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Furthermore, a new class of hybrid \Object-Relational" systems has recently started to emerge (e.g., Illus-tra [Sto93], and UniSQL [Kim93]). These e�orts have resulted in signi�cant progress towards integratingobject and relational concepts, but this progress has been primarily at the language and data model levels.In contrast, relatively little attention has been paid to the development of underlying system architecturesthat can e�ciently support these hybrid models|particularly in a distributed environment.The above approaches to merging relational and object technology are based on di�erent philosophies,but they all are intended to execute in a client-server environment. The way in which particular systems usethe client and server resources, however, is typically a by-product of the starting point from which the systemwas designed. Relational systems and their descendants are typically based on a query shipping policy, inwhich the majority of query execution work is performed at servers. Query shipping has potential bene�tssuch as the ability to reduce communication costs for high selectivity queries and to allow for lightweight(i.e,. low cost) client machines. Furthermore, query shipping provides a relatively easy migration path fromexisting single-site systems, as the architecture of the database engine remains largely unchanged. Object-oriented database systems, on the other hand, are typically based on data shipping in which required datais faulted in to the client and processed there. Data-shipping has the advantages of exploiting the clientresources (CPU, memory, and disk), reducing communication in the presence of large query results, andallowing for lighter-weight interaction between applications and the database system.As the object and relational camps continue to merge, it becomes apparent that the dichotomy mustbe resolved not only at the logical levels of the system, but at the lower, architectural levels as well. Asan initial step in this direction, this paper presents a study of the query and data shipping approaches forscheduling and executing queries. In terms of overall cost (i.e., resource usage) the trade-o�s between thesetwo approaches are fairly straightforward. However, when considering response time, in which parallelism canplay a major role, the trade-o�s are di�erent. Furthermore, data shipping and query shipping are actuallyextreme points in the space of possible execution strategies. At the cost of expanding the complexity ofquery optimization (due to an expanded search space), a more 
exible hybrid approach can be pursued. Inthis study, these three strategies are compared, with a focus on their ability to exploit parallelism betweenclients and servers, and among groups of servers in a larger network; their interaction with features of theclient-server environment, such as dynamic client caching; and their sensitivity to changes in the run-timestate of the system.The remainder of this paper is organized as follows: Section 2 shows the options of query processing in aclient/server system. Section 3 de�nes the data, query, and hybrid-shipping policies. Section 4 describes theexperimental environment, and Section 5 presents the performance experiments. Section 6 discusses relatedwork. Section 7 contains conclusions and proposes future work.2 Execution PlansQuery execution plans are represented as binary trees in this study: the nodes are operators and the edgesspecify producer-consumer relationships between the operators. The root of a plan is always a display2



operator that passes the result of a query to an application (e.g., a graphical user interface). The leaves ofa plan are always scan operators that read the base relations of the database.Among others, a plan must specify the following two dimensions:Join Ordering: exploiting the commutativity and associativety of joins, the join operators can be orderedarbitrarily.Site Selection: every operator (except display) can be executed at any site of the system.This study is primarily intended to demonstrate the importance of good site selection. However, a goodsite selection can depend on the join order, and a good join order can depend on the number of servers inthe system. To focus on these two dimensions, most of the options of other dimensions are not taken intoaccount; for example, no indexes are used, and the hybrid-hash join method [Sha86] is the only join methodused.In most database systems, the join order is restricted to a left-deep tree [SAC+79]; that is, at most one ofthe inputs of a join is the result of another join. In this study, however, bushy trees are allowed. Bushy treesrelax the above condition and therefore, allow two or more joins to be executed independently in parallel ondi�erent sites of a distributed system.Site selection is speci�ed by annotating each operator with the location at which the operator is torun. (Examples of query plans with annotations are shown in Section 3.) The display operator at the rootis always carried out at the site where the query is submitted for execution; this is speci�ed by a clientannotation. For the other kinds of operators, several options exist. A join can be carried out at the site ofthe outer relation, at the site of the inner relation, or at the site of the consumer operator that processesthe result of the join. Similarly, a select, which is a unary operator, can be carried out at the site of theproducer or the consumer.A scan through a relation can be carried out by the server that owns the primary copy of the relation(primary copy annotation).1 A scan can also be carried out at a client (client annotation). To execute ascan at a client, it is not necessary that the whole relation be cached at the client|it is possible that onlyportions of the relations or even no tuples at all are cached at the client. If a scan runs at a client, all thecached pages (in main memory or on a local disk) that contain tuples of the relations are used, and all theother pages of the relation are faulted in from the server that owns the primary copy.At execution time, �rst the locations of the display and scan operators are resolved; then, the locationsof the other operators are resolved given their producer or consumer annotations. Of course, the site of aproducer can coincide with the site of the consumer; nevertheless, consumer and producer annotations ofoperators are distinguished in a plan, since relations can migrate in a distributed system and the same querycan be submitted at di�erent client machines.1If horizontal partioning is used, a scan operator must be de�ned for every fragment of the relation. Partioning, however, isnot taken into account in this study; an entire relation is the unit of a scan.3
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sitesFigure 2: Example Query Shipping Plan3 Execution PoliciesIn this section, data shipping, query shipping and hybrid shipping, the three query execution policies coveredin this study, are described. An execution policy speci�es the options allowed for site selection. A 
exiblepolicy that allows the operators of a query to be executed at di�erent sites complicates query optimization;but, it also allows a more e�cient execution of a query in a distributed system. The main characteristicsof the three policies are shown in Table 1. For every operator, the possible annotations supported by thepolicies are listed. Operators that are not listed in Table 1 such as aggregations and projections can beannotated in the same manner as joins and selections.Data Shipping Query Shipping Hybrid ShippingDISPLAY client client clientconsumer inner relation consumer, inner relationJOIN (i.e., client) or outer relation or outer relationconsumerSELECT (i.e., client) producer consumer or producerSCAN client primary copy client or primary copyTable 1: Site Selection for Operators used in this Study3.1 Data ShippingData shipping (DS) speci�es that every operator of a query is executed at the client machine at which thequery was submitted. In DS execution plans, therefore, the site annotation of every scan and of the displayoperator is client, and the annotation of all other operators is consumer (given that the display operator atthe root of the tree is carried out at the client, these operators are carried out at the client as well). Anexample data-shipping plan is shown in Figure 1. The annotation of every operator is shown in italics, andthe shading of the nodes indicates that every operator is executed at the client.4



