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Long-distance dispersal, the movement of individuals beyond the bound-
aries of their population for the purpose of breeding, is a central process in
ecology and evolution. Unfortunately, the causes and consequences of long-
distance dispersal are poorly understood, especially in migratory species
due to the difficulty of tracking individuals throughout their annual cycle.
Furthermore, although events experienced during one period of the annual
cycle can influence the costs of dispersal in subsequent periods, a review of
existing literature on dispersal in migratory species indicated that these sea-
sonal interactions have not been widely incorporated into dispersal research.
To advance this subject, I used observational and experimental approaches
to quantify the causes and consequences of long-distance dispersal in a mi-
gratory bird, the American redstart (Setophaga ruticilla). Stable hydrogen
isotopes from feathers (62H ) indicated that yearlings and adults were more
likely to disperse north in years with early breeding-season phenology and

that yearlings were also more likely to disperse north following winters with



poor habitat conditions in the Caribbean. These results are consistent with
the hypotheses that individuals use conditions experienced during migration
as a cue for selecting breeding areas. Experimental simulation of social cues
further demonstrated that redstarts use both the presence of conspecifics
and habitat features to select breeding sites and 62H £ values of individu-
als that responded to playback treatments indicated that long-distance dis-
persers rely more heavily on social cues than local individuals. Reproductive
success was not influenced by long-distance dispersal in either sex but male
reproductive success was positively correlated with non-breeding territory
quality. For adult males, non-breeding territory quality directly influenced
the number of young produced. For yearling males, in contrast, high-quality
non-breeding territories were associated with higher mating and nesting suc-
cess but once these differences were accounted for, non-breeding territory
quality had no further influence on reproductive success. Collectively, these
results suggest that long-distance dispersal may be an effective strategy for
responding to advances in breeding-season phenology driven by temperate
climate change but that migratory birds may ultimately be limited by the

drying in tropical non-breeding areas.
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OVERVIEW

Long-distance dispersal, defined as the movement of an individual beyond
the normal boundaries of its population for the purpose of breeding, is a
central process in ecology and evolution. Although long-distance dispersal is
generally rare in most species, many ecological and evolutionary processes
are sensitive to the rate and magnitude of these movements, including lo-
cal adaption and speciation, population dynamics, range expansion, and
the response of species to climate change. Unfortunately, due to the inher-
ent difficulty of tracking long-distance dispersal, these movements remain
poorly understood in most species.

Understanding the causes and consequences of long-distance dispersal is
especially difficult in species that migrate annually between distinct breed-
ing and non-breeding grounds due to the scale of these migratory movements
and the challenges of tracking individuals throughout their entire annual cy-
cle. Furthermore, there is growing evidence that many life history events,
including long-distance dispersal, are shaped by the interaction of events
across the annual cycle. These seasonal interactions complicate the study
of long-distance dispersal because decisions about where to breed and the
reproductive consequences of these decisions may be determined partly by
the conditions or events experienced earlier in the year at locations sepa-
rated by thousands of kilometers.

The primary objective of my dissertation was to quantify how factors
occurring throughout the entire annual cycle influence the causes and con-
sequences of long-distance dispersal in migratory species. To set the foun-
dation for the questions addressed by my empirical research, Chapter 2
provides a comprehensive review of the existing research on the proximate
factors that influence dispersal in migratory species. Based on this review,
I discuss two notable gaps in our current understanding of the causes of
dispersal in migratory species. First, very little is known about movements
between locations used outside of the breeding season, despite the ecologi-
cal importance of these movements for individuals and populations. Second,
although researchers studying migratory species have realized that events
occurring during one period of the annual cycle can interact with events
that occur in subsequent periods, these seasonal interactions have not been
widely incorporated into dispersal paradigms. I briefly provide a background



on the evidence for seasonal interactions and discuss how seasonal interac-
tions can influence the costs and benefits of dispersal.

The remainder of my dissertation focuses on quantifying the causes and
consequences of long-dispersal in a Neotropical migratory bird, the Amer-
ican redstart (Setophaga ruticilla). In Chapter 3, I used stable hydrogen
isotopes to quantify the rate and direction of long-distance immigration in
a population of redstarts and to link these movements to breeding and non-
breeding climate conditions and individual traits. Both natal and breeding
dispersal were strongly influenced by the timing of breeding-season phenol-
ogy, with both age classes more likely to disperse north in years with early
phenology. Yearlings were also more likely to disperse north following win-
ters with poor environmental conditions in the Caribbean, demonstrating
that carry-over effects from the non-breeding season influence natal disper-
sal in this species. Collectively, these results are consistent with the hy-
pothesis that individuals use phenological cues to select breeding sites and
indicate that the timing of migration relative to the phenology of breed-
ing season resources is a principle driver of long-distance dispersal in this
species.

Once individuals settle in a breeding area, both philopatric individuals
and immigrants are under strong pressure to quickly locate high-quality
breeding territories. There is increasing evidence that many animal species
use information acquired from conspecifics, termed social information, to
assess the suitability of potential breeding sites but little is known about
the relative importance of different social cues or how the use of social
information is modified by long-distance dispersal. In Chapter 4, I used
an automated playback experiment to simulate two types of social infor-
mation, post-breeding public information and pre-breeding location cues,
and determine the relative importance of these cues for breeding site selec-
tion by redstarts. In addition, I used stable hydrogen isotopes to determine
whether long-distance dispersal influenced the type of information used by
individuals that responded to the experimental treatments. Points that re-
ceived location cue treatments were significantly more likely to be settled
by both adults and yearlings than control points that received no playback
but we found no evidence that either age class used public information gath-
ered during one season to select breeding sites to following year. Habitat
structure also was a strong predictor of settlement probability, indicating
that redstarts modified the use of social information based on habitat cues.
Furthermore, stable hydrogen isotope signatures from individuals that re-
sponded to location cue treatments suggest that long-distance dispersers
may rely more heavily on these cues than local recruits. Collectively, these



results indicate that redstarts use multiple sources of information to select
breeding sites, which could buffer individuals from selecting suboptimal sites
when they breed in unfamiliar locations or when habitat quality becomes
decoupled from social cues.

In Chapter 5, I used a combination of stable isotope analysis and Aster
life-history models to disentangle the reproductive consequences of long-
distance dispersal and non-breeding territory quality. I found no evidence
that reproductive success was influenced by long-distance dispersal, sug-
gesting that these movements carry no immediate reproductive costs. Male
reproductive success was positively correlated with non-breeding territory
quality, although the mechanism of this carry-over effect differed between
adults and yearlings. For adult males, non-breeding territory quality di-
rectly influenced the number of young produced. For yearling males, in
contrast, high-quality non-breeding territories were associated with higher
mating and nesting success but once these differences were accounted for,
non-breeding territory quality had no further influence on reproductive suc-
cess. Neither long-distance dispersal nor non-breeding territory quality was
found to influence female reproductive success.

As breeding-season phenology in temperate areas has advanced in recent
decades, there is concern that some migratory species may not be able to ad-
vance their arrival dates on the breeding grounds to keep pace. The results
of my dissertation suggest that, rather than adjusting the timing or speed
of migration, some individuals may use long-distance dispersal as a mech-
anism for responding to annual variation in the timing of breeding-season
phenology. Once these individuals arrive at a suitable breeding location,
they use both social and habitat cues to locate suitable breeding territories
and do not appear to suffer reproductive costs associated with these deci-
sions. Collectively, these results suggest that long-distance dispersal may be
an effective strategy for coping with the rapid advances in breeding season
phenology associated with climate change in temperate areas. However, the
tropical non-breeding areas inhabited by American redstarts are predicted
to receive less precipitation in the coming decades. Drier conditions will
result in lower food resources and delayed departure on spring migration,
forcing individuals to disperse farther north to synchronize reproductive ef-
forts with optimal breeding conditions. However, even if individuals are able
to locate suitable breeding habitat, the deteriorating conditions in tropical
areas will still reduce reproductive output. At present, most assessments
of climate change vulnerability focus on the impacts of temperate climate
change, but my results underscore the importance of considering how indi-



vidual organisms respond to shifting environmental conditions experienced
throughout their entire annual cycle.



MOVING BEYOND CONVENTIONAL PARADIGMS TO
UNDERSTAND DISPERSAL IN MIGRATORY SPECIES

ABSTRACT

Understanding the factors that influence the costs and benefits of dispersal
is a central issue in ecology, evolution and conservation. For species that
migrate between distinct breeding and non-breeding grounds, studying dis-
persal is challenging due to the complexity and scale of their annual move-
ments. Furthermore, the costs or benefits of dispersal in these species may
be shaped by the interaction of factors that occur throughout the entire an-
nual cycle. Although recent technological advances have provided a wealth
of tools for studying dispersal in migratory species, progress on this sub-
ject requires moving beyond conventional paradigms by incorporating our
rapidly growing understanding of migratory ecology into dispersal research.
Here, we provide a comprehensive review of the existing research on the
proximate factors that influence dispersal in migratory species that spans
taxonomic groups and periods of the annual cycle. Based on this review,
we discuss two notable gaps in our current understanding of the causes
of dispersal in migratory species. First, very little is known about move-
ments between locations used outside of the breeding season, despite the
ecological importance of these movements for individuals and populations.
Second, although researchers studying migratory species have realized that
events occurring during one period of the annual cycle can interact with

events that occur in subsequent periods, these seasonal interactions have
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not been widely incorporated into dispersal paradigms. We briefly provide
a background on the evidence for seasonal interactions and discuss how sea-
sonal interactions can influence the costs and benefits of dispersal. Lastly,

we suggest important areas for future research.

2.1 INTRODUCTION

Migration, defined as the repeated movement of individuals between distinct
breeding and non-breeding areas, is a widespread and common phenomenon
across the animal kingdom (Alerstam et al., 2003; Robinson et al., 2009).
For all migratory species, whether a salamander moving tens of meters be-
tween a breeding pond and terrestrial non-breeding habitat or an Arctic tern
flying over 20,000km between Arctic breeding sites and Antarctic feeding
grounds, these movements shape every aspect of their ecology and evolu-
tion. But while the complexity of migratory movements has long fascinated
biologists and non-biologists alike, they also make it difficult to fully un-
derstand the life-history of these species. As a result, many basic questions
about the ecology of migratory species remain poorly understood (Bolger
et al., 2008; Semlitsch, 2008; Faaborg et al., 2010). Addressing these gaps
is essential not only for understanding the ecology of migratory species but
also for developing effective conservation strategies to manage the multitude
of threats facing migratory species across the globe (Wilcove and Wikelski,
2008).

One ecological process that is particularly poorly understood in migratory

species is dispersal (Winkler, 2005). To complete their journeys, migratory



individuals rely on a variety of habitats throughout their annual cycle, in-
cluding breeding and non-breeding sites as well as stopover locations and
molting areas (Newton, 2007). At each of these stages, migrants face the
choice of whether to return to the location they inhabited the previous year,
termed site fidelity (Figure 1a), or to utilize different locations, termed dis-
persal (Figure 1b-c). For example, an individual returning on spring mi-
gration and attempting to breed for the first time could return to its birth
place or may instead settle in a new location, resulting in what is commonly
referred to as natal dispersal (Figure 1b). Likewise, experienced breeders
may remain faithful to previous breeding locations or may move to new
locations in subsequent years, referred to as breeding dispersal (Figure 1b).
Collectively, we refer to breeding and natal dispersal as breeding-season dis-
persal. Given the evolutionary and ecological importance of breeding-season
dispersal, a large body of theoretical and empirical research has focused on
understanding the ultimate and proximate causes of these movements (e.g.
Johnson and Gaines, 1990; Bowler and Benton, 2005).

The historical focus of dispersal research on population genetics and gene
flow has led to a conventional perspective that equates dispersal with gene
flow (e.g. Greenwood, 1980; Johnson and Gaines, 1990). While this defi-
nition is widely accepted, ecologists are often interested not in gene flow
but in how dispersal influences population dynamics via immigration and
emigration (e.g. the 'BIDE’ model: Pulliam, 1988; Caswell, 1989g). Although
the distinction between these two perspectives is generally unnecessary for
non-migratory species, many migratory species form distinct populations
during both the breeding season and during other periods of the annual

cycle (Sweanor and Sandegren, 1989). Because the dynamics of these non-



breeding populations are not directly influenced by reproduction, immigra-
tion and emigration are the primary processes driving non-breeding popu-
lation dynamics (De Los Santos et al., 1986; Berthold and Terrill, 1988),
range expansion (Berthold et al., 1992; Hill et al., 1998), and responses to
spatial and temporal variation in habitat quality (Hestbeck et al., 1991;
Schaefer et al., 2000).

Given the ecological similarity between these non-breeding movements
and breeding-season dispersal, we consider them a distinct type of dispersal
movement, termed non-breeding dispersal (Figure 1c¢). Although some may
take exception to equating these movements within breeding-season disper-
sal, we argue that the focus on gene flow has biased research against study-
ing ecologically similar movements outside the breeding season, which has
hindered understanding the dynamics of non-breeding populations (Sweanor
and Sandegren, 1989). Furthermore, because non-breeding dynamics can
feedback to influence breeding-season processes (Runge and Marra, 2005),
including breeding-season dispersal (Lok et al., 2011), understanding the
proximate and ultimate causes of non-breeding dispersal is critical to un-
derstanding the ecology and evolution of migratory species.

Regardless of which period of the annual cycle it occurs, understanding
the causes and consequences of dispersal is central to understanding the
ecology, evolution and conservation of migratory species (Faaborg et al.,
2010; Clobert et al., 2012). Unfortunately, dispersal and migration have tra-
ditionally been relegated to separate literatures (Nathan et al., 2008) and
there has been little research on how the migratory annual cycle shapes dis-
persal in these species (Winkler, 2005). Although several studies have tested

whether migration per se influences dispersal distance (Paradis et al., 1998;



Sutherland et al., 2000), these studies were restricted to birds and the com-
parative approach used by these studies provides little mechanistic insight
into the forces shaping dispersal in migratory species (Bowler and Benton,
2005). In reality, the costs or benefits of dispersal shaped by complex trade-
offs imposed by each species’ unique life-history (Bonte et al., 2012) and
progress on this important subject requires moving beyond conventional
dispersal paradigms and towards a mechanistic approach that explicitly
considers how the costs or benefits of dispersal are shaped by migration.
One of the major obstacles to developing a general understanding of the
interaction between migration and dispersal is that the relevant studies
are largely divided into non-overlapping, taxon-specific literatures (Nathan
et al., 2008). To this end, the primary purpose of this contribution is to
review and synthesize the existing literature on the causes of dispersal in
migratory species at each stage of the annual cycle. Based on this review, we
then identify and discuss two major gaps in our understanding of dispersal
in migratory species. First, because dispersal research has mainly focused
on breeding-season dispersal, dispersal outside of the breeding season is
poorly understood. Second, few studies have considered how events occur-
ring throughout the annual cycle interact to influence the costs or benefits
of dispersal. Given the increasing evidence that life-history traits of migra-
tory species are shaped by seasonal interactions (Marra et al., 2006), we
discuss how this within-season bias is a major impediment to understand-
ing dispersal in migratory species and highlight important areas for future
research. It is our hope that the ideas proposed here will stimulate novel
hypotheses and innovative solutions to advance future research on dispersal

in migratory species.



2.2 LITERATURE REVIEW

Conducting a comprehensive literature review on dispersal in migratory
species is challenging. First, migratory species show a wide diversity of
life-history traits and annual schedules. For some taxa, like many passerine
birds, all reproductive activities (e.g. pair formation, mating, nesting) occur
annually at one location and once completed, individuals migrate to non-
breeding sites for the remainder of the year (but see Rohwer et al., 2009).
Other species, however, carry out reproductive activities at a number of
locations throughout the annual cycle. Many ducks and geese, for example,
form pair bonds during the winter prior to migrating together to breeding
grounds (Robertson and Cooke, 1999) and many ungulates migrate as herds
to traditional mating grounds before moving to separate calving grounds
for the remainder of the year (Danell, 2006). For other species, migratory
movements take place over a number of years or generations. Sea turtles, for
example, spend several years on communal feeding grounds before returning
to their nesting beaches to reproduce (Lutz et al., 2003) and one generation
of monarch butterflies makes the southbound migration each fall while three
generations make the return the trip in the spring (Malcolm et al., 1993). As
a result of these life-history variations, generalizing movements and periods
of the annual cycle across taxa can be complex (Nathan et al., 2008).

In addition, the terminology used to describe types of movement is of-
ten highly variable across taxa. Movements that have the same biological
outcome may be termed dispersal when applied to birds (Greenwood and

Harvey, 1982), straying in the case of fish (Quinn et al., 1991), or ranging
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in regards to ungulates (Thirgood et al., 2004). To make matters worse, the
term migration is often used synonymously with dispersal (e.g. Johnson and
Gaines, 1990). Lastly, it is likely that the published literature on dispersal
is biased towards positive results (Csada et al., 1996), making it difficult to
assess the generality of certain results.

For this review, we searched existing literature on dispersal in migratory
species by searching the ISI Web of Science database and Google Scholar
using the term “migratory” plus terms related to dispersal (e.g. dispersal,
natal dispersal, breeding dispersal, site fidelity, philopatry, straying, natal
homing). We also conducted secondary searches using the same dispersal
terms plus key taxonomic groups known to show migratory behavior (e.g.
birds, ungulates, whales, sea turtles, salamanders, fish). Finally, we reviewed
the references in key publications located from these searches to identify
other relevant studies.

We included in the review any study that directly or indirectly quantified
proximate factors influencing intra-specific variation in dispersal in a species
or population of migratory individuals. Unfortunately, due to the logistical
difficulty associated with directly tracking dispersal events, the majority of
studies focused on indirect measures of dispersal, including genetic varia-
tion or rates of site fidelity. Although we acknowledge the limitations of
making inferences about dispersal from indirect methods (Clobert et al.,
2001), these studies provide the majority of, and in some cases the only,
information about dispersal during certain periods or for some taxa. There-
fore, including these studies was necessary to identify general patterns and
research needs. Studies that simply report rates of site fidelity or gene flow

without relating the patterns to some proximate factor (e.g. age, sex, den-
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sity) were not included. In addition, because our interest was in the causes
of intra-specific variation in dispersal, we did not include studies focused
on comparing inter-specific patterns of dispersal (e.g. Paradis et al., 1998;
Moller et al., 2004).

After compiling publications that matched our search criteria, we divided
studies based on the period of the annual cycle during which dispersal or
site fidelity was studied (i.e. breeding, non-breeding, stopover or molt). As
discussed above, variation in life-history strategies made it difficult to un-
equivocally categorize periods of the annual cycle for all taxa. Neverthe-
less, we defined “breeding season” as the period during which the majority
of reproductive activity (e.g. nesting, birthing) takes place, though we ac-
knowledge that in some cases important breeding activities may take place
during other periods. “Non-breeding” was defined as the stationary period
that does not serve as the primary reproductive period. Our definition of
dispersal also includes between-year movements of individuals between sites
during other periods of the annual cycle. Therefore, we also included stud-
ies investigating factors that influence dispersal between stopover locations
used on successive migrations and, for birds, dispersal between locations

used for molting.

