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Stochastic processes are ubiquitous in the physical sciences and engineering. While of-

ten used to model imperfections and experimental uncertainties in the macroscopic world,

stochastic processes can attain deeper physical significance when used to model the seem-

ingly random and chaotic nature of the underlying microscopic world. Nowhere more preva-

lent is this notion than in the field of stochastic thermodynamics - a modern systematic

framework used describe mesoscale systems in strongly fluctuating thermal environments

which has revolutionized our understanding of, for example, molecular motors, DNA repli-

cation, far-from equilibrium systems, and the laws of macroscopic thermodynamics as they

apply to the mesoscopic world. With progress, however, come further challenges and deeper

questions, most notably in the thermodynamics of information processing and feedback con-

trol. Here it is becoming increasingly apparent that, due to divergences and subtleties of

interpretation, the deterministic foundations of the stochastic processes themselves must be

explored and understood.

This thesis presents a survey of stochastic processes in physical systems, the determin-

istic origins of their emergence, and the subtleties associated with controlling them. First,

we study time-dependent billiards in the quivering limit - a limit where a billiard system

is indistinguishable from a stochastic system, and where the simplified stochastic system



allows us to view issues associated with deterministic time-dependent billiards in a new light

and address some long-standing problems. Then, we embark on an exploration of the deter-

ministic microscopic Hamiltonian foundations of non-equilibrium thermodynamics, and we

find that important results from mesoscopic stochastic thermodynamics have simple micro-

scopic origins which would not be apparent without the benefit of both the micro and meso

perspectives. Finally, we study the problem of stabilizing a stochastic Brownian particle

with feedback control, and we find that in order to avoid paradoxes involving the first law

of thermodynamics, we need a model for the fine details of the thermal driving noise. The

underlying theme of this thesis is the argument that the deterministic microscopic perspec-

tive and stochastic mesoscopic perspective are both important and useful, and when used

together, we can more deeply and satisfyingly understand the physics occurring over either

scale.
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Chapter 1

Introduction

1.1 Background

Stochastic processes have been prevalent in the physical sciences for over a century now,

with origins dating back to Einstein’s seminal 1905 and work on Brownian motion [1]. It

was in these papers that Einstein employed the then somewhat controversial atomic kinetic

theory of matter to resolve an obscure eighty year-old mystery posed by botanist Robert

Brown’s observations of pollen grains from the plant Clarkia Pulchella suspended in water

[2]. Brown noted that the microscopic grains appeared to engage in a continuously erratic,

seemingly random motion which could not be attributed to the presence of any kind of

“vital life force” [3], and Einstein’s insight was to attribute this movement to the collec-

tive force exerted by individual colliding water molecules (to which the grains were giants

by comparison) which were in continual thermal motion, yielding a diffusion equation for

the motion of the pollen grains. Shortly thereafter, Smoluchowski, Langevin, Fokker, and

Planck, working independently and building on each others results, systematically incor-

porated probability theory into Einstein’s insights, in the process forming a generalized

diffusion equation (the Fokker-Planck equation) and a rudimentary notion of stochastic cal-

culus (the Langevin equation) [4, 5].

Following these initial beginnings, in 1923, Wiener formalized the notion of Brownian
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motion with mathematical rigor, defining the paradigmatic continuous time stochastic pro-

cess now known as the Wiener process [6], which, after Kolmogorov’s axiomatization of

probability theory in 1933 [7], facilitated the birth of Ito’s stochastic calculus [8], a now

indispensable tool in fields as diverse as mathematical finance, quantitative ecology, and

control engineering [9]. In the physical sciences, both continuous and discrete time and/or

space stochastic processes are found wherever there is a need model the behavior of a few

relevant degrees of freedom (i.e. those accessible to direct observation and experimentation)

in the presence of large numbers of complicated irrelevant degrees of degrees of freedom:

stellar dynamics, chemical kinetics, plasma physics, biophysics, the molecular machinery of

life, and the thermodynamics of small systems and information processing are just a few

examples [5, 10, 11, 12, 13]. The mathematics of stochastic processes and their important

applications are deeply rooted in the need to understand the world of the large and slow

in terms of the underlying world of the small and fast, and in this thesis, we argue for the

reverse viewpoint. Stochastic processes in physics are equally useful and important tools for

understanding the world of the small and fast in terms of the world of the large and slow,

and when working together, both views compliment each other and can yield new insights

into old problems.

Throughout this thesis, we will frequently refer to mesoscopic and microscopic scales.

In making this somewhat blurred distinction, we will follow the conventions of Altaner [14].

Microscopic scales will refer to distance and time scales associated with a few individual

degrees of freedom whose evolution is reversible and deterministic, where the environmental

degrees of freedom, if present, are explicitly considered. A typical example of a microscale

system is an isolated collection of a few charged classical particles interacting through elec-

tromagnetic potentials. Mesoscopic scales correspond to larger, possibly collective degrees

of freedom which evolve stochastically and irreversibly over distance and time-scales which

are much larger than microscopic scales, with environmental effects accounted for by the

stochastic driving noise. Mesoscale systems typically live in highly dissipative environments

where the energy associated with thermal fluctuations is comparable to the energy scales as-

sociated with the systems themselves. A prototypical example of a mesoscale system is the

molecular kinesin motor, which converts chemical energy from the surrounding environment
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into mechanical energy in order to stochastically transport cellular cargo along microtubules

found inside the cells of living creatures [12]. Both the microscale and mesoscale stand in

stark contrast to the macroscale of everyday experience, where the energy associated with

thermal fluctuations is irrelevant, and systems evolve deterministically but irreversibly due

to the second law of thermodynamics. The macroscale is the world of such familiar phe-

nomena as the heating of a tire when pumped with air, or the shattering of a ceramic mug

when dropped by a clumsy graduate student.

In this thesis, it will be important to recognize that the same physical system can be

effectively described at both the microscale and mesoscale, with each description having a

domain of applicability and usefulness. For example, a Brownian particle described on the

mesoscale evolves diffusively, with the force of the surrounding water molecules modelled

by a stochastic differential equation. This description is expected to be accurate over time

scales much, much greater than the average time between individual collisions with the

water molecules, and accurate down to distance scales whose square is given by the product

of a characteristic diffusion time scale and a diffusion constant. The microscopic description

of a Brownian particle is deterministic and explicitly models each individual collision with

the water molecules using Hamilton’s equations. The accuracy of this description is limited

only by quantum effects at very fine distance and time-scales. A recurring theme through-

out our work will be the emergence of partial differential equations (diffusion equations in

particular) at the mesoscale from the deterministic ordinary differential equations which

govern the microscale.

1.2 Motivation and outline

Our motivation for the framing of this thesis stems from recent advances in the ther-

modynamics of control and information processing made possible by stochastic thermody-

namics. Stochastic thermodynamics is a systematic framework which describes the effective

mesoscale evolution of small systems which exist is dissipative fluctuating thermal environ-

ments. In this framework, mesoscale systems evolve along individual stochastic trajectories,

and the stochastic driving noise is modelled in terms of the bulk physical properties of the
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surrounding medium. Stochastic thermodynamics endows macroscopic thermodynamic no-

tions such has work, heat, entropy production, and the first law with physically meaningful

definitions at the level of individual mesoscale trajectories, and provides a setting to derive

and unify the fluctuation theorems, a collection of important results from non-equilibrium

thermodynamics which are related to the second law and are distinguished by their validity

for systems driven arbitrarily far from equilibrium [13, 15, 16, 17, 18, 19, 20]. Like the

second law, fluctuation theorems place constraints on work and entropy production when

controlling and manipulating physical systems in thermal environments. In addition to rev-

olutionizing our understanding of and systems driven far from equilibrium [13], stochastic

thermodynamics and fluctuation theorems have together helped to elucidate the precari-

ous relationship between information entropy and thermodynamic entropy, a relationship

first exposed by the introduction of Maxwell’s demon [21]. A Maxwell’s demon functions

as a feedback controller, using observations of a thermodynamic system to enact apparent

violations of the second law [21, 22, 23, 24]. In recent times, Maxwell’s demon has been ef-

fectively exorcised; it is now well-understood that these apparent second law violations can

be quantified in terms of various measures of mutual information flow between the feedback

controller and thermodynamic system, and that if the feedback controller is itself treated

as a physical system, the thermodynamic cost of information erasure compensates for the

demon’s second law violations [13, 23, 24, 25, 26, 27, 28, 29, 30].

Although the results exorcising Maxwell’s demon are well-established and have been

experimentally verified [31], their still exist some subtleties of interpretation. Feedback

controllers are often modelled assuming the existence of some observation error, and in

many cases, in the limit of perfect observations, the mutual information quantities relevant

to Maxwell’s demon can be seen to diverge to infinity [26, 29, 32]. To the best of our

knowledge, these divergences are either ignored entirely, or are addressed with the expla-

nation that it takes an infinite amount of information to precisely specify the trajectory

of a stochastically evolving system [26]. We find this explanation physically unsatisfying,

and we hypothesize that these divergences actually signal a breakdown of the validity of

stochastic thermodynamics. In short, if a Maxwell’s demon observes the trajectory of a

thermodynamic system with infinite precision, then it will have acquired detailed micro-
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scopic information regarding the system’s evolution, so a stochastic mesoscopic description

is not a priori valid.

Some hints supporting the veracity of our hypothesis already exist in the literature. The

issue seems to be related to the fact that, as shown by Gaspard and Wang [33], when the

sample paths of certain stochastic processes (such as the white noise and Poisson processes

commonly used in stochastic thermodynamics) are observed with infinite precision, infor-

mation is generated at an infinitely fast rate. The underlying physical world, however, is

not stochastic - classical physics is a deterministic theory, so seemingly random processes

must be deterministic in origin and may actually be chaotic. When the sample path of

a chaotic process is observed in the limit of infinite precision, the information rate does

not diverge, but instead saturates to a value known as the Kolmogorov-Sinai entropy rate

[33]. This entropy rate is determined by the process’s underlying dynamical properties, and

for Hamiltonian systems, the entropy rate is related to the classical action (in the sense of

Lagrange and Hamilton) [34]. Thus, there appear to be deep connections between feedback

control in thermodynamics and the underlying Hamiltonian nature of the universe waiting

to be discovered, but in order to make such connections, we need to understand thermo-

dynamic systems at both the microscopic and mesoscopic level, and, most importantly we

need to understand the nature of the transition between the two levels of description. To

the best if our knowledge, such needs have not been readily acknowledged in the literature,

and there exists no established framework in which to address related issues. The purpose

of this thesis is to present a selection of results which demonstrate that establishing the

micro-meso connection is feasible, useful, and in some cases necessary in physical problems,

both inside and outside the context of thermodynamics.

This thesis is structured as follows. In Chap. 2, we present our work on the quivering

limit - a time-dependent billiard limit in which a billiard’s wall motion becomes effectively

stochastic. The evolution of a particle’s energy in such a billiard is described on the meso-

scopic level, and the results of our work shed light on some long-standing problems in the

time-dependent billiard literature. This work is presented as given in the publication of J.

Demers and C. Jarzynski in Physical Review E [35]. Chapters 3 and 4 together present a

study of the microscopic Hamiltonian foundations of thermodynamics. Here, we demon-
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strate the precise manner in which fast Hamiltonian chaos at the microscale generically leads

to effectively stochastic and irreversible thermodynamic behavior at the mesoscale. After

establishing our framework, we derive important results from stochastic thermodynamics,

and we then employ the established micro-meso connection to show that these important

results follow somewhat trivially from the underlying generic properties of Hamilton’s equa-

tions. In Chap. 5 we study the problem of stabilizing a diffusing Brownian particle with

feedback control on the mesoscopic level using stochastic thermodynamics. Here, we find

that in order to avoid contradictions with the first law of thermodynamics, we need to

model the stochastic driving noise with more detail than is commonly used in stochastic

thermodynamics. In Chap. 6, we summarize our work and present potential avenues for

future research.
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Chapter 2

Universal Energy Diffusion in a
Quivering Billiard

2.1 Introduction

Billiards are remarkably useful physical models; they allow a diverse range of classical

dynamics to be understood intuitively through easy-to-visualize particle trajectories and

are a natural setting for quantum and wave chaos [36], while the discrete time nature of

particle-billiard boundary interactions make classical billiards especially amenable to nu-

merical study. Time-dependent billiards (billiards with boundaries in motion) in particular

can be found in a wide range of applications: KAM theory [37, 38, 39], one-body dissipation

in nuclear dynamics [40], Fermi acceleration [41, 42, 43, 44, 38, 37, 45, 46, 47], and adiabatic

energy diffusion [48, 49], for example.

This work was originally motivated by the desire to study and simulate classical particle

trajectories in time-dependent billiard systems. The task is complicated by the boundary’s

displacement, which produces implicit equations for the time between particle-boundary

collisions. We propose a fixed wall simplification by considering the limit of infinitesimally

small boundary displacements. Our limit will be called the quivering limit, and the resulting

billiard system will be called a quivering billiard. The purpose of this paper is to show that,

although simple, quivering billiards are accurate descriptions of time-dependent billiards in
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the limit of small boundary displacements, and to support our conjecture that any physi-

cally consistent, non-trivial, fixed wall simplification of a time-dependent billiard must be

physically equivalent to a quivering billiard. Using physical reasoning, we will argue that in

the quivering limit, deterministic billiard dynamics become inherently stochastic. Then, by

utilizing the simplifications allowed by stochastic methods and fixed billiard walls, we will

derive analytic expressions to describe energy evolution in a quivering billiard. Our inves-

tigations will uncover universal behavior in time-dependent billiards when billiard motion

is close to the quivering limit, and our results will enable us to addresses several issues that

have been raised in previous Fermi acceleration and time-dependent billiard literature.

The outline of this paper is as follows. In Sec. 2.2, we first define a quivering billiard

and determine its behavior in one dimension, and then generalize to quivering billiards in

arbitrary dimensions. The energy statistics of a single particle and a particle ensemble are

examined in Sec. 2.3, and the results are discussed in the context previous literature in

Sec. 2.4. In Sec. 2.5, we give examples of quivering billiards and present numerical analyses,

and we conclude in Sec. 2.6.

2.2 The Quivering Limit

In this section, we define quivering as a particular limit of time-dependent billiard mo-

tion. Because the dynamics are so poorly behaved in this limit, billiard systems can only be

described stochastically. For simplicity, we first work with a one-dimensional billiard with

a single moving wall, and then extend to arbitrary billiard motion in arbitrary dimensions.

2.2.1 The 1-D Fermi-Ulam Model

Consider a particle in one dimension bouncing between two infinitely massive walls. One

wall is fixed at x = 0, and the other oscillates about its mean position at x = L, where

we take L > 0. The particle’s energy fluctuates due to collisions with the moving wall,

and the dynamical system corresponding to the particle’s motion defines the well-known

Fermi-Ulam model [43, 44, 42, 37, 38]. Suppose that the moving wall oscillates periodically
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with period τ , characteristic oscillation amplitude a, and characteristic speed uc = a/τ .

The moving wall’s position x(t) and velocity u(t) at time t can be written as

x(t) = L+ g(t) (2.1)

u(t) =
dg

dt
,

where g(t) is some piecewise smooth τ -periodic function with mean zero. The wall velocity

scales like uc, and g(t) scales like a. To make the scaling obvious, we note that g(t) depends

on t only through the value of t mod τ , and we make the following substitutions:

Ψ(t) =
t

τ
mod 1 (2.2)

g(t) = a h(Ψ(t)).

The quantity Ψ(t) will be referred to as the wall’s phase. Here, h is regarded as a function

of Ψ, and h(Ψ(t)) means h(Ψ) evaluated for Ψ = Ψ(t). The quantity h(Ψ(t)) is just g(t)

rescaled to have a characteristic oscillation amplitude of unity. The state of the wall at time

t is thus

x(t) = L+ a h(Ψ(t)) (2.3)

u(t) = uc h
′(Ψ(t)),

where the h′ denotes the derivative of h with respect to its argument Ψ.

We define the quivering limit of the Fermi-Ulam model by taking a, τ → 0 while holding

uc constant and leaving the dependence of h on Ψ fixed. In the quivering limit, the moving

wall’s position reduces to x(t) = L, so no implicit equations for the time between collisions

arise from the dynamics. This simplification comes at a price; when τ → 0, Ψ oscillates

infinitely fast in time, and u(t) does not converge to any value for any given t. That is,

in the quivering limit, u(t) becomes ambiguous to evaluate. Our task now is to physically

interpret and resolve this ambiguity.

Note that in the quivering limit, the wall makes infinitely erratic motions at finite speeds;
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the nth derivative of g(t), scaling like a/τn, diverges for all n ≥ 2. An infinitesimal change

in the state of a particle results in a finite and essentially unpredictable change in the wall’s

velocity at the time of the next bounce. We assert that one could never, even in principle,

specify the state of the particle with enough precision to reliably predict the velocity of

the moving wall, and thus the change in particle energy, during the next collision. We

therefore claim that in the quivering limit, the dynamics of the Fermi-Ulam model become

inherently stochastic; deterministic particle trajectories defined on phase space transition to

stochastic processes defined on a probability space. Given any initial condition, the resulting

particle trajectory actually represents one possible realization drawn from an ensemble of

initial conditions infinitesimally displaced from one another. The wall’s velocity during a

collision will be treated as a random variable, and we now find the corresponding probability

distribution.

Consider again the moving wall with non-zero a and τ . Let P (u|0) be the probability

density for a stationary observer to measure the velocity u during a randomly timed snapshot

of the wall:

P (u|0) =
1

τ

∫ τ

0
dt δ(u− u(t)) (2.4)

=

∫ 1

0
dΨδ(u− uc h′(Ψ)).

The reason for placing the conditional |0 in the argument of P will become apparent shortly.

We note that P (u|0) is normalized, so it is indeed a well-defined probability density. In

the quivering limit, uc and the dependence of h on Ψ remain constant, so P (u|0) remains

well-defined and unchanged. If the stationary observer were to measure the wall velocity

in the quivering limit, any observation, no matter how well-timed, would be an essentially

random snapshot due to the wall’s infinitely erratic motion. We thus take P (u|0) to be the

probability for a stationary observer to measure the wall with velocity u when the wall is

quivering.

The particle bouncing between the walls effectively measures the wall’s velocity during

collisions, but the particle is not a stationary observer. Collisions with large relative speeds

of approach occur more frequently than collisions with small relative speeds of approach,
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Figure 2.1: Spacetime diagram over one period of a moving wall’s motion. The smooth
curve represents the wall’s position, and particles approach the wall along the diagonal
arrows to collide at times ta, ta + δt, tb and tb + δt

so there exists a statistical bias that favors collisions for which the wall moves towards

the particle. If the quivering dynamics are to be physically consistent with the Fermi-

Ulam dynamics, this statistical bias must be incorporated into the probability distribution

used to determine the wall’s velocity during collisions. The mathematical realization of

the statistical bias can be found with the aid of Fig. 2.1, a construction first employed by

Hammersley [44] and Brahic [37].

In Fig. 2.1, the position of the moving wall in the Fermi-Ulam model is plotted over one

period of motion in the interval (t0, t0 + τ). Consider an ensemble of particles approaching

the moving wall with speed v. For the moment, we assume that v is larger than the

maximum wall velocity umax. The particles are launched from x = 0 at a uniform rate over

a period of duration τ such that they all collide with the wall during the interval (t0, t0 +τ).

We concern ourselves only with the first collision each particle makes with the moving wall.

Four trajectories from the ensemble are shown in Fig. 2.1, representing collisions with the

wall at times ta, ta+ δt, tb, and tb+ δt. Because the launch times are uniformly distributed,

the fraction of particles that collide with the wall between ta and ta+δt will be proportional

to the interval δta = δt − ∆a. Likewise, the fraction that collide between tb and tb + δt

will be proportional to δtb = δt + ∆b. Using the geometry of Fig. 2.1 and the fact that

tan(θ) = v, we find the probability density for randomly selected ensemble member collide
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with the moving wall at a time t within the interval (t0, t0 + τ) to be

P (u(t)|v) =
1

τ

(
1− u(t)

v

)
. (2.5)

Multiplying by a delta function and integrating Eq. (2.5) over a period of the wall’s motion

gives P (u|v), the probability density for a randomly selected ensemble member’s collision

to occur when the wall moves with velocity u:

P (u|v) =
1

τ

τ∫
0

dt δ(u− u(t))

(
1− u(t)

v

)
(2.6)

=

1∫
0

dΨ δ(u− uc h′(Ψ))

(
1− uc h

′(Ψ)

v

)
= P (u|0)

(
1− u

v

)
.

Because the wall’s average displacement over one period of motion is zero, the product

uP (u|0) integrated over all wall velocities must also give zero, and P (u|v) is therefore

normalized and a well-defined probability density. The distribution P (u|v) has a statistical

bias towards larger negative u due to the flux factor 1 − u/v. We will henceforth refer to

P (u|0) as the unbiased distribution and P (u|v) as the biased distribution. In the quivering

limit, P (u|v) remains well-defined and unchanged. As τ → 0, an ensemble of particles

launched over a period of wall motion from a fixed x is essentially equivalent to an ensemble

of infinitesimally displaced initial conditions. We therefore take P (u|v) to be the conditional

probability density to observe a quivering wall with velocity u during a collision, given that

the particle approaches the wall with speed v > umax.

If a particle approaches the moving wall with speed v < umax, then P (u|v) will become

negative for some values of u, and Eq. (2.6) will make no sense as a probability density. These

u values correspond to impossible collisions for which the wall moves with positive velocity

away from the particle faster than the particle moves toward the wall. Such collisions occur

with probability zero, and we can account for this by simply attaching a step-function to
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the biased distribution, yielding

P (u|v) =


P (u|0)

(
1− u

v

)
, v ≥ umax

N(v)P (u|0)
(
1− u

v

)
Θ(v − u), v < umax,

(2.7)

where Θ(x) is the unit step function (equal to 0 for x < 0 and 1 for x ≥ 0) and N(v) is a v

dependent normalization.

Equation (2.7) determines the statistics of a particle’s energy evolution in a quivering

Fermi-Ulam system. As with any billiard system, the particle’s energy is simply the kinetic

energy 1
2mv

2, where m is the particle’s mass and v is its speed. The particle bounces

between the two walls as if the system were time-independent, but when colliding with

the quivering wall at an incoming speed vi (the particle moves in the positive x direction

to collide with the moving wall, so vi is also the incoming velocity), a value for the wall

velocity u is selected using the biased distribution P (u|vi). The particle’s velocity just after

the collision, vf , is given by

vf = 2u− vi, (2.8)

and the corresponding energy change, ∆E, is given by

∆E = 2mu2 − 2muvi. (2.9)

Equations (2.8) and (2.9) are determined using the standard collision kinematics for a

particle in one-dimension colliding elastically with an infinitely massive moving object.

Before moving on to higher dimensions, we must address the possibility of particles

escaping the billiard interior. This issue will plague any fixed wall simplification of time-

dependent billiards, and is discussed in detail in Ref. [50]. From Eq. (2.8), we see that

if 0 < u < vi ≤ 2u, the particle does not turn around after a collision with the moving

wall, but instead slows down and continues forward. We refer to these types of collisions

as glancing collisions. For non-zero a and τ , just after a glancing collision, the particle

continues forward slower than the wall moves outward, so the particle will remain within

the billiard interior. With a fixed wall simplification, however, the wall does not actually
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move outward after a glancing collision, so the particle will continue forward and escape

the billiard interior. A particle escaping through a hard wall is a non-physical by-product

of setting a = 0, so in order to make a physically reasonable fixed wall simplification, one

must always devise a method to handle glancing collisions. Our method for a quivering

Fermi-Ulam system is devised as follows.

For non-zero a and τ , after a glancing collision occurs, the wall continues to evolve

through its period, and one of two possibilities will occur. The wall may slow down sometime

after the glancing collision and allow the particle to catch up and collide again, or the

wall may reverse its direction and move inward sometime after the glancing collision, also

allowing the particle to collide again. In either case, a second collision occurs after the first

collision, and as a and τ approach zero, the second occurs essentially instantaneously after

the first. Therefore, we treat a glancing collision in a quivering Fermi-Ulam billiard as a

double collision. When a particle with speed vi (also the particle’s velocity) collides with

the quivering wall, we draw a u value from the distribution P (u|vi). If the selected value

of u is such that 0 < u < vi ≤ 2u, the particle’s new speed vf (also velocity) is given by

vf = 2u − vi, and we draw a new u value from the distribution P (u|vf ). If the second u

value gives another glancing collision, we again update the particle’s speed and then draw a

third u value. The process is repeated until a non-glancing collision occurs, and the whole

event (which occurs instantaneously) is treated as a single collision.

2.2.2 Arbitrary Time-Dependent Billiards

We now generalize to arbitrary billiards in arbitrary dimensions. Consider a time-

dependent billiard in d dimensions moving periodically through some continuous sequence

of shapes with period τ , characteristic oscillation amplitude a, and characteristic speed

uc = a/τ . The evolution of any one point on the boundary will be denoted by the path

q(t), where q(t + τ) = q(t). For every t, the set of all boundary points {q(t)} is assumed

to define a collection of unbroken d − 1 dimensional surfaces, which we refer to as the

boundary components, enclosing some d dimensional bounded connected volume. The

outward unit normal to the billiard boundary at the point q(t) is denoted by n̂(q(t)), and
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the velocity of the boundary point q(t) is denoted by u(q(t)) = dq(t)/dt. The billiard

shape evolves continuously in time, and we assume that the boundary components remain

unbroken throughout their evolution, so u(q(t)) forms a smooth vector field with domain

on the boundary {q(t)} for any fixed t. Likewise, n̂(q(t)) forms a smooth field on {q(t)}

for any fixed t, except possibly at corners, where n̂(q(t)) is ill-defined and discontinuous.

We denote the outward normal velocity of the point q(t) by u(q(t)) = u(q(t)) · n̂(q(t)).

Denote by q the average of q(t) over one period:

q =
1

τ

∫ τ

0
dtq(t). (2.10)

Noting that the boundary components remain unbroken throughout the period of motion,

it is straightforward to show that set of average boundary points {q} forms a collection of

unbroken d − 1 dimensional surfaces. The trajectory q(t) and normal velocity u(q(t)) of

any given boundary point can be written as functions of the corresponding average location

q and the time t:

q(t) = q + g(q, t) (2.11)

u(q, t) = ∂tg(q, t) · n̂(q(t)),

where g(q, t) is a piecewise smooth in time τ periodic function with a time average of zero.

g(q, t) scales like a and u(q(t)) scales like uc. Equation (2.11) depends on t only through

the value of Ψ(t) = t/τ mod 1, so we write

q(t) = q + ah(q,Ψ(t)) (2.12)

u(q, t) = uc ∂Ψh(q,Ψ(t)) · n̂(q(t)).

where ah(q,Ψ(t)) = g(q, t). Analogously to the one dimensional case, h is regarded as a

function of q and Ψ, and h(q,Ψ(t)) means h(q,Ψ) evaluated for Ψ = Ψ(t). The quivering

limit of an arbitrary dimensional billiard is defined by taking a, τ → 0 while holding uc

and the dependence of h on Ψ and q constant. In this limit, the billiard’s boundary points

15



Figure 2.2: Collision geometry in a two-dimensional billiard. A particle with velocity v
approaches the point q on the billiard boundary, where the outward unit normal vector is
n. The dotted line represents the tangent line to the boundary at q

become fixed in time at the average locations {q}, so the outward normal vectors become

fixed in time as well. Thus, in the quivering limit, we have

q(t) = q (2.13)

u(q, t) = uc ∂Ψh(q,Ψ(t)) · n̂(q)

= uc h
′(q,Ψ(t)),

where we write h′(q,Ψ(t)) = ∂Ψh(q,Ψ(t)) · n̂(q) for brevity. Any time-dependent billiard

taken to the quivering limit will be called a quivering billiard.

Analogously to the one dimensional case, we define the unbiased distribution for each

q:

P (u|0,q) =

∫ 1

0
dΨδ(u− uc h′(q,Ψ)). (2.14)

The biased distribution for each q can also be defined analogously to the one dimensional

case, but we must also consider the collision angle θ, depicted for two-dimensional billiard

in Fig. 2.2. For a particle approaching the boundary point q with speed v, θ is the angle

between the particle’s velocity vector and the d− 1 dimensional tangent surface to the wall

at q, and v sin(θ) thus gives the component of the particle’s velocity in the n̂(q) direction. If

the particle collides when the wall has normal velocity u, then the relative speed of approach

just before the collision is determined by v sin(θ) and u, so v sin(θ) determines the statistical

bias towards collisions with large negative u. We account for this by simply replacing v
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with v sin(θ) in Eq. (2.7), yielding

P (u|v,q, θ) =


P (u|0,q)

(
1− u

v sin(θ)

)
, v sin(θ) ≥ umax(q)

N(v, θ)P (u|0,q)
(

1− u
v sin(θ)

)
Θ(v sin(θ)− u), v sin(θ) < umax(q),

(2.15)

Equation (2.15) determines the statistics of a particle’s energy evolution in a quivering

billiard.

To summarize, we describe how one may construct a quivering billiard and determine

a particle’s trajectory, without the need to define a real, fully time-dependent billiard and

take the quivering limit. First, one must select a billiard shape by defining a surface {q},

then set boundary quivering by giving a value to uc and defining a scalar field h′(q,Ψ)

on {q}. If the constructed quivering billiard is to honestly represent some deterministic

billiard’s motion in the quivering limit, then h′(q,Ψ) should be chosen to be a smooth

function of q for any Ψ wherever n̂(q) in continuous. Using the field h′ and the value of

uc, one may then calculate the unbiased distribution P (u|0,q) from Eq. (2.14) for any q

on the billiard boundary. For a particle in free flight inside the quivering billiard, the next

collision location is found deterministically using the geometry of the billiard boundary, just

as with a time-independent billiard. When a particle with velocity vi and speed vi collides

with the boundary at q with a collision angle θi, we draw a value of u from the distribution

P (u|vi,q, θi). The particle’s velocity component tangent to the boundary remains constant,

and the component normal to the boundary just after the collision, vf · n̂(q), is given by

vf · n̂(q) = 2u− vi · n̂(q) (2.16)

= 2u− vi sin(θi).

The corresponding change in energy, ∆E, is given by

∆E = 2mu2 − 2muvi sin (θi) . (2.17)
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Analogously to the one dimensional case, if the selected value of u is such that 0 < u <

vi sin(θi) ≤ 2u, then a glancing collision occurs, and we draw a second value of u using

the same collision located and updated particle speed and collision angle, determined from

Eqs. (2.16) and (2.17).

2.3 Energy Statistics

In this section, we study in detail the statistical behavior of particles and ensembles in a

d-dimensional quivering billiard, with the aim of describing energy evolution of a ensemble

of initial conditions as a diffusion process. Our notation will be as follows: qb is the location

of a particle’s bth collision with the billiard boundary, θb is the bth collision angle, ub is the

selected value of the wall velocity during the bth collision (sampled using Eq. (2.15)), vb−1

is the particle’s speed just before the bth collision, and ∆Eb is the change in particle energy

due to the bth collision, given by

∆Eb = 2mu2
b − 2mub vb−1 sin (θb) . (2.18)

In order to derive analytic results, we will assume that the initial particle speeds v0 are

much larger than uc, and we will solve to leading order in the small parameter ε = uc/v0.

We regard uc as an O(1) quantity, and v0 as an O(ε−1) quantity. This approximation allows

us to ignore glancing collisions in our analysis, and also allows us ignore the possibility of

vb−1 sin(θb) ≤ umax(qb), so that the biased distributions at the time of collision always take

the form P (ub|vb−1,qb, θb) = P (ub|0,qb) (1− ub/vb−1 sin(θb)) (as opposed to the more com-

plicated Eq. (2.15)). The assumption ε� 1 is not particularly restrictive; even if particles

begin with an initial speed comparable to or less than uc, energy gaining collisions are more

likely than energy losing collisions due to the flux factor in the biased distribution, and

a slow particle will gain roughly mu2
c of energy during a collision according to Eq. (2.18).

Therefore, a slow particle will more than likely gain speed uc ∼ O(1) during a single bounce,

and after 1/δ bounces, where δ � 1 is some small number, the particle will more than likely

have a speed v such that uc/v . δ � 1. Thus, slow particles are very likely to eventually
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become fast particles, and the assumption uc/v � 1 will give a better and better approxi-

mation over time.

In the analysis, it will prove useful to consider both the full dynamics and frozen dy-

namics, as is done in Refs. [51, 49]. If the frozen dynamics are used at the bth collision,

the energy change ∆Eb is calculated, but the particle’s energy remains constant, and the

angle of reflection is equal to the collision angle θb. In other words, the frozen dynamics

are identical to those of a time-independent billiard, but we calculate and keep track of the

∆Eb’s that would have occurred had the billiard walls been quivering. In the full dynamics,

the particle’s energy is actually incremented by the calculated value of ∆Eb, and the angle

of reflection is consequently altered.

2.3.1 Expectations

Consider single a particle with energy E0 released at time t0 in a d-dimensional quiv-

ering billiard. The resulting particle trajectory generates a sequence of energy increments

{∆E1,∆E2, ...,∆Eb−1,∆Eb,∆Eb+1, ...}. Let the operator {...}b denote the conditional ex-

pectation value of the quantity ..., given the outcomes of the previous b−1 bounces. The first

b − 1 bounces determine vb−1, qb, and θb, so the bth conditional expected energy change,

µb ≡ {∆Eb}b, can be calculated using the biased distribution P (ub|vb−1,qb, θb) and the

expression for ∆Eb in Eq. (2.18):

µb ≡ {∆Eb}b (2.19)

=

∫
dubP (ub|vb−1,qb, θb)∆Eb

=

∫
dubP (ub|0,qb)

(
4mu2

b −
2mu3

b

vb−1 sin(θb)
− 2mub vb−1 sin(θb)

)
.

The integral in Eq. (2.19) is taken over all possible values of ub at qb.

Let Mn(qb) denote the nth moment of the wall velocity at qb as measured by a stationary

observer:

Mn(q) =

∫
duP (u|0,q)un. (2.20)
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By construction, M1(q) = 0 for all q. Otherwise, Mn(qb) generally scales like unc . The

conditional mean thus simplifies to

µb =

∫
dubP (ub|0,qb)4mu2

b

(
1− ub

2vb−1 sin(θb)

)
(2.21)

= 4mM2(qb)

(
1− M3(qb)/M2(qb)

2vb−1 sin(θb)

)
.

Similarly, the conditional variance σ2
b is given by

σ2
b ≡ {(∆Eb)2}b − {∆Eb}2b (2.22)

=

∫
dubP (ub|vb−1,qb, θb)

(
(∆Eb)

2 − {∆Eb}2b
)

= 4m2[M2(qb)]
2

(
v2
b−1 sin2(θb)

M2(qb)
− 3

vb−1 sin(θb)

[M2(qb)]2/M3(qb)

+ 3
M4(qb)

[M2(qb)]2
− 4 +

4M3(qb)/M2(qb)−M5(qb)/[M2(qb)]
2

vb−1 sin(θb)

− [M3(qb)]
2/[M2(qb)]

2

v2
b−1 sin2(θb)

)
.

The terms enclosed in the parentheses of Eqs. (2.21) and (2.22) are ordered in increasing

powers of ε. To leading order, we have

µb = 4mM2(qb) (2.23)

σ2
b = 4m2M2(qb)v

2
b−1 sin2(θb)

The quantities µb and σ2
b are O(1) and O

(
ε−2
)
, respectively; average energy gain is mod-

erate, and fluctuations are huge.

2.3.2 Correlations

The conditional covariance between adjacent bounces, Covb,b+1, is defined by

Covb,b+1 ≡ {(∆Eb − {∆Eb}b) (∆Eb+1 − {∆Eb+1}b)}b (2.24)

= {∆Eb∆Eb+1}b − {∆Eb}b{∆Eb+1}b.
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The conditional expectations in Eq. (2.24) are taken given the outcomes of the previous

b − 1 collisions, with the outcome of the bth collision yet to be determined. That is, we

must average over all possible realizations of the stochastic process Eb−1 → Eb−1 + ∆Eb →

Eb−1+∆Eb+∆Eb+1, given the first b−1 collisions. Denote {∆Eb+1|ub}b+1 as the conditional

expectation of Eb+1, given the first b − 1 collision outcomes and supposing that ub is the

wall velocity during the bth collision. The expression for {∆Eb+1}b is then

{∆Eb+1}b =

∫
dubP (ub|vb−1,qb, θb){∆Eb+1|ub}b+1. (2.25)

The expression for {∆Eb∆Eb+1}b can be written similarly:

{∆Eb∆Eb+1}b =

∫
dubdub+1P (ub|vb−1,qb, θb)P (ub+1|vb,qb+1, θb+1|ub)∆Eb∆Eb+1

=

∫
dubP (ub|vb−1,qb, θb)∆Eb{∆Eb+1|ub}b+1. (2.26)

The term P (ub+1|vb,qb+1, θb+1|ub) denotes the value of P (ub+1|vb,qb+1, θb+1) when vb, θb+1,

and qb+1 are determined given the first b− 1 collision outcomes while supposing that ub is

the wall velocity upon the bth collision. Equation (2.24) can thus be expressed as

Covb,b+1 =

∫
dubP (ub|vb−1,qb, θb){∆Eb+1|ub}b+1 (∆Eb − {∆Eb}b) . (2.27)

If the frozen dynamics are used at the bth collision, then vb, θb+1, and qb+1 are indepen-

dent of ub, so we have

{∆Eb+1|ub}b+1|F = {∆Eb+1}b+1|F = µb+1|F , (2.28)

where ...|F denotes the quantity ... evaluated using the frozen dynamics. µb+1|F carries no

ub dependence, so it can be brought outside of the integral in Eq. (2.27), giving

Covb,b+1|F = 0. (2.29)
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Adjacent energy increments are thus statistically uncorrelated in the frozen dynamics.

Under the assumption ε � 1, the frozen dynamics closely resemble the full dynamics

over the time scale of a few bounces [49]. Over such a time scale, we can regard the

full dynamics trajectory as a stochastic perturbation of the deterministic frozen dynamics

trajectory. Let qb+1|ub = qb+1|F + δqb+1|ub be the (b+ 1)th collision location when the full

dynamics are used at the bth bounce, given the first b− 1 collisions and supposing that ub

is the observed wall velocity upon the bth collision. Equation (2.23) then gives, to leading

order in ε

{∆Eb+1|ub}b+1 = 4mM2(qb+1|ub) (2.30)

= 4mM2(qb+1|F ) + 4m∇M2(qb+1|F ) · δqb+1|ub.

where the gradient ∇M2 is constrained to act along directions tangent to the billiard bound-

ary at qb+1|F . In Appendix A, we solve for ‖δqb+1|ub‖ to leading order in ε and find

‖δqb+1|ub‖ = 2Lb|F
cos(θb)

sin(θb+1|F )

|ub|
vb−1

, (2.31)

where Lb|F is the distance between the bth and b + 1th collision locations in the frozen

dynamics. Combining Eqs. (2.27), (2.30), and (2.31), gives to leading order in ε

Covb,b+1 =

∫
dubP (ub|vb−1,qb, θb) (4m∇M2(qb+1|F ) · δqb+1|ub) (∆Eb − {∆Eb}b)

=

∫
dubP (ub|0,qb)

(
4m∇M2(qb+1|F ) · δqb+1|ub

‖δqb+1|ub‖

× 2Lb|F
cos(θb)

sin(θb+1|F )

|ub|
vb−1

)(
4mu2

b − 2m
u3
b

vb−1 sin(θb)
− 2mubvb−1 sin(θb)

−4mM2(qb) + 4mM2(qb)
ub

vb−1 sin(θb)

)
= −16m2Lb|F

cos(θb) sin(θb)

sin(θb+1|F )

×∇M2(qb+1|F ) ·
∫

dubP (ub|0,qb)
δqb+1|ub
‖δqb+1|ub‖

ub|ub|. (2.32)

All but the leading order terms are dropped in the last line of Eq. (2.32). With exception to

the one-dimensional case, Covb,b+1 is thus an O(1) quantity. In a one-dimensional billiard,
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the frozen and full dynamics always give the same collision location, so {∆Eb+1|ub}b+1 =

{∆Eb+1}b+1|F , and consequently, Covb,b+1 is identically zero.

