
Compressing Kinetic Data From Sensor Networks?

Sorelle A. Friedler?? and David M. Mount? ? ?

Dept. of Computer Science, University of Maryland, College Park, MD 20742, USA
sorelle@cs.umd.edu mount@cs.umd.edu

http://www.cs.umd.edu/~sorelle http://www.cs.umd.edu/~mount

Abstract. We introduce a framework for storing and processing kinetic data observed by sensor net-
works. These sensor networks generate vast quantities of data, which motivates a significant need for
data compression. We are given a set of sensors, each of which continuously monitors some region of
space. We are interested in the kinetic data generated by a finite set of objects moving through space,
as observed by these sensors. Our model relies purely on sensor observations; it allows points to move
freely and requires no advance notification of motion plans. Sensor outputs are represented as random
processes, where nearby sensors may be statistically dependent. We model the local nature of sensor
networks by assuming that two sensor outputs are statistically dependent only if the two sensors are
among the k nearest neighbors of each other. We present an algorithm for the lossless compression
of the data produced by the network. We show that, under the statistical dependence and locality
assumptions of our framework, asymptotically this compression algorithm encodes the data to within
a constant factor of the information-theoretic lower bound optimum dictated by the joint entropy of
the system. In order to justify our locality assumptions, we provide a theoretical comparison with a
variant of the kinetic data structures framework. We prove that the storage size required by an optimal
system operating under our locality assumptions is on the order of the size required by our variant.
Additionally, we provide experimental justification for our locality assumptions.

1 Introduction

There is a growing appreciation of the importance of algorithms and data structures for processing large
data sets arising from the use of sensor networks, particularly for the statistical analysis of objects in motion.
Large wireless sensor networks are used in areas such as road-traffic monitoring [29], environment surveil-
lance [22], and wildlife tracking [23,34]. With the development of sensors of lower cost and higher reliability,
the prevalence of applications and the need for efficient processing will increase.

Wireless sensor networks record vast amounts of data. For example, road-traffic camera systems [29] that
videotape congestion produce many hours of video or gigabytes of data for analysis even if the video itself
is never stored and is instead represented by its numeric content. In order to analyze trends in the data,
perhaps representing the daily rush hour or weekend change in traffic patterns, many weeks or months of
data from many cities may need to be stored. As the observation time or number of sensors increases, so does
the total data that needs to be stored in order to perform later queries, which may not be known in advance.

In this paper we consider the problem of how to compress the massive quantities of data that are streamed
from large sensor networks. Compression methods can be broadly categorized as being either lossless (the
original data is fully recoverable), or lossy (information may be loss through approximation). Because lossy
compression provides much higher compression rates, it is by far the more commonly studied approach in
sensor networks. Our ultimate interest is in scientific applications involving the monitoring of the motion
of objects in space, where the loss of any data may be harmful to the subsequent analysis. For this reason,
we focus on the less studied problem of lossless compression of sensor network data. Virtually all lossless
compression techniques that operate on a single stream (such as Huffman coding [18], arithmetic coding [27],
Lempel-Ziv [38]) rely on the statistical redundancy present in the data stream in order to achieve high com-
pression rates. In the context of sensor networks, this redundancy arises naturally due to correlations in the
? A shorter version of this work appeared in the Proceedings of the 5th International Workshop on Algorithmic Aspects

of Wireless Sensor Networks (AlgoSensors), 2009.
?? The work of Sorelle Friedler has been supported in part by the AT&T Labs Fellowship Program.

? ? ? The work of David Mount has been supported in part by the National Science Foundation under grant CCR-0635099
and the Office of Naval Research under grant N00014-08-1-1015

outputs of sensors that are spatially close to each other. As with existing methods for lossy compression [9,13],
our approach is based on aggregating correlated streams and compressing these aggregated streams.

A significant amount of research to date has focused on the efficient collection and processing of sensor net-
work data within the network itself, for example, through the minimization of power consumption or communi-
cation costs [6,7,33]. We focus on doing lossless compression on the data locally and then downloading it to tra-
ditional computer systems for analysis. Clustering the stationary sensors is a strategy that has been previously
used to improve the scalability as well as the energy and communication efficiency of the sensor network [19].
Compressing the data before transmitting additionally improves the communication efficiency of the network.

We are particularly interested in kinetic data, by which we mean data arising from the observation of
a discrete set of objects moving in time (as opposed to continuous phenomena such as temperature). We
explore how best to store and process these assembled data sets for the purposes of efficient retrieval, vi-
sualization, and statistical analysis of the information contained within them. The data sets generated by
sensor networks have a number of spatial, temporal, and statistical properties that render them interesting
for study. We assume that we do not get to choose the sensor deployment based on object motion (as done
in [26]), but instead use sensors at given locations to observe the motion of a discrete set of objects over
some domain of interest. Thus, it is to be expected that the entities observed by one sensor will also likely
be observed by nearby sensors, albeit at a slightly different time. For example, many of the vehicles driving
by one traffic camera are likely to be observed by nearby cameras, perhaps a short time later or earlier. If
we assume that the data can be modeled by a random process, it is reasonable to expect that a high degree
of statistical dependence exists between the data streams generated by nearby sensors. If so, the information
content of the assembled data will be significantly smaller than the size of the raw data. In other words, the
raw sensor streams, when considered in aggregate, will contain a great deal of redundancy. Well-designed
storage and processing systems should capitalize on this redundancy to optimize space and processing times.
In this paper we propose a statistical model of kinetic data as observed by a collection of fixed sensors. We
will present a method for the lossless compression of the resulting data sets and will show that this method
is within a constant factor of the asymptotically optimal bit rate, subject to the assumptions of our model.

Although we address the problem of compression here, we are more generally interested in the storage and
processing of large data sets arising from sensor networks [9,10,15,16,28]. This will involve the retrieval and
statistical analysis of the information contained within them. Thus, we will discuss compression within the
broader context of a framework for processing large kinetic data sets arising from a collection of fixed sensors.
We feel that this framework may provide a useful context within which to design and analyze efficient data
structures and algorithms for kinetic sensor data.