Results of Literature Review

Breeding Season

Not surprisingly, the majority (~ 70%; Figure 2) of research on dispersal in

migratory species has been focused on the breeding season (i.e. natal and

12



breeding dispersal; Table A1a). Although our review cover a wide range
of species, study designs and spatial scales, a number of general patterns
emerge. Natal dispersal appears to occur more often and over larger dis-
tances than breeding dispersal in most species, particularly birds (Shields,
1984; Hansson et al., 2002; Sedgwick and Grubb Jr, 2004; Hosner and Win-
kler, 2007; Calabuig et al., 2008; Briggs et al., 2012) and amphibians (Berven
and Grudzien, 1990; Gamble et al., 2007). However, this was not always the
case, particularly in studies of mammals (e.g. Schaefer et al., 2000; Deutsch
et al., 2003). Second, patterns of sex-biased dispersal in migratory species
are generally consistent with those of non-migratory species (Greenwood
1980). In most birds, females exhibit lower site fidelity (e.g. Murphy, 1996;
Linkhart et al., 2007) are more likely to disperse (e.g. Winkler et al., 2004;
Calabuig et al., 2008) and disperse farther than males (e.g. Pért, 1990;
Forero et al., 2002; Winkler et al., 2005; Briggs et al., 2012), although
waterfowl that mate during the winter show the opposite patterns (e.g.
Robertson and Cooke, 1999; Nicolai et al., 2005; Phillips and Powell, 2006).
Most migratory mammals exhibit male-biased dispersal (e.g. Brown, 1992;
Engelhaupt et al., 2009). Dispersal also tended to be male-biased in mi-
gratory fish (Neville et al., 2006; Hamann and Kennedy, 2012) and reptiles
(Karl et al., 1992; Velez-Zuazo et al., 2008) but little evidence for sex-biased
dispersal exists for migratory amphibians (Trenham et al., 2001).

Another factor consistently found to influence site fidelity and dispersal
during the breeding period was reproductive performance. Particularly in
birds (Oring and Lank, 1982; Shields, 1984; Péart and Gustafsson, 1989;
Murphy, 1996; Beheler et al., 2003; Linkhart et al., 2007), individuals of

both sexes were more likely to disperse after poor reproductive performance
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than individuals that reproduced successfully, while in mammals limited ev-
idence suggests it was the successful individuals that were often more likely
to disperse the following year (caribou: Schaefer et al., 2000). There is also
substantial evidence that individuals of many migratory species prospect
the territories of conspecifics to gain information about territory quality (re-
viewed by Reed et al., 1999) but few studies have directly linked prospecting
behavior to subsequent dispersal decisions (Forero et al., 2002; Péart and
Doligez, 2003). Collectively, the patterns of age-, sex-, and reproductive-
biased dispersal observed in migratory species suggest that the ultimate
causes of dispersal in these species may be similar to those shaping disper-
sal in closely-related non-migratory species.

Aside from age, sex and reproductive performance, few factors appear to
influence breeding-season dispersal consistently across species. For example,
studies investigating the role of body size on breeding-season dispersal in
migratory birds have found evidence for both a positive (van der Jeugd,
2001) and a negative relationship (Nilsson, 1989) and many other studies
have found no relationship (Part, 199o; Brown and Brown, 1992; Forero
et al., 2002; Briggs et al., 2012). We did not identify any studies investigat-
ing the role of body size on breeding-season dispersal in non-avian migratory
species. Similar ambiguity exists regarding the role of other factors, includ-
ing body condition (Péart, 1990; Forero et al., 2002; Calabuig et al., 2008),
population density (Forero et al., 2002; Gamble et al., 2007; Hamann and
Kennedy, 2012), and patch quality (van der Jeugd, 2001; Briggs et al., 2012).
Parasitism has been implicated as an important driver of breeding-season
dispersal in migratory and non-migratory species (Mgller et al., 2004) but

we found only one study directly linking parasitism to intra-specific vari-
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ation in breeding-season dispersal behavior in a migratory species (Brown
and Brown, 1992). Thus, while breeding-season dispersal has been relatively
well-studied in migratory species, researchers still have only a rudimentary

understanding of the proximate drivers of natal and breeding dispersal.

Non-breeding season

For many migratory species, the non-breeding period represents the largest
portion of the annual cycle and during this period individuals must locate
habitat suitable for survival (Dugger et al., 2004; Johnson et al., 2006) and
for preparing for subsequent migration and breeding attempts (Marra et al.,
1998). To accomplish these goals, individuals may return to locations used
the previous year or they may choose to change locations, a process we refer
to as non-breeding dispersal (Figure 1c). As with breeding-season dispersal,
non-breeding dispersal shapes the dynamics of non-breeding populations
and can also carry over to influence a number of population-level processes
during the breeding season (Sutherland, 1996; Runge and Marra, 2005).
Despite the importance of these movements, only 23% of studies identified
by our review focused on non-breeding dispersal (Figure 2; Table A1b) and
most of these have focused on birds and mammals.

During the non-breeding period, migratory species display a continuum
of movement types, from largely nomadic (Mueller et al., 2011) to highly
faithful to specific territories (Hestbeck et al., 1991; Holmes and Sherry,
1992). As during the breeding season, these movement types are largely
driven by spatio-temporal variation in resource quality and predictability
(Mueller and Fagan, 2008). For example, species that rely on resources that

vary unpredictably within the non-breeding period are generally nomadic
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during this period (Pearson, 1980; Terrill, 1990; Renfrew et al., 2013) and
fidelity to non-breeding locations both within and among years is generally
very low. In other cases, resources may be largely stable within years but
may vary unpredictably across years and this pattern appears to select for
high within-season fidelity but low between-year fidelity (birds: Diefenbach
et al. 1988; Hestbeck et al. 1991; mammals: Brown 1992; Wittmer et al.
2006). Species that use resources that are stable and predictable across
years generally remain faithful to specific non-breeding territories within
and between seasons (birds: Wilson et al., 1991; Holmes and Sherry, 1992).
However, even in these species, some individuals do disperse between years
(e.g. Brown, 1992; Lok et al., 2011), suggesting that factors other than
spatio-temporal resource dynamics also influence non-breeding dispersal.
Aside from variation in habitat quality, however, few general patterns
are apparent from the studies that have focused on non-breeding disper-
sal. For example, although non-breeding site fidelity appears to increase
with age in birds (Wilson et al., 1991; Latta and Faaborg, 2001; Marchi
et al., 2010; Lok et al., 2011) and mammals (Schaefer et al., 2000), this
was not true in all cases (Holmes and Sherry, 1992; Deutsch et al., 2003).
In contrast to breeding-season dispersal, little evidence exists for consis-
tent sex-biased dispersal during the non-breeding period in birds(Holmes
and Sherry, 1992; Reed et al., 1998; Bassett and Cubie, 2009), mammals
(Brown, 1992; Deutsch et al., 2003), or amphibians (Dole and Durant, 1974).
In the few cases where estimates of site fidelity or dispersal are available
for the same species during both the breeding and non-breeding seasons, re-
sults are conflicting. For example, Holmes and Sherry (1992) found that site

fidelity in two warbler species was higher during the non-breeding period
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than during the breeding period. In contrast, female mule deer dispersed
shorter distances between consecutive summer ranges than between consec-
utive winter ranges, while dispersal distances in males did not differ between
seasons (Brown, 1992).

The lack of general patterns identified by our review is likely due in part to
the relatively small number of studies focused on the non-breeding period
and the fact that very few studies have directly measured non-breeding
dispersal (Hestbeck et al., 1991; Wilson et al., 1991; Brown, 1992; Holmes
and Sherry, 1992; Lok et al., 2011). Given the critical importance of the non-
breeding period to migratory species, it is clear that much more research
on non-breeding dispersal is needed and as tracking technologies continue

to improve, this should be a high priority for future research.

Migration

Individuals of all migratory species rely on a number of temporary sites dur-
ing other periods of the year to successfully complete their annual cycles.
For example, many migrants, including birds (Newton, 2007), marine mam-
mals (Deutsch et al., 2003), terrestrial mammals (Bartlam-Brooks et al.,
2011), bats (McGuire et al., 2012), and amphibians (Baldwin et al., 2006),
require patches of suitable habitat to rest and refuel during migration. Fur-
thermore, many species rely on stopover locations that are either ephemeral
in nature (Baldwin et al., 2006; Warnock and Bishop, 1998) or that are be-
ing increasingly degraded by anthropogenic modifications (Baker and Rao,
2004; Wilcove and Wikelski, 2008). As a result, understanding the factors

that influence the dispersal of individuals between stopover habitats used
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in successive years is critical to developing effective conservation strategies
for migratory species (Catry et al., 2004; Sheehy et al., 2011).

However, very few studies have focused on the causes of fidelity to mi-
gratory stopover locations and we did not identify any studies focused on
non-avian species (Figure 2; Table A1ic). The lack of research on dispersal
during the migratory period is no doubt a reflection of the difficulty asso-
ciated with tracking individuals during the migratory period. Nevertheless,
several studies have quantified rates of site fidelity to migratory stopover lo-
cations in birds (e.g. Cantos and Telleria, 1994; Catry et al., 2004; Yohannes
et al., 2007) and advances in tracking technology have given researchers the
ability to track the migratory routes of individual organisms over multiple
years (e.g. Meyburg et al., 2003; Broderick et al., 2007; Stanley et al., 2012).
Continued application of these technologies has potential to uncover impor-
tant information about how and why individuals choose particular staging
or stopover locations during migration and this information is critically
needed to effectively protect key habitats along migration routes (Sheehy

et al., 2011).

Molt

For migratory birds, molting is an important event in the annual cycle and
many species have developed complex movement patterns to ensure that
this energetically expensive process takes place at locations with adequate
resources (Newton, 2007). Thus, understanding how individuals locate and
utilize locations for molting is critical to understanding the ecology and
conservation of these species. As with dispersal between stopover sites, there

have been very few studies on dispersal between locations used for molting
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in successive years (Figure 2; Table A1d), making any general conclusions

about dispersal during this period impossible.

Conclusions of Literature Review

The studies identified in Table A1 represent the most extensive review on
proximate causes of dispersal in migratory species to date and highlight a
number of important gaps in our understanding of dispersal in migratory

species.

Moving dispersal research beyond the breeding season

The overwhelming majority of research on dispersal in migratory species
has focused on the breeding season (Figure 2; Table A1). Given the his-
toric focus of dispersal research on gene flow (Johnson and Gaines, 1990),
this bias is perhaps unsurprising. However, dispersal between locations used
during other periods of the year share many of the same ecological conse-
quences as breeding-season dispersal and understanding the causes of these
movements is critical to understanding the dynamics of non-breeding popu-
lations and to predicting how species will respond to environmental changes.
Unfortunately, little is known about the causes of dispersal outside of the
breeding season, particularly the factors that influence whether individuals
use different stopover or molting locations between years. Expanding the
scope of dispersal research to include these periods should be a high priority

for future research.
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Within-season bias

A less obvious, but no less important, characteristic of the studies reviewed
here is that virtually all focused exclusively on the role of factors occurring
within the same period as dispersal. For example, with the exception of
three studies (Mgller et al., 2006; Studds et al., 2008; Cherry et al., 2013),
all research on the causes of natal or breeding dispersal consider only factors
experienced during the breeding season. In effect, this within-season bias
implicitly treats the phases of the annual cycle as discrete periods within
which life-history events are independent of events that occur during other
periods. But this approach is fundamentally inconsistent with the biology
of these species (Norris and Marra, 2007). In migratory species, there is
growing evidence that events occurring throughout the entire annual cycle
interact (Marra et al., 2006)and these seasonal interactions have important
implications for understanding dispersal. Given the myriad of ways these
seasonal interactions shape other important life-history events (see below),
moving beyond this within-season bias is essential to developing a mecha-

nistic understanding of dispersal in migratory species.

2.3 A NEW FRONTIER: CARRY-OVER EFFECTS AND DISPERSAL

Seasonal interactions and the life-history of migratory species

There is a growing recognition amongst scientists studying migratory species

that the periods of the annual cycle are inextricably linked, such that ecolog-

ical events within one season influence events in subsequent seasons. These
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ecological connections are called “seasonal interactions” and can occur at
both the population and the individual levels (Runge and Marra, 2005;
Marra et al., 2006). At the population level, seasonal interactions oper-
ate primarily through density-dependent feedbacks between different peri-
ods of the annual cycle (Runge and Marra, 2005). At the individual level,
seasonal interactions are referred to as carry-over effects and occur when
events or conditions experienced during one period determine the timing
or condition of individuals transitioning between periods. As a result, these
non-fatal residual effects influence ecological processes during subsequent
seasons (Runge and Marra, 2005).

Over the past several decades, evidence that carry-over effects are a
widespread and important phenomenon has grown rapidly (Webster et al.,
2002; Norris and Marra, 2007; Harrison et al., 2011). To date, most re-
search on carry-over effects has focused on how non-breeding season events
influence subsequent reproductive success. For example, American redstarts
(Setophaga ruticilla) that occupy high-quality territories depart earlier on
spring migration, arrive earlier on the breeding grounds, and have higher re-
productive success than individuals from low-quality habitat (Marra et al.,
1998; Studds and Marra, 2005; Reudink et al., 2009a). Additional evidence
that carry-over effects from the non-breeding period are important drivers
of reproductive success in migratory species has been found in other bird
species (Legagneux et al., 2012; Rockwell et al., 2012), mammals (Perry-
man et al., 2002; Cook et al., 2004), reptiles (Broderick et al., 2001), fish
(Kennedy et al., 2008), and invertebrates (Olive et al., 1997). There is also
growing evidence, mainly from birds, that carry-over effects influence other

ecological processes, including the timing of molt and migration (Stutchbury
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et al., 2011; Mitchell et al., 2012), the distribution of individuals during the
non-breeding season (Bogdanova et al., 2011; Catry et al., 2013) and the
body condition of individuals prior to fall migration (Mitchell et al., 2011).
Taken together, these studies confirm that carry-over effects are a perva-
sive phenomenon and demonstrate that the life-history of migratory species
cannot be understood without an explicit focus on the entire annual cycle

(Marra et al., 2006).

Carry-over effects and the costs and benefits of dispersal

As with other life-history events, dispersal behaviors are the result of com-
plex cost-benefit trade-offs that are shaped by many factors, including phe-
notypic traits, social status, environmental conditions, and trade-offs be-
tween life-history events (Bowler and Benton, 2005; Bonte et al., 2012;
Matthysen, 2012), many of which are sensitive to carry-over effects from
preceding periods (Harrison et al., 2011). Although there are potentially
many ways for carry-over effects to influence dispersal dynamics, we focus
our discussion on the role of three factors that are known to influence disper-
sal and are known to be sensitive to carry-over effects: temporal variability
in habitat quality, body condition, and trade-offs between life-history events
(Figure 3).

Many environments are characterized by predictable spatio-temporal vari-
ation in habitat quality (Alerstam et al., 2003) and in response to this
variation, migratory species have evolved complex movement strategies to

ensure that life-history events coincide with brief but intense peaks in re-
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source abundance (Mueller et al., 2011). However, even in habitats with pre-
dictable variation in resource abundance, the phenology of resource peaks
can vary substantially and unpredictably between years (Townsend et al.,
2013). High temporal variation in habitat quality is known to select for
flexible dispersal strategies (McPeek and Holt, 1992; Mueller et al., 2011)
and indeed, many migratory species are known to track resource phenology
as they migrate (Hestbeck et al., 1991; van der Graaf et al., 2006; Bischof
et al., 2012; Husek et al., 2014), thereby ensuring that life-history events
are synchronized with optimal conditions.

However, the fitness of migratory species is influenced not by the abso-
lute timing of resource phenology but instead by the timing of resource
phenology relative to the timing of life-history events. Because the timing
of migration is often influenced by conditions experienced during the pre-
ceding period of the annual cycle (Studds and Marra, 2011; Stutchbury
et al., 2011), carry-over effects may interact with spatio-temporal variation
in resource phenology to influence the costs or benefits of dispersal. An
individual that migrates early, for example due to favorable non-breeding
conditions, will experience very different dispersal costs than an individual
migrating later because each individual will move across distinct phenolog-
ical landscapes. Consistent with this hypothesis, Studds et al. (2008) found
that American redstarts that held high-quality territories during their first
winter on average departed early on spring migration and dispersed south of
their natal latitude whereas individuals from low-quality habitat on average
departed later and dispersed north (Studds et al., 2008). Carry-over effects

are known to have a strong influence on the timing of migration in other
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species as well (Harrison et al., 2011) and therefore may be a pervasive force
shaping dispersal costs in migratory species (Figure 3).

Empirical and theoretical studies have also demonstrated that body con-
dition can have a strong influence on the costs of dispersal (Ims and Hjer-
mann, 2001; Kisdi et al., 2012), though the relationship between dispersal
propensity and body condition may be positive or negative depending on the
mortality risks of dispersal and spatio-temporal variation in habitat quality
(Bonte and de la Pena, 2009; Gyllenberg et al., 2011). In addition, numer-
ous studies have shown that the body condition of migratory individuals
transitioning between periods of the annual cycle is strongly influenced by
conditions experienced during the preceding period (Harrison et al., 2011),
suggesting that carry-over effects may also play an important role in shap-
ing body condition-dependent dispersal costs (Figure 3). Indeed, Mgller
et al. (2006) demonstrated that Arctic terns (Sterna paradisaea) transition
into the breeding period in poor body condition following winters with high
sea surface temperatures and low krill abundance in the region where this
species spends the non-breeding period, which in turn increased the costs
of breeding dispersal and reduced dispersal distance (Mgller et al., 2006).
These results provide empirical evidence that carry-over effects can influ-
ence dispersal via their impacts on body condition and suggest that these
effects may be an under-appreciated force shaping the costs of dispersal in
migratory species.

Finally, there is widespread evidence that trade-offs between life-history
events influence the costs of dispersal (Bonte et al., 2012) as well as many
aspects of migration, including arrival date on the breeding grounds (Kokko,

1999), migration speed and fuel loads carried during migration (Alerstam,
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2011), stopover and molting site selection (Ydenberg et al., 2002; Ebbinge
et al., 2013), and avoiding predation (Hebblewhite and Merrill, 2009). Thus,
it is likely that trade-offs imposed by migration may also influence dispersal
in migratory species. For example, Cherry et al. (2013) found the breeding
dispersal of migratory polar bears (Ursus maritimus) is partly determined
by a trade-off between the benefits of accumulating fat reserves prior to
migrating to terrestrial breeding areas versus the costs of dispersing to un-
familiar breeding sites. Similarly, Ebbinge et al. (2013) found that fidelity to
molting sites used by Black-bellied brent geese (Branta b. bernicla) is driven
by a trade-off between maximizing fledglings survival versus selecting the
highest quality molting sites for adults.

