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The U.S. EPA’s Total Maximum Daily Load (TMDL) program has encountered 

hindrances in its implementation partly because of its strong dependence on 

mathematical models to set limitations on the release of impairing substances. The 

uncertainty associated with predictions of such models is often not formally 

quantified and typically assigned as an arbitrary safety factor to the margin of safety 

(MOS) portion of TMDL allocations. 

 

AVSWAT-X, a semi-distributed, watershed-scale model, was evaluated to determine 

its applicability to identify the impairment status and tabulate a nutrient TMDL for a 

waterbody located in the Piedmont physiographic region of Maryland. The 

methodology for tabulating the nutrient TMDL is an enhancement over current 

methods used in Maryland. The mean-value first-order reliability method (MFORM) 



  

was used to calculate variance in output variables with respect to input parameter 

variance and the MOS value was derived based on the level confidence in meeting the 

water quality standard.  

 

A calibration, validation and an uncertainty analysis was conducted on the 

AVSWAT-X model. Monthly results indicated that AVSWAT-X is a good predictor 

of streamflow, a moderate (at best) predictor of nutrient loading and a poor predictor 

of sediment loading. Improved performance was observed on an annual basis for 

nitrate and sediment loadings, indicating the most appropriate use of SWAT for long-

term simulations. The most pronounced reason for discrepancies in model 

performance was the use of the SCS curve number method to tabulate surface runoff. 

 

Uncertainty results indicated that input parameters that are highly sensitive may not 

necessarily contribute the largest amount of uncertainty to model output. The largest 

amount of variance in output variables occurred during wet periods. Predicted 

sediment output had the largest amount of variability around its mean, followed by 

nitrate, phosphate, and streamflow as indicated by average annual coefficients of 

variation of 28%, 19%, 17%, and 15%, respectively.  

 

The methodology used in this study to quantify the nitrate TMDL and the MOS 

associated with it, was a useful tool and an improvement over current methods of 

nutrient TMDL analysis in Maryland. Overall, AVSWAT-X is a moderate to good 



  

model for estimating waterbody impairment and conducting TMDL analysis of 

waterbodies impaired by nutrients. 
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Chapter 1: Introduction 

 

Statement of the Issue 

Uncertainties present in different aspects of water quality monitoring and modeling 

have been a major barrier impeding implementation of the most important water 

quality program to date. This program has the potential to bring U.S. waters to a level 

of wellness that has not been achieved over the last century. First enacted in 1972 as 

amendments to the Clean Water Act (CWA), the Total Maximum Daily Load 

(TMDL) program is the key legislative mandate to improve ambient water quality 

conditions. A TMDL is the maximum allowable load of a contaminant that a 

waterbody can receive while still meeting its water quality standard. A water quality 

standard consists of the designated use assigned to the water body (e.g., swimming, 

fishing, drinking, etc.), the water quality criteria (either numeric or narrative 

statement) to meet that use, and an anti-degradation policy to protect the existing use. 

Section 303(d) of the act says that States must identify all water quality limited 

segments (WQLS) (impaired waters), prioritize them, establish TMDLs for them, and 

submit them to the U.S. Environmental Protection Agency (EPA) for approval 

(U.S.Congress, 1972). States must determine the stressors (pollutants) and sources of 

impairment for WQLSs, as well as allocate TMDLs among contributing sources. The 

numerical endpoints that must be obtained to make TMDL decisions involve a great 

deal of natural, measurement and computational uncertainty that must be addressed in 

a scientifically defensible manner in order for the TMDL program to move forward. 
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History of the TMDL Program 

Both Congress and EPA have halted revisions to TMDL regulations because of the 

many stakeholder concerns surrounding the scientific basis of the program. The 

TMDL program is currently operating under the 1992 amendments to the enacted 

TMDL regulations of 1985. Revisions to those regulations (called the “TMDL Rule”) 

were released on July 13, 2000. Some two-dozen parties challenged the rule in 

August 2000. Those parties consisted mainly of farming and forestry groups who felt 

that non-point sources of pollution should not be regulated, but should continue to be 

handled on a voluntary basis (Christen, 2001). This prompted Congress, in October 

2000, to suspend EPA’s implementation of the 2000 rule until further information 

could be gathered on the program. This suspension was carried out through a rider to 

EPA’s fiscal year 2001 budget. At the same time, Congress charged the National 

Research Council (NRC) to examine the scientific basis of the TMDL program (1992 

regulations). The NRC conducted a four month study (January through April, 2001) 

that concluded, there is enough science to support the ambient water quality goals of 

the TMDL program, and in the face of uncertainties which will always exist, the 

program should still move forward (NRC, 2001). 

 

In July 2001, EPA filed a motion asking the court to hold action on lawsuits over the 

rule for 18 months to allow the agency to review and revise the rule to achieve a 

workable program that meets the goals of the CWA. This decision, EPA claims, was 

based on the NRC report and numerous court challenges; however, the NRC felt that 

the hold on the TMDL rule should not have been based on their report (Christen, 
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2001). On December 20, 2002, EPA announced its proposal to withdraw the July 

2000 final rule. EPA Administrator, Christine Todd Whitman, claimed that the rule 

was “unworkable” (Anon., 2003). The 2000 final rule (“TMDL Rule”) was 

withdrawn on March 13, 2003. A new TMDL rule (“Watershed Rule”) was expected 

to be released in March 2003 (Shabman and Reckhow, 2002), however, it is currently 

pending (September, 2007). 

Numerical Endpoints in TMDL Tabulation 

Decisions made within the TMDL program are based on essentially three numerical 

endpoints. The first endpoint involves determining whether or not a waterbody is 

impaired. As part of each State’s water quality standards program, all waterbodies 

within a State must be assigned a designated use and water quality criteria in order to 

meet that use. When the amount of pollutant or pollutant indicator in a waterbody is 

found to exceed the criteria to which it is assigned, that waterbody is considered to be 

impaired. The second numerical endpoint upon which decisions are based is the 

TMDL of a WQLS. A TMDL can be expressed as follows: 

TMDL ≤ LC         (1) 

where, LC is the loading capacity or the largest amount of contaminant load that can 

be received by a waterbody without causing that waterbody to violate water quality 

standards. A TMDL can be stated in a number of different ways, e.g. by reduction of 

a pollutant in units of mass per unit time, or by a percentage reduction of the current 

pollution load to meet water quality standards (NRC, 2001). The third numerical 

endpoint is the portion of TMDL allocated to each individual source of contamination 

as: 
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TMDL=∑WLA+∑LA+FG+MOS      (2) 

where, WLA represents waste load allocation for point sources, LA corresponds to 

load allocation for non-point sources and natural background contributions, FG 

represents future growth estimates of WLA and LA, and margin of safety (MOS) 

accounts for uncertainty about pollutant loadings and waterbody response (USEPA, 

1999a). Most of the controversy associated with the TMDL program lies within the 

quantification of all three of the previously mentioned numerical endpoints. 

 

The values of the aforementioned numerical endpoints are obtained using both water 

quality monitoring and mathematical modeling strategies. Although some modeling is 

used, water quality monitoring is the preferred method of determining impairment 

within a State’s water quality standards program (NRC, 2001; USEPA, 1999a). 

Monitoring is also important when measuring the effectiveness of TMDLs after 

treatment practices have been implemented. Mathematical models, however, play a 

central role in the TMDL program because they are used to determine the TMDL of a 

waterbody, as well as allocate that TMDL among sources. Models represent our 

knowledge, however limited, about the processes governing ecosystem response to 

stressors. They are one of the main tools used to make management decisions within 

the TMDL program. A recent review has found that the status of TMDL modeling 

tools for the most common stream impairments is inconsistent (Munoz-Carpena et al., 

2006). Therefore, there is a need to address the existing problems in the modeling 

process. 
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Problem of Uncertainty in Mathematical Models 

Mathematical models are mainly used in the TMDL program because of the scarcity 

and limitations of monitored data. Non-point source pollution monitoring studies 

seldom have the ability to pinpoint sources of pollution and determine the best 

strategic plan to minimize pollution from different sources. On the other hand, models 

are able to estimate the amount of reduction necessary to meet water quality standards 

using different treatment scenarios as well as simulate the effect that different 

treatment strategies (e.g., National Pollutant Discharge Elimination System [NPDES] 

reductions, Best Management Practice [BMP] reductions) have on water quality after 

implementation. 

 

One of the main problems associated with using mathematical models for TMDL 

assessment lies in the quantification of uncertainties (NRC, 2001; USEPA, 2002a). 

Stakeholders would like to have some sense of reliability in model predictions, 

especially when decisions based on model results can potentially impose both legal 

and financial responsibility upon point and non-point source contributors.  

Uncertainties in mathematical modeling are accounted for in the margin of safety 

(MOS) portion of TMDL allocations (see equation 2). MOS is typically expressed in 

implicit or explicit terms (USEPA, 1999a). Implicit considerations involve making 

some type of conservative assumption when tabulating a TMDL, e.g. increasing the 

threshold of a water quality criterion above that which is necessary. Explicit 

considerations involve assigning a numeric safety factor to the value of MOS, e.g. 5% 
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of the point and non-point source allocations. Both terms represent a highly 

subjective means of accounting for uncertainty (NRC, 2001).  

 

EPA guidance and report documents (USEPA, 1999a; USEPA, 1999b; USEPA, 

2002a) have suggested that MOS be calculated based on scientific information rather 

than subjectively assigned, however, it is only recently that scientists have begun to 

devise and study formal uncertainty and error propagation strategies to determine 

MOS. As a result of the collective effort of a multidisciplinary panel of experts to 

evaluate the current status of TMDL modeling technology, Shirmohammadi et al. 

(2006) proposed that the explicit quantification of uncertainty be made an integral 

part of the TMDL process. Hence, there is a need for further study and development 

of formal methods to calculate MOS. The impact of the knowledge gained from these 

methods could allow the TMDL program to overcome a huge hurdle that has held 

back the program for some time. With more scientifically defensible measures of 

uncertainty, decision processes within the TMDL program can be accomplished with 

greater ease. This knowledge should also instill a greater sense of reliability for 

stakeholders who have opposed the program because of unknown measures of 

uncertainty. 

Land Use and Contaminant of Interest 

Non-point sources of pollution are the largest remaining unregulated source of water 

pollution (DNR, 2000). According to EPA's National Water Quality Inventory 2000 

Report, agricultural activities are the leading source of impairment in lakes, ponds, 

reservoirs, rivers, and streams (USEPA, 2002b). Nutrients (mainly nitrogen and 
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phosphorus), one of the main types of pollutants emanating from agricultural lands, 

are the leading cause of impairment in lakes, ponds, and reservoirs; the fifth leading 

cause of impairment in rivers and streams (USEPA, 2002b). 

 

Over the past two decades, major efforts have been underway to combat these issues 

across the nation. For example, the Chesapeake Bay Agreement  of 1987, renewed in 

the year 2000, set a goal to reduce nutrient loads to the Bay by 40 percent (CBP, 

2000). All indications show that this goal will not be met by the year 2010, its 

targeted year of completion (Blankenship, 2006). However, the goal will potentially 

be met in the future by improving the water quality of segments of the Bay and its 

tributaries that are currently listed as impaired waters in the TMDL program such that 

they are removed from the list (Blankenship, 2006; CBP, 2000). 

Goal of Project 

To address the TMDL problems highlighted above, this project evaluated the 

applicability of using the SWAT model to support waterbody impairment 

identification and TMDL analysis of nutrients in an agricultural watershed located in 

the tributary basin of the Chesapeake Bay. An uncertainty analysis approach was 

developed to quantify uncertainty in SWAT model output to support margin of safety 

(MOS) tabulation in the TMDL assessment process. We then conclude with a 

discussion and assessment of the impact of scientifically derived uncertainty values 

on the progression of the TMDL program.  
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Chapter 2: Literature Review  

 

Use of Mathematical Models for TMDL Assessment: Description and Performance of 

Models 

Mathematical models play a central role in TMDL assessment. They have been used 

to help determine whether or not a waterbody is impaired, to calculate TMDLs 

(loading capacity) of contaminants originating from various sources, and to allocate 

portions of the TMDL among contributing sources, thereby simulating practices 

capable of alleviating large pollution problems. There are numerous types of models 

that can be used for TMDL assessment, therefore we will discuss those models that 

are widely used, readily available, capable of modeling nutrients emanating from 

agricultural watersheds, and/or highly endorsed by the EPA. This assessment was 

done for the purpose of identifying the most suitable model to use for the present 

watershed/non-point source modeling project. The TMDL program emphasizes the 

use of watershed-scale analysis (USEPA, 1997a) because it is able to capture the 

cause-effect behavior of stressors and management practices on physical, chemical, 

and biological response. 

 

Loading and receiving water models are the most common types of mathematical 

models used for watershed and ambient water quality assessment. Less common 

ecological assessment models have also been developed and applied. However, in 

recent years ecological models have begun to receive considerably more attention in 

watershed assessment studies. These three types of models can further be 
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distinguished by their levels of complexity. Watershed loading models can be 

categorized into simple methods (mostly empirical approach), mid-range models 

(combining empirical and mechanistic approaches), and detailed models (mostly 

mechanistic approach). These models may also be described as lumped (physical, 

chemical, and biological characteristics of watershed assumed to be spatially 

homogeneous), distributed (spatial heterogeneities are included), or semi-distributed 

(partially represents spatial heterogeneities). Receiving water models can be grouped 

into hydrodynamic models (model the time-varying features of water transport) and 

water quality models (model the chemical and biological processes occurring within a 

waterbody). Water quality models can perform steady-state (no variation in time) or 

dynamic (accounting for time variation) analyses. Ecological assessment models may 

be statistically based or mechanistic in structure; the majority of those used in TMDL 

analysis being statistical because of the complexity of ecosystem processes.  

 

Integrated modeling systems link different types of models into a single modeling 

framework. These systems are coming into wider use because of the need to apply 

more than one model in watershed assessment studies. Decision support systems 

(DSSs) have also been developed for TMDL assessment; these are a form of 

integrated modeling that generates automatic decisions based on a set of knowledge-

based rules. Web-based modeling is also an emerging method to conduct watershed 

management studies. This type of modeling facilitates a wide user base, access to 

modeling software in the public domain , more data resources, better visualization of 

model inputs and outputs, and remote operation of modeling systems. Further 
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information regarding the different types of models used in TMDL assessment can be 

found in the EPA manuscript entitled, Compendium of Tools for Watershed 

Assessment and TMDL Development (USEPA, 1997a). 

 

Watershed Loading Models 

Watershed loading models are tools used to determine the amount of contamination 

emanating from different sources on the land surface. Within the TMDL program 

they have been used to determine the source of contaminants, to estimate the amount 

of pollution contributed by each source, and to determine the optimal allocation or 

management scenario for pollution reduction.  Information from loading models can 

be placed into receiving water models to determine TMDLs. The loading models that 

will be discussed in this section are AGNPS (mid-range, distributed parameter), 

ANSWERS (detailed, distributed parameter), GWLF (mid-range, lumped parameter), 

HSPF (detailed, lumped parameter), and SWAT (detailed, semi-distributed 

parameter). 

 

Agricultural Non-point Source Pollution Model (AGNPS) is a watershed-scale 

loading model that was originally developed to produce storm-event simulations of 

runoff, sediment, and transport of nitrogen, phosphorus, and chemical oxygen 

demand from agricultural lands (Young et al., 1986). An updated version of AGNPS 

is called AnnAGNPS, Annualized Agricultural Non-point Source Pollution model 

(Bingner and Theurer, 2001). This version is capable of continuous simulation of 

hydrology, soil erosion, and transport of sediment, nutrients and pesticides. With 
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continuous simulation capabilities, AnnAGNPS is able to produce long-term 

chemical loadings making it more suitable for use in TMDL assessment compared to 

AGNPS. Long-term simulations are necessary in order to determine the effects of 

changes in management scenarios (Santhi et al., 2001a). AnnAGNPS is a fairly new 

model in terms of its continuous simulation abilities and could use more validation 

studies to test its watershed components (Yuan et al., 2001). 

 

Yuan et al. (2002) tested the prediction capability of AnnAGNPS 2.0. Their study 

was an analysis of nitrogen loading from a small agricultural watershed in the 

Mississippi Delta. A sensitivity analysis revealed that soil initial nitrogen 

concentration and crop nitrogen uptake had the most significant effect on nitrogen 

loadings. In terms of predictability, AnnAGNPS estimated long-term monthly and 

annual nitrogen loadings within 127% of the monitored data; a proportion at which 

the authors deemed to be reasonable.  

 

Areal Non-point Source Watershed Environment Response Simulation (ANSWERS) 

is another model that was designed to evaluate agricultural watersheds using storm 

event simulations (Beasley et al., 1980). ANSWERS-2000 is the updated version of 

ANSWERS that was developed to simulate long-term average annual runoff and 

sediment yield from agricultural watersheds (Bouraoui and Dillaha, 1996). The 

developers of ANSWERS-2000 chose to develop ANSWERS over AGNPS for NPS 

planning because AGNPS was shown to have problems with describing the physical 

processes that determine BMP effectiveness (Bouraoui and Dillaha, 1996). Those 
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problems were attributed to AGNPS’s reliance on the SCS curve number method and 

the modified Universal Soil Loss Equation (Dillaha, 1990). ANSWERS relied on a 

distributed storage model for overland flow prediction and detachment transport 

equations for erosion/sediment processes (USEPA, 1997a). Cumulative runoff 

volume was predicted within the range of 3-35% of the observed values, and 

cumulative sediment yield was predicted within the range of 12-68% of the observed 

values. The authors considered the ANSWERS-2000 predictions to be adequate for 

planning purposes because the model predictions were within 100% of the observed 

values. Borah and Bera (2003) pointed out that the continuous version of ANSWERS 

does not simulate channel sediment. Therefore channel sediments are not routed 

through the watershed making the sediment and chemical components non-applicable 

to watersheds. 

 

The General Watershed Loading Function (GWLF) was developed to estimate 

streamflow and nutrient loads from ungauged watersheds (Haith and Shoemaker, 

1987). Along with the other watershed loading models mentioned in this project, 

GWLF is one of the tools identified by EPA as having the necessary functionality for 

use in TMDL development (USEPA, 1997a). An updated version of GWLF was used 

to model nutrient export in the Choptank River Basin on the coastal plain of the 

Chesapeake drainage basin (Lee et al., 2000). At the decadal time scale (11-year 

period), GWLF made both accurate and precise predictions of streamflow, and TN 

and TP export. Cumulative errors were less than 1%. Model performance began to 

degrade with decreasing time scale from annual to monthly. However, with model 
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prediction accuracy ranging from 10-50% of observed values at the annual time scale, 

the GWLF model was deemed to be a useful model for estimation of fluxes of water, 

nitrogen, and phosphorus over long time periods. Predictions of total phosphorus 

were poor especially during wet years. The authors pointed out that because GWLF is 

a lumped-parameter model, it was not able to account for the effects of the spatial 

structure of land use, continuity of riparian zones, and thickness of buffer zones along 

streams which are all important factors in nutrient losses. Also, additional processes 

such as fertilizer application rates and land use change should be added to GWLF 

functionality.    

 

The Soil Water Assessment Tool (SWAT) model (Arnold et al., 1998) is a watershed 

loading, water quality model that was developed by the U.S. Department of 

Agriculture- Agricultural Research Service (USDA-ARS) to estimate the impact of 

different management scenarios on water, sediment, and agricultural chemical yields 

in large ungauged basins. It is a physically-based model that has been widely tested in 

different physiographic regions and in various parts of the world (Boorman, 2003; 

Santhi et al., 2001a; Vandenberghe et al., 2001; White and Chaubey, 2005). SWAT 

does have receiving water modeling capabilities, however, it has primarily been used 

to predict loads emanating from the land surface. It is one of the more recent models 

added to the integrated BASINS modeling framework (DiLuzio et al., 2002) for use 

in TMDL assessment. 
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Chu (2003) tested the performance of the SWAT model in predicting 

hydrologic/water quality response in a mixed land use watershed (340 ha) in the 

Piedmont physiographic region of Maryland. Results showed that the SWAT model 

only handled subsurface flow bounded by the surface topography, not taking into 

account the possible subsurface flow contributed from outside the watershed. To 

address the problem, the author adjusted the measured base flow and stream flow to 

exclude groundwater recharge from outside the watershed, which improved model 

prediction. Results also indicated that SWAT makes more accurate predictions for 

long-term simulations (e.g., annual) than short-term simulations (e.g., daily or 

monthly) for hydrology, sediment, nitrate, and phosphorus loadings (Chu and 

Shirmohammadi, 2004; Chu et al., 2004). The model made poor predictions of 

extremely wet hydrologic conditions.  

 

Uncertainty analysis of model output is a vital step in the use of models for 

environmental risk assessment. Uncertainty analysis for the SWAT model revealed 

that there was significant uncertainty associated with stream flow predictions due to 

input parameter uncertainty (Sohrabi et al., 2003). It was concluded that SWAT is a 

reasonable watershed-scale model for long-term simulation of hydrologic and water 

quality response in a mixed land use watershed (Chu and Shirmohammadi, 2004; Chu 

et al., 2004).  

 

In a study conducted in the North Bosque River Watershed, Texas, SWAT was 

evaluated to determine management effects on point and non-point source pollution 
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(Santhi et al., 2001a). BMPs for both agricultural land (dairy manure management) 

and wastewater treatment plants (WWTPs) were employed to reduce in-stream 

soluble phosphorus concentrations in two locations; Hico and Valley Mills, Texas. 

Streamflow was predicted well in both locations with Nash-Sutcliffe coefficient of 

efficiencies (E) ranging from 0.62 to 0.87 during monthly calibration (1993-97) and 

validation (1998) periods. Predictions of sediment and nutrient loads in Hico were all 

at satisfactory levels with E ranging between 0.53 and 0.80. Mineral N and Soluble P 

were predicted well in Valley Mills; however, validation results were not satisfactory 

for sediment (E=0.23), organic N (E=0.43), and organic P (E=0.39). Overall, the 

SWAT model was shown to be a useful tool to study the effects of different BMPs on 

reducing contamination from point and non-point sources in a large watershed. 

 

In-stream kinetics of the Enhanced Stream Water Quality (QUAL2E) model (Brown 

and Barnwell, 1987) were incorporated into SWAT. This component of SWAT has 

experienced some scrutiny because it has made significantly different output results 

embedded in SWAT compared to stand alone QUAL2E and it has made poor nutrient 

predictions (Houser and Hauck, 2002; Ramanarayanan et al., 1996). White et al. 

(2004) found the in-stream component of SWAT sufficient to predict total 

phosphorus yields. Further testing and improvement efforts should be made to 

strengthen this component of SWAT.  

 

Kang et al.(2006) used SWAT to develop TMDLs for suspended sediments, total 

nitrogen, and total phosphorus in a small watershed (385 ha) in Korea containing 
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irrigated rice paddy fields. Their total maximum daily load system (TOLOS) 

consisted of AVSWAT using geographic information system (GIS) and remote 

sensing (RS). The TMDL was allocated amongst 23 sub-areas. Results indicated that 

simulated runoff and water quality values were acceptably close to observed data. 

The urbanized sub-watershed #2 required the largest allocation of load reduction, 

mainly because it was largest in area and was most concentrated in terms of 

residences and other community activities. TOLOS was found to be a useful tool for 

planning TMDLs for a small watershed including rice paddies in Korea. 

 

Hydrological Simulation Program-Fortran (HSPF) (Johansen et al., 1984) is a 

watershed loading model that was developed by the USEPA for simulating water 

quantity and quality in a watershed. It also has the capability to simulate receiving 

water quality, adding to its modeling complexity. HSPF is a lumped parameter model 

but it does separate the watershed into pervious and impervious layers. This adds to 

its ability to model complex watersheds including mixed land uses. Before the SWAT 

model was integrated into BASINS, HSPF was the primary non-point source model 

used in the BASINS modeling framework. Despite several criticisms that HSPF is 

difficult to understand and use (NCASI, 2001; Saleh and Du, 2004; Whittemore and 

Beebe, 2000), it is still being used in TMDL assessments. 

 

Neumiller (2001) conducted a calibration study on the HSPF model for Mica Creek, 

Idaho. The objective was to test the applicability of using HSPF in forestry 

management studies and to determine its utility within the BASINS GIS modeling 
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framework. Results of the study showed that simulated hydrographs compared well 

with observed hydrographs. However, many problems were reported. One problem 

was the setting of key parameter values to make the model work. For example, there 

was a gross overestimate of the deep seepage loss. The author also reported the 

problem of extensive input data requirements for HSPF. These problems led to a 

negative outlook on the usefulness of this model for assessing the impact of 

alternative management scenarios.    

 

Receiving Water Models 

While watershed loading models provide information about the source and amount of 

pollutants located on and emanating from the land surface, receiving water models 

simulate the chemical, physical and biological interactions of those pollutants within 

the waterbody. Hence, the collective and systematic use of both modeling processes 

to support decisions made within the TMDL program. Receiving water models 

(specifically, water quality models) are tools used to determine the impact of 

pollutant loads on water quality of surface waterbodies. Advective, dispersive, and 

reactive processes are used to model the transport and transformation of contaminants 

within the waterbody. In the TMDL program, receiving water models have been used 

to estimate the response of the waterbody to pollutant loads for determining 

impairment, to test different loading scenarios, and to determine TMDLs (loading 

capacities). The receiving water models that will be discussed in this section are CE-

QUAL-W2 (dynamic, coupled hydrodynamic/water quality model), EUTROMOD 

(steady-state, water quality model), QUAL2E (steady-state, water quality model) and 
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WASP5 (dynamic, water quality model). HSPF is a dynamic water quality model 

with watershed loading capabilities as well. Therefore, it was discussed in the 

previous section under watershed loading models.  

 

CE-QUAL-W2 (Cole and Buchak, 1995) is a laterally averaged, two-dimensional, 

mechanistic model with coupled hydrodynamic and water quality functionality. It was 

developed to predict the effects of nutrient load changes on phytoplankton growth. 

Bowen (2000) conducted a calibration performance study on CE-QUAL-W2. 

Salinity, nitrate-nitrite, and dissolved oxygen concentration predictions compared 

well with observations. Predictions of chlorophyll-a, however, did not compare well 

with observations producing a correlation coefficient of 0.39. This was explained to 

be a result of the model’s inaccuracy in predicting the time and location of algal 

blooms. The predicted cumulative frequency distribution of chlorophyll-a did have 

better correlation with observed distributions, but peak observed values were much 

higher than peak predicted values. A sensitivity analysis revealed that predicted peak 

values of chlorophyll-a appeared to be limited by residence time. Peak chlorophyll-a 

is an important variable because it is used as an indicator of water quality impairment. 

Two-dimensional models such as CE-QUAL-W2 can be favored over three-

dimensional models such as WASP5 (to be discussed later) because of their relative 

simplicity (Bowen and Hieronymus, 2000). 

 

EUTROMOD (Reckhow et al., 1992) is a spreadsheet-based collection of nutrient 

loading and lake response models used for watershed scale analysis of eutrophication 
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in lakes and reservoirs. Annual loads of runoff, erosion, and nutrients (nitrogen and 

phosphorus) are used to predict average lake response conditions in terms of nutrient 

levels, chlorophyll a, Secchi Disk depth, and trophic state. Uncertainty analysis is 

built into the model to account for model error and hydrologic variability. Hession et 

al. (1995) compared the results of EUTROMOD and water quality monitoring data. 

They found that predictions of EUTROMOD agreed well with monitoring data. 

 

Hession et al. (1996) used EUTROMOD in a watershed-level ecological risk 

assessment in Wister Lake, Oklahoma. The model estimated annual watershed 

phosphorus loads from point and non-point sources, as well as lake response in terms 

of chlorophyll-a concentration. Instead of relying on the uncertainty analysis methods 

within EUTROMOD, the authors incorporated what they felt to be a more robust 

uncertainty analysis estimation using Monte Carlo techniques. A two-phase Monte 

Carlo approach was used in order to determine parameter knowledge uncertainty and 

stochastic variability. Alternate management scenarios were tested within this 

modeling framework. Results indicated that this methodology of ecological risk 

assessment is a useful tool for making decisions on the management level.  