One advantage of data shipping is that it exploits the caching of data at client machines: all the datacached locally are used to evaluate a query because all the scans are carried out at the client. In addition,data shipping minimizes the use of the server machines, which are potential bottlenecks. DS, however, canalso cause the servers to be under-utilized. Another potential disadvantage of data shipping is that it caninduce unnecessary communication cost. For example, to select a few tuples of a very large relation that isnot cached at the client, the whole relation is shipped from a server to the client rather than carrying outthe selection at the server and sending only the few tuples that qualify.3.2 Query ShippingThe term query shipping has widely been used in the context of a client-server architecture with one servermachine, and in which a queries are completely evaluated at the server, with only the query result beingshipped from the server to the client. There is, however, no recognized de�nition of query shipping forsystems with many servers. For this work, we de�ned query shipping (QS) as the policy that places scanoperators at the servers that own the primary copies of relations, and all the other operators (except display)at the site of one of their producers. For example, a join operator can be carried out either at the producerof the inner relation or at the producer of the outer relation. As a consequence, execution plans that supportquery shipping never have consumer annotations or scans that are carried out at a client machine. Anexample query-shipping plan is shown in Figure 2.Obviously, query shipping can be e�cient when the server machines are very powerful. In addition, queryshipping provides the 
exibility to load balance a system with many servers. However, query shipping doesnot utilize the client machines to evaluate queries; in particular, a query-shipping strategy does not exploitthe caching of base relations at clients because a scan is always carried out at a server. This can be a seriousdisadvantage in systems in which server resources are limited and/or heavily loaded and can also induceextra communication cost for shipping large query results from a server to the client.3.3 Hybrid ShippingHybrid shipping (HY) combines the approaches of data and query shipping. Using hybrid shipping, everyoperator can be annotated in any way allowed by data shipping or by query shipping. Of the three policiestherefore, hybrid shipping allows the most e�cient execution of a query, but it is also the most di�cultpolicy to optimize. Figure 3 shows an example hybrid-shipping plan. As shown in Figure 3, hybrid shippingdoes not preclude a relation from being shipped from the client to a server (this is precluded in both dataand query shipping). Shipping a relation to a server, for example, can be bene�cial if the relation is cachedin the client's main memory, and further processing is more e�cient at the server.To guarantee that the site of every operator can be determined at execution time from the site annotations,the optimizer must take precautions and generate well-de�ned hybrid-shipping plans. A well-de�ned planhas no cycles, and as a consequence, there is a path (via producer or consumer annotations) from every nodeof the plan to a leaf (i.e., scan) or to the root (i.e., display). A cycle, can be observed if, say, an operator A5
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sitesFigure 3: Example Hybrid Shipping Planproduces the input of an operator B, and the site annotation of A is consumer and of B is producer ; that is,the plan speci�es that A is executed at the site of B, and B is executed at the site of A. In a tree, only suchsmall cycles with two nodes can occur, and therefore, it is very easy to \sort out" non-well-de�ned plansduring query optimization.4 Experimental EnvironmentIn order to investigate the relative performance of the data, query, and hybrid-shipping execution strategies,we developed a test environment consisting of an analytical cost model and a randomized query optimizerthat is based on the model. The cost model captures the resources (CPU, disk, and network) of a group ofinterconnected client and server machines. It can be used to produce both total resource usage (i.e., cost) andresponse-time estimates. The response-time estimates are produced using the model of operator parallelismdeveloped by Ganguly, Hasan, and Krishnamurthy [GHK92]. The query optimizer is based on randomizedtwo-phase query optimization (2PO), which combines simulated annealing and iterative improvement, asproposed by Ioannidis and Kang [IK90]. Optimization can be aimed at minimizing either the cost or theresponse time predictions of the cost model. The search space explored by the optimizer includes the fullrange of shipping strategies; it can, however, be restricted so that the optimizer produces only data-shippingor query-shipping plans.In this study, the query optimizer is used to generate data, query, and hybrid shipping plans for a suiteof complex select-project-join queries under varying system assumptions. The quality of these plans is thenassessed using the cost and response time estimates of the cost model. In some experiments the system state(i.e., resource loads and caching) at runtime is assumed to match the optimizer's expectations at compiletime. For these experiments, the estimates produced during optimization are used as the performance results.Other experiments are aimed at investigating the quality of generated plans when the runtime system state6



di�ers from the expectations of the optimizer. For these experiments, the generated query plans are evaluatedby re-applying the cost model with the parameters changed to re
ect the new system state.In the following, we describe the cost model, query optimizer, and the benchmark database queries. Theresults of the performance study are then presented in Section 5.4.1 System Model4.1.1 Cost ModelThe analytical cost model used to control query optimization and to evaluate the quality of the resultingquery plans is capable of estimating both the total cost and the response time of a query plan for a givensystem con�guration. Following the model of Mackert and Lohman [ML86], the cost of a query plan isde�ned as the sum of the total time used to read pages from disks plus the total time used to execute CPUinstructions plus the total time used to transmit messages over the network.The response time estimates generated by the model are based on the approach taken in [GHK92]. Theresponse time of a query is de�ned to be the elapsed time from the initiation of query execution until thetime that the last tuple of the query result is displayed at the client. If all the operators of a plan areexecuted sequentially, then the response time of a query is identical to its cost. However, if parallelism(either independent or pipelined) is exploited, then the response time of a query can be lower than thetotal cost. Independent parallelism can arise between operators of two di�erent sub-trees of a plan, suchas scan operators on two di�erent base relations. In contrast, pipelined parallelism arises between producerand consumer operators. Using pipelined execution, an operator can begin executing as soon as each of itsproducer operators has produced at least one tuple. In this case the consumer can run in parallel with itsproducer operators.The model of [GHK92] estimates response times using a simpli�ed notion of parallelism and resourcecontention. All operators that run in parallel are considered to complete at the same time. For independentparallelism, this response time is estimated as follows: First, the total cost (i.e., the total of all resourcesused) is computed for each independent operator. Thus, the model assumes that there is no overlappingof resource usage by a single operator. Second, the total usage of all resources shared by the independentoperators is computed; the usage of the network, for example, is computed taking the bandwidth of thenetwork and the volume of data transmitted to carry out the operators into account. The response time ofthe entire group of independently parallel operators is then computed using the maximum of the individualcost of each operator and the maximum of the total usage of each shared resource. The response time ofpipelined parallel operators is determined in a similar fashion, with additional consideration for the fact thatonly portions of pipelined operators can execute in parallel. The calculations of response time are appliedto a query plan tree in a bottom-up fashion, ultimately resulting in an estimate of the response time for theentire plan.The model of [GHK92] is intended to capture the a�ects of operator parallelism in a very coarse-grainedfashion and is computationally e�cient enough to allow many complex query plans to be evaluated in a7