These studies demonstrate a number of ways that events or conditions
experienced during one period of the annual cycle can carry-over to influ-
ence the costs or benefits of dispersal during subsequent periods. Of course,
there are many other ways that carry-over effects may influence dispersal
in migratory species. For example, age-specific migration patterns occur in
many species when older individuals dominate non-breeding sites closest to
breeding sites, thereby forcing subordinates to migrate further and spend
the non-breeding period in sub-optimal sites (Ketterson and Nolan, 1983).
Because competitive status and migration costs change throughout an indi-
vidual’s lifetime, subordinate individuals may shift non-breeding locations
as they grow and gain competitive advantages, which could explain the
age-biases in non-breeding site fidelity observed in some migratory species
(Wilson et al., 1991; Schaefer et al., 2000; Latta and Faaborg, 2001). Al-
though much more work is needed on this subject, the growing number of

empirical examples demonstrate that considering the role of carry-over ef-
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fects is necessary to developing a mechanistic understanding of the costs
and benefits of dispersal in migratory species. Fortunately, the increasing
number of analytical and technological tools for studying dispersal provide

exciting opportunities to make progress on this subject.

2.4 FUTURE DIRECTIONS

Advancing our understanding of the interaction between migration and dis-
persal requires moving beyond the constraints of conventional dispersal
paradigms. Progress on understanding dispersal in migratory species will re-
quire novel approaches that synthesize research and techniques from across
disciplines and taxa to find innovative methods for studying dispersal in the
field. More importantly, progress will require adopting a “full annual cycle”
perspective of dispersal. This perspective must recognize: 1) that dispersal
is an ecological process that can occur at each stage of the annual cycle; and
2) the costs and benefits of dispersal can be influenced by factors occurring
throughout the entire year and be the result of seasonal interactions. In the
following section, we highlight a number of other areas that we believe will

be particularly fruitful for future research.

Carry-over effects and the fitness consequences of dispersal
Understanding the relationship between dispersal and fitness is central to

understanding the ecological and evolutionary consequences of dispersal

(Doligez and Pért, 2008). In migratory species, disentangling the fitness
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consequences of dispersal is challenging because survival and reproductive
success are influenced by a number of factors other than dispersal, including
arrival date (Kokko, 1999), carry-over effects from the non-breeding season
(Marra et al., 1998), and even large-scale climate events (McKellar et al.,
2012; Rockwell et al., 2012). As a result, accurately quantifying the fitness
consequences of dispersal requires accounting for the influence of these fac-
tors. In addition, because dispersal may be a strategy for managing the
trade-offs associated with migration, the fitness consequences of dispersal
may not be consistent across space or time and may differ among individ-
uals. Unfortunately, previous research on the consequences of dispersal in
migratory species has not considered these complications (Pért, 1990; Hans-
son et al., 2004). Future researchers should be aware of these complicating

factors and carefully design studies to isolate the role of dispersal.

The need for theory

One notable result of our literature review was that we found no theo-
retical studies exploring the relationship between migration and dispersal.
Although the theoretical literature on dispersal is substantial, the lack of
work on the role of migration is perhaps unsurprising. Only recently have
there been attempts to understand how dispersal is influenced by move-
ments that do not function primarily to locate and colonize new habitat,
including foraging, mate finding or avoiding predation (e.g. van Dyck and
Baguette, 2005; Stevens et al., 2012). However, incorporating these “routine”

movements into theoretical research on dispersal has proved valuable for de-

27



veloping mechanistic models of dispersal and for understanding how changes
to the landscape influence dispersal behavior in butterflies (van Dyck and
Baguette, 2005). Because tracking dispersal in wild populations will remain
an obstacle to empirical advances, expanding the scope of these theoretical
studies to include migration will be an important step for making progress
on this subject.

Several existing modeling frameworks could be modified to explore disper-
sal dynamics in migratory species (Alerstam, 2011). For example, integrat-
ing dispersal into optimal migration models could be a fruitful approach for
understanding how the constraints imposed by migration influence disper-
sal. Game theory (Kokko, 1999) and annual routine models (Hedenstrom
et al., 2007) are ideally suited to modeling processes that involve multiple
trade-offs and could easily be modified to include dispersal as a strategy for
optimizing time, energy or survival constraints during migration.

Existing dispersal models can also provide a framework for incorporating
dispersal behaviors into optimal migration models. For example, a number
of models have been developed to explore how search costs and settlement
rules influence patterns of dispersal (Baker and Rao, 2004; Stamps et al.,
2005) and these models could be modified to fit within existing migration
models. Additionally, existing models that explore how search and settle-
ment decisions are influenced by body condition (Kisdi et al., 2012), timing
(Stamps et al., 2005), spatio-temporal variation in habitat quality (Dytham
and Travis, 2012), and social information (Doligez et al., 2003) could be
particularly well-suited for integrating the role of carry-over effects from
preceding periods of the annual cycle. In general, however, many of these

modeling frameworks have been developed for species with annual life-cycles
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and more work is need to develop models that accommodate more complex
life-histories such as migration (Kokko, 1999). Finally, given the complex-
ity of factors influencing individual dispersal decisions, agent-based models
could be useful for exploring the interactions between various biotic and
abiotic factors thought to influence dispersal (Murrell et al., 2002; Mueller
and Fagan, 2008; Travis et al., 2012), particularly for species that have been

well studied throughout their entire annual cycle.

The importance of scale

The issue of scale is a critical component of all dispersal research. From
a logistical standpoint, the scale at which studies are conducted can intro-
duce important biases (Baker et al., 1995; Koenig et al., 1996) and can
influence the interpretation of data (Robertson and Cooke, 1999). From a
biological standpoint, the factors that influence dispersal at one scale (e.g.
short-distance dispersal) may differ from the factors that influence dispersal
at other scale (e.g. long-distance dispersal: Ronce, 2007).

To date, most research on the causes of dispersal in migratory species has
taken place over relatively small areas (Pért, 1990; Morton, 1992; Briggs
et al., 2012). In contrast, many of the mechanisms related to carry-over
effects operate over relatively large scales. For example, poor quality non-
breeding habitat can force individuals to delay spring migration by up to a
week (Studds and Marra, 2011), during which time phenological advances
on the breeding ground will shift substantially north. If individuals use

phenological cues to select breeding sites, than such delays will result in
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dispersal distances on the order of hundreds of kilometers (Studds et al.,
2008). Therefore, a mechanistic understanding of how selective pressures
on dispersal vary across scales in migratory species will require expanding

empirical studies to include long-distance dispersal movements.

Dispersal and migratory connectivity

In addition to an increased focus on long-distance dispersal, future research
on dispersal in migratory species will benefit from considering the degree
to which individuals from one breeding (or non-breeding) population mi-
grate to the same non-breeding (or breeding) location, referred to as mi-
gratory connectivity. Migratory connectivity is central to the ecology and
evolution of migratory species, influencing population dynamics, local adap-
tation, and the strength of carry-over effects because individuals inhabiting
different parts of the breeding or non-breeding ranges experience different
climate and weather patterns and differ in the timing and distance of mi-
gration (Webster et al., 2002; Marra et al., 2006). If these factors influence
dispersal, than understanding connectivity is critical to understanding how
factors occurring throughout the annual cycle influence dispersal. Unfortu-
nately, patterns of connectivity have not been quantified for most migratory
species (Marra et al., 2006), making advances on this subject important for
understanding dispersal in migratory species.

Fortunately, recent technological advances have provided new tools for
studying long-distance dispersal and migratory connectivity. For example,

stable isotopes, particularly hydrogen, have proven useful for detecting large-
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scale dispersal events (Hobson et al., 2004; Studds et al., 2012; van Wilgen-
burg et al., 2012) and genetic methods also show promise in some cases
(Hansson et al., 2002; Ekblom and Galindo, 2010). Combining these ap-
proaches with tools that have been developed for studying carry-over ef-
fects, including stable isotopes (Marra et al., 1998), light-level geolocators
(Bogdanova et al., 2011), and direct tracking methods such as satellite tags
(Zbinden et al., 2011), will be particularly useful for connecting dispersal
to events occurring throughout the entire annual cycle. Future advances in
our ability to track individuals continuously throughout the year (Wikelski
et al., 2007) and across years, will revolutionize our ability to answer these

questions.

Non-magratory species

Although the focus of this review has been on dispersal in migratory species,
it is important to note that carry-over effects operate in non-migratory
species as well (Harrison et al., 2011; Plummer et al., 2013) and have po-
tential to influence dispersal in these species. For example, (Nilsson and
Smith, 1988) found that juvenile Marsh tits (Parus palustris) from early
broods were more likely to become established in high-quality sites during
their first winter than individuals from later broods. Furthermore, the indi-
viduals that wintered in high-quality sites had higher annual survival and
were more likely to breed in the high-quality sites in subsequent years than
the later-hatching juveniles that were forced into marginal non-breeding

habitat. This study provides an excellent example of how consideration of
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carry-over effects and a “full annual cycle” perspective are necessary for a
mechanistic understanding of dispersal and underscores the importance of

these ideas for migratory and non-migratory species alike.

2.5 CONCLUSIONS

Our review provides a comprehensive summary of existing research on dis-
persal in migratory species and makes clear that dispersal remains a poorly
understood process in these species. While a number of factors, particularly
the difficulty associated with tracking migratory individuals, have hindered
previous research, adherence to conventional dispersal paradigms remains
a major obstacle to developing a mechanistic understanding of dispersal
in migratory species. Fortunately, recent advances in our ability to track
migratory individuals throughout the annual cycle, combined with a grow-
ing recognition of the importance of seasonal interactions, provide scientists
with unprecedented abilities to understand dispersal in migratory species.
Still, while these advances have tremendous potential for advancing this
subject, they will only prove useful if researchers overcome the traditional
barriers imposed by sub-disciplines, taxonomic groups and geographical bor-
ders and move towards a mechanistic perspective focused on how the costs
and benefits of dispersal are shaped by factors occurring throughout the
entire annual cycle.

Furthermore, migratory species across the planet face a growing num-
ber of anthropogenic threats that are altering the location or quality of

habitats used throughout their annual cycle (Wilcove and Wikelski, 2008).
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Rapid degradation of breeding habitats, non-breeding habitats and critical
stopover locations have already led to significant declines of many species
(Sutherland, 1996; Bolger et al., 2008; Wilcove and Wikelski, 2008) and
climate change in both temperate and tropical regions is resulting in large-
scale changes to the distribution and quality of remaining habitats (Neelin
et al., 2006; Both et al., 2010; Knudsen et al., 2011). Whether or not species
are able to respond to these changes depends in large part on the flexibility
of dispersal behaviors (Clobert et al., 2012), but as we have outlined here, it
is likely that destruction or degradation of habitats used during one phase
of the annual cycle will carry-over to influence the ability of species to re-
spond to changes during subsequent periods. Consequently, a ‘full life-cycle’
perspective of both dispersal and conservation of migratory species will be

critical to developing effective conservation measures for migratory species.

33



100

Figure 1: Conceptual models illustrating types of dispersal in migratory species.
Solid lines indicate migratory movements and dotted lines represent
dispersal. a) Philopatry/Site fidelity: In this case, an individual migrates
from its natal (N) or breeding (B) site to its non-breeding (NB) site
and then returns to these sites in subsequent years; b) Breeding-season
dispersal: In this case, an individual migrates from its natal or breeding
site to its non-breeding site but the following year settles in a new
location to breed. If the individual is a juvenile selecting its first breeding
location (B1), the dotted line represents natal dispersal. If the individual
is an adult that moves to a new breeding location (B2), the dotted
line represents breeding dispersal; ¢) Non-breeding dispersal: In this
case, an individual migrates from one non-breeding site (NB1) to its
breeding site but the following year selects a new non-breeding site
(NB2). Following our definition, dispersal can also occur between other
time periods used during some stage of the annual cycle, for example
between stopover locations or molting sites.
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Figure 2:

60

50

Number of Studies
8 &

L)
o

Non-breeding Molt Stopover
Period of the Annual Cycle

Breeding

The number of studies focused on proximate causes of dispersal in migra-
tory species during each period of the annual cycle. The breeding period
is defined as the period during which the majority of reproductive ac-
tivity takes place. The non-breeding is defined as the stationary period
that does not serve as the primary reproductive period. We also included
studies investigating the factors that influence dispersal between molt-
ing locations in birds and dispersal between stopover locations in all
taxa.
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Figure 3: Conceptual diagram showing how carry-over effects influence costs/ben-
efits of dispersal. The right panel illustrates the conventional approach
to studying dispersal. In this case, researchers typically quantify how
individuals-level traits (italics) or biotic and abiotic conditions (bold) in-
fluence the costs or benefits of dispersal. The balance of these costs and
benefits, in turn, results in an individual settlement decision during the
focal period. However, biotic and abiotic conditions experienced during
the preceding period can influence the body condition and/or timing
of individuals as they transition into the focal period. These carry-over
effects can influence the costs or benefits of dispersal and therefore play
an important role in settlement decisions.
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ANNUAL VARIATION IN LONG-DISTANCE
DISPERSAL OF A MIGRATORY BIRD DRIVEN BY
BREEDING AND NON-BREEDING SEASON CLIMATIC
CONDITIONS

ABSTRACT

Long-distance dispersal is a fundamental process in ecology and evolution
but how factors experienced throughout the annual cycle influence these
movements remains poorly understood. We used stable hydrogen isotopes
to quantify the rate and direction of long-distance immigration into a pop-
ulation of American redstarts and to link these movements to breeding
and non-breeding climate conditions and individual traits. Both natal and
breeding dispersal were strongly influenced by the timing of breeding-season
phenology, with both age classes more likely to disperse north in years with
early phenology. Yearlings were also more likely to disperse north following
winters with poor environmental conditions, demonstrating that carry-over
effects from the non-breeding season influence natal dispersal in this species.
Collectively, these results are consistent with the hypothesis that individ-
uals use phenological cues to select breeding sites and indicate that the
timing of migration relative to the phenology of breeding season resources
influences long-distance dispersal in this species. Our results suggest that
long-distance dispersal may allow individuals to rapidly respond to advanc-
ing phenology caused by global climate change, though their ability to do so
may be constrained by long-term drying trends predicted for their tropical

non-breeding grounds.
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3.1 INTRODUCTION

Long-distance dispersal, defined as the movement of an individual beyond
the normal boundaries of its population for the purpose of breeding, is one
of the most important processes in ecology and evolution (Clobert et al.,
2012). These movements can occur when yearlings move from their birth
place to their first breeding location (i.e. natal dispersal) or when adults
move between breeding locations in successive years (i.e. breeding dispersal).
Although long-distance dispersal is generally rare in most species, many eco-
logical and evolutionary processes are sensitive to the rate and magnitude
of these movements, including local adaption and speciation (Green and
Figuerola, 2005; Savolainen et al., 2007), population dynamics (Baguette,
2003; Bohrer et al., 2005), range expansion (Kot et al., 1996), and the
response of species to climate change (Higgins and Richardson, 1999). Un-
fortunately, the inherent difficulty of tracking long-distance dispersal has
limited progress on this subject and the factors that drive long-distance
dispersal remain poorly understood in most species (Clobert et al., 2012).
Understanding the factors that influence long-distance dispersal is espe-
cially difficult in small migratory songbirds due to the scale of their annual
movements and the challenges of tracking individual birds throughout their
entire annual cycle (Winkler, 2005). Furthermore, there is growing evidence
that many life history events, including dispersal, are shaped by the in-
teraction of events across the annual cycle (Harrison et al., 2011). These
seasonal interactions complicate the study of dispersal because decisions

about where to breed may be determined partly by the conditions or events
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experienced earlier in the year at locations separated by thousands of kilo-
meters. Unfortunately, because most research on the causes of dispersal has
focused exclusively on the role of events or conditions experienced on breed-
ing grounds, the lack of information about how non-breeding season events
influence long-distance dispersal represents a major impediment to devel-
oping a mechanistic understanding of long-distance dispersal in migratory
species.

At present, only one study has provided direct evidence that seasonal
interactions from the non-breeding season influence long-distance dispersal.
Studds et al. (2008) found that American redstarts (Setophaga ruticilla)
that occupied high-quality territories during their first winter departed ear-
lier on spring migration and on average bred south of their natal latitude
whereas individuals from low-quality non-breeding territories departed later
and dispersed north of their natal latitude, demonstrating that habitat qual-
ity experienced during the non-breeding period is a primary driver of natal
dispersal in this species.

Given the rapid environmental changes impacting migratory species dur-
ing both their breeding and non-breeding periods (Faaborg et al., 2010),
there is an urgent need for more research on how events experienced across
the entire annual cycle interact to shape long-distance dispersal behavior.
In this study, we used stable hydrogen isotopes to quantify the causes of
long-distance immigration into a breeding population of American redstarts.
The use of stable isotopes provided a spatially unbiased marker for estimat-
ing the origin of all individuals in our population, allowing us to address
the following questions: 1) How do climate conditions experienced across

the annual cycle influence the source of immigrants in a breeding popula-

39



tion? and 2) What individual-level traits influence long-distance dispersal

decisions?

3.2 METHODS

American redstarts are long-distance migratory birds that breed throughout
North America and winter in the Caribbean and Latin America (Sherry and
Holmes, 1997). From 2009-2012, we studied a breeding population of red-
starts at the Patuxent Research Refuge in Laurel, MD (39%04’N, 76°47'W).
Upon capture, individuals were classified as either yearlings (1 year old)
or adults (> 1 year old) following Pyle et al. (1997), fitted with an alu-
minum USFWS leg band and a unique combination of plastic color bands,
weighed to the nearest 0.1g, measured for body size (bill length, bill width,
bill depth, tarsus length, and unflattened wing chord) to the nearest o.5mm,
and released. In addition, one tail feather (R3) and the distal 0.3mm of each
middle claw were sampled from each bird for stable hydrogen and stable
carbon isotope analyses, respectively (see Appendix B for further details
about field methods and isotope analysis).

We used the stable hydrogen isotope values from feather samples (62Hg) to
probabilistically determine the origin of all individuals breeding in our study
population. This method relies on the latitudinal gradient of abundance of
hydrogen isotopes in North American precipitation and the fact that this
isotopic gradient is incorporated into bird feathers (Hobson et al., 2012).
Because redstarts grow their feathers on their breeding or natal grounds

prior to fall migration (Pyle et al., 1997), the stable hydrogen isotope abun-
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dance in feathers of birds sampled during one breeding season reflects the
geographic origin of these individuals from the previous year, providing a
spatially unbiased estimate of long-distance dispersal (van Wilgenburg et al.,
2012).

