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In the digital era, the abundance of text content in multiple languages has created

a need to develop search systems to meet the diverse information needs of users. Cross-

Language Information Retrieval (CLIR) plays an essential role in overcoming language

barriers, allowing users to retrieve content in a language that differs from their query

language. However, a challenge in designing retrieval systems lies in balancing their ef-

fectiveness, which reflects the quality of the ranked outputs, with their efficiency, which

encompasses document processing latency at indexing time (indexing latency) and content

retrieval latency at query time (query latency). This dissertation focuses on designing neu-

ral CLIR systems that offer a Pareto-optimal balance between the competing objectives of

effectiveness and efficiency.

While neural ranking models that rely on query-document term interactions, such

as cross-encoder models, are highly effective, they are computationally prohibitive for pro-



cessing large document collections in response to every query. One solution is to build a

cascaded pipeline of multiple ranking stages, where a first-stage retrieval system generates

a set of documents, which is then reranked by the cross-encoder. Ensuring that the first-

stage retrieval system produces an accurate and rapid triage of large document collections

is crucial for the success of the cascaded pipeline. This dissertation introduces BLADE, a

first-stage system that strikes a better balance between retrieval effectiveness and index-

ing/query latency on the Pareto frontier by leveraging traditional inverted indexes. Once a

smaller set of documents is generated, less efficient techniques can be applied to the output

from the first stage. In addition, this dissertation introduces ColBERT-X, the best-known

second-stage technique in terms of the balance between retrieval effectiveness and indexing

latency on the Pareto frontier. To further tackle the efficiency challenges of cross-encoders,

this dissertation introduces CREPE, an approach that optimizes the tradeoff between re-

trieval effectiveness and query latency.

While traditional CLIR methods rely on Machine Translation (MT) to address vo-

cabulary mismatches between queries and documents, neural techniques match terms in

a shared vector space, serving as a complementary source. Fusion techniques help lever-

age the synergies between these complementary methods by creating ensembles, and the

design space of CLIR allows for multiple such ensembles. This dissertation highlights the

complementary nature of BLADE and ColBERT-X with traditional CLIR approaches and

demonstrates further effectiveness gains by ensembling them without adversely affecting

the indexing-time efficiency. These results pave the way for the development of scalable

CLIR systems with a better tradeoff between effectiveness and indexing speed.
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Chapter 1: Introduction

Search plays a crucial role in our daily lives as we constantly strive to seek informa-

tion to meet our needs. The availability of digital content in numerous languages accessible

through different electronic devices has made this process easier. Building search systems

that can effectively retrieve such relevant pieces of information in an efficient manner has

been a long-standing goal of the Information Retrieval (IR) community. While much em-

phasis has been placed on monolingual retrieval, finding content in the same language as

the query, with English being a particularly dominant language, a significant portion of the

world’s population is bilingual. Approximately 43% of people are fluent in two languages,

thus highlighting the importance of supporting search systems that can bridge language

barriers and provide relevant information in any language.1 The general problem of finding

content in multiple languages for a search query expressed in one language is called Multi-

lingual Information Retrieval (MLIR). However, this dissertation focuses on a specific case

of MLIR, known as Cross-Language Information Retrieval (CLIR), where the goal is to

find content expressed in one language (e.g., French) using a query expressed in a different

language (e.g., English).

There are currently 7,168 languages spoken worldwide [52], but only a fraction of
1http://ilanguages.org/bilingual.php

1
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Figure 1.1: Percentage of the top 10M visited web articles in different languages as
of September 2021. The languages are sorted in decreasing order based on the to-
tal number of speakers of both the first language (L1) and the second language (L2).
Sources: https://w3techs.com/technologies/overview/content_language, https://
en.wikipedia.org/wiki/List_of_languages_by_total_number_of_speakers

these languages are represented on the web or have well-documented resources, leading to

a digital language divide.2 Factors such as the demographic and socio-economic charac-

teristics of the regional population contribute to this divide [67]. As shown in Figure 1.1,

English, the most widely spoken language, has the majority of web content (~63%), while

Mandarin Chinese and Hindi, the second and third most widely spoken languages, respec-

tively, together account for less than 2% of the web content. Building human language

technologies, such as Natural Language Processing (NLP) and IR systems, which serve

languages other than English, has numerous benefits. Ruder [158] emphasizes the signifi-

cance of building NLP systems that serve languages other than English by presenting six

perspectives ranging from societal to cognitive. Additionally, Bender and Friedman [17]
2http://labs.theguardian.com/digital-language-divide/

2
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highlight the need for creating data statements to mitigate bias and enable fair scientific

progress. This has led to the rise of the #BenderRule -“always state the language you’re

working on” [16]. Although these recommendations were initially made for NLP systems,

they can be applied more broadly to all technologies that involve human language, including

NLP, IR, and Automatic Speech Recognition.

Building search systems that can cross language barriers is crucial in reducing the

language divide, and CLIR systems provide a means to achieve this goal. Relevant infor-

mation can exist in different modalities, including text, speech, or even images, but in this

dissertation, we will focus on text retrieval systems. The use cases of CLIR systems [62] can

be broadly divided into two categories: (1) applications where the user does not speak the

language of the documents, and (2) applications where the user can comprehend the doc-

ument but wants to use a different language for their query. Here we describe application

scenarios in each category where the CLIR systems can be useful.

• Search in many languages suffers from information asymmetry where much of the

information is present in a limited number of languages, as shown in Figure 1.1 and

from information scarcity due to lack of available content as shown in Figure 1.2

where the number of returned items for an English query are far more than for a

query in Bengali. In such cases, CLIR can provide access to information that would

otherwise be unavailable. An example of this is Cross-Lingual Question Answer-

ing (CLQA) [43, 65, 111, 157] where the system uses the information from relevant

documents retrieved by a CLIR system to provide a direct answer to a question.

One specific example of this, the Cross-lingual Open-Retrieval Question Answering

3



(a) English query “museum” (b) Bengali query ``জাদুঘর'’

Figure 1.2: Google Maps search results for the query museum expressed in English and
Bengali.

(XOR-QA) system [8], supports search for information in high-resource language

collection (e.g., English Wikipedia articles) using queries expressed by users in lan-

guage with limited resources. Another related example is Cross-Lingual Knowledge

Grounded Conversation (CKGC) [174], where the system uses knowledge sources in

high-resource languages to help conversational agents generate better responses in

other languages that lack resources.

• CLIR systems offer a valuable solution for users who are proficient in multiple lan-

guages but prefer or feel more confident using a specific language to express their

information needs, particularly in regions with multiple commonly used languages

or countries with more than one official language such as Canada (English/French),

Belgium (Dutch/French/German), and Spain (Spanish/Catalan/Basque). Moreover,

with 24 official languages in the European Union and 23 official languages in India,

the implementation of CLIR systems can bring significant benefits to these regions.

One of the central challenges in CLIR is the vocabulary mismatch between queries

and documents stemming from differences in the language used to express them. To bridge
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this vocabulary gap, multiple methods can be utilized to create representations of queries

and documents that facilitate cross-language matching. For instance, traditional CLIR

systems rely on machine translation (MT) systems’ 1-best output to match query and

document terms. Matching can be done in the query language using original queries and

translated documents produced by MT or in the document language using MT queries and

original documents. Probabilistic Structured Queries (PSQ) offer an alternative approach

that involves mapping terms from one language to another using term-to-term probabilities

from translation tables. These probabilities are estimated from parallel corpora consisting

of sentences that are equivalent in meaning, using traditional statistical approaches [51, 70,

137]. By using translation tables, multiple alternatives for a given term can be considered

during matching, which can be thought of as lexical expansion, with probabilities serving

as weights. This form of matching with multiple alternatives provides an advantage over

the 1-best MT output, which can be prone to mismatches due to translation errors.

Another method for bridging the vocabulary gap is to perform matching in a shared

embedding space where queries and documents are represented as fixed-length vectors or

embeddings. Recent improvements in language modeling techniques have resulted in the

development of pretrained language models (PLMs) that can produce contextual term

embeddings, which can change based on the surrounding terms or the context. These PLMs

are initialized with several layers of transformers [180] and are pretrained on a large corpus

of text in a self-supervised manner. To create a model tailored for the IR task, the most

common approach is to fine-tune the off-the-shelf PLMs on large-scale retrieval collections,

adjusting the PLM’s parameters to learn the downstream relevance task. Figure 1.3 shows

the different kinds of neural IR models, of which there are two main types:
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Query Document

(a) Single-Representation Bi-Encoder

MaxSim MaxSim MaxSim
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(b) Multi-Representation Bi-Encoder

Query Document

FNN

Score

(c) Pointwise Cross-Encoder

Query Document1 Document2

FNN

Score

(d) Pairwise Cross-Encoder

Figure 1.3: Neural IR models with varying degrees of query-document matching using
Pretrained Language Model encoder denoted as . The expressive power of the models
increases from (a) to (d), which leads to a corresponding decrease in model efficiency, with
each subsequent model scoring fewer documents for a fixed time unit. This dissertation
focuses on Neural CLIR architectures based on Models (a), (b), and (c) while leaving the
exploration of Model (d) to future work.
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1. Bi-Encoder models separate the computation of query and document contextual term

embeddings and allow for matching the representation using custom similarity func-

tions. This offers two advantages. Firstly, matching can be carried out entirely in the

embedding space, which can alleviate the vocabulary mismatch problem of keyword-

based matching models. Secondly, document representations can be precomputed

offline and stored in indexes specializing in nearest neighbor retrieval techniques for

dense embeddings, such as FAISS [83], or in inverted indexes for sparse embeddings.

Existing bi-encoder models can be classified into two categories. The first category

is single-representation models, as depicted in Figure 1.3a. These models generate

an aggregated vector for queries and documents, which reduces storage requirements.

However, this approach sacrifices representation fidelity since it compresses informa-

tion to a single vector. The second category is multi-representation models, as shown

in Figure 1.3b. These models utilize additional signals from matching individual

query and document term embeddings but require indexing multiple vectors, which

comes at the cost of increased storage requirements.

2. Cross-Encoder models compute the full interaction between the query and document

contextual term embeddings using multiple transformer layers. While this approach

allows the model to exploit joint context in queries and documents, it comes at an

additional computational cost due to the quadratic time complexity of self-attention

in the transformer layer. Hence, these models are often employed in a retrieve-and-

rerank pipeline, where a first-stage system, such as BM25 [155], retrieves a limited

number of documents, which are subsequently reranked with a cross-encoder model.
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The type of cross-encoder can be determined based on the number of documents

fed to the model at query time. The pointwise cross-encoder model, as depicted in

Figure 1.3c, generates a score for a single document given a query. In contrast, the

pairwise cross-encoder model, as shown in Figure 1.3d, generates a score for a pair

of documents. For CLIR, we investigate the application of pointwise cross-encoders

using different first-stage CLIR systems.

The focus of this dissertation is to design neural CLIR systems that can handle

cross-language texts using multilingual pretrained language models (MPLMs), such as

mBERT [48] and XLM-R [40]. However, these MPLMs are limited by a sequence length

constraint, allowing them to handle only a fixed number of terms (e.g., 512). This presents a

challenge when processing longer documents, especially for cross-encoders that utilize con-

catenated sequences of queries and documents. To address this issue, common techniques

include truncating documents to the first passage of a fixed length (≤ 512 or creating a set

of overlapping passages/sentences with a fixed length and a stride. However, this approach

can be viewed as a static choice between one or all passages for scoring, which represents

two extremes of a broad spectrum, without leveraging the text signals in the underlying

passages. As a result, this opens up an avenue to explore better passage selection strategies

that can reduce the number of query-passage pairs for scoring with a cross-encoder and

improve query latency.

The combination of cross-language input sequences and MPLMs creates a further

challenge of learning a shared cross-lingual embedding space that can map query and doc-

ument terms into a conformal representation. MPLMs are trained on monolingual texts in
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multiple languages and, therefore, are not ideal for matching cross-language texts. Addi-

tionally, the lack of high-quality datasets in the CLIR setting poses a challenge to learning

meaningful task-specific representations of queries and documents in the context of CLIR.

In contrast, the availability of large-scale retrieval collections, such as MS MARCO, has

facilitated the development of neural IR models for retrieving English content in the mono-

lingual retrieval setting. With improvements in translation technologies, there is potential

for building neural CLIR models using large-scale training collections for CLIR by trans-

lating the monolingual collections.

The primary objective of this dissertation is to design neural CLIR systems that strike

an optimal balance between effectiveness and efficiency. These broad terms encompass var-

ious aspects related to the retrieval process. Specifically, effectiveness refers to the quality

of the retrieval output produced by a CLIR system, which is assessed using established

evaluation metrics. Efficiency is considered from two phases of the retrieval process: the

indexing phase and the querying phase. Efficiency at the indexing phase is defined as

the overall indexing latency, which involves tasks such as running machine translation (if

necessary), generating bi-encoder representations, and storing them in FAISS or inverted

indexes. Efficiency at the querying phase refers to the overall retrieval latency, the time

taken to produce the retrieval outputs. Each neural CLIR system creates a trade-off space

where indexing latency, query latency, and retrieval effectiveness are in tension. Achieving

an optimal balance between these factors is crucial for building scalable CLIR systems,

which can consist of one or more systems that can be deployed in real-world applications.

To achieve this goal, we focus on Pareto-optimal CLIR systems that offer the best retrieval

effectiveness for a given indexing latency or query latency. By exploring the Pareto frontier,
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we can identify systems that provide the most favorable trade-offs between effectiveness

and efficiency. This approach can assist search practitioners in selecting the best system

for their specific application requirements.

1.1 Research Questions

In this dissertation, we focus on these broad research questions:

RQ1. Can we improve the query latency of a CLIR cross-encoder without degrading the

retrieval effectiveness by better passage selection strategies?

RQ2. Can CLIR bi-encoders trained on translated retrieval collections improve retrieval

effectiveness over traditional CLIR systems?

RQ3. Which of the neural CLIR systems lie on the Pareto frontier of retrieval effectiveness

and indexing latency?

RQ4. Which of the neural CLIR systems lie on the Pareto frontier of retrieval effectiveness

and query latency?

1.2 Contributions

The primary objective of this dissertation is to build neural CLIR systems that lie

on the Pareto frontier of retrieval effectiveness and indexing or query latency. Our major

contributions can be divided into three categories: System contributions (S), Data contri-

butions (D), and Code contributions (C).
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1.2.1 System Contributions

S1. We build a passage selection strategy, CREPE, which uses a first-stage CLIR system

to find a Pareto-optimal balance between retrieval effectiveness and query latency of

cross-encoders.

S2. We build a training dataset using the CREPE strategy for fine-tuning CLIR cross-

encoders and demonstrate gains in retrieval effectiveness across different CLIR retrieve-

and-rerank pipelines.

S3. We build a multi-representation bi-encoder, ColBERT-X, initialized with an XLM-R

encoder and trained on machine-translated retrieval collections.

S4. We build a pseudo-relevance feedback model relying on term expansion within the

embedding space of ColBERT-X to boost retrieval effectiveness further.

S5. We build two single-representation bi-encoders as first-stage systems, SPLADE-X

and BLADE, initialized with a multilingual BERT and a pruned bilingual BERT,

respectively, balancing retrieval effectiveness with query latency.

S6. We show a CLIR ensemble pipeline of BLADE, ColBERT-X, and traditional CLIR

approaches achieve comparable retrieval effectiveness with lower indexing latencies

compared to CLIR systems applied on translated documents.
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1.2.2 Dataset Contributions

D1. We build new bilingual passage-aligned corpora from existing sentence-aligned par-

allel texts to provide additional context for modeling.

D2. We create PSQ translation tables in multiple language pairs and release them here:

https://github.com/hltcoe/PSQ/aligners/ttables/.

1.2.3 Code Contributions

C1. We release the code of SPLADE-X and BLADE here: https://github.com/hltcoe/

BLADE

C2. We release the code of ColBERT-X here: https://github.com/hltcoe/ColBERT-X

C3. We release the reference implementation of PSQ here: https://github.com/hltcoe/

PSQ.

1.3 Outline

Chapter 2 provides the background for this dissertation and the related work. The

remaining chapters are structured as follows. Chapter 3 focuses on building retrieve-and-

rerank pipelines that use different first-stage CLIR systems to select the best passage(s) for

scoring with a pointwise CLIR cross-encoder. Chapter 4 introduces ColBERT-X, a multi-

representation bi-encoder model trained on a CLIR dataset created from translations of

the MS MARCO retrieval collections. Chapter 5 presents two sparse bi-encoder models,

SPLADE-X and BLADE, which leverage inverted indexes to balance retrieval effectiveness
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with query latency. In Chapter 6, we explore different CLIR systems, including model

ensembles, to find a Pareto-optimal balance between retrieval effectiveness and indexing

latency. Finally, Chapter 7 concludes the dissertation by discussing the limitations of our

work, future research directions, and the practical implications of our findings.
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Chapter 2: Background

The primary goal of an Information Retrieval system is to return a ranked list of

“documents” that satisfy the information need of an end-user expressed in the form of a

“query”. In the case of CLIR, the documents and the queries differ in the language in which

they are expressed. First, we mention the evaluation measures commonly used to evaluate

retrieval systems in Section 2.1. Section 2.2 provides an overview of the research history

in CLIR. We then present core technologies that are used in CLIR systems, which include

translation techniques (Section 2.3.1) and neural IR (Section 2.4). Finally, in Section 2.6,

we present the Pareto-optimality framework that will be used throughout the dissertation

to analyze the effectiveness-efficiency tradeoffs.

2.1 Evaluation

One of the main goals while building IR systems is to evaluate how well the system

is performing on a given test collection. A test collection typically consists of a set of doc-

uments that could potentially contain the information sought by the user, a set of queries

that represent the information needs expressed by the users, and a set of relevance judg-

ments that indicate how relevant a document is with respect to a specific query. Relevance

judgments are usually created by human annotators who evaluate documents and assign
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labels in response to a query. These labels can be binary, indicating whether the docu-

ment is relevant or not for the given query or graded, using a preference scale such as not

relevant, somewhat relevant, or very relevant. Depending on the intended goal, different

aspects of an IR system could be evaluated.

One aspect is to measure the quality of the ranked list of documents for a given

query in satisfying the user’s information needs. This aspect is also referred to as the

effectiveness of the IR system. Based on the type of relevance judgments, there exist several

measures that are commonly employed to evaluate the model’s effectiveness. However,

in this dissertation, we mostly use two measures for effectiveness, Recall (R) and Mean

Average Precision (MAP). Recall computes the proportion of relevant documents that are

retrieved. In other words, Recall measures how many relevant documents are retrieved.

However, Precision computes the proportion of retrieved documents that are relevant. In

short, Precision measures how many retrieved documents are relevant. Average Precision

(AP) refers to the average of the precision values computed at different recall levels for a

single query. AP measures the quality of a single query, considering the positions of relevant

items in the ranked list of documents. Mean Average Precision calculates the mean of the

different AP values for each query, providing a single score for the entire set of queries and

thus measuring the overall effectiveness of the retrieval system. Instead of computing these

measures on the entire ranked list of documents, these can be computed on a top-k list

of documents (e.g., R@k). For a specific query, both Recall and Mean Average Precision

range from 0 to 1, with higher values indicating better retrieval effectiveness. The choice

of an evaluation measure depends on how well it correlates to the actual downstream task.
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2.2 History of CLIR

In the 1960s, the earliest known efforts to build CLIR systems [160, 164] were made,

which involved the expansion of General Inquirer [171] and SMART [161] document re-

trieval systems in retrieving content in German using English queries. During this time,

both queries and documents were described using controlled vocabulary descriptors such

as metadata and subject headings. These descriptors were organized hierarchically in a

thesaurus, a reference database used to classify words based on their semantic relationship.

Adding entry vocabulary in other languages to the thesaurus enabled cross-language search

to be facilitated [136].

In the 1990s, the focus of CLIR systems shifted from using a thesaurus-based search

with a limited vocabulary to allowing users to query with any vocabulary they choose.

Retrieval was typically done by generating similar representations for both the queries and

documents and computing their similarity using custom retrieval models. Two techniques

used during this period included the Multilingual Vector Space Model [97, 109] and Machine

Translation [150], combined with keyword-based matching models such as BM25 [155] or

the Query Likelihood Model [147]. For more information on the development of CLIR

systems during this time frame, we refer the readers to the CLIR survey [133].

The recent developments in IR include the emergence of neural ranking models to

estimate query-document relevance. These models can be initialized with term embeddings

that could be context-independent (e.g., Word2Vec [122, 124] or GLoVE [144]) or using

pretrained language models (e.g., BERT [48] or RoBERTa [110]) to generate contextual

embeddings. For more details, we refer the readers to the Galuščáková et al. [62] survey.

16



2.3 Translation techniques for CLIR

One of the most commonly used methods for building CLIR systems involves using

translation tools to match query terms and document terms in different languages. The

matching can occur in three spaces, i) mapping query terms to the document language,

which is referred to as query translation, ii) mapping document terms to the query language,

which is referred to as document translation, or iii) where both query and document terms

are mapped to a common representation in a third language. While this addresses what

to translate (query or document), the choice of “term“, which is the unit of text that

is translated or indexed by the system, can vary. The common choices include multi-

word expressions [93], whitespace-separated words, word forms derived from stemming or

lemmatization algorithms, overlapping character n-grams [120] or other subword units (e.g.,

Byte Pair Encodings (BPE), [165] SentencePieces [95]).

Once we choose which terms to translate, we can leverage different resources to gen-

erate the required translations for bridging the language barrier. One way to do this is

by using a lexicon of term mappings (e.g., a bilingual dictionary) to search for a term in

one language and replace it with the linked term(s) in another language. This approach

is commonly referred to as dictionary-based translation. The usefulness of this approach

crucially depends on how good the coverage of terms in the lexicon is. Another approach is

to use parallel text (i.e., translation-equivalent texts, usually sentences) to learn translation

mappings that include a probability of translating a term from one language to another.

This can be done explicitly using 1) Statistical Machine Translation (SMT) models [195]

that rely on statistical word aligners (e.g., GIZA++ [137] or BerkleyAligner [70]), 2) Neural
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Machine Translation (NMT) models [14, 205] that leverage the low-dimensional represen-

tations of terms, or can be done implicitly by using a complete SMT or NMT system that

produces 1-best or n-best results.