 

Hession et al. (1998) summarized the EUTROMOD model in an assessment and 

suitability analysis. They described the structure and functions of the model 

concluding that the model performs at an acceptable level. However, during the time 

of their evaluation, only a few field tests had been conducted on the model’s 

performance. 
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The Enhanced Stream Water Quality Model (QUAL2E) (Brown and Barnwell, 1987) 

is a one-dimensional stream water quality model that is widely used for stream 

wasteload allocations and discharge permit determinations. It represents a stream as a 

number of reaches depicting finite difference elements. An implicit backward 

difference numerical scheme is used to solve the advective-dispersive mass transport 

equation. The model contains built-in uncertainty analysis tools for determining the 

effect of parameter uncertainty on model prediction uncertainty.  Chaudhury et al. 

(1998) calibrated and validated QUAL2E in a study on the Blackstone River located 

in the Northeastern United States. The model was found to predict DO and ammonia 

concentrations very well compared to observed conditions before and after wasteload 

allocations to the river. It was therefore able to successfully determine the impaired 

status of the waterbody before wasteload allocations and the impact of those 

allocations on the initial conditions of the river. QUAL2E was not built to address 

stormwater flow events, non-point source pollution, and transient stream flow 

(Shanahan et al., 1998). Therefore, caution should be used for application of this 

model to rivers experiencing temporal variations in streamflow or fluctuating 

discharges over short periods of time. 

 

Water Quality Analysis Simulation Program (WASP5) (Ambrose et al., 1993) is a 

three-dimensional water quality model that was designed for linkage to hydrodynamic 

models. It consists of three sub-models, one for water quality/eutrophication 

simulation (EURO5), another for simulation of toxics (TOXI5), and the last one for 
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hydrodynamic simulations (DYNHYD). Jia and Cheng (2002) used WASP5 in an 

integrated system for water quality management in the Miyun reservoir in Beijing, 

China. Validation of the hydrodynamic portion of the model indicated that WASP5 

could represent the hydrodynamic behavior of the Miyun reservoir. Water quality 

model verification indicated that predicted values of dissolved oxygen were fairly 

close to observed measurements. After testing the model under different scenarios, 

the study found that water quality was improved by banning cage fishery in the 

reservoir. 

 

The State of Maryland has often used WASP5 to develop nutrient TMDLs (MDE, 

2001a; MDE, 2001b). They have used field observations to determine impairment. 

Those field observations are used to calibrate the water quality model, and simulate 

base (current) conditions to which simulated reductions can be compared.  The best 

simulated reduction scenarios are then used to assign TMDL allocations of wasteload, 

load, and margin of safety. 

 

Ecological Assessment Models 

Ecological assessment models simulate the effect of stressors on ecological endpoints 

such as species and biological communities. These models are being used more often 

in TMDL analysis to express modeling outputs in a form that is more useful to 

stakeholders and those involved in the TMDL decision making process. Ecological 

models that will be discussed in this section include Neu-BERN and AQUATOX. 

Borsuk and Reckhow (2000) developed the probabilistic model called Neuse Estuary 
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Bayesian Ecological Response Network (Neu-BERN) to support the formulation of a 

nutrient TMDL for the Neuse River estuary in North Carolina. Neu-BERN is a 

Bayesian probability network. As stated by the authors, “Probability networks are 

graphical models for the evaluation and presentation of scientific relationships for 

policy and analysis.” These simple models seek to link predicted values of 

contaminants to ecological endpoints or responses while accounting for model 

uncertainty and natural variability. This undoubtedly helps to foster better 

understanding of the problems at hand and their effect on endpoints of interest to 

stakeholders. By considering uncertainties, this model is able to provide an explicit 

means of representing the reliability of model predictions. In their report, Borsuk and 

Reckhow (2000) describe a Bayesian probability network model that links the effect 

of algal growth (phytoplankton) on endpoints that are of concern to stakeholders, i.e., 

fish population health, fish kills, and shellfish abundance. The effect of nutrient load 

changes on algal growth was simulated using the mechanistic CE-QUAL-W2 model. 

The algal growth information (annual algal productivity) from CE-QUAL-W2 was 

then fed into the Bayesian network. This type of modeling approach is a valuable aid 

to the decision-making process. 

 

AQUATOX (USEPA, 2000) is an ecosystem fate and effects model developed for 

EPA to predict the effects of chemical (nutrient and toxic) loadings on ecological 

endpoints from their point of entry to the top of the aquatic food chain. The effects 

are measured by estimating the amount of chemical per unit biomass over time. 

AQUATOX has been validated for estimating PCB bioaccumulation factors in Lake 
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Ontario (Park, 1999). In that study, the model provided acceptable results considering 

it had never been applied to such a large system. In comparison to two other 

mechanistic, steady-state models (Gobas, 1993; Thomann, 1989), AQUATOX 

provided better fits to observed data for phytoplankton and mysids (shrimp-like 

animal). AQUATOX also showed a lower degree of uncertainty compared to the two 

models.  

 

Integrated Modeling Systems 

As previously mentioned, a number of different types of models (e.g., watershed 

loading models and receiving water type models) are often used collectively in 

watershed management studies. For this reason, integrated modeling systems link 

models together (e.g., loading and receiving water models) with a user interface to 

form a complete system. These modeling frameworks provide a system that is easy to 

use, capable of linking models to databases (e.g., Geographic Information Systems 

[GISs]), and allow user flexibility in choosing the type of analysis to conduct 

(USEPA, 1997a). The integrated modeling systems that will be discussed in this 

section are BASINS and GIBSI. 

 

Better Assessment Science Integrating Point and Non-point Sources (BASINS) 

(USEPA, 1996) is an integrated modeling system that was developed by the EPA 

primarily to link point and non-point source modeling together for TMDL 

development. It contains several different components including databases (e.g., 

DEMs, soils data), GIS tools (e.g., automatic watershed delineation, definition of 
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Hydrologic Response Units [HRUs]), mathematical models (e.g., WINHSPF, SWAT, 

QUAL2E), and output analysis tools (e.g., GenScn and Export).  

 

Although BASINS appears to be a widely accepted model and highly endorsed by the 

EPA, there have not been many published papers on its use and performance. In their 

evaluation of BASINS, Whittemore and Beebe (2000) stated that, “in EPA’s rush to 

provide a new and useful tool for TMDL development, they have sacrificed good 

science and modeling practice in exchange for speed.” They also noted the lack of 

published reports on BASINS and the importance of such material to describe 

experiences and solutions to problems encountered during modeling. That 

information is necessary for scientific advancement. 

 

Di Luzio et al. (2002a) described the integration of watershed tools and the SWAT 

model into BASINS. In a simple application of the new tools, the use of SWAT 

within the BASINS framework was determined to be reliable and efficient.  

 

Saleh and Du (2002) conducted a study in the North Bosque River Watershed in north 

central Texas, where dairy operations are the primary cause of impairment, to 

compare SWAT and HSPF performance within the BASINS framework. They found 

HSPF made more accurate predictions of flow and sediment, however, SWAT was 

more user friendly and made more accurate predictions of nutrient loading during 

calibration and validation.  
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Another integrated modeling framework that has been used for TMDL assessment is 

GIBSI (Mailhot et al., 1997). This modeling framework is composed of a database, a 

relational database management system, physically based simulation models, 

management modules, and a GIS platform. Rousseau et al. (2002) conducted a case 

study in the Chaudiere River watershed in Quebec, Canada where untreated 

municipal wastewaters and agricultural non-point source contamination were 

considered the cause of impairment. Their objective was to determine the 

applicability of using the GIBSI risk-based approach to determine probability of 

exceedance of water quality standards for recreational uses. Five different treatment 

scenarios were modeled for reducing both point sources (aerated lagoons for 

wastewater treatment plant effluents) and non-point sources (different fertilization 

rates for agricultural contributions) in order to meet phosphorus and fecal coliform 

water quality criteria. Probability of exceedance was determined for each scenario. 

The authors concluded that GIBSI is well suited to link contaminant loads to the 

probability of exceeding water quality standards, it is a good tool for independently 

evaluating the TMDL components (LA, WLA, and MOS), and it provides 

information that can be used to facilitate discussions with stakeholders. In comparison 

to BASINS, the authors pointed out that GIBSI uses a water quality model that 

simulates transient flows while BASINS utilizes a water quality model (QUAL2E) 

restricted to steady flows. This may add to the speed of prediction for BASINS, 

however, the GIBSI approach is a better representation of reality. This may lead to 

more accurate results in GIBSI calculations, or the added complexity may lead to less 

accurate results than BASINS.  
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Decision support systems (DSSs) are a form of integrated modeling system that 

generates automated decisions. They are provided with user specified prescriptions 

for making appropriate decisions. Prescriptions are mainly comprised of “if then” 

statements that are systematically examined to generate final output. WARMF is a 

DSS that was developed by Chen et al. (1999) to calculate TMDLs of a number of 

different pollutants for WQLSs within a river basin. The system is composed of five 

modules including data, engineering (dynamic watershed simulation model), 

knowledge (prescriptions for constraints), TMDL (a Windows graphical user 

interface, GUI, to guide stakeholders through the decision making process), and a 

consensus module. These modules work together to formulate different combinations 

of point and non-point source load allocations to meet water quality standards for 

WQLSs. By considering the interests of regulatory agencies and various stakeholders, 

the system is able to provide solutions with possible agreement from all parties. The 

authors suggest that this system goes beyond the functionality of the BASINS 

modeling framework because it considers the interests of all concerned parties.  

 

A GIS/web-based DSS was developed to help identify areas within watersheds that 

might be priority areas for TMDL development (Choi et al., 2002). This system is 

composed of three main parts; a Long –Term Hydrological Impact Assessment (L-

THIA) web application that estimates direct runoff and non-point source loading, a 

watershed delineation web application for hydrological input data preparation and an 

HTML based user interface. Advantages of such a system include more data 
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resources, potential users, and more visualization and remote operation (Choi et al., 

2001). However, some disadvantages include complicated TMDL development 

procedures and implementation, as well as the restrictions on which the DSS is 

applied because of the web environment (e.g., network speed, security and over 

simplifications) (Choi et al., 2002).  

 

The Chesapeake Online Assessment Support Tool (COAST) is a web-GIS-based 

interface that was created to allow the Phase 5 version of the Chesapeake Bay 

watershed model to be accessible to multiple users (Burgholzer and Sweeney, 2007). 

Users of different levels of expertise are able to access and collaborate on single 

projects that may range across several jurisdictions. It is an easy to use interface that 

includes 100% open source software. Only a web browser and internet connection are 

needed. COAST is made up of five major functional modules: land use/ river 

segmentation, source assessment and definition, source distribution, BMP design and 

application, and model input file generation and model output visualization. The 

authors (Burgholzer and Sweeney, 2007) claim that this modeling framework is 

capable of being used in watersheds of any size and composition whether inside or 

outside of the Chesapeake Bay watershed.  

Literature Synthesis and Criteria for Model Selection 

The watershed in which this study was conducted is a small agricultural watershed 

that has had a number of non-structural BMPs implemented within its boundaries. To 

determine the most suitable model for use in this project, we listed the most important 

criteria along with a ranking of each candidate model (see Table 1). Criteria were 
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chosen based on the necessity and/or benefit they provide to properly represent the 

present watershed characteristics and to meet the goals of this project. A continuous 

simulation model was needed to predict long-term effects of pollutant stressors and 

agricultural management practices. A model capable of properly representing the 

operations (e.g., cropping, animal feeding) found in agricultural watersheds was 

necessary especially when making nutrient loading predictions from non-point 

sources. HSPF is suitable for use in mixed land use watersheds, but it was not built to 

handle primarily agricultural management scenarios as the comparable models were.  

 

Acceptable chemical simulation ability was needed to identify the status of the 

waterbody in terms of water quality standards.   The spatial extent of model 

parameters is important for locating pollutant sources in a watershed with mostly non-

point sources of pollution. A model containing some level of parameter distribution 

would also be useful for implementing certain BMPs (e.g., riparian buffer zones) that 

are location specific. AGNPs and ANSWERS are distributed parameter models that 

represent spatial variability by subdividing the watershed into many cells (grid 

pattern). SWAT is semi-distributed in that each sub-watershed contains hydrologic 

response units (HRUs), which are areas containing uniform land use and soil type.  

 

Several watershed loading models, such as HSPF and SWAT, contain in-stream 

modeling capability. This is useful for comparing in-stream pollutant concentrations 

with water quality standards which are normally expressed as threshold 

concentrations. Ideally, we would have wanted to utilize the in-stream modeling 
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capabilities of the chosen model; however, due to lack of monitored data for in-

stream input parameters (e.g., dissolved oxygen, chlorophyll-a) we did not use the in-

stream component of the chosen model.   

   

In TMDL studies, models must be run several times in order to test different 

management scenarios to find the best solution for pollutant reduction. Therefore, it 

would be most useful to use models that do not require a long computational time 

frame.   In an effort to have modeling efficiency we sought to use a model not 

requiring extensive operational training and expertise; neither requiring long 

computational time. In the same instance, we sought a robust model that has been 

proven to perform well under the given watershed conditions. Our research group has 

done prior studies using previous versions of SWAT. Therefore, modeling issues 

could be discussed and solved, at times without having to consult outside parties. 

Also, HSPF has been criticized for being difficult to understand and use (NCASI, 

2001; Saleh and Du, 2002; Whittemore and Beebe, 2000). All of the models seem to 

perform satisfactorily for streamflow prediction, but some of them lack the proper 

algorithms or spatial extent to predict sediment and nutrient loadings in an acceptable 

manner. ANSWERS, for example, does not model channel erosion and sediment 

transport which are important to tabulate sediment and nutrient loading in a watershed 

(Borah and Bera, 2003). Chemical loading using GWLF was poor due to lumped 

parameterization (Lee et al., 2000). Model inclusion within the BASINS modeling 

framework speaks to the worth of the model for wide use by the government and 

other agencies. 
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AVSWATX and HSPF were the two most suitable models for this project with 

ratings of 11.5 and 9.0, respectively. The main reasons for choosing AVSWATX over 

HSPF were its reputation for best use in agricultural watersheds, its prior use by our 

watershed modeling team, and its computational efficiency considering it is a detailed 

model. Not many studies have been conducted using AVSWATX as a separate entity 

for TMDL analysis, therefore we chose not to use SWAT as part of an integrated 

modeling system. We were planning to utilize the in-stream components of SWAT 

for nutrient assessment. However, there was not enough in-stream monitoring data to 

properly determine in-stream input parameter values.  

 

Web-based models are good for allowing access to multiple users for a single project, 

remote access, and use of software in the public domain. The watershed of this study 

is small and did not require access to multiple users. The necessary software packages 

for modeling were available; therefore, there was no need to use a web-based model 

for this project. Web-based modeling was an extremely new concept in water 

resource modeling at the inception of this project. Its functionality has still not been 

widely tested.  

 

 

 

 



 

 31 

 

Table 1 Criteria rating for each model considered for use in Warner Creek watershed study. 

Criterion AnnAGNPS 
ANSWERS-

Continuous 
GWLF HSPF 

AVSWAT-

X 

Continuous Simulation ● ● ● ● ● 

Agricultural 

Management ● ● ● ◘ ● 

Chemical Simulation ◘ ◘ ◘ ● ● 

Spatial Extent ● ● ○ ○ ◘ 

In-stream Component ○ ○ ○ ● ● 

Robustness/Accuracy 
●●◘◘ 

HSNP 

●◘◘◘ 

HSNP 

●◘◘◘ 

HSNP 

●●●● 

HSNP 

●●●● 

HSNP 

Mid-level to Low 

Operational Training ● ● ● ○ ● 

Computational 

Efficiency ● ● ● ◘ ● 

In BASINS Framework ○ ○ ○ ● ● 

Totals 8.5 8.0 7.0 9.0 11.5 

●- full point, ○-no point, ◘- partial/half point, H- Hydrology, S- Sediment, N- Nitrogen, P- Phosphorus  

 

Based on the literature synthesis and characteristics of the watershed in our study, the 

AVSWATX model was chosen over other comparable models. The main reasons for 

this selection were its predominant use in agricultural watersheds, low need for 

operational training, and its computational efficiency. There have not been many 

published studies in which AVSWATX was used for TMDL analysis, and no studies 

have been done to tabulate the uncertainty in AVSWATX output for MOS 
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determination. Therefore, AVSWATX was a good candidate for testing these 

capabilities.   

 

The second goal of this research project involved determining an uncertainty analysis 

approach to quantify the level of SWAT output uncertainty. The following describes 

a brief review of the different approaches that have been used to quantify 

uncertainties in mathematical models used in water resources engineering. It is 

intended to address the specific need of tabulating a scientifically derived MOS value 

for TMDL development.  

Measuring Model Uncertainties to Support TMDL Development: A Review of 

Strategies 

One of the main driving forces for studying model uncertainty in water quality 

assessment is to aid the decision making process. The U.S. Environmental Protection 

Agency’s (USEPA) Total Maximum Daily Load (TMDL) program is one of the 

leading and most controversial federally mandated programs rooted in the use of 

mathematical models to make policy decisions. Uncertainties in mathematical 

modeling are normally accounted for in the margin of safety (MOS), a component of 

TMDL allocations. MOS is typically expressed in implicit or explicit terms. Implicit 

considerations involve making conservative assumptions, e.g. increasing the 

threshold of a water quality criterion above that which is necessary. Explicit 

considerations involve assigning a numeric safety factor to MOS, e.g. 5% of the point 

and non-point source allocations. Both terms represent a highly subjective means of 

accounting for uncertainty (NRC, 2001). EPA guidance (USEPA, 1999a) has 
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suggested that the calculation of MOS be based on scientific information rather than 

subjectively assigned. However, it is only recently that scientists have begun to devise 

and study formal uncertainty and error propagation analyses to determine MOS. 

Hence, there is a need for further study and development of formal methods to 

calculate MOS. 

 

The fact that uncertainties in modeling will always exist, leaves science with the 

primary mission of studying the sources and propagation of uncertainty in order to 

determine the reliability of model results that are used to assess risk levels. Several 

types of methods have been used for error propagation in mathematical models; the 

main two methods being first order error (FOE) analysis and Monte Carlo (MC) 

simulation. Some approaches (Borsuk and Stow, 2000; Borsuk et al., 2002; Cryer and 

Applequist, 2003a; Cryer and Applequist, 2003b) have skewed away from the main 

methods; however, the majority of approaches (Mailhot and Villeneuve, 2003; 

Portielje et al., 2000; Sohrabi et al., 2002) are simply derivations of FOE and MC. 

 

The following section seeks to provide a general review of the most common and 

newly introduced methods of prediction uncertainty analysis applicable to models 

developed for water quality assessment. These approaches may have the capability to 

be used as scientifically defensible methods to quantify uncertainty, which would be 

an advancement in the modeling needs of programs (such as TMDL and pesticide 

registration) that make policy decisions based on model predictions. 
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Types of Uncertainties in Modeling 

There are a number of different types of uncertainties involved in mathematical 

modeling. Beck (1987) discussed four problem areas of uncertainty in a review of the 

analysis of uncertainty in water quality modeling. The problems examined were: (1) 

uncertainty about model structure (the method used by the model to describe the 

dynamic behavior of the system), (2) uncertainty in the values used for each input 

parameter, (3) uncertainty in model predictions resulting from numerous error sources 

(e.g., measurement error of input and output variables, initial state of the system), and 

(4) the role of experimental design in reducing uncertainties associated with models. 

As discussed by Beck (1987), uncertainties in model structure (problem 1 above) 

should be perceived more as a science that will perhaps improve slowly as we piece 

together the actual behavior of modeled systems over some unforeseen and most 

likely distant amount of time. Problem 4 (above) should be addressed in the context 

of experimental studies or modeling/monitoring studies, but not in terms of modeling 

approaches per se. 

 

Most of the studies examining uncertainty in mathematical models focus on 

quantifying the effects of residual variability and parameter uncertainty on prediction 

error, which are typified by problems 2 and 3 above. For example, Eckhardt et al. 

(2003) quantified uncertainty in model predictions due to parameters associated with 

land-cover. Muttiah and Wurbs (2002) and Cotter et al. (2002) considered the effect 

of spatial scale of input parameters on model output uncertainties. Chaubey et al. 

(1999) considered output uncertainty due to spatial variability of rainfall. Sohrabi et 
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al. (2003) examined the uncertainty in model output due to variability in input 

parameter values. 

 

Strategies for Quantifying Uncertainty 

The most common strategies for quantifying uncertainty in mathematical models used 

in watershed-scale water quality analysis are Monte Carlo (MC) simulation 

(Benjamin and Cornell, 1970), and first order error (FOE) analysis (Beck, 1987). The 

majority of other types of approaches have been derived from these initial methods. 

Examples of these derivations include Latin Hypercube Sampling (LHS) method 

(McKay et al., 1979), mean-value first order reliability method (MFORM) or mean-

value first-order second-moment (MFOSM) method (Madsen et al., 1986; Yen et al., 

1986), advanced mean-value first-order reliability method (AFORM) or advanced 

mean-value first-order second-moment (AFOSM) method (Hasofer and Lind, 1974), 

and the mean-value second-order (MSO) method (Mailhot and Villeneuve, 2003). 

First and second order methods can jointly be referred to as statistical moment 

estimation methods. They both involve approximating the first and second moment of 

the output function. Newly introduced methods, whether they have resurfaced after 

many years or are newly developed include Bayesian analysis (Borsuk and Stow, 

2000), a probabilistic approach by Borsuk et al. (2002), and the Deterministic 

Equivalent Modeling Method (DEMM) (Cryer and Applequist, 2003a; Cryer and 

Applequist, 2003b; Tantang et al., 1997). 
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In reference to the type of approaches used, the majority of approaches have been 

probabilistic in structure. This is most likely due to studies (Dubus and Brown, 2002; 

Kirchsteiger, 1999; Shirmohammadi et al., 2001; Wu et al., 1997) that have found 

probabilistic methods of analysis to reveal more information. Reckhow and Chapra 

(1999) discuss the deterministic method of model validation as an alternative 

approach to estimating prediction error. The applicability of this method however 

depends on the rigor of the validation test. In other words, it depends on the amount 

of tuning done to the data. Several researchers (Beck, 1987; Melching and Bauwens, 

2001; Wallace, 2000) have pointed out the inadequacy of conventional sensitivity 

analysis (referred to as parameter perturbation or one-at-a- time method) to determine 

the sources of uncertainty for predicted outcomes. This type of deterministic analysis 

is useful for addressing variations in parameters, but provides no information about 

the effect of collective parameter uncertainty on model predictions. Probabilistic 

methods of sensitivity analysis, however, have been found to be of much greater use 

for uncertainty analysis (Dubus and Brown, 2002). 

 

The following sections describe the different approaches that have been used to 

propagate error in hydrologic/water quality models including examples of 

implementation. 

 

Monte Carlo Approaches 

Monte Carlo (MC) simulation involves the initial determination of a probability 

density function (pdf) to characterize the distribution of each uncertain input 

parameter for the model. Values from each parameter distribution are randomly 
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chosen to create multiple sets of input parameters that are used to create distributions 

for model output variables (Sohrabi et al., 2002; Zhang and Haan, 1996). Random 

samples of input parameters can be generated by using the integral of their pdfs 

(called cumulative distribution function, cdf), a technique referred to as the CDF-

inverse method (Tung, 1996). This is done by randomly sampling numbers in the 

probability range of 0 to 1, then feeding those numbers into the cdf of a given 

parameter to obtain a value located on the input parameter pdf. Hundreds or 

thousands of parameter substitutions and model runs are usually necessary in order 

for the solution to converge. After the necessary number of solutions is obtained, the 

combined effect of all uncertain terms is represented by a distribution of the 

generated responses (cdf) of the output variable.  

 

The accuracy of this approach depends on the number of model runs; however there 

are no defined rules for choosing the number of simulations. Computational time and 

the cost of repeated model runs can become problematic. Determining input 

parameter pdfs can also be an issue when there is lack of sufficient data about 

parameters. Advantages of the MC method include its ability to account for parameter 

covariance, it is not limited by model non-linearity, and stratified sampling 

techniques can be used to sample from input parameter distributions more efficiently. 

Parameter covariance can be considered by allowing correlated sampling between 

distributions. It is important for approaches of prediction uncertainty to consider 

covariance between parameters especially since uncertainty has been found to 

decrease when taking covariance among parameters into account (Di Toro and 
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vanStraten, 1979; Reckhow and Chapra, 1999). Many studies, however, assume that 

parameters are not correlated because there is not enough information to determine 

their relationships (Melching and Bauwens, 2001; Sohrabi et al., 2002; Zhang and 

Haan, 1996). 

 

The procedure for drawing samples from each parameter distribution can be aided by 

a stratified approach such as Latin Hypercube Sampling (LHS), which can cut down 

on the number of iterations needed to obtain samples (McKay et al., 1979; Sohrabi et 

al., 2003; Wyss and Jorgensen, 1998). In other words, the solutions will converge 

much quicker. The LHS approach divides the range of each variable into equal 

probability intervals. Samples are then randomly chosen from each interval to be run 

in the computer model. 

 

Dubus and Brown (2002) used two approaches to carry out sensitivity analyses for 

the preferential flow model MACRO for the purpose of determining the most 

influential parameters for the prediction of pesticide losses and percolated water 

volumes. The two approaches used were one-at-a-time and Monte Carlo with LHS 

scheme. For the one-at-a-time method, the Maximum Absolute Ratio of Variation 

(MAROV) was used to determine the magnitude of parameter sensitivity. In the 

Monte Carlo analysis, the Standardized Rank Regression Coefficient (SRRC) was 

used to determine the magnitude of parameter sensitivity. Results between the two 

approaches were said to be in fairly good agreement. Differences in ranking by the 

two different approaches may have been due to the conceptual differences in the 
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methodologies. For example, input pdfs in the MC approach may not match the 

variation of input parameters in the one-at-a-time method. Also, in the MC approach 

parameters were varied at once, while one-at-a-time method used single parameter 

variation. The results of the MC sensitivity analysis approach were used to do a first 

step assessment of uncertainty in modeling. Uncertainty was observed by expressing 

the variation of output predictions as confidence intervals. Uncertainties were found 

to be large in some input parameters, which led the authors to highlight the 

importance of uncertainty analysis in models such as MACRO that are used for 

pesticide registration. 

 

van Griensven et al. (2006) combined both latin-hypercube (LHS) and one-factor-at-

a-time (OAT) sampling methods to create a global sensitivity analysis tool that can be 

used with multi-variable catchment models. Global techniques differ from local types 

in that the entire input parameter space is sampled at once instead of only evaluating 

changes at one point in parameter hyperspace, e.g., mean, default, or optimum value. 

LHS was used to cover the entire parameter space, while OAT was used to identify 

the importance of individual parameters. 

 

Results indicated that hydrologic parameters dominated the highest parameter 

sensitivity ranks. Curve number (CN2) and the groundwater parameter (ALPHA-BF) 

caused the most sensitivity in water quality variables. Also, sensitivity on one 

catchment  is not directly transferable to another catchment due to differences in 

climate and physical characteristics. The same is true for subbasins located in a 
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common watershed where differences in land use, topography, and soil types are 

important. 

 

This global type of method appears to be more robust than using local sensitivity 

schemes that represent a partial effect of input parameters. Therefore, it may be useful 

to apply such techniques to determine the sensitivity coefficient that is often used in 

uncertainty methodologies such as MFORM (Melching and Yoon, 1996), which often 

use local sensitivity methods to tabulate uncertainty.      

 

Sohrabi et al. (2002) evaluated the effects of input parameter uncertainty on 

prediction uncertainty in the MACRO model. The approach used to propagate 

uncertainty was MC using the LHS scheme. This study was conducted for simulating 

atrazine leaching in the Coastal Plain physiographic region of Maryland. Results of 

the assessment determined that consideration of input parameter uncertainties by 

appropriate probability density functions (pdf) produced a 20% higher mean flow rate 

and two to three times larger atrazine loadings than the results predicted by mean 

input parameters. These results further demonstrated the need for quantification of 

prediction error in models used for environmental management and decision-making 

processes. 

