
2013 Annual Conference on Advances in Cognitive Systems:
Workshop on Metacognition in Situated Agents

Computer Science Technical Report No. CS-TR-5030

UMIACS Technical Report No. UMIACS-TR-2013-07

Darsana Josyula (co-chair), Bowie State University

Paul Robertson (co-chair), Doll Labs

Michael T. Cox, University of Maryland Institute for Advanced Computer Studies

College Park, MD 20742

ii

2013 Annual Conference on Advances in Cognitive Systems: Workshop on Metacognition in Situated Agents

Preface

Metacognition is the process of thinking about thinking. It provides cognitive systems the ability
to note and deal with anomalies, changes, opportunities, surprises and uncertainty. It includes both
monitoring of cognitive activities and control of such activities. Monitoring helps to evaluate and
explain the cognitive activities, while control helps to adapt or modify the cognitive activities.

Situated agents are agents embedded in a dynamic environment that they can sense or perceive
and manipulate or change through their actions. Similarly, they can act in order to manipulate other
agents among which they are situated. Examples might include robots, natural language dialog
interfaces, web-based agents or virtual-reality bots.

An agent can leverage metacognition of its own thinking about other agents in its situated
environment. It can equally benefit from metacognition of the thinking of other agents towards
itself. Metacognitive monitoring can help situated agents in negotiations, conflict resolution and
norm-awareness. Metacognitive control can help coordination and coalition formations of situated
social agents.

In this workshop, we investigate the monitoring and control aspects of metacognition about
self and other agents, and their application to situated artificial agents. The papers in this report
cover some of the current work related to metacognition in the areas of meta-knowledge
representation, meta-reasoning and meta-cognitive architecture.

Perlis et al. outlines a high-level view of architectures for real-time situated agents and the
reliance of such agents on metacognition. Mbale, K. and Josyula, D presents a generic
metacognitive component based on preserving the homeostasis of a host agent. Pickett, M. presents
a framework for representing, learning, and processing meta-knowledge. Riddle, P. et al. discusses
meta-level search through a problem representation space for problem–reformulation. Caro, M et
al. uses metamemory to adapt to changes in memory retrieval constraints. Langley,P. et al. abstracts
general problem specific abilities into strategic problem solving knowledge in an architecture for
flexible problem solving across various domains. Samsonovich, A. examines metacognition as a
means to improve fluid intelligence in a cognitive architecture. Perlis,D. and Cox, M. discuss the
application of metacognitive monitoring to anomaly detection and goal generation.

Darsana Josyula and Paul Robertson
Baltimore, MD

14 December 2013

iii

iv

2013 Annual Conference on Advances in Cognitive Systems: Workshop on Metacognition in Situated Agents

Table of Contents

Preface ... iii

Don Perlis, Michael T. Cox, Michael Maynord, Elizabeth Mcnany, Matthew Paisner,
Vikas Shivashankar, Emily Hand, Jared Shamwell, Tim Oates, Tongchun Du, Darsana
Josyula and Manuel Caro
A broad vision for intelligent behavior: perpetual real-world cognitive agents 1

Manuel Caro, Darsana Josyula and Jovani Jimenez
Metamemory for Information Retrieval from Long-term Memory in Artificial
Cognitive Systems ... 17

Kenneth Mbale and Darsana Josyula
General Purpose Metacognition Engine ... 35

Don Perlis and Michael T. Cox
Autonomy beyond Anomalies and Goals: A Strategic Perspective 51

Marc Pickett
Towards A Unified Framework for Learning and Processing Perceptual,
Relational, and Meta Knowledge... 55

Pat Langley, Miranda Emery, Michael Barley and Christopher Maclellan
An Architecture for Flexible Problem Solving ... 65

Patricia Riddle, Mike Barley and Santiago Franco
Preliminary Results on a Meta-Level Search Framework for Problem
Reformulation .. 8Error! Bookmark not defined.

Alexei Samsonovich
How to Develop Fluid Intelligence via Metacognitive Self-Organization 99

v

http://www.cs.umd.edu/%7Eperlis
http://mcox.org/
http://www.cs.umd.edu/%7Edarsana
http://www.cs.umd.edu/%7Edarsana
http://www.edupmedia.org/
http://www.unicordoba.edu.co/
http://www.bowiestate.edu/
http://www.unal.edu.co/
http://www.bowiestate.edu/
http://www.cs.umd.edu/%7Edarsana
http://mcox.org/
http://marcpickett.com/
http://www.isle.org/%7Elangley/
http://www.christopia.net/
http://www.cs.auckland.ac.nz/%7Ebarley

vi

2013 Annual Conference on Advances in Cognitive Systems: Workshop on Metacognition in Situated Agents

A Broad Vision for Intelligent Behavior:

Perpetual Real-World Cognitive Agents

Don Perlis PERLIS@CS.UMD.EDU
Michael T. Cox MCOX@CS.UMD.EDU
Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742 USA

Michael Maynord MAYNORD@UMD.EDU
Elizabeth McNany BETH@CS.UMD.EDU
Matthew Paisner PAISNER@CS.UMD.EDU
Vikas Shivashankar SVIKAS@CS.UMD.EDU
Emily Hand EMHAND@CS.UMD.EDU
 Computer Science Department, University of Maryland, College Park, MD 20742 USA

Jared Shamwell EJSHAM@UMD.EDU
Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA

Tim Oates OATES@CS.UMBC.EDU
Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore
County, Baltimore, MD 21250 USA

Tongchun Du TONGCHUNDU@GMAIL.COM
Department of Automation, Harbin Engineering University, Harbin, China

Darsana Josyula DARSANA@CS.UMD.EDU
Computer Science Department, Bowie State University, Bowie, MD 20715 USA

Manuel Caro MFCAROP@UNAL.EDU.CO
Department of Educational Informatics, University of Cordoba, Monteria, Colombia

Abstract
We describe ongoing work toward automating human-level behavior that pulls together much of
traditional artificial intelligence in a real-time robotic setting. Natural-language dialog, planning,
perception, locomotion, commonsense reasoning, memory, and learning all have key roles in this;
and metareasoning is a sort of glue to guide the robot through rough spots.

1

PERLIS, COX, MAYNORD, MCNANY, PAISNER, SHIVASHANKAR, HAND, SHAMWELL,
OATES, DU, JOSYULA & CARO

1. Introduction
We are in the middle of a multi-year research program aimed at pulling together many parts of
artificial intelligence in a suitable manner so that an agent constructed along such lines may come
closer to “human-level” performance. The target performance spans not only a wide range of
specific tasks, but also includes the ability to learn about, adapt to, and adjust both its environment
and its own abilities (not unlike a human baby). While strict mimicking of human behavior is not
our goal, we are mindful that we have much to learn from human behavior, and do not hesitate to
make use of both established and intuitive insights therein. See Shamwell et al. (2012) for more
along these lines.

Thus learning/adaptation occupies a special place in our vision. But so do general reasoning,
perception, and action. Indeed, one theme that is central to our effort is that a system can and should
be able to learn about the effects of its own actions via a combination of perception, inference and
planning. Not only that, but a particular form of inference – metareasoning – is critical for us. For
instance, such an agent may decide (by reasoning about its past episodes of reasoning) that it is not
very good at solving certain kinds of problems and may then ask for help in learning to deal with
such a problem. That in turn may involve natural language processing, and so on.

This paper is organized as follows: We will begin with a running example to illustrate much of
our ideas; then we will focus separately on some of the pieces that the example depends on, where
we already have had some successes; we then give a brief review of related work; and finally we
will describe our current and future plans. The majority of this paper is devoted to the elements that
we believe are essential to autonomous agents that must operate in the real world. Both reasoning
and meta-reasoning fall into this category, with our approach to the latter involving a time-situated
logic called active logic and a lightweight, general purpose architecture for meta-reasoning called
the Meta-Cognitive Loop. Because we want our agents to engage with humans, we describe our
experience with a dialog system based on active logic called ALFRED. A discussion of
reinforcement learning follows that, given the prominent role that it plays in (low-level) learning
to interact with the world. Next we explore an often overlooked aspect of autonomy - goal
generation - and discuss it in the context of an overall cognitive architecture called MIDCA, and
finish with a discussion of how memory interacts with all of these components.

We offer a cautionary note: while our main example involves a robot, we are not here
suggesting a project in traditional robotics at all. Rather our aim is along the lines of the original
conception of AI as the computational study of intelligent human-level behavior (see Langley,
2012). Thus swarm robotics, multi-agent systems, and the like, while important in their own right,
have little to do with what we are investigating here. The science-fiction image of a household
robot that can do many things while learning on the job is closer to our vision; and to those who
say this is not where big successes are to be found, we reply: that is the issue, and we are offering
to test it in what we think is a new way. Indeed, if this cannot be done, then it would seem that
human-level intelligent behavior is not largely computational after all, and that in itself would be
big news.

2. Running Example

Consider a robot – Robbie – whom we have assigned the task of obtaining a particular book and
bringing it to us. We have told Robbie to look for the book in room 128, and that we need the book
before noon. It is now 11:30am. Robbie sets off for room 128, having previously learned a floor

2

A BROAD VISION FOR INTELLIGENT BEHAVIOR

plan that she now consults to plan a path. She also marks the task details so that they remain in
working memory; she knows from past experience that without this precaution she can lose sight
of details and it can take lots of time to recover them, and that in this case time matters.

We pause here to give some background about Robbie. She is one year old, having had that
much near-continuous training since being first turned on (and having stored her acquired
knowledge appropriately in various forms of memory). That is, Robbie is a perpetual agent: she
has a lifetime of her own and is not simply turned on briefly when we want her to do something.
At first, she knew very little – just what the factory had installed in her KB – and even less about
how to perform physical actions with any dexterity. But she has an internal goal of sorts, based on
the maxim that “knowledge is good.” So when she is not working on an assigned (exogenous) task
she pursues the endogenous goal of trying to learn about whatever she can. Of course, that can
quickly lead to disaster since some explorations can lead to injury to herself and others; so she also
has some initial cost-benefit information which she augments and modifies as she learns from
experience including human interaction. In addition, she has had to learn to “see” – that is, to
interpret her perceptual data-flow – and to relate that to her own activity: if she moves forward, her
visual flow changes in one way; if she rotates, it changes in another; and if she reaches forward she
sees her own arm, etc. She also has had to learn what books are: how they look, that they can be
picked up, and so on. All this has taken up much of her first year.

To render the present context a bit more fully: we are studying for an exam that will take place
at 12:30pm that same day; the book might possibly be helpful but we are fully occupied in
memorizing some key items and cannot take the time to get the book ourselves; and we must set
out for the exam by noon. Now we return to our story: Robbie is looking for a book…

Along the way, Robbie encounters a cluttered 10m section of hall, which slows her down

considerably. After some time spent in trying to pass through that section, she decides instead to
go on another, longer, route that, she anticipates, is not cluttered.

On arriving at the intended room, Robbie expects to find that it has the number 128 but instead
observes 123. She puzzles about this and checks the doors on both sides, which are numbered 127
and 129. She looks again at the 123 and supposes that it either is a mistake or that the 8 has
somehow degraded and now looks like a 3, and that in any case she is indeed at the correct room.
She looks at the suspect 3 more carefully, detects what might have been the degraded part of an 8,
and makes note of this for future use in reading numbers.

But the door to the room is closed. Robbie tries the knob, and cannot manage to turn it, having
been trained only on door handles, not knobs. She makes numerous attempts in different ways,
using one or more of her problem-solving algorithms, but still fails.

Robbie decides she needs help, and comes back to us for advice. It is now 11:45. We tell her
that we did not realize that the door to room 128 was closed, and that knobs are too hard for her
grippers to manage, but if she uses a key, the door will open without having to turn the knob at all.
We give her a key, she starts off, and arrives again at room 128. After some effort the key allows
entry, and as a result, Robbie learns a new method for opening the door.

However once inside she discovers that the book is not at the shelf position where it should be.
It must have been misfiled, and there are hundreds of books to look through (the room seems to be
a library of sorts). So she realizes that with all the time already taken – it is now 11:55 – it is very
unlikely she will be able to find the book and still get it to us by noon. She returns and tells us this.
We agree and tell her not to bother after all, and thank her for her efforts.

3

PERLIS, COX, MAYNORD, MCNANY, PAISNER, SHIVASHANKAR, HAND, SHAMWELL,
OATES, DU, JOSYULA & CARO

A great many things happen in this example. Yet they can be broken down into pieces most of
which, separately, have been the subjects of enormous amounts of (highly successful) research. On
the other hand, putting it all together effectively is far more than merely assembling the pieces.
New issues arise – or become far more important – in the aggregate; for example, the need to know
(and reason about) one’s own knowledge and behavior; the need to keep track of ongoing time; the
need to mix plans and speech and others’ interests all in the same bit of reasoning; the need to
recognize when events are anomalous; the need to notice salient features of events for future use;
and the need to manage memory efficiently so as to keep relevant information in working memory
and irrelevant information out.

This example may seem absurdly difficult, far beyond what anyone has any hope of achieving
in the next several decades. But we think not. In the following several sections, we will describe
work we have done on a number of topics closely related to the above kind of scenario. We start
with the need to reason about one’s own knowledge in the face of contradictory information, and
to monitor time-passage during reasoning.

3. Reasoning and Metareasoning: Active Logic

Active logics (Anderson, Josyula, Okamoto, & Perlis, 2002) are a family of formalisms that
combine inference rules with a constantly evolving measure of time (a “now”) that itself can be
referenced in those rules. At each time step, all possible one-step inferences are drawn by applying
inference rules once to the present (working memory) knowledge, and marked with a timestamp.
Allowing inferences only to be made based on one-step inferences on present knowledge, and not
made by applying inference rules iteratively until the next time step, helps mitigate the
“omniscience problem”, where all implications are treated as derived at once. By explicitly
situating reasoning in time this way, contradictions can be dealt with as they arise in the inference
process. In our example, Robbie encounters various contradictions, such as believing the room
number is 128 but seeing it to be 123.

Time steps also aid in reasoning about past reasoning, and in the derivation of future theorems.
Robbie for example would use the present value of “Now” in determining if there is sufficient time
for her to complete her task (see Brody, Cox, & Perlis, 2013 for some details). Active logic differs
from other temporal logics which lack a “now” represented as a changing time value; these other
logics simply discriminate between a fixed past, present, and future.

Active logic is a non-monotonic reasoning scheme, meaning that inferences made in the past
can be rejected and replaced with better ones in the present. The tagging of the reasoning process
with time stamps allows the use of a belief's history of acceptance/rejection during present
reasoning; when direct contradictions arise in the knowledge base, this information can be of use.
In particular, conflicts between expectation and observation can be recognized and reasoned about.

Each active logic belief is tagged with a unique identifier; this allows the reasoning mechanism
to refer to inferences or assign properties to them – for instance, a belief can be distrusted, removed
or assigned/reassigned a higher/lower priority. Thus, active logic is a natural mechanism for default
reasoning (Purang, 2001) as well as resource-bounded reasoning and meta-reasoning (Josyula &
M’Bale, 2013).

4

A BROAD VISION FOR INTELLIGENT BEHAVIOR

4. The Metacognitive Loop (MCL)

In our example, Robbie experienced several unexpected problems in the course of carrying out her
task. To continue on mission, she needed to not only identify that there was a problem, but also
implement a suitable response. We call such a reasoned anomaly-handling capability generalized
metacognition. Ideally such a process can be largely domain-independent, involve only a modest
amount of background knowledge and computation, and be implemented for any automated
system. Much of our recent work has been aimed at testing this idea (e.g., see Schmill, Anderson,
Fults, Josyula, Oates, Perlis, Haidarian, & Wilson, 2011). It essentially consists of three steps (the
NAG-cycle): (i) monitor expectations to note any anomaly that might arise, (ii) assess it in terms
of available responses, and (iii) guide any chosen response into place (and monitor the progress of
that response for further anomalies). This requires, of course, expectations as to how things “ought”
to be in the system, responses that could apply across the board to almost any type of anomaly
encountered, and the ability to re-configure expectations in light of how things go. We refer to an
algorithmic version of the NAG-cycle as the Metacognitive Loop (MCL) (Anderson & Perlis,
2005).

Our current generalized MCL module implements three special sets of abstract ontologies: an
indications ontology for anomaly types, a failures ontology for assessment, and a responses
ontology for repairs. The core of each ontology is currently implemented as a Bayesian network.
These core nodes represent abstract and domain-general concepts of anomalies and how to respond
to them. These nodes are linked within each ontology to express relationships between the concepts
they represent. They are also linked between ontologies, allowing MCL to employ a number of
Bayesian algorithms for reasoning over ontologies. Attached to the indications and responses
ontologies are concrete “fringe” nodes. The fringe nodes for the indications core represent concrete,
specific information about a possible expectation violation, and those for the responses core
represent specific correction information. The host provides updates (e.g., sensor data) to the
expectations fringe, and receives suggestions for repairs via the corrections fringe. When the
expectation fringe nodes receive an update from the host, if the observed values in the update are
different from the expected value specified in the fringe node, then an expectation violation occurs.
The expectation violation triggers nodes in the indication ontology that correspond to the violation;
the node activations propagate from the lower level, more specific fringe nodes to the higher level,
more abstract indications of failures. The activations also get propagated to the failure ontology
through the indications-failures inter-ontology links and to the response ontology through the
failures-responses inter-ontology links. As the node activations propagate down the responses
ontology to the more specific correction fringes, the correction fringe with the highest utility sends
a specific correction to the host to act on.

Figure 1 depicts the host (shaded in yellow), and the generalized metacognition module MCL
(shaded in blue). During operation, the host can also adjust or specify new expectations based on
its ongoing experience. At the input interface, expectations are directly linked to the indications
ontology through indication fringe nodes. At the output interface, the responses ontology’s fringe
nodes are linked to a set of possible corrections that the host could employ. When an actual
perturbation occurs in the host, MCL will detect the expectation violation through the input fringe
nodes. It will then attempt to map it into the MCL core so that it may reason about it abstractly.
MCL’s reasoning process then produces an output, which is articulated through the output fringe
nodes in the form of an action that the host is able to carry out.

5

PERLIS, COX, MAYNORD, MCNANY, PAISNER, SHIVASHANKAR, HAND, SHAMWELL,
OATES, DU, JOSYULA & CARO

Returning to the example, Robbie encounters her first unexpected challenge as she enters the
10m stretch of cluttered hallway. She is under a time constraint to return the book. A cluttered
hallway will force her to move slowly and may result in task failure. MCL can handle this situation
in a number of ways. Robbie may have begun with outdated information and could not have
realized this hallway was cluttered before reaching it; perhaps she would have chosen a different
path had she known. Realizing the clutter would slow her down but also having already traveled to
this stretch of hallway, Robbie estimates how long it should take her to move through the hallway
and compares it with estimates for alternate routes. From her current location, travel via the
cluttered hallway, with time added for the clutter, still presents the shortest estimated time to her
goal and she decides to continue as planned. However, Robbie soon realizes that she is taking far
longer than expected to move through the cluttered hallway. Sensing another expectation violation
and reasoning about its cause and possible responses, Robbie decides to take another route.
Alternatively, Robbie may not have a priori understood the negative relationship between clutter
and travel time and started only with an expectation of the amount of time needed to move through
a 10m stretch of hallway. When this expectation was violated, Robbie notes that something is
wrong and reasons that there is something wrong with her current route, resolves to find a new
route, and notes the relationship between clutter and travel time.

Continuing with the example, when Robbie reaches what she believes to be her destination,
she may reasonably expect the room number written on the door to match the room number of her
destination. When she reads ‘123’ instead of ‘128’, MCL would note an expectation violation and
begin initiating behaviors to resolve the violation (in this case gathering further information by
checking the two adjacent doors). In facing her third obstacle, Robbie notes a difficulty in opening
the door and after initiating several behaviors aimed at resolving the problem, eventually concludes
that she does not have the necessary abilities to achieve her goal and asks a human handler for help.
Similarly, after using the key to open the door, Robbie realizes that the anticipated time to find the
book will result in completion after the specified deadline. Having no known ability that would
allow her to complete the task any faster, she returns to discuss the situation with a human.

5. NLP Dialog: ALFRED

Interactions of Robbie with humans can follow one of two design options: either train the humans
to use robot-friendly commands, or train Robbie to use natural language. While the former is
certainly feasible for experts in the robot’s language, the latter is desirable for ease of use and

Figure 1. Metacognitive loop (MCL)

6

A BROAD VISION FOR INTELLIGENT BEHAVIOR

maximizing potential sources of information. Successful dialog management is also heavily reliant
on metacognition (Anderson & Lee, 2005; McRoy, 1993) as well as learning (Rieger, 1974), in that
general learning strategies can also apply to resolving anomalies in conversation. For instance,
Robbie may not have understood the task specification, perhaps because of an unusual title (e.g.,
Smullyan's 1978 book entitled What is the name of this book?) or perhaps because we mumbled.
Or, we may have summoned Robbie but fail to notice she has arrived, while she stands waiting for
instructions. All of these scenarios will require some sort of dialog-specific reasoning strategies,
which allow us to specify expectations and recovery strategies similar to those used in general
reasoning. Towards this end, we have been working on a dialog agent named ALFRED (Active
Logic For Reason-Enhanced Dialog).

ALFRED is a dialog agent which acts as an interface between a human user and a task-oriented
domain (Josyula, 2005). It accepts English sentences as input and parses them into appropriate
commands, based on the particular domain and information in its knowledge base (KB). ALFRED
is designed to be a general agent and flexible enough to handle a variety of different scenarios. For
each domain, ALFRED has a dictionary listing the possible commands and objects, as well as
specifying the command syntax for that domain. To implement the NAG-cycle, ALFRED
maintains a set of expectations regarding content, time and feedback. That is, it tracks what
predicates are expected, when those predicates are expected, and the expected values of parameters
in each predicate.

When an expectation is not met, ALFRED interprets it as an indication of an anomaly: noting
the problem, assessing the situation, and guiding a response strategy into place. Some examples of
responses might be to ignore, try again, adjust the plan or expectation, or ask for help. When the
expectation is met, the corresponding violation is removed from the knowledge base; when it is
not, ALFRED will attempt another response strategy until the issue is resolved or until it chooses
ignoring the violation as the response strategy. We are currently conducting experiments that will
compare the performance of two quite different implementations of MCL on a variety of different
types of anomalies within ALFRED (McNany, Josyula, Cox, Paisner, Perlis, 2013). The two
implementations differ in terms of how much of the host KB is shared by MCL. In one setup,
generalized MCL is used as a monitor and control mechanism that runs external to the cognitive
sphere of the host agent and hence any knowledge sharing between Alfred and generalized MCL
is done explicitly. In the other experimental setup, a specialized MCL runs alongside the cognitive
reasoner within the same active logic engine (and hence MCL has full access to the KB) to monitor
and control the cognitive behaviors of the agent.

An example of metacognition within dialog involves using ALFRED as an interface to direct
trains. In this setting, we have implemented the monitoring of the success of initiated responses and
evaluation of candidate options before immediately initiating the same response again. For
instance, if a user requests “send the Chicago train to New York”, ALFRED may choose Metroliner
as the candidate, a train that is currently in Chicago. However, if the user replies “No” and repeats
the same request, ALFRED evaluates its options, notices that its previous first choice of Metroliner
was an unsuccessful response, and instead chooses Northstar, a train that originates in Chicago. In
this way ALFRED is able to learn which entity is meant by “the Chicago train” instead of repeatedly
choosing the same, incorrect train as a response to the user’s request.

7

PERLIS, COX, MAYNORD, MCNANY, PAISNER, SHIVASHANKAR, HAND, SHAMWELL,
OATES, DU, JOSYULA & CARO

6. Reinforcement Learning

Reinforcement Learning (RL) allows a robot to learn from an unknown environment. As mentioned
in the running example, at first, Robbie knew very little. Therefore, all of her acquired knowledge
about the world and herself are obtained via learning in one form or another. For instance, Robbie
has previously learned a floor plan that she now consults to plan a path; Robbie tries the knob and
cannot manage to turn it as she has been trained only on door handles; a knob is too hard for her
grippers to manage, but if she uses a key, the door will open without having to turn the knob at all.
That is, Robbie needs to learn at least to plan a path, to turn a handle, and to use a key to turn a
knob. In the remainder of this section we illustrate one particular way that MCL can impact RL
methods.

Consider a simple experiment with a standard RL algorithm (Q-learning; see Anderson &
Perlis, 2005 for details). An agent is envisioned to maneuver within an 8x8 grid world, in which
there is a positive reward in one corner, and negative in the opposite corner. The learner executes
10,000 turns, learning a very effective policy for maximizing reward, as is standard for this sort of
learning algorithm. Then we switched the rewards and let the learner continue as before, for an
additional 10,000 turns. Not unexpectedly, (see Figure 2) performance degraded. But what is
striking is that it recovered far more slowly than it had done in the first 10,000 turns. In effect, it
needed to “unlearn” what it had learned before it could then learn the new reward structure.

This of course is not very intelligent. A smarter agent would soon realize that its well-learned
strategy no longer worked at all, would stop using it, and would start running the reinforcement
over from scratch. When we configured the agent to do that, it learned the new reward structure
much faster (see Figure 3 where both old and new methods are superimposed).

We anticipate that MCL can similarly be used to enhance many kinds of RL and other system
components.

Figure 2. Performance of Q-learner, over 20,000
turns, with initial reward structure of [-10 10] and a

post-perturbation reward structure of [10 -10]

Figure 3. Performance of same Q-learner but
with MCL, superimposed on Figure 2

8

A BROAD VISION FOR INTELLIGENT BEHAVIOR

7. Goal-Driven Autonomy and an Integrated Metacognitive Architecture

As Robbie leaves our office, it dawns on her that the failure of delivering the book may reoccur the
next time she is asked for another book and that even humans may have difficulty finding books
they want if they are out of order. Given that she has nothing to do at the moment, she decides to
clean up the library and reorganize the book shelves. She remembers being scolded once for
borrowing a book without asking first, so she returns to ask our permission. But we are not there,
having gone to a noon appointment. Robbie reflects and then decides that rearranging is not the
same as borrowing, and that it would be ok to organize the books.

Autonomy has long been viewed as effectively performing tasks to automatically achieve the
goals given to an agent by a human and learning to improve such performance in the future. But a
new model of agent autonomy called goal-driven autonomy (GDA) asserts that autonomy is also
about recognizing novel problems, explaining what caused such problems, and generating one’s
own goals to solve the problems (Cox, 2007; 2013; Klenk, Molineaux, & Aha, 2013; Paisner,
Maynord, Cox, & Perlis, in press). As such this is a variation of the note-assess-guide procedure.

A GDA agent notes when failures occur (Robbie sought to achieve her goal but did not
succeed), assesses the failure (Robbie failed because the book was not shelved correctly), and then
guides a response to the failure (Robbie generated a goal to correctly shelve the books). Here the
note phase is similar: an observation does not match the expectation and hence a discrepancy (i.e.,
anomaly) exists. However the assess phase involves determining a causal explanation for the failure
or discrepancy. The response is to generate a new goal to solve the problem. The generation of such
goals can be found by determining a salient antecedent of the explanation and negating it (Cox,
2007; 2013). Here the robot generates the goal of not having the books being shelved incorrectly.

We have been working on implementing a larger cognitive architecture that integrates much of
this work. The Metacognitive, Integrated, Dual-Cycle Architecture (MIDCA) (Cox, Maynord,
Paisner, Perlis, & Oates, 2013; Cox, Oates, & Perlis, 2011; Maynord, Cox, Paisner, & Perlis, 2013)
consists of action-perception cycles at both the cognitive (i.e., object) level and the metacognitive
(i.e., meta-) level. The output side of each cycle consists of intention formation, planning, and
action execution, whereas the input side consists of perception, interpretation, and goal evaluation.
A cycle selects a goal and commits to achieving it. The agent then creates a plan to achieve the goal
and subsequently executes the planned actions to make the world match the goal state. The agent
perceives changes to the environment resulting from the actions, interprets the percepts with respect
to the plan, and evaluates the interpretation with respect to the goal. At the object level, the cycle
achieves goals that change the environment. At the meta-level, the cycle achieves goals that change
the object level. That is, the metacognitive perception components introspectively monitor the
processes and mental state changes at the cognitive level. The action component consists of a meta-
level controller that mediates reasoning over an abstract representation of the object-level
cognition.

To illustrate these distinctions, consider the object level as shown in Figure 4. Here the meta-
level executive function manages the goal set 𝒢𝒢. In this capacity, the meta-level can add initial goals
(g0), subgoals (gs) or new goals (gn) to the set, can change goal priorities, or can change a particular
goal (∆g). In problem solving, the Intend component commits to a current goal (gc) from those
available by creating an intention to perform some task that can achieve the goal. The Plan
component then generates a sequence of actions (πk, e.g., a hierarchical-goal-net plan Shivashankar,
Kuter, Nau, & Alford, 2012; Shivashankar, Alford, Kuter, & Nau, 2013) that instantiates that task

9

PERLIS, COX, MAYNORD, MCNANY, PAISNER, SHIVASHANKAR, HAND, SHAMWELL,
OATES, DU, JOSYULA & CARO

given the current model of the world (MΨ) and its background knowledge (e.g., semantic memory
and ontologies). The plan is executed to change the actual world (Ψ) through the effects of the
planned actions (ai). The goal and plan are stored in memory and constitute the agent’s expectations
about how the world will change in the future. Then given these expectations, the comprehension
task is to understand the execution of the plan and its interaction with the world with respect to the
goal.

Comprehension starts with perception of the world in the attentional field. Interpretation takes
as input the resulting percepts (𝑝𝑝j) and the expectations in memory (πk and gc) to determine whether
the agent is making sufficient progress. An MCL note-assess-guide procedure implements the
comprehension process. The procedure is to note whether an anomaly has occurred; assess potential
causes of the anomaly by generating hypotheses; and guide the system through a response.
Responses can take various forms, such as (1) test a hypothesis; (2) ignore and try again; (3) ask
for help; or (4) insert another goal (gn). In the absence of an anomaly, the agent incorporates the
changes inferred from the percepts into the world model (∆𝑀𝑀𝛹𝛹) and the cycle continues. This cycle
of problem-solving and action followed by perception and comprehension, functions over discrete
state and event representations of the environment.

8. Memory

Memory is a crucial function for a perpetual cognitive agent. Conceptual information in a semantic
memory is functionally important for interpreting perceptions and for reasoning about the world.
But equally important, an episodic memory stores a personal history of the agent and its interactions

Figure 4. Object-level detail with meta-level goal management

World =Ψ

Memory
Mission &
Goals()

World Model (MΨ)
Episodic Memory
Semantic Memory

& Ontology

Plans() &
Percepts ()

Problem
Solving

Comprehension

goal change goal input
goal

insertion

Intend

Act
(& Speak)

Plan

Evaluate

Perceive
(& Listen)

Interpret

Goals
subgoal

Executive Metacognition

Task

Actions Percepts

MΨ

Hypotheses

MΨ

MΨ

10

A BROAD VISION FOR INTELLIGENT BEHAVIOR

with the world and other agents in that world (e.g., see Laird, Nuxoll, & Derbinsky 2012). If the
agent is to reason about its capacity to perform actions in the present, it is important that it knows
what worked and did not work in the past. It is not always possible to infer results, especially when
it comes to the behavior of humans; so for instance, remembering the likes and dislikes of others
(e.g., remembering that asking permission is important to someone) is a useful function.
Furthermore, rather than having to solve problems from scratch each time, an agent should
remember how it solved similar problems in the past and simply reuse the past solution or adapt an
old solution to fit new circumstances. Such a case-based reasoning approach (de Mántaras, et al.,
2006; Kolodner, 1993) has been shown to reduce effort and make for efficient problem solving
(e.g., Cox, Munoz-Avila, & Bergmann, 2006; Veloso, 1994).