Once we have a list of translation alternatives with probabilities for a term, we can

use them to perform retrieval in a manner similar to the monolingual setting. In general,

IR systems function on three elements: (1) term frequency (TF) computed based on the

number of occurrences of a term in a document, (2) inverse document frequency (IDF)

computed based on the number of documents in which a term occurs, and (3) the length

of the document. While in monolingual models, we could simply generate such features by

counting the terms in a document, in a CLIR setting, we generate expected counts for each

query term in a target document. This is the key idea behind the approach referred to as

Probabilistic Structured Queries (PSQ) [47], where we estimate term counts for a query

q in document d using the translation probabilities of a query word given the document

terms.

2.3.1 PSQ

In this dissertation, we use a PSQ framework implemented using a Hidden Markov

Model (HMM)[195], which is referred to as PSQ-HMM. Assuming the query language is

English and the document language is non-English, PSQ-HMM estimates the relevance of a

document in non-English given an input query in English. Viewing the model as a Hidden

Markov Model [125], the first state θe generates English terms, whereas the second state θd

generates non-English terms. Each English query q may consist of n terms t1, ..., tn. The
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generation of query Q can then be expressed as:

p(q|d) =
N∏

n=1

[
αP (tn|θe) + (1− α)

∑
f∈doc

P (tn|f)P (f |θd)

]
(2.1)

where f is a non-English term and α enables smoothing with a unigram language model.

The probability of generating non-English terms f from state θd can be estimated from

counts

P (f |θd) =
c(f, doc)∑
f ‘ c(f ‘, doc) (2.2)

P (f |θd) can be viewed as the ratio of the expected term count of the English term

and the length of the document. The probability of generating English terms t(e)n from state

θe is similarly estimated from counts in a large corpus of English (the Google one billion

word corpus [34]).

We estimate the translation probabilities P (tn|f) from the parallel corpus, as de-

scribed previously. The indexing/query latency of PSQ is influenced by the number of

translation alternatives to choose from for a specific document term. To manage the trans-

lation alternatives, common approaches include truncating the list of translations, using a

Cumulative Distribution Function (CDF) threshold to clip the tail, or using a Probability

Mass Function (PMF) threshold to discard probabilities that are less than a specific value.

In each relevant chapter of this dissertation, we describe the method used to estimate the

translation probability and the design choices made to limit the translation alternatives.
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2.4 Neural IR

Recently, neural approaches to building ranking models have been gaining a lot of

traction due to key innovations in attention-based neural architectures, coupled with large-

scale relevance-annotated collections becoming available for training. The building blocks

of these ranking models include: (1) some way of creating dense vector representations or

embeddings in which terms with similar meaning are represented by similar embeddings, (2)

the learned attention between the query and the document term representations encoded

by the neural architecture, and (3) deep neural architectures that can be trained using a

task-specific training loss.

2.4.1 Cross-lingual Embeddings

The initial work on creating dense vector representations for terms dates to the intro-

duction of Latent Semantic Indexing (LSI) [61]. Specifically, a truncated Singular Value

Decomposition (SVD) was used to compute a dense representation for each term (known

as a singular vector). While initially created for monolingual texts, this approach was

later extended to create bilingual embeddings that assigned similar dense representations

to terms with similar meanings, regardless of their language [109]. In recent times, neural

autoencoders that use non-linear models are used to compute a dense representation for

each term [20, 183]. These dense representations capture an embedding of the original

high-dimensional term space in a lower-dimensional vector space.

Three broad classes of techniques have been proposed for creating bilingual term

embeddings: (1) projection-based [54, 97, 123, 192], (2) pseudo-bilingual [5, 66, 183], and
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(3) unsupervised [6, 39, 75]. One problem with these learned embeddings is that each in-

stance of a term is assigned the same representation irrespective of the context surrounding

the term (e.g., the representation of the term “bank” for a river bank and for a financial

bank would be the same). The advent of neural architectures made it possible to pro-

duce contextual term embeddings, with the embedding for bank differing, depending on its

surrounding terms [48, 146] or the context. The resulting Bidirectional Encoder Represen-

tations from Transformers (BERT) architecture [48] has since been further extended (e.g.,

by RoBERTa [110], XLNet [200], ELECTRA [38] and XLM [96]), some of which support

more than 100 languages. These encoders have become a de-facto standard for initializing

neural models for ranking texts.

2.4.2 Interaction-based Neural Models

One of the ways of building effective neural models, commonly explored in mono-

lingual IR, is to use embeddings as input to neural architectures that are optimized for

relevance and that perform full-collection neural ranking. Specifically, query and document

terms are encoded using a neural model initialized with low-dimensional term representa-

tions (e.g., Word2Vec [124]), and the model learns interactions between those represen-

tations to maximize a relevance objective (e.g., DRMM[68], KNRM[193] or PACRR[76]).

This line of work is referred to as “interaction-based” due to the ability of models to leverage

the interactions between the query and document terms.

The work of Yu and Allan [202] extends these interaction-based retrieval approaches

to CLIR. The matching models are initialized with fastText embeddings aligned using a
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dictionary [84], which is an example of the projection-based bilingual word embedding

technique mentioned in the previous section. Subsequent research in monolingual retrieval

has focused on switching from using context-independent Word2Vec embeddings to ini-

tialize the neural ranking models using contextual BERT-based representations mentioned

above. These contextual Transformer-based architectures have achieved results superior to

the best previously known techniques for ranking documents with respect to a query in

monolingual applications [89, 103, 114].

Ranking models that leverage the interaction between each query term and every

document term also referred to as cross-encoder, can be computationally expensive when

ranking all of the documents in a large collection. This leads to cascade-based approaches,

which involve running an efficient recall-oriented system first to get an initial set of docu-

ments, which is then re-ranked using a more computationally expensive model [44, 134, 201].

Zhang et al. [206] extended the cascade re-ranking approach to the cross-language setting

and found similar improvements as in monolingual retrieval, especially in low-resource

languages. Jiang et al. [81] fine-tuned a pretrained multilingual BERT model on cross-

language query-sentence pairs constructed from parallel corpora in a weakly supervised

fashion and applied this model to perform re-ranking for CLIR. Shi and Lin [167] used a

transfer learning approach by applying a retrieval model trained on a large collection in

English to retrieve content in other languages. However, the recall of these cascade re-

ranking approaches is dependent on the quality of the initial set of documents produced by

the first-stage systems. In the case of CLIR, the vocabulary mismatch between the queries

and the documents adds additional challenges.
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2.4.3 Representation-based neural models

In the case of representation-based neural models, the queries and documents are

encoded separately into a shared vector space using a model commonly known as a dual

encoder or a bi-encoder. Here, we represent the query encoder as ηq and the document

encoder as ηd, though they could be the same (ηq = ηd). The matching is performed

using some form of similarity function ϕ computed from the encoded query ηq(q) and ηd(d)

document representation. The estimated relevance score of the document is computed as

Rel(q,d) = ϕ(ηq(q), ηd(d)) (2.3)

There are two main families of bi-encoder models that differ based on the encoded

query/document representation: 1) single-representation and 2) multi-representation. In

single-representation models, the query and document encoders encode the entire query

or document to generate a single representation. These models have the advantage of

reduced storage requirements due to using a single representation for each document, but

the compression of the entire document to a single vector usually leads to loss of information.

To avoid this, multi-representation models generate multiple representations of queries or

documents or both either by generating a fixed amount of vectors (e.g., poly encoders [77]

with a codebook of size k) or using the representation of every query and document term

(e.g., ColBERT [89]).

A bi-encoder model can be trained in an end-to-end manner to optimize the ranking

effectiveness. The document representations can be pre-computed using the trained model
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and stored in an index that supports fast nearest-neighbor search operations. At query

time, the queries are encoded using the trained bi-encoder, and the documents that are

nearest to the encoded query are retrieved from the pre-computed index using approximate

nearest neighbor techniques.

2.4.4 Training losses

Learning-to-rank approaches to IR preceded the current wave of neural ranking mod-

els. This framework introduced three main types of approaches to building and training

models that vary based on the type of inputs: 1) pointwise, 2) pairwise, and 3) listwise.

Pointwise approaches take as input a single <query, document> pair to generate a

score for the input document. The model could be a supervised classifier [101, 132] that

predicts whether the document is relevant or not or a regression model [42, 166] that assigns

a score to the document. The final ranked list is constructed by sorting the scores assigned

by the model to each document.

Pairwise approaches, on the other hand, take a pair of documents for a given query and

learn to assign scores such that the relevant document is ranked higher than the non-relevant

document. The pairwise model learns to output a preference order among the documents,

which can be used to build a ranked list with greedy approaches. Some examples of pairwise

approaches include RankNet [30], RankBoost [59], RankingSVM [72, 82], LambdaRank [31],

LambdaMART [188]

Listwise approaches operate on a ranked list of documents for a query with the goal

of producing an optimal ordering of a list. Compared to the other two approaches, this ap-
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proach closely models the actual ranking problem. It also allows the model to approximate

existing IR measures, such as MAP to evaluate ranking effectiveness for the optimization

task. Since these measures are non-differentiable, smooth continuous versions of these mea-

sures have been proposed as a basis for optimization. Some examples of pairwise approaches

include SoftRank [175], SVMmap [203], AdaRank [196], ListNet [33], ListMLE [191].

In this dissertation, we focus on Pointwise loss to build neural ranking models.

2.5 Fusion techniques

There are diverse approaches to building IR systems, which provide the opportu-

nity to improve the search results by combining the constituent systems. CLIR systems

have even greater potential diversity than monolingual IR systems because of the addi-

tional potential for diversity that translation resources, and ways of using those translation

resources, introduce. Combining multiple sources of evidence, more generally known as

fusion [189], can be done in two ways, early fusion (in which evidence from multiple sources

is combined by one or more components of the full system before results are generated) or

late fusion, in which the ranked lists from separate IR systems are combined. Late fusion

is often referred to as a system combination, and in this dissertation, we refer to the sys-

tems combined using late fusion as an ensemble. In general, system combination can be

employed with systems that search different document collections, but here we focus only

on cases in which all systems search the same collection.

System combination for CLIR has a long history, beginning when McCarley [119]

found that neither query translation nor document translation was a clear winner and
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Figure 2.1: Figure illustrating the Pareto-frontier of Indexing Latency and MAP using
dashed lines. Systems A, C, E, and H are Pareto-optimal.

that a late fusion combination between the two approaches yielded the best results. Later

work [27, 91] further supported this claim by demonstrating the benefits of combining more

diverse systems as well.

Early fusion of translation resources has also proven to be successful in CLIR. Perhaps

the best-known case is the fusion of parallel sentences with translation pairs from a bilingual

lexicon when training machine translation systems [195]. The architecture for this is simple;

machine translation systems are trained on pairs of translation-equivalent sentences, and

term pairs from a bilingual lexicon are simply treated as very short sentences. Because the

term distribution in bilingual lexicons is not as sharply skewed in favor of common terms

as is naturally occurring parallel text, this approach can help to reliably learn translations

of relatively rare terms. This is also facilitated by the availability of bilingual lexicons in

several languages, including Panlex [86] and MUSE [39].
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2.6 Pareto-optimality

Pareto-optimality is a concept that originated in economics and has since been widely

used in several fields. In this dissertation, we utilize the concept of Pareto-optimality to

analyze the tradeoff between the effectiveness and the efficiency of different CLIR sys-

tems. A CLIR system is considered Pareto-optimal if no other system can offer better

effectiveness without sacrificing efficiency. In situations where multiple CLIR systems are

Pareto-optimal, we refer to them collectively as the Pareto-frontier. Depending on the spe-

cific application requirements, practitioners can choose among the different Pareto-optimal

systems on the Pareto-frontier to achieve the best balance between effectiveness and ef-

ficiency. Figure 2.1 shows an illustration of the Pareto-frontier of efficiency during the

indexing phase, measured using indexing latency, and the retrieval effectiveness, measured

using MAP. The optimal outcome would be in the upper left corner of the figure, where

the system achieves a low indexing latency and a high MAP score.
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Chapter 3: Building Effective & Efficient Cross-Encoders for CLIR1

The effectiveness of neural ranking models, which compute the full interaction be-

tween query and document term embeddings (also known as interaction-based ranking mod-

els), depends on both the quality of the underlying term embeddings and the method used

to compute the interactions. A specific type of interaction-based model, the Cross-Encoder,

generates superior contextual representations by computing joint interactions between con-

catenated queries and documents through multiple layers of self-attention [180] from the

transformer layers of pretrained language models (PLMs). However, this expressiveness

comes at a higher computational cost due to the quadratic time and space complexity of

self-attention in the transformer layers of PLMs. This has two implications.

First, the time complexity to rank documents in response to a given query increases

linearly for a pointwise Cross-Encoder and quadratically for a pairwise Cross-Encoder as the

size of the document collection grows. Therefore, retrieve-and-rerank pipelines have become

widely adopted in monolingual retrieval applications to overcome this limitation. In these

pipelines, the first stage involves using an efficient retrieval system, such as BM25 [155],

to generate a set of top-k documents relevant to a query (often set to 1000). The second

stage is a reranking process, in which a Cross-Encoder serves as a neural reranking model
1This chapter contains content from: Suraj Nair, Petra Galuščáková, Douglas Oard, Le Zhang, Dami-

anos Karakos, and Bonan Min. “Rationale Training based Neural Re-ranking for Ad-hoc CLIR.” In Prepa-
ration. [129]
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to reorder the documents returned by the first-stage retrieval system. Training the Cross-

Encoder with PLMs like BERT [48] or RoBERTa [110] has improved effectiveness beyond

what traditional retrieval methods alone can achieve. In this chapter, we develop retrieve-

and-rerank pipelines for ad-hoc document ranking in CLIR.

Second, BERT-style models are limited in their ability to handle long documents,

resulting in a maximum context length that is often shorter than the length of a document.

Given the widely used definition of relevance that a document is considered relevant if any

part of that document is relevant, passage retrieval offers an elegant way of working around

this limitation. To address this issue during the querying phase, two popular approaches

consisting of FirstP and MaxP [44] include truncating documents to the first passage of n

terms or creating a set of overlapping passages/sentences with a fixed length and stride,

respectively. The final document score is either the score of the first passage (in the case of

FirstP) or the highest passage score among the set of overlapping passages in the case of

MaxP. However, this approach fails to leverage the text signals in the underlying passages

and instead relies on a static choice between one or all passages for scoring, which represents

two extremes of a broad spectrum of passage selection. Different passage selection strategies

create a tradeoff between reducing query latency by limiting the number of passages to be

scored by cross-encoder and improving retrieval effectiveness. Our goal in this chapter is to

explore strategies that offer a Pareto-optimal balance between these contrasting objectives.

When using any passage selection strategy during the querying phase, a critical ques-

tion arises about how to fine-tune the Cross-Encoder model on document-based training

collections with relevance judgments during the training phase. If we knew which passage

from the corresponding document in the training set should receive the highest score, it
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would be a simple matter of transforming document retrieval to passage retrieval by replac-

ing each document with its best passage and then fine-tuning on that dataset. Motivated

by this idea, we introduce a simple yet effective approach called CREPE (Cross-language

REtrived PassagE) for CLIR. This approach utilizes an efficient first-stage CLIR system to

score individual passages from a document in response to a query and selects the highest-

scoring passage or CREPE to create training samples for fine-tuning a pointwise cross-

encoder. During the querying phase, using CREPEs can be regarded as a passage selection

strategy that identifies the best passages to be scored by the cross-encoder. By doing so,

this approach offers a solution to balance query latency with retrieval effectiveness.

The remaining sections of this chapter are structured as follows. First, we provide an

overview of the general setup of the two stages of the retrieve-and-rerank CLIR pipeline in

Section 3.1. Next, we introduce the key methodology of CREPE and its application during

the training and querying phases in Section 3.2. We describe the experimental setup in

Section 3.3 and then analyze the effect of CREPE in the querying and training phases in

Sections 3.4 and 3.5, respectively. Finally, we conduct a detailed analysis with ablation

studies in Section 3.6 and conclude the chapter with a summary in Section 3.7.

3.1 Retrieve-and-Rerank CLIR pipeline

In this section, we provide a general description of the two stages of the retrieve-and-

rerank pipelines. We start by discussing the first-stage CLIR systems we use, followed by

a description of the reranking setup with cross-encoders.
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3.1.1 First-Stage CLIR systems

Previous work [20, 81, 202, 206, 207] involving the retrieve-and-rerank pipelines in

CLIR mostly translate queries and perform matching in the document language [167, 168].

However, the CLIR problem presents various design choices for first-stage retrieval systems

due to the distinct query and document languages. Matching term meaning across lan-

guages is a requirement for CLIR systems to bridge the vocabulary gap between queries

and documents. Previous chapters (1 and 2) have introduced several CLIR systems that

tackle this issue, such as utilizing MT or translation probabilities from the statistical align-

ment of parallel text. For the retrieve-and-rerank CLIR pipelines, we employ three different

first-stage retrieval systems that differ based on the input format of queries and documents:

1. Probabilistic Structured Queries - This system utilizes queries and documents in their

original form without using any off-the-shelf tool or machine translation system to

translate them. We use a well-known approach in CLIR, Probabilistic Structured

Queries (PSQ) [47], to estimate term counts for a query q in document d, using the

translation probabilities of a query word given the document terms. Specifically, we

use a PSQ-based HMM model (PSQ-HMM) as described in Section 2.3.1 to estimate

the relevance of a document in a target language given an input query.

2. Query Translation - This system uses queries translated to the document language,

and documents are in their original form. The first-stage retrieval is performed using

a BM25 system in the document language.

3. Document Translation - This system uses queries in their original form and documents
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translated to the query language. The first-stage retrieval is performed using BM25

in the query language.

Aside from being part of the retrieve-and-rerank pipeline, these first-stage CLIR sys-

tems serve as the model used to generate ”CREPEs,” which we will introduce in Section

3.2.

3.1.2 CLIR Reranker

We describe our approach to the reranking task by building on prior work [44, 134].

We adopt the same strategy of framing the task as a binary classification problem, in

which our reranking model, initialized with a pre-trained language model known as a cross-

encoder, predicts the relevance of a document D to a query Q. This formulation casts

the cross-encoder in a pointwise setting, scoring each document independently for a given

query. However, due to the maximum sequence length restriction of PLMs (e.g., 512

tokens), it is challenging to handle long documents. Existing works have addressed this issue

by segmenting documents into either sentences [3], or overlapping passages [44] or using

hierarchical models [100, 113] to build a document-level representation from its constituent

passages. In this chapter, we follow the MaxP approach [44] and segment documents into

overlapping passages with a window size of 150 words and a stride of 75 words.

We build separate neural rerankers for the three different first-stage CLIR systems

introduced in Section 3.1.1. Figure 3.1 shows a pointwise cross-encoder model for the first-

stage PSQ system, initialized with an mBERT encoder. The model takes as input the

concatenation of the original query Q and passage P tokens, including [CLS] and [SEP]
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Figure 3.1: mBERT pointwise cross-encoder; English query, French passage.
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tokens, as follows: [[CLS] Q [SEP] P [SEP]]. These tokens pass through multiple layers

of transformers [180], with each layer producing fine-grained contextualized word repre-

sentations. Finally, the [CLS] token output from the last layer is fed into a single-layer

feed-forward neural network (FFNN) whose outputs are softmaxed to generate the proba-

bility of passage P being relevant to query Q. The reranking setup is the same for query

translation and for document translation, except we feed the cross-encoder either a trans-

lated query Q′ or translated passage P ′, respectively. For the first-stage PSQ and Query

Translation CLIR systems, we utilize multilingual pretrained language models to initialize

the cross-encoder. In contrast, for the Document Translation CLIR system, we employ a

monolingual pretrained language model to initialize the cross-encoder. The cross-encoder

is subsequently fine-tuned on the CLIR training collection generated by the respective

first-stage CLIR system, as discussed in the subsequent section.

3.2 Cross-Language Retrieved Passages (CREPE)

In this section, we first present our CREPE approach to creating the training dataset

for fine-tuning the cross-encoder for CLIR. We later introduce how CREPEs from the first-

stage CLIR systems can be used in the querying phase as an alternative to the MaxP

approach.

3.2.1 Training Phase

To effectively train a cross-encoder model that can accurately rerank passages, it

is crucial to have supervision in the form of relevance judgments at the passage-level.
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However, in practice, relevance judgments are typically only available at the document-

level. Consequently, generating passage-level judgments from document-level judgments is

a challenging task. This problem falls under the category of supervised machine learning,

known as multiple-instance learning. In this type of learning, the model is presented with

a set of labeled bags or documents, and each bag consists of a set of unlabeled instances

or passages. A naive approach to address this problem is to assume that all passages from

relevant documents are relevant and vice versa for non-relevant documents. However, this

assumption is too strong, especially for relevant documents, as not all passages within a

relevant document are necessarily relevant. To overcome this issue, a semi-random sampling

approach was introduced by Dai and Callan [44], which involves selecting the first passage

from every document, followed by randomly selecting 10% of the remaining passages.2 The

reasoning behind selecting the initial passage is that certain genres, such as news articles

that typically follow an inverted pyramid style of writing [58], tend to focus on the main

topic early on in the text, as observed by Wu et al. [190]. This approach to creating a

dataset is referred to as “stochastic.”

Although the stochastic approach may be a reasonable method for relevant docu-

ments, the passages sampled in this way from judged non-relevant documents may not pro-

vide the most discriminative signal. Therefore, we propose a new method called CREPE.

CREPE addresses the problem of multiple-instance learning by creating a passage-level

training dataset that selects the most discriminative passage from the document using sig-

nals from our first-stage CLIR system. Specifically, for a given query qi and document dj

2This detail is not mentioned in the original paper [44] but can be found in the reference implementation:
https://github.com/AdeDZY/SIGIR19-BERT-IR/blob/master/run_qe_classifier.py#L468-L471
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Algorithm 1 Dataset creation using CREPE
Input: Q: queries, C: document collection, R: binary relevance judgments, FS: first-stage
CLIR system

1: S → ∅
2: for qi ∈ Q do
3: D = FS(Q, C)
4: for dj ∈ D do
5: P = overlapping_passages(dj)
6: if Rij == 1 or Rij == 0 then
7: pkj = maxk FS(Q,P)
8: S = S ∪ ((qi, p

k
j ), Rij))

9: else {Unjudged document}
10: pkj = random(P)
11: S = S ∪ ((qi, p

k
j ), 0))

12: end if
13: end for
14: end for

returned by the first-stage CLIR system FS, we rank all passages P in document dj using

the same system and select the passage pkj with the highest relevance score for training.

