian Model Using DP priors
Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

(Intercept) 3.965 0.348 3.289 4.664
Suicide -1.036 0.208 -1.429 -0.622

Assassination -2.858 0.299 -3.445 -2.277
Bombing/Explosion -0.634 0.314 -1.245 -0.013

Facility/Infrastructure -0.418 0.562 -1.416 0.776
Hijacking -1.787 1.225 -4.007 0.863

Hostage Taking (Barricade Incident) 1.976 2.220 -1.472 7.026
Hostage Taking (Kidnapping) 1.017 0.796 -0.363 2.820

Unknown 2.059 2.350 -1.635 7.147
µBaseline 3.853 0.635 2.569 5.086
ΣBaseline 1.007 1.052 0.214 3.286

Number of clusters 4.691 1.552 2.000 8.000
α 1.054 0.566 0.249 2.419

Business 4.863 0.655 3.539 5.942
Educational Institution 3.644 0.346 2.910 4.312
Food or Water Supply 4.084 0.826 2.694 5.781

Government (Diplomatic) 3.721 0.371 3.028 4.543
Government (General) 3.636 0.287 3.067 4.204

Journalists & Media 4.274 0.838 3.048 5.898
Maritime 4.106 0.831 2.683 5.814
Military 3.734 0.316 3.139 4.384

NGO 3.715 0.435 2.907 4.812
Other 3.948 0.666 2.923 5.556
Police 3.835 0.322 3.228 4.523

Private Citizens & Property 5.255 0.418 4.460 6.120
Religious Figures/Institutions 4.878 0.683 3.475 5.985

Telecommunication 4.424 0.843 3.174 5.965
Terrorists 3.782 0.582 2.679 5.287

Tourists 3.989 0.854 2.301 5.742
Transportation 3.519 0.421 2.526 4.222

Unknown 2.634 0.727 1.321 3.956
Utilities 3.472 0.650 1.913 4.687

success of the U.S. military in preventing terrorist attacks of this nature. Attacks

related to hostage taking, on the other hand, had positive coefficients and have

therefore generally been much more successful. As a result, it could be useful for

the U.S. military to work with Afghan security forces to determine where hostage

taking is predominately occurring and improving security around such locations.

Additionally, our model using DP priors suggests that there may be some clustering

of attacks around potential targets not necessarily observable from the data directly.

We will discuss this result in more detail later in this chapter.

5.3.3 The War in Iraq

For decades, Iraq has been a country housing three distinct ethnic and religious

groups - Sunni Muslims, Shi’ite Muslims, and Kurds. Saddam Hussein, the President

of Iraq from 1979 up until his fall in 2003, was infamous for being an egregious

violator of human rights, providing preferential treatment for many of his fellow

Sunni Muslims, while subjecting many Shi’ite Muslims and Kurds to severe and
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often deadly persecution. In 1982, for example, Saddam detained nearly 800 men,

women, and children from the Shi’ite town of Dujail following a failed assassination

attempt. In court, prosecutors and witnesses claimed that they witnessed torture

and murder of many of these civilians. In 1988, during the final days of the Iran-

Iraq war, Saddam ordered a poison gas attack in the northern Iraqi town of Halabja,

killing thousands of innocent civilians and injuring scores of others. Many of the

survivors are still suffering from the long term effects today [64,101].

In addition to human rights violations, Saddam invaded two of his neighboring

countries, supported terrorists, led the international community to believe that he

had intentions to acquire illicit weapons, and attempted to assassinate a former U.S.

President [34, 153]. In light of these violations of international law, President Bill

Clinton in 1998 signed into law the Iraq Liberation Act, making regime change in

Iraq the explicit policy of the United States government. Four years later, Pres-

ident George W. Bush signed into law the Iraq War Resolution, allowing the use

of American ground troops to carry out the goals outlined in the Iraq Liberation

Act [5, 68].

In 2003, a military coalition led by the United States and British governments

removed Saddam from power and helped install a democratic regime that espouses

the values of freedom and human rights. Although the initial campaign in Iraq to

remove Saddam was astonishingly successful, maintaining stability in the immediate

post-Saddam Iraq was quite difficult. Terrorist attacks occurred on a regular basis,

jeopardizing the lives of coalition forces as well as civilians. Recent research has

shown that most of these suicide attacks have been targeted towards civilians [148].

Tables 5.3-5.4 contain an analysis of these attacks from 2003 through 2011, which

consisted of 7621 observations, using our Bayesian approach.

Our posterior coefficient estimates for suicide attacks illustrate that, just like

Afghanistan, suicide attacks were generally unsuccessful (with posterior mean coef-
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Tab. 5.3: Iraq - Hierarchical Bayesian Model Using Normally Distributed Priors
Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

Intercept 4.838 0.502 4.011 5.910
Suicide -0.522 0.199 -0.906 -0.130

Assassination -4.261 0.290 -4.844 -3.721
Bombing/Explosion -1.063 0.282 -1.628 -0.530

Facility/Infrastructure -0.770 0.746 -2.128 0.791
Hijacking 0.522 2.822 -4.605 6.178

Hostage Taking - Barricade Incident 2.077 2.189 -1.384 6.985
Hostage Taking - Kidnapping -0.682 0.559 -1.711 0.493

Unknown 1.265 2.475 -2.872 6.609
Mean - Business 0.677 0.573 -0.528 1.694

Mean - Educational Institution -0.536 0.606 -1.768 0.599
Mean - Food or Water Supply 2.000 2.521 -2.309 7.333

Mean - Government (Diplomatic) -0.420 0.590 -1.644 0.692
Mean - Government (General) -0.076 0.488 -1.131 0.684

Mean - Journalists & Media 1.364 0.971 -0.373 3.532
Mean - Maritime -1.709 1.514 -4.549 1.478
Mean - Military 0.112 0.510 -1.007 0.992

Mean - NGO 0.349 1.284 -1.981 2.995
Mean - Other 1.651 1.086 -0.433 3.839
Mean - Police 0.358 0.459 -0.660 1.071

Mean - Private Citizens & Property 0.998 0.493 -0.167 1.728
Mean - Religious Figures/Institutions 0.543 0.542 -0.664 1.532

Mean - Telecommunication 1.917 2.326 -1.943 7.024
Mean - Terrorists 0.027 0.594 -1.196 1.101

Mean - Tourists 1.214 2.109 -2.321 5.838
Mean - Transportation 0.280 0.614 -0.943 1.483

Mean - Unknown -1.579 0.724 -3.007 -0.143
Mean - Utilities -0.635 0.643 -1.911 0.615

Mean -Violent Political Party 3.536 1.590 0.875 7.189
Variance - Business 1.126 0.374 0.588 2.030

Variance - Educational Institution 1.176 0.419 0.601 2.201
Variance - Food or Water Supply 1.100 0.387 0.584 2.057

Variance - Government (Diplomatic) 1.226 0.459 0.618 2.349
Variance - Government (General) 1.392 0.460 0.707 2.452

Variance - Journalists & Media 1.185 0.469 0.598 2.364
Variance - Maritime 1.122 0.405 0.585 2.113
Variance - Military 1.080 0.348 0.586 1.969