Memory should organize conceptual and procedural information in a manner that makes it
effective. A good memory retains useful information and makes it available at the right time in the
right form (Schank, 1982). Memory in cognitive agents can be partitioned into separate functions
and controlled by an inference cycle mechanism; e.g., see (Elgot-Drapkin, Miller, & Perlis, 1991)
in which preliminary experiments illustrated a critical impact of the size of working memory/STM.
The benefit of a good memory architecture is that knowledge need not be searched by an arbitrary
brute-force approach; rather an agent can depend upon a retrieval match between a contextual cue
and the index used to store a memory. The cost is in terms of what has been called the indexing
problem (Kolodner, 1993; Schank, 1982; Schank & Osgood, 1990). The problem is to choose
effective cues, or features in an input, to be used as probes for retrieving from memory the
knowledge structures necessary to process an input.

The converse problem is the problem of forgetting (Cox, 1994). If the cues are not chosen with
care during retrieval time, or if the indexes are not chosen well during encoding, the reasoner may
not recall a memory structure when it is needed. The forgetting problem is to reorganize memory
and the indexes by which memory is accessed. Because reasoning failures may occur due to faulty
memory organization, as well as because of faulty reasoning components or faulty knowledge, the
selection or retrieval of knowledge plays an important role in determining the cause of failure.

Reasoning failures related to information retrieval have been addressed using metamemory
(Caro, Jimenez, & Paternina, 2012; Leake, 1995). In artificial intelligence, metamemory refers to
the processes and techniques a system uses to monitor and control its own memory, which has
strong parallels in cognitive psychology research (Nelson, Narens, & Dunlosky, 2004; Metcalfe &
Dunlosky, 2008). Indeed, to realize one’s own memory limitations – no memory architecture will
be perfect in retrieving exactly the right information at the optimal moment – is an important piece
of self-knowledge that can guide an agent’s behavior (e.g., setting reminders for itself). Keeping
all information – even just all episodic information – in working memory where the agent’s
reasoning processes can run rampant on it (the swamping or omniscience problem) will only clog
the agent’s ability to act in a timely way. So metamemory can have a role in helping an agent mark
items that are important to retain for a time (Robbie marks the book-title information that way) and
allow others to be gracefully “forgotten.”

9. Related Work

Since McCarthy originally described the concept of a computer advice taker (McCarthy, 1959),
many research projects have embraced the goal of implementing persistent agents that co-exist and
interact with humans over extended time periods. The original work at SRI on Shakey the robot

11

PERLIS, COX, MAYNORD, MCNANY, PAISNER, SHIVASHANKAR, HAND, SHAMWELL,
OATES, DU, JOSYULA & CARO

(Nilsson, 1984) combined sub-systems that reasoned using logic and that acted through sensors and
effectors on the platform. It represented the first effort to build a human-like intelligent physical
and mental system (i.e., an instantiation of sorts of Nilsson’s, 1983, computer individual), although
it was extremely brittle given any unforeseen circumstances.

Our idea of a perpetual cognitive real-world agent relates to variations on autobiographical
agents that have a memory of their own experiences (e.g., Dautenhahn, 1998; Derbinsky & Laird,
2010), social agents that interact and cooperate with humans and other agents (e.g., Breazeal, &
Scassellati, 1999; Scassellati, 2001), and developmental cognitive robots that learn over time (e.g.,
Weng et al., 2001). Researchers have approached the research in various ways resulting in theories
of human-level intelligence (Cassimatis, 2012; Cassimatis & Winston, 2004) and artificial general
intelligence (Wang & Goertzel, 2012; Crowder & Friess, 2010).

A number of more recent research projects exist within the artificial intelligence and cognitive
science communities that integrate multiple high-level cognitive functions and perform complex
tasks in dynamic environments, some with actual physical platforms or robots. Well known
examples include ACT-R (Anderson & Lebiere, 1998), CogAff (Sloman, 2003, 2011), Companion
Cognitive Systems (Forbus, Klenk, & Hinrichs, 2009), EM-One (Singh, 2005), DIARC (Krause,
Schermerhorn, & Scheutz, 2012), EPILOG (Morbini & Schubert, 2011), Icarus (Langley & Choi,
2006), SALS (Morgan, 2009), SNePS (Shapiro, 2000), Soar (Laird, 2012), and SS-RICS (Kelley,
2003).

10. Current and Future Plans and Conclusion

We are currently working on a variety of additional aspects of our long-term goal of human-level
autonomous systems. One large portion of the work involves combining Alfred/Active Logic with
MCL; as a particular example, we are investigating metacognitive means to allow a conversational
agent to deal with unanticipated pauses in a conversation (McNany, Josyula, Cox, Paisner, & Perlis,
2013). With regard to reinforcement learning, we are exploring the use of the natural-actor critic
algorithm in conjunction with the growing neural gas (GNG) algorithm to help a robot learn the
effects of its actions, like a baby thrashing about until it learns that motor impulses and visual and
tactile inputs correlate in highly regular ways. And with regard to MIDCA itself, we are using a
symbolic version of the A-distance algorithm along with GNG to help a system identify (note)
anomalies (Paisner, Perlis, & Cox, in press).

We believe that a frontal assault on the challenge of human-level AI is timely, that many of the
needed tools are currently available, and that many of the very real remaining gaps can be filled
along the lines we have sketched here. One particular thrust that we envision is that of a competitive
robot treasure-hunt with, say, PR2 robots (that have a considerable degree of fine manipulative
capacity as well as ease of programming). The treasure-hunt domain nicely combines natural-
language, perception, real-time planning, goal-creation, action, and indeed most of AI.

Acknowledgements

This material is based upon work supported by ONR Grants # N00014-12-1-0430 and # N00014-
12-1-0172 and by ARO Grant # W911NF-12-1-0471.

12

A BROAD VISION FOR INTELLIGENT BEHAVIOR

References

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, N. J: LEA,
1998.

Anderson, M. L., Josyula, D., Okamoto, Y., & Perlis, D. (2002). Time-situated agency: Active
logic and intention formation. In Proceedings of the 25th German Conference on Artificial
Intelligence.

Anderson, M. L., & Perlis, D. (2005). Logic, self-awareness and self-improvement: The
metacognitive loop and the problem of brittleness. Journal of Logic and Computation, 15(1).

Anderson, M. L., & Lee, B. (2005). Metalanguage for dialog management. I. In Proceedings of the
16th Annual Winter Conference on Discourse, Text and Cognition.

Breazeal, C., & Scassellati, B. (1999). How to build robots that make friends and influence people.
1999 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-99).
Kyongju, Korea.

Brody, J., Cox, M. T., & Perlis, D. (2013). The processual self as cognitive unifier. In Proceedings
of the Annual Meeting of the International Association for Computing and Philosophy. IACAP-
2013.

Caro, M., Jimenez, J., & Paternina, A. (2012). Architectural modeling of metamemory judgment
in case-based reasoning systems. 2012 XXXVIII Conferencia Latinoamericana En Informatica
(CLEI) (pp. 1–8).

Cassimatis, N. L. (2012). Human-level artificial intelligence must be an extraordinary science
Advances in Cognitive Systems 1, 37- 45.

Cassimatis, N., & Winston, P. (Eds.) (2004). Achieving human-level intelligence through
integrated systems and research: Papers from the AAAI fall symposium. Technical Report FS-
04-01. Palo Alto, CA: AAAI Press.

Cox, M. T. (1994). Machines that forget: Learning from retrieval failure of mis-indexed
explanations. In A. Ram & K. Eiselt (Eds.), Proceedings of the Sixteenth Annual Conference of
the Cognitive Science Society (pp. 225-230). Hillsdale, NJ: Lawrence Erlbaum Associates.

Cox, M. T. (2007). Perpetual self-aware cognitive agents. AI Magazine 28(1), 32-45.
Cox, M. T. (2013). Goal-driven autonomy and question-based problem recognition. Submitted.
Cox, M. T., Maynord, M., Oates, T., Paisner, M., & Perlis, D. (2013). The integration of cognitive

and metacognitive processes with data-driven and knowledge-rich structures. In Proceedings of
the Annual Meeting of the International Association for Computing and Philosophy. IACAP-
2013.

Cox, M. T., Munoz-Avila, H., & Bergmann, R. (2006). Case-based planning. Knowledge
Engineering Review 20(3), 283-287.

Cox, M. T., Oates, T., & Perlis, D. (2011). Toward an integrated metacognitive architecture. In P.
Langley (Ed.), Advances in Cognitive Systems, papers from the 2011 AAAI Symposium (pp. 74-
81). Technical Report FS-11-01. Menlo Park, CA: AAAI Press.

Crowder, J. A., & Friess, S. (2010). Metacognition and metamemory concepts for AI systems.
In International Conference on Artificial Intelligence, ICAI 2010. Las Vegas.

13

PERLIS, COX, MAYNORD, MCNANY, PAISNER, SHIVASHANKAR, HAND, SHAMWELL,
OATES, DU, JOSYULA & CARO

Dautenhahn, K. (1998). Meaning and embodiment in life-like agents. In C. Nehaniv (Ed.), Plenary
working papers in computation for metaphors, analogy and agents (pp. 24-33). University of
Aizu Technical Report 98-1-005.

De Mántaras, R. L., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., Maher,
M. L., Cox, M. T., Forbus, K., Keane, M., Aamodt, A., & Watson, I. (2006). Retrieval, reuse and
retention in case-based reasoning. Knowledge Engineering Review. 20(3), 215-240.

Derbinsky, N., & Laird, J. E. (2010). Extending soar with dissociated symbolic memories. In M.
Lim & W. Ho (Eds.), Proceedings of the Remembering Who We Are: Human Memory for
Artificial Agents Symposium, At the AISB 2010 convention, De Montfort Univ., Leicester, UK.

Elgot-Drapkin, J., Miller, M., & Perlis, D. (1991). Memory, reason, and time: The step-logic
approach. In Cummins and Pollock (Eds.), Philosophy and AI: Essays at the interface.
Cambridge, MA: MIT Press.

Forbus, K., Klenk, M., & Hinrichs, T. (2009). Companion cognitive systems: Design goals and
lessons learned so far. IEEE Intelligent Systems, 24, 36–46.

Josyula, D. (2005). A unified theory of acting and agency for a universal interfacing agent, Ph.D.
dissertation, University of Maryland, College Park.

Josyula, D and M’Bale, K. (2013). Bounded Metacognition. In Proceedings of the Fifth
International Conference on Advanced Cognitive Technologies and Applications (pp.147-152).
Red Hook, NY: Curran Associates.

Kelley, T. (2003). Symbolic and sub-symbolic representations in computational models of human
cognition: What can be learned from biology? Theory and Psychology, 13(6), Dec. 2003.

Klenk, M., Molineaux, M., & Aha, D. (2013) Goal-driven autonomy for responding to unexpected
events in strategy simulations. Computational Intelligence 29(2), 187–206.

Kolodner, J. L. (1993). Case-based reasoning. San Mateo, CA: Morgan Kaufmann Publishers.
Krause, E., Schermerhorn, P., & Scheutz, M. (2012). Crossing boundaries: Multi-level

introspection in a complex robotic architecture for automatic performance improvements. In
Proceedings of the Twenty-Sixth Conference on Artificial Intelligence. Palo Alto, CA: AAAI
Press.

Laird, J. E. (2012). The Soar Cognitive architecture. Cambridge, MA: MIT Press.
Laird, J. E., Nuxoll, A., & Derbinsky, N. (2012). Episodic memory. In J. Laird, The Soar cognitive

architecture (pp. 225-246). Cambridge, MA: MIT Press.
Langley, P. (2012). The cognitive systems paradigm. Advances in Cognitive Systems 1, 3–13.
Langley, P., & Choi, D. (2006). A unified cognitive architecture for physical agents. The Twenty-

First National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press.
Leake, D. B. (1995). Representing Self-knowledge for Introspection about Memory Search A

Planful Framework for Internal Reasoning. In M. T. Cox & M. Freed (Eds.), AAAI Spring
Symposium on Representing Mental States and Mechanisms. Stanford, CA.

Maynord, M., Cox, M. T., Paisner, M., & Perlis, D. (2013). Data-driven goal generation for
integrated cognitive systems. In C. Lebiere & P. S. Rosenbloom (Eds.), Integrated Cognition:
Papers from the AAAI Fall Symposium (pp. 47-54). Menlo Park, CA: AAAI Press.

McCarthy, J. (1959). Programs with common sense. In Symposium Proceedings on Mechanisation
of Thought Processes (Vol. 1, pp. 77-84). London: Her Majesty's Stationary Office.

14

A BROAD VISION FOR INTELLIGENT BEHAVIOR

McNany, E., Josyula, D., Cox, M. T., Paisner, M., Perlis, D. (2013). Metacognitive guidance in a
dialog agent. In Proceedings of the Fifth International Conference on Advanced Cognitive
Technologies and Applications (pp.137-140). Red Hook, NY: Curran Associates.

McRoy, S. (1993). Abductive interpretation and reinterpretation of natural language utterances.
Ph.D. dissertation, University of Toronto, 1993.

Metcalfe, J., & Dunlosky, J. (2008). Metamemory. In H. L. Roediger III (Ed.), Cognitive
Psychology of Memory. Vol. 2 of Learning and Memory: A comprehensive reference, 4 vols.

Morbini, F., & Schubert, L. (2011). Metareasoning as an integral part of commonsense and
autocognitive reasoning. In M. T. Cox & A. Raja (Eds.) Metareasoning: Thinking about thinking
(pp. 267-282). Cambridge, MA: MIT Press.

Morgan, B. (2009). Funk2: A distributed processing language for reflective tracing of a large critic-
selector cognitive architecture. In Proceedings of the Metacognition Workshop at the Third IEEE
International Conference on Self-Adaptive and Self-Organizing Systems. San Francisco, CA.

Nelson, T., Narens, L., & Dunlosky, J. (2004). A revised methodology for research on
metamemory: Pre-judgment recall and monitoring (PRAM). Psychological methods, 9(1), 53–
69.

Nilsson, N. (1983). Artificial intelligence prepares for 2001. AI Magazine 4(4), 7-14.
Nilsson, N. (1984). Shakey the robot. Technical Note 323, Artificial Intelligence Center, Menlo

Park, CA: SRI.
Paisner, M., Maynord, M., Cox, M. T., & Perlis, D. (in press). Goal-driven autonomy in dynamic

environments. To appear in D. W. Aha, M. T. Cox, & H. Munoz-Avila (Eds.), Proceedings of
the 2013 Annual Conference on Advances in Cognitive Systems: Workshop on Goal Reasoning
(Tech. Rep. No. CS-TR-5029). College Park, MD: University of Mary-land, Department of
Computer Science.

Paisner, M., Perlis, D., & Cox, M. T. (in press). Symbolic anomaly detection and assessment using
growing neural gas. To appear in Proceedings of the 25th IEEE International Conference on
Tools with Artificial Intelligence. Los Alamitos, CA: IEEE Computer Society.

Purang, K. (2001) Alma/Carne: Implementation of a Time-Situated Meta-Reasoner. In
Proceedings of the International Conference on Tools with Artificial Intelligence, 103-110.

Rieger, C. (1974). Conceptual memory: A theory and computer program for processing the
meaning content of natural-language utterances. Ph.D. dissertation, Stanford University, 1974.

Scassellati, B. M. (2001). Foundations for a theory of mind for a humanoid robot. Doctoral
dissertation, Massachusetts Institute of Technology, Cambridge.

Schank, R. C. (1982). Dynamic memory: A theory of reminding and learning in computers and
people. Cambridge, MA: Cambridge University Press.

Schank, R. C., & Osgood, R. (1990). A content theory of memory indexing. Technical Report 2.
Institute for the Learning Sciences, Northwestern University, Evanston, IL.

Shamwell, J., Oates, T., Bhargava, P., Cox, M. T., Oh, U., Paisner, M., & Perlis, D. (2012). The
robot baby and massive metacognition: Early steps via growing neural gas. In Proceedings of the
IEEE Conference on Development and Learning - Epigenetic Robotics 2012. Los Alamitos, CA:
IEEE.

15

PERLIS, COX, MAYNORD, MCNANY, PAISNER, SHIVASHANKAR, HAND, SHAMWELL,
OATES, DU, JOSYULA & CARO

Shapiro, S. (2000). SNePS: A logic for natural language understanding and commonsense
reasoning. In L. Iwanska & S. Shapiro (Eds.), Natural language processing and knowledge
representation: Language for knowledge and knowledge for language (pp. 175–195). Menlo
Park, CA: AAAI Press/The MIT Press.

Shivashankar, V., Alford, R., Kuter, U., & Nau, D. (2013). The GoDeL planning system: A more
perfect union of domain-independent and hierarchical planning. In Twenty-Third International.
Joint Conference on Artificial Intelligence (IJCAI-13).

Shivashankar, V., Kuter, U., Nau, D., & Alford, R. (2012). A hierarchical goal-based formalism
and algorithm for single-agent planning. In V. Conitzer, M. Winikoff, L. Padgham, & W. van
der Hoek (Eds.), Proceedings of the Eleventh International Conference on Autonomous Agents
and Multiagent Systems (pp. 2380-2386). International Foundation for Autonomous Agents and
Multiagent Systems.

Schmill, M., Anderson, M., Fults, S., Josyula, D., Oates, T., Perlis, D., Haidarian, S., & Wilson, S.
(2011). The metacognitive loop and reasoning about mistakes. In M. T. Cox & A. Raja (Eds.),
Metareasoning: Thinking about thinking (pp. 183-198). Cambridge, MA: MIT Press.

Singh, P. (2005). EM-ONE: An architecture for reflective commonsense thinking. Ph.D.
dissertation. Department of Electrical Engineering and Computer Science. MIT. Boston, MA.

Sloman, A. (2003). The Cognition and Affect project: Architectures, architecture-schemas, and the
new science of mind (Technical Report). Birmingham, UK, School of Computer Science,
University of Birmingham.

Sloman, A. (2011). Varieties of meta-cognition in natural and artificial systems. In M. T. Cox &
A. Raja (Eds.), Metareasoning: Thinking about thinking (pp. 307–323). Cambridge, MA: MIT
Press.

Smullyan, R. M. (1978). What is the name of this book? The riddle of Dracula and other logical
puzzles - knights, knaves, and other logic puzzles. New York: Touchstone Books.

Veloso, M. (1994). Planning and learning by analogical reasoning. Berlin: Springer-Verlag.
Wang, P., & Goertzel, B. (2012). Theoretical foundations of artificial general intelligence. Berlin:

Springer.
Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., & Thelen, E. (2001).

Autonomous mental development by robots and animals. Science 291, 599-600.

16

2013 Annual Conference on Advances in Cognitive Systems: Workshop on Metacognition in Situated Agents

Metamemory for Information Retrieval from Long-term Memory in Artificial

Cognitive Systems

Manuel F. Caro MFCAROP@UNAL.EDU.CO

Department of Educational Informatics, University of Córdoba, Monteria – Colombia

Darsana P. Josyula DARSANA@CS.UMD.EDU

Department of Computer Science Bowie State University, Bowie, MD – USA

Jovani A. Jiménez JAJIMEN1@UNAL.EDU.CO
Department of Computer and Decision Science, National University of Colombia, Medellin - Colombia

Abstract

In this paper we describe a novel rule-based architecture of metamemory called M2-Acch. M2-Acch involves

the use of metamemory for adapting to changes in the constraints for information retrieval from long-term

memory in artificial cognitive systems. M2-Acch is composed of a three layer structure: static layer, functional

layer and information layer. The structural components of each layer model are described using formal

definitions. M2-Acch uses confidence judgments for recommending search strategies for adaptation to changes

in the information retrieval constraints. It was implemented and validated in an intelligent tutoring system

named FUNPRO. The results of the experimental tests show that M2-Acch can be used as a valid tool for

adapting to changes in the constraints in information retrieval from long-term memory in artificial cognitive

systems.

1 Introduction

Retrieval is one of the basic processes of memory activities (Düzel et al., 1999; Metcalfe & Dunlosky, 2008;

Schank, 1982) and has been studied for many years e.g., (Ebbinghaus, 1962). Retrieval includes tasks associated

with accessing of stored information. One crucial influence on the outcome of any retrieval process is the

knowledge available to that process (Leake, 1995). This knowledge includes search constraints (Kizilirmak, Rösler

& Khader, 2012), parameters and other information related to the target of the search (Unsworth, 2010). The search

constraints restrict the information retrieved by the search task, by influencing the search strategy used to fulfill

the search task goal (Mecklinger, 2010).

Changes in search constraints affect the performance of information retrieval (Huet & Mariné, 1997; Kizilirmak

et al., 2012). When there are changes in constraints, information retrieval cannot be done effectively by the same

search strategy for all cases. Thus the system needs to asses changes in the constraints of the search tasks and

select the most appropriate search strategy.

In the context described above, we propose the use of metamemory as a mechanism that allows adaptation

to changes in the constraints of a search task. Metamemory is a component of metacognition (Cox, Oates, &

Perlis, 2011). As such, it deals with the memory capabilities of a system and strategies that aid memory (Crowder

& Friess, 2010; Flavell & Wellman, 1977), as well as the processes involved in self-monitoring of the memory.

In our approach, adaptation is retrieved by first monitoring and identifying changes in the constraints of the

search task; once a change in the constraints is detected, then the metamemory assesses the knowledge available

17

M. F. CARO, D. P. JOSYULA, AND J. A. JIMÉNEZ

to satisfy the constraint and suggests the most appropriate search strategy. In order to monitor and identify

changes in the constraints, the meta-level stores expectations about the object-level information like judgments,

observations and memory events.

Sutcliffe and Ennis (1994) developed a framework to create explanatory and predictive theories of

information searching to improve the design of information retrieval (IR) systems. The framework is developed

into a cognitive theory of information searching by the addition of strategies and correspondence rules; however

it focuses on predicting user behavior and not on self-monitoring of cognitive system memory. Leake (1995)

propose a framework for modeling introspective reasoning. The framework has relevance for modeling

introspective reasoning about memory search, but the framework does not take into account the restrictions on

search tasks, and does not explain how a system could be adapted to changes in search constraints.

More recently several studies have been published about information retrieval, particularly related to

recommendation systems. Gomes, Braga & Borges (2012) present a model where the memory processes are

organized functionally in hierarchical levels such that higher levels coordinate sets of functions at a lower level;

nevertheless this model does not take into account the constraints of information search tasks. Duch and

Szymański (2007) present a web game based on a computational model of semantic memory that implements

semantic search algorithms for information retrieval, ut is based in simplification of semantic memory.

Develaar, Yu, Harbison, Hussey and Dougherty (2013) describe a set of rules for memory search termination

that can be used to improve information retrieval performance, but do not implement metamemory, or take into

account the restrictions on information search tasks. In our study of the literature to date, we have not found

other computational work that uses metamemory as a mechanism for adaptation to changes in the constraints of

the search task for information retrieval.

The paper is structured as follows. In Section 2, we describe the metamemory model and present an

intelligent tutoring system that was used for validation. In this section several cases are described, where a

search task is invoked with variations in the constraints. Section 3 then presents empirical studies of an

implementation of M2-Acch in an intelligent tutoring system. Finally, we present the discussion and conclusions.

2 Metamemory model for adapting to constraint changes (M2-Acch)

M2-Acch (pronounced “match”) is a Metamemory Model for Adapting to Constraints Changes in the

information retrieval tasks in cognitive systems. M2-Acch consists of a cycle of reasoning about events that

occur in long-term memory (LTM). The reasoning cycle inputs are the memory events that occur in LTM and

the output consists of recommendations which may vary according to the memory events. In particular we will

focus on the reasoning process that allows adaptation to constraint changes related to retrieving information

from LTM.

M2-Acch comprises a three-layer modeling. The static layer contains the structural model that describes the

static relationships between the elements of the meta-memory architecture. The dynamic layer comprises the

functional model that describes the processes of reasoning and decision making. Finally, the information layer

describes the flow of information between the cognitive system and M2-Acch. These three layers are presented

bellow in sections 2.1, 2.2 and 2.3.

2.1 Structural model (the static layer)

The structural model is composed of an ontology that comprises two types of elements: structural elements

and functional elements. Structural elements are containers into which the functional elements are embedded;

the main structural element is the level. The functional elements enable reasoning and decision-making,

functional elements are: event, strategy, goal, constraint, judgment, process, expectation and sensor.

18

METAMEMORY FOR INFORMATION RETRIEVAL FROM LONG-TERM MEMORY IN ARTIFICIAL COGNITIVE SYSTEMS

Figure 1. Structural model of M2-Acch

2.1.1 Description of components

In this section, we introduce the basic concepts of the formalism to describe the structural model of M2-

Acch.

We will use an example to facilitate comprehension of the definitions. The example is based on an intelligent

tutoring system that receives as input some student data and its output is the content recommendation. The

recommendations are based on an instructional plan adapted to the student.

Definition 1. T={L, E, G, D, J, S} is the set containing the basic types of elements of the meta-memory

model, where:

L represents the structural levels of the model.
E describes the events that occur in a system that directly affect LTM.
G is the goal of an event.
D represents the constraints required to perform a search.
J represents the judgments that the meta-level triggers about events E that happens at the object-level.

S is the search strategy recommended by the meta-level.

Definition 1.1. M2-Acch is composed of two main levels (L): object-level and meta-level. The object-level

contains the LTM of the cognitive system and the meta-level contains knowledge about LTM and processes for

reasoning about LTM.

Definition 1.2. The events (E) represent actions that are performed on the memory. E={ID, y, g, d, t} is

the set of components that represents the structure of an event, where:

ID is the unique identifier of the event.

19

M. F. CARO, D. P. JOSYULA, AND J. A. JIMÉNEZ

y is the type of the event, yϵY and Y={call, execute, re-configure}.
g is the goal of the event.
d is the constraint of the event.
t is the memory task that originated the event.

The events that occur in the object-level can be of different types, for this particular research we work with three

types of events: i) call if the event is a call to a search, acquisition or retention task on memory. This type of

event is previous to the execution of the task. This event indicates to the system that a specific task on memory

is required; ii) execute indicates that a search, acquisition or retention task is running on memory; iii) re-

configure indicates that a search, acquisition or retention task has failed and it needs to be reconfigured.

Definition 1.3. Goals (G) are subcomponents of events. Each event can have only one goal. Goals contain

relevant meta-data about information to be stored or retrieved from memory. G={ID, a, t, s, r} is the set

of components that represents the structure of a goal, where:

ID is the unique identifier of the goal.
a is an action performed on memory, aϵA and A={acquisition, retention, retrieval}.
t is the target of the action a.
s is the state of the goal, sϵS and S={starting, waiting, working, finished}.
r represents the final result of the goal, rϵR and R={satisfied, unsatisfied}.

For illustration the intelligent tutoring system as example: if the system is doing a search of resources for a

student´s lesson then the type of event memory is execute; the goal action is retrieval; the goal status is

working and the goal result will depend on the success or failure of the search.

Definition 1.4. The constraints (D), in an event (E) refer to the information requirements that must be satisfied

so that the event fulfills the goals. D={ID, K, X, Q, y} is the set of components that represents the

structure of a constraint, where:

ID is the unique identifier of the goal.
K={k1,..,kn} represents the set of information requirements needed to retrieve or store the

target of the goal.
X={x1,..,xn} is the set of information excluded from retrieval.
Q={q1,..,qn} is the set of special requirements needed to retrieve or store the target of the goal.
y is the type of the constraint, yϵY and Y={basic, complex}.

Using the example presented in definition 1.3, if the intelligent tutoring system recommends a resource bad

evaluated by student, then the resource is excluded from a new search with similar settings.

Definition 1.5. Metacognitive judgments (J) represent assessments performed in the meta-level about events

that occur in memory. These judgments provide information that the system uses to determine whether it is able

to attempt retrieval or storage. In the current model, we have two types of metacognitive judgments, these are:

COP (Certainty of Optimal Performance) measures the degree of certainty that the system

has with regarding to optimum performances obtained in the past, having constraints similar to the

current user.

20

METAMEMORY FOR INFORMATION RETRIEVAL FROM LONG-TERM MEMORY IN ARTIFICIAL COGNITIVE SYSTEMS

CSRD (Certainty of Satisfying the Retrieval constraints) measures the degree

of certainty that the system has with regard to the level of knowledge that the system possesses to

attend the requirements of the retrieval constraints.

Definition 1.6. The meta-level contains a schema with information search strategies (S) available at the object-

level. A major meta-level function is to recommend the most appropriate search strategy for the constraints of

information retrieval from LTM.

S={s1,..,sn} is the set of search strategies that are available in the object-level, with

S≠ф. The number of available strategies depends on the particular implementation of each

system.

Definition 1.7. The expectations are behaviors that the cognitive system is expecting to pass in object-level.

Expectations are associated to sensors. The sensors are elements that the meta-level has to monitor information

flows coming from the object-level. The information contained in the sensor is called observation. When

observations do not match with expectations, then there is a violation of expectation. The violations of

expectations are interpreted by the meta-level as failures in the reasoning of object-level.

2.2 Functional model (the dynamic layer)

This section describes the processes for monitor and control of LTM that have been incorporated into M2-

Acch. Monitoring processes include mechanisms for detecting events in LTM and performing deep search

processes on the meta-level knowledge about the object-level. Moreover, control processes include rules for the

recommendation of search strategies on LTM.

21

M. F. CARO, D. P. JOSYULA, AND J. A. JIMÉNEZ

Figure 2. Functional model of M2-Acch

The formal description of M2-Acch functionality has been established using predicate logic in the rest of this

section. Due to its generality and richness in specifying models, predicate logic has been used extensively in the

literature as a language for describing models. This is done in order to facilitate implementations in various

languages like SWRL, Prolog or Python.

2.2.1. Monitoring mechanisms

The proposed model has the following three mechanisms to monitor LTM: memory event detection,

metamemory judgment and in-depth search.

2.2.1.1. Memory event detection

In a cognitive system, when a process calls a search task in the memory, then a memory event is triggered.

The meta-level stores traces of all the events that occur in LTM.

Rule 1. When some task calls a search task in LTM, then a memory event is triggered.

CT (ct): ct is a task in object-level

22

METAMEMORY FOR INFORMATION RETRIEVAL FROM LONG-TERM MEMORY IN ARTIFICIAL COGNITIVE SYSTEMS

ST (st): st is a search task
E (e): e is a memory event
Call (ct, st): task ct in object-level calls to search task st
T (st, e): search task st causes event e to be triggered

∀ct ∀st Ǝe (CT(ct) ˄ ST(st) ˄ E(e) ˄ Call(ct, st) → T(st, e))

Rule 2. All constraints of a search task are associated with the corresponding memory event that is triggered.