 

Uncertainty analysis was conducted on the SWAT 2000 model using the MC/LHS 

scheme (Sohrabi et al., 2003). Output distributions of interest were those associated 

with nutrient and sediment losses. The technique was applied to Warner Creek 



 

 41 

 

watershed located in the Piedmont physiographic region of Maryland. Results 

indicated that consideration of input parameter uncertainty by appropriate pdfs 

produced 64% less mean stream flow and 8.2% greater sediment loads, while nutrient 

output obtained using input pdfs showed very little difference from predicted outputs 

using mean input parameters. This study demonstrated the value of using probabilistic 

techniques to consider prediction errors as opposed to using mean value input 

parameters.   

 

Arabi et al. (2007) used a computational framework including the SWAT model, 

One-At-a-Time (OAT) sensitivity analysis, and Generalized Likelihood Uncertainty 

Estimation (GLUE) to analyze uncertainty associated with hydrologic and water 

quality prediction, as well as the uncertainty associated with estimated benefits of 

BMPs. Uncertainties in sediment and nutrient model outputs were too large. 

However, the uncertainty in model output measuring the estimated effectiveness of 

implemented BMPs was not nearly as large. This suggested that the effectiveness 

BMPs can be determined with good confidence using the SWAT model. Therefore, 

SWAT was determined to be a suitable model for use in watershed management 

planning such as in the TMDL program.   

 

Statistical Moment Estimation Methods 

MFORM is an uncertainty analysis approach that allows the user to express 

uncertainty in terms of variance. Variance is an indication of the closeness of the 

values of a sample or population to the mean. MFORM allows the user to determine 
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the variance of the dependent variable as well as the variance contributed by each 

input parameter (basic variable). Each basic variable should be standardized to 

receive equal consideration. By determining the parameters contributing to the most 

uncertainty, one can go back and re-evaluate those parameters to determine their 

values with greater certainty. This would provide updated model calibration and less 

output uncertainty. The model can then be run to determine the uncertainty of results 

based on validation data. Results are usually expressed in terms of variance, 

probability (of failure), confidence intervals, or other descriptive statistics (e.g., 

coefficient of variation). 

 

MFORM is derived by performing a Taylor series expansion of the model output 

function as follows: 
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where Y is the dependent variable or model output of interest; g ( ) is the function 

representing the simulation process (algorithms, set of equations) to obtain Y; Xe is 

the vector of basic variables at the expansion point; n is the number of basic variables 

xi; and ∂g/∂xi represents the rate of change of the model output with respect to a unit 

change in each basic variable, usually referred to as the sensitivity coefficient. In 

MFORM, the expansion point is at the mean value of the basic variables. Therefore, 

the mean and variance of the dependent variable can be approximated as: 
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where E(Y) is the expected value (mean) of random variable Y; Xm is the vector of 

basic variables at the mean values; σi
2
 is the variance of basic variable i; Cv (xi, xj) is 

the covariance of basic variables i and j; and all other variables are previously 

defined. The first term represents the variance of statistically independent parameters, 

while the second term is used to tabulate the variance of correlated parameters. Cv (xi, 

xj) can be tabulated by using the identity,  

( ) ( )( )[ ]
mjjmiijiv xxxxExxC −−=,        (6) 

where, xmi is the mean value of all xis and xmj is the mean value of all xjs. If basic 

variables are not correlated, Cv (xi, xj) is equal to zero. In this case, the variance of 

output can be written as: 
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This term represents the fraction of model output variance (FOV) contributed by each 

basic variable. When using complex models, the best way to solve for ∂g/∂xi is by 

using numerical methods. Melching and Bauwens (2001) tabulated ∂g/∂xi using 

forward difference with change in xi equal to 0.01. The unit change of xi depends on 

the sensitivity of the model to change in parameters. 

 

The FOE method of analysis has the advantage of being very efficient in that it only 

requires calculation of the first two statistical moments (mean and variance) of the 

basic variables. It also allows for consideration of parameter covariance. Another 
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advantage is that is does not require parameter pdfs, however, this could be a 

disadvantage because the method is insensitive to the distribution of parameters. The 

main shortcoming of this method is its linear approximation of the model, which may 

not be representative of some nonlinear models. Approximating to higher order 

derivatives may increase the accuracy of this method; however the level of 

complexity also increases.  In comparison to MC methods, FOE requires much less 

computational time. 

  

Melching and Bauwens (2001) evaluated uncertainty in coupled non-point source and 

stream water-quality models applied to a suburban watershed. They used LHS and 

mean value first-order reliability methods (MFORM) to determine prediction 

uncertainty of dissolved oxygen (DO) concentrations. LHS was used to identify the 

basic variables that significantly contribute to output uncertainty, while MFORM was 

used to provide estimates of the percentage contribution of the variables to output 

uncertainty. In LHS, input parameters were ranked in terms of their correlation with 

output values to determine their importance. General conclusions could not be made 

about the overall uncertainty of the system because of the limitations inherent in each 

individual model. However, the study was able to help identify key sources of 

uncertainty, i.e., the main parameters that significantly affect the uncertainty in 

simulated DO concentrations and the percent contribution of each parameter. The two 

uncertainty methods, LHS and MFORM, agreed well in determining key sources of 

uncertainty. 
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Two stochastic reliability methods were compared with MC simulations to determine 

the efficiency of these approaches to predict exceedance probabilities for extreme 

events using deterministic water quality models (Portielje et al., 2000). Both methods 

used the first order reliability method—one using LHS (FORM/LHS) and the other 

using Directional Simulation with Importance Sampling (DIS) (FORM/DIS). In DIS, 

individual parameters are not sampled, but directions are sampled within the u-space 

(independent standard normal distributed parameters). Sampling density is imposed in 

such a way that the number of simulations needed to obtain a desired accuracy is 

decreased. In the case using a simple numerical lake model, both FORM/LHS and 

FORM/DIS provided more accurate results than MC at exceedance probabilities less 

than 0.1. In the second case where a more complex non-linear stream model 

Dissolved Oxygen Stream Model (DOSMO) was used, results indicated that 

FORM/LHS was more efficient than FORM/DIS and MC in estimating very small 

probabilities. This study demonstrated the applicability of using stochastic reliability 

methods to determine prediction uncertainty in deterministic water quality models, 

which are the main types of models endorsed by EPA for making policy decisions.   

 

Mailhot and Villeneuve (2003) presented a mean-value second order (MSO) method 

of uncertainty analysis to be applied in water quality modeling. This method was 

compared to two other methods—mean-value first-order second-moment (MFOSM) 

and advanced mean-value first-order second-moment (AFOSM). The MSO method 

involves computing the mean value point, and then taking the first- and second-order 

derivatives at the mean value point. Standard numerical packages can then be used to 
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diagonalize the matrix of second-order derivatives. Finally, the exceedance 

probability function is found using numerical integration.   The authors used a 

Streeter-Phelps prototype model (simple model) to predict exceedance probabilities 

of dissolved oxygen (DO). Results showed that the MSO method predicted more 

accurate estimates of exceedance probability. Also, the use of MSO was found to be 

more appropriate for highly non-linear models and cases where MC methods lead to 

extended computational time. However, the authors did point out the need to consider 

covariance terms within the MSO approach, which could lead to even more 

satisfactory results. MSO has not been applied to complex hydrologic or water quality 

models.  

 

Melching and Yoon (1996) used First-Order Reliability Analysis (FORA) to 

determine the parameters contributing to the most uncertainty in model prediction of 

dissolved oxygen (DO), carbonaceous biochemical oxygen demand (CBOD), 

ammonia, and chlorophyll a. The study was conducted on the Passaic River in New 

Jersey using the complex water quality model, QUAL2E. Results indicated that the 

reaeration-rate coefficient and the algal maximum-specific-growth rate were the two 

input parameters having significant effect on prediction uncertainty of DO and 

chlorophyll a. The uncertainty in output values of CBOD and ammonia were not 

significantly affected by input parameter uncertainty. A more detailed study as well 

as more efficiently planned sampling of the significant input parameters would lead to 

a reduction in prediction uncertainty of output parameters. 
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Zhang and Haan (1996) conducted a study on the effect of uncertainty in input 

parameters on output parameter uncertainty using the Field Hydrologic and Nutrient 

Transport Model (FHANTM). Parameters associated with flow and phosphorus 

outputs were examined. Both the First Order Analysis (FOA) and Monte Carlo 

Simulation (MCS) were used to quantify model parameter uncertainties. The authors 

used two different approaches because as they stated, “there was no clear guidance as 

to when FOA provided satisfactory results.” The two different approaches produced 

different, but reasonably close results in indicating which parameters contributed to 

the most uncertainty in output values. FOA estimates of standard deviation for runoff 

(RO), subsurface lateral flow (LF), P concentration in runoff (Pcon_RO), and P 

concentration in lateral flow (Pcon_LF) were 8.17, 1.72, 0.085, and 0.063, 

respectively. While the corresponding standard deviations for MCS were 7.03, 1.80, 

0.085, and 0.188. 

 

The monthly potential evapotranspiration factor (FACTOR) and the horizontal 

hydraulic conductivity of the transmissive layer (HORTK) were the parameters 

contributing to the most variability in flow output. For phosphorus output, the mass of 

P added by animals each day (PADD) and the average daily potential yield of green 

matter (POTYLD) contributed the most variability. In order to reduce the level of 

uncertainty in output parameters, uncertainty in input parameters must be reduced. 

This type of study is useful in determining the most important input parameters to be 

considered for more careful value selection.     

 



 

 48 

 

Other Approaches 

Cryer and Applequist (2003a, 2003b) studied the use of Deterministic Equivalent 

Modeling Method (DEMM) to propagate input parameter uncertainty on prediction 

uncertainty. This method uses orthogonal polynomial chaos expansions and stochastic 

weighted residual methods to propagate parameter uncertainty through complex 

models. The polynomial expansions represent the uncertainty in parameter values like 

as pdfs represent uncertainty in MC methods. Stochastic weighted residual methods 

(e.g., Collocation method or Galerkin’s method) are used to provide sample 

coefficients to be placed in the input polynomial expansions to yield the polynomial 

expansion of the dependent variable.  Coefficients of dependent variable equations 

can be determined using a linear solver package (e.g., MATLAB, Mathmatica). 

Probability of occurrence is obtained in the form of a cdf for each output variable. An 

advantage of this method over the Monte Carlo method is its computational 

efficiency. DEMM carries representation of each uncertain parameter distribution 

throughout calculation of the dependent variable.   

 

In one study (Cryer and Applequist, 2003a) the authors used DEMM on two simple 

models, one algebraic system (to determine pesticide risk quotients for invertebrates) 

and the other a coupled ordinary differential equation system (modeling pesticide 

degradation and metabolite formation/degradation in soil). The environmental fate 

and risk for aquatic invertebrates of chlorpyrifos were examined. Uncertainties in 

output predictions of the pesticide chlorpyrifos were determined by DEMM. This 

paper mainly discussed the method for using DEMM on problems of environmental 

fate and risk assessment. In a companion study (Cryer and Applequist, 2003b) the 
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authors compared DEMM and MC simulation for achieving estimated cumulative 

probability functions for pesticide fate predicted by PRZM3 (Carsel et al., 1988) and 

AGDRIFT (Bird et al., 2002). DEMM was found to be capable of achieving those 

estimates with an order of magnitude less iteration than MC. However, DEMM did 

not perform as well as MC at higher percentiles (>90%). DEMM can be easily 

applied to deterministic models with input/output file structure not requiring source 

code modifications. It has been introduced as an alternative to Monte Carlo methods 

for use with models with uncertainties in continuous parameters, when quick analysis 

of uncertainty and sensitivity of parameters is desired and when CPU time is an issue. 

 

Borsuk et al. (2002) developed a probabilistic modeling approach to account for 

residual variability and parameter uncertainty that can be used with any type of 

model. This study was one of the few studies that directly tabulated a value for MOS 

for TMDL development. The approach was demonstrated using an empirical 

eutrophication model (simple model) built for the Neuse River estuary in North 

Carolina. The estuary contains several WQLSs found to be impaired by nutrients. 

Chlorophyll a (40µg/L) is the standard that the waters were found to exceed. That 

standard is expressed as a percentile, where a waterbody is determined to be impaired 

if more than 10% of samples from that waterbody violate the 40µg/L limit. The 

authors discussed the importance of percentile-based standards which attempt to 

accommodate occasional standard violations resulting from natural variability and 

measurement error. 
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In order to account for residual variability (e.g., imperfect system representation, 

intrinsic randomness, measurement error) within the process of predicting pollutant 

concentration, the response variable was considered to be normally distributed. The 

distribution of the response variable was used to determine the probability of 

exceeding the numerical criterion. Variability over a period of time was accounted for 

by choosing multiple sets of predictor variables (input variables), for example, daily 

values to represent an annual time period.  

 

The uncertainty in predicted exceedance probability resulting from parameter 

uncertainty was tabulated using a Monte Carlo procedure to form a distribution of 

exceedance probabilities over 1000 sets of input parameters. That distribution was 

then expressed as a 90% confidence interval on the exceedance frequency and also as 

a “confidence of [standard] compliance” (CC). 

 

CC was defined as the degree of confidence that the true value of the exceedance 

frequency is below the specified value (e.g. 10% as called for by EPA guidance). CC 

could then be used to determine MOS by calculating the difference of reduction 

percentage necessary to meet a CC where water quality standards are obtained and 

some higher level of CC specified by a decision maker. Advantages of this method 

are its simplicity; uncertainty is expressed in terms of exceedance frequency to meet 

percentile-based standards, as opposed to only determining uncertainty in the 

predicted pollutant concentration; parameter covariance can be considered; and it can 

be applied to non-linear models. This method was specifically crafted for MOS 
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determination in TMDL analysis; however it has not been applied to the complex 

type of models that are currently being used in TMDL analysis. The disadvantage of 

this method is the potentially large amount of computational time involved with 

Monte Carlo procedures.  

 

Walker (2003) used a probabilistic method of uncertainty analysis on a simple 

empirical P loading model. They stressed the importance of accounting for both 

variability and uncertainty in margin of safety tabulation. Variability represents both 

temporal and spatial changes in a system that usually cannot be reduced. Uncertainty 

represents imperfection or errors in e.g., model structure, or input parameter 

estimation that can possibly be reduced by further study, additional sampling, and/or 

adaptive management practices. Model uncertainty was expressed as the coefficient 

of variation for predicted average P concentration. It was derived by adding 

coefficient of variations from lake model error and forecasted load error. Variability 

was expressed as the year-to-year coefficient of variation of Lake P concentration, 

derived from variance component analysis of large lake and reservoir datasets.  

 

Borsuk and Stow (2000) used Bayesian analysis for a parameter estimation study.  

The basic premise of this technique is to use new information (observed data) to 

update the earlier assumed data. Each data set is expressed in the form of probability 

density functions. Bayes theorem puts this information into perspective as follows: 
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where )|( xp θ  expresses the probability of the parameter values given the observed 

data (posterior distribution), p(x|θ) is the likelihood function [the dependence of x 

(new observations of parameters) on θ (prior belief parameters)], p(θ) is the pdf of 

prior beliefs, and p(x) is the expected value of the likelihood function over the 

parameter distribution. 

 

The Bayesian approach to quantify prediction uncertainty computes a predictive 

probability distribution for a given set of data by integrating the product of the 

likelihood and prior over the parameter values as such: 

∫= θθθ dpxpxp )()|()(         (9) 

where each term has been defined above. Borsuk and Stow (2000) found that the use 

of a mixed-order model for BOD decay as opposed to a first or second order model 

resulted in a better fit of predictions to observed data. The use of the Bayesian model 

facilitated the explicit consideration of uncertainty in model predictions by using pdfs 

to describe parameters and their effect on overall predictions. This approach has not 

been tested on complex models. Also, it has not been widely used possibly because of 

the subjective information contained in the prior distribution (Reckhow and Chapra, 

1999). 

 

Wagner et al. (2007) conducted a study on uncertainties in the development of 

TMDLs for biologically impaired waters using the reference watershed approach. The 

variability in pollutant reduction requirements was analyzed by using different 

combinations of land use data, alternative water quality models, and different non-
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impaired reference watersheds. The study found that those alternative scenarios 

introduced considerable uncertainty into required pollutant reductions; so much so 

that they suggested that explicit margins of safety during the tabulation of sediment 

TMDLs may need to be substantially greater than 20% when using the reference 

watershed approach.  

 

Synthesis of Uncertainty Methods and Criteria for Most Suitable Selection 

The review of literature in the previous section describes a number of uncertainty 

analysis methods that have been used in hydrologic and water quality modeling. The 

purpose of this section was to select the most suitable technique for use in the current 

project. A list of the most important criteria used for evaluating these methods along 

with the ranking of each method is found in Table 2. Criteria were chosen based on 

the necessity and/or benefit they provide in meeting the goals and constraints of this 

study.  

 

First, we wanted to select a method that could be used with ease on a complex, black-

box model such as AVSWATX. Many of the reviewed methods have only been tested 

on simple, empirical models. A technique proven to give accurate predictions of 

uncertainty due to parameter uncertainty as well as provide the amount of uncertainty 

contributed by each parameter was also needed. This is useful for determining the 

parameters needing special attention during field measurement and model calibration 

to reduce their contribution to overall uncertainty. Computational efficiency was a 
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major determinant in choosing a method. Uncertainty has been shown to be 

watershed condition specific (Eckhardt et al., 2003). In other words, parameters have 

different levels of importance depending on management scenarios and project 

purpose. In watershed assessments where numerous BMP’s must be tested, it would 

be useful to use methodologies that do not require a long computational time frame. 

Most complex models have a certain level of non-linearity, which may be important 

when considering uncertainty; however methods that assume linearity have produced 

similar results as those that do not (Melching and Bauwens, 2001; Zhang and Haan, 

1996). Consideration of parameter covariance is another attribute of an uncertainty 

analysis method, but the relationship between model parameters is often unknown. 

Therefore, most uncertainty studies of complex, black –box models assume 

parameters are not correlated.    

 

MFORM was chosen as the most suitable uncertainty analysis method for this study. 

Its computational efficiency and provision of fraction of uncertainty contributed by 

each input parameter caused it to be chosen over methods that closely fit the criteria. 

The next section of literature review discusses the methods that have been used to 

tabulate MOS for TMDL analysis. 
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Table 2 Criteria rating of uncertainty analysis methods for use in Warner Creek watershed 

study. 

Statistical Moment 

Estimation Methods 
Criterion MCS LHS DEMM 

MFORM AFORM MSO 

Baysian 

Analysis 

Use on 

Complex 

Models 

● ● ● ● ○ ○ ○ 

Accuracy ● ● ◘ ◘ ◘ ● ◘ 

Parameter 

Uncertainty 

Contribution 

○ ○ ○ ● ● ● ○ 

Computational 

Efficiency 
○ ◘ ◘ ● ◘ ◘ ◘ 

Non-linear 

Model 

Performance 

● ● ● ◘ ◘ ● ● 

Simplicity ● ● ○ ● ◘ ○ ● 

Parameter 

Covariance 

Consideration 

● ● ● ● ● ○ ● 

Totals 5 5.5 4 6 4 3.5 4 

●- full point, ○-no point, ◘- partial/half point 

Use of Formal Uncertainty Methods to Tabulate Margin of Safety for TMDLs 

The majority of TMDL analyses conducted across the nation are using highly 

subjective and arbitrary methods of assigning the MOS value (Dilks and Freedman, 

2004). There has been no clear, widespread guidance as to how MOS should be 

tabulated for the different parameters of concern.  Therefore, many site specific 

assessments are made.  Few researchers have attempted to translate the uncertainty in 

complex models used for TMDL analysis into MOS. 
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 Walker (2003) developed a framework to tabulate margin of safety for lake 

phosphorus TMDLs by including stochastic terms in the phosphorus balance equation 

to reflect variability and uncertainty. The method is not easily applicable to complex 

models but the study made some interesting observations about MOS tabulation. 

When both variability and uncertainty are considered, the result is often a large 

margin of safety value (MOS). A large MOS means that a larger load reduction must 

be met by contaminant sources. This leads to higher costs for reduction measures and 

larger risk of not meeting water quality goals because of the uncertain performance 

level of most non-point source control measures. 

 

The Walker (2003) study demonstrated the benefit of using an adaptive management 

approach to implement TMDLs. In this approach, a TMDL would first be 

implemented without considering an MOS, allowing an initial reduction in point and 

non-point source loads. Then after a period of time, in which further measurements 

and model adjustments can be made, the TMDL would then be adjusted to include an 

MOS. That MOS would presumably be smaller in value than what it would originally 

have been in the initial TMDL, that is, before measurement and model adjustments. 

The adaptive implementation approach has been suggested by a number of agencies 

(NRC, 2001; USEPA, 2002a). 

 

Borsuk et al. (2002) tabulated uncertainty based on the exceedance frequency of a 

given output. Confidence of compliance (CC) was defined as the degree of 

confidence that the true value of the exceedance frequency is below a specified limit 
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(e.g. EPA guidance has suggested using a probability-based standard, for some 

contaminants, which states that a contaminant should not exceed its water quality 

standard more than 10 % of a specified time duration). CC could then be used to 

determine MOS by calculating the difference of reduction percentage necessary to 

meet a CC where water quality standards are obtained and some higher level of CC 

specified by a decision maker. This is a good approach assuming a normal 

distribution of exceedance frequencies. Also obtaining such a distribution would 

require obtaining a large number of exceedance frequencies implying a long 

computational time. 

 

The MOS approaches discussed above by Walker (2003) and Borsuk et al. (2002) are 

similar in that MOS is determined based on the level of confidence that the water 

quality standard will be met. This level of confidence can be a policy decision or 

determined by regulation but it is a subjective quantity. Clearly there must be some 

level of subjectivity in determining MOS and the extent to which MOS will be 

implemented but the decisions should be based on proper scientific or deductive 

reasoning.  

 

Zhang and Yu (2004) is the only current study that has applied first-order error 

analysis (MFORM) to a complex model (HSPF) to determine MOS for TMDL 

analysis. Based on the output of MFORM, one standard deviation of the output 

variable was assigned to MOS. It was then determined that the probability of the 

concentration being greater than the mean plus one standard deviation was 
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approximately 16%. Therefore, it was concluded that one standard deviation of the 

model output was reasonable and practical in that application. This method was 

pointed out to be subjective and then lead to the discussion of an upper limit of MOS. 

However, no further discussion of standard deviation measures was examined. The 

authors then suggested that the estimated MOS can be determined based on the 

variability in the most sensitive parameter. This however reverts to assigning an MOS 

based on sensitivity as opposed to uncertainty.   

   

As the literature indicates, the number of studies that have tested models for their use 

in TMDL assessment has been lacking. Even fewer studies have developed 

methodologies for tabulating the MOS value of TMDLs using a formal method of 

uncertainty analysis. In this study we will determine MOS based on the confidence of 

compliance of a percentage-based water quality standard for nitrate concentration. 

Our method combines MFORM results with the procedure used by Borsuk et al. 

(2002) to tabulate MOS. This method addresses the use of percentage-based standards 

which attempt to account for measurement error and natural variability (USEPA, 

2003a).  
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Chapter 3: Objectives  

 

The overall goal of this project was to devise a modeling tool that can help enhance 

TMDL assessments for any given body of water. Such a tool may help stakeholders 

(e.g., State and Federal agencies) to fulfill the objectives of the Clean Water Act 

regarding improvement of impaired water bodies. To achieve such a goal, the 

following specific objectives were set to be achieved in this study: 

  

1) Calibrate and validate the hydrology, sediment, and nutrient components of 

AVSWAT-X to evaluate its prediction capabilities, 

2) Develop and evaluate a formal uncertainty analysis approach using mean-

value first-order reliability method (MFORM) to support margin of safety 

(MOS) tabulation, and 

3) Evaluate the applicability of using AVSWAT-X to support waterbody 

impairment identification and TMDL development for waterbodies impaired 

by nutrients. 
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Chapter 4: Methodology 
 

Site Description and Monitoring Design 

Warner Creek watershed is located in Frederick County, Maryland within the 

piedmont physiographic region. The watershed area is approximately 840 acres and 

drains into Little Pipe Creek, a tributary of the Monocacy River (Figure 1). The 

Monocacy river basin is known to contribute high levels of nutrients to the 

Chesapeake Bay (Blankenship, 2007; USDA-SCS, 1990). Nutrient loads in the study 

watershed can be attributed to non-point sources including grazing cattle, and excess 

nutrients from cropland. 

 

There are two main types of soils in Warner Creek watershed, Manor-Edgemont-

Brandywine soils (~1/3 of watershed) and Penn-Reading-Croton soils (~2/3 of 

watershed). Most of the upland agricultural soils belong to the Penn silt loam series 

with slopes ranging from three to eight percent. The land uses consist of mixed 

agriculture (~76%), urban (~13%), forest (~11%), and water (<1%) (based on land 

use maps from Searing and Shirmohammadi (1994)).  

 

The water quality monitoring design consists of upstream/downstream and paired 

watershed schemes (Figure 2). Upstream/downstream studies have one monitoring 

station upstream from the area where BMP implementation occurs (station 1C) and a 

second monitoring station downstream from that area (station 2A). This design is 
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most useful for determining the magnitude of a non-point source (USEPA, 1993). 

Paired watershed studies include one watershed where BMPs are not implemented 

(station 1A, control) and a second watershed with similar characteristics where BMPs 

are implemented (station 1B, study). This design is useful to demonstrate  the 

effectiveness of BMP implementation (USEPA, 1993).  

 

An automated flowmeter and sampler were installed at station 2A to record 

continuous streamflow hydrographs and collect water quality samples. A rain gauge 

was also installed at station 2A to collect rainfall data. Staff gauges were used at 

stations 1A, 1B, and 1C to estimate flow volume. In addition to automated samples 

taken during storm events, grab samples were taken on a weekly basis from February 

through June, and biweekly during the remainder of the year. 
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Figure 1 Location of Warner Creek watershed in Maryland. 

 

 

 

 

 

Figure 2 Watershed boundary and monitoring stations. 
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Model Description and Data Acquisition 

The Soil Water Assessment Tool (SWAT) model (Arnold et al., 1998) is a watershed 

loading/water quality model that was developed by the U.S. Department of 

Agriculture- Agricultural Research Service (USDA-ARS) to estimate the impact of 

different management scenarios on water, sediment, and agricultural chemical yields 

in large ungauged basins. It is a complex, physically-based, semi-distributed model 

that operates in continuous time on a daily time step. The main components of SWAT 

include: climate, hydrology, land cover/plant growth, erosion, nutrients, pesticides, 

land management, channel routing, and reservoir routing. Algorithms from the 

QUAL2E model were incorporated into SWAT to give it in-stream water quality 

modeling capabilities (Ramanarayanan et al., 1996). SWAT is one of the more recent 

models added to the U.S. EPA Bettter Assessment Science Integrating Point and 

Nonpoint Sources (BASINS) modeling framework for use in TMDL assessment (Di 

Luzio et al., 2002a).  

 

The version of SWAT used in this study was AVSWATX-2003, which operates in 

the ArcView GIS interface. Site-measured daily precipitation data were used during 

the entire simulation period (Appendix A-1). Missing rainfall data were filled in using 

daily measurements from a nearby monitoring station in Emmitsburg, MD. Daily 

maximum and minimum temperature data were also obtained from the Emmitsburg 

monitoring station.  Daily solar radiation, wind speed, and relative humidity data 

were generated using AVSWATX’s weather generator. The GIS maps required to run 

SWAT include digital elevation model (DEM), land cover/land use, and soil data. A 
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U.S. Geological Survey (USGS) National Elevation Dataset (NED) DEM (30m 

resolution) was obtained from GISHydro2000 software (Moglen, 2004), a tool used 

to conduct hydrologic analyses in the State of Maryland. Two 7.5 minute quadrangle 

maps (Woodsboro and Union Bridge) were merged together to create the Warner 

Creek watershed DEM. The watershed was delineated in SWAT by specifying the 

outlet coordinates (212,887m North and 379,202m East, Maryland State Plane 

Coordinates). Land use data were collected for each field identified by aerial photos 

obtained from the U.S. Department of Agriculture's Agricultural Stabilization and 

Conservation Service (USDA-ASCS) office. The land use map was created in the 

ERDAS IMAGINE GIS system. A SSURGO soil map of Frederick County, MD 

(NAD83 coordinate system) was downloaded from USDA’s Natural Resources 

Conservation Service (USDA-NRCS) Soil Data Mart server.  