The problem of processing kinetic data has been well studied in the field of computational geometry in a
standard computational setting [3,5,17,20,30,31]. A survey of practical and theoretical aspects of modeling
motion can be found in [2]. Many of these apply in an online context and rely on a priori information about
point motion. The most successful of these frameworks is the kinetic data structures (KDS) model proposed
by Basch, Guibas, and Hershberger [5]. The basic entities in this framework are points in motion, where the
motion is expressed as piecewise algebraic flight plans. Geometric structures are maintained through a set
of boolean conditions, called certificates, and a set of associated update rules. The efficiency of algorithms
in this model is a function of the number of certificates involved and the efficiency of processing them. In
a sensor context, moving data has been considered in relation to sensor placement based on possible object
trajectories modeled by a set of 3D curves over space and time [26].

As valuable as KDS has been for developing theoretical analyses of point motion (see [14] for a survey), it
is unsuitable for many real-world contexts and for theoretical problems that do not have locally determined
properties. The requirements of algebraic point motion and advance knowledge of flight plans are either
inapplicable or infeasible in many scientific applications. Agarwal et al. [2] identify fundamental directions that
future research should pursue. Our work addresses four of these issues; unpredicted motion, motion-sensitivity,
robustness, and theoretical discrete models of motion. In our framework we will process a point set without
predicted knowledge and no matter its motion. Motion-sensitive algorithms admit complexity analyses based
on the underlying motion. Imagine a set of points following a straight line or moving continuously in a circle;
any algorithm calculating statistical information about such a point set should be more efficient than the
same algorithm operating on a set of randomly moving points. Our motion-sensitive framework will pay a
cost in efficiency based on the information content of the point motion. Robustness is a quality of statistical
estimators that allow outliers. Unlike KDS, we will ignore point identities in favor of statistical properties;

2

KDS focuses on properties in relation to individual points. In the KDS model, a rearrangement of points which
maintained a global statistical property could trigger many certificate failures despite the maintenance of the
statistical property being calculated. For example, two points which exactly switch position do not change the
diameter of the point set, but may cause multiple certificate failures. Through anonymization of the points
and discrete time sampling, our framework reduces the overhead in these instances. Finally, Agarwal et al.
note that most theoretical work relies on continuous frameworks while applied work experimentally evaluates
methods based on discrete models. Our framework uses a discrete sampling model, but is still theoretically
sound. In addition, the underlying goal which structures KDS operations is maintenance of information into
the future; we will process sensed data after the fact, e.g., for efficient retrieval. For these problem types, our
framework serves as an alternative to the KDS model.

There has also been study of algorithms that involve the distributed online processing of sensor-network
data. One example is the continuous distributed model described by Cormode et al. [7]. This model contains
a set of sensors, which each observe a stream of data describing the recent changes in local observations.
Each sensor may communicate with any other sensor or with a designated central coordinator. Efficiency is
typically expressed as a trade-off between communication complexity and accuracy. This framework has been
successfully applied to the maintenance of a number of statistics online [4, 6, 7]. Another recent example is
the competitive online tracking algorithm of Yi and Zhang [37], in which a tracker-observer pair coordinate
to monitor the motion of a moving point. Again, complexity is measured by the amount of communication
between the tracker and the observer. The idea of the tracker and observer is reminiscent of an earlier model
for incremental motion by Mount et al. [25]. Unlike these models, our framework applies in a traditional
(non-distributed) computational setting.

Here is a high-level overview of our framework, which will be described in greater detail in Section 2. We
assume we are given a fixed set of sensors, which are modeled as points in some metric space. (An approach
based on metric spaces, in contrast to standard Euclidean space, offers greater flexibility in how distances are
defined between objects. This is useful in wireless settings, where transmission distance may be a function
of non-Euclidean considerations, such as topography and the presence of buildings and other structures.)
Each sensor is associated with a region of space, which it monitors. The moving entities are modeled as
points that move over time. At regular time intervals, each sensor computes statistical information about the
points within its region, which are streamed as output. For the purposes of this paper, we assume that this
information is simply an occupancy count of the number of points that lie within the sensor’s region at the
given time instant. In other words, we follow the minimal assumptions made by Gandhi et al. [12] and do
not rely on a sensor’s ability to accurately record distance, angle, etc.

As mentioned above, our objective is to compress this data in a lossless manner by exploiting redundancy
in the sensor streams. In order to establish formal bounds on the quality of this compression, we assume (as is
common in entropy encoding) that the output of each sensor can be modeled as a stationary, ergodic random
process. We allow for statistical dependencies between the sensor streams. Shannon’s source coding theorem
implies that, in the limit, the minimum number of bits needed to encode the data is bounded from below by
the normalized joint entropy of the resulting system of random processes. There are known lossless compres-
sion algorithms, such as Lempel-Ziv [38], that achieve this lower bound asymptotically. It would be utterly
infeasible, however, to apply this observation en masse to the entire joint system of all the sensor streams.
Instead, we would like to partition the streams into small subsets, and compress each subset independently.
The problem in our context is how to bound the loss of efficiency due to the partitioning process. In order to
overcome this problem we need to impose limits on the degree of statistical dependence among the sensors.
Our approach is based on a locality assumption. Given a parameter k, we say that a sensor system is k-local
if each sensor’s output is statistically dependent on only its k-nearest sensors.

The full contributions of this paper are described in the following sections. In Section 2, we introduce a
new framework for the compression and analysis of kinetic sensor data. In Section 3, we prove that any k-local
system that resides in a space of fixed dimension can be nicely partitioned in the manner described above,
so that joint compressions involve groups of at most k + 1 sensors. We show that the final compression is
within a factor c of the information-theoretic lower bound, where c is independent of k, and depends only on
the dimension of the space. In Section 4, we justify our k-local model theoretically as compared to a variant
of the KDS model. We prove that the compressed data from our model takes space on the order of the space
used by the KDS variant. In Section 5, we give experimental justification showing that the assumptions of
the k-local model are borne out by real-world data.