This leads to two things:

• For a relevant document, we select the passage that contributes the most to the

relevance of that document

• For a judged non-relevant document, we select the passage that has the most lexical

overlap with the query, effectively choosing a hard-negative sample

We treat unjudged documents as non-relevant, and in such cases, we select a passage

randomly from the document. The pseudo-code for creating the dataset using the CREPE

approach is shown in Algorithm 1.

The motivation behind CREPE is twofold. First, we aim to use the best-scoring pas-

sage from every relevant document as a strong-positive passage to train the model. Second,

we want to select the most discriminative passage from judged non-relevant documents as
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a hard-negative passage. The closest approach to ours is by Rudra and Anand [159], which

used a fine-tuned BERT to score passages and used a score-based threshold to determine

which passages to select. However, our method differs in that we use efficient first-stage

CLIR systems to rank passages instead of using BERT to score all passages, which can

be computationally expensive. While their approach focuses on selecting the best positive

samples, our approach of choosing hard negative samples from judged non-relevant doc-

uments helps to improve overall effectiveness. Furthermore, our experiments reveal that

fine-tuning a cross-encoder using a dataset created using the CREPE approach outper-

forms the stochastic sampling of the first passage (which is often a strong baseline for news

stories), even in more challenging scenarios, such as retrieval across languages.

3.2.2 Querying Phase

In the querying phase, the first-stage CLIR system returns documents that are seg-

mented into overlapping passages.3 A score is computed for each (query, passage) pair

using the fine-tuned cross-encoder. MaxP aggregates the scores by selecting the highest

score among the passages as the corresponding document score and uses it to rank the

documents. On the other hand, FirstP chooses the score for the first passage as the cor-

responding document score. By default, MaxP requires the cross-encoder to score all the

passages from the top-k documents returned by the first-stage CLIR system. However,

since applying BERT-based cross-encoders is expensive, the reranking depth is typically

adjusted to balance effectiveness and efficiency. We explore the use of CREPEs during the
3While directly retrieving passages could be an option, our initial experiments show it has lower effec-

tiveness than retrieving documents from a first-stage system. Adjusting CLIR system hyperparameters to
account for shorter passage lengths may be necessary.
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Figure 3.2: Retrieve-and-rerank CLIR pipeline with CREPE-based strategy

querying phase to reduce the number of passages to be scored by the cross-encoder and

improve query latency while maintaining retrieval effectiveness. Specifically, instead of se-

lecting all passages, we sub-select passages by choosing only the top-m passages indicated

by the first-stage CLIR system. The passages coming from the first-stage CLIR system are

referred to as CREPEs. We can also combine CREPEs with systematic passage selection

strategies, such as FirstP, to create hybrid passage selection strategies. In Section 3.4, we

analyze the impact of various passage selection strategies on the tradeoff between retrieval

effectiveness and query latency. Figure 3.2 shows the overall retrieve-and-rerank pipeline

using the CREPE approach.

3.3 Experiments

In this section, we provide details on the test collections, training data, and training

setup of our retrieval and reranking models.

Test Collections. We evaluate our methods using CLIR test collections for six lan-

guage pairs. The queries are in English (EN), and the documents are in Spanish (ES),
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Italian (IT), Dutch (NL), Finnish (FI), German (DE), or French (FR) from CLEF evalua-

tion campaigns [145]. The documents are news articles, and we use the collections from the

CLEF’s multilingual ad-hoc retrieval track, pooling the topics and judgments across the

languages from the years 2000-2003 [24, 25, 26, 28]. The CLIR test collection statistics are

presented in Table 3.1. We experiment with the title as queries, which resembles a typical

web search query.

Text Preprocessing. We tokenize all text, including queries, documents, and trans-

lation resources, using Moses [94] and normalize it by converting all text to lowercase,

removing punctuation, stripping diacritics from characters, and removing non-printable

characters. We also remove stopwords from queries and documents using the NLTK [19]

toolkit. This preprocessing is applied only for the first-stage retrieval systems. For rerank-

ing, we use the raw queries and documents as input and rely on the tokenizer included as

part of the pretrained model.

3.3.1 First-stage retrieval setup

We provide details on the first-stage retrieval setup for different CLIR pipelines.

Query Translation (QT). As a baseline, translating the English queries to the

target language is first done using Google Translate, and the translated queries are then

used to perform monolingual retrieval in the target language. Specifically, we use the

Anserini [199] toolkit to index the documents using Lucene’s language-specific analyzer.4

For retrieval, we use the BM25 model [155] with default hyperparameters (k1=0.9, b=0.4)

from Anserini. We refer to this system as QT-BM25.
4We extended Anserini v0.10.1 to add the support for FI, NL, & IT
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Document translation (DT). For translating documents to the query language

(English), we use Opus-MT [178] models available as part of the EasyNMT5 toolkit. Specif-

ically, we use the xx-en models pretrained on OPUS [177] data using the MarianNMT [85]

model. Here xx stands for the document language. Retrieval is performed using Anserini’s

BM25 model with default hyperparameters. We refer to this system as DT-BM25.

PSQ-HMM. To obtain the translation probabilities to be used in PSQ-HMM, we

rely on the word alignment output from the GIZA++ [137] aligner. For training GIZA++,

we use a combination of parallel sentences from Europarl [92] and Panlex [86] dictionaries

for CLEF languages. For each language pair, we have approximately 2.5-3 million sentence

pairs for training. We train the model for five iterations each for Model 1, HMM model,

Model 3, and Model 4 in both language directions. Finally, we apply the grow-diag-final-

and [93] heuristic to combine the forward and backward alignments and use it to generate

the translation probabilities. Translation probabilities that are less than 1×10−5 are filtered

out. It has been shown that selecting a single translation term often leads to reduced CLIR

effectiveness [20, 202], instead, in this work, we use multiple translation alternatives. By

instead using a broad range of translations, the recall of our first-stage retrieval system

might be improved. The value of α is set to 0.1 in our experiments.

3.3.2 CLIR reranker setup

We investigate the use of different multilingual BERT-style models to initialize the

cross-encoder for PSQ and Query Translation pipelines. The models we explored are briefly

described below:
5https://github.com/UKPLab/EasyNMT
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Table 3.1: CLIR test collection statistics: number of EN queries (#query), number of target
documents (#docs), average number of relevant documents per query (#rel), average length
of EN title queries (qlen), average length of target documents (dlen)

Target ES IT NL FI DE FR
#query 160 200 160 90 200 200
#docs 454,045 157,558 190,604 55,344 294,809 129,806
#rel 49.5 17.3 29.1 10.9 33.6 20.4
qlen 3.4 3.5 3.4 3.6 3.5 3.5
dlen 328.6 276.5 371.9 256 260.2 295.5

• mBERT [48] is built on top of the BERT-base architecture that includes several

layers of transformers [180]. It is pretrained on concatenated Wikipedia texts in over

100 languages with the Multilingual Masked Language Model (MMLM) task.

• XLM-R [40] is trained on the larger CommonCrawl corpus [185] with the MMLM

task. We use the large version of XLM-R, which has 2x more layers (24) as compared

to mBERT (12) and 2x more vocabulary size.

For the Document Translation pipeline, we use monolingual BERT-style models to

initialize the cross-encoder.

• BERT [48] is pre-trained on Wikipedia & BookCorpus [208] with Masked Language

Modeling and Next Sentence Prediction tasks.

• ELECTRA [38] is trained on the same corpus and hyperparameters as BERT, how-

ever, using a Replaced Token Detection task. We use the large version of ELECTRA,

which has 2x more layers (24) as compared to the BERT-base (12).

Rather than directly initializing the cross-encoder with off-the-shelf PLMs, we use

publicly available BERT-style models [100], such as mBERT,6 BERT-MS,7 and ELEC-
6https://huggingface.co/amberoad/bert-multilingual-passage-reranking-msmarco
7https://huggingface.co/Capreolus/bert-base-msmarco
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TRA,8 which are fine-tuned on the MS MARCO passage retrieval task [11]. Since we do

not have a version of the XLM-R model fine-tuned on MS MARCO, we instead use an

XLM-R9 model fine-tuned on the SQuAD question answering dataset [151].10

Training Setup. We rely on PyTorch [143] and Huggingface Transformers [187] to

fine-tune the CLIR cross-encoder. For each target collection, we use the top-1000 docu-

ments from the first-stage retrieval system to create a passage dataset using either stochastic

or CREPE approach as described in Section 3.2.1. For CREPE, we set m to 1, using a

single passage from each document returned by the first-stage CLIR system. The input to

the cross-encoder consists of query tokens concatenated with the passage tokens. To be

consistent, we use the same query representation, title, that is used in the first-stage CLIR

system for the cross-encoder. We create the passage representation by concatenating the

title of the document with the passage content. We use the default hyperparameters from

MaxP as follows: All the cross-encoder models use a fixed input size of 256 tokens. The

models are trained with Adam optimizer [90] with weight decay set to 0.01 using Cross-

Entropy loss. We set the learning rate to 1× 10−5 for all the models except XLM-R, where

we use 5 × 10−6 as the learning rate. We set the linear warmup rate to 10% of the initial

training steps and train the model using 16-bit precision for a single epoch with a batch

size of 32 training instances.
8https://huggingface.co/Capreolus/electra-base-msmarco
9https://huggingface.co/deepset/xlm-roberta-large-squad2

10The version of the XLM-R model fine-tuned on MS MARCO was not available at the time of the
experiments.
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3.3.3 Baselines

We report our three first-stage retrieval systems (PSQ-HMM, QT-BM25, DT-BM25)

as baselines for our reranking pipelines, and we report the following as additional baselines:

• Human Translation (HT) - we use the document-language queries11 provided as part

of the test collection to perform monolingual retrieval in the target language. We use

Anserini’s BM25 model with default hyperparameters to do monolingual retrieval.

• Deep Relevance Matching Model (DRMM) [68] - This is a pre-BERT neural match-

ing model that learns patterns from the interaction between the query terms and

document terms. We do not reimplement but rather report results from Yu and Al-

lan [202]. The DRMM model is initialized with non-contextual cross-lingual word

embeddings from fasttext [84].

For each cross-encoder, we report two results, the first for a cross-encoder fine-tuned

on the dataset created using the stochastic approach from the MaxP framework (as a strong

neural reranking baseline) and the second (following a slash) fine-tuned on the dataset

created using our CREPE approach.

3.3.4 Evaluation

To evaluate the effectiveness of our CLIR model, we follow a 5-fold cross-validation

setup for each CLIR test collection. For each document collection, we split the queries into
11In CLEF, the generation of original queries was divided across languages, so in some cases, these are

original queries; in other cases, they are the result of reexpression of those queries in other languages
by human translators who were instructed to express the query in a form that would be natural in that
language.
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Figure 3.3: Average Query Latency (in seconds) vs. MAP for different passage selection
strategies using PSQ-HMM system with XLM-R cross-encoder macro-averaged across the
six CLEF collections. The number preceding CREPE denotes the number of passage(s)
selected by the PSQ-HMM system. The dashed line indicates the Pareto frontier of retrieval
effectiveness and query latency.

five disjoint folds, train the reranker on four-folds, and apply the model on the remaining

fold. We re-rank the top 1000 documents returned by the first-stage retrieval system. We

report Mean Average Precision (MAP) as the evaluation measure using the trec_eval12

toolkit. Differences in the means are tested for significance using a two-tailed paired t-test

(p < 0.05) with Bonferroni correction.

3.4 Effect of CREPE at Querying Phase

Figure 3.3 illustrates how different passage selection strategies used during the query-

ing phase affect the average results across six CLEF collections. The analysis is conducted

using the PSQ pipeline, where PSQ-HMM is the first-stage CLIR system, and a fine-tuned
12https://github.com/usnistgov/trec_eval
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XLM-R cross-encoder is the reranker. Each strategy creates a tradeoff between the num-

ber of <query, passage> pairs that need to be scored by the cross-encoder, which affects

query latency, and the effectiveness of the ranked list of documents, which is measured

using MAP. Query latency for the XLM-R cross-encoder is calculated based on the con-

catenated query and passage text sequences of length 256, run on a single V100 GPU with

a batch size of 1024. It’s worth noting that the query latencies for the XLM-R large cross-

encoder are too extensive for interactive applications. In practice, a distilled version of the

cross-encoder is employed for interactive purposes.

The Pareto frontier of retrieval effectiveness and query latency is depicted in Figure

3.3. MaxP produces the highest MAP score but at the expense of the highest query latency,

as it calculates scores over all the passages from a document. FirstP, which is widely used

due to its simplicity, has the least query latency and only requires scoring one passage per

document. However, it has the lowest MAP score among all the strategies.

When comparing FirstP with the top passage selected by PSQ-HMM (denoted as

1CREPE), we observe a 5% relative increase in MAP for the same cross-encoder query

latency between the two strategies. However, more importantly, we establish that the

FirstP strategy is not Pareto-optimal, and we can switch to 1CREPE, which is Pareto-

optimal. 1CREPE can achieve 93% of the effectiveness of MaxP while requiring only a

fraction of the passages to be scored by the cross-encoder, leading to an average reduction

of 4.8x in query latency. Furthermore, we can enhance the retrieval effectiveness by adding

more passages. Using the top-2 (2CREPE) and top-3 (3CREPE) passages can achieve

about 97% and 99% of the effectiveness of MaxP, respectively. It is worth noting that

2CREPE and 3CREPE require only a fraction of the MaxP query latency, 0.4x and 0.55x,
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respectively, to achieve a comparable retrieval effectiveness of MaxP This can potentially

enable us to increase the reranking depth without doing additional work by selecting fewer

passages to score per document.

We also investigate the effectiveness of a hybrid strategy that combines FirstP with

CREPE from PSQ-HMM (1CREPE and 2CREPE).13 As expected, we find that this hybrid

strategy performs almost as well as the CREPE approach, with slightly higher effectiveness

for the same amount of query latency. It is worth noting that both hybrid strategies fall

on the Pareto frontier of retrieval effectiveness and query latency. This emphasizes the

importance of CREPE since FirstP by itself was not Pareto-optimal, and it is only after

combining CREPE with FirstP that the strategy becomes Pareto-optimal.

Figure 3.4 displays a breakdown of query latency with retrieval effectiveness for each

individual CLEF collection. Most of our earlier findings hold when examining individual

collections. Occasionally, we observe some changes, such as in Finnish and French, where

2CREPE is Pareto-optimal instead of the hybrid strategy of 1CREPE+FirstP. In French,

3CREPE is Pareto-optimal compared to 2CREPE+FirstP. Nevertheless, the differences in

MAP are minor enough not to yield a statistically significant difference.

13If the first passage is also selected by PSQ-HMM, we add the second highest scoring passage from
PSQ-HMM.
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(d) Finnish
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Figure 3.4: Average Query Latency (in seconds) vs. MAP for different passage selection strategies using PSQ pipeline with
XLM-R cross-encoder for each CLEF collection. The number preceding CREPE denotes the number of passage(s) selected by
the PSQ-HMM system. The dashed line indicates the Pareto frontier of query latency and retrieval effectiveness.
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3.5 Effect of CREPE on Training Phase

Table 3.2 presents our findings comparing the performance of different CLIR models

using the title field, simulating a typical web search query. We rerank the documents for

each first-stage CLIR system using a cross-encoder fine-tuned on the dataset created using

either the stochastic or the CREPE approach. Our primary objective is to analyze whether

reranking based on CREPE enhances effectiveness over traditional first-stage methods and

compare it with the stochastic approach for CLIR.

We begin by comparing the best cross-encoder, trained with CREPE, with the first-

stage retrieval system and observe robust relative MAP improvements in all document

collections. This holds true for the PSQ, query translation, and document translation

pipelines, with 44%, 34%, and 30% relative MAP improvements averaged across all the

document collections over the first-stage retrieval system, respectively.

Next, we compare CREPE with a pre-BERT neural reranker, DRMM [68]. We chose

the DRMM model since it outperforms other pre-BERT rerankers, as demonstrated in Yu

and Allan [202]. To have a fair comparison, we compare it to the PSQ reranking pipeline

since Yu and Allan [202] used raw queries and documents with no translation involved. Our

best reranking model trained with CREPE manages to outperform the DRMM reranker

for the Spanish, Italian, Dutch, and Finnish document collections. The DRMM model is

initialized with aligned fasttext monolingual embeddings, which is why it performs poorly

in comparison to the contextualized embeddings that are a part of the pretrained models.

Nevertheless, training DRMM with contextualized representations has shown to perform

better than static non-contextual embeddings for monolingual retrieval in English [113].
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We observe that the cross-encoder trained with CREPEs from the first-stage CLIR

system typically outperforms the stronger baseline of training with the stochastic approach.

Comparing the best cross-encoder within each CLIR pipeline, we consistently see MAP

improvements when switching from a stochastic to a CREPE approach. This finding is

particularly significant since the CREPE approach trains on a dataset that contains at

most one passage from every document, whereas the stochastic strategy uses at least one

passage from every document and possibly more depending on length. Thus, we showcase

consistent effectiveness gains with a monolingual cross-encoder trained with CREPEs from

the document translation CLIR system or a multilingual cross-encoder trained with CREPE

using either PSQ or query translation CLIR system across collections in multiple languages.
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Table 3.2: MAP for different CLIR retrieval models using title field and MaxP passage selection strategy for scoring. The
first two rows are query translation baselines, the third row is document translation baseline. Reranking results are presented
in the order of stochastic/CREPE training. The highest value in each pipeline is marked as bold. Statistically significant
improvements over the first-stage system and reranker trained with the stochastic approach are marked with † and ‡ resp.

Retrieval stage Reranker EN-ES EN-IT EN-NL EN-FI EN-DE EN-FR

HT-BM25 - 0.452 0.334 0.371 0.350 0.304 0.403

QT-BM25 - 0.420 0.304 0.324 0.342 0.275 0.411

DT-BM25 - 0.447 0.327 0.408 0.430 0.375 0.387

PSQ-HMM - 0.402 0.281 0.352 0.321 0.313 0.362

DRMM [202] - 0.462 0.352 0.374 0.304 - -

PSQ Pipeline

PSQ-HMM
mBERT 0.440/0.482†‡ 0.340/0.362†‡ 0.374/0.417†‡ 0.379/0.414†‡ 0.396/0.433†‡ 0.409/0.452†‡

XLM-R 0.496/0.526†‡ 0.409/0.424†‡ 0.450/0.472†‡ 0.501/0.511† 0.447/0.472†‡ 0.479/0.493†‡

Query Translation Pipeline

QT-BM25
mBERT 0.467/0.496†‡ 0.361/0.387†‡ 0.367/0.405†‡ 0.405/0.421† 0.359/0.390†‡ 0.442/0.503†‡

XLM-R 0.507/0.525†‡ 0.417/0.422† 0.420/0.428† 0.435/0.461† 0.391/0.406†‡ 0.509/0.526†‡

Document Translation Pipeline

DT-BM25
BERT 0.477/0.500†‡ 0.387/0.410†‡ 0.454/0.487†‡ 0.494/0.531† 0.4335/0.453†‡ 0.458/0.486†‡

ELECTRA 0.514/0.530†‡ 0.417/0.447†‡ 0.505/0.526†‡ 0.548/0.554† 0.468/0.492†‡ 0.502/0.526†‡
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3.5.1 Comparing retrieve-and-rerank CLIR pipelines

We begin by comparing the first-stage CLIR systems. PSQ-HMM performs similarly

to the QT-BM25 and DT-BM25 baselines. We attribute this to the query expansion effect

in the PSQ-HMM system, which considers more than one translation alternative. In con-

trast, QT-BM25 uses Google Translate, and DT-BM25 uses an off-the-shelf neural MT tool

to perform retrieval using the single best translation alternative. While PSQ-HMM and

QT-BM25 (except for French) fall short of the human translation baseline (HT-BM25),

document translation outperforms human translation in three out of six languages. We

speculate that the additional context available in the documents might be aiding the NMT

system to generate better translation alternatives, as opposed to the query translation

performed by humans.

Next, we compare the two mPLMs, mBERT and XLM-R, used to initialize the cross-

encoder in the PSQ pipeline. We find that the XLM-R cross-encoder, with its larger

vocabulary and twice as many layers, consistently outperforms the mBERT cross-encoder

for the PSQ and query translation pipelines across all document collections. This is con-

sistent with the finding that the depth of the model is crucial for better cross-language

generalization [88]. Additionally, for the document translation pipeline, the ELECTRA

cross-encoder yields better retrieval effectiveness than the BERT cross-encoder in all doc-

ument collections.

When comparing the various CLIR pipelines, we find that the document transla-

tion pipeline outperforms the PSQ and query translation pipelines in terms of CLIR ef-

fectiveness. This can be attributed to the first-stage system using document translation
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performing better than the other two first-stage systems. The PSQ pipeline is the next

best-performing pipeline, as it outperforms the query translation pipeline in all languages

except French. This finding is noteworthy, as it shows that reasonable CLIR performance

can be achieved by using queries and documents in their original form. However, it is

important to consider the feasibility of using document translation pipelines, especially in

scenarios where content is rapidly generated, such as in streaming applications, as each

new document needs to be translated. We explore this aspect in detail in Chapter 6. Over-

all, in the absence of external translation systems, the PSQ pipeline provides a reasonable

alternative for CLIR, and from here on, we conduct our experiments using it as the baseline.

3.6 In-depth Analysis of CREPE

In this section, we aim to understand why CREPE works and the impact of different

first-stage CLIR systems on the CREPE approach.

3.6.1 Ablating CREPE

To analyze the impact of CREPE on CLIR effectiveness, we conduct an ablation

study. We choose the best reranker, XLM-R, using title queries trained with CREPEs

from the PSQ-HMM CLIR system as the default condition. We then subsequently create

new training datasets by switching from CREPE to the stochastic approach for either

the positive samples (relevant documents) or the negative samples (judged non-relevant

documents). More specifically, in the case of ablating positive samples, we swap the passage

returned by the PSQ-HMM with the first passage of the document, keeping the negative
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Table 3.3: Analyzing CREPE: The default model is XLM-R fine-tuned with the dataset
created using the CREPE approach. ∆ denotes the average relative increase (+) or decrease
(-) compared to the default model.