reasonable amount of time. Although the model is not likely to accurately predict the absolute responsetime of a given query plan, it provides enough detail to demonstrate many of the performance implicationsof data, query and hybrid shipping. For these reasons, this simple model was chosen for this study.In addition to the assumptions used in the response time model of [GHK92], the environment constructedfor this study makes several other simpli�cations. These include:1. Synchronization overhead between parallel operators is not modeled. For example, in pipelined paral-lelism, synchronization is typically required to ensure that the producer does not 
ood the bu�ers ofthe consumer. The cost of such synchronization is not captured in the model.2. All joins are performed using the hybrid-hash join method [Sha86]. No indexes are used.3. Results are obtained for single queries running in isolation. As a result, the only resource contentionthat is directly modeled is that resulting from the parallel execution of operators from a single query.This restriction is mitigated in two ways, however. First, memory contention is taken into account byrestricting the bu�er allocation given to every operator. Second, in some experiments, the operatorresource demands are adjusted to simulate the load of machines induced by other queries.4. It is assumed that all main-memory bu�ers are empty at the beginning of a query execution. Thus,disk I/O is always required to read the base relations from disk. Data that is cached at clients isassumed to be initially resident on the client's local disk.4.1.2 System Parameters and Execution ModelTable 2 shows the parameters of the cost model and their default values used in the study. The parametervalues are based on those used in [Fra93] and [SC90].Parameter Value DescriptionPAGESIZE 4096 size of one data pageNOSITES 2-11 number of machines in the systemMIPS 30 CPU bandwidth of a machineDISKTIME 20 milliseconds to read a page from diskDISKINST 5000 CPU instructions to read a page from diskMSGINST 20000 CPU instructions to send/receive a messagePERPAGEMI 10000 CPU instructions to send/receive 4096 bytesNETBW 8 Mbit/s network bandwidthDISPLAY 0 CPU instructions to display a tupleCOMPARE 2 CPU instructions to apply a predicateHASH 9 CPU instructions to hash a tupleMOVE 1 CPU instructions to copy 4 bytesF 1.2 fudge factor for hybrid hash joinsTable 2: System Parameters and Default SettingsThe database and the temporary relations are organized in 4KB pages (PAGESIZE ). Pages are the unitof disk I/O and also of data transfer between sites. That is, when a producer operator is executed on a site8



di�erent from its consumer operator, the producer batches its output into pages and sends a page at a timeto the consumer.A single client machine and between one and ten server machines are used in each experiment. Queriesare submitted at the client machine, which has no primary copies of base relations. The client machine hasa local disk which is used to cache data [FCL93] and as temporary storage during join processing. Serversare responsible for managing primary copies of relations. Each server is responsible for the primary copy ofat least one base relation. The primary copy of each relation resides on a single server (i.e., relations are notdeclustered). In addition, a copy of a relation or a portion of it may be cached at the client machine.The CPU and disk resources of the machines are modeled by the parameters MIPS and DISKTIMErespectively. The demand on CPU resources is computed by dividing the number of instructions required foran operation by the MIPS rating. The cost of reading a page from disk is modeled as the usage of DISKTIMEmilliseconds of disk resources plus DISKINST instructions of CPU time. No distinction is made betweenrandom and sequential disk I/O. Although servers would be expected to have more powerful resources thanclients, those resources would typically be shared among multiple clients. Therefore, in most experiments,the server and client resource parameter settings are identical. However, in some experiments, the serverresource parameters are varied to simulate di�erent loads on the system.Communication between two sites is modeled as both CPU and network costs. CPU overhead for bothsenders and receivers is modeled by a �xed CPU cost per message (MSGINST ) regardless of message size,plus an additional size-dependent component (PERPAGEMI ). The network cost of sending a message iscomputed by dividing the message size by the network bandwidth (NETBW ).The cost of displaying the query result at the client is modeled by the DISPLAY parameter, which isset to zero in this study. As stated in Section 2, all joins are modeled as hybrid-hash joins. The cost ofhybrid-hash joins is estimated using the cost formulas of [Sha86]; the corresponding COMPARE, HASH,MOVE, and F parameters are listed in Table 2. To simulate memory contention, the maximum of pM andpMB bu�er frames are allocated to every join2, where M denotes the size of the inner relation multipliedby the F factor, and MB denotes the size of a base relation (i.e., 250 pages) multiplied by the F factor. pMBu�er frames are allocated in order to guarantee the minimum bu�er allocation, and at least pMB bu�erframes are allocated to model the execution of joins with very small relations realistically.4.2 Query OptimizationThe query plans that are evaluated in the performance study of Section 5 are obtained using randomizedtwo-phase query optimization (2PO) [IK90]. Randomized query optimization was chosen for this study forthe following reasons. First, randomized approaches have been shown to be successful at �nding very goodjoin orderings [IK90, SMK93] and generating e�cient plans for parallel execution with very large searchspaces [LVZ93]. Second, the simplicity of the approach allowed the optimizer to be constructed quickly, andto be easily con�gured to generate plans for the three di�erent execution strategies. Third, the randomized2It should be noted that limiting the bu�er allocation favors data and query shipping because hybrid shipping provides thehighest 
exibility to exploit the aggregate main memory of the whole system.9