3

2 Data Framework

In this section we present a formal model of the essential features of the sensor networks to which our results
will apply. Our main goal is that it realistically model the data sets arising in typical wireless sensor-networks
when observing kinetic data while also allowing for a clean theoretical analysis. We assume a fixed set of S
sensors operating over a total time period of length T . The sensors are modeled as points in some metric
space. We may think of the space as Rd for some fixed d, but our results apply in any metric space of bounded
doubling dimension [21]. We model the objects of our system as points moving continuously in this space,
and we make no assumptions a priori about the nature of this motion. Each sensor observes some region
surrounding it. In general, our framework makes no assumptions about the size, shape, or density of these
regions, but additional assumptions may be imposed later in special cases. The sensor regions need not be
disjoint, nor do they need to cover all the moving points at any given time.

Each sensor continually collects statistical information about the points lying within its region, and it
outputs this information at synchronized time steps. As mentioned above, we assume throughout that this
information is simply an occupancy count of the number of points that lie within the region. (The assump-
tion of synchronization is mostly for the sake of convenience of notation. As we shall see, our compression
algorithm operates jointly on local groups of a fixed size, and hence it is required only that the sensors of
each group behave synchronously.)

As mentioned in the introduction, our framework is based on an information-theoretic approach. Let us
begin with a few basic definitions (see, e.g., [8]). We assume that the sensor outputs can be modeled by a
stationary, ergodic random process. Since the streams are synchronized and the cardinality of the moving
point set is finite, we can think of the S sensor streams as a collection of S strings, each of length T , over a finite
alphabet. Letting lg denote the logarithm base-2, the entropy of a discrete random variable X, denoted H(X),
is defined to be −

∑
x px lg px, where the sum is over the possible values x of X, and px is the probability of x.

We can generalize entropy to random processes as follows. Given a stationary, ergodic random process X,
consider the limit of the entropy of arbitrarily long sequences of X, normalized by the sequence length. This
leads to the notion of normalized entropy, which is defined to be

H(X) = lim
T→∞

− 1
T

∑
x,|x|=T

px lg px,

where the sum is over sequences x of length T , and px denotes the probability of this sequence. Normalized
entropy considers not only the distribution of individual characters, but the tendencies for certain patterns
of characters to repeat over time.

We can also generalize the concept of entropy to collections of random variables. Given a sequence
X = 〈X1, X2, . . . , XS〉 of (possibly statistically correlated) random variables, the joint entropy is defined
to be H(X) = −

∑
x px lg px, where the sum is taken over all S-tuples x = 〈x1, x2, . . . , xS〉 of possible

values, and px is the probability of this joint outcome [8]. The generalization to normalized joint entropy is
straightforward. Normalized joint entropy further strengthens normalized entropy by considering correlations
and statistical dependencies between the various streams.

In this paper we are interested in the lossless compression of the joint sensor stream. Shannon’s source
coding theorem states that in the limit, as the length of a stream of independent, identically distributed
(i.i.d.) random variables goes to infinity, the minimum number of required bits to allow lossless compression
of each character of the stream is equal to the entropy of the stream [32]. In our case, Shannon’s theorem
implies that the optimum bit rate of a lossless encoding of the joint sensor system cannot be less than the
normalized joint entropy of the system. Thus, the normalized joint entropy is the gold standard for the
asymptotic efficiency of any compression method. Henceforth, all references to “joint entropy” and “entropy”
should be understood to mean the normalized versions of each.

As mentioned above, joint compression of all the sensor streams is not feasible. Our approach will be to
assume a limit on statistical dependencies among the observed sensor outputs based on geometric locality. It
is reasonable to expect that the outputs of nearby sensors will exhibit a higher degree of statistical dependence
with each other than more distant ones. Although statistical dependence would be expected to decrease grad-
ually with increasing distance, in order to keep our model as simple and clean as possible, we will assume that
beyond some threshold, the statistical dependence between sensors is so small that it may be treated as zero.

4

There are a number of natural ways to define such a threshold distance. One is an absolute approach, which
is given a threshold distance parameter r, and in which it is assumed that any two sensors that lie at distance
greater than r from each other have statistically independent output streams. The second is a relative approach
in which an integer k is provided, and it is assumed that two sensor output streams are statistically dependent
only if each is among the k nearest sensors of the other. In this paper we will take the latter approach. One
reason is that it adapts to the local density of sensors. Another reason arises by observing that, in the absolute
model, all the sensors might lie within distance r of each other. This means that all the sensors could be
mutually statistically dependent, which would render optimal compression intractable. On the other hand,
if we deal with this by imposing the density restriction that no sensor has more than some number, say k,
sensors within distance r, then the absolute approach reduces to a special case of the relative approach.

This restriction allows reasoning about sensor outputs in subsets. Previous restrictions of this form include
the Lovász Local Lemma [11] which also assumes dependence on at most k events. Particle simulations (often
used to simulate physical objects for animation) based on smoothed particle hydrodynamics have also used
similar locality restrictions to determine which neighboring particles impact each other. These calculations
are made over densely sampled particles and are based on a kernel function which determines the impact of
one particle on another. This frequently amounts to a cut-off distance after which we assume that the particles
are too far away to impact each other [1]. For a survey on smoothed particle hydrodynamics see [24].

Formally, let P = {p1, p2, . . . , pS} denote the sensor positions. Given some integer parameter k, we as-
sume that each sensor’s output can be statistically dependent on only its k nearest sensors. Since statistical
dependence is a symmetric relation, two sensors can exhibit dependence only if each is among the k nearest
neighbors of the other. More precisely, let NN k(i) denote the set of k closest sensors to pi (not including
sensor i itself). We say that two sensors i and j are mutually k-close if pi ∈ NN k(j) and pj ∈ NN k(i). A
system of sensors is said to be k-local if for any two sensors that are not mutually k-close, their observations
are statistically independent. (Thus, 0-locality means that the sensor observations are mutually independent.)
Let X = 〈X1, X2, . . . , XS〉 be a system of random streams associated with by S sensors, and let H(X) denote
its joint entropy. Given two random processes X and Y , define the conditional entropy of X given Y to be

H(X | Y) = −
∑

x∈X,y∈Y

p(x, y) log p(y | x).