 

The delineated watershed was separated into 8 subbasins based on the configuration 

of stream segments (Figure 3). A threshold value of 15% was chosen for both soil and 

land use types. Therefore, soils and land uses making up less than 15% of a subbasin 

were not assigned to an HRU. That threshold was reasonable considering the small 

size of Warner Creek watershed compared to larger watersheds that would likely have 

more variability and require higher thresholds to create a reasonable number of 

HRU’s for an efficient evaluation. As result of the 15% threshold assignment, the 

AVSWAT-X interface identified 53 HRUs in the Warner Creek watershed. 
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Figure 3 Location of subbasins and land use configuration. 

 

 

Once the watershed was delineated and all subbasins and HRU’s were assigned, the 

SWAT view was created. This view allows you to create/edit input files on an HRU, 

subbasin or watershed basis. The eleven files located in the edit subbasin menu of the 

SWAT view are described below: 

• Soil Physical Data (.sol) 

o Input of physical characteristics of the soil for up to 10 layers. 

Includes parameters such as hydrologic soil group, maximum rooting 

depth, percent sand, silt, and clay, soil bulk density, available water 

capacity, and saturated hydraulic conductivity. These properties are 

important to the movement of air, water, and chemicals through the 

soil profile.   

• Weather Generator Input Data (.wgn) 
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o This subbasin level file contains the statistical data needed to generate 

representative daily climate data. Climatic data is generated when the 

user specifies that simulated weather will be used or when measured 

data is missing. Example parameters include weather station location 

and elevation, average daily maximum and minimum temperature for 

the month, average total monthly precipitation, and probability of a 

wet day following a wet or dry day in the month. 

• General Subbasin Input Data (.sub) 

o General input data contained in this file include: properties of 

tributary channels within the subbasin, amount of topographic relief 

within the subbasin and its impact on climate, variables related to 

climate change, the number of HRUs in the subbasin and the names of 

HRU input files. 

• General HRU Input Data (.hru) 

o General HRU data contained in this file include: area contained in 

HRU, parameters affecting surface and subsurface water flow, 

parameters affecting erosion and management inputs related to the 

simulation of urban areas, irrigation, tile drains and potholes. 

• Main Channel Input Data (.rte) 

o This file contains parameters associated with the physical 

characteristics of the main channel, which affect water flow, and 

transport of sediment, nutrients and pesticides. These parameters 
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include: length, width, and depth of the main channel, Mannings 

roughness coefficient in main channel, effective hydraulic 

conductivity in main channel alluvium, and channel cover and 

erodibility factors. 

• Groundwater Input Data (.gw) 

o The properties governing water movement into and out of the shallow 

and deep aquifers are initialized in this file. Parameters include, for 

example, groundwater delay time, baseflow alpha factor, groundwater 

revap coefficient, and deep aquifer percolation fraction. 

• Consumptive Water Use Input Data (.wus) 

o This file is used to simulate removal of water from the basin for 

irrigation outside the watershed or urban/industrial use. Sources of 

removal can be from the shallow aquifer, deep aquifer, reach, pond or 

reservoir in any subbasin in the watershed. This water is considered to 

be lost from the system. 

• Management Input Data (.mgt) 

o This HRU level file is used to describe the management practices 

taking place throughout the watershed. The first few lines of this file 

contain general management parameters and initial values. The 

remainder of the file lists the timing of operations such as planting, 

harvesting, irrigation application, nutrient applications, pesticide 

applications, and tillage.  
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• Soil Chemical Input Data (.chm) 

o Input of chemical characteristics of the soil by layer. Used to set the 

initial levels of different chemicals in the soil. Input of these 

properties is optional. Input parameters include: initial NO3, organic 

N, soluble P, organic P concentrations. Pesticide data may also be 

entered.  

• Pond/Wetland Input Data (.pnd) 

o This file contains parameter information used to model the water, 

sediment, and nutrient balance for ponds and wetlands. Inputs into 

this file include: fraction of subbasin area draining into 

ponds/wetlands, initial water volume in ponds/wetlands, phosphorus 

settling rate in pond/wetland for month, and nitrogen settling rate in 

pond/wetland for month.  

• Stream Water Quality Input Data (.swq) 

o Data governing in-stream water quality processes are contained in this 

file. Nutrient settling rates, rate coefficients and rate constants are 

included as well as pesticide reaction coefficient, volatilization 

coefficient, and partition coefficient.  

 

Model Calibration and Validation 

Calibration can be defined as the process by which optimal parameter values are 

determined by the model user in order to produce the most accurate model predictions 
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in comparison to measured data. Validation is the process by which a model is tested 

by the model user to determine whether or not it can produce acceptable prediction 

results according to a specified criteria or purpose. Model calibration and validation 

were conducted on streamflow (FLOW_OUT), sediment (SED_OUT), nitrate 

(NO3_OUT), and phosphate (MINP_OUT) output. Streamflow was calibrated first, 

followed by sediment and then nutrients. There are several output files where 

simulation results can be evaluated. Simulated output from the rch.dbf file was 

compared to measured data for model performance evaluation. After each model run, 

the rch.dbf file automatically stores routed flow and constituent input to the main 

channel from each subbasin including the outlet of the watershed located at subbasin 

#8. Another file that was used to examine the general water balance of output was the 

summary output.std file located in the simulation txtinout directory. The output.std 

file provides weighted average loadings from HRUs to streams not routed through the 

watershed. 

 

Manual calibration was performed by changing input parameters by percentage or 

absolute value from within the tables menu of the ArcView GIS interface. Input 

parameters used in calibration were chosen based on sensitivity analyses found in the 

literature (Chu and Shirmohammadi, 2004; Chu et al., 2004; Sohrabi et al., 2003; 

White and Chaubey, 2005), and the physical meaning of parameters as they relate to 

output tabulation (model algorithms). The perturbed input parameters and the relative 

predicted output response to changes in parameters are listed in Table 3.  
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Other parameters not included in Table 3 were adjusted during calibration; however 

the effects were less systematic. Lateral flow travel time (LAT_TIME in .hru input 

file) and groundwater delay time (GW_DELAY in .gw input file) were used to adjust 

the timing of flow in the subsurface. There was no direct change in magnitude of 

flow. Surface runoff lag coefficient (SURLAG in .bsn input file) was adjusted when 

trying to match hydrograph peaks. Baseflow alpha factor (ALPHA_BF in .gw file) 

was changed to fine-tune hydrograph recession curves. The higher this value, the less 

steep the baseflow recession curves. Melt factor for snow on June 21 (SMFMX in 

.bsn file) was not changed because there is no snow in the study watershed in June. 

Snow pack temperature lag factor (Timp in .bsn file) was adjusted to properly 

simulate the influence of the previous day’s snow pack temperature on the current 

day. The previous parameters all relate to storm sequences (lag times and shapes).  

 

Fraction of porosity from which anions are excluded (Anion_Excl in .sol file) was 

varied to adjust the transport of nitrate in the soil. Only slight changes were observed. 

Effective hydraulic conductivity in tributary channel alluvium (CH_K1 in .sub file) 

was lowered to reduce transmission losses. To get more evapotranspiration and less 

surface runoff we changed the potential evapotranspiration method of calculation 

(IPET in .bsn file) from the Priestly-Taylor Method (option 0) to the Hargreaves 

method (option 2). 

 

A second, more detailed calibration approach was used in an attempt to obtain better 

calibration results.  This method involves assigning one HRU at a time to the entire 
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watershed in order to more closely calibrate parameters associated with specific land 

uses and soil types (Arnold and Sammons, 2006). This type of methodology is most 

useful in studies where a large portion of a watershed is made up of the same land use 

and soil type.  First the SWAT executable file (e.g., swat2003.exe) should be placed 

in the txtinout folder located in the default directory of SWAT. Then changes should 

be made to the files listed below as follows: 

1. Select the fig.fig file in txtinout: Move the subbasin containing the HRU that you 

want to use, to the top of the file (e.g., subbasin 5 would be 00005000000.sub). 

Change the last two digits in the first row of the subbasin to the number 1. Add a 

blank line after that subbasin entry to end the string of commands. 

2. Select the subbasin file (e.g., 000050000.sub) in txtinout: Change the total number 

of HRUs modeled in the subbasin (HRUTOT) to 1. Choose the HRU (e.g., 

000050003) that you want to assign to the entire watershed and bring it to the top of 

the list of HRUs. Add a blank line after that HRU entry to end the string of 

commands. 

3. Select the HRU file (e.g., 000050003.hru) in txtinout: Change the fraction of 

subbasin area in HRU (HRU_FR) to 1.0.  

 

The SWAT model should then be run using the executable file in the txtinout folder. 

Output from that execution can be found in the output.std file located in the txtinout 

folder, which can then be compared to measured data. 
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Streamflow measured at the outlet of the watershed (station 2A) was separated into 

surface flow and baseflow using the streamflow partitioning method by Linsley et al. 

(1982). This method involves observing streamflow hydrographs and terminating 

surface runoff after a fixed time (e.g., days) after the peak of the hydrograph. Due to 

equipment malfunction, flow data was incomplete during 1998. In order to correct 

this problem, Chu and Shirmohammadi (2004) employed artificial neural network 

(ANN) models (ASCE, 2000a; ASCE, 2000b) to estimate the monthly surface runoff 

and baseflow during March through December 1998 using flow and rainfall data from 

years 1994 through 1997 and 1999. Average sediment and nutrient concentrations 

measured at the outlet of the watershed (station 2A) were used to calculate loadings 

of these constituents leaving the watershed. Monthly collections of all measurements 

were used to calibrate and validate the model (Appendix B). ANN generated flow 

data for 1998 are noted by asterisks in Table B1 of Appendix B-1.  

  

In a previous study done on this watershed using an earlier version of SWAT, Chu 

(2003) found that subsurface contributions of flow and chemicals were not being 

properly accounted for by the model. This was due to the fact that the model only 

considered the watershed area delineated by surface topography, as is the case in most 

if not all watershed-scale models. Warner Creek watershed’s small size and large 

baseflow contribution to total streamflow (~76%) makes it especially sensitive to this 

occurrence. In order to conduct a fair evaluation of SWAT’s performance in this 

watershed, Chu (2003) performed a water budget analysis to remove measured 

subsurface flow contribution from outside of the watershed. Once the baseflow 
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adjustments were made, measured chemical contributions were adjusted as well. The 

adjusted measured baseflow and chemical loads from Chu and Shirmohammadi 

(2004) and Chu et al. (2004)were used in the present study (see Appendix B).    

 

Flow was calibrated using approximately three years of measured data (April-Dec. 

1994, 1995, and 1997), and validated using four years of measured data (1998-2001). 

It should be noted that 1996 data were not used in hydrologic simulations because it 

was an unusually wet year with annual precipitation being almost double the normal 

annual values for Maryland. Since sediment measurements were not available after 

1997, sediment yield was calibrated using measured data from two years (April-Dec. 

1994 through 1995) and validated using 1996 and 1997 measured data. Nutrient 

loading was calibrated using approximately four years of data (April-Dec. 1994-

1997) and validated using four years of data (1998-2001).
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Table 3 Relative predicted output response to parameter perturbation in Warner Creek watershed.  

Perturbed 

Parameters   Output Variables 

  Change in Input 

Parameter 

Surface 

Runoff Baseflow Streamflow Evapotranspiration 

Sediment 

Yield 

Nitrate 

Load 

Phosphate 

Load 

I I D     I     

CNOP(.mgt2) D D I     D     

I D     D       

ESCO(.hru) D I     I       

I   D           

GW_REVAP(.gw) D   I           

I   D           

RCHRG_DP(.gw) D   I           

I I(w)             

SMFMN(.bsn) D D(w)             

I         I     

HRU_SLP(.hru) D         D     

I D D D         

SOL_AWC(.sol) D I I I         

I I I I         

SOL_K1(.sol) D D D D         

I         I     

SLSUBBSN(.hru) D         D     

I         I     

USLE P(.mgt1) D         D     

I         I     
ADJ_PKR(.bsn) D         D     
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Table 3 Cont. 

  Change in Input 

Parameter 

Surface 

Runoff Baseflow Streamflow Evapotranspiration 

Sediment 

Yield 

Nitrate 

Load 

Phosphate 

Load 

I         I D D 

BIOMIX(.mgt1) D         D I I 

I         I     

CH_EROD(.rte) D         D     

I         I     

CH_COV(.rte) D         D     

I         I     

SPCON(.bsn) D         D     

I         I     

SPEXP(.bsn) D         D     

I           I   

NPERCO(.bsn) D           D   

I           I   Initial 

N03(.chm) D           D   

I           I   

CMN(.bsn) D           D   

I           D   

Frt_Surf(.mgt) D           I(hwt)   

I           I   

Anion_Excl(.sol) D           D   

I             D 

PPERCO(.bsn) D             I 

I             I 

Sol_labp1(.chm) D             D 

I- increase, D- decrease, hwt- high water table, w- winter
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Model performance was evaluated using several different criteria. In an effort to 

formulate guidelines to evaluate watershed models in a systematic and universal 

manner, Moriasi et al. (2007) conducted an extensive study on reported ranges of 

values and performance ratings for several criteria. The recommended model 

evaluation criteria from their study (Table 4) and some additional criteria were used 

in the present study.   

Time Series and Scatter Plots (Graphical Analysis) 

Visual inspection of graphical data is an important step in evaluating the relative 

closeness of predicted data to measured data. Time series plots reveal both the 

systematic (e.g., over- or under-prediction) and dynamic (e.g., timing, rising limb, 

falling limb and baseflow) behavior of the model (Krause et al., 2005). Scatter plots 

show how well the best-fit regression line matches up with the 1:1 line of equal 

values. This plot, along with the quantitative information in its regression equation 

(i.e., slope and intercept), can be used to describe the relationship between predicted 

and measured data assuming a linear relationship. Slope provides information about 

the systematic rate of over- or under-predictions, while intercept describes differences 

in magnitude. In order to represent good agreement, the y–intercept should be close to 

zero and the slope should be close to one. An intercept close to zero means that a 

measured data value of zero would also result in a prediction near zero. A slope close 

to one indicates a regression line nearly matching the slope of the 1:1 line of equal 

values.  
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Coefficient of Determination, r
2 

The coefficient of determination (r
2
) describes the degree of collinearity between two 

variates (e.g., predicted and measured data) (Legates and McCabe, 1999). Its value is 

based on the dispersion of variates around the regression line, not the line of equal 

values. It describes the total variance in the measured data that can be explained by 

the model. The expression for r
2
 is: 
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where Oi are observed and Pi are predicted data, O and P  are observed and predicted 

mean values respectively, and n is the number of samples. The value of r
2
 ranges 

from 0 (poor model) to 1 (perfect model). An r
2
 value of 0.5 usually means an 

average or moderate model performance. Several studies (Legates and Davis, 1997; 

Legates and McCabe, 1999; Moore, 1991; Willmott, 1984) have shown that r
2
 is 

insensitive to additive and proportional differences between measured and predicted 

data and it is more sensitive to outliers than to observations near the mean. In view of 

these limitations, an r
2
 value close to 1 can still be attained, which would result in 

misrepresentation of model performance. Therefore, it is important to observe 

additional information such as slope and intercept of the regression line to get more 

detailed information about the measured vs. predicted relationship.   
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Nash Sutcliffe Coefficient of Efficiency, NSE  

The coefficient of efficiency (NSE) by Nash and Sutcliffe (1970) is a measure that 

compares model predictions to the mean of observed values to determine the better 

predictor of observed values. Its value is based on the dispersion of variates around 

the line of equal values. The equation for NSE can be written as follows: 
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where all terms are defined above. Unlike r
2
 above, this criterion is sensitive to 

additive and proportional differences; however like r
2
 it is oversensitive to extreme 

values because of squared differences (Legates and McCabe, 1999). The value of 

NSE ranges from negative infinity (poor model) to 1.0 (perfect model). If NSE<0, the 

observed mean is a better predictor than the model; NSE=0, the observed mean is as 

good a predictor as the model; NSE>0, the model is a better predictor of observed 

data than the observed mean (Legates and McCabe, 1999; Wilcox et al., 1990). 

According to Moriasi et al. (2007), very good to satisfactory values of NSE fall in the 

range of 1 to 0.5 respectively (see Table 4). 

RMSE-Observations Standard Deviation Ratio, RSR 

The root mean square error (RMSE) – Observations’ Standard Deviation Ratio (SR) 

collectively called RSR, was developed by Moriasi et al. (2007) based on the 

recommendation of Singh et al. (2004). This error index criterion is used to quantify 

error in units of the variable being evaluated. In order to develop a performance rating 

for RMSE, it was divided by the standard deviation of observed values to create RSR: 
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where 
iOSTDEV is the standard deviation of observed values and  all other terms are 

defined above. The resulting criterion and expected values can then apply to various 

constituents. The value of RSR ranges from 0 (perfect model) to a large positive 

value (poor model). According to Moriasi et al. (2007), very good to satisfactory 

values of RSR fall in the range of 0.0 to 0.7 respectively (see Table 4). 

Percent Bias, PBIAS 

Percent bias (PBIAS) is a measure of over- and under-estimation bias of predicted 

versus measured values, expressed as a percentage (Gupta et al., 1999): 
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where all terms are described above. The optimal value of PBIAS is 0, indicating 

accurate model prediction. Positive values indicate model bias towards under-

prediction, while negative values indicate model bias towards over-prediction. 

Moriasi et al. (2007) developed a constituent specific performance rating for PBIAS 

based on the known uncertainty of measured data (Harmel et al., 2006) (see Table 4).  
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Table 4 General performance ratings for recommended quantitative criteria, assuming typical 

uncertainty in measured data based on Harmel et al. (2006) (from Moriasi et al., 2007). 

 

   PBIAS (%) 

 RSR NSE Streamflow Sediment N,P 

Very Good 0.00≤RSR≤0.50 0.75<NSE≤1.00 PBIAS≤±10 PBIAS≤±15 PBIAS≤±25 

Good 0.50<RSR≤0.60 0.65<NSE≤0.75 ±10≤PBIAS<±15 ±15≤PBIAS<±30 ±25≤PBIAS<±40 

Satisfactory 0.60<RSR≤0.70 0.50<NSE≤0.65 ±15≤PBIAS<±25 ±30≤PBIAS<±55 ±40≤PBIAS<±70 

Unsatisfactory RSR>0.70 NSE≤0.50 PBIAS≥±25 PBIAS≥±55 PBIAS≥±70 

RSR- RMSE-Observations Standard Deviation, NSE- Nash-Sutcliffe Coefficient of Efficiency, PBIAS- Percent Bias 

Uncertainty Analysis Method 

The Mean-Value First-Order Reliability Method (MFORM) was chosen to quantify 

uncertainties in the model prediction of streamflow, sediment yield, nitrate load and 

concentration, and phosphate load. This approach allows the user to determine the 

variance in the output variable as well as the variance contributed by each important 

input parameter, otherwise known as basic variable. These basic variables were 

determined to be important based on sensitivity analyses found in the literature 

(Sohrabi et al., 2003; White and Chaubey, 2005), the physical meaning of variables as 

they relate to output tabulation (model algorithms) , and the level of variable 

importance during model calibration. Depth into the soil layer and seasonal variation 

of curve number were also considered in the choice of parameters. A description of 

each basic variable considered in this study is listed in Table 5.  
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Table 5 Description of AVSWATX input parameters selected for evaluation in the uncertainty 

analysis. 

 

 

Parameter Description 

Streamflow  

     CNOPwgs SCS runoff curve number for moisture condition II- during winter growing season 

     CNOPskp SCS runoff curve number for moisture condition II- during spring kill planting season 

     CNOPsgs SCS runoff curve number for moisture condition II- during spring growing season 

     ESCO Soil evaporation compensation factor 

     GW_REVAP Groundwater “revap” coefficient. Movement of water from shallow aquifer into  

     unsaturated zone or taken up by plants 

     HRUSLP Average slope steepness (m/m) 

     RCHRG_DP Deep aquifer percolation factor. Fraction of percolation from root zone to deep 

     aquifer 

     SMFMN Melt factor for snow on December 21 (mm H
2
O/°C-day). Varies the rate of snow  

   melt. Accounts for impact of snow pack density on snow melt 

     SOL_AWC1 Available water capacity of soil layer 1(mm H
2
O/mm soil); plant available water  

   content, AWC=FC-WP 

     SOL_AWC2 Available water capacity of soil layer 2(mm H
2
O/mm soil); plant available water  

   content, AWC=FC-WP 

     SOL_K1 Saturated hydraulic conductivity of soil layer 1(mm/hr) 

     SOL_K2 Saturated hydraulic conductivity of soil layer 2(mm/hr) 

Sediment  

     ADJ_PKR Peak rate adjustment factor for sediment routing in the subbasin. Impacts the amount  

   of erosion generated in HRUs 

     BIOMIX Biological mixing efficiency; redistribution of soil constituents due to activity of biota  

   in the soil (e.g., earthworms) 

     CH_COV Channel cover factor 

     CH_EROD Channel erodibility factor 

     SLSUBBSN Average slope length (m) 

     SPCON Linear parameter in calculating maximum amount of sediment that can be reentrained  

   during channel sediment routing 

     SPEXP Exponent parameter in calculating maximum amount of sediment that can be  

   reentrained during channel sediment routing 

     USLE_P USLE equation support practice factor; ratio of soil loss with a specific support  

   practice to the corresponding loss with up-and-down slope culture 

Nitrate  

     ANION_EXCL Fraction of porosity from which anions are excluded. Important in transport of anions  

   (e.g., nitrate) away from soil particle surface  

     CMN Rate factor for humus mineralization of active organic nutrients (N and P) 

     FRT_SURF Fraction of fertilizer applied to the top 10mm of soil 

     SOL_NO3_1 Initial NO3 concentration in soil layer 1 (mg/kg) 

     SOL_NO3_2 Initial NO3 concentration in soil layer 2 (mg/kg) 

     NPERCO Nitrate percolation coefficient. Amount of nitrate removed in surface runoff relative  

   to that removed via percolation 

Phosphate  

     PPERCO Phosphorus percolation coefficient (10m
3
/Mg). Ratio of solution phosphorus conc. in  

   surface 10mm of soil to conc. in percolate 

     SOL_LABP1 Initial soluble P concentration in soil layer 1 (mg/kg) 
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MFORM is derived by performing a Taylor series expansion of the model output 

function as follows (equation 3): 
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where Y is the dependent variable or model output of interest; g ( ) is the function 

representing the simulation process (algorithms, set of equations) to obtain Y; Xe is 

the vector of basic variables at the expansion point; n is the number of basic variables 

xi; and ∂g/∂xi represents the rate of change of the model output with respect to a unit 

change in each basic variable, usually referred to as the sensitivity coefficient. In 

MFORM, the expansion point is at the mean value of basic variables. Therefore, the 

mean and variance of the dependent variable can be approximated as (equations 4 and 

5): 

)()( mXgYE ≈         (15) 

 

( )jiv

X
jX

n

i

n

j i

n

i

i

Xi

Y xxC
x

g

x

g

x

g
YVar

mmm

,2)(
1 11

2

2

2 ⋅










∂
∂










∂
∂

+








∂
∂

≈= ∑∑∑
= ==

σσ   (16) 

where E(Y) is the expected value (mean) of random variable Y; Xm is the vector of 

basic variables at the mean values; σi
2
 is the variance of basic variable i; Cv (xi, xj) is 

the covariance of basic variables i and j; and all other variables are previously 

defined. The first term represents the variance of statistically independent parameters, 

while the second term is used to tabulate the variance of correlated parameters. Cv (xi, 

xj) can be tabulated by using the identity (equation 6),  
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where, xmi is the mean value of all xis and xmj is the mean value of all xjs. If basic 

variables (e.g., soil hydraulic conductivity, curve number, slope steepness, etc.) are 

not correlated, Cv (xi, xj) is equal to zero. In this case, the variance of output can be 

written as (equation 7): 
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This term represents the fraction of model output variance (FOV) contributed by each 

basic variable (xi). In this equation the squared sensitivity coefficient (∂g/∂xi) serves 

as a way to assign a measure of importance to the variance of each basic variable. 

When using complex models, the best way to solve for ∂g/∂xi is by using numerical 

methods.  

 

Tomovic (1963) defined the sensitivity coefficient in its simplest form using one 

basic variable as: 
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where x0 is the initial value of the basic variable, ∆x is the change in the basic 

variable and all other symbols are defined above. Melching and Bauwens (2001) used 

the same forward difference scheme to tabulate ∂g/∂xi in an MFORM analysis with 

change in xi equal to 1%. They originally increased xi by 10%, but that was too large 

for pollutant removal efficiency parameters. Their study was conducted using coupled 
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models; a non-point pollution load model (KOSIM), and a river water-quality model 

(SALMON-Q). Melching and Yoon (1996) increased parameter values in the 

QUAL2E model by 5% based on Brown and Barnwell’s (1987) recommendation 

when calculating uncertainty in QUAL2E_UNCAS. That percentage of increase was 

effectively used. The unit change of xi depends on the sensitivity of the model to 

change in parameters. We know that models such as SWAT are not linear, but for 

small perturbations it can be assumed linear. Numerous studies using this method 

have changed parameters between 1% and 10% because similar results for the 

sensitivity coefficient have been obtained within this range (Melching and Yoon, 

1996; Melching and Bauwens, 2001; Zhang and Yu, 2004; Zhang and Haan, 1996). 

Changes beyond 10% would likely cause improbable estimates of sensitivity due to 

model nonlinearity. In modeling, there is always a balancing act between efficiency 

and accuracy. In this study, the forward difference numerical method was chosen to 

tabulate the sensitivity coefficient over a central difference scheme because it is a 

suitable method that gives valid results and it requires less model runs. This 

efficiency is very beneficial especially for studies requiring a large number of 

repeated simulations to test and compare different scenarios (e.g., BMP’s in TMDL 

analysis). 

 

The sensitivity coefficient is often normalized to get a dimensionless index which 

provides a more unbiased ranking of basic parameters for sensitivity analysis 

(Lenhart et al., 2002; Melching and Yoon, 1996; Shirmohammadi et al., 2006). Dubus 

and Brown (2002) refer to the absolute value of the normalized sensitivity as the 
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maximum absolute ratio of variation (MAROV) index. The absolute value allows for 

better comparison between parameters. Using only one parameter, x, for 

simplification purposes, the normalized sensitivity can be expressed as: 
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where all symbols are defined above. As S increases, the output variable has an 

increasing sensitivity to changes in the given input parameter. Sensitivity analysis 

was conducted on all output variables (streamflow, sediment, nitrate, and phosphate) 

over annual and monthly timeframes using the associated important input parameters. 

 

MFORM has been an attractive method to use over other uncertainty techniques 

because of its simplicity only requiring the mean and variance of basic variables. 

Descriptive statistics for each basic variable (Table 6) were determined by assigning a 

range and probability distribution to each variable. The assigned range of each 

variable was determined based on the suggested range in the AVSWATX user’s 

manual, the range of realistic perturbation values observed during calibration, and 

also ranges specified in the literature. The column labeled as “Range” in Table 6 

represents the difference between the maximum and minimum values selected from 

the assigned range during the LHS random sampling scheme.  

 

Probability distributions were chosen for each variable based on information 

synthesized from the literature. In all cases, a bounded distribution was necessary 
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because each parameter has an upper and lower limit. The uniform distribution was 

assigned to those variables for which a range was determined, but not enough 

information about the behavior or shape of the distribution was available. A log-

uniform distribution was assigned to such variables if the range was within a factor of 

10 or greater. McCuen (2002) found the gamma distribution to be representative for 

curve numbers used in designs built for annual maximum design storms in watersheds 

composed mostly of rural lands. Gamma distributions require scale and shape factors 

to identify its moments. The range is from zero to infinity (unbounded) and sample 

mean and standard deviation are needed to quantify scale and shape factors (Brighton 

Webs Ltd., 2007). That information was not readily available for this study; therefore 

a similar and equally representative distribution was sought. 