ST (st): st is a search task
E (e): e is a memory event
CD (st, d): search task st has associated constraint d

T (st, e): search task st causes event e to be triggered

D (e, d): constraint d is associated with event e

∀st ∀d ∀e (ST(st) ˄ CD(st, d) ˄ E(e) ˄ T(st, e) → D(e, d))

Rule 3. If the information constraints of an event are different from the constraints required to execute a search

by default, then the meta-level detects a change in the constraints of the event.

E (e): e is a memory event
D (e, d): constraint d is associated with event e
Df (e, df): df is the expected default constraint (default expectation) for event e
CH (e, d): change in the constraints d of the event e has been detected

∀e ∀d Ǝdf (E(e) ˄ D(e, d) ˄ Df (e, df) ˄ ¬Df (e, d) ˄ (d ≠ df) → CH(e,

d))

2.2.1.2. Reasoning in-depth and Metamemory judgment

Rule 4. If any change in the constraints of an information retrieval task is detected in event memory, then the

meta-level decides to launch a deeper reasoning process. The reasoning involves the examination and

assessment of the performance of the information retrieval task with similar constraints in the past.

E (e): e is a memory event
D (e, d): constraint d is associated with event e

D (eh, dh): constraint dh is associated with event eh from history trace

CH (e, d): change in the constraints d of the event e has been detected

EH (eh): eh is an event from event history trace
S (s): s is a search strategy
EHP (eh, s): the event eh has been processed with strategy s

HEHP (eh, s, p): the event eh has the performance p with strategy s

REC (e, s): the event e can be processed with strategy s; with optimal performance

∀e ∀d Ǝeh Ǝs(E(e) ˄ D(e, d) ˄ CH(e, d) ˄ EH(eh) ˄ D(eh, d) ˄ S(s) ˄

EHP(eh, s) ˄ HEHP(eh, s, p) ˄ (p = optimal) → REC(e, s))

23

M. F. CARO, D. P. JOSYULA, AND J. A. JIMÉNEZ

Rule 5. If at least one strategy that produces an optimal performance is found in the history of events, then a

COP judgment with value – high is triggered.

E (e): e is a memory event

S (s): s is a search strategy
REC (e, s): the event e can be processed with strategy s; with optimal performance TJP

(e, j): Due to the characteristics of the event e; COP judgment j is triggered
JVP (j, high): COP judgment j has value high

∀e ∀s Ǝj (E(e) ˄ S(s) ˄ REC(e, s) → TJP(e, j) ˄ JVP(j, high)))

Rule 6. If it is not found at least one strategy in the history of events that produces an optimal performance, then

it is triggered a COP judgment with value - low.

E (e): e is a memory event
S (s): s is a search strategy
REC (e, s): the event e can be processed with strategy s; having optimal performance

TJP (e, j): Due to the characteristics of the event e; COP judgment j is triggered
JVP (j, low): COP judgment j has value low

∀e ∀s Ǝj (E(e) ˄ S(s) ˄ ¬REC(e, s) → TJP(e, j) ˄ JVP(j, low)))

Rule 7. If a COP judgment is triggered with a low value, then the meta-level assesses the degree of knowledge

that possesses to satisfy the constraint.

E (e): e is a memory event

D (e, d): constraint d is associated to event e

S (s): s is a search strategy
TJP (e, j): Due to the characteristics of the event e; COP judgment j is triggered
JVP (j, low): COP judgment j has value low
RT (e, d, k): The system assesses whether it has some kind of knowledge k to satisfy

the constraint d for event e

∀e ∀d ∀j Ǝk(E(e) ˄ D(e, d) ˄ TJP(e, j) ˄ JVP(j, low) → RT(e, d, k))

Rule 8. If some kind of knowledge to satisfy the task constraints is retrieved, then the meta-level triggers a

CSRD judgment with value - high.

E (e): e is a memory event

D (e, d): constraint d is associated to event e

TJK (e, j): Due to the characteristics of the event e; CSRD judgment j is triggered
JVK (j, high): CSRD judgment j has value high
RT (e, d, k): The system assesses whether it has some kind of knowledge k to satisfy

the constraint d for event e

24

METAMEMORY FOR INFORMATION RETRIEVAL FROM LONG-TERM MEMORY IN ARTIFICIAL COGNITIVE SYSTEMS

∀e ∀d ∀k Ǝj (E(e) ˄ D(e, d) ˄ RT(e, d, k) → TJK(e, j) ˄ JVK(j, high))

Rule 9. If no knowledge to satisfy the task constraints is retrieved, then the meta-level triggers a CSRD judgment

with value - low.

E (e): e is a memory event

D (e, d): constraint d is associated to event e

TJK (e, j): Due to the characteristics of the event e; CSRD judgment j is triggered
JVK (j, high): CSRD judgment j has value high
RT (e, d, k): The system assesses whether it has some kind of knowledge k to satisfy

the constraint d for event e

∀e ∀d ∀k Ǝj (E(e) ˄ D(e, d) ˄ ¬RT(e, d, k) → TJK(e, j) ˄ JVK(j, low))

Rule 10. If observations in sensors do not match with expectations, then there is a violation of expectation. The

violations of expectations are interpreted by the meta-level as failures in the reasoning of object-level.

E (e): e is a memory event

D (e, d): constraint d is associated to event e

SS (s, d): sensor s has detected as observation the constraint d

EXP (s, d): sensor s has expectation of constraint d

V (s): violation of expectation in sensor s

∀e ∀d (E(e) ˄ D(e, d) ˄ SS (s, d) ˄ ¬EXP(s, d) → V(s))

2.2.2. Control mechanisms

Rule 11. If a COP judgment has high value then the strategy with optimal performance in the event history is

recommended.

E (e): e is a memory event

D (e, d): constraint d is associated to event e

S (s): s is a search strategy
TJP (e, j): Due to the characteristics of the event e; COP judgment j is triggered
JVP (j, high): COP judgment j has value high
REC (e, s): the event e can be processed with strategy s; having optimal performance

R (e, s): for event e; strategy s is recommended the

∀e ∀j ∀d Ǝs (E(e) ˄ TJP(e, j) ˄ JVP(j, high) ˄ D(e, d) ˄ S(s) ˄ REC(e,

s) → R(e, s))

Rule 12. If a CSRD judgment has high value then a strategy with support for knowledge in constraints is

recommended.

E (e): e is a memory event

D (e, d): constraint d is associated to event e

TJK (e, j): due to the characteristics of the event e; CSRD judgment j is triggered

25

M. F. CARO, D. P. JOSYULA, AND J. A. JIMÉNEZ

JVK (j, high): CSRD judgment j has value high
RT (e, d, k): The system assesses whether it has some kind of knowledge k to satisfy

the constraint d for event e
R (e, s): for event e; it is recommended the strategy s
SP (s, k): strategy s with support for knowledge k

∀e ∀j ∀d ∀k Ǝs (E(e) ˄S(s) ˄ TJK(e, j) ˄ JVK(j, high) ˄ D(e, d) ˄

RT(e, d, k) ˄ SP(s, k) → R(e, s))

Rule 13. If the CSRD judgment has low value then it is recommended to stop the memory

search task.

ST (st): st is a search task
E (e): e is a memory event

T (st, e): search task st causes event e to be triggered
TJK (e, j): due to the characteristics of the event e; CSRD judgment j is triggered
JVK (j, low): CSRD judgment j has value low
STP (st): the meta-level recommends stopping search strategy st

∀st ∀e ∀j (ST(st) ˄ T(st, e) ˄ E(e) ˄ TJK(e, j) ˄ JVK(j, low) →

STP(st))

2.3 Information flow in metamemory model (the information layer)

M2-Acch provides support for the monitoring and control processes of information retrieval tasks that are

performed in the LTM of an cognitive system. Metamemory functionalities in the meta-level of M2-Acch are

activated when some process from object-level calls a search task in LTM, and then triggers a memory event as

specified in rule (1). The meta-level stores traces of all the events that occur in LTM.

Figure 3. Information flow in M2-Acch

When a new memory event trace is stored in the meta-level, the monitoring process starts as the meta-level

detects and identifies the event in LTM.

26

METAMEMORY FOR INFORMATION RETRIEVAL FROM LONG-TERM MEMORY IN ARTIFICIAL COGNITIVE SYSTEMS

If the event detected is a call to a search task, then the meta-level checks for changes in task constraints of

the target of the search. The changes in the task constraints occur when there is a failure due to difference

between the observation and expectation of target of search. Expectations can be specified by default in the

system configuration or may be self-generated by the system.
If any change in constraints of the search task is detected, then the meta-level decides to launch a deeper

reasoning process about the memory event. The reasoning involves examination and assessment of the

performance of the information retrieval task with similar constraints in the past.
In the examination and assessment of the performance process the meta-level searches for events that

occurred in the past with similar restrictions.
If the events with similar meta-level constraints are located, meta-level then proceeds to obtain the search

strategies that have been used to process such events. If the meta-level has at least one event that has been

processed successfully, then it makes a COP judgment with high value. This means that the meta-level has a

high level of certainty of knowing the appropriate strategy to satisfy the request of retrieving information

contained in the current event. To that purpose the meta-level maintains a performance profile of search tasks,

which consists of a record of the search strategies that have been used to process information retrieval requests

in the past. In this performance profile, information that shows whether the search strategy could retrieve the

required information is also stored.
The meta-level control is based on the value of the metacognitive judgments. For example, if a COP

judgment has a high value, then the meta-level recommends the search strategy that has had better performance

in events with similar constraints in the past.
In case the judgment has a low value, and the system has available intelligent complex search strategies, then

M2-Acch offers the possibility for the meta-level to recommend these strategies. For this purpose, the meta-

level evaluates the knowledge about the requirements implicit in the constraints of the search. If some

knowledge related to constraint is obtained, then the meta-level triggers a CSRD judgment with high value.

Otherwise, the meta-level control mechanism recommends to the object-level to stop the information retrieval,

because there is not enough knowledge to process the search.

2.4 Metamemory integration model

Cognitive system

3 Validation and data analysis

3.1 Method

In this section, we describe the features of FUNPRO, the Intelligent Tutoring System designed to assess the

M2-Acch metamemory model and how constraint changes are implemented in FUNPRO for information

retrieval. Then, the performance metric used for measurement are depicted, followed by a description of overall

validation procedure.

3.1.1 Developing of a cognitive system

27

M. F. CARO, D. P. JOSYULA, AND J. A. JIMÉNEZ

To validate the metamemory model proposed, we have designed an ITS named FUNPRO (FUNdamentos

de PROgramación) using MODESEC1 methodology (Caro, Toscano, Hermández, & David, 2009). FUNPRO

is an Intelligent Tutoring System for teaching Introduction to Programming in Engineering, Figure 4.

Figure 4. FUNPRO web environment

3.1.2 Identification of call to retrieve tasks with constraint changes

Figure 5 shows the basic flow which describes the behavior of FUNPRO. Figure 5 has been divided into four

sections labeled A, B, C and D; representing different cases of object-level information retrieval tasks.

FUNPRO has implemented three types of search strategies: (1) matching simple query, the search query in

a simple SQL type; (2) exclusive search is similar to (1), but excludes some results and; (3) vote-based search,

this strategy is based on the nearest neighbor algorithm.

1 MODESEC is a methodology for design and development of educational software in small teams. MODESEC was developed at

University Of Cordoba – Colombia by EdupMedia research group.

28

METAMEMORY FOR INFORMATION RETRIEVAL FROM LONG-TERM MEMORY IN ARTIFICIAL COGNITIVE SYSTEMS

Figure 5. Flow diagram of FUNPRO

FUNPRO has a function called playResource that is responsible for retrieving the URL of learning

resources from the knowledge base, and deploying them in the lesson. However, the restrictions that FUNPRO

generates to search for resources for the lesson are dynamic according to several criteria described below.
Case A. The student enters the lesson for the first time; therefore FUNPRO has only collected information

about the student's learning style to recommends learning resources and teaching strategies for the lesson. Thus

playResource function receives a single constraint.

Case B. FUNPRO finds a resource that meets the restrictions of the search, but for some reason cannot be

deployed in the lesson, for example: the resource URL is broken. In this case FUNPRO has to retrieve from the

knowledge base another resource that supports the student's learning style, but it has to exclude the resource

with the URL broken.

29

M. F. CARO, D. P. JOSYULA, AND J. A. JIMÉNEZ

Case C. The student evaluates the resource after use. If the resource has received a poor evaluation, the

system recommends new resources that have been well evaluated by students with similar characteristics to the

current.

Case D. Case D has two variants. In the first, if the student obtains a low performance in the lesson, then the

system remains in the current lesson but reconfigures strategies for teaching and learning resources. In the

second variant, if the student obtains a high performance; then the system presents a new lesson.

3.1.3 Performance metrics

The validation of the implementation of meta-memory model in FUNPRO on cases A and B are presented

next. Since the primary purpose of the M2-Acch is to monitor and control failures in the reasoning process about

information retrieval in cognitive systems, we use the reasoning failures dimension as performance metric of

the metacognitive capacity of the system. The metric represents retrieval performance (Ghetti, Lyons, Lazzarin,

& Cornoldi, 2008) on the number of available resources that were recommended for the lesson. A resource

available is one that can be deployed in a lesson, Table I provides a description of the metric for performance

evaluation of ITS with metamemory functions.

Table I. Performance metrics

Metric Description
ART Total of available resources in

retrieval
URT Total of unavailable resources in

retrieval

3.1.4 Process

For validation, we generated 50 student profiles with random assignment of learning styles. Then 400

educational resources profiles were generated, 20 educational resources for each one of the 20 pedagogical

tactics supported by FUNPRO. For each student profile, a recommendation of learning resources required for

the lesson, based on the learning style was generated.

30

METAMEMORY FOR INFORMATION RETRIEVAL FROM LONG-TERM MEMORY IN ARTIFICIAL COGNITIVE SYSTEMS

The simulation of the recommendation process was conducted in eight sessions. In each session the number

of unavailable resources in the resource base was gradually increased, see Table II for details. Finally, each

session was repeated five times to observe the behavior of the meta-level.

Table II. Session configuration

Session # of Students # of resources # available # unavailable
1 50 400 360 40
2 50 400 320 80
3 50 400 280 120
4 50 400 240 160
5 50 400 200 200
6 50 400 160 240
7 50 400 120 280
8 50 400 80 320

3.2 Data analysis and discussion

Figure 6 in Section A shows the results obtained in the 8 sessions without the implementation of metamemory

in FUNPRO. In this case the average of ART was 71% and the average of URT was 29%. It can be seen that

the performance of FUNPRO is decaying with increasing the number of unavailable resources in the resource

base.

In Figure 6, section B shows the results obtained in the 8 sessions with the implementation of metamemory

in FUNPRO. In this case the average of ART was 98% and the average of URT was 2%. In the worst scenario

depicted in session 8 FUNPRO shows an average yield of 94% with respect to the number of recommendations

that contain available resources.

Figure 6. Performance of recommendations in FUNPRO. Section A shows the performance of FUNPRO

without metamemory. Section B shows the performance of FUNPRO using M2-Acch.

Figure 7 in Section A shows the results of the comparison between the performance of FUNPRO not using

metamemory and using metamemory.

It is noted that when including metamemory, FUNPRO shows a low sensitivity to the progressive increase

of unavailable resources in the resource base. This means that FUNPRO can adapt to such situations because it

is able to select the appropriate search strategy in the event of failures in the information retrieval.

Thus when performing information retrieval based on the student's learning styles and needed learning

resources, then FUNPRO excludes the resource that is not available for future searches.

31

M. F. CARO, D. P. JOSYULA, AND J. A. JIMÉNEZ

Figure 7. Comparison between retrieval rates in FUNPRO. Section A shows the comparison between available

retrieval rates. Section B shows the comparison between unavailable retrieval rates.

The results obtained in the experimental tests show that M2-Acch is able to make adaptations in the search

strategies. Adaptations are based on changes in the constraints of information retrieval and allow the system to

recognize and prevent failures in the recommendations. Therefore metamemory increases the robustness in

terms of failure tolerance in information retrieval from LTM.

4 Conclusion

This paper has presented a novel architecture that involves the use of metamemory for adapting to changes

in the constraints of information retrieval tasks from long-term memory.

M2-Acch provides mechanisms for monitoring, identifying and making decisions about the events related to

information retrieval that occur in long-term memory. The novel architecture is able to identify changes in

constraints affecting information retrieval from long-term memory. M2-Acch has a system based on confidence

judgments for recommending search strategies that allow adaptation to changes in the information retrieval

constraints.

M2-Acch was implemented in Prolog and validated in an intelligent tutoring system called FUNPRO. The

results of the experimental tests show that FUNPRO was able to adapt to changes in the restrictions on the

search effort. FUNPRO performance using M2-Acch was superior in terms of retrievals available in comparison

to the performance of FUNPRO without M2-Acch. The results of the tests show that M2-Acch is a valid tool for

improving the process of information retrieval from long-term memory in cognitive systems.

5 References

Caro, M. F., Toscano, R. E., Hermández, F., & David, M. E. (2009). Diseño de software educativo basado en

competencias. Ciencia e Ingeniería Neogranadina, 19(1), 71–98.

Cox, M., Oates, T., & Perlis, D. (2011). Toward an Integrated Metacognitive Architecture. In P. Langley (Ed.), Advances

in Cognitive Systems: Papers from the 2011 AAAI Fall Symposium (FS-11-01) (pp. 74–81). Technical Report FS-

11-01. Menlo Park, CA: AAAI Press.

Crowder, J. A., & Friess, S. (2010). Metacognition and Metamemory Concepts for AI Systems. In International

Conference on Artificial Intelligence, ICAI 2010. Las Vegas.

Davelaar, E. J., Yu, E. C., Harbison, J. I., Hussey, E. K., & Dougherty, M. R. (2013). A rational approach to memory

search termination. Cognitive Systems Research, 24, 96–103. doi:10.1016/j.cogsys.2012.12.012

32

METAMEMORY FOR INFORMATION RETRIEVAL FROM LONG-TERM MEMORY IN ARTIFICIAL COGNITIVE SYSTEMS

Duch, W., & Szymański, J. (2007). Towards Avatars with Artificial Minds : Role of Semantic Memory. Journal of

Ubiquitous Computing and Intelligence.

Düzel, E., Cabeza, R., Picton, T. W., Yonelinas, a P., Scheich, H., Heinze, H. J., & Tulving, E. (1999). Task-related and

item-related brain processes of memory retrieval. In Proceedings of the National Academy of Sciences of the

United States of America (Vol. 96, pp. 1794–9). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20924913

Ebbinghaus, H. (1962). Memory: A contribution to experimental psychology. (N. Y. D. (Originally published in 1885),

Ed.).

Flavell, J., & Wellman, H. (1977). Metamemory. In & J. W. H. (Eds. . R. V. Kail, Jr. (Ed.), Perspectives on the

Development of Memory and Cognition (pp. 3-33). Hillsdale, NJ: Lawrence Erlbaum Associates.

Ghetti, S., Lyons, K. E., Lazzarin, F., & Cornoldi, C. (2008). The development of metamemory monitoring during

retrieval: the case of memory strength and memory absence. Journal of experimental child psychology, 99(3), 157–

81. doi:10.1016/j.jecp.2007.11.001

Gomes, R. M., Braga, A. P., & Borges, H. E. (2012). Information storage and retrieval analysis of hierarchically coupled

associative memories. Information Sciences, 195, 175–189. doi:10.1016/j.ins.2012.01.036

Huet, N., & Mariné, C. (1997). Memory strategies and metamemory knowledge under memory demands change in

waiters learners. European Journal of Psychology of Education, XII(1), 23–35.

Kizilirmak, J., Rösler, F., & Khader, P. (2012). Control processes during selective long-term memory retrieval.

NeuroImage, 59(2), 1830–41. doi:10.1016/j.neuroimage.2011.08.041

Leake, D. B. (1995). Representing Self-knowledge for Introspection about Memory Search A Planful Framework for

Internal Reasoning. In AAAI Spring Symposium on Representing Mental States and Mechanisms. Stanford, CA.

Mecklinger, A. (2010). The control of long-term memory: brain systems and cognitive processes. Neuroscience and

biobehavioral reviews, 34(7), 1055–65. doi:10.1016/j.neubiorev.2009.11.020

Metcalfe, J., & Dunlosky, J. (2008). Metamemory. In H. L. Roediger III (ed.), Cognitive Psychology of Memory. Vol. [2]

of Learning and Memory: A Comprehensive Reference, 4 vols. (J.

Schank, R. (1982). Dynamic memory: A theory of reminding and learning in computers and people. (C. U. Press, Ed.).

Cambridge, MA.

Sutcliffe, A., Ennis, M. (1998). Towards a cognitive theory of information retrieval. Interacting with Computers,

Volume 10, Issue 3, Pages 321-351, ISSN 0953-5438

Unsworth, N. (2010). On the division of working memory and long-term memory and their relation to intelligence: A

latent variable approach. Acta psychologica, 134(1), 16–28. doi:10.1016/j.actpsy.2009.11.010

33

34

2013 Annual Conference on Advances in Cognitive Systems: Workshop on Metacognition in Situated Agents

General-Purpose Metacognition Engine

Kenneth M’Balé KMBALE@CS.UMD.EDU
Darsana Josyula DARSANA@CS.UMD.EDU
Department of Computer Science, Bowie State University, Bowie, MD 20715 USA

Abstract
The paper presents the architecture of a general-purpose metacognition engine. It is a software
agent that collaborates with a host to provide it with metacognitive capabilities. The objective is
for the combined system to exhibit adaptive intelligent behavior.

1. Introduction

Artificially intelligent agents are the holy grail of computer science even since visionaries
imagined automatons as the ultimate human tool. Intelligence is the ability to bring all the
knowledge a system has to bear in the solution of a problem (Newell, 1990). Artificial
Intelligence, therefore, is the application of artificial algorithms that use knowledge to solve a
problem. An AI system is a biologically inspired attempt to realize or emulate the natural
intelligence found in living creatures.

A cognitive agent is software with the ability to create and execute a plan to accomplish goals.
An example of a cognitive agent is the software that operates a robot. The agent has the ability to
learn and to apply its knowledge to a finite set of problems bound by the design and training it
has received. A cognitive agent lacks the ability to reason about its own reasoning. This limitation
prevents the agent from breaking through the limits established by its design. For example, a
cognitive agent may need to determine when to re-enter learning mode in response to certain
types and levels of occurrences of anomalies and failures.

This ability of an agent to monitor its cognitive activities and make adjustments if necessary is
termed metacognition. Metacognition is important for agents to adapt to changing environments
or deal with surprises or failures. When a perturbation occurs, metacognition can help an agent
detect that something is amiss and thus provide an opportunity to deal with the situation.
(Anderson & Perlis, 2004) provides a model of metacognition (Metacognitive Loop - MCL) that
cycle through (i) detecting anomalies, (ii) analyzing their causes and (iii) providing suggestions to
respond to the situation.

At higher levels of abstraction, the different types of expectation violations, types of failures
and types of responses that an agent can have are limited. Since the causes of anomalies and
failures are finite, it is possible to create a metacognitive agent that provides the cognitive agent
with metacognitive abilities. The metacognitive agent analyzes the cognitive agent’s reasoning
and acts to prevent or correct anomalies and failures normally outside the cognitive agent’s
adaptability.

35

K. M’BALÉ, AND D. JOSYULA

This paper presents the architecture of a system that provides general-purpose metacognitive
capabilities to any other agent. The proposed general purpose metacognition engine (GPME) is a
continuation of MCL.

The GPME integrates within a larger system using XML interfaces (M’Balé & Josyula, 2013).
The GPME processes streams of observations from the environment. It builds an episodic
memory that it uses to project the future from the current observations. Each subsequent moment,
it compares actual observations to projected observations. Any discrepancy is an anomaly. The
primary goal of the GPME is to minimize the number of anomalies. The GPME responds to each
anomaly by suggesting a plan of action to correct it, or by modifying its episodic memory, or
both. These responses to a goal related to resolving the anomaly. Our claim is that focusing on
anomalies to generate goals while dynamically building a knowledge base of cases results in a
system with enhanced adaptability in any environment.

2. Contextual Overview

Figure 1 depicts the global context of the system. The environment contains the host. The host
operates within and interacts with the environment. The host contains the GPME. The GPME
provides the host with metacognitive capabilities. We refer to the combine host and GPME as the
system, although this paper is primarily about the GPME.

Figure 1 - Global Context

From a logical perspective, Figure 2 depicts that the host is the GPME’s interface to the
environment. From the GPME’s perspective, the host is the environment. More precisely, the
GPME only knows of the environment what the host shares. We refer to the flow of information
between the GPME and the host as the telemetry. Specifically, information flowing from the
GPME to the host is a suggestion (to act). Information flowing from the host to the GPME is an
observation (of the environment or of the host itself). We refer to a device and capability the host
possesses to interact with the environment as an instrument. Specifically, a device or capability to
collect information about the environment or about the host is a sensor. A device or capability to
affect the environment or the host, in a manner detectable by a sensor, is an actuator.

36

GENERAL-PURPOSE METACOGNITION ENGINE

Figure 2 - Global Context Logical View

The host is a sophisticated system capable of performing several functions autonomously. For
example, the host is a robot capable of movement, equipped with a gripping arm, and auditory
and visual sensors. The host has the ability to safely navigate a space from an original location to
a target location. The GPME does not provide detailed step-by-step instruction to navigate from
point A to point B. The GPME suggests the host to move from point A to point B. The host is
sophisticated enough to act on this suggestion and report its status back to the GPME. We refer to
it as a suggestion because the host may not be able to act or may not succeed in the act.

The instruments provide raw data from sampling the environment and the host, as well as
processed data from the sampling. For example, an advanced visual sensor in the host reports an
image in PNG format (raw data) and it provides a list of objects or faces it detects in the image
(processed data). Therefore, an observation consists of raw data and processed data.

We refer to the individual who is creating the system as the designer. The designer incorporates
the GPME within her work and designs the host to accomplish her requirements. The designer
composes an XML document called the Environmental Interface Specification (EIS). The EIS
defines the environment to the GPME, including the capabilities of the host. The designer also
composes another XML document called the Operational Interface Specification (OIS). The OIS
specifies the specific communication mechanisms available between the host and the GPME. The
EIS and OIS can be revised at any time during the operation of the system.

Therefore, the GPME is a pure intelligence. It is not a human or animal intelligence, and as
such, is not designed to interact directly with living things. Since living things are part of the
environment, interaction with them is a function of the host. For example, if the system requires
human interaction, the host must be equipped with instruments that support human interaction
and a human model of world.

2.1 Cognition Circuit

At the core of the GPME, there occurs a continuous cycle called the Perpetual Cognition Circuit,
depicted in Figure 3. The GPME receives telemetry from the environment, which includes the
host. The instruments create an observation. The observation triggers the learning apparatus to
process the new observation into the knowledge base. The assimilation of a new observation
changes the organization of the episodic memory. The projection apparatus uses the knowledge
base to project the future wellbeing of the system. If the future wellbeing of the system is in
jeopardy, it suggests actions that maximizes wellbeing and monitors success. The measure of
wellbeing is called homeostasis. The instinct-level goal of the GPME is to maximize
homeostasis.

37

K. M’BALÉ, AND D. JOSYULA

Figure 3 - Perpetual Cognition Circuit

2.2 Learning

In modern software engineering, software is implemented using conditioning or a behaviorist
approach. As a result, even intelligent agents are designed and trained to respond to a narrow set
of conditions. If circumstances take the agent even slightly out of this conditioning, the agent’s
performance suffers dramatically (Anderson & Perlis, 2004). Biological agents employ
observational learning to mitigate brittleness and to adapt to changing conditions in their
environment. As a result, the GPME emulates that approach.

The GPME accepts telemetry about the environment and the host. To filter noise and identify
significant features in the telemetry, the GPME looks for rhythmic patterns. This objective
requires identifying base and correlated patterns. Section of the telemetry that provide patterns are
candidates for learning the relationship between the pattern and the effect on homeostasis.

The GPME has two learning mechanisms with which to build the knowledge base. The direct
mechanism processes the telemetry. It is called progressive reduction. The indirect mechanism
obtains inference rules from other more mature GPME instances. It is called selective imitation.
The GPME learns from other GPME instances without processing the telemetry that produced the
knowledge.

2.3 Internal Base Patterns

From biology, there are at least three candidate internal base patterns.

38

GENERAL-PURPOSE METACOGNITION ENGINE

2.3.1 Moment

The first is the perception of time; a circadian rhythm. For example, humans perceive visual
intent at less than thirty frames per second. When visual input is presented at a higher frame rate,
it does not convey additional information. This observation implies that there is an innate limit to
the amount of information we can process at a given time. The limit also defines our smallest
perceivable unit of time. We can rationalize smaller divisions of time but we cannot perceive
them. Therefore, the GPME needs an internal clock. We refer to an indivisible unit of time,
within the GPME, as a moment.

2.3.2 Homeostasis

The second internal base pattern is the homeostasis. Living creatures have a continuous emotional
state that is reflective of perceived success, comfort and various other factors. In the GPME, we
refer to these factors as its homeostasis. Homeostasis is a mathematical representation of the
GPME’s success at functioning and adapting effectively within its environment. An anomaly is a
situation where the GPME detects a failure to adapt or a new set of circumstances requiring
adaptation. In general, therefore, homeostasis is a function of the number of anomalies the GPME
is currently experiencing.

The process of responding to current anomalies or avoiding projected anomalies results in the
creation of other goals. These rational-level goals attempt to minimize the number of anomalies
and thereby maximize homeostasis. During implementation, several formula variations will be
tested to determine the ideal homeostasis formula for a given set of circumstances. In particular,
different types of anomalies could be given different weights in the calculation.

Any detected circumstance that jeopardizes homeostasis is called an anomaly. To calculate
homeostasis at a given moment, the active anomalies are weighted based on their cause or
severity. Therefore, the homeostasis value is itself a pattern.

2.3.3 Emotional State

The third internal base pattern is the emotional state. The GPME’s emotional state is a function of
the magnitude and cardinality of change in the homeostasis value over time. The emotional state
affects several internal processes with the GPME. For example, the emotional state shortens
deliberation time or extends deadlines.

Using its clock, homeostasis and emotional state, the GPME can immediately create a rhythm
by identifying a pattern in the telemetry and correlating it to any combination of its internal base
patterns.

The GPME communicates the emotional state to the host whenever it provides a suggestion.
The designer can also specify whether the EIS should communicate a change in emotional state
even without a suggestion.

2.4 Progressive Reduction

Progressive reduction allows the agent to process high volume streams into manageable clusters
where machine learning techniques can be applied to conduct observational learning. In this
manner, the GPME is capable of learning and adapting from its environment in a manner very
similar to biological agents.

39

K. M’BALÉ, AND D. JOSYULA

2.4.1 Streams

A unit of telemetry is called a segment. An instrument produces one or more segments during a
moment. The instrument creates a stream of segments. The combination of all segments captured
during a single moment is called a frame. Each frame contains several segments from each
instrument, including empty segments. Each frame also contains a segment from the GPME
stream of suggestions. Each frame also contains a segment from the internal base patterns. The
segments share the same moment, the same temporal index. Figure 4 shows the frame vertically
with its constituent segments denoted σ.