approach optimizes very complex queries in a reasonable amount of time. For example, it takes approximately40 seconds on a SUN Sparcstation 5 to perform join ordering and site selection for a 10-way join with 10servers. Finally, for the purposes of this study (and in practical situations as well), it is necessary onlythat the generated plans be \reasonable" rather than truly optimal. In order to minimize the impact ofrandomness on the results, all of the experiments described in Section 5 were run with at least three di�erentrandom seeds, and the results were averaged.The optimizer �rst chooses a random plan from the desired search space (i.e., data, query, or hybrid) andthen tries to improve the plan by iterative improvement (II) and simulated annealing (SA).3 On each step,the optimizer performs one transformation of the plan. The transformations correspond to the dimensionsof the search space described in Section 2. The possible moves are the following (where A, B, and C denotetemporary or base relations) 4:1. (A 1 B) 1 C ! A 1 (B 1 C)2. (A 1 B) 1 C ! B 1 (A 1 C)3. A 1 (B 1 C)! (A 1 B) 1 C4. A 1 (B 1 C)! (A 1 C) 1 B5. Change the site �eld of a join to consumer, outer relation, or inner relation.6. Change the site �eld of a select ; i.e., either from consumer to producer or vice versa.7. Change the site �eld of a scan; i.e., either form client to primary copy or vice versa.The optimizer can be con�gured to generate plans from one of the three search spaces by enabling,disabling, or restricting some of the possible moves. For hybrid shipping all moves are enabled. To generatedata-shipping plans, only the join-order moves (1 to 4) are enabled and all operators are executed at theclient machine. To generate query-shipping plans, the 6th and 7th moves are disabled since all scans arecarried out using the primary copy of a relation, and all the selects are executed at the same site as thecorresponding scan. In addition, the 5th move is restricted: a join is never moved to the site of its consumer.4.3 Benchmark Speci�cationIn order to highlight the di�erences among the di�erent execution strategies, the benchmark suite used inthe study consists of complex queries involving 10-way joins. The large number of joins greatly expandsthe query plan search space, allowing more options for exploiting the resources of a distributed systemwith a large number of servers. In our experiments, we have found that most of the e�ects reported inSection 5 also arise (albeit sometimes less dramatically)when using less complex queries such as the WisconsinBenchmark [BDT83]. However, queries with large numbers of joins are becoming increasingly common, due3This study uses the same parameter settings to control the II and SA phases as used in [IK90].4Note that after every move the commutativity of joins is exploited to ensure that the right (or outer) relation of each joinis the larger of the two. 10



to applications with complex queries such as decision support and data mining, as well as to the use of pathexpressions in object-relational query languages.Each relation used in the study has 10,000 tuples of 100 bytes each. In all queries, the result of a join isprojected so that the size of the tuples of all temporary relations and of the query result is also 100 bytes.All joins are equi-joins and two di�erent kinds of join graphs are used: chain and star. In a chain joingraph, the relations are arranged in a linear chain and each relation except the �rst and the last relationis joined with exactly two other relations. In a star join graph, one center relation is joined with all of theother relations, all other relations join only with the center relation. Chain queries arise for example, whenusing path expressions such as Emp.Dept.Manager.Salary. Inter-operator parallelism can be exploited wellin such queries (e.g., carrying out the two functional joins Emp 1 Dept and Manager 1 Salary in parallel).In contrast, independent inter-operator parallelism is di�cult to exploit in a star join graph because all joinsdepend on the data derived from the center relation.The benchmark contains four di�erent chain and join queries:SMALL: The values of the join attributes for all joins are unique (within a relation), taken from the rangefrom 0..49,999. Since the base relations have 10,000 tuples, on an average one-�fth of the tuples ofeach relation qualify for the result of each two-way join. The result of a SMALL 10-way join query,therefore, is typically empty.MEDIUM: The values of the join attributes for all joins are unique (within a relation), taken from therange of 0..9,999. The cardinality of the temporary relations and the query result in this case is 10,000tuples|the same size as the base relations.LARGE: The values of the join attributes for all joins are taken from the range of 0..4,999. Each valueoccurs twice in each relation. Therefore, the cardinality of the result of each join is twice the cardinalityof each of input relations. The size of the result of the LARGE 10-way join query in this benchmarkis approximately 512 MB (5 million tuples).MIXED: The join attributes for each join are chosen randomly from among the SMALL, MEDIUM, andLARGE, join attributes.5 Performance Experiments and ResultsIn this section, we examine the cost and response time trade-o�s of the three shipping policies. In theexperiments that follow, the query selectivities, join graphs, number of servers, client caching, and systemloads are varied in order to study issues such as scalability to larger distributed systems and the robustness ofcompiled plans to a varying system state. In order to minimize the impact of randomized query optimizationand random placement of primary base relation copies on servers, all of the data points reported here arethe average of at least three di�erent trials of the experiment. In order to compare the shipping policies, thesame placements of primary base relation copies were used for all three policies for each data point.11



5.1 Experiment 1: Communication CostThe �rst experiment examines the cost of query execution using the three execution strategies. For theseexperiments, the query optimizer was con�gured to minimize the total query cost rather than responsetime. In the model used for these experiments, the costs of processing a query under the three strategiesare the same except for the costs associated with communication. For this reason, this section focuses oncommunication requirements.In general, the amount of communication that is required to execute a given query is determined by thefollowing parameters:� the sizes of the base relations� the sizes of the intermediate relations and the query result� the amount of relevant data cached at the client� the number of servers and the location of the base relationsThe contribution of communication to the total cost of query execution is also dependent on the relativecapacities of the network (i.e., bandwidth) and the other resources in the system. Furthermore, in additionto the network cost, messages also require CPU resources at both the sending and receiving sites.When all base relations are stored on a single server, the communication trade-o�s are fairly intuitive.Query-shipping (QS) requires less communication than data-shipping (DS) when the query results are smallcompared to the size of the base relations, and when little or no data is cached at the client. These e�ectscan be seen in Table 3, which shows the number of pages sent through the network to execute the SMALL,MEDIUM, and LARGE queries in a system with a single server and no client caching.5 In the table, itcan be seen that DS sends the same number of pages regardless of the selectivity. This is because all baserelations are sent to the client, and the joins are performed there. In contrast, the number of pages sent byQS increases dramatically with the size of the query result: for the SMALL query, for example, the queryresult is empty, and no pages are shipped from the server to the client (only control messages which are notreported in Table 3 are sent). Finally, Table 3 shows that in this experiment, the communication cost of thehybrid-shipping (HY) approach is equal to the minimum of the two \pure" approaches for all three queries.It should be noted that in these experiments, the network itself (i.e., time-on-the-wire) is seldom the majorfactor in the total cost. In the most extreme case (the LARGE query with QS) network time accounts for56% of the total cost. In all other cases, however, it is less than 15%.When cached data is introduced (not shown in Table 3), the DS and HY approaches are able to exploitthis data to reduce communication requirements, while the pure QS policy is not. For example, when 95%of each relation is cached at the client, DS sends only 122 pages for each query. In this situation, HY ignoresthe client's cached data for the SMALL query but exploits it for the other two.5In this experiment, due to the single server and absence of caching, the communication requirements for chain and starqueries are identical. 12