Variance - NGO 1.107 0.383 0.581 2.059
Variance - Other 1.086 0.376 0.576 2.021
Variance - Police 0.831 0.229 0.479 1.323

Variance - Private Citizens & Property 1.163 0.394 0.615 2.172
Variance - Religious Figures/Institutions 1.280 0.519 0.616 2.560

Variance - Telecommunication 1.096 0.381 0.582 2.046
Variance - Terrorists 1.155 0.423 0.602 2.252

Variance - Tourists 1.101 0.384 0.584 2.055
Variance - Transportation 1.102 0.435 0.577 2.219

Variance - Unknown 1.118 0.396 0.595 2.116
Variance - Utilities 1.119 0.374 0.603 2.041

Variance -Violent Political Party 1.103 0.386 0.582 2.057
Variance - Utilities 1.135 0.411 0.587 2.150

Variance - Violent Political Party 1.107 0.393 0.586 2.064
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Tab. 5.4: Iraq - Hierarchical Bayesian Model Using DP priors
Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

(Intercept) 4.543 0.278 4.012 5.109
Suicide -0.449 0.180 -0.785 -0.087

Assassination -3.836 0.264 -4.361 -3.316
Bombing/Explosion -1.049 0.267 -1.593 -0.540

Facility/Infrastructure -1.022 0.639 -2.187 0.274
Hijacking 0.622 2.851 -4.434 6.538

Hostage Taking (Barricade Incident) 2.094 2.149 -1.361 6.976
Hostage Taking (Kidnapping) -0.645 0.517 -1.590 0.404

Unknown 1.390 2.480 -2.778 6.753
µBaseline 4.546 0.434 3.669 5.387
ΣBaseline 0.372 0.389 0.099 1.200

Number of clusters 4.685 1.566 2.000 8.000
α 1.046 0.572 0.242 2.440

Business 4.857 0.375 4.152 5.599
Educational Institution 4.251 0.368 3.473 4.961
Food or Water Supply 4.576 0.486 3.710 5.555

Government (Diplomatic) 4.257 0.347 3.548 4.939
Government (General) 4.241 0.269 3.725 4.785

Journalists & Media 4.823 0.441 3.992 5.685
Maritime 4.405 0.493 3.379 5.357
Military 4.425 0.317 3.822 5.064

NGO 4.506 0.462 3.639 5.467
Other 4.741 0.458 3.918 5.646
Police 4.633 0.281 4.097 5.199

Private Citizens & Property 5.143 0.294 4.579 5.740
Religious Figures/Institutions 4.673 0.363 3.993 5.419

Telecommunication 4.586 0.482 3.717 5.537
Terrorists 4.400 0.345 3.756 5.104

Tourists 4.563 0.482 3.689 5.528
Transportation 4.545 0.371 3.870 5.329

Unknown 4.112 0.491 2.898 4.930
Utilities 4.260 0.381 3.437 4.995

Mean -Violent Political Party 4.822 0.484 3.946 5.784

ficient estimates approximately -0.5 in both models), although not as unsuccessful

as Afghanistan. Assassination attempts (-4.261 in the normal model and -3.736 in

the DP model), bombings (-1.063 in the normal model and -1.049 in the DP model),

and attacks on Facility/Infrastructure (-0.770 in the normal model and -1.022 in the

DP model) were also generally unsuccessful. It is interesting to note, however, that

both models suggest that hijacking (0.522 in the normal model and 0.622 in the

DP model) and hostage taking via barricade incidents (2.077 in the normal model

and 2.094 in the DP model), on the other hand, were successful. Hostage taking

via kidnapping (-0.682 in the normal model and -0.645 in the DP model), however,

was not. These results suggest that Iraqi security forces that have taken respon-

sibility for the country after the departure of U.S. troops in 2011 should consider

fortifying security to prevent hijackings and hostage takings via barricade incident.

The Iraqi government could consider providing additional security personal or offer

recommendations regarding private security to do so.
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5.3.4 The Sri Lankan Civil War

The Sri Lankan Civil War was a 26 year conflict from 1983-2009. Fought

by the Liberation Tigers of Tamil Eelam (LTTE), the war was waged against the

government of Sri Lanka, who were seeking to create a separate Tamil state within

the northeastern part of the country. The LTTE engaged in terrorist attacks rang-

ing from suicide attacks against civilians, to coordinated attacks against religious

figures and important facilities, to assassination attempts against members of the

Sri Lankan government. These attacks included the 1993 assassination of President

Ranasinghe Premadasa, the 1996 bombings of the Sri Lankan Central Bank, killing

over 90 and injuring over 1400, and the 1998 bombing of the revered Temple of

the Tooth among others [54]. Shortly after the killing of LTTE leader Velupillai

Prabhakaran in 2009, the 26 year-long Civil War ended [161]. Tables 5.5 and 5.6

contain our Bayesian analysis of this data set from over the course of the conflict

which consisted of 2924 observations.

The results from the civil war in Sri Lanka are quite similar to those in Iraq.

In particular, suicide attacks (with posterior mean coefficient estimate -0.421 in

the normal model and -0.371 in the DP model), assassination attempts (-1.487

in the normal model and -1.532 in the DP model), bombing attempts (-1.206 in

the normal model and -1.169 in the DP model), attacks on facility/infrastructure

(essentially zero in the normal model and -0.196 in the DP model), hostage taking

via kidnapping (-0.833 in the normal model and -0.877 in the DP model), unarmed

assaults (-1.206 in the normal model and -1.201 in the DP model), and terrorist

attacks of an unknown nature (-1.454 in the normal model and -1.359 in the DP

model) were largely unsuccessful. Hostage taking via barricade incident (1.405 in

the normal model and 1.848 in the DP model) and hijackings (1.822 in the normal

model and 1.848 in the DP model), on the other hand, were much more successful.

Despite the fact that the war ended in 2009, understanding these issues could be
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Tab. 5.5: Sri Lanka - Hierarchical Bayesian Model Using Normally Distributed Priors
Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

Intercept 3.842 0.570 2.867 5.018
Suicide -0.421 0.386 -1.153 0.351

Assassination -1.487 0.330 -2.148 -0.844
Bombing/Explosion -1.206 0.277 -1.752 -0.671

Facility/Infrastructure 0.006 0.628 -1.147 1.326
Hijacking 1.822 2.276 -1.933 6.908

Hostage Taking - Barricade Incident 1.405 2.448 -2.774 6.641
Hostage Taking - Kidnapping -0.833 0.659 -2.039 0.547

Unarmed Assault -1.206 1.455 -3.793 1.898
Unknown -1.454 0.431 -2.282 -0.581

Mean - Business 0.448 0.671 -0.879 1.722
Mean - Educational Institution 3.426 1.919 0.363 7.843
Mean - Food or Water Supply 2.225 2.205 -1.553 6.978

Mean - Government (Diplomatic) -1.061 0.962 -2.926 0.865
Mean - Government (General) -0.021 0.580 -1.224 1.069

Mean - Journalists & Media 0.094 0.867 -1.507 1.883
Mean - Maritime 1.100 1.169 -0.941 3.678
Mean - Military 0.580 0.575 -0.509 1.579