Figure 4 – Streams of Segments and Frames

The telemetry consists of several observation streams (one for each instrument defined in the
EIS, collectively denoted σo) and the single suggestion stream (denoted σS). The frame also
contains the GPME’s homeostasis and emotional state calculated at that moment (denoted σH).
The moment indexes the stream of frames. Therefore, at the fundamental level, the GPME
processes a stream of frames from the perspective of the host. The stream of frames can also be
viewed as a stream of segments from the perspective of an instrument. The GPME is now in a
position to analyze the streams and detect patterns within and across them.

We define short-term memory as the stream of frames the GPME keeps in its working memory.
Short-term memory has a depth which is the number of frames or the length of the stream in
short-term memory. Refining our earlier definition of emotional state, the calculation uses all
frames in short-term memory, including the one from the current moment, to measure the change
in homeostasis and establish the current emotional state.

Looking at Figure 4 horizontally, we see the instrument’s and internal cycle’s stream of
segments. The first step in pattern detection is to calculate the probability of occurrence of a
segment, based on previous segments in the stream, using the A-distance. A segment with a low
probability of occurrence is called a significant segment. A significant segment focuses the
attention of the learning apparatus. The learning apparatus begins with significant segments and
reduces the stream to higher levels of abstractions where it can develop inference rules to project
the future state of the streams.

2.4.2 Episodes

40

GENERAL-PURPOSE METACOGNITION ENGINE

Tulving (Tulving, 2005) coined the term episodic memory to refer to the ability to recall specific
past events about what happened where and when. Episodic memory is specifically about actual
events that occurred in the past. The stream of Figure 4 contains a great deal of information that is
needs to be broken into sections for analysis. We refer to a section of temporally contiguous
frames from the stream as an episode. An episode includes all frames in short-term memory; it is
therefore important for short-term memory not to be too large.

Figure 5 - An Episode consists of a Number of Contiguous Frames

The GPME creates episodes when a type of anomaly occurs; reflex, rational, context and
emotional. The episode ends when the anomaly no longer exists; either because expectations
have caught up with the current state or because the anomalous conditions no longer exist.

The rational method detects that a deadline for achieving a certain homeostasis value has
passed, or, that the projected homeostasis value is achieved much sooner than projected. If the
homeostasis value is not achieved when expected, the GPME detects the anomaly and creates an
episode.

The other types of anomaly detection use the concept of a bandwidth. A bandwidth is the
projected range of a certain value. The projection is based on historical value contained in the
short-term memory. The value is projected to occur within an upper and lower bound. An
anomaly occurs whenever the value falls outside the band. The anomaly is resolved when the
value returns to its original projection. Since the short-term memory changes over time, the
bandwidth also changes. Therefore, it is possible for the bandwidth to catch up to the projected
value. When this situation occurs, the anomaly is aborted.

The reflex method projects an arrival rate of frames for each instrument stream. This projection
is called the instrument arrival rate bandwidth. For example, the GPME expects the camera to
provide an image every five seconds. After six seconds, if an image has not arrived, the GPME
detects a reflex anomaly. The same anomaly would also be detected if the image arrived three
seconds after the previous one. Since instruments are unlikely to be as regular as the example
indicates, the GPME use a range based on its experiences.

The context method detects an anomaly in two different ways. The first way relies on segment
significance. The anomaly occurs when a segment that should be significant is not, or, when a

41

K. M’BALÉ, AND D. JOSYULA

segment that should not be significant is found to be. When the significance of a segment does
not match its projected significance, the GPME detects the anomaly and creates an episode. The
second way projects the accuracy of the projection. This expectation is called the projection
accuracy bandwidth. At the most basic level, segment significance is determined by its degree of
change from previous states in the segment stream. Therefore, the GPME can detect when a
segment that should change has not changed, or a segment that should not change does change, or
a when a segment should be empty but contains information. All these conditions make the
segment significant.

The emotional method relies on the homeostasis value. The GPME projects the homeostasis
value to be within a certain range, called the homeostasis bandwidth (See Figure 6). If the
homeostasis value is outside the band, the GPME detects the anomaly and creates an episode. The
bandwidth is the range between the highest and lowest homeostasis value in short-term memory,
however, it is further adjusted by the emotional state.

Figure 6 - Homeostasis Bandwidth

For example, the highest and lowest homeostasis in short-term memory is 100 and 150. The
bandwidth is 50. The homeostasis of the previous moment is 105. Therefore the unadjusted range
is (105 – 25 =) 85 to (105 + 25 =) 130. Since the GPME is happy, the bandwidth is adjusted by
+70% to 85. The adjusted range is (105 – 43 =) 62 to (105 + 43 =) 148. If the homeostasis value
of the current moment falls within the adjusted range, it is normal. A value outside the range is
considered anomalous. Note that the anomaly can occur because of exceeding expectations (>
148) or failing to meet expectation (< 62). In other words, an anomaly occurs when the agent is
happier than it expected or when it is sadder than it expected. An analogous example could be
applied to the instrument arrival rate bandwidth.

The emotional state is a multiplier on the bandwidth. Its value modifies the calculated the
bandwidth in the next moment, by shrinking or widening the band. This mechanism emulates
biological responses. It enables the GPME to gradually become desensitized and automatically
adjust its state of normalcy.

With this information about the detection of anomalies and the creation of episode, we can
better articulate the calculation of homeostasis. Homeostasis is a formula that uses the number of
active anomalies by type. The formula assigns the highest weight in order; reflex, hardwired
(rational), context, emotional and rational (all others besides hardwired). A hardwired anomaly is
a type of rational anomaly that is the result of a violation of a designer-specified expectation in
the EIS.

42

GENERAL-PURPOSE METACOGNITION ENGINE

Therefore, the GPME has the ability to create episodes from the telemetry. As depicted on
Figure 5, a newly created episode is referred to as a candidate episode. It is a candidate for
inclusion in a cluster of episodes. Figure 7 depicts an example of several episodes.

Figure 7 - Example of Episodes

The GPME processes the telemetry (suggestion and observation streams) into frames. In this
example, the frames are vertical; s1, s2 and o1 occurred at the same moment. Two anomalies
occurred at moment T1 resulting in the creation of episode 1 and episode 2. At moment T3,
another anomaly resulted in the creation of episode 3. At moment T4, episode 2 completed. At
moment T7, episode 3 completed. At moment T8, episode 1 completed. At completion, the
episode becomes available for learning. Episode 2 consists of frames 1 and 2, which is the same
as saying that episode 2 consists of segments (o1, o2, o3, s1, s2, s3). Episode 2 and episode 3
overlap in frame 2. Both episodes 2 and 3 are subsets of episode 1.

Let’s assume that all episodes were ended by the resolution of the anomaly. Then, we can
express the episode as an inference rule: anomaly + episode  resolution where resolution =
¬anomaly. While the inference rule is obviously true, the episode contains a significant amount of
noise. Noise refers to telemetry that had no actual bearing on the anomaly or its resolution.
Therefore, the challenge is to find sufficient examples of the same anomaly in order to identify
the noise and to determine what part of the telemetry actually affected the anomaly so that we can
derive a clean and efficient inference rule.

2.4.3 Cases

Over time, the GPME creates a large number of candidate episodes many of which do not contain
any valuable information. To identify the valuable information, the GPME clusters episodes
together based on the type of anomaly that created them. Therefore, there are four clusters of
episodes; reflex, emotional, hardwired and rational. These four clusters are further divided in
terms of their significant segments. Finally, these clusters are further divided in terms of the
similarity of the patterns they contain.

43

K. M’BALÉ, AND D. JOSYULA

In the context of this analysis, rhythmic patterns are of greater significance than the ones that
are not. In other words, finding several episodes that have the same rhythmic patterns is
significant because this discovery immediately identifies the noise contained within the episodes.

We can talk about the distance between two episodes as the quantification of their difference in
the terms of the clustering method we described above. Episodes that originate from different
anomalies are the most distant from each other. Within the anomaly cluster, the ones with the
most different significant segments are most distant. Within the significant segment cluster, the
ones with least similar patterns are most distant from each other. Within the similar pattern
cluster, the one with the same rhythms are closest to each other. The GPME attempts to create
small clusters that contain episodes that have very small distances between them.

Given a sufficiently tight episode cluster, the GPME generates a centroid that is called a case.
Structurally, a case is identical to an episode. However, it is not an episode because it did not
actually originate from the telemetry. It is not an actual experience and cannot be called an
episode. Like an episode, the case consists of sequence of frames. The number of frames reflects
the number of frames of the cluster episodes. The observation and suggestion segments in the
case’s frames contain only the significant segments from the cluster episodes. The case derives
the homeostasis segments based on the homeostasis values of the cluster episodes. It is now clear
that rhythmic patterns are preferred because they result in a higher information gain in identifying
which significant segments are actually significant! Since the case only contains significant
segments, it is composed of complete, partial and empty frames. We refer to a case’s derived
frame as a fragment. We defined short-term memory earlier. Now, we define working memory as
the combined short-term memory and projected fragments.

The case is an abstract or pseudo episode created from the significant information in the cluster
episodes. The case tells the GPME that, given a certain set of preconditions (from the observation
stream), the suggestions (from the suggestion stream) will have a certain effect on homeostasis.
As depicted on Figure 8, we refer to this inference rule as the case predicate. The GPME uses the
case predicate to project the future state of the stream. The future state is expressed in fragments.
The telemetry is expressed in frames. A rational anomaly results in a future moment when the
frame of that future moment cannot be matched to a fragment projected into that future moment.

The length in moments of the case establishes a deadline for achieving the projected
homeostasis value. As we discussed earlier, a rational anomaly results when the number of
moments elapses and the projection is not achieved. The availability of predicates and episodic
memory make active logics (Elgot-Drapkin, Perlis, Kraus, Miller, & Nirkhe, 1999) highly
suitable for managing the agent’s responses to expectation violations.

44

GENERAL-PURPOSE METACOGNITION ENGINE

Figure 8 - Cases and Case Predicate

It is important to note that the case can support several predicates, in particular when it is
relatively new. The number of predicates arises from the possible combinations of significant
segments that arise from their linkages. Further in the document, we will see that frames are
connected using several types of links. Thus far, we have only considered the temporal link that is
automatically created in the episodic memory. The GPME will need a reasoning mechanism not
only to choose a case but also to choose the best predicate for the given situation. We refer to the
process of choosing a case to project as the deliberation process. To reiterate an earlier point, the
current emotional state of the GPME affects the deliberation process.

The GPME sets expectations of its well-being and responds to anomalies by implementing a
plan of action to return to a normal or better state. The plan of action is derived from the
significant suggestions in the episode cluster. The case predicate of Figure 8 creates an
expectation. The expectation is that, given the preconditions in the telemetry, applying the plan of
action results in a projected homeostasis and observation stream. If the expectation is not
achieved, the expectation violation is a rational anomaly.

Having elaborated on the concept of matching frames to fragments in a given moment, we can
measure the accuracy of the projection of a moment as a function of the number of fragments and
the number of matched fragments. The projection accuracy bandwidth is determined in the same
manner as the homeostasis bandwidth, however, using the highest and lowest moment projection
accuracy in short-term memory. The emotional state does not modify the projection accuracy
bandwidth.

3. Related Work

The roots of metacognition extend into psychology where research sought to understand its role
in development (Yussen, 1985) and learning disabilities. (Wellman, 1990) describes
metacognition in humans as a collaboration of several cognitive processes and structures
interconnected by the view of self. This theory of mind emerges in childhood as the child

45

K. M’BALÉ, AND D. JOSYULA

separates itself from its environment and distinguishes between reality and the model of reality in
its mind.

In (Cox, 2005), the survey reviews research results of experiments conducted on adult human
subjects to determine how they solve problems. The conclusions were that subjects placed in
metacognitive conditions perform better because, while problem-focused deliberation leads to
good local solutions, metacognition provides the flexibility necessary to discover more complex
and efficient solutions by leveraging a more global perspective. When people reflect on their own
thought processes as they solve problems, they perform better.

The contribution to this research is the notion that a metacognitive system consists of at least
two software components. One, the cognitive component thinks about goals and plans to achieve
goals. The other, the metacognitive component thinks about thinking and how it arrives at plans
and solutions. The metacognitive component provides for introspection and self-improvement. In
most research, this distinction is logical. At the implementation level, the two components are
blended into a single agent. However, the GPME is specifically designed to be a separate agent
focused on metacognition only.

In (Cox, 2007), a perpetual self-aware cognitive agent is one that fully integrates cognition
(planning, understanding and learning) and metacognition (control and monitoring of cognition).
In effect, this definition combines the GPME and the host as software components of a single
agent. Meta-AQUA is an implementation of this approach using multi-strategy learning. Meta-
AQUA uses a form of failure blame assignment called case-based introspection to generate
explicit learning goals. A system that detects its knowledge to be flawed must create a specific
learning goal to correct the problem.

(Anderson & Oates, 2007) surveys the field and review the emergence of metacognition across
several fields and application domains. (Zheng & Horsch, 2005) addresses a key issue; control of
computation. Control of computation is to know when to stop a given process. In terms of the
metacognitive agent, stopping should occur when the proven best solution to a problem is found.
(Nirkhe, 1994) and (Josyula & M’Balé, 2013) further constrain this problem by addressing the
problem of time bound reasoning. Reasoning with a deadline refines the meaning of best solution
by requiring that the agent can execute the solution while conditions still permit it.

(Anderson & Perlis, 2004) defines brittleness as a system’s inability to manage perturbations. A
perturbation is any change in the environment or within the system itself that affects its
performance in an undesirable way. Perturbation tolerance is the ability to adapt to the conditions
by re-establishing the desired performance. Achieving perturbation tolerance requires the system
to detect the perturbation and to make targeted adjustments to its configuration. The system must
be self-aware and self-guided as it copes with changing conditions. The strategy to achieve
perturbation tolerance is called the Metacognitive Loop (MCL). The loop consists of continually
noticing the perturbation, assessing the anomaly and guiding a solution into place. MCL enables
the system to monitor itself and influence its own performance in real time. It also directs the
system to learn when it encounters something it did not know or when it needs to correct beliefs
that are now wrong.

Cognitive systems experience three general types of problems; slippage, knowledge
representation mismatch and contractions. Slippage refers to ongoing changes to the truth of
known facts over time. What is true now is not necessarily true later. Knowledge representation
mismatch refers to the problems introduced by representing the same knowledge differently. The
representation is not important; the meaning behind the representation is actually what needs to
be conveyed. A contradiction occurs when the system simultaneously believes two opposite

46

GENERAL-PURPOSE METACOGNITION ENGINE

beliefs. Metacognition needs to provide general mechanisms to enable the system to overcome
these problems.

(Cox, Oates, Paisner, & Perlis, 2012) discusses the application of the A-distance in detecting
anomalies in streams of symbolic predicates in the context of the MIDCA cognitive architecture.
The method requires the calculation of the probability of occurrence of a predicate at a particular
point in the stream. In the paper, a low probability of occurrence is an anomaly that triggers an
analysis of the input. In the GPME, the A-distance is used similarly to detect the occurrence of an
unexpected segment value in a given instrument stream.

(Elgot-Drapkin et al., 1999) proposes active logics as the formal approach for addressing these
problems in a system’s knowledge base. Active logics extend fist order logic with the concept of
Time and Retraction. The result is an episodic logic reasoned that is capable of planning with
deadlines, reason with contractions and with changes in the language of discourse.

(Nuxoll & Laird, 2012; Nuxoll, 2007) discusses the application of episodic memory in the
context of SOAR. Episodic memory is a history of events that can used to improve decision-
making. Human have and continually make use of their episodic memories. An episodic memory
is:

• Automatic: The system creates an episodic memory automatically.
• Auto noetic: A stored memory is distinct and distinguishable from current sensory

activity.
• Temporally indexed: The memory’s metadata includes temporal information that orders

the memories in order of perception in time.
The conclusion is that episodic memory is essential to sophisticated cognitive capabilities. In

particular, the following capabilities are relevant to this research:
• Action Modeling: An agent can use the episodic memory to predict future outcomes.
• Decision Making: The history of success and failure informs future decision making.
• Retroactive Learning: Learning after the fact by replaying or rehearsing events captured

in the memories.
Case-based reasoning is closely related to episodic memory. A case describes a problem the

system encountered and the solution to the problem (Schank, 1999). The system needs to match a
new problem to an existing case to arrive at a previously successful solution. (Geng & Hamilton,
2002) describes a case selection algorithm using rough sets and fuzzy logic. (Chen, Chen, & Su,
2009) describes ontology-based case based reasoning.

(Lim, Suh, & Suh, 2011) discuss the knowledge representation of a robot. Their approach for
knowledge representation also combines a graph and an ontology. The key difference between
their research and the GPME is that they specifically designed it for a robot (a system) that there
is no differentiation between the host and the GPME. The single unified system is designed for
human interaction. This fundamental difference results in a substantial difference in the content
and use of the knowledge base.

4. Conclusion

In this paper, we have provided an introduction to an agent designed to provide metacognition to
any other agent. The GPME accepts any type of telemetry from the host and builds a knowledge
base of cases. Each case provides one or more case predicates the GPME uses to establish an

47

K. M’BALÉ, AND D. JOSYULA

expectation. Expectation violations are a stimulus that causes the GPME to adjust the host’s
behavior.

Acknowledgements
The authors would like to thank the Bowie State University Department of Computer Science
HBGI grant. This work is funded in part by the National Science Foundation grant number HRD-
1137541 and HRD-1238784.

References

Anderson, M. L., & Oates, T. (2007). A review of recent research in metareasoning and
metalearning. AI Magazine, 17604, 1–17. doi:10.1.1.107.1421

Anderson, M. L., & Perlis, D. (2004). Logic, Self-awareness and Self-improvement : the
Metacognitive Loop and the Problem of Brittleness. Journal of Logic Computation, 14(04),
1–20.

Chen, Y.-J., Chen, Y.-M., & Su, Y.-S. (2009). An Ontology-Based Distributed Case-Based
Reasoning for Virtual Enterprises. 2009 International Conference on Complex, Intelligent
and Software Intensive Systems, 128–135. doi:10.1109/CISIS.2009.23

Cox, M. T. (2005). Metacognition in computation: A selected research review. Artificial
Intelligence, 169(2), 104–141. doi:10.1016/j.artint.2005.10.009

Cox, M. T. (2007). Perpetual Self-Aware Cognitive Agents. AI Magazine, (2002), 32–51.
Retrieved from http://www.aaai.org/ojs/index.php/aimagazine/article/view/2027/1920

Cox, M. T., Oates, T., Paisner, M., & Perlis, D. (2012). Noting Anomalies in Streams of
Symbolic Predicates Using A-Distance. Advances in Cognitive Systems, 2, 167–184.

Elgot-Drapkin, J. J., Perlis, D., Kraus, S., Miller, M., & Nirkhe, M. (1999). Active Logics: A
Unified Formal Approach to Episodic Reasoning.

Geng, L., & Hamilton, H. J. (2002). ESRS : A Case Selection Algorithm Using Extended
Similarity-based Rough Sets. In 2002 IEEE International Conference on Data Mining,
2002. ICDM 2003. (pp. 609–612). doi:10.1109/ICDM.2002.1184010

Josyula, D. P., & M’Balé, K. (2013). Timebound Metacognition. In COGNITIVE 2013. Valencia,
Spain.

Lim, G. H., Suh, I. H., & Suh, H. (2011). Ontology-Based Unified Robot Knowledge for Service
Robots in Indoor Environments. IEEE Transactions on Systems, Man, and Cybernetics,
41(3), 492–509.

48

GENERAL-PURPOSE METACOGNITION ENGINE

M’Balé, K. M., & Josyula, D. (2013). Integrating Metacognition into Artificial Agents. In AAAI
2013 Fall Symposium Series (pp. 55–62). Arlington, VA: AAAI Press.

Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard University Press.

Nirkhe, M. (1994). Time-Situated Reasoning within Tight Deadlines and Realistic Space and
Computation Bounds.

Nuxoll, A. M. (2007). Enhancing Intelligent Agents with Episodic Memory. Retrieved from
http://deepblue.lib.umich.edu/bitstream/handle/2027.42/57720/anuxoll_1.pdf;jsessionid=D9
6DFBFC6BCC1923C0CBEC7C4D4CED7F?sequence=2

Nuxoll, A. M., & Laird, J. E. (2012). Enhancing intelligent agents with episodic memory.
Cognitive Systems Research, 17-18, 34–48. doi:10.1016/j.cogsys.2011.10.002

Schank, R. C. (1999). Dynamic Memory Revisited (2nd ed., p. 302). New York, NY: Cambridge
Press.

Tulving, E. (2005). Episodic memory and autonoesis: Uniquely human? In H. S. Terrace & J.
Metcalfe (Eds.), The Missing Link in Cognition (pp. 4–56). New York, NY: Oxford
University Press.

Wellman, H. F. (1990). The Child’s Theory of Mind. Cambridge, MA: MIT Press.

Yussen, S. R. (1985). The Growth of Reflection in Children. New York, NY: Academic Press.

Zheng, J., & Horsch, M. C. (2005). A Decision Theoretic Meta-Reasoner for Constraint
Optimization. In Proceedings of the 18th Canadian Society conference on Advances in
Artificial Intelligence (pp. 53–65). Berlin, Heidelberg: Springer-Verlag.
doi:10.1007/11424918_8

49

50

2013 Annual Conference on Advances in Cognitive Systems: Workshop on Metacognition in Situated Agents

Autonomy beyond Anomalies and Goals: A Strategic Perspective

Don Perlis PERLIS@CS.UMD.EDU
Department of Computer Science, University of Maryland, College Park, MD 20742 USA

Michael T. Cox MCOX@CS.UMD.EDU
Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742 USA

Abstract
In recent years there has been strong interest in both reasoning about goal-identification and
selection and metacognitive handling of anomalous situations. These two concerns are usually
framed in terms of making agents more autonomous and flexible in dynamic and complex domains.
Here we wish to argue that there is a natural unifying perspective that includes both concerns and
that may point the way to a yet more powerful kind of autonomy.

1. Introduction
An agent often has routine activities in which it is forming and/or following plans in pursuit of
existing goals. And there are also situations in which it has to stop and ask itself: what do I do now?
One major example of the latter is that of anomaly-handling: something seems out of the ordinary,
contrary to expectation, and might indicate the need to do a form of error-correction. This has been
the focus of much recent work, for instance Meta-AQUA (Cox & Ram, 1999), the Metacognitive
Loop (Anderson & Perlis, 2005), and other similar efforts. Another example is goal-driven
autonomy, in which an agent may autonomously alter or add to its goals if circumstances so warrant
(Aha, Cox, & Munoz-Avila, 2013; Aha, Klenk, Muñoz-Avila, Ram, & Shapiro, 2010).

We wish to call attention to a level of processing at which an agent considers quite generally
what to do: select from among several existing goals, form a plan to achieve an existing goal,
continue with a current plan-in-action, alter such a plan, identify a new goal, abandon a plan or a
goal, adopt new subgoals in response to unexpected events, explore opportunities for possible goals
or other benefits, do a reality-check of beliefs and expectations, and so on. This could perhaps be
called the executive level of processing (borrowing that phrase from cognitive psychology),
although the terminology already is in use in various cognitive architectures and so might not be
the best choice. Instead, let us call this the strategic level.

In what follows we briefly sketch some ideas related to the idea of such a processing level.

2. A Sketch of an Approach

We postulate a metacognitive monitoring activity (MMAC) that runs in parallel with an agent’s
normal routine activity of planning-acting in pursuit of already-identified goals. MMAC will be

51

D. PERLIS & M. T. COX

aware of such routine activities that are underway, and also of their aims and expectations, and of
how (at least some) events are actually unfolding (which may or may not be as expected). As
MMAC processes this real-time information, it also asks itself over and over: What should I do
now? What choices are there? Is there anything that would be better to do than what I am doing?
MMAC would normally run in the background, unless something pops into prominence in virtue
of a certain salience or threshold that is reached. What can govern such an event?

One way to envision this is in terms of the A-distance (Kifer, Ben-David, & Gehrke, 2004),
which assesses alterations in time-series data that exceed a given threshold. This is a crucial kind
of hedging-factor. For any given set of expectations will almost certainly fail to be fully identical
to observed events. Tiny variations are the norm, and one cannot possibly attend to all of them (nor
would it make sense to do so if it were possible). Yet how can such thresholds be determined, when
context means everything? In some contexts, a small variation in color or noise-level may be
insignificant, and in others may flag major problems or opportunities.

We think that learning is a promising approach here: an agent can learn, for a given context in
which it may be operating (or planning to operate in), which are the important things to attend to.
This can be partly at the explicit symbolic level (e.g., a teacher can tell the agent some items to
watch for and some to ignore) and partly subsymbolic (experience can provide ranges of
“normalcy” that the agent trains into its routines.1

Now, we doubt A-distance alone will be enough to cover all the cases that we envision for
MMAC. For instance, another agent might simply tell our agent that something is important. That
is unlikely to cross an A-distance threshold, since conversations may go on all the time, with words
flowing rapidly back and forth. It would presumably require a rather high-level reasoning process
to understand language sufficiently well to distinguish in a general principled way between, say,
“such matters are unimportant” and “don’t ever assume that such matters are unimportant.” Thus
we hypothesize that the strategic level of MMAC is a complex organizer of cognition that integrates
activities and seeks to improve their lot.

3. Conclusion

In this paper, we suggest that an underlying research issue exists of considerable potential
for enhanced autonomy: how to design an agent with an effective and general-purpose
“what do I do now” capacity. The capacity bears on many cognitive processes and seems
crucial for high-level reasoning in complex ever-changing environments. Researchers have
at times studied aspects of what we describe under the MMAC banner in terms of
metacognition. Other researchers have examined some of these issues in terms of goal
reasoning and goal-driven autonomy. It may be the case that we are all speaking of the
same process.

Acknowledgements
This material is based upon work supported by ONR Grants # N00014-12-1-0430 and # N00014-
12-1-0172 and by ARO Grant # W911NF-12-1-0471.

1 A-distance was developed largely for the latter situation, with continuous real-valued data; but recent work
has shown that it also is effective for discrete symbolic data (Cox, Oates, Paisner, & Perlis, 2013).

52

 AUTONOMY BEYOND ANOMALIES AND GOALS: A STRATEGIC PERSPECTIVE

References
Aha, D. W., Cox, M. T., & Munoz-Avila, H. (Eds.) (2013). Goal reasoning: Papers from the ACS

workshop (Tech. Rep. No. CS-TR-5029). College Park, MD: University of Maryland,
Department of Computer Science.

Aha, D. W., Klenk, M., Muñoz-Avila, H., Ram, A., & Shapiro, D. (Eds.) (2010). Goal-Directed
Autonomy: Papers from the AAAI Workshop. Menlo Park, CA: AAAI Press.

Anderson, M., & Perlis, D. (2005). Logic, self-awareness and self-improvement. Journal of Logic
and Computation 15, 21–40.

Cox, M. T., Oates, T., Paisner, M., & Perlis, D. (2013). Detecting change in diverse symbolic
worlds. In L. Correia, L. P. Reis, L. M. Gomes, H. Guerra, & P. Cardoso (Eds.), Advances in
Artificial Intelligence, 16th Portuguese Conference on Artificial Intelligence (pp. 179-190).
University of the Azores, Portugal: CMATI.

Cox, M. T., & Ram, A. (1999). Introspective multistrategy learning: On the construction of learning
strategies. Artificial Intelligence, 112, 1-55.

Kifer, D., Ben-David, S., & Gehrke, J. (2004). Detecting change in data streams. Proceedings of
the Thirtieth Very Large Databases Conference (pp. 180-191).

53

54

2013 Annual Conference on Advances in Cognitive Systems: Workshop on Metacognition in Situated Agents

Towards A Unified Framework for Learning and Processing
Perceptual, Relational, and Meta Knowledge

Marc Pickett MARCPICKETT1@GMAIL.COM

NRC Postdoctoral Fellow, Naval Research Laboratory, Washington, DC

Abstract
We present a framework for representing, learning, and processing meta-knowledge. Our frame-
work leverages a system initially developed for perceptual learning and processing to process both
relational structures in general and feature hierarchies in particular. We describe preliminary re-
sults demonstrating how our system can be used to learn meta-ontologies, or feature hierarchies of
feature hierarchies.

1. Introduction

A major difference between the minds of humans and other mammals is humans’ ability to perform
metacognition. Though there is debate about the level of non-human mammals’ metacognitive
capabilities, it is generally agreed that humans’ abilities vastly surpass those of other animals in
this area (Carruthers, 2008; Smith, 2009). However, in terms of gross neuroanatomy, human brains
seem to have no special structures or mechanisms that are absent in the brains of simpler mammals,
such as rabbits, that have little cognitive capacity beyond perception and action (Roth & Dicke,
2005). The chief difference between human brains and those of other mammals is that humans have
a vastly expanded neocortex (Rilling, 2006). Furthermore, there is evidence that the neocortex in
newborns is both uniform and plastic, with differentiation arising through learning from experiences
(Sur & Rubenstein, 2005; Mountcastle, 1978). That is, the a newborn’s neocortex is the same basic
mechanism repeated many times, and it is this mechanism, which we call the cortical substrate, that
accounts for the bulk of human learning and reasoning.

From this evidence, we adopt the hypothesis that it is possible to build an intelligent “newborn”
agent using only a handful of basic mechanisms. If this hypothesis is true, such an elegant design
is attractive for researchers studying cognitive systems because creating an agent with human-level
intelligence would entail an implementation of only a handful of mechanisms (and allowing the
system to develop its representations through learning) rather than specialized mechanisms for each
of the myriad aspects of human intelligence.

Although our work is not constrained by biological plausibility, algorithms loosely based on
the neocortex have emerged that have desirable properties for intelligent agents. For example,
cortically-inspired models have achieved state-of-the-art performance for computer vision (Le et al.,
2012) and some classification tasks (Chandrashekar & Granger, 2011) by learning feature hierar-
chies.

55

M. PICKETT

If an expanded neocortex accounts for the bulk of the cognitive differences between humans
and other mammals, then an open question is how an expanded neocortex might account for these
differences. That is, an account is missing of how a cortical substrate can be leveraged to account
for higher level cognition, such as symbolic reasoning, analogical inference, and metacognition
(Granger, 2011).

In previous work, we showed how a cortically-inspired algorithm could account for analogical
inference (Pickett & Aha, 2013b). In this paper, we present preliminary results in our attempt to
extend our earlier framework to support meta-knowledge, with the belief that this will be useful
for metacognitive processing. In particular, we focus on the the question of how knowledge about
feature hierarchies can be encoded as a feature hierarchy.

First, we provide background on Ontol, a model loosely based on the cortical substrate, and how
it can be used to process both perceptual and relational data (Section 2). We then show how Ontol
can be used to build a hierarchy of feature hierarchies (Section 3). Finally, in Section 4 we discuss
shortcomings of our framework and how it might be applied to metacognition, and then conclude
(Section 5).

2. Background on Learning Feature Hierarchies

Our current model for the cortical substrate, Ontol (Pickett, 2011), is a pair of algorithms, both of
which are given “sensor” inputs (fixed-length, real-valued non-negative vectors). The first algo-
rithm, chunk, constructs a feature hierarchy, or ontology, that concisely encodes the inputs. For
example, given a set of vectors representing visual windows from natural images, Ontol produces a
feature hierarchy loosely modeled on that seen in the visual cortex. The second algorithm, parse,
takes as input an ontology (produced by the first algorithm) and a new vector, and parses the vector.
That is, it produces as output the new vector encoded in the higher-level features of the ontology.
In addition to “bottom-up” parsing, the second algorithm also makes “top-down” predictions about
any unspecified values in the vector.