 

Soil hydraulic conductivity was shown to be log-normally distributed (Coelho, 1974; 

Jensen and Refsgaard, 1991); however, the log-normal distribution is unbounded and 

estimates of mean and standard deviation are necessary to determine its distribution. 

That information again, was not readily available. The beta distribution is often used 

when there is not enough information about the distribution (Wyss and Jorgensen, 

1998) and for events that take place between a maximum and minimum value 

(Brighton Webs Ltd., 2007). It is based on two shape factors which are assigned 

according to the likely shape of the distribution. Therefore, a beta distribution was 

used for those variables such as curve number and soil hydraulic conductivity for 

which a range was determined and there was some information about the shape of 
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their distributions (Table 6). Variables in this study assigned to the beta distribution 

were considered to have a shape similar to that of the log-normal distribution.  

 

The mean and standard deviation of a random variable considered to have a beta 

distribution can be obtained using the following equations: 
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where A and B are the lower and upper limits of the range respectively, p and q are 

the shape factors, and µx and σx are the respective mean and standard deviation of the 

random variable. The shape factors, p and q, can normally be determined using the 

method of least squares on data points obtained from the histogram of a data set 

(Ricciardi et al., 2005). However, data sets were not available for the input 

parameters in this study. Therefore, p and q were assigned values of 2 and 4,  

respectively based on typical shape factors for distributions fitting the profile of the 

lognormal distribution presented in Wyss and Jorgensen (1998). 

 

The mean and standard deviation of a random variable of uniform distribution can be 

obtained using the equations: 
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where all symbols are defined above. 

 

The mean and standard deviation of a random variable having a log-uniform 

distribution can be obtained using equations: 
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where all symbols are defined above. 

  

A Latin Hypercube Sampling (LHS) scheme (McKay et al., 1979) was used to 

confirm the descriptive statistics of each variable. Using the range and distribution of 

each variable, 250 samples of each variable were produced; the descriptive statistics 

were then tabulated for each parameter (Table 6). Descriptive statistic results using 

LHS verified those obtained using the equations for the distributions (beta, uniform, 

and log-uniform) listed above. Mean values of all variables were then used as input 
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into AVSWATX to perform each model run (1 run using all mean values and 1 run 

for 5% change of each input parameter). Both mean and standard deviation values for 

all variables were used as input for MFORM tabulation of model output uncertainty.  

 

A program was written to tabulate MFORM using the MATLAB
®
 mathematical 

computation tool.  Output files (rch.dbf) from AVSWATX representing each model 

run were read into the program and used to tabulate monthly and annual variances for 

streamflow, sediment, nitrate, and phosphate loadings. Daily variances were also 

quantified for constituent concentrations, which were used to demonstrate the 

methodology for margin of safety (MOS) tabulation (see programming code in 

Appendix C).   
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Table 6 Watershed averaged minimum, maximum, range, mean, median, standard deviation and coefficient of determination of basic variables. 

           Standard Coefficient 

Number Parameter Units File Location Distribution Assigned Range Minimum Maximum Range Mean Median Deviation of variation 

1 ADJ_PKR - bsn Uniform 0.0-1.0 0.0011 0.999 0.9979 0.5001 0.5 0.2893 0.5785 

2 ANION_EXCL - sol Uniform 0.0-1.0 0.0032 0.997 0.9938 0.4999 0.4995 0.2892 0.5784 

3 BIOMIX - mgt1 Uniform 0.0-1.0 0.0006 0.998 0.9974 0.5001 0.5 0.2893 0.5784 

4 CH_COV - rte Uniform 0.0-1.0 0.0024 0.997 0.9946 0.4998 0.5 0.2892 0.5787 

5 CH_EROD - rte Uniform 0.0-1.0 0.0004 0.998 0.9976 0.5000 0.5 0.2892 0.5784 

6 CMN - bsn Uniform 0.00015-0.00045 0.0002 0.00045 0.0003 0.0003 0.0003 0.0001 0.2893 

7 CNOPwgs - mgt2 Beta 67.0-85.0 68.2 83.4 15.2 75.9988 76 3.01087 0.03962 

8 CNOPskp - mgt2 Beta 56.0-71.0 57.6 69.5 11.9 63.4996 63.5 2.49791 0.03934 

9 CNOPsgs - mgt2 Beta 61.0-71.0 61.8 70.2 8.4 66.0004 66 1.67050 0.02531 

10 ESCO  - hru Log-uniform 0.01-1.0 0.0100 0.986 0.9760 0.2151 0.0993 0.2505 1.1645 

11 FRT_SURF - mgt2 Log-uniform 0.01-1.0 0.0102 0.986 0.9759 0.2149 0.1002 0.2501 1.1637 

12 GW_REVAP - gw Uniform 0.02-0.2 0.0200 0.2 0.1800 0.1100 0.11 0.0521 0.4735 

13 HRUSLP m/m hru Uniform 0.0-0.08 0.0003 0.07963 0.0794 0.0392 0.0401 0.0230 0.5867 

14 NPERCO - bsn Log-uniform 0.01-1.0 0.0100 0.99 0.9800 0.2151 0.10047 0.2503 1.1635 

15 PPERCO - bsn Uniform 10.0-17.5 10 17.5 7.5 13.7464 13.75 2.1687 0.1578 

16 RCHRG_DP - gw Uniform 0.0-1.0 0.0014 0.9990 0.9976 0.5000 0.4980 0.2893 0.5785 

17 SLSUBBSN m hru Beta 0.0-30.0 2.55 27.5 24.95 14.9992 15 5.0103 0.3340 

18 SMFMN mm H2O/°C-day bsn Uniform 1.4-8.5 1.43 8.49 7.06 4.94924 4.945 2.0541 0.4150 

19 SOL_AWC1 mm H2O/mm soil sol Uniform 0.09-0.27 0.09043 0.269 0.17857 0.1800 0.18 0.05205 0.28920 

20 SOL_AWC2 mm H2O/mm soil sol Uniform 0.06-0.18 0.06005 0.18 0.11995 0.1200 0.12 0.03470 0.28918 

21 SOL_K1 mm/hr sol Beta 22.18-80.64 23 77.9 54.9 41.6868 40.55 10.51184 0.25216 

22 SOL_K2 mm/hr sol Beta 9.64-100.0 11.1 85.5 74.4 39.7616 38.05 16.08984 0.40466 

23 SOL_LABP1 mg/kg chm Uniform 100.0-250.0 111 241 130 175.004 175 25.1376 0.1436 

24 SOL_NO3_1 mg/kg chm Uniform 0.0-3.0 0.0027 2.99 2.9873 1.5006 1.495 0.8678 0.5783 

25 SOL_NO3_2 mg/kg chm Uniform 0.0-5.0 0.0162 4.98 4.9638 2.5004 2.5 1.4459 0.5783 

26 SPCON - bsn Log-uniform 0.0001-0.01 0.0001 0.0099 0.0098 0.0021 0.0010 0.0025 1.1635 

27 SPEXP - bsn Uniform 1.0-2.0 1 2 1 1.4999 1.5000 0.2890 0.1927 

28 USLE_P - mgt1 Uniform 0.25-0.75 0.251 0.75 0.499 0.5001 0.5005 0.1445 0.2891 
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TMDL and Margin of Safety (MOS) Tabulation 

In Maryland, nutrient TMDLs are generally determined using the following steps 

(MDE, 2006): 

1. A water quality model is calibrated to represent “baseline” conditions 

which are the observed conditions of the waterbody that match measured 

data taken during a given time period. These conditions also represent the 

impairment of the waterbody. Loads from both point and non-point 

sources are included in the modeling scheme. 

2. The model scenario depicting baseline conditions is then used to create 

different nutrient loading reduction scenarios that will cause the 

waterbody to meet its water quality standard. Both urban and agricultural 

Best Management Practices (BMPs) are used to reduce pollutant loads. 

Load reductions are quantified based on nutrient removal efficiency 

ratings that have been developed for various BMPs. The future condition 

scenario represents the loading reductions used to estimate TMDLs. Both 

growing season and annual flow TMDLs are quantified.  

3. Margin of safety is quantified explicitly. It is typically assigned as 5 to 10 

percent of non-point source (NPS) load allocations (at times, specifically 

referred to as reduced agricultural loads) defined under the future 

condition scenario. For example, if the NPS allocation for nitrogen is 

tabulated as 100,000 lbs/year by a future condition model scenario, MOS 
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for that TMDL is 5,000 lbs/year assuming a 5% explicit assignment of 

MOS. The NPS allocation for nitrogen then becomes 95,000 lbs/yr.    

 

This methodology is missing two components that current efforts of TMDL 

advancement consider important. EPA guidance has suggested making probability–

based water quality impairment decisions for conventional pollutants (USEPA, 

1997b). The purpose of such guidance was to account for measurement error and 

potentially small data sets not properly representing the conditions of a waterbody 

(USEPA, 2003a). EPA guidance and recommendations from other agencies and 

scientists have also stressed the importance of using formal uncertainty analysis 

methods to tabulate MOS as opposed to arbitrarily assigning its value (NRC, 2001; 

Shirmohammadi et al., 2006; USEPA, 2002a).  

 

Current methods of nutrient TMDL assessment in Maryland are not probability-based 

and do not account for MOS using a formal uncertainty analysis scheme. This study 

suggests an alternative method of nutrient TMDL assessment in Maryland, which 

uses a probability-based approach and MFORM, a formal method of uncertainty 

tabulation, to determine a TMDL along with its MOS value. 

 

The designated use of the study waterbody is aquatic life support (Shirmohammadi 

and Montas, 2003). That is interpreted here as Maryland’s Use I designation (Code of 

Maryland Regulations [COMAR] 26.08.02.02); water contact recreation, and 

protection of non-tidal warm water aquatic life. In Maryland, a waterbody of this use 
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would normally be evaluated for nutrient contamination using indicators such as 

chlorophyll-a and DO, however data containing that information were not collected in 

Warner Creek watershed. We therefore assumed a Use I-P designated use which is 

the same as Use I but contains an additional use as a public water supply. This 

justifies the employment of NO3-N concentration (a drinking water contaminant) as 

an indicator of waterbody impairment in the current study.  

 

According to EPA’s National Recommended Water Quality Criteria the water quality 

criterion for nitrate concentration measured as nitrogen is 10 mg/l for a waterbody 

designated for drinking water use (USEPA, 2003b). EPA guidance has recommended 

listing a waterbody as impaired if greater than 10% of conventional chemical samples 

exceed the assigned water quality criterion (USEPA, 1997b; USEPA, 2002c). This 

type of probability-based standard is meant to account for natural variability and 

measurement error (Borsuk et al., 2002; USEPA, 2003a). The number of samples to 

be taken and the time duration of sampling were not specified; therefore daily 

samples from 1994 to 2001 were used in this study. Daily nitrate concentrations were 

derived from SWAT output by dividing nitrate load by flow rate as shown in the 

MATLAB program for daily MFORM calculations labeled calc29Daily.m in 

Appendix C-2. 

 

After examining the number of daily nitrate concentrations that exceeded the 

maximum contaminant level (MCL) of 10 mg/L in Warner Creek watershed, we 

determined that the waterbody was not impaired. Less than 10% of daily nitrate 
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samples exceeded the 10 mg/L MCL over the entire time period (1994-2001), 

therefore EPA guidelines were met.  BMPs implemented in this watershed prior to 

sampling efforts may be attributed to the unimpaired status of the waterbody. In order 

to create a scenario in which the waterbody was impaired, we lowered the MCL to 6 

mg/L. This increased the probability of exceedance so that the methodology to 

tabulate a nutrient TMDL including MOS could be properly demonstrated.   

 

Daily nitrate concentrations computed by the calibrated SWAT model (base-line 

conditions representing current conditions of the waterbody) and the associated daily 

standard deviations tabulated with MFORM were used to calculate daily exceedance 

probabilities as (Borsuk et al., 2002): 

 






 −
−=>=

σ
β

σβ
),(*

1),,|*(
Xgc

FXccPp     (27) 

where p is the exceedance probability, c is the chemical concentration, c* is the 

numerical criterion of c (6 mg/L), β represents the set of all model parameters (e.g. 

curve number, and hydraulic conductivity), σ is the standard deviation of chemical 

concentration (found using MFORM), X represents model input variables (e.g., 

precipitation and temperature), g(X, β) is the output chemical concentration generated 

by the model also known as c, and the function F depicts the cumulative standard 

normal distribution. 

 

Figures D1 through D8 in Appendix D show the trends of daily nitrate concentration 

for each year of the study period (1994-2001). Notice that the scales on the y-axes 
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differ for some years, but it is still quite clear that critical periods of nitrate 

concentration and variance in model output (shown by standard deviation) occur 

during wet seasons from January to May and from October to December, 8 months 

out of the year. This is especially evident in years 1994-1997 (Figures D1-D4) which 

include average (1994, 1995, and 1997) to wet years (1996). That trend is not as clear 

in dry years (2001; Figure D8) or years that experienced partial periods of drought 

during normally wet seasons (1998, 2000; Figures D5 and D7, respectively). 

Therefore, the days within the previously mentioned wet season months were 

considered the critical period in each year. The likelihood of exceeding the water 

quality standard was larger during that time frame which represented the worst-case 

scenario. The critical period of each year was then used to tabulate the exceedance 

frequency. Exceedance frequency is defined as the number of days that the 

exceedance probability is greater than 10% divided by the total number of days in the 

critical time period of each year. A probability distribution of annual exceedance 

frequencies was formulated to describe the uncertainty in the exceedance frequency 

resulting from parameter uncertainty. The expected exceedance is defined as the 

mean of the distribution of annual frequency values.  

 

The portion of the probability distribution of exceedance frequencies less than or 

equal to 10% represents the probability that the true exceedance frequency will meet 

the 10% frequency standard. Borsuk et al. (2002) referred to that portion of the 

distribution as the confidence of compliance (CC). CC is a measure by which water 

quality goals can be expressed. For example, if a water quality manager wanted to be 
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40% confident that the exceedance frequency in a waterbody is 10% or less, the 

manager would then reduce the load until the CC goal of 40% was met.  

 

Once CC was determined for the baseline nitrate load (no reductions), several other 

CCs were obtained by reducing the percentage of load flowing into the waterbody by 

5% up to 40%. At the 40% load reduction in Warner Creek, the CC reached 100%. 

Therefore, no further reductions were considered. The nitrate load associated with the 

desired CC to meet the water quality goal was then compared to the load required to 

meet the water quality standard. The difference between the load required to meet the 

water quality standard and the load required to meet the water quality goal was 

assigned to the margin of safety value.  Therefore, the load reduction required to meet 

the desired CC is the TMDL for the waterbody of interest. 
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Chapter 5:  Results and Discussion 

 

Model Performance 

The performance of AVSWATX in predicting hydrology (surface flow, baseflow, and 

total streamflow), sediment, and nutrient (nitrate and phosphate) loads was examined 

over the course of eight years (1994-2001). Both graphical and statistical methods of 

evaluation were utilized. To get a general idea of climatic behavior at the study site, 

we examined annual precipitation amounts over the entire period of study (1994-

2001) shown in Figure 4. The year 1996 was an unusually wet year with the State of 

Maryland receiving an average of 38% more rainfall than normal (USEPA, 2007). 

Although annual yields do not reflect it, Maryland experienced drought conditions 

during 1998 through 1999 (MD State Climatologist Office, 2007). Also, a drought 

period began in May, 2001 that lasted until December 2002.  

 

Figure 4 Annual precipitation and line of annual average precipitation in Warner Creek 

watershed. 
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Evaluation of Hydrology Predictions 

Surface Runoff Results and Discussion 

Figure 5 shows the time series and scattergram plots of measured and simulated 

monthly surface runoff during the calibration period. The plots show that the model is 

able to follow the dynamic monthly trends of flow well. However, systematic 

discrepancies are quite evident especially during high flow periods (e.g., January 

1995 and 1997, July 1995, and November 1997) where the model is under-predicting. 

The same behavior is seen during the validation period in January 1998 and 1999 

(Figure 6). Inconsistencies in surface runoff prediction may be attributed to use of the 

SCS curve number method. The SCS method depends on empirical information to 

tabulate surface runoff, which is often not flexible enough to capture natural 

variability especially during major storm events. For instance, table information (land 

use type, treatment or practice, hydrologic condition, and hydrologic soil group) is 

used to determine curve number. In this study, calibrated curve numbers were 

generally higher or lower than table values by 5-12 units.  

 

The Green and Ampt (1911) method, modified by Mein and Larson (1973), was 

added to AVSWAT-X as an alternative to tabulate surface runoff. This method is a 

physically-based infiltration model that is sensitive to variations of rainfall intensity 

during storm events. It uses effective hydraulic conductivity (Ke) as its infiltration 

parameter as opposed to saturated hydraulic conductivity (Ks) because the soil is not 

completely saturated during rainfall infiltration. Sub-daily precipitation data are 

needed to use the Green-Ampt Mein-Larson excess rainfall method. We did not use 
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this method in our study because sub-daily rainfall measurements were irregular due 

to equipment malfunctioning which led to missing data.  

 

Summary statistics and model evaluation criteria results for measured and simulated 

monthly surface runoff, baseflow, and streamflow during calibration and validation 

periods are listed in Table 7. The model appears to have performed better in 

predicting surface runoff during validation with NSE and RSR values of 0.67 and 

0.57, respectively, both values indicating good agreement; while calibration results 

were slightly lower with NSE and RSR values of 0.62 and 0.61, respectively both 

values indicating satisfactory agreement. A slight under-prediction was observed 

during calibration indicated by a positive PBIAS value of 3%. Surface runoff was 

mostly over-predicted during validation shown by a negative PBIAS value of -5.5%. 
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Figure 5 Time series and scattergram of measured and simulated monthly surface runoff (mm) 

data during the calibration period (April, 1994-1995 and 1997). 
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Figure 6 Time series and scattergram of measured and simulated monthly surface runoff (mm) 

data during the validation period (1998-2001). 
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Baseflow Results and Discussion 

Baseflow was mostly over-predicted during calibration and validation periods as 

indicated by time series plots (Figures 7 and 8) and negative PBIAS values (Table 7). 

Model performance was clearly worst during baseflow calibration compared to 

surface runoff calibration. One reason for this is because errors associated with high 

streamflow values tend to be larger than those associated with low streamflow values, 

especially when squared terms (e.g., the term ( )2OOi − ) are used in 

optimization/evaluation criteria such as r
2
 (equation # 10) and NSE (equation # 11). 

Therefore trying to minimize high flow errors often leads to fitting the higher portion 

of the hydrograph (i.e., peak surface flows) at the expense of lower portions (i.e., 

baseflow) (Krause et al., 2005). All model evaluation criteria for monthly baseflow 

during the validation period were unsatisfactory (Table 7). 

 

As mentioned earlier, adjustments to measured baseflow amounts were made to 

remove subsurface contributions of baseflow from outside the watershed boundary 

that were likely unaccounted for by the model (Chu and Shirmohammadi, 2004). 

Therefore, adjusted measured baseflow and streamflow amounts (signified in Table 

7) were used in this study to provide a fair comparison between measured and model 

simulated values. The water budget analysis corresponding to baseflow adjustment 

may have contributed to errors already present at the time of field sampling. Other 

sources of error in this study be attributed to equipment failure, errors in sampling, 

measurement, and data handling, especially with instantaneous grab sampling being 

part of the monitoring scheme. 
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Figure 7 Time series and scattergram of measured and simulated monthly baseflow (mm) data 

during the calibration period (April, 1994-1995 and 1997) 
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Figure 8 Time series and scattergram of monthly baseflow (mm) during the validation period 

(1998-2001). 
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Streamflow Results and Discussion 

Graphical comparisons of measured and simulated streamflow during calibration and 

validation periods show major improvement over surface and baseflow results with 

timing and magnitudes matching up in time series plots and regression lines more 

closely meeting the 1:1 line of equal values in scattergram plots (Figures 9 and 10). 

Model performance was very good during calibration showing NSE, RSR, and 

PBIAS results of 0.78, 0.46, and -3%, respectively (Table 7).  

 

Validated model performance was slightly lower than during the calibration period, 

but still categorized as good with NSE, and RSR values of 0.70 and 0.54, 

respectively. Although streamflow during the validation period was mostly over-

predicted, model performance considering systematic deviations was very good 

because PBIAS was within the range of ± 10%. Total streamflow measurements are a 

combination of surface and baseflow values. Poor baseflow prediction is likely the 

reason for decreased model performance during streamflow validation compared to 

the calibration period. 
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Figure 9 Time series and scattergram of measured and simulated monthly streamflow (mm) data 

during the calibration period (April, 1994-1995 and 1997). 

 

 



 

 107 

 

0

50

100

150

200

J
a
n
-9

8

M
a
r-

9
8

M
a
y
-9

8

J
u
l-
9
8

S
e
p
-9

8

N
o
v
-9

8

J
a
n
-9

9

M
a
r-

9
9

M
a
y
-9

9

J
u
l-
9
9

S
e
p
-9

9

N
o
v
-9

9

J
a
n
-0

0

M
a
r-

0
0

M
a
y
-0

0

J
u
l-
0
0

S
e
p
-0

0

N
o
v
-0

0

J
a
n
-0

1

M
a
r-

0
1

M
a
y
-0

1

J
u
l-
0
1

S
e
p
-0

1

N
o
v
-0

1

Time (months)

S
tr

e
a
m

fl
o

w
 (

m
m

)

Measured Simulated

 

 

y = 0.8359x + 7.9193

r2 = 0.7253

0

20

40

60

80

100

120

140

160

0 50 100 150

Measured (mm)

S
im

u
la

te
d

 (
m

m
)

 

Figure 10 Time series and scattergram of measured and simulated monthly streamflow (mm) 

data during the validation period (1998-2001) 
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Table 7 Summary statistics and model evaluation criteria results for measured and simulated 

monthly hydrology results during the calibration and validation periods. 

Hydrologic 

Measurement 

Mean 

(mm) 

StDev 

(mm) 

No. of 

Samples 
r2 b 

RMSE 

(mm) 
NSE RSR 

PBIAS 

(%) 

Calibration Period (April, 1994-1995 and 1997)  

Measured 10.40 14.99 33       Monthly 

Surface 

Runoff 
Simulated 10.08 8.65 33 0.68 0.48 9.10 0.62 0.61 3.00 

Adjusted 

Measured 

17.09 17.36 33       Monthly 

Baseflow 

Simulated 18.24 15.65 33 0.60 0.70 11.03 0.58 0.64 -6.70 

Adjusted 

Measured 

27.49 29.16 33       Monthly 

Streamflow 

Simulated 28.32 24.30 33 0.79 0.74 13.35 0.78 0.46 -3.00 

Validation Period (1998-2001)  

Measured 11.30 18.45 48       Monthly 

Surface 

Runoff 
Simulated 11.92 13.37 48 0.68 0.60 10.57 0.67 0.57 -5.50 

Adjusted 

Measured 

19.34 24.79 48       Monthly 

Baseflow 

Simulated 21.56 24.18 48 0.49 0.69 18.80 0.41 0.76 -11.50 

Adjusted 

Measured 

30.58 38.25 48       Monthly 

Streamflow 

Simulated 33.48 37.54 48 0.73 0.84 20.64 0.70 0.54 -9.50 

StDev= standard deviation, r
2
= coefficient of determination, b=slope, RMSE= root mean square error, 

NSE= Nash-Sutcliffe coefficient of efficiency, RSR= RMSE-observation’s standard deviation ratio, 

PBIAS= percent bias 
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Evaluation of Sediment Predictions 

Results for sediment prediction were acceptable except for high peak events. 

Observation of monthly trends during the calibration period shows a large amount of 

under-prediction, particularly in April 1994 and January 1995 (Figure 11). Part of the 

reason for this misrepresentation could be the fact that streamflow was also under-

predicted during those time periods. Unforeseen occurrences in watershed 

management may have caused spikes in measured data. High measured sediment 

yield in April 1994 can be attributed to cows being allowed to wander through the 

stream. The measured spike in January 1995 may be due to application of ammonium 

based deicer to county roads, which would have caused higher flows and therefore 

increased erosion. Measured data for sediment concentration were quite poor as well.  

 

Sediment yield during the validation period was mostly over-predicted as shown by 

the PBIAS of -22.3 (Table 8). Although NSE values for monthly results during 

calibration and validation periods are poor at 0.2, an NSE value greater than zero 

means that the model is a better predictor of measured data than using the mean of 

observed values. Trends during 1996 were unsatisfactory, mainly because 1996 was 

an extremely wet year. The SWAT model does not seem to perform well in predicting 

streamflow and sediment yield under extremely wet conditions. This again, can be 

attributed to use of the empirically based SCS curve number method to calculate 

surface runoff. Similarly poor predictions of monthly sediment yield using SWAT 

were observed in the literature (Kirsch et al., 2002; Santhi et al., 2001b). Annual 

results of sediment yield over the entire four year period show good results based on 
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RSR and PBIAS results of 0.57 and 15.7%, respectively (Table 8). Based on the 

efficiency coefficient value of 0.57, annual results are considered to be satisfactory. 

Annual predictions were expected to be an improvement over monthly predictions 

since SWAT was designed for long-term simulation. 
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Figure 11 Time series and scattergram of  measured and simulated monthly sediment loading 

(kg/ha) during the calibration period (April, 1994-1995). 
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Figure 12 Time series and scattergram of measured and simulated monthly sediment loading 

(kg/ha) during the validation period (1996-1997). 
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Table 8 Summary statistics and model evaluation criteria results for measured and simulated 

monthly sediment loading results during calibration and validation periods; also annual yields 

over the entire time period. 

Sediment 

Measurement 

Mean 

(kg/ha) 

StDev 

(kg/ha) 

No. of 

Samples 
r

2
 b 

RMSE 

(kg/ha) 
NSE RSR 

PBIAS 

(%) 

Calibration Period (April 1994-1995)  

Measured 324.40 850.38 21       Monthly 

Sediment 

Yield 
Simulated 167.21 167.92 21 0.47 0.14 743.33 0.20 0.87 48.5 

Validation Period (1996-1997)  

Measured 244.38 434.30 24       Monthly 

Sediment 

Yield 
Simulated 298.96 266.31 24 0.24 0.3 379.15 0.21 0.87 -22.3 

Entire Period (April 1994-1997)  

Measured 3169.36 2409.34 4       Annual 

Sediment 

Yield 
Simulated 2671.58 2139.43 4 0.63 0.71 1374.59 0.57 0.57 15.7 

StDev= standard deviation, r
2
= coefficient of determination, b=slope, RMSE= root mean square error, 

NSE= Nash-Sutcliffe coefficient of efficiency, RSR= RMSE-observation’s standard deviation ratio, 

PBIAS= percent bias 
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Evaluation of Nutrient Predictions 

Nitrate Results and Discussion 

Nitrate calibration trends were fairly good with the exception of 1996 loadings 

(Figure 13). The high nitrate loading event of January 1996 can be attributed to 

unusually high flow events as well as ammonium based deicer placed on county roads 

during that time frame. The ammonium based deicers eventually oxidize to nitrate 

(Dixon, 2001). Nitrate load was under-estimated in areas where streamflow was also 

under-estimated pointing to shortcomings of the SCS curve number method.  This is 

true during the validation period as well, e.g., the large under-estimation during 

October 1999 (Figure 14).The r
2
 value during nitrate validation was 0.5, which 

represents moderate model performance. However, the NSE and RSR performance 

criteria can both be interpreted as unsatisfactory with values of 0.35 and 0.80, 

respectively during calibration and 0.44 and 0.74, respectively during validation 

(Table 9).  

 

Discrepancies in baseflow measurement could also have contributed to poor nitrate 

prediction. Measured nutrient loadings were adjusted to remove the chemical 

contribution transported by subsurface flow from outside of the watershed (Chu and 

Shirmohammadi, 2004). Similar performance of the SWAT model for monthly nitrate 

prediction was observed in the literature (Saleh et al., 2000; Santhi et al., 2001b). 

Annual results of nitrate loading over the entire eight year period show good results 

based on NSE and RSR values of 0.67 and 0.54, respectively. A PBIAS for annual 

results of +20.6 means very good model performance in terms of the average 

tendency of the simulated data to be larger or smaller than the observed data. 
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Figure 13 Time series and scattergram of measured and simulated monthly nitrate during the 

calibration period (April, 1994-1997). 
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Figure 14 Time series and scattergram of measured and simulated monthly nitrate during the 

validation period (1998-2001). 
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Table 9 Summary statistics and model evaluation criteria results for measured and simulated 

monthly nitrate loading results during calibration and validation periods; also annual loads over 

the entire time period. 