Mean - NGO 3.277 1.884 0.096 7.414
Mean - Other -0.701 0.920 -2.465 1.159
Mean - Police 0.416 0.602 -0.832 1.485

Mean - Private Citizens & Property 2.324 0.674 0.961 3.534
Mean - Religious Figures/Institutions 1.763 1.203 -0.340 4.471

Mean - Telecommunication -0.960 0.939 -2.785 0.895
Mean - Terrorists 3.528 1.781 0.498 7.640

Mean - Tourists 1.671 2.359 -2.406 6.703
Mean - Transportation 0.418 0.631 -0.797 1.649

Mean - Unknown -2.413 0.675 -3.776 -1.128
Mean - Utilities 0.232 0.850 -1.375 2.017

Mean - Violent Political Party 0.466 0.707 -0.876 1.857
Variance - Business 1.102 0.392 0.585 2.108

Variance - Educational Institution 1.092 0.385 0.571 2.028
Variance - Food or Water Supply 1.103 0.388 0.587 2.056

Variance - Government (Diplomatic) 1.132 0.403 0.592 2.145
Variance - Government (General) 1.141 0.430 0.591 2.157

Variance - Journalists & Media 1.117 0.389 0.585 2.099
Variance - Maritime 1.115 0.394 0.590 2.075
Variance - Military 1.149 0.452 0.591 2.313

Variance - NGO 1.096 0.385 0.582 2.050
Variance - Other 1.134 0.413 0.590 2.190
Variance - Police 1.146 0.439 0.600 2.213

Variance - Private Citizens & Property 1.083 0.359 0.574 1.997
Variance - Religious Figures/Institutions 1.094 0.382 0.577 2.070

Variance - Telecommunication 1.126 0.397 0.593 2.101
Variance - Terrorists 1.097 0.385 0.577 2.053

Variance - Tourists 1.109 0.393 0.581 2.090
Variance - Transportation 1.139 0.414 0.592 2.169

Variance - Unknown 1.180 0.437 0.602 2.271
Variance - Utilities 1.133 0.405 0.601 2.131

Variance - Violent Political Party 1.112 0.407 0.576 2.096
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Tab. 5.6: Sri Lanka - Hierarchical Bayesian Model Using DP priors
Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

(Intercept) 3.890 0.354 3.233 4.627
Suicide -0.371 0.325 -0.982 0.282

Assassination -1.532 0.300 -2.128 -0.950
Bombing/Explosion -1.169 0.263 -1.699 -0.658

Facility/Infrastructure -0.196 0.597 -1.262 1.044
Hijacking 1.848 2.151 -1.611 6.598

Hostage Taking (Barricade Incident) 1.345 2.439 -2.720 7.063
Hostage Taking (Kidnapping) -0.870 0.598 -1.948 0.414

Unarmed Assault -1.201 1.341 -3.520 1.832
Unknown -1.359 0.407 -2.121 -0.517
µBaseline 3.506 0.775 1.896 4.967
ΣBaseline 1.944 3.062 0.463 6.355

Number of clusters 4.513 1.349 3.000 8.000
α 0.999 0.529 0.263 2.306

Business 3.763 0.266 3.271 4.305
Educational Institution 4.698 0.979 3.371 6.455
Food or Water Supply 4.188 0.886 3.032 6.147

Government (Diplomatic) 3.262 0.830 1.368 4.230
Government (General) 3.669 0.284 3.053 4.191

Journalists & Media 3.742 0.369 3.027 4.473
Maritime 4.014 0.678 3.223 5.836
Military 3.783 0.241 3.333 4.284

NGO 4.572 0.973 3.336 6.374
Other 3.519 0.609 1.793 4.279
Police 3.759 0.242 3.302 4.253

Private Citizens & Property 5.452 0.465 4.598 6.410
Religious Figures/Institutions 4.456 0.875 3.357 6.159

Telecommunication 3.322 0.785 1.446 4.226
Terrorists 4.992 0.939 3.459 6.571

Tourists 4.060 0.930 2.080 6.074
Transportation 3.753 0.255 3.269 4.267

Unknown 1.604 0.454 0.716 2.499
Utilities 3.752 0.367 3.068 4.479

Violent Political Party 3.764 0.286 3.250 4.339

useful for the Sri Lankan government as post-war reconciliation processes continue.

5.3.5 The Troubles

Commonly known as “The Troubles,” the Civil War in Ireland was an ethno-

nationalist conflict over the constitutional status of Northern Ireland [102]. The

Troubles bears many similarities to the Civil War in Sri Lanka. Irish nationalists,

primarily Catholic, wanted an Independent State of Northern Ireland, while Union-

ists and loyalists, primarily Protestant, preferred Northern Ireland to remain part

of the United Kingdom. The Unionists and loyalists were represented politically

by the Ulster Volunteer Force (UVF) and the Ulster Defence Association (UDA),

while the Irish nationalists were represented by the Irish Republican Army (IRA).

Unlike many political groups, however, the UVF, UDA, and IRA were known for

engaging in violent behavior, including engaging in attacks targeting civilians. In

fact, these organizations have been deemed by the United States State Department
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as terrorist groups alongside organizations such as al Qaeda, Hezbollah, Hamas, and

LTTE among others [158].

The Good Friday Agreement of 1998, a compromise that Northern Ireland

would remain a component of the United Kingdom until the people of northern

Ireland and the Republic of Ireland would determine otherwise, contained provisions

for the creation of institutions to civilly discuss issues between Northern Ireland

and the Republic of Ireland as well as between Britain and Ireland [114]. The

Agreement, however, was not a panacea for the country’s issues, and terrorist attacks

continued after its passage. Tables 5.7-5.10 contain our analysis of the attacks

in Northern Ireland from 1970 up through the Good Friday Agreement of 1998

(consisting of 3517 observations) and then from 1998 through the present (consisting

of 457 observations). During these time periods, only one suicide attack occurred

in our data set (on December 29, 1998 in Armagh, Northern Ireland) and was

consequently excluded from our analysis.

Our posterior estimates indicate that hostage taking via kidnapping (posterior

mean coefficient estimates 1.548 in the normal model and 1.429 in the DP model),

unarmed assaults (2.585 in the normal model and 2.619 in the DP model), and

terrorist attacks of an unknown nature (0.156 in the normal model and 2.619 in

the DP model) were the most successful types of terrorist attacks in Ireland before

the Good Friday Agreement of 1998. Although terrorist attacks continued after

the Agreement, the most successful types of attacks were via hijacking (1.146 in

the normal model and 2.869 in the DP model) and hostage taking via kidnapping

(1.090 in the normal model and 1.042 in the DP model). The success of unarmed

assaults declined after the Good Friday Agreement of 1998 as the posterior coefficient

estimates became negative (-0.865 in the normal model -1.083 in the DP model).
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Tab. 5.7: Ireland before the 1998 Good Friday Agreement - Hierarchical Bayesian Model
Using Normally Distributed Priors

Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

Intercept 2.346 0.639 1.087 3.644
Assassination -0.421 0.236 -0.900 0.028

Bombing/Explosion -0.972 0.233 -1.447 -0.524
Facility/Infrastructure -0.831 0.319 -1.450 -0.196