Ontol is ignorant of the modality of its input. That is, Ontol is given no information about what
sensory organ is producing its inputs. Because of this ignorance, we are able to leverage Ontol to
find patterns in abstract “sensory” inputs that are actually encodings of relational structures.

Figure 1a shows the ontology constructed by chunk when applied to an animal dataset (from
Blake & Merz, 1998), where the “sensory percepts” are features for each animal. For simplicity,
in this example and the remainder of the paper, we will consider a simplified version of Ontol that
takes as inputs feature bags, which are mathematically equivalent to sparse vectors with positive
integer values.

In earlier work we demonstrated how relational structures, such as the “Sour Grapes” story
(from Thagard et al., 1990) shown in Figure 2, can be represented as feature bags such that they
could be given to Ontol as input. When given a collection of stories represented this way, Ontol
learned a hierarchy of plot devices (shown in Figure 3) that could be used to efficiently retrieve
analogs for new stories (Pickett & Aha, 2013a) and perform analogical inference (Pickett & Aha,
2013b).

56

A UNIFIED FRAMEWORK FOR PERCEPTUAL, RELATIONAL, AND META KNOWLEDGE

(a) The Zoo Ontology

(b) The Foo Ontology

(c) The Congress Ontology

Figure 1: Structurally Similar Ontologies. Instances are shown on the left, and base-level features
are on the right. Black nodes in the middle correspond to higher-level features. For example, in
Figure 1a, the chicken is described by the black node roughly corresponding to “domestic fowl”,
which, in turn, is described as both domestic and by the node that roughly corresponds to “bird”.

57

M. PICKETT

Ofox

s7

want faildecide

Ograpes

s3

s2

s1

foxs6

s5 s4

m5

m4

m6

m1blameFor

m2

cause

Omenget men

grapes

circumstancesm3 concCircumstances

sour

incapable

relation

Entity

isA
1

2

1

1 isA

1

2

isA

1

2

1

1

2

1 isAisA isA

11

1

isA isA

isA

isA2 3

isA 1

12

isA

isA

Figure 2: The “Sour Grapes” Relational Structure. This fable was converted into predicate form
by Thagard et al. 1990, and displayed here as a graph, where relations are shown as black rect-
angles with numbered edges and entities are shown as green ellipses. For example, the structure
beginning with the node at top center-left marked as m6 represents the statement (blameFor
Omen concCircumstances m3), which can further be expanded to (blameFor Omen
concCircumstances (fail Omen)).

3. Learning Hierarchies of Feature Hierarchies

The key insight for this paper is that ontologies, such as those shown in Figures 1a and 3, themselves
are relational structures. Therefore, we can encode these structures using a method similar to that for
encoding stories, and use Ontol to learn an ontology that describes a group of ontologies. Although
many methods have been proposed for representing meta-knowledge (for a survey see Cox, 2005),
to our knowledge, the work presented here is the first representation that uses a feature hierarchy to
represent both perceptual knowledge, higher-order knowledge, and knowledge about knowledge.

We now describe a method for transforming ontologies into feature bags so that these can be
given as input to Ontol. The first intuition behind this transform is that a feature hierarchy essen-
tially encodes relations among the nodes in it. The second intuition is that an encoding of relations
among n entities can be approximated by describing the relations among the entities in each of
many overlapping subsets of n. For example, if hair is highly correlated with event milk and milk
is highly correlated with warmblooded, then it is often the case that hair and milk together predict
warmblooded. For the current implementation, we use tallies over truth values to represent rela-
tions. For example, the 3-way relation among hair, milk, and warmblooded would be represented
by a truth table with a tally for each of the 23 truth assignment possibilities.

The size of the truth tally is exponential in the number of variables. Therefore, we break each
large relational structure into multiple overlapping subsets of nodes. Our algorithm exploits a prin-

58

A UNIFIED FRAMEWORK FOR PERCEPTUAL, RELATIONAL, AND META KNOWLEDGE

ciple akin to one used by the HMax model of the visual cortex (Riesenhuber & Poggio, 1999):
as the number of subsets for a relational structure increases, the probability decreases that another
structure has the same subsets without being isomorphic to the first.

The process for learning a meta-ontology from a set of ontologies, called metaOntol, is de-
scribed in Figure 1. This algorithm extracts t subsets from each ontology, transforms them into
canonicalized truth tables. Treating each truth table as a feature bag and metaOntol chunks these
feature bags to create an ontology of truth tallies called truthTallyOntology. metaOntol then re-
encodes the truth tallies by parsing them using this ontology, and re-encodes the original ontologies
(from which the subsets came) as a feature bag of the parsed windows. Finally, metaOntol runs an-
other pass of Ontol’s chunking algorithm on the re-encoded structures to generate the meta-ontology.
Note that since Ontol is ignorant of the modality of its input, it processes this meta-knowledge ex-
actly the same way it processes any other type of knowledge.

As a preliminary proof of concept, we created a simple ontology of ontologies by first learning
6 object-level ontologies, transforming these to feature bags, then learning a meta-ontology from
the transformed ontologies. The 6 object-level ontologies included the Zoo ontology shown in Fig-
ure 1a, a “Congress” ontology partially shown in Figure 1c, which Ontol learned from a dataset of
435 congressmen’s votes on 16 bills in 1984. We also learned two additional ontologies from copies
of each of these datasets, with the exception that the instances and features have been renamed.
For example, from the “zoo” dataset we created the “foo” dataset in which a foo-chicken is
foo-domestic. As shown in Figure 1b, the resulting ontologies are structurally similar (though
not completely isomorphic due to randomization effects) to the original ontologies, but superfi-
cially dissimilar because they share no common nodes. (We assume that for our system, the atomic
symbols foo-domestic and domestic look no more alike than any other pair of symbols.)

Given these 6 ontologies (and somewhat arbitrarily choosing the size of truth tally m = 4, and
the number of truth tallies per ontology t = 100), metaOntol transformed each into a bag of features
using the method described above. Using this representation Ontol learned the ontology shown in
Figure 4. This meta-ontology successfully groups together the structurally similar but superficially
different “zoo”, “foo”, and “voo” ontologies, as well as the variations of the “congress” ontologies.

4. Discussion

The framework we have presented, using cortically-inspired models to represent knowledge about
cortical models, is still new and currently has much room for growth. In particular, further work is
needed to investigate how meta-ontologies might be used by an intelligent agent to accomplish its
goals. We also discuss how the current framework might be improved.

It is interesting to consider how the meta-ontology in Figure 4 might be used. Since the meta-
ontology captures structural, rather than surface overlap, the meta-ontology might be used for ana-
logical knowledge transfer between object-level ontologies. For example, a similar meta-ontology
might be used to find invariances in computer vision and other modalities by finding areas that are
superficially different yet behaviorally similar. (E.g., by noticing that the feature hierarchy describ-
ing the top left of the visual field is roughly isomorphic to the hierarchy describing the bottom right,
a system could discover translation invariance.)

59

M. PICKETT

Figure 3: Part of the ontology learned from a story dataset. As in the Zoo Ontology in Figure 1a,
black ovals represent higher level concepts. While in the Zoo Ontology, higher level concepts cor-
respond to shared surface features, in this figure, high level concepts correspond to shared structural
features (plot devices). For example, the denoted oval on the right represents a Double Suicide
schema, which happens in both Romeo and Juliet and in Julius Caesar.

60

A UNIFIED FRAMEWORK FOR PERCEPTUAL, RELATIONAL, AND META KNOWLEDGE

Table 1: Algorithm for Learning a Meta-ontology

// Input is Ω, a set of ontologies and I , a set of instances
// m is the size of truth tally, and t is the number of truth tallies per ontology
define metaOntol(Ω, I,m, t):

// Create an ontology C of canonicalized truth tallies.
let allTallies be an empty list.
// Get the truth tallies.
foreach ω ∈ Ω:

let talliesω be an empty list.
// Get t truth tallies.
repeat t times:

let truthCounts be a hash tally initialized to all zeroes.
let smallont = randomly chosen subset of ω of size m
for i ∈ I:

let oni = the set of nodes in smallont activated when using ω to parse i
truthCounts[oni] + + // Make tally for truth entries

add canonicalize(truthCounts, smallont) to allTallies and to talliesω
// Chunk the truth tallies
let truthTallyOntology =chunk(allTallies)

// Represent each ω as a count of parsed tallies
let ΩasSet be an initially empty list.
foreach ω ∈ Ω:

let ωasTallyOfTallies be an initially empty set.
foreach truthCounts ∈ talliesω:

parse truthCounts using truthTallyOntology and add the parse to ωasTallyOfTallies
add ωasTallyOfTallies to ΩasSet

// Chunk the set of ontologies represented as feature bags.
return chunk(ΩasSet)

// Routine to canonicalize a truth tally.
// This tries all m! orderings of smallont
define canonicalize(truthCounts, smallont):

// Find the ordering that yields the truth-tally that comes first “alphabetically”.
let bestCounts = truthCounts
foreach ordering in all m! orderings of smallont:

make a new truth tally truthCountsNew substituting ordering for smallont
if comesFirst(truthCountsNew, bestCounts)

return bestCounts

// Comparing two isomorphic truth tallies.
define comesFirst(a, b):

let keys be the sorted keys from the union of a’s and b’s keys
foreach key ∈ keys:

if a[key] 6= b[key]: return a[key] 6= b[key]
return false

Motor controllers, such as traces of arm movements, can be encoded in the cortex of the cerebel-
lum (Albus, 1971). Conceivably, we can create an ontology of such motor controllers and leverage

61

M. PICKETT

Figure 4: An ontology of ontologies

this ontology to quickly learn new motor skills. If traces of thought can be described as predicate
logic, then we can leverage our framework to build an “ontology of thought processes” by trans-
forming predicate logic into a relational structure and then into feature bags. Ontol can then find
patterns in these feature bags.

This latter approach may be a promising direction for research in metacognition, as it offers a
potential way for a system to analyze its own cognitive processes. This would entail first devel-
oping a way to represent cognitive processes themselves as cortical substrate (perhaps in a manner
analogous to how motor processes can be represented as sections of cerebellar cortex), then using
the current framework to find patterns in the cognitive processes, and finally using these patterns to
improve the cognitive processes.

There is room for improvement in both our cortical model and the method for transforming rela-
tional structures in general, and ontologies in particular, into feature bags. In its current incarnation,
Ontol builds a hierarchy of conjunctions. Significant leverage can be had by including nodes that
represent disjunctions (Riesenhuber & Poggio, 1999) and sequences (George & Hawkins, 2009).
Including disjunctions will not significantly affect our current transformation algorithm, since truth
tallies can be computed using essentially the same method. However, the addition of sequences will
require different ways of expressing relations among nodes, such as graphlet kernels (Shervashidze
et al., 2009). metaOntol currently assumes that the separate ontologies are both segmented and
within a manageable size. In reality, ontologies such as semantic networks tend to form contigu-
ous networks (Steyvers & Tenenbaum, 2005). To address both problems, a future version of our
transformation will grab a hierarchy of overlapping bounded-size contiguous subgraphs from the
ontology in a manner analogous to overlapping receptive fields in computer vision.

62

A UNIFIED FRAMEWORK FOR PERCEPTUAL, RELATIONAL, AND META KNOWLEDGE

5. Conclusion

In this paper we have shown preliminary results demonstrating how Ontol, a system capable of
learning feature hierarchies, can learn a meta-ontology, or hierarchy of feature hierarchies. This
work is still in its early stages, and future work includes detailing how meta-ontologies can be used
for knowledge transfer, analogical reasoning, invariance discovery, and meta-cognition.

References

Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25–61.
Blake, C., & Merz, C. (1998). UCI Repository of Machine Learning Databases.
Carruthers, P. (2008). Meta-cognition in animals: A skeptical look. Mind & Language, 23, 58–89.
Chandrashekar, A., & Granger, R. (2011). Derivation of a novel efficient supervised learning algo-

rithm from cortical-subcortical loops. Frontiers in computational neuroscience, 5.
Cox, M. T. (2005). Metacognition in computation: A selected research review. Artificial Intelli-

gence, 169, 104–141.
George, D., & Hawkins, J. (2009). Towards a Mathematical Theory of Cortical Micro-circuits.

PLoS Comput Biol, 5.
Granger, R. (2011). How brains are built: Principles of computational neuroscience. Cerebrum;

The Dana Foundation.
Le, Q., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., Dean, J., & Ng, A. (2012).

Building High-Level Features using Large Scale Unsupervised Learning. International Confer-
ence in Machine Learning.

Mountcastle, V. (1978). An Organizing Principle for Cerebral Function: The Unit Model and the
Distributed System. The Mindful Brain, 7–50.

Pickett, M. (2011). Towards Relational Concept Formation From Undifferentiated Sensor Data.
Doctoral dissertation, University of Maryland Baltimore County.

Pickett, M., & Aha, D. (2013a). Spontaneous Analogy by Piggybacking on a Perceptual System.
Proceedings of the 35th Annual Conference of the Cognitive Science Society (pp. 3229–3234).
Austin, TX.

Pickett, M., & Aha, D. W. (2013b). Using cortically-inspired algorithms for analogical learning and
reasoning. Biologically Inspired Cognitive Architectures, 6, 76–86.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical Models of Object Recognition in Cortex. Nature
Neuroscience, 2, 1019–1025.

Rilling, J. K. (2006). Human and Nonhuman Primate Brains: Are they Allometrically Scaled Ver-
sions of the Same Design? Evolutionary Anthropology: Issues, News, and Reviews, 15, 65–77.

Roth, G., & Dicke, U. (2005). Evolution of the Brain and Intelligence. Trends in Cognitive Sciences,
9, 250–257.

Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., & Borgwardt, K. (2009). Efficient
Graphlet Kernels for Large Graph Comparison. Int. Conf. on AI & Stats..

Smith, J. D. (2009). The study of animal metacognition. Trends in cognitive sciences, 13, 389–396.

63

M. PICKETT

Steyvers, M., & Tenenbaum, J. B. (2005). The large-scale structure of semantic networks: Statistical
analyses and a model of semantic growth. Cognitive science, 29, 41–78.

Sur, M., & Rubenstein, J. L. (2005). Patterning and plasticity of the cerebral cortex. Science
Signaling, 310, 805.

Thagard, P., Holyoak, K., Nelson, G., & Gochfeld, D. (1990). Analog Retrieval by Constraint
Satisfaction. Artificial Intelligence, 46, 259–310.

64

2013 Annual Conference on Advances in Cognitive Systems: Workshop on Metacognition in Situated Agents

An Architecture for Flexible Problem Solving

Pat Langley PATRICK.W.LANGLEY@GMAIL.COM

Miranda Emery MEME011@AUCKLANDUNI.AC.NZ

Michael Barley MBAR098@CS.AUCKLAND.AC.NZ

Department of Computer Science, University of Auckland, Private Bag 92019, Auckland 1142, NZ

Christopher J. MacLellan CMACLELL@CS.CMU.EDU

Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA 15213 USA

Abstract
The literature on problem solving in both humans and machines has revealed a diverse set of strate-
gies that operate in different manners. In this paper, we review this great variety of techniques
and propose a five-stage framework for problem solving that accounts for this variation in terms of
differences in strategic knowledge used at each stage. We describe the framework and its imple-
mentation in some detail, including its encoding of problems and their solutions, its representation
of domain-level and strategy-level knowledge, and its overall operation. We present evidence of
the framework’s generality and its ability to support many distinct problem-solving strategies, in-
cluding one that is novel and interesting. We also report experiments that show the framework’s
potential for empirical comparisons of different techniques. We conclude by reviewing other work
on flexible approaches to problem solving and considering some directions for future research.

1. Introduction

The ability to solve novel problems is one of the hallmarks of human intelligence, and thus a de-
sirable feature of any artificial cognitive system. Not only are people able to construct innovative
solutions to tasks they have never before encountered, but their behavior along these lines exhibits
two important features. The first is that problem-solving abilities are very general, in that people
apply them to a wide range of settings. The second is that humans exhibit substantial variation
in their problem-solving strategies, both across different people and across distinct tasks. A full
computational theory of problem solving should account for both of these characteristics.

Some early computational studies of problem solving (e.g., Newell et al., 1960) focused on
generality, but this emphasis has become far less common in recent decades. Most systems are now
specialized to certain classes of problems, such as planning, scheduling, and design, which has led
to efficient implementations but also to capabilities that are less general than those found in humans.
In addition, most implemented systems adopt a single problem-solving strategy, and in some cases
a narrow class of methods dominates an entire subfield.

In this paper, we return to AI’s initial concern with generality and address the additional chal-
lenge of variability (section 2). We present a theoretical framework that supports generalized prob-
lem solving and that accounts for variations in terms of differences in strategic knowledge (section

65

P. LANGLEY, M. EMERY, M. BARLEY, AND C. MACLELLAN

3). We argue that the theory provides new insights because it not only covers well-known strategies
but also suggests novel ones that have not appeared in the literature (section 4.2). The framework
also lets us compare the performance of different strategies in a controlled manner, and we illus-
trate this point with experimental studies that reveal some interesting regularities (section 4.3). In
closing, we relate our approach to earlier frameworks – including Soar and PRODIGY – that have
addressed variation in problem-solving strategies (section 5) and then consider some avenues for
future research (section 6). We note in advance that our aim is not to improve on these theories,
but to complement them and explore facets of the topic they did not emphasize. Problem solving
involves a broad enough class of phenomenoma that there seems room for multiple accounts, at
least at this stage of our understanding.

2. Aims of the Research
We desire a computational theory of problem solving. A key step in developing any theory is to
identify the phenomena one wants it to explain. In this case, the most basic fact is that people are
often able to solve nontrivial problems that they have never before encountered. The realization that
we might give computers the same ability served as one of the main foundations of the AI revolution
in the 1950s, and it remains a major focus of the field. The central role of search in most AI courses
and textbooks reflects this abiding concern.

A second phenomena is that the human ability to solve novel problems appears to be very
general. Although experts take advantage of domain knowledge to handle familiar types of tasks
effectively, they retain the ability to solve, with more effort, unfamiliar problems far outside their
areas of expertise. Moreover, problem solving is not limited, as often assumed, to planning tasks that
involve generation of action sequences. This ability is also useful in design, scheduling, theorem
proving, and solving problems in mathematics and science. We would like a theory that supports
such general capabilities.

A third phenomena, more underrated, serves as the primary focus of this paper: humans are
highly variable in the strategies they employ to solve problems, and the AI literature on problem
solving shows a similar diversity of approaches. For instance, we know that people sometimes
chain backward from goals to select operators, as when solving physics problems (Larkin et al.,
1980) and when working on puzzles like the Tower of Hanoi (Newell & Simon, 1972). In other
cases, such as during chess play, they appear to chain forward from the current state (de Groot,
1978). Similar differences hold between early AI planning systems (Fikes & Nilsson, 1972), which
chained backward, and more recent ones (Hoffmann, 2001), most of which chain forward.

Another dimension of variation involves the organization of search. Nearly every AI course
teaches students about depth-first, breadth-first, and best-first methods, with the latter being popular
in many implemented systems. Humans show less variability here due to their limited short-term
memories, relying on progressive deepening (de Groot, 1978) and other variants of greedy search.

Yet another issue, discussed primarily in the AI planning literature, concerns whether one en-
gages in eager or delayed commitment of choices when selecting operators or bindings. There
have been no studies of human biases on this front, yet it seems likely that they lean toward eager
methods, due to memory limitations, but that they can delay some decisions.

A final dimension involves criteria for terminating search with either failure or success. Dif-
ferent problem-solving systems incorporate different conditions for abandoning branches, such as

66

AN ARCHITECTURE FOR FLEXIBLE PROBLEM SOLVING

detecting loops and exceeding depth limits. They also adopt diverse schemes for determining suc-
cess, ranging from the costly option of requiring all problem solutions to partial satisfaction with a
single solution that achieves only some of the specified goals.

The computational account of problem solving that we develop should account for this variety of
strategies, as well as be applicable to a broad range of task domains. Our purpose is not to construct
a system that produces better solutions than others or that finds them more rapidly, but rather one
that explains the full range of methods observed in human and machine problem solvers. We will
not attempt to justify this goal further, as it seems desirable in its own right. However, we will
note that such a framework would aid in experimental comparison of different strategies because it
would enable their implementation in a common infrastructure, and we report initial studies along
these lines in Section 4. In addition, such a theory seems a prerequisite for modeling the adaptive
character of problem solving seen in humans, such as their ability to shift between forward and
backward search on different problems, and we discuss ideas for extending our framework in this
direction in Section 5.

We should note some other topics that are not a focus of our current research. One is that we
have not attempted to account for all aspects of human problem solving, such as the influence of
limited working memory on strategy choices, even though some clearly make different demands on
memory than others. Another is that, following early work in the area, we have focused on problem
solving on unfamiliar tasks in which little domain knowledge is available. A third is that we have
chosen not to address domains that involve uncertainty. Each area is important, and we hope to
explore them in future work, but we must limit our initial scope in order to make progress.

3. A Flexible Theory of Problem Solving
To reiterate, problem solving in humans and machines exhibits both generality and variety, and we
want a theoretical framework that covers both of these features. In this section, we present such
a framework, dividing our presentation into five parts. We begin by specifying the framework’s
theoretical assumptions, its representation of problems and solutions, and the architecture it employs
to find solutions. After this, we characterize our formalism for encoding the domain knowledge over
which the architecture operates. Finally, we describe how the framework encodes strategies that link
the architecture with domain knowledge to solve specific problems.

Science often distinguishes between theories and models. In this view, our architectural frame-
work constitutes a theory of problem solving that comprises principles of representation and pro-
cessing. In contrast, domain knowledge and specific strategies combine to make up models that
instantiate this theory to produce behavior. We have implemented both the theory and a variety of
strategies in Prolog; we will refer to them collectively as FPS, which stands for Flexible Problem
Solver, in homage to Newell, Shaw, and Simon’s (1960) early work.

3.1 Theoretical Assumptions

Before we present our own theory, we should review the framework for problem solving that has
become widely adopted in both AI and cognitive psychology. This standard theory is due originally
to Newell, Shaw, and Simon (1958), but it has become so commonly accepted that few now question

67

P. LANGLEY, M. EMERY, M. BARLEY, AND C. MACLELLAN

whether it has any potential for elaboration and improvement, which is the high-level objective of
our research enterprise.

This theory states that problem solving involves carrying out search through a problem space in
an effort to transform an initial state into one that satisfies a goal description. This problem space is
not enumerated in advance, but rather is generated dynamically by applying operators that transform
states into other states. These operators include both conditions on their application and effects they
produce when applied. The search process may be guided by heuristics, but it is also organized by
strategies that influence the order in which states are considered and in which operators are applied.

Our new theory of problem solving adopts all of these claims, but it also moves beyond them to
incorporate some new postulates. These include assumptions that:

• The primary mental structure in problem solving is the problem, which includes a state descrip-
tion and a goal description.

• A problem solution consists of a problem P ; an applied operator instance or intention I ; a down
subproblem that shares P ’s state but has goals based on I ’s conditions; a right subproblem that
has the same goals as P but a state that results from applying I to P ’s state; and solutions to
these subproblems. A trivial problem solution is one in which the state satisfies the goals.

• Problems and their (attempted) solutions reside in a working memory that changes rapidly over
the course of problem solving, whereas operators and strategies reside in a long-term memory
that changes gradually if at all.

• Problem solving operates in cycles that involve five stages: problem selection, intention gen-
eration, subproblem generation, failure checking, and termination checking. Each stage uses
structures in long-term memory to produce changes to problem structures in working memory.

• Long-term memory contains two forms of content: domain knowledge that defines predi-
cates and operators for the current problem domain and strategic knowledge that specifies the
problem-solving strategies used at each of the five stages.

Although the first three assumptions specify important commitments about representation and or-
ganization, the final two tenets are the most interesting and important. We discuss them later in the
section, after clarifying some issues of representation and organization.

3.2 Structure of Problems and Solutions

Before we discuss our framework’s mechanisms for problem solving, we should first consider its
representational assumptions. As noted, the primary structure is the problem, which always has an
associated state description and a separate goal description, each with its own identifier so that it can
be reused elsewhere. A nontrivial problem (one for which the state does not satisfy the goals) has
zero or more operator instances or intentions, each of which decomposes it into a down subproblem
and a right subproblem. A decomposition of problem P is a solution to P if its down subproblem and
right subproblem themselves have solutions, with trivial subproblems serving as terminal nodes.

We can clarify this organization with an example from the Tower of Hanoi domain. Recall that
this involves moving disks to target pegs subject to the constraints of moving only one disk at a
time, not moving a disk if a smaller one is on it, and not moving a disk to a peg if a smaller one is

68

AN ARCHITECTURE FOR FLEXIBLE PROBLEM SOLVING

Figure 1. Solution decomposition for a simple Tower of Hanoi problem (P1) that includes both down-
branching (P2) and right-branching (P5) subproblems. Each terminal node denotes a trivial subproblem.

already there. Figure 1 shows the structure of a solution for a simple task that involves moving disks
1 and 2 from peg B onto a target peg C that already holds disk 3. The simplicity of this problem
(P1) is reflected in the structure of its solution. This is not the only possible solution structure for
this problem, but it is a reasonable one that lets us clarify the organization of elements in memory.

This involves a decomposition of P1 into a down subproblem (P2), since its intention – moving
disk 2 from peg B to peg C – is not applicable in state S1, and a right subproblem (P5), since
this operator instance does not by itself achieve all of P1’s goals (G1). The down subproblem P2 is
decomposed further based on another intention – moving disk 1 from peg B to peg A – that produces
two additional subproblems (P3 and P4). These are both trivial, in that the intention is applicable in
S1 and achieves all of the goals (G2) associated with P2. The conditions for the original intention
(moving disk B) match the resulting state S2, with a new state (S3) produced by its application that
is associated with right subproblem P5. The intention attached to P5 – moving disk 1 from peg A
to peg C – has trivial subproblems, as its conditions match S3 and it achieves the remaining goal in
G1, thus solving the top-level problem.

This example is simple, but it should clarify the nature of problem decompositions and the or-
ganization of solutions, which is inherently hierarchical. We maintain that other frameworks are
special cases of this general idea. For instance, the popular class of methods that approach problem
solving in terms of forward search are techniques that only consider solutions with nontrivial right-
branching decompositions. In contrast, the early Logic Theory Machine (Newell, Shaw, & Simon,
1957) only considered solutions with nontrivial down-branching decompositions. Our framework’s
support for both types of solution borrows from the decompositional scheme introduced in Newell,
Shaw, and Simon’s (1960) General Problem Solver. Although their implementation had many draw-

69

P. LANGLEY, M. EMERY, M. BARLEY, AND C. MACLELLAN

Figure 2. The five-stage cycle of the FPS problem-solving architecture.

backs, we hold that its representation of problem decompositions is ideally suited to support the
variety of search strategies that we aim to explain.1

3.3 Five Stages of Problem Solving

As just noted, our problem-solving architecture cycles repeatedly through five stages. The first step
involves selecting a problem on which to focus attention. There is only one problem at the outset,
but the number of choices increases on later rounds. During this stage, the problem solver examines
working memory to determine which problems are available (i.e., not marked as solved or failed)
and alters it to reflect the newly selected focus. Different strategic knowledge for this stage imposes
different organizations on search through the problem space. For example, selecting more recently
created problems leads to strategies like depth-first search and iterative deepening (Langley, 1992),
whereas selecting less recent ones produces ones like breadth-first and beam search.

Once the architecture has selected a problem P , the second stage selects an operator instance
that it hopes will lead to a solution for P . We refer to these as intentions because the problem solver
intends them for execution if they participate in its final solution for P . This stage examines both
P and domain knowledge about operators, considers all intentions that are available and relevant,
selects one of them, and associates it with P . If no operator instances are available (e.g., if all
relevant candidates have failed on earlier attempts), the problem solver annotates the problem to
that effect. Different strategic knowledge for this stage generates intentions by chaining backward
from problem goals,chaining forward from the state, or some mixture of these schemes.

The third stage generates new subproblems of the current problem P , if necessary, based on the
newly selected intention I , if one has been produced. This includes creating a down subproblem

1. The related technique of island search (Chakrabarti, Ghose, & Desarkar, 1986) also decomposes a problem into
subproblems, but our approach comes closer to that in Newell et al.’s earlier work.

70

AN ARCHITECTURE FOR FLEXIBLE PROBLEM SOLVING

Table 1. Example FPS encodings for a state description, a goal description, and an operator for the Tower of
Hanoi puzzle, with each being desribed as a set of literals.

State description: Operator description:
state(s1, on(disk1, disk2)), state(s1, on(disk2, disk3)), operator(move(Disk, From, To)),
state(s1, on(disk3, pegA)), state(s1, clear(disk1)), condition(move(Disk, From, To), smaller(Disk, To),
state(s1, clear(pegB)), state(s1, clear(pegC)). condition(move(Disk, From, To), clear(Disk)),

Goal description: condition(move(Disk, From, To), clear(To)),
goal(g1, on(disk1, Any_disk)), goal(g1, on(disk3, pegC)), effect(move(Disk, From, To), on(Disk, To)),
goal(g1, on(Any_disk, disk3)). effect(move(Disk, From, To), clear(From)).

that has the same state as P but has goals based on I ’s conditions, along with a right subproblem
that has the same goals as P but has a state produced by applying I ’s effects to P ’s state.2 Different
strategies at this stage include eager commitment, which creates subproblems as soon as an intention
is available, and delayed commitment, which waits until a set of intentions have been found, then
determines the order in which they should be applied.

Another stage checks for failures that indicate the problem solver should abandon the current
problem P . This involves inspecting P and its associated intentions for unresolvable issues and
adding relevant annotations to P about them. For example, this stage can check for an absence of
available intentions, loops in the path that led to P , evidence that P is more difficult than one of
its ancestor problems, reaching a depth limit, or even that too many attempts have been made to
solve it. Such tests are not usually given the status of problem-solving strategies, but they are just
as important as constructive steps that create intentions and subproblems.

The fifth and final stage checks to see whether any additional work is needed to solve the current
problem P . This compares P ’s state and goal descriptions to determine whether there is a sufficient
match. If so, then it annotates P as solved, which will influence problem selection on the next
cycle. Different strategic knowledge for this stage specifies alternative criteria for deciding when
a problem is solved. This may require that all goal elements are matched, that some percentage
of goals are satisfied, or, in settings where goals have associated values, that the summed value of
matched goals exceeds a threshold.

To summarize, our problem-solving framework incorporates five stages: problem selection,
intention generation, subproblem creation, failure checking, and termination checking. The archi-
tecture cycles through these steps, combining strategic knowledge associated with each stage and
domain knowledge about operators to carry out search through the problem space that they jointly
define. To understand how each stage operates, we must examine these knowledge elements, to
which we now turn our attention.

2. The resulting down subproblem will be trivial if I ’s conditions already match the current state, while the new right
subproblem will be trivial if the result satisfies all of P ’s goals.