Nitrate 

Measurement 

Mean 

(kg/ha) 

StDev 

(kg/ha) 

No. of 

Samples 
r

2
 b 

RMSE 

(kg/ha) 
NSE RSR 

PBIAS 

(%) 

Calibration Period (April 1994-1997)  

Adjusted 

Measured 
1.58 1.77 45       

Monthly 

Nitrate 

Load Simulated 1.18 1.14 45 0.40 0.41 1.41 0.35 0.80 25.7 

Validation Period (1998-2001)  

Adjusted 

Measured 
1.21 1.53 48       

Monthly 

Nitrate 

Load Simulated 1.03 1.42 48 0.50 0.66 1.13 0.44 0.74 14.2 

Entire Period (April 1994-2001)  

Adjusted 

Measured 
16.14 7.97 8       

Annual 

Nitrate 

Load Simulated 12.82 6.80 8 0.88 0.80 4.27 0.67 0.54 20.6 

StDev= standard deviation, r
2
= coefficient of determination, b=slope, RMSE= root mean square error, 

NSE= Nash-Sutcliffe coefficient of efficiency, RSR= RMSE-observation’s standard deviation ratio, 

PBIAS= percent bias 

 

Phosphate Results and Discussion 

Phosphate was predicted very poorly during the calibration period. January 1996 

shows a large over-prediction of phosphate (Figure 15). Although an extremely large 

amount of streamflow (mostly surface flow) was produced during that month, the 

measured phosphate load did not reflect such and occurrence. Then in November 

1997 an abnormally high phosphate load was observed. As stated earlier, measured 

data for sediment concentration was very poor. Since phosphate mostly travels 
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attached to sediment and our samples were not filtered, this may have lead to 

inconsistencies in phosphate measurement. 

 

Monthly predictions during the validation period were much better than during 

calibration. Model evaluation criteria reflect this difference with NSE and RSR values 

of -0.47 and 1.2, respectively during the calibration period and 0.41 and 0.76, 

respectively during the validation period (Table 10). This is mostly likely due to the 

poor model performance during 1996, the wettest year that was simulated in the 

calibration period. Although NSE and RSR values during validation on a monthly 

basis are unsatisfactory, the r
2
 value of 0.59 indicates moderate model performance. 

The slope of 0.91 and intercept of 0.04 (nearly zero) uphold that positive rating. 

Similar performance of the SWAT model for monthly phosphate prediction was 

observed in the literature (Chu et al., 2004). Annual results over the eight year period 

were an improvement over calibrated monthly results, but not over the validated 

monthly results (Table 10). 
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Figure 15 Time series and scattergram of measured and simulated monthly phosphate during 

the calibration period (April, 1994-1997). 
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Figure 16 Time series and scattergram of measured and simulated monthly phosphate during 

the validation period (1998-2001). 
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Table 10 Summary statistics and model evaluation criteria results for measured and simulated 

monthly phosphate loading results during calibration and validation periods; also annual loads 

over the entire time period. 

Phosphate 

Measurement 

Mean 

(kg/ha) 

StDev 

(kg/ha) 

No. of 

Samples 
r

2
 b 

RMSE 

(kg/ha) 
NSE RSR 

PBIAS 

(%) 

Calibration Period (April 1994-1997)  

Adjusted 

Measured 
0.34 0.51 45       

Monthly 

Phosphate 

Load Simulated 0.34 0.59 45 0.14 0.42 0.61 -0.47 1.20 0.0 

Validation Period (1998-2001)  

Adjusted 

Measured 
0.23 0.35 48       

Monthly 

Phosphate 

Load Simulated 0.25 0.42 48 0.59 0.91 0.27 0.41 0.76 -8.2 

Entire Period (April 1994-2001)  

Adjusted 

Measured 
3.34 1.64 8       

Annual 

Phosphate 

Load Simulated 3.46 2.67 8 0.64 1.30 1.58 -0.06 0.96 -3.5 

StDev= standard deviation, r
2
= coefficient of determination, b=slope, RMSE= root mean square error, 

NSE= Nash-Sutcliffe coefficient of efficiency, RSR= RMSE-observation’s standard deviation ratio, 

PBIAS= percent bias 

 

Summary of Model Performance 

• Performance ratings using AVSWATX-2003 to simulate monthly hydrology 

and water quality constituents in Warner Creek watershed are as follows: 

o Surface Runoff- Good 

o Baseflow- Unsatisfactory 

o Total Streamflow- Good 



 

 121 

 

o Sediment- Poor 

o Nitrate- Unsatisfactory to Moderate 

o Phosphate- Unsatisfactory to Moderate 

• Although surface runoff and total streamflow predictions were good, problems 

during extreme storm events did have an effect on model performance, which 

carried over to sediment and nutrient prediction performance. Under-

estimations of streamflow often led to under-estimation of the latter 

constituents. Use of the SCS curve number method in SWAT to tabulate 

surface runoff is likely the reason that severe storm events were not 

represented well. The SCS method depends on empirical information to 

tabulate surface runoff, which is often not flexible enough to capture natural 

variability especially during major storm events. The infiltration-based Green 

and Ampt (1911) modified by Mein and Larson (1973) excess rainfall method 

may be a plausible alternative to the SCS method to improve streamflow 

prediction during severe storm events. 

•  During streamflow calibration, special care should be taken to observe 

baseflow behavior while minimizing high flow errors to prevent fitting the 

higher portion of the hydrograph (i.e., peak surface flows) at the expense of 

lower portions. 

• Subsurface contributions of flow and chemicals from outside of the watershed 

are important to consider, especially in small watersheds where the impact 

may be greater. Regions with abundant groundwater should also be examined 
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for this occurrence. This problem arises because we delineate watersheds 

based on surface topography, thus models should be extended to include the 

subsurface boundary. Groundwater flow often does not follow surface 

topography, thus there is a high potential for contributions of groundwater 

flow to the watershed streamflow from outside the watershed boundary.  

• Poor data (due to e.g., equipment failure, improper sampling, handling or 

analytical methods) and unforeseen occurrences in watershed management 

(e.g., animal stream crossings, deicing) are added sources of error in model 

simulations.  Therefore, great care should be taken to reduce errors and 

closely examine the surrounding environment for these instances.  

• Annual sediment yields over the entire four year period of observation 

revealed satisfactory to good model performance, a tremendous improvement 

over poor model performance during the monthly validation period. The same 

observation was made for nitrate loading, which showed good model 

performance for annual observations. Model performance for phosphate load 

on an annual basis, however, remained at the unsatisfactory to moderate 

performance rating. 

• Overall, AVSWATX is a moderate to good model for estimating the 

hydrologic and water quality response of mixed land use watersheds in the 

Piedmont physiographic region. The next segment of results and discussion 

will examine the uncertainties in SWAT model output based on input 

parameter uncertainties. 
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Uncertainty Analysis 

Several different analyses were conducted based on the information gathered using 

MFORM.  Analyses were conducted on model output sensitivity to input parameters, 

fraction of model output variance contributed by each input parameter, and total 

variance in model output based on all important input parameters. Each analysis is 

discussed below. 

Sensitivity Analysis 

In view of the previous sensitivity analysis conducted using the SWAT model on 

Warner Creek watershed (Chu, 2003), we used the sensitivity coefficient tabulated  

from the MFORM methodology to conduct a “rough” sensitivity analysis. It is 

considered “rough” here because it is a local sensitivity scheme that represents a 

partial effect of input parameters. Parameters were perturbed from their mean value 

points by five percent, in the positive direction. This method has been used 

effectively to determine the most sensitive parameters in watershed modeling (Dubus 

and Brown, 2002; Melching and Yoon, 1996). Computational efficiency is a large 

benefit to using this type of sensitivity method. Results were compared to other 

sensitivity studies and the importance of sensitive parameters to uncertainty analysis 

was examined.  

 

Input parameters were ranked by comparing the magnitude of sensitivity displayed in 

output parameters using the normalized sensitivity coefficient, S (see equation 20). 

Based on average annual S values, Table 11 lists the rank of important parameters 
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associated with each output variable. Streamflow was most sensitive to CNOPwgs, 

the parameter representing curve number for moisture condition II during the winter 

growing season. Curve number determines the volume of surface runoff contributing 

to total streamflow. The impact of changing this value, especially during the wettest 

part of the year (winter growing season) should largely affect streamflow volume. 

However, the reason that streamflow is not as strongly affected by the other two 

seasonal curve numbers (CNOPskp [ranked #7], and CNOPsgs [ranked #11]) is likely 

because of their occurrence during the drier and warmer part of the year. Curve 

number during the spring kill/planting season takes place over a shorter duration of 

time, which may also have led to changes in that parameter having less of an affect on 

changes in streamflow output. Several studies have found the SCS curve number to 

be one of the most sensitive input parameter for streamflow prediction (Chu and 

Shirmohammadi, 2004; White and Chaubey, 2005). Compared to CNOPwgs, average 

slope steepness (HRU_SLP), saturated hydraulic conductivity of soil layer 1 

(SOL_K1), available water capacity of soil layers 1 and 2 (SOL_AWC1 and AWC2), 

and recharge to the deep aquifer (RCHRG_DP) were moderately sensitive. Snow melt 

factor on December 21, SMFMN, had the least affect on changes in streamflow. 

Since this parameter depends on the occurrence of snowmelt and mostly influences 

the rate of snowmelt, its affects were not as significant on total streamflow volume.  

 

Figures E1-E5 in Appendix E, show the monthly normalized sensitivity coefficients 

for each input parameter. There is a discrepancy in the sensitivity value recorded in 

June for SMFMN (Figure E2). Although sensitivity is small, the SMFMN parameter 
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should not produce any changes in streamflow especially in summer when there is no 

snowfall. Temperatures in June were checked to see if there were any incorrect or low 

temperatures recorded that would produce snowfall in June. All temperatures were 

normal in June. SMFMN is related to melt factor for snow on June 21 (SMFMX) in 

that the two parameters work together to balance out the rate of snowmelt through the 

year. In the northern hemisphere, SMFMX would normally be greater than SMFMN. 

However, in our study SMFMX was left at its default value of 4.5 mm H2O/day-°C 

under the assumption that no adjustment was needed because there is no snowfall in 

Maryland in June. The mean value used for SMFMN was 4.95 mm H2O/day-°C, a 

value larger than SMFMX. This may have offset the snowmelt calculations in 

AVSWATX. Other parameters seemed to have spikes of sensitivity in June as well, 

but for parameters such as ESCO (Figure E1) high sensitivity in June makes sense. 

ESCO is the soil evaporation compensation factor; therefore during dry periods this 

parameter modifies the depth distribution necessary to meet the soil evaporative 

demand. 

 

The most sensitive parameter for sediment prediction was SPEXP, a parameter 

representing an exponent in calculating the maximum amount of sediment that can be 

re-entrained during channel sediment routing (Table 11).  Average slope steepness 

(HRU_SLP) and average slope length (SLSUBBSN) were next in importance to 

sensitivity of sediment prediction. Channel cover (CH_COV) and erodibility 

(CH_EROD) had the same moderate level of sensitivity. 
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Nitrate prediction was most sensitive to the fraction of porosity from which anions 

are excluded (ANION_EXCL) (Table 11). This parameter determines the portion of 

anions, such as nitrate, that is transported away from the surface of soil particles. 

Biological mixing efficiency (BIOMIX) is another moderately sensitive parameter for 

both nitrate and phosphate prediction.  As BIOMIX increases, nitrate and phosphate 

loads decrease (see Table 3) due to redistribution of nutrients by biological mixing 

(Neitsch et al., 2001).Initial soluble phosphorus concentration in soil layer 1 

(SOL_LABP1) was the most sensitive parameter in phosphate prediction (Table 11). 

Percolation coefficients for both phosphate (PPERCO) and nitrate (NPERCO) had no 

effect on phosphate and nitrate predictions, respectively. As stated earlier, these 

sensitivity results are considered a rough estimate of sensitivity. Larger changes in 

input parameters (e.g., by 10% or 20%) and also changes in the negative direction 

may result in higher levels of sensitivity. However, these results are sufficient for the 

purpose of this study which was to examine the importance of sensitive parameters in 

the study of uncertainty analysis.  
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Table 11 Rank of important input parameters for average annual streamflow, sediment, nitrate, and phosphate output variables. S represents the 

normalized sensitivity coefficient. 

  Streamflow Sediment Nitrate Phosphate 

  Input   % Total Input   % Total Input  % Total Input   % Total 

Rank Parameter S* S Parameter S S Parameter S S Parameter S S 

1 CNwgs 2.39 62 SPEXP 1.67 55 ANION_EXCL 0.32 70 SOL_LABP1 0.72 79 

2 HRU_SLP 0.35 9 HRUSLP 0.42 14 BIOMIX 0.10 22 BIOMIX 0.19 21 

3 SOL_K1 0.30 8 SLSUBBSN 0.39 13 FRT_SURF 0.03 7 PPERCO 0.00 0 

4 SOL_AWC1 0.23 6 CH_COV 0.20 6 SOL_NO3_2 0.00 1     

5 SOL_AWC2 0.21 5 CH_EROD 0.20 6 SOL_NO3_1 0.00 0     

6 RCHG_DP 0.16 4 ADJ_PKR 0.09 3 CMN 0.00 0     

7 CNskp 0.06 2 USLE_P 0.04 1 NPERCO 0.00 0     

8 ESCO  0.05 1 BIOMIX 0.03 1         

9 SOL_K2 0.04 1 SPCON 0.00 0         

10 GW_REVAP 0.04 1             

11 CNsgs 0.03 1             

12 SMFMN 0.01 0                   

* ( ) ( )
( )0

000

xg

x

x

xgxxg
S ×

∆

−∆+
=  where x0 and ∆x are the initial value and change in input parameter, respectively, and g (x0) and g(x0+∆x) represent the initial value 

and 5% change in output variable.
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Fraction of Variance 

The fraction of variance (FOV) was tabulated for input parameters important to 

streamflow, sediment, nitrate, and phosphate output loads on an annual and monthly 

basis. Table 12 shows the ranking of important input parameters for each output 

variable using annual loads. Recharge to the deep aquifer (RCHRG_DP) contributed 

76% of the total variance in streamflow output. This parameter represents the fraction 

of water that percolates from the root zone to the deep aquifer. Water traveling to the 

deep aquifer is not redistributed into the system but is removed from the system. 

Hence, this parameter is important to the total volume of streamflow modeled in the 

hydrologic cycle. Note that RCHRG_DP was not a highly sensitive parameter in the 

sensitivity analysis (Table 11). The variance in this parameter makes a difference in 

its ranking. Monthly FOVs reflect the same ranking of importance for the first three 

input parameters, RCHRG_DP, CNOPwgs, and SOL_AWC2 (Table 13). HRU_SLP, 

ESCO, and SOL_AWC1 follow in level of importance making up the top five 

parameters in monthly and annual FOVs. Similar parameters are in the top five 

ranking of sensitive parameters (Table 11), however, parameters affecting flow 

through the soil layers appear to be more significant in sensitivity analysis.  

 

 CH_COV and CH_EROD were the leading contributors to uncertainty in sediment 

output with annual and monthly percentage totals of 40% and 34%, respectively 

(Tables 12 and 13). SPEXP and HRU_SLP are also ranked within the top five 

parameters having the highest FOVs in sediment yield simulation. BIOMIX and peak 
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rate adjustment factor for sediment routing in the subbasin (ADJ_PKR), exchange 

significance between annual and monthly observations of FOV.  

 

Input parameters that have significance in the uncertainty of nitrate and phosphate 

simulation are ranked similarly between annual and monthly FOV results (Tables 12 

and 13). ANION_EXCL and BIOMIX are ranked #1 and #2, respectively for variance 

contributed to nitrate output. SOL_LABP1 and BIOMIX are ranked #1 and #2, 

respectively in annual results and equally in monthly results. Sensitivity rankings of 

these parameters follow the same pattern (Table 11). 

 

Researchers often consider sensitive parameters (input parameters that cause a large 

change in output with respect to changes in input) to be the most important 

parameters contributing to model output uncertainty. This study shows that other 

parameters not deemed as sensitive (e.g., RCHRG_DP, ESCO) are important 

contributors to model output uncertainty. The reason that such parameters can surpass 

highly sensitive parameters in their level of importance to uncertainty is explained by 

their variance. When the value of a parameter is known with little certainty, its 

potential to cause variability in output simulation is larger. The further away a 

parameter is from its true value (often considered mean value), the more likely it will 

cause variance in simulated output.    
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Table 12 Ranking of important input parameters to streamflow, sediment, and nutrient prediction uncertainty based on average annual fraction of 

variance (FOV) contribution. 

  Streamflow Sediment Nitrate Phosphate 

   Average    Average    Average    Average   

   Annual    Annual    Annual    Annual   

  Input FOV* % of Total Input FOV % of Total Input FOV % of Total Input FOV % of Total 

Rank Parameters
 

mm
2
 Variance Parameters (kg/ha)

2
 Variance Parameters (kg/ha)

2
 Variance Parameters (kg/ha)

2
 Variance 

1 RCHRG_DP 2252.79 76 CH_COV 220616.13 40 ANION_EXCL 1.37 96 SOL_LABP1 0.16 60 

2 CNOPwgs  314.22 11 CH_EROD 220616.13 40 BIOMIX 0.05 3 BIOMIX 0.11 40 

3 SOL_AWC2 130.93 4 SPEXP 83172.86 15 FRT_SURF 0.00 0 PPERCO 0.00 0 

4 HRUSLP 92.34 3 HRUSLP 18864.99 3 SOL_NO3_2 0.00 0     

5 ESCO  78.15 3 ADJ_PKR 4604.70 1 SOL_NO3_1 0.00 0     

6 SOL_AWC1 57.27 2 BIOMIX 1681.70 0 CMN 0.00 0     

7 SOL_K1 13.43 0 USLE_P 1322.35 0 NPERCO 0.00 0     

8 GW_REVAP 5.07 0 SLSUBBSN 753.55 0         

9 SOL_K2 1.78 0 SPCON 0.00 0         

10 CNOPskp 0.48 0             

11 SMFMN 0.27 0             

12 CNOPsgs 0.06 0                   

* 2

2

i

i mXx

g
FOV σ









∂
∂

=

 where ∂g is the change in output variable, ∂xi represents the change in input parameter, and σi
2 is the variance of the input 

parameter. 
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Table 13 Ranking of important input parameters to streamflow, sediment, and nutrient prediction uncertainty based on average monthly fraction of 

variance (FOV) contribution (equation 18). 

  Streamflow Sediment Nitrate Phosphate 

   Average    Average    Average    Average   

   Monthly    Monthly    Monthly    Monthly   

  Input FOV % Total Input FOV % Total Input FOV % Total Input
 

FOV % Total 

Rank Parameters
 

mm
2
 Variance Parameters (kg/ha)

2
 Variance Parameters (kg/ha)

2
 Variance Parameters (kg/ha)

2
 Variance 

1 RCHRG_DP 39.73 76 CH_COV 618.01 34 ANION_EXCL 0.01 73 BIOMIX 0.0002 50 

2 CNOPwgs  4.65 9 CH_EROD 618.01 34 BIOMIX 0.00 27 SOL_LABP1 0.0002 50 

3 SOL_AWC2 3.26 6 HRUSLP 397.81 22 CMN 0.00 0 PPERCO 0.00 0 

4 SOL_AWC1 1.78 3 BIOMIX 143.96 8 FRT_SURF 0.00 0     

5 ESCO  1.38 3 SPEXP 41.30 2 SOL_NO3_1 0.00 0     

6 HRUSLP 0.89 2 USLE_P 10.35 1 SOL_NO3_2 0.00 0     

7 GW_REVAP 0.13 0 SLSUBBSN 9.47 1 NPERCO 0.00 0     

8 SOL_K1 0.13 0 ADJ_PKR 5.24 0         

9 SOL_K2 0.04 0 SPCON 0.00 0         

10 SMFMN 0.02 0             

11 CNOPskp 0.01 0             

12 CNOPsgs 0.00 0                   

* 2

2

i

i mXx

g
FOV σ









∂
∂

=

 where ∂g is the change in output variable, ∂xi represents the change in input parameter, and σi
2 is the variance of the input 

parameter. 
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Output Variance 

Table 14 shows predicted annual loads simulated using mean values (MV) of input 

parameters, standard deviations (StDev) and variances (tabulated using MFORM), 

and coefficients of variation (CV) of streamflow, sediment, nitrate, and phosphate. 

For all four output variables, the largest amount of variance in output value occurred 

in 1996. Variances were 8510 mm
2
, 2847800 (kg/ha)

2
, 5.1 (kg/ha)

2
, and 1.2 (kg/ha)

2
, 

for streamflow, sediment, nitrate, and phosphate, respectively, in 1996 (Table 14). 

Record amounts of rainfall occurred in 1996 as shown in Figure 4. The second largest 

amount of variance in streamflow output took place in 1998, the second wettest year 

of simulation. The lowest amounts of variance in output were observed in 2001, 

which was the driest year in the study period (Figure 4). These results show that 

larger amounts of uncertainty occur during extremely wet years. 
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Table 14 Predicted annual loads simulated using mean values (MV) of input parameters, standard deviations (StDev) and variances tabulated using 

MFORM, and coefficient of variation (CV) of streamflow, sediment, nitrate, and phosphate. 

Output Variable  1994(Jan-Dec) 1995 1996 1997 1998 1999 2000 2001 Average 

 MV Pred. Annual (mm) 311.0 277.0 817.0 218.0 360.0 308.0 227.0 98.0 327.0 

Streamflow StDev (mm) 37.0 40.0 92.0 33.0 84.0 53.0 31.0 14.0 48.0 

 Variance (mm2) 1377.0 1581.0 8510.0 1117.0 7059.0 2762.0 969.0 199.0 2947.0 

 CV (%) 11.9 14.4 11.3 15.4 23.3 17.0 13.7 14.4 15.2 

 MV Pred. Annual (kg/ha) 2158.0 1815.0 5997.0 1204.0 2187.0 1931.0 1485.0 558.0 2167.0 

Sediment StDev (kg/ha) 743.0 526.0 1688.0 392.0 493.0 452.0
 

312.0 197.0 600.0 

 Variance (kg/ha)2 551350.0 277050.0 2847800.0 153810.0 242790.0 203990.0 97469.0 38909.0 551646.0 

 CV (%) 34.4 29.0 28.1 32.6 22.5 23.4 21.0 35.3 28.3 

 MV Pred. Annual (kg/ha) 4.9 5.1 11.4 3.3 11.2 5.3 3.4 1.3 5.7 

Nitrate StDev (kg/ha) 0.8 1.3 2.3 0.3 0.9 1.6
 

0.6 0.4 1.0 

 Variance (kg/ha)2 0.6 1.8 5.1 0.1 0.8 2.4 0.3 0.2 1.4 

 CV (%) 16.1 26.2 19.8 9.3 8.0 29.6 16.7 29.7 19.4 

 MV Pred. Annual (kg/ha) 3.2 2.4 6.3 1.3 1.8 2.2 1.7 0.6 2.4 

Phosphate StDev (kg/ha) 0.5 0.4 1.1 0.2 0.3 0.5
 

0.3 0.1 0.4 

 Variance (kg/ha)2 0.2 0.2 1.2 0.0 0.1 0.2 0.1 0.0 0.3 

 CV (%) 14.1 18.1 17.8 15.3 15.0 21.0 19.6 18.6 17.4 
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Monthly observations of total output variance give further credence to the fact that 

the amount of variance in output variables is larger during wet periods. Tables 15 

through 18 list monthly variances and monthly average variances for steamflow, 

sediment, nitrate, and phosphate output. Figures 17 thru 20 show the trend of monthly 

average variance for each output. Highest trends of streamflow variance occur during 

wet periods from November to March (Figure 17). Sediment variance shows a trend 

similar to streamflow variance; however there is a spike of variance in July (Figure 

18) which is the result of an extremely high variance in July of 1996 (Table 15). As 

mentioned previously in the discussion of annual observations, 1996 was the wettest 

and most problematic year in this study, contributing extremely large amounts of 

variance to output variables.    

 

Monthly average variance in nitrate output was largest in May (Figure 19). This was 

due to unusually high variances in 1998 [2.36 (kg/ha)
2
] and 1996 [0.18 (kg/ha)

2
], the 

two wettest years (Table 17). Although there was little variance detected in monthly 

phosphate results, the month producing the largest amount of variance in phosphate 

output was January (Figure 20). Early snowmelt in January 1996 is likely the reason 

for this (Table 18). Problems with model output during wet periods were evident in 

the results of model performance discussed previously and in output variance results. 

The use of the SCS curve number method to calculate surface runoff was highlighted 

as one of the main reasons for such poor performance. The SCS curve number 

method uses empirical data composed in a chart to determine surface runoff volume. 
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As a result, extreme variabilities in nature are not properly accounted for in the 

distribution of rainfall. An infiltration-based method such as the Green and Ampt 

Mein-Larson excess rainfall method may prove to be a better approach to account for 

surface runoff.    

 

Comparison of average coefficients of variation in Table 14 show that sediment 

output has the largest amount of variability around its mean value (CV= 28%). Nitrate 

and phosphate have the next largest total amount of variability with average CVs of 

19% and 17%, respectively. Streamflow output has the least amount of variability 

around its mean value (CV= 15%). These results are comparable to calibration and 

validation results because model performance was poorest during sediment 

simulation and best during streamflow simulation. Greater knowledge or certainty 

about the values of input parameters will lead to better model performance and less 

output uncertainties.  
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Table 15 Monthly and monthly average variances for streamflow output. 

Output Variable  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

  1994 9.24 8.85 168.81 15.48 10.60 1.10 1.27 33.06 2.75 1.48 51.03 66.62 

  1995 115.54 14.08 30.88 0.96 3.69 2.75 41.91 1.61 0.83 34.18 71.99 25.74 

  1996 13.05 91.90 171.59 19.32 30.58 39.40 146.69 74.09 27.46 27.79 37.47 588.84 

Streamflow 1997 18.34 44.36 120.77 3.83 1.44 39.89 0.44
 

1.06 0.91 0.73 136.97 14.10 

mm
2
 1998 557.89 578.22 430.65 17.22 178.97 4.43 3.92 2.05 0.97 1.41 0.29 0.14 

  1999 125.13 27.26 165.38 7.22 1.30 0.76 0.30 24.33 124.73 66.78 2.50 34.34 

  2000 0.98 35.07 35.91 20.16 3.20 3.19 7.24 2.21 67.83 3.15 1.13 38.61 

  2001 15.50 5.84 21.32 6.24 1.04 0.90 0.68 0.85 2.29 0.53 0.20 0.42 

  Average 106.96 100.70 143.16 11.30 28.85 11.55 25.31 17.41 28.47 17.01 37.70 96.10 
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Figure 17 Monthly average variances for streamflow. 
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Table 16 Monthly and monthly average variances for sediment output. 

Output Variable  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

  1994 39509 52508 80084 85 106 0.55 2.36 253.99 8.39 1.19 1427 1225 

  1995 29612 6622 182 2 7 8.21 2346.30 2.35 0.85 2704 7518 9628 

  1996 278300 18812 11318 638 975 2915 90505 10240 5039 3251 23349 50231 

Sediment 1997 39318 15185 3109 18 2 2.63 0.08 1.10 0.99 0.34 4558 95 

(kg/ha)
2
 1998 28242 9502 35387 519 3274 5.66 11.99 1.03 0.67 1.53 0.04 0.01 

  1999 41704 261 3541 94 1.48 0.44 0.06 397.86 13287 1433 1.08 610 

  2000 0.43 15418 9107 805 12 30.43 35.36 1.27 1695 5.43 3.56 4210 

  2001 19391 46 2477 199 2 1.34 0.26 0.80 11.19 0.10 0.09 0.06 

  Average 59510 14794 18151 295 548 371 11613 1362 2505 925 4607 8250 
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Figure 18 Monthly average variances for sediment. 
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Table 17 Monthly and monthly average variances for nitrate output. 