Hijacking -2.452 1.233 -4.837 0.056
Hostage Taking - Barricade Incident -0.283 1.268 -2.476 2.485

Hostage Taking - Kidnapping 1.548 1.113 -0.313 4.033
Unarmed Assault 2.585 2.088 -0.842 7.188

Unknown 0.156 0.861 -1.349 2.012
Mean - Airports & Airlines -1.152 1.132 -3.339 1.048

Mean - Business 0.774 0.620 -0.488 2.043
Mean - Educational Institution -0.438 0.949 -2.235 1.471

Mean - Government (Diplomatic) 1.520 2.522 -3.090 6.930
Mean - Government (General) -0.491 0.629 -1.783 0.751

Mean - Journalists & Media -0.335 1.495 -3.178 2.703
Mean - Maritime 2.158 2.310 -1.853 7.131
Mean - Military 1.067 0.647 -0.291 2.447

Mean - NGO 1.917 2.223 -2.065 6.544
Mean - Other 1.935 1.165 -0.152 4.434
Mean - Police 0.216 0.623 -1.054 1.492

Mean - Private Citizens & Property 0.898 0.616 -0.415 2.122
Mean - Religious Figures/Institutions -0.029 0.958 -1.781 1.971

Mean - Telecommunications -0.950 1.723 -4.285 2.624
Mean - Terrorists -0.279 0.669 -1.723 1.066

Mean - Tourists 1.464 2.532 -3.218 6.731
Mean - Transportation 0.543 0.756 -0.926 2.037

Mean - Unknown 1.774 0.984 0.043 3.871
Mean - Utilities -2.775 2.285 -7.589 1.418

Variance - Airports & Airlines 1.128 0.403 0.591 2.161
Variance - Business 1.195 0.428 0.619 2.306

Variance - Educational Institution 1.119 0.400 0.585 2.119
Variance - Government (Diplomatic) 1.114 0.397 0.585 2.094

Variance - Government (General) 1.340 0.536 0.654 2.729
Variance - Journalists & Media 1.131 0.408 0.593 2.164

Variance - Maritime 1.103 0.381 0.585 2.041
Variance - Military 1.162 0.444 0.586 2.326

Variance - NGO 1.106 0.391 0.579 2.082
Variance - Other 1.116 0.394 0.589 2.113
Variance - Police 1.210 0.428 0.631 2.324

Variance - Private Citizens & Property 1.001 0.335 0.547 1.866
Variance - Religious Figures/Institutions 1.124 0.406 0.590 2.144

Variance - Telecommunications 1.120 0.405 0.591 2.121
Variance - Terrorists 1.070 0.365 0.576 1.987

Variance - Tourists 1.104 0.386 0.584 2.084
Variance - Transportation 1.134 0.410 0.593 2.148

Variance - Unknown 1.113 0.389 0.582 2.103
Variance - Utilities 1.111 0.394 0.587 2.092
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Tab. 5.8: Ireland before the 1998 Good Friday Agreement - Hierarchical Bayesian Model
Using DP priors

Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

(Intercept) 2.336 0.240 1.854 2.802
Assassination -0.393 0.195 -0.768 -0.001

Bombing/Explosion -0.897 0.191 -1.259 -0.530
Facility/Infrastructure -0.847 0.253 -1.314 -0.360

Hijacking -2.282 1.075 -4.222 -0.064
Hostage Taking (Barricade Incident) -0.012 1.174 -2.052 2.263

Hostage Taking (Kidnapping) 1.429 0.997 -0.308 3.603
Unarmed Assault 2.619 2.193 -0.859 7.858

Unknown 0.222 0.817 -1.192 1.955
µBaseline 2.231 0.396 1.453 2.998
ΣBaseline 0.391 0.350 0.113 1.187

Number of clusters 4.453 1.441 2.000 8.000
α 1.006 0.546 0.234 2.320

Airports & Airlines 1.977 0.491 1.162 3.007
Business 2.783 0.203 2.359 3.167

Educational Institution 2.021 0.472 1.262 3.002
Government (Diplomatic) 2.379 0.536 1.365 3.174

Government (General) 1.703 0.250 1.228 2.213
Journalists & Media 2.236 0.542 1.299 3.118

Maritime 2.419 0.526 1.399 3.179
Military 2.831 0.185 2.476 3.195

NGO 2.420 0.530 1.392 3.183
Other 2.689 0.375 1.766 3.240
Police 2.152 0.201 1.757 2.545

Private Citizens & Property 2.821 0.184 2.467 3.182
Religious Figures/Institutions 2.191 0.510 1.330 3.086

Telecommunications 2.194 0.547 1.260 3.099
Terrorists 1.810 0.279 1.291 2.362

Tourists 2.366 0.543 1.359 3.168
Transportation 2.555 0.391 1.728 3.145

Unknown 2.782 0.291 2.088 3.273
Utilities 2.144 0.554 1.214 3.090

Tab. 5.9: Ireland after the 1998 Good Friday Agreement - Hierarchical Bayesian Model
Using Normally Distributed Priors

Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

Intercept 2.819 1.058 0.910 4.946
Assassination 0.462 1.114 -1.734 2.530

Bombing Explosion -2.260 1.049 -4.355 -0.379
Facility/Infrastructure 3.759 2.077 -0.005 8.227

Hijacking 1.146 2.613 -3.549 6.608
Hostage Taking - Kidnapping 1.090 1.203 -1.318 3.368

Unarmed Assault -0.865 1.648 -3.965 2.529
Mean - Business -0.226 0.591 -1.361 0.962

Mean - Educational Institution 0.223 0.482 -0.716 1.162
Mean - Government (General) 2.191 1.224 0.158 5.149

Mean - Journalists & Media -2.353 2.281 -7.232 1.800
Mean - Military -0.680 1.573 -3.670 2.601

Mean - NGO 1.068 2.654 -3.878 6.628
Mean - Other -1.390 1.829 -4.945 2.298
Mean - Police -0.889 1.135 -3.037 1.455

Mean - Private Citizens & Property -0.209 0.388 -1.013 0.512
Mean - Religious Figures/Institutions 0.668 1.322 -1.743 3.554

Mean - Terrorists 3.080 1.941 -0.166 7.442
Mean - Tourists -1.516 1.224 -3.942 0.885

Mean - Transportation -1.288 0.908 -3.060 0.476
Mean - Unknown -3.902 1.071 -6.157 -1.986

Mean - Utilities -2.514 2.379 -7.595 1.825
Mean - Violent Political Party 2.808 2.037 -0.659 7.306

Variance - Business 1.148 0.402 0.602 2.147
Variance - Educational Institution 1.085 0.367 0.580 1.998
Variance - Government (General) 1.109 0.392 0.581 2.082

Variance - Journalists & Media 1.112 0.398 0.581 2.101
Variance - Military 1.106 0.391 0.585 2.078

Variance - NGO 1.108 0.390 0.584 2.077
Variance - Other 1.114 0.398 0.590 2.084
Variance - Police 1.143 0.406 0.594 2.149

Variance - Private Citizens & Property 1.136 0.410 0.599 2.169
Variance - Religious Figures/Institutions 1.097 0.380 0.585 2.037

Variance - Terrorists 1.100 0.387 0.584 2.077
Variance - Tourists 1.110 0.392 0.590 2.067