The conditional correlation ρb,b+1 is defined as the normalized conditional covariance,

and is given by

ρb,b+1 =
Covb,b+1

σb{σb+1}b
. (2.33)

To leading order in ε, the conditional expectation {σb+1}b can be taken as the frozen dy-

namics value in Eq. (2.33). Therefore, the conditional correlation ρb,b+1 is O(ε2) (with

exception to the one-dimensional case, where ρb,b+1 = 0). This quantity is very small,

and correlations between more distant collisions will further diminish due to the mixing of

particle trajectories induced by the stochastic wall motion. We thus conclude that, in any

dimension, correlations between energy increments effectively decay over the time scale of

a single collision.

2.3.3 Ensemble averages

Consider now a microcanonical ensemble of independent particles with energy E0 re-

leased at time t0. The resulting trajectories will generate an ensemble of statistically in-

dependent energy increment sequences, and we denote ∆Ei,b as the bth recorded energy

increment of the ith particle. Define the ensemble averaged bth energy increment 〈∆Eb〉 as

〈∆Eb〉 =
N→∞

N∑
i=1

∆Ei,b
N

, (2.34)

and the ensemble averaged bth conditional mean 〈µb〉 as

〈µb〉 =
N→∞

N∑
i=1

µi,b
N
, (2.35)

where µi,b = {∆Ei,b}b. Equation (2.22) shows that the bth conditional variances σ2
i,b ≡

{(∆Ei,b)2}b − {∆Ei,b}2 are finite and bounded from above. Noting this, and the fact that
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the series
∞∑
k=1

k−2 converges, we deduce

lim
N→∞

N∑
k=1

σ2
k,b

k2
<∞. (2.36)

By Kolmogorov’s strong law of large numbers [52], Eq. (2.36) assures that, with probability

unity,

〈∆Eb〉 = 〈µb〉 . (2.37)

Combining Eqs. (2.37),(2.35), and (2.23) gives, to leading order in ε,

〈∆Eb〉 =
N→∞

N∑
i=1

4mM2(qi,b)

N
(2.38)

= 4m 〈M2(qb)〉 ,

where qi,b denotes the bth collision location of the ith particle. By similar law of large

number arguments, we also have, to leading order in ε,

〈
u2
b

〉
= 〈M2(qb)〉 , (2.39)

where 〈
u2
b

〉
=

N→∞

N∑
i=1

u2
i,b

N
, (2.40)

and ui,b is the wall velocity during the bth collision of the ith particle. To leading order, we

thus have

〈∆Eb〉 = 4m
〈
u2
b

〉
. (2.41)

2.3.4 Energy diffusion

We now consider the normalized energy distribution of an ensemble of independent

particles, denoted by η(E, t). We have thus far shown that energy of any one ensemble

member evolves stochastically, in small increments, with correlations in energy changes

effectively decaying over a characteristic time scale given by time between collisions. A
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particle’s energy evolution is therefore effectively a Markov process describing a random

walk along an energy axis, so following Refs. [48, 49], we assert that η(E, t) evolves like a

diffusion process and obeys a Fokker-Planck equation:

∂tη(E, t) = −∂E [g1(E, t)η(E, t)] +
1

2
∂2
E [g2(E, t)η(E, t)] . (2.42)

The functions g1(E, t) and g2(E, t), the drift and diffusion terms, respectively, are to be

determined in this section. The energy of any one particle in a quivering billiard evolves

discretely in time, so the continuous time evolution implied by Eq. (2.42) will be an accurate

description of the ensemble only down to a coarse-grained time scale. The time scale must

be large enough to ensure that most particles in the ensemble experience at least a few

bounces off the billiard wall, but small enough to ensure the energy change experienced

by most particles is small compared to their total energy. Generally speaking, a diffusive

description of a stochastic process is only accurate over time scales larger than the process’s

typical correlation time [51, 49]. We have established that energy correlations for any one

particle effectively decay over the time scale of a single collision, thus, the diffusion approach

to energy evolution in a quivering billiard is justified on any time scale over which η(E, t)

can be described by a continuous evolution.

The drift term g1(E′, t′) is defined as the rate of ensemble averaged energy change for

an ensemble of particles all with energy E′ at time t′. Specifically,

g1(E′, t′) =
∆t→0

〈E(t′ + ∆t)− E(t′)〉
∆t

, (2.43)

where E(t′) = E′ for all particles in the ensemble, and 〈E(t′ + ∆t)〉 is the ensemble averaged

particle energy at time t′ + ∆t. We can not actually take the limit ∆t→ 0 because g1 has

no meaning over time scales for which the evolution of η appears discontinuous. Instead,

we will let ∆t be the average time for which the ensemble members make B bounces after

time t′, and we will find corresponding ensemble averaged change in energy. We assume

that B is small enough so that the particle energies change very little relative to E′ over the

time ∆t, so that ∆t is the smallest coarse-grained time scale for which Eq. (2.42) is valid
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for an ensemble with common energy E′. We let EB be a particle’s energy B bounces after

t′, and find from Eq. (2.37)

〈
EB − E′

〉
=

〈
B∑

∆Eb

〉
(2.44)

=
B∑

4m
〈
u2
b

〉
.

We denote the coarse grained squared wall speed by u2(t′;B), defined as the time average

of
〈
u2
b

〉
over the first B bounces after t′:

u2(t′;B) =
B∑〈

u2
b

〉
B

. (2.45)

We thus have 〈
EB − E′

〉
= 4m u2(t′;B)B (2.46)

The time scale ∆t corresponding to the B bounces after t′ is the ensemble averaged

total free flight time over which the B bounces occur. If we denote by ∆tb a particle’s bth

free flight time after t′, we have

∆t =
B∑
〈∆tb〉 . (2.47)

We are assuming small wall velocities, so the particles’ speeds change very little relative to

their initial speed
√

2E′/m over the B bounces. Therefore, to leading order in ε, we have

∆tb =

√
m

2E′
lb, (2.48)

where lb denotes a particles bth free flight distance after t′. We now define the coarse grained

free flight distance, l(t′, B) by time averaging the ensemble average of lb over the first B

bounces after t′:

l(t′;B) =
B∑ 〈lb〉

B
(2.49)
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Substituting Eqs. (2.49) and (2.48) into Eq. (2.47) gives

∆t = B l(t′;B)

√
m

2E′
, (2.50)

and substituting for B in Eq. (2.46) gives

〈
EB − E′

〉
= ∆t

4
√

2m u2(t′;B)

l(t′;B)
E′

1
2 . (2.51)

Equation (2.51) gives the ensemble averaged change in energy over the time ∆t after t′ for

an ensemble of particles with energy E′. Comparing to Eq. (2.43), we see that dividing

both sides of Eq. (2.51) by ∆t gives us g1(E′, t′). We thus have,

g1(E, t) =
4
√

2m u2(t)

l(t)
E

1
2 , (2.52)

where we have switched from primed to unprimed variables, and the dependence on B has

been suppressed.

The diffusion term g2(E′, t′) is defined as

g2(E′, t′) =
∆t→0

〈
(E(t′ + ∆t)− E(t′))2

〉
∆t

, (2.53)

where E(t′) = E′ for all particles in the ensemble, and 〈E(t′ + ∆t)〉 is the ensemble averaged

particle energy at time t′ + ∆t. An expression for the diffusion term can be found by

employing similar methods used to find the drift term. Alternatively, g2(E, t) can be found

by invoking Liouville’s theorem, as in Ref. [51]. Combing Liouville’s theorem and the

Fokker-Planck equation allows one to deduce a fluctuation-dissipation relation:

g1(E, t) =
1

2Σ(E)
∂E [Σ(E)g2(E, t)] , (2.54)

where Σ(E) is the microcanonical partition function of a single particle with energy E in

the corresponding frozen billiard. In a d dimensional billiard, the microcanonical partition
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function is given by [49]

Σ(E) =
1

2
Vd Ωd (2m)

d
2 E

d
2
−1, (2.55)

where Ωd is the d-dimensional solid angle, and Vd is the d-dimensional billiard’s volume.

Combining Eqs. (2.52),(2.54), and (2.55), we find

g2(E, t) =
4

d+ 1

4
√

2m u2(t)

l(t)
E

3
2 . (2.56)

This method of determining g2 allows for an additive constant, but this constant must be

identically zero; when E = 0, the particles are motionless and there can be no drift or

diffusion of energies, so we must have g1(0, t) = g2(0, t) = 0.

With our expressions for g1 and g2, we may rewrite the Fokker-Planck equation:

∂tη(E, t) =
2α(t)

d+ 1
∂E

[
E

1+d
2 ∂E

(
E

2−d
2 η(E, t)

)]
(2.57)

where we define α(t) as

α(t) ≡ 4
√

2m u2(t)

l(t)
. (2.58)

Equation (2.57) can be simplified by defining a rescaled time s:

s =

∫ t

t0

dt′α(t′), (2.59)

which gives

∂sη(E, s) =
2

d+ 1
∂E

[
E

1+d
2 ∂E

(
E

2−d
2 η(E, s)

)]
(2.60)

Equation (2.60) can be solved by separation of variables. We assume a solution of the

form φ(s)f(E), and upon making the substitutions F (E) = E
3−d

4 f(E) and z = E
1
4 one

finds a first order homogeneous linear differential equation for φ(s) and a Bessel equation

of order d − 1 for F (z). The details of the separation of variables, including existence,

uniqueness, and boundary conditions, are given in Ref. [53] and will be omitted here. We

also acknowledge a similar, much older, one-dimensional solution given in Ref. [42]. The
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separation of variables solution is

η(E, s) = E
d−3

4

∫ ∞
0

dk A(k)Jd−1(kE
1
4 )e
− sk2

8(d+1) , (2.61)

where Jd−1 is an ordinary Bessel function of order d − 1, and the amplitudes A(k) are

found by taking a Hankel transform of the initial ensemble η(E, 0). When the ensemble

begins in the microcanonical distribution with energy E0, we have η(E, 0) = δ(E − E0),

and a closed form expression for A(k) results. The energy distribution η(E, s), subject to

η(E, 0) = δ(E − E0), is then

η(E, s) =
1

4E
1
2
0

(
E

E0

) d−3
4
∫ ∞

0
dk kJd−1(kE

1
4
0 )Jd−1(kE

1
4 )e
− sk2

8(d+1) . (2.62)

Making use of an identity of Bessel integrals utilized in Eq. (22) of Ref. [53], we can solve

the integral in Eq. (2.62) and simplify the expression to

η(E, s) =
d+ 1

sE
1
2
0

(
E

E0

) d−3
4

Id−1

[
4(d+ 1)

s
E

1
4
0 E

1
4

]
e
− 2(d+1)

s

(
E

1
2
0 +E

1
2

)
, (2.63)

where Id−1 is a modified Bessel function of order d− 1. Using this energy distribution, we

can find the ensemble averaged energy as a function of time:

〈E(s)〉 =
d

d+ 1

s2

4
+
√
E0 s+ E0. (2.64)

Equation (2.63) is only valid under the assumption ε� 1. If we begin with an ensemble

where ε is order unity or larger, over sufficiently long time, the slow particles inevitably

gain so much energy that the fast particle assumption holds and Eq. (2.63) becomes valid

asymptotically. We can thus find a universally valid asymptotic energy distribution by

considering Eq. (2.62) or Eq. (2.63) in the limit of very large s. Specifically, if k � d/
√
E0 for

all k2 � 8(d+1)/s, which implies that s� 8
√
E0(d+1)/d, one can approximate Jd−1(kE

1
4
0 )

by the lowest order term in its Taylor expansion over the non-negligible contributions to
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the integral in Eq. (2.62), and the solution reduces to

ηa(E, s) =
1

2EΓ(d)

[
2(d+ 1)

s
E

1
2

]d
e−

2(d+1)
s

E
1
2 , (2.65)

where Γ is the gamma function. One can easily verify that ηa(E, s) is normalized and obeys

the Fokker-Planck equation. Using the asymptotic energy distribution Eq. (2.65), we find

the ensemble averaged energy at a large times to be

〈E(s)〉a =
d

1 + d

s2

4
. (2.66)

The results of this section are summarized as follows. In the quivering limit, correlations

in particle energy decay over the time scale of a single collision, and as a result, the energy

distribution of an ensemble evolves diffusively, regardless of the shape and dimensionality of

the billiard boundary. Ensembles universally evolve to the asymptotic energy distribution

given in Eq. (2.65), and ensemble averaged energy asymptotically grows quadratically in

time. Before discussing the implications and broader context of these results, we comment

on the interpretations of the coarse grained quantities l and u2.

If the particular billiard shape is ergodic, then their exists a characteristic ergodic time

scale over which ensembles uniformly explore the entire billiard boundary. Invoking ergodic-

ity and replacing time averages with phase space averages, we deduce that, over time scales

greater than the ergodic time scale, l will be the billiard’s mean free path, and u2 will be

the second wall moment M2(q) uniformly averaged over the billiard boundary. This implies

that, over time scales greater than the ergodic time scale, g1 and g2 are time-independent

and that α is merely a constant. In this case, the expression for g1 in Eq. (2.52) is equivalent

to the wall formula, which was originally used to model energy dissipation from collective

to microscopic degrees of freedom in nuclear dynamics [40]. In non-ergodic billiards, or over

time scales shorter than the ergodic time scale in ergodic billiards, l and u2 will generally

be time-dependent and can not be interpreted in terms of properties of the billiard shape

alone. Nevertheless, they are still well-defined properties of the ensemble; l is simply the

ensemble’s average free flight distance over the coarse grained time scale, and u2 is the
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average squared wall velocity for the collisions taking place over the coarse grained time

scale.

2.4 Discussion

2.4.1 Approximate Quivering

The quivering limit is most certainly an idealization of time-dependent billiard motion;

no real billiard boundary can actually move with zero amplitude and period. However, if

the idealized system is defined in a physically consistent manner, then we expect that for

smaller and smaller a and τ , real time-dependent billiards will be better and better approx-

imated by quivering billiards. We now clarify how small a and τ must actually be for a

time-dependent billiard to be well-approximated by a quivering billiard.

In Refs. [38] and [39], Lieberman, Lichtenberg, and Cohen studied the Fermi-Ulam

model numerically and analytically using dynamical systems theory. It was shown that the

energy evolution of a particle in the Fermi-Ulam model is generically diffusive and can be

described by a Fokker-Planck equation for particle speeds such that, using our notation

from Sec. 2.2.1, v � uc
√
L/a. The value uc

√
L/a is associated with the stability of pe-

riodic orbits in v-Ψ space, where v and Ψ are the particle velocity and wall phase during

collisions, respectively. At particle speeds much below uc
√
L/a, Refs. [38] and [39] show

that periodic orbits in v-Ψ space are unstable, dynamical correlations are small, and trajec-

tories in v-Ψ space are generally chaotic (the language of the day labelled such trajectories

stochastic as opposed to chaotic). At particle speeds above uc
√
L/a, periodic orbits begin

to stabilize, correlations become important, and the presence of elliptic islands and invari-

ant spanning curves inhibit energy growth [38] [39]. In a one-dimensional quivering billiard,

correlations vanish, trajectories are stochastic, and particle energy evolves diffusively, so,

based on Lieberman, Lichtenberg, and Cohen’s work, we see that a quivering billiard is

a good description of the Fermi-Ulam model when v � uc
√
L/a. As a becomes smaller

and smaller with uc held fixed, elliptic islands and invariant spanning curves move away

to regions of larger and larger particle speeds, correlations become smaller and smaller due
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to the more and more erratic wall motion, and quivering becomes a valid approximation

for wider and wider ranges of particle speeds. As a approaches zero in the idealized limit,

the infinitely erratic wall motion destroys correlations, elliptic islands and spanning curves

occur only at infinite energy, and quivering becomes an exact description for all particle

speeds. The same reasoning can be applied to higher dimensional time-dependent billiards;

as a becomes smaller and smaller with uc held constant, correlations become smaller and

smaller and non-diffusive dynamics occur at higher and higher energies. We thus claim that

when v � uc
√
lc/a for all possible particle speeds v that could be observed in a simula-

tion or experiment, where lc is a characteristic free-flight distance, an arbitrary-dimensional

time-dependent billiard will be approximately a quivering billiard.

Due to the inevitable increase in particle energy, the speed bound inequality v �

uc
√
lc/a implies that quivering will closely approximate a real billiard simulation or ex-

periment only up to some maximum time tmax. The value of tmax depends on the particles’

initial energy distribution, but we can estimate its scaling behavior in situations where the

actual energy distribution is able to evolve the asymptotic distribution given in Eq. (2.65).

In such cases, the average particle speed at large times can be estimated from the asymp-

totic ensemble averaged energy given by Eq. (2.66), and we find v ∼ t u2
c/lc. Substituting

this estimate for v into the speed bound inequality yields t� (lc/a)1/2 (lc/uc) = (lc/a)3/2τ .

We thus have tmax ∼ (lc/a)1/2 (lc/uc) = (lc/a)3/2τ . As expected, in the quivering limit,

tmax diverges.

2.4.2 Consistency

Quivering wall motion corresponds to volume preserving billiard motion with negligi-

ble correlations in particles’ energy changes. Therefore, if the quivering limit is actually

physically meaningful, then the results obtained in Sec. 2.3 should agree with previous time-

dependent billiard literature for the special case of volume preserving billiard motion with

negligible correlations in energy changes. We now highlight three such examples.

In Ref. [39], 〈∆E〉 and
〈
(∆E)2

〉
are calculated for a single collision in the Fermi-Ulam

model, assuming periodic wall motion (which corresponds to volume preserving billiard mo-
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tion on average) and no correlations in the wall velocity between collisions. The authors

also assume, without explicitly stating, that the wall velocity is an even function of time.

The expressions obtained in Ref. [39] are in fact identical to our expressions for {∆Eb}b in

Eq. (2.21) and {(∆Eb)2}b, which can be found by adding {∆Eb}2b to Eq. (2.22), under the

assumption that all odd moments of the wall velocity M2n+1 vanish. The odd moments

vanish in a quivering billiard when we take the quivering limit of wall motion defined by an

even function of time, so our results agree perfectly with those of Ref. [39].

Reference [49] studies the energy evolution of ensembles of independent particles in

chaotic adiabatic billiards in two and three dimensions. A Fokker-Planck equation to de-

scribe the evolution of the energy distribution is proposed, and expressions for the corre-

sponding drift and diffusion coefficients are derived. These results are obtained for gen-

eral adiabatic billiard motion, under the assumption that correlations in a particle’s en-

ergy changes decay over the mixing time scales corresponding to the frozen chaotic billiard

shapes. The expressions for g1 and g2 are given in terms of a diffusion constant D, and

an explicit expression for D is given using the quasilinear approximation - the assumption

that energy changes between bounces are completely uncorrelated. Under the quasilinear

approximation, assuming volume preserving billiard motion, the expressions for g1 and g2

in Ref. [49] are identical to our two and three-dimensional expressions for g1 and g2 in

Eqs. (2.52) and (2.56), respectively, for ergodic billiards, over time scales greater than the

ergodic time scale. Our results are thus consistent with those of Ref. [49]. It is remarked in

Ref. [49] that it is not precisely clear under what conditions the quasilinear approximation

will be valid for time-dependent billiards in general, but roughly speaking, the approxima-

tion requires the billiard shapes and motion to be “sufficiently irregular.” Our results help

clarify this issue; the quasilinear approximation is justified when a time-dependent billiard

is approximately quivering, and the quasilinear approximation is in fact exact, not an ap-

proximation, in the quivering limit.

In Ref. [40], it is shown that the velocity distribution for independent particles in a

time-dependent irregular container is asymptotically universally an exponential. This work

assumes an isotropic velocity distribution, volume preserving billiard motion, and a three-

dimensional billiard. If we assume an isotropic velocity distribution in a quivering billiard,
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we can change variables from energy to velocity in Eq. (2.65), and we find the asymptotic

velocity distribution fa(v, s) in arbitrary dimensions

fa(v, s) =
1

ΩdΓ(d)

(
2(d+ 1)

s

√
m

2

)d
e−

2(d+1)
s
||v||. (2.67)

In agreement with Ref. [40], the isotropic velocity distribution in a quivering billiard is uni-

versally an exponential in all dimensions. For a three-dimensional chaotic quivering billiard,

where s = αt and chaotic mixing ensures an isotropic velocity distribution, Eq. (2.67) is

identical to the velocity distribution obtained in Ref. [40].

2.4.3 Fermi acceleration

Equation (2.66) shows that the ensemble averaged growth is unbounded, increasing

quadratically in time. Unbounded average energy growth in time-dependent billiards is

known as Fermi acceleration. Fermi acceleration was originally proposed by Fermi as the

mechanism by which cosmic rays gain enormous energies through reflections off of moving

magnetic fields [41], and since become an active field of research in its own right. The cur-

rent research generally seeks to determine under what conditions time-dependent billiards

allow for Fermi acceleration, and to understand how the dynamics of sequence of frozen

billiard shapes affects the energy growth rate. In Refs. [42, 37, 38, 39], it was established

that sufficiently smooth wall motion in the one-dimensional Fermi-Ulam model prohibits

Fermi acceleration, and that non-smooth wall motion allows for Fermi acceleration that

may be much slower than quadratic in time. While the one-dimensional billiard is always

integrable, higher dimensional billiards allow for integrable, pseudo-integrable, chaotic, or

mixed dynamics. In Ref. [54], it was conjectured that fully chaotic frozen billiard shapes are

a sufficient condition for Fermi acceleration in multi-dimensional time-dependent billiards,

and the energy growth rate in such billiards was thought to be quadratic in time [54, 45].

It has since been shown that the problem is a bit more subtle; certain symmetries in the

sequence frozen billiard shapes can prohibit or stunt the quadratic energy growth in chaotic

billiards [46]. The problem is complicated for non-chaotic multi-dimensional billiards as

well. Integrable billiards may prohibit [55] or allow [56] quadratic or slower Fermi accel-
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eration, while exponential Fermi acceleration is possible for pseudo-integrable billiards [57]

and billiards with multiple ergodic components [58, 59, 45, 60, 47] with possibly mixed or

pseudo-integrable dynamics.

Given the complexities observed in the previous literature, our result in Eq. (2.66) is

surprising; in the quivering limit, regardless of the dimensionality or underlying frozen

dynamics, time-dependent billiards universally show quadratic Fermi acceleration. The ap-

parent contradiction between our work and previous work is due to a difference in the limits

studied. Both our work and the previous literature, because of the inevitable speed up of

particles, analyze time-dependent billiards in the adiabatic limit, where the wall speed is

much slower than the particle speed. In the previous literature, however, the period of

billiard oscillations is typically fixed and non-zero (with numerical results often presented

as a function of the oscillation amplitude), so in the adiabatic limit, the typical time be-

tween collisions is always much shorter than the billiard’s oscillation period. In our work,

the oscillation period approaches zero, so the time between collisions is always much larger

than the oscillation period, even in the adiabatic limit where particles move much faster

than walls.

2.4.4 Fixed wall simplifications

An alternative simplification similar to the quivering billiard has been frequently em-

ployed in the literature. The so-called static wall approximation (sometimes called the

simplified Fermi-Ulam model) was originally introduced in [38] in order to ease the analyt-

ical and numerical study of the Fermi-Ulam model, and through the years has become a

standard approximation assumed valid for small oscillation amplitudes, often studied en-

tirely in lieu of the exact dynamics. See Ref. [38, 39, 61, 54, 62, 63, 64, 50] for example.

Using the notation of Sec. 2.2, assuming v � uc so that we may ignore glancing collisions

for the sake of simplicity, the dynamics of the one-dimensional Fermi-Ulam model can be
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described by the deterministic map,

vb = vb−1 − 2u(tb), (2.68a)

tb = tb−1 +
2L

vb−1
+
g(tb) + g(tb−1)

vb−1
, (2.68b)

while the corresponding static wall approximation is given by the deterministic map,

vb = vb−1 − 2u(tb), (2.69a)

tb = tb−1 +
2L

vb−1
. (2.69b)

In the above maps, vb−1 is the particle’s velocity just before the bthcollision, and tb is

the time of the bth collision. An analogous static wall approximation can be constructed

for higher dimensional billiards [61, 54, 64]. Like the quivering billiard, the static wall

approximation eliminates the implicit equations for the time between collisions by holding

the billiard boundary fixed. The two models differ because the static wall approximation

assumes u(tb) to be a well behaved function. It is common practice to consider stochastic

versions of the maps (2.68) and (2.69), where u(tb) is replaced by u(tb+ ζ) for some random

variable ζ [38, 61, 54, 63, 64, 50]. The stochastic case simulates the effects of external noise

on the system and allows one to average over ζ when determining ensemble averages, which

often facilitates analytical calculations.

In Refs. [63, 64], Karlis et al. show that the stochastic static wall map and its analogue

for the two-dimensional Lorentz gas give one half the asymptotic energy growth rate of

the stochastic Fermi-Ulam map. This inconsistency exists even for small a, so Karlis et

al. conclude that (2.69) is not a valid approximation of (2.68). We add that the same

factor of two discrepancy can be observed between our quivering billiard expression for g1

and the corresponding expressions obtained from the deterministic static wall maps given

in [38, 39, 61, 54]. In an early study of the Fermi-Ulam model, Ref. [42] obtains a drift

term that is actually in agreement with the static wall approximation value, but a careful

reading reveals that the authors make a series of simplifications that inadvertently reduce

their Fermi-Ulam model to the static wall approximation. Ref. [63] corrects for the energy
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inconsistency to a high degree of accuracy in the stochastic case by introducing the hopping

wall approximation. The hopping wall approximation assumes wall motion slow enough

such that the moving wall’s position at the bth bounce can be approximated by its position

at the (b − 1)th bounce, or by its position at the time of the particle’s collision with the

fixed wall just after the (b− 1)th bounce. This approximation allows g(tb) in Eq. (2.68b) to

replaced by either g(tb−1) or g(tb−1 + L/vb−1). An analogous hopping wall approximation

for two dimensions is presented in [64]. Like the static wall approximation, the hopping

wall approximation eliminates the implicit equations for the time between collisions, which

eases numerical and analytical study. Based on the hopping wall approximation’s more

accurate asymptotic energy growth rate, Karlis et al. conclude in Refs. [63, 64] that the

energy discrepancy between the Fermi-Ulam model and the static wall approximation is due

to dynamical correlations induced by small changes in the free flight time between collisions

which are neglected in the static wall approximation.

Based on the results of this paper, we propose an alternative explanation of the energy

discrepancy. The energy discrepancy is observed because the static wall approximation

is simply unphysical, and it can not accommodate for the fact that, due to the relative

motion between the particles and walls, collisions with inward moving walls are more likely

than collisions with outward moving walls. In fact, defining the quivering billiard without

the flux factor in the biased distribution (so that the biased and unbiased distribution are

equal) reproduces the asymptotic energy growth rate predicted by the stochastic static

wall approximation. Evidently, the last term in Eq. (2.68b) is responsible for the bias

towards inward moving wall collisions in the exact Fermi-Ulam model, and hopping wall

approximation’s estimate of this term is responsible for its more accurate energy growth

rate. Although the static wall approximation is a mathematically well-defined dynamical

system, it is an ill-posed physical system for the following reasons. If a billiard boundary is

truly static such that (2.68b) somehow reduces to (2.69b), then we must have a → 0. But

if a → 0, then uc → 0 and the billiard becomes trivially time-independent unless τ → 0

as well. However, if both a and τ → 0, then u(t) can not be a well-behaved function as

required by the definition of the static wall map, and, as argued in Sec. 2.2, the wall velocity

becomes stochastic. This logic seems to be unavoidable; if the walls are to be genuinely fixed,
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then physical consistency demands that the wall motion must be non-existent or stochastic.

Based on this reasoning, we propose the following conjecture: any physically consistent,

non-trivial, fixed wall limit of a time-dependent billiard must be physically equivalent to

the quivering limit, and the corresponding quivering billiard as defined in this paper yields

the correct dynamics and energy growth rate (by physically equivalent, we mean equivalent

energy and velocity statistics). Of particular note, corrections to the free flight time between

collisions are not needed to achieve the correct energy growth rate.

2.5 Examples and Numerics

We now give explicit examples of quivering billiards in one and two dimensions and sup-

port the previous sections’ analyses with numerical work. Consider first a one dimensional

Fermi-Ulam model with one wall oscillating at a constant speed. Following the notation of

Sec. 2.2, the position of the moving wall about its mean position is given by

g(t) =


a[−1 + 4Ψ(t)], 0 ≤ Ψ(t) < 1

2

a[1− 4(Ψ(t)− 1
2)], 1

2 ≤ Ψ(t) < 1,

(2.70)

and the corresponding wall velocity is given by

u(t) =


4uc, 0 ≤ Ψ(t) < 1

2

−4uc,
1
2 ≤ Ψ(t) < 1.

(2.71)

The numerical analyses of this Fermi-Ulam model are presented in Figs. 2.3 and 2.4. The

histograms in Fig. 2.3 show of the evolution of the energy distribution of 105 particles of

mass m = 1 in a microcanonical ensemble with initial speed v0 = 1 at time t = 0, and

the curves show the analytical solution for this system in the quivering limit as predicted

by Eq. (2.63). For this simulation, we set L = 1.0, a = 10−5, and τ = 10−2, which gives

uc = 10−3. We see good agreement, with some small deviation apparent beginning at

t = 5000. We suspect that the deviation is due to the faster particles interacting with

the elliptic islands in phase space, which is not accounted for in the quivering billiard. By
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Figure 2.3: Energy distribution η(E, t) of 105 particles following the exact Fermi-Ulam
dynamics with small wall oscillation amplitude a = 10−5 at times t = 100, t = 1000,
t = 5000, and t = 15000. The histograms are generated from numerical simulations, and
the smooth curve is the analytical solution Eq. (2.63) for the energy distribution of a particle
ensemble in the corresponding quivering billiard.

the time t = 15000, a sufficient number of the particles have gained enough energy such

that the system is no longer approximately quivering. Further energy gain is stunted by

elliptic islands, so we see an excess of probability (an excess relative to the quivering billiard

energy distribution) begin to build up at low energies. Figure 2.4 shows the same Fermi-

Ulam model, with uc = 10−3, for successively smaller and smaller values of a and τ at time

t = 5000. As a becomes smaller, we see the actual energy distribution converge to the

distribution predicted by the quivering billiard.

The quivering limit of the Fermi-Ulam model given in Eqs. (2.70) and (2.71) is found

by following the procedures described in Sec. 2.2. We first obtain the unbiased distribution,

P (ub|0) =
1

2
δ(ub − 4uc) +

1

2
δ(ub + 4uc), (2.72)
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Figure 2.4: Energy distribution η(E, t) at t = 5000 of 105 particles following the exact
Fermi-Ulam dynamics for successively smaller wall oscillation amplitudes a. The histograms
are generated from numerical simulations, and the smooth curve is the analytical solution
Eq. (2.63) for the energy distribution of a particle ensemble in the corresponding quivering
billiard. The case for a = 10−5 is shown in the t = 5000 plot in Fig. 2.3

and then the biased distribution P (ub|vb−1),

P (ub|vb−1) =


1
2

(
1− ub

vb−1

)
[δ(ub − 4uc) + δ(ub + 4uc)] , vb−1 > 4uc

δ(ub + 4uc), vb−1 ≤ 4uc.

(2.73)

The drift and diffusion terms corresponding to this quivering billiard are found by following

the procedures Sec. 2.3.4. We note that M2(qb) = 16u2
c for the moving wall, and M2(qb) = 0

for the stationary wall, so Eq. (2.45) yields u2 = (1/2) 16u2
c . The coarse grained free flight

distance is given simply by l = L, so we find

g1(E) =
32
√

2m u2
c

L
E

1
2 = αE

1
2 (2.74)

g2(E) =
64
√

2m u2
c

L
E

3
2 = 2αE

3
2 .
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Figure 2.5: Energy distribution η(E, t) of 105 particles at t = 100, t = 1000, t = 5000, and
t = 15000 in a quivering billiard corresponding to the quivering limit of the Femi-Ulam
model used in Fig. 2.3. The histograms are generated from numerical simulations, and the
smooth curve is the analytical solution for the energy distribution given by Eq. (2.63).

The drift and diffusion terms are independent of time, so the rescaled time s is simply

s = αt. Using the same values for L, m, and uc the we used in the Fermi-Ulam simulation,

we find α ≈ 4.53×10−5. Figure 2.5 shows the evolving energy distribution in the simulated

quivering billiard, with the analytical result predicted by Eq. (2.63) superimposed. Our

analytical solution agrees very well with the numerical simulation.

For pedagogical purposes, we now construct and simulate a two-dimensional quivering

billiard. For the billiard shape, we have chosen the six-circle clover introduced in Ref. [49],

depicted here in Fig. 2.6. We set the normal wall velocities along the billiard boundary to

be,

u(q, t) =


uc|n̂(q) · x̂|, 0 ≤ Ψ(t) < 1

2

−uc|n̂(q) · x̂|, 1
2 ≤ Ψ(t) < 1,

(2.75)

41



x

y

Figure 2.6: The six-circle clover billiard, constructed from sections of six adjacent equi-radii
circles.
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Figure 2.7: Energy distribution η(E, t) of 105 particles at t = 100, t = 1000, t = 5000, and
t = 15000 in a two-dimensional chaotic quivering billiard. The histograms are generated
from numerical simulations, and the smooth curve is the analytical solution for the energy
distribution given by Eq. (2.63).
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where n̂(q) is the outward unit normal to the wall at q and x̂ is the unit vector in the

x-direction. This choice of wall velocities gives in the quivering limit,

P (ub|0,qb) =
1

2
δ(ub − uc|n̂(qb) · x̂|) +

1

2
δ(ub + uc|n̂(qb) · x̂|) (2.76)

P (ub|vb−1,qb, θb) =


(

1− ub
vb−1 sin(θb)

)
P (ub|0,qb), vb−1 > uc|n̂(qb) · x̂|

δ(ub + uc|n̂(qb) · x̂|), vb−1 ≤ uc|n̂(qb) · x̂|.
(2.77)

The six-circle clover constructed from equi-radii circles is fully chaotic [49], so over time

scales greater than the clover’s ergodic time scale, u2 is just M2(q) averaged uniformly over

the billiard boundary. For any q on the boundary, we have M2(q) = u2
c |n̂(q) · x̂|2, and from

Fig. 2.6, we see the outward normals n̂(q) are distributed uniformly around a unit circle,

so we have u2 = (1/2) u2
c . The coarse grained free flight distance l, over time scales greater

than the ergodic time scale, is just the billiard’s mean free path. For a two dimensional

ergodic billiard, the mean free path is given by πA/S, where A is the billiard’s area and S

is the billiard’s perimeter [49]. If the radius of the circles used to construct the six-circle

clover is R, then the geometry of Fig. 2.6 gives A = R2(4
√

3 + π) and S = 4πR. We thus

have for the drift and diffusion coefficients,

g1(E) =
2
√

2m u2
c

l
E

1
2 = αE

1
2 (2.78)

g2(E) =
8
√

2m u2
c

3 l
E

3
2 =

4

3
αE

3
2 .

where l = R(
√

3 + π/4) is the mean free path.

Figure 2.7 shows the energy evolution of a microcanonical ensemble of 105 particles in

a quivering clover, with the distribution Eq. (2.63) superimposed. The particles have mass

m = 1 and initial energy E0 = 1/2. We constructed the clover with circles of radius R = 1

and set uc = 6.35× 10−3 to give α ≈ 4.53× 10−5. Again, we see good agreement between

the distribution predicted by Eq. (2.63) and the simulated energy distribution.
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2.6 Summary and Conclusions

In this work, we have defined a particular fixed wall limit of time-dependent billiards,

the quivering limit, and explored the evolution of particles and ensembles in the resulting

quivering billiards. We have conjectured that any physically consistent, non-trivial, fixed

wall limit of a time-dependent billiard must be physically equivalent to the quivering limit,

and we have shown that the simplifications allowed by a physically consistent fixed wall

limit come at a price: deterministic billiard dynamics become inherently stochastic. Al-

though quivering is an idealized limit of billiard motion, we have shown that for smaller

and smaller oscillation amplitudes and periods, time-dependent billiards become better and

better approximated by quivering billiards. Billiards that quiver or approximately quiver

behave universally; particle energy evolves diffusively, particle ensembles achieve a universal

asymptotic energy distribution, and quadratic Fermi acceleration always occurs, regardless

of a billiard’s dimensionality or frozen dynamics. The mechanism for this quadratic Fermi

acceleration is analogous to a resistive friction-like force, present due to the fluctuations

induced by the erratic wall motion, as described by the fluctuation-dissipation relation in

Eq. (2.54).

Through this work, we have gained some insight into issues that have been discussed

in the previous literature. Namely, we concluded that in the quivering limit, the quasilin-

ear approximation is exact, not an approximation. Also, we showed that the often used

static wall approximation fails because it is unphysical and can not take into account the

statistical bias towards inward moving wall collisions. Energy gain in the static wall ap-

proximation is a purely mixing effect; unbiased fluctuations in particle velocity produce an

average increase in particle velocity squared, analogous to a Brownian random walk where

unbiased fluctuations in position produce an average increase in squared distance from the

initial position. From this observation, and the fact that the static wall approximation gives

one half the asymptotic energy growth rate observed in exact systems, we conclude that in

the quivering limit, half of the average energy gain observed in a time-dependent billiard

is due to the mere presence of fluctuations, and half is due to the fact that energy gaining

fluctuations are more likely than energy losing fluctuations.
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We close by acknowledging that we have not given a rigorous mathematical proof show-

ing that deterministic time-dependent billiards become stochastic quivering billiards in the

quivering limit. One possible approach toward such a proof would be to define some sort

of space of time-dependent billiards consisting of systems with different oscillation ampli-

tudes and periods, define a metric to give some notion of distance in this space, and prove

that particular sequences in this space with successively smaller amplitudes and periods are

Cauchy sequences. One could then determine what properties the space of systems would

need to posses in order to assure that these Cauchy sequences converge to limits, and then

study the limits by studying the sequences that converge to them. Instead of a rigorous

mathematical approach, we have taken a more intuitive approach and have attempted to

justify our work by using physical reasoning and by showing consistency with previous

results. We hope that the evidence is convincing enough to mitigate our mathematical

deficiencies.
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Chapter 3

Thermodynamics in a Chaos Bath:
The Fokker-Planck Equation

3.1 Introduction

This chapter is the first of two which explore the microscopic Hamiltonian foundations

of equilibrium and non-equilibrium thermodynamics. We will model a system of interest

and its surrounding environment as a single closed classical Hamiltonian system, and we

will determine the manner in which deterministic Hamiltonian chaos at the microscale pro-

duces effectively stochastic thermodynamic-like behavior at the mesoscale. Our work is

preceded by a long history of research, dating back to Maxwell, Boltzmann, and Gibbs.