SMALL Query MEDIUM Query LARGE QueryDS 2,441 2,441 2,441QS 0 244 125,000HY 0 244 2,441Table 3: Communication Overhead (in pages)Single Server, No Relations CachedThe communication trade-o�s are somewhat di�erent when the base relations are distributed acrossmultiple servers. In particular, the communication required by QS and HY becomes dependent on thelocation of base relations and can increase as relations are distributed across more servers. If two relationsthat are to be joined are stored on di�erent servers, then one of the relations must be sent to the other in orderto perform the join. DS, in contrast, performs all joins at the client regardless of where the base relations arestored, and thus, its communication requirements are independent of the number of servers. These e�ectsare demonstrated in Figures 4 and 5, which show the network tra�c required to execute MEDIUM star andchain queries in a system with a varying number of servers and with 5 randomly chosen base relations (outof 10) cached at the client.
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Figure 5: Pages Sent, MEDIUM ChainVarying Servers, 5 Relations CachedIn both �gures, it can be seen that the communication requirements for DS are independent of both thenumber of servers and the structure of the join graph. In all cases, the relations that are not cached at theclient are sent to the client during query execution. In contrast to DS, the communication requirements ofthe other strategies are impacted by both the number of servers and the join graph structure. For the starquery, the communication requirements of QS increase linearly with the number of servers (Figure 4). Thisis because in the chosen plans, all base relations that are located at the server containing the center relationare �rst joined, then the resulting intermediate relation is shipped to another server to be joined with all therelations located on that server and so on. In such a plan, one intermediate result is sent to each server thatcontains a non-center relation. This results in a linear increase in pages sent, because all temporary resultsin the MEDIUM query have the same size (they are the same size as the base relations). The communication13



requirements of QS for the chain query (Figure 5) also increase with the number of servers and are higherthan for the star query when there are 2 to 8 servers. This behavior occurs because as stated earlier, thebase relations are placed at servers randomly in these experiments, and in many cases the relations stored ata particular server are not joinable for the chain query. Thus, a server can be sent two or more base relationsand/or intermediate results during the query execution.Turning to the HY results, it can be seen that for both queries, HY always at least matches the better ofthe two \pure" policies and in some cases, it even has lower requirements than both of those policies. Theadvantage of hybrid shipping is that it can use both the primary copy of a relation to carry out joins at aserver as well as a cached copy of it (if one exists) to carry out joins at the client. This additional 
exibilityallows HY to send fewer base relations than DS, and fewer intermediate results than QS in some cases.Although the fundamental trade-o�s are the same for the other queries (SMALL and LARGE), therelative performance of the three strategies di�ers due to the di�erence in sizes of intermediate results. Forthe SMALL query, which has very small intermediate results and an empty query result, QS sends fewer than25% of the pages sent by DS for all server populations; HY behaves like QS in this case. For the LARGEquery, which has relatively huge intermediate results, the communication requirements for QS are as muchas two orders of magnitude greater than for DS, and HY behaves like DS in this case.5.2 Experiment 2: Exploiting ParallelismIn the previous section, it was shown that the pure data and query-shipping strategies can both performunnecessary communication in some situations, resulting in excessive cost. In this section, the response timeof the three execution strategies is analyzed. For these experiments, the query optimizer was con�guredto minimize the response time estimates of the produced query plans rather than their cost (as in theprevious section). In these experiments, the disks were typically found to be the most important resources incontributing to the overall response time. This is due to the assumption that main-memory bu�ers are emptyat the beginning of query execution and because main-memory allocation is restricted. The experiments,however, show that the two pure policies (QS and DS) fully exploit neither the multiple disks nor the multipleCPUs of the system, and thus the results demonstrated in this section also apply to CPU-intensive workloads.5.2.1 No Client CachingThe response times for the three execution strategies with varying numbers of servers and no relations cachedat the client are shown for the MEDIUM star and chain queries in Figures 6 and 7 respectively. Comparingthe two �gures, it can be seen that the trends for the two join query graphs are similar, although thedi�erences between the three approaches are more pronounced in the chain query results. This is becauseparallelism (among the server and client sites) plays a large role in determining response time and, as statedpreviously, the chain query has more potential for parallelism than the star query. In general, the responsetime of DS can be seen to be independent of both the number of servers and the shape of the query graph inthis experiment. With all relations at a single server, QS performs worse than DS here, but as relations are14



spread across servers, QS better exploits the additional parallelism and thus, has better performance thanDS for two or more servers. The trade-o� here is that DS exploits the client resources, while QS exploits theservers' resources. As more servers are added, the client resources are dominated by the server resources,and thus QS performs better than DS. HY again has the best performance throughout the range of serverpopulations; beating both pure strategies when few servers are used, because of its ability to use the clientresources for load balancing, and matching the performance of QS when a larger number of servers are used.
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HYFigure 7: Response Time (secs), MEDIUM ChainVarying Servers, No CachingDS QS HY050100150200Usage[s] C C CS S SFigure 8: CPU + Disk Usage, MEDIUM Chain1 Client (C), 1 Server (S), No Caching DS QS HY050100150200Usage[s] C C CS1 S1 S1S2 S2 S2Figure 9: CPU + Disk Usage, MEDIUM Chain1 Client (C), 2 Servers (S1,S2), No CachingThe response time results are driven in large part by the parallelism that is obtained by the threeapproaches. This parallelism is depicted in Figures 8 and 9, which show the sum of the CPU and disk usageat each site with one and two servers respectively for the MEDIUM chain query (whose response time wasshown in Figure 7). In the one-server case, DS executes all joins at the client and faults in the pages of thebase relations from the server's disks; DS can, therefore, exploit pipelined parallelism. QS, performs all workexcept for displaying the result at the single server. As a consequence, QS does not exploit parallelism andhas poorer performance in this case. HY, in contrast, is able to balance the load between the client and theserver, thus obtaining the best response time here. In the two-server case (Figure 9), the DS response timeis still dominated by the client's usage, which remains unchanged from the single server case. QS, however,is able to exploit independent parallelism between the two servers and has a signi�cant improvement in15