Variance - Transportation 1.111 0.391 0.589 2.102
Variance - Unknown 1.087 0.374 0.577 2.021

Variance - Utilities 1.109 0.392 0.585 2.073
Variance - Violent Political Party 1.106 0.387 0.588 2.069
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Tab. 5.10: Ireland after the 1998 Good Friday Agreement - Hierarchical Bayesian Model
Using DP priors

Post. Post. 95% Credible Interval 95% Credible Interval
Mean Std Dev Lower Limit Upper Limit

(Intercept) 2.417 0.474 1.514 3.372
Assassination -0.210 1.268 -2.336 2.821

Bombing/Explosion -2.288 0.414 -3.159 -1.542
Facility/Infrastructure 0.475 0.742 -0.863 2.117

Hijacking 2.869 1.964 -0.496 7.233
Hostage Taking (Kidnapping) 1.042 2.514 -3.330 6.289

Unarmed Assault -1.083 1.368 -3.460 2.115
µBaseline 1.796 0.885 -0.109 3.435
ΣBaseline 1.212 1.564 0.181 4.792

Number of clusters 3.272 1.291 2.000 6.000
α 0.798 0.491 0.154 2.031

Business 2.737 0.422 1.995 3.633
Educational Institution 2.453 0.776 0.423 3.618
Government (General) 2.685 0.426 1.891 3.547

Journalists & Media 2.543 0.806 0.377 3.857
Military 2.909 0.646 2.024 4.669

NGO 2.284 0.945 -0.108 3.580
Other 2.470 0.724 0.546 3.568
Police 2.738 0.417 2.000 3.621

Private Citizens & Property 2.685 0.396 1.981 3.514
Religious Figures/Institutions 2.723 0.521 1.780 3.807

Terrorists 2.839 0.640 1.955 4.504
Tourists 2.238 0.911 0.007 3.507

Transportation 2.278 0.808 0.357 3.468
Unknown 0.529 0.901 -1.337 2.226

Utilities 2.155 1.077 -0.507 3.568
Violent Political Party 2.798 0.624 1.872 4.262

5.3.6 The Use of Dirichlet Process Priors

We applied either a normal prior or a DP Prior to the coefficients regarding

the targets of terrorist attacks. To compare the DP model for each conflict with its

normal counterpart, we estimated pseudo-Bayes factors (PsBF) [47,48]. The PsBF

is based on a model’s cross-validation predictive density. As standard Bayes factors

are often not computationally feasible to compute, the PsBF is considered a useful

surrogate. If we let y be our observed data, yt be the tth terrorist attack at time t

across t = 1, . . . , T observations, and y(t) be the data of attacks with observation t

deleted, the cross validative predictive density π(yt|y(t)) is:

π(yt|y(t)) =

∫
π(yt|β,y(t))π(β, |y(t))dβ

≈
[

1

R

R∑
r=1

1

f(yt,β
(r))

]−1
, (5.6)

where f is the likelihood function and β(r) is the vector of parameter values ob-
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tained during the rth MCMC iteration [115]. The relation in (5.6) is based on a

truncated series approximation of the harmonic mean of the logistic regression func-

tion evaluated at each posterior draw, averaged across all R post burn-in MCMC

iterations [115]. As a result, the PsBF comparing the normal model (M=1) to the

DP model (M=2) can be written as follows:

PsBF =
T∏
t=1

π(yt|y(t),M = 2)

π(yt|y(t),M = 1)
. (5.7)

We can take advantage of the additive properties of logarithms and utilize

(5.6) to estimate the logarithms of the numerator as well as the denominator in

(5.11). These quantities, approximations to the log-marginal data likelihoods for

each model, enable us to estimate PsBFs for each conflict examined. Table 5.11

contains our results.

Tab. 5.11: PsBF Computation comparing DP Model to Normal Model

Normal Model DP Model Pseudo Bayes Factor

Afghanistan -518.066 -510.610 1730.213
Iraq -1183.940 -1183.310 1.878

Sri Lanka -563.147 -556.940 496.310
N. Ireland Before 1998 GF Agreement -1278.738 -1272.590 467.781
N. Ireland After 1998 GF Agreement -230.315 -231.140 0.438

PsBF estimates greater than one indicate stronger support for the DP Model,

whereas estimates less than one provide support for the normal model. Furthermore,

the larger the value, the stronger the indication of support [47, 48].1 Therefore,

these results indicate substantial support for the DP Model for understanding the

determinants of successful attacks in Afghanistan, Sri Lanka, and Northern Ireland

before the 1998 Good Friday Agreement. The PsBF for Iraq is 1.878, indicated some

support for the DP Model over the normal model for that conflict. Thus, for four

1 Pseudo-Bayes Factors have the potential to legitimately take on extremely large values (as
large as exp(50)) that would indicate overwhelming evidence in favor of one model over another,
as illustrated in Ansari and Mela’s (2003) hierarchical Bayesian probit analysis of online customer
clickstream behavior [3].
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of the five conflicts examined, the DP model effectively captures clustering around

potential targets for these conflicts compared to the normal model. The normal

model, on the other hand, is considerably more adequate for modeling the conflict

in Northern Ireland after the 1998 Good Friday Agreement. The adequacy of the

normal model compared to the DP Model in this instance may be due the lack of

clustering of attacks around targets in Northern Ireland in recent years.

Table 5.12 contains our average cluster sizes for each conflict, averaged over

our MCMC iterations:

Tab. 5.12: Average Cluster Size - DP prior Model

Average Cluster Size Standard Deviation

Afghanistan 4.691 1.552
Iraq 4.685 1.566

Sri Lanka 4.513 1.349
Northern Ireland (before 1998 GF Agreement) 4.453 1.441

Northern Ireland (after 1998 GF Agreement) 3.272 1.291

These results suggest an interesting phenomenon illustrated by our DP prior

model. In particular, our models cluster around a small number of targets. This clus-

tering manifests the terrorists’ strategy, improving the model’s explanatory power for

three of the conflicts described above. Future research could look into determining

the exact composition of these clusters and provide military advice accordingly. Re-

cent research has performed similar cluster analysis of other real-world phenomena,

including the topics discussed by Barack Obama, John McCain, and Mitt Romney

in the last two presidential elections [113].