See Refs. [65] and [66] for historical accounts. While the microscopic Hamiltonian founda-

tions of equilibrium thermodynamics is firmly rooted in equilibrium statistical mechanics

[67], non-equilibrium thermodynamics still lacks a firm microscopic foundation, due largely

to intractable mathematics and the conceptual difficulty of reconciling the reversibility of

Hamilton’s equations with the irreversibility implied by the second law of thermodynamics

and the inevitable increase of entropy [66]. These issues have been addressed with some

success in more recent years using simplified microscopic frameworks such as thermostated

dynamics, dynamical mappings, and stochastic dynamics - such methods produce consistent

and physically meaningful results, but are they are described by non-Hamiltonian and/or
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Figure 3.1: A two dimensional chaotically shaped billiard containing a point particle colored
red and a particle of non-zero radius colored in blue. The point particle is considered fast
and light, while the finite sized particle is considered slow and heavy.

discrete time dynamics and thus lack a physical, first-principles foundation [65, 66]. In this

chapter and the next, we will “derive” thermodynamics from first principles in closed system

Hamiltonian framework, and we will describe fluctuations, dissipation, irreversibility, and

the notion of thermal equilibrium at the mesoscale in terms of the underlying microscopic

Hamiltonian dynamics. In Chap. 3, we establish our framework and focus on equilibrium

thermodynamics. In Chap. 4, we will use this framework to show that fluctuation theorems

[13, 15, 17, 18, 19, 20] follow somewhat trivially, essentially by definition, from the very

Hamiltonian reversibility symmetries which have caused over 100 years of difficulty and

controversy in establishing the microscopic foundations of thermodynamics.

The work in this chapter is essentially a generalization and in depth exploration of

Jarzynski’s results in Ref. [68]. In Ref. [68], Jarzynski shows shows that when a slow heavy

Hamiltonian system interacts with a fast, light, chaotic Hamiltonitan system, the slow de-

grees of freedom evolve diffusively and effectively “thermalize” to an equilibrium state with

the fast degrees of freedom, and so Jarzynski concludes that the slow degrees of freedom

behave analogously to a Brownian particle while the fast chaotic degrees of freedom behave

analogously to an arbitrary (possibly low) dimensional thermal bath. We will therefore
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refer to the fast chaotic Hamiltonian system as a “chaos bath.” A simple example of such

a system is depicted in Fig. 3.1. This system consists of a chaotic billiard which contains

a light point particle and a heavy finite sized particle interacting through elastic collisions.

Note that the heavy particle modifies the shape of the billiard by effectively punching a hole

through its interior, so in order for Fig. 3.1 to be a valid example, the billiard shape must

be chaotic for all heavy particle positions. As shown by Sinai in Ref. [69], this is indeed the

case for the billiard pictured in Fig. 3.1.

The formalism established in Ref. [68] is valid only when the chaos bath is ergodic and

mixing in such a manner that, when the slow degrees of freedom are “frozen” in place, the

bath degrees of freedom chaotically explore the entirety of a fixed bounded energy shell

in the bath’s phase space. This requirement of ergodicity on an energy shell is somewhat

restrictive in regards to thermodynamics: ergodicity on an energy shell requires all of the

bath degrees of freedom to be mutually interacting, so the chaos bath formalism established

in Ref. [68] is incapable of describing a multi-particle chaotic ideal gas. In a chaotic ideal

gas, each gas particle is itself an independent chaos bath, so the joint bath state is unable

to explore the entirety of an energy shell in the joint bath phase space. This is undesirable

from a foundational standpoint - the multi-particle ideal gas ia a simple and physically

relevant paradigmatic system which elucidates the relationship between statistical mechan-

ics and thermodynamics, and from a multi-particle ideal gas, one can derive Fermi-Dirac,

Bose-Einstein, and Maxwell-Boltzmann statistics [70]. Although a single chaos bath can

not describe a multi-particle chaotic ideal gas, according to the Sinai-Boltzmann hypothesis

[71], a single chaos bath can describe another paradigmatic thermodynamic system: the

multi-particle chaotic dilute hard-sphere gas [66]. Because we are interested in the micro-

scopic foundations of thermodynamics, we demand a formalism capable of describing both

of these important thermodynamic systems, so in this chapter, we will extend the chaos

bath formalism to allow for an arbitrary number of non-interacting baths. The extension to

multiple baths is non-trivial; the non-interacting chaos baths effectively interact with each

other through their effects on the evolution of the system of interest, so it is not a priori

obvious whether or not an effective coupling between the baths will emerge in the mesoscale

equations.
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We acknowledge some previous older works which derive diffusive motion for a Brown-

ian particle from a closed system deterministic Hamiltonian perspective [72, 73]. In these

works, the bath Hamiltonian and interaction Hamiltonian are assumed to take a particular

form, and diffusive Brownian motion only arises in the limit of an infinite number of bath

particles, while in our work, we allow for arbitrary bath Hamiltonians, and diffusive motion

arises for finite sized baths. Furthermore, in these older works, no connections to the first

or second law of thermodynamics are presented, while the purpose of our work is to make

these very connections. A formalism similar to ours is presented by Maes and Tasaki in

Ref. [74], where a chaos bath serves as set of fast internal molecular degrees of freedom, and

the corresponding center of mass serves as a set of slow heavy degrees of freedom. Maes and

Tasaki discusses the applicability of the second law of thermodynamics to this system, but

the presence of an external thermal environment is assumed, so the results do not derive

from a first principles closed system deterministic Hamiltonian framework. In our work,

the bath itself serves as the environment, and the slow and fast variables together comprise

a closed system.

Our methods borrow heavily from a history of research related to ergodic adiabatic

Hamiltonian systems, dating back to Ott’s observation of the diffusive growth of errors to

the conservation of the ergodic adiabatic invariant for slowly time-dependent ergodic Hamil-

tonian systems whose time-dependence is finitely slow [75]. Using Ott’s result, Wilkinson

[48] (and later independently Jarzynski [51]) showed that in addition to the reversible adia-

batic force associated with infinitely slow time-dependence, a finitely slow time-dependent

ergodic Hamiltonian system will experience an irreversible diffusive increase in energy, as

if the agent controlling the time-dependence were subject to a dissipative friction-like force

(dubbed “deterministic friction” by Wilkinson) from the Hamiltonian system. Expanding

on these ideas, Berry and Robbins, in a series of papers, considered time-dependent ergodic

fast Hamiltonian systems where the time-dependent parameters are actual physical degrees

of freedom which evolve in time according their own slow Hamiltonian dynamics [76, 77, 78].

Using this framework, one can examine not only the effects of the time-dependence on the

fast ergodic Hamiltonian system, but also the corresponding back reactions on the slow

Hamiltonian system, which manifest themselves in the form of the so-called “adiabatic
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reaction forces.” As hinted at by Wilkinson, Berry and Robins showed that the slow Hamil-

tonian system is indeed subject to a genuine frictional force, as well as a magnetic like force

(dubbed “geometric magnetism”) which is a classical manifestation of the geometric phase

associated with time-dependent adiabatic quantum systems [76, 79]. Later, in Ref. [68],

Jarzynski added the concept of a rapidly fluctuating force to the framework of Berry and

Robbins, and this facilitated connections between the ergodic Hamiltonian framework and

thermodynamics (Brownian motion in particular).

The purpose of this chapter is to derive an effective mesoscale evolution equation for

the probability distribution of a set of slow canonical position and momenta variables in

the presence of multiple Hamiltonian chaos baths, and to determine to what extent this

framework is able to reproduce classical equilibrium thermodynamics. Non-equilibrium

thermodynamics will be addressed in chapter 4. Our work will proceed as follows. In

Sec. 3.2, we establish our Hamiltonian framework and introduce some notation and iden-

tities. We then derive our central result, a Fokker-Planck diffusion equation, in Sec. 3.3.

The derivation is lengthy and is broken down into six subsections. In Sec. 3.4, we find the

stationary solution to the Fokker-Planck equation and clarify its relation to the notion of

thermal equilibrium. We conclude in Sec. 3.5.

3.2 Hamiltonian Framework

Consider N + 1 classical systems which evolve under Hamilton’s equations: “the system

of interest” and N “baths.” The system of interest and baths together comprise “the

universe.” We denote the canonical variables of the system of interest and the αth bath by

(Q,P) and (qα,pα), respectively, where α ∈ {1, 2, ..., N}. Throughout this work, Greek

superscripts will index the baths, and Roman subscripts will index components of vectors

and matrices, as well as orders of series expansions. For notational simplicity, we will

often abbreviate the phase space coordinates by X = (Q,P), and xα = (qα,pα). We

also abbreviate the joint phase space coordinates of the baths by X = (x1, ...,xN ), and

abbreviate the joint phase space coordinates of the entire system plus baths universe by

(X,X) = (X,x1, ...,xN ). Assume a Hamiltonian of the form
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H(Q,q1, ..., qN ,P,p1, ..., pN ,λ(t)) = H(Q,P,λ(t)) +
N∑
α=1

hα(qα,pα; Q), (3.1)

where H is the system of interest’s Hamiltonian, hα is the αth bath’s Hamiltonian (which

includes the interaction between the system of interest and the αth bath), and λ(t) is a

vector of time-dependent control parameters which can be manipulated by some external

agent. For the moment, we are not interested in the questions and subtleties associated with

controlling physical systems - we simply wish to acknowledge that the formalism presented

here allows for a time-dependent Hamiltonian. We defer discussion of control to the next

chapter of this thesis, where we study thermodynamics in a chaos bath at the level of

individual trajectories.

The αth bath trajectory xα(t) evolves and interacts with the system of interest under

hα(xα; Q), and the system of interest’s Hamiltonian H(X,λ(t)) is assumed to be of the

form

H(X,λ(t)) =
1

2
PTM−1P + V (Q,λ(t)), (3.2)

where M denotes a diagonal matrix of inertias (i.e Mi j = Miδi j), and V (Q,λ(t)) denotes

the system of interest’s potential energy. In our notation, the phase space points X and

xα are viewed as column vectors, and the superscript T denotes the matrix transpose. We

note that the energy associated with the interaction between the system of interest and the

αth bath is considered to be part of the αth bath’s energy. Applying Hamilton’s equations

of motion gives

Q̇(t) = M−1P(t) (3.3)

Ṗ(t) = − ∂QV (Q,λ)|Q(t),λ(t) −
∑
α

∂Qh
α(xα; Q)|xα(t),Q(t)

q̇α(t) = ∂pαh
α(xα; Q)|xα(t),Q(t)

ṗα(t) = − ∂qαhα(xα; Q)|xα(t),Q(t) .
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The system of interest and the N baths together comprise a single closed system, and

we now consider a statistical ensemble of such systems. Each member of this ensemble

represents one realization of the dynamics in Eq. (3.3) generated from some distribution of

initial conditions in the full system plus baths phase space. The quantity φ(X,X, t) will

denote the distribution of these ensemble members over the full phase space at time t. In

order to assure that φ vanishes at infinity, we assume that the surfaces of constant H in

the full system plus baths phase space are bounded. Applying the conservation of ensemble

members, the divergence theorem, and Eq. (3.3) leads to Liouville’s equation for the time

evolution of φ [65]:

∂tφ(X,X, t) = −{φ(X,X, t),H(X,X,λ(t))}X,X , (3.4)

where {f(X,X, t), g(X,X, t)}X,X denotes the Poisson bracket of two functions f and g eval-

uated in the full phase space:

{f, g}X,X = ∂Qf · ∂Pg − ∂Pf · ∂Qg +
N∑
α=1

(∂qαf · ∂pαg − ∂pαf · ∂qαg) . (3.5)

Both sides of Eq. (3.5) are functions of the full phase space variables, but we have suppressed

this explicit dependence for notational simplicity. Using Eq. (3.1), we can rewrite Liouville’s

equation as

∂tφ = −∂Q ·
[
M−1Pφ

]
− ∂P ·

[(
−∂QV −

∑
α

∂Qh
α

)
φ

]
−

{
φ,
∑
α

hα

}
X

(3.6)

= −∂Q ·
[
M−1Pφ

]
− ∂P ·

[(
−∂QV −

∑
α

∂Qh
α

)
φ

]
−
∑
α

{φ, hα}xα ,

where {f, g}X and {f, g}xα denote Poisson brackets in the joint bath phase space and αth

bath phase space, respectively, of the functions f(X,X, t) and g(X,X, t):
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{f, g}X =
N∑
α=1

(∂qαf · ∂pαg − ∂pαf · ∂qαg) , (3.7)

{f, g}xα = ∂qαf · ∂pαg − ∂pαf · ∂qαg.

The framework above is quite general, and we now impose two restrictions that will be

critical for yielding thermodynamic-like behavior. First, we assume that for any fixed value

of Q, the evolution of xα(t) is ergodic and mixing on a bounded connected energy shell

defined by a surface of constant hα in xα phase space. These sets of energy shells, as well

as the bath Hamiltonians themselves, are considered to be parametrized by the system of

interest’s position Q. The ergodicity and mixing assumption implies that, for fixed Q, the

αth bath will relax to a microcanonical distribution over a single energy shell in the αth bath

phase space. Second, we assume that the baths are comprised of microscopic, fast, light

degrees of freedom, and that the system of interest is comprised of mesoscopic, heavy, slow

degrees of freedom. Specifically, we assume that the characteristic time-scale over which the

system of interest’s Hamiltonian significantly changes is much larger than all characteristic

ergodic time-scales associated with the baths. As the system of interest slowly evolves in

time, the energy surfaces of constant hα in xα space will slowly and continuously deform.

For an infinitely large separation between the slow and fast time-scales, the marginal distri-

bution of each bath will remain microcanonical and cling to a single deforming energy shell,

and the phase space volumes enclosed by each energy shells (the so-called ergodic adiabatic

invariant) will be conserved [75]. For a large but finite separation of time-scales, each in-

dividual marginal bath distribution will generally not be microcanonical and will occupy

a continuum of energy shells, and violations of the conservation of the ergodic adiabatic

invariants are expected to grow diffusively in time [75]. In this work, we will consider a

large but finite separation of time-scales - the infinite time-scale separation distribution will

emerge as a lowest order approximation.

When the above assumptions are imposed, the slowly evolving system of interest will ex-

perience rapidly fluctuating forces due to interactions with the rapidly evolving chaos baths.

We are not interested in the dynamics taking place over the fast microscopic time-scales as-
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sociated these fluctuations - dynamics occurring over these time-scales are considered to be,

for all practical purposes, unobservable. Rather, we are interested in the dynamics taking

place over the slow mesoscopic time-scale associated with the system of interest. Although

the baths’ phase space variables evolve on the fast time-scales, from Hamilton’s equations

(3.3) we see that changes in the energy Eα of the αth bath depend linearly Q̇ and thus

occur over the mescscopic time-scale:

Ėα(t) =
d

dt
hα(xα(t); Q(t)) (3.8)

= ∂Qh
α(xα; Q)|xα(t);Q(t) · Q̇(t).

We therefore consider the bath energies to be mesoscopic variables in addition to the system

of interest’s phase space variables. Each bath will generally be distributed over a continuum

of energy shells, and the distribution on each of the occupied shells will be approximately

microcanonical. Roughly speaking, when Q changes significantly, each bath will travel in

phase space to a new energy shell, but because the ergodic time-scales are much smaller

than the system time-scales, the baths will have time to chaotically explore the entirety of

the new energy shells before Q has time to further change significantly. We will therefore

project the fast bath variables onto the energy shells determined by Eα = hα(x; Q) and

consider the slow time-scale evolution of (X, E1, ..., EN ). For notational simplicity, we will

often denote the variables (E1, ..., EN ) jointly by the boldface E. We expect this reduced

description to accurately depict the mesoscopic dynamics of the system of interest and baths

on time-scales much greater than the baths’ ergodic time-scales. The quantity of interest

will be the statistical distribution of the mesoscopic variables, denoted by W (X,E, t):

W (X,E, t) =

∫
dXφ(X,X, t)

∏
α

δ(Eα − hα(xα; Q)). (3.9)

Throughout this work, we will refer to φ and W as the microscopic and mesoscopic dis-

tributions, respectively. The goal of this section is to apply multiple time-scale techniques

to Liouville’s equation (3.6) to derive an approximate mesoscopic evolution equation for
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W (X,E, t).

Before beginning the derivation of the evolution equation for W , we introduce some

notation and useful identities. We define Ωα(Eα,Q) to be the volume of xα phase space

enclosed by the Eα energy shell when the system of interest is located at Q:

Ωα(Eα,Q) =

∫
dxα Θ(Eα − hα(xα; Q)), (3.10)

where Θ(y) is the unit step function, equal to 1 if y ≥ 0, and 0 otherwise. We define

Σα(Eα,Q) to be the partial derivative of Ωα(Eα,Q) with respect to Eα:

Σα(Eα,Q) = ∂EαΩα(Eα,Q) (3.11)

=

∫
dxα δ(Eα − hα(xα; Q))

The quantity Σα(Eα,Q) is the microcanonical partition function of the αth bath: it gives

a measure of the number of states in lying on the Eα energy shell in xα phase space when

the system of interest is located at Q. Let 〈f〉E,Q denote a microcanonical average of an

arbitrary observable f(X,X, t) over the energy shells of energies E1, ..., EN in the joint bath

phase space when the system of interest is located at Q:

〈f〉E,Q =
1∏

α
Σα(Eα,Q)

∫
dX f(X,X, t)

∏
α

δ(Eα − hα(xα; Q)). (3.12)

We thus have

W (X,E, t) =

[∏
α

Σα(Eα,Q)

]
〈φ〉E,Q . (3.13)

We similarly let 〈f〉Eα,Q denote a microcanonical average over only the αth bath:

〈f〉Eα,Q =
1

Σα(Eα,Q)

∫
dxα f(X,X, t)δ(Eα − hα(xα; Q)). (3.14)
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Next, we define uα(Eα,Q) to be the microcanonical average force exerted by the αth bath

on the system of interest when the system is located at Q and the αth bath has energy Eα:

uα(Eα,Q) = 〈−∂Qhα〉E,Q (3.15)

= − 1

Σα(Eα,Q)

∫
dxα∂Qh

α(xα; Q) δ(Eα − hα(xα; Q)).

We thus have from Eq. (3.10)

uα(Eα,Q) =
1

Σα(Eα,Q)
∂QΩα(Eα,Q), (3.16)

which together with Eq. (3.11) yields the following useful relation:

∂QΣα(Eα,Q) = ∂2
QEαΩα(Eα,Q) (3.17)

= ∂Eα [Σα(Eα,Q)uα(Eα,Q)] .

Finally, we define the vector operator D̂α by

D̂α = ∂P −M−1P∂Eα (3.18)

This operator is a derivative in the direction of the system of interest’s momentum, con-

strained to respect the conservation of energy. By this we mean the following: let E denote

the total energy of the entire system of interest plus baths universe, let f(X,E, t) be some

function of the system of interest’s phase space coordinates, each bath’s energy, and time,

and let g1(X, E , E2, ..., EN , t) be defined by
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g1(X, E , E2, ..., EN , t) = f

X, E −
∑
α 6=1

Eα −H(X,λ(t)), E2, ..., EN , t

 . (3.19)

The operator D̂1 appears naturally when taking derivatives of g1 with respect to P:

∂Pg
1(X, E , E2, ..., EN , t) = ∂Pf(X,E, t)|E1=E−

∑
α6=1

Eα−H(X,λ(t)) (3.20)

−M−1P ∂E1f(X,E, t)|E1=E−
∑
α6=1

Eα−H(X,λ(t))

= D̂1f(X,E, t)
∣∣∣
E1=E−

∑
α6=1

Eα−H(X,λ(t))

3.3 The Derivation

3.3.1 Order Parameter

In order to facilitate a series expansion of Liouville’s equation, we begin by introducing

the small parameter ε� 1 and defining a fast and a slow time. At the end of the derivation,

we will set ε to 1. Let t denote the slow time, and let τ = t
ε denote the fast time. We assume

that X evolves under Hamilton’s equations in t, and that xα evolves under Hamilton’s

equations in τ :

Q̇(t) = M−1P(t) (3.21)

Ṗ(t) = − ∂QV (Q,λ)|Q(t),λ(t) −
∑
α

∂Qh
α(xα; Q)|xα(τ),Q(t)

q̇α(τ) = ∂pαh
α(xα; Q)|xα(τ),Q(t)

ṗα(τ) = − ∂qαhα(xα; Q)|xα(τ),Q(t) .

Rewriting the above equations in terms of the slow time t only, we have
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dQ(t)

dt
= M−1P(t) (3.22)

dP(t)

dt
= − ∂QV (Q,λ)|Q(t),λ(t) −

∑
α

∂Qh
α(xα; Q)|xα( t

ε
),Q(t)

dqα( tε)

dt
=

1

ε
∂pαh

α(xα; Q)|xα( t
ε
),Q(t)

dpα( tε)

dt
= −1

ε
∂pαh

α(xα; Q)|xα( t
ε
),Q(t) .

The corresponding Liuoville equation for the full phase space distribution φ(X,X, t), eval-

uated on the slow time, is

∂tφ = −∂Q ·
[
M−1Pφ

]
− ∂P ·

[(
−∂QV −

∑
α

∂Qh
α

)
φ

]
(3.23)

−1

ε

{
φ,
∑
α

hα

}
X

.

We now make the ansatz that the full phase space distribution can be written as a power

series in ε:

φ = φ0 + εφ1 + ε2φ2 + ... (3.24)

Substituting this ansatz into Eq. (3.23) yields, at order ε−1,

0 =

{
φ0,
∑
α

hα

}
X

, (3.25)

and, at order εk for k ≥ 0,
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∂tφk = −∂Q ·
[
M−1Pφk

]
− ∂P ·

[(
−∂QV −

∑
α

∂Qh
α

)
φk

]
(3.26)

−

{
φk+1,

∑
α

hα

}
X

.

The power series expansion of φ also yields a power series expansion for the distribution

W (X,E, t), which can be seen from Eq. (3.9):

W = W0 + εW1 + ε2W2 + ... (3.27)

We now proceed with our derivation by making repeated use of Eqs. (3.25) and (3.26) to

find the functional forms of φ and W and the evolution equation for W , good to successively

higher orders.

3.3.2 Functional forms of φ0 and W0

Reinserting the explicit functional dependencies, we rewrite Eq. (3.25) as

0 =

{
φ0(X,X, t),

∑
α

hα(xα; Q)

}
X

. (3.28)

The above Poisson bracket is taken over the joint bath phase space, with Q,P, and t treated

as fixed parameters. The Poisson bracket of φ0 with the joint bath Hamiltonian vanishes,

so φ0 is a function the joint bath phase space variables only through the independent

constants of the motion of the joint bath Hamiltonian [80] (by constant of the motion,

we mean a constant of the motion of the joint bath phase space variables when (Q,P) is

held fixed). When the system of interest is held fixed, the baths do not interact, and each

bath is individually ergodic on an energy shell in its own phase space evolving under a

time-independent Hamiltonian, so the independent constants of the motion are precisely

the bath Hamiltonians hα. Were this not the case, then the baths could not be ergodic on
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their energy shells due to constraints imposed by the additional constants of the motion.

We thus have

φ0(X,X, t) = A(X, h1(x1; Q), ..., hN (xN ,Q), t), (3.29)

for some function A. The functional form of W0 is then,

W0(X,E, t) =

∫
dXφ0(X,X, t)

∏
α

δ(Eα − hα(xα; Q)) (3.30)

=

[∏
α

Σα(Eα,Q)

]
A(X,E, t).

3.3.3 Evolution equation for W0

To find the evolution equation for W0, we will use the O(ε0) expression of Eq. (3.26):

∂tφ0 = −∂Q ·
[
M−1Pφ0

]
− ∂P ·

[(
−∂QV −

∑
α

∂Qh
α

)
φ0

]
(3.31)

−

{
φ1,
∑
α

hα

}
X

.

From Eq. (3.29) we have

∂Q ·
[
M−1Pφ0(X,X, t)

]
= ∂Q ·

[
M−1PA(X, h1(x1; Q), ..., hN (xN ; Q), t)

]
,

(3.32)

which gives
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∂Q ·
[
M−1Pφ0(X,X, t)

]
= ∂Q ·

[
M−1PA(X,E, t)

]
Eα=hα(xα;Q)

(3.33)

+
∑
β

∂Eβ
[
M−1PA(X,E, t)

]
Eα=hα(xα;Q)

· ∂Qhβ(xβ; Q).

Employing Eq. (3.29) again, as well as the definition in Eq. (3.18), we see that Eq. (3.31)

can be written as

∂tA(X, h1(x1; Q), ..., hN (xN ; Q), t) = −∂Q ·
[
M−1PA(X,E, t)

]
Eα=hα(xα;Q)

(3.34)

− ∂P · [−∂QV (Q,λ(t))A(X,E, t)]Eα=hα(xα;Q)

+
∑
β

D̂β [A(X,E, t)]Eα=hα(xα;Q) · ∂Qh
β(xβ; Q)

−

{
φ1(X,X, t),

∑
α

hα(xα; Q)

}
X

.

Taking the microcanonical average of Eq. (3.34) over the bath energy shells E1, ..., EN with

the system of interest fixed at Q, and using the definition of uα in Eq. (3.15) gives

∂tA(X,E, t) = −∂Q ·
[
M−1PA(X,E, t)

]
(3.35)

−∂P · [−∂QV (Q,λ(t))A(X,E, t)]

−
∑
α

uα(Eα,Q) · D̂αA(X,E, t)

−

〈{
φ1,
∑
α

hα

}
X

〉
E,Q

.

The last term on the right hand side of Eq. (3.35) can be written as

〈{
φ1,
∑
α

hα

}
X

〉
E,Q

=
∑
α

∫ ∏
β 6=α

dxβδ(Eβ − hβ(xβ,Q))

Σβ(Eβ,Q)

 〈{φ1, h
α}xα〉Eα,Q .

(3.36)
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The term 〈{φ1, h
α}xα〉Eα,Q, and thus Eq. (3.36) itself, vanishes identically. This follows

from the fact that the microcaonical average of the Poison bracket of any function with a

corresponding Hamiltonian vanishes identically: see the supplementary material of Ref. [81]

for a proof. We thus have a closed evolution equation for A(X,E, t):

∂tA(X,E, t) = −∂Q ·
[
M−1PA(X,E, t)

]
(3.37)

−∂P · [−∂QV (Q,λ(t))A(X,E, t)]

−
∑
α

uα(Eα,Q) · D̂αA(X,E, t)

Multiplying both sides of Eq. (3.37) by
∏
α

Σα(Eα,Q), using Eq. (3.30), and rearranging, we

find

∂tW0(X,E, t) = −∂Q ·
[
M−1PW0(X,E, t)

]
(3.38)

−∂P · [−∂QV (Q,λ(t))W0(X,E, t)]

−
∑
α

D̂α · [uα(Eα,Q)W0(X,E, t)]

+A(X,E, t)PTM−1∂Q

[∏
α

Σα(Eα,Q)

]

+A(X,E, t)
∑
α

D̂α ·

uα(Eα,Q)
∏
β

Σβ(Eβ,Q)

 .
From the identity in Eq. (3.17), we have

∑
α

D̂α ·

uα(Eα,Q)
∏
β

Σβ(Eβ,Q)

 = −PTM−1∂Q

[∏
α

Σα(Eα,Q)

]
, (3.39)

so the last two terms of Eq. (3.38) cancel, and we finally arrive at a closed evolution equation

for W0:
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∂tW0(X,E, t) = −∂Q ·
[
M−1PW0(X,E, t)

]
(3.40)

−∂P · [−∂QV (Q,λ(t))W0(X,E, t)]

−
∑
α

D̂α · [uα(Eα,Q)W0(X,E, t)] .

This equation gives the time evolution of W in the adiabatic limit (when ε→ 0). The lack

of second order or higher derivatives is indicative of the deterministic evolution of (X,E)

in the adiabatic limit. The first two terms in Eq. (3.40) are also present in Liouville’s

equation for φ and represent the deterministic evolution of the system of interest under its

own slow Hamiltonian dynamics. We can gain some intuition for the last term in Eq. (3.40)

by expanding out the D̂α operators and rearranging:

∂tW0(X,E, t) = −∂Q ·
[
M−1PW0(X,E, t)

]
(3.41)

−∂P ·

[(
−∂QV (Q,λ(t)) +

∑
α

uα(Eα,Q)

)
W0(X,E, t)

]
−
∑
α

∂Eα
[
−PTM−1uα(Eα,Q)W0(X,E, t)

]
.

We thus see that in the adiabatic limit, the system of interest is subject to the additional

forces uα from the baths. The rate of work done by the αth bath on the system of interest

is thus Q̇Tuα = PTM−1uα, and the corresponding rate of change of the αth bath’s energy

is thus −PTM−1uα, as demonstrated by the last term of Eq. (3.41). This change in energy

is deterministic and coincides with the change in energy determined by the conservation of

the ergodic adiabatic invariant Ωα(Eα,Q).

3.3.4 Functional form of φ1 and W1

An equation for φ1 can be found by equating Eq. (3.34) to Eq. (3.37), where Eq. (3.37)

is evaluated for Eα = hα(xα; Q):
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{
φ1(X,X, t),

∑
α

hα(xα; Q)

}
X

= −
∑
α

D̂α [A(X,E, t)]Eα=hα(xα;Q) (3.42)

· [−∂Qhα(xα; Q)− uα(hα(xα; Q),Q)]

= g(X,X, t),

where we define

g(X,X, t) = −
∑
α

D̂α [A(X,E, t)]Eα=hα(xα;Q) (3.43)

· [−∂Qhα(xα; Q)− uα(hα(xα; Q),Q)] .

The function A is determined by Eq. (3.37), so Eq. (3.42) is a closed partial differential

equation for φ1 which will have a homogeneous and inhomogeneous solution, denoted φH1

and φI1, respectively:

φ1(X,X, t) = φH1 (X,X, t) + φI1(X,X, t). (3.44)

{
φH1 (X,X, t),

∑
α

hα(xα; Q)

}
X

= 0. (3.45)

{
φI1(X,X, t),

∑
α

hα(xα; Q)

}
X

= g(X,X, t). (3.46)

Applying the same logic used in Sec. 3.3.2, Eq. (3.45) implies the following functional

form for φH1 :
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φH1 (X, t) = B(X, h1(x1; Q), ..., hN (xN ; Q), t), (3.47)

for some function B. Following Berry and Robbins in Ref. [77], the inhomogeneous solution

is given by

φI1(X,X, t) =

∫ 0

−∞
dt′g(X,X(t′), t), (3.48)

where xα(0) is defined by the arguments of φI1(X,X, t):

xα(0) = xα, (3.49)

and xα(t′) denotes the point to which xα evolves to under the Hamiltonian hα after a time

t′, with Q held fixed.

The solution in Eq. (3.48) comes with some caveats which warrant some discussion.

From Eq. (3.43), we see that g(X,X(t′), t) is an oscillatory function of t′: g is proportional

the difference between the instantaneous forces of the baths of on the system of interest

and the microcanonical average forces of the baths on the system of interest, and as the

αth bath evolves under hα (with Q held fixed), it chaotically and ergodically explores a

single energy shell, so the instantaneous force oscillates indefinitely (and generally non-

periodically) about the average force. We thus conclude that the integral in Eq. (3.48) does

not converge, and φI1 as given in Eq. (3.48) is not a well-defined function. The indefinite

oscillation also impedes the verification of φI1 as the solution to Eq. (3.46):
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{
φI1,
∑
α

hα

}
X

=

∫ 0

−∞
dt′

{
g(X,X(t′), t),

∑
α

hα(xα; Q)

}
X

(3.50)

=

∫ 0

−∞
dt′

{
g(X,X(t′), t),

∑
α

hα(xα(t′); Q)

}
X(t′)

=

∫ 0

−∞
dt′

d

dt′
g(X,X(t′), t)

= g(X,X, t)− lim
s→−∞

g(X,X(s), t).

The second line of Eq. (3.50) follows from the fact that hα(xα; Q) = hα(xα(t′); Q) for any

t′ when the αth bath evolves over a single energy shell, as well as the invariance of the

Poisson bracket under a Hamiltonian flow, and the third line follows from a fundamental

property of the Poisson bracket [80]. The term lims→−∞ g(X,X(s), t) is ill-defined and

makes ambiguous whether or not φI1 given in Eq. (3.48) is indeed a solution to Eq. (3.46).

This offending term, as well as the non-convergence of the integral in Eq. (3.48), can be

addressed introducing the convergence factor eγt
′
, where γ > 0. The function φI1,γ , given by

φI1,γ(X,X, t) =

∫ 0

−∞
dt′g(X,X(t′), t)eγt

′
, (3.51)

is well-defined and related to the inhomogeneous solution φI1 by

φI1(X,X, t) = lim
γ→0

φI1,γ(X,X, t). (3.52)

Taking the Poisson bracket of Eq. (3.51) gives

{
φI1,γ ,

∑
α

hα

}
X

=

∫ 0

−∞
dt′

{
g(X,X(t′), t)eγt

′
,
∑
α

hα(xα; Q)

}
X

(3.53)

=

∫ 0

−∞
dt′
(

d

dt′

[
g(X,X(t′), t)eγt

′
]
− γg(X,X(t′), t)eγt

′
)

= g(X,X, t)− γφI1,γ(X,X, t),

66



and we find

lim
γ→0

{
φI1,γ ,

∑
α

hα

}
X

=

{
φI1,
∑
α

hα

}
X

(3.54)

= g(X,X, t).

From the two preceding equations, we see that for non-zero γ, φI1,γ is a well-defined

function, but does not solve Eq. (3.46), and for γ = 0, φI1,γ = φI1 solves Eq. (3.46), but is

not a well-defined function. Rather than a function of phase space variables, φI1 is well-

defined as a distribution over phase space which is intended to be integrated over. From

Eqs. (3.42) and (3.43), we see that the microcanonical average of g vanishes, and so the

microcanonical average of the distribution φI1 vanishes as well. Using Eqs. (3.13) and (3.47),

we thus find the following functional form for W1:

W1(X,E, t) =

[∏
α

Σα(Eα,Q)

] 〈
φH1 + φI1

〉
E,Q

(3.55)

=

[∏
α

Σα(Eα,Q)

] 〈
φH1
〉
E,Q

=

[∏
α

Σα(Eα,Q)

]
B(X,E, t).

The inhomogeneous term φI1 does not factor directly into the functional form of W1, but as

we will see, the time-evolution of φI1 influences the time-evolution of W1, and φI1 will turn

out to be the source of diffusion terms (and is thus related to fluctuations and dissipation) in

the Fokker-Planck equation for W . This observation is reminiscent of the Gaussian white

noise commonly used to model fluctuations in stochastic thermodynamics: the Gaussian

white noise is a continuous non-differentiable fractal distribution over time with mean zero

which is ill-defined as a function, and the fluctuations which it induces are the source of the

diffusion terms in the corresponding Fokker-Planck equations [82].
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3.3.5 Evolution equation for W1

To find the evolution equation for W1, we begin with the O(ε) expression of Eq. (3.26):

∂tφ1 = −∂Q ·
[
M−1Pφ1

]
− ∂P ·

[(
−∂QV −

∑
α

∂Qh
α

)
φ1

]
(3.56)

−

{
φ2,
∑
α

hα

}
X

.

Applying Eqs. (3.44) and (3.47), as well as the identity in Eq. (3.33) applied to B, and

rearranging, we find

∂tB(X, h1(x1; Q), ..., hN (xN ; Q), t) = −∂Q ·
[
M−1PB(X,E, t)

]
Eα=hα(xα;Q)

(3.57)

− ∂P · [−∂QV (Q,λ(t))B(X,E, t)]Eα=hα(xα;Q)

+
∑
β

D̂β [B(X,E, t)]Eα=hα(xα;Q) · ∂Qh
β(xβ; Q)

−

{
φ2(X,X, t),

∑
α

hα(xα; Q)

}
X

− ∂tφ
I
1(X,X, t)

− ∂Q ·
[
M−1PφI1(X,X, t)

]
− ∂P ·

[(
−∂QV −

∑
α

∂Qh
α

)
φI1(X,X, t)

]
.

Taking the microcanonical average of the above equation, and noting that the microcanon-

ical averages of φI1, ∂tφ
I
1, and the Poisson bracket of φ2 with the bath Hamiltonians all

vanish, we find an evolution equation for B:
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∂tB(X,E, t) = −∂Q ·
[
M−1PB(X,E, t)

]
(3.58)

−∂P · [−∂QV (Q,λ(t))B(X,E, t)]

−
∑
α

uα(Eα,Q) · D̂αB(X,E, t)

+

〈
−∂Q ·

[
M−1PφI1

]
− ∂P ·

[(
−∂QV −

∑
α

∂Qh
α

)
φI1

]〉
E,Q

.

Multiplying both sides of Eq. (3.58) by
∏
α

Σα(Eα,Q), rearranging, and applying the identity

in Eq. (3.39), we find an evolution equation for W1:

∂tW1(X,E, t) = −∂Q ·
[
M−1PW1(X,E, t)

]
(3.59)

−∂P · [−∂QV (Q,λ(t))W1(X,E, t)]

−
∑
α

D̂α · [uα(Eα,Q)W1(X,E, t)]

+
〈
−∂Q ·

[
M−1PφI1

]〉
E,Q

∏
α

Σα(Eα,Q)

+

〈
−∂P ·

[(
−∂QV −

∑
α

∂Qh
α

)
φI1

]〉
E,Q

∏
α

Σα(Eα,Q).

The first three terms on the right hand side of Eq. (3.59) are the same terms present in

the evolution equation for W0: they represent the adiabatic effects on the evolution of W1.

The last two terms are microcanonical averages which, after being evaluated in Sec. 3.3.6

below, will yield second order derivatives and produce a Fokker-Planck equation for the

evolution of W . These terms are thus intimately related to fluctuations and dissipation and

are indicative of the stochastic evolution of (X,E) for large but finite time-scale separations

between the system of interest and the baths.

3.3.6 The Fokker-Planck equation

We must now evaluate the function
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J(X,E, t) =
〈
−∂Q ·

[
M−1PφI1

]〉
E,Q

∏
α

Σα(Eα,Q) (3.60)

+

〈
−∂P ·

[(
−∂QV −

∑
α

∂Qh
α

)
φI1

]〉
E,Q

∏
α

Σα(Eα,Q).

Using the product rule on the first term on the right hand side of Eq. (3.60), and using the

fact that the microcanonical average of φI1 vanishes, we find

〈
−∂Q ·

[
M−1PφI1

]〉
E,Q

∏
α

Σα(Eα,Q) =

∫
dx1...dxN

[
φI1(X,X, t)

×PTM−1∂Q
∏
α

δ(Eα − hα(xα; Q))

]
.