Output Variable Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 1994 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.23 

 1995 0.48 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.10 0.02 

 1996 0.00 0.05 0.04 0.00 0.18 0.00 0.00 0.00 0.00 0.06 0.10 1.08 

Nitrate 1997 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0
.
00 0.00 0.00 0.03 0.02 

(kg/ha)
2
 1998 0.74 0.74 0.46 0.00 2.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 1999 0.10 0.06 0.05 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.00 0.29 

 2000 0.00 0.08 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

 2001 0.00 0.02 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Average 0.17 0.12 0.09 0.00 0.32 0.00 0.00 0.00 0.00 0.02 0.03 0.20 
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Figure 19 Monthly average variances for nitrate. 
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Table 18 Monthly and monthly average variances for phosphate output. 

Output Variable Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 1994 0.01 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 1995 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

 1996 0.17 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.01 

Phosphate 1997 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
.
00 0.00 0.00 0.00 0.00 

(kg/ha)
2
 1998 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 1999 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

 2000 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

 2001 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Average 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Figure 20 Monthly average variances for phosphate.
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NO3-N Concentration  

In the previous discussions of uncertainty, variance was calculated and discussed in 

terms of loading. The water quality criterion for nitrate is expressed as a 

concentration. Nitrate concentration is not to exceed 10 mg/L for waters being used 

for drinking water purposes (USEPA, 2003b). Therefore, in order to calculate the 

probability of exceeding the criterion, variances or standard deviations (as in equation 

27) were expressed in terms of concentration. The behavior and importance of input 

parameters, and the overall uncertainty in each output variable have already been 

discussed in terms of load on an annual and monthly basis. Therefore, the same 

evaluation is not necessary for results in terms of concentration. SWAT’s 

performance on a daily basis has been found to be poor in a number of studies (Saleh 

and Du, 2004; Spruill et al., 2000). Therefore, daily evaluations of input parameter 

sensitivity and contribution of FOV were not examined in this study. However, they 

may be examined in a future study once the SWAT model algorithms are improved 

for such simulations. In the next section of results we discuss the use of nitrate 

concentrations predicted by SWAT and MFORM tabulated daily nitrate standard 

deviations to quantify an MOS value for a nitrate TMDL.   

 

TMDL and Margin of Safety (MOS) 

As stated in the methodology section, based on the calibrated nitrate output from 

AVSWAT-X, the waterbody at the outlet of the Warner Creek watershed was not 

impaired under the 10 mg/L water quality criterion for nitrate. In order to demonstrate 
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impaired conditions, we assumed a criterion of 6 mg/L. The daily exceedance 

probabilities seemed to exhibit a specific kind of statistical distribution (Figure 21) 

that we felt would be useful to describe for future reference. Therefore, a 

methodology by Karl Pearson (1895) (Kendall and Stuart, 1958) and modified by 

Andreev et al. (2005), was used to characterize the type of Pearson distribution that 

the daily exceedance probability data fit. The steps used to fit the distribution were as 

follows (Andreev et al., 2005): 

1. Estimate the first four moments of the observed data (mean [µ1], variance [µ2], 

skewness [µ3], and kurtosis [µ4]). 

2. Calculate the Pearson parameters a, b0, b1, and b2. 

3. Use the parameters to compute the selection criteria D and λ. 

4. Select an appropriate distribution from Tables 19 and 20 based on the criteria. 

The Pearson parameters can be estimated using: 
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2
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242 / µµβ =  are measures of skewness, and scaling 

parameters A and A' can be determined using: 
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Selection criteria D and λ can be calculated using: 

20

2

1

2

120

bb

b

bbbD

=

−=

λ
         (30) 

 

 

Figure 21 Frequency distribution of exceedance probabilities for water quality criterion of 6 

mg/L. 

 

Results of the Pearson distribution characterization are shown in Table 21. Based on 

the selection criteria in columns three and four where D<0 and λ<0, the daily 

exceedance probability distribution falls into either class 4 or class 8 Pearson 

distributions in Tables 19 and 20. According to Andreev et al. (2005), the 



 

 143 

 

distributions that best describe those classes are Beta I and Beta II type distributions. 

The shape of the beta distribution is determined by two shape factors and occurs over 

a finite range.    

 

Table 19 Pearson distributions. The table provides a classification of the Pearson distributions 

f(x) satisfying the differential equation (1/f)df/dx=P(x)/Q(x):=(a0+a1x)/(b0+b1x+b2x
2
). The signs 

and values for selection criteria, D :=b0b2-b1
2
 and λ :=b1

2
/(b0b2), are given in columns three and 

four (from Andeev et al. 2005). 
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Table 20 Pearson distributions continued from Table 19 (Andeev et al. 2005). 

 

 

Table 21 Results of Pearson distribution characterization including the first four moments, 

Pearson parameters, skewness coefficients, scaling parameters, and selection criteria. 

First Four 

Momemts 

Pearson 

Parameters 

Skewness 

Coefficients 

Scaling 

Parameters 

Selection 

Criteria 

µ1=0.1377 b1=a=0.7719 β1=21.1143 A=2.509x10
-4

 D=-0.6218 

µ2=0.0215 b0=0.0316 β2=24.7178 A'=-24.1936 λ=-22.9154 

µ3=0.0145 b2=-0.8228    

µ4=0.0114     

 

Table 22 shows the average daily model predictions of nitrate load and concentration, 

the expected exceedance frequency, and the confidence of compliance for each load 

reduction of nitrate from 0% to 40% over the entire study period (1994-2001). Nitrate 
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load reductions greater than 40% resulted in a confidence of compliance equal to 

100%, therefore those load reductions were not listed. The expected exceedance of 

14% at 0% load reduction indicates impaired waterbody conditions. The confidence 

of compliance further indicates that there is only a 12.5% confidence that the 10% 

frequency standard will be met. At a load reduction of 20%, the mean exceedance 

frequency is expected to be 10% with a confidence of compliance equal to 37.5%. 

That is the load reduction necessary to meet the nitrate water quality standard. MOS 

was then determined based on the desired level of confidence. Therefore, at a desired 

level of confidence of 75%, the MOS load was equal to the difference between the 

load at 20% reduction (9.9 kg N/d) and the load at 30% reduction (8.6 kg N/d), which 

was 1.3 kg N/d. The TMDL for this waterbody is therefore 8.6 kg N/d, a 30% 

reduction from baseline conditions. 
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Table 22 Average daily model predictions of nitrate load and concentration, the expected 

exceedance frequency, and the confidence of compliance for each load reduction of nitrate from 

0% to 40% over the entire study period (1994-2001). 

NO3-N 

Reduction 

(%) 

Average 

NO3-N Load 

(kg N/d) 

Average 

NO3-N 

Concentration 

(mg/L) 

Expected 

Exceedances 

(%) 

Confidence of 

Compliance 

(%) 

0 12.3 1.25 14 12.5 

5 11.7 1.19 12 25 

10 11.1 1.12 11 25 

15 10.5 1.06 11 37.5 

20 9.9 1.00 10 37.5 

25 9.3 0.94 9 37.5 

30 8.6 0.87 8 75 

35 8.0 0.81 8 75 

40 7.4 0.75 7 100 

 

The probability that the true exceedance frequency will be below 10% is 100% at the 

nitrate reduction level of 40%. Using a water quality criterion of 6 mg/L did not make 

the water body at the outlet of the Warner Creek watershed extremely impaired. 

However, in other cases when a water body is highly impaired it may not be as 

feasible to set a water quality goal to 75% confidence; especially when the 

effectiveness and efficiency of improvement strategies are not well known. In that 

case, many researchers have suggested an adaptive management approach where an 
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initial set of improvement strategies are implemented, monitored and evaluated to 

determine their efficacy, and then further measures can be taken (Dilks and 

Freedman, 2004; Walker, 2003). 

 

In summary, this study suggests the following steps for using the SWAT model for 

TMDL assessment: 

1. Calibrate the model to represent observed conditions of the impaired 

waterbody. In the absence of measured data for the watershed of interest, 

data from a reference watershed sharing the same physiographic region, 

land use, and climatic conditions may be used to calibrate the model. This 

is the baseline scenario. 

2. Perform MFORM methodology using mean values and standard 

deviations of input parameters to determine daily average standard 

deviations of the output variable concentrations. 

3. Use daily average standard deviations obtained from the MFORM method 

in step 2, and calibrated SWAT model’s output concentrations to calculate 

daily exceedance probabilities. The following equation represents this 

step: 






 −
−=>=

σ
β

σβ
),(*

1),,|*(
Xgc

FXccPp  

4. Calculate the annual exceedance frequencies (EFs) (# of days with 

exceedances over 10% divided by the total # of days in the critical period).  
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5.  Determine the percent of annual EFs that are less than or equal to 10% 

(confidence of compliance).  

6. Repeat steps 3 through 5 for each incremental reduction of nutrient load 

until confidence of compliance level reaches 100%. It should be noted that 

different reduction levels may be needed for different watersheds based on 

their level of impairment. 

7. Evaluate each level of confidence with its corresponding nutrient 

reduction to set a feasible water quality goal (WQG). The difference in 

load between the nutrient reduction that meets water quality standards 

(WQS) (an expected exceedance less than or equal to 10%) and the 

nutrient reduction that meets the water quality goal (desired level of 

confidence) should be assigned to the MOS value. 

These steps are presented as a flow chart depicted in figure 22. 
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Step 4: 

Calculate Annual Exceedance Frequencies 

(EFs) 

# of days w/ exceedance >10% 

total # of days in critical period 

 

Step 1: 

Calibrate SWAT to Baseline 

Scenario 

 

Step 2: 

Perform MFORM 

∑
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Step 3: 

Calculate Daily Exceedance Probabilities 

(EPs) 








 −
−=>=

σ
β
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1),,|*(
Xgc

FXccPp

Step 5: 

Determine Confidence of 

Compliance (CC)  

= % of annual EFs < 10% 

Step 6: 

Repeat Steps 3-5 for each load reduction 

 

Step 7: 

Determine TMDL at the desired level of 

confidence where,  

MOS=Load @WQS-Load @WQG 

=EF

 

Figure 22 Flow chart of steps for using the SWAT model and uncertainty analysis in TMDL 

assessment. 
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Chapter 6:  Summary and Conclusions 
 

Watershed-scale hydrologic and water quality monitoring is often limited by the 

constraints of time and resources, therefore leading to scarcity of monitored data. 

Non-point source pollution monitoring studies seldom have the ability to pinpoint 

sources of pollution and determine the best strategic plan to minimize pollution from 

different sources. Mathematical modeling has become a useful tool to supplement 

monitored data, and in some cases substitute for monitored data in ungauged basins, 

in order to determine the best management scenarios to improve hydrologic and water 

quality conditions in a watershed. For this reason, EPA’s Total Maximum Daily Load 

(TMDL) program leans heavily on the utility of models to set limitations on the 

amount of impairing substances that can be released from both point and non-point 

sources.  

 

To insure that certain models are appropriate for use in programs such as TMDL, they 

must be properly tested to determine their strengths, weaknesses and most optimal 

scenarios for use. There has been much controversy over the utility of such models in 

the TMDL program because of unaccounted for uncertainty in model predictions. 

Stakeholders would like to have some sense of reliability in model predictions, 

especially when decisions based on model results can potentially impose both legal 

and financial responsibility upon point and non-point source contributors. The margin 

of safety (MOS) value in TMDL analysis is meant to represent the uncertainty about 

pollutant loadings and waterbody response that is accrued in establishing a TMDL. 
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MOS is typically assigned through subjective means although EPA guidance and 

report documents (USEPA, 1999a; USEPA, 2002a) have suggested that MOS be 

calculated based on scientific information. It is only recently that scientists have 

begun to devise formal uncertainty strategies to determine MOS. Hence, there is a 

need for further study and development of formal methods to quantify MOS. 

 

In this study we have evaluated the applicability of using AVSWAT-X to identify the 

impairment status of a waterbody and to tabulate a nutrient TMDL. A formal method 

of uncertainty analysis was also developed to account for the MOS value in TMDL 

analysis. This effort was met by conducting a calibration, validation, and an 

uncertainty analysis (MFORM) on the AVSWAT-X model for Warner Creek 

watershed, which is located in the Piedmont physiographic region of Maryland. The 

conclusions of this study are as follows: 

1. In order to rate the performance of AVSWATX-2003 in predicting surface 

runoff, baseflow, total streamflow, nitrate, and phosphate loadings we used 

the general performance ratings for recommended quantitative criteria 

compiled by Moriasi et al. (2007) (see Table 4). Performance ratings for 

AVSWATX-2003  prediction of monthly hydrology and water quality 

constituents in Warner Creek watershed were as follows: 

o Surface Runoff- Good 

o Baseflow- Unsatisfactory 

o Total Streamflow- Good 
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o Sediment- Poor 

o Nitrate- Unsatisfactory to Moderate 

o Phosphate- Unsatisfactory to Moderate 

2. Annual sediment yields over the four year period of observation revealed 

satisfactory to good model performance, a large improvement over poor 

model performance during the monthly validation period. The same 

observation was made for nitrate loading, which showed good model 

performance for annual observations. Model performance for phosphate load 

on an annual basis, however, remained at the unsatisfactory to moderate 

performance rating. The fact that model performance level improved from the 

monthly time frame to the annual prediction time frame is an indication that 

AVSWATX-2003 performs better during long-term simulation studies. 

3. Although monthly surface runoff and total streamflow predictions were good, 

problems during extreme storm events did have an effect on model 

performance, which carried over to sediment and nutrient prediction 

performance. Under-estimations of streamflow often led to under-estimation 

of the latter constituents. Use of the SCS curve number method in SWAT to 

tabulate surface runoff is likely the reason that severe storm events were not 

represented well. The SCS method depends on empirical information to 

tabulate surface runoff, which is often not flexible enough to capture natural 

variability especially during major storm events. The infiltration-based Green 

and Ampt (1911) modified by Mein and Larson (1973) excess rainfall method 
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may be a plausible alternative to the SCS method to improve streamflow 

prediction during severe storm events. 

4. During streamflow calibration, special care should be taken to observe 

baseflow behavior while minimizing high flow errors to prevent fitting the 

higher portion of the hydrograph (i.e., peak surface flows) at the expense of 

lower portions. 

5. Researchers often consider sensitive parameters (input parameters that cause a 

large change in output with respect to changes in input) to be the parameters 

with highest potential to contribute to model output uncertainty. Through a 

comparison of the ranking of parameters by sensitivity and fraction of 

variance (FOV) that contribute to output variable, this study shows that other 

parameters not highly deemed as sensitive (e.g., RCHRG_DP, ESCO) are 

important contributors to model output uncertainty. The reason that such 

parameters can surpass highly sensitive parameters in their level of 

importance to uncertainty is explained by their variance. When the value of a 

parameter is known with little certainty, its potential to cause variability in 

output simulation is larger. The further away a parameter is from its true value 

(often considered mean value), the more likely it will cause variance in 

simulated output. 

6. Results of annual and monthly total output variances indicated that the largest 

amount of variance in output variables occurred during wet periods. During 

the wettest year of the study period (1996), variances were orders of 

magnitude larger than other years. Monthly observations of streamflow 
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variance revealed higher trends of variance during wet periods between 

January to March and November to December. Increased levels of variance 

occurring in summer months were a result of wet periods during extremely 

wet years. As stated earlier, the poor performance of the model during wet 

periods is likely the result of the limitation of the model to properly account 

for extreme events through the use of the SCS curve number method. 

7. Comparison of average coefficients of variation showed that sediment output 

had the largest amount of variability around its mean value (CV= 28%). 

Nitrate and phosphate had the next largest total amount of variability with 

average CVs of 19% and 17%, respectively. Streamflow output had the least 

amount of variability around its mean value (CV= 15%). These results are 

comparable to calibration and validation results because model performance 

was poorest during sediment simulation and best during streamflow 

simulation based on the statistical parameters computed in this study. Greater 

knowledge or certainty about the values of input parameters will lead to better 

model performance and less output uncertainties.  

8. In this study, the distribution of exceedance probabilities closely resembled 

Pearson’s Beta I and Beta II type distributions. It would be interesting to 

observe exceedance probability distributions of other watersheds to determine 

if there is any commonality of distribution types. 

9. The methodology used to determine the margin of safety (MOS) value 

associated with the nitrate TMDL included the determination of waterbody 

impairment at 0% load reduction as well as tabulation of the level of load 
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reduction necessary to meet the nitrate water quality standard. The 

methodology was a useful tool to help determine the nitrate TMDL as well as 

the margin of safety associated with tabulating that TMDL. 

10. Although a confidence of compliance of 100% was reached at a nitrate load 

reduction of 40% for Warner Creek watershed, this level of confidence may 

not be as feasible for highly impaired waterbodies. In that case, an adaptive 

management strategy could prove to be more effective by identifying and 

implementing the most useful management practices in a stepwise process as 

opposed to spending a lot of money to implement a large slate of BMPs to no 

effect. 

11. Overall, this study shows that for monthly and longer timeframes, 

AVSWATX is a moderate to good model for estimating waterbody 

impairment and conducting TMDL analysis of waterbodies impaired by 

nutrients. No model can perfectly simulate or predict the behavior of either 

natural or anthropogenic land management practices in the environment, 

whether because of natural variability or insufficient knowledge about the 

processes. However, as we continue to increase our knowledge and 

understanding of environmental processes and consider the causes of 

variability and misrepresentation, we are constantly improving our abilities to 

simulate and predict these phenomena. The following section discusses some 

suggestions for future model application and research. 
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Suggestions for Future Model Application and Research 
 

1. In this study, AVSWATX-2003 was found to perform poorly during sediment 

calibration and validation using monthly data. Unsatisfactory to moderate 

performance was observed for nutrients on a monthly basis. A major reason 

for this behavior was highlighted in this study as being due to inability of the 

model to properly account for extreme climate events as a result of using the 

empirically-based SCS method to calculate surface runoff volume. Therefore, 

it is suggested to conduct comparative studies using SCS curve number 

method and the infiltration-based Green and Ampt Mein-Larson excess 

rainfall method to determine if there is an improvement upon model 

predictions.  

2. Sensitivity and uncertainty of output variables to important input parameters 

were evaluated in this study. Ranking of important input parameters revealed 

those parameters that should be considered with more care during the 

determination of their values, whether through field measurements or other 

methods of derivation. The importance of considering the variance of input 

parameters and not just the sensitivity effects as it relates to their potential to 

cause uncertainty in output variables was also revealed. More studies should 

be conducted to determine true values of input parameters as well as the 

variability associated with their values. 
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Appendices 
 

 

 

 

 

 

 

 

Appendix A 

AVSWAT-X Input Data for Warner Creek Watershed 

 

The format of AVSWAT-X input data is given in the Arc View Interface for 

SWAT2000 User’s Guide (Di Luzio et al., 2002b). 
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Appendix A-1 

 

Daily precipitation for Warner Creek watershed from 1993 to 2001 
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Table A1 Daily precipitation for Warner Creek watershed from 1993 to 2001. 

DATE Daily Precipitation (mm) 

 1993 1994 1995 1996 1997 1998 1999 2000 2001 

1-Jan 0.0 0.0 18.0 0.8 0.0 0.0 0.0 0.0 0.0 

2-Jan 0.0 0.8 0.0 28.2 0.3 0.0 5.1 0.0 0.0 

3-Jan 0.0 0.0 0.0 14.2 0.0 0.0 53.3 0.0 0.0 

4-Jan 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5-Jan 12.7 0.0 0.0 0.0 1.7 0.0 0.0 0.1 3.8 

6-Jan 0.0 5.8 0.0 0.0 0.0 3.0 0.0 0.0 0.0 

7-Jan 0.0 0.0 26.4 66.0 0.0 1.3 0.0 0.0 0.0 

8-Jan 3.6 2.5 0.0 68.6 0.0 81.3 30.5 0.0 3.0 

9-Jan 11.4 0.0 0.0 0.0 20.8 3.8 12.7 0.0 0.0 

10-Jan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

11-Jan 0.8 0.0 0.0 0.0 5.6 0.0 0.0 0.0 0.0 

12-Jan 6.3 10.4 2.3 61.0 0.0 0.0 0.0 0.0 0.0 

13-Jan 4.6 0.0 1.3 0.0 0.0 0.5 0.0 0.0 0.0 

14-Jan 0.0 0.5 0.0 0.0 0.0 0.0 3.8 0.0 0.0 

15-Jan 0.0 0.0 27.7 0.0 0.0 2.5 21.6 0.0 0.0 

16-Jan 0.0 0.0 0.0 0.0 11.4 30.5 0.0 0.0 0.0 

17-Jan 0.0 25.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

18-Jan 0.0 10.2 0.0 11.9 0.0 0.0 15.0 0.0 0.0 

19-Jan 0.0 0.0 0.8 19.6 0.0 0.0 0.0 6.9 29.2 

20-Jan 0.0 5.1 44.5 0.0 0.0 0.0 1.3 0.0 0.0 

21-Jan 3.6 0.0 0.0 0.0 0.0 0.0 5.1 0.0 11.9 

22-Jan 11.4 0.0 0.0 0.0 0.8 0.0 2.5 0.0 0.0 

23-Jan 1.5 0.0 0.0 1.0 3.0 40.6 3.8 0.3 0.0 

24-Jan 0.0 0.0 0.0 12.8 2.3 1.3 26.9 0.0 0.0 

25-Jan 0.0 0.0 0.0 0.0 16.1 4.6 1.3 0.0 0.0 

26-Jan 0.0 8.9 0.0 12.7 0.0 0.0 0.0 15.7 0.0 

27-Jan 0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 

28-Jan 0.0 2.5 0.0 0.0 17.2 30.5 0.0 0.0 0.0 

29-Jan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30-Jan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.4 18.8 

31-Jan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1-Feb 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2-Feb 0.0 0.0 0.0 0.0 0.0 0.0 15.7 0.0 0.0 

3-Feb 0.0 0.0 0.0 14.2 0.0 1.3 0.0 0.0 0.0 

4-Feb 0.0 0.0 35.6 0.0 15.1 8.9 1.3 0.0 0.0 

5-Feb 0.0 0.0 0.0 0.0 0.0 27.2 0.0 0.0 7.9 

6-Feb 0.0 0.0 2.8 0.0 0.0 0.0 10.2 0.0 0.0 

7-Feb 0.0 0.0 0.0 0.0 0.0 0.0 7.6 0.0 0.0 

8-Feb 0.0 0.0 0.0 14.7 20.3 0.0 5.1 0.0 0.0 

9-Feb 0.0 19.8 0.0 2.5 9.7 0.0 0.0 0.0 0.0 

10-Feb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

11-Feb 0.0 34.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

12-Feb 31.8 0.0 0.0 0.0 0.0 15.2 3.0 0.0 1.0 
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Table A1 Continued. 

DATE Daily Precipitation (mm) 

 1993 1994 1995 1996 1997 1998 1999 2000 2001 

13-Feb 1.5 0.0 0.0 0.0 0.0 0.0 0.0 8.9 3.0 

14-Feb 0.0 0.0 0.0 0.0 18.8 0.0 0.0 0.0 1.3 

15-Feb 0.0 0.0 6.3 2.8 1.3 0.0 0.0 0.0 0.0 

16-Feb 24.1 0.0 3.9 12.7 0.0 0.0 0.0 0.0 8.9 

17-Feb 0.0 0.0 0.0 0.0 0.0 16.5 6.3 0.0 0.0 

18-Feb 0.0 0.0 0.0 0.0 0.0 24.1 10.2 21.3 0.0 

19-Feb 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 

20-Feb 0.0 0.0 0.0 23.9 0.0 3.0 0.0 10.7 0.0 

21-Feb 30.5 10.2 0.0 2.0 0.0 0.0 0.0 0.0 0.0 

22-Feb 0.0 0.0 0.5 0.0 1.8 0.0 0.0 0.0 6.1 

23-Feb 0.0 22.9 5.3 0.0 0.0 20.3 0.0 0.0 0.0 

24-Feb 0.0 0.0 0.0 0.0 0.0 22.6 3.8 0.0 0.0 

25-Feb 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 4.3 

26-Feb 25.4 0.0 5.3 1.3 3.6 0.0 2.5 0.0 0.0 

27-Feb 0.0 0.0 17.8 1.3 4.8 0.0 0.0 22.1 0.0 

28-Feb 0.0 0.0 0.5 3.6 0.0 0.0 10.2 0.0 0.0 

29-Feb    0.0    0.0  

1-Mar 0.0 1.0 0.0 0.0 11.8 2.5 0.0 0.0 0.0 

2-Mar 0.0 20.3 0.0 0.0 0.5 0.0 0.0 0.0 0.0 

3-Mar 0.0 22.9 0.0 0.0 24.3 27.2 0.0 0.0 0.0 

4-Mar 39.4 1.8 0.0 0.0 6.1 0.0 20.3 0.0 19.8 

5-Mar 11.7 0.0 1.3 1.8 0.5 0.0 0.0 0.0 0.0 

6-Mar 1.0 0.0 5.1 8.6 6.7 0.0 12.7 0.0 0.0 

7-Mar 0.0 0.0 0.0 21.1 0.0 0.0 0.0 0.0 0.0 

8-Mar 0.0 0.2 9.1 1.3 0.3 25.4 0.0 0.0 0.3 

9-Mar 0.0 25.7 11.2 0.0 0.0 18.5 7.6 0.0 0.0 

10-Mar 3.6 0.0 0.0 0.0 1.8 0.0 3.8 0.0 0.0 

11-Mar 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

12-Mar 0.0 0.1 1.0 0.0 0.0 0.0 0.0 0.0 13.0 

13-Mar 45.7 0.0 0.0 0.0 0.0 0.0 0.0 23.6 0.6 

14-Mar 128.3 0.0 0.0 0.0 30.1 0.0 27.9 0.0 0.0 

15-Mar 0.0 0.1 0.0 9.4 0.0 0.0 22.9 0.0 3.8 

16-Mar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.8 

17-Mar 23.4 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 

18-Mar 0.0 2.0 0.0 0.0 13.1 7.6 0.0 18.5 0.0 

19-Mar 0.0 0.0 0.0 27.9 6.1 21.1 0.0 0.0 0.3 

20-Mar 0.0 0.0 0.0 33.0 0.0 2.5 0.0 0.0 0.0 

21-Mar 7.4 15.5 2.8 0.0 0.0 52.1 20.3 51.6 18.3 

22-Mar 0.0 0.0 1.0 0.0 0.0 6.3 2.5 0.5 0.0 

23-Mar 8.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

24-Mar 17.8 4.8 0.0 0.0 0.0 2.5 1.3 0.0 0.0 

25-Mar 0.0 0.0 0.0 0.6 0.0 0.0 0.3 0.5 0.0 

26-Mar 0.0 0.0 0.0 0.0 14.8 0.0 0.0 0.0 0.3 

27-Mar 8.1 43.4 0.0 0.0 0.0 0.0 0.0 10.4 0.0 
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Table A1 Continued. 