Reranker POS NEG EN-FR EN-ES EN-IT EN-FI ∆

XLM-R - Default PSQ-HMM PSQ-HMM 0.4930 0.5260 0.4242 0.5110 -
Ablating CREPEs (Section 3.6.1)

-negative PSQ-HMM First 0.4649 0.5007 0.3770 0.4866 -6.4%
-positive First PSQ-HMM 0.3956 0.4394 0.3653 0.4154 -17.1%

Tuning positive CREPEs (Section 3.6.2)
2CREPE PSQ-HMM PSQ-HMM 0.4907 0.5171 0.4106 0.5024 -1.76%

1CREPE+FirstP PSQ-HMM+First PSQ-HMM 0.4834 0.5007 0.4117 0.5141 -2.27%
3CREPE PSQ-HMM PSQ-HMM 0.4801 0.5164 0.4091 0.4819 -3.42%

Choice of CREPEs (Section 3.6.3)

Swapping both GT GT 0.4965 0.5274 0.4288 0.5354 +1.90%
HT HT 0.4997 0.5278 0.4238 0.5467 +0.07%

Swapping positive GT PSQ-HMM 0.5032 0.5231 0.4279 0.5319 +1.80%
HT PSQ-HMM 0.4962 0.5284 0.4245 0.5176 +0.08%

Swapping negative PSQ-HMM GT 0.4933 0.5140 0.4073 0.5279 -0.06%
PSQ-HMM HT 0.4249 0.5180 0.4140 0.5165 -1.96%

samples unchanged. For unjudged documents, we use the same passage as used in the

training of the default XLM-R model. We then fine-tune the reranking model with the

ablated dataset using the same setup as described in Section 3.3. Alternatively, we replace

the negative samples only and fine-tune the model again.

The first group of rows in Table 3.3 analyzes the impact of swapping the training

strategies. Both cases, involving positive and negative samples, see a drop in MAP com-

pared to the default setting; this is observed across the four languages used in this study.

However, the drop from swapping out CREPEs for positive samples (17.1%) is twice as high

as the drop from swapping out CREPEs for negative samples (6.4%). This suggests that

training the reranker with positive CREPEs from the PSQ-HMM system is particularly

useful.
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3.6.2 Tuning positive CREPE

Instead of using the best single passage from the PSQ-HMM for training, we try

selecting more passages and see how that affects MAP. Specifically, we select top-m passages

from the PSQ-HMM system and add them to the training set. We also try hybrid strategies

of adding the best passage(s) from the PSQ-HMM system and the first passage from the

document, which we explored in Section 3.4 We refrain from adding more than one negative

sample (per document). By design, we have more non-relevant than relevant documents,

and this choice avoids increasing that skew. The second group of rows in Table 3.3 present

the results of tuning the positive CREPEs. In comparison to the default model, we see

no improvements in increasing the number of positive instances using both top-m passages

and the hybrid strategy, with a drop in effectiveness as more instances are added. This

suggests that an integer count-based threshold to select passages might not be the best

choice; instead, a score-based approach to select passages that exceed a certain threshold

might work well, as observed in Rudra and Anand [159]. However, the challenge lies in

computing a global score threshold given the unnormalized PSQ-HMM scores.

3.6.3 Choice of CREPE

Next, we analyze whether we get further improvements by swapping PSQ-HMM to

query translation using either Google or human-created monolingual queries to produce

better CREPEs. Specifically, we use our baseline PSQ-HMM retrieval system to retrieve a

set of documents for a given query. After that, we score the passages from those retrieved

documents using the monolingual BM25 system by using the translated query produced by
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either Google Translate (GT) or using a human-translated query (HT). We then pick the

highest scoring passage as per the monolingual retrieval system and then follow the same

process of creating the dataset as listed in Section 3.2.1. Once the dataset is created, we

train the model using the same setup as described in Section 3.3

The third group of rows in Table 3.3 presents the results of switching between PSQ-

HMM, GT, and HT for generating CREPE. We observe MAP improvements over the de-

fault PSQ-HMM using the CREPE from GT or HT. Except in Finnish, CREPEs using GT

outperform those produced by HT. However, the improvements are fairly modest compared

to the default PSQ-HMM, except in Finnish, where they improve the results substantially.

This demonstrates that the training of the model using CREPEs from PSQ-HMM is fairly

robust.

Similarly, we conduct a fine-grained analysis by swapping the first-stage system for

either the positive or negative sample, keeping the other constant (PSQ-HMM). Looking

at Table 3.3, it is clear that, except for Finnish, essentially all of the gains are coming

from using CREPE to sample positives. This might also be related to the finding from

the ablation study in Section 3.6.1, where we observed a sharp drop in MAP on switching

from CREPE to stochastic approach for positive samples. However, except for Spanish,

MAP decreases when using query translation to sample CREPE negatives. This leads us

to conclude that for sampling negatives, using signals from an improved lexical system

instead of the underlying PSQ-HMM model doesn’t necessarily help. Rather than relying

on a different system, it may be better to use the same lexical system to sample passages

that it finds most confusing. Whereas for positive samples, an improved lexical system can

find training passages that the reranker can use to learn a better model.
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3.7 Chapter Summary

In this chapter, we introduce the CREPE approach, which leverages the first-stage

CLIR systems in both the training and querying phases of retrieve-and-rerank CLIR pipelines.

By using CREPE, we can subselect passages to be scored by a cross-encoder during the

querying phase, balancing retrieval effectiveness and query latency. We propose several

Pareto-optimal selection strategies that combine the FirstP strategy with CREPE. During

the training phase, we integrate signals from the first-stage system using CREPE to fine-

tune the contextual embeddings, leading to better effectiveness than traditional strategies

that do not use text signals. We evaluate our approach on CLEF document collections

in several languages, and our results show significant improvements over the first-stage

retrieval system and over neural rerankers trained using the stochastic approach.
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Chapter 4: Transfer Learning for Neural CLIR1

In Chapter 3, we examined several retrieve-and-rerank pipelines. These pipelines

involve first-stage CLIR systems whose output is fed to interaction-based pointwise cross-

encoders that utilize PLMs acting as neural rerankers. While using these cross-encoders for

reranking has proven effective, a major challenge arises when reranking multiple documents

in response to a query due to the linear growth in time complexity as the document collec-

tion increases in size. As a result, the number of documents to be reranked must be tuned

to strike a balance between query latency and retrieval effectiveness. The primary cause of

this increase in time complexity is that the cross-encoder computes contextual embeddings

over the concatenated sequences of query and document tokens, which is then coupled with

quadratic time and space complexity of self-attention in the PLM’s transformer layers.

On the other hand, a different neural ranking model, known as the representation-based

model, computes the query and document embeddings separately, providing two distinct

advantages over retrieve-and-rerank pipelines.

Firstly, it allows for precomputing the embeddings for the entire document collection

as part of the indexing phase, and storing them in specialized indexes, enabling fast com-
1This chapter contains content from: Suraj Nair, Eugene Yang, Dawn Lawrie, Kevin Duh, Paul

McNamee, Kenton Murray, James Mayfield, and Douglas W Oard. “Transfer learning approaches for
building cross-language dense retrieval models.” In Advances in Information Retrieval: 44th European
Conference on IR Research, ECIR 2022 [127]

57



putation of approximate nearest neighbors [69, 83, 115] with sublinear time complexity in

response to a query. In contrast, the document embeddings for cross-encoders must be

computed for each query during the querying phase since the cross-encoder works with

concatenated sequences of queries and documents. Secondly, representation-based models

perform matching of the query and document representations in a shared vector space that

captures the notion of relevance using custom similarity functions such as cosine similarity.

Matching in a vector space thus helps partially mitigate vocabulary mismatches typically

found in first-stage keyword-based lexical systems, which are further exacerbated in the

case of CLIR due to translation errors.

Representation-based models that use PLMs as their underlying encoder, commonly

referred to as bi-encoders, have become increasingly prominent in monolingual retrieval

applications [87, 152, 194]. The term ”bi” refers to the individual encoders used for pro-

cessing queries and documents, which can either be shared between the two or kept separate.

These bi-encoder models can be broadly classified into two variants: single-representation

and multi-representation. Single-representation bi-encoders [87, 105, 106, 107, 108, 194]

encode queries and documents to generate a fixed-size single aggregated representation.

While the compression of document and query embeddings into single vectors results in

a lower indexing footprint and reduced query latency, this comes at the cost of reduced

expressiveness, which can impact retrieval effectiveness. This is primarily due to the fact

that queries, which are usually shorter in length than documents, lack the joint context in

bi-encoders that cross-encoders utilize to generate better contextual embeddings. More-

over, compressing the representations of both queries and documents into single vectors

can result in information loss that adversely affects retrieval effectiveness.
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In contrast, multi-representation bi-encoders [77, 89] generate multiple vectors for

queries and documents, built on top of individual term embeddings for matching. While

using multiple vectors has the potential to recover some of the information loss in single

vectors, thereby increasing modeling expressivity, it also leads to an increase in indexing

footprint and query latency. Thus, designing bi-encoders that can balance the tradeoff

between retrieval effectiveness and indexing/query latency becomes crucial. Currently,

ColBERT [89], a multi-representation bi-encoder that computes the similarity between

each query term representation and each document term representation, provides the best

tradeoff in monolingual retrieval applications. In this chapter, we explore a generalization

of the ColBERT approach that supports CLIR.

The generalization of ColBERT to CLIR is not trivial and poses two problems. First,

the bi-encoder must be able to process the query and document languages to perform CLIR.

Second, finding appropriate CLIR resources for training the bi-encoder model is challenging

due to the lack of large-scale collections like the MS MARCO [11] dataset, which is widely

used for training monolingual neural retrieval models. To address these challenges, this

chapter introduces ColBERT-X, a generalization of ColBERT for CLIR. We utilize XLM-

R [40], an MPLM, to initialize the bi-encoder model, enabling us to perform CLIR. We

employ cross-lingual transfer learning techniques to train two variants of ColBERT-X: zero-

shot, where the model is trained on MS MARCO in English, and translate-train, where we

use machine-generated translations of MS MARCO passages paired with English queries

as the training resource.

The remaining sections are in the following order. In Section 4.1, we introduce the

details of ColBERT-X and the process by which we train the model for CLIR. Section 4.2
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introduces the experimental setup used to evaluate the ColBERT-X model. We present

the effectiveness of ColBERT-X in Section 4.3, followed by improvements to ColBERT-X

in Section 4.4. We conduct several analyses in Section 4.5 and conclude the chapter with

a summary in Section 4.6.

4.1 ColBERT-X

MaxSim MaxSim MaxSim

Score

Query Document

Figure 4.1: ColBERT-X multi-representation bi-encoder architecture

ColBERT is a bi-encoder model that utilizes monolingual BERT [48] to encode both

query and document terms.2 The model follows the single-representation bi-encoder archi-
2In this setting, the query and the document encoders share the parameters as they are initialized with

the same BERT models. Note that this is distinct from the DPR [87] model, where the query and the
document encoder do not share the parameters.
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tecture, which computes contextual term embeddings separately for queries and documents.

Additionally, inspired by the cross-encoder architecture, ColBERT adds a single layer of

interaction called the “late-interaction,” which operates on the contextual term embeddings

computed from the previous step. By combining the strengths of the two architectures,

ColBERT aims to create a unified model.

The key design choice of ColBERT is the function used in the late-interaction step

since multiple options are available. While a single transformer layer is a straightforward

choice from cross-encoders, ColBERT uses MaxSim, a heuristic inspired by term matching

in the vector space, as shown in Figure 4.1. MaxSim finds the most similar document term

for a given query term by utilizing a custom similarity function applied to the contextual

query and document term embeddings. This setup closely follows those found in keyword-

based systems, which reward the lexical match between the query and document terms,

but in a vector space. However, the main benefit of MaxSim lies in its ability to function

as a first-stage system that helps triage the set of documents for the late-interaction step.

Although ColBERT allows for the separate computation of query and document em-

beddings, the time complexity of the late-interaction step grows linearly as the document

collection scales, the same as in the cross-encoder. To address this issue, ColBERT operates

in two modes. The first mode is similar to the retrieve-and-rerank architecture introduced

in Chapter 3, where a first-stage retrieval model produces the initial set of documents,

which are then fed to the ColBERT late-interaction step, functioning as the reranker. This

mode is referred to as “reranking.” One disadvantage of this mode is that the overall recall

of the system is limited to the recall of the initial set. In the context of CLIR systems, we

face the additional complexity of crossing the language barrier, which further affects recall.
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In the second mode, ColBERT utilizes the MaxSim heuristic to create the initial set

of documents by employing nearest-neighbor techniques. For each query term embedding,

the model identifies the k nearest document terms using fast Approximate Nearest Neigh-

bor (ANN) methods. These terms are then mapped to their respective document ids, and

the initial (unordered) set of documents is generated by computing the union of these ids.

Subsequently, the late-interaction step reranks this set, as in the reranking mode. The

advantage of MaxSim over traditional keyword-based matching systems is that the contex-

tual term embeddings for queries and documents can be fine-tuned on a training collection

with relevance judgments, thus improving recall beyond lexical matches. Equation 4.1

shows how the final score of the document is computed as the sum of individual query term

contributions.

sq,d =

|q|∑
i=1

max
j=1..|d|

η(qi) . η(dj)
T (4.1)

Here, η denotes the monolingual BERT encoder, and the similarity function is chosen

as the dot product between the two vectors.

To generalize ColBERT to CLIR, we replace monolingual BERT with XLM-R. We

call the resulting model ColBERT-X. Initializing the encoder to a multilingual model allows

retrieval in any language supported by the embeddings. However, these models must be

trained before they can be used for CLIR.

4.1.1 CLIR Training Strategies

ColBERT was trained using pairwise cross-entropy loss on MS MARCO [11] triples,

which consists of an English query, a relevant English passage, and a non-relevant English
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Zero-Shot Translate-Train

Figure 4.2: Two ColBERT-X Transfer Learning Pipelines: Zero-Shot (left) and Translate-
Train (right). Dashed boxes denote the components used during the training step. In the
zero-shot scenario, ColBERT-X trained on English MS MARCO is applied directly to the
translated queries. With the translate-train setting, the training set consists of translated
passages to enable ColBERT-X to cross the language barrier.

passage. To train ColBERT-X for CLIR, we explored two strategies from the cross-language

transfer learning literature:

1. Zero-Shot: This is a common technique in which a multilingual model (e.g., mBERT

or XLM-R) is trained in a high-resource language (usually English) and then applied

to the document language. In this chapter, we first train a ColBERT-X model ini-

tialized with an XLM-R encoder on English MS MARCO passage ranking triples.

At query time, we use machine translation (MT) to translate the English query to

the document language, and use the trained ColBERT-X model to perform retrieval

in the document language using Equation 4.2. q̂ is the translated query. Multilin-

gual language models have demonstrated good cross-language generalization in many

63



other natural language processing tasks; we hypothesized it would also work well for

CLIR. Notably, the proposed zero-shot with translated queries is different from the

actual zero-shot setting, where the queries and documents would be in their respec-

tive native languages. We observe higher effectiveness when using translated queries

compared to using queries and documents in different languages. One reason for this

could be the absence of explicit cross-language supervision during the pre-training of

multilingual models, which can affect their generalization during zero-shot transfer,

as noted by Karthikeyan et al. [88].

sq̂,d =

|q̂|∑
i=1

max
j=1..|d|

η(q̂i) ∗ η(dj) (4.2)

2. Translate-Train: In this setting, an existing high-resource language (e.g., English)

collection is translated into the document language. As in zero-shot training, we

choose training triples from the MS MARCO passage ranking collection and use a

trained MT model to translate them. Since our focus here is on using English queries

to retrieve content in non-English languages, we pair the original English queries with

machine translations of relevant and non-relevant MS MARCO passages to form new

triples. We then train ColBERT-X on these newly constructed triples in the same

manner as ColBERT.

Figure 4.2 shows these two pipelines. The key difference is that in the zero-shot

setting, we have a single ColBERT-X model for a given query language (in this case,

English) that is used for retrieval in multiple document languages. In the translate-train

setting, we train a ColBERT-X model for each query-document language pair.
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4.1.2 Retrieval

While we train ColBERT-X on passages, our goal is to rank documents. We split

large documents into overlapping passages of fixed length with a stride. During indexing,

we use the trained ColBERT-X model to generate term representations from these passages.

These representations are stored in a FAISS-based ANN index [83], and are saved to disk

for subsequent MaxSim computation. At query time, we generate a ranked list of passages

for each query and then use a document’s maximum passage score as its document score.

4.2 Experiments

In this section, we describe the following: the test collections, the training and re-

trieval design choices for ColBERT-X, the MT systems utilized, the baselines, and the

evaluation measures.

4.2.1 Collection Statistics.

Table 4.1 provides details for the test collections used in our experiments. We worked

with several languages from the 2000 to 2003 Cross-Language Evaluation Forum (CLEF)

evaluations [145], using news collections for French, German, Italian, Russian, and Spanish.

We also conducted experiments using the new CLIR Common Crawl Collection (HC4) [99],

where the documents are newswire articles from Common Crawl in Chinese or Persian.

Throughout, English queries are used to search documents in a non-English language.

We experiment with title and description queries. The MS MARCO [11] passage ranking
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dataset, which we use for training ColBERT-X, consists of roughly 39M training triples,

spanning over 500k queries and 8.8M passages.

4.2.2 ColBERT-X Training and Retrieval.

Our two ColBERT-X model strategies, zero-shot (ZS) and translate-train (TT), are

trained using mostly the same hyperparameters used to train the original ColBERT model.3

We replaced the BERT encoder with the XLM-RoBERTa (large) encoder provided by the

HuggingFace transformers [187] library (but see Section 4.5.2 for mBERT results). To

generate passages from documents, we use a passage length of 180 tokens with a stride of

90 tokens. We index these passages using the trained ColBERT-X model in the same way

as the original ColBERT model setting.4

4.2.3 Machine Translation.

For CLEF document languages, we use MS MARCO passage translations5 from Boni-

facio et al. [22], and the same MT model to translate queries. For the HC4 languages, we

use directional MT models built on top of a transformer base architecture (6-layer en-
3We increase our batch size from 32 to 128
4https://github.com/stanford-futuredata/ColBERT#indexing
5https://github.com/unicamp-dl/mMARCO

Table 4.1: Test collection statistics for the CLEF and HC4 newswire collections.

Collection HC4 HC4 CLEF CLEF CLEF CLEF CLEF
Chinese Persian French German Italian Russian Spanish

#documents 646K 486K 129k 294k 157k 16k 454k
#passages 3.6M 3.1M 0.7M 1.6M 0.8M 0.1M 2.7M
#queries 50 50 200 200 200 62 160
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coder/decoder) using the Sockeye toolkit. [49] To produce translations of MS MARCO, the

original passages were split using ersatz [186], and sentence-level translation was performed

using the trained MT model.

4.2.4 Baselines.

We compare these two strategies with several lexical and neural reranking baselines,

grouped as follows:

• Human Translation: Monolingual retrieval using Anserini BM25 [199] with the document-

language queries provided in the test collection.

• Query Translation: BM25 retrieval using translated queries produced by a specific

MT model and original documents in the target language.6

• Reranking: We rerank query translation baseline results using the publicly available

multilingual T5 reranker7 trained on translated MS MARCO in 8 languages [22].

4.2.5 Evaluation.

We evaluate ranking using Mean Average Precision (MAP). Differences in means are

tested for significance using a paired two-tailed t-test (p < 0.05) with Holm-Bonferroni

multiple test correction.
6We use the same MT model to translate the queries as the one used to translate the MS MARCO

passages.
7https://huggingface.co/unicamp-dl/mt5-base-multi-msmarco
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Table 4.2: Effectiveness results (MAP) for CLIR HC4 and CLEF collections using title
queries. Statistically significant improvements over the query translation and reranking
baselines are marked with ∗ and † respectively.

Collection(→)
Model

HC4
Chinese

HC4
Persian

CLEF
French

CLEF
German

CLEF
Italian

CLEF
Russian

CLEF
Spanish

human translation
BM25 0.301 0.276 0.403 0.304 0.350 0.452 0.452
ColBERT-X (ZS) 0.510 0.343 0.401 0.360 0.328 0.479 0.418
query translation
BM25 0.237 0.211 0.387 0.263 0.275 0.377 0.405
reranking
BM25+mT5-multi 0.312 - 0.333 0.297 0.279 0.303 0.370
our methods
ColBERT-X (ZS) 0.450∗† 0.297∗ 0.382† 0.328∗† 0.272 0.418† 0.379
ColBERT-X (TT) 0.408∗† 0.310∗ 0.422† 0.397∗† 0.339∗† 0.410† 0.415†

4.3 Retrieval Effectiveness of ColBERT-X

Table 4.2 compares the effectiveness of our models to the baselines. Our main finding

is that both ColBERT-X variants perform better than BM25 query translation baselines in

general. ColBERT-X (ZS) trained using English MS MARCO alone performs better than

the query translation baseline BM25 and fine-tuning the ColBERT-X (TT) on translated

MS MARCO data helps improve the effectiveness further. These gains are statistically

significant in both HC4 collections and many of the CLEF collections.

We also compare the ColBERT-X variants to the multilingual T5 reranker that

reranks the query translation baseline output. In each of the collections, ColBERT-X

(with 550M parameters) performs consistently and significantly better than the reranker

(580M parameters). This is particularly interesting in CLEF collections since both the
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mT5 reranker and ColBERT-X (TT) was trained on the same MS MARCO translations.

However, training the reranker on a combined dataset in 8 languages highlights the curse

of multilinguality [40]. This refers to the degradation in the system’s performance as the

number of supported languages increases.

When we compare the two variants of ColBERT-X, we observe that, on average,

translate-train often does better than zero-shot, but these differences are only significant

in CLEF collections except Russian and not in HC4 collections. The difference is likely

a result of using different MT models in CLEF and HC4 collections, so we conduct this

analysis later.

4.4 Improving ColBERT-X effectiveness: Pseudo-Relevance Feedback

Pseudo-relevance feedback (PRF) is a form of query expansion that adds discrimina-

tive terms extracted from a set of “feedback” documents. While PRF has been explored for

pre- and post-translation query expansion [121], here we choose cross-language expansion

terms using the ColBERT-X term representation, as recently suggested by Wang et al.

[184]. First, the feedback documents (fb-docs) are selected from the top of a ColBERT

ranked list. Next, embeddings of terms from the feedback documents are clustered into m

distinct clusters.

The top-ranked centroids of these m clusters8 are then used as feedback embeddings

(fb-embs) for query expansion. These fb-embs are added to the original query terms, and

the ColBERT MaxSim heuristic is applied to the resulting queries to produce the final
8Each cluster centroid representation is mapped to the nearest document token using the ANN index,

with the document token IDF as the score
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Table 4.3: MAP for query translation BM25 and ColBERT-X translate-train, with and
without PRF. ∗ and † denote significant improvements over BM25 with PRF and ColBERT-
X (TT) respectively

Retrieval
Model

CLEF
French

CLEF
German

CLEF
Italian

CLEF
Spanish

baseline
BM25 0.387 0.263 0.275 0.405

ColBERT-X (TT) 0.422 0.397 0.339 0.415
with PRF

BM25 0.410 0.321 0.320 0.438
ColBERT-X (TT) 0.459∗† 0.406∗† 0.371∗† 0.436†

ranked list. We generalize this approach to the ColBERT-X CLIR setting.