(3.61)

From the identity

∂Q

[∏
α

δ(Eα − hα(xα; Q))

]
= −

∑
α

∂Qh
α(xα; Q)∂Eα

∏
β

δ(Eβ − hβ(xβ; Q))


= −

∑
α

∂Eα

∂Q[hα(xα; Q)]
∏
β

δ(Eβ − hβ(xβ; Q))

 ,
(3.62)

we then have

〈
−∂Q ·

[
M−1PφI1

]〉
E,Q

∏
α

Σα(Eα,Q) =
∑
α

PTM−1∂Eα

∫
dX
[(
− ∂Qhα(xα; Q)

)
× φI1(X,X, t)

∏
β

δ(Eβ − hβ(xβ; Q))

]
.

(3.63)
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Note that

〈
∂P · ∂QV φI1

〉
E,Q

= ∂P ·
[
∂QV

〈
φI1
〉
E,Q

]
(3.64)

= 0,

so the second term on the right hand side of Eq. (3.60) reduces to

〈
∂P ·

∑
α

∂Qh
αφI1

〉
E,Q

∏
α

Σα(Eα,Q) = −
∑
α

∂P ·
∫

dX
[(
− ∂Qhα(xα; Q)

)
× φI1(X,X, t)

∏
β

δ(Eβ − hβ(xβ; Q))

]
,

(3.65)

and we find

J(X,E, t) = −
∑
α

D̂α ·
∫

dX
[(
− ∂Qhα(xα; Q)

)
φI1(X,X, t) (3.66)

×
∏
β

δ(Eβ − hβ(xβ; Q))

]

= −
∑
α

D̂α ·

∏
β

Σβ(Eβ,Q)

〈(− ∂Qhα)φI1〉E1,...,EN ,Q

 .
Substituting in the expression for φI1 from Eqs. (3.43) and (3.48) gives
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J(X,E, t) =
∑
α,β,i,j

D̂α
i

∫
dX

[(∏
σ

δ(Eσ − hσ(xσ; Q))

)
(3.67)

×
∫ 0

−∞
dt′
[(
− ∂Qihα(xα; Q)

)
×
(
− ∂Qjhβ(xβ(t′); Q)− uβj (h

β(xβ(t′); Q),Q)
)

× ˆ
Dβ
j [A(X,E, t)]Eξ=hξ(xξ(t′);Q)

]]

=
∑
α,β,i,j

D̂α
i

[(∏
σ

Σσ(Eσ,Q)

)

×
∫ 0

−∞
dt′
〈(
− ∂Qihα

)(
− ∂Qjh

β
t′ − u

β
j

)〉
E,Q

ˆ
Dβ
j A(X,E, t)

]
,

where we use hβt′ to denote hβ(xβ(t′); Q) inside of a microcanonical average. Note that the

microcanonical average inside the time integral in the above equation can be written as

〈(
− ∂Qihα

)(
− ∂Qjh

β
t′ − u

β
j

)〉
E,Q

=

〈(
− ∂Qihα

)(
− ∂Qjh

β
t′ − u

β
j

)〉
Eα,Eβ ,Q

(3.68)

=

〈(
− ∂Qihα

)(
− ∂Qjh

β
t′
)〉

Eα,Eβ ,Q

−uαi (Eα,Q)uβj (Eβ,Q)

=

〈(
− ∂Qihα − uαi

)(
− ∂Qjh

β
t′ − u

β
j

)〉
Eα,Eβ ,Q

.

The αth, βth component of the time integral Eq. (3.67) is thus the integrated covariance

of the force of bath α of the system of interest at time t = 0 with the force of bath β on

the system of interest at previous times, when the system of interest is held fixed. If the

system of interest is fixed, bath α and bath β have no effect on each other for α 6= β, so

this correlation will vanish unless α = β. We thus see that no effective coupling between

the baths emerges at order ε. Employing our chaotic assumption, we assume that each

bath is individually mixing to a sufficient degree such that the time integral in Eq. (3.67)

converges. We now define the integrated covariance matrix Lαij(E
α,Q) by
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Lαij(E
α,Q) = 2

∫ 0

−∞
dt′
〈(
− ∂Qihα − uαi

)(
− ∂Qjhαt′ − uαj

)〉
Eα,Q

, (3.69)

which is given in matrix notation by

Lα(Eα,Q) = 2

∫ 0

−∞
dt′
〈(
− ∂Qhα − uα

)(
− ∂Qhαt′ − uα

)T〉
Eα,Q

. (3.70)

The function J can now be written as

J(X,E, t) =
1

2

∑
α,i,j

D̂α
i

[(∏
σ

Σσ(Eσ,Q)

)
Lαij(E

α,Q)D̂α
j A(X,E, t)

]
. (3.71)

The evolution equation for W1 is thus

∂tW1(X,E, t) = −∂Q ·
[
M−1PW1(X,E, t)

]
(3.72)

−∂P · [−∂QV (Q,λ(t))W1(X,E, t)]

−
∑
α

D̂α · [uα(Eα,Q)W1(X,E, t)]

1

2

∑
α,i,j

D̂α
i

[
Σα(Eα,Q)Lαij(E

α,Q)D̂α
j

(
W0(X,E, t)

Σα(Eα,Q)

)]
,

where we have made us of Eq. (3.30) to write A in terms of W0, and the fact that D̂α
i Σβ = 0

unless α = β. We thus see the emergence of second order derivatives in the evolution

equation for W1.

We now have evolution equations for W0 and W1, good to order ε. Noting that W =

W0 + εW1 up to O(ε), we have

∂tW (X,E, t) = ∂tW0(X,E, t) + ε∂tW1(X,E, t). (3.73)
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Using the above equation along with Eqs. (3.41) and (3.72), neglecting terms of order ε2

and higher, and setting ε = 1, we finally arrive at the Fokker-Planck equation for W :

∂tW = −∂Q ·
[
M−1PW

]
− ∂P · [−∂QV W ]−

∑
α

D̂α · [uαW ] (3.74)

+
1

2

∑
α,i,j

D̂α
i

[
ΣαLαijD̂

α
j

(
W

Σα

)]
,

where we now suppress the explicit functional dependences for simplicity. Alternatively, in

a more standard form, we have

∂tW = −∂Q ·
[
M−1PW

]
− ∂P · [−∂QV W ] (3.75)

−
∑
α,i

D̂α
i

uαi +
1

2Σα

∑
j

D̂α
j

[
ΣαLαij

]W

+
1

2

∑
α,i,j

D̂α
i D̂

α
j

[
Lsyα
ij W

]
,

where Lsyα denotes the symmetric part of Lα (the anti-symmetric part of Lα makes no

contribution to the quadratic form in the last term on the right hand side of the above

equation).

In the next chapter of this thesis, where we use stochastic differential equations to discuss

thermodynamics in a chaos bath at the level of individual trajectories, we will discuss the

physical meaning of the terms appearing in Eq. (3.75) relation to the adiabatic reaction

forces and fluctuation forces of Berry, Robbins, Wilkinson, and Jarzynski [48, 68, 77]. As we

will show, to interpret these terms in a physically meaningful manner, one must consider the

Stratonovich interpretation of the Fokker-Planck equation and the corresponding stochastic

differential equations. An additional force, the noise induced drift appears, only in the

Stratonovich interpretation, and explicit expression for the rapidly fluctuating force can only

be found examining the stochastic differential equations corresponding to Eq. (3.75). At this

point, we merely mention that the adiabatic (or Born-Oppenheimer) force, deterministic

frictional force, and geomagnetic magnetic force associated with the αth bath are given

by uα, − 1
2Σα∂Eα [ΣαLsyα]M−1P, and − 1

2Σα∂Eα [ΣαLayα]M−1P, respectively, where Layα
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denotes the anti-symmetric part of Lα. The fluctuations are implied by the diffusion terms

(the second order derivatives) in Eq. (3.75), and we thus see an emergent fluctuation-

dissipation relation involving the symmetric part of diffusion matrix and the strength of the

deterministic frictional force [83]. This relation was previously noted by Wilkinson, Berry,

Robbins, and Jarzynski for the case of a single bath [48, 68, 77].

3.4 Thermal equilibrium

In this section, we find the form of the stationary solution to Eq. (3.74) and discuss

its relation to the notion of thermodynamic equilibrium. First, we verify when the control

parameters λ are held fixed, a stationary distribution for Eq. (3.74) indeed exists, and we

show that the form of this stationary distribution implies a particular statistical sharing of

the total energy of the universe between the baths and system of interest. We then show

that any time-dependent solution to Eq. (3.74) monotonically approaches (in the sense of

relative entropy) the stationary distribution in time. This fact, along with the statistical

sharing of energy, implies that the relaxation process is analogous to the thermalization

of a small system with a large thermal environment, and so the stationary distribution is

analogous to a thermal equilibrium distribution. We next discuss the Shannon entropy of

the stationary distribution in terms of thermodynamic entropy, and we close this section

by showing that, upon coarse graining the bath states, the stationary distribution becomes

a Boltzmann distribution in a particular thermodynamic limit.

3.4.1 Stationary distribution

Consider the time-independent distribution Ws, defined by

Ws(X,E,λ) = G(EU (X,E,λ))
∏
α

Σα(Eα,Q), (3.76)

where EU (X,E,λ) denotes the total energy of the entire system plus baths universe:

75



EU (X,E,λ) = H(X,λ) +
∑
α

Eα (3.77)

=
1

2
PTM−1P + V (Q,λ) +

∑
α

Eα,

and G(EU ) is an arbitrary fixed distribution over the total energy of the universe. Note the

following identities:

∂QG(EU (X,E,λ)) = ∂QV (Q,λ) ∂EUG(EU )

∣∣∣∣
EU=H(X,λ)+

∑
α
Eα
, (3.78)

∂PG(EU (X,E,λ)) = M−1P ∂EUG(EU )

∣∣∣∣
EU=H(X,λ)+

∑
α
Eα
,

∂EβG(EU (X,E,λ)) = ∂EUG(EU )

∣∣∣∣
EU=H(X,λ)+

∑
α
Eα
.

To show that Ws as defined in Eq. (3.76) is indeed a stationary solution to the Fokker-

Planck equation, we must verify

0 = −∂Q ·
[
M−1PWs

]
− ∂P · [−∂QV Ws]−

∑
α

D̂α · [uαWs] (3.79)

+
1

2

∑
α,i,j

D̂α
i

[
ΣαLαijD̂

α
j

(
Ws

Σα

)]
.
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Making use of the identities in Eqs. (3.17), (3.18) and (3.78), the first three terms on the

right hand side of Eq. (3.79) can be written as

− ∂Q ·
[
M−1PWs

]
= −

[∏
β

Σβ

]
PTM−1∂QV ∂EuG (3.80)

−GPTM−1
∑
α

∂Eα

uα
[∏

β

Σβ

] ,
−∂P · [−∂QV Ws] =

[∏
β

Σβ

]
PTM−1∂QV ∂EuG,

∑
α

D̂α · [uαWs] = GPTM−1
∑
α

∂Eα

uα
[∏

β

Σβ

] ,
respectively. The sum of the above three thus cancel, and we are left to verify that the last

term in Eq. (3.79) vanishes. Note that this term can be written as

1

2

∑
α,i,j

D̂α
i

[
ΣαLαijD̂

α
j

(
Ws

Σα

)]
=

1

2

∑
α,i,j

D̂α
i

[∏
β

Σβ

LαijD̂
α
j G

]
. (3.81)

The term D̂α
j G can be shown to vanish by employing the identities in Eq. (3.78):

D̂α
j G = ∂PjG −M

−1
jj Pj∂EαG (3.82)

= M−1
jj Pj∂EuG −M

−1
jj Pj∂EuG

= 0.

All terms in Eq. (3.79) vanish, so we have verified that Ws is indeed a stationary solution to

the Fokker-Planck equation. The microcanonical partition function Σα(Eα,Q) is a measure

of the number of ways in which bath α can have energy Eα when the system of interest

is located at Q, so the form of Eq. (3.76) tells us that, when the system of interest and

baths are distributed according to Ws, if the total energy of the universe is found to be

E , then the probability for the system of interest to be found with canonical coordinates
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X is proportional to the total number of ways in which the baths can jointly share the

remaining energy: E − H(X,λ). Thus, Ws represents a state in which the total energy

of the universe is shared statistically, with the statistics of a particular partitioning of

energy being determined by the number of phase space configurations which allow that

partition. Such a statistical sharing leads to the canonical thermal equilibrium distribution

in statistical mechanics, so in this sense, the distribution Ws is analogous to a thermalized

equilibrium state.

3.4.2 Thermalization

We have shown that the state Ws is a stationary solution to the Fokker-Planck equation

and is reminiscent of a thermal equilibrium state, but in order to legitimately use the

term “thermalization,” we must show that any time-dependent solution W (X,E, t) will

continuously and monotonically approach Ws when λ is held fixed. To show that this is

indeed the case, we will consider the time derivative of the relative entropy D(Wt||Ws),

which is defined as the Kullback-Leibler divergence:

D(Wt||Ws) =

∫
dXdEW (X,E, t) ln

[
W (X,E, t)

Ws(X,E,λ)

]
, (3.83)

where we use Wt to abbreviate W (X,E, t) for notational simplicity. This relative entropy

is non-negative and only vanishes when Wt = Ws almost everywhere with respect to Wt

[84]. Taking a time derivative gives

d

dt
D(Wt||Ws) =

∫
dXdE

(
∂tWt ln

[
Wt

Ws

]
+ ∂tWt

)
(3.84)

=

∫
dXdE ∂tWt ln

[
Wt

Ws

]
.

The second line of the above equation follows from the fact that Wt is a normalized to the

constant unity. From Eq. (3.74), we see that Eq. (3.84) is comprised of four terms:
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d

dt
D(Wt||Ws) =

∫
dXdE

[
− ∂Q ·

[
M−1PWt

]
ln

[
Wt

Ws

]
−∂P · [−∂QV Wt] ln

[
Wt

Ws

]
−
∑
α

D̂α · [uαWt] ln

[
Wt

Ws

]

+
1

2

∑
α,i,j

D̂α
i

[
ΣαLαijD̂

α
j

(
Wt

Σα

)]
ln

[
Wt

Ws

]]
.

(3.85)

Integrating the first term on the right hand side of Eq. (3.85) by parts, noting that that Wt

and Ws vanish at infinity and are normalized to constants, yields,

∫
dXdE − ∂Q ·

[
M−1PWt

]
ln

[
Wt

Ws

]
=

∫
dXdEWs∂Q

[
Wt

Ws

]
·M−1P

= −
∫

dXdE
Wt

Ws
PTM−1∂QWs.

(3.86)

Using the definition Ws = G
∏
α

Σα from Eq. (3.76), as well as the identity in Eq. (3.17), the

above expression can be written as

−
∫

dXdE
Wt

Ws
PTM−1∂QWs =

∫
dXdE

[
− Wt

Ws
PTM−1∂QV ∂EuG

∏
β

Σβ

−
∑
α

PTM−1Wt∂Eαuα

−Wt

Ws

∑
α

PTM−1uαG∂Eα
∏
β

Σβ

]
,

(3.87)

where G is evaluated at EU = H(X,λ)+
∑
α
Eα. By similar considerations, the second term

on the right hand side of Eq. (3.85) can be written as
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−
∫

dXdE ∂P · [−∂QV Wt] ln

[
Wt

Ws

]
=

∫
dXdE

Wt

Ws
PTM−1∂QV ∂EuG

∏
β

Σβ,

(3.88)

and the third term can be written as

−
∫

dXdE
∑
α

D̂α · [uαWt] ln

[
Wt

Ws

]
=

∫
dXdE

∑
α

[
PTM−1Wt∂Eαuα

+
Wt

Ws
PTM−1uαG∂Eα

∏
β

Σβ

]
.

(3.89)

We thus see that the first three terms on the right hand side of Eq. (3.85) sum to zero, so

only the fourth term remains. Integrating by parts again and rearranging yields

d

dt
D(Wt||Ws) = −1

2

∫
dXdE

∑
α

(Σα)2

Wt

[
D̂αWt

Σα

]T
Lsyα

[
D̂αWt

Σα

]
+

1

2

∫
dXdE

∑
α

Σα
[
D̂αG

]T
Lα
[
D̂αWt

Σα

]
. (3.90)

Note that Lsyα appears in the first integral in the above equation because the quadratic

form eliminates any contribution from Layα. The term D̂αG vanishes as in Eq. (3.82), so

we have

d

dt
D(Wt||Ws) = −1

2

∫
dXdE

∑
α

(Σα)2

Wt

[
D̂αWt

Σα

]T
Lsyα

[
D̂αWt

Σα

]
. (3.91)

We thus see that d
dtD(Wt||Ws) ≤ 0, and that any Wt approaches Ws monotonically in time,

whenever Lsyα is non-negative for each α.

We now make a heuristic argument for the non-negativity of Lsyα for strongly chaotic
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systems. Employing the definition Lsyα = 1
2

[
Lα + (Lα)T

]
, and making use of the time

translation invariance of correlation functions for stationary ergodic processes [11], we find

from Eq. (3.70)

Lsy,α =

∫ 0

−∞
dt′
〈(
− ∂Qhα − uα

)(
− ∂Qhαt′ − uα

)T〉
Eα,Q

(3.92)

+

∫ 0

−∞
dt′
〈(
− ∂Qhαt′ − uα

)(
− ∂Qhα − uα

)T〉
Eα,Q

=

∫ 0

−∞
dt′
〈(
− ∂Qhα − uα

)(
− ∂Qhαt′ − uα

)T〉
Eα,Q

+

∫ 0

−∞
dt′
〈(
− ∂Qhα − uα

)(
− ∂Qhα−t′ − uα

)T〉
Eα,Q

=

∫ ∞
−∞

dt′
〈(
− ∂Qhα − uα

)(
− ∂Qhαt′ − uα

)T〉
Eα,Q

.

For future reference, we note that similar manipulations applied to Layα = 1
2

[
Lα − (Lα)T

]
yield

Layα =

∫ 0

−∞
dt′
〈(
− ∂Qhα − uα

)(
− ∂Qhαt′ − uα

)T〉
Eα,Q

(3.93)

−
∫ ∞

0
dt′
〈(
− ∂Qhα − uα

)(
− ∂Qhαt′ − uα

)T〉
Eα,Q

.

Now define the matrix Cα(t) by

Cα(t) =

〈(
− ∂Qhα − uα

)(
− ∂Qhαt − uα

)T〉
Eα,Q

. (3.94)

Note that Cα is also a function of Q and Eα, but we suppress this functional dependence

for simplicity. Also note that C(0) is a genuine non-negative covariance matrix. The matrix

Lsyα can thus be written as
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Lsyα =

∫ ∞
−∞

dt′Cα(t′). (3.95)

We now assume that for each bath, when the system of interest is held fixed, correlations in

observables of the bath’s state decay exponentially fast with time, and we assume that the

correlation time-scale is much smaller than all other time-scales associated with the bath.

We thus suppose that Cα(t) can be written as

Cα(t) = fα(t)e−
|t|
τα , (3.96)

where τα denotes the correlation time of the αth bath, ln (|fα(t)|) grows slower that |t| as

|t| approaches infinity, and the natural time-scale associated with fα is much larger than

τα. Note that Cα(0) = fα(0). The matrix fα will thus change very little over times that

scale like τα, and integrand in Eq. (3.95) will make negligible contributions to the integral

for times much greater than τα, so we may expand f in a power series and write

Lsyα =

∫ ∞
−∞

dt′

[
Cα(0) +

∞∑
n=0

1

n!
(fα)(n)(0) t′n

]
e−
|t|
τα . (3.97)

The odd powers of t′ in the above equation will vanish, and integrating the even powers

gives

Lsyα = 2τα

[
Cα(0) +

∞∑
n=1

(fα)(2n)(0) (τα)2n

]
(3.98)

The natural time-scale associated with fα is much greater than τα, so the infinite sum in

the above equation will be negligible compared to Cα(0), and we find
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Lsyα ≈ 2ταCα(0) (3.99)

= 2τα
〈(
− ∂Qhα − uα

)(
− ∂Qhα − uα

)T〉
Eα,Q

.

The above expression is a non-negative definite covariance matrix, so we see that for a

strongly chaotic bath, Lsyα will be dominated by a non-negative matrix, with possible non-

non-negative corrections being negligible.

In this subsection, we have shown, given the presence strong chaos at the micro-scale,

any time-dependent solution to the Fokker Planck equation (3.74) will continually relax

towards the form of the stationary distribution given by Eq. (3.76). Because Ws represents

a statistical sharing of energy, with the statistics determined by the number of allowed

phase space configurations, we conclude that the relaxation towards Ws provides closed

system chaos bath analog to the relaxation of an open system to a thermal equilibrium

distribution. The system of interest thus “thermalizes” with the chaos baths in the same

manner in which a small open system thermalizes with the surrounding environment. This

observation was previously made by Jarzynski for the case of a single bath [68].

We close this subsection by noting that we have not shown that the form of Ws in

Eq. (3.76) gives a unique stationary solution to the Fokker-Planck equation, so we can

not say for certain whether or not all initial distributions will actually reach Ws in the

long-time limit. We have shown that d
dtD(Wt||Ws) ≤ 0, regardless of the uniqueness of the

stationary distribution, but we have not shown that D(Wt||Ws)→ 0 as t→∞: the relative

entropy between Wt and Ws may monotonically decrease to some non-zero positive number.

If D(Wt||Ws) is observed to converge to a positive number, then Wt must be converging

towards some other stationary distribution W ′s, distinct from Ws on some set of non-zero

measure with respect to W ′s. Regardless of the uniqueness of the form of stationary solution

to the Fokker-Planck equation (3.74), however, in the next subsection, we will show that

the form of the stationary given in Eq. (3.76) is unique in the sense that it follows from a

microcanonical stationary solution at the microscale.
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3.4.3 Entropy

For the remainder of this thesis chapter, we will assume that the system of interest

and baths together have a well-defined constant total energy E such that the distribution

G in Eq. (3.76) is a Dirac delta distribution centred at E . The total energy of the universe

will remain delta distributed if the control parameters λ are held fixed, and we denote this

particular stationary distribution by

Ws(X,E; E ,λ) =

δ(E −H(X,λ)−
∑
α
Eα)

∏
α

Σα(Eα,Q)

Σ̃U (E ,λ)
, (3.100)

where the partition function Σ̃U (E ,λ) is a normalization factor. We now show that Σ̃U (E ,λ)

is equal to the microcanonical partition of the entire universe.

Consider the microcanonical microscopic stationary distribution φs, given by

φs(X,X; E ,λ) =

δ(E −H(X,λ)−
∑
α
hα(xα; Q))

ΣU (E ,λ)
, (3.101)

where the normalization factor ΣU (E ,λ), is the microcanonical partition function of the

universe:

ΣU (E ,λ) =

∫
dXdXδ(E −H(X,λ) +

∑
α

hα(xα; Q)). (3.102)

Projecting the bath variables onto their energy shells, we find

〈φs〉E,Q =

∫
dXφs(X,X; E ,λ)

∏
α

δ(Eα − hα(xα; Q)) (3.103)

=

δ(E −H(X,λ)−
∑
α
Eα)

∏
α

Σα(Eα,Q)

ΣU (E ,λ)
.

Both 〈φs〉E,Q and Ws as given in Eq. (3.100) are normalized to unity, so we conclude that

Σ̃U = ΣU , and that Ws follows from an underlying microcanonical microscopic stationary
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distribution.

Following the standard correspondence between statistical mechanics and thermody-

namics, [70] the thermodynamic entropy of the universe, denoted by SU (E ,λ), is given by

the microcanonical entropy of the universe:

SU (E ,λ) = kB ln ΣU (E ,λ), (3.104)

where kB is Boltzmann’s constant. We are working in an approximation which assumes that

each bath remains microcanonically distributed over the energy shells which they occupy

in phase space, so thermodynamic entropy of each individual bath, sα, is the corresponding

microcanonical entropy:

sα(Eα,Q) = kB ln Σα(Eα,Q), (3.105)

Note that we are being sloppy with units in Eqs. (3.104) and (3.105): we should be including

factors which divide the microcaonical partition functions in order to make the arguments

of the natural logs unitless. Such factors will only shift the entropies by over all constants,

so we disregard them and similar factors throughout. In terms of entropies, the stationary

distribution can be written as

Ws(X,E; E ,λ) = δ(E −H(X,λ)−
∑
α

Eα)e

∑
α
sα(Eα,Q)−SU (E,λ)

kB . (3.106)

We define the entropy of a stationary solution to the Fokker-Planck equation to be

the distribution’s differential Shannon Entropy multiplied by Boltzmann’s constant. The

entropy of Ws, denoted by SW , is thus
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SW (E ,λ) = −kB
∫

dXdEWs ln[Ws] (3.107)

= SU (E ,λ)−
∑
α

〈sα〉WE,λ − kB 〈ln δ(0)〉WE,λ ,

where 〈...〉WE,λ denotes an average over Ws. The delta function is a divergence which reflects

the fact that Ws is a singular distribution constrained to lie on a single surface of constant

H +
∑
α
Eα in (X,E) space: the entirety of the probability measure lies on a surface of

Lebesgue measure zero. This divergence simply indicates the presence of a constraint, and

the associated infinite information is physically irrelevant information which can be ignored.

More formally, noting that (X,E) over-specifies the state of the universe by one degree of

freedom, we can define a physically equivalent, non-singular, reduced distribution W̃s by

tracing out one of the bath variables from Ws, say bath number one for example:

W̃s(X, E
2, ..., EN ; E ,λ) =

∫
dE1Ws(X,E; E ,λ) (3.108)

= e

s1(E−H(X,λ)−
∑
α6=1

Eα,Q)+
∑
α6=1

sα(Eα,Q)−SU (E,λ)

kB .

The entropy of this physically equivalent reduced distribution, given by,

− kB
∫

dXdE2...dEN W̃s ln W̃s = SU (E ,λ)−
∑
α

〈sα〉WE,λ , (3.109)

is equal to the physically meaningful part of the entropy of the full distribution. The

thermodynamic entropy of the universe can thus be written the sum of the entropy of Ws

and the average thermodynamic entropies of the individual baths:

SU (E ,λ) = SW (E ,λ) +
∑
α

〈sα〉WE,λ . (3.110)
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3.4.4 Coarse grained bath states

Consider now the distribution WB which results from projecting the individual bath

energies out of Ws onto surfaces of constant total bath energy EB:

WB(X, EB; E ,λ) =

∫
dE δ(EB −

∑
α

Eα)Ws(X,E; E ,λ) (3.111)

=

∫
dE δ(EB −

∑
α

Eα)

δ(E −H(X,λ)−
∑
α
Eα)

∏
α

Σα(Eα,Q)

ΣU (E ,λ)
.

This distribution is a coarse grained distribution relative to Ws - the bath energy states

lumped together into states of total bath energy, with the statistical weight of a particu-

lar energy configuration within a coarse grained state given by
∏
α

Σα(Eα,Q). In the next

subsection, we will show that WB reduces to a Boltzmann distribution in an appropriately

defined thermodynamic limit. In this subsection, we examine the physical properties of WB

and derive some useful identities.

Denote the microcanonical partition function associated with the microcanonical distri-

bution in the joint bath phase space by ΣB:

ΣB(EB,Q) =

∫
dX δ(EB −

∑
α

hα(xα; Q)). (3.112)

This quantity gives a measure of the total number of ways in which the baths can jointly

share an energy EB when the system of interest is located at Q. This partition function

can also be written as

ΣB(EB,Q) =

∫
dXdE δ(EB −

∑
α

Eα)
∏
α

δ(Eα − hα(xα; Q)) (3.113)

=

∫
dE δ(EB −

∑
α

Eα)
∏
α

Σα(Eα,Q).

Using this expression for ΣB, WB can be written as
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WB(X, EB; E ,λ) =
δ(E −H(X,λ)− EB) ΣB(EB,Q)

ΣU (E ,λ)
. (3.114)

This distribution is constrained to lie on a surface of constant H(X,λ)+EB and is therefore

singular. A physically equivalent non-singular distribution, Ps, can be obtained by tracing

out EB:

Ps(X; E ,λ) =

∫
dEBWB(X, EB; E ,λ) (3.115)

=
ΣB(E −H(X,λ),Q)

ΣU (E ,λ)
.

This distribution must be normalized, so we find the identity

ΣU (E ,λ) =

∫
0≤H(X,λ)≤E

dX ΣB(E −H(X,λ),Q) (3.116)

Denoting by SB the microcanonical entropy corresponding to ΣB,

SB(EB,Q) = kB ln ΣB(EB,Q), (3.117)

the coarse grained stationary distribution can be written as

Ps(X; E ,λ) = e
SB(E−H(X,λ),Q)−SU (E,λ)

kB . (3.118)

The entropy of Ps, denoted by SP , is given by
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SP (E ,λ) = −kB
∫

dXPs(X; E ,λ) lnPs(X; E ,λ) (3.119)

= SU (E ,λ)−
〈
SB
〉P
E,λ ,

where 〈..〉PE,λ denotes an average over Ps. Inserting delta functions into Eq. (3.119) and

making use of Eq. (3.113), we also have

SP (E ,λ) = −kB
∫

dXdEB δ(E −H(X,λ)− EB)
ΣB(EB,Q)

ΣU (E ,λ)
ln

[
ΣB(EB,Q)

ΣU (E ,λ)

]
= −kB

∫
dXdEBdE δ(E −H(X,λ)−

∑
α

Eα)δ(EB −
∑
α

Eα)

×

∏
α

Σα(Eα,Q)

ΣU (E ,λ)
ln

[
ΣB(EB,Q)

ΣU (E ,λ)

]

= SU (E ,λ)−
∑
α

〈sα〉WE,λ + kB

〈
ln

ΣB∏
α

Σα

〉W
E,λ

. (3.120)

The last term on the final line of the right hand side of Eq. (3.120) is a measure of the

entropy of Ps relative to Ws. This relative entropy characterizes the information which is

lost when the individual bath energy configuration state are coarse grained into states of

total bath energy. For the case of a single bath, we have Σ1 = ΣB, and the relative entropy

will therefore vanish. This must be the case: no actual coarse graining occurs for the case

of a single bath, so no information can be lost. Using Eq. (3.110), we find

SP (E ,λ) = SW (E ,λ) + kB

〈
ln

ΣB∏
α

Σα

〉W
E,λ

(3.121)

The relative entropy in the above equation is non-negative, so we see that SP ≥ SW : the

disorder associated with SP is generally greater than the disorder associated with SW due

to the information lost as a result of the coarse graining.
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Consider now the partial derivative of ΣB with respect to EB:

∂EBΣB(EB,Q) =

∫
dE ∂EBδ(E

B −
∑
α

Eα)
∏
α

Σα(Eα,Q) (3.122)

=

∫
dE δ(EB −

∑
α

Eα)

[∏
α

Σα(Eα,Q)

]
∂EβΣβ(Eβ,Q)

Σβ(Eβ,Q)

=
1

N

∫
dE δ(EB −

∑
α

Eα)
∏
α

Σα(Eα,Q)

∑
β

∂EβΣβ(Eβ,Q)

Σβ(Eβ,Q)

 .
The second line of the above equation follows from integrating by parts and making use of

the fact that, when operating on the delta function, ∂EB = −∂Eβ for any one of the N bath

energies Eβ, and the third line follows from applying this fact to all N bath energies. We

thus have, for any β,

1

ΣB(EB,Q)
∂EBΣB(EB,Q) =

〈
1

Σβ
∂EβΣβ

〉
EB ,Q

(3.123)

=
1

N

∑
α

〈
1

Σα
∂EαΣα

〉
EB ,Q

,

where 〈...〉EB ,Q denotes an average over the microcanonical joint bath distribution when

the baths share a total energy EB and the system of interest is located at Q. Invoking

standard thermodynamic definitions [70], the microcanonical temperature TB of the joint

bath system is given by

1

TB(EB,Q)
= ∂EBS

B(EB,Q) (3.124)

= kB∂EB ln ΣB(EB,Q).

The microcanonical temperatures of the individual baths are likewise given by
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1

Tα(Eα,Q)
= ∂Eαs

α(Eα,Q) (3.125)

= kB∂Eα ln Σα(Eα,Q),

so from Eq. (3.123), we see that the inverse joint bath temperature is related to the indi-

vidual bath temperatures by

1

TB(EB,Q)
=

〈
1

T β

〉
EB ,Q

, (3.126)

for each β. We note that the above temperatures are well-defined, regardless of the size of

the baths - they are simply notational conveniences with no a priori physical interpretations.

However, for baths with many, many degrees of freedom, we expect these temperatures to

behave in accordance with our ordinary notions of temperature [70].

Finally, consider the partial derivative of ΣB with respect to Q:

∂QΣB(EB,Q) =

∫
dE δ(EB −

∑
α

Eα)∂Q
∏
α

Σα(Eα,Q) (3.127)

=
1

N
ΣB(EB,Q)

∑
α

〈
1

Σα
∂QΣα

〉
EB ,Q

=
1

N
ΣB(EB,Q)

∑
α

〈
1

Σα
∂EB [Σαuα]

〉
EB ,Q

,

where we have made use of Eq. (3.17). The average total adiabatic force exerted on the

system of interest, denoted by uB, is given by

uB(EB,Q) =
∑
α

〈uα〉EB ,Q (3.128)

=
1

ΣB(EB,Q)

∫
dE δ(EB −

∑
α

Eα)
∏
α

Σα(Eα,Q)

∑
β

uβ(Eβ,Q)

 .
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Making use of Eqs. (3.122) and (3.127), we find the anolog of the useful identity in Eq. (3.17):

∂EB
[
ΣB(EB,Q)uB(EB,Q)

]
= ∂QΣB(EB,Q). (3.129)

3.4.5 The thermodynamic limit

We now consider the stationary distribution in a limit where the number of joint bath

degrees of freedom, NB, becomes much larger than system of interest’s number of degrees

of freedom, NS . The exact nature of this limit, which we refer to as the thermodynamic

limit, we be specified shortly. This limit could correspond a very large number of baths, or

to a few (or a single) baths with many, many degrees of freedom. We assume the special

case where ΣB, as a function of total bath energy, grows exponentially at a rate linearly

dependent on NB, such that SB is extensive in NB in the large NB limit. We acknowledge

that in order for SB to be extensive, it may be required to modify definition in Eq. (3.117)

by subtracting the log of the factorial of the number of identical bath systems, as per the

Gibbs mixing paradox [70], but this modification will be inconsequential for what follows.

Here, we are not concerned with determining exactly what classes of baths satisfy the exten-

sivity assumption, but we do note that for some simple cases of practical interest, such as

a bath of ideal gas particles, the assumption is indeed satisfied [70]. Under the extensivity

assumption, as NB grows larger and larger, states of very large total bath energy become

more and more dominate in their contribution to ΣU , and thus become the dominate states

of non-negligible probability in Eq. (3.115).

The thermodynamic limit is defined as taking NB to infinity such EB/NB approaches a

constant while holding NS constant and scaling the system of interest and baths such that

||uB||/NB approaches zero. For the example pictured in Fig. 3.1, the thermodynamic limit

corresponds to adding more and more point particles to the billiard interior while simulta-

neously increasing the size of the billiard such that the density of point particles remains

constant. The total bath energy is thus extensive by definition in the thermodynamic limit.

For argument’s sake, we suppose that H(X,λ) is extensive in NS , but all we really require
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is that the system of interest’s energy be held constant as more and more bath degrees of

freedom are added in the thermodynamic limit.

As NB → ∞, states of large total bath energy (large compared to the energy of the

system of interest) are the only statistically non-negligible states, so may assume that the

total bath energy is always very close to the total energy of the universe. The energy of

the universe is therefore extensive in NB, and we may safely approximate the joint bath

entropy SB(E −H(X,λ),Q) in the thermodynamic limit by expanding it in a power series

in its first argument, evaluated at E :

SB(E −H(X,λ),Q) = SB(E ,Q)− ∂E [SB(E ,Q)]H(X,λ) (3.130)

+
1

2
∂2
EE [S

B(E ,Q)]H(X,λ)2 + ...

= SB(E ,Q)−H(X,λ)

(
1

TB(E ,Q)
+O

(
Ns

Nb

))
.

As NS/NB → 0, we have

SB(E −H(X,λ),Q) = SB(E ,Q)− H(X,λ)

TB(E ,Q)
, (3.131)

so the coarse grained stationary distribution in Eq. (3.115) can be written as

Ps(X; E ,λ) =
NB→∞

e
−H(X,λ)−TB(E,Q)SB(E,Q)

kBT
B(E,Q)

−S
U (E,λ)
kB (3.132)

= e
−H(X,λ)−TB(E,Q)SB(E,Q)−F(E,λ,Q)

kBT
B(E,Q) ,

where we define F(E ,λ,Q) by

F(E ,λ,Q) = −TB(E ,Q)SU (E ,λ). (3.133)

Equation (3.132) resembles a canonical distribution with a position dependent temperature

and free energy. This “free energy” does not appear to be a true free energy because, due
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to the position dependent temperature, it is not a constant multiple of the log of a partition

function. However, using the identity in Eq. (3.128), one can show that the gradient of TB

with respect to the system’s position is given by

∂QT
B(E ,Q) = ∂E [T

B(E ,Q)]uB(E ,Q)− TB(E ,Q)∂Eu
B(E ,Q) (3.134)

−kB[TB(E ,Q)]2∂2
EEu

B(E ,Q).

The temperature TB is an intensive quantity, while the energy of the universe, is an extensive

quantity, so in the limit NB → ∞ with||uB||/NB → 0, all the terms on the right hand

side of Eq. (3.134) vanish for every Q. Therefore, TB will be independent of Q in the

thermodynamic limit:

TB(E ,Q) =
TDlimit

TB(E). (3.135)

Also note that,

∂QS
B(E ,Q) =

uB(E ,Q)

TB(E ,Q)
+ kB∂Eu

B(E ,Q), (3.136)

the thermodynamic limit of which yields

∂QS
B(E ,Q) =

TDlimit

uB(E ,Q)

TB(E)
. (3.137)

The average total adiabatic bath force is therefore equal to the gradient of TB(E)SB(E ,Q)

in the thermodynamic limit:

uB(E ,Q) =
TDlimit

−∂Q[−TB(E)SB(E ,Q)], (3.138)

implying that the quantity −TB(E)SB(E ,Q) limits to the potential of the mean force uB.

Note that Eq. (3.17) can be used to derive similar relations for each individual bath:

94



∂QT
α(Eα,Q) = ∂Eα [Tα(Eα,Q)]uα(Eα,Q)− Tα(Eα,Q)∂Eαuα(Eα,Q)

−kB[Tα(Eα,Q)]2∂2
EαEαuα(Eα,Q), (3.139)

∂Qs
α(E ,Q) =

uα(Eα,Q)

Tα(Eα,Q)
+ kB∂Eαuα(Eα,Q). (3.140)

If the entropy of bath α is extensive in the number of its degrees of freedom, then in

a thermodynamic limit applied to bath α only (as opposed to all of the bath degrees of

freedom), Tα becomes independent of Q and −Tα(Eα)sα(Eα,Q) becomes the potential of

the mean force uα.