71

P. LANGLEY, M. EMERY, M. BARLEY, AND C. MACLELLAN

3.4 Domain Knowledge for Problem Solving

According to the standard theory, problem solving depends on domain operators to generate new
states that achieve goal descriptions, which in turn requires some way to represent all three types of
structures. Our implementation of the FPS architecture adopts a logic-like notation for states and
goal descriptions, in which each is specified by a set of literals (domain predicates with arguments).
Goal descriptions may differ from states by omitting some elements, using variables rather than
constants for some arguments, and including negated literals. Our notation for operators differs
from traditional ones like STRIPS and PDDL, encoding each operator as a set of generalized literals,
which supports more flexible processing by the problem-solving architecture.3

Table 1 shows the representation for a state description and a goal description from the Tower of
Hanoi, along with that for the single operator for this domain. Each state literal describes a different
aspect of the state, while the same holds for the more abstract goal description, which contains
the pattern-match variable Any_disk in two elements. The operator description includes a literal
that names the operator and its arguments, three condition elements that together specify when the
operator is applicable and how their arguments relate, and two effect elements that jointly specify
how the operator changes the state description. Although this example does not illustrate them,
conditions may be negated and effects may involve deletions.

3.5 Strategic Knowledge for Problem Solving

Of course, domain knowledge by itself is not sufficient; we need some way to interpret the domain
states, goal descriptions, and operators to produce problem solving. In most AI research, this takes
the form of opaque, procedural code that, although efficient, lacks the flexibility needed to support
a variety of strategies.4 Instead, our framework specifies problem-solving behavior in terms of
domain-independent knowledge.

The details of this strategic knowledge differ for each of the architecture’s five stages, but they
share some features that distinguish them from domain knowledge. In particular, they:

• make no reference to either domain-level predicates or operators, containing instead variables
that match against such domain content;

• refer to meta-level predicates like problem, state, goal, operator, condition, effect, and intention;
• consist mainly of control rules that specify decisions to make under various conditions; and
• include inference rules that support control rules by determining whether their conditions hold.

The control rules for a given stage S are stored in an ordered list that, upon entering S, the archi-
tecture considers in turn, invoking inference rules as needed to determine whether a given control
rule’s conditions are satisfied. If so, then the rule fires and alters the contents of working memory.
We can clarify this process by discussing briefly the control schemes that we have implemented
within the framework.

3. We are not claiming that our formalism has greater expressive power than traditional ones, only that its distributed
character offers benefits for encoding and processing strategic knowledge.

4. We do not mean that procedural encodings cannot, in principle, offer flexibility, say through parameters or switches,
but they have been associated empirically with inflexible approaches to problem solving.

72

AN ARCHITECTURE FOR FLEXIBLE PROBLEM SOLVING

Recall that the first stage involves selecting a problem on which to work. Here we have im-
plemented three alternative regimes: depth-first search (two control rules), iterative sampling (two
rules), and breadth-first search (two rules). Table 2 (a) presents the control rules used to produce
depth-first search. Iterative sampling, which carries out repeated greedy search, replaces one of
these rules but uses the other one, which provides evidence for the modularity of this knowledge.

The second stage is responsible for generating intentions (operator instances) for use on the
current problem. In this case, we have implemented two approaches: backward chaining, which
considers an operator only if its application would achieve one or more problem goals, and forward
chaining, which considers an operator only if all its conditions match the problem state. Table 2 (b)
presents the two control rules used for backward chaining; the forward version uses the same number
of rules. The architecture also ranks intentions generated through both mechanisms by the number
of goals they achieve. Informal studies suggested that these variants guided search substantially
better than ranking candidates equally.

The next stage selects the most highly ranked intention, determines whether to proceed with this
choice, and, if so, generates its associated down and right subproblems.5 Here we have implemented
two alternatives that involve eager and delayed commitment. The former utilizes four control rules,
whereas the latter requires twelve. Delayed commitment also includes a substantial number of infer-
ence rules that detect interactions and dependencies (such as goal clobbering) among the candidate
intentions and thus modulate their final ordering.

The framework’s final two stages handle failure and termination. Control knowledge imple-
mented for failure comprises nine rules, including ones that match when an ancestor problem is
the same or more difficult than the current one, when all decompositions have been attempted, and
when a depth limit has been exceeded. Analogous control knowledge for termination includes four
rules that apply when the problem’s state matches its goal description, when a right subproblem
has been labeled as solved, when attempts to solve the top-level problem have failed, and when this
problem has been solved.

Taken together, the control and inference rules for each stage specify a complete problem-
solving strategy. Combined with the architecture, which cycles repeatedly through the stages, and
the domain operators and predicates, they let the system attempt to solve novel tasks through a pro-
cess of problem-space search. Each stage can utilize alternative schemes to organize and direct this
search. Differences in control knowledge for each stage produces the variability we have argued is
characteristic of human problem solving and desirable in cognitive systems generally.

4. Experience with the Framework

Now that we have described our problem-solving framework and its implementation, we can turn
to whether it satisfies the aims we outlined early in the paper. In this section, we examine the
architecture’s functionality, its generality, and its ability to support a wide variety of strategies, one
of which is novel and interesting. We also report experiments that demonstrate the framework’s
support for empirical studies of alternative problem-solving techniques.

5. When two or more intentions have the same ranking, the architecture selects among the candidates at random.

73

P. LANGLEY, M. EMERY, M. BARLEY, AND C. MACLELLAN

Table 2. Control rules used to implement (a) depth-first search and (b) backward chaining.

(a) Depth-first selection of problems

If no problem is currently selected, then select the root as the current problem.

If there currently is a selected problem, then select as the new current problem the one with the highest
identifier that has not been solved and that has not failed.

(b) Backward-chaining generation of intentions

If the current problem P has already been labelled as having no operators available, then do nothing.

If an operator instance I exists that achieves one or more goals for current problem P , and I is not already
an intention for problem P , then make I an intention of P .

4.1 Basic Functionality and Generality

The most basic claims about our framework are that it supports effective problem solving on novel
tasks and that it exhibits generality by solving problems across a wide range of domains. To demon-
strate that it satisfies these criteria, we have implemented in Prolog (Clocksin & Mellish, 1981) the
problem-solving architecture, a variety of problem-solving strategies that we will discuss shortly,
and domain knowledge for various domains.

Table 3 lists the nine different domains for which we have developed predicates and operators.
These include classic puzzles like Tiles and Squares (Ohlsson, 1982), the Tower of Hanoi (Newell
& Simon, 1972), Missionaries and Cannibals, Slide Jump, and the Blocks World (Fikes & Nilsson,
1972), planning domains like Gripper, Logistics, and Dock Workers, and inference tasks like de-
ducing kinship relations. These differ substantially in their characteristics. For instance, the three
puzzles involve simple movement or stacking of objects subject to constraints, whereas the three
planning domains incorporate more complex forms of action. These domains all involve nonmono-
tonic operators that can make existing relations false, whereas those for inferring kinship relations
are entirely monotonic.

The fact that FPS can solve problems in each of these domains does not prove its generality,
but it certainly lends evidence to that claim. However, many previous implementations, starting
with Newell, Shaw, and Simon’s GPS and continuing through many planning systems, have shown
similar generality and have been tested more thoroughly. Thus, we now shift attention to our frame-
work’s more distinctive capabilities.

4.2 Coverage of Existing and Novel Strategies

Another primary claim is that our theoretical framework has broad coverage of the problem-solving
strategies exhibited by both human and artificial problem solvers. By coverage, we mean that the
architecture is capable of reproducing a wide range of strategies from the literature.6 For exam-
ple, if the framework could only reproduce the behavior of a single system, its coverage would be

6. Naturally, the size of this space is difficult to quantify in advance, but we will be able to tell, as our theory progresses,
whether its coverage of known methods is increasing.

74

AN ARCHITECTURE FOR FLEXIBLE PROBLEM SOLVING

Table 3. Problem-solving domains on which we have tested the FPS architecture.

Tiles and Squares. This domain involves a set of N tiles that sit on N + 1 squares, so that one square is
always empty. The single operator can move any tile from its current square onto the empty square, with
the goal being to rearrange the initial configuration of tiles into a target arrangement.

Blocks World. This domain consists of a number of separate blocks and a table. The four operators let one
pick up a block from the table or off another block and deposit a block onto the table or another block.
Goal descriptions involve partially specified configurations of block and table relations.

Tower of Hanoi. This domain involves N disks that sit on three pegs. The single operator can move a
disk onto a new peg if there is no smaller disk on it and if there is no smaller disk on the new peg. Goal
descriptions specify desired placements of disks on pegs.

Missionaries and Cannibals. This domain concerns a boat, two river banks, N missionaries, and N
cannibals. All missionaries and cannibals begin on one bank and must be transported to the other side,
but there must never be more cannibals than missionaries on either bank. The single operator moves the
boat from one bank to another, along with one to three passengers.

Slide Jump. In this domain, N dimes and N nickels are arranged in a row of 2N + 1 locations, one of
which is empty. Initially, all dimes are left of the empty slot and all nickels are right of it. One operator
slides a dime right into an adjacent empty slot or slides a nickel left into one; the other jumps a dime right
over a nickel into an empty slot or jumps a nickel left over a dime. The goal is to get all dimes to the right
of the empty slot and all nickels to its left.

Kinship Relations. This domain involves people who are in parent-child relationships, with monotonic
operators for inferring more complicated forms of kinship that appear in goal descriptions.

Gripper. This domain involves a robot with a gripper, a number of balls, and two or more rooms. Op-
erators include gripping a ball, moving to a different room, and dropping a ball, with goals specifying
desired locations of balls.

Logistics. This domains includes a number of cities, locations in those cities, transportable packages, and
trucks and plans that can hold those packages. Operators involve loading and unloading packages, flying
planes between cities, and driving trucks between locations. Goals specify desired locations of packages.

Dock Workers. This domain contains a robot, containers, pallets, and cranes in various locations. Opera-
tors let the robot move between locations and let the crane transfer a container from the top of a stack to
the robot or vice versa. Goal descriptions specify desired positions of containers on pallets in locations.

very poor, but if it could reproduce the behavior of a number of diverse systems, then its coverage
would be high. This metric is both relevant and important because it shows how effectively our the-
oretical framework explains the phenomena in question, in this case the variety of problem-solving
strategies. To evaluate the coverage of our system, we will describe how it reproduces several
problem-solving strategies from the literature and show how strategies that are not supported by our
current models are still supported by the theoretical framework.

75

P. LANGLEY, M. EMERY, M. BARLEY, AND C. MACLELLAN

We have implemented some 12 distinctive problem-solving strategies that result from different
choices of control knowledge for the five stages. These include some familiar techniques that are
often presented as standalone problem-solving methods in textbooks:

• Breadth-first forward search. This strategy results from a combination of breadth-first prob-
lem selection, generation of intentions by forward chaining, eager commitment, loop-triggered
failure, and success upon finding a single state that matches the goal description. Because this
strategy only considers operators with matched conditions, it produces entirely right-branching
paths that fan out from the generated states.

• Depth-first means-ends analysis. This strategy (Newell, Shaw, & Simon, 1960; Fikes & Nils-
son, 1972) results from a combination of depth-first problem selection, generation of intentions
by backward chaining, eager commitment, loop-triggered failure, and success upon finding a
single state that matches the goal description. Because this strategy considers operators that
achieve one or more goals but may not have the conditions satisfied, it typically generates
solution paths with a mixture of down and right subproblems.

• Forward search with iterative sampling. This strategy (Langley, 1992) combines iterative sam-
pling – repeated greedy search with no memory of previous passes – to a fixed depth with
forward chaining to generate intentions, including eager commitment and success upon finding
a single solution. This is another strategy that only considers operators with matched condi-
tions, so it also generates paths with only right subproblems.

• Depth-first partial-order planning. This strategy combines depth-first problem selection with
backward generation of intentions and delayed commitment for subproblem generation. Al-
though this scheme typically produces solutions with a mixture of down and right subproblems,
it checks for order dependencies among intentions before selecting one, applying it mentally,
and creating right subproblems.

We have focused on these examples because they have been described in the literature and they
will be familiar to many readers. However, a more interesting question is whether the framework
suggests novel and interesting combinations of settings that have not appeared to date.

An important feature of our framework is that its modularity lets us combine any substrategies
for one stage with any substrategies for another. This is what lets us produce so many distinct
problem-solving strategies given the elements discussed in Section 3. Many of these are minor
variations of each other, such as a depth-first version of forward search and a breadth-first variant
of partial-order planning, while others correspond to techniques that have appeared in the literature
but are not well known, such as the union of backward chaining with iterative sampling (Jones &
Langley, 2005).

However, at least one strategy that emerges in this manner, and which is unexpected and in-
teresting, involves a combination of least commitment with forward chaining. Least commitment
was originally designed for use with backward-chaining methods, specifically ones for partial-order
planning, but our framework also allows its use in conjunction with forward search. In this strategy,
the problem solver generates a number of intentions with matched conditions, but then examines
them for interactions before selecting one to drive creation of subproblems. To our knowledge, this

76

AN ARCHITECTURE FOR FLEXIBLE PROBLEM SOLVING

idea has never been reported in the AI or cognitive psychology literature and, as we will see shortly,
this scheme produces interesting and unexpected behavior.

This result provides evidence that our problem-solving framework does more than cover already
established strategies; it suggests novel combinations that have never been observed. In this sense,
it is playing a similar role to Mendeleev’s periodic chart, which not only organized known elements
into a coherent and structured framework, but also suggested new elements that would fill gaps in
the table. The fact that our theoretical framework and its associated implementation supports such
generality is an encouraging sign, although it seems clear that some strategies remain outside its
current incarnation and there remains considerable room for improvement.

4.3 Experimental Studies of Alternative Strategies

One advantage of our framework’s implementation is that it lets us compare the effectiveness of
different strategies experimentally. Most modern problem-solving systems (e.g., Hoffmann, 2001)
rely on a single, highly optimized strategy, so that differences in their behavior may be due either
to implementation details or to more basic distinctions. Because instances of FPS rely on the same
underlying architecture and differ only in their strategic control rules, we can eliminate variance
due to other factors and thus carry out more direct and revealing empirical comparisons among
alternative problem-solving strategies.

Figure 3 (a) presents experimental results from FPS runs on 23 distinct problems collected for
seven of the task domains described earlier in Table 3: Blocks World, Tower of Hanoi, Missionaries
and Cannibals, Slide Jump, Kinship, Logistics, and Dock Workers. We ran FPS using each of the
12 strategies on three problems from each domain except for Logistics and Blocks World, for which
we used two and six problems, respectively. Most of the problems in a given domain had similar
complexities in terms of number of objects and length of solution, but, in many cases, each task was
solved more easily with some strategies than others.

The graph plots the CPU times for all six of the forward-chaining FPS variants against all six
backward-chaining versions. Each point compares the performance on a given problem of one
forward-chaining strategy with its backward-chaining analog, holding settings for other FPS stages
(e.g., problem selection or subproblem generation) constant. For problems that fall above the di-
agonal, forward chaining generation of intentions took longer to find a solution than did backward
chaining, with the reverse holding for problems below this line.7 One clear trend is that backward-
chaining strategies fare better on the kinship domain; this result is unsurprising, as the operators are
monotonic and thus lend themselves to goal-directed processing.

Figure 3 (b) presents the results from a more focused comparison between the novel class of
strategies described earlier – the combination of forward chaining with delayed commitment – with
the average of all other strategies. In this case, problems above the diagonal denote those on which
one strategy class took less time than the other class. The graph shows that, except for some tasks
in the upper right corner that are difficult in general, the new class of strategies fares better than the
average of all other methods. Detailed analysis suggests that this combination is effective because
it avoids the cost of checking for interactions on down subproblems, since these are trivial with

7. We halted runs after 3,000 problem-solving cycles, so the cluster of points at the far right means that backward-
chaining techniques exceeded this bound on many tasks.

77

P. LANGLEY, M. EMERY, M. BARLEY, AND C. MACLELLAN

(a) (b)

Figure 3. Scatter plots that compare the CPU seconds needed for FPS to solve problems in five domains
(a) comparing variations on forward chaining with variants of backward chaining, as well as (b) comparing
forward chaining, delayed commitment variants against averages of all other strategies.

forward chaining, and reaps the benefits of delayed commitment when it comes close to achieving
the goal description, when interactions among operators often become important, without paying
much overhead early in the search process.

These experimental results are intriguing and suggest the need for additional studies of forward
chaining with delayed commitment, but they are not, in themselves, the main point of our research.
The conclusion readers should draw is that this comparison would not have occurred without our
framework’s capacity for suggesting and supporting novel problem-solving strategies, as well as its
ability to compare such search methods experimentally in a controlled manner. The results provide
evidence that the framework enables and fosters both forms of scientific activity.

5. Related Research

Problem solving has played an important role in AI’s history, and there is a substantial body of work
from which we have drawn. Although early efforts (e.g., Newell et al., 1960) emphasized generality
more than recent ones, even today’s specialized planning systems exhibit substantial coverage of
many tasks. Thus, we will not claim that our framework’s generality is especially novel, despite its
applicability to non-planning problems, such as inference tasks that involve monotonic operators.

However, the issue of variability is another matter entirely, as most research paradigms are now
dominated by a single approach, such as forward search in planning and backward search in de-
ductive inference. To find exceptions to this trend, we must examine the older literature, before the

78

AN ARCHITECTURE FOR FLEXIBLE PROBLEM SOLVING

modern emphasis on systems that are optimized for CPU time. One example comes from Kamb-
hampati and Srivastava (1995), whose framework for “universal classical planning” attempted to
unify “plan-space” and “state-space” planning by casting each as special cases of refining a par-
tial order plan. Their framework supported three distinct strategies: forward search through a state
space, backward search through such a space, and mixed search through a plan space. Although
similar in spirit, our framework provides much broader coverage of strategies.

Another early effort that supported a broad range of problem-solving behaviors revolved around
the PRODIGY architecture (Carbonell, Knoblock, & Minton, 1990). This framework is quite similar
to ours in that it incorporated a decision-making loop that, sequentially, selects among goals, states,
operators, and bindings. These processing steps do not map precisely onto our five stages, but they
play a similar role. PRODIGY also specified alternative strategies in terms of control rules, although
an important difference is that published work on this framework emphasized using and acquiring
domain-specific control knowledge, whereas we are concerned with domain-independent strategies.
Minton (personal communication, 2012) reports that PRODIGY could utilize domain-independent
control rules, but the project did not explore this ability systematically.

The FLECS system (Veloso & Stone, 1995), which extended the PRODIGY framework, came
even closer to our approach by supporting both eager and delayed commitment, a capability han-
dled by our third stage. FLECS could also shift between progression and regression approaches
to planning, which maps directly onto alternatives in our architecture’s second stage of intention
generation. However, our framework also supports different schemes for problem selection, failure,
and termination. Also, like PRODIGY, it only considered operators that would achieve at least one
of the current problem’s goals, so it could not produce purely forward search. Thus, we can view
our FPS framework as an extended, more flexible version of FLECS that covers a wider range of
problem-solving behaviors.

A fourth theoretical framework with similar aims is the Soar architecture (Laird et al., 1987).
This organizes behavior around problem-space search in a six-stage cycle that checks for success,
decides on failure or suspension, selects a state, selects an operator, applies the operator, and de-
cides whether to save the resulting state. Each stage examines control rules that vote for or against
available alternatives, complemented by an elaboration process that applies inference rules to in-
form these decisions. Although recent research on Soar has emphasized domain-specific control
knowledge, early work utilized this approach to mimic a variety of “weak methods” that embodied
generic problem-solving techniques. These correspond to our settings for various stages, such as
depth-first search and backward chaining, and they could be combined in much the same way as
FPS does. Our framework supports dimensions of variation not (to our knowledge) studied in Soar,
such as eager and delayed commitment, but the two theories still have much in common.

These earlier efforts may lead some readers to question why we have developed our own frame-
work for flexible problem solving. One reason is that, despite the early PRODIGY and Soar results,
the topic has received remarkably little attention for over two decades, and it deserves more air time.
Another is that FPS includes some new emphases, such as the hierarchical character of problem so-
lutions and additional dimensions of variation. We will not claim that our theory is superior to its
predecessors, but we believe that the field’s understanding of problem is still far from complete, and

79

P. LANGLEY, M. EMERY, M. BARLEY, AND C. MACLELLAN

that achieving human-level flexibility in this arena is challenging enough to justify more alternative
accounts of this important set of phenomena.

6. Limitations and Responses
Despite our progress to date, there remain many directions in which we can extend both our theo-
retical framework and its implementation. The first step should be to support an even wider range
of strategies in FPS by adding new control knowledge for various stages, especially problem selec-
tion, which should include techniques like beam search, best-first search, and iterative deeping. We
should also add the ability to utilize numeric evaluation functions, both generic and domain-specific
ones, to guide selection of both problems and intentions.

In addition, we should demonstrate that the framework supports other classes of problem-
solving tasks. For instance, more flexible termination criteria should produce techniques for partial
satisfaction planning (van den Briel et al., 2004), which find plans that achieve only a subset of the
specified goals. The framework should also handle optimization techniques that do not halt at one
solution but continue looking for alternatives that fare better on some evaluation function. Con-
straint satisfaction tasks should also be straightforward, requiring only that some goals be stated
in terms of derived predicates. Naturally, we should continue to look for opportunities in which
the fine-grained character of our control rules suggest novel strategies that support viable problem
solving, in which case we should compare them experimentally to established techniques.

Of course, we should also explore extensions to the problem-solving architecture itself. One
high priority is to support the use of hierarchical task networks ((Nau et al., 2001) to organize and
constrain the search process. The decompositions that FPS already uses during during problem
solving are similar in spirit to HTN methods. We intend to store generalized versions of these
decompositions, with associated conditions and effects, as high-level operators on which the system
can draw during search. A heuristic that prefers intentions which achieve more goals should favor
hierarchical methods over primitive operators, which would still be available as fallback options.
The mapping between specific problem decompositions and HTN methods also suggests the system
can learn the latter from successful problem solutions.

Yet another promising avenue involves shifting between strategies dynamically, based on mea-
sures like relative branching factors in the forward and backward directions. A different augmenta-
tion would introduce stages for reformulating problems when they prove difficult to solve (MacLel-
lan, 2011; Riddle, 1990) and for translating solutions in the reformulated space back into the origi-
nal one. This will require specifying reformulation operators that alter the representations for states,
goals, or operators. An even more radical extension would provide the framework with an ability to
generate new control rules and thus explore the space of strategies automatically. Each of these ex-
tensions would involve incremental additions to the architecture rather than a major revision, which
further suggests the benefits of our modular framework.

80

AN ARCHITECTURE FOR FLEXIBLE PROBLEM SOLVING

7. Concluding Remarks

In this paper, we noted that, although the literature on problem solving in humans and machines
describes many approaches, most implemented systems adopt a single, unvarying strategy. In re-
sponse, we presented a theoretical framework that accounted for this variation as differences in
strategic knowledge that is interpreted, along with domain knowledge, by a problem-solving archi-
tecture. The architecture decomposes each problem into an intention, a down subproblem, and a
right subproblem, and it operates in five stages that focus, in turn, on problem selection, intention
generation, subproblem creation, failure checking, and termination checking.

We demonstrated that an implementation of this framework solves problems in seven distinct
domains and that it supports 12 major problem-solving strategies, along with many minor variations.
We saw that some of these map directly onto familiar techniques that have appeared widely in the
literature, with most others being minor variations on them. However, we also showed that one
strategy – combining forward chaining with least commitment – was novel and interesting, showing
that our framework has the power to predict new techniques. We also carried out experiments with
the various strategies, finding that the new scheme fared surprising well compared to more standard
methods and showing the framework’s support for empirical studies.

We examined a number of earlier architectures that have supported flexible approaches to prob-
lem solving, noting that our framework is similar in spirit to these precursors but that it addresses
some distinctive issues. Finally, we acknowledged that both our framework and the FPS system
remain limited in their coverage, and we outlined some additions that should improve their ex-
planatory range. Our architecture already reproduces a wide variety of search behaviors, but such
extensions would extend its account of problem solving substantially.

Acknowledgements
This research was supported by Grant No. N00014-10-1-0487 from the Office of Naval Research.
We thank Jaime Carbonell, Steve Minton, Peter Stone, Manuela Veloso, and Subbarao Kambham-
pati for providing information about earlier work in the same tradition, as well as Colin Walker and
Trevor Gee for their efforts on earlier versions of the system.

References
Carbonell, J. G., Knoblock, C. A., & Minton, S. (1990). PRODIGY: An integrated architecture

for planning and learning. In K. Van Lehn (Ed.), Architectures for intelligence. Hillsdale, NJ:
Lawrence Erlbaum.

Chakrabarti, P. P., Ghose, S., & Desarkar, S. C. (1986). Heuristic search through islands. Artificial
Intelligence, 29, 339–348.

Clocksin, W. F., & Mellish, C. S. (1981). Programming in Prolog. Berlin: Springer-Verlag.
de Groot, A. D. (1978). Thought and choice in chess (2nd Ed.). The Hague: Mouton Publishers.
Fikes, R. E., & Nilsson, N. J. (1972). STRIPS: A new approach to the application of theorem

proving to problem solving. Artificial Intelligence, 2, 189–208.
Hoffmann, J. (2001). FF: The Fast-Forward planning system. AI Magazine, 22, 57–62.

81

P. LANGLEY, M. EMERY, M. BARLEY, AND C. MACLELLAN

Jones, R. M., & Langley, P. (2005). A constrained architecture for learning and problem solving.
Computational Intelligence, 21, 480–502.

Kambhampati, S., & Srivastava, B. (1995). Universal Classical Planner: An algorithm for unifying
state-space and plan-space planning. Proceedings of the Third European Workshop on Planning
Systems. Assisi, Italy.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence.
Artificial Intelligence, 33, 1–64.

Langley, P. (1992). Systematic and nonsystematic search strategies. Proceedings of the First In-
ternational Conference on Artificial Intelligence Planning Systems (pp. 145–152). College Park,
MD: Morgan Kaufmann.

Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance
in solving physics problems. Science, 208, 1335–1342.

MacLellan, C. (2011). An elaboration account of insight. Proceedings of the 2011 AAAI Fall
Symposium on the Advances in Cognitive Systems. Arlington, VA: AAAI Press.

Nau, D. S., Cao, Y., Lotem, A., & Muñoz-Avila, A. (2001). The SHOP planning system. AI
Magazine, 22, 91–94.

Newell, A., Shaw, J. C., & Simon, H. A. (1957). Empirical explorations of the Logic Theory
Machine. A case study in heuristic. Proceedings of the Western Joint Computer Conference (pp.
218–230) New York: Institute of Radio Engineers.

Newell, A., Shaw, J. C., & Simon, H. A. (1958). Elements of a theory of human problem solving.
Psychological Review, 65, 151–166.

Newell, A., Shaw, J. C., & Simon, H. A. (1960). Report on a general problem-solving program for a
computer. Proceedings of the International Conference on Information Processing (pp. 256–264).
UNESCO House, Paris.

Newell, A., & Simon, H. A. (1972). Human problem solving Englewood Cliffs, NJ: Prentice-Hall.
Ohlsson, S. (1982). On the automated learning of problem solving rules. Proceedings of the Sixth

European Meeting on Cybernetics and Systems Research.
Penberthy, S. J., & Weld, D. S. (1992). UCPOP: A sound, complete, partial order planner for ADL.

Proceedings of the third international conference on knowledge representation and reasoning (pp.
103–114). Cambridge, MA: Morgan Kaufmann.

Riddle, P. J. (1990). Automating problem reformulation. In D. P. Benjamin (Ed.), Change of repre-
sentation and inductive bias. Boston: Kluwer Academic Publishers.

van den Briel, M., Nigenda, R. S., Do, M. B., & Kambhampati, S. (2004). Effective approaches for
partial satisfation (over-subscription) planning. Proceedings of the Nineteenth National Confer-
ence on Artificial Intelligence. San Jose: AAAI Press.

Veloso, M., & Stone, P. (1995). FLECS: Planning with a flexible commitment strategy. Journal of
Artifical Intelligence Research, 3, 25–52.

82

2013 Annual Conference on Advances in Cognitive Systems: Workshop on Metacognition in Situated Agents

Preliminary Results on a Meta-Level Search Framework for Problem
Reformulation

Patricia J Riddle PAT@CS.AUCKLAND.AC.NZ

Michael W Barley BARLEY@CS.AUCKLAND.AC.NZ

Santiago M. Franco SANTIAGO.FRANCO@GMAIL.COM

Private Bag 92019, Department of Computer Science, University of Auckland, Auckland, 1142 NZ

Abstract
A problem’s representation has a big impact on how hard a problem is to solve, ranging from easy
to solve to intractable. We describe a framework for meta-level search through a space of problem
representations. These new problem representations are not predefined but are generated using a
set of transformations. We describe a case study of a single composite transformation. Using this
composite transformation, we automatically transform the PDDL representation of the GRIPPER
domain into a new PDDL representation. In this new representation, the previously intractable
GRIPPER problems can now be solved in a few seconds.

1. Introduction

A problem’s representation can make it either easier or harder to solve a problem. This is true for
both humans and for computers (Newell, 1966; Newell & Simon, 1972; Hayes & Simon, 1974).
A natural response for a human when encountering a difficult problem, is to change the problem
representation. For instance, Polya states "Trying to find the solution, we may repeatedly change
our point of view, our way of looking at the problem. We have to shift our position again and again.
Our conception of the problem is likely to be rather incomplete when we start the work; our outlook
is different when we have made some progress; it is again different when we have almost obtained
the solution." (Pólya, 1957) Our framework allows an automated problem solver to exhibit the same
behavior, and change the problem representation in hopes of making the problem easier to solve.

It has been shown by many researchers since the 1970s that the ability to change a problem rep-
resentation to a new (and hopefully easier to solve) representation is a key strategy that people use,
and that this would be a key asset for a true artificially intelligent system (Amarel, 1968; Amarel,
1971; Simon, 1972). In this paper we give a framework for addressing this challenge. Our approach
is a meta-level search through a space of problem representations. These new problem represen-
tations are not predefined but are generated using a set of transformations. To accomplish this we
need a language for representing the problem representations and we need a set of transformations
for moving between them. Given that we have generated a new problem representation, a problem
solver can search the space defined by this new representation. If necessary, solutions in the new
problem representation can be transformed back into solutions in the original representation.

83

Our claims are that this powerful framework enables flexible problem solving, by supporting au-
tomatic transformations from intractable problem representations to easier problem representations.
This allows a problem solver to solve new problems that it could not solve before, in reasonable
time and space. We have previously define a set of component transformations, see (Riddle, Barley,
& Franco, 2013), out of which higher-level composite transformations can be defined. We explore a
case study of a single composite transformation. We automatically transform the PDDL description
of the GRIPPER domain into a new PDDL description, where previously intractable problems can
now be solved in a few seconds.

The next section discusses the standard theory of problem reformulation. In the following sec-
tions, we discuss representing problem representations, transformations for problem reformulation,
and a framework for problem reformulation. We then explore the case study of a composite trans-
formation providing encouraging results in the GRIPPER domain. After this we conclude and offer
directions for future research.

2. Standard Theory of Problem Reformulation

We will briefly review the work adopted in our framework. Early work from Gesalt psychology
talks about reformulation on insight problems. A good survey of this work is Ohlsson (1992). The
early research in the area of problem reformulation in Artificial Intelligence (AI) started in the 1960s
(Amarel, 1968; Amarel, 1971; Simon, 1972; Korf, 1980).