To better understand the effect of PRF, we compare ColBERT-X (TT) and query

translation BM25, with and without PRF. For BM25, we use Anserini’s RM3 implemen-

tation to perform PRF with default hyperparameter values. For ColBERT-X PRF, we

extend Terrier’s [139] implementation9 with default hyperparameters in the ranking set-

ting. Table 4.3 shows the effect of PRF on ColBERT-X translate-train performance using

MAP. Except in Spanish, applying PRF to ColBERT-X significantly improves effectiveness

compared to ColBERT-X without PRF as well as BM25 with PRF.

4.5 Detailed Analysis

This section considers several aspects of ColBERT-X. First, different machine trans-

lation models are compared using both MT and CLIR measures. Second, effects of dif-

ferent multilingual encoders are explored. Third, the impact of pseudo-relevance feedback

is examined. Then the influence of query length on performance is considered. Finally,
9https://github.com/terrierteam/pyterrier_colbert
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ColBERT-X costs in terms of index size are noted.

4.5.1 Effect of Machine Translation

ColBERT-X utilizes machine translation in two different ways depending on whether

it is trained using the zero-shot strategy or the translate-train strategy. In the zero-shot

strategy, the queries are translated to the document language at query time, while the

translate-train strategy requires an MT system to translate the monolingual training corpus

(in this case, the MS MARCO passages) to the document language. The MT systems used

to produce translations include:

• OpusMT – bidirectional MT model(s) with MarianNMT as the base architecture, 10

released by the Helsinki NLP group from Bonifacio et al. [22].

• SockeyeMT1 – MT model built on top of a transformer base architecture (6-layer

encoder/decoder) trained on bitext. Depending on language, these include publicly

available bitext such as OpenSubtitles, UN Corpus, Europarl, and WMT. The model

is trained using AWS Sockeye v2 [49].

• SockeyeMT2 – identical model architecture to SockeyeMT1 but trained with 2x -

3x more bitext. The number of training sentence pairs for MT1 v.s. MT2 are,

respectively, 51M v.s. 120M for Russian, 36M vs 85M for Chinese, and 6M v.s. 11M

for Persian.

Table 4.4 provides an intrinsic comparison of the systems translating from English on

a translation task using BLEU scores [140]. BLEU is a metric used to evaluate the quality
10https://huggingface.co/Helsinki-NLP
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Table 4.4: BLEU scores for translation systems using WMT’19 newstest for Chinese and
Russian, and TICO-19 (from OPUS11) for Persian. These are computed on test sets distinct
from the CLIR collections, so the absolute BLEU score is not an exact reflection of the
quality of translations in CLIR experiments. Nevertheless, the relative comparison of BLEU
scores among MT systems is meaningful.

Language
Benchmark

Russian
newstest’19

Chinese
newstest’19

Persian
tico-19

OpusMT 26.3 14.6 -
SockeyeMT1 32.1 25.8 4.4
SockeyeMT2 35.9 38.6 20.2

of machine translations, which measures the similarity between the machine-generated

translation and one or more human-generated reference translations. For Russian and

Chinese, we evaluated using newstest’19 dataset from the shared task in Workshop in

Machine Translation (WMT); for Persian, we evaluated with TICO-19, a collection of

about 3000 sentences about COVID-19, as no WMT test data is available. Scores were

calculated with sacrebleu [148] using the lowercase i.e., -lc setting. The table reveals that

SockeyeMT outperforms OpusMT and that exposing SockeyeMT to more training data

improves the BLEU score.

Table 4.5 shows that improving BLEU scores likely leads to improvements in CLIR
11https://opus.nlpl.eu/

Table 4.5: Effect of different MT models for ColBERT-X at query time and training time
on the downstream CLIR task, measured using MAP scores.

MT
model

CLEF
Russian

HC4
Chinese

HC4
Persian

OpusMT 0.418 0.411 -
SockeyeMT1 0.442 0.391 0.230
SockeyeMT2 0.461 0.450 0.297

(a) ColBERT-X zero-shot

MT
model

CLEF
Russian

HC4
Chinese

HC4
Persian

OpusMT 0.410 0.365 -
SockeyeMT1 0.459 0.389 0.287
SockeyeMT2 0.456 0.408 0.310

(b) ColBERT-X translate-train
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Table 4.6: MAP scores for ColBERT-X (TT) initialized with the mBERT and XLM-R
encoders, and trained on SockeyeMT1 MS MARCO translations.

Multilingual
Model

CLEF
Russian

HC4
Chinese

HC4
Persian

mBERT 0.341 0.284 0.173
XLM-R 0.459∗ 0.389∗ 0.287∗

for both training strategy. Table 4.5a shows the results of translating queries in the zero-

shot strategy. While BLEU improvements tend to be realized downstream, this is not seen

for HC4 Chinese where OpusMT has a better MAP score than SockeyeMT1. It should be

noted that asking MT systems to translate title keyword queries may not align well with

how the systems were trained with complete sentences.

Table 4.5b shows results for using different translation models on MS MARCO triples,

and the effect this has on ColBERT-X retrieval as measured using MAP. Again, we see

that the MAP scores tend to improve with improved BLEU; however, in this case the

improvement in Russian BLEU from Table 4.4 between SockeyeMT1 and SockeyeMT2 does

not carry over to ColBERT-X, where the performance is essentially the same. Generally,

one can expect that improving MT quality will lead to improved effectiveness of ColBERT-

X.

4.5.2 Effect of Multilingual Language Models

Comparing different multilingual encoders to initialize ColBERT-X, we observe that

XLM-R performs significantly better than mBERT, as shown in Table 4.6. While this

might be unsurprising given that the XLM-R model is twice as large and was pretrained

on more data than mBERT, tokenization differs across the languages. Considering the
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Table 4.7: MAP results for ColBERT-X (TT) model using different query representations.
∗ and † denote significant improvements over title and description queries respectively.

Query
Representation

CLEF
French

CLEF
German

CLEF
Italian

CLEF
Spanish

title 0.422 0.397 0.339 0.415
description 0.434 0.410 0.380 0.456

title+description 0.507∗† 0.466∗† 0.424∗† 0.500∗†

case of Chinese, mBERT tokenization produces character-level tokens, whereas the XLM-

R tokenizer generates subwords (sentencepieces). This also implies that mBERT indexes

are larger than XLM-R indexes, resulting from the term-level storage requirements of the

ColBERT-X model.

4.5.3 Effect of Longer Queries

Table 4.7 analyzes the effect of different query representations on the ColBERT-X

translate-train. We compare three representations: title (t), which usually corresponds to a

short Web search query; description (d), a well-formed sentence describing the information

need, and title+description (td), the concatenation of the two. Longer queries pose a

problem for ColBERT-X, however, since the model only supports queries up to 32 tokens

long. To mitigate this problem, we use a list of “stop structures”[4] consisting of phrases

(e.g. find documents on, reports of, etc.), which have been shown to work in the past,

removing them from the td queries. We observe that td with stop structures removed leads

to significant improvements over t or d alone.
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4.5.4 Indexing Space Footprint

In addition to the FAISS-based ANN index, ColBERT-X requires access to the rep-

resentation of each passage term to compute MaxSim. With each term embedded as a

128-dimensional vector and each embedding dimension represented using 16-bits, we would

need 256 bytes of storage per term. These are onerous storage requirements, with the index

sizes increasing with the collection size. Table 4.8 provides collection-specific statistics on

the disk space required to store the document collections. An important design artifact

that affects the index size is the way passages are generated from the documents. Since we

employ a sliding window of document tokens, this means most of the tokens have two term

representations generated.

Table 4.8: Collection-specific memory footprint.

Collection HC4
Chinese

HC4
Persian

CLEF
French

CLEF
German

CLEF
Italian

CLEF
Russian

CLEF
Spanish

#passages 3.6M 3.1M 0.7M 1.6M 0.8M 0.1M 2.7M
Disk Space 154GB 134GB 33GB 70GB 36GB 4.7GB 117GB

4.6 Chapter Summary

In this chapter, we introduce ColBERT-X, a cross-language generalization of Col-

BERT, which uses a multilingual query and document encoder to improve CLIR effective-

ness beyond what traditional systems such as BM25 can achieve. To train ColBERT-X, we

used MT systems to translate MS MARCO and create CLIR collections. We have shown

that performing cross-language expansions using ColBERT-X model with PRF can lead to
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significant gains in retrieval effectiveness. Furthermore, we have analyzed the impact of

MT on the downstream CLIR task.
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Chapter 5: Efficient First-Stage Sparse Bi-Encoders for CLIR1

First-stage retrieval systems play an essential role in multi-stage retrieval architec-

tures by identifying top-k documents from a large collection while focusing on high recall,

i.e., finding as many relevant documents as possible for a given query. However, it is

equally important that these systems process the documents efficiently to maintain the de-

sired query latency through the subsequent expensive stages of the retrieval architecture,

including reranking. In Chapter 3, we explored traditional first-stage CLIR systems that

are part of the retrieve-and-rerank architecture. These systems relied on the outputs of

translation models, which impacted recall while using inverted indexes to facilitate fast

retrieval. In Chapter 4, we explored a vector-similarity-based first-stage CLIR system that

leveraged contextual embeddings from multilingual bi-encoders fine-tuned on translated

retrieval collections, contributing to its high recall while utilizing techniques from ANN

systems for fast retrieval. This chapter introduces another set of first-stage CLIR systems

that use contextual embeddings from multilingual bi-encoders to learn sparse vectors.
1This chapter contains content from following papers:

• Suraj Nair, Eugene Yang, Dawn Lawrie, James Mayfield, and Douglas W Oard. “Learning a Sparse
Representation Model for Neural CLIR.” In Proceedings of the Third International Conference on
Design of Experimental Search & Information REtrieval Systems, San Jose, CA, 2022 [128], and

• Suraj Nair, Eugene Yang, Dawn Lawrie, James Mayfield, and Douglas W Oard. “BLADE: Com-
bining Vocabulary Pruning and Intermediate Pretraining for Scaleable Neural CLIR.” In Prepara-
tion. [130]
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The primary motivation is to harness the knowledge of PLM stored in their language

modeling (LM) head to build a sparse representation for queries and documents. The

core idea is to represent queries and documents in a high-dimensional space defined by

PLM’s vocabulary, where only a few dimensions (corresponding to vocabulary terms) have

non-zero values. The advantage of sparse representation is that these non-zero document

term weights can then be stored in an inverted index, allowing the efficiency of traditional

sparse retrieval approaches to be exploited. In addition, the sparsity of the representation

allows for inspecting the model outputs and building explainable models. Furthermore, this

framework allows for query or document expansion by generating weights for terms that

did not appear in either the queries or documents but plausibly could have. This approach

thus could potentially help in partially mitigating the vocabulary mismatch issue faced by

the bag of words models such as BM25 [60, 154].

The use of PLMs (e.g., BERT [48]) to learn such sparse representation models has be-

come increasingly popular in monolingual information retrieval applications, particularly

for English content. With the availability of large-scale training collections such as MS

MARCO [11] that have been translated into multiple languages [22, 127] and an increasing

variety of sparse representation models for monolingual retrieval [10, 45, 55, 56, 104, 118,

204, 210], a natural question is whether extending these ideas to CLIR involves anything

more than simply replacing a monolingual pretrained model (e.g, BERT) with a multilin-

gual model (e.g., mBERT [48] or XLM-R [40])? However, we identify two main challenges

when it comes to building sparse bi-encoder models that utilize the vocabulary space of the

underlying PLM.

Firstly, the vocabulary size of MPLMs such as mBERT and XLM-R is roughly 3 to
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7 times larger than the size of monolingual BERT vocabulary, resulting in a larger dimen-

sionality of sparse vectors. This increased dimensionality can adversely impact the model’s

efficiency during the training, indexing, and querying phases. This vocabulary selection

problem is similar to that in the MT setting, where the trade-off between translation la-

tency and MT output quality, measured using automatic metrics such as BLEU [141], has

been well studied [50, 78, 169]. Similarly, in the CLIR setting, the vocabulary selection

generates a trade-off between training time, indexing latency, query latency, and retrieval

effectiveness. Secondly, the similarity of representations for terms from different languages

with similar meanings may be inadequate. We addressed this issue in Chapter 4 by learning

cross-language term associations from translated MS MARCO passages paired with English

queries using a translate-train approach. However, this setting is prone to translationese,

where the passages generated by the MT system contain translation artifacts that might

not be present if the passages were expressed in their natural forms.

To address these challenges, we first propose SPLADE-X, a bi-encoder model ini-

tialized with mBERT to generate sparse vectors for CLIR. The design of SPLADE-X is

inspired by its monolingual cousin, SPLADE [56], which has been shown to generalize well

in multiple retrieval scenarios. SPLADE-X employs a vocabulary reduction technique that

restricts the multilingual vocabulary space to the terms corresponding to the query lan-

guage only. This choice forces the model to learn query expansion to potentially include

terms that were not present in the query and, more importantly, cross-language lexical

expansions for the non-English documents, which roughly corresponds to an encoder-only

translation task. We subsequently propose BLADE, a bi-encoder model initialized with a

pruned bilingual PLM, where the output dimensions now correspond to the terms in both
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query and document languages. This allows the model to learn bilingual term expansions

for both queries and documents. Finally, we propose an intermediate pretraining step using

aligned text pairs expressed in their natural form to reduce the impact of translationese

present in translated collections.

The remainder of this chapter is structured as follows. In Section 5.1, we first give a

brief overview of SPLADE and the key terminology associated with it that we use through-

out the chapter. Section 5.2 introduces our proposed sparse CLIR models, SPLADE-X

and BLADE, describes the key changes in the modeling design and the training objectives

going from SPLADE to SPLADE-X to BLADE and compares these models to existing

traditional approaches that rely on MT. We detail our experimental setup in Section 5.3,

present our results focusing on retrieval effectiveness in Section 5.4, and query latencies in

Section 5.5. We conclude the chapter with a summary in Section 5.6.

5.1 SPLADE

Pre-BERT sparse neural retrieval models [204] generated query and document vectors

using L1 regularization, which enforces sparsity in the vectors and permits inverted indexing

that is efficient during the querying phase. The advent of BERT led to different forms of

neural ranking models, including those that generate sparse weights for query and document

terms [10, 37, 45, 55, 56, 104, 118, 210]. We can group the existing models into two

categories: a) exact-match, where weights are changed for terms that occur in queries

or documents, but no nonzero weights are added for any additional terms; or b) lexical

expansion, in which the number of terms with nonzero weights is still limited in some
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way, but some terms that did not appear in the original query or the original document

can be given non-zero weights. In the case of CLIR, the exact-match approach will not

work (or at least it will not work very well!) because the queries and documents are

expressed in different languages, generally using different words. Thus our natural point of

comparison should be lexical expansion. In a monolingual lexical expansion setting, existing

approaches either rely on off-the-shelf document expansion models such as doc2query [135]

or TILDEv2 [209] to generate additional terms, or they use the vocabulary space of the

PLMs for expansion [10]. Among the models built off of the latter framework, SPLADE [55,

56] has been shown to generalize to both in- and out-of-domain task settings, and therefore,

we choose SPLADE as the inspiration to design its cross-language cousins, SPLADE-X and

BLADE.

SPLADE [55, 56, 57, 98] is a lexical-expansion-based bi-encoder model that generates

|V |-dimensional term vectors for queries and documents, where the weights represent the

relative importance of each term. Given a query q and document d, SPLADE, initialized

with a PLM encoder η, computes the similarity score s(q, d) between them as:

s(q, d) = η(q)Tη(d) (5.1)

Here, the query and the documents encoders are initialized with the same PLM.

Let VT denote the output vocabulary space of the SPLADE model and VQ and VD be

the subword vocabularies of the query and document languages, respectively. In the case

of a monolingual SPLADE model initialized with a BERT encoder, VT is equal to the size

of the BERT vocabulary, i.e., VT = VQ = VD with |VT | = 30522. For a given document
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text sequence t of length N , SPLADE uses the masked language model head (MLM) from

the pretrained encoder to get term weights for every document subword. Specifically, for

a document (or a query) subword ti, the model generates the term weights wij for the

candidate output subword tj ∈ VT as:

wij = ϕ(hi)
T ej + bj (5.2)

where ϕ is a combination of a linear layer with GeLU [71] activation, with LayerNorm [9]

applied to the contextualized embedding hi of ti. Here ej is the j-th row of the decoder

matrix of the Language Model (LM) head, and bj is the token-level bias.

Once we have |V |-dimensional vectors for each subword in the document, an aggre-

gated vector for the document is generated by max pooling over the target vocabulary

dimensions as:

wj = max
i

log (1 + ReLU(wij)) (5.3)

A similar explanation follows for generating aggregate query vectors. Given the ag-

gregate query and document vectors, the similarity score can be computed using Eq. (5.1).

Sparsity is enforced in the document and query representations by combining ReLU [131]

activation and FLOPS [142] regularization.

SPLADE [56] uses a contrastive ranking loss to train the retrieval model. Given a

query qi, a relevant document d+i , a BM25 sampled non-relevant document d−i , and in-batch

82



documents {d−j } that we treat as not relevant, the contrastive ranking loss is:

Lrank = − log es(qi,d
+
i )

es(qi,d
+
i ) + es(qi,d

−
i ) +

∑
j e

s(qi,d
−
j )

(5.4)

In SPLADE, the contrastive ranking loss was trained on MS MARCO [11] training triples.

We refer to this step as task-specific fine-tuning. Subsequent versions [55, 57] introduced

distillation loss and a hard negative mining step. SPLADEv2 [55] leverages Margin-MSE

loss [74] for distilling knowledge from a teacher cross-encoder trained on a monolingual

corpus to the student SPLADE model. Once a model is trained using a combination of

ranking and distillation loss, SPLADEv2 additionally mines for harder negatives using the

trained model to conduct another round of training.

The choice of using LM head allows the SPLADE model to take advantage of the

knowledge acquired during the pretraining phase of PLM, which involves self-supervised

learning. Additionally, the model can learn to expand both queries and documents to

include related terms that may not have been present in the original text. Sparsity plays a

crucial role in this setting, as it helps control the expansion factor of queries and documents,

preventing the expanded queries and documents from becoming too large and negatively

impacting the query latencies and inverted index size.

5.2 Sparse Bi-Encoders for CLIR

Building a document expansion model that generalizes well beyond English is already

a challenging problem [36, 168], one that becomes even more challenging given the explosive

growth in the vocabulary size of multilingual pretrained models such as mBERT (110k) and
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XLM-R (250k). These are 3 to 7 times the size of the monolingual BERT vocabulary (35k).

The increased dimensions impact efficiency, as the larger vocabulary |V | leads to increased

memory use during training and higher latencies during the indexing and querying phases.

It is these two factors, the need to generalize across languages and the potential benefits

of limiting the vocabulary size, that distinguish CLIR applications of lexical expansion

methods from their monolingual cousins. In this section, we introduce two sparse CLIR

models, SPLADE-X and BLADE, and discuss their key design choices and the training

process.

5.2.1 SPLADE → SPLADE-X

Generalizing the SPLADE model for CLIR applications, we first introduce SPLADE-

X, which uses an mBERT encoder to generate aggregate term vectors similar to SPLADE,

given a query and a document in different languages. To address the vocabulary selection

problem, we limit the expansions to query-language terms, i.e., VT = VQ for SPLADE-X.

This essentially makes SPLADE-X an encoder-only MT model that translates (or expands)

document language terms to query language terms, albeit with overgeneration and without

a target language model. To limit the expansion factor of queries and documents, we

use a top-l masking [198] scheme instead of the FLOPS regularization part of the original

SPLADE model. This technique only preserves the dimensions corresponding to the top-l

terms with the highest weights and sets the remaining weights to zero.

Like ColBERT-X in Chapter 4, we employ the translate-train approach for training

SPLADE-X to learn term associations necessary for CLIR matching. Specifically, English
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queries are paired with translated passages from English to the document language, and

a contrastive ranking loss is learned as in Eq. (5.4) using these pairs as part of the CLIR

task-specific fine-tuning. Furthermore, we introduce a multilingual distillation approach,

where a monolingual SPLADE model is chosen as the teacher to distill the knowledge to

a multilingual SPLADE-X. Instead of Margin-MSE loss as in SPLADEv2, we minimize

a KL-divergence loss to match the probability distribution coming from the teacher and

student models, as introduced in Yang et al. [198]. We omit SPLADEv2’s hard negative

mining step and only use in-batch negatives for SPLADE-X training.

5.2.2 SPLADE-X → BLADE

The architecture of BLADE is derived from its monolingual counterpart, SPLADEv2 [55],

and its cross-language variant, SPLADE-X. We preserve many of the modeling choices from

SPLADE-X, but we modify a) vocabulary selection; and b) intermediate pretraining.

5.2.2.1 Vocabulary Selection

In the original SPLADE, the output vocabulary was the same as that of the mono-

lingual BERT language model. In the case of SPLADE-X, we restricted the vocabulary

space of mBERT only to include query language terms for query and document expansion.

For BLADE, we opt instead for a pruned bilingual language model [1], mBERTen-xx. This

choice offers two advantages. First, the bilingual model consists of a pruned mBERT vo-

cabulary corresponding to the subword terms in both the query and document languages,

i.e., VT = VQ∪VD. This allows for bilingual term expansion as the model can choose related
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terms in either language for both queries and documents. Second, the bilingual model con-

tains only the embeddings corresponding to the pruned vocabulary of query and document

languages; all the remaining embeddings corresponding to subwords from other languages

are discarded. This reduces the model’s size, as most parameters of PLMs are stored in the

input/output embedding matrix. Across the six document languages we use for evaluation

in this chapter, the reduction in vocabulary size leads to, on average, a 36.5% reduction in

the number of parameters relative to the original mBERT model. With an effective batch

size of 128 on 8 V100 GPUs, this amounts to a reduction of the total training time by 30%.

With a batch size of 64 on one V100 GPU, the reduction in inference time of the BLADE

model averages 55%.

5.2.3 Intermediate Pretraining

In CLIR, the vocabulary mismatch between queries and documents poses a signif-

icant challenge for multilingual PLMs. To match terms in different languages, MPLMs

need to generate similar representations of words with the same meaning across languages.