With the free energy and temperature position independent, Ps reduces to a genuine

Boltzmann distribution with an effective system Hamiltonian Heff

Ps(X; E ,λ) =
TDlimit

e
−H

eff(X,λ,E)−F(E,λ)

kBT
B(E) , (3.141)

where the effective Hamiltonian is given by the system Hamiltonian plus the potential of

mean force:

Heff(X, E ,λ) = H(X,λ)− TB(E)SB(E ,Q), (3.142)

and the free energy is given by

F(E ,λ) =
TDlimit

−TB(E ,Q)SU (E ,λ) (3.143)

= −kBTB(E ,Q) ln

∫
0≤H(X,λ)≤E

dX ΣB(E −H(X,λ),Q)

=
TDlimit

−kBTB(E) ln

∫
0≤H(X,λ)≤E

dX e
−H

eff(X,λ,E)

kBT
B(E) .
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Equation (3.143) is the standard statistical mechanics definition of the Helmholtz free energy

[70]. Employing Eq. (3.119), we also have

F(E ,λ) =
TDlimit

−TB(E ,Q)SP (E ,λ)− TB(E ,Q)
〈
SB
〉P
E,λ (3.144)

= −TB(E ,Q)SP (E ,λ)

−TB(E ,Q)

∫
0≤H(X,λ)≤E

dXPs(X; E ,λ)kB ln[ΣB(E −H(X,λ),Q)]

=
TDlimit

−TB(E)SP (E ,λ)

−TB(E)

∫
0≤H(X,λ)≤E

dXPs(X; E ,λ)

[
−H

eff(X, E ,λ)

TB(E)

]

=
〈
Heff

〉P
E,λ
− TB(E)SP (E ,λ).

The last line of Eq. (3.144) is the standard thermodynamic definition of the Helmholtz

free energy [70]. Finally, we note that in the thermodynamic limit, the microcanonical

temperature of the universe, defined by

1

TU (E ,λ)
= ∂ES

U (E ,λ), (3.145)

becomes independent of λ and is equal to the joint bath temperature TB:

1

TU (E ,λ)
= kB∂E ln ΣU (E ,λ) (3.146)

=
kB

ΣU (E ,λ)

∫
0≤H(X,λ)≤E

dX ∂EBΣB(EB,Q)|EB=E−H(X,λ)

=
1

ΣU (E ,λ)

∫
0≤H(X,λ)≤E

dX ΣB(EB,Q)∂EBS
B(EB,Q)|EB=E−H(X,λ)

=
TDlimit

1

ΣU (E ,λ)

∫
0≤H(X,λ)≤E

dX
ΣB(E −H(X,λ),Q))

TB(E ,Q)

[
1 +O

(
NS

NB

)]

=
TDlimit

1

TB(E)
.
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3.5 Summary and Conclusions

In this chapter, we have shown that the chaos bath framework establishes a microscopic

deterministic, Hamiltonian setting which yields thermodynamic evolution at the mesoscale.

When a slow heavy mesoscopic Hamiltonian system interacts with any number of light fast

micorscopic chaotic Hamiltonian systems, the chaotic systems’ energies evolve on mesoscopic

time-scales, and the joint distribution of the mesoscopic system and bath energies evolves

diffusively under a Fokker-Planck equation. This Fokker-Planck equation can be derived

from first principles from the underlying Hamiltonian dynamics. If the control parameters

are held fixed, so that the system of interest and baths jointly evolve as an isolated system,

the mesoscale variables thermalize with each other and relax to a stationary equilibrium

distribution. We have studied this stationary distribution in detail, and we have shown

that it implies a Boltzmann distribution in thermodynamic limit. Thus, the framework

established here contains the classical framework of equilibrium statistical mechanics as a

special case. The hallmarks of thermodynamic processes, however (namely fluctuations,

dissipation, and thermalization), always emerge in the presence of a chaos bath regardless

of the size of the bath or the existence of a thermodynamic limit.

Our derivation of the Boltzmann distribution demonstrates that ordinary equilibrium

thermodynamics follows from the thermodynamic limit of the chaos bath framework, but

the derivation itself is nothing special - deriving an equilibrium Boltzmann distribution

from the assumption of molecular chaos and many degrees of freedom is a standard exercise

in equilibrium statistical mechanics and is the essence of the results first established by

Maxwell, Boltzmann, and Gibbs [65, 66, 67, 70]. The central result of this chapter is the

Fokker-Planck equation (3.74) to which the stationary distribution is a solution. In addi-

tion to equilibrium thermodynamics, the Fokker-Planck equation connects non-equilibrium

thermodynamics at the mesoscale to the underlying Hamiltonian chaos at the microscale.

In the next chapter, we will use this micro-meso connection to interpret important results

in non-equilibrium thermodynamics at both the microscale and mesoscale.
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Chapter 4

Thermodynamics in a Chaos Bath:
The Langevin Equation

4.1 Introduction

In this chapter, we continue our study of thermodynamics in a chaos bath and consider

the mesoscopic dynamics of individual trajectories. The distribution of (X,E) evolves under

a diffusion equation, so we expect the corresponding trajectories to evolve under a stochastic

differential equation (denoted SDE for short) [9]. From the Fokker-Planck equation (3.75),

we will derive an SDE for the mesoscopic evolution of (X,E) in the form of a generalized

underdamped Langevin equation. The purpose of this chapter is to utilize the Langevin

equation to derive the chaos bath anaolog of important results from stochastic thermody-

namics, namely, fluctuation theorems [13, 15, 17, 18, 19, 20]. After the stochastic derivation,

we will show that the fluctuation theorems follow trivially, essentially by definition, from

generic properties of the underlying microscopic Hamiltonian dynamics, and this will be the

central result of Chap. 4. Our approach will yield first principles Hamiltonian definitions

heat and entropy production, as well as a statement of the first law of thermodynamics at

the level of individual trajectories in a chaos bath. The second law of thermodynamics will

follow from the fluctuation theorems in the thermodynamic limit.

The outline of this chapter is as follows. In Sec. 4.2 we derive the Langevin equation
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and discuss the physical meaning of the various forces which emerge. Then, in Sec. 4.3, we

review the basics of stochastic thermodynamics and find corresponding expressions for heat

flow, entropy production, and the first law of thermodynamics in a chaos bath by utilizing

the path integral formalism. In Sec. 4.4, we derive the chaos bath equivalent of fluctuation

theorems from both mesoscopic and microscopic considerations, and we conclude in Sec. 4.5.

4.2 The Langevin equation

Fokker-Planck equations and stochastic differential equations are intimately related - for

every white noise driven stochastic differential equation, there is a corresponding Fokker-

Planck equation which describes the time evolution of distributions of the stochastic vari-

ables [9]. The prescription to find a Fokker-Plack equation corresponding to a given stochas-

tic differential equation (denoted SDE for short) can be found in standard references like [9]

and is outlined here. Suppose we are given an Ito stochastic differential equation for some

vector function Y(t):

dYi(t) = Bi(Y(t), t)dt+
√
σij(Y(t), t)dWj(t

′). (4.1)

Summation over repeated subscripts is implied in Eq. (4.1), and dW(t) denotes the incre-

ment of a vector of independent standard Wiener processes with the following statistics:

〈dWi(t)〉 = 0 (4.2)

〈dWi(t)dWj(t)〉 = dt δij δ(t− t′), (4.3)

where δij is the Kronecker delta, and the expectation 〈...〉 is taken over all realizations of

W . The time-derivative of W(t), denoted by ξ(t) = ˙W(t), is defined formally to be a

Gaussian white-noise vector. The function B(Y, t) is called the “drift vector,” and the

matrix
√
σ(Y, t) is defined indirectly as a square root of the matrix σ:
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σ(Y, t) =
√
σ(Y, t)

√
σ
T

(Y, t), (4.4)

where σ is called the “diffusion matrix.” Note that σ(Y, t) is symmetric and non-negative

by definition. If Y and W are n and p-dimensional respectively, then B is n-dimensional,

√
σ is an n× p matrix, and σ is an n× n matrix. Note that

√
σ is not uniquely defined: if

R is a p ×m semi-orthogonal matrix for any m (meaning that RRT = Ip, where Ip is the

p× p identity matrix), we can define a new n×m matrix
√
σ̃ =
√
σR, and we find

σ =
√
σ
√
σ
T

=
√
σ̃
√
σ̃
T
. (4.5)

This freedom will be a source of complications in the work to follow.

Given the SDE in Eq. (4.1) the probability distribution for Y, denoted by P (Y, t), can

be shown to evolve under the following Fokker-Planck equation [9]:

∂tP (Y, t) = −∂Y · [B(Y, t)P (Y, t)] +
1

2
∂2
YiYj [σij(Y, t)P (Y, t)] . (4.6)

We will apply this correspondence in reverse to derive an SDE for (X,E) from Fokker-

Planck equation in Eq. (3.75). Due to the non-uniqueness of
√
σ, Eq. (3.75) corresponds

to many SDE’s with noise vectors of varying dimensionality, so the reverse correspondence

will introduce some mathematical ambiguities which we will need to resolve by appealing

to physical considerations.

4.2.1 Derivation

For simplicity, we will derive our Langevin equation assuming the presence of only one

bath. The generalization to multiple baths is straightforward. We denote the number of

degrees of freedom of the system of interest by NS , where by “degree of freedom,” we mean

the number of position coordinates, implying the phase space of the system of interest is

2NS-dimensional. We begin our derivation with the Fokker-Planck equation in (3.75) for the

case of N = 1 bath (so no summation over α is required). Expanding out the D̂ operators

and rearranging, we find
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∂tWt = −∂Q ·
[
M−1PWt

]
− ∂P ·

[(
−∂V
∂Q

+ u− 1

2Σ
∂E [ΣL]M−1P

)
Wt

]
(4.7)

−∂E
[(
−PTM−1u− 1

2
tr[M−1Lsy] + PTM−1 1

2Σ
∂E [ΣL]M−1P

)
Wt

]
+

1

2
∂2
PiPj

[
Lsy
ijW

]
+

1

2
∂2
PiE

[
−Lsy

ijM
−1
j PjWt

]
+

1

2
∂2
EPi

[
−PjM−1

j Lsy
jiWt

]
+

1

2
∂2
EE

[
PTM−1LsyM−1PWt

]
.

We again assume summation over repeated subscripts, and the function tr denotes the

matrix trace. The term M−1
i is the inverse inertia of the ith degree of freedom of the system

of interest: M−1
i = M−1

ii , where M−1
ij is an element of diagonal matrix M−1. By denoting

the joint vector (X,E) by Y, Eq. (4.7) can be cast in the form of Eq. (4.6). The 2NS + 1

dimensional drift vector B(Y, t) is given by the function

B(Y, t) =


M−1P

−∂QV + u− 1
2Σ∂E [ΣL]M−1P

−PTM−1u− 1
2tr[M−1Lsy] + PTM−1 1

2Σ∂E [ΣL]M−1P

 . (4.8)

Note that the explicit time-dependence of B arises from the time-dependence of the control

parameters λ(t) appearing in the system of interest’s potential energy function. The (2NS+

1)× (2NS + 1) time-independent diffusion matrix is given by

σ(Y) =


0NS 0NS 0NS

0NS Lsy −LsyM−1P

0TNS −PTM−1(Lsy)T PTM−1LsyM−1P

 , (4.9)

where 0NS denotes theNS dimensional zero vector and 0NS denotes theNS×NS zero matrix.

The elements of σ(Y) are themselves matrices with dimensions given by the following

schematic:
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
NS ×NS NS ×NS NS × 1

NS ×NS NS ×NS NS × 1

1×NS 1×NS 1× 1

 . (4.10)

With these definitions, Eq. (4.7) can be written in the form of Eq. (4.6):

∂tWt = −∂Y · [B(Y, t)Wt] +
1

2
∂2
YiYj [σij(Y)Wt] . (4.11)

In order to write an SDE corresponding to Eq. (4.11), the matrix σ defined in Eq. (4.9)

must be non-negative, and we must find an appropriate square root
√
σ. If we can find

a square root, we will have σ =
√
σ
√
σ
T

, so σ will be non-negative by definition. The

square root, if it exists, is not unique, but from the correspondence between Eqs. (4.1) and

Eq. (4.6), we know that if
√
σ does exist, it will be a (2NS + 1)×m dimensional matrix for

some integer m, where m is the number of independent noise terms appearing in the SDE

for Y. The integer m is not known a priori, but we know that the physical origin of the

noise terms is the chaotic fluctuating force of the bath on the system of interest, and this

force has NS components. We therefore expect NS independent noises to enter the SDE for

Y, and consequently expect
√
σ, if it exists, be a (2NS + 1)×NS dimensional matrix. We

now show, by construction, that
√
σ does indeed exist.

The matrix Lsy is by-definition real and symmetric, and in Sec. 3.4, we showed that Lsy

is non-negative when the bath is strongly chaotic. Therefore, for a strongly chaotic bath,

Lsy can be diagonalized by a real orthogonal transformation:

Lsy = O diag(Λi)O
T , (4.12)

The matrix diag(Λi) is an NS ×NS diagonal matrix of the real non-negative eigenvalues Λi

of Lsy, and O is a real orthogonal NS ×NS matrix. We define the matrix
√
Lsy by

√
Lsy = O diag(

√
Λi)O

T . (4.13)

Because OOT = INS , where INS is the NS ×NS identity matrix, we see immediately that
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Lsy =
√
Lsy
√
Lsy

T
. (4.14)

We also see that
√
Lsy is itself symmetric. Utilizing

√
Lsy, we find the following expression

for
√
σ:

√
σ(Y) =


0

√
Lsy(E,Q)

−PTM−1
√
Lsy(E,Q)

 , (4.15)

where, the dimensions of the sub-matrices of
√
σ are given by,


NS ×NS

NS ×NS

1×NS

 . (4.16)

One can immediately verify that σ =
√
σ
√
σ
T

. Note that we still have the freedom to

multiply
√
σ by some NS ×NS orthogonal matrix R. If we write (

√
σ)′ =

√
σR, we have

(
√
σ)′(Y) =


0

√
Lsy(E,Q)R

−PTM−1
√
Lsy(E,Q)R

 , (4.17)

and we see that σ = (
√
σ)′(
√
σ)′T . We will show shortly that this freedom is of no physical

consequence.

We now have all the necessary pieces to write a stochastic differential equation corre-

sponding to the Fokker-Planck equation in (3.75). Following the correspondence between

Eq. (4.1) and Eq. (4.6), we arrive at the desired SDE:

dYi(t) = Bi(Y(t), t)dt+
√
σij(Y(t))dWj , (4.18)
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In more transparent notation, we have

dQ = M−1Pdt (4.19)

dP =

(
−∂QV + u− 1

2Σ
∂E [ΣL]M−1P

)
dt+

√
LsydW

dE =

(
−PTM−1u− 1

2
tr[M−1Lsy] + PTM−1 1

2Σ
∂E [ΣLsy]M−1P

)
dt

−PTM−1
√
LsydW .

For simplicity, we have suppressed the functional dependencies of all of the quantities in

Eq. (4.19). The Q and P equations together have the form of an underdamped Langevin

equation, so we will refer to Eq. (4.19) as the Langevin equation for (X(t), E(t)). The

multi-bath generalization is given by

dQ = M−1Pdt (4.20)

dP = −∂QV dt+
∑
α

(
uα − 1

2Σα
∂Eα [Σα Lα]M−1P

)
dt+

√
LsyαdWα

dEα =

(
−PTM−1uα − 1

2
tr[M−1Lsyα] + PTM−1 1

2Σα
∂Eα [ΣLsyα]M−1P

)
dt

−PTM−1
√
LsyαdWα,

where Wα and Wβ are independent for α 6= β.

From Eq. (4.19), we can see why choosing the
√
σ as in Eq. (4.15) is equivalent to

choosing (
√
σ)′ =

√
σR as in Eq. (4.17). If we had chosen to use (

√
σ)′, then we would have

obtained the same stochastic differential equation, but with the noise vector W ′ = RW

instead of W . Utilizing the orthogonality of R, it is straightforward to show that W and

W ′ have identical statistics; W ′ = RW is also a vector of independent standard Weiner

processes. Thus, the SDE’s obtained by using
√
σ and (

√
σ)′ are physically identical.

4.2.2 Energy conservation and the Stratonovich calculus

By the conservation of energy, the quantity−dEα is the incremental change in the energy

of the system of due to the force exerted by bath α. On the other hand, the expression
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for the force on the system of interest due to bath α, denoted here by F̃α, is, according to

Eq. (4.20),

F̃α = uα − 1

2Σα
∂Eα [Σα Lα]M−1P +

√
Lsyαξα. (4.21)

so applying the definition incremental energy change = force × displacement, where the

displacement is given by dQ = M−1Pdt, we have

dQT F̃α =

(
PTM−1uα −PTM−1 1

2Σα
∂Eα [Σα Lα]M−1P

)
dt (4.22)

+PTM−1
√
LsyαdWα.

We thus see that dQT F̃α 6= −dEα, so the conservation of energy appears to be in con-

tradiction with the definition of incremental energy change. This apparent contradiction

arises because we have written our SDE in the Ito form, where the regular rules of calculus

do not always apply. In particular, the differential of the system of interest’s Hamiltonian

along trajectories must be calculated with a modified chain rule known as Ito’s formula [9].

Ito’s formula introduces terms in addition to those given by the normal chain rule, so the

differential change in the system of interest’s energy along a trajectory is not given by force

× displacement in the Ito calculus.

In order to use the standard definitions of work, changes in energy, and other physical

quantities, we must write our SDE in the Stratonovich form, where the regular rules of

calculus apply [85]. The essential difference between the Ito and Stratonovich calculus lies

in the discretization conventions for defining stochastic integrals. In short, the Ito integral

of some function G(Y, t) along a stochastic trajectory Y(t) is defined as

∫ T

0
G(Y(t), t)dY(t) =

Lim

∑
G(Y(ti), ti) [Y(ti+1)−Y(ti)] , (4.23)

while the corresponding Strantonivich integral is defined as
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∫ T

0
G(Y(t), t) ◦ dY(t) =

Lim

∑
G(Y(ti)+Y(ti+1)

2 , ti+ti+1

2 ) · [Y(ti+1)−Y(ti)] , (4.24)

where the operation “Lim” corresponds to the limit of an infintely fine discretization of

the interval [0, T ]. The Ito integral uses an initial point discretization scheme, while the

Stratonovich integral uses a mid-point discretization scheme. If Y(t) is a differentiable

function, both discretization schemes will be equivalent.

The Stratonovich calculus is preferred from a physical standpoint because stochastic

noises, which often induce continuous but non-differential fractal sample paths, always rep-

resent idealized limits or approximations of more regular processes when used to model

physical phenomena. As shown by Sussmann [86], if a sequence of differentiable functions

limits to a continuous, possibly non-differentiable function (such as the sample path of a

Gaussian white noise process), then, under suitable Lipschitz continuity conditions, corre-

sponding sequences of ordinary differential equations driven by those differentiable functions

will limit to corresponding differential equations driven by the limiting continuous function

in the Stratonovich form, not the Ito form. Key to proving this result is the fact that the set

of differentiable functions defined over some compact subset of the real numbers is dense in

the set of continuous functions defined over that compact subset [86]. Therefore, equations

of motion for physical quantities evaluated along trajectories (such as work and energy),

when defined in the context of ordinary deterministic Hamiltonian dynamics, will retain

their form when the deterministic dynamics are approximated by Stratonovich stochastic

dynamics. It is for these reasons that the Stratonovich calculus is used in stochastic ther-

modynamics, where physically meaningful results are dependent on physically meaningful

definitions of work and heat along individual trajectories of mesoscale thermodynamic sys-

tems [16, 13]. In addition to the above mentioned benefits, the symmetric nature of the

Stratonovich discretization is convenient for deriving fluctuation theorems, as we will show

in Sec. 4.4.

The general Ito SDE given in Eq. (4.1) can be written as the following Stratonovich

SDE:
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dYi(t) = Bs
i (Y(t), t)dt+ σij(Y(t), t) ◦ dWj(t), (4.25)

where the Stratonovich drift vector Bs is related to the Ito drift vector B from Eq. (4.1) by

the formula

Bs
i (Y, t) = Bi(Y, t)− 1

2

∂
√
σik(Y, t)

∂Yj

√
σjk(Y, t). (4.26)

Applying this rule to (4.9), for the case of a single bath, we find

Bs(Y, t) = B(Y, t) +


0

1
2∂E

[√
Lsy
]√

LsyM−1P

1
2tr[M−1L]− 1

2PTM−1∂E

[√
Lsy
]√

LsyM−1P

 , (4.27)

which, with Eqs. (4.8) and (4.20), gives the Langevin equation in the Stratonovich form:

dQ = M−1Pdt (4.28)

dP = −∂QV dt+

(
u− 1

2Σ
∂E [ΣL]M−1P +

1

2
∂E

[√
Lsy
]√

LsyM−1P

)
dt

+
√
Lsy ◦ dW

dE =

(
−PTM−1u + PTM−1 1

2Σ
∂E [ΣLsy]M−1P

−PTM−1 1

2
∂E

[√
Lsy
]√

LsyM−1P

)
dt−PTM−1

√
Lsy ◦ dW .

Generalizing to multiple baths, we have
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dQ = M−1Pdt (4.29)

dP = −∂QV dt+
∑
α

(
uα − 1

2Σ
∂Eα [ΣLα]M−1P

+
1

2
∂Eα

[√
Lsyα

]√
LsyαM−1P

)
dt+

√
Lsyα ◦ dWα

dEα =

(
−PTM−1uα + PTM−1 1

2Σ
∂Eα [ΣLsyα]M−1P

−PTM−1 1

2
∂Eα

[√
Lsyα

]√
LsyαM−1P

)
dt−PTM−1

√
Lsyα ◦ dWα.

The force of bath α on the system of interest, denoted by Fα, is thus given by

Fα = uα − 1

2Σ
∂Eα [ΣLα]M−1P− 1

2
∂Eα

[√
Lsyα

]√
Lα syM−1P +

√
Lsyα ◦ ξα,

(4.30)

and we find

dQTFα =

(
PTM−1uα −PTM−1 1

2Σ
∂Eα [ΣLsyα]M−1P

+PTM−1 1

2
∂Eα

[√
Lsyα

]√
LsyαM−1P

)
dt+−PTM−1

√
Lsyα ◦ dWα

= −dEα, (4.31)

so we see that the normal definition of incremental energy change is consistent with the

conservation of energy.

4.2.3 Adiabatic reaction forces

Equation (4.30) gives a mesoscopic expression for the forces exerted by a bath on the

system of interest, defined using the physically meaningful form of stochastic calculus, and

we now discuss the terms which appear in the context of the adiabatic reaction forces
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associated with the ergodic adiabatic Hamiltonian framework [48, 68, 75, 77, 78]. These

forces are back reactions (in the sense of Newton’s third law) to the forces which the system

of interest exerts on the baths due to its slow time-evolution. The terms in Eq. (4.30) can

be broken into five physically distinct parts which we will discuss separately:

Fα = Fα
A + Fα

GM + Fα
DF + Fα

F + Fα
ND. (4.32)

The first force in Eq. (4.32) is the adiabatic force:

Fα
A = uα. (4.33)

As mentioned in Sec. 3.3.3, Fα
A is the force which governs the conservation of the baths’

ergodic adiabatic invariants when the separation of the system and bath time-scales is

infinitely large. We can see the explicit relationship between uα and the conservation of the

ergodic adiabatic invariant Ωα, defined in Eq. (3.10), by noting that

dΩα = ∂QΩα · dQ + ∂EαΩαdEα (4.34)

= Σαuα · dQ + ΣαdEα, (4.35)

where we have made use of Eqs. (3.11) and (3.15). In the adiabatic limit, dΩα = 0, so we

have

dEα = −uα · dQ. (4.36)

The above expression gives the increment of work done on bath α by the system of interest

in the adiabatic limit, so the corresponding adiabatic force on bath α is −uα, and the reac-

tion force exerted on the system of interest is thus uα. Because system of interest changes

infinitely slowly in the adiabatic limit, the evolution governed by uα is both quasi-static
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and reversible (in the thermodynamic sense), and the adiabatic force results in a reversible

exchange of energy between the system and bath.

The adiabatic force is often called the Born-Oppenheimer force in reference to the Born-

Oppenheimer approximation used in quantum chemistry. In the Born-Oppenheimer approx-

imation, one utilizes the large separation of time scales between the motion of the nuclei

and electrons of a molecule to write approximate molecular wave function [87]. One first

calculates the electronic wave function with the nuclei held fixed, then calculates the nuclear

wave function subject to average potential created by the electronic wave function. The

effect of the average potential on the nuclei is analogous to the effect of the average force

uα on the system of interest. This analogy becomes stronger in the thermodynamic limit

applied to bath α, where as shown in Sec. 3.4.5, uα is the gradient of a potential.

The next two forces in Eq. (4.30), Fα
GM and Fα

DF , are called geometric magnetism and

deterministic friction, respectively. They arise from the symmetric and anti-symmetric parts

of Lα in the term − 1
2Σα∂Eα [Σα Lα]M−1P. Geometric magnetism is given by the expression

Fα
GM = − 1

2Σα
∂Eα [Σα Layα]M−1P (4.37)

= −KayαM−1P

= −KayαQ̇,

where Kay is an anti-symmetric 2-form, given by

Kayα =
1

2Σα
∂Eα [Σα Layα] (4.38)

This force was first described by Berry and Robbins in [77, 78]. Note that if the system

of interest has NS degrees of freedom, then there exists a natural isomorphism between

2-forms and (NS − 2)-forms, so if NS = 3, there is a natural vector field bα associated with

the 2-form Kayα, and the tensor contraction in Eq. (4.37) can be written as a vector cross

product, just like the ordinary magnetic force [77, 80]:
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Fα
GM = (M−1P)× bα (4.39)

= Q̇× bα.

Regardless of dimensionality, the form of Layα given in Eq. (3.93) can be used to write

Kayα in the language of exterior calculus:

Kayα =
1

2Σα
∂Eα

Σα

0∫
−∞

dt
〈

d̃hα ∧ d̃hαt

〉
Eα,Q

 , (4.40)

where d̃ denotes the exterior derivative with respect to Q and the symbol ∧ denotes the

wedge product. In components, we have

Kayα
ij =

1

2Σα
∂Eα

Σα

0∫
−∞

dt
〈
∂Qih

α∂Qjh
α
t − ∂Qjhα∂Qihαt

〉
Eα,Q

 . (4.41)

The terms inside the expectation of Eq. (4.41) are reminiscent of the definition of the

components of a magnetic field in terms of a vector potential in R2 or R3. In Ref. [76],

it is shown formally that the exterior derivative of Kayα is identically zero, so Kayα is

divergenceless (in a generalized sense) like an ordinary magnetic field. Furthermore, because

Kayα is anti-symmetric, the force Fα
GM does no work, just like the ordinary magnetic force:

PTM−1Fα
GM = −PTM−1KayαM−1P (4.42)

= 0.

We thus conclude that Fα
GM behaves analogously to an arbitrary dimensional generalization

of the magnetic Lorentz force. We note that in Ref. [76], it is shown that if bath α’s

Hamiltonian is symmetric with respect any anti-canonical symmetry (such as time-reversal),

then Kayα will vanish identically. This leads to the interesting observation that anti-
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canonical symmetry breaking by the baths can be promoted to the system of interest, even

if the system of interest breaks no such symmetries. For example, if the an electrically

neutral system of interest is coupled to electrically charged baths, and the if the baths are

subject to an external magnetic field, the system of interest can experience a magnetic-like

force, even though it produces no electric current. The force Fα
GM is called “geometric”

magnetism because the expression for Kayα in Eq. (4.40) is, remarkably, the semi-classical

limit of the 2-form which generates the geometric phase (also known as Berry’s phase) in

chaotic quantum systems with an adiabatically evolving parameters [76, 77]. By “chaotic

quantum system,” we mean a quantum system whose Hamiltonian generates chaotic motion

in the corresponding classical system.

Deterministic friction, first described by Wilkinson [48], causes an irreversible dissipation

of energy from the system of interest to the baths, and is given by

Fα
DF = − 1

2Σα
∂Eα [ΣLsyα]M−1P (4.43)

= −KsyαM−1P

= −KsyαQ̇,

where Ksyα is the symmetric friction tensor, given by

Ksyα =
1

2Σα
∂Eα [Σα Lsyα] (4.44)

This friction is called deterministic because its presence in Eq. (4.51) is a consequence of the

deterministic chaos associated with the finite dimensional bath, in contrast to the standard

frictional force which arises from an infinite stochastic thermal bath. The rate of dissipation

due to this friction is given by PTM−1FDF :

PTM−1Fα
DF = −PTM−1KsyαM−1P. (4.45)

As pointed out by Berry and Robbins [77], Eq. (4.45) can honestly be called energy dissipa-

tion only if the friction tensor Ksy is non-negative. The matrix, Lsyα is non-negative (given

sufficiently strong chaos), so the quantity ΣαLsyα must be an increasing function of Eα in
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order for Ksyα to be non-negative. If we expand the derivative in Eq. (4.44) and make use

of the identities in Eqs. (3.105) and (3.125), we find

Ksyα =
1

2kBTα
[Lsyα + kBT

α∂EαL
syα] . (4.46)

The second quantity in the brackets in the above equation represents the first order change

in Lsyα which occurs when a unit of thermal energy kBT
α is added to the bath, so this

quantity should be negligible in comparison to Lsyα in the thermodynamic limit applied to

bath α:

Ksyα =
TDlimit

Lsyα

2kBTα
. (4.47)

Thus, in the thermodynamic limit applied to bath α, Ksyα is non-negative.

The fourth force in Eq. (4.30), Fα
F , is the rapidly fluctuating force of bath α on the

system of interest:

Fα
F =

√
Lsyα ◦ ξα. (4.48)

We see that Lsyα determines the strength of the fluctuations, and therefore must also

determine the rate of diffusion in the system of interest’s momentum space due to bath

α. The rapidly fluctuating force was first discussed by Jarzynski for the case of a single

bath [68]. Although no explicit expression was written for Fα
F in Ref. [68], the concept

of fluctuations facilitated the derivation of the single bath Fokker-Planck equation and its

stationary distribution. Comparing Eqs. (4.44) and (4.48), we see that the friction tensor

is defined in terms of Lsyα, so Eq. (4.44) is a fluctuation-dissipation relation [83]. The

fluctuations and dissipation are related because they both originate from the same physical

source - the chaos associated with the fast motions of the bath. In the thermodynamic limit

applied to bath α, Eq. (4.44) reduces to Eq. (4.47), which is the multi-dimensional anaolg

of Einstein’s fluctuation-dissipation for a Brownian particle diffusing in a thermal bath [1].

The final force in Eq. (4.30), Fα
ND, is called the noise induced drift, and is given by

113



Fα
ND =

1

2
∂Eα

[√
Lsyα

]√
LsyαM−1P. (4.49)

We are unfortunately at the moment lacking a satisfactory physical interpretation of Fα
ND.

The noise induced drift appeared when converting from the Ito to the Stratonovich calculus,

and it is not clear whether or not Fα
ND has an intuitive physical explanation, or if it is a

mathematical artifact which arises because we are approximating a deterministic process

by a random white noise process. Regardless, we see that Fα
ND is related to the strength

of fluctuations and produces “reverse dissipation,” and by multiplying and dividing by

kBT
α, we see that Fα

ND will be negligible in comparison to deterministic friction in the

thermodynamic limit applied to bath α.

4.3 Path integrals

In this section, we study transition probabilities implied by our Langevin equation (4.29)

using the path integral formalism. Our motivation stems from a fundamental result in

stochastic thermodynamics which relates stochastic action along a trajectory to the entropy

generation and heat dissipation - we would like to determine whether or not the analog of this

result provides useful notions heat and entropy production in the chaos bath framework.

For this section and the remainder of chapter 4, we will assume the presence of only a

single bath. This assumption will greatly simplify our calculations, and will allow cleaner

comparisons with stochastic thermodynamics, which is most simply formulated for the case

of single fixed temperature thermal environment.

For a single chaos bath, the energy of the bath, E, is related to the energy of the

entire universe, E , and the coordinates of the system of interest by E = E − H(X,λ),

so we can equally well consider the mesoscale evolution of (X(t), E(t)) or (X(t), E(t)) -

both trajectories contain the same information. The differential for E(t), evaluated along

mesoscale trajectories, is given by
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dE = dE + ∂XH(X,λ) · dX + ∂λH(X,λ) · dλ (4.50)

= ∂λV · dλ.

The first two terms on the right hand side of the first line of the above equation cancel due

to the conservation of energy, which can be seen directly from Eq. (4.28). For notational

simplicity, we now define the vector function f(X, E,λ) to be the deterministic portion of

the total mesoscopic force acting on the system of interest in Eq. (4.28):

f(X, E,λ) = −∂QV + u−
(

1

2Σ
∂E [ΣL]− 1

2
∂E

[√
Lsy
]√

Lsy

)
M−1P. (4.51)

The Langevin equation for the trajectory (X(t), E(t)) is thus

dQ = M−1Pdt (4.52)

dP = f(X, E,λ)dt+
√
Lsy(Q, E) ◦ dW |E=E−H(X,λ)

dE = ∂λV (X,λ) · λ̇dt.

The expression |E=E−H(X,λ) indicates that f and
√
Lsy are evaluated for E = E−H(X,λ) in

the equation for dP. We will use the Langevin equation in the form of Eq. (4.52) throughout

the remainder of this chapter.

4.3.1 Stochastic thermodynamics

Before studying path integrals and transition probabilities in the chaos bath framework,

we briefly review the corresponding quantities in the simpler framework of stochastic ther-

modynamics. This will help establish some notation and motivate the work to follow. The

important results of stochastic thermodynamics are demonstrated clearly by an overdamped

one-dimensional Brownian particle in a single thermal bath. This system has been referred
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to as “the paradigm” for the field of stochastic thermodynamics and is reviewed in detail

in [13]. The Langevin equation for the position x of an overdamped Brownian particle is

given by

b dx = −∂xV (x, λ)dt+
√
D ◦ dW. (4.53)

In Eq. (4.53), b is the friction constant, V is a position dependent potential energy which

can be manipulated by the scalar control parameter λ, W is a standard Wiener process,

and D is the diffusion constant, which is given by the Einstein relation:

D = 2 b kB T, (4.54)

where T is the temperature of the environment. If the particle is displaced by dx and if the

control parameter is incremented by dλ during a short time dt, the increment of work done

on the particle by the agent manipulating the control protocol is given by [13, 16]

dw = ∂λV (x, λ)dλ, (4.55)

The formula in Eq. (4.55) uses the inclusive definition of work, which is the appropriate

definition when is done on a system through modification of its internal potential energy

[88]. The increment of heat energy transferred from the environment to the particle is given

by [13, 16]

dq = −b(dx)2

dt
+
√
D

dWdx

dt
(4.56)

= ∂xV (x, λ)dx.

If dq denotes the increment of heat energy transferred to the particle, then −dq gives the

increment of heat energy dissipated to the environment. We note that, for infinitesimal dt,

we have dW ∼
√

dt generally, and dx ∼
√

dt for an overdamped Brownian particle, so the

first line of Eq. (4.56) does not vanish identically. Equations (4.55) and (4.56) together give
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the first law of thermodynamics at the level of individual trajectories [16]:

dV = ∂λV dλ+ ∂xV dx (4.57)

= dw + dq.

Changes in the particle’s kinetic energy are negligible in the overdamped limit, so the change

in potential energy dV is equivalent to the change in total particle energy [13].

Associated with the SDE in Eq. (4.25) are probabilities (or more properly, probability

densities) for various transitions and paths the particle may follow as it evolves in time. We

denote the probability for the particle to transition from a point x0 at time t0 to a point

xf at time tf , given a pre-specified control protocol λ(τ), as Pλ(τ)(xf , tf ; x0, t0), and we

denote the probability to observe a specific path x(τ) which accomplishes this transition

as Pλ(τ)[x(τ)|xf , tf ; x0, t0]. In other words, imagine an experiment where we continuously

measure the position of Brownian particle, initially located at position x0, over the time in-

terval [t0, tf ] while the implementing the control protocol λ(τ). If we repeat this experiment

an infinite number of times, we will generate an ensemble of all possible particle trajectories

x(τ) with various final positions xf ; each member of the ensemble represents one possible

realization of the dynamics governed by Eq. (4.53) under the protocol λ(τ), given the initial

position x0, initial time t0, and final time tf . The transition probability Pλ(τ)(xf , tf ; x0, t0)

is a measure of the fraction of ensemble members which end at position xf , while the path

probability Pλ(τ)[x(τ)|xf , tf ; x0, t0] is a measure of the fraction of ensemble members which

follow a particular trajectory x(τ) ending at xf . We will abbreviate the path probability by

Pλ(τ)[x(τ)] when the boundary conditions are implied by context. The path and transition

probabilities are related by a path integral:

Pλ(τ)(xf , tf ; x0, t0) =

∫
D[x(τ)]Pλ(τ)[x(τ)]. (4.58)

This path integral is an integral over an infinite dimensional trajectory space, where D[x(τ)]

is an infinitesimal volume element centred at the trajectory x(τ). An expression for Pλ(τ)[x(τ)]
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can be derived using the path and transition probabilities associated with the standard

Wiener process. The details of the calculation are given in Ref. [16], with the result

Pλ(τ)[x(τ)] = e−A[x(τ),λ(τ)], (4.59)

which implies

Pλ(τ)(xf , tf ; x0, t0) =

∫
D[x(τ)]e−A[x(τ),λ(τ)], (4.60)

where the stochastic action A[x(τ), λ(τ)] is given in terms of the stochastic Lagrangian

L(x(t), ẋ(t), λ(t)):

A[x(τ), λ(τ)] =

∫ tf

t0

dtL(x(t), ẋ(t), λ(t)) (4.61)

=

∫ tf

t0

dt

(
ẋ(t) + 1

b∂xV |x(t),λ(t)

)2
2D/b2

− 1

2b
∂2
xxV |x(t),λ(t).

It must be noted that ẋ(t) is not well-defined due to the non-differentiable driving noise,

so Eq. (4.60) is only a formal expression. The transition probability can be more properly

written by discretizing the time interval tf − t0 and taking a limit. We discretize the time

interval into N blocks of length ∆t, and we make the following definitions:

tk = t0 + k∆t (4.62)

xk = x(tk)

x∗k =
xk + xk−1

2

∆xk = xk − xk−1

λk = λ(tk)

λ∗k =
λk + λk−1

2
,

where k = 1, ..., N , and tN = tf . The transition probability can then be written as
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Pλ(τ)(xf , tf ; x0, t0) =

∫ ∞
−∞

N−1∏
k=1

(
dxk√

2πD∆t

)
e
−
∑N
k=1 ∆tL

(
x∗k,

∆xk
∆t

,λ∗k

)
. (4.63)

The midpoint convention for writing x∗k and λ∗k was chosen because we are interpreting

stochastic noise in the Stratonovich sense. We now denote by Lim the operation of taking

limits N →∞, ∆t→ 0 with N∆t = tf − t0 fixed. The the path integral expression for the

transition probability can then be defined by

Pλ(τ)(xf , tf ; x0, t0) = Lim

∫ ∞
−∞

N−1∏
k=1

(
dxk√

2πD∆t

)
e
−
∑N
k=1 ∆tL

(
x∗k,

∆xk
∆t

,λ∗k

)
(4.64)

=

∫
D[x(τ)]e−A[x(τ),λ(τ)].