Note that H(X | Y) ≤ H(X), and if X and Y are statistically independent, then H(X | Y) = H(X). By the
chain rule for conditional entropy [8], we have

H(X) = H(X1) +H(X2 | X1) + . . .+H(Xi | X1, . . . , Xi−1) + . . .+H(XS | X1, . . . , XS−1).

Letting
Di(k) = {Xj : 1 ≤ j < i and sensors i and j are mutually k-close}

we define the k-local entropy, denoted Hk(X), to be
∑S

i=1H(Xi | Di(k)). Note that H(X) ≤ Hk(X) and
equality holds when k = S. By definition of k-locality, H(Xi | X1, X2, . . . , Xi−1) = H(Xi | Dk(i)). By ap-
plying the chain rule for joint entropy, we have the following easy consequence, which states that, under our
locality assumption, k-local entropy is the same as the joint entropy of the entire system.

Lemma 1. Given a k-local sensor system with set of observations X, H(X) = Hk(X).

The assumption of statistical independence is rather strong, since two distant sensor streams may be
dependent simply because they exhibit a dependence with a common external event, such as the weather or
time of day. Presumably, such dependencies would be shared by all sensors, and certainly by the k nearest
neighbors. The important aspect of independence is encapsulated in the above lemma, since it indicates that,
from the perspective of joint entropy, the k nearest neighbors explain essentially all the dependence with the
rest of the system. Although we assume perfect statistical independence beyond the range of the kth nearest
neighbor, the practical impact of this assumption is that any dependencies that may exist beyond this range
have a negligible impact on the joint entropy of the system, and hence a negligible impact on the degree of
compressibility in the system.

One advantage of our characterization of mutually dependent sensor outputs is that it naturally adapts
to the distribution of sensors. It is not dependent on messy metric quantities, such as the absolute distances

5

between sensors or the degree of overlap between sensed regions. Note, however, that our model can be
applied in contexts where absolute distances are meaningful. For example, consider a setting in which each
sensor monitors a region of radius r. Given two positive parameters α and β, we assume that the number of
sensors whose centers lie within any ball of radius r is at most α, and the outputs of any two sensors can be
statistically dependent only if they are within distance βr of each other. Then, by a simple packing argument,
it follows that such a system is k-local for k = O(αβO(1)), in any space of constant doubling dimension.

3 Compression Results

Before presenting the main result of this section, we present a lemma which is combinatorially interesting
in its own right. This partitioning lemma combined with a compression algorithm allows us to compress the
motion of points as recorded by sensors to an encoding size which is c times the optimal, where c is an integral
constant to be specified in the proof of Lemma 2.

3.1 Partitioning Lemma

First, we present some definitions about properties of the static point set representing sensor locations. Let
rk(p) be the distance from some sensor at location p to its kth nearest neighbor. Recall that points are mu-
tually k-close if they are in each other’s k nearest neighbors. We say that a point set P ∈ Rd is k-clusterable
if it can be partitioned into subsets Ci1, Ci2, . . . such that |Cij | ≤ k + 1 and if p and q are mutually k-close
then p and q are in the same subset of the partition. Intuitively, this means that naturally defined clusters
in the set are separated enough so that points within the same cluster are closer to each other than they are
to points outside of the cluster. The following lemma holds for all metrics with constant doubling dimension,
where these metrics are defined to limit to a constant the number of balls that cover a ball with twice their
radius [21]. Euclidean spaces are of constant doubling dimension.

Lemma 2. In any doubling space there exists an integral constant c such that for all integral k > 0 given
any set P in the doubling space, P can be partitioned into P1, P2, . . . , Pc such that for 1 ≤ i ≤ c, Pi is
k-clusterable.

The partitioning algorithm which implements Lemma 2 is shown in Figure 1. It proceeds by iteratively
finding the unmarked point p with minimum r = rk(p), moving all points within r, henceforth called a
cluster, to the current partition, and marking all points within 3r of p. A new partition is created whenever
all remaining points have been marked. The marked points are used to create a buffer zone which separates
clusters so that all points are closer to points within their cluster than they are to any other points in the
partition. The algorithm’s inner loop creates these clusters, and the outer loop creates the c partitions.

Proof. Each partition is k-clusterable since (by the marking process) for any cluster with diameter 2r there
are no points of this partition which are not members of that cluster which are within distance 2r of a member
of the cluster. So each cluster consists of at most k + 1 points, each of whose k nearest neighbors are within
the cluster, i.e., are mutually k-close.

We will show that at most c partitions Pi are created by the partitioning algorithm of Figure 1. We refer
to each iteration of the outer while loop as a round. First note that at the end of the first round all points
are either marked or removed from P . Each point that remains after the first round was marked by some
point during the first round. Consider some point p which is marked by the first round. Let p′ be the point
that marked p in round one, and let r = rk(p′) be the radius of NN k(p′). (Note that for any p ∈ P , rk(p)
is defined based on the original point set.) The marked point p is within distance 3r of p′. Since there are k
points within distance r of p′, there are at least k points within distance 4r of p, so NN k(p) cannot have a
radius larger than 4r. Let M be the set of points that mark p in any round i. Since nearest neighbor balls
are chosen in increasing order of radius, no point q with rk(q) greater than 4r can be in M , since p would
have been chosen first. So all points in M are within distance 3 · 4r = 12r of p.

We now show that points in M are r-sparse, i.e., are separated by at least distance r. Since radii are chosen
in increasing order and r = rk(p′) has already been chosen, any point q′ ∈M must have rk(q′) > r. In addition,
since all points in NN k(q′) are removed, for all q′′ ∈M , ‖q′q′′‖ > r. Given a circle of radius R in a doubling

6

partition(point set P , k)

for all p ∈ P // Determine the k nearest neighbors and the radius
determine NN k(p) and rk(p) // of the k nearest neighbors ball based on the original

i = 1 // point set. These values do not change.
while P 6= ∅ // While unpartitioned points remain

unmarked(P) = P // unmark all remaining points.
Pi = ∅ // Create a new, empty partition.
while unmarked(P) 6= ∅ // While unmarked points remain

r = minp∈unmarked(P) rk(p) // find the point p with the minimum radius (r)
p′ = p ∈ P : r = rk(p) // nearest neighbor ball and add that point and
Pi = Pi ∪ {p ∈ P : ‖pp′‖ ≤ r} // all points within r to the new partition.
P = P \ {p ∈ P : ‖pp′‖ ≤ r} // Remove these points from P and mark
unmarked(P) = unmarked(P) \ {p ∈ unmarked(P) : ‖pp′‖ ≤ 3r}

increment i // points within 3r of p.
return {P1, P2, . . . , Pc} // Return the resulting partitions.