To address this, ColBERT-X and SPLADE-X use translate-train to learn cross-language

term associations using translated mMARCO pairs. However, this approach is not without

its limitations. Specifically, machine-generated translations can introduce a phenomenon

known as translationese [182] that has been shown to affect cross-language transfer perfor-

mance due to translation artifacts [7]. Using a translate-train approach, the model learns

term associations exclusively from translated document texts rather than from what would

have been their natural written forms. To address this limitation, we propose an interme-
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diate pretraining step that uses aligned text pairs in the query and document languages,

expressed in a more natural writing style. We investigate two sources of aligned text: (1)

parallel texts, which are direct translations of one another; and (2) comparable texts, which

convey similar meanings but may not be direct translations. We describe these sources in

detail in the experimental setup in Section 5.3.

Consider a list of aligned text pairs [(PQ
1 , PD

1 ), (PQ
2 , PD

2 ), . . . , (PQ
n , PD

n )] in languages

Q and D. We compute the contrastive ranking loss similarly to Eq. (5.4). Treating PQ
i as

the query, PD
i as the relevant document, and a set of in-batch documents PD

j that we treat

as non-relevant to the query, we model the loss as:

LQD
CO = − log es(P

Q
i ,PD

i )

es(P
Q
i ,PD

i ) +
∑

j e
s(PQ

i ,PD
j )

(5.5)

The similarity score s is computed using Eq. (5.1). With this pretraining objective, an

off-the-shelf MPLM can use aligned human-written document-language and query-language

texts to learn cross-language term associations. This can serve as a complementary source

of knowledge in contrast to relying solely on machine-translated passages with the translate-

train approach.

We use a Whole Word Masking (WWM) loss in both languages Q and D, denoted as

LQ
WWM and LD

WWM, respectively. WWM masks all subwords for a given word, in contrast

to the common choice that only masks subwords which sometimes are only part of a whole
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word.2 Our overall pretraining loss Lpretrain is:

Lpretrain = LQD
CO + LQ

WWM + LD
WWM (5.6)

As a design choice, we only update the model parameters associated with the MLM head,

keeping the remaining parameters frozen. Our motivation was to avoid the catastrophic

forgetting problem of neural networks in general by limiting the number of parameters we

need to update, thereby preserving the original knowledge from pretraining.3

5.2.4 Connection to PSQ

Given English as the query language, SPLADE-X takes a sequence of terms from

a non-English document as input and outputs a corresponding set of term weights for

(only) English terms. In contrast, BLADE would output terms in both English and non-

English languages. SPLADE-X exhibits the same behavior we would expect from PSQ,

which resembles a statistical machine translation system that lacks a language model for

the generated English. Section 2.3.1 shows how PSQ can be used to generate partial

term counts in English from a non-English document by mapping term frequency vectors

from non-English to English using a matrix of translation probabilities. This results in a

sparse document representation, which contains nonzero term weights only for plausible

translations of terms that appear in the document. Because SPLADE-X and PSQ models

generate conformal representations, we can experiment with either early fusion, where
2For Chinese, we use LTP (https://github.com/HIT-SCIR/ltp) to segment words.
3We also tried updating all the model’s parameters, but that did not provide any downstream effective-

ness gain.
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the term weights in the query language from different techniques can be combined before

retrieval [126] or late fusion, in which we combine ranked retrieval results. However, early

fusion presents a challenge because both techniques must agree on the target vocabulary

tokenization beforehand to generate a sparse representation in the same output space.

Therefore, in this chapter, we experiment with a late fusion technique, Reciprocal Rank

Fusion (RRF) [41], to combine retrieval results from SPLADE-X and BLADE with PSQ.

We find that the sparse neural CLIR approaches yield results complementary to those

obtained using PSQ.

5.3 Experiments

In this section, we describe our experimental setup.

5.3.1 Test Collections & Evaluation

In our experiments, we utilize test collections from the CLEF 2003 multilingual ad-hoc

retrieval track [28] for documents in French (FR), Italian (IT), German (DE), and Spanish

(ES), and from the TREC 2022 NeuCLIR track4 for documents in Chinese (ZH)5 and Rus-

sian (RU). In every case, we use the English title field as the query, which produces queries

with lengths typical of a Web search. Table 5.1 provides collection statistics. To evaluate

effectiveness, we focus on Mean Average Precision (MAP) and Recall@100 (R@100). For

significance testing, we use a two-tailed paired t-test (p < 0.05) with Holm-Bonferroni

multiple test correction for the difference in means.
4https://neuclir.github.io/
5We use the script provided by NeuCLIR organizers to convert traditional Chinese characters to sim-

plified.
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Table 5.1: Test collection statistics. Queries are in English with at least one relevant doc,
Passages are as split for BLADE.

CLEF 03 NeuCLIR 22
FR IT DE ES ZH RU

Queries 52 51 56 57 47 44
Documents 130K 158K 295K 454K 3,179K 4,628K
Passages 0.5M 0.6M 1.3M 2.1M 18.3M 21.6M

5.3.2 Parallel and Comparable Corpora

For BLADE intermediate pretraining, we explore parallel and comparable texts from

publicly available sources. For sentence-aligned parallel text, we use a diverse range of

OPUS [176] corpora, including from EuroParl [92], GlobalVoices,6 MultiUN [53], News-

Commentary,7 QED [2], TED [153], UNPC [211], and WMT-News [13].

Prior work has primarily used parallel corpora of aligned sentences to train MT sys-

tems. However, using only the limited context present in aligned sentences to fine-tune a

PLM may be suboptimal for CLIR. To test this hypothesis, we also created a new passage-

aligned parallel corpus. For each source of bitext above, we obtain the original monolingual

corpora in the query and document languages, along with the sentence-level alignment file.

We then generate a list of aligned sentences within these documents using the informa-

tion provided in the alignment file.8 We then construct overlapping passages, where each

passage is defined as a set of consecutive sentences from the list of aligned sentences. To

ensure homogeneity in the lengths of aligned passages, we select consecutive sentences such

that the total number of subword tokens does not exceed the maximum sequence length
6https://casmacat.eu/corpus/global-voices.html
7https://data.statmt.org/news-commentary/v16/
8We drop sentences that have no aligned counterparts in the other language
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(256). We follow a similar process to move the stride by selecting the first sentence beyond

128 subword tokens.

To create aligned comparable passages, we start with CLIRMatrix [173], a collection

built using Wikipedia’s inter-language links. CLIRMatrix, originally designed for evaluat-

ing CLIR systems, pairs the title of a Wikipedia article in one language (which modeled

a query) with a ranked list of passages from Wikipedia pages in another language on the

same topic (which modeled relevant documents). Passages average about 200 whitespace-

separated tokens for non-CJK languages; Chinese passages are roughly 600 characters.

Following the procedure used by Yang et al. [197] for C3, for each language pair en-xx,

we identify the highest ranked non-English passage in xx for every en query and then

align them with the corresponding highest ranked passage in en. The two passages are

then aligned, and the page title used to align them is discarded. Table 5.2 shows corpus

statistics.

5.3.3 Implementation Details

We implement SPLADE-X and BLADE using the Tevatron toolkit [64], which is built

on top of the HuggingFace Transformers [187] library. To initialize SPLADE-X, we employ

an mBERT model and select the target vocabulary by tokenizing the MS MARCO corpus

in English using the mBERT tokenizer.9 We then selected only those subwords containing

lowercase alphanumeric characters, resulting in a list of 33k unique subwords for SPLADE-

X modeling. To initialize BLADE, we use a smaller bilingual language model, released
9If we had wanted to experiment with using non-English queries, we would have instead used the

translated MS MARCO corpora.
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Table 5.2: Statistics of Aligned Pairs.

FR IT DE ES ZH RU
Parallel Sentences 53.4M 3.2M 3.5M 45.9M 31.2M 43.2M
Parallel Passages 18.2M 1.0M 1.2M 15.8M 11.6M 17.0M
Comparable Passages 1.2M 1.0M 1.2M 1.0M 0.6M 0.8M

by Geotrend,10 which thus defines our pruned bilingual vocabulary. For task-specific fine-

tuning, we adopt a translate-train approach, using English queries paired with translations

produced using Google MT that are distributed as mMARCO [22].11 We perform 100,000

steps of fine-tuning with an effective batch size of 256 using 8 V100 GPUs and a learning

rate of 1×10−5 with the Adam [90] optimizer. Our maximum query length is 32 tokens, and

passage lengths are limited to 256 tokens. Our SPLADE-X and BLADE implementation

differs from that described in the SPLADEv2 [55] in that we utilize in-batch negative

samples for training rather than the noise contrastive estimation process for mining hard

negative training examples. We observe the effect of this change is small (on the order of

2%) when comparing a monolingual SPLADE model trained without hard negatives with

an off-the-shelf SPLADEv2 model.

For intermediate pretraining with BLADE, we use either parallel or comparable pas-

sages or parallel sentences, with the pretraining objective in Eq. (5.6). We pretrain the

model for 200,000 steps with an effective batch size of 192 on 8 V100 GPUs and a learning

rate of 1×10−5 using Adam. When pretraining, the English passage is encoded as the query

segment, and the non-English passage is encoded as the document passage. The maximum

passage length in each language is set to 256 tokens. In both intermediate pretraining and

task-specific fine-tuning, we set l to 1% of the total vocabulary size of the corresponding
10An example EN-DE model: https://huggingface.co/Geotrend/bert-base-en-de-cased
11https://huggingface.co/datasets/unicamp-dl/mmarco/tree/main/data/google
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Geotrend bilingual model. Thus, the number of dimensions in the output vectors ranges

from 330 to 380 for the six evaluation languages. Also, we lowercase queries and documents

for both intermediate pretraining and task-specific fine-tuning.

These configurations yield three BLADE variants: BLADE-S pretrained on paral-

lel sentences; BLADE-P pretrained on parallel passages; and BLADE-C pretrained on

comparable passages. All variants then receive task-specific fine-tuning. We refer to any

BLADE model without this pretraining as vanilla BLADE.

For inference, we segment the documents into overlapping passages of 256 subword

tokens with a stride of 128 subword tokens. We use the Anserini toolkit to index the top-l

passage term weights generated by the BLADE model. We then perform retrieval using the

indexed passages and queries generated by a SPLADE-X or a BLADE model to generate

a ranked list of 10,000 passages. The final step uses MaxP [18, 44] score aggregation to

generate the top-1000 ranked documents from the ranked list of passages.

5.3.4 PSQ baseline

We compare SPLADE-X and different variants of BLADE with a PSQ-HMM baseline,

which is described in Section 2.3.1. To obtain the translation probabilities, we combine re-

sults from three alignment tools: GIZA++ [137], BerkeleyAligner [102], and Eflomal [138].

For each language pair, we train each aligner using parallel sentences from all sources listed

in Section 5.3.2 except UNPC, and we also add bilingual Panlex dictionaries [86] to the

training set.12 We use the same preprocessing for the bilingual corpora as for the queries
12We omit UNPC from the parallel corpora used to train PSQ because at 18M-30M sentence pairs it is

far larger than is needed to obtain stable term translation probabilities.
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and the document collections: lowercasing tokens, removing punctuation and normalizing

diacritics. We exclude translation probabilities of less than 1 × 10−4 and then apply a

cumulative distribution function threshold of 0.97. Given a vector of term counts in a

document language, we generate a corresponding vector of English term counts at index-

ing time and then build an index based on those English counts. This is an indexing-time

implementation of the query-time implementation proposed in the original PSQ paper [47].
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Table 5.3: MAP and R@100 for different sparse CLIR models for retrieving content in 6 languages using English title queries

CLEF 03 NeuCLIR 2022 AverageFrench Italian German Spanish Chinese Russian
Systems MAP R@100 MAP R@100 MAP R@100 MAP R@100 MAP R@100 MAP R@100 MAP R@100

PSQ-HMM 0.419 0.775 0.325 0.632 0.379 0.624 0.374 0.606 0.236 0.465 0.253 0.447 0.331 0.592
SPLADE-X 0.402 0.771 0.355 0.676 0.340 0.580 0.332 0.578 0.218 0.436 0.270 0.422 0.320 0.577
vanilla BLADE 0.434 0.767 0.361 0.675 0.340 0.574 0.152 0.345 0.244 0.465 0.050 0.177 0.264 0.501
BLADE-S 0.437 0.774 0.359 0.680 0.368 0.606 0.385 0.609 0.266 0.487 0.242 0.454 0.343 0.602
BLADE-P 0.453 0.763 0.341 0.677 0.378 0.598 0.396 0.618 0.264 0.475 0.233 0.437 0.344 0.595
BLADE-C 0.448 0.783 0.389 0.730 0.386 0.634 0.387 0.640 0.248 0.453 0.243 0.429 0.350 0.612
PSQ-HMM + SPLADE-X 0.481 0.806 0.381 0.727 0.426 0.694 0.413 0.672 0.303 0.540 0.316 0.520 0.387 0.660
PSQ-HMM + BLADE-C 0.492 0.826 0.397 0.727 0.446 0.713 0.440 0.698 0.306 0.539 0.328 0.510 0.402 0.669
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5.4 Retrieval Effectiveness of Sparse Bi-Encoders

We evaluate the retrieval effectiveness of sparse bi-encoder using results from Ta-

ble 5.3. We start by first comparing the sparse neural models SPLADE-X and vanilla

BLADE. Vanilla BLADE, which lacks intermediate pretraining, is fine-tuned only on the

task-specific loss, but it differs from SPLADE-X in that it uses bilingual Geotrend embed-

dings rather than only query-language (English) embeddings in the output space. Overall,

SPLADE-X has a higher MAP and R@100 compared to vanilla BLADE, on average, across

all the test collections. Vanilla BLADE performs very similarly to SPLADE-X in three

CLEF languages, French, Italian, and German, and numerically outperforms SPLADE-X

in NeuCLIR Chinese. The only statistically significant differences are in Spanish and Rus-

sian, where using an off-the-shelf pruned bilingual model leads to a drop in effectiveness,

indicating that the same fine-tuning process cannot achieve the desired output quality.

Now adding intermediate pretraining, we see BLADE-C (the best of our BLADE

models, on average over all six languages) improving over SPLADE-X in both MAP and

R@100, averaging a 9% MAP improvement and a 6% R@100 improvement across all the

languages. We similarly see improvements for BLADE-P and BLADE-S over SPLADE-X.

These consistent differences indicate that intermediate pretraining and extending the vo-

cabulary from SPLADE-X’s query-language tokens to include tokens from both the query

and document languages is beneficial. Intermediate pretraining on aligned passages ac-

counts for a part of this difference, but including document-language terms is important,

especially in Chinese. Most importantly, these gains in effectiveness are achieved with a

reduction in model size from SPLADE-X to BLADE’s pruned bilingual model.
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We see that pretraining on comparable passages (BLADE-C) produces results broadly

similar to training on parallel passages (BLADE-P), with each yielding better MAP than

the other on three of the six languages. Of the six languages, only the improvement

from using comparable rather than parallel passages in Italian is statistically significant.

Similarly, we see that pretraining with parallel passages or parallel sentences yields similar

results, with each achieving numerically better MAP than the other in three of the six

languages; none of the differences are statistically significant. We focus the remainder of

our analysis on BLADE-C for two reasons. First, BLADE-C’s use of comparable passages

offers greater potential for diversity that can be beneficial when combined using RRF with

results from systems trained on parallel text (as all other systems are). Second, BLADE-C

attains a higher average MAP and R@100 across the six languages compared to any other

approach, establishing it as an equally suitable choice, if not better, than the alternatives.

We observe that intermediate pretraining using comparable passages numerically im-

proves the MAP of the BLADE-C model in every language compared to the vanilla BLADE

model. Compared to pretraining with comparable text pairs, MAP degrades without pre-

training by 25% on average across the six languages. The reductions in MAP without

pretraining for Spanish and Russian are particularly large, suggesting that the vanilla

BLADE model for those languages may be less well-tuned than the other four. To con-

firm this, we randomly selected a Spanish sentence, replaced one of the original tokens

with the [MASK] token, and checked the output from different models, including off-the-

shelf mBERT/Geotrend and BLADE model variants. While the off-the-shelf and the other

BLADE model outputs look reasonable (related terms or exact matches), vanilla BLADE

outputs only punctuations. A similar phenomenon is observed in the case of Russian.
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We find this to be a case of representation degeneration [63], where the vanilla BLADE

model defaults to expanding to rogue dimensions corresponding to those characters. Sev-

eral solutions have been proposed for this issue, which includes normalizing/whitening

embeddings [172] or using a regularization step [149]. The design of SPLADE-X avoids

this issue, as it includes only alphanumeric characters in its vocabulary. However, inter-

mediate pretraining acts as a form of regularization since we only update the LM head

during pretraining. The differences are statistically significant for both MAP and R@100

in Spanish, where BLADE-C surpasses the effectiveness of SPLADE-X, and not in Russian,

where SPLADE-X has numerically better MAP and R@100 than BLADE-C. This further

underscores the importance of intermediate pretraining.

We now compare the PSQ-HMM baselines with the sparse CLIR bi-encoders SPLADE-

X and BLADE-C. First, we observe that PSQ performs better than SPLADE-X on average

across the six collections. In contrast, we observe that, on average, across six languages,

BLADE-C numerically outperforms PSQ-HMM by both MAP and R@100; the differences

are only significant (by both measures) for Italian. We further establish the complementary

nature of the systems by focusing on the retrieval effectiveness of the combined systems.

The ensemble of PSQ-HMM with SPLADE-X numerically improves the effectiveness over

the individual base systems in all the languages for both measures. The differences are

statistically significant except in French (R@100), Russian (MAP), and Italian (MAP and

R@100). BLADE-C and PSQ-HMM are also clearly complementary, with statistically sig-

nificant improvements over BLADE-C alone for five of the six languages by MAP (Italian

is the exception) and for all six languages by R@100. Overall, combining BLADE-C with

PSQ-HMM leads to numerically better retrieval effectiveness than combining SPLADE-X
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with PSQ-HMM. The differences are statistically significant only in German for MAP and

Spanish for R@100.
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Figure 5.1: Average Query Latency vs MAP for BLADE-C model on the CLEF-03 and NeuCLIR collections using English
queries with l ranging from 10..100 in intervals of 10. ⋆ denotes the BLADE-C model run with default l (1% of vocabulary size)
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5.5 BLADE-C: Query Latency vs. Retrieval Effectiveness

In a lexical expansion framework such as BLADE, query latency is affected by the

number of terms in the expanded query. The experiments above set l to 1% of the total

vocabulary size, which ranges from 330 to 380. Such l values pose nearly no constraints

on the number of non-zero tokens output by BLADE, which usually outputs less than

100 tokens. However, the number of resulting tokens directly affects the query latency.

Enforcing a tighter constraint on the number of output tokens is a trade-off between the

query latency and the retrieval effectiveness. We vary the value l from 10 to 100 and plot

the Pareto frontier of average query latency (in milliseconds) and MAP in Figure 5.1.

We use PISA [116] on an AMD EPYC 7713 64-core processor with 256 GB of CPU

RAM to measure the time to retrieve passages given the query set using the BLADE-C

model.13 We use PISA’s multi-threaded processing with 32 threads to retrieve the top

10,000 passages for each query concurrently. Given our choice of large number of passages

to retrieve, we use the MaxScore [179] dynamic pruning algorithm, as it has been shown

to work well in such settings [117].

For French and Italian, with fewer than 1M passages each, we see query latency

between 1 and 3 ms, while stronger sparsity constraints (i.e., smaller l) provide the best

effectiveness and efficiency trade-off. Larger l values (the points without a number) are

sometimes far from the Pareto frontier. For German and Spanish, with between 1M and

2M passages each, we have longer query latency, between 2 and 12 ms. Again, we can

achieve almost the same MAP with lower values of l compared to the unconstrained case,
13We do not include the time it takes to rank documents from passage rankings, as that is done in

memory and is thus fast relative to retrieval.

101



i.e., l being 1% of the vocabulary. For the two large NeuCLIR test collections, Chinese

and Russian, with between 18M and 21M passages each, we see considerably higher query

latency, between 50 and 200 ms. For large collections, allowing more tokens to be output

by BLADE (larger l) contributes more to effectiveness than for smaller collections. Larger

collections can benefit from more distinguishing power between documents, so allowing

more tokens benefits retrieval more than smaller collections. Furthermore, we can better

tune l for a given collection size with a validation set. From these results, we can conclude

that query latencies for BLADE can be tuned to be well within the range needed for

interactive applications, literally faster than the blink of an eye, without adversely affecting

the MAP values for BLADE-C reported above.

5.6 Chapter Summary

In this chapter, we introduce two sparse CLIR bi-encoder models, SPLADE-X and

BLADE, that generate sparse vectors for retrieval. SPLADE-X is initialized with mBERT

and employs a vocabulary reduction technique that restricts the multilingual vocabulary

space to the terms corresponding to the query language only. In contrast, BLADE is

initialized with a pruned bilingual PLM and allows the model to learn bilingual term

expansions for both queries and documents. We additionally introduce an intermediate

pretraining step using aligned text pairs to reduce the impact of translationese present in

translated collections. Our experiments show that our model performs on par with a strong

PSQ baseline on several CLIR test collections and, when combined, performs significantly

better than the individual systems.

102



Chapter 6: Balancing Effectiveness and Efficiency for Scalable CLIR1

The ever-increasing volume of digital content has created a need for search systems

that can scale efficiently while maintaining the quality of the retrieval outputs. To achieve

this goal, such systems must focus on two key objectives, i) to be able to efficiently index

large amounts of text that may be arriving in a streaming manner, and (ii) to retrieve

relevant content from a large collection in a timely manner in response to a query. In this

chapter, we operationalize these objectives as indexing latency and query latency, respec-

tively. However, these objectives are not sufficient in isolation, as the ability of the system

to produce high-quality retrieval outputs, as measured by the retrieval effectiveness, is also

essential. As a result, each system must balance indexing and query latency with retrieval

effectiveness. Depending on the specific application requirements, different systems may be

more suitable. In this chapter, we identify the set of Pareto-optimal systems that offer the

best balance between these contrasting objectives using the traditional and neural CLIR

systems previously introduced in Chapters 4 and 5.