To determine the origin of all unknown-origin individuals in our popula-
tion, we first estimated year-specific distributions of local 6°H¢ values using
0°Hy values from individuals known to have bred at the study site the pre-
vious year. We then used these distributions to probabilistically determine
the origin (northern, local, or southern) of all unbanded individuals based
on a predefined odds ratio for correctly classifying individuals as local (van
Wilgenburg et al., 2012). Thus, individuals with 82Hy values consistent with
northern or southern origins are likely to be long-distance dispersers. Given
the low resolution of stable isotopes (Langin et al., 2007), individuals catego-
rized as “local” likely included both philopatric individuals (i.e. originating
at our study site) and short-distance dispersers that recruited from the sur-
rounding region, although it is difficult to translate 6*Hy values directly into
geographic distances. To test the sensitivity of our results to the threshold
used to classify individuals as local, we carried out the assignments using
three progressively stringent thresholds (4:1 odds, 9:1 odds and 19:1 odds)
and performed all analyses under each scenario (see appendix B for further
details). However, because results were qualitatively similar across odds ra-
tios, only results from the 4:1 odds ratio are presented in the text. Results

based on the g:1 and 19:1 odds ratios are presented in Appendix C.
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Statistical Analysis

We used proportional odds (PO) ordinal regression to determine how two
climate variables and five individual-level factors influence long-distance
dispersal (Guisan and Harrell, 2000). For our model, we considered origin
as an ordinal factor with three levels defined by their spatial arrangement
(south < local < north). The PO model assumes that the effects of predictor
variables are equal across all categories of the response variable. To test
that our data conformed to the PO assumption, we fit a global model for
each odds ratio containing all predictor variables. We then relaxed the PO
assumption for each predictor and used likelihood ratio tests to determine
whether this nominal model improved the fit compared to the PO model.
For our data, the nominal models did not fit significantly better than PO
models, indicating the PO assumption was not violated for any predictor.
To determine which predictors influence long-distance dispersal, we used
a hierarchical model selection approach (Bulluck and Buehler, 2008), which
allowed us to focus on biologically-based hypotheses without testing all pos-
sible models (Burnham and Andersen, 2002). For this approach, we defined
three suites of models and used Akaike’s information criteria for small sam-
ples (AIC.) to rank models within each suite. Any model with AAIC. < 2
was carried over to the next suite. The use of 2 as a threshold for model
selection is recommended by Burnham and Andersen (2002) and is a con-
servative approach to model selection (Bulluck and Buehler, 2008). Suite

I modeled dispersal status as a function of the main effects of age class
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(yearling vs. adult), sex, and year, which have all been shown to influence
dispersal in songbirds (Paradis et al., 1998).

Suite IT included the top models from suite I plus the main effects of body
condition, body size, non-breeding territory quality and the interaction of
these variables with age class. Both body condition and body size have
been linked to dispersal in several species of long-distance migratory birds
and these effects are often stronger for natal than for breeding dispersal
(Pért, 1990; van der Jeugd, 2001). Body size was determined using principle
component analysis (PCA) based on wing chord and tarsus length, with the
first PCA score used as a measure of overall body size (Marra and Holmes,
2001). These scores were then regressed against body mass and the residuals
were used as an estimate of body condition (Marra and Holmes, 2001). We
used stable carbon isotopes from claw samples (§'3C) to infer non-breeding
territory quality. Stable-carbon isotope signatures of plants in the tropics
vary by water availability (Michener and Lajtha, 2008), which is positively
correlated with the abundance of soft bodied insects (Studds and Marra,
2007). Thus, the amount of 3'3C in tissues can be used as a proxy for habitat
quality for insectivorous birds such as redstarts (Marra et al., 1998), with
more negative values indicating wetter, higher quality habitat and more
enriched values indicating drier, lower quality habitat. Turnover of 8'3C in
claws is on the order of weeks (Hahn et al., 2014), allowing us to use claw
samples collected upon arrival on the breeding grounds to infer territory
quality experienced during the preceding winter (Reudink et al., 2009a).

Suite III included the top models from suite II plus the main effects of
breeding-ground phenology and large-scale habitat quality in the Caribbean

and the interaction of these variables with age class. We predicted that
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individuals from southern latitudes would disperse north in years when
phenology occurs comparatively early whereas individuals from northern
latitudes will disperse south in years when phenology occurs later. We used
the peak blossom date of cherry trees (Prunus x yedoensis) on the National
Mall in Washington, D.C. (T30km from our study site) as a surrogate for
the phenology of plants and insects in the region surrounding our study site.
The peak cherry blossom date is tracked annually by the US National Park
Service (www.nps.gov/cherry/cherry-blossom-bloom.htm), providing a
standard measure for comparing annual variation in the timing of phenology
for our study site.

To quantify large-scale habitat quality experienced by redstarts during the
non-breeding season, we used the mean Normalized Difference Vegetation
Index (NDVI) from January to March from Cuba (http://pekko.geog.
umd.edu/usda/test/). NDVI values provide an estimate of net primary
productivity, which is highly correlated with food abundance and habitat
quality for American redstarts during the non-breeding period (Studds and
Marra, 2007). Most redstarts breeding in the eastern United States winter in
the Caribbean (Norris et al., 2006) and because NDVI values are correlated
across the Greater Antilles (Wilson et al., 2011), values from Cuba should
reflect conditions experienced by most redstart breeding at our study site.
We chose to use NDVI values from January through March because this
period has the largest impact on individuals transitioning into the breeding
season (Studds and Marra, 2007; Wilson et al., 2011). Based on the obser-
vations of (Studds et al., 2008), we predicted that yearlings, but not adults,
would be more likely to disperse north following winters with below-average

primary productivity (low NDVI values) and more likely to disperse south
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following winters with above-average primary productivity (high NDVT val-
ues). Both the peak cherry blossom date and late-season NDVI in Cuba
showed substantial variation over the course of our study (Figure 4), pro-
viding a unique opportunity to test how these factors influence long-distance
dispersal in redstarts.

All continuous variables were mean-centered prior to analysis to reduce
co-linearity and missing values for individual-level factors were assigned a
value of o. Although including these mean values could lower our ability
to detect individual-level effects, missing values accounted for only a small
percentage (< 2%) of our data and therefore likely had little effect on our
conclusions. We considered any model from Suite IIT with AAIC. < 4 to be
consistent with our data (Burnham and Andersen, 2002) but because our
candidate models contained a mix of interaction terms, we were unable to
use model-averaging to account for this model selection uncertainty. We con-
sidered coefficients with 95% confidence intervals that did not overlap zero
to be significant predictors of dispersal status and interpreted consistency
in the significance, sign, and magnitude of predictors across the candidate
set and odds ratios as strong evidence that a factor influences long-distance
dispersal. All models were fit in R v3.0.2 (R Core Team, 2013) using the

clm function in the package ordinal v2013.9-30 (Christensen, 2013).
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3.3 RESULTS

Immagration Patterns

Over the course of our study, we sampled 320 redstarts and our data indi-
cate that long-distance dispersal is relatively rare in this species, with the
majority of individuals (85.6%) in both age and sex classes having 6*Hy val-
ues consistent with a local origin (Table C1). In addition, our data indicated
that while the majority of immigrants in our population originated to the
north of our study site, the source of immigrants showed significant annual
variation over the course of the study (Figures 4; C1). From 2009-2011, the
majority of immigrants into our population (78.4%) originated from north
of our study site (Figure 4; Table C1). In 2012, however, the majority of
immigrants (70%) originated from south of our study site (Figure 4; Table

Ch).

The role of climate

Overall, the most consistent factor influencing dispersal status in our mod-
els was breeding-season phenology, with every candidate model in the 4:1
set containing either the additive or multiplicative effects of the peak cherry
blossom date (Table 1). As predicted, the coefficients were negative in all
models, indicating that the odds of originating from the south increase in
years with early phenology (Figure 5). Models with the additive effect of

phenology accounted for 0.73 of the cumulative weight of the candidate set
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and coefficients were significant in all models. Coeflicients for the multiplica-
tive effects of phenology were also negative for both age classes (unweighted
average: yearlings: ﬁ = -.284 &+ 0.081; adults: B = -0.165 £ 0.007) and 95%
confidence intervals did not overlap zero in 14 of the 15 models (Table 1).
The magnitude and significance of the coefficients were largely consistent
across odds ratios (Table C2; Figure C2), providing evidence that both
long-distance natal and breeding dispersal were sensitive to the influence of
breeding-season phenology.

NDVI was included in 14 of the 15 (93.3%) top models in the 4:1 set (Ta-
ble 1), indicating that large-scale habitat quality during the non-breeding
season also had an influence on subsequent long-distance dispersal, though
there was some uncertainty regarding the interaction between non-breeding
conditions and age. Of the 4:1 candidate models, the top model contained
the interaction of NDVI with age and multiplicative models accounted for
0.71 of the cumulative weight (Table 1). Furthermore, the coefficients for
the effect of NDVI on natal dispersal were negative and significant (,[3 = -
4.146 £ 1.28) in all multiplicative models in the 4:1 candidate set, indicating
that yearlings, but not adults, were more likely to originate from the south
following winters with below-average productivity (Figure 6). In contrast,
models with the additive effect of NDVI were favored in the g:1 candidate
set (0.79 of the cumulative weight) and 19:1 candidate set (.97 of the cu-
mulative weight; Table C2). Coefficients for additive effects of NDVI were
negative and significant (B = -2.47 £+ 0.178) in all 9:1 models, suggesting a
significant influence of NDVT on long-distance dispersal. However, for mod-
els containing multiplicative effects of NDVI, the magnitude of the effect of

NDVI on natal dispersal (8 = -2.398 + 1.54) was larger than the effect of
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NDVI on breeding dispersal (B = -1.436 + 2.14; Figure C3), though these
coefficients were not significant. Only one model in the 19:1 set contained
the interaction of NDVI with age, and coefficients were similar in magni-
tude to the 9:1 models (yearlings: B = -2.32 £ 2.6 adults: B = -1.48 £ 1.9).
The wide confidence intervals for natal dispersal coefficients under the g:1
or 19:1 odds ratios suggest that we did not have the statistical power to
detect significance under these restrictive thresholds. However, the signifi-
cant results under the 4:1 threshold and the consistency of the coefficients
across the three candidate sets suggest that non-breeding conditions have a

stronger impact on long-distance natal dispersal than on breeding dispersal.

The role of individual-level traits

Of the individual-level traits that we included in our models, only age class
was consistently included in the top models (Table 1; Table C2). Over the
four years of our study, the immigration rate was higher for yearlings (18.1%)
than for adults (11.2%; Table C1), indicating that long-distance natal dis-
persal is more common than long-distance breeding dispersal in this species.
However, the immigration rates for each age class showed substantial varia-
tion among years and in both 2011 and 2012, our population received more
adult immigrants than yearlings (Figure 4; Table C1).
Across all years, immigration rates were generally lower for females (11.02%)

than for males (14.68%) but sex was not included in any of the top models
(Table 1; Table C2). Both body condition and non-breeding territory quality

(8*3C) were selected in 5 of the 15 models in the 4:1 set but the confidence
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intervals for all coefficients overlapped zero in all models (Table 1; Table
C2). Body size was not included in any of the top models (Table 1; Table
C2). Overall, these results suggest that the annual variation in immigration
into our population were not driven by the individual-level traits included

in our analysis.

3.4 DISCUSSION

In this study, we used a spatially-unbiased intrinsic marker to uncover large-
scale annual variation in the source of immigrants into our study population.
Overall, and particularly from 2009-2011, the majority of immigrants into
our population had 8°H¢ values consistent with northern origins. Redstart
breeding densities increase to the north of our study site and decrease to the
south (Norris et al., 2006), and this northern-bias might be expected if the
northern portion of the breeding range produces more potential dispersers
than the southern portion (Graves, 1997). However, in 2012 we observed
the opposite pattern, with virtually all immigrants originating from south,
suggesting that breeding density is not the sole driver of immigration into
our population. The sharp distinction between years and the consistency
across age and sex classes suggest that these patterns are not due to aberrant
0°Hy values, such as local individuals with abnormally enriched or depleted
6°Hy values (Langin et al., 2007) or to individuals molting their feathers at
southern latitudes during migration (Reudink et al., 2008).

Instead, our data provide evidence that in certain years, large-scale envi-

ronmental conditions resulted in a significant influx of southern immigrants
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and a corresponding decrease in northern immigrants. In 2009, our pop-
ulation received an influx of yearling immigrants from the south (Figure
4). The preceding winter, habitat quality was far below average across the
Caribbean (Figure 4), conditions which are known to delay departure on
spring migration for redstarts (Marra et al., 1998). If individuals use phe-
nological cues to select breeding sites (Studds et al., 2008; Husek et al.,
2014), individuals that would normally breed in the southern portion of the
breeding range were likely forced to migrate further north to locate suitable
breeding sites Studds et al. (2008). In contrast, immigration of southern
yearlings was low or absent in 2010 and 2011, years with above average
non-breeding conditions (Figure 4). These results corroborate the earlier
findings of Studds et al. (2008) and provide evidence that carry-over effects
from the non-breeding season are a primary driver of natal dispersal in this
species.

In addition to the influence of non-breeding conditions, our results indi-
cate that the timing of breeding season phenology has a strong influence on
both natal and breeding dispersal in American redstarts. In 2012, the peak
cherry blossom date occurred approximately two weeks earlier than normal,
resulting in a striking influx of southern immigrants into our population and
virtually no northern immigrants (Figures 4; C1). Under these conditions,
individuals from southern latitudes likely arrived at their natal or previous
breeding location after food resources had peaked and, similar to the con-
sequences of delayed departure from the non-breeding grounds, were forced
to continue migrating to locate breeding sites with optimal resource levels.
Although the sensitivity of adults to phenological cues is surprising, other

studies of migratory birds have also found that breeding dispersal is influ-

50



enced by climate conditions (Mgller et al., 2006; Figuerola, 2007). Thus,
although long-distance breeding dispersal is generally rare in most birds
(Paradis et al., 1998), these results indicate that experienced breeders may
be more sensitive to extreme climate conditions than is commonly believed.
If true, breeding dispersal may play an underappreciated role in shaping
population dynamics, gene flow, and responses to climate change in many
species.

Direct evidence linking climate conditions to long-distance dispersal be-
havior is rare (Mgller et al., 2006; Massot et al., 2008; Husek et al., 2014)
and our results have important implications for predicting how migratory
birds will respond to climate change. As breeding-season phenology in tem-
perate areas has advanced in recent decades, there is evidence that some
migratory species have not advanced their arrival dates on the breeding
grounds to keep pace (Both and Visser, 2001). As a result, in years with
early breeding-season phenology, the resources necessary for reproduction
peak before individuals initiate reproductive activities (Both et al., 2006)
and this phenological mismatch has been linked to reduced reproductive
success in several long-distance migratory bird species (Both et al., 2006;
Saino et al., 2011). As temperate areas continue to warm, there is concern
that the magnitude of phenological mismatches will increase, possibly re-
sulting in declines and extinction of many migratory bird species (Moller
et al., 2008).

At present, most research on the response of migratory birds to climate
change has focused on the ability of individuals to adjust the speed of migra-
tion in response to environmental conditions experienced en route (Marra

et al., 2005; Hurlbert and Lian, 2012) or on the evolutionary potential of
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populations to adjust the timing of migration or breeding over longer time
scales (Charmantier and Gienapp, 2013). In contrast, research on the ability
of individuals to respond to advancing phenology via long-distance disper-
sal has largely been neglected. Nonetheless, evidence that migratory birds
use phenological cues to select breeding sites is beginning to emerge. For
example, Husek et al. (2014) recently demonstrated that pied flycatchers
(Ficedula hypoleuca) were more likely to disperse north in years with warm
spring temperatures and early food resource phenology but more likely to
return to their natal area in years with average temperatures and food
resource phenology. Though the dispersal events recorded by Husek et al.
(2014) were restricted to a 10-km latitudinal gradient, our results and those
of (Studds et al., 2008) indicate that similar behaviors occur in American
redstarts over regional spatial scales. Although additional work is needed to
determine if these behaviors are widespread in other species, these results
could explain why phenological mismatches have not been observed in many
species (Jones and Cresswell, 2010) and why individual-level phenological
mismatches often have little impact on population trends (Dunn and Mgller,
2013).

Even if long-distance dispersal buffers individuals against the impacts of
temperate warming, our results indicate that the ability of individuals to
respond to breeding-season phenology may be constrained by conditions
experienced during the previous non-breeding season. Climate models pre-
dict that the Caribbean basin will receive significantly less precipitation in
the coming century (Neelin et al., 2006), which will result in overall poorer
habitat quality for American redstarts and many other insectivorous song-

birds that winter in the Caribbean. Drier conditions will result in lower food
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resources, delaying departure on spring migration, and forcing individuals
to disperse farther north to synchronize reproductive efforts with optimal
breeding conditions. Unfortunately, advancing breeding-season phenology
on temperate breeding grounds may confound these effects. At present, most
assessments of climate change vulnerability focus on the impacts of temper-
ate climate change, but our results underscore the importance of considering
how individual organisms respond to shifting environmental conditions ex-
perienced throughout their entire annual cycle (Small-Lorenz et al., 2013).

Finally, our results demonstrate the potential of intrinsic markers such
as stable isotopes to reveal novel insights into the factors influencing long-
distance dispersal. Although the spatial resolution of stable isotope data
is low, the ability to collect large amounts of spatially unbiased dispersal
data can uncover patterns that would be impossible to detect using conven-
tional mark-recapture methods. As researchers continue to seek a mecha-
nistic understanding of long-distance dispersal (Travis et al., 2012), further
development of these methods, combined with a “full life-cycle” perspective
that considers how events across the annual cycle influence dispersal, will
be critical to understanding and predicting the impacts of climate change

on the planet’s biodiversity.
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Patterns of immigration into the study population and variation in cli-
mate variables from 2009 to 2012. Bars show the number of individuals
within each age class assigned to each dispersal category based on a
4:1 odds ratio. Within each year, the left bar shows the number of indi-
viduals with a southern origin (“S”), the center bar shows the number
of local individuals (“L”), and the right bar shows the number of indi-
viduals with a northern origin (“N”). The solid line and closed circles
show the peak cherry blossom date for each year while the dashed line
and open circles show the mean NDVI value from January to March
in Cuba. NDVI values are mean-centered so positive values (above the
dotted line) represent above average primary productivity and negative
values (below the dotted line) represent below average primary produc-
tivity.
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HABITAT FEATURES AND LONG-DISTANCE
DISPERSAL MODIFY THE USE OF SOCIAL
INFORMATION BY A MIGRATORY BIRD

ABSTRACT

The processes by which individuals select breeding sites have important
consequences for individual fitness as well as population- and community-
dynamics. Although there is increasing evidence that many animal species
use information acquired from conspecifics to assess the suitability of po-
tential breeding sites, little is known about how the use of this social in-
formation is modified by biotic and abiotic conditions. We used an auto-
mated playback experiment to simulate two types of social information,
post-breeding public information and pre-breeding location cues, to deter-
mine the relative importance of these cues for breeding site selection by a
migratory songbird, the American redstart (Setophaga ruticilla). In addi-
tion, we used stable hydrogen isotopes to determine the dispersal status
of individuals that responded to our experimental treatments and quantify
whether long-distance dispersers use different social cues to select breed-
ing sites compared to philopatric individuals. We found that points that
received pre-breeding location cue treatments were significantly more likely
to be settled by redstarts than control points that received no playback.
However, we found no evidence the redstarts used post-breeding public in-
formation gathered during one season to select breeding sites the follow-

ing year. Breeding site habitat structure was also a strong predictor of
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settlement probability, indicating that redstarts modified the use of social
information based on habitat cues. Furthermore, stable hydrogen isotope
signatures from individuals that responded to location cue treatments sug-
gest that long-distance dispersers may rely more heavily on these cues than
local recruits. Collectively, these results indicate that redstarts use multiple
sources of information to select breeding sites, which could buffer individu-
als from selecting suboptimal sites when they breed in unfamiliar locations

or when habitat quality becomes decoupled from social cues.