Reformulation is a general term meaning a change to the way one thinks about a problem. The
early AI research assumed that the problem would be solved by searching through a problem space.
A problem space is defined by the states of a problem and the operators which move between the
states. So the states can be thought of as nodes in a graph and the operators are the edges between
them. This is called a state space search, where the initial state and the operators implicitly define
the state space. To be complete, a problem representation must include the initial state, a goal
description, the operators, and a set of predicates and objects from which the previous items are
defined. To solve the problem a search is carried out though this space of states. The solution is a
path in the graph from the initial state to a state that satisfies the goal description.

The AI type of problem reformulation moves from one state space problem description to an-
other. This is called a "change of representation". The notion of changing from one problem repre-
sentation of a state space to another problem representation of a state space, we will call the standard
theory of problem reformulation, throughout the rest of this paper.

Not all state spaces are tractable, one might not be able to search through the space in a rea-
sonable time. Of course, depending on how important the problem is or how quickly the solution
is needed, "reasonable time" can grow and shrink. Some state spaces can be very large (e.g., the
total number of chess positions is roughly 10120). The purpose of reformulation is to move from
one problem representation to another problem representation which is "more tractable", in that it
takes less time to solve.

A "change of representation" (from one state space representation to another), alters the state
and/or operator representation, to arrive at a new problem representation. Now you have two prob-
lem representations for the problem and you actually have three search spaces. There is the meta-

P. Riddle, M. Barley, AND S. Franco

84

level search space that moves from one problem representation to another. Each of the individual
problem representations has its own base-level search space in which to solve the problem.

This meta-level space lets a problem solving system move from one problem representation to
another using a set of transformations. You could be given a set of hand-coded problem represen-
tations and just move between them or you could have generative transformations that create the
new problem representations (e.g., the difference between searching an explicit graph or an implicit
one). A meta-level search can be conducted through the space of problem representations, trying
to find a more tractable representation or more specifically a more tractable representation for that
particular problem solver.

The reason this meta-level search is required, is that there does not exist a single representation
that is necessarily more tractable for all problem solvers. In previous research (Riddle, Holte, &
Barley, 2011), we showed that even within PDDL domains, given the same problem solver, one
problem representation was faster for one problem instance and another problem representation was
faster for another problem instance. We showed the same trend between problem solvers where
one problem solver preferred one problem representation for a particular problem instance while
another problem solver preferred another problem representation. This motivates the need for a
problem reformulation framework. If there was a perfect problem representation that would work
with every problem solver and every problem instance, then once we found it we would never have to
do problem reformulation again. We do not believe there is a perfect problem representation. There
will always be the need to move from one problem representation to another problem representation.

3. Representing Problem Representations

In order to have a space of problem representations, we need a language in which we can represent
them. We call this the representation language, and it had a critical influence on the early reformu-
lation research. The notion of problem reformulation has been around for at least 40 years, but there
have been very few systems over the years which have actually implemented these ideas. There
was quite a bit of work in the 1980s in this area, some of it was only theoretical (Korf, 1980; Sub-
ramanian, 1989) and others that actually were implemented (Holte, 1988; Iba, 1989; Lowry, 1989;
Nadel, 1990; Riddle, 1991). One of the major problems with this early work was that representation
languages themselves were a new field in AI and there was not a consensus on what was neces-
sary for a "good representation language". Different researchers were using different representation
languages. This made it difficult to compare their results.

One way to create a research community with a shared agenda is to provide a common set of
tools. In the 1980s, different researchers worked on problem reformulations but they each had their
own representation language, and therefore the results were not comparable. PDDL (McDermott
et al., 1998) is the planning domain definition language, which has been used by the domain inde-
pendent planning community since the 1990s. A PDDL representation is defined by two files: a
domain file and a problem instance file. The domain file contains the predicates and the actions.
The problem instance file contains the objects, the initial state and the goal description. Examples
of domain and problem instance descriptions are given later in this paper. We can now write prob-
lem reformulation transformations that change a problem representation represented in PDDL into

Preliminary Results on a Meta-Level Search Framework for Problem Reformulation

85

another problem representation represented in PDDL. This is one of the main reasons that it is now
a good time for a resurgence in reformulation research.

PDDL is not a perfect language, but it is being carefully extended and made more powerful.
It includes numeric fluents, durative/continuous actions, derived predicates, state trajectory con-
straints, preferences, and object fluents (Helmert, 2008). It is certainly not a powerful enough
language for human-level reasoning. But the opportunity to do problem reformulation in a language
with a strong community should not be missed.

The International Planning Competition (IPC) for domain independent planners is a biennial
competition and has been run since 1998. This competition is based on the PDDL language. All
the planners submitted become public domain software. This gives researchers in problem refor-
mulation a publicly available set of domain independent problem solvers. Any domain independent
planner can run on the generated PDDL representations. We can see which representation is better
for which problem solver on which problem instance (Riddle, Holte, & Barley, 2011). There are
a large number of different heuristics used in these competitions. We can explore which problem
solver and which heuristics are favored for each representation of a domain or even individually for
each problem instance.

In addition, there are new domains (each with 20 problem instances) created for every compe-
tition. This gives us a large number of different problem domains on which to test our problem
reformulation transformations. Now, different researchers’ problem reformulation operators can all
be compared using the same space of domain independent PDDL planners. All transformations
created by different research groups can be compared to one another. Reformulation researchers
should take advantage of the PDDL language and publicly available domain-independent planners.

4. Transformations for Problem Reformulation

In order to define the meta-level space of problem representations, we need the nodes (problem
representations) and the edges (transformation). In the last section we discussed the problem rep-
resentations, in this section we will describe the transformations. The problem representations are
not prespecified, but are automatically generated by the transformation operators. In Section 4.1,
we will discuss the higher level single composite transformation that we have created, which guar-
antees that the new problem representation and the old problem representation both share certain
properties.

There are four main types of component transformations. These transformations alter the ob-
jects, the predicates, the actions, or the initial state and/or goal description. We will not discuss the
component transformations from which the composite transformations are created. These can be
found in (Riddle, Barley, & Franco, 2013). In this paper we will focus on the composite transfor-
mation and how the meta-level search framework will work.

4.1 Composite Transformations

We are creating a meta-level search framework to search through the space of problem representa-
tions. The component transformations we discussed in (Riddle, Barley, & Franco, 2013), were at a
very low level. Most of these transformations cannot be applied independently, because most of the

P. Riddle, M. Barley, AND S. Franco

86

problem representations in that search space would be "broken". For example, in the gripper initial
state discussed in Section 6, we transform the initial state representation from "(at ball4 rooma)
(at ball3 rooma) (at ball2 rooma) (at ball1 rooma)" to "(count ball1 rooma 4)". If we change the
initial state we also have to change the predicates and the operators otherwise the problem solver
can no longer solve the problem,. If we just changed the initial state, this would not be a useable
representation, no problem solver could search this space. You cannot alter a predicate without also
altering all the actions that use that predicate!

If the meta-level search framework had to search through a space where 98% of the problem
representations were unexecutable, then the framework would not be a viable proposition. Therefore
we combine these low level component transformations into higher level composite transformations.
The advantages of these higher level transformations is that at every point in the space, the problem
representations are "executable" (i.e., "not broken"). They still might be better (or worse) than the
previous problem representation, but they are all valid problem representations for this problem.

The composite transformations from one representation to another may preserve certain prop-
erties (like the same number of solutions) or they may not. While some of the transformations may
always be desirable to apply, most of the transformations will only sometimes be desirable. This
means that a search through a meta-level space of representations will be a critical component of
the framework for applying these transformations.

Whenever possible these composite transformations maintain a one-to-one or a one-to-many
mapping between a solution in the new problem representation and solutions in the old represen-
tation. This means that solutions found in the new representation can be transformed back into
solutions in the original representation, if required.

4.2 Transforming the Reformulated Solution Back Into the Original Representation

In some cases, we are guaranteed that there is a one-to-many mapping of the solution produced in
the new problem representation to a set of solutions in the original representation. For instance, in
Section 6 we are guaranteed that corresponding solutions in both representations will have the same
number of actions (the same solution length). In these cases, we are able to transform the solution
backward by changing each action in the transformed representation’s solution into a valid action
in the original representation’s solution. If there is a one-to-many mapping there is some search
involved to find variable bindings that guarantee the solution is correct. This is typically much less
search than would be needed to simply solve the problem in the original space. Namely the solution
in the transformed representation gives a lot of structure to the search.

5. The Meta-level Search Framework

In the previous paper (Riddle, Barley, & Franco, 2013), we defined the meta-level search space.
This consists of the representation of the states (i.e., problem representations) and the operators
between them (i.e., transformation operators). Now we can describe the framework for searching
over this meta-level space. Our framework uses generative transformations. These transformations
generate new problem representations from the given problem representations. A meta-level search
will traverse the space of representations to find a good representation for the current problem solver.

Preliminary Results on a Meta-Level Search Framework for Problem Reformulation

87

There are 3 main techniques we are exploring: 1) heuristic search, 2) adaptive problem solving, and
3) portfolio systems. We will discuss these in turn.

In Section 6 we will discuss one heuristic we can use in PDDL problems to predict when one
representation will be better than the other. As we implement more composite transformations,
we might be able to predict when one transformation will be better with a certain combinations of
problem solvers and heuristics. I should caution that a lot more work remains. We have not explored
every combination of problem solver and heuristic with these two representations. In addition we
have only explored a single dimension of the space (number of objects versus number of locations).
But there are many more dimensions (how many of the locations are used in the initial state, how
many of the objects can be merged together by the transformation). All of these dimensions need to
be explored. So much more experimentation is necessary to determine whether these heuristics are
reliable.

Our second approach is to use an adaptive problem solver. RA* (Franco & Barley, 2008a;
Franco & Barley, 2008b; Franco & Barley, 2009; Franco, Barley, & Riddle, 2013a; Franco, Barley,
& Riddle, 2013b) uses sampling and a runtime model to predict which combination of heuristics
is the "best" for solving one particular problem. It then uses that "best" heuristic combination to
solve the rest of the problem. We can use the same technique for determining which of the two
representations performs better. We now have a number of heuristic/representation combinations,
and we can use sampling to determine which will perform better. Again much experimentation still
remains. How good is this system at predicting the best combination? Can it do this and still exhibit
savings over just running the old representation? Does this work equally well in all domains? Can
this be extended to other transformations where there is no guarantee that the solutions have the
same length?

The last option is a standard portfolio system. The meta-level framework could choose more
than one representation and try to solve the problem, each of them in parallel (or by time slicing).
This is a standard approach in the IPC, where several different problem solvers or one problem
solver with several different heuristics are used in parallel. Again this system will certainly work
with one or two transformations. But it will not scale up to a large number of alternative represen-
tations.

The search at the meta-level does add to the overall problem solving time. Currently we have
a very small set of transformations, but as we develop more transformations, heuristics must be
devised for determining which transformations to apply within this meta-level space.

This is a very powerful framework. In Section 6 we discuss a case study showing a transforma-
tion between two problem representations in the Gripper domain. The results of this study are very
encouraging.

6. Gripper Domain Case Study

The case study transformation we explore in this section is a combination of merging objects, chang-
ing predicates and changing the initial state and goal description. We will look at a concrete example
by examining the GRIPPER domain. Bear in mind that this transformation is actually implemented

P. Riddle, M. Barley, AND S. Franco

88

(define (problem strips-gripper-x-1)
(:domain gripper-strips)
(:objects rooma roomb ball4 ball3 ball2 ball1 left right)
(:init (room rooma) (room roomb) (ball ball4) (ball ball3)

(ball ball2) (ball ball1) (at-robby rooma) (free left)
(free right) (at ball4 rooma) (at ball3 rooma)
(at ball2 rooma) (at ball1 rooma) (gripper left)
(gripper right))

(:goal (and (at ball4 roomb) (at ball3 roomb) (at ball2 roomb)
(at ball1 roomb))))

Table 1. Gripper domain problem description in prob01.pddl

as a generic, domain-independent transformation. The transformed representations for the domain
and problem instance and the transformed solution were all automatically generated.

The GRIPPER domain involves a robot "robby" with two grippers "left" and "right". It has X
balls (the smallest problem shown in Figure 1 has 4 balls) which it must move from rooma to roomb.
All the problems in this domain involve moving all the balls from rooma to roomb. They only differ
in the number of balls. The complexity of the problem is increased by the fact that it can pick up
each ball in either the left gripper or the right gripper. It does not matter which it uses in the overall
solution, it does increase the complexity of the problem (especially for optimal planners).

Currently (with a single composite transformation) we have not set up the meta-level search
framework. We have been analyzing which representation, the original or the transformed works
better for a particular problem solver. Our current problem solver is A* with the LM-cut heuristic
(Helmert & Domshlak, 2009) using the Fast Downward system (Helmert, 2006). This has been one
of the top optimal planners in the IPC competition for the last few years. In the GRIPPER domain,
no optimal planner performs well. Helmert states "If we apply two state-of-the-art optimal planning
algorithms (Haslum, 2007; Helmert, Haslum, & Hoffmann, 2007) to the GRIPPER domain, neither
of them can optimally solve more than 8 of the standard suite of 20 benchmarks within reasonable
run-time and memory limits,..." (Helmert & Röger, 2008).

A* using the Fast Downward system has trouble with the original GRIPPER domain for two
main reasons: it is an optimal planner and it is a grounded planner. Grounded planners find the
GRIPPER domain difficult because there are roughly N2 grounded pick operators when you have
N balls and two grippers. In addition, optimal planners find it difficult to prove optimality in large
search spaces.

In Figure 1 we give the timing results and nodes generated for the GRIPPER domain on the
original and transformed representations. The problem solver cannot solve past problem prob07 in
the original representation because it runs out of memory. The time includes the time of all trans-
formation costs. The planner ran out of memory with ulimit set at -t 7200 -s 100000 -v 15000000.)
So basically in the original representation the nodes generated and the time grows exponential with
the solution length. In the transformed representation, the the nodes generated grow linearly with
the solution length. While the timing appears to be constant, it actually grows quadratically.

Preliminary Results on a Meta-Level Search Framework for Problem Reformulation

89

Figure 1. Time & Nodes for both Representations as function of Solution Length. In the right graph, the
nodes in the original representation are plotted on the left axis, the nodes for the transformed representation
are plotted on the right axis.

(define (domain gripper-strips)
(:predicates (room ?r) (ball ?b) (gripper ?g) (at-robby ?r)

(at ?b ?r) (free ?g) (carry ?o ?g))

(:action move
:parameters (?from ?to)
:precondition (and (room ?from) (room ?to) (at-robby ?from))
:effect (and (at-robby ?to) (not (at-robby ?from))))

(:action pick
:parameters (?obj ?room ?gripper)
:precondition (and (ball ?obj) (room ?room) (gripper <?gripper)

(at ?obj ?room) (at-robby ?room)
(free ?gripper))

:effect (and (carry ?obj ?gripper) (not (at ?obj ?room))
(not (free ?gripper))))

(:action drop
:parameters (?obj ?room ?gripper)
:precondition (and (ball ?obj) (room ?room) (gripper ?gripper)

(carry ?obj ?gripper) (at-robby ?room))
:effect (and (at ?obj ?room) (free ?gripper)

(not (carry ?obj ?gripper)))))

Table 2. GRIPPER domain actions in domain.pddl

The original GRIPPER domain PDDL file is shown in Table 2, while the original problem
instance file for the first problem is shown in Table 1. In this problem instance (see Table 1), there
are four objects of type ball named ball1, ball2, ball3, and ball4. There are two objects of type room
named rooma and roomb. There are two objects of type gripper named left and right. Because
GRIPPER domain uses an early version of PDDL, the typing is done with unitary predicates. Later
versions of PDDL have explicit typing. An initial state is given where robby and all the balls are in

P. Riddle, M. Barley, AND S. Franco

90

Transform:
if NOT CanMerge
then run old representation
else

change predicate in goal state
change predicate in the initial state
add predicates to initial state for

empty locations (count X1 ?Y 0)
add predicates to the initial state to

handle arithmetic (more X+1, X)
change predicate list in domain file
change actions to refer to new predicate
change parameters of action

CanMerge:
objects X are not referred to in actions
(as constant)

objects X are all of the same type and
objects X have the same predicates and
additional values in the goal description

Table 3. Transforming PDDL Pseudocode

rooma and both grippers are empty. The goal description specifies that all the balls are in roomb. In
the domain file (see Table 2), the things that don’t vary from problem instance to problem instance
are specified. The predicates are given, in this case they are the "type predicates" room, ball, and
gripper; other unary predicates such as at-robby and free; and relational predicates such as at and
carry. The domain file also contains the action definitions. In the GRIPPER domain the actions are
move, pick, and drop.

Our transformation system inputs the two PDDL files (the problem and the domain). The pseu-
docode is shown in Table 3. First it must determine whether there are any objects that can be merged.
If it determines that there are no objects which can be merged, it will just run the planner on the
original representation and return that solution. Two objects can be merged if:

• They are of the same type (using either PDDL typing or as in the old GRIPPER domain using
singleton predicates).

• They appear in the same predicate in the goal description and have the same additional pred-
icate values.

• Neither object is mentioned directly in any of the actions.

In the GRIPPER domain, this means that all the balls can be merged into 1 bag of "ball1"s at each
location.

Now the problem is that most problem solvers cannot handle multiple objects with the same
name and make sure they all get handled "correctly" in the goal state. Most problem solvers will
put one ball1 into roomb and then stop, assuming the problem is solved.

Preliminary Results on a Meta-Level Search Framework for Problem Reformulation

91

(define (domain gripper-strips)
(:predicates (room ?r) (ball ?b) (gripper ?g) (at-robby ?r)
(count ?obj ?room ?num0) (free ?g) (carry ?o ?g))

(:action move
:parameters (?from ?to)
:precondition (and (room ?from) (room ?to)

(at-robby ?from))
:effect (and (at-robby ?to) (not (at-robby ?from))))

(:action pick
:parameters (?num2 ?num1 ?obj ?room ?gripper)
:precondition (and (more ?num2 ?num1) (count ?obj ?room ?num1)

(ball ?obj) (room ?room)
(gripper ?gripper) (at-robby ?room)
(free ?gripper))

:effect (and (carry ?obj ?gripper)
(not (count ?obj ?room ?num1))
(count ?obj ?room ?num2)
(not (free ?gripper))))

(:action drop
:parameters (?num2 ?num1 ?obj ?room ?gripper)
:precondition (and (more ?num1 ?num2) (count ?obj ?room ?num1)

(ball ?obj) (room ?room)
(gripper ?gripper) (carry ?obj ?gripper)
(at-robby ?room))

:effect (and (not (count ?obj ?room ?num1))
(count ?obj ?room ?num2) (free ?gripper)
(not (carry ?obj ?gripper)))))

Table 4. Transformed GRIPPER domain operators in domain.pddl

In problems like the GRIPPER domain, the balls are all going to have predicates in the goal
description with identical values. Therefore these predicates all collapse into a single predicate
instance and we have no way to distinguish them. Given this, it is more difficult to get the problem
solver to exhibit the behavior we want. To achieve this, you can change the predicates so that instead
of saying where each ball is, they count the number of balls at each location. This is a transformation
that was explored by many of the problem reformulation researchers in the 1970s and 1980s. This
allows you to easily make a goal which ensures all the "ball1"s are at their final location. This has
the added benefit of making a problem representation with many fewer objects and a state space
with far fewer states and edges.

Of course when you change the predicates, you must also change the actions, the initial state
and the goal description to work with the new predicates. Looking back at Table 3, we must now
change the at predicates (at ball1 roomb) (at ball2 roomb) (at ball3 roomb) (at ball4 roomb)
to a single count predicate (count ball1 roomb 4) in the goal description. We must put a similar

P. Riddle, M. Barley, AND S. Franco

92

predicate in the initial state (count ball1 rooma 4) as well as an additional predicate that states
(count ball1 roomb 0). In addition we must add arithmetic predicates, such as (more 0 1) (more
1 2) (more 2 3) (more 3 4). These changes to the initial state and goal description can be seen in
Table 5. Lastly we must change all the actions to refer to the new predicates instead of the old ones.
For instance, the pick action has a precondition of (count ?obj ?room ?num1) which it removes
in the effects and adds (count ?obj ?room ?num2) where (more ?num2 ?num1). These actions
are shown in Table 4.

In problems where only some of the objects map to the same goal value, the composite trans-
formation will make multiple bags. For instance, in the GRIPPER domain, if the goal description
had two balls in roomb and two balls in rooma, then two balls would be retained each having two
instances, giving a goal description of (:goal (and (count ball3 roomb 2) (count ball1 rooma 2))).

The last thing our system does is transform the solution for the new problem representation
back into a solution for the original problem representation. The solution, generated by a domain
independent planner for the transformed representation, is shown on the left side of Table 6. The
solution, automatically generated by our backward transformation to the original representation,
is shown on the right side of Table 6. For this transformation there is a one-to-many mapping
between the transformed solution and a set of original solutions. Moreover there is guaranteed
to be a solution of the same length that is still optimal. To be more precise, given a sequence of
actions that solves the problem in the transformed representation, we are guaranteed that it can be
transformed into a solution in the original representation by going through a two step process. First,
we remove those new action arguments which were introduced by the transformation. Second, we
replace the occurrences of the new "merged object" in the actions’ arguments by the appropriate
original "mergee objects". There must exist a "mergee object" which can be placed as an argument
in this action. For example, the solution shown on the left side of Table 6 was transformed into the
solution on the right side by removing the first two arguments of the pick and the drop actions and
by replacing the merged object, ball4, by ball4 in the first action, by ball3 in the second action, by
ball4 in the fourth action, by ball3 in the fifth action, etc. To find the correct "mergee objects", a
search must be performed. This is currently done with depth first search with backtracking, verifying
each operator and generating the resulting state before moving on to the next operator. Although
there may be many solutions in the original problem’s representation which satisfy this mapping,
our system finds a single set of bindings for the variables that makes a valid solution for the original
representation. It returns the first solution it finds.

(define (problem strips-gripper-x-1)
(:domain gripper-strips)
(:objects 4 3 2 1 0 rooma roomb ball1 left right)
(:init (room rooma) (room roomb) (ball ball1)

(at-robby rooma) (free left) (free right)
(gripper left) (gripper right) (count ball1 rooma 4)
(more 0 1) (more 1 2) (more 2 3) (more 3 4)
(count ball1 roomb 0))

(:goal (and (count ball1 roomb 4))))

Table 5. Transformed GRIPPER domain problem description in prob01.pddl

Preliminary Results on a Meta-Level Search Framework for Problem Reformulation

93

(pick 3 4 ball4 rooma left) (pick ball4 rooma left)
(pick 2 3 ball4 rooma right) (pick ball3 rooma right)
(move rooma roomb) (move rooma roomb)
(drop 1 0 ball4 roomb left) (drop ball4 roomb left)
(drop 2 1 ball4 roomb right) (drop ball3 roomb right)
(move roomb rooma) (move roomb rooma)
(pick 1 2 ball4 rooma left) (pick ball2 rooma left)
(pick 0 1 ball4 rooma right) (pick ball1 rooma right)
(move rooma roomb) (move rooma roomb)
(drop 3 2 ball4 roomb left) (drop ball2 roomb left)
(drop 4 3 ball4 roomb right) (drop ball1 roomb right)

Table 6. Solution in Transformed Space (left) and Original Space (right) for the GRIPPER domain

7. Summary Insights

The transformation currently works on 3 other PDDL domains: TRANSPORT-OPT11, NOMYSTERY-
OPT11, and ELEVATORS-OPT11. In these domains, in some problems, there is no transformation
done because no two objects are moving to the same location in the goal description. When a
transformation is done, the total time taken in the transformed representation is always longer with
the heuristic LM-cut in these 3 domains! So the question is what is different about the GRIPPER
domain and these 3 other domains?

We have developed a transformation that creates a better representation any time there are sub-
stantially more objects than locations, and there are a large number of the objects are going to the
same location. Even though the transformed representation always has a smaller blind search space
size, there are problems where it makes the problem solver run slower. We have done two crossover
experiments. In one experiment we took a GRIPPER problem and added more locations until the
original representation solved the problem faster. In the other experiment we took a NOMYSTERY-
OPT11 problem and added more packages until the transformed representation solved the problem
faster. This shows that once the number of objects exceeds the number of locations by a "large
enough" amount (and there are a large enough number of objects going to the same locations), the
transformed representation does better. This leads us to believe a heuristic could be used to decide
when to bother with transforming the problem representation.

Taking a broader view (more general than transportation problems), the transformed represen-
tation is good for domains with a lot of objects that can only have one value at a time (a ball or
package can only be in one location at a time). Whereas the original representation is good for
domains with a lot of objects that can have many values at once (a location can have many balls or
packages at that location at once).

A number of interesting questions remain. What effect will these new PDDL representations
have on different problem solvers? Can we alter the transformed representation so that it has the
same state space reduction but does not cause the heuristics to be slower and less accurate? Can we
find a "good" heuristic for the transformed representation?

In our experiments with GRIPPER and NOMYSTERY-OPT11 and TRANSPORT-OPT11 using
LM-cut and iPDB, we have found that different heuristics get very different initial h-values on the

P. Riddle, M. Barley, AND S. Franco

94

two representations. This tells us that the heuristics are much less accurate in some representations
than in others. Can we find heuristics which inform us when a heuristic will do well on a particular
representation?

In our previous work (Riddle, Holte, & Barley, 2011), we showed that the "best representation"
for a problem varies from problem to problem using the same problem solver. In addition the "best
representation" for a particular problem varies as you change from one problem solver to another.
This tells us that the heuristics which predict what representation is likely to work best, must take
into account the problem solver, the heuristic, and the particular problem to be solved.

8. Related Research

The early work on problem reformulation was theoretical and did not include implementations.
(Amarel, 1961; Amarel, 1965; Amarel, 1968; Amarel, 1971; Newell & Simon, 1972; Korf, 1980).
Several researchers developed automatic creation of macro-operators (Korf, 1985; Iba, 1989; Rid-
dle, 1991). Lowry (1989), looked into problem reformulation as a type of automatic programming.
Subramanian (1989) explored the importance of relevance in problem reformulation. Nadel (1990)
explored 8 representations of the 4-queens problem. Preditis (1993) automatically generated admis-
sible heuristics by automatically generating abstractions.

The most recent work on problem reformulation is by Fink (2003), who automates some changes
of representation. The constraint propagation community has done a lot of work in the area of
symmetry breaking (Walsh, 2012). In addition, research by Helmert (2009) focuses on turning
PDDL into a concise grounded representation of SAS+. Further work on transforming problem
representations has been done (Haslum, 2007; Helmert, 2006), they transform between PDDL and
binary decision diagrams and causal graphs respectively.

9. Conclusions and Future Work

Now is an excellent time to return to the area of problem reformulation. A problem’s representation
can make it either easier or harder to solve a problem. We want to make an adaptive problem solver
that can find a more tractable problem representation which it can then use to solve the problem.
The transformations which provide the new problem representation should be generative.

We have a powerful framework that creates a flexible problem solver, by providing automatic
transformations from intractable problem representations to easier problem representations. This
allows many problem solvers to solve problems that they could not solve before, in reasonable time
and space. We explored a case study of a composite transformation, presenting encouraging results
in the GRIPPER domain where previously intractable problems can now be solved in a few seconds.

We have shown that you can affect a huge savings in problem solving time by spending a little
time transforming the representation. This opens a brand new approach to improving problem
solving systems. With the results varying so widely from one representation to another we think
there will be increased interest in this area at ICAPS and in the IPC. Since the transformations
produce PDDL files, they can be used seamlessly with any problem solving system. We plan to
extend this work and develop a set of transformations and a method for searching through the space
of transformations to decide which representation is the best choice for a given problem.

Preliminary Results on a Meta-Level Search Framework for Problem Reformulation

95

Our future research is currently going in two directions: a problem solver that uses multiple rep-
resentations and developing more reformulations. Each of these will be addressed in turn. There are
at least three obvious ways to use the representations we create. The first is to use them in portfolio
type system where you just run each different representation and return the one that finished first.
This will work fine as long as you only have a couple of representations, but once you get 4 or more
representations this will probably not be a viable alternative. A second alternative is to use cross-
over studies to predict when each will perform better, it is unclear how well this will work, but it is
at least an option for exploration. The last possibility is to use the RA* system (Franco & Barley,
2008a; Franco & Barley, 2008b; Franco & Barley, 2009; Franco, Barley, & Riddle, 2013a; Franco,
Barley, & Riddle, 2013b). This system uses sampling to determine the heuristic branching factor
and the cost of applying heuristics, to determine which heuristic to use. The same technique can be
used to determine which representation is more likely to solve the problem. This is especially true
when the optimal solution path is the same length in both representations, it might be more difficult
if the two representations produce different solution path lengths.

The second direction for future research is to create more transformations. The first approach is
to do the same type of transformation in domains like SOKOBAN where the objects can never be
at the same location at the same time. In these domains we do not need to make a bag of objects,
we can just call all the objects S1, but we do have to take some care with the goal description in the
transformed problem representation, because the predicate only takes one variable and so the objects
can collapse. There are other standard reformulations we are looking at (like macro-operators). We
will also look at extending the current transformation to work in cases where an object is spread
over many predicates in the goal description, like in the WOODWORKING-OPT11 domain.

Acknowledgements

Thanks to Pat Langley for advice on earlier drafts of this paper.

References

Amarel, S. (1961). An approach to automatic theory formation. Principles of Self-Organization:
Transactions. Pergamon Press, New York, ny.

Amarel, S. (1965). Problem-solving procedures for efficient syntactic analysis. ACM Twentieth
National Conference.

Amarel, S. (1968). On representations of problems of reasoning about actions. Machine Intelligence
3.

Amarel, S. (1971). Representations and modeling in problems of program formation. Machine
Intelligence 6.

Fink, E. (2003). Changes of problem representation: Theory and experiments. Springer-Verlag.
Franco, S., & Barley, M. (2008a). In situ reconfiguration of heuristic search on a problem instance

basis. 2008 AAAI Workshop on Metareasoning: Thinking about Thinking.
Franco, S., & Barley, M. (2008b). Using sampling to dynamically reconfigure problem-solvers. The

First International Symposium on Search Techniques in Artificial Intelligence and Robotics.

P. Riddle, M. Barley, AND S. Franco

96

Franco, S., & Barley, M. (2009). Predicting the optimal combination of pattern databases for solving
a problem. International Symposium on Combinatorial Search.

Franco, S., Barley, M., & Riddle, P. (2013a). In situ selection of heuristic subsets for randomization
in ida* and a. Heuristics and Search for Domain-Independent Planning (p. 5).

Franco, S., Barley, M., & Riddle, P. (2013b). A new efficient in situ sampling model for heuris-
tic selection in optimal search. Proceedings of the Australasian Joint Conference on Artificial
Intelligence.

Haslum, P. (2007). Reducing accidental complexity in planning problems. Proceedings of the
International Joint Conferences on Artificial Intelligence (pp. 1898–1903).

Hayes, J., & Simon, H. (1974). Understanding written problem instructions. Knowledge and Cog-
nition.

Helmert, M. (2006). The fast downward planning system. Journal of Artificial Intelligence Re-
search, 26, 191–246.

Helmert, M. (2008). Changes in PDDL 3.1. Unpublished summary from the IPC-2008 website.
http://ipc.informatik.uni-freiburg.de/PddlExtension. Retrieved November 2013.