response time. Finally, HY is again able to better exploit the resources of all of the sites resulting in a betterresponse time than the two pure approaches.5.2.2 Impact of Client Disk CachingThe results of the previous section demonstrate that when only small numbers of servers are involved ina query, the client resources can be exploited to provide a substantial improvement in response time byaiding in the processing of joins. An additional way that clients can improve query performance when serverresources are limited is by performing scans of cached data. Figures 10 and 11 show the impact of clientdisk caching on the response time of the three di�erent types of plans for the SMALL and MEDIUM chainqueries respectively, when all relations are stored on a single server, and the number of relations cached atthe client is varied from zero to ten.
0

10

20

30

40

50

60

70

80

0 2 4 6 8 10

R
es

po
ns

e 
T

im
e 

[s
]

Number of Relations Cached at Client

DS
QS
HYFigure 10: Response Time (secs), SMALL ChainSingle Server, Varying Caching 0

50

100

150

200

0 2 4 6 8 10

R
es

po
ns

e 
T

im
e 

[s
]

Number of Relations Cached at Client

DS
QS
HYFigure 11: Response Time (secs), MEDIUM ChainSingle Server, Varying CachingThe response time of QS is independent of the number of relations cached for both queries. This is becauseQS always performs all scans and joins at the server, thereby ignoring any cached copies. In contrast, the DSresponse time (and to a lesser extent, the HY response time) is a�ected by the number of cached relations.Turning to the SMALL chain query results (Figure 10), it can be seen that the response time of DS improveswhen the number of cached relations is increased from 0 to 2, but then degrades from that point on. Recallthat DS performs all joins and scans at the client, and therefore, if relations are cached on the client, thenthe client's disk is used for both scanning relations and for temporary storage for hybrid-hash joins. When asmall number of relations are cached, DS can exploit pipelined parallelism between the server and the client.However, as more relations are cached, DS results in increased load on the client disk and decreased loadon the server disk. For this reason, the performance of the DS plans degrades beyond the caching of tworelations. When all ten relations are cached at the client, all scan and join I/O is performed at a single site(i.e., the client) and thus, the performance of DS and QS converge. As can be seen in the �gure, the HYapproach uses the proper amount of cached data in this case; it matches the performance of DS when up totwo relations are cached, and then stabilizes at that point, while the performance of DS begins to degrade.16



These results demonstrate that while client caching has the potential to improve query performance, thebest performance can sometimes be achieved by ignoring some cached data.Figure 11 shows the results for the MEDIUM chain query. In this case, the performance of the DS planis harmed by any caching of relations. This e�ect di�ers from what occurs in the SMALL case because ofthe amount of work that must be done for joins here. For the SMALL query, the high selectivity of the joinsresults in small inner relations, so that most of the joins are processed in a single pass of the hybrid-hashjoin algorithm. In contrast, the join results in the MEDIUM query are the same size as the base relations.Since MEDIUM queries are given the minimum memory allocation, all joins require a number of passesthrough the hybrid-hash algorithm, resulting in a much higher I/O requirement than in the SMALL case.Since DS performs all joins at the client, the scans of cached relations interfere with the I/O required forjoins, resulting in the degradation of performance demonstrated in Figure 11. In this case, the HY approachignores all cached copies and uses the client disk solely for join processing, resulting in better performancethan both DS and QS.5.3 Robustness of Compiled PlansThe previous sections have shown that the hybrid-shipping approach can have bene�ts in both cost andresponse time because it is e�ective at exploiting the resources of both the client and the servers. Thepower of hybrid shipping comes from its ability to produce a query plan that is tailored to a particularsystem con�guration. This section investigates the robustness of hybrid-shipping plans when the state of thesystem at runtime di�ers from what was expected by the query optimizer. Two issues are addressed in thissection: 1) changes to the load on the server, and 2) changes to the state of the client cache. In general, theresults show that as expected, the performance of a given hybrid-shipping plan can degrade signi�cantly ifthe runtime state di�ers from what was expected at compile-time. This demonstrates the need for dynamicapproaches to developing (or adjusting) query plans, which will be addressed in Section 5.4.5.3.1 Server LoadIn this section, we study the performance of compiled plans when the load on the server is varied withrespect to what was expected at optimization-time. In this experiment, the load on the server is simulatedby varying the settings of the MIPS and DISKTIME parameters (described in Table 2) compared to whatis used by the cost model when the optimizer is run. In this experiment, a hybrid-shipping query plan thatis generated assuming the default settings for the server resources (MIPS = 30, DISKTIME = 20 ms) isexecuted on a system where the server resources are varied from 1/8 of the default speeds (MIPS = 3.75,DISKTIME = 160 ms) to 8 times the default speeds (MIPS = 240, DISKTIME = 2.5 ms). Figure 12 showsthe results of this experiment for the MEDIUM chain query with a single server and no client caching. Onthe x-axis is the speed of the server resource at runtime relative to what is assumed by the optimizer, and onthe y-axis is the response time of the pre-compiled hybrid-shipping plan (compHY) relative to the responsetime of a plan optimized with the run-time resource settings.17
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Figure 12: Relative Response Time, MEDIUM ChainSingle Server, No CachingAt an x-axis value of 1, the compile-time assumptions and the run-time settings are the same, so therelative response time equals one. Moving left along the x-axis, the server becomes slower (i.e., more heavilyloaded) relative to the optimizer settings. In this case, the compiled plan relies more heavily on serverresources than it should, resulting in poorer performance. In this case, the degradation in performanceplateaus at slightly worse than a factor of 2 slower than the best case. Moving to the right, the serverbecomes faster (i.e., less heavily loaded) relative to the optimizer settings. The relative performance of thepre-compiled plan degrades dramatically in this case, being more than a factor of four slower than the bestcase. When the optimizer underestimates the server resources, it places a large number of joins on the client(8 of the 9 joins in these experiments), which results in much lower performance than could be obtainedusing the fast server resources to execute all the joins on the server.5.3.2 Client Disk CachingAnother signi�cant way that the run-time state of the system can di�er from what is assumed at queryoptimization time is the contents of client disk caches. Because caching is inherently a dynamic process, it isdi�cult to predict what will be in a particular client's cache at any given time. As described in Section 5.2.2,client disk caching can play an important role in determining query performance when the server resourcesare limited and when relation scanning is a substantial part of the cost of query execution. For this reason,this experiment examines the dynamic impact of caching for the SMALL chain query with a single server.Table 4 shows the response time of pre-compiled hybrid-shipping plans (compHY) assuming four di�erentclient cache states when they are executed against systems with those four cache states at run-time. The lastcolumn shows the best case for this experiment, namely, when the run-time state matches the assumptionmade by the optimizer. The cache contents are represented by (x; y) pairs where x represents the numberof relations cached, and y represents the percentage of each of those relations that are cached. The plan\compHY(10,50%)" is a hybrid-shipping plan that is compiled assuming the client cache contains 50% of18