Fig. 1. The partitioning algorithm which implements Lemma 2.

metric, it follows from a standard packing argument that any δ-sparse set that lies entirely within a ball of ra-
dius R has cardinality O(1+(R/δ)O(1)). Taking R = 12r and δ = r, we have that |M | ≤ O(1+12O(1)) = O(1).
For points in Rd this constant is 1 + 12d. Letting c denote this quantity, we see that no point can be marked
more than c times, and hence the process terminates after at most c rounds, producing at most c partitions.

Note that a cluster centered at p′ with less than k + 1 points does not violate the k-clusterable property
since this cluster would have been created by clustering NN k(p′) together as originally identified before any
points were partitioned. A cluster without k + 1 points is formed because some of the original points in
NN k(p′) were previously added to a different partition. Since being mutual k-close is based on the entire set,
smaller clusters are still mutually k-close within that partition.

3.2 Compression Theorem

We now present the main compression algorithm and analysis. The algorithm, presented in Figure 3, com-
presses each cluster formed by the partitioning algorithm (Figure 1) separately and returns the union of these.
Each cluster is compressed by creating a new stream in which the tth character is a new character which is
the concatenation of the tth character of every stream in that cluster. This new stream is then compressed
using an entropy-based compression algorithm which achieves the optimal encoding length in the limit. For
example, the Lempel-Ziv sliding-window compression algorithm could be used [38]. We reason about the size
of the resulting stream set encoding.

First, we introduce some notation. Let X be the set of streams containing the information recorded by
the sensors of set P where |X| = |P |. Given the set of partitions {Pi} resulting from the partitioning lemma
in Section 3.1, {Xi} is the set of associated streams. Let {Cij} be the set of clusters that are created by the
partitioning algorithm, we call {Xij} the set of streams in cluster Cij and Xijh is the hth stream in cluster
Cij with cardinality hij .

Theorem 1. A set of streams which represent observations from a k-local sensor system can be compressed
to an encoded string which has length at most c times the optimal, where c is a constant depending on the
doubling dimension of the underlying point set.

Proof. First, we show that each cluster Cij is compressed to a string whose length is equal to the joint entropy
of the component streams of that cluster. Each cluster consists of streams {Xij} which are merged into one
new stream by concatenating the tth character of all the streams to create the tth character of the new stream.
This new stream, X̂ij , is then compressed using an optimal compression algorithm. By construction of the
streams X̂ij , the entropy H(X̂ij) of a single stream is equal to the joint entropy of its component streams
H(Xij1, Xij2, . . . , Xijhij

). The entropy-based encoding algorithm compresses each X̂ij to an encoded string

7

Figure accompanying the proof of Lemma 2

Fig. 2. Proof illustration for Lemma 2 for k = 6. Solid
circles are centered at point p′. Solid lines show the radii
of these circles. Dashed arcs are partial circles centered at
point p. Dashed lines show the radii of these circles.

compress(stream set X, sensor set P , k)

{P1, P2, . . . , Pc} = partition (P, k)
for i = 1 to c

for all clusters j in Pi

containing streams Xij1 through Xijhij

X̂ij =
⋃T

t=1Xij1t&Xij2t& . . .&Xijhijt

where Xijht is the tth character of Xijh

return
⋃

ij entropy compress(X̂ij)

Fig. 3. The compression algorithm which takes a set X
of streams of length T and the associated set P of sensors
which recorded them and returns a compressed encod-
ing of length c · H, where H is the joint entropy of the
streams. The partitioning algorithm shown in Figure 1 is
called and determines the constant c and represents the
concatenation of characters to create a larger character.
entropy compress is an entropy-based compression algo-
rithm which achieves the optimal encoding length in the
limit and returns an encoded stream.

the length of the stream’s entropy and that compression is optimal [36], so H(Xij1, Xij2, . . . , Xijhij
) is the

optimal encoding length for cluster Cij .
Our local dependence assumptions, explained in Section 2, say that the stream of data from a sensor is

only dependent on the streams of its k nearest neighbors. Additionally, recall that in Section 2 we defined
being mutually k-close to require that streams are only dependent if they come from sensors who are in
each other’s k nearest neighbor sets. By the partitioning lemma from Section 3.1, we know that each cluster
Cij is independent of all other clusters in partition Pi. From standard information theoretic results [8] we
know that for a collection of streams Y1, . . . , YS , H(Y1, Y2, . . . , YS) =

∑S
i=1H(Yi) if and only if the Yi are

independent. Since the elements of {{Xi1}, {Xi2}, . . . , {Xi|{Cij}|}} are independent, H(Xi) =
∑

j H({Xij}).
Combining this with the fact that H(X̂ij) is equal to the joint entropy of its component streams, we have that
H(Xi) =

∑
j H(X̂ij). H(Xi) is the optimal compression bound for partition Pi, so we achieve the optimal

compression for each partition.
Finally, we show that our compression algorithm is a c-approximation of the optimal. We say that a

compression algorithm provides a γ-approximation if the length of the compressed streams is no more than
γ times the optimal length. Recall that c partitions are generated by the partitioning algorithm from Section
3.1. Each of these partitions is encoded by a string of length H(Xi) in the limit, so the total encoding size is∑c

i=1H(Xi) ≤ c ·maxiH(Xi) ≤ c ·H(X), where H(X) is the joint entropy, which is a lower bound on the
optimal encoding size, and the last inequality follows since |X| ≥ |Xi| for all i. So our algorithm provides a
c-approximation of the optimal compression.