5.3.7 Improving Bayesian Credible Interval Estimates

In the previous chapter of this dissertation, we discussed utilizing the semi-

parametric DRE method to improve the credible interval estimation of a hierarchical

linear model regarding welfare reform. In this section, we extend this technique to

refine the credible interval estimates of the hierarchical generalized linear model
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Fig. 5.1: Histogram of Posterior Sample for Suicide Attack Coefficient in Afghanistan,
Assuming a Normally Distributed Prior

of this chapter. Specifically, we took posterior samples of several coefficients that

warranted a more rigorous examination of their distributional properties. Upon

looking at the histograms of these posterior samples, they all seemed to be reason-

ably “normal-like” in nature, appearing to be unimodal and reasonably symmetric

with limited skewness. Several of these histograms are in Figures 5.1-5.10

As a result of these marginal posterior samples’ distributional behavior, we

used the approach in the previous chapter to estimate the 95% credible interval,

again assuming a tilt function of the form h(x) = (x, x2)′. As the simulations of

the previous chapter illustrated, applying the DRE method to posterior samples

can provide more accurate quantile estimation. Our results are presented in Tables

5.13-5.17:

As we saw with our rigorous examination of welfare reform, the semiparametric

DRE method enables us to better understand our posterior interval estimates re-
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Fig. 5.2: Histogram of Posterior Sample for Suicide Attack Coefficient in Afghanistan,
Assuming a DP prior

Tab. 5.13: Bayesian Credible Interval Refinements for Suicide Attack Posterior Coefficient,
Afghanistan

95% Credible Interval 95% Credible Interval Refined 95% Credible Refined 95% Credible
Lower Limit Upper Limit Interval Lower Limit Interval Upper Limit

Normal Prior -1.741 -0.811 -1.748 -0.817
DP Prior -1.429 -0.622 -1.439 -0.626

Tab. 5.14: Bayesian Credible Interval Refinements for Bombing/Explosion Posterior Co-
efficient, Iraq

95% Credible Interval 95% Credible Interval Refined 95% Credible Refined 95% Credible
Lower Limit Upper Limit Interval Lower Limit Interval Upper Limit

Normal Prior -1.628 -0.530 -1.622 -0.521
DP Prior -1.593 -0.540 -1.571 -0.528

Tab. 5.15: Bayesian Credible Interval Refinements for Facility/Infrastructure Posterior
Coefficient, Sri Lanka

95% Credible Interval 95% Credible Interval Refined 95% Credible Refined 95% Credible
Lower Limit Upper Limit Interval Lower Limit Interval Upper Limit

Normal Prior -1.147 1.326 -1.206 1.275
DP Prior -1.262 1.044 -1.339 1.010
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Fig. 5.3: Histogram of Posterior Sample for Bombing/Explosion Attack Coefficient in Iraq,
Assuming a Normally Distributed Prior

Tab. 5.16: Bayesian Credible Interval Refinements for Hijacking Posterior Coefficient,
Northern Ireland before 1998 Good Friday Agreement

95% Credible Interval 95% Credible Interval Refined 95% Credible Refined 95% Credible
Lower Limit Upper Limit Interval Lower Limit Interval Upper Limit

Normal Prior -4.837 0.056 -4.878 0.028
DP Prior -4.222 -0.064 -4.342 -0.132

Tab. 5.17: Bayesian Credible Interval Refinements for Unarmed Assault Posterior Coeffi-
cient, Northern Ireland bafterefore 1998 Good Friday Agreement

95% Credible Interval 95% Credible Interval Refined 95% Credible Refined 95% Credible
Lower Limit Upper Limit Interval Lower Limit Interval Upper Limit

Normal Prior -3.965 2.529 -4.072 2.431
DP Prior -3.460 2.115 -3.672 1.737
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Fig. 5.4: Histogram of Posterior Sample for Bombing/Explosion Attack Coefficient in Iraq,
Assuming a DP prior

garding terrorist attacks. This information is useful for policymakers to understand

upper and lower limits of response coefficients so they can make more accurate

statistical inferences regarding fortification of appropriate security measures. For

example, in Northern Ireland after the 1998 Good Friday Agreement, although the

success of unarmed assaults remains relatively low, the upper limit of the pertinent

marginal posterior distribution still remains positive. This result suggests that this

positive upper interval estimate was unlikely due to truncation of the MCMC sam-

pler. We can use these results to advise associated policymakers that regardless of

the negative Bayesian point estimator generated pertaining to unarmed assaults,

they should not neglect security issues regarding attacks of this nature.

139



Fig. 5.5: Histogram of Posterior Sample for Facility/Infrastructure Coefficient in Sri
Lanka, Assuming a Normally Distributed Prior

5.4 Conclusions and Future Research

Our results provide policymakers with a model offering useful counterterrorism

strategies shedding light on which types of attacks are sufficiently defended against

and which others warrant further fortification. As a result, policymakers can use our

model in conjunction with other statistical models aimed at understanding terror-

ist networks as well as theoretical research in political science examining the goals,

causes, and onset of terrorism [2, 15, 89, 120, 143, 166]. It is interesting to note that

across the conflicts studied here, suicide attacks are generally unsuccessful, despite

the tremendous attention they garner from the mainstream media. This result is

consistent with the findings of Kyung et al (2011)’s study of the Middle East and

Northern Africa [90]. Other considerably more coordinated non-suicide attacks,

however, such as hostage taking, are often much more successful. This phenomenon
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Fig. 5.6: Histogram of Posterior Sample for Facility/Infrastructure Coefficient in Sri
Lanka, Assuming a DP prior

can be explained by the fact that security forces in these countries may be successful

at deterring terrorist attacks, although further measures need to be taken to deter

other types of attacks.

There are many extensions of this research that we hope will aid policymak-

ers. For example, policy researchers could potentially use this type of model on a

considerably more local level as different regions within a country will almost surely

require different security measures. The Iraq troop surge of 2007, for example, was

intended to quell violence in Baghdad as well as the Al-Anbar province [12]. A more

micro analysis, perhaps at a provincial level, can help policymakers understand what

exactly such security measures may be necessary. Another potential avenue for fu-

ture research could be to estimate a similar Bayesian statistical model presented

here and instead examine the impact of different types of weapons on the success

of terrorist attacks. This information is available in the rich START database and
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Fig. 5.7: Histogram of Posterior Sample for Hijacking Coefficient in Northern Ireland (be-
fore 1998 GF Agreement), Assuming a Normally Distributed Prior

could provide valuable information to policymakers.

Methodologically, there is also a significant amount of future research that

we hope that this study will encourage. In particular, four of the eight models in

this study applied standard DP priors to weaken the typically restrictive parametric

assumptions associated with Bayesian statistical models. An interesting avenue of

future research is to apply distance-dependent DP priors, where the mechanism for

clustering is guided based on distance between terrorist attacks [8]. Bayesian infer-

ences from models of this nature could provide useful military advice for combating

terrorist attacks in the future.

There is also of course no a priori reason to restrict this type of modeling

to counterterrorism policy as there are myriads of other applications of Bayesian

models ranging in applied economics, business, and professional sports among oth-

ers [1,3,72]. In this study, we also utilized the semiparametric DRE method to pro-
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Fig. 5.8: Histogram of Posterior Sample for Hijacking Coefficient in Northern Ireland (be-
fore 1998 GF Agreement), Assuming a DP prior

vide more accurate estimation of several Bayesian credible intervals for our posterior

coefficients. An interesting avenue of future research could be to use this approach to

provide detailed estimates for posterior densities corresponding to other parametric

and non-parametric models. Additionally, in this study, we only applied the DRE

method to marginal posterior distributions. Another potentially interesting avenue

for future research could be to apply this approach to develop Bayesian credible

regions for multivariate posterior densities. Finally, we applied this approach to

posterior samples, based on significantly larger samples generated by MCMC meth-

ods. For high-dimensional models involving large data sets, adequately sampling

a posterior density can be quite time consuming and computationally burdensome.