Compiled PlansRun-time Cache Contents compHY compHY compHY compHY Best(# Relations, Portion) (0, 0%) (10, 50%) (5, 100%) (10, 100%) Case(0, 0%) 48.83 56.64 56.64 60.14 48.83(10, 50%) 48.83 37.84 46.88 48.75 37.84(5, 100%) 48.83 37.84 37.84 48.75 37.84(10, 100%) 48.83 57.37 37.84 37.84 37.84Table 4: Response Time (secs), SMALL ChainSingle Server, Expected vs. Actual (Run-Time) Cachingthe tuples from each of the ten relations.In this experiment, the hybrid-shipping plans are sensitive to the client caching state, but less so thanto the server load (shown in Section 5.3.1). The worst case in this experiment is a response time increase of59% compared to a plan with perfect knowledge of the cache contents. compHY(0,0%), which assumes anempty cache, su�ers a 29% penalty compared to the best case in all the three of the cases where the cacheis not empty at run-time. This is because it performs all of its scans at the server and all joins at the client.In contrast, compHY(10,100%), which assumes that all data is cached at the client, su�ers a 59% penalty inthe case where the client cache is empty at run time and a 29% penalty in the other cases. This sensitivityto an empty cache results from the fact that the plan executes many joins on the server. These joins mustcompete for server resources with the I/O required to read the non-cached data. The compHY(10,50%) planpays a high performance penalty when all relations are fully cached: the optimizer places all the scans at theclient and, in addition, places several joins at the client assuming that half of the pages for the scans mustbe read from the server's disk. At execution time, high contention on the client's local disk can be observedbecause (unlike the expectation) all the pages of the 10 relations are read from the client's local disk. Themost robust plan in this experiment is compHY(5,100%), which assumes that �ve relations are cached atthe client in their entirety. This plan pays a penalty of 16% when the client cache is empty, and 29% whenthe cache contains half of all ten relations, and is equal to the best plan in the other two cases.5.4 2-Step OptimizationThe results of the previous section show that the performance of a compiled plan can degrade signi�cantly ifthe server load and/or client cache contents at run-time di�er fromwhat is assumed by the query optimizer atcompile-time. The main factor contributing to the performance degradation was seen to be the site selection,rather than the join ordering. This observation indicates that a 2-step optimization similar to that proposedby Carey and Lu [CL86] and similar to that used by XPRS [HS90] and Mariposa [SAD+94] may be a goodbasis for generating query plans that can be modi�ed dynamically prior to query execution in order to adaptto changes in the run-time environment. A 2-step optimizer for a client-server query-processing environmentwould perform the following: 19



1. (Join Ordering): At compile time, generate a good query plan assuming that the query is going to beevaluated by a centralized system with one machine only.2. (Site Selection): At execution time, determine where to execute every operator of the plan and choosewhich cached data (if any) to use.Join ordering can be carried out with any existing query optimizer. The experiments reported in thissection use the randomized query optimizer described in Section 4.2, con�gured to carry out only the movesrelated to join ordering. Simulated annealing (SA) is used for the site-selection step at execution time. Inpractice, SA is somewhat slow for execution-time use (it takes approximately 8.5 seconds on a SparcStation 5,in these experiments). SA, however, is su�cient for the purpose of these experiments, which is to investigatethe potential bene�ts and limitations of a 2-step approach for client-server query execution.It should be clear that in general, 2-step optimization cannot always generate an optimal distributedplan. For example, if join ordering is performed assuming a single execution site, a 2-step approach maychoose a left-deep join tree (shown in Figure 13a) rather than a bushy tree (shown in Figure 13b). The bushytree might have a higher cost on a single site but a lower response time in a distributed system if join1 andjoin2 can be carried out at di�erent sites in parallel.
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join2(a) deep tree (b) balanced treeFigure 13: Possible Join OrdersThe performance of hybrid-shipping plans generated by a 2-step optimization process in which joinordering is done assuming a centralized system is shown for all four variants (SMALL, MEDIUM, LARGE,and MIXED) of the chain query in Figure 14. The �gure shows the performance of the 2-step plans relative tothat of a plan generated by a 1-step optimizer that has perfect knowledge of the placement of base relationson servers.For the MEDIUM and MIXED queries, the 2-step plan has increasingly worse performance than the1-step plan as servers are added. For the SMALL query, join processing is cheap because the intermediateresults are small, and the performance penality of a 2-step approach is fairly small. For the LARGE query20
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Figure 14: Relative Response Time, Chain Queries2-Step with CENTRALIZED Join Ordering 1
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Figure 15: Relative Response Time, Chain Queries2-Step with DISTRIBUTED Join Orderingboth optimizers generate a bushy tree plan because the low selectivity of the joins results in such a planhaving the lowest cost even in a centralized system. In contrast, the performance of the 2-step plan for theMEDIUM query is more than 80% slower than that of the 1-step plan when many servers are used. This isbecause 2-step optimization chooses a deep join order in this case, while 1-step chooses a bushy tree plan.The shape of a tree for a MIXED query is less predictable because joins with di�erent selectivities (fromlow to high) are found in the query. In this case, the relative performance of 2-step optimization is betterthan for the MEDIUM query since the joins with high selectivity are carried out �rst, and thus, intermediaterelations are smaller than those in the MEDIUM query.The problems encountered by 2-step optimization in Figure 14 arise largely because join ordering isperformed using a centralized model. An alternative to this approach is to perform join ordering in 2-stepoptimization assuming that the primary copy of every relation is located at a di�erent server (i.e., assumingthat the system has 10 servers). The net e�ect of this assumption is that join orders are always generatedas bushy trees. The performance results for this 2-step optimization are shown in Figure 15. As expected,this approach performs well for the LARGE, MEDIUM, and MIXED queries in this case, because they alldo better with bushy tree join orderings. In addition the relative performance for these queries tends toimprove as servers are added. In contrast, the SMALL query, which performs best with a deep join ordering,has the worst relative performance in this case.The results of these experiments show that neither approach to 2-step optimization is likely on its own tobe robust across a wide range of queries and system con�gurations. In this case, however, the combinationof the two approaches appears to be su�cient: choosing the best of the two variants su�ers at most a 14%performance penalty for the four chain queries. In this environment, 2-step optimization is even more robustfor the star queries (not shown), as star queries do not parallelize as well in any case (see Figure 6). In theseexperiments, therefore, the star query plan generated by the best variant of 2-step optimization never hasa noticeably high relative response time. For star queries, however, a pre-compiled join order can have avery high communication cost because it sometimes cannot take advantage of the fact that relations that21