Note that using the same method we used to compress the members of individual clusters, we could
have combined the characters of all streams and compressed these together. This method would have optimal
compression to the joint entropy of the streams. For demonstration of the problem with this method, consider
the Lempel-Ziv sliding-window algorithm [38]. The algorithm proceeds by looking for matches between the
current time position and some previous time within a given window into the past. The length and position
of these matches are then recorded, which saves the space of encoding each character. The window moves
forward as time progresses. Larger window sizes yield better results since matches are more likely to be found.
The optimal encoded length is achieved by taking the limit as the window size tends to infinity [36]. If all
streams are compressed at once, the optimal compression rate is only achieved in the limit as the window
size becomes large and in practice compressing all streams at once requires a much larger window before the
compression benefits begin. By only compressing k streams together we limit the effect of this problem.

8

4 Efficiency with Respect to Short-Haul KDS

We believe that k-local entropy is a reasonable measure of the complexity of geometric motion. It might
seem at first that any system that is based on monitoring the motion of a large number of moving objects
by the incremental counts of a large number of sensors would produce such a huge volume of data that it
would be utterly impractical as a basis for computation. Indeed, this is why compression is such an important
ingredient in our framework. But, is it reasonable to assume that lossless compression can achieve the desired
degree of data reduction needed to make this scheme competitive with purely prescriptive methods such as
KDS? In this section, we consider a simple comparison, which suggests that lossless compression can achieve
nearly the same bit rates as KDS would need to describe the motion of moving objects.

This may seem like comparing “apples and oranges,” since KDS assumes precise knowledge of the future
motion of objects through the use of flight plans. In contrast, our framework has no precise knowledge of
individual point motions (only the occupancy counts of sensor regions) and must have the flexibility to cope
with whatever motion is presented to it. Our analysis will exploit the fact that, if the motion of each point
can be prescribed, then the resulting system must have relatively low entropy. To make the comparison fair,
we will need to impose some constraints on the nature of the point motion and the sensor layout. First, to
model limited statistical dependence we assume that points change their motion plans after traveling some
local distance threshold `. Second, we assume that sensor regions are modeled as disks of constant radius,
and (again to limit statistical dependence) not too many disks overlap the same region of space. These
assumptions are not part of our framework. They are just useful for this comparison.

Here we will assume that flight plans are linear and that motion is in the plane, but generalizations are
not difficult. Let Q denote a collection of n moving objects over some long time period 0 ≤ t ≤ T . We assume
that the location of the ith object is broken into some number of linear segments, each represented by a
sequence of tuples (ui,j ,vi,j , ti,j) ∈ (Z2,Z2,Z+), which indicates that in the time interval t ∈ (ti,j−1, ti,j], the
ith object is located at the point ui,j + t ·vi,j . (Let ti,0 = 0.) We assume that all these quantities are integers
and that the coordinates of ui,j , vi,j are each representable with at most b bits. Let ∆i,j = ti,j− ti,j−1 denote
the length of the j time interval for the ith point.

In most real motion systems objects change velocities periodically. To model this, we assume we are given
a locality parameter ` for the system, and we assume that the maximum length of any segment (that is,
maxi,j ∆i,j · ‖vi,j‖) is at most `. Let m be the minimum number of segments that need to be encoded for
any single object. Assuming a fix-length encoding of the numeric values, each segment requires at least 4b
bits to encode, which implies that the number of bits needed to encode the entire system of n objects for a
single time step is at least

Bkds(n, `) ≥
4n ·m · b

T
.

We call this the short-haul KDS bit rate for this system.
In order to model such a scenario within our framework, let P denote a collection of S sensors in the

plane. Let us assume that each sensor region is a disk of radius λ. We may assume that the flight plans
have been drawn according to some stable random process, so that the sensor output streams satisfy the
assumptions of stationarity and ergodicity. We will need to add the reasonable assumption that the sensors
are not too densely clustered (since our notion of locality is based on k-nearest neighbors and not on an
arbitrary distance threshold.) More formally, we assume that, for some constant γ ≥ 1, any disk of radius
r > 0 intersects at most γ dr/λe2 sensor regions. Let X = (X1, X2, . . . , XS) denote the resulting collection
of sensor output streams, and let Hk(n, `) def= Hk(X) denote the normalized k-local entropy of the resulting
system. Our main result shows that the k-local entropy is within a constant factor of the short-haul KDS bit
rate, and thus is a reasonably efficient measure of motion complexity even when compared to an approach
based on prescribing the motions.

Theorem 2. Consider a short-haul KDS and the sensor-based systems defined above. Then for all sufficiently
large k

Hk(n, `) ≤
(

4 `
λ

√
γ

k
+ 1
)
Bkds(n, `).

Before giving the proof, observe that this implies that if the locality parameter k grows proportionally
to (`/λ)2, then we can encode the observed continuous motion as efficiently as its raw representation. That

9

is, k should be proportional to the square of the number of sensors needed to cover each segment of linear
motion. Note that this is independent of the number of sensors and the number of moving objects. It is also
important to note that this is independent of the sensor sampling rate. Doubling the sampling frequency will
double the size of the raw data set, but it does not increase the information content, and hence does not
increase the system entropy.

Corollary 1. By selecting k = Ω((`/λ)2), we have Hk(n, `) = O(Bkds(n, `)).

Proof. Consider an arbitrary moving object j of the system, and let Xi,j denote the 0–1 observation counts
for sensor i considering just this one object. Let X(j) = (X1,j , X2,j , . . . , XS,j) denote the resulting single-
object sensor system. Clearly, Hk(X) ≤

∑n
j=1Hk(X(j)), since the latter is an upper bound on the joint

k-local entropy of the entire system, and the sum of observations cannot have greater entropy than the joint
system since the sum generally contains less information than the individual observations.