Generalized direct sampling is a faster alternative to MCMC that generates inde-

pendent samples and can more quickly navigate the posterior [10]. Although these

independent samples are quite small compared to MCMC samples, associated sta-
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Fig. 5.9: Histogram of Posterior Sample for Unarmed Assault Coefficient in Northern Ire-
land (after 1998 GF Agreement), Assuming a Normally Distributed Prior

tistical inferences based on such samples can be significantly improved upon by

utilizing the semiparametric DRE method.

5.5 Appendix

5.5.1 Variable Definition

Below are descriptions of the variables used in this chapter, as defined in the

GTD Codebook [55]. Our dependent variable was whether the terrorist attack was

successful.

Dependent Variable Used in Model - Successful attack
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Fig. 5.10: Histogram of Posterior Sample for Unarmed Assault Coefficient in Northern
Ireland (after 1998 GF Agreement), Assuming a DP prior

Success - “Success of a terrorist strike is defined according to the tangible effects of

the attack. Success is not judged in terms of the larger goals of the perpetra-

tors. For example, a bomb that exploded in a building would be counted as

a success even if it did not succeed in bringing the building down or inducing

government repression.” Please see descriptions under each of the individual

explanatory variables below about how this definition is applied to each type

of terrorist attack.

Explanatory Variable Used in Model - Suicide Attack

Suicide - “This variable is coded ‘Yes’ in those cases where there is evidence that

the perpetrator did not intend to escape from the attack alive.”
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Explanatory Variable Used in Model - Types of Terrorist Attacks

Assassination - “An act whose primary objective is to kill one or more specific,

prominent individuals. Usually carried out on persons of some note, such as

high-ranking military officers, government officials, celebrities, etc. Not to

include attacks on non-specific members of a targeted group. The killing of a

police officer would be an armed assault unless there is reason to believe the

attackers singled out a particularly prominent officer for assassination ... In

order for an assassination to be successful, the target of the assassination must

be killed. For example, even if an attack kills numerous people but not the

target, it is an unsuccessful assassination.”

Armed Assault - “An attack whose primary objective is to cause physical harm or

death directly to human beings by use of a firearm, incendiary, or sharp in-

strument (knife, etc.). Also included under this attack type would be CBRN

(chemical, biological, radiological, nuclear) weapons. Not to include acts of

a purely personal or criminal nature, or acts in which people are incidentally

harmed in pursuit of another primary objective. Not to include attacks involv-

ing the use of fists, rocks, sticks, or other handheld (less-than-lethal) weapons

... An armed assault is determined to be successful if the assault takes place

and if a target is hit. Unsuccessful armed assaults are those in which the

perpetrators attack and do not hit the target. An armed assault is also un-

successful if the perpetrators are apprehended on their way to commit the

assault. To make this determination, however, there must be information to

indicate that an actual assault was imminent.”

Bombing/Explosion - “An attack where the primary effects are caused by an en-

ergetically unstable material undergoing rapid decomposition and releasing a

pressure wave that causes physical damage to the surrounding environment.
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Can include either high or low explosives (including a dirty bomb) but does

not include a nuclear explosive device that releases energy from fission and/or

fusion, or an incendiary device where decomposition takes place at a much

slower rate ... A bombing is successful if the bomb or explosive device det-

onates. Bombings are considered unsuccessful if they do not detonate. The

success or failure of the bombing is not based on whether it hit the intended

target.”

Hijacking - “An act whose primary objective is to take control of a vehicle such as an

aircraft, boat, bus, etc. for the purpose of diverting it to an unprogrammed

destination, force the release of prisoners, or some other political objective.

Obtaining payment of a ransom should not the sole purpose of a Hijacking,

but can be one element of the incident so long as additional objectives have

also been stated. Hijackings are distinct from Hostage Taking because the

target is a vehicle, regardless of whether there are people/passengers in the

vehicle ... A hijacking is successful if the hijackers assume control of the vehicle

at any point, whereas a hijacking is unsuccessful if the hijackers fail to assume

control of the vehicle. The success or failure of the hijacking is not based on

whether the vehicle reached the intended destination of the hijackers.”

Hostage Taking (Barricade Incident) - “An act whose primary objective is to take

control of hostages for the purpose of achieving a political objective through

concessions or through disruption of normal operations. Such attacks are

distinguished from kidnapping since the incident occurs and usually plays out

at the target location with little or no intention to hold the hostages for an

extended period in a separate clandestine location ... A barricade incident is

successful if the hostage takers assume control of the individuals at any point,

whereas a barricade incident is unsuccessful if the hostage takers fail to assume
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control of the individuals.”

Hostage Taking (Kidnapping) - “An act whose primary objective is to take con-

trol of hostages for the purpose of achieving a political objective through

concessions or through disruption of normal operations. Kidnappings are dis-

tinguished from Barricade Incidents (above) in that they involve moving and

holding the hostages in another location ... A kidnapping is successful if the

kidnappers assume control of the individuals at any point, whereas a kidnap-

ping is unsuccessful if the kidnappers fail to assume control of the individuals.”

Facility/Infrastructure - “An act, excluding the use of an explosive, whose primary

objective is to cause damage to a non-human target, such as a building, mon-

ument, train, pipeline, etc. Such attacks include arson and various forms of

sabotage (e.g., sabotaging a train track is a Facility/Infrastructure, even if

passengers are killed). Facility/Infrastructures can include acts which aim to

harm an installation, yet also cause harm to people incidentally (e.g. an arson

attack primarily aimed at damaging a building, but causes injuries or fatalities)

... A facility attack is determined to be successful if the facility is damaged.

If the facility has not been damaged, then the attack is unsuccessful.”

Unarmed Assault - “An attack whose primary objective is to cause physical harm

or death directly to human beings by any means other than explosive, firearm,

incendiary, or sharp instrument (knife, etc.) ... An unarmed assault is deter-

mined to be successful there is a victim that who has been injured. Unarmed

assaults that are unsuccessful are those in which the perpetrators do not in-

jure anyone ... An unarmed assault is also unsuccessful if the perpetrators are

apprehended when on their way to commit the assault. To make this deter-

mination, however, there must be information to indicate that an assault was

imminent.”
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Explanatory Variable Used in Model - Targets of Terrorist Attacks

Business - “Businesses are defined as individuals or organizations engaged in com-

mercial or mercantile activity as a means of livelihood. Any attack on a busi-

ness or private citizens patronizing a business such as a restaurant, gas station,

music store, bar, caf, etc. This includes attacks carried out against corporate

offices or employees of firms like mining companies, or oil corporations. Fur-

thermore, includes attacks conducted on business people or corporate officers.

Included in this value as well are hospitals and chambers of commerce and

cooperatives. Does not include attacks carried out in public or quasi-public

areas such as business district or commercial area, (these attacks are captured

under Private Citizens and Property, see below.)”

Government (General) - “Any attack on a government building; government mem-

ber, former members, including members of political parties in official capac-

ities, their convoys, or events sponsored by political parties; political move-

ments; or a government sponsored institution where the attack is expressly

carried out to harm the government. This value includes attacks on judges,

public attorneys (e.g., prosecutors), courts and court systems, politicians, roy-

alty, head of state, government employees (unless police or military), election-

related attacks, intelligence agencies and spies, or family members of govern-

ment officials when the relationship is relevant to the motive of the attack.”