4.1 INTRODUCTION

The ability to locate and select high-quality breeding sites is a key behav-
ioral process that links individual fitness to population- and community-
level dynamics, including population regulation (Fretwell and Lucas, 1970;
Pulliam, 1988), community assembly (Fletcher, 2008; Betts et al., 2010),
and maintaining biological diversity (Ward and Schlossberg, 2004). Under-
standing the cues that individuals use to assess and select breeding sites is
thus a central question in ecology, evolution, and conservation (Morris, 2003;
Danchin et al., 2004; Ahlering and Faaborg, 2006). In recent decades, empir-
ical research has demonstrated that information acquired from conspecifics,
termed social information, is widely used by many species to assess the qual-
ity of potential breeding sites (Reed et al., 1999; Valone, 2007). Compared to
other sources of information (e.g. habitat features or previous reproductive
success), social information is assumed to be relatively efficient to collect,

can provide information about habitat quality even when the features that

99



influence fitness are not apparent, and is available to most individuals re-
gardless of age or reproductive experience (Szymkowiak, 2013). However,
not all types of social information are equally reliable and understanding
when and under what conditions individuals use different types of social in-
formation remains poorly understood (Doligez et al., 2003; Danchin et al.,
2004; Stamps and Krishnan, 2005).

Social information is generally divided into two categories: information
about the presence/absence of conspecifics, termed location cues, and infor-
mation about the reproductive performance of conspecifics, termed public
information (Danchin et al., 2004). When the quality of breeding sites is
predictable across years, both cues can provide information about the lo-
cation of suitable breeding sites. However, while the presence of breeding
individuals is generally associated with suitable habitat, location cues do
not provide direct information about the relative quality of different sites
and under certain circumstances it is possible for location cues to become
uncoupled from habitat quality (Schlaepfer et al., 2002). In contrast, be-
cause public information is based directly on conspecific performance, it is
generally a highly reliable cue for assessing breeding site quality. For this
reason, public information should be favored over location cues in stable en-
vironments (Doligez et al., 2003). Despite this prediction, empirical studies
have demonstrated that location cues are widely used by many species (e.g.,
Ahlering et al., 2006; Serrano et al., 2004; Szostek et al., 2014). Explaining
the coexistence of these two strategies is an important step to developing a
general theory of breeding site selection (Szymkowiak, 2013).

Several hypotheses may explain why individuals use location cues even

when public information provides more reliable information about breeding
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site quality. First, when all individuals in a population breed synchronously,
young individuals do not have the opportunity to gather public information
(Nocera et al., 2006) and may be forced to rely on location cues (Doligez
et al., 2004). Second, dispersers forfeit any previously acquired public infor-
mation when they move to new locations and therefore immigrants may be
more reliant on location cues than philopatric individuals (Szostek et al.,
2014). Although inter-specific comparisons provide some empirical support
for both hypotheses (Reed et al., 1999; Stamps and Krishnan, 2005), the dy-
namics of populations are ultimately influenced by intra-specific variation
in habitat selection behavior (Kristan, 2003). Therefore, linking individ-
ual behavior to population dynamics requires understanding the causes of
intra-specific variation in breeding site selection. Few studies, however, have
simultaneously quantified the relative importance of public information and
location cues for individuals within the same population (but see Doligez
et al., 2004; Nocera et al., 20006).

In this study, we simulated post-breeding public information and pre-
breeding location cues to experimentally test the relative importance of
each cue for breeding site selection in a migratory songbird, the American

redstart (Setophaga ruticilla). We tested the following predictions:

1) Redstarts use both pre-breeding location cues and post-breeding public in-
formation to select breeding sites: Several studies have documented the use
of pre-breeding location cues by adult American redstarts (Hahn and Sil-
verman, 2006; Fletcher, 2007) and therefore we predicted that this would
an important source of social information for birds in our population. The

use of post-breeding public information by redstarts has not been studied
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but Betts et al. (2008) experimentally demonstrated that individuals of the
closely related black-throated blue warbler (Setophaga caerulescens) moni-
tor the reproductive performance of conspecifics and use this information
to select breeding sites the following year. Given the close phylogenetic
relationship between these two species (Lovette et al., 2010) and the simi-
larity of their breeding habitat, we predicted that redstarts would also use

post-breeding public information to select breeding sites.

2) Pre-breeding location cues are a more important source of information
than post-breeding public information: Black-throated blue warblers often
produce two broods per season and this asynchrony provides individuals
from early broods the opportunity to gather public information from the ter-
ritories of successful second broods (Betts et al., 2008). In contrast, because
redstarts are obligate single brooders (Sherry and Holmes, 1997), their short,
synchronous breeding season may prevent newly fledged redstarts from gath-
ering public information (Nocera et al., 2006). Therefore, we predicted that
post-breeding public information would be a less important source of social

information than pre-breeding location cues for redstarts.

3) The use of social information differs between adults and yearlings due to
asynchronous opportunities to collect public information: Although newly
fledged redstarts may not have the opportunity to collect public information,
many yearling males in our population remain unmated throughout the
breeding season (Section 5.3) and these individuals provide a potential pool
of prospectors that could gather and use post-breeding public information

(Doligez et al., 2004). Therefore, we predicted that post-breeding public
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information would be a more important cue for adults whereas pre-breeding

location cues would be more important for first-time breeders.

4) Long-distance dispersal modifies the use of social information cues: Be-
cause dispersing individuals cannot rely on post-breeding public information
gathered the previous year, we predicted that immigrants would be more

likely to use pre-breeding location cues than philopatric individuals.

4.2 METHODS

Study species and study site

American redstarts are long-distance Neotropical migratory songbirds that
breed throughout North America and winter in the Caribbean and Latin
America (Sherry and Holmes, 1997). Since 2009, we have studied a large
population of redstarts breeding at the Patuxent Research Refuge in Laurel,
MD (39%04’N, 76°47'"W). The 250ha study area consists primarily of beech-
dominated bottomland forests adjacent to the Patuxent River. Dominant
tree species at the site include American beech (Fagus grandifolia), Ameri-
can elm (Ulmus americana), Tuliptree (Liriodendron tuipifera), sweetgum
(Liquidambar styraciflua) and several species of oak (Quercus sp.). Under-
story species include American hornbeam (Carpinus caroliniana), Pawpaw
(Asimina triloba) and several species of maple (Acer sp.).

Male redstarts generally begin to arrive at our study site in mid-April
(range: 17 April - 21 April), followed by females approximately 7-10 days

later. Nesting commences shortly after the arrival of females and all nests
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in our population fledge between 31 May and 2 July. Parents remain with
fledglings on breeding territories for 1-3 weeks, at which point fledglings
become independent. Redstarts are obligate single brooders (Sherry and
Holmes, 1997) and after a successful nesting attempt, pairs do not attempt
to rebreed. Therefore, all territories at our study site are abandoned by

late-July.

Experimental Design

To test our predictions, we simulated both post-breeding public information
and pre-breeding location cues at points located within the larger popula-
tion of redstarts at our study site. The basic experimental design consisted
of simulating post-breeding public information cues during the fledging pe-
riod of one breeding season (to simulate successful territories) and then
simulating pre-breeding location cues at a different set of locations during
the arrival period the following year (to simulate the presence of territorial
males). During the second year of the experiment, all points were monitored
to determine the number of redstarts holding territories in the vicinity of
each point. We repeated this design twice, with the first round initiated dur-
ing the 2011 fledging period and completed during the 2012 arrival period
(hereafter referred to as the 2012 round) and the second initiated in 2012
and completed in 2013 (hereafter referred to as the 2013 round).

In 2011 and then again in 2012, we selected points for our experiment and
randomly assigned each point to one of three treatments: post-breeding pub-

lic information (n = 20), pre-breeding location cues (n = 20), or control (n
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= 30). To minimize the influence of habitat structure or previous experi-
ence, we selected points that were similar in general habitat structure (e.g.
forested) and that were > 150m from existing redstart territories. Addition-
ally, all points were separated by >250m to ensure independence among the
experimental treatments.

For both the post-breeding public information and pre-breeding location
cue treatments, playback was broadcast using a CD player housed in a wa-
terproof box and connected to two speakers mounted 2m above the ground,
20m apart, and facing in opposite directions. An automated timer turned
on the playback each morning at o500 and broadcast the treatment until
1400. Fach song track was separated by 15 seconds of silence and was alter-
nated between the two speakers every 5 minutes to minimize habituation.
Post-breeding public information treatments were broadcast from June 1st
to August 1st and consisted of locally recorded male and female redstarts
vocalizing while feeding young and fledgling begging calls. Pre-breeding lo-
cation cue treatments were broadcast from April 10th to May 15th and con-
sisted of locally recorded territorial male songs. In 2013, one pre-breeding
location cue station failed and was removed from analysis, resulting in a
total of 19 replications for this treatment. Because both anthropogenic and
heterospecific cues can influence settlement patterns of birds, we chose not
to apply any playback at control points (Betts et al., 2008).

To determine whether redstarts collect post-breeding public information
by observing the reproductive performance of conspecifics (i.e. prospect-
ing), we conducted 10 minute point counts once per week during the public
information treatment period at all post-breeding public information and

control points. All point counts were conducted between 0600 and 1000 on



days without rain or wind. After a 2 minute settling period, any redstart
seen or heard within 50 meters of point during the 10 minute point count
was considered a prospector and we used a logistic regression to compare the
number of prospectors at public information and control point. During the
post-breeding period, the age and sex of redstarts with female-like plumage
cannot be reliably determined (Pyle et al., 1997) so we did not record the
age or sex of prospectors unless they were adult males.

During the 2012 and 2013 arrival periods, all treatment and control points
were surveyed daily to record the presence of male redstarts. Any male that
was observed within 75 meters of a point on > 3 consecutive days and
responded aggressively to conspecific song was considered to be settled at

that point.

Measuring habitat structure

Although treatment and control points were visually inspected to ensure
similar habitat structure, fine-scale differences in habitat features could still
have influenced settlement decisions. To control for the influence of habi-
tat structure, we quantified vegetation features within a 5-m radius circle
centered on each point and within three more circles located 25-m from
the center at 0°, 120°, and 240° (Tarof et al., 2004). Within each circle, we
measured five habitat features: the number of saplings (< gcm diameter
at breast height (DBH)), the number of trees (> 3 cm DBH), the number
of beech trees, the percent shrub cover, and the percent canopy cover. For

each tree, DBH was measured 2m above the ground using a diameter tape.
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We chose to record the number of beech trees because this is the preferred
nesting tree for redstarts at our study site (C. Rushing unpubl. data) and
therefore may influence settlement decisions. Shrub cover was visually es-
timated as the percent of the ground covered in shrubs and was recorded
on a scale of 1-4 (1 = 0-25%; 2 = 26-50%; 3 = 51-75%; 4 = 76-100%).
To estimate percent canopy cover, we photographed the canopy directly
above each circle using a Nikon Coolpix ggo digital camera fitted with a
Nikon LC-ER1 8mm 180° fisheye converter and vertically mounted on a
tripod. We then used Gap Light Analyzer 2.0 (Frazer et al., 1999) to quan-
tify the percent canopy cover within each photograph. In addition to these
five habitat features, we also estimated the mean tree basal area and the
total basal area (TBA) within each circle. We calculated tree basal area as
0.005454xDBH? (James and Shugart Jr, 1970). To estimate TBA, we con-
verted the tree basal areas to basal area/acre (0.00007854xtree basal area),
and then summed these measures for all trees within the circle (James and
Shugart Jr, 1970).

For each habitat feature, measurements were averaged across the four cir-
cles to derive a single estimate for the entire point. A multi-variate ANOVA
indicated that the three treatment levels did not systematically differ in any
of the measured habitat features (Fjs13 = 1.22, p = 0.27). Therefore, we
then used a principle component analysis (PCA) to reduce the number of
dimensions for the habitat structure. The first three principle components
described over 75% of the variation in habitat structure (Table D1) and we
included these scores in our analysis of settlement at playback points (see

below).
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Inferring dispersal status

To test our prediction about the influence of long-distance dispersal on the
use of social information, we attempted to capture all males that responded
to our experimental treatments and used stable hydrogen isotopes to deter-
mine the dispersal status of each individual. All individuals were captured
in mist nets using decoys and playback of conspecific song. After capture,
each individual was classified as either a yearling (1 year old) or an adult (>
1 year old) following Pyle et al. (1997), fitted with an aluminum USFWS leg
band and a unique combination of plastic color bands, weighed to the near-
est 0.1g, measured for body size (bill length, bill width, bill depth, tarsus
length, and unflattened wing chord) to the nearest o.5mm, and released.

During banding, we also collected one tail feather (R3) for stable hydrogen
isotope analysis. Stable hydrogen isotopes in feather samples (6>H f) vary
as a function of latitude in North America (Hobson et al., 2012) and can
be used to infer long-distance dispersal in migratory birds (van Wilgenburg
et al., 2012). Because redstarts grow tail feathers at their breeding location
prior to fall migration, 6>H £ values from redstarts that bred at our study
site in 2011 and 2012 and were recaptured in 2012 and 2013 provided the
expected 02H  distributions for birds originating at our study site during
the years of our experiment. We then used these distributions to proba-
bilistically determine dispersal status of individuals captured at playback
stations following the methods described in Appendix B.

In addition to the individuals that responded to our experimental treat-

ments, we also collected isotope data from g7 male redstarts (2012: n = 62,
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2013: n= 35) in the general population at our study site. These data served

as a baseline for comparing immigration patterns in our treatment groups.

Analysis

Do social information and habitat structure influence settlement decisions?

To determine whether playback treatments and habitat characteristics in-
fluenced settlement decisions of redstarts, we tested whether the probability
that sites were settled by redstarts differed between treatments using a sim-
ple Bayesian model, which we refer to as the settlement model. We modeled
whether or not each site was occupied by > 1 redstart (denoted C;) as a

Bernoulli trial as follows:

C; ~ Bernoulli (y;) (1)

logit (1701) = a+ B1LC; + B2 PI; + BaYear; + B4 PC1; + Bs PC2; 4 B PC3; (2)

where ¢; is the probability of settlement at site ¢, LC; and PI; are dummy
variables indicating whether site i received location cue treatment or post-
breeding public information treatment, Year; is a dummy variable indicating
whether the treatment was applied in the second year of the experiment,
and PC1;, PC2;, and PC3; are the first three habitat scores for site i. In
addition to the parameters listed in equation 2, we also derived posterior
distributions for the difference in probability of settlement between each

treatment and used the 95% credible intervals of these posteriors to deter-
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mine whether the probability of settlement was higher at playback sites than
controls and whether the probability of settlement differed between the two
playback treatments. To determine whether the probability of settlement
differed between age classes, we also fit the same model for yearlings and

adults separately.

Does long-distance dispersal modify the use of social information?

To determine whether individuals that settled at playback sites were more
or less likely to be immigrants than individuals from the general population,
we modeled the total number of immigrants that settled in response to each

treatment (denoted I;) as a binomial variable as follows:

I ~ Binomial (Ni/ Pz)

where N; is the total number of individuals that settled at points with
treatment level 7 and p; is the probability that an individual from treatment
i is an immigrant. A similar model was used to estimate the probability that
an individual from the general population was an immigrant (pp.p) and
the posterior distribution for the difference between p; and ppop (denoted
Pdif f) was used to determine whether immigration rates differed between

treatment groups and the general population.

Estimation and model fit

Posterior distributions for each parameter were estimated using Markov

chain Monte Carlo (MCMC) methods implemented in JAGS 3.4.0 (Plum-
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mer, 2003) using the R2jags package (Su and Yajima, 2014) in R v3.0.2
(R Core Team, 2013). We chose uninformative priors for all parameters.
Specifically, we used Normal(0,100) as a prior for regression parameters
in the settlement model and Uniform(0,1) as a prior for both p; and ppop
in the immigration model. Three chains were computed for each parameter
and we stored 15 0oo samples from each chain after discarding the first 10
000 iterations as burn-in. Convergence of the chains was assured by visual
inspection of trace plots and by Gelman diagnostics (Brooks and Gelman,
1998).

To assess model fit, we used posterior predictive checking (Kruschke,
2011). For each model, we used draws from the posterior distribution of
each parameter to simulate a data set of the same size as the observed data.
We then plotted the simulated data against the observed data to graphically

inspect the fit of each model (Appendix D).

4.3 RESULTS

The use of social information by American redstarts

In total, 68% (13/19) of the pre-breeding location cue treatment points
were settled by > 1 redstarts, compared to 15% (3/20) of the post-breeding
public information points and 16% (5/30) of the control points. After con-
trolling for the effects of habitat structure, the settlement model indicated
that the probability of settlement at points that received the pre-breeding

location cue treatment (0.71, 95% credible interval (CI) = 0.49 — 0.89) was
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~ 5x higher than at points receiving the post-breeding public information
treatment (0.15, 95% CI = 0.039 — 0.32) and control points (0.14, 95% CI
= 0.035 — 0.31; Figure 7). The 95% credible intervals for the posterior dis-
tributions of the difference in settlement probabilities (on the logit scale)
did not overlap zero, indicating that these differences were significant (pre-
breeding location cues vs. post-breeding public information: mean= 3.06,
05% CI = 1.39 — 4.95; pre-breeding location cues vs. control: 3.14, 95% CI =
1.41 —5.11). In contrast, the probability of settlement did not differ between
post-breeding public information and control points (post-breeding public
information vs. control: 0.075, 95% CI = —1.75 — 1.91; Figure 7). The dif-
ference in probability of settlement between treatments was similar for both
adults and yearlings (Figure 7), indicating that both age classes responded
to pre-breeding location cues, but not post-breeding public information.
Although the probability of settlement was higher in 2012 than in 2013
(B3 = —1.12), the difference was not significant (95% CI = —2.64 — 0.29).