Helmert, M. (2009). Concise finite-domain representations for pddl planning tasks. Artificial Intel-
ligence, 173, 503–535.

Helmert, M., & Domshlak, C. (2009). Landmarks, critical paths and abstractions: What’s the
difference anyway? Proceedings of the International Conference on Automated Planning and
Scheduling.

Helmert, M., Haslum, P., & Hoffmann, J. (2007). Flexible abstraction heuristics for optimal se-
quential planning. Proceedings of the International Conference on Automated Planning and
Scheduling (pp. 176–183).

Helmert, M., & Röger, G. (2008). How good is almost perfect?. Proceedings of the Association for
the Advancement of Artificial Intelligence (pp. 944–949).

Holte, R. (1988). An analytical framework for learning systems. Doctoral dissertation, University
of Texas at Austin.

Iba, G. (1989). A heuristic approach to the discovery of macro-operators. Machine Learning, 3,
285–317.

Korf, R. (1980). Toward a model of representation changes. Artificial Intelligence, 14, 41–78.
Korf, R. E. (1985). Macro-operators: A weak method for learning. Artificial intelligence, 26, 35–77.
Lowry, M. R. (1989). Algorithm synthesis through problem reformulation. Doctoral dissertation,

Stanford University.
McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., & Wilkins,

D. (1998). Pddl-the planning domain definition language.
Nadel, B. (1990). Representation selection for constraint satisfaction: A case study using n-queens.

IEEE Expert, 5, 16–23.
Newell, A. (1966). On the representations of problems. Computer Science Research Reviews.

Carnegie Institute of Technology, Pittsburgh, PA.

Preliminary Results on a Meta-Level Search Framework for Problem Reformulation

97

Newell, A., & Simon, H. A. (1972). Human problem solving, Vol. 14. Prentice-Hall Englewood
Cliffs, NJ.

Ohlsson, S. (1992). Information-processing explanations of insight and related phenomena. Ad-
vances in the psychology of thinking, 1–44.

Pólya, G. (1957). How to solve it: A new aspect of mathematical method. Princeton University
Press. Second edition.

Prieditis, A. E. (1993). Machine discovery of effective admissible heuristics. Machine learning, 12,
117–141.

Riddle, P. (1991). Automatic Shifts of Problem Representation. Doctoral dissertation, Rutgers
University.

Riddle, P., Barley, M., & Franco, S. (2013). Problem reformulation as meta-level search. Proceed-
ings of the Conference on Advances in Cognitive Systems.

Riddle, P. J., Holte, R. C., & Barley, M. W. (2011). Does representation matter in the planning
competition? Proceedings of the Symposium on Abstraction, Reformulation, and Approximation.

Simon, H. (1972). On reasoning about actions. In Representation and meaning. Englewood Cliffs,
NJ: Prentice-Hall.

Subramanian, D. (1989). A theory of justified reformulations. Doctoral dissertation, Stanford Uni-
versity.

Walsh, T. (2012). Symmetry breaking constraints: Recent results. Proceedings of the Association
for the Advancement of Artificial Intelligence.

P. Riddle, M. Barley, AND S. Franco

98

2013 Annual Conference on Advances in Cognitive Systems: Workshop on Metacognition in Situated Agents

How to Develop Fluid Intelligence via Metacognitive Self-Organization

Alexei V. Samsonovich ASAMSONO@GMU.EDU
Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive MS 2A1,
Fairfax, VA 22030-4444, USA

Abstract
Recent empirical studies provide evidence that human general fluid intelligence can be improved
by certain training paradigms including games and puzzle solving that activate specific functional
networks of the brain. This observation suggests that, similarly to the human brain, high fluid
intelligence in artificial cognitive systems quite likely can be achieved by evolving and adaptively
modifying specific functional components and mechanisms that give rise to high fluid intelligence
during certain tasks. For this purpose, (a) the cognitive architecture should be made plastic and
malleable, allowing for pruning and grafting of components and modification of their parameters
driven by metacognitive evaluation of the local cognitive demands, and (b) a standard set of tests
for fluid intelligence and training paradigms that are known to be able to improve fluid
intelligence should be used. The expectation is that virtual agents possessing human-level fluid
intelligence can be practically achieved using this approach.

1. Introduction
Among critical challenges for virtual agents on the road to their integration into the human
society are creativity, intuition and human-level metacognitive abilities, such as the abilities to
generate goals in novel situations and to produce believable behavior (Samsonovich, 2012). The
term “fluid intelligence” refers to these and other intelligent capabilities that are independent of
previously acquired specific knowledge or the background. More precisely, fluid intelligence Gf
is regarded as the ability to understand and successfully deal with novel problems and situations,
to identify patterns and relationships that can be extrapolated using logic, inductive reasoning and
intuition, leading to a solution. Together with crystallized intelligence Gc that depends on the
accumulated knowledge, Gf determines the general intelligence factor G (Cattell, 1987).

It was long believed that fluid intelligence couldn’t be improved by training. On the contrary,
recent empirical studies show exactly the opposite. One example is a highly cited empirical study
concluding that working memory training using the dual N-back paradigm results in improvement
of fluid intelligence test scores (Jaeggi et al., 2008). Many follow-up studies are devoted to this
paradigm, e.g., http://www.bostonglobe.com/lifestyle/health-wellness/2013/07/07/depressed-
anxious-getting-older-there-app-for-all-that/oAfLUdvS6pBL0hIs20mZFI/story.html. Overall,
empirical literature characterizing the relation between working memory capacity, its training,
and fluid intelligence is quite inconsistent. The debate about the findings of Jaeggi et al. (2008)
continues (e.g., Chooi & Thompson, 2012; Redick et al., 2012). E.g., Moody (2009) centers
around the concern that the original findings reflect the effect of training on the speed of
performance under pressure rather than on fluid intelligence. Another study shows, however, that

99

A.V. SAMSONOVICH

higher short-term memory span may not imply higher problem solving ability under pressure
(Beilock & Carr, 2005), unless subjects talk aloud about their task (DeCaro, 2010). Many of these
studies in question, however, are focused narrowly on the working memory capacity as the
independent variable. The apparent inconsistencies can be explained when we acknowledge the
fact that fluid intelligence depends on a distributed network of brain structures with diverse
functionality, of which working memory is only one component. Therefore, success or failure to
increase fluid intelligence in each particular paradigm depends on whether working memory is
trained as a part of the network of brain areas supporting fluid reasoning (Preusse et al., 2011) or
as an isolated component. This observation is the key to the idea of a new approach to intelligent
agent development through self-organization of its architecture. At the same time, it should be
understood that this idea is based on one possible explanation, which is not the only reasonable
explanation.

The above consideration leads to the following question: despite the aforementioned
controversy and in light of its suggested possible resolution, is it possible to use the same general
principles of training in order to improve fluid intelligence in virtual agents? First of all, to be
suitable for this approach, a cognitive architecture needs to be plastic and capable of self-
modification, adaptation and self-organization driven by metacognitive evaluation of specific,
localized cognitive demands. For example, high working memory load should result in an
increase of working memory capacity. Frequent activation of specific cognitive mechanisms
should result in an increased support for those mechanisms, and so on.

To support the above intuitive line of reasoning, here we provide a model in the form of a
biologically inspired cognitive architecture (BICA) developed at George Mason University. This
model explains the nature of the difference between the aforementioned conflicting results and
predicts a substantial potential for improvement of the effect of training on fluid intelligence – in
humans and, quite likely, in artifacts. This BICA model serves as the working hypothesis that can
guide the metacognitively-driven self-organization of the system.

When mapped onto the brain, the BICA model provides likely neurophysiological correlates
of fluid intelligence that define measures for our study. When implemented computationally, the
BICA model will provide quantitative predictions for changes in the identified behavioral as well
as physiological measures due to training.

2. BICA and Fluid Intelligence
A defining characteristic of fluid intelligence is that it applies to problems that are novel in their
components, challenges, and objectives. In essence, each problem must be solved in a unique
manner, using techniques tailored to the specific problem. This implies that fluid intelligence is
mediated by multiple capabilities or mechanisms that are configured for each unique problem.
Here we use the following terminology: fluid reasoning, understood as adaptive reasoning and
problems solving (ARP), requires fluid intelligence (measured by standard tests as a cumulative
characteristic Gf) plus other cognitive abilities, such as the ability to form complex verbal
associations. Fluid intelligence in turn depends on a number of factors, including the size of
working memory, the executive function, cognitive decoupling, and more.

According to the standard theory (Raichle et.al. 2007; cf. Christoff, 2012), brain activity at
rest (or activity independent of any task) is characterized by the default mode network (DMN).
This network is suppressed during ARP, when the brain switches to the Gf network (GFN)
supporting fluid intelligence. GFN involves many distributed parts of the brain and functional

100

 FLUID INTELLIGENCE BY METACOGNITIVE SELF-ORGANIZATION

components, and this is why activation of working memory (or even more narrowly, short-term
memory) alone is not sufficient for enabling fluid intelligence through GFN activation: it may
succeed or may fail, as the literature demonstrates, depending on the engagement of other vital
functional components in the network. Therefore, it is necessary to activate the entire GFN in
order to improve Gf. This is the main hypothesis underlying the proposed idea.

At a mathematical level, the above statements translate into the BICA model (Section 2.1)
and its components (Figure 1) supporting fluid reasoning that map onto components of the Gf
network in the brain. BICA is one of the models known as cognitive architectures (Gray 2007),
many of which are biologically inspired. It was developed at George Mason University
(Samsonovich & De Jong, 2005) and sometimes is referred to as GMU BICA. The mapping of
BICA components into GFN provides the main prediction used in the intervention design and
measures. We predict that activation of short-term memory alone is not sufficient for fluid
intelligence. Instead, we need to engage certain functional components – elements of the BICA
model, including components of working memory, semantic memory, the value system and the
cognitive map.

The N-back paradigm (Kirchner, 1958) consists in detecting matches in a sequence of
presented stimuli, comparing the current stimulus to the stimulus presented N steps back.
Variations of the paradigm include fixed N and variable N that changes based on the subject
performance. The process of solving the N-back paradigm by the BICA model is considered
below (Figure 2). The diagram indicates that the working memory load (and therefore the
required working memory size) will increase with the number N, and will increase even more as
N will become variable. Moreover, the diagram shows activation of the value system in the case
when incentive is used. The model also predicts activation of the spatial reasoning when the
spatial element is present in the paradigm (not shown in Figure 2). All these components map to
the brain as described below. Therefore, BICA model predicts activations of a distributed Gf
network, and will guide the design of the intervention. More detailed predictions should become
available based on the proposed pilot study.

2.1 Overview of the model

The general biologically inspired cognitive architecture (BICA) model is described in Figure 1.
This model substantially extends the extended Baddeley working memory model (Baddeley et al.,
2009). Its components have been mapped to brain areas (Samsonovich & De Jong, 2005;
Samsonovich, De Jong & Kitsantas, 2009). The BICA model is based on three main building
blocks: (i) a schema, which is a universal element of all representations in this model; (ii) a
mental state, which is populated by bound instances of schemas and represents the content of
immediate awareness of a certain subject in a certain mental perspective; and (iii) a cognitive
map, which uses an abstract semantic space to represent relations among mental states, schemas
and their instances.

Components of the BICA model (Figure 1) include working, semantic, episodic, procedural,
and sensory memories, plus a value system and a cognitive map. All details of the BICA model
cannot be discussed here. The core framework can be summarized by the following set of self-
explanatory tuples, some elements of which can be empty (Samsonovich, 2013):

• semantic map = (semantic space, mental states and schemas, their allocations)
• mental state = (attributes, schemas)

101

A.V. SAMSONOVICH

• schema = (attributes, terminal nodes, internal nodes, links)
• node = (attributes, reference to schema)
• attributes = (category, perspective, attitude, appraisal, bindings, activation, …)

Figure 1. General view of the BICA model as 7 interconnected components (from Samsonovich, 2013).

2.2 Metacognitive component

The metacognitive component is not shown explicitly in Figure 1, because it is distributed
through other components of the architecture. In general, this component will provide the
cognitive system with the ability to detect and handle anomalies, changes, or opportunities. It will
implement both monitoring of cognitive activities in BICA and control of these activities. In
addition, it will implement cognition about such activities and learning through adaptive
restructuring of the architecture.
 In contrast with the majority of cognitive architectures, in BICA, the metacognitive
component can be naturally grounded in basic principles and elements of the architecture. The

102

 FLUID INTELLIGENCE BY METACOGNITIVE SELF-ORGANIZATION

main basis for it is the structure of working memory in BICA, which is partitioned into mental
states. As mentioned above, a mental state represents a snapshot of awareness of the agent, and
can be viewed as a model of an agent on its own. Therefore, multiple mental states that are co-
active in working memory can monitor and operate on each other, instantiating various forms of
metacognition. In BICA, a metacognitive mental state that monitors and controls other active
mental states in working memory is called I-Meta. It creates a token for each monitored mental
state, and can be used, e.g., to optimize interactions among mental states.
 In our case, the task for I-Meta is to implement activity-driven self-organization. This task
requires not only monitoring of mental states themselves, but also awareness of their substrates –
parts of the system that need to be expanded or further augmented with available resources in
response to detected demands. Details of operation of the metacognitive component should be
developed based on empirical studies.

2.3 Mapping BICA to the brain

Components of the BICA model can be roughly mapped onto the brain as follows.
• Working memory: activity in ventrolateral prefrontal cortex (VLPFC, BA 45), dorsolateral

prefrontal cortex (DLPFC, BA 46), dorsal parietal (BA 9, 46), dorsal frontal (BA 10)
• Working memory, figural reasoning: dorsal parietal cortex (BA 7), ventral frontal parietal

cortex (BA 40).
• Cognitive map for episodic and spatial reference memory: hippocampus, parahippocampal

gyrus (entorhinal, perirhinal and retrosplenial cortices), lateral parietal cortex, nuclei of
diencephalon

• Cognitive map for utility matrix in decision making: lateral infraparietal cortex (LIP)
• Value system, absolute value: orbitofrontal cortex; relative reward value: striatum
• Value system, emotional network: anterior cingulate cortex, amygdala, orbitofrontal cortex,

hypothalamus, insula,
• Episodic memory: synaptic weights in/between the hippocampus and extrastriate neocortices
• Semantic memory: medial temporal lobe, parahippocampal, prefrontal, parietal cortices
• Interface buffer, output and imagery: premotor and motor cortices, cerebellum;
• Interface buffer, input and imagery: primary sensory cortices and related structures of their

thalamocortical loops
• Procedural memory: specialized neocortical areas, including visual, auditory, language (Broca,

Wernike), motor and premotor cortices and related structures of their thalamocortical loops,
plus the cerebellum

2.4 Dynamics and general predictions

At the core of BICA dynamics is the standard cognitive cycle including perception, cognition and
action. Schemas invoked by sensory input and working memory content populate mental states in
working memory and bind to other schemas, resulting in new elements of awareness, intentions
and initiation of actions. This picture, as outlined below, captures various aspects of fluid
reasoning and generates expectations for physiological measures.

An expectation based on previous studies and the BICA model is that during a challenging
cognitive task within the intervention, DMN will be suppressed due to activation of a fluid
intelligence network, GFN. As a result, a new network of brain activity GFN will be stabilized

103

A.V. SAMSONOVICH

over the training period, resulting in an increase of fluid intelligence Gf. The new network may
differ by its elements (i.e., topologically) and/or by the distribution of weights of connections.
Our intervention will, in various combinations, exercise/train the subnetworks involved in
realizing selected mechanisms required for Gf. In order to ensure integration of the necessary
cognitive functionality in the network, we include additional elements in the game design, as
described below.

When the BICA model is solving the N-back task, one active mental state in working
memory is used to maintain awareness of each presented item and its expected matching N steps
forward (using the schema of an N-back match). In one plausible scenario (Figure 2), the number
of mental states used for solving the task that need to be co-active is N+1, the total number of
mental states in working memory will be slightly higher due to the fact that mental states are not
deactivated instantly, plus there may be other mental states. The total number of mental states in
working memory will inevitably fluctuate (details will become clear upon implementation and
simulation of the BICA model in this paradigm). When N is increased by one, the number of
mental states will increase accordingly: it will be necessary to keep one more mental state in
working memory to solve the task. Assuming that each mental state has its own independent
neural substrate associated with brain activation, we may expect that, for a typical value of N
(e.g., 1 to 3), each step to a higher N will be associated with an increase in working memory size
by 15%-30%. With a switch to a variable N paradigm with an incentive to reach higher N, the
challenge is higher, because the subject should hold many more mental states and schemas in
mind to get ready for a possible high-N match. In this case, based on similar considerations, the
working memory expansion is expected to go higher - to 30% - 50% and more. Training of this
sort will have its effect on working memory span, and will translate into an increase in VLPFC
differential BOLD signal during subject’s engagement in another fluid intelligence task – the
Raven’s APM, done in the scanner. Fluctuations of the number of mental states cannot be
estimated precisely before implementation and simulation of the BICA model in these paradigms.
This logic, however, predicts a reasonable effect size of training on the neurophysiological
measure (which is the difference between GFN and DMN activities) and on the behavioral score
in APM. The latter conclusion is further supported by the finding of Jaeggi et al. (2008) of a
significant increase of Gf scores due to N-back training and by related findings.

104

 FLUID INTELLIGENCE BY METACOGNITIVE SELF-ORGANIZATION

Figure 2. A simplified UML sequence diagram showing one possible strategy of solving N-back task for
N=2 in the BICA model. A,B,… (left column) represent sequential stimuli. The goal is to match N back,
currently with N=2 (the N2 schema is activated by incentive). The meta-goal for which the subject is
rewarded is to increase N. At the meta-level it is a “spatial navigation task” described in (Samsonovich &
Ascoli 2005), not represented here. With a fixed N=2, having 4 co-active mental states in working memory
is sufficient for achieving the goal, as the diagram shows. With a variable N, more mental states would be
required to achieve the goal and to make progress toward meta-goal (not shown here).

Selection of schemas is guided by their fitness into the working scenario, which is understood
as the main sequence of mental states extending into the future – to the goal mental state, when
incentive is present. Therefore, the introduction of incentive should activate the working scenario
and therefore increase and organize activity of working memory in BICA. The goal state is
created by activation of the target schema (e.g., completion of a level in a game), placing it in a
mental state, and giving this mental state the status of a goal. Then the rest of cognition and
behavior of the subject can be viewed as a process of navigation toward the goal on a cognitive
map, accompanied by exploratory activations of the map that reveal utility values (Ascoli &
Samsonovich, 2013). Therefore, we expect that incentive will activate corresponding parts of the
brain (e.g. LIP: see the mapping above). Precise quantitative estimates will be made upon
implementation and simulation of the BICA model tailored for the selected game paradigm.

In the N-back paradigm, the subject needs to hold multiple mental states in working memory,
temporarily storing candidate future matches for the specified value of N. When the value of N
varies and is not known a priori to the subject before each step, the challenge increases: even
more schemas and mental states should be kept active in working memory. Therefore, these

105

A.V. SAMSONOVICH

conditions are expected to increase working memory activation (VLPFC, DLPFC, dorsal parietal
areas – see above) and improve working memory span in general.

2.5 Strategy of demand-driven self-organization of BICA

The computationally implemented BICA model, when solving a set of standard tests for fluid
intelligence, will reveal specific cognitive mechanisms and virtual networks involved in the
process of solution, as the above example shows (Figure 2). In order to use the strategy of
demand-driven modification and self-organization of the architecture, a metacognitive component
is required to detect the activated patterns and to implement modifications of the architecture on
the fly.

The analogy with the human brain and human behavioral and neuroimaging data suggests
that by reinforcing and augmenting those specific activities, involved components and their
interactions one should be able to increase general fluid-intelligent capabilities of the architecture.
The same result may be difficult to achieve using deductive logic and traditional engineering.

Human data suggest that improvement achieved in one paradigm may be transferred to other
domains and paradigms as well. For example, when the BICA model is used to solve Raven’s
Advanced Progressive Matrices (APM), activities and changes resemble those that occur during
solving a variable-N-back task, etc. Indeed, the main cognitive process in most cases consists in
applying various schemas to the perceived image, which predicts activation of semantic memory,
in addition to the activation of working memory. Episodic memory is also used: subjects learn
from their experience how to solve matrices. In addition, reasoning about matrices or sequences
involves spatial cognition, figural reasoning, imagery, and the value system (motivation), thus
engaging the corresponding brain areas (section 2.2) or architectural components.

These general predictions of the BICA model are common for many paradigms related to
fluid intelligence. Indeed, when applied to a variable-n-back game paradigm (based on Jaeggi et
al., 2008), the BICA model predicts patterns of brain activation during execution of the task
including working, semantic and episodic memory components. Arguably, the BICA model can
in general account for virtually all the key mechanisms of human higher cognition that support
fluid intelligence. Examples include the following:

• Inference of the elements of a problem. This may be passive and achievable by simple
pattern recognition or it may involve active perturbations to the problem context and
statistical bootstrapping.

• Inference of the properties/affordances of the elements and their relationships to each
other and to the agent. Again, this may be simple and direct or it may require interaction,
temporal inferences, etc.

• Identification of the objective in terms of the elements of the problem and sub-
objectives, such as the satisfaction of constraints and avoidance of obstacles and threats.

• Identification of solutions to the objective and sub-objectives. This may involve
deduction, inference, planning, anticipating outcomes of interactions and causation.

• Working memory mechanisms that maintain the cognitive state and the ability to reason
over the elements of the problem space.

• Episodic memory mechanisms that for a given situation identify relevant outcomes of
past actions providing validation or support of reasoning.

• Simultaneous, multi-objective satisfaction and/or threat avoidance.

106

 FLUID INTELLIGENCE BY METACOGNITIVE SELF-ORGANIZATION

3. Behavioral Assessment of Fluid Intelligence
One of the key questions related to this approach is how to monitor changes of fluid intelligence
in the system. Arguably, standard tests and techniques can be used for this purpose. There has
been a fair amount of discussion about pros/cons of various measures of fluid intelligence. Given
below are examples of available standard measures of fluid intelligence that can be used to assess
the results of training – or during the training.
 Raven’s Advanced Progressive Matrices (APM) Set I and II is published as several editions
(Raven 1990; Raven, Raven & Court, 1998). Including an example of the actual test here is not
possible due to the copyright restrictions. An example of a test that looks similar to APM can be
retrieved from http://forums.xkcd.com/viewtopic.php?f=3&t=41645. Another similar example is
shown in Figure 3. The figure also shows how the BICA architecture may solve this test by
activating relevant schemas corresponding to patterns of alternating direction and progressive
rotation.

Figure 3. The BICA model solving a test for fluid intelligence that is similar to APM.

 Listed below are several other examples of tests for fluid intelligence. all of them can be
solved using BICA and can be used for training BICA. Wechsler’s Adult Intelligence Scale
includes WAIS-IV and WASI tests that are available from
http://www.pearsonassessments.com/HAIWEB/Cultures/en-us/Productdetail.htm?Pid=015-8980-
808. Including an example of the actual test here is not possible due to the copyright restrictions.
The Wisconsin Card Sorting Test (WCST) is a widely used, standard psychological test of "set-

107

A.V. SAMSONOVICH

shifting", i.e. the ability to display flexibility in the face of changing schedules of reinforcement
(Berg, 1948; Monchi et al., 2001). Also, Bochumer Matrizentest (BOMAT) is a standard test for
fluid intelligence available from http://www.testzentrale.de.

Concluding Remarks
Development of a computational understanding of complex social phenomena, like emergence of
affective relationships in small groups (possibly including virtual agents) and social decision
making, is vital for successful control of unexpected situations, team management, policy
making, and many other practical needs. This challenge requires a human-level cognitive
architecture (intelligent agent model) possessing fluid intelligence, while the state of the art in
artificial intelligence represented by popular cognitive architectures on average remains below the
desired level.

The present work proposed an approach to solving the challenge based on activity-driven
self-organization of the architecture, inspired by cognitive training of the human brain. The model
suitable for self-organization can be constructed based on the BICA model, and, in particular, its
new version – the eBICA model (Samsonovich, 2013) that captures the main principles and
functional organization of the human brain-mind underlying complex social and emotional
human behavior. It enables modeling of complex social phenomena based on first principles.

Indeed, recent empirical studies provide evidence that human general fluid intelligence can be
improved by certain training paradigms including games and puzzle solving that activate specific
functional networks of the brain. This observation suggests that, similarly to the human brain,
high fluid intelligence in artificial cognitive systems quite likely can be achieved by engineering,
evolving and adaptively modifying the same functional components and mechanisms that give
rise to high fluid intelligence in vivo, when combined into the specific network. For this purpose,

(a) the cognitive architecture should be made plastic and malleable, allowing for pruning
and grafting of components and modification of their parameters driven by
metacognitive evaluation of the local cognitive demands, and

(b) a standard set of tests for fluid intelligence and training paradigms that are known to
be able to improve fluid intelligence should be used.

The expectation is that virtual agents possessing a human level of fluid intelligence can be
practically achieved based on this approach, with training and evaluation paradigms including
games, meta-games, problem solving, team collaboration and competition, and more. Specific
paradigms, tasks and goals may include examples like: using virtual agents to reproduce typical
human social behavior in given settings; achieving a human level in interactions and emergent
social relationships among virtual agents and human participants in various settings (the criterion
could be passing a Turing test); efficiently controlling human behavior in a group of agents using
interventions based on predictive BICA modeling. Expected impacts include theoretical,
technological and social advances.

Acknowledgements
Some of the ideas of this work were developed in collaboration with Drs. Kevin McCabe,
Kenneth De Jong, Dennis McBride, Scott Martin, Kathryn B. Laskey, Charles Peck, Anastasia
Kitsantas, Kenneth C. Olson, and others.

108

FLUID INTELLIGENCE BY METACOGNITIVE SELF-ORGANIZATION

References
Ascoli, G. A. and Samsonovich, A. V. (2013). A spiking-network cognitive architecture inspired

by the hippocampus. Biologically Inspired Cognitive Architectures, 3: 13-26. DOI:
http://dx.doi.org/10.1016/j.bica.2012.11.002.

Baddeley AD, Eysenck M, Anderson MC (2009). Memory. New York: Psychology Press.
Beilock, S.L., and Carr, T.H. (2005). When high-powered people fail: Working memory and

‘‘choking under pressure’’ in math. Psychological Science 16:101-105.
Berg, E.A. (1948). A simple objective technique for measuring flexibility in thinking Journal of

General Psychology 39: 15-22.
Cattell, R. B. (1987). Intelligence: Its structure, growth, and action. New York: Elsevier Science.
Chooi, W., and Thompson, L. (2011). Working memory training does not improve intelligence in

healthy young adults. Intelligence 40, 531–542.
Christoff, K. (2012). Undirected thought: Neural determinants and correlates. Brain Research,

1428 (SI): 51-59.
DeCaro, M.S., Rotar, K.E., Kendra, M.S., & Beilock, S.L. (2010). Diagnosing and alleviating the

impact of performance pressure on mathematical problem solving. Quarterly Journal of
Experimental Psychology, 63(8):1619-1630.

Gray, W. D. (Ed.) (2007). Integrated Models of Cognitive Systems. Series on Cognitive Models
and Architectures. Oxford, UK: Oxford University Press.

Jaeggi, S.M., Buschkuehl, M., Jonides, J., Perrig, W.J. (2008) Improving fluid intelligence with
training on working memory. Proc Natl Acad Sci USA. 105(19), 6829-6833.

Jaeggi, S.M., Studer-Luethi, B., Buschkuehl, M., Su, Y.-F., Jonides, J., Perrig, W.J., 2010. The
relationship between n-back performance and matrix reasoning—implications for training and
transfer. Intelligence 38, 625–635.

Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing information.
Journal of Experimental Psychology, 55 (4): 352-358.

Monchi, O., Petrides, M. Petre, V., Worsley, K., & Dagher, A. (2001). Wisconsin card sorting
revisited: Distinct neural circuits participating in different stages of the task identified by event-
related functional magnetic resonance imaging. The Journal of Neuroscience, 21(19), 7733-
7741.

Moody, D.E. (2009). Can intelligence be increased by training on a task of working memory?
Intelligence, 37: 327-328.

Preusse, F., van der Meer, E., Deshpande, G., Krueger, F., and Wartenburger, I. (2011). Fluid
intelligence allows flexible recruitment of the parieto-frontal network in analogical reasoning.
Frontiers in Human Neuroscience 5: 22, doi: 10.3389/fnhum.2011.00022.

Raichle, M.E. and Snyder, A.Z. (2007) A default mode of brain function: a brief history of an
evolving idea. Neuroimage 37(4), 1083–1090; discussion 1097–1089.

Raven, J. C. (1990). Advanced progressive matrices: Sets I, II. Oxford: OxfordUniv Press.
Raven, J., Raven, J. C., and Court, J. H. (1998). Manual for Raven’s Progressive Matrices and

Vocabulary Scales: 1998 Edition. Introducing Parallel Versions of the CPM and SPM together
with a More Powerful Version of the SPM (SPM Plus). San Antonio, Texas: NCS Pearson, Inc.

109

A.V. SAMSONOVICH

Redick, T.S., Shipstead, Z., Harrison, T.L., Hicks, K.L., Fried, D.E., Hambrick, D.Z., Kane, M.J.,
& Engle, R.W. (2012). No evidence of intelligence improvement after working memory
training: A randomized, placebo-controlled study. Journal of Experimental Psychology:
General. Advance online publication, doi: 10.1037/a0029082.

Samsonovich, A. V. (2012). On a roadmap for the BICA Challenge. Biologically Inspired
Cognitive Architectures 1: 100-107.

Samsonovich, A. V. (2013). Emotional biologically inspired cognitive architecture. Biologically
Inspired Cognitive Architectures, 6: 109-125

Samsonovich, A. V. and Ascoli, G. A. (2005). A simple neural network model of the
hippocampus suggesting its pathfinding role in episodic memory retrieval. Learning & Memory
12 (2): 193–208.

Samsonovich, A. V. and De Jong, K. A. (2005). Designing a self-aware neuromorphic hybrid. In
K.R. Thorisson, H. Vilhjalmsson, and S. Marsela (Eds.). AAAI-05 Workshop on Modular
Construction of Human-Like Intelligence: AAAI Technical Report, volume WS-05-08, pp. 71–
78. Menlo Park, CA: AAAI Press.

Samsonovich, A. V., De Jong, K. A., and Kitsantas, A. (2009). The mental state formalism of
GMU-BICA. International Journal of Machine Consciousness 1 (1): 111-130.

110

	title-page
	preface
	Preface

	ACSvision23
	paper_2
	paper_3
	paper_4.pdf
	Autonomy beyond Anomalies and Goals: A Strategic Perspective
	Abstract
	In this paper, we suggest that an underlying research issue exists of considerable potential for enhanced autonomy: how to design an agent with an effective and general-purpose “what do I do now” capacity. The capacity bears on many cognitive processe...
	Acknowledgements
	References

	preface.pdf
	Preface

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	paper_4.pdf
	Autonomy beyond Anomalies and Goals: A Strategic Perspective
	Abstract
	In this paper, we suggest that an underlying research issue exists of considerable potential for enhanced autonomy: how to design an agent with an effective and general-purpose “what do I do now” capacity. The capacity bears on many cognitive processe...
	Acknowledgements
	References

	Blank Page
	Blank Page