A fundamental result in stochastic thermodynamics relating heat to stochastic action can

be derived by considering the reverse evolution of particle trajectories. For each trajectory

x(τ) which evolves according to Eq. (4.53) under the protocol λ(τ), we associate a conjugate

trajectory x†(τ) and conjugate protocol λ†(τ) defined such that, for each t ∈ [t0, tf ], we have

x†(t) = x(tf − (t− t0)) (4.65)

= x(t†)

λ†(t) = λ(tf − (t− t0))

= λ(t†),

where t† = tf−(t−t0) defines the conjugate time. We will henceforth refer the x(τ) and λ(τ)

as the forward trajectory and forward protocol, respectively. The conjugate trajectories are

assumed to be generated by an SDE in the same form as that which generates the forward

trajectories:

b dx† = −∂x†V (x†, λ†)dt+
√
D ◦ dW. (4.66)
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We refer to Eq. (4.66) as the conjugate dynamics, while we refer to Eq. (4.53) as the forward

dynamics. Associated with the conjugate dynamics are the conjugate transition and path

probabilities, P †
λ†(τ)

(x†f , tf ; x†0, t0) and P †λ(τ)[x
†(τ)], defined and interpreted analogously to

their forward dynamics counterparts. Note that because x and x† obey SDE’s of the same

form, we have

P †λ(τ)[x
†(τ)] = e−A[x†(τ),λ†(τ)], (4.67)

where the action functional A is defined in Eq. (4.61).

We denote the heat absorbed by the system along the forward trajectory x(τ) by the

functional q[x(τ)] . After some manipulation, one can use the definition of the heat incre-

ment dq given in Eq. (4.56) to show the following important relation [13]:

q[x(τ)] =

∫ tf

t0

dq (4.68)

= kB T
(
A[x(τ), λ(τ)]−A[x†(τ), λ†(τ)]

)
,

Using Eq. (4.59), the above relation implies

Pλ†(τ)[x
†(τ)]

Pλ(τ)[x(τ)]
= e

q[x(τ)]
kB T . (4.69)

Because the thermal bath is at a fixed temperature T , the dissipated heat is transferred

to the bath isothermally, so the quantity −q[x(τ)]/T therefore defines the thermodynamic

entropy increase of the bath when the system traverses the path x(τ), which we denote by

∆s[x(τ)]. We thus have

∆s[x(τ)] = −kB
(
A[x(τ), λ(τ)]−A[x†(τ), λ†(τ)]

)
, (4.70)

which implies
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Pλ†(τ)[x
†(τ)]

Pλ(τ)[x(τ)]
= e
−∆s[x(τ)]

kB . (4.71)

By using Eqs. (4.69) or (4.71), and by selecting distributions for the forward and conju-

gate initial conditions, one can derive the various fluctuation theorems of non-equilibrium

thermodynamics [13]. Equations (4.69) and (4.71) are themselves sometimes referred to

as detailed fluctuation theorems [27], and are other times referred to a expressions of “mi-

croscopic reversibility” [17]. According to Eqs. (4.69) and (4.71) if a particular trajectory

x(τ) is allowed under Eq. (4.53), then the conjugate trajectory is allowed as well, but the

probability to observe the conjugate trajectory is exponentially smaller (assuming positive

∆s) than the probability to observe the corresponding forward trajectory.

4.3.2 Stochastic action

We will now derive expressions for the path probabilities and stochastic action for our

system and bath defined by Eq. (4.52). The diffusion matrix corresponding to Eq. (4.52) is

given by


0 0 0

0 Lsy 0

0T 0T 0

 , (4.72)

with corresponding dimensionalities


NS ×NS NS ×NS NS × 1

NS ×NS NS ×NS NS × 1

1×NS 1×NS 1× 1

 . (4.73)

This diffusion matrix is neither constant nor invertible, so we can not simply apply the

stochastic thermodynamics formulas given by Eqs. (4.59) and (4.61) to our system and

chaos bath. Formulas for the path probabilities and stochastic action corresponding to

a multi-dimensional Stratonovich SDE with a non-constant diffusion matrix is given in

Refs. [89] and [90], but an invertible diffusion matrix is assumed. Reference [91] gives a
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method to calculate path integrals and stochastic action for Stratonovich SDE’s with non-

invertible diffusion matrices, but the diffusion matrices are assumed to be constant. We

will preform our calculation by combining the techniques of Refs. [89, 90, 91].

The non-invertibility of the diffusion matrix is due to the noiseless equations for Q and

E , which impose constraints on the stochastic evolution of (X, E). These constraints can

be enforced “by hand” by introducing delta functionals in the path integral expression for

the transition probability Pλ(τ)(Xf , Ef , tf ; X0, E0, t0). More formally, we can simultane-

ously enforce the constraints and avoid the non-invertible diffusion matrix by introducing

artificial noise terms in Eq. (4.52), calculating the transition probabilities, and then tak-

ing the limit of the artificial noise strength going to zero [91]. As we will see, the arti-

ficial noises result in additional Gaussian terms present in the discretized expression for

Pλ(τ)(Xf , Ef , tf ; X0, E0, t0), and these Gaussians will reduce to delta functions when the

noise strength goes to zero. The delta functions signify that the stochastic paths taken by

the system (4.52) are constrained to lie on some hypersurface in infinite dimensional path

space.

Instead of Eq. (4.52), we consider the SDE

dQ = M−1Pdt+
√
DQ ◦ dWQ (4.74)

dP = f(X, E,λ)dt+
√
Lsy(E,Q) ◦ dW |E=E−H(X,λ)

dE = ∂λV (Q,λ) · λ̇dt+
√
DE ◦ dWE .

The quantities DQ and DE are numbers that will eventually be set to zero, and WQ andWE

are NS and one dimensional Wiener processes, respectively, independent of each other and

the NS dimensional Wiener process W appearing in the expression for dP. If the matrix
√
Lsy is invertible, then the diffusion matrix corresponding to Eq. (4.74) will be invertible

as well. If
√
Lsy is not invertible, then diffusion matrix corresponding to Eq. (4.74) will

possess one or more vanishing eigenvalues, so an invertible diffusion matrix can be generated

by adding additional artificial noises in the corresponding eigendirections. Adding these

additional artificial noises will, in the limit of vanishing noise strength, result in additional

122



constraints imposed on the allowed trajectories through the presence of additional delta

functionals in the path integral expression for transition probabilities, but otherwise don’t

significantly alter our results, so for simplicity, we will assume that
√
Lsy is invertible for

the rest of this chapter.

We now discretize the time interval tf − t0 into N intervals of length ∆t, and we define

the following:

tk = t0 + k∆t (4.75)

Xk = X(tk)

X∗k =
Xk + Xk−1

2

∆Xk = Xk −Xk−1,

where k = 1, ..., N , and tN = tf . We also define the quantities Ek, E∗k , ∆Ek, λk, λ∗k, and

∆λk analogously. We again denote by Lim the limit N →∞, ∆t→ 0 with N∆t = tf − t0

fixed. Applying the formulae given in Refs. [89] and [90], we find the transition probabilities

P noise
λ(τ) (Xf , Ef , tf ; X0, E0, t0) for the Langevin dynamics with artifical noise:

P noise
λ(τ) (Xf , Ef , tf ; X0, E0, t0) =

∫ ∞
−∞

[
N−1∏
k=1

dPk

[2π∆t]
Ns
2

∣∣∣√Lsy(E∗k ,Q
∗
k)
∣∣∣ (4.76)

× dQk

[2πDQ∆t]
Ns
2

dEk
[2πDE∆t]

1
2

]

× e
−

N∑
k=1

∆t 1
2DE

(
∆Ek
∆t
−∂λ∗

k
V (Q∗k,λ

∗
k)·∆λk

∆t

)2

×e
−

N∑
k=1

∆t 1
2DQ

(
∆Qk
∆t
−M−1P∗k

)2

× e
−

N∑
k=1

∆tL(X∗k,E
∗
k ,λ
∗
k,

∆Pk
∆t

)
,

where
∣∣∣√Lsy(E∗k ,Q

∗
k)
∣∣∣ is the magnitude of the determinant of

√
Lsy, evaluated at Q∗k and

E∗k = E∗k −H(X∗k,λ
∗
k), and the stochastic Lagrangian L(X, E ,λ, Ṗ) is given by
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L(X, E ,λ, Ṗ) =
1

2

(
Ṗ− f(X, E,λ)

)T
Lsy(E,Q)−1

(
Ṗ− f(X, E,λ)

)
(4.77)

+
1

2
∂P · f(X, E,λ)− 1

2
PTM−1∂Ef(X, E,λ)

−1

2
PTM−1∂E

[√
Lsy(E,Q)

]√
Lsy(E,Q)−1

(
Ṗ− f(X, E,λ)

)
+

1

8
PTM−1∂E

[√
Lsy(E,Q)

]
∂E

[√
Lsy(E,Q)

]
M−1P

∣∣∣∣
E=E−H(X,λ)

.

By taking the limits DE → 0 and DQ → 0 in Eq. (4.76), and making use of the identity

lim
σ→0

1√
2πσ2

e−
(x−x′)2

2σ2 = δ(x− x′), (4.78)

we arrive at the transition probabilities for the actual Langevin (no artificial noise) dynam-

ics:

Pλ(τ)(Xf , Ef , tf ; X0, E0, t0) =

∫ ∞
−∞

[
N−1∏
k=1

dPk

[2π∆t]
Ns
2

∣∣∣√Lsy(E∗k ,Q
∗
k)
∣∣∣ (4.79)

×dQk δ
(
∆Qk −M−1P∗k∆t

)
×dEk δ

(
∆Ek − ∂λ∗kV (Q∗k,λ

∗
k) ·

∆λk
∆t

∆t

)]

×e
−

N∑
k=1

∆tL(X∗k,E
∗
k ,λ
∗
k,

∆Pk
∆t

)
.

Taking the Lim of Eq. (4.79), we arrive at the path integral expression for the transition

probability Pλ(τ)(Xf , Ef , tf ; X0, E0, t0):

Pλ(τ)(Xf , Ef , tf ; X0, E0, t0) =

∫
Dλ(τ)[X(τ), E(τ)]Pλ(τ)[X(τ), E(τ)] (4.80)

=

∫
Dλ(τ)[X(τ), E(τ)]e−A[X(τ),E(τ),λ(τ)]

where the stochastic action A[X(τ), E(τ),λ(τ)] is given by
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A[X(τ), E(τ),λ(τ)] =

∫ tf

t0

dtL(X(t), E(t),λ(t), Ṗ(t)), (4.81)

with the stochastic Lagrangian L(X, E ,λ, Ṗ) is defined in Eq. (4.77). We note that the

volume element Dλ(τ)[X(τ), E(τ)] contains two delta functionals:

δ

[
Q(τ)−

(
Q0 +

∫ τ

t0

dtM−1P(t)

)]
= Lim

N−1∏
k=1

δ
(
∆Qk −M−1P∗k∆t

)
,

(4.82)

and

δ

[
E(τ)−

(
E0 +

∫ τ

t0

dt ∂λ(Q,λ)|Q(t),λ(t) λ̇(t)

)]
= (4.83)

Lim
N−1∏
k=1

δ

(
∆Ek − ∂λ∗kV (Q∗k,λ

∗
k) ·

∆λk
∆t

∆t

)
.

In contrast to ordinary stochastic thermodynamics, the volume element in path space de-

pends on the control protocol λ(t) through the E(τ) delta functional.

4.3.3 Conjugate dynamics

Our goal now is to use the path integral formalism to find the chaos bath analog of

the fundamental thermodynamic relations given in Eqs. (4.70) and (4.71). In stochastic

thermodynamics, the fundamental relations appear when one considers the conjugate tra-

jectories of a Brownian particle immersed in the thermal bath, so we must likewise consider

the conjugate trajectories of our system interest immersed in the chaos bath. However,

because the mesoscopic forces appearing in the chaos bath Langevin equation (4.52) are

defined in terms of the microscopic forces appearing in Hamilton’s equations (3.3), we will

additionally need to consider the microscopic conjugate trajectories of the bath particles,

as well as the microscopic equations of motion governing the dynamics of the conjugate

trajectories.
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Suppose that during the time interval [t0, tf ], the system and bath together follow some

specific trajectory (Q(τ),q(τ),P(τ),p(τ)) under Hamilton’s equations for some control

protocol λ(τ). We will refer to this trajectory as the forward trajectory. We denote the

corresponding conjugate trajectory by (Q†(τ),q†(τ),P†(τ),p†(τ)), defined such that, for

each t ∈ [t0, tf ], we have

Q†(t) = Q(t†) (4.84)

q†(t) = q(t†)

P†(t) = −P(t†)

p†(t) = −p(t†),

where t† = tf−(t−t0) denotes the conjugate time. Taking time derivatives of the conjugate

trajectories, and noting that dt†

dt = −1, we find

Q̇†(t) = −Q̇(t†) (4.85)

q̇†(t) = −q̇(t†)

Ṗ†(t) = Ṗ(t†)

ṗ†(t) = ṗ(t†).

We also define the conjugate control protocol λ†(τ) such that, for all t ∈ [t0, tf ], we have

λ†(t) = λ(t†). (4.86)

Finally, if the bath and universe have energies E(τ) and E(τ), respectively, along the forward

trajectory, then the bath’s and universe’s energies along the conjugate trajectory, denoted

by E†(τ) and E†(τ), respectively, are given by
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E†(t) = E(t†) (4.87)

E†(t) = E(t†).

In terms of the forward Hamiltonian (3.1), the conjugate energies are given by

E†(t) = h(q(t†),p(t†); Q(t†)) (4.88)

= h(q†(t),−p†(t); Q†(t))

E†(t) = H(Q(t†),q(t†),P(t†),p(t†),λ(t†))

= H(Q†(t),q†(t),−P†(t),−p†(t),λ†(t)),

and the dynamics associated with the conjugate trajectories are given by

Q̇†(t) = − ∂PH|Q(t†),q(t†),P(t†),p(t†),λ(t†) (4.89)

= − ∂PH|Q†(t),q†(t),−P†(t),−p†(t),λ†(t)

q̇†(t) = − ∂ph|q(t†),p(t†);Q(t†)

= − ∂ph|q†(t),−p†(t);Q†(t)

Ṗ†(t) = − ∂QH|Q(t†),q(t†),P(t†),p(t†),λ(t†)

= − ∂QH|Q†(t),q†(t),−P†(t),−p†(t),λ†(t)

ṗ†(t) = − ∂qh|q(t†),p(t†);Q(t†)

= − ∂qh|q†(t),−p†(t);Q†(t) .

Motivated by Eqs. (4.88) and (4.89), we define conjugate bath Hamiltonian h† and the

conjugate Hamiltonian of the universe H† by
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h†(q,p; Q) = h(q,−p; Q) (4.90)

H†(Q,q,P,p,λ) = H(Q,q,−P,−p,λ).

In terms of the conjugate Hamiltonians, the conjugate energies along the conjugate trajec-

tories are given by

E†(t) = h†(q†(t),p†(t); Q†(t)) (4.91)

E†(t) = H†(Q†(t),q†(t),P†(t),p†(t),λ†(t)),

and the dynamics associated with the conjugate trajectories are given by

Q̇†(t) = ∂PH†
∣∣∣
Q†(t),q†(t),P†(t),p†(t),λ†(t)

(4.92)

q̇†(t) = ∂ph
†
∣∣∣
q†(t),p†(t);Q†(t)

Ṗ†(t) = − ∂QH†
∣∣∣
Q†(t),q†(t),P†(t),p†(t),λ†(t)

ṗ†(t) = − ∂qh†
∣∣∣
q†(t),p†(t);Q†(t)

.

We thus see that the conjugate trajectories obey Hamiltonian dynamics under the conjugate

Hamiltonian H†. If H†(Q,q,P,p,λ) = H(Q,q,P,p,λ), then H is said to possess time-

reversal symmetry, and if H†(Q,q,P,p,λ) = H(Q′,q′,P′,p′,λ), where (Q′,q′,P′,p′) and

(Q,q,P,p) are related by a canonical transformation, then H is said to possess an anti-

canonical symmetry. For future reference, we note the following symmetric relation between

the microscopic expression of force on the system of interest in the forward and conjugate

dynamics:
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Ṗ†(t) = −∂QV |Q†(t),λ†(t) − ∂Qh
†|x†(t);Q†(t) (4.93)

= −∂QV |Q(t†),λ(t†) − ∂Qh|x(t†);Q(t†)

= Ṗ(t†). (4.94)

Using the expressions for the conjugate dynamics at the microscopic level, we can find

expressions for the conjugate dynamics at the mesoscopic level. To begin, we denote the

microcanonical average over the bath of an arbitrary function G(X,x, t) in the conjugate

dynamics by 〈G〉†E,Q:

〈G〉†E,Q =
1

Σ†(E,Q)

∫
dxG(X,x, t)δ(E − h†(x; Q)), (4.95)

where Σ†(E,Q) denotes the conjugate microcanonical partition function of the bath. Using

the definition of h†, we find

Σ†(E,Q) =

∫
dqdp δ(E − h†(q,p; Q)) (4.96)

=

∫
dqdp δ(E − h(q,−p; Q))

=

∫
dqdp δ(E − h(q,p; Q))

= Σ(E,Q).

The second to last line of Eq. (4.96) follows from the fact that the magnitude of the Jacobian

determinant of the transformation p → −p is unity. By similar reasoning, the conjugate

microcanonical partition function of the universe is given by
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ΣU †(E ,λ) =

∫
dqdpdQdP δ(E −H†(Q,q,P,p,λ)) (4.97)

=

∫
dqdpdQdP δ(E −H(Q,q,P,p,λ))

= ΣU (E ,λ),

Thus, from the definitions in Eqs. (3.104) and (3.105), the microcanonical entropies of the

bath and universe in the conjugate dynamics are given by

s†(E,Q) = s(E,Q), (4.98)

and

SU †(E ,λ) = SU (E ,λ), (4.99)

respectively. Likewise, the conjugate adiabatic force u†(E,Q) is given by

u†(E,Q) =
〈
−∂Qh†

〉†
E,Q

(4.100)

=
1

Σ†(E,Q)

∫
dqdp

(
− ∂Qh†(q,p; Q)δ(E − h†(q,p; Q))

)
=

1

Σ†(E,Q)

∫
dqdp

(
− ∂Qh(q,p; Q)δ(E − h(q,p; Q))

)
= u(E,Q).

The conjugate symmetric and anti-symmetric covariance matrix, Lsy †(E,Q) and Lay †(E,Q),

respectively, are defined analogously to their forward dynamics counterparts in Eqs.(3.92)

and (3.93):

Lsy†(E,Q) =

∫ ∞
−∞

dt′
〈(
−∂Qh† − u†

)(
−∂Qh†t′ − u†

)T〉†
E,Q

, (4.101)
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and

Lay†(E,Q) =

∫ 0

−∞
dt′
〈(
−∂Qh† − u†

)(
−∂Qh†t′ − u†

)T〉†
E,Q

(4.102)

−
∫ ∞

0
dt′
〈(
−∂Qh† − u†

)(
−∂Qh†t′ − u†

)T〉†
E,Q

.

In order to evaluate the time integrals above, the bath trajectories must be evolved under

h† from t = −∞ to t = ∞, so we define t† by t† = −t in this context. For the symmetric

part of L†, we find

Lsy †(E,Q) =

∫ ∞
−∞

dt

〈(
−∂Qh† − u†

)(
−∂Qh†t − u†

)T〉†
E,Q

(4.103)

=

∫ ∞
−∞

dt
〈

(−∂Qh− u) (−∂Qh−t − u)T
〉
E,Q

= (Lsy)T (E,Q)

= Lsy(E,Q).

The third of Eq. (4.103) follows from the time-translation invariance of the correlation

function for a stationary process [11]. The analogous calculation for Lay †(E,Q) gives

Lay †(E,Q) = (Lay)T (E,Q) (4.104)

= −Lay(E,Q).

Just as with an ordinary magnetic field, the magnetic 2-form field Kay = 1
2Σ∂E [ΣLay]

reverses direction when the “source charges” (the bath degrees of freedom) follow their

trajectories in reverse.

With the above definitions in hand, we see that if we were repeat all of the work in

chapter 3 and Sec. 4.2 using the conjugate microscopic dynamics, we would arrive at the

following Langevin equation for the conjugate mesoscopic dynamics:
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dQ† = M−1P†dt (4.105)

dP† = f †(X†, E†,λ†)dt+
√
Lsy(E†,Q†) ◦ dW |E†=E†−H(X†,λ†)

dE† = ∂λV (Q†,λ†) · λ̇†dt,

where the conjugate deterministic mesocopic force f †(X, E,λ) is equal to to the determinis-

tic mesoscopic force f(X, E,λ) in Eq. (4.51) with the direction of geometric magnetic force

reversed:

f †(X, E,λ) = −∂QV + u−
(

1

2Σ
∂E [Σ (Lsy − Lay)]− 1

2
∂E

[√
Lsy
]√

Lsy

)
M−1P. (4.106)

Comparing Eqs. (4.52) and (4.105), we see that Ṗ†(t) 6= Ṗ(t†) due to deterministic friction

and the noise induced drift, which is in contradiction with Eq. (4.93). We thus conclude that

the microscopic symmetry relation between the forward and conjugate force on the system

of interest is broken at the mesoscale. For future reference, we note that the stationary

distribution to the conjugate Fokker-Planck equation corresponding to the distribution in

Eq. (3.115) is given by

P †s (Q,P; E ,λ) =
Σ†(E −H†(Q,P,λ),Q)

ΣU †(E ,λ)
(4.107)

=
Σ(E −H(Q,−P,λ),Q)

ΣU (E ,λ)

= Ps(Q,−P; E ,λ),

where H†(Q,P,λ) = H(Q,−P,λ) is the conjugate system of interest Hamiltonian.

4.3.4 Reversibility, entropy, and the first law

We now have all of the pieces in place to derive chaos bath analog of Eqs. (4.68), (4.69),

and (4.71). The stochastic action and corresponding stochastic Lagrangian in the forward
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dynamics are given in Eqs. (4.81) and (4.77), respectively. In the conjugate dynamics,

the stochastic action and Lagrangian are defined analogously using the conjugate Langevin

equation given in Eq. (4.105). The conjugate stochastic action is given by

A†[X(τ), E(τ),λ(τ))] =

∫ tf

t0

dtL†(Q(t),P(t), E(t),λ(t), Ṗ(t)), (4.108)

where the conjugate stochastic Lagrangian L† is given by

L†(X, E ,λ, Ṗ) =
1

2

(
Ṗ− f †(X, E,λ)

)T
Lsy(E,Q)−1

(
Ṗ− f †(X, E,λ)

)
(4.109)

+
1

2
∂P · f †(X, E,λ)− 1

2
PTM−1∂Ef †(X, E,λ)

−1

2
PTM−1∂E

[√
Lsy(E,Q)

]√
Lsy(E,Q)−1

(
Ṗ− f †(X, E,λ)

)
+

1

8
PTM−1∂E

[√
Lsy(E,Q)

]
∂E

[√
Lsy(E,Q)

]
M−1P

∣∣∣∣
E=E−H(X,λ)

.

In contrast to stochastic thermodynamics, we have A 6= A† and L 6= L†. This occurs

because f 6= f † due to the sign reversal of the geometric magnetism 2-form under the

conjugate dynamics. The transition and path probabilities in the conjugate dynamics,

denoted P †λ(τ)(Xf , Ef , tf ; X0, E0, t0) and P †λ(τ)[X(τ), E(τ)], respectively, are related by

P †λ(τ)(Xf , Ef , tf ; X0, E0, t0) =

∫
Dλ(τ)[X(τ), E(τ)]P †λ(τ)[X(τ), E(τ)] (4.110)

=

∫
Dλ(τ)[X(τ), E(τ)]e−A

†[X(τ),E(τ),λ(τ)]

Consider now a particular transition (Q0,P0, E0, t0) → (Qf ,Pf , Ef , tf ) in the forward

dynamics under a particular pre-specified control protocol λ(τ). The conjugate transition

(Q†0,P
†
0, E
†
0 , t0)→ (Q†f ,P

†
f , E

†
f , tf ) (which is equivalent to (Qf ,−Pf , Ef , t0)→ (Q0,−P0, E0, tf ))

under the conjugate protocol λ†(τ) has a transition probability P †
λ†(τ)

(Q†f ,P
†
f , E

†
f , tf ; Q†0,P

†
0, E
†
0 , t0)

under the conjugate dynamics:
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P †
λ†(τ)

(Q†f ,P
†
f , E

†
f , tf ; Q†0,P

†
0, E
†
0 , t0) = P †

λ†(τ)
(Q0,−P0, E0, tf ; Q†f ,−P†f , Ef , t0)

=

∫
Dλ†(τ)[Q

†(τ),P†(τ), E†(τ)]

×P †
λ†(τ)

[Q†(τ),P†(τ), E†(τ)]

=

∫
Dλ†(τ)[Q

†(τ),P†(τ), E†(τ)]

×e−A†[Q†(τ),P†(τ)E†(τ),λ†(τ)]. (4.111)

Note that the conjugate action along conjugate trajectories can be written in terms of the

forward trajectories:

A†[Q†(τ),P†(τ), E†(τ),λ†(τ)] =

∫ tf

t0

dtL†(Q†(t),P†(t), E†(t),λ†(t), Ṗ†(t))

=

∫ tf

t0

dtL†(Q(t†),−P(t†), E(t†),λ(t†), Ṗ(t†))

= −
∫ t0

tf

dt† L†(Q(t†),−P(t†), E(t†),λ(t†), Ṗ(t†))

=

∫ tf

t0

dtL†(Q(t),−P(t), E(t),λ(t), Ṗ(t)).

(4.112)

The difference between the conjugate action evaluated along an conjugate trajectory and

the forward action along the corresponding forward trajectory can then be written as

A†[Q†(τ),P†(τ), E†(τ),λ†(τ)]−A[Q(τ),P(τ), E(τ),λ(τ)] = (4.113)∫ tf
t0

dt
[
L†(Q(t),−P(t), E(t),λ(t), Ṗ(t))− L(Q(t),P(t), E(t),λ(t), Ṗ(t))

]
.

Note that L can be decomposed into parts either even or odd under conjugation:
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L = Le + Lo (4.114)

Le(Q(t),P(t), E(t),λ(t)) = Le †(Q(t),−P(t), E(t),λ(t))

Lo(Q(t),P(t), E(t),λ(t)) = −Lo †(Q(t),−P(t), E(t),λ(t)).

We thus have

A† −A = −2

∫ tf

t0

dtLo(Q(t),P(t), E(t),λ(t)), (4.115)

where

Lo(Q,P, E ,λ) = −1

2
PTM−1∂Eu (4.116)

+
1

2
PTM−1

(
Ṗ + ∂QV − u +

1

2Σ
∂E [ΣLay]M−1P

)
× ∂E ln Σ|E=E−H(Q,P,λ) .

We note that the terms in the parenthesis in the above equation are precisely the terms

in the mesoscopic force on the system of interest which break the microscopic symmetry

relation Ṗ†(t) = Ṗ(t†). Making use of the expressions for dQ, dP, and dE in Eq. (4.28),

we find

A† −A =

∫ tf

t0

∂E ln[Σ(E,Q)]dE +
1

Σ(E,Q)
∂E [Σ(E,Q)u(E,Q)] · dQ

=

∫ tf

t0

∂E ln[Σ(E,Q)]dE + ∂Q ln[Σ(E,Q)] · dQ

=

∫ tf

t0

d ln[Σ(E,Q)]

= ln[Σ(Ef ,Qf )]− ln[Σ(E0,Q0)]

=
s(Ef ,Qf )− s(E0,Q0)

kB
, (4.117)
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where we have employed the identity from Eq. (3.17) and the definition of the microcanonical

entropy s of the bath in (3.105), and the constraint E = E −H(X,λ) is implied. We thus

have

∆s[E(τ),Q(τ)] = kB

(
A†[Q†(τ),P†(τ), E†(τ),λ†(τ)]−A[Q(τ),P(τ), E(τ),λ(τ)]

)
, (4.118)

and

P †
λ†(τ)

[Q†(τ),P†(τ), E†(τ)]

Pλ(τ)[Q(τ),P(τ), E(τ)]
= e
−∆s[E(τ),Q(τ)]

kB , (4.119)

where ∆s[E(τ),Q(τ)] denotes the change in the microcaonical entropy of the bath in the

forward dynamics when the position of system of interest and the bath energy follow the

trajectories Q(τ) and E(τ), respectively, with the constraint E(t) = E(t) −H(X(t),λ(t))

implied. Equations (4.118) and (4.119) are the central results of Sec. 4.3, and Eq. (4.119) is

the chaos bath analog of the stochastic thermodynamics microscopic reversibility condition

in Eq. (4.71).

Equations (4.118) and (4.119) relate changes in the microcanonical entropy of the bath

to stochastic action and transition probabilities, just as stochastic thermodynamics relates

changes in the thermodynamic entropy of the environment to transition probabilities and

stochastic action. In this sense, the microcanonical entropy of the bath is the chaos bath

analog of thermodynamic entropy. In stochastic thermodynamics, the increment of heat

flow to the environment at a temperature T is related to the change in thermodynamic

entropy s of the environment by −dq = Tds (in this thesis, heat flow is defined to be

positive when heat energy flows out of the environment, hence the − sign in front of dq),

so we will analogously define heat flow in terms of entropy in the chaos bath framework,

where T is the bath’s microcanonical temperature and s its microcanonical entropy:
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− dq = Tds (4.120)

= T∂Es dE + T∂Qs · dQ

= dE + u · dQ + kBT ∂Eu · dQ.

Under this definition, heat flow is not equal to the change in energy of the bath. From

Eq. (4.28) we see that the first two terms on the last line of Eq. (4.120) together give

the increment of energy flow from the system to the bath due to deterministic friction,

the noise induced drift, and the rapidly fluctuating force. These quantities together give

the irreversible energy exchange between the bath and the system. The term kBT ∂Eu in

Eq. (4.120) is the first order change in u due to adding a single unit of kBT of energy to

the bath, so this term will be negligible in the thermodynamic limit. Thus, for large baths,

bath entropy and heat flow are related in a manner analogous to ordinary thermodynamics

if heat flow is interpreted as irreversible energy flow.

The increment of work done on the system of interest, dw, due a change dλ in the

control protocol is given by

dw = ∂λV · dλ. (4.121)

By the conservation of energy, we have

dE + dH = dw, (4.122)

so Eq. (4.120) can be written as

dH = dw + dq + ∂Qs · dQ. (4.123)
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We thus have the first law of thermodynamics at the level of individual trajectories for

a chaos bath. The last term on the right hand side of Eq. (4.123) accounts for the in-

teraction energy between the system of interest and the bath. This first law generalized

straightforwardly for the case of multiple baths:

dH = dw +
∑
α

(dqα + ∂Qs
α · dQ) . (4.124)

4.4 Open loop fluctuation theorems

In this section, we will use the results of Sec. 4.3 to derive various fluctuation theorems

in the chaos bath framework. Fluctuation theorems in stochastic thermodynamics provide

very general constraints on the manner in which physical systems can be controlled and

manipulated in the presence of thermal environments, even if driven arbitrarily far from

thermal equilibrium. We will derive analogous expressions using the mesoscale equations

of motion for (X, E), and then use physically well-defined connection between the micro-

scopic and mesoscopic dynamics to show that the fluctuation theorems, although derived

and understood at the stochastic mesoscopic level, follow trivially from the deterministic

microscopic dynamics and the one-to-one correspondence between forward and conjugate

trajectories.

It must be noted that the fluctuation theorems considered here apply only to open loop

control protocols, and not feedback control protocols. In stochastic thermodynamics, feed-

back control introduces conceptual and computational difficulties which result in modified

fluctuation theorems involving various measures of mutual information between the sys-

tem trajectory and feedback controller [13, 27, 24, 30]. Stochastic thermodynamics with

feedback control provides a natural setting for discussions and generalizations of Maxwell’s

demon. We discuss some aspects feedback control in stochastic thermodynamics in chapter

5, where we use feedback to stabilize a diffusing Brownian particle. Feedback control and

modified fluctuation theorems would be interesting to examine in the chaos bath frame-

work; the first principles Hamiltonian connection between the micro and mesoscale may
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potentially provide a more satisfying physical interpretation of the conceptually abstract

mathematical mutual information quantities, but we save this topic for future work.

4.4.1 Derivation

Fluctuation theorems are derived by choosing distributions for initial forward and con-

jugate conditions and using the reversibility condition in Eq. (4.119) to integrate various

quantities over all forward and conjugate transitions [13]. In order to preform such inte-

grations, we will need to know how volume elements in the conjugate trajectory path space

relate to volume elements in the forward trajectory path space. Note from Eqs. (4.79) and

(4.80) that the volume element in the forward trajectory space is given by

Dλ(τ)[X(τ), E(τ)] = Lim
N−1∏
k=1

[
dPk

[2π∆t]
Ns
2

∣∣∣√Lsy(E∗k ,Q
∗
k)
∣∣∣ (4.125)

×dQk δ
(
∆Qk −M−1P∗k∆t

)
×dEk δ

(
∆Ek − ∂λ∗kV (Q∗k,λ

∗
k) ·

∆λk
∆t

∆t

)]
.

The volume element at the evaluated at corresponding conjugate trajectory in the conjugate

dynamics is likewise given by

Dλ†(τ)[X
†(τ), E†(τ)] = Lim

N−1∏
k=1

[
dP†k

[2π∆t]
Ns
2

∣∣∣√Lsy(E† ∗k ,Q† ∗k )
∣∣∣ (4.126)

×dQ†k δ
(

∆Q†k −M
−1P† ∗k ∆t

)
×dE†k δ

(
∆E†k − ∂λ† ∗k V (Q† ∗k ,λ

† ∗
k ) ·

∆λ†k
∆t

∆t

)]
.

Because we have chosen to discretize our path integrals using the symmetric Stratonovich

convention, we have t†k = tN−k. This identity, together with Eqs. (4.84) and (4.85), then

yields the following:
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Q†k = QN−k (4.127)

Q† ∗k = Q∗N−k+1

∆Q† ∗k = −∆QN−k+1,

E†k = EN−k (4.128)

E† ∗k = E∗N−k+1

∆E† ∗k = −∆EN−k+1,

λ†k = λN−k (4.129)

λ† ∗k = λ∗N−k+1

∆λ† ∗k = −∆λN−k+1,

P†k = −PN−k (4.130)

P† ∗k = −P∗N−k+1

∆P† ∗k = ∆PN−k+1.

From the above relations, and the fact that the determinant of the Jacobian matrix corre-

sponding the transformation P→ −P is unity, we find

Dλ(τ)[X(τ), E(τ)] = Dλ†(τ)[X
†(τ), E†(τ)]. (4.131)

Suppose now that the initial energy of the universe is given by E0, and the initial

condition of the system of interest are distributed according the stationary distribution
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Ps(Q,P; E0,λ0) in Eq. (3.118). Then, the probability to observe the trajectory [Q(τ),P(τ), E(τ)]

which accomplishes the transition Q0,P0, E0, t0 → Qf ,Pf , Ef , tf under the forward dynam-

ics, given the protocol λ(τ), is given by the expression Pλ(τ)[Q(τ),P(τ), E(τ)]Ps(Q0,P0; E0,λ0).

Likewise, suppose the initial energy of the universe in the conjugate dynamics is given by

Ef , and that the initial conjugate conditions are distributed according to the conjugate

stationary distribution P †s (Q,P; Ef ,λf ). The probability to observe the conjugate trajec-

tory [Q†(τ),P†(τ), E†(τ)] which accomplishes the conjugate transition Qf ,−Pf , Ef , t0 →

Q0,−P0, E0, tf under the conjugate dynamics, given the protocol λ†(τ), is given by the

expression P †
λ†(τ)

[Q†(τ),P†(τ), E†(τ)]P †s (Qf ,−Pf ; Ef ,λf ). From Eqs. (3.118), (4.107) and

(4.119), we find

P †
λ†(τ)

[Q†(τ),P†(τ), E†(τ)]P †s (Qf ,−Pf ; Ef ,λf )

Pλ(τ)[Q(τ),P(τ), E(τ)]Ps(Q0,P0; E0,λ0)
= e

−∆SU [E(τ),λ(τ)]
kB (4.132)

Equation (4.132) expresses a reversibility condition when the initial forward and conjugate

states are drawn from the forward and conjugate stationary distributions, respectively.

Making use of reversibility condition in Eq. (4.132) and the volume element relation in

Eq. (4.131), as well as the fact that the magnitude of determinant of the Jacobian matrix

for the coordinate change P→ −P is unity, we have the following equality:

Dλ†(τ)[X
†(τ), E†(τ)]dX†0dX†fP

†
λ†(τ)

[X†(τ), E†(τ)]P †s (X†0; Ef ,λf ) =

Dλ(τ)[X(τ), E(τ)]dX0dXfPλ(τ)[X(τ), E(τ)]Ps(X0; E0,λ0)e
−∆SU [E(τ),λ(τ)]

kB . (4.133)

Equation (4.133) will serve as a master equality from which we can derive fluctuation

theorems. Integrating both sides and rearranging, we find a statement of reversibility in

terms of energy transitions:

P †
λ†(τ)

(E0, tf ; Ef , t0)

Pλ(τ)(Ef , tf ; E0, t0)
= e
−

∆SU (Ef ,λf ;E0,λ0)

kB , (4.134)
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where Pλ(τ)(Ef , tf ; E0, t0) denotes the probability to observe the energy transition E0 → Ef

in the forward dynamics under the forward control protocol, given the initial energy E0

and initial conditions drawn from the stationary state, and P †
λ†(τ)

(E0, tf ; Ef , t0) denotes the

probability to observe the energy transition Ef → E0 in the conjugate dynamics under the

conjugate control protocol, given the initial energy Ef and initial conditions drawn from the

stationary state. Notice that the change in the entropy of the universe in the exponential

in Eq. (4.134) is considered a function of the initial and final energies and protocol values,

as opposed to a functional of E(τ) and λ(τ). If we multiply both sides of Eq. (4.134) by

δ(Ef − E0 − w)Pλ(τ)(Ef , tf ; E0, t0), integrate over all Ef , and rearrange, we have

P †
λ†(τ)

(E0, tf ; E0 + w, t0)

Pλ(τ)(E0 + w, tf ; E0, t0)
=

〈
e
−∆SU

kB

∣∣∣∣w〉
E0,λ(τ)

. (4.135)

Equation (4.135) is the microcanonical version of Crooks’s fluctuation theorem for work

[17, 92]. The quantity Pλ(τ)(E0 + w, tf ; E0, t0) represents the probability for the external

agent to do work w in the forward dynamics, under the protocol λ(t), when the initial energy

of the universe is E0, while the quantity P †
λ†(τ)

(E0, tf ; E0+w, t0) represents the probability for

the external agent to do work −w in the conjugate dynamics, under the conjugate protocol

λ†(t), when the initial energy of the universe is E0 +w, assuming initial stationary forward

and conjugate distributions. The expectation on the right hand side of Eq.(4.135) is an

expectation over all realizations of the forward dynamics in which the amount work done

under the protocol λ(τ) is equal to w, given an initial stationary distribution and initial

energy of the universe E0. Multiplying both sides of Eq. (4.135) by Pλ(τ)(E0 + w, tf ; E0, t0)

and integrating over all possible work values yields

∫
dwP †

λ†(τ)
(E0, tf ; E0 + w, t0) =

〈
e
−∆SU

kB

〉
E0,λ(τ)

. (4.136)

Equation (4.136) is the microcanonical version of the integral fluctuation theorem [13, 27,

92]. The average on the right side of the equality is an average over all realizations of the
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forward dynamics under the protocol λ(τ), given an initial stationary distribution and ini-

tial energy of the universe E0. Note that the integral in Eq. (4.136) does not reduce to unity,

so we are being a bit casual with our language in calling the equation an integral fluctua-

tion theorem. This integral is related to the following thought experiment: suppose we are

given an ensemble of systems, each prepared in the stationary distribution corresponding

to λf , for all possible energies of the universe, and we evolve each ensemble member using

the conjugate dynamics under the conjugate protocol. For each ensemble member, there

will be some probability to find the universe with energy E0 after implementing the control

protocol, and the integral in Eq. (4.136) represents the sum of all such probabilities. This

integral can take values anywhere in the interval [0,∞). If the transition probability in the

integral were to for some reason become independent of E0, then P †
λ†(τ)

(E0, tf ; E0 + w, t0)

would simply represent the probability to do work −w in the conjugate dynamics under the

protocol λ†(τ). The integral in Eq. (4.136) would then reduce to unity, and we would have

a genuine integral fluctuation theorem. As we will discuss in the next subsection, such an

independence is expected to arise in the thermodynamic limit.