Over both years of the experiment, only two redstarts were recorded at
post-breeding public information points during the playback period. The
number of prospectors recorded at post-breeding public information points
did not differ from the number recorded at control points (n = 1, z = 0.566,
df =1, p = 0.57). These results are consistent with the lack of settlement at
post-breeding public information points and together with the prospecting
and settlement data confirm that redstarts did not respond to our post-

breeding public information treatments.
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The influence of habitat structure on breeding site selection

Although the settlement model indicated that pre-breeding location cue
treatments were the primary cue influencing redstart settlement, we also
found a strong influence of habitat structure (Table 2), although adults and
yearlings responded to habitat features differently (Figure 8). For adults,
settlement probability was negatively correlated with habitat PC1 (B4 =
—0.93, 95% CI = —1.66 — —0.24) but not with the remaining habitat com-
ponents (Table 2). Factor loadings indicate that the first principle compo-
nent axis (PC1) was positively correlated with the number of trees and
negatively correlated with shrub cover (Table D1), indicating that adult
redstarts preferred sites with few trees, and to a lesser extent high shrub
cover. Examination of the relationship between adult settlement proba-
bility and habitat structure indicate that the number of trees surround-
ing points was negatively correlated with settlement probability (estimate
+SE = —0.19 £0.10, z = —1.93, p = 0.054; Figure ga).

In contrast, yearling settlement was negatively correlated with habitat
PC2 (Bs = —0.82, 95% CI = —1.52 — —0.18) but not the other habitat
components (Table 2; Figure 8). PC2 was positively correlated with the
number of saplings and negatively correlated with mean tree basal area and
percent canopy cover (Table D1), indicating that yearlings chose sites that
had higher tree basal area, and to a lesser extent higher percent canopy
cover and fewer saplings. Examination of the relationship between yearling

settlement probability and habitat structure confirm that the mean tree
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basal area was positively correlated with settlement probability (389.57 +
178.92, z = 2.177, p = 0.029; Figure gb).

The influence of long-distance dispersal on the use of social information

Because we did not see a response to the post-breeding public information
treatment, we restricted our analysis of long-distance dispersal to individ-
uals that settled in response to pre-breeding location cues. The age ratio
of yearlings to adults in the experimental group (1.5 yearlings/adult) was
similar to the age ratio of individuals sampled from the general population
(1.42 yearlings/adult), allowing us to directly compare immigration rates
without correcting for potential age-related biases. When immigrants were
classified using a 4:1 odds ratio, the immigration rate for individuals that
were captured at pre-breeding location cue points (n = 15) was significantly
higher than the immigration rate in the general population (n = 97; pg; ff =
0.21, 95% CI = 0.00037 — 0.44; Figure 10). However, the immigration rates
did not differ when dispersal status was classified using the more stringent
9:1 odds ratio (pgiff = 0.055, 95% CI = —0.10 — 0.27) or the 19:1 odds
ratio (pgiff = -0.0014, 95% CI = —0.09 — 0.15).

4.4 DISCUSSION
At the beginning of the breeding season, male migratory birds are under

severe time constraints to locate suitable habitat and establish territories.

These tasks are made more challenging because the features that influence
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fitness (e.g. vegetation features, resource abundance, predation) are often
not apparent at the time when settlement decisions are made. Under these
circumstances, both pre-breeding location cues and post-breeding public
information may provide reliable information for quickly locating suitable
breeding sites but little is known about the relative importance of these
cues in wild populations. Overall, our experiment demonstrates that both
adult and yearling American redstarts select breeding sites based on a com-
bination of pre-breeding location cues observed during the spring arrival
period and habitat features but not based on public information gathered
during the post-breeding period.

The positive response that we observed in yearlings towards pre-breeding
location cues contrasts with earlier research on redstarts which found that
adults, but not yearlings, responded to this source of social information
(Hahn and Silverman, 2006). However, in that study, playback was broad-
cast on plots already occupied by redstarts whereas we purposefully placed
our experimental treatments in locations that were uninhabited by redstarts.
Yearling redstarts begin to arrive on the breeding grounds 7-10 days after
adults (Hahn and Silverman, 2006, Rushing et al. unpubl. data) and are
generally subordinate to adults when selecting breeding sites (Sherry and
Holmes, 1997). Therefore, the presence of early-arriving adults on the plots
used by Hahn and Silverman (2006) may have prevented yearlings from set-
tling in response to their playback treatments. Yearlings responding to our
treatments did not encounter this competition from adults and therefore
were free to settle in response to our treatments.

Our results support our prediction that post-breeding public information

is not an important cue for breeding site selection by yearling redstarts. As
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stated above, the single synchronous brood produced by redstarts perhaps
limits the availability of this social information for young individuals com-
pared to species that have multiple broods per season. This conclusion is
in line with the results of Nocera et al. (2006), who found that location
cues were the primary source of social information for yearling bobolinks
(Dolichonyx oryzivorus), another songbird with a short, synchronous breed-
ing period. Thus, breeding synchrony and the number of broods produced
within a breeding season appear to be important drivers of social informa-
tion use by songbirds breeding for the first time.

In contrast, our prediction that adult redstarts would settle in response
to the post-breeding public information treatments was not supported by
our results. The lack of response to post-breeding public information treat-
ments was particularly surprising given that the use of public information
by adults has been documented in a number of other migratory songbirds
(Boulinier and Danchin, 1997; Reed et al., 1999), including the closely re-
lated black-throated blue warbler (Betts et al., 2008). Although many of
these species breed asynchronously or produce multiple broods each year,
post-breeding public information should still be available to single-brooding
species if failed breeders have the opportunity to observe the reproductive
performance of successful individuals (Doligez et al., 2004). In our popula-
tion of redstarts, 40-60% of yearling males do not acquire a mate (C. Rush-
ing in prep) and public information from the territories of successful adults
should be available to these individuals. The fact that they do not use this
reliable source of information therefore appears toconflict with conventional

research on the use of social information by migratory birds.
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Although pre-breeding location cues alone may be less reliable than post-
breeding public information, our results indicate redstarts of both age classes
modify the use of location cues based on specific habitat features. The two
habitat features identified as important drivers of settlement (tree number
for adults and mean tree basal area for yearlings) are readily apparent at the
beginning of the breeding season and if these features are indicative of habi-
tat quality, combining location and habitat cues could provide an efficient
and reliable method for selecting high-quality breeding sites (Szymkowiak,
2013). This strategy may be particularly important for individuals attempt-
ing to breed for the first time or in unfamiliar locations due to the lack of
public information available to these individuals.

The use of stable hydrogen isotopes further allowed us to test our pre-
diction that immigrants rely more heavily on pre-breeding location cues
than philopatric individuals. When dispersal status was classified using a
4:1 odds ratio, our data indicate that the individuals that responded to pre-
breeding location cue treatments were more likely to be immigrants than
individuals from the general population. Furthermore, the immigration rate
of the experimental group (35.3%) was high compared to immigration rates
reported for other songbirds (e.g., Hansson et al., 2002; Abadi et al., 2010),
including estimates based on hydrogen isotopes (Studds et al., 2012; van
Wilgenburg et al., 2012), suggesting that this group was disproportionately
composed of long-distance dispersers. However, when dispersal status was
classified using the more conservative g:1 and 19:1 odds ratios, the immigra-
tion rate did not differ between pre-breeding location cue treatments and
the general population. Thus, although our data provide some evidence that

immigrants were more likely to use pre-breeding location cues, we were not
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able to conclusively accept or reject our prediction about the role of disper-
sal.

The inconclusive results of our dispersal analysis are likely related to sev-
eral limitations of our methods that have made it difficult for us to detect an
effect of dispersal on the use of social information. First, the geographic res-
olution of stable isotopes is low and therefore many of the individuals that
were classified as local may have been short-distance dispersers that were
using pre-breeding location cues. Second, although stringent thresholds (e.g.
9:1 and 19:1) make it less likely that local individuals will be misclassified
as dispersers, increasing the threshold also makes the groups appear more
similar, since a larger proportion of individuals in both groups will be clas-
sified as local. As a result, even if the immigration rates in the experimental
group and general population differed, the more stringent thresholds may
have falsely indicated that the two groups were similar. Finally, the general
population almost certainly contained individuals that used location cues to
select breeding sites, adding to the difficultly of detecting differences from
our experimental group. Ideally, the birds that responded to our location
cue treatments would be compared to a true control group made up of
individuals that used a different strategy for selecting breeding sites. Un-
fortunately redstarts did not settle at our control or post-breeding public
information points, making such a comparison impossible. Given the large
difference observed under the 4:1 odds ratio, and the limitations associated
with the more stringent thresholds, we suggest that our data provide at
least moderate support for the prediction that long-distance dispersers rely
on pre-breeding locations cues to select breeding sites to a larger extent

than philopatric individuals.
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Collectively, if selection favors this location/habitat cue strategy for first-
time breeders and long-distance dispersers, there may be little need to
develop an alternative public information-based strategy for future breed-
ing attempts, particularly if individuals can supplement social information
with personal information gained through reproductive experience. Unfor-
tunately, it remains unknown whether this joint location/habitat cue strat-
egy represents a viable alternative to the use of public information, largely
because few studies have simultaneously compared the use of location cues
and public information within the same species (Doligez et al., 2004; Nocera
et al., 2006) or directly tested how the use of social information is modified
by biotic and abiotic conditions (Fletcher, 2007; Betts et al., 2008).

Advancing this subject through experimental studies that simultaneously
test the relationship between social information use and habitat quality is
critical to predicting the vulnerability of species to changes caused by an-
thropogenic activities. Given that post-breeding public information is gener-
ally a reliable indication of breeding site quality, conventional wisdom holds
that species that rely on public information should be less vulnerable to
non-ideal habitat selection than species that rely on location cues (Doligez
et al., 2003). Ironically however, precisely because public information is re-
liable, species that rely heavily on public information may use these cues
at the expense of directly assessing habitat features. Indeed, several studies
on breeding site selection in migratory birds have found that experimental
simulation of social information during the post-breeding period can trump
habitat cues, leading individuals to settle in suboptimal habitat (Nocera
et al., 2006; Betts et al., 2008). For this reason, species that rely heavily

on public information may be particularly vulnerable when anthropogenic
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activities make environmental conditions less predictable. In contrast, be-
cause the presence of conspecifics can more easily become decoupled from
habitat quality (Schlaepfer et al., 2002), species that rely heavily on lo-
cation cues may retain the ability to directly assess habitat quality as a
safeguard against selecting unsuitable breeding sites (Szymkowiak, 2013).
If true, these species may be more resilient in the face of changing condi-
tions than species that rely on public information, although more work is

needed to determine the generality of these results.
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Figure 7: Response of American redstarts to experimental playback treatments.
Points show the posterior means from the settlement model and error
bars indicate the 5% CI for each parameter. The total response (adults
and yearlings) is shown in black. Responses for adults and yearlings are
shown by the gray and dashed lines, respectively. Model results indicate
that, for both adults and yearlings, the probability of settlement at
location cue points was significantly higher than at post-breeding public
information or control points.
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Response of adult and yearling redstarts to habitat structure at ex-

perimental treatment locations. Dots show the posterior means for the
effects of habitat PC1 and PC2 from the settlement model. Bars show
the 95% CI. For adults, the posterior mean for PC1 was negative and
the 95% CI did not overlap zero, indicating that adults preferred breed-
ing sites with a large number of beech trees and low shrub cover. For
yearlings, the posterior mean for PC2 was negative and the 95% CI did
not overlap zero, indicating that yearlings selected breeding sites with
a large number of saplings and less canopy cover. See Appendix B for
description of habitat loadings from the PCA.
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Figure 9: Influence of habitat structure on the settlement probability of (a) adult
and (b) yearling redstarts. Settlement of adults was influenced by the
number of trees surrounding each point, with individuals selecting sites
with fewer trees regardless of social information treatment. In contrast,
yearlings selected sites with higher mean tree basal area.
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Figure 10: Posterior distributions for difference in the immigration rate (py; ff) be-
tween individuals that settled in response to location cue treatments
and individuals from the general population. When immigrants were
classified using the 4:1 odds ratio, individuals that settled in response
to experimental pre-breeding location cues were more likely to be im-
migrants than individuals in the general population and the 95% credi-
ble interval, indicated by the vertical dotted lines, did not contain zero.
However, immigration rates did not differ under the g:1 odds ratio or
the 19:1 odds ratio. The 95% CT’s for the g:1 and 19:1 odds ratio are
not shown to reduce clutter.



DISENTANGLING THE REPRODUCTIVE
CONSEQUENCES OF LONG-DISTANCE DISPERSAL
AND NON-BREEDING HABITAT QUALITY IN A
MIGRATORY BIRD

ABSTRACT

All environments are subject to temporal fluctuations in biotic and abi-
otic conditions. When these changes occur within the lifetime of individual
organisms, long-distance dispersal may play a key role in synchronizing re-
productive activities with conditions that maximize reproductive success.
Recent work on migratory birds has demonstrated that individuals select
breeding sites in response to climatic conditions but it remains unknown
whether these long-distance dispersal movements carry reproductive costs
that outweigh the benefits of avoiding phenological mismatches. Further-
more, because reproductive success in these species is influenced by habi-
tat quality experienced during the non-breeding period, disentangling the
influence on these carry-over effects is critical to understanding whether
long-distance dispersal represents a viable mechanism for responding to fluc-
tuations in resource phenology. In this study, we simultaneously quantify
the reproductive consequences of long-distance dispersal and non-breeding
territory quality in a migratory bird, the American redstart (Setophaga ru-
ticilla), using a combination of stable isotope analysis and Aster life-history
models. Although we predicted that long-distance dispersal would carry
reproductive costs, we found no evidence that long-distance dispersers suf-

fered lower reproductive success than philopatric individuals. However, male
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reproductive success was strongly influenced by carry-over effects from the
non-breeding season. For adult males, non-breeding territory quality influ-
enced the number of young produced, but had no influence of mating or
nesting success. For yearling males, in contrast, high-quality non-breeding
territories were associated with higher mating and nesting success but once
these differences were accounted for, non-breeding territory quality had no
further influence on reproductive success. These results suggest that long-
distance dispersal may be an effective strategy for responding to temporal
variation in breeding habitat quality but that reproductive success in migra-

tory birds may ultimately be limited by the quality of non-breeding habitat.

5.1 INTRODUCTION

All environments on earth are subject to temporal fluctuations in biotic
and abiotic conditions. When these changes occur within the lifetime of
individual organisms, such shifts in environmental conditions can negatively
impact important life-history events, including survival and reproduction
(Parmesan et al., 2000). Traditionally, empirical research on the response
of individual organisms to changing conditions has focused on the ability
of individuals to cope with changes in situ via phenotypic plasticity (e.g.
Chown et al., 2007; Charmantier et al., 2008; Nicotra et al., 2010). However,
when fluctuations in abiotic conditions are large in magnitude or occur
quickly, the adaptive potential of organisms may be quickly exhausted (Both

and Visser, 2001; Jump and Penuelas, 2005; Chevin et al., 2010), resulting
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in individuals that are maladapted to local conditions (Post et al., 2008;
Visser, 2008).

Under these circumstances, mobile individuals may alternatively track
suitable conditions via long-distance dispersal. By allowing individuals to
match reproductive efforts with optimal environmental conditions, long-
distance dispersal can be an effective mechanism for rapidly coping with
large-scale fluctuations in environmental conditions (McPeek and Holt, 1992).
However, because individuals are forced to breed in unfamiliar locations,
long-distance dispersal may also carry reproductive costs that could out-
weigh the benefits of avoiding mismatches between reproductive effort and
local conditions (Bonte et al., 2012). Unfortunately, given the logistical diffi-
culties associated with studying long-distance dispersal in the field (Koenig
et al., 1996), only a few empirical studies have documented long-distance
dispersal in response to fluctuations in abiotic conditions (Studds et al.,
2008; Pérn and Saether, 2012; Husek et al., 2014) and estimates of the
reproductive consequences of these responses are currently lacking.

In recent years, migratory birds have emerged as an ideal system to study
the interaction between long-distance dispersal and temporal fluctuations
in environmental conditions. In many of these species, reproductive efforts
are timed to coincide with the brief but intense pulse of insect abundance
that occurs in temperate regions each spring (e.g. Perrins and McCleery,
1989). Individuals that arrive on the breeding grounds too early or too late
may suffer reduced survival or reproductive success (Both and Visser, 2001)
because of late winter storms or because they have missed the peak in food
abundance. However, because the timing of food resource phenology can

vary substantially from year-to-year (Townsend et al., 2013), individuals
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that remain faithful to a particular breeding location face the risk of breed-
ing at sub-optimal times in years with abnormally early or late resource
phenology (Both and Visser, 2001). Recent research suggests that, rather
than suffer the reproductive consequences of these phenological mismatches,
individuals of several migratory bird species may use environmental con-
ditions experienced during migration to select breeding sites. Studds et al.
(2008) used stable hydrogen isotopes to demonstrate that juvenile American
redstarts (Setophaga ruticilla) that departed early from their non-breeding
grounds tended to breed at southerly latitudes while later departing indi-
viduals bred at more northerly latitudes, consistent with the hypothesis
that individuals use phenological cues to select breeding sites. These results
were corroborated by the results of Chapter 3, where I show that immi-
grants in our breeding population of redstarts were largely of southerly
origins in years with early phenology but originated from the north in years
with late phenology. Similar patterns have also been observed in European
populations of Pied flycatchers (Ficedula hypoleuca), with large influxes
of morphologically-distinct southern immigrants in years with abnormally
early spring phenology (Sirkié et al., 2013) and later migrating males more
likely to disperse north than early migrating individuals (Husek et al., 2014).
Collectively, these results suggest that flexible long-distance dispersal be-
haviors may be a mechanism for synchronizing reproductive efforts with
optimal environmental conditions.

However, for this strategy to be viable, the benefits of avoiding pheno-
logical mismatches must outweigh the costs of dispersing to novel breeding
sites (Bonte et al., 2012). Previous studies did not report the reproductive

success of immigrant and philopatric individuals, thus it remains unknown
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whether the observed long-distance dispersal movements carried any repro-
ductive costs. However, direct comparison of immigrants and philopatric
individuals may be problematic because reproduction is a complex process
that is influenced by a number of factors other than long-distance dispersal,
including individual-level traits (e.g. age, sex, body condition: Lozano et al.,
1996), biotic and abiotic conditions (Townsend et al., 2013), and trade-offs
between life-history strategies (Streby et al., 2013). In empirical studies, it
is often difficult to disentangle the role of these factors, particularly when
they are experienced before individuals return to the breeding grounds. For
example, previous work on American redstarts demonstrated that individu-
als holding non-breeding territories in mesic, high-quality habitat maintain
body mass throughout the winter and depart earlier on spring migration
than individuals forced into more xeric, low-quality habitat (Marra et al.,
1998; Studds and Marra, 2005). As a result, adults from high-quality non-
breeding habitat arrive earlier on the breeding grounds (Marra et al., 1998)
and produce more fledglings (Reudink et al., 2009a) than adults from low-
quality habitat. Given the strength of these carry-over effects from the non-
breeding season, disentangling their influence on reproductive success from
the influence of breeding-ground events is critical to understanding whether
long-distance dispersal represents a viable mechanism for responding to
temporal fluctuations in resource phenology.