Let mj be the number of segments representing the motion of object j. Each segment is of length ≤ `. Con-
sider the per-object KDS bit-rate for object j, denoted Bkds(j). Note that KDS considers the motion of each
object individually, so Bkds =

∑n
j=1Bkds(j). KDS requires 4b bits per segment, so Bkds(j) ≥ 4·b·mj

T . Let `′ =
(λ/4)

√
k/γ. Observe that `′ > 0. Subdivide each of the mj segments into at most b`/`′c subsegments of length

`′ and at most one of length less than `′ . Then there are a total of at mostmj(`/`′+1) subsegments of length `′.
We claim that the joint entropy of the sensors whose regions intersect each subsegment is at most 4b. To

see this, observe that there are 24b possible linear paths upon which the object may be moving, and each
choice completely determines the output of all these sensors (in this single-object system). The entropy is
maximized when all paths have equal probability, which implies that the joint entropy is log2 24b = 4b. Recall
that at most γdr/λe2 sensor regions intersect any disk of radius r. Let r = `′ be the radius of a disk that
covers a subsegment. Then at most γd(1/4)

√
k/γe2 sensor regions can intersect some subsegment. We assert

that all sensors intersecting this subsegment are mutually k-close. To see this, consider some sensors s1 and
s2, with sensing region centers c1 and c2 respectively, that intersect such a subsegment. Observe that, by the
triangle inequality, ||c1c2|| ≤ 2λ+ `′. Recall that `′ = (λ/4)

√
k/γ. Choosing k ≥ 16γ, this means that λ ≤ `′,

so 2λ + `′ ≤ 3`′. Thus, for each sensor s1 whose region overlaps this subsegment, the centers of the other
overlapping sensor regions lie within a disk of radius 3`′ centered at c1. In order to establish our assertion, it
suffices to show that the number of sensor centers lying within such a disk is at most k. Again recall that at
most γdr/λe2 sensor regions intersect any disk of radius r, so at most γd(3/4)

√
k/γe2 sensor regions intersect

the disk of radius 3`′. Under our assumption that k ≥ 16γ, it is easy to verify that γd(3/4)
√
k/γe2 ≤ k, as

desired. Since the overlapping sensors are all mutually k-close, their k-local entropy is equal to their joint
entropy, and so the the k-local entropy is also at most 4b. Thus, to establish an upper bound on Hk(X(j)),
it suffices to multiply the total number of subsegments by 4b and normalize by dividing by T . So we have

Hk(X(j)) ≤
(
`

`′
+ 1
)

4bmj

T
≤
(
`

`′
+ 1
)
Bkds(j) =

(
4`
λ

√
γ

k
+ 1
)
Bkds(j).

Considering the normalized k-local entropy of the entire system, we have

Hk(X) ≤
n∑

j=1

(
4`
λ

√
γ

k
+ 1
)
Bkds(j) =

(
4`
λ

√
γ

k
+ 1
)
Bkds,

which completes the proof.

5 Locality Results

In order to justify our claim that sensor outputs exhibit higher statistical dependence on their nearest
neighbors, we analyze experimental data recorded by sensors operating under assumptions similar to our
framework. The data we analyze was collected at the Mitsubishi Electric Research Laboratory [35]. It con-
sists of sensor activation times for over 200 sensors in a network covering the hallways of the building. Each
sensor records times of nearby motion in coordinated universal time in milliseconds. For our analysis, we
group activations into time steps consisting of the count of all activations for a single sensor over 0.1 second.

10

Map of the sensor placements

Fig. 4. Highlighted individual sensor regions are those se-
lected for joint entropy analysis. The highlighted hallway
shows the eight sensors that were used for the compres-
sion analysis. Unconnected regions are lobbies or confer-
ence rooms, which were not completely covered by sensor
ranges.

Joint entropy values

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

374

391

319

270

Fig. 5. Plotted joint entropy values for values of k. These
are shown for k = 1 to k = 5 at increments of 1 and k = 10
to k = 50 at increments of 10.

These serve as the sensor counts over which we find the normalized joint entropy of data for sensor pairs,
and we consider these counts only in terms of the presence or absence of motion during a given time step.
We consider one minute of this data, or 600 data points.

From the definitions given in Section 2, it follows that the normalized joint entropy of two sequences
generated by a common process is defined to be

H(X,Y) def= lim
T→∞

− 1
T

∑
(x,y),|x|=|y|=T

p(x,y) log2(p(x,y)),

where p(x, y) is the probability that two events x and y both occur. For our experiment, we consider the
value T = 3. Probabilities are determined based on the observed outputs of the two sensors whose pairwise
joint entropy is being calculated over the sensor streams containing 600 activation status values. The results
shown in Figure 5 plot the combinatorial neighbor distances for four sensors against the normalized joint
entropy values found. These neighbor distances are calculated based on the sensor locations and do not take
walls into account, so some seemingly close sensors turn out not to be statistically dependent on each other.
While each sensor’s plot starts at a different initial value, there are few low entropy values (relative to the
start value) after k = 10, showing that as sensors become farther apart they are less likely to be statistically
dependent on each other.

In order to justify our claim on the value of compressing sensor outputs, and further, jointly compress-
ing neighboring sensor outputs, we consider eight sensor outputs from a single hallway (see Figure 5). The
activation status was considered for these sensors for 70,000 intervals, each of length 0.1 of a second (or
approximately 2 hours). The raw data used 286.7 MB. These eight streams compressed separately with gzip
(which uses the sliding-window Lempel-Ziv algorithm) used a total of 15.5 MB or 5.4% of the original space.
Compressing the eight streams merged together character by character (as described in the compression
algorithm in Figure 3), used 7.1 MB, or an additional 45.7% of the separately compressed space.

11

6 Conclusions

We introduced a sensor-based framework for kinetic data which can handle unrestricted point motion and only
relies on past information. We analyzed our framework’s encoding size and gave a c-approximation algorithm
for compressing point motion as recorded by our framework for a constant c. Open questions include solving
global statistical questions on kinetic data using this framework, e.g., answering clustering questions, finding
the centerpoint, or finding the point set diameter. In order to do this, it would first be necessary to allow
retrieval, in the form of range queries, over the compressed data. Ideally, this retrieval would operate without
decompressing the data. In addition, the algorithms given on this framework were stated assuming a central
processing node with global knowledge. It would be interesting to modify these algorithms to operate in a
more distributed manner.

7 Acknowledgements

The authors thank anonymous reviewers for their helpful and detailed comments.