Throughout this dissertation, one of the recurring themes is the relationship between

MT and the different stages of the retrieval process. The CLIR systems discussed so far can

be categorized into three groups based on their use of MT: during the training, indexing, and
1This chapter contains content from: Suraj Nair, Eugene Yang, Dawn Lawrie, James Mayfield, and

Douglas W Oard. “BLADE: Combining Vocabulary Pruning and Intermediate Pretraining for Scaleable
Neural CLIR.” In Preparation. [130]

103



querying phases. For instance, PSQ relies on intermediate MT outputs during its training

phase to learn translation probabilities, while ColBERT-X, SPLADE-X, and BLADE use

MT to generate training data in the translate-train setting. In contrast, some systems use

MT during the indexing phase to generate translated documents, whereas others rely on

MT during the querying phase to translate queries for retrieval purposes.

The evaluation of CLIR conducted so far involves retrieving content in a non-English

language using a query expressed in English. As such, it is important to consider the

direction of translation when using MT for different retrieval stages. Translating from

non-English to English offers advantages for both MT and CLIR. Firstly, translating from

a morphologically-rich language to a language with simpler morphology, like English, is

less challenging than the reverse [15]. Additionally, the availability of large-scale training

resources and several PLMs in English makes it easier to train neural IR systems that

access English content. It is also worth noting that the effect of translation direction on

CLIR is independent of whether we are translating queries or documents, as studies have

shown that translation direction matters more than the unit of translation [119]. Given

our focus on retrieving content in non-English, we additionally use traditional and neural

CLIR systems with the same architecture as previously introduced in Chapters 4 and 5 but

working with translated documents.

The remainder of this chapter is structured as follows. In Section 6.1, we list the test

collections and the evaluation measures for performing the Pareto-optimality experiments.

In Section 6.2, we list the description of each CLIR system that we use in our experiments.

We show the results of retrieval effectiveness and indexing latency in Section 6.3, Section

6.4, and Section 6.5. Section 6.6 shows the Pareto-frontier of retrieval effectiveness and
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Table 6.1: Test collection statistics. Queries are in English with at least one relevant doc,
Passages are as split for BLADE, MT Passages are splits of English translations for DT-
SPLADE.

CLEF 03 NeuCLIR 22
FR IT DE ES FA ZH RU

Queries 52 51 56 57 45 47 44
Documents 130K 158K 295K 454K 2,232K 3,179K 4,628K
Passages 0.5M 0.6M 1.3M 2.1M 12.6M 18.3M 21.6M
MT Passages 0.5M 0.6M 1.1M 1.7M 9.6M 13.7M 16.8M

query latency. Finally, we conclude the Chapter in Section 6.7.

6.1 Experimental Setup

In this section, we describe the test collections and the evaluation methods to analyze

the retrieval effectiveness and the efficiency of the indexing and querying phases.

6.1.1 Test Collections

We not only reuse the test collections from Section 5.3 in the previous Chapter 5 but

also evaluate our CLIR systems on Persian documents from TREC NeuCLIR 2022. As

with the previous chapters, we use the English title field as the query. Table 6.1 provides

the updated collection statistics.

6.1.2 Evaluation

Following a similar approach in the previous chapters, we evaluate retrieval effective-

ness by focusing on the Mean Average Precision (MAP) and Recall@100 (R@100) of the

top-k documents returned by the CLIR model in response to a query. As before, we em-

ploy a paired two-tailed t-test (p < 0.05) with Holm-Bonferroni correction for multiple tests

105



when testing for significance in the difference in means. To measure efficiency during the

indexing phase, we compute the indexing latency per document in milliseconds (ms), which

we characterize as the combination of the time it requires to translate the documents using

MT (if any), the time it takes to run the CLIR model to generate outputs, and the time it

takes to index the generated output from CLIR models. To measure efficiency during the

querying phase, we compute the query latency in milliseconds, which we characterize as

the time it takes to return the top-k passages (or documents) in response to a query. It is

worth noting that we exclude the time it takes to generate document rankings from passage

rankings, as this process is executed in memory and is thus fast relative to retrieval. In the

next section, we outline how we compute the indexing and query latencies for each system

evaluated in this chapter.

6.2 System Description

In this dissertation, the CLIR systems that have been introduced can be broadly

categorized into two groups, i) those that do not utilize MT during indexing, which we

refer to as MT-free indexing, and ii) those that require MT during indexing, which we refer

to as MT-based indexing. The MT model we use in this chapter is similar to the one used

in Chapter 4, consisting of a 6-layer encoder/decoder transformer stack implemented using

Sockeye 2 [49, 73] trained on publicly available sentence-aligned parallel text data. The

model has a decoding speed of roughly 50 sentences/sec on a single V100 GPU with 32

GB VRAM, which amounts to 280 ms per document averaged across the seven document

collections. For CPU-based indexing, we use 24 AMD EPYC 7713 2.0 GHz CPU cores (2
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threads per core for a total of 48 threads) with 256 GB of RAM. In this section, we provide

a description of each system, with a specific focus on the category it belongs to and how it

impacts the indexing latency.

6.2.1 PSQ

PSQ is an MT-free indexing system that operates on English queries and documents

in their native language. To implement this system, we use a vector of English term counts

generated during the indexing phase from a vector of term counts in the document lan-

guage, similar to the approach in Chapter 5, and build an index based on those English

counts. To enable this indexing-time-based implementation, we use a custom Python im-

plementation of sparse matrices from the SciPy [181] toolkit. For retrieval, we employ the

HMM implementation of the PSQ framework, as described in Section 2.3.1. The process of

estimating translation probabilities is the same as in the previous Chapter 5. We measure

the indexing latency as the overall time it takes to process and store the sparse indexes,

run on 32 threads in parallel.

6.2.2 BLADE

Similar to PSQ, BLADE is also an MT-free indexing system that processes English

queries and documents in their native language. We choose the BLADE-C model introduced

in Chapter 5 due to its intermediate pre-training on the comparable corpora CLIRMatrix,

which resulted in higher retrieval effectiveness compared to other models within the same

family. In this chapter, we refer to the BLADE-C variant as BLADE. We keep intact
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the design choice of BLADE from the previous chapter, where we split the native language

documents into overlapping passages of 256 BPE tokens produced by the bilingual Geotrend

tokenizer with a stride of 128 tokens. BLADE’s indexing latency is computed by summing

the inference time per document to run the BLADE model on a single V100 GPU, with

the indexing time taken by Anserini using 48 threads. We then perform retrieval using the

indexed passages and queries generated by the BLADE model to generate a ranked list

of 10,000 passages. The final step uses MaxP [18, 44] score aggregation to generate the

top-1000 ranked documents from the ranked list of passages.

6.2.3 PLAID-X

Two subsequent works, ColBERTv2 [162] and PLAID [163], addresses different issues

following ColBERT. ColBERTv2 aims to tackle the indexing space footprint problem by

using a residual compression approach [12], which has been previously applied to the ANN

search techniques [35, 79]. The authors observe that the embedding space of ColBERT

functions as a semantic space at the term level, allowing the term embeddings to be clus-

tered and represented using their residual vectors with fewer bits compared to storing the

entire vector. These cluster centroids can be viewed as an index with multiple terms or

their corresponding passages. During the querying phase, ColBERTv2 generates an ordered

set of passages by summing the dot product between the cluster centroids and the query

terms. The late interaction step involves reconstructing the original term embeddings by

finding the nearest centroid and its residual vector, also called “decompression,” and using

the MaxSim heuristic to rerank the documents. However, this leads to a bottleneck where
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most of the query latency is spent on locating the nearest centroid and decompressing the

embeddings. PLAID [163] focuses on centroid interaction and pruning steps to address

this issue. It builds upon the ColBERTv2 approach by first filtering the centroids with

low scores. As part of centroid interaction, PLAID introduces an approximate MaxSim

operation that is computed using the passage centroid embeddings and the query term

vectors. The final late-interaction step is the same as in ColBERTv2, which now scores

fewer passages than before.

In this chapter, we introduce PLAID-X, which is a generalization of the PLAID

framework designed to handle English queries with native language documents. Unlike in

the monolingual setting, we do not train a v2 checkpoint and instead use the ColBERT-

X model checkpoint directly with PLAID. Given the similarity of the architecture and

training process of ColBERT and ColBERT-X, we hypothesize that the embedding space

of ColBERT-X should also exhibit semantic properties. We confirm this hypothesis by

comparing the retrieval effectiveness of ColBERT-X with PLAID-X in the seven languages

and observe numerical improvements in MAP (from 0.370 to 0.378) and in R@10 (from

0.624 to 0.634). As in Chapter 4, we use a ColBERT-X model initialized with an XLM-

R Large [40] multilingual encoder. We adopt a translate-train approach to fine-tune the

model, using mMARCO passage translations as generated by Bonifacio et al. [22] using a

Marian MT model (referred to as Helsinki) for CLEF languages. For NeuCLIR languages,

we use MS MARCO passage translations generated by a Sockeye2 MT model as detailed

in Chapter 4. In both cases, the translated passages are paired with an untranslated

English MS MARCO query. Following the ColBERT-X model, we split the documents in

their native language into overlapping passages of 180 XLM-R Sentencepiece tokens with a
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stride of 90 tokens. PLAID-X indexing is performed using 8 V100 GPUs, and we record the

final per-GPU indexing latency by multiplying the total indexing latency by the number of

GPUs (8). We generate a ranked list of top-10,000 passages and use MaxP [18, 44] score

aggregation to generate the top-1000 ranked documents from the ranked list of passages,

as done in BLADE.

6.2.4 DT-BM25

DT-BM25 is a non-neural CLIR system run in the query language, where queries are in

English and documents are machine translations of the text, thus belonging to the category

of MT-based indexing systems. We perform retrieval with the BM25 implementation [155]

from the Anserini toolkit [199] with the default hyperparameters (k1 = 0.9, b = 0.4). The

indexing latency is computed by adding two factors: the time it takes to translate the

documents and the indexing time using Anserini run on 48 threads.

6.2.5 DT-SPLADE

DT-SPLADE is a CLIR system built using the SPLADEv2 architecture which uses

English queries to retrieve translated documents, thereby falling into the category of MT-

based indexing systems. We train a monolingual task-specific SPLADE model, initialized

with an uncased BERT-Base encoder, using the same fine-tuning recipe as BLADE with

the original MS MARCO triples with English queries and English passages. For a fair

comparison with SPLADE-X and BLADE training, no hard negative mining step described

in the original SPLADEv2 [55] was used. Our experiments on the four CLEF languages
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show a 2% drop in MAP using our version of the model compared to the publicly available

SPLADEv2 checkpoint.2 Following the BLADE model, we split the translated documents

into overlapping passages of 256 BPE tokens produced by the BERT tokenizer with a

stride of 128 tokens. Indexing time for DT-SPLADE is the combination of translation

time, inference time per document to run the SPLADE model on a single V100 GPU, and

Anserini’s indexing time using 48 threads. We generate a ranked list of top-10,000 passages

and use MaxP [18, 44] score aggregation to generate the top-1000 ranked documents from

the ranked list of passages as done in BLADE.

6.2.6 DT-PLAID

We use PLAID from Section 6.2.3, which uses English queries to retrieve translated

documents. We use a ColBERT model initialized with a BERT-base encoder3 and train the

model on English MS MARCO triples following the same hyperparameters as the original

ColBERT model. PLAID indexing is performed using 8 V100 GPUs, and we record the

final per-GPU indexing latency by multiplying the total indexing latency by the number of

GPUs (8). We generate a ranked list of top-10,000 passages and use MaxP [18, 44] score

aggregation to generate the top-1000 ranked documents from the ranked list of passages.

We additionally create model ensembles of the systems belonging to each of the two

categories. As in previous chapters, we use a late-fusion technique, Reciprocal Rank Fusion

(RRF) [41], for combining the retrieval outputs from the different systems. Because system

combination has implications for both effectiveness and efficiency, this allows us to explore
2https://github.com/naver/splade/tree/main/weights/distilsplade_max
3https://huggingface.co/bert-base-uncased
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a broader range of options in that trade space. For model ensembles, we report the overall

indexing latency by summing the per-document indexing latencies of individual systems.
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Table 6.2: MAP and R@100 for retrieving content in 7 languages using English title queries.

CLEF 03 NeuCLIR 2022
Average

Indexing

French Italian German Spanish Persian Chinese Russian Latency

Systems MAP R@100 MAP R@100 MAP R@100 MAP R@100 MAP R@100 MAP R@100 MAP R@100 MAP R@100 per doc (ms)

Human Translation Monolingual Baseline

BM25 0.406 0.737 0.387 0.720 0.296 0.485 0.431 0.695 0.193 0.421 0.183 0.431 0.281 0.428 0.311 0.560 0.300

MT-free CLIR Indexing

PSQ 0.419 0.772 0.325 0.632 0.379 0.624 0.374 0.606 0.213 0.500 0.236 0.465 0.253 0.447 0.314 0.578 0.410

BLADE 0.448 0.783 0.389 0.730 0.386 0.634 0.387 0.640 0.225 0.495 0.248 0.453 0.243 0.429 0.332 0.595 43.37

+ PSQ 0.492 0.826 0.397 0.727 0.446 0.713 0.440 0.698 0.292 0.574 0.306 0.539 0.328 0.510 0.386 0.655 43.78

PLAID-X 0.458 0.753 0.411 0.730 0.421 0.652 0.393 0.624 0.288 0.583 0.329 0.548 0.349 0.548 0.378 0.634 61.10

+ PSQ 0.490 0.815 0.417 0.737 0.465 0.721 0.441 0.705 0.305 0.634 0.364 0.603 0.372 0.578 0.408 0.685 61.51

+ BLADE + PSQ 0.511 0.830 0.440 0.789 0.484 0.747 0.469 0.724 0.321 0.644 0.379 0.608 0.386 0.590 0.427 0.705 104.88

MT-based CLIR Indexing

DT-BM25 0.446 0.772 0.421 0.725 0.465 0.702 0.425 0.650 0.220 0.493 0.266 0.469 0.269 0.442 0.359 0.608 280.90

DT-SPLADE 0.486 0.846 0.418 0.731 0.476 0.756 0.448 0.670 0.273 0.584 0.310 0.576 0.353 0.552 0.395 0.674 313.87

+ DT-BM25 0.501 0.878 0.426 0.780 0.490 0.791 0.475 0.723 0.289 0.583 0.322 0.566 0.349 0.569 0.407 0.699 314.11

DT-PLAID 0.512 0.852 0.429 0.755 0.480 0.741 0.439 0.688 0.269 0.587 0.328 0.553 0.332 0.564 0.398 0.677 313.73

+ DT-BM25 0.529 0.872 0.451 0.805 0.523 0.794 0.474 0.722 0.288 0.597 0.332 0.568 0.352 0.566 0.421 0.703 346.94

+ DT-SPLADE + DT-BM25 0.539 0.876 0.438 0.803 0.527 0.812 0.492 0.743 0.317 0.626 0.357 0.581 0.403 0.603 0.439 0.721 347.18
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6.3 Optimizing for Retrieval Effectiveness

Table 6.2 shows MAP and R@100 for different methods across the seven language

pairs. We first focus on the MT-free indexing individual systems. Among the two non-

neural CLIR systems, we see PSQ performing comparably to the human translation mono-

lingual BM25 baseline on average, with the average MAP and the average R@100 slightly

favoring PSQ-HMM across all seven languages. These broadly comparable results demon-

strate that our PSQ framework is a strong non-neural baseline, indicating that the term ex-

pansion effect of using multiple translations in PSQ is (on average) sufficient to compensate

for the more selective term choice of human translators who generate only a single trans-

lation of each query, which is then run without query expansion. The next best individual

system, BLADE, performs better than PSQ on average across both MAP and R@100, as

already described in the previous chapter 5. PLAID-X achieves the highest effectiveness

among the MT-free indexing group of individual systems. With just one exception (R@100

for French), PLAID-X consistently numerically outperforms the PSQ-HMM baseline by

both MAP and R@100. These improvements are significant (by both measures) only in

Italian among the CLEF languages and all NeuCLIR languages. Similarly, PLAID-X nu-

merically outperforms BLADE in every NeuCLIR collection and performs slightly better

in some CLEF languages with exceptions (R@100 for French and Spanish). Differences

between PLAID-X and BLADE are significant (by each measure) only for Chinese and

Russian. In particular, the ColBERT MaxSim heuristic allows each query term and its

matching (most similar) document term to have different representations, thus achieving

greater representational fidelity than can be achieved by the dot product similarity between
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a single query vector and a single document vector in the BLADE model.

Looking at the model ensembles of the MT-free indexing systems, it is clear that

substantial improvements can be made over the effectiveness of any of the constituent

systems. We already established the complementary nature of BLADE and PSQ in the

previous Chapter 5, with significant improvements over the base systems (except in Italian)

for both measures. The lower effectiveness of PSQ compared to BLADE in Italian con-

tributes to lower gains after ensembling. Similarly, combining PLAID-X with PSQ leads to

numerical improvements, although the differences are significant in German and Spanish

for MAP and six of the seven languages (except Italian) for R@100. In all of the cases,

a three-system ensemble of PLAID-X, BLADE, and PSQ has the highest effectiveness by

both measures on average across all the collections. The base systems, while belonging to

different modeling families, differ in terms of the training resources used (parallel sentences

for PSQ, comparable passages for BLADE, and translated retrieval collections for BLADE

and PLAID-X) and the language models employed (bilingual Geotrend for BLADE and

XLM-R for PLAID-X). This diversity ultimately enhances the effectiveness of the ensem-

ble results obtained from these systems.

We now focus on MT-based indexing systems that apply MT to every document.

While this approach is computationally expensive, it has the benefit (which none of our

other CLIR approaches share) of obviating the need to rapidly produce new translations

when the user wishes to see a translation. First, when comparing the non-neural DT-BM25

with the non-neural PSQ system, we observe higher effectiveness using DT-BM25 for both

measures on average across all languages. However, the differences are significant only for

Italian and German for both measures and for Spanish (R@100 only). Notably, the numer-
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ical differences are higher in CLEF collections than in NeuCLIR collections, signifying a

degradation in the quality of MT between these collections. With just one exception (MAP

for Italian), DT-SPLADE yields numerically better retrieval effectiveness than DT-BM25

by both MAP and R@100, although the MAP difference is only significant for Russian, and

the R@100 difference is only significant for French, Chinese, and Russian. The clear advan-

tage of DT-SPLADE results from the lexical expansion for documents and queries. This

is consistent with the reported results for monolingual English applications of SPLADEv2,

indicating that the method is fairly robust to whatever errors MT might introduce. Com-

pared to the BLADE model, we see that DT-SPLADE achieves numerically higher MAP

and R@100 in every language, although that improvement comes at a large indexing time

cost. These differences are significant only in three languages (German, Spanish, and Rus-

sian) for MAP and in four languages (French, German, Chinese, and Russian) for R@100.

We attribute the better performance of DT-SPLADE to its even smaller language model

(covering one language rather than two), the cleaner fine-tuning from English MS MARCO

without translationese, and the MT system leveraging a target language model. The pic-

ture is a bit more mixed for DT-PLAID, which has higher effectiveness on average than

DT-BM25, with significant differences in four languages for both measures (except Italian,

German, and Spanish). However, DT-PLAID is indistinguishable from DT-SPLADE, with

no significant differences in any language.

Similar to the model ensembles in MT-free indexing, we observe similar gains in ef-

fectiveness with ensembles in MT-based indexing systems, although with fewer relative

gains over the individual base system. An ensemble of DT-SPLADE with DT-BM25 has

modest gains in MAP on average across the seven languages, but it sometimes helps (and,
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on average, never hurts) R@100 for any language. Only the gains in MAP and R@100

in Spanish are significant with both base systems. We observe a similar case with the

ensemble of DT-PLAID with DT-BM25, where only the improvements over the base sys-

tems in German and Spanish are significant for both MAP and R@100. The three-system

ensemble has the highest effectiveness on average across the seven languages, with signif-

icant improvements over the base systems in five languages (except French and Italian)

for MAP and three languages (German, Spanish, and Russian) for R@100. Comparing

the three-system ensembles between the two indexing categories, MT-based and MT-free,

we see higher effectiveness on average with the MT-based indexing ensemble than with

the MT-free indexing ensemble. However, the differences are significant only in German

for both MAP and R@100 and additionally in French for R@100. In short, the three-

system MT-free indexing ensemble achieves roughly 97.3% MAP and 97.8% R@100 of the

corresponding three-system MT-based indexing ensemble.

Karen Spärck Jones [170] proposed that differences in MAP scores of 0.05 could be

considered noticeable, while differences of 0.1 could be regarded as material. Using this as

an additional criterion for evaluating experimental results, we find noticeable differences

between PSQ and BLADE only in Italian. In contrast, we identify more instances of no-

ticeable differences between PSQ and PLAID-X in Italian, Persian, Chinese, and Russian.

However, none of these instances exhibit material differences in MAP scores. When com-

paring the three-system MT-free indexing ensemble with the individual base systems, we

observe material differences relative to PSQ in almost all languages, except for Italian,

where the difference is noticeable. In comparison to BLADE, the differences are notice-

able across all languages, with material differences only in Chinese and Russian. The
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three-system ensemble displays fewer noticeable differences when compared to PLAID-X,

limited to French, Spanish, Chinese, and German, and no material differences. On average,

we observe only noticeable differences in MAP scores when comparing the three-system en-

semble with PSQ and BLADE. Similarly, for the MT-based three-system ensemble, the

average differences in MAP scores are noticeable solely in comparison to DT-BM25.

6.4 Optimizing for Indexing Latency

In this section, we quantify the differences in the efficiency of systems during the in-

dexing phase. We operationalize efficiency during the indexing phase as indexing latency,

the time (in milliseconds) to perform any necessary translation, run any needed model

inference, and index the documents. PSQ has the lowest indexing latency since our im-

plementation requires only the multiplication of a (translation probability) matrix and a

(document term count) vector that generates a vector (of estimated English term counts).

BLADE is the next fastest method, averaging faster than PLAID-X by a factor of 1.4.

PLAID-X uses a larger multilingual XLM-R encoder than a bilingual model employed by

BLADE. In addition, PLAID-X has a clustering step, further contributing to its higher

indexing time.