Police - “This value includes attacks on members of the police force or police in-

stallations; this includes police boxes, patrols headquarters, academies, cars,

checkpoints, etc. Includes attacks against jails or prison facilities, or jail or

prison staff or guards.”

Military - “Includes attacks against army units, patrols, barracks, and convoys,
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jeeps, etc. Also includes attacks on recruiting sites, and soldiers engaged in

internal policing functions such as at checkpoints and in anti-narcotics activi-

ties. Excludes attacks against non-state militias and guerrillas, these types of

attacks are coded as Terrorist/Non-state Militias see below.”

Abortion Related - “Attacks on abortion clinics, employees, patrons, or security

personnel stationed at clinics.”

Airports and Airlines - “An attack that was carried out either against an airplane or

against an airport. Attacks against airline employees while on board are also

included in this value. Includes attacks conducted against airport business

offices and executives. Attacks where airplanes were used to carry out the

attack (such as three of the four 9/11 attacks) are not included.”

Government (Diplomatic) - “Attacks carried out against foreign missions, includ-

ing embassies, consulates, etc. This value includes cultural centers that have

diplomatic functions, and attacks against diplomatic staff and their families

(when the relationship is relevant to the motive of the attack) and property.

The United Nations is a diplomatic target.”

Educational Institution - “Attacks against schools, teachers, or guards protecting

school sites. Includes attacks against university professors, teaching staff and

school buses. Moreover, includes attacks against religious schools in this value.

As noted below in the Private Citizens and Property value, the GTD has sev-

eral attacks against students. If attacks involving students are not expressly

against a school, university or other educational institution or are carried out

in an educational setting, they are coded as private citizens and property. Ex-

cludes attacks against military schools (attacks on military schools are coded

as Military, see below).”
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Food or Water Supply - “Attacks on food or water supplies or reserves are included

in this value. This generally includes attacks aimed at the infrastructure re-

lated to food and water for human consumption.”

Journalists and Media - “Includes, attacks on reporters, news assistants, photogra-

phers, publishers, as well as attacks on media headquarters and offices. Attacks

on transmission facilities such as antennae or transmission towers, or broadcast

infrastructure are coded as Telecommunications, see below.”

Maritime - “Implies civilian maritime. Includes attacks against fishing ships, oil

tankers, ferries, yachts, etc. (Attacks on fishermen are coded as Private Citi-

zens and Property, see below).”

NGO - “Includes attacks on offices and employees of non-governmental organiza-

tions (NGOs). NGOs here include large multinational non-governmental or-

ganizations such as the Red Cross and Doctors without Borders. Does not

include labor unions, social clubs, student groups, and other non-NGO (such

cases are coded as Other, see immediately below).”

Other - “This value includes acts of terrorism committed against targets which do

not fit into other categories.”

Private Citizens and Property - “This value includes attacks on individuals, the

public in general or attacks in public areas including markets, commercial

streets, busy intersections and pedestrian malls. Also includes ambiguous cases

where the target/victim was a named individual, or where the target/victim of

an attack could be identified by name, age, occupation, gender or nationality.

This value also includes ceremonial events, such as weddings and funerals.

The GTD contains a number of attacks against students. If these attacks are

not expressly against a school, university or other educational institution or
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are not carried out in an educational setting, these attacks are coded using this

value. Also, includes incidents involving political supporters as private citizens

and property, provided that these supporters are not part of a government-

sponsored event. Finally, this value includes police informers. Does not include

attacks causing civilian casualties in businesses such as restaurants, cafes or

movie theaters (these categories are coded as Business see above).”

Religious Figures and Institutions - “This value includes attacks on religious lead-

ers, (Imams, priests, bishops, etc.), religious institutions (mosques, churches),

religious places or objects (shrines, relics, etc.). This value also includes at-

tacks on organizations that are affiliated with religious entities that are not

NGOs, businesses or schools. Attacks on religious pilgrims are considered Pri-

vate Citizens and Property; attacks on missionaries are considered religious

figures.”

Telecommunication - “This includes attacks on facilities and infrastructure for the

transmission of information. More specifically this value includes things like

cell phone towers, telephone booths, television transmitters, radio, and mi-

crowave towers.”

Terrorists/Non-State Militias - “Terrorists or members of identified terrorist groups

within the GTD are included in this value. Membership is broadly defined and

includes informants for terrorist groups, but excludes former or surrendered

terrorists. This value also includes cases involving the targeting of militias and

guerillas.”

Tourists - “This value includes the targeting of tour buses, tourists, or ‘tours.’

Tourists are persons who travel primarily for the purposes of leisure or amuse-

ment. Government tourist offices are included in this value. The attack must
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clearly target tourists, not just an assault on a business or transportation

system used by tourists. Travel agencies are coded as business targets.

Transportation (Other than aviation) - “Attacks on public transportation systems

are included in this value. This can include efforts to assault public buses,

minibuses, trains, metro/subways, highways (if the highway itself is the target

of the attack), bridges, roads, etc. The GTD contains a number of attacks on

generic terms such as cars or vehicles. These attacks are assumed to be against

Private Citizens and Property unless shown to be against public transportation

systems. In this regard, buses are assumed to be public transportation unless

otherwise noted.”

Unknown - “The target type cannot be determined from the available information.”

Utilities - “This value pertains to facilities for the transmission or generation of

energy. For example, power lines, oil pipelines, electrical transformers, high

tension lines, gas and electric substations, are all included in this value. This

value also includes lampposts or street lights. Attacks on officers, employees

or facilities of utility companies excluding the type of faculties above are coded

as business.”

Violent Political Parties - “This value pertains to entities that are both political

parties (and thus, coded as ’government’ in this coding scheme) and terrorists.

It is operationally defined as groups that engage in electoral politics and appear

as Perpetrators in the GTD.”
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Chapter 6: Conclusions and Future Research - Where do we go from

here?

This dissertation has offered a number of improvements to Bayesian statistical

methodologies alongside a number of contributions to public policy research. There

are still, however, many other important questions future research should look at. In

particular, the tilt functions used in the semiparametric density ratio models called

upon in this thesis as well as in other research are chosen a priori by the researcher.

Future research could look into a systematic manner, perhaps via variational calcu-

lus, of determining the optimal tilt functions. There are also many other statistical

methodologies that warrant future research including improvements to other non-

MCMC based Bayesian estimation techniques, such as variational Bayesian meth-

ods, particle filtering, and generalized direct sampling [6,10,87]. Fast alternatives to

MCMC methods are of utmost importance to researchers as the need for analyzing

large data sets has grown tremendously in recent years in a number of applied fields.

Additionally, there are myriads of other questions beyond the ones looked at

here that could benefit from rigorous analysis, including questions regarding edu-

cation policy, energy policy, immigration policy, health policy, and macroeconomic

modeling. Methodologies similar to those utilized in this dissertation, as well as

many of the techniques mentioned above, could be particularly useful in looking at

these questions and others.

We emphasize, however, that the ideas presented in this dissertation are not

applicable just to public policy research. Regardless of the application, it is always



important to be able to properly model real-world phenomena. We hope that this

dissertation provides a number of useful tools for applied statisticians to use.
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