We close this subsection by deriving the microcanonical version of Crooks’s fluctua-

tion theorem for entropy production [17]. Note that if the change in the total entropy

of the universe along a trajectory depends only on the initial and final values of the en-

ergy of the universe and control parameter, so we have the equality ∆SU [E(τ),λ(τ)] =

−∆SU [E†(τ),λ†(τ)]. Using this fact, we can multiply both sides of Eq. (4.133) by δ(ω −

∆SU [E(τ),λ(τ)]), and then integrate and rearrange to find

P †
λ†(τ)

(∆SU = −ω|E0, tf ; Ef , t0)

Pλ(τ)(∆SU = ω|Ef , tf ; E0, t0)
= e
− ω
kB . (4.137)

The quantity Pλ(τ)(∆S
U = ω|Ef , tf ; E0, t0) is the probability for the entropy of the universe

to increase by ω in the forward dynamics under the forward protocol, given the energy

transition E0 → Ef and initial conditions drawn from the stationary distribution, while

P †
λ†(τ)

(∆SU = −ω|E0, tf ; Ef , t0) is the probability for the entropy of the universe to increase

by −ω in the conjugate dynamics under the conjugate protocol, given the energy transition

143



Ef → E0 and initial conditions drawn from the stationary distribution.

4.4.2 The thermodynamic limit and the second law

We now consider our fluctuation theorems in the thermodynamic limit as defined in

Sec. 3.4.5. The number of degrees of freedom of the bath will be denoted by NB, with

the number of degrees of freedom of the system of interest given by NS . Throughout

this subsection, we assume that the work done on the universe scales like the energy of the

system, so that we have w � E0 in the thermodynamic limit. Physically, this is a reasonable

assumption because work is done on the universe only through changes in the system of

interest’s potential energy, and the energy of the system of interest is assumed to scale like

NS , while the energy of the universe scales like NB. We will make use of Eq. (3.146), which

shows that in the thermodynamic limit, the microcanonical temperature of the universe

is equal to the microcanonical temperature of the bath, and both temperatures become

independent of λ. We will therefore denote both temperatures by the function T (E).

In the thermodynamic limit, the total energy of the universe approaches infinity and is

effectively constant. The quantity relavent to the system of interest is the average energy

per degree of freedom of the bath (i.e. the bath’s temperature), and this quantity is also

effectively constant in the thermodynamic limit. Therefore, in the thermodynamic limit,

we expect the transition probabilities in Eqs. (4.135) and (4.137) to be independent of the

energy of the universe. This argument is used by Cleuren et al. in Ref. [92], where a

fluctuation theorem is derived from microcanonical considerations. Under this assumption,

the entropy production fluctuation theorem in Eq. (4.137) can be written as

P †
λ†(τ)

(∆SU = −ω)

Pλ(τ)(∆SU = ω)
= e
− ω
kB , (4.138)

where the initial and final times are implied. Equation (4.138) is Crooks’s fluctuation

theorem for entropy production as it originally appeared in [17]. Multiplying both sides of

the above equation by Pλ(τ)(∆S
U = ω) = e

− ω
kB and integrating over all possible ω gives an

integral fluctuation theorem:
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1 =
〈
e
− ω
kB

〉
λ(τ)

. (4.139)

Applying Jensen’s inequality [84], the integral fluctuation theorem above implies the second

law of thermodynamics:

0 ≤ 〈ω〉λ(τ) . (4.140)

Consider now the fluctuation theorem for work Eq. (4.135). Assuming that the transition

probabilities become independent of E0 in the thermodynamic limit, we have

P †λ(τ)(−w)

Pλ(τ)(w)
=

〈
e
−∆SU

kB

∣∣∣∣w〉
λ(τ)

. (4.141)

Note that the change in the entropy of the universe can be written as

−∆SU = −SU (Ef ,λf ) + SU (E0,λ0) (4.142)

= −SU (E0,λf ) + SU (E0,λ0)− ∂E0SU (E0,λf )(Ef − E0)

−1

2
∂2
E0E0S

U (E0,λf )(Ef − E0)2 + ...

= −SU (E0,λf ) + SU (E0,λ0)− w

TU (E0,λf )
+O

(
NS

NB

)
=

TDlimit
−∆λS

U (E0,λf ,λ0)− w

T (E0)

=
∆λF − w

T
,

where we use the definition of free energy in Eq. (3.144), and where ∆λ... denotes the

change in the quantity ... due to changes in λ. The dependence on E0, which is a fixed

parameter in the thermodynamic limit, as been suppressed on the last line of Eq. (4.142).

From Eq. (4.141), we thus have
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P †λ(τ)(−w)

Pλ(τ)(w)
= e

∆λF
kBT

〈
e
− w
kBT

〉
λ(τ)

. (4.143)

The above equation is Crooks’s fluctuation theorem for work as it appears in [17]. Multiply-

ing by Pλ(τ)(w) and integrating of all possible work values yields Jarzynski’s non-equilibrium

work relation for free energy differences [18]:

e
−∆λF
kBT =

〈
e
− w
kBT

〉
λ(τ)

. (4.144)

Applying Jensen’s inequality to Eq. (4.144) gives another statement of the second law of

thermodynamics:

∆λF ≤ 〈w〉λ(τ) . (4.145)

4.4.3 Hamiltonian derivation of fluctuation theorems

The fluctuation theorems presented in the previous two sections were all derived starting

from the reversibility condition in Eq. (4.119). We arrived at this reversibility condition

by considering differences in the stochastic action associated with forward and conjugate

trajectories, and we noted that terms contributing to this difference originated from the

portions of the stochastic mesoscopic force on the system of interest which break the deter-

ministic microscopic symmetry relation Ṗ†(t) = Ṗ(t†). Because the fluctuation theorems,

and by extension the second law of thermodynamics, appear to be intimately tied to our

approximate stochastic framework at the mesoscale, it is not clear whether or not they

are valid descriptions of nature at the deterministic microscale. Are fluctuation theorems

and the second law of thermodynamics simply consequences of our imperfect mesoscopic

description of the universe, or do they bear deeper connections to the underlying micro-

scopic dynamics governed by Hamilton’s equations? In this section, we will argue for the
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latter case by deriving Eq. (4.119) without appealing to stochastic dynamics or mesoscale

approximations.

To derive Eq. (4.119), we must remind ourselves of a two simple but important points

regarding the work in chapters 3 and 4. First, as shown explicitly in Sec. 4.3.3, for every

Hamiltonian of the universe H subject to some control protocol λ(τ), there exists a con-

jugate Hamiltonian H† subject to the conjugate protocol λ†(τ) such that, for each system

of interest plus bath forward trajectory generated by H, there is a corresponding unique

conjugate trajectory generated by H† which traces the forward trajectory in reverse. Sec-

ond, as shown in Sec. (3.4.3), the mesoscopic stationary distribution Ps(X; E ,λ) can be

derived by assuming an underlying microscopic microcanonical distribution for the entire

universe, without making any reference to the Fokker-Planck equation (3.75). Likewise, the

conjugate mesoscopic stationary distribution P †s , defined in Eq. (4.107), follows from an

underlying microscopic microcanonical distribution in the conjugate dynamics. In both the

forward and conjugate dynamics, a microscopic microcanonical distribution follows from

the assumption of microscopic chaos.

Consider now the microcanonical partition function of the universe ΣU (E0,λ0). This

quantity gives a measure of the total number of system of interest plus bath states on

the energy shell H(X,x,λ0) = E0 in the full phase space, and the stationary distribution

Ps(X0; E0,λ0) measures the fraction of these states for which the system of interest is located

at X0. The quantity ΣU (E0,λ0)Ps(X0; E0,λ0) thus gives a measure of the total number of

states in the full phase space with the system of interest located at X0 when the energy of

the universe is E0. We now suppose that the control parameter evolves under a particular

protocol λ(τ), with initial and final values λ0 and λf , respectively, over the time interval

[t0, tf ], while the system of interest and bath evolve according to Hamilton’s equations under

the Hamiltonian H(X,x,λ(t)). Of all initial states of the universe counted by the measure

ΣU (E0,λ0)Ps(X0; E0,λ0), only a fraction will result in the system of interest and energy

of the universe following the particular trajectories X(τ) and E(τ), respectively, with final

values Xf and Ef . We denote this fraction by Pλ(τ)[X(τ), E(τ)]. Thus, the measure of the

number of states in the full phase which realize the transition (X0, E0) → (Xf , Ef ) along

the trajectory (X(τ), E(τ)) is given by ΣU (E0,λ0)Ps(X0; E0,λ0)Pλ(τ)[X(τ), E(τ)].
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Consider now the conjugate Hamiltonian under the conjugate protocol λ†(τ). By sim-

ilar arguments, the quantity ΣU †(Ef ,λf )P †s (X†f ; Ef ,λf )Pλ†(τ)[X
†(τ), E†(τ)] is the measure

of the number of states in the full phase space which begin on the energy shell Ef with the

system interest initially located at X†f , evolve according to the conjugate Hamiltonian un-

der the conjugate control protocol λ†(τ) over the interval [t0, tf ] with the system of interest

and energy of the universe following the trajectories X†(τ) and E†(τ), respectively, with

final values X†0 and E0. As noted, in the full system plus bath phase space, for every for-

ward trajectory which evolves under the forward dynamics, there is exactly one conjugate

trajectory which makes the reverse transition under the conjugate dynamics. Therefore,

the measure of states which realize the transition (X0, E0)→ (Xf , Ef ) along the trajectory

(X(τ), E(τ)) under the forward dynamics must be equal to the measure of states which ac-

complish the conjugate transition under the conjugate dynamics, so we have the somewhat

trivial equality

ΣU †(Ef ,λf )P †s (X†f ; Ef ,λf )Pλ†(τ)[X
†(τ), E†(τ)] = (4.146)

ΣU (E0,λ0)Ps(X0; E0,λ0)P †λ(τ)[X(τ), E(τ)].

Using the definitions Eqs. (3.104), (3.105), (3.118), (4.96), (4.97), and (4.107), the above

equality can be rearranged to yield

P †
λ†(τ)

[X†(τ), E†(τ)]

Pλ(τ)[X(τ), E(τ)]
= e
− 1
kB

[s(Ef−H(Xf ,λf ),Qf )−s(Ei−H(Xi,λi),Qi)]. (4.147)

We remind the reader here that s denotes the microcanonical entropy of the bath.

Equation (4.147) is precisely the reversibility condition in Eq. (4.119) which was de-

rived from the mesoscopic stochastic perspective. We thus conclude that the reversibility

condition, as well as the fluctuation theorems which derive from it, follow directly from

the assumption of microscopic chaos and the one to one correspondence between micro-

scopic forward and conjugate trajectories. This is the central result of chapter 4. Note
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that throughout chapters 3 and 4, the bath dynamics, for a fixed Q, are left arbitrary, so

no explicit time-reversal symmetry or anti-canonical symmetry has been assumed for the

Hamiltonian of the universe. We have, on the other hand, assumed that the interaction

between the system of interest and bath depends only on Q, and the form assumed for

the system of interest’s Hamiltonian in inherently time-reversal symmetric. The arguments

leading to Eq. (4.147), however, apply equally well to arbitrary Hamiltonians with both

position and momentum dependent interactions with the bath, so this reversibility condi-

tion, and thus fluctuation theorems, will be valid for arbitrary Hamiltonian systems which

exhibit microscopic chaos. We also note that the arguments which led to Eq. (4.147) will

apply in the presence of multiple baths and yield an analogous reversibility condition:

P †
λ†(τ)

[X†(τ),E†(τ)]

Pλ(τ)[X(τ),E(τ)]
= e
− 1
kB

∑
α

[sα(Eαf ,Qf )−sα(Eαi ,Qi)]
. (4.148)

Equations (4.147) and (4.148) follow even without any explicit time-scale separation as-

sumptions, although without such a separation, parametrizing the bath Hamiltonians by

the state of the system of interest is unlikely to be a useful way to describe the system-baths

interaction.

4.5 Summary and conclusions

In this chapter, we have used the Fokker-Planck equation derived in Chap. 3 to deduce

a stochastic Langevin equation for the mesoscale evolution of the system of interest and

baths. This Langevin equation facilitated a discussion of the mesoscopic forces exerted on

the system of interest by the baths, and we showed that these forces manifest in a first law

of thermodynamics for the system of interest at the level of individual trajectories. For the

case of a single bath, we employed the stochastic Langevin approach to derive fluctuation

theorems, and we showed that these fluctuation theorems contain the essence of the second

law of thermodynamics - they imply constraints on work extraction and entropy production

when the system of interest’s Hamiltonian is manipulated through a control protocol, and
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they yield various statements of the second law in the thermodynamic limit. We emphasize

that these fluctuation theorems are valid even for low-dimensional baths, so the results of

Chaps. 3 and 4 taken together show that the chaos bath framework gives a first principles

Hamiltonian derivation of the laws of thermodynamics which is independent of any laws of

large numbers, both in and out of equilibrium.

For future study, it would be interesting to allow for arbitrary Hamiltonians in the

derivation of the Fokker-Planck equation, and to allow for multiple baths in the derivation

of the path integral formalism. These generalizations will most certainly complicate the

intermediate calculations, but from the micro-meso connection established in Sec. 4.4.3, we

know that the end result of such labors will be the Eq. (4.148), with sα a dependent on P as

well . This point highlights the overreaching theme of this thesis - by examining the foun-

dations of stochastic processes in physics, we learn more about the processes themselves as

well as the underlying processes from which they originate. We began with a deterministic

Hamiltonian system, and we learned that this system exhibits thermodynamic behavior by

studying its stochastic counterpart. Then, by re-examining the system from the determin-

istic perspective, we showed that the stochastic results, namely the reversibility condition

in Eq. (4.119), hold under more general conditions than initially considered and follow

from simple and generic properties of the deterministic equations of motion. However, in

order to derive the results from the deterministic perspective, we had to use Eq. (4.146),

an equality which follows so trivially from the one-to-one correspondence between forward

and conjugate trajectories that we would have been unlikely to write it down and examine

its consequences without first being motivated by results from the stochastic perspective.

In future work, we hope to employ similar micro-meso connections to achieve a deeper

understanding of information processing and feedback control in physical systems.
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Chapter 5

Stabilizing Mesoscale
Thermodynamic Systems with
Feedback Control

5.1 Introduction

In control systems, there are many notions of stability, but they generally refer to a

systems ability to maintain a specific trajectory or remain at a fixed point when subject

to perturbations [93, 94]. Maneuverability quantifies a system’s response to control inputs

- a system which deviates from a particular trajectory or fixed point for relatively little

control effort is considered to be highly maneuverable. Thus, by definition, there exists an

inherent trade-off between stability and maneuverability. A clear example of this trade-off

is found in aviation: training aircraft are designed to be is aerodynamically stable, while

an F-16 fighter jet is designed to be aerodynamically unstable [95]. The unstable fighter jet

would crash to the ground were it not for the on-board electronic feedback control system

(referred to as a “fly-by-wire” system) which keeps the aircraft in the air by continually

measuring the aircraft’s state and making corresponding changes to control surfaces on the

aircraft’s body [95]. As a result, the F-16 is inherently more nimble than the training air-

craft, and it can preform advanced combat maneuvers which would be otherwise impossible

in an aerodynamically stable system. Clearly, there are advantages to designing inherently
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unstable systems maintained by feedback, so we ask if it is feasible for nature to employ

such designs in molecular machines and other mesoscale biological systems which function

in highly dissipative environments. This work is a preliminary exploration of this question.

In this chapter, we study, by means of an analytical tractable example, the inherent

energetic costs and inherent limitations associated with stabilizing mesoscale thermody-

namic systems with feedback control. Consider a Brownian particle in one dimension. If

the particle is subject to forces from the surrounding thermal environment only, it will ex-

hibit Brownian motion and diffuse away from any given point [1]. Suppose that we wish to

counteract this diffusive motion and stabilize the position of this particle about the origin

by implementing a feedback control scheme. Our feedback scheme can be conceptualized

as a neat-fingered intelligent being, referred to in this chapter as a “control demon,” which

continuously measures the position of the particle and, based on the outcomes of the mea-

surements, exerts corresponding forces on the particle. This control demon represents a

control theoretic take on Maxwell’s demon [21, 22, 23]. Roughly speaking, if the control

demon observes the particle fluctuate away from the origin in the positive direction, then

it will exert a force on the particle in the negative direction (and vice-versa if the particle

fluctuates away from the origin in the negative direction). The demon could in principle

choose any arbitrarily complicated feedback force law to apply to the particle, but in order

to keep the ensuing mathematics tractable, in this chapter, we consider only linear Markov

controls [9]. In other words, the demon considered in this paper will stabilize by attempting,

to the best of it’s ability, to mimic the action of an idealized spring attached to the particle.

Does a control demon operating in such a manner enact apparent violations the second law

of thermodynamics analogously to a Maxwell demon? As we will show, the answer to this

question is a bit subtle, even for the simple set-up considered here.

The subject of this chapter can be thought of as an overdamped analog of feedback

cooling [26, 96, 97, 98] . Whereas a classical Brownian particle is feedback cooled by an ap-

plied momentum-dependent feedback force, for stabilization, we apply a position-dependent

feedback force. The goal of feedback cooling is to reduce the variance of the thermal mo-

mentum distribution, while the goal of stabilization is to reduce the variance of the position

distribution (which would be infinite for an unstable unbounded particle). We note that
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results of feedback cooling have interesting interpretations in terms of information theory,

and although we do not pursue such an approach in this chapter, analogous techniques

could be applied to the study of stabilization [26]. In our work, we opt for a mechanical

approach.

The purpose of this chapter is to determine the average rate at which the control de-

mon must do work on the particle in order to achieve stabilization. This endeavor will

yield a seemingly paradoxical result: the power required for stabilization preformed by a

demon making perfect observations does not converge to the power required for stabiliza-

tion preformed by a demon making imperfect observations in the limit of vanishingly small

observation error. The resolution of this apparent paradox leads to the central result of this

chapter; in order for the demon to stabilize against diffusive motion for free, without doing

work or dissipating energy to the environment, it must operate at time-scales smaller than

the time-scales over which diffusion is a valid description of the particle’s motion. Our work

towards this result will proceed in steps of increasing complexity. We begin in Sec. 5.2 by

considering a simple uncontrolled autonomous system consisting of a spring attached to a

Brownian particle, and we determine the average rate at which the spring does work on

the particle while subject to thermal fluctuations. Then, in Sec. 5.3, we compare the au-

tonomous system to a non-autonomous system consisting of a free Brownian particle under

the influence of a control demon making perfect observations. In Sec. 5.4, we consider the

more realistic case of control preformed by a demon making imperfect observations, and

we find our apparently paradoxical result. We resolve the apparent paradox in Sec. 5.5 by

considering the effect of short-lived correlations in the fluctuating thermal force acting on

the particle, and we discuss physical implications and conclude in Sec. 5.6.

5.2 No control

Consider a one-dimensional system consisting of a particle in a thermal environment

attached to an idealized spring. We will model the system dynamics by an overdamped

Langevin equation [13]:

153



bẋ(t) = −kx(t) +
√

2bkBTξ(t). (5.1)

Here, we denote the position of the particle at time t by x(t), and the overdot notation

denotes a time derivative. The constant b is the damping coefficient, k is the spring constant,

kB is Boltzmann’s constant, and T is the temperature of the environment. In this chapter,

we assume the Stratonovich interpretation of all stochastic differential equations. The

quantity ξ(t) represents a Gaussian white noise process with mean and autocorrelation

given by

〈ξ(t)〉 = 0,〈
ξ(t)ξ(t′)

〉
= δ(t− t′), (5.2)

where 〈A〉 denotes an average of the quantity A (some functional of the particle’s trajectory)

over all realizations of the stochastic noise and initial particle conditions. The solution to

Eq. (5.1) can be written in closed form, and is given by

x(t) = x0e
− t
τ +

∫ t

0
dt′ e−

(t−t′)
τ

√
2kBT

b
ξ(t′), (5.3)

where x0 = x(0) and τ denotes the system’s natural relaxation time scale:

τ =
b

k
. (5.4)

We make no assumptions about the initial distribution of particle positions (aside from

the assumption of a finite mean and variance), and will we primarily be concerned with

times for which the initial distribution has decayed to the stationary solution of the Fokker-

Planck equation associated with Eq. (5.1). The stationary distribution corresponds to the

thermal equilibrium distribution - a Gaussian with mean zero and variance kBT/k [16].

From Eqs. (5.2) and (5.3), the mean, 〈x(t)〉, and variance, σ2
x(t), in the distribution of
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particle positions at any time t can be calculated:

〈x(t)〉 = 〈x0〉 e−
t
τ (5.5)

σ2
x(t) =

〈
x2(t)

〉
− 〈x(t)〉2

=

(
σ2
x(0)− kBT

k

)
e−

2t
τ +

kBT

k
.

The force of the spring on the particle at time t, denoted by Fsp(t), is simply the standard

spring force: Fsp(t) = −kx(t). Therefore, the rate of work done by the spring on the particle

at time t, denoted by ẇsp(t), is given by

ẇsp(t) = Fsp(t)ẋ(t) (5.6)

= −kx(t)ẋ(t).

This work rate fluctuates rapidly due to the fluctuations in the particle’s position and

velocity, but we are not interested in these momentary fluctuations. Rather, we would like

to gain an intuitive sense of the total work done by the spring over long times by considering

the time-averaged work rate ẇsp. That is, we wish to calculate

ẇsp = lim
t→∞

1

t

∫ t

0
dt′ ẇsp(t

′), (5.7)

The white noise process is stationary and ergodic [11], so long time-averages over a single

trajectory are equivalent to averages (evaluated at large times) over all initial conditions

and all realizations of the noise:

〈ẇsp(t)〉 =
t→∞

ẇsp. (5.8)

The average over initial conditions and stochastic noise can be computed straightforwardly

using the statistics of the white noise process, so it will be the average of interest here and
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throughout the rest of this paper.

The following physical argument makes clear that 〈ẇsp(t)〉 must be identically zero at

long times. Changes in the particle’s kinetic energy are negligible in the overdamped limit,

and there are no external influences acting on the spring-particle system aside from those

associated with the surrounding thermal environment, so by the first law of thermodynamics

at the level of individual trajectories, the rate at which the spring does work on the particle

is equal to the rate at which heat is dissipated to the environment [16]. If the system is

allowed to evolve long enough to reach thermal equilibrium with the environment, then the

ergodicity and stationarity of the white noise process implies that the long-time work rate

averaged over all initial particle conditions and all realizations of the stochastic noise will

be equivalent to the work rate averaged over the stationary thermal state [11]. Therefore,

were the average work rate not identically zero at long times, we would necessarily have a

non-zero average heat flow between the system and environment once the system reaches

thermal equilibrium, and this contradicts the very definition of thermal equilibrium.

To calculate 〈ẇsp(t)〉 directly, we first use Eqs. (5.1) and (5.6) to write

〈ẇsp(t)〉 =
k
〈
x2(t)

〉
τ

−
√

2bkBT
〈x(t)ξ(t)〉

τ
. (5.9)

We compute the above averages using Eqs. (5.2) and (5.3), and we find

〈ẇsp(t)〉 =

[
k
〈
x2

0

〉
τ
− kBT

τ

]
e−

2t
τ . (5.10)

It should be noted that in order to calculate the term 〈x(t)ξ(t)〉 in Eq. (5.9), one must apply

the following rule associated with the Stratonovich calculus [16]:

∫ t

0
dt′ f(t′)

〈
ξ(t)ξ(t′)

〉
=

∫ t

0
dt′ f(t′)δ

(
t− t′

)
(5.11)

=
1

2
f(t),
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where f(t) is any integrable function. The work rate in Eq. (5.10) decays to zero over times

much larger than the system time-scale τ , so as expected, we see that the spring does no

work on the particle, on average, over long times:

〈ẇsp(t)〉 =
t→∞

0 (5.12)

The exponentially decaying term in Eq. (5.10) is simply a transient effect which arises when

the initial distribution of particle positions is not thermal. If we assume that the system

begins in thermal equilibrium, so that
〈
x2

0

〉
= kBT/k, then Eq. (5.10) vanishes for all times.

5.3 Perfect feedback

Consider now a free Brownian particle in a thermal environment at temperature T with

damping constant b. Suppose that at time t = 0, a control demon begins continuously

observing the position of the particle with perfect precision and exerts a feedback force

F ofb(t) on the particle based on the outcome of these observations. The superscript o is a

reminder that we are considering the optimal case of perfect observations. At a time t, this

feedback force is a functional of entire observation history of the particle up until t. More

formally, in the language of measure theory, we require that F ofb(t) be a measurable function

with respect to the filtration generated by x(t) [9]. The feedback force F ofb(t) is then said

to be x(t) measurable. We again consider an arbitrary distribution of particle positions at

t = 0, assuming only the existence of a finite mean and variance. After the demon begins

making observations at t = 0, the particle’s dynamics can be modelled by the following

overdamped Langevin equation:

bẋ(t) = F ofb(t) +
√

2bkBTξ(t). (5.13)
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Here, and throughout the rest of this paper, we assume that the demon attempts to stabilize

the position of the particle about the origin by, to the best of its ability, mimicking the action

of the ideal spring described in Sec. 5.2. The demon has perfect knowledge of the position

of the particle, so it can perfectly mimic the spring force by implementing the following

feedback protocol:

F ofb(t) = −kx(t). (5.14)

When the above feedback force is applied, Eq. (5.13) becomes identical to Eq. (5.1).

The only difference between the situations described in Secs. 5.2 and this section is our

definition of internal and external forces. In Sec. 5.2, the particle and spring together

constitute the system of interest, so the force of the spring on the particle is considered

an internal force, and we picture the spring as a component of the system which utilizes

the interaction potential to preform work and stabilize the particle about the origin. In

this section, there is no potential energy; the system of interested is comprised of only the

particle, and the force of the control demon on the particle is considered an external force.

In this case, we imagine that the demon utilizes energy from some external source in order

to perform work and achieve stabilization.

The rate at which the demon does work on the particle, denoted by ẇoext(t), is given by

ẇoext(t) = F ofb(t)ẋ(t) (5.15)

= −kx(t)ẋ(t).

Because there is no potential energy to speak of, and because kinetic energy changes are

negligible, the first law of thermodynamics [16] states that any work done on the particle

is immediately dissipated to the environment as heat. The work rate in Eq. (5.15) is

mathematically identical to the rate at which the spring does work on the particle, so

therefore, because the particle’s dynamics are identical in Secs. 5.2 and 5.3, we have from

Eq. (5.10)
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〈ẇoext(t)〉 =

[
k
〈
x2

0

〉
τ
− kBT

τ

]
e−

2t
τ , (5.16)

which gives, after long times,

〈ẇoext(t)〉 =
t→∞

0. (5.17)

The above equality can easily be verified by direct calculation as in Sec. 5.2. We thus

conclude that the demon does no work on average, and likewise dissipates no heat to the

environment on average, when stabilizing the position of the particle about the origin. This

conclusion is perhaps a bit counter intuitive, but is logically straightforward: the average

rate at which the spring does work on the particle must be zero, or else the existence of

thermal equilibrium would be a contradiction, so if the demon is able perfectly mimic the

force of the spring on the particle, the demon too will do no work on average.

5.4 Noisy feedback

That an external feedback controller can stabilize a mesoscale thermodynamic system

without expending energy or dissipating heat is a promising conclusion from an engineering

standpoint, but this result only holds under the highly idealized conditions of continuous

perfect observations and a continuous perfectly applied force. In in real experiments, obser-

vations are prone to errors and occur discretely in time, applied feedback forces are prone

to errors, drifts, and change discretely in time, and experimental apparatuses can introduce

time-delays [99, 100]. We will now incorporate some this experimental reality into our con-

trol demon by considering observation errors in the form of stochastic noise. To keep the

mathematics tractable, we will model the observation noise as a simple white noise process.

Despite the simplicity of our noise model, the analysis in this section is much more involved

than the analyses of Secs. 5.2 and 5.3 and will proceed in steps. After mathematically
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defining the noisy observations and system dynamics, we will define an algorithm by which

the demon can combine the available observational and dynamical information to estimate

the actual state of the system. Next, as a preliminary step to finding a closed form solution

for the particle’s trajectory, we will determine the statistics of the error between the actual

system state and the demon’s best estimate of the system state. Finally, after solving the

system’s equation of motion and discussing the steady state distributions, we will calculate

the average work rate required to achieve stabilization.

5.4.1 A model of system observation

Consider again a free Brownian particle in a thermal environment at temperature T

with damping constant b, along with a control demon which begins continuously observing

the position of the particle at time t = 0, but with some observation error, and exerts a

feedback force Ffb(t) based on the outcomes of the noisy observations. After time t = 0,

the position of particle can be modelled the following overdamped Langevin equation:

bẋ(t) = Ffb(t) +
√

2bkBTξ(t). (5.18)

We model the noisy observation, y(t), of the particle’s actual position at time t with the

following equation:

y(t) = x(t) + ση(t). (5.19)

where σ gives the strength of the measurement noise, and η(t) is a standard Gaussian white

noise, independent of ξ(t), with mean and autocorrelation

〈η(t)〉 = 0,〈
η(t)η(t′)

〉
= δ(t− t′), (5.20)

Throughout this section, the angular brackets denote an average over all realizations of ξ(t),

η(t), and initial particle conditions. We again assume nothing about the initial particle
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distribution aside from a finite mean and variance. The feedback force at a time t is

a functional of the noisy observation history up to time t, so we require Ffb(t) to be a

measurable function with respect to the filtration generated by y(t) [9]. The feedback force

Ffb(t) is then said to be y(t) measurable.

5.4.2 A model of state estimation

We denote by x̂(t) the demon’s estimate of the position of the particle at time t given

the noisy observation history. This implies that x̂(t) is a y(t) measurable function. We

choose to define x̂(t) through the following linear differential equation:

b ˙̂x(t) = Ffb(t) +K(t)(y(t)− x̂(t)), x̂0 = 〈x0〉 . (5.21)

The function K(t) will be defined below. We note that, a priori, there is no reason to expect

these simple linear dynamics to provide a good state estimate - it is simply the model of

state estimation which we have chosen to use. For our system, it will turn out that of

all possible estimators, even those that obey non-linear dynamics, the linear estimator de-

scribed by Eq. (5.21), for appropriately chosen K(t), is the unique unbiased minimal mean

square error estimator of x(t).

Once K(t) is satisfied, Eq. (5.21) defines a recursive algorithm by which the control de-

mon can construct the state estimate - given the current estimate and current measurement

at a time t, Eq. (5.21) tells the demon what the estimate will be a short time dt later. Intu-

itively, Eq. (5.21) allows the demon to construct a state estimate by weighting the relative

importance of two sources of information - the information gained through observation and

the information gained through knowledge of the system’s dynamics (the demon is choosing

the feedback force Ffb to apply, so from Eq. (5.18), we see that the demon always has some

knowledge of the system’s dynamics). For very large σ, y(t) provides very little information

about x(t), and the observations act chiefly as an useless source of noise. In this case, in

order to minimize the influence of the strong noise on the state estimate, K(t) should be

chosen to be very small, and the evolution of x̂(t) will be dominated by the knowledge of

the system’s dynamics and nearly deterministic (without trustworthy measurements, the
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demon can only make state estimates based on knowledge of the system’s dynamics). On

the other hand, if σ is very small, then the observations are very trustworthy, and y(t)

contains a comparatively large mount information about x(t). In this case, K(t) should

be made very large, and the evolution of x̂(t) will be dominated by the knowledge gained

through observations. As K(t)→∞, Eq. (5.21) shows that x̂(t) will relax to y(t) infinitely

fast, as one would hope for extremely accurate observations. We thus see that Eq. (5.21)

is a mathematical expression of a noise filter [9]: for appropriately chosen K(t), the filter

receives y(t) as input, eliminates some noise, and outputs a better estimate x̂(t).

We denote by ε(t) the error between demon’s estimate and the actual system position:

ε(t) = x(t)− x̂(t). (5.22)

Using Eq. (5.19), Eq. (5.21) can be written as

b ˙̂x(t) = Ffb(t) +K(t)(x(t)− x̂(t)) +K(t)ση(t). (5.23)

Subtracting Eq. (5.23) from Eq. (5.18) yields an evolution equation for ε(t):

ε̇(t) = −K(t)

b
ε(t) +

√
2kBT

b
ξ(t)− K(t)

b
ση(t). (5.24)

Equation (5.24) has a closed form solution, given by

ε(t) = γ(t, 0)ε0 +

∫ t

0
dt′γ(t, t′)

(√
2kBT

b
ξ(t′)− K(t′)

b
ση(t′)

)
, (5.25)

where γ(t, t′) is defined as

γ(t, t′) = e−
∫ t
t′ dt

′′ K(t′′)
b . (5.26)

Because x̂0 = 〈x0〉, we have 〈ε0〉 = 0, and from Eq. (5.25) we find,

〈ε(t)〉 = 0. (5.27)
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We thus see that the estimate constructed by Eq. (5.21) is an unbiased estimator.

5.4.3 The Kalman-Bucy filter

The mean error of the estimator given by Eq. (5.21) vanishes identically for any K(t),

so we now will attempt to find a K(t) which will minimize the mean square error E2(t),

defined as

E2(t) =
〈
ε2(t)

〉
. (5.28)

An estimate evolving according to Eq. (5.21), with K(t) chosen to minimize E2(t), is called

a Kalman-Bucy filter [9]. Note that, because x̂0 = 〈x0〉, we have

E2
0 =

〈
x2

0

〉
− 〈x0〉2 (5.29)

= σ2
x(0),

where we denote E2
0 = E2(0) and σ2

x(t) denotes the variance in the marginal distribution of

x at time t. Using Eqs. (5.27) and (5.28), we also find the useful relation

σ2
x(t) = σ2

x̂(t) + E2(t), (5.30)

where σ2
x̂(t) is the variance in the marginal distribution of x̂ at time t.

By combining Eqs. (5.24) and (5.25), one can find a differential equation for the evolution

of E(t):

dE2(t)

dt
=

(
σ

b
K(t)− E2(t)

σ

)2

− E4(t)

σ2
+

2kBT

b
. (5.31)

If we minimize Ė2(t) for every t > 0, then we will have minimized E2 for all t > 0. From

Eq. (5.31), we see that this minimization can be realized by choosing K(t) such that
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K(t) =
b

σ
E2(t), (5.32)

which reduces Eq. (5.31) to

dE2(t)

dt
= −E4(t)

σ2
+

2kBT

b
. (5.33)

The solution to Eq. (5.33) is given by

E2(t) =



σ
√

2kBT
b tanh

[
t
τε

+ arctanh

(
E2

0

σ

√
2kBT

b

)]
, E2

0 < σ
√

2kBT
b

σ
√

2kBT
b , E2

0 = σ
√

2kBT
b

σ
√

2kBT
b coth

[
t
τε

+ arccoth

(
E2

0

σ

√
2kBT

b

)]
, E2

0 > σ
√

2kBT
b ,

(5.34)

where τε is the natural error relaxation timescale:

τε =
σ√
2kBT
b

. (5.35)

The initial value of E2 is determined by the initial variance in the marginal distribution of

x, but after times much larger than τε, the mean square error will relax to the steady state

value σ
√

2kBT/b. From Eq. (5.32), we find

K(t) =



√
2bkBT
σ tanh

[
t
τε

+ arctanh

(
E2

0

σ

√
2kBT

b

)]
, E2

0 < σ
√

2kBT
b

√
2bkbT
σ , E2

0 = σ
√

2kBT
b

√
2bkBT
σ coth

[
t
τε

+ arccoth

(
E2

0

σ

√
2kBT

b

)]
, E2

0 > σ
√

2kBT
b .

(5.36)

A K(t) chosen according to Eq. (5.36) will thus yield the best (in the minimal mean square

error sense) estimator out of all linear estimators of the form of Eq. (5.21), but we still do

not know whether or not there exists an even better, possibly non-linear, estimator which
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does not take the from of Eq. (5.21).

5.4.4 Solution trajectories

The control demon would like to exert a feedback force on the Brownian particle which

mimics the force of an ideal spring, but the demon only knows its best linear estimate x̂(t)

and not the actual position x(t). Thus, the demon’s best course of action is to implement

the following feedback protocol:

Ffb(t) = −kx̂(t),

With this feedback protocol selected, the state and state estimator are described by two

coupled linear stochastic differential equations:

bẋ(t) = −kx̂(t) +
√

2bkBTξ(t) (5.37)

b ˙̂x(t) = −kx̂(t) +K(t)(x(t)− x̂(t)) +K(t)ση(t), x̂0 = 〈x0〉

with K(t) defined by Eq. (5.36). The closed form solution trajectories to these equations

are

x(t) = e−
t
τ x0 +

∫ t

0
dt′ e−

(t−t′)
τ

[
ε(t′)

τ
+

√
2kBT

b
ξ(t′)

]
, (5.38)

and

x̂(t) = e−
t
τ 〈x0〉+

∫ t

0
dt′ e−

(t−t′)
τ

[
K(t′)

b
ε(t′) +

σ

b
K(t′)η(t′)

]
, (5.39)

with ε(t) given by Eq. (5.25) and K(t) given by Eq. (5.36).