are located at the same site should be joined locally before sending the result to another site.A simple way to combine the two variants is to build a 2-step optimizer that generates both join ordersat compile time, and then chooses the best plan (after site selection) at run-time. However, while theseresults show that 2-step optimization is a potential approach towards addressing the need for dynamic queryoptimization in the client-server environment, signi�cant additional work is required in order to developpractical and robust implementations of such an approach.6 Related WorkDistributed database systems were �rst investigated in the late seventies; e.g., [ESW78]. At that time,several prototype systems were developed such as: System R� [WDH+81], SDD-1 [BGW+81], and distributedINGRES [Sto85]. Typically, these systems focused on optimizing the cost of a query; in particular, much e�ortwas made to minimize the communication cost since the systems were designed to run on slow networks.6Many of the concepts are still valid, today. In the eighties, however, the client-server paradigm emerged asthe standard for any kind of distributed data processing leading to a shift in research directions. This study,therefore, uses a client-server environment. In addition to cost, this study also analyzes the response time ofqueries, the parallel execution of operators of a query on di�erent sites, and the load balancing of systems.Load balancing has also been investigated by Carey and Lu [CL86]; they propose an approach thatexploits the replication of data on di�erent sites. Even though their system model, their workloads, andtheir execution strategy was very di�erent from our settings, they basically came to the same conclusionthat a system should provide the 
exibility to carry out a query at di�erent sites to improve response time.Hagmann and Ferrari were among the �rst to study query processing in a client-server environment [HF86].They investigated di�erent ways to split the functionality of a DBMS (e.g., query parsing, optimization, andexecution) between client (front-end in their terminology) and server (back-end) machines. In our study,however, it was assumed that all the functions of a DBMS were available at all the sites of a system, and weconcentrated on the performance of executing queries (e.g., joins) because in most applications, this part ofquery processing is likely to generate the most load on the system.By now, many studies have been carried out investigating various aspects of client-server databases;e.g., [DFMV90, FC94]. Most of these studies, however, have been in
uenced by the dichotomy betweenrelational and object-oriented systems and were carried out using either pure query shipping or pure datashipping. A related study that analyzed the utilization of resources in client-server systems was carried outby Delis and Roussopoulos [DR92]. Like many other studies, they concentrated on a system with only oneserver, and therefore, could not realize the potential to execute the operators of a query on di�erent sites inparallel.Examples of research prototypes that support multiple servers are Orion-2 [JWKL90], SHORE [CDF+94]and Mariposa [SAD+94, SDK+94]. In these systems, the design of the execution policy plays an importantrole. In the current version, SHORE only uses data shipping. Mariposa supports both query and data ship-6Only distributed INGRES could be parametrized to optimize response time.22



ping. Several execution policies that allow a 
exible decision where to execute a query are also incorporatedin Orion. An initial discussion of execution policies for the speci�c task of distributed object assembly canalso be found in [MGS+94].Multidatabases [SL90] are also examples of distributed systems. It should be noticed, however, that allthe multidatabase systems seem to use a variant of data shipping because only a �xed set of functions canbe carried out on a server in those systems, and thus, operations processing data stored in two or more|possibly heterogeneous|databases of the system must be carried out at a client. This study also varies fromthe performance studies that have been carried out for the design of parallel database systems. Much ofthe emphasis in studying parallel database systems was to exploit intra-operator parallelism [DG92]. Thisstudy, however, showed how inter-operator parallelism can be exploited in a distributed system.7 ConclusionIn this work, three di�erent execution policies were identi�ed and evaluated in client-server database systems:1. data shipping, used in most object-oriented database systems;2. query shipping, used in most relational systems;3. hybrid shipping that aims to combine the advantages of data and query shipping and to supportnavigation-based and query-based access to the database.The performance experiments revealed that depending on the number of servers in the system, the cachingof data at clients, and the query characteristics, the execution policy in
uences the performance of a systemsigni�cantly. Both data and query shipping induce unnecessary communication overhead in some cases.Furthermore, the \pure" approaches do not fully utilize the resources of a system which can result in anincreased response time of queries.The best performance can be achieved by a hybrid execution policy that provides the 
exibility to placethe operators of a query on many sites. This approach, however, expands largely the space of possibleplans to evaluate a query. It is also very sensitive to the load of the machines and to the amount of datacached on the clients' local disks. Initial experiments indicate that a dynamic site selection in an extended2-step approach that generates several join orders at compile time might support a hybrid execution policysu�ciently.This study was focused on rather complex queries and disk-bound computation. In future work, weintend to analyze the e�ects of navigation-based access, updates and the utilization of the aggregate mainmemory. In addition, we plan to investigate the performance of a system when several applications runconcurrently rather than measuring queries in isolation. We are also implementing a query engine on top ofthe SHORE storage system, in order to further investigate these issues.23
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