References

1. B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. Adaptively sampled particle fluids. In ACM SIGGRAPH, 2007.
2. P. K. Agarwal, L. J. Guibas, H. Edelsbrunner, J. Erickson, M. Isard, S. Har-Peled, J. Hershberger, C. Jensen,

L. Kavraki, P. Koehl, M. Lin, D. Manocha, D. Metaxas, B. Mirtich, D. M. Mount, S. Muthukrishnan, D. Pai,
E. Sacks, J. Snoeyink, S. Suri, and O. Wolefson. Algorithmic issues in modeling motion. ACM Computing Surveys,
34:550–572, December 2002.

3. M. J. Atallah. Some dynamic computational geometry poblems. In Comput. Math. Appl, volume 11(12), pages
1171–1181, 1985.

4. B. Babcock and C. Olston. Distributed top-k monitoring. In SIGMOD, pages 28–39, 2003.
5. J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile data. In SODA, 1997.
6. G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed functional monitoring. In SODA, pages

1076–1085, 2008.
7. G. Cormode, S. Muthukrishnan, and W. Zhuang. Conquering the divide: Continuous clustering of distributed

data streams. In IEEE 23rd International Conference on Data Engineering, pages 1036–1045, 2007.
8. T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-IEEE, second edition, 2006.
9. A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Processing approximate aggregate queries in wireless sensor

networks. Inf. Syst., 31(8):770–792, 2006.
10. A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Dissemination of compressed historical information in sensor

networks. The VLDB Journal, 16(4):439–461, 2007.
11. P. Erdös and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. In

A. Hajnal, L. Lovász, and V. Sos, editors, Infinite and Finite Sets, volume 10, pages 609–627, 1975.
12. S. Gandhi, R. Kumar, and S. Suri. Target counting under minimal sensing: Complexity and approximations.

Workshop on Algorithmic Aspects of Wireless Sensor Networks (AlgoSensors), pages 30–42, 2008.
13. S. Gandhi, S. Nath, S. Suri, and J. Liu. Gamps: Compressing multi sensor data by grouping and amplitude

scaling. In ACM SIGMOD, 2009.
14. L. Guibas. Kinetic data structures. In D. Mehta and S. Sahni, editors, Handbook of Data Structures and Appli-

cations, pages 23–1–23–18. Chapman and Hall/CRC, 2004.
15. L. J. Guibas. Sensing, tracking and reasoning with relations. IEEE Signal Processing Mag., 19(2), Mar 2002.
16. A. Guitton, N. Trigoni, and S. Helmer. Fault-tolerant compression algorithms for sensor networks with unreliable

links. Technical Report BBKCS-08-01, Birkbeck, University of London, 2008.
17. P. Gupta, R. Janardan, and M. Smid. Fast algorithms for collision and proximity problems involving moving

geometric objects. In Comput. Geom. Theory Appl, volume 6, pages 371–391, 1996.
18. D. A. Huffman. A method for the construction of minimum-redundancy codes. Proc. of the IRE, 40, Sept. 1952.
19. C. Johnen and L. H. Nguyen. Self-stabilizing weight-based clustering algorithm for ad hoc sensor networks.

Workshop on Algorithmic Aspects of Wireless Sensor Networks (AlgoSensors), pages 83–94, 2006.
20. S. Kahan. A model for data in motion. In STOC ’91: Proc. of the 23rd ACM Symp. on Theory of Computing,

pages 265–277, 1991.
21. R. Krauthgamer and J. R. Lee. Navigating nets: Simple algorithms for proximity search. In SODA, 2004.
22. A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless sensor networks for habitat

monitoring. In ACM international workshop on wireless sensor networks and applications, pages 88–97, 2002.

12

23. MIT Media Lab. The owl project. http://owlproject.media.mit.edu/.
24. J. J. Monaghan. Smoothed particle hydrodynamics. In Reports on Progress in Physics, volume 68, pages 1703–

1759, 2005.
25. D. M. Mount, N. S. Netanyahu, C. Piatko, R. Silverman, and A. Y. Wu. A computational framework for incre-

mental motion. In Proc. 20th Annu. ACM Sympos. Comput. Geom., pages 200–209, 2004.
26. S. Nikoletseas and P. G. Spirakis. Efficient sensor network design for continuous monitoring of moving objects.

Theoretical Computer Science, 402(1):56–66, 2008.
27. J. Rissanen. Generalized Kraft inequality and arithmetic coding. IBM Jour. of Research and Dev., 20, 1976.
28. C. M. Sadler and M. Martonosi. Data compression algorithms for energy-constrained devices in delay tolerant

networks. In SENSYS, November 2006.
29. N. Saunier and T. Sayed. Automated analysis of road safety with video data. In Transportation Research Record,

pages 57–64, 2007.
30. E. Schomer and C. Theil. Efficient collision detection for moving polyhedra. In Proc. 11th Annu. ACM Sympos.

Comput. Geom., pages 51–60, 1995.
31. E. Schomer and C. Theil. Subquadratic algorithms for the general collision detection problem. In Abstracts 12th

European Workshop Comput. Geom, pages 95–101, 1996.
32. C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:379–423,

623–656, July, October 1948.
33. E. Soroush, K. Wu, and J. Pei. Fast and quality-guaranteed data streaming in resource-constrained sensor

networks. In ACM Symp. on Mobile ad hoc networking and computing, pages 391–400, 2008.
34. B. J. M. Stutchbury, S. A. Tarof, T. Done, E. Gow, P. M. Kramer, J. Tautin, J. W. Fox, and V. Afanasyev.

Tracking long-distance songbird migration by using geolocators. Science, page 896, February 2009.
35. C. R. Wren, Y. A. Ivanov, D. Leigh, and J. Westbues. The MERL motion detector dataset: 2007 workshop on

massive datasets. Technical Report TR2007-069, Mitsubishi Electric Research Laboratories, Cambridge, MA,
USA, August 2007.

36. A. D. Wyner and J. Ziv. The sliding-window lempel-ziv algorithm is asymptotically optimal. In Proceedings of
the IEEE, pages 872–877, Jun 1994.

37. K. Yi and Q. Zhang. Multi-dimensional online tracking. In SODA, 2009.
38. J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions on Information

Theory, IT-23(3), May 1977.

13