In this study, we used stable hydrogen and carbon isotopes to estimate
long-distance dispersal events and non-breeding territory quality, respec-
tively, and we used Aster life-history models (Geyer et al., 2007) to quan-
tify the influence of these factors on reproductive success. This approach

allowed us to test the following specific predictions:
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1) Long-distance immigrants have lower reproductive success than local indi-
wviduals: Previous studies on long-distance dispersal in migratory songbirds
have found that dispersers often suffer reduced reproductive success com-
pared to philopatric individuals (e.g. Bensch et al., 1998; Hansson et al.,
2004; Shutler et al., 2003). Therefore, we predicted that immigrants in our

population would produced fewer offspring that philopatric individuals.

2) Yearlings and adults that hold high-quality non-breeding territories have
higher reproductive success than individuals from poor-quality non-breeding
territories: Previous research on American redstarts has shown that non-
breeding territory quality strongly influences adult reproductive success
(Marra et al., 1998; Norris et al., 2004; Reudink et al., 2009a). The re-
productive consequences of non-breeding territory quality have not been
well-studied with regards to yearlings but we predicted that the number of
offspring produced by individuals of both age classes would be positively

correlated with non-breeding territory quality.

3) Female redstarts in good body condition have higher reproductive success
than females in poor body condition: Previous research on American red-
starts has demonstrated that body condition influences the number of off-
spring produced by females but not males (Smith and Moore, 2003). There-
fore, we predicted that the reproductive success of females in our population

would be positively correlated with body condition.

4) Adults of both sexes have higher reproductive success than yearlings: Prior
research has shown that reproductive success typically increases with age
in many bird species, including redstarts (Lozano et al., 1996). Therefore,

we predicted that adults would produce more offspring than yearlings.
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In addition to testing these predictions, the use of Aster models allowed
us to disentangle the relative influence of long-distance dispersal and non-
breeding territory quality on the reproductive success of individuals in our
population and to determine which reproductive components (i.e., mating
success, nesting success, or the number of fledglings) drove differences in
overall reproductive success. This approach provided novel mechanistic in-

sights into the factors that determine reproductive success in this species.

5.2 METHODS

Study Species and Study Site

From 2009-2012, we studied American redstarts breeding at the Patuxent
Research Refuge in Laurel, MD (39%4’N, 76%47'W). American redstarts
are long-distance Neotropical migratory songbirds that breed throughout
North America and winter in the Caribbean and Latin America (Sherry and
Holmes, 1997). The 250ha study area consists primarily of beech-dominated
bottomland forests adjacent to the Patuxent River. Dominant tree species at
the site include American beech (Fagus grandifolia), American elm ( Ulmus
americana), Tuliptree (Liriodendron tuipifera), sweetgum ( Liquidambar styraci-
flua) and several species of oak (Quercus sp.). Understory species include
American hornbeam ( Carpinus caroliniana), Pawpaw (Asimina triloba) and

several species of maple (Acer sp.).

92



Field Methods

Each year, the site was surveyed every three days to record the arrival date
of all males breeding on the study plots. For further details about the survey
and banding protocols, see Section 3.2. After banding, the territory of each
male was surveyed every three days to determine whether the individual
attracted a female. Males were considered to be mated if a female redstart
was observed on the individual’s territory and if mating behaviors (e.g. mate
guarding, courtship songs, copulation, or nest building) were observed. For
all territories that contained a mated pair, we searched extensively to locate
all nesting attempts and monitored nests every three days until either the
nest failed or nestlings were observed. Nests that were lost to abandonment,
predation, weather, or otherwise produced no fledglings were considered
unsuccessful. Once nestlings were observed in a nest, the nest was monitored
daily until the nestlings fledged, at which time we recorded the number of
fledglings. Redstarts are obligate single brooders (Sherry and Holmes, 1997),
so once a nest had successfully fledged young, the adults were no longer
monitored. This sampling protocol allowed us to record the status of three
separate components of reproduction for each individual: 1) mated status
(i.e. mated vs. unmated); 2) if mated, the fate nesting attempts (successful
or unsuccessful); and 3) if a nesting attempt was successful, the number of

fledglings produced.
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Quantifying the factors that influence reproductive success

To avoid testing a large number of models that had little biological jus-
tification, we focused our analysis on factors known a priori to influence
reproductive success of American redstarts or closely related species. This
approach allowed us to quantify and disentangle the influence of the follow-

ing factors:

1) Dispersal Status:

To estimate the dispersal status of individuals in our population, we used
to stable hydrogen isotopes from feather samples (62H f) to probabilistically
determined the origin of all unknown-origin individuals in our population
(van Wilgenburg et al., 2012). See Section 3.2 and Appendix B for further
details about inferring dispersal status. To test the sensitivity of our results
to the threshold used to classify dispersal status, we carried out the classifi-
cations and statistical analyses using two progressively stringent thresholds
(4:1 odds and g:1 odds). To account for both age-specific consequences and
annual variation in reproductive consequences, we included the interactions

of dispersal status with both age class and year in our analysis.

2) Non-breeding territory quality:

To infer non-breeding territory quality, we used stable carbon isotope val-
ues from claw samples (613C). Details about the use of §'3C to infer non-
breeding territory quality can be found in Section 3.2. To aid in interpretabil-

ity, we mean-centered '3C so that positive values indicate higher than aver-
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age habitat quality and negative values indicate lower than average quality
and we included the interaction of 63C with age class in our analysis to

account for age-specific effects of non-breeding territory quality.

3) Body condition:

To test our prediction about the influence of body condition on reproductive
success, we estimated the body condition of all individuals in our analysis
following the methods described in Section 3.2. To reduce the number of
parameters in our models, and because previous research on American red-
starts has demonstrated that body condition influences the reproductive
success of females but not males (Smith and Moore, 2003), body condition
(and its interaction with age class) was only included in the analysis of

female reproductive success.

4) Year and age effects:

Reproductive success typically increases with age in many bird species, in-
cluding redstarts (Lozano et al., 1996), and populations of many songbirds
show substantial annual variation in reproductive success (Townsend et al.,
2013). To account for annual variation not accounted for by other predictors,
we included year effects in all models.

As described above, arrival date on the breeding grounds is highly corre-
lated with reproductive success in redstarts (Marra et al., 1998). However,
because the arrival date of males in our population was significantly corre-
lated with §13C values (Pearson’s correlation coefficient = -0.249, t = -3.491,
P < 0.001) and because we are confidant of the causal relationship between

these variables (non-breeding habitat quality drives arrival date and not
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vice versa), we chose to omit arrival date from our analysis to avoid the

co-linearity caused by this correlation.

Statistical Analysis: Aster life-history models

In many songbird species, the distribution of reproductive success is bimodal
(e.g. Lozano et al., 1996), with a structural mode at zero (corresponding to
individuals that either failed to acquire a mate or to nest successfully) and a
second mode corresponding to the mean number of fledglings for individuals
that mated and nested successfully. This mixture of discrete and continuous
components is typical of life-history data (Shaw et al., 2008) and presents
several challenges for analysis. First, the joint distribution of the individual
reproductive components (i.e. mating success, nesting success, and num-
ber of fledglings) does not follow any standard parametric distribution and
therefore violates the assumptions of standard generalized linear models
(Geyer et al., 2007). Second, although modeling each reproductive compo-
nent separately can overcome the first limitation, independent analysis of
each component decreases the sample size for later components (because
individuals that failed at earlier stages must be removed, Geyer et al., 2007)
and prevents conclusions about overall reproductive success (Shaw et al.,
2008).

Aster modeling (Geyer et al., 2007) is a recently developed method for
analyzing life-history data that overcomes the challenges presented by data
of this nature. Aster models allow the joint distribution of response vari-

ables (i.e. components of reproductive success) to be modeled as the prod-
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uct of conditional distributions and thus directly account for the condi-
tional nature of reproductive data (Geyer et al., 2007). Furthermore, each
component can follow any exponential-family distribution, which includes
most standard distributions used to analyze reproductive data. A simple
graphical model is used to describe the conditional relationships between
the reproductive components (Figure 11a), with arrows pointing from ear-
lier components (i.e. predecessor nodes) to later components (i.e. successor
nodes; Shaw et al., 2008). Because the effects of predictor variables on
successor nodes are propagated back through each predecessor node (Shaw
et al., 2008), Aster models allow researchers to quantify the effects on over-
all reproductive success while directly accounting for the contributions of
each reproductive component.

For our analysis of reproductive success, we used unconditional Aster mod-
els (Geyer et al., 2007) and considered mated success and nesting success
to be Bernoulli trials and the number of fledglings to follow a o-truncated
Poisson distribution (Figure 11a). To test the predictions outlined above,
we first fit a ‘full’ model that contained explicit effects of all predictors on
the number of fledglings produced by each individual. But as described,
due to the conditional nature of Aster models, the estimates for each pre-
dictor propagate back through predecessor nodes and thus directly account
for differences due to mating and nesting success (Geyer et al., 2007). Be-
cause the reproductive success of individuals from mated pairs cannot be
considered independent, we fit separate models for males and females. To
test the significance of each predictor, we dropped the predictor from the
‘full’ model and then tested the fit of the reduced model using a likelihood

ratio test (Nevoux et al., 2013). For predictors that were included in inter-
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action terms, main effects were tested by dropping both the main effect and
interactions. To test the sensitivity of our results to the threshold used to
classify dispersal status, the models without dispersal status were compared
to “full” models based on both the 4:1 and 9:1 odds ratios. All models were
fit using the “aster” package (Geyer, 2012) in the R statistical language (R

Core Team, 2013).

Which reproductive components drive reproductive differences?

Although our primary interest was in quantifying the factors that influ-
ence overall reproductive success (i.e. the number of fledglings), determin-
ing which reproductive component(s) drive the variation in reproductive
success can provide important mechanistic insights into processes that in-
fluence reproduction. For example, long-distance dispersal may be costly
because females choose to mate with males with similar phenotypes (Ben-
sch et al., 1998) or alternatively because immigrants are not familiar with
local habitat features (Péart, 1990). In either case, our ‘full’” analysis would
indicate that immigrants have lower reproductive success than local indi-
viduals even though the differences were driven primarily by mating success
in the former but by nesting success in the later.

To determine which components of reproductive success were responsible
for the results observed in our ‘full’ model, we fit additional Aster models
for each predictor variable that was found to have a significant influence
on overall reproductive success. The first of these ‘component’ models in-

cluded the effects of the predictor of interest only on the probability of
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mating (‘mate’ model) and therefore did not account for any reproductive
differences caused by nesting success or the number of fledglings. The sec-
ond component model contained explicit effects on nesting success (‘nest’
model), but due to the nature of Aster models, this model also included dif-
ferences in mating success. The third component model contained explicit
effects on the number of fledglings (‘fledgling” model). For each component
model, any additional predictors that were not of primary interest were kept
as effects on the number of fledglings. We also fit a ‘base’ model that did
not contain the effect of the predictor of interest and used likelihood ratio
tests (LRT) to compare each component model to the ‘base’ model, with
a significant LRT indicating differences in reproductive success up to that
component due to the predictor of interest.

Because the ‘nest’ model and ‘fledglings’ model include the effects of ear-
lier components, significant LRT tests when compared to the ‘base’ model
do not indicate which components are responsible for differences in repro-
ductive success. For example, a significant LRT for the ‘nest’ model could
indicate that individuals have lower mating success, lower nesting success,
or both. Therefore, our component analysis included two additional models
that contained explicit effects on each component and its successor compo-
nent (e.g. ‘mate + nest’ & ‘nest + fledglings’). The single component models
were then compared to the more complicated models using likelihood ratio
tests, allowing us to determine whether adding effects on the successor com-
ponents improved the fit of the single component models. This allowed us
to determine which reproductive components drove differences in overall
reproductive success, providing additional insights into the mechanisms by

which breeding and non-breeding season processes influence reproduction.
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5.3 RESULTS

What factors influence reproductive success?

Between 2009 and 2012, we monitored the reproductive success of 260 red-
starts, including 63 adult males, 48 adult females, 123 yearling males, and
26 yearling females. A description of the long-distance dispersal patterns
observed in this population can be found in Chapter 3. The mean num-
ber of fledglings per individual in our study population was 1.37 (+ 1.48
SD; range 0-6). On average, adults had higher reproductive success than
yearlings (adults: 2.27 + 1.39 fledglings, range 0-6; yearlings: 0.61 + 1.06
fledglings, range 0-4) and a Poisson regression indicated the difference was
significant (estimate + SE: -0.264 + 0.122, z = -2.162, P = 0.0307). How-
ever, a large proportion of individuals in our population (47.7%) failed to
produce any fledglings, resulting in a strongly bimodal distribution for the
number of fledglings (Figure 11b). The distinct mode at zero was primarily
the result of low mating success of yearling males (43.1%). In contrast, all
females and virtually all adult males (98.4%) mated successfully. The re-
maining zeros were the result of individuals that failed to nest successfully
and a logistic regression restricted to individuals that successfully acquired
a mate indicated that yearlings of both sexes were significantly less likely
to nest successfully than adults (age effect + SE: -1.49 + 0.358, z = -4.178,
P < o0.001).

Although the simple glm models for each component of reproductive suc-

cess indicated that yearlings are less successful than adults at each stage
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of reproduction, the use of Aster models allowed us to quantify the overall
reproductive consequences of age and the other predictor variables (Table
3). The ‘“full” Aster models for both males and females confirmed that year-
lings had lower reproductive success than adults (Table 3), with yearling
males producing on average 80% fewer fledglings than adult males (yearling
males: 0.428 + 0.0813 fledglings; adult males: 2.045 + 0.257 fledglings) and
yearling females producing on average 26% fewer fledglings than adult fe-
males (yearling females: 1.75 £ 0.291 fledglings; adult females: 2.38 + 0.236
fledglings). The Aster analysis also revealed a strong year effect for yearling
males, with higher reproductive success in 2010 and 2012 than in 2009 and

2011 (Table 3).

The role of long-distance dispersal

Although we predicted that immigrants would produce fewer fledglings than
local recruits, dispersal status was not a significant predictor of reproductive
success for either sex (Table 3; Figure 12) and likelihood ratio tests indicated
no significant dispersal x age class interaction for either sex (males: x> =
0.166, d.f. = 2, P = 0g22; females: x> = 0.227, d.f = 1, P = 0.633). These
results were not sensitive to the odds ratio used to classify dispersal status
(Table 3; Figure 12). Unfortunately, we were unable to test for dispersal z
year interactions due to small within year sample sizes for each dispersal

category.

The role of non-breeding territory quality

In contrast, the Aster analysis revealed a significant impact of non-breeding

territory quality on the overall reproductive success of males (Table 3),
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confirming our prediction that individuals that held high-quality territories
during the preceding winter produced more fledglings than individuals from
low quality habitat (Figure 13). However, the interaction of non-breeding
habitat quality and age was not significant (x> = 0.842, d.f. = 1, P = 0.359),
indicating that the consequences of non-breeding habitat quality on overall
reproductive were similar for both age classes. Based on estimates from the
‘full’ model for males, males of both age classes from the lowest quality non-
breeding habitat suffered a nearly 9o% reduction in reproductive success
compared to individuals from the highest quality habitat (Figure 13). In
contrast, and contrary to our predictions, non-breeding habitat quality did

not influence reproductive success in females, nor did body condition (Table

3)-

Which reproductive components drive reproductive differences?

Because we did not find evidence that non-breeding habitat quality, dis-
persal status, or body condition influenced female reproductive success, we
limited our analysis of reproductive components to males only. Further-
more, because all but one adult male in our population acquired a mate,
we restricted our adult male component analysis to nesting success and the

number of fledglings.

Adult males

Based on the results of our full model for male reproductive success, our

component analysis for adult males included only the influence of non-

102



breeding territory quality, leading to four models (Table 4). As expected,
the ‘fledglings’” model for adult males indicated an effect of non-breeding
habitat quality on the number of fledglings (Table 4: ‘fledglings’ model vs.
‘base’ model), though the improvement was only marginally significant. In
contrast, comparison of the ‘nest’ model to the ‘base’ indicated that non-
breeding habitat quality did not influence nesting success in adult males
(Table 4: ‘nest’ model vs. ‘base’ model). This conclusion is supported by the
fact that adding explicit effects on the number of fledglings significantly im-
proved the fit of the ‘nest’ model (Table 4: ‘nest’ model vs. ‘nest + fledglings’
model). Thus, our results indicate the non-breeding territory quality drives
variation in reproductive success of adult males by directly influencing the

number of fledglings produced.

Yearling males

For yearling males, the ‘full’ model indicated that both non-breeding terri-
tory quality and year influenced reproductive success (Table 3). Because our
primary interest was on the influence of non-breeding territory quality and
not year, we fit six component models that included explicit year effects on
the number of fledglings but differed in which component was influenced by
non-breeding territory quality (Table 4). Comparison of the ‘mate’ model
to the ‘base’ model uncovered a clear effect of non-breeding territory qual-
ity on mating success (Table 4: ‘base’ model vs. ‘mate’ model), indicating
that yearling males from high-quality territories were more likely to acquire
a mate than individuals from low-quality territories (Figure 14a). Adding
explicit effects on nesting success further improved the fit of the model (Ta-

ble 3: ‘mate’ model vs. ‘mate + nest’ model), indicating that even once the
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effects of mating success are accounted for, yearling males from high-quality
non-breeding territories were more likely to nest successfully than individu-
als from low-quality territories (Figure 14b). This conclusion is supported
by the significantly better fit of the ‘nest’ model compared to the ‘base’
model (Table 4: ‘nest” model vs. ‘base’ model). As expected, the ‘fledglings’
model revealed a clear impact of non-breeding habitat quality on the num-
ber of fledglings produced (Table 4: ‘fledglings’ model vs. ‘base’ model) but
adding explicit effects on the number of fledglings did not improve the fit
compared to the ‘nest’ model (Table 4: ‘nest’ model vs. ‘nest + fledglings’
model), indicating that once the effects on mating and nesting success are
accounted for, non-breeding territory quality had no further influence on

the number of fledglings produced by yearling males.