BLADE and PLAID-X both have considerably lower indexing latencies than MT-

based DT-SPLADE and MT-based DT-PLAID by a factor of 7.2 on average for BLADE

and 5.1 on average for PLAID-X. This is primarily because the DT-SPLADE’s and DT-

PLAID’s indexing latency includes three costs: a) translating the documents to the query

language, b) running the monolingual model on the translated texts, and c) indexing the

118



Systems Document Translation Time Model Inference Time Index Generation Time Total Indexing Latency
PSQ - - 0.41 0.41

BLADE - 40.76 2.70 43.37
PLAID-X - 43.76 17.34 61.10
DT-BM25 280.66 - 0.24 280.90

DT-SPLADE 280.66 31.55 1.66 313.87
DT-PLAID 280.66 22.12 10.96 313.73

Table 6.3: Breakdown of the indexing latency for different CLIR systems averaged across
the seven collections.

generated vectors. The average indexing latency for the DT-SPLADE is slightly higher than

that of DT-PLAID, even when both models use the same monolingual BERT encoder. We

attribute that to the difference in maximum input sequence length for the two models. The

maximum sequence length for DT-PLAID is 180, as opposed to 256 for DT-SPLADE. As

the collection size grows, we see an inflection point, given the O(n2) time complexity of the

self-attention in transformer layers. As Table 6.1 shows, the NeuCLIR collections are an

order of magnitude larger than a typical CLEF collection.

Regarding the model ensembles, the indexing times are additive since each model has

a different index. However, the translation time is added only once, as it is a one-time

operation. In the case of MT-free indexing systems, model ensembles with PSQ result in

virtually no gain in indexing latency due to the already low indexing latency of PSQ. This is

also true for MT-based indexing systems that use DT-BM25. Comparing the MT-free and

MT-based indexing model ensembles, our ensemble of three systems (PLAID-X, BLADE,

and PSQ) for MT-free indexing is, on average, 3.3 times faster than the corresponding

ensemble (DT-PLAID, DT-SPLADE, DT-BM25) for MT-based indexing.

Table 6.3 breaks down the total indexing latency for different CLIR systems based

on Translation Time, Model Inference Time, and Index Generation Time. For MT-free

indexing systems like BLADE and PLAID-X, most of the time is spent generating outputs,
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as recorded in the inference time, as compared to indexing the generated outputs. The same

applies to MT-based indexing systems like DT-SPLADE and DT-PLAID. Moreover, the

model inference time for MT-based indexing systems is generally lower than their MT-free

counterparts because they use a monolingual BERT model with fewer parameters compared

to bilingual and multilingual models. However, for MT-based indexing systems, document

translation time is a significant component of the total indexing latency compared to model

inference and index generation time.

6.5 Balancing Retrieval Effectiveness and Indexing Latency
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Figure 6.1: Illustrating the tradeoff between MAP and indexing times, averaged over six
CLIR collections, using English title queries.

In this section, we illustrate the tradeoff between the efficiency during the indexing

phase measured as the retrieval effectiveness and indexing latency, measured using MAP.4

Figure 6.2 shows this tradeoff for each language, and Figure 6.1 summarizes those plots
4The use of R@100 yields similar results, and hence we do not include those plots.
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using averages across all seven languages. The best outcome would be in the upper left

corner of those figures, where the system achieves both low indexing latency and high

effectiveness. Note that, in this analysis, we set a threshold of 2 ms for indexing latency

and a threshold of 0.006 for MAP, in order to be considered as an improvement for Pareto-

optimality analysis. This is done to prevent the emergence of multiple Pareto-optimal

systems with only minor differences between the measures.

As shown in Figure 6.2, PSQ, the two-system ensemble of BLADE and PSQ, and the

three-system ensemble of PLAID-X, BLADE, and PSQ are all on the Pareto frontier for

each of the seven languages. The two-system ensemble of PLAID-X with PSQ is on the

frontier for five out of seven languages, except French and Spanish. It is to be noted that

neither BLADE nor PLAID-X alone lies on the Pareto frontier due to the low indexing

latencies of PSQ, which leads to improved effectiveness with the PSQ ensemble.

The most striking point is that none of the single systems alone is anywhere near

the Pareto frontier in any language. Said another way, when indexing latency matters,

an MT-based indexing system alone is never the best choice. The two-system ensemble

of DT-PLAID and DT-BM25 is on the Pareto frontier for Italian only. A three-system

ensemble of DT-PLAID, DT-SPLADE, and DT-BM25 fares relatively better as it is on the

Pareto frontier for four languages. Most notably, with the exception of the three-system

ensemble in Russian, no other MT-based indexing systems are near the Pareto frontier in

the NeuCLIR collection. This highlights that as the collection sizes scale up, MT-based

indexing systems tend not to be the Pareto-optimal choice for building retrieval systems.
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Figure 6.2: Indexing Latency vs. MAP for six collections using English queries.
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6.6 Balancing Retrieval Effectiveness and Query Latency

In this section, we demonstrate the tradeoff between the efficiency at the querying

phase, measured as query latency, and retrieval effectiveness, measured using R@100. To

conduct this analysis, we make several design modifications to the systems used. Specif-

ically, we compute the time it takes to retrieve the top-100 documents in response to a

query for PSQ and DT-BM25, given that we chose R@100 as the effectiveness measure. For

systems that retrieve passages, such as BLADE, PLAID-X, DT-SPLADE, and DT-PLAID,

we return the top-1000 passages and use MaxP score aggregation to compute the ranked list

of the top-100 documents. We use the PISA framework to run BLADE and DT-SPLADE

similarly to the process described in Section 5.5 of the previous Chapter 5. Based on the

findings in Section 5.5, we restrict the query expansion factor of BLADE and DT-SPLADE

to 50 and 80 terms for CLEF and NeuCLIR collections, respectively. All systems, except

PSQ, are run in a multi-threaded setting with 32 threads. We report query latency numbers

for PLAID-X and DT-PLAID using the hyperparameters from the original PLAID paper.

We run PLAID-X and DT-PLAID in two settings: PLAID-X-C/DT-PLAID-C, which runs

on 32 threads, and PLAID-X-G/DT-PLAID-G, which runs on a single V100 GPU with 32

threads.5

Figure 6.3 presents the tradeoff between average query latency, measured in millisec-

onds, and R@100 for each system in every language. As in the previous section, the optimal

outcome would be in the upper left corner of the figure, where a system achieves both low

average query latency and high effectiveness. All systems on the Pareto frontier are MT-
5Similar to PLAID, we restrict the number of threads using torch.set_num_threads
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based indexing systems that work with translated documents. Notably, DT-SPLADE falls

on the Pareto frontier in all languages. DT-BM25 falls on the Pareto frontier for three

languages, while DT-PLAID-G, run on a single GPU, falls on the Pareto frontier for four

languages. For the NeuCLIR collections, all monolingual systems, except in Chinese, fall

on the Pareto frontier.

Among the systems that work with documents in their native language, BLADE has

the lowest average query latency compared to PSQ, PLAID-X-C, and PLAID-X-G. PLAID-

X-C has the highest query latency for the CLEF collection, but this can be improved

by transferring the computation to a GPU, as done in PLAID-X-G. The average query

latency of PSQ increases rapidly as the collection size scales, particularly in large NeuCLIR

collections. Our current implementation of the PSQ framework based on HMM operates on

a single thread, and query latencies can be reduced by a multi-threaded implementation.

However, none of these systems fall on the Pareto frontier. The number of passages in the

collection for documents in their native language is higher than for translated documents,

as shown in Table 6.1, with the ratio increasing as the collection size scales. Bilingual or

multilingual models typically generate more subwords than monolingual models, which is

the case with the monolingual systems used for translated documents, ultimately impacting

the query latency.
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Figure 6.3: Average Query Latency vs. MAP for CLEF-03 and NeuCLIR collections using English queries. Systems in bold lie
on the Pareto frontier.
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6.7 Chapter Summary

This chapter focuses on identifying the set of Pareto-optimal CLIR systems that

provide the best balance between the contrastive objectives of retrieval effectiveness and

indexing latency. We categorize the CLIR systems into two groups: MT-free indexing sys-

tems, which work with documents in their native language (PSQ, BLADE, and PLAID-X),

and MT-based indexing systems, which use translated documents generated by an MT

model (DT-BM25, DT-SPLADE, and DT-PLAID). Our results show that the ensemble of

MT-free indexing systems resides on the Pareto frontier of retrieval effectiveness and index-

ing latency as compared to the MT-based indexing systems. Additionally, the three-system

ensemble of MT-free indexing systems achieves up to 97% effectiveness of the correspond-

ing three-system ensemble of MT-based indexing systems while achieving lower indexing

latencies by a factor of 3.3. We also identify the Pareto-optimal CLIR systems that balance

retrieval effectiveness and query latency, with MT-based indexing systems falling on the

Pareto frontier compared to MT-free indexing systems.
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Chapter 7: Conclusion

CLIR systems aim to retrieve relevant content in a language that is distinct from

the language of the query. This task requires the CLIR systems to match the meanings

of similar terms that are expressed in two different languages. In this dissertation, we

introduce neural CLIR systems capable of matching texts in two languages using the con-

textual representations resulting from the improvements in language modeling techniques.

The long-standing goal of the IR community is to build retrieval systems that balance the

tradeoff between the effectiveness and efficiency. This balance becomes particularly impor-

tant when designing neural retrieval systems because the underlying contextual language

models are often compute-intensive and resource-hungry. This dissertation focuses specif-

ically on designing neural CLIR systems that find a Pareto-optimal balance between the

complementary objectives of effectiveness (i.e., quality of retrieval output) and efficiency

(e.g., indexing and query latency).

In Chapter 3, we focus on retrieve-and-rerank pipelines that incorporate an efficient

first-stage CLIR system followed by a cross-encoder that employs an MPLM to process

cross-language texts. To enable the cross-encoder to handle long documents during the

querying phase, we introduce CREPE, a passage selection strategy that selects the best

passage(s) from a document to score with a cross-encoder to address RQ1. CREPE accom-
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plishes this by utilizing an efficient first-stage CLIR system to rank passages and selecting

the top-k highest-scoring passage(s) as the effective representation for the document. We

demonstrate that scoring the single-best CREPE with cross-encoder results in better re-

trieval effectiveness across all test collections compared to a systematic strategy like FirstP,

which selects the first passage from the document to score. Additionally, we design hybrid

strategies that combine CREPEs with FirstP, which achieve up to 99% of the effectiveness

of the MaxP strategy that offers the best retrieval effectiveness but also the highest query

latency among all the strategies. It is important to note that both the single-best CREPE

and the hybrid strategies lie on the Pareto frontier of query latency and retrieval effective-

ness (Contribution S1), highlighting the significance of our proposed strategy. Moreover,

we create a passage-level training dataset using CREPEs to fine-tune cross-encoders as part

of the training phase. We observe consistent improvements in retrieval effectiveness with

the cross-encoder trained on the dataset created using CREPEs compared to the first-stage

CLIR system and a cross-encoder trained with a systematic approach (Contribution S2).

In Chapter 4, we introduce ColBERT-X, a multi-representation bi-encoder that lever-

ages an XLM-R encoder to process cross-language text and perform CLIR. We create two

variants of ColBERT-X, zero-shot, and translate-train, trained on the original MS MARCO

corpus and translations of MS MARCO passages in document languages paired with En-

glish queries, respectively (Contribution S3). During the querying phase, the zero-shot

variant takes a translated query as input, while the translate-train variant processes the

original query expressed in its natural form. Both variants process documents in their

original language. Therefore, the primary difference between the two lies in the application

of MT; in zero-shot, MT is applied during the querying phase, while in the translate-train
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setting, it is applied during the training phase. We demonstrate that using either vari-

ant of ColBERT-X to perform CLIR leads to improvements in retrieval effectiveness over

traditional CLIR baselines. However, on average, the translate-train variant outperforms

the zero-shot variant, thus addressing RQ2. We further enhance the retrieval effectiveness

of ColBERT-X by applying pseudo-relevance feedback to achieve cross-language term ex-

pansion in the embedding space (Contribution S4). We analyze the effect of various MT

models on both ColBERT-X variants and observe that improvements in the quality of the

MT model, measured using BLEU, generally translate into better downstream CLIR task

performance, measured using MAP.

In Chapter 5, we introduce SPLADE-X, our first single-representation bi-encoder

that projects queries and documents into the sparse vocabulary space of MPLM. However,

designing sparse CLIR models faces two issues that differ from monolingual IR models.

These include multilingual models having larger vocabulary sizes than monolingual models,

and the lack of supervision during multilingual pretraining to learn cross-language term

associations. SPLADE-X addresses these challenges by restricting the vocabulary space

to include terms from the query language only and leveraging a translate-train approach

with MS MARCO to learn cross-language term associations. Our experiments reveal that

SPLADE-X achieves comparable performance to a strong traditional CLIR baseline, PSQ.

Building on the potential to enhance the design choices made by SPLADE-X, we introduce

BLADE, our next sparse CLIR model (Contribution S5). BLADE brings two significant

changes, first by switching to a pruned bilingual model to improve modeling efficiency

and second, by introducing an intermediate pre-training step that utilizes aligned cross-

language texts expressed in their natural forms as the training dataset to learn cross-
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language term associations, which enhances retrieval effectiveness. We explore two primary

sources of aligned text, parallel sentences, and comparable passages for intermediate pre-

training. We further create a new dataset comprising parallel passages created from parallel

sentences that we release for future research purposes (Contribution D1). Our experiments

indicate that BLADE with intermediate pre-training consistently outperforms SPLADE-X

and PSQ in terms of retrieval effectiveness on average across multiple test collections. We

also demonstrate that the query expansion factor of BLADE can be optimized to achieve

a Pareto-optimal balance between query latency and retrieval effectiveness.

As part of our objective to create highly scalable systems, we focus on CLIR systems

that lie on the Pareto frontier of retrieval effectiveness and indexing latency in Chapter 6 to

address RQ3. We focus on six CLIR systems, divided into two categories, i) MT-free index-

ing, working with documents in their native language (PLAID-X, BLADE, PSQ), and ii)

MT-based indexing, which uses machine-translated documents (DT-PLAID, DT-SPLADE,

and DT-BM25). We further create ensembles by combining the retrieval outputs of these

individual systems using Reciprocal Rank Fusion. We demonstrate the complementary na-

ture of BLADE and PLAID-X with the traditional PSQ baseline by showing effectiveness

gains in ensembling them individually and together. Both BLADE and PLAID-X have

lower indexing latencies than the MT-based indexing systems, which is primarily affected

by the time required to translate documents to query language. Furthermore, we demon-

strate that an ensemble of PLAID-X, BLADE, and PSQ lies on the Pareto frontier of

retrieval effectiveness and indexing latency (Contribution S6). Additionally, we focus on

identifying the CLIR systems that lie on the Pareto frontier of retrieval effectiveness and

query latency in Chapter 6 to address RQ4. We find that MT-based indexing systems have
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low query latencies compared to MT-free indexing systems, with DT-SPLADE offering the

best tradeoff in every language. We release our implementations of PSQ, ColBERT-X, and

BLADE, along with the PSQ translation tables in all the languages we worked with in this

dissertation (Contribution C1, C2, C3, D2).

In conclusion, this dissertation highlights the interplay between MT and the various

phases of the CLIR process. Although the connections between MT and CLIR indexing, as

well as retrieval, have been extensively studied, this work highlights the effect of MT during

the training of neural CLIR systems. We demonstrate that MT can be employed to create

translated collections from large-scale training collections with relevance judgments in En-

glish, resulting in highly effective neural CLIR systems when compared to their non-neural

counterparts. Furthermore, neural CLIR systems exhibit complementary behavior to non-

neural CLIR systems in terms of training resources used (parallel/comparable/translated

collection), underlying tokenization employed (whitespace-separated tokens/subwords), and

the intermediate representation space (dense/sparse). This complementarity allows for the

creation of highly effective MT-free indexing system ensembles that incorporate both non-

neural and neural CLIR systems, exhibiting retrieval effectiveness comparable to MT-based

indexing systems. For practitioners primarily concerned with indexing efficiency, particu-

larly in applications that access streaming content, MT-free indexing systems that process

documents in their native language present an appealing alternative. Meanwhile, those

focused on retrieval effectiveness will find working with English translations advantageous

for both MT and CLIR. This is attributed to the abundance of parallel texts for numer-

ous language pairs, especially those involving English, which facilitates the creation of MT

systems. In addition, translating from a morphologically-rich language to one with simpler
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morphology, such as English, is less challenging than the reverse. Combining the avail-

ability of MT with large-scale training collections with relevance judgments and multiple

PLMs in English facilitates the creation of neural CLIR systems that access English con-

tent. These crucial findings underscore the synergy between MT and CLIR across different

phases, including training, indexing, and retrieval, and demonstrate the potential to cre-

ate CLIR systems that offer a Pareto-optimal balance between retrieval effectiveness and

indexing/querying efficiency.

7.1 Limitations

In this section, we list the limitations of our work

1. Our experiments focused on retrieving content in non-English languages using queries

in English. To strengthen the claim of our proposed approaches, we would need to

consider the general setting where the queries and documents could be in any two

distinct languages.

2. All of our experiments included CLEF collections from early 2000-2003 which lack

neural systems among the runs that contributed towards pooling. As a result, it

is uncertain how reliably older CLEF collections can differentiate newer-generation

neural retrieval systems.

3. Throughout our experiments, we used MT systems trained on parallel sentences to

translate title queries, which are often expressed in short keywords. This mismatch

in the domain of MT training data and the test queries on which MT is applied can

be problematic. Additionally, MT systems segment long documents into individual
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sentences and translate them independently. Such MT systems fail to handle the

document context to produce better contextual translations.

4. Except in CREPE, we did not explore strategies to mine for harder negatives for

ColBERT-X and BLADE. As such, we expect improvements to retrieval effectiveness

in a similar vein as observed in monolingual applications.

5. For SPLADE-X and BLADE, we employ the subword tokens provided by the un-

derlying multilingual or bilingual PLM. As a result, we inherit the challenges related

to the underlying tokenization and the specific design choices made throughout the

PLM development process. Notably, the ratio of subwords generated by a multilin-

gual model is higher in comparison to that of a monolingual model.

6. The experiments evaluating efficiency in both indexing and querying phases largely

rely on the specific implementation employed for producing translation and retrieval

outputs. It is crucial to recognize that variations in translation and retrieval times

may arise from employing different hardware configurations or toolkits, which could

potentially influence the efficiency of the system being examined.

7.2 Future Work

In this section, we present an overview of the directions that can be explored as a

result of our research in this dissertation.
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7.2.1 Cross-language Query Expansion ←→ Query Translation

Section 4.4 introduced a form of cross-language query expansion using the shared

vector space of the ColBERT-X model to retrieve cross-language nearest neighbors for query

terms. This approach has similarities with PSQ, which generates cross-language translation

alternatives for query terms using translation probabilities learned from parallel sentences.

Previous studies [32, 133] have also identified the connection between cross-language query

expansion and query translation. While our current approach for finding cross-language

expansion terms using ColBERT-X is restricted to the target retrieval collection, we can

leverage large external corpora, particularly aligned texts such as parallel sentences or

parallel/comparable passages, as explored in Chapter 5. This idea of using external corpora

for expansion is not new, but it becomes particularly interesting in the context of CLIR

due to the diverse approaches and datasets that can be used to find query expansions.

One approach to finding cross-language expansions is to replicate the ColBERT-X

process using a large monolingual corpus in the document language. Another approach

is to use a monolingual ColBERT model in the query language and aligned text, such as

parallel sentences. For a given query, we can retrieve the highest-scoring sentence(s) from

the parallel texts in the query language using the ColBERT model. From the retrieved

sentences, we can find their aligned counterparts in the document language to generate

contextual query expansion terms (or translation alternatives). Furthermore, we can build

a contextual PSQ model by restricting the translation alternatives to only include terms

occurring in the aligned texts of the retrieved sentences.
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7.2.2 Knowledge Distillation for CLIR

Knowledge distillation has been proven effective in monolingual retrieval applica-

tions [55, 162] by transferring knowledge from an expressive teacher model, such as cross-

encoders, to a weaker student model, such as bi-encoders. In Chapter 5, both SPLADE-X

and BLADE models used SPLADE as the teacher model for knowledge distillation. How-

ever, the design choices in the CLIR are different compared to the monolingual setting.

Several possible choices for teacher language models exist, including a monolingual model

trained in either the query or document language or a multilingual teacher model. The

choice of the dataset also varies based on the language. Furthermore, we can obtain com-

plementary sources of knowledge stored in the individual teacher models, depending on

the type of language model and the training dataset used. Once multiple teacher models

are available, we can evaluate their performance based on the effectiveness of their student

model.

7.2.3 CLIR Training Data using Large Language Models

Training neural CLIR system is particularly challenging due to the limited availability

of large-scale collections that contain queries and documents in their native languages. In

this dissertation, we explored various approaches to address this challenge. Chapter 4

investigated the use of machine translation (MT) to translate monolingual collections to

create CLIR training data. However, such collections may suffer from translationese, and

so in Chapter 5, we proposed an intermediate pretraining step that used aligned texts with

documents expressed in their natural form. This begs the question of whether there are
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other ways to acquire CLIR training data.

A possible approach to creating data is to utilize a model that can generate queries

that are relevant to a given document. Such query generation models are available in

the monolingual setting, and they have mainly been used as document expansion systems.

Building on the concept presented in Section 7.3.1 utilizing aligned texts, we can employ a

monolingual model to generate queries from a text in the query language and then match the

generated queries with the corresponding aligned text in the document language. However,

finding aligned texts that match the domain of the target document collection, such as

news, legal and biomedical, can be challenging. An interesting option, however, is the

use of large language models such as GPT-3 [29] and FLAN-T5 [112] XXL to generate

queries, which is being actively explored in monolingual applications [21, 23, 46, 80]. The

main advantage, in this case, is that we can use texts that match the domain of the target

document collection we want to retrieve for generating synthetic queries.

7.3 Implications

“The test of our progress is not whether we add more to the abundance of those who

have much; it is whether we provide enough for those who have too little.” - Franklin D.

Roosevelt [156]. In his second inaugural speech in January 1937, FDR spoke these words

in the hope of providing basic necessities to the citizens of the United States, who were still

reeling from the effects of the Great Depression. Today, almost nine decades later, these

words still hold true, albeit in a different context. We now strive to reduce the digital divide

and enable access to resources to more users worldwide. However, even if we managed to
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reduce this divide, the digital language divide would still present a significant challenge,

preventing many users from accessing resources in their own native language.1 CLIR offers

the potential to reduce this language divide by enabling users to find content in a language

different from the one they are searching in. This dissertation introduces a set of CLIR

systems that can access content in one language using a query expressed in another. As

we aim to break the language barriers and provide access to content in any language, it

is crucial to build scalable systems that can handle potentially large web-scale collections.

This dissertation takes initial steps towards this goal by identifying a set of systems that

balance the contrasting objectives of better scalability while maintaining retrieval quality.

1https://www.wired.com/story/internet-digital-language-divide/
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