Due to the linearity of the evolution equations for x(t), a classical theorem from control

theory asserts that the Kalman-Bucy filter we have constructed is in fact, out of all possible

(even non-linear) estimators, the minimum mean square error estimator, given the model
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of observation specified by Eq. (5.19) (see Ref. [9] for a detailed explanation). Stated more

formally, we have

x̂(t) = argmin
z

{〈
(x(t)− z)2

〉
|z is y(t) measurable

}
. (5.40)

One can also show, in general, that for any time t, the set of all x(t) measurable functions

with finite mean square forms a Hilbert space which contains the set of all y(t) measurable

functions with finite mean square as a Hilbert subspace [9]. The inner product of two

functions a(t) and b(t) is defined as the expectation 〈a(t)b(t)〉. The definition in Eq. (5.40)

then implies that, for any time t, x̂(t) is the orthogonal projection of x(t) from the space of

x(t) measurable function onto the subspace of y(t) measurable functions. As a consequence,

we have

〈ε(t)x̂(t)〉 = 〈[x(t)− x̂(t)] x̂(t)〉 (5.41)

= 0,

for all t, and we find

〈x(t)x̂(t)〉 =
〈
x̂2(t)

〉
. (5.42)

This relation, along with Eq. (5.27), implies that

σ2
xx̂(t) = σ2

x̂(t), (5.43)

where σ2
xx̂(t) is the covariance between x and x̂ at time t:

σ2
xx̂(t) = 〈x(t)x̂(t)〉 − 〈x(t)〉 〈x̂(t)〉 (5.44)

We note that the above relations can all be verified by direct calculation using Eqs. (5.25),

(5.38), and (5.39).
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5.4.5 Distributions

We are ultimately interested in the average rate at which the demon does work at long

times, so we now discuss the statistics of the particle and estimate in the long time limit. We

assume that x is distributed initially according to some distribution P x0 , and x̂ is initially

fixed by x̂0 = 〈x0〉, so the initial joint distribution P xx̂0 is given by

P xx̂0 = P x0 δ(x̂− 〈x0〉 ). (5.45)

After time t = 0, the dynamics of the particle and estimate become time-dependent due

to the time-dependence of K(t), and the distribution evolves in a complicated manner.

The time-dependent means and variances for the marginal distributions, however, can be

calculated analytically. From Eqs. (5.38) and (5.39), we see immediately that

〈x(t)〉 = 〈x0〉 e−
t
τ (5.46)

〈x̂(t)〉 = 〈x0〉 e−
t
τ .

In Appendix B, we calculate the time-dependent variances of the marginal distributions of

x and x̂, and we find

σ2
x(t) =

(
σ2
x(0)− kBT

k

)
e−

2t
τ +

kbT

k
+ 2

∫ t

0

dt′

τ
e−

2(t−t′)
τ E2(t′) (5.47)

σ2
x̂(t) =

(
σ2
x(0)− kBT

k

)
e−

2t
τ +

kbT

k
+ 2

∫ t

0

dt′

τ
e−

2(t−t′)
τ E2(t′)− E2(t).

In the long-time limit, E2(t) relaxes to the constant value σ
√

2kBT/b, and the variances of

the marginal distributions relax to the constant values

σ2
x =

t→∞

kBT

k
+ σ

√
2kBT

b
(5.48)

σ2
x̂ =

t→∞

kBT

k
.
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From Eq. (5.46), it is clear that the marginal means relax to the constant value of zero, and

by Eq. (5.43), we see the covariance between x and x̂ relaxes to the same constant to which

σ2
x̂(t) relaxes.

From Eq. (5.36), we see that for times much larger than τε, K(t) relaxes to the constant

value
√

2bkBT/σ, and the stochastic differential equations describing x and x̂ reduce to

bẋ(t) =
t→∞

−kx̂(t) +
√

2bkBTξ(t) (5.49)

b ˙̂x(t) =
t→∞

−kx̂(t) +

√
2bkBT

σ
(x(t)− x̂(t)) +

√
2bkBTη(t).

Equation (5.49) is a linear stochastic system with constant coefficients, so if a steady state

distribution exists, we expect it to be a Gaussian [11]. In Appendix C, we verify directly

that the steady state distribution is given by

P xx̂s =

√√√√ 1

2πσ
√

2kBT
b

k

2πkBT
e

− (x−x̂)2

2σ

√
2kBT
b

− kx̂2

2kBT

. (5.50)

From Eq. (5.50), the steady state marginal distributions of x and x̂ can easily be calculated;

x̂ relaxes to a Gaussian with mean zero and variance kBT/k, and x relaxes to a Gaussian

with mean zero and variance kBT/k+σ
√

2kBT/b. We thus see that the estimate x̂ relaxes

to the same thermal distribution to which the uncontrolled particle attached to the spring

in Sec. 5.2 relaxes. The reason for this is clear - if the demon is mimicking the action

of the spring to the best of its ability, then the demon’s best estimate of the position of

the particle ought to relax to the thermal distribution described in Sec. 5.2. Experimental

evidence for this prediction has been observed in Brownian feedback traps [99, 101]. The

actual position of the particle, is distributed as a Gaussian with a larger variance than the

thermal variance due to the observation noise feeding into and corrupting the system. We

close this subsection by noting that in the limit of vanishingly small observation noise, the

joint steady state distribution reduces to
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P xx̂s =
σ→0

√
k

2πkBT
δ(x− x̂)e

− kx2

2kBT . (5.51)

As expected, for zero observation error, both x and x̂ are distributed thermally in the steady

state, and are perfectly correlated with each other.

5.4.6 Work

We now calculate the rate of work done by the demon on the particle. The demon is an

external agent exerting a force Ffb(t) = −kx̂(t) on the particle (as opposed to a force on

the particle which arises from a time-dependent potential), so the proper definition of work

in this context is the exclusive definition [88]. The rate at which the demon does work on

the particle, denoted by ẇext(t), is thus

ẇext(t) = Ffb(t)ẋ(t) (5.52)

= −kx̂(t)ẋ(t).

From Eq. (5.37) and the definition ε(t) = x(t)− x̂(t), we have

ẇext(t) = −kx(t)ẋ(t)− k

τ
ε(t)x̂(t) +

1

τ

√
2bkBTε(t)ξ(t). (5.53)

Taking averages and rewriting the first term on the left hand side yields

〈ẇext(t)〉 = − d

dt

〈
1

2
kx2(t)

〉
− k

τ
〈ε(t)x̂(t)〉+

1

τ

√
2bkBT 〈ε(t)ξ(t)〉 (5.54)

Before actually calculating the above work rate, we comment on the meaning of each

term appearing in the equation. In the long time limit, when the particle and estimate

have reached the steady state, we have
〈
x2(t)

〉
= σ2

x(t), and we know that σ2
x(t) is constant

in time by the very definition of steady state, so the first term on the right hand side of
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Eq. (5.54) will vanish. This first quantity thus represents the rate of energy consumption

associated with evolving the particle’s distribution towards the steady state. The second

term on the right hand side of Eq. (5.54) vanishes for all times due to Eq. (5.30). This term

will always vanish when the x̂ is constructed to be the optimal estimate, so it represents

the extra energetic price the demon would have had to pay had it sub-optimally estimated

the position of the particle. The last term on the right hand side of Eq. (5.54) represents

the energetic penalty rate paid by demon due to its noisy observations.

The error penalty rate
√

2bkBT 〈ε(t)ξ(t)〉 /τ can be calculated straightforwardly by using

Eq. (5.25):

〈ε(t)ξ(t)〉 =
1

2

√
2kBT

b
. (5.55)

The cost associated with approaching the steady state d
dt

〈
kx2(t)

〉
/2 can be calculated by

taking the time derivatives of 〈x(t)〉2 and σ2
x(t) in Eqs. (5.46) and (5.47), respectively, and

we find the average work rate at any time t to be

〈ẇext(t)〉 =

[(
k
〈
x2

0

〉
τ
− kBT

τ

)
e−

2t
τ (5.56)

+
k

τ

(
2

∫ t

0

dt′

τ
e−

2(t−t′)
τ E2(t′)− E2(t)

)]
+
kBT

τ
.

The term in the square brackets in Eq. (5.56) is due to the term d
dt

〈
kx2(t)

〉
/2 in Eq. (5.54),

and vanishes as expected in the long time limit when E2(t) reaches its steady state value.

Ignoring this term, we finally have the long time average rate of work preformed by an

imperfect demon when stabilizing a Brownian particle:

〈ẇext(t)〉 =
t→∞

kBT

τ
. (5.57)

The quantity kBT/τ is a natural unit of power associated with our system - the natural

thermal energy unit kBT divided by the system’s natural time scale τ .
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Equation (5.57) is the central result of this section, and it presents an immediate prob-

lem. According to Eq. (5.57), the average work rate is independent of the observation noise

strength σ, and this implies that in the limit where σ approaches zero, the rate of work

preformed by the demon making noisy observations from Sec. 5.4 does not converge to the

rate of work preformed by the demon making perfect observations from Sec. 5.3:

lim
σ→0
〈ẇext(t)〉 =

t→∞

kBT

τ
6= 0 =

t→∞

〈
ẇ0
ext(t)

〉
. (5.58)

We are thus presented with an apparent paradox. When σ approaches 0, we see from

Eq. (5.25) that ε(t) vanishes, so x(t) = x̂(t), and thus, given the same realizations of ξ(t)

and initial particle conditions, the particles from Secs. 5.3 and 5.4 will experience the same

force and follow the same trajectory, so Eq. (5.58) can not be correct. This means that

either Eq. (5.17) or Eq. (5.57) must be incorrect. However, we know that Eq. (5.17) must

be correct, or else the existence of thermal equilibrium for a Brownian particle attached to

a spring would be a contradiction, and we know that Eq. (5.57) is correct due to our careful

derivation. We now focus our efforts on resolving this paradox.

5.5 Correlated thermal force

The constant work rate kBT/τ in Eq. (5.57) originates from the term
√

2bkBT 〈ε(t)ξ(t)〉 /τ in Eq. (5.54), so we immediately suspect the white noise process ξ(t)

(which models the fluctuating thermal force in the evolution equation for x(t)) to be the

source of our paradox. This suspicion is not entirely surprising - the Gaussian white noise

process is uncorrelated down to infinitely fine time-scales and produces noise uniformly

across all frequencies, so it is somewhat pathological. Any real force, no matter how seem-

ingly irregular, will have a non-zero (possibly immeasurably small) correlation time. We

will therefore attempt to resolve our paradox by considering a more realistic model of the

fluctuating thermal force.

Consider an Ornstein-Uhlenbeck process z(t), defined by [11]
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τz ż(t) = −z(t) + ξ(t), (5.59)

where ξ(t) is the white noise process defined by Eq. (5.2), τz is the process’s effective

correlation time, and z(0) = z0 is assumed to be distributed as a Gaussian with mean zero

and variance 1/2τz. The closed form solution to Eq. (5.59) is given by

z(t) = z0e
− t
τz +

∫ t

0

dt′

τz
e−

(t−t′)
τz ξ(t′). (5.60)

Using Eqs. (5.2) and (5.60), we find the mean and auto correlation of z(t) to be

〈z(t)〉 = 0 (5.61)〈
z(t)z(t′)

〉
=

1

2τz
e−
|t−t′|
τz .

In the limit τz → 0, Eq. (5.61) reduces to Eq. (5.2), and Eq. (5.59) reduces to z(t) = ξ(t).

We thus see that for very a small correlation time, an Onstein-Uhlenbeck process is well

approximated by a white noise process.

A classical thermal bath is ultimately a deterministic Hamiltonian system, so the fluctu-

ating thermal force acting on a Brownian particle must be correlated over short time scales

(even if these time scales are immeasurably small) and is only approximately described by

a white noise process. Therefore, we now consider a free Brownian particle under the in-

fluence of a control demon with the fluctuating thermal force modelled by z(t), where τz is

assumed to be much smaller than the natural system time-scale τ . The equation of motion

for the position of particle, x(t), is given by

bẋ(t) = −kx̂(t) +
√

2bkBTz(t), (5.62)
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where x̂(t) again denotes the demon’s estimate of the position of the particle. Again, we

assume nothing about the initial distribution of x aside from a finite mean and variance.

We model the demon’s noisy observations, y(t), with a white noise process as in Eq. (5.19):

y(t) = x(t) + ση(t). (5.63)

Finding the minimal mean square error estimator of x(t), given Eqs. (5.62) and (5.63),

is not a straightforward task as in Sec. 5.4. We will therefore model the demon’s estimate in

the same manner as in Eq. (5.21), but with K(t) chosen to be equal to the optimal steady

state value
√

2bkBT/σ calculated in Sec. 5.4:

b ˙̂x(t) = −kx̂(t) +

√
2bkBT

σ
(y(t)− x̂(t)) (5.64)

= −kx̂(t) +

√
2bkBT

σ
(x(t)− x̂(t)) +

√
2bkBTη(t),

where we set x̂(0) = 〈x0〉. This model of state estimation is not optimal in the minimal

mean square sense (as in Sec. 5.4), but for τz much smaller than τ , Eq. (5.64) should pro-

vide a reasonable estimator in the long time limit. We note that the joint stochastic process

described Eqs. (5.62) and (5.64) does not obey the fluctuation-dissipation theorem, so the

existence of a thermal steady state in the long time limit is dubious [83]. Regardless, the

long time average work rate will turn out to be constant and finite.

The equation of motion for the error between the actual particle position and the de-

mon’s estimate, ε(t) = x(t)− x̂(t), is given by

ε̇(t) = −ε(t)
τε

+

√
2kBT

b
z(t)−

√
2kBT

b
η(t), (5.65)

where τε is the natural error time-scale defined in Eq. (5.35). The closed form solution of

Eq. (5.65) is given by
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ε(t) = ε0e
− t
τε +

∫ t

0
dt′ e−

(t−t′)
τε

√
2kBT

b

(
z(t′)− η(t′)

)
, (5.66)

where ε0 = x0 − 〈x0〉. Using Eq. (5.66), the closed form solutions to Eqs. (5.62) and (5.64)

can be written as

x(t) = x0e
− t
τ +

∫ t

0
dt′ e−

(t−t′)
τ

[
ε(t′)

τ
+

√
2kBT

b
z(t′)

]
, (5.67)

and

x̂(t) = 〈x0〉 e−
t
τ +

∫ t

0
dt′ e−

(t−t′)
τ

[
ε(t′)

τε
+

√
2kBT

b
η(t′)

]
, (5.68)

respectively.

The rate at which the demon does work on the particle at time t, denoted by ẇzext(t), is

defined as in Sec. 5.4:

ẇzext(t) = −kx̂(t)ẋ(t). (5.69)

Taking expectations, and using the definition ε(t) = x(t) − x̂(t) along with Eq. (5.62), we

have

〈ẇzext(t)〉 = − d

dt

〈
1

2
kx2(t)

〉
− k

τ
〈ε(t)x̂(t)〉+

1

τ

√
2bkBT 〈ε(t)z(t)〉 . (5.70)

The expectations on the right hand side of Eq.(5.70) can be computed by substituting in the

expressions for the solution trajectories in Eqs. (5.60), (5.66), (5.67), and (5.68) and then

making repeated use of the identities in Eqs. (5.20) and (5.61), the result of which is a series

of nested integrals of exponentials and delta functions which are tedious but straightforward

to compute. The resulting expressions are time-dependent and cumbersome, but simplify

substantially in the long-time limit. The first term vanishes:
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− d

dt

〈
1

2
kx2(t)

〉
=

t→∞
0 (5.71)

The second term does not vanish at large times due to the demon’s sub-optimal method of

estimation:

− k

τ
〈ε(t)x̂(t)〉 =

t→∞

kBT

τ

(τz
τ

)2 1(
1 + τε

τ

) (
1 + τz

τ

) (
1 + τz

τε

) (5.72)

The error time-scale τε, defined in Eq. (5.35), is proportional the observation noise strength,

and we see that the sub-optimal estimation cost correspondingly vanishes in the limit of

perfect observations (that is, the limit τε → 0). In the limit τz → 0, the system reduces to

the system described in Sec. 5.4, so the estimator becomes optimal in the long time limit,

and Eq. (5.72) correspondingly vanishes. The sub-optimal estimation cost, being a second

order quantity in τz/τ , is considered small and is not the central quantity of interest. The

last term on the right hand side of Eq. (5.70), whose counterpart in Sec. 5.4 produced the

paradox, is given at large times by

1

τ

√
2bkBT 〈ε(t)z(t)〉 =

t→∞

kBT

τ

1

1 + τz
τε

. (5.73)

Equations (5.70), (5.71), (5.72), and (5.73) together give

〈ẇzext(t)〉 =
t→∞

kBT

τ

1

1 + τz
τε

[
1 +O

(τz
τ

)2
]
. (5.74)

Ignoring the small O (τz/τ)2 contribution from the sub-optimal estimation cost, we arrive

at the central result of this chapter:
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〈ẇzext(t)〉 =
t→∞

kBT

τ

1

1 + τz
τε

. (5.75)

Equation (5.75) clarifies and resolves the paradox discovered in Sec. 5.4. We see that

for small but non-zero τz, in the limit of vanishing observation noise strength, the average

work rate vanishes:

lim
σ→0
〈ẇzext(t)〉 =

t→∞
0 =
t→∞

〈
ẇ0
ext(t)

〉
. (5.76)

Thus, given perfect observations, the demon can perfectly mimic the force of a spring on

the particle and stabilize without doing work or dissipating heat, in agreement with the

results of Secs. 5.2 and 5.3. More generally, if the observation noise is small but non-zero,

so that τε � τz, we have

〈ẇzext(t)〉 =
t→∞
τε�τz

O

(
τε
τz

)
. (5.77)

On the other hand, if the observation noise is large, so that τε � τz, we have

〈ẇzext(t)〉 =
t→∞
τε≫τz

kBT

τ
+O

(
τz
τε

)
. (5.78)

Thus, if the demon wants to perform work at a rate much less than the natural thermal

power kBT/τ , the demon’s observations must be accurate enough such that the error time

scale is much smaller than the thermal force’s correlation time.

From Eq. (5.75), we see that the paradoxical result of Sec. 5.4 is related to the ordering

of two limits - the perfect observation limit and the uncorrelated thermal force limit. If

one takes the uncorrelated thermal force limit first, Eq. (5.75) evaluates to kBT/τ as in

Sec. 5.4, and if one takes the perfect observation limit first, Eq. (5.75) evaluates to zero as
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in Sec. 5.3.

5.6 Summary and conclusions

In this chapter we have shown that, given the existence of short lived correlations in the

fluctuating thermal force, a control demon can stabilize a diffusing particle without doing

work or dissipating heat by perfectly mimicking the force of an ideal spring. Applying the

same thermal equilibrium arguments from Sec. 5.2, we conclude that this result should also

hold if the demon stabilizes by perfectly mimicking any conservative force. We have also

shown that in order for the demon to perform work at a rate much less than the natural

thermal power unit kBT/τ , the natural time scale associated with the demon’s errors must

be much smaller than the thermal force’s correlation time. This result, however, calls into

question the validity of the overdamped limit in the presence of an extremely accurate de-

mon.

The overdamped limit is only valid when the particle’s inertia m is negligible such that

the momentum relaxation time scale τp = m/b is much smaller than all other relevant

time scales associated with the problem [16]. The motion of the particle is ballistic over

time scales smaller than τp, and diffusive over larger time scales [102, 103]. Intuitively, the

Brownian particle is subject to erratic, seemingly random collisions with the microscopic

particles of surrounding medium, and due to the Brownian particle’s inertia, it takes time

intervals of order τp for the cumulative force of these tiny collisions to have a noticeable

effect on the particle’s motion. When the demon’s error relaxation time scale approaches

zero, it will estimate the position of the Brownian particle and exert corresponding feed-

back forces by making computations which operate over time scales far smaller than the

ballistic time scale, so using the overdamped Langevin equation is not a priori justified. A

complete treatment of the problem using the full underdamped equations of motion would

address this issue, but because the equation for ẋ(t) becomes non-local in time, the problem

becomes much more complicated and is no longer analytically tractable. Some insight into

this issue may gained by considering lowest order corrections to the overdamped limit, as

is done in Refs. [82] and [104], and this is a topic we hope to explore in future work. When
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the full underdamped equations of motion are used, the fluctuating thermal force appearing

in the equation for ẋ(t) is endowed with a correlation time of τp, so we suspect that the

correlations that were introduced artificially in Sec. 5.5 may be related physically to the

ballistic time-scale. Regardless, we conclude that if a control demon is to counteract the

diffusive destabilization of a Brownian particle without doing work or dissipating heat, then

it needs the ability to take advantage of correlations in the fluctuating thermal force, and

it must have control over time-scales smaller than those over which diffusion is an accurate

description of the particle’s motion.

The control demon results presented in this chapter can be framed in terms of the second

law of thermodynamics and Maxwell’s demon. A Maxwell’s demon utilizes the information

gained through observation of a thermodynamic system in order to rectify thermal fluctu-

ations and enact apparent violations of the second law, such as decreasing entropy without

doing work or extracting work from a single temperature heat bath without increasing en-

tropy [21, 22, 23]. A control demon observes a Brownian particle and attempts to rectify

thermal fluctuations in order to counter-act diffusive motion and maintain a concentrated

particle distribution centered at a fixed location. Were it not for the control demon’s efforts,

the particle’s distribution would expand outward forever, continually increasing the total

thermodynamic entropy of the universe. If the control demon is present and operates at

time-scales above the thermal force’s correlation time-scale, there is no entropy increase as-

sociated with the particle’s diffusive motion, but the demon continually dissipates heat at a

rate of kBT/τ and thus continually increases the thermodynamic entropy of the universe, so

there is no apparent second law violation. It is only when the demon operates far below the

thermal force correlation time-scale that it is able to apparently violate the second law and

counteract the entropic increase associated with diffusive destabilization without increasing

entropy elsewhere in the universe. Thus, in order to rectify thermal fluctuations and ap-

parently violate the second law, the demon must be able to take advantage of short-lived

correlations in the fluctuating thermal force acting on the particle.

We close by discussing the experimental implications of our work. Experimental realiza-

tions of a control demon exist in the form of Brownian feedback traps [99, 100, 101, 105]. A

Brownian feedback trap functions to confine a small charged Brownian particle suspended
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in solution by imaging the position of the particle and using surrounding macroscopic elec-

trodes to exert corresponding feedback forces, in effect creating a virtual trapping potential.

This set-up contrasts with an optical tweezers experiment, where a focused laser is used to

confine a Brownian particle by creating a genuine trapping potential [102, 103]. Our results

predict constraints on the rate of heat dissipated by Brownian feedback trap in terms of

imaging resolution and the time-delay associated with calculating the estimated the parti-

cle position. In practice, other experimental realities, such time-delays associated with the

experimental apparatuses, discrete-time observations, discretely applied feedback forces,

and errors in applied feedback forces, will be present and may lead to further dissipation

comparable to or greater than the dissipation due to observation error [99]. Furthermore, a

particle suspended in solution may be subject to hydrodynamic forces, and these effects may

also influence the observed rate of dissipation [103]. These experimental realities warrant

further theoretical investigation using the control demon framework.
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Chapter 6

Summary and outlook

The universe is a complicated chaotic environment comprised of many, many interacting

degrees of freedom. Scientists only observe and experiment on small subsets of these degrees

of freedom at any one time, and the unobserved degrees of freedom can potentially, some-

times drastically, affect the evolution of the observed degrees of freedom. There will thus

always exist a need for scientists to describe the effects of the unobserved on the observed,

and stochastic processes function as modelling tools which are useful for precisely this pur-

pose. When used for modelling in the physical sciences in particular, a stochastic process

always represents a simplified or effective description of some underlying complicated phys-

ical process which is ultimately deterministic in origin. The central message of this thesis is

that, by understanding the details of how stochastic processes in mesoscale physical models

naturally emerge from the underlying complicated microscale physical processes, we stand

to obtain useful new results as well as the means to address inconsistencies and conceptual

difficulties for which the alternative approach would have proven insufficient - the alterna-

tive approach being to simply accept stochastic processes at face value as modelling tools,

without regard for their underlying physical origins. In this thesis, we have presented a

survey of results from the fields of time-dependent billiards, the dynamical foundations

of thermodynamics, and the feedback control of mesoscale thermodynamic systems, all of

which illustrate our central message. We now summarize our work, highlight our new and

original contributions, and discuss potential directions for future research.
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In Chap. 2, we constructed the quivering limit as a description of time-dependent billiard

motion in the limit of infinitely small boundary displacements. The original motivation for

introducing the quivering limit was to find a physically consistent but simplified description

of the microscopic dynamics associated with a particle evolving inside a time-dependent

billiard. The resulting system turned out to be stochastic, with particle energy universally

evolving under a mesoscopic diffusion equation, and this universal stochastic mesoscopic

description allowed us to address some long-standing problems in the deterministic time-

dependent billiard literature. The confusion associated with these long-standing problems

can, in some sense, be attributed to the universal presence of the previously undiscovered

quivering limit. The quivering limit is an original and important contribution to the field of

time-dependent billiards because it is a physically consistent fixed-wall simplification of bil-

liard motion. In contrast to the physically inconsistent fixed-wall simplifications introduced

in previous literature [38, 50, 63], the quivering limit explicitly incorporates the physical

fact that, no matter how small the amplitude of wall oscillations, collisions between particles

and walls with large relative speeds of approach are statistically more likely to occur than

collisions with small relative speeds of approach.

Currently, we are employing quivering billiards to study the energy dynamics of time-

dependent billiards with finitely massive walls. In these systems, the billiard shape itself is

considered to be a physical degree of freedom, with the Hamiltonian notions of energy and

inertia corresponding to the billiard wall’s kinetic energy and mass, respectively. The finite

wall mass allows the billiard to gain and loose energy due to collisions with an enclosed

non-interacting gas, and the gas can effectively interact with itself through these energy

exchanges. For chaotic billiard shapes whose wall’s mass is much, much greater than that

of the enclosed particles, the billiard and gas can together be described using the chaos

bath formalism established in Chap. 3, with the system of interest corresponding to the

billiard shape and the enclosed non-interacting gas functioning as the baths. The quivering

limit allows us to consider the energy dynamics without worrying about the complications

associated with the changing billiard shape, and we hope to use this framework to make

analytical progress on the adiabatic piston problem [106] and a microscopic derivation of

Fourier’s law of heat conduction [107].
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In Chaps. 3 and 4, we developed and employed the chaos bath framework to explore

the microscopic foundations of thermodynamics. We derived the chaos bath equivalent of

important results from non-equilibrium thermodynamics (results which are well-established

within the framework of stochastic thermodynamics), and by using the micro-meso con-

nection, we showed that these results have simple, somewhat trivial, Hamiltonian origins.

To the best of our knowledge, our work represents the first time that the ergodic adiabatic

Hamiltonian framework of Berry and Robbins [77, 78], Wilkinson [48], and Jarzynski [68]

has been explicitly connected to the framework stochastic thermodynamics. Specifically, the

relationship between stochastic action, path probabilities, entropy production, the adiabatic

reaction forces, and heat flow at the level of individual mesoscale trajectories, as demon-

strated by Eqs. (4.118), (4.119), and (4.120), is new result for ergodic adiabatic Hamiltonian

systems. The starting point for our work was the derivation of the Fokker-Planck equation

(4.7) for the mesoscale evolution of the system of interest and bath energies. This equation

was previously derived by Jarzynski [68] for the special case of a single chaos bath with

no potential energy associated with the system of interest - our work is a generalization of

Jarzynski’s derivation to the case of multiple baths and a time-dependent potential energy

function. The associated Langevin equation in Eq. (4.29), is, to the best of our knowledge,

the first time that a stochastic differential equation the has been used to describe the time

evolution of individual mesoscale trajectories obeying ergodic adiabatic Hamiltonian dy-

namics.

A notable omission from our work in Chaps. 3 and 4 is any mention of non-equilibrium

steady states, but we suspect that allowing for multiple baths in the thermodynamic limit

may rectify this deficiency. The presence of two fixed temperature baths should allow for

a continual energy flow through the system of interest from the warmer bath to the colder

bath, but deriving such effects from the chaos bath framework will likely require a subtle

handling of limits, and may require the introduction of additional separated time scales.

This is a topic for future research.

In Chap. 5, we employed mesoscopic stochastic thermodynamics to study the ener-

getic costs of using an external feedback controller to stabilize the diffusive motion of an

overdamped Brownian particle obeying Langevin dynamics. Our feedback control scheme
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was conceptualized as a control demon - a hypothetical being which continuously makes

possibly noisy observations of the Brownian particle’s position, continuously estimates the

actual position of the particle, and continuously exerts corresponding feedback forces. We

showed that, as a somewhat trivial consequence of the first law of thermodynamics and

the notion of thermal equilibrium, a demon which makes perfect observations is able sta-

bilize the Brownian particle without doing any work on average. Paradoxically, however,

we also showed that a demon which makes noisy observations, even when employing a

Kalman-Bucy filter to optimally estimate the Brownian particle’s position, must continu-

ously do work on average in order to achieve stabilization, where the average work rate is

independent of the observation noise strength and does not vanish in the limit of perfect

observations. Although the overdamped Langevin equation is a frequently used model in

stochastic thermodynamics which has been referred to as “a paradigm for the field” [13], to

the best of our knowledge, the paradox presented in Chap. 5 is an original new result. In

order to resolve this paradox, we had to recognize that the fluctuating thermal force, which

is modelled as an uncorrelated Gaussian white noise process in the overdamped Langevin

equation, is ultimately deterministic in origin and must therefore be correlated over short

(possibly immeasurably short) time scales which are much smaller than the Brownian par-

ticle’s natural diffusion time scale. We showed that in order to stabilize while doing work

at a vanishingly small rate on average, the demon’s error time scale (which is proportional

to the observation noise strength) must be much, much smaller than the thermal force’s

correlation time scale, and that the paradox arises because the perfect observation limit

and the uncorrelated noise limit do not commute - this is also a new and original result.

In future work, we would like to employ control demon set-up to the problem of sta-

bilizing a Brownian particle modelled by an underdamped Langevin equation. The under-

damped Langevin description of Brownian motion lies somewhere between the microscopic

and mesoscopic descriptions, and the white noise which enters the equation of motion for the

particle’s momentum results in a correlated Ornstein-Uhlenbeck noise entering the equation

of motion for the particle’s position. Because these correlations are inherent to the under-

damped model, it is not clear whether or not a paradox analogous to that of Chap. 5 and

the corresponding to need endow the thermal force with even finer correlations will arise.
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Considering all of the work presented in this thesis, we conclude that the microscopic

foundations of stochastic processes in physics can be equal in importance to the applica-

tions of stochastic processes in physics. Just as stochastic thermodynamics yields insights

and results by relating the physics of the macroscale to the physics of the mesoscale, our

work yields insights and results by relating the physics of the mesoscale to the physics of

the microscale. Overall, an interesting next step in our research will be to develop the

micro-meso connection in a framework which can describe feedback control in thermody-

namic systems at both the microscale and mesoscale. Such an avenue of research will likely

present significant mathematical challenges, and will involve combining and extending the

ideas presented in Chaps. 3, 4, and 5. If such a framework can be established, we suspect

that interesting new results related to the physical Hamiltonian limitations of controlling

thermodynamic systems will follow.
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Appendix A

Collision location perturbation

Figure A.1: Incoming and outgoing particle trajectories at the bth collision location qb in the
full and frozen dynamics, assuming a collision wall velocity ub. The full dynamics trajectory
is perturbed by an angle δθ|ub relative to the frozen dynamics trajectory. nb is the outward
normal to the boundary at qb.

Here, we find ‖δqb+1|ub‖, the magnitude of the perturbation to the frozen dynamics

(b + 1)th collision location due to the energy gained or lost at the bth collision in the full

dynamics. In the frozen dynamics, the collision angle θb is equal to the angle of reflection.

Let θb + δθ|ub be the reflected angle in the full dynamics, assuming a wall velocity of ub at

the bth collision. We denote vb−1 as the incoming particle speed at the bth collision, vT as the

velocity component tangent to the wall, vP as the reflected particle’s velocity component

perpendicular to the wall in the frozen dynamics, and vP |ub as the reflected perpendicular
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Figure A.2: The geometrical relationship between qb, qb+1|F , and qb+1|ub. qb and qb+1|F
denote the bth and (b + 1)th collision locations in the frozen dynamics, respectively, while
qb+1|ub denotes the (b + 1)th collision location in the full dynamics. nb and nb+1 are the
outward normals to the boundary at qb and qb+1|F , respectively.

velocity component in the full dynamics. The collision kinematics give vP |ub = vP − 2ub.

The perturbation δθ|ub can be found using the geometry in Fig. A.1. Note that tan(θb) = vP
vT

and tan(θb + δθ|ub) = vP |ub
vT

. Expanding tan(θb + δθ|ub) to first order in δθ|ub, we find

tan(θb + δθ|ub) =
vP |ub
vT

(A.1)

= tan(θb) +
1

cos2(θb)
δθ|ub

=
vP
vT

+
1

cos2(θb)
δθ|ub.

Noting that vP |ub = vP − 2ub and vT = vb−1 cos θb, we solve for δθ|ub to find

δθ|ub = 2 cos(θb)
ub
vb−1

. (A.2)

Figure A.2 shows the geometry of the bth and (b + 1)th collisions in both the full and

frozen dynamics, where ‖δqb+1|ub‖ is the length of the line segment C ′D′. We assume that

δθ|ub is small enough such that the wall appears flat between the frozen and full dynamics’

(b+ 1)th collision locations. The triangle A′B′C ′ in Fig. A.2 is similar to the triangle ABC

in Fig. A.1, so we have |BC||AC| = |B′C′|
|A′C′| = 2|ub|

vb−1
. We note that |A′C ′| is the distance between

the bth and (b+ 1)th collision locations in the frozen dynamics, so we denote |A′C ′| = Lb|F
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and find

|B′C ′| = 2|ub|
vb−1

Lb|F . (A.3)

All angles in Fig. A.1 can be found in terms of θb, θb+1|F , and δθ|ub. By applying the Law

of Sines to the triangle B′C ′D′, we find

|C ′D′| = 2Lb|F
cos(θb)

sin(θb+1|F )

|ub|
vb−1

. (A.4)

We thus have

‖δqb+1|ub‖ = 2Lb|F
cos(θb)

sin(θb+1|F )

|ub|
vb−1

. (A.5)
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Appendix B

System and estimate variance

Here, we calculate the expressions for σ2
x(t) and σ2

x̂(t) given in Eq. (5.47). First, denote

by r(t) the quantity

r(t) =

∫ t

0

dt′

τ
e−

(t−t′)
τ ε(t′), (B.1)

with ε(t) given in Eq. (5.25). Note that r(t) obeys the following differential equation:

ṙ(t) =
ε(t)

τ
− r(t)

τ
, r(0) = 0. (B.2)

Using the above equation, and the fact that dr2(t)
dt = 2r(t)ṙ(t), we find

r2(t) = 2

∫ t

0

dt′

τ
e−

2(t−t′)
τ r(t′)ε(t′) (B.3)

Note that the particle trajectory in Eq. (5.38) can be written as

x(t) = x0e
− t
τ + r(t) +

∫ t

0
dt′ e−

(t−t′)
τ

√
2kBT

b
ξ(t′). (B.4)
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Define the trajectory x̃(t) by

x̃(t) = x(t)− r(t) (B.5)

= x0e
− t
τ +

∫ t

0
dt′ e−

(t−t′)
τ

√
2kBT

b
ξ(t′).

This trajectory represents the path the particle would have taken, given the same initial

condition and realization of ξ(t), had the demon been able to make perfect observations.

Using the orthogonality relation in Eq. (5.41) along with the definition of x̃(t), we find

〈r(t)ε(t)〉 = E2(t)− 〈x̃(t)ε(t)〉 , (B.6)

and the expectation of r2(t) can be written as

〈
r2(t)

〉
= 2

∫ t

0

dt′

τ
e−

2(t−t′)
τ

[
E2(t′)−

〈
x̃(t′)ε(t′)

〉]
(B.7)

Upon squaring Eq. (B.5) and taking expectations, we have

〈
x2(t)

〉
=
〈
x̃2(t)

〉
+
〈
r2(t)

〉
+ 2 〈x̃(t)r(t)〉 . (B.8)

The expectation
〈
x̃2(t)

〉
can be calculated straightforwardly by using Eqs. (5.2) and (B.5):

〈
x̃2(t)

〉
=

(〈
x2

0

〉
− kBT

k

)
e−

2t
τ +

kBT

k
(B.9)

Using Eqs. (B.1) and (B.7), we also have
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〈
r2(t)

〉
+ 2 〈x̃(t)r(t)〉 = 2

∫ t

0

dt′

τ
e−

2(t−t′)
τ E2(t′) (B.10)

+ 2

∫ t

0

dt′

τ
e−

(t−t′)
τ

[〈
x̃(t)ε(t′)

〉
− e−

(t−t′)
τ
〈
x̃(t′)ε(t′)

〉]

From Eqs. (5.25) and (B.7), it is straightforward to show the relation

〈
x̃(t)ε(t′)

〉
=
t≥t′

e−
(t−t′)
τ
〈
x̃(t′)ε(t′)

〉
, (B.11)

which implies that the second integral in Eq. (B.10) vanishes. Taking Eqs. (B.8), (B.9),

and (B.10) together, along with the equality 〈x(t)〉2 = 〈x0〉2 e−
2t
τ , we have

σ2
x(t) =

(
σ2
x(0)− kBT

k

)
e−

2t
τ +

kbT

k
+ 2

∫ t

0

dt′

τ
e−

2(t−t′)
τ E2(t′). (B.12)

The variance relation in Eq. (5.30) then implies

σ2
x̂(t) =

(
σ2
x(0)− kBT

k

)
e−

2t
τ +

kbT

k
+ 2

∫ t

0

dt′

τ
e−

2(t−t′)
τ E2(t′)− E2(t).

(B.13)
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Appendix C

Gaussian distribution

In this appendix, we show that the system state and estimate have a steady state

distribution given by Eq. (5.50). The Fokker-Plank equation associated with the system

defined by Eq. (5.49) is given by [9]

∂tP
xx̂(t) = −∂x

[
− x̂
τ
P xx̂(t)

]
− ∂x̂

[(
− x̂
τ

+
x− x̂
τε

)
P xx̂(t)

]
(C.1)

+ ∂2
xx

[
kBT

b
P xx̂(t)

]
+ ∂2

x̂x̂

[
kBT

b
P xx̂(t)

]
,

where P xx̂(t) is the time-dependent joint probability distribution of x and x̂. If a steady

state distribution P xx̂s exists, then we must have

0 = −∂x
[
− x̂
τ
P xx̂s

]
− ∂x̂

[(
− x̂
τ

+
x− x̂
τε

)
P xx̂s

]
(C.2)

+ ∂2
xx

[
kBT

b
P xx̂s

]
+ ∂2

x̂x̂

[
kBT

b
P xx̂s

]
,

Due to the linearity of Eq. (5.49), if a steady state exist, we expect it to be a Gaussian.

From Eq. (5.46), we expect the steady state have mean zero, and from Eqs. (5.43) and

(5.48), we expect the covariance matrix Σ to be given by
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Σ =

kBT
τ + σ

√
2kBT
b

kBT
τ

kBT
τ

kBT
τ

 . (C.3)

We thus expect the steady state distribution to be of the form

P xx̂s = N e

− 1
2

(
x x̂

)
Σ−1

x
x̂


, (C.4)

where N is a normalization constant. It is a simple matter to check that Eq. (C.4) indeed

satisfies Eq. (C.2). After normalizing and factoring the terms in the exponential, Eq. (C.4)

can be brought into the form of Eq. (5.50).
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