5.4 DISCUSSION

A small but growing number of studies indicate that migratory birds use phe-
nological cues experienced during migration to select breeding sites (Studds
et al., 2008; Husek et al., 2014, Rushing et al. in review) but whether
these movements carry reproductive costs remains poorly understood. In
this study, we used a combination of stable isotope analysis and novel an-
alytical methods to disentangle the reproductive consequences of breeding-
season and non-breeding season events in a migratory songbird. Contrary
to our predictions, we found no reproductive costs to long-distance disper-
sal in either sex or age class and these results were not sensitive to the

threshold used to classify dispersal status. Although these results appear to

104



contradict previous studies that found long-distance dispersal reduced life-
time reproductive success in several migratory bird species (Wheelwright
and Mauck, 1998; Hansson et al., 2004; Nevoux et al., 2013), none of these
studies found an immediate influence of long-distance dispersal on fecundity.
Likewise, other studies that have measured single-season reproductive con-
sequences of long-distance dispersal in migratory birds have also not found
evidence that immigrants produce fewer fledglings than local individuals
(Shutler et al., 2003). Collectively, these results indicate that long-distance
dispersal does not carry immediate reproductive costs for migratory birds
and suggest that the benefits of dispersing to avoid phenological mismatches
may outweigh the costs of reproducing in unfamiliar locations.

However, although we did not find evidence that reproductive success
differed between immigrants and philopatric individuals, it must be noted
that our analysis was restricted only to individuals that had successfully
dispersed. As a result, our results do not imply that long-distance disper-
sal is not costly with regards to overall fitness because it remains possible
that long-distance dispersal may influence survival. Recent work on migra-
tory birds indicates that the probability of surviving migration decreases
with increasing migration distance (Lok et al., 2011; Sanz-Aguilar et al.,
2012), suggesting that the survival costs of long-distance dispersal may be
indirectly influenced by mortality experienced during migration. If true,
this interaction between dispersal costs and migration distance implies that
the fitness consequences of long-distance dispersal may be tightly linked to
the costs and benefits of migration. As researchers seek a better and more

mechanistic understanding of the consequences of long-distance dispersal in
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migratory species, future research would greatly benefit from an integrated
perspective that considers costs experienced during migration.

Habitat quality experienced during the preceding winter, but not long-
distance dispersal, strongly influenced the reproductive success of males in
our population but neither non-breeding territory quality nor long-distance
dispersal influenced reproductive success in females. The influence of non-
breeding habitat quality on adult male reproductive success is consistent
with previous research on American redstarts (Marra et al., 1998; Norris
et al., 2004; Reudink et al., 2009a) but the use of Aster models revealed
novel mechanisms by which carry-over effects from the non-breeding sea-
son influence reproductive success in yearling males. For these individuals,
high-quality non-breeding habitat was associated with both higher mating
success and higher nesting success than low-quality habitat but once these
differences were accounted for, non-breeding habitat had no further influ-
ence on the number of fledglings. Although a number of factors could ex-
plain these results, we suggest that the reproductive differences within and
between age classes are due to a combination of differences in the timing
of arrival on the breeding ground and individual quality (McKellar et al.,
2013).

In redstarts and many other songbirds, early arrival on the breeding
grounds is associated with increased access to potential mates and high-
quality territories (Palokangas et al., 1992; Aebischer et al., 1996; Lozano
et al., 1996), higher nesting success (Grant et al., 2005), and larger clutch
size (Perrins and McCleery, 1989). Thus, non-breeding habitat may influ-
ence reproductive differences primarily by driving variation in arrival date

(Marra et al., 1998). Indeed, amongst males in our population, non-breeding
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territory quality was highly correlated with arrival date (Pearson’s correla-
tion coefficient = -0.249, t = -3.491, P < 0.001) and arrival date was a
strong predictor of the number of fledglings produced (estimate + SE: -
0.603 £ 0.0661, z = -9.109, P < 0.001). However, if arrival timing was the
primary driver of the age-specific differences revealed by our Aster analysis,
than we would further predict that arrival date should be strongly corre-
lated with mating success and nesting success for yearling males, but not
for adults. However, arrival date did not predict mating success (yearlings:
-0.184 + 0.253, z =-0.727, P = 0.467; adults: no test because 98.4% of
adult males were mated) or nesting success (yearlings: -0.144 + 0.313, z =
-0.460, P = 0.645; adults: 0.248 + 0.529, z = 0.470, P = 0.638) in either age
class. Thus, arrival date alone does not explain the relationship between
non-breeding territory quality and reproductive success in yearling males.
An alternative to the arrival-timing hypothesis is that variation in repro-
ductive success is determined by differences in individual quality (McKellar
et al., 2013). Both within and between age classes, high-quality individ-
uals are expected to acquire the best breeding (Leniowski and Wegrzyn,
2013) and non-breeding territories (Marra and Holmes, 2001), attract fe-
males (Lozano et al., 1996), nest successfully (Saino et al., 2012), and pro-
vide greater parental care to nestlings (Crossin et al., 2012). In our popu-
lation, the higher mating success, nesting success, and total reproductive
success of adult males compared to yearling males supports the hypothesis
that adults are generally higher quality mates than yearlings (Lozano et al.,
1996). For yearling males, the significant relationship between non-breeding
territory quality and mating and nesting success (Figure 14) and the lack

of relationship between arrival date and these components further supports
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the hypothesis that variation in reproductive success is determined primar-
ily by individual quality. We suggest that yearling males that were able to
hold high-quality non-breeding territories are competitively dominant to the
yearlings that were forced into low-quality habitat (Marra, 2000) and these
high-quality individuals may be more attractive to females (Reudink et al.,
2009b) and may also be better at defending nests (Kazama and Watanuki,
2010). Although our data did not allow us to further test these predictions,
our results are largely consistent with the work of McKellar et al. (2013),
who used experimental manipulations to show that reproductive success of
adult redstarts was a function of both arrival date and individual quality.
Quantifying the reproductive consequences of long-distance dispersal and
non-breeding habitat quality are critical to understanding if and how mi-
gratory species will respond to global climate change (Le Galliard et al.,
2012). Although a large number of studies have focused on the impacts of
advancing temperate phenology (e.g., Both and Visser, 2001; Mgller et al.,
2008; Saino et al., 2011), climate change is also predicted to result in de-
creased precipitation in many of the tropical areas inhabited by migratory
birds during their non-breeding period (Neelin et al., 2006). Our results
indicate that this long-term decline in non-breeding habitat quality may
have a larger impact on the reproductive success of migratory birds than
advances in resource phenology caused by temperate warming. While addi-
tional work is needed to fully understand the impacts of climate change on
migratory birds (Knudsen et al., 2011), our results highlight the importance
of accounting for the full annual cycle when considering the vulnerability

of migratory birds to climate change (Small-Lorenz et al., 2013).
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Figure 11: (a) Graphical model illustrating the relationship between components
of reproductive success in our analysis, with solid arrows leading from
earlier components (predecessor nodes) to later components (succes-
sor nodes). If a predecessor node equals o (due to failure to mate or
nest successful), all successor nodes must also equal o. In our analy-
sis, overall reproductive success is measured as the number of young,
conditional on mating and nesting successfully. Mating success and
nesting success were modeled as binomial variables and the number of
young was modeled as a zero-truncated Poisson variable conditional
on successful mating. (b) Distribution of the reproductive success of
all individuals (males and females) breeding in our study population,
measured as the number of fledglings produced by each individual. The
discrete mode at zero corresponds to individuals that failed to mate
or that lost their nest prior to fledging, producing a distribution that
does not follow any standard parametric distribution.
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Figure 12: Predicted number of fledglings for adult (top) and yearling (bottom)
males in each dispersal category based on the ‘full’ Aster model and
assuming all other predictor variables at their mean. Closed circles
and solid bars show estimates assuming a 80% threshold for classifying
dispersal status, open circles and dashed bars show estimates assuming
a 90% threshold. Error bars show 95% confidence interval.
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Figure 13: Predicted number of fledglings for adult (top) and yearling (bottom)
males as a function of non-breeding territory quality (8'3C) based on
the ‘full” Aster model and assuming individuals originated locally. 6*3C
values were mean-centered previous to analysis so positive values in-
dicate better than average non-breeding habitat quality and negative
values indicate less than average habitat quality. Open circles show
the actual number of fledglings for individuals in our study population.
Gray ribbon show the 95% confidence interval. For both age classes, in-
dividuals that spent the preceding winter in high quality habitat tend
to fledge more young than individuals from low quality habitat.
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Figure 14: Probability of (a) acquiring a mate and (b) successfully nesting for
yearling males as a function of non-breeding territory quality (5*3C)
based on the ‘mate’ and ‘fledge’ component models and assuming indi-
viduals originated locally. 8*3C values were mean-centered previous to
analysis so positive values indicate better than average non-breeding
habitat quality and negative values indicate less than average habitat
quality. Open circles show the actual number of fledglings for individ-
uals in our study population. Gray ribbon show the 95% confidence
interval. Individuals that spend the preceding winter in high quality
habitat are more likely to acquire a mate and to nest successfully than
individuals from low quality territory.
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APPENDIX B: ADDITIONAL FIELD AND
LABORATORY METHODS

Field Methods

Starting on April 10th of each year, the site was surveyed every three days
from 0600 to 1200 along transects spaced 100m apart to record any male
seen or heard. During each survey, the territory boundaries of all males were
mapped by following the individual for 10 minutes or until visual contact
was lost and recording their approximate locations on a gridded map of the
study site. The arrival date of each male was recorded as the first day in the
3-day survey period that it was recorded. Males were captured in mist nets
within 7-10 days of arrival using playback of conspecific song and a decoy.
Female redstarts are cryptic during the nest building period and do not
generally respond to conspecific playback. Therefore females were captured

in mists nets while feeding fledglings later in the season.

Stable Isotope Analysis

Feathers and claws were cleaned in 2:1 chloroform:methanol solution and air

dried in a fume hood for 48 hours. Samples were transported to the Smithso-

nian Stable Isotope Mass Spectrometry Laboratory in Suitland, Maryland
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where the feathers were allowed to equilibrate with the local atmosphere
for > 72 hours. After equilibration, a 0.3-0.4mg sample was clipped from
the distal end of each feather and loaded into a silver capsule. For claw
samples, 0.3-0.4mg of each sample was loaded into a tin capsule. Samples
were then crushed, pyrolized at 1350°C in an elemental analyzer (Thermo
TC/EA), and introduced in a continuous-flow isotope ratio mass spectrom-
eter (Thermo Delta V Advantage) via a Conflo IV interface. Calculations
of raw isotope values were performed with Isodat 3.0 software. All runs
included a set of standards for every 10-12 samples. The stable hydrogen
(62H) values reported include only non-exchangeable hydrogen, as deter-
mined by a 3-point linear correction using keratin standards [1]. All values
are expressed in the typical delta notation in units of per mil (%0) normal-
ized on the Vienna Standard Mean Ocean Water—Standard Light Antarctic
Precipitation (VSMOW-SLAP) scale for hydrogen and the Vienna PeeDee
Belemnite scale for carbon. Analytical error was better than 2% for hydro-
gen samples and 0.2%o for carbon samples based on replicate analyses of

standards.

Determining dispersal status

We probabilistically determined the origin of all unknown-origin individuals
in our population using year-specific distributions of local 8*Hy values |2].
We first estimated the expected local 6°Hs value for each year using the
mean 5°Hg values from either breeding adult males (2009) or from individu-

als known to have bred at the study site the previous year (2010-2012). Next,
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we centered the 6°Hy values from all recaptured individuals from 2010-2012
on the year-specific means and, because the mean-centered values were nor-
mally distributed (Shaprio-Wilk test: W = 0.972, P = 0.5123), we used the
standard deviation of these values (7.179%o0) as a measure of local variation
in 0°H¢ values. Finally, we used the year-specific means and pooled stan-
dard deviation to probabilistically assign all unbanded individuals into one
of three dispersal categories based on a predefined odds ratio for correctly
classifying individuals as local. This odds ratio was used to calculate the
range of 6°Hy values capturing a given area under each year-specific local
distribution (e.g. 80%) and individuals with 6*H¢ values within this range
were classified as local while individuals with 6°H values more negative or
positive than the threshold range were classified as “northern” or “southern,”
respectively [2]. To test the sensitivity of our results to the threshold used
to classify dispersal status, we carried out the classifications using three
progressively stringent thresholds (4:1 odds, 9:1 odds and 19:1 odds) and
performed all analyses under each scenario.

Previous studies using hydrogen isotopes to determine the origin of song-
birds [3, 4] have applied a correction factor to hydrogen values from yearling
individuals to account for possible age-specific isotope discrimination. Over
the course of our study, we recaptured six yearlings that were originally
banded at our study site as nestlings and hydrogen values from these in-
dividuals did not differ from the values of recaptured adults individuals
(yearling mean = -64.76%o0, adult mean = -64.72%o, t = 0.016, df =5, P =
0.988). Therefore, we chose not to apply any age-correction to the hydrogen

values from unbanded yearlings.
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APPENDIX C: SUPPLEMENTARY RESULTS FOR CHAPTER 3

Results of Dispersal Classifications

Origin Origin

South Local North South Local North
Yearlings Yearlings
2009 3 (10%) 21 (72%) 5 (18%) 2009 2 (7%) 23 (79%) 4 (14%)
2010 0 (0%) 22 (67%) 11 (33%) 2010 0 (0%) 25 (76%) 8 (24%)
2011 1 (2%) 42 (89%) 4 (9%) 2011 o (%) 45 (95%) 2 (5%)
2012 3 (6%) 46 (90%) 2 (4%) 2012 2 (4%) 49 (96%) o (0%)
Total 7 (4%) 131 (82%) =22 (14%) Total 4 (3%) 142 (88%) 14 (9%)
Adults Adults
2009 0 (0%) 65 (97%) 2 (3%) 2009 o0 (0%) 66 (98%) 1 (2%)
2010 2 (6%) 29 (91%) 1 (3%) 2010 o0 (0%) 31 (97%) 1 (3%)
2011 2 (7%) 23 (74%) 6 (19%) 2011 o (0%) 27 (84%) 4 (16%)
2012 4 (13%) 25 (83%) 1 (4%) 2012 2 (7%) 28 (93%) o (0%)
Total 8 (8%) 142 (89%) 10 (6%) Total 2 (1%) 152 (95%) 6 (4%)

(a) (b)
Origin

Table C1: Summary of dispersal sta- South Local North

tus assignments f(.)r Ameri- Yearlings

can redstarts breeding at the

Patuxent Research Refuge 2009 1 (4% 25 (86% 3 (10%)

from 2009-2012 based on (a) 2010 o0 (0%
4:1 odds ratio, (b) 9:1 odds
ratio and (c¢) 19:1 odds ra-
tio. Cells contain the num-

) (86%)

) 30(91%) 3 (9%)
2011 o (0%) 46 (08%) 1 (2%)

) (

2012 1 (2% 50 (08%) o (0%)

ber of individuals assigned Total 2 (1%) 151 (94%) 7 (5%)
to each age class. Origin Adults

refers to where breeding oc-

curs relative to overwinter- 2009 o (0%) 66 (98%) 1 (2%)
ing sites where habitat condi- 2010 o (0%) 31 (97%) 1 (3%)
tions directly influence depar- 2011 o (0%) 29 (94%) 2 (16%)
ture and arrival into breed- 0

ing habitats. Parentheses in- 2012 2 (7%) 28 (93%) 0 (0%)
dicate the percentage of indi- Total 2 (1%) 154 (96%) 4 (3%)
viduals in each class. (c)
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Results of analyses based on 9:1 and 19:1 odds ratios

Table C2: (Next page) Summary of model selection results for dispersal assign-
ments based on (a) 9:1 odds ratio and (b) 19:1 odds ratio. Only models
with AAIC. < 4 in the final model suite are shown. Additive effects
are indicated by (+). Interactions between two variables are indicated
by (x). Significant coefficients (95% CI do not contain zero) are shown
in bold. Near significant coefficients (90% CI do not contain zero) are

shown in italics.
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Figure C1: Patterns of immigration into the study population and variation in

climate variables from 2009 to 2012. The top panel shows results based
on a 9:1 odds ratio for classifying dispersal status and the bottom
panel shows results based on using a 19:1 odds ratio. Within each year,
the left bar shows the number of individuals with a southern origin
(“S”), the center bar shows the number of local individuals (“L”), and
the right bar shows the number of individuals with a northern origin
(“N”). The solid line and closed circles show the peak cherry blossom
date for each year while the dashed line and open circles show the
average NDVI value from January to March in Cuba. NDVI values
are mean-centered so positive values (above the dotted line) represent
above average primary productivity and negative values (below the
dotted line) represent below average primary productivity.
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Figure C2: Predicted probability of origin as a function of cherry blossom phenol-
ogy on the breeding grounds based on the top model for (a) yearlings
and (b) adults based on the g:1 odds ratio and (c) all individuals 19:1
odds ratio candidate sets. The top model in the 19:1 candidate set did
not contain the multiplicative effect of NDVI on age class. Triangles
and dashed lines show the probability of originating to the south; Cir-
cles and solid lines show the probability of originating to the north.
Horizontal bars show 95% CI.
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Figure C3: Predicted probability of origin as a function of the Normalized Differ-
ence Vegetation Index (NDVI) values from January to March in Cuba
based on the top model from the g:1 odds ratio candidate set for
(a) yearlings and (b) adults. NDVI values were mean-centered on the
long-term average, thus positive values indicate higher quality condi-
tions and negative values indicate lower quality conditions. Triangles
and dashed lines show the probability of originating to the south; Cir-
cles and solid lines show the probability of originating to the north.
Horizontal bars show 95% CI.

165



APPENDIX D: SUPPLEMENTARY RESULTS FOR
CHAPTER 5

Results of habitat principle component analysis

Habitat Variable PCi1i PC2 PCg
Eigenvalue 1.54 1.35 1.13
Percent of variance explained  33.75 26.16 18.28
Shrub cover -0.435  0.125  -0.479
Number of saplings -0.0582  0.439  -0.572
Number of beech trees 0.601  0.0103 -0.0934
Total number of trees 0.579 -0.0745 -0.233
Total basal area 0.143 0.341  -0.343
Mean tree basal area -0.244  -0.582  -0.425
Percent canopy cover 0.174  -0.574 -0.286

Table D1: Results of principle component analysis of seven habitat variables mea-
sured at experimental playback locations. The first three components,
shown here, explained over 78% of the variance and were included as

covariates in the settlement model. Values for habitat variables indicate
factor loadings for each component.
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Posterior predictive checks

(a) Control (b) Public information

0.8
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0.0
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Figure D1: Results of posterior predictive checks for the settlement model. Jit-
tered open circles show simulated settlement data based on draws
from the posterior distributions of each parameter. The dashed line
shows the expected 1:1 relationship between the probability of settle-
ment (psi) and the proportion of sites that are settled. Cross marks
show the mean of the simulated values (y-axis) and the actual propor-
tion of sites that were settled in the experiment (x-axis). Therefore,
cross marks close to the 1:1 line indicate good model fit.
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Figure D2: Results of posterior predictive checks for the immigration and models.
The histogram shows the simulated number of local individuals based
on draws from the posterior distribution for ppg for the 4:1 odds ratio
model. The red line shows the observed number of local individuals
at experimental conspecific attraction points.
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