 

 

 

DATE Daily Precipitation (mm) 

  1993 1994 1995 1996 1997 1998 1999 2000 2001 

28-Mar 8.6 21.8 1.0 32.8 0.0 0.0 0.0 0.0 0.0 

29-Mar 2.5 2.8 2.5 0.3 7.7 0.0 0.0 2.0 38.4 

30-Mar 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

31-Mar 0.0 0.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 

1-Apr 23.4 0.0 0.0 20.8 0.0 15.2 0.0 0.0 0.0 

2-Apr 17.8 0.0 0.5 0.0 0.0 0.0 0.0 0.3 3.3 

3-Apr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

4-Apr 0.0 2.0 0.0 0.0 0.0 1.3 0.0 12.4 0.0 

5-Apr 0.0 0.0 0.0 0.8 1.0 0.0 29.2 0.0 0.0 

6-Apr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

7-Apr 0.0 14.5 0.0 0.0 8.0 0.0 0.0 0.0 0.0 

8-Apr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.4 

9-Apr 0.0 0.0 0.0 16.5 0.0 38.1 12.7 27.9 6.3 

10-Apr 27.9 9.1 6.9 8.9 0.0 2.5 10.2 0.0 0.0 

11-Apr 6.1 0.0 0.9 0.0 0.0 0.0 12.7 0.0 12.2 

12-Apr 3.6 1.8 0.0 0.0 0.0 0.0 3.8 0.8 0.3 

13-Apr 0.0 17.3 21.8 0.0 14.6 0.0 0.0 0.0 0.0 

14-Apr 0.0 7.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

15-Apr 0.0 0.0 0.0 27.4 0.0 0.5 3.8 0.0 0.0 

16-Apr 26.2 8.1 0.0 0.8 0.0 0.0 5.1 0.0 15.2 

17-Apr 11.7 0.0 0.8 0.0 1.2 0.0 0.0 0.0 1.5 

18-Apr 0.0 0.0 0.3 0.0 0.0 0.0 0.0 40.6 0.0 

19-Apr 0.0 0.0 0.0 0.0 0.0 22.9 0.0 0.0 0.0 

20-Apr 0.0 0.0 0.0 0.0 0.0 11.9 2.5 0.0 0.0 

21-Apr 3.3 0.0 0.0 0.0 2.5 0.0 3.8 17.5 0.0 

22-Apr 38.1 0.0 0.0 0.0 2.0 0.0 0.0 9.4 2.0 

23-Apr 0.5 0.0 1.3 11.4 0.0 0.0 6.3 2.5 0.0 

24-Apr 0.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0 

25-Apr 0.0 0.0 0.0 0.0 5.6 0.0 0.0 0.3 0.0 

26-Apr 6.3 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 

27-Apr 0.0 11.9 0.0 0.0 0.0 5.6 0.0 0.0 0.0 

28-Apr 0.0 0.0 0.0 3.8 13.1 0.0 0.0 0.0 0.0 

29-Apr 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30-Apr 0.0 5.8 9.4 17.3 0.0 2.5 0.0 0.0 0.0 

1-May 0.0 0.0 8.1 2.3 1.5 10.2 0.0 0.0 0.0 

2-May 0.0 0.0 0.0 0.0 0.0 10.7 0.0 3.3 0.0 

3-May 0.0 0.0 0.0 3.3 0.0 5.1 1.3 0.0 0.0 

4-May 0.0 9.4 0.0 0.3 17.4 20.8 0.0 0.0 0.0 

5-May 0.0 0.5 2.3 22.4 0.0 22.9 0.0 0.0 0.0 

6-May 15.2 0.0 0.0 0.0 0.0 3.8 0.0 0.0 0.0 

7-May 0.0 0.0 0.0 8.6 0.5 2.5 1.3 0.0 0.0 

8-May 0.0 31.8 0.0 30.7 4.6 27.9 19.0 0.0 0.0 

9-May 0.0 0.5 0.0 0.0 2.3 1.3 0.0 0.0 1.3 

10-May 0.0 0.0 3.0 0.0 0.0 2.5 0.0 28.4 0.0 
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Table A1 Continued. 

DATE Daily Precipitation (mm) 

 1993 1994 1995 1996 1997 1998 1999 2000 2001 

11-May 0.0 0.0 16.0 25.9 0.0 12.7 0.0 0.0 0.0 

12-May 20.3 3.8 1.8 5.8 0.0 20.3 0.0 0.0 0.0 

13-May 0.0 0.0 0.0 0.0 0.0 3.8 1.3 8.9 0.0 

14-May 0.0 0.0 18.5 0.0 0.0 0.0 0.0 0.0 0.0 

15-May 0.0 11.7 0.0 0.0 1.5 0.0 0.0 1.0 0.0 

16-May 2.5 0.0 0.0 8.6 0.0 0.0 0.0 0.0 0.0 

17-May 0.0 0.0 6.9 0.3 0.0 0.0 0.0 0.0 1.3 

18-May 0.0 0.3 7.1 2.0 0.0 0.0 0.0 0.0 2.8 

19-May 10.2 0.5 0.0 0.0 4.6 0.0 0.0 0.0 0.0 

20-May 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 13.7 

21-May 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.6 

22-May 0.0 0.0 2.0 4.6 0.0 0.0 0.0 18.3 14.5 

23-May 0.0 0.0 0.0 0.0 0.0 0.0 15.2 13.2 0.0 

24-May 0.0 0.0 0.0 0.0 0.0 0.0 5.1 4.1 0.0 

25-May 0.0 2.8 0.0 0.0 2.3 2.5 0.0 0.0 10.9 

26-May 0.0 30.6 29.0 8.9 14.3 0.0 0.0 0.0 0.0 

27-May 0.0 0.0 0.0 12.4 0.0 0.0 0.0 0.0 0.0 

28-May 0.0 0.0 7.1 10.9 0.0 0.0 0.0 0.0 4.6 

29-May 0.0 0.0 17.8 17.0 0.0 0.0 0.0 19.8 0.5 

30-May 0.0 5.8 0.3 0.0 3.1 1.3 0.0 0.0 0.0 

31-May 62.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1-Jun 0.0 0.0 0.0 0.0 27.4 10.7 0.0 0.0 0.0 

2-Jun 1.3 0.0 7.1 0.0 12.8 0.0 7.6 0.0 16.8 

3-Jun 0.0 0.0 0.0 2.0 1.3 0.5 12.7 0.0 0.3 

4-Jun 1.5 0.0 1.5 14.7 0.0 2.5 0.0 0.0 0.5 

5-Jun 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

6-Jun 0.0 0.0 0.5 0.0 0.0 0.5 0.0 11.9 0.0 

7-Jun 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 15.0 

8-Jun 9.4 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 

9-Jun 17.8 0.6 0.0 12.2 0.0 1.3 0.0 0.0 0.0 

10-Jun 0.0 0.0 3.3 1.5 0.0 7.6 0.0 0.0 0.0 

11-Jun 3.8 0.0 5.1 3.3 0.8 2.5 1.3 0.0 0.0 

12-Jun 0.0 0.0 4.3 1.5 0.3 18.8 0.0 0.0 0.0 

13-Jun 0.0 0.0 0.3 0.3 1.8 13.7 2.0 3.3 0.0 

14-Jun 0.0 0.0 0.0 24.4 0.0 0.0 14.0 0.0 0.0 

15-Jun 0.0 0.0 0.0 0.0 0.0 3.8 0.0 17.0 0.0 

16-Jun 0.0 7.6 0.0 0.0 0.0 1.0 0.0 0.0 20.3 

17-Jun 0.0 0.0 0.0 21.6 0.0 11.9 10.2 0.0 0.0 

18-Jun 0.0 0.0 0.0 45.2 6.7 0.0 0.0 5.3 0.0 

19-Jun 0.0 0.0 0.0 7.1 0.0 3.8 0.0 0.0 0.0 

20-Jun 7.1 0.0 0.0 9.7 0.0 3.8 0.0 0.0 0.0 

21-Jun 20.3 2.2 0.0 0.0 0.0 0.0 2.5 44.2 0.0 

22-Jun 0.0 0.0 3.0 0.0 1.3 0.0 0.0 0.0 11.9 

23-Jun 0.0 5.6 37.1 0.0 0.0 0.0 0.0 0.0 13.5 
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Table A1 Continued. 

DATE Daily Precipitation (mm) 

 1993 1994 1995 1996 1997 1998 1999 2000 2001 

24-Jun 0.0 11.4 1.3 15.0 0.0 1.3 0.0 0.0 0.0 

25-Jun 0.0 6.3 4.8 0.0 0.0 0.0 0.0 15.2 0.0 

26-Jun 3.0 2.5 22.6 0.0 0.0 7.6 0.0 0.0 0.0 

27-Jun 0.0 7.6 1.3 0.0 3.1 0.0 0.0 0.0 0.0 

28-Jun 1.5 0.0 0.0 0.0 0.0 1.3 1.8 12.7 0.0 

29-Jun 0.0 1.7 0.0 15.2 0.0 0.0 0.0 0.0 0.0 

30-Jun 0.0 0.0 0.9 21.8 0.0 5.1 0.0 0.0 1.0 

1-Jul 7.1 0.0 45.0 0.5 4.4 3.8 0.0 0.0 0.0 

2-Jul 14.7 0.0 0.0 10.7 0.3 0.0 1.0 0.0 0.0 

3-Jul 0.0 0.8 1.5 1.8 0.0 0.0 7.6 1.5 0.0 

4-Jul 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5-Jul 0.0 0.0 40.4 0.0 0.0 1.3 0.0 0.0 9.9 

6-Jul 27.9 13.7 6.3 0.0 0.0 0.0 0.0 0.0 0.0 

7-Jul 0.0 0.0 0.0 0.5 0.8 0.0 0.0 0.0 0.0 

8-Jul 0.0 0.0 0.0 10.9 0.0 41.4 0.0 0.0 2.8 

9-Jul 0.0 6.1 0.3 45.0 0.0 0.0 0.0 5.8 0.0 

10-Jul 0.0 0.0 3.0 0.0 11.2 0.0 0.8 0.5 17.8 

11-Jul 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

12-Jul 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

13-Jul 0.0 0.0 0.0 59.2 0.0 0.0 2.5 5.8 0.0 

14-Jul 0.0 3.3 0.0 0.0 0.0 0.0 0.0 28.7 0.0 

15-Jul 1.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 

16-Jul 0.0 0.0 5.1 0.0 0.0 21.6 0.0 17.3 0.0 

17-Jul 0.0 10.2 11.4 0.0 0.0 3.8 0.0 0.0 0.0 

18-Jul 0.0 12.7 0.0 2.3 2.0 6.1 0.5 0.0 1.0 

19-Jul 29.2 0.0 0.0 42.9 0.0 0.0 0.0 39.1 0.0 

20-Jul 0.0 0.0 3.6 26.8 0.0 0.0 0.3 0.0 0.0 

21-Jul 0.0 25.7 0.0 0.0 5.9 0.0 0.0 0.0 0.0 

22-Jul 0.0 5.6 0.0 6.3 0.0 0.0 10.2 0.0 0.0 

23-Jul 0.0 0.0 0.0 0.0 7.9 2.5 0.0 0.0 0.0 

24-Jul 0.0 0.0 2.3 0.0 6.7 0.0 0.8 4.1 0.0 

25-Jul 0.0 0.5 0.0 9.1 0.0 0.0 0.0 0.0 0.0 

26-Jul 0.3 29.5 0.0 0.0 0.0 0.0 0.0 4.3 0.3 

27-Jul 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 

28-Jul 0.0 0.0 14.7 3.0 0.0 0.0 0.0 0.0 0.0 

29-Jul 17.8 0.0 0.0 33.0 6.1 0.0 10.2 31.2 8.6 

30-Jul 0.0 0.0 0.0 15.0 0.0 0.0 0.0 0.0 0.0 

31-Jul 0.0 0.8 0.0 33.5 0.0 40.6 0.0 11.7 0.0 

1-Aug 0.0 0.0 0.0 0.0 0.0 0.0 18.3 1.8 0.0 

2-Aug 0.0 2.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 

3-Aug 0.0 0.0 0.0 41.4 0.0 0.0 0.0 5.6 0.0 

4-Aug 0.0 0.0 0.0 0.0 12.8 0.0 0.0 0.0 0.0 

5-Aug 0.5 6.9 16.0 0.0 0.8 0.0 0.0 0.3 0.0 

6-Aug 22.4 0.0 32.3 0.0 0.0 0.0 0.0 12.7 0.0 
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Table A1 Continued. 

DATE Daily Precipitation (mm) 

 1993 1994 1995 1996 1997 1998 1999 2000 2001 

7-Aug 5.3 0.0 3.3 0.0 0.0 0.0 0.0 0.3 0.0 

8-Aug 7.6 0.0 0.0 0.0 0.0 0.0 1.5 0.4 0.0 

9-Aug 0.0 0.0 0.0 4.8 0.0 0.0 0.0 6.3 0.0 

10-Aug 0.0 0.0 0.0 0.0 0.0 26.7 0.0 0.3 0.0 

11-Aug 0.0 1.3 1.3 0.0 0.0 1.3 0.0 0.0 0.6 

12-Aug 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 43.9 

13-Aug 0.0 0.0 0.0 47.2 10.0 0.0 0.0 20.3 0.0 

14-Aug 0.0 9.4 0.0 0.0 0.0 2.5 3.8 0.3 9.1 

15-Aug 0.0 0.0 0.0 0.0 0.0 5.1 0.0 4.3 0.0 

16-Aug 0.0 1.3 0.0 3.6 0.0 0.0 0.0 0.3 0.0 

17-Aug 31.8 47.5 0.0 0.3 19.7 17.8 0.0 0.0 0.4 

18-Aug 0.3 0.0 0.0 0.0 6.7 0.5 0.0 0.0 0.0 

19-Aug 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

20-Aug 6.6 0.0 0.0 0.0 34.3 0.0 1.0 0.0 0.3 

21-Aug 0.0 15.5 0.0 1.5 0.0 0.0 77.5 0.8 0.0 

22-Aug 0.0 36.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

23-Aug 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.8 

24-Aug 0.0 0.0 0.0 0.0 0.0 0.0 10.2 0.0 0.0 

25-Aug 0.0 0.0 0.0 0.0 0.0 0.0 25.4 0.0 0.8 

26-Aug 0.0 25.1 0.0 0.0 0.5 0.0 12.7 0.0 0.0 

27-Aug 0.0 0.0 0.0 2.8 0.3 0.0 1.0 0.0 0.0 

28-Aug 0.0 0.0 0.0 0.0 2.3 0.0 0.0 14.7 7.4 

29-Aug 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30-Aug 0.0 0.0 0.0 0.5 0.0 0.0 0.0 10.7 0.0 

31-Aug 0.0 1.8 0.0 0.0 0.0 0.0 0.0 2.3 2.0 

1-Sep 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.0 0.0 

2-Sep 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.1 0.0 

3-Sep 0.0 0.0 0.0 0.0 0.5 7.6 0.0 19.8 0.0 

4-Sep 81.3 0.0 0.0 14.2 0.0 0.0 0.0 1.0 0.0 

5-Sep 0.0 0.0 0.0 1.3 0.0 0.0 19.6 0.0 0.0 

6-Sep 0.0 0.0 0.0 63.8 0.0 0.0 2.5 0.0 0.0 

7-Sep 0.0 0.0 0.0 0.0 0.5 0.0 16.5 0.0 0.0 

8-Sep 0.0 0.0 2.5 0.0 0.0 4.6 1.3 0.0 0.0 

9-Sep 63.5 0.0 0.0 0.4 0.0 0.0 0.0 0.0 1.3 

10-Sep 0.0 0.0 0.0 0.0 32.5 0.0 6.3 0.8 0.5 

11-Sep 0.0 0.0 0.0 0.0 10.5 0.0 0.0 0.0 0.0 

12-Sep 0.0 0.0 0.0 0.0 17.4 0.0 0.0 18.0 0.0 

13-Sep 0.0 0.0 0.0 10.9 0.0 0.0 0.0 0.0 0.0 

14-Sep 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.9 2.3 

15-Sep 0.0 16.3 0.0 0.0 0.0 0.0 5.1 0.0 0.0 

16-Sep 17.8 0.8 33.8 33.5 0.0 0.0 81.3 0.0 0.0 

17-Sep 5.1 0.0 0.5 1.7 0.0 0.0 0.0 0.0 0.0 

18-Sep 2.8 32.8 0.0 0.0 2.6 0.0 0.0 0.0 0.0 

19-Sep 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.8 0.0 
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Table A1 Continued. 

DATE Daily Precipitation (mm) 

 1993 1994 1995 1996 1997 1998 1999 2000 2001 

20-Sep 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3 

21-Sep 2.5 0.0 0.0 0.0 0.5 1.3 14.0 0.0 0.0 

22-Sep 14.2 14.7 0.0 16.0 0.0 22.9 7.6 0.0 0.0 

23-Sep 0.0 4.1 13.7 3.4 0.0 0.0 0.0 0.0 0.0 

24-Sep 0.0 0.0 7.9 0.0 0.0 0.0 0.0 6.1 0.0 

25-Sep 0.0 9.7 6.1 0.0 0.0 5.1 0.0 0.0 55.9 

26-Sep 17.8 2.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 

27-Sep 6.6 0.0 0.0 0.0 0.0 0.0 0.3 34.5 0.0 

28-Sep 0.0 1.5 0.0 0.0 17.2 0.5 22.9 0.0 0.0 

29-Sep 0.0 0.0 0.0 16.3 0.3 0.0 0.3 0.0 0.0 

30-Sep 1.3 0.0 0.0 0.0 0.0 0.0 45.7 0.0 0.0 

1-Oct 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 

2-Oct 0.0 12.4 0.0 3.3 0.0 0.0 0.0 0.0 0.0 

3-Oct 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

4-Oct 0.0 0.0 3.0 0.0 0.0 24.1 11.4 0.0 0.0 

5-Oct 0.0 0.0 22.9 0.0 0.0 0.5 10.2 0.5 0.0 

6-Oct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.5 

7-Oct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

8-Oct 0.0 0.0 0.0 24.6 0.0 25.4 0.0 0.0 0.0 

9-Oct 0.0 0.0 0.0 2.5 0.0 1.3 0.0 1.5 0.0 

10-Oct 0.0 1.3 0.0 0.0 5.4 2.5 35.6 0.0 0.0 

11-Oct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

12-Oct 18.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

13-Oct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

14-Oct 0.0 0.0 22.1 0.0 0.0 0.0 1.3 0.0 13.6 

15-Oct 0.0 0.0 11.7 0.0 6.3 0.0 0.0 0.0 0.0 

16-Oct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.9 6.6 

17-Oct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

18-Oct 0.0 0.0 0.0 0.0 7.4 0.0 1.3 0.0 0.0 

19-Oct 0.0 0.0 0.0 67.8 0.0 0.0 6.3 0.0 0.0 

20-Oct 12.4 1.5 0.0 5.1 0.0 0.0 0.0 0.0 0.0 

21-Oct 4.8 0.0 52.6 3.8 0.0 0.0 0.0 0.0 0.0 

22-Oct 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 

23-Oct 0.0 23.6 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

24-Oct 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0 

25-Oct 0.0 0.0 0.0 0.0 12.4 0.0 0.0 0.0 0.0 

26-Oct 0.0 0.0 0.0 0.0 15.9 0.0 0.0 0.0 0.0 

27-Oct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 

28-Oct 0.0 0.0 13.0 3.0 0.0 0.0 0.0 0.0 0.0 

29-Oct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30-Oct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

31-Oct 20.8 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 

1-Nov 4.1 38.9 7.9 0.0 30.2 0.0 0.0 0.0 0.0 

2-Nov 0.0 0.0 0.5 0.0 8.6 0.0 7.6 0.0 0.6 
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Table A1 Continued. 

DATE Daily Precipitation (mm) 

 1993 1994 1995 1996 1997 1998 1999 2000 2001 

3-Nov 0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.0 0.0 

4-Nov 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 

5-Nov 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

6-Nov 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

7-Nov 0.0 0.0 9.9 0.0 74.0 0.0 0.0 0.0 0.0 

8-Nov 0.0 0.0 0.0 53.3 0.0 0.0 0.0 0.0 0.0 

9-Nov 0.0 6.3 0.0 0.0 3.1 0.0 0.0 14.0 0.0 

10-Nov 0.0 0.0 0.0 6.1 0.0 1.3 0.0 0.0 0.0 

11-Nov 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

12-Nov 0.0 0.0 23.6 0.0 0.0 0.0 0.0 0.0 0.0 

13-Nov 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 

14-Nov 4.6 0.0 23.1 1.5 14.0 0.0 0.0 2.8 0.0 

15-Nov 0.0 9.4 23.4 0.0 0.0 0.0 0.0 0.0 0.0 

16-Nov 0.0 16.3 0.0 0.0 0.8 0.0 0.0 0.0 0.0 

17-Nov 6.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

18-Nov 0.0 0.6 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

19-Nov 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

20-Nov 0.0 0.0 0.0 0.0 0.0 2.5 0.0 1.5 0.5 

21-Nov 0.0 19.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

22-Nov 0.0 0.0 0.0 0.0 17.4 0.0 0.0 0.0 0.0 

23-Nov 0.0 0.0 7.4 0.0 0.3 0.0 2.5 0.0 0.0 

24-Nov 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 

25-Nov 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 25.1 

26-Nov 0.0 0.0 0.0 38.1 0.5 12.7 12.2 24.9 0.0 

27-Nov 0.0 0.0 0.0 0.0 0.0 0.0 12.2 0.0 0.0 

28-Nov 86.6 31.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 

29-Nov 0.0 0.0 13.7 0.0 0.0 0.0 0.0 5.1 1.3 

30-Nov 0.0 0.0 0.0 1.8 7.9 0.0 0.0 0.0 0.0 

1-Dec 0.0 0.0 0.0 38.1 0.0 0.0 0.0 0.0 0.0 

2-Dec 0.0 0.0 0.0 12.1 1.0 0.0 0.0 0.0 0.0 

3-Dec 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

4-Dec 3.6 31.5 0.0 0.0 0.0 0.0 0.0 0.3 0.0 

5-Dec 79.0 0.8 1.3 0.0 0.0 0.0 0.0 0.0 0.0 

6-Dec 0.0 0.0 0.0 24.9 0.0 0.0 10.9 0.0 0.3 

7-Dec 0.0 0.0 0.0 11.7 0.0 0.0 0.0 0.0 14.2 

8-Dec 0.0 0.0 5.3 0.0 1.5 7.6 0.0 0.0 0.0 

9-Dec 0.0 3.6 19.6 0.0 0.0 0.0 0.0 0.0 0.0 

10-Dec 0.0 21.3 0.0 0.0 8.4 0.0 13.2 0.0 0.0 

11-Dec 5.3 0.0 0.0 0.0 1.0 0.0 0.0 0.0 6.1 

12-Dec 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.3 0.0 

13-Dec 0.0 0.0 0.0 44.7 0.0 0.0 6.3 0.0 0.0 

14-Dec 0.0 0.5 6.9 3.6 0.0 0.0 35.1 32.3 0.0 

15-Dec 0.0 1.0 2.5 0.0 0.0 0.0 0.8 0.0 0.0 

16-Dec 4.8 0.0 19.6 0.0 0.0 0.0 0.0 0.0 9.7 
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Table A1 Continued. 

DATE Daily Precipitation (mm) 

 1993 1994 1995 1996 1997 1998 1999 2000 2001 

17-Dec 0.3 4.8 0.0 2.3 0.0 0.0 0.0 51.8 9.9 

18-Dec 3.8 4.8 0.0 10.4 0.0 0.0 0.0 0.0 0.0 

19-Dec 0.0 0.0 15.2 0.0 0.0 0.0 0.0 6.3 0.0 

20-Dec 0.0 0.0 20.1 0.0 0.0 0.0 6.3 0.0 0.0 

21-Dec 17.3 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 

22-Dec 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

23-Dec 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

24-Dec 0.0 2.5 0.0 2.0 9.7 2.5 0.0 0.0 5.3 

25-Dec 0.0 0.0 0.0 0.0 17.9 0.0 0.0 0.0 0.0 

26-Dec 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

27-Dec 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

28-Dec 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 

29-Dec 0.0 0.0 0.0 2.8 5.1 3.8 0.0 0.0 0.0 

30-Dec 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

31-Dec 0.0 0.0 0.0 0.0 5.1 0.0 0.0 0.0 0.0 
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Appendix A-2 

 

Daily maximum and minimum temperature in °C for Warner Creek watershed 

from 1993 to 2001 
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Table A2 Daily maximum and minimum temperatures for Warner Creek watershed from 
1993 to 1997. 

 Daily Maximum and Minimum Temperature (°C) 

 1993 1994 1995 1996 1997 

DATE Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. 

1-Jan 18.0 0.0 1.0 -11.0 13.0 -1.0 4.0 1.0 3.0 -6.0 

2-Jan 2.0 -5.0 7.0 -3.0 9.0 -3.0 2.0 1.0 8.0 -6.0 

3-Jan 3.0 -4.0 2.0 -4.0 -1.0 -7.0 3.0 -3.0 18.0 7.0 

4-Jan 18.0 1.0 -2.0 -4.0 -1.0 -5.0 -2.0 -8.0 19.0 8.0 

5-Jan 18.0 7.0 -2.0 -6.0 -5.0 -12.0 -2.0 -8.0 19.0 8.0 

6-Jan 7.0 -1.0 -4.0 -10.0 2.0 -12.0 -4.0 -11.0 18.0 5.0 

7-Jan 7.0 1.0 -2.0 -6.0 6.0 -2.0 -7.0 -11.0 10.0 -3.0 

8-Jan 5.0 2.0 -2.0 -8.0 4.0 -2.0 -5.0 -9.0 3.0 -6.0 

9-Jan 3.0 -2.0 -2.0 -13.0 7.0 -2.0 -6.0 -11.0 1.0 -4.0 

10-Jan -1.0 -3.0 -5.0 -17.0 3.0 -4.0 -3.0 -11.0 3.0 -3.0 

11-Jan -1.0 -4.0 -3.0 -13.0 -1.0 -3.0 -6.0 -17.0 3.0 -8.0 

12-Jan 1.0 -2.0 -2.0 -4.0 7.0 -1.0 -2.0 -12.0 -4.0 -11.0 

13-Jan 7.0 1.0 -1.0 -4.0 11.0 0.0 3.0 -12.0 -3.0 -11.0 

14-Jan 7.0 2.0 0.0 -4.0 21.0 1.0 4.0 -12.0 0.0 -11.0 

15-Jan 7.0 0.0 -4.0 -17.0 18.0 16.0 7.0 -7.0 3.0 -14.0 

16-Jan 3.0 -2.0 -12.0 -20.0 16.0 7.0 2.0 -14.0 6.0 -2.0 

17-Jan 7.0 -3.0 -7.0 -14.0 8.0 4.0 4.0 -4.0 2.0 -14.0 

18-Jan 7.0 -2.0 -2.0 -17.0 8.0 3.0 4.0 -3.0 -9.0 -14.0 

19-Jan 3.0 -7.0 -17.0 -28.0 7.0 4.0 13.0 -3.0 -6.0 -18.0 

20-Jan 7.0 -9.0 -14.0 -27.0 8.0 4.0 -3.0 -11.0 4.0 -12.0 

21-Jan 1.0 -7.0 -9.0 -33.0 5.0 2.0 -1.0 -12.0 6.0 -7.0 

22-Jan 9.0 0.0 -1.0 -18.0 2.0 -3.0 3.0 -12.0 7.0 -4.0 

23-Jan 9.0 0.0 1.0 -13.0 3.0 -5.0 1.0 -6.0 11.0 4.0 

24-Jan 10.0 -3.0 8.0 -2.0 3.0 -4.0 9.0 0.0 5.0 -6.0 

25-Jan 9.0 -2.0 6.0 1.0 1.0 -1.0 9.0 -3.0 8.0 -1.0 

26-Jan 1.0 -8.0 2.0 -7.0 3.0 -4.0 3.0 -9.0 3.0 -6.0 

27-Jan 6.0 -8.0 -7.0 -12.0 3.0 -7.0 12.0 1.0 3.0 -5.0 

28-Jan 3.0 -7.0 -1.0 -13.0 2.0 -2.0 3.0 -3.0 6.0 0.0 

29-Jan 3.0 -5.0 6.0 -1.0 2.0 -8.0 1.0 -7.0 6.0 -7.0 

30-Jan 7.0 -6.0 1.0 -7.0 2.0 -6.0 8.0 -3.0 2.0 -8.0 

31-Jan 13.0 3.0 -1.0 -9.0 7.0 -8.0 6.0 -6.0 4.0 -3.0 

1-Feb 10.0 -4.0 -2.0 -9.0 7.0 2.0 -4.0 -11.0 10.0 -1.0 

2-Feb 1.0 -12.0 -4.0 -16.0 6.0 0.0 -4.0 -6.0 8.0 -3.0 

3-Feb 13.0 -9.0 -1.0 -14.0 6.0 -9.0 -6.0 -12.0 12.0 1.0 

4-Feb 9.0 1.0 2.0 -13.0 1.0 -6.0 -9.0 -16.0 8.0 -3.0 

5-Feb 14.0 -1.0 3.0 -8.0 0.0 -11.0 -9.0 -24.0 9.0 1.0 

6-Feb 11.0 -7.0 5.0 -9.0 -7.0 -18.0 -1.0 -25.0 7.0 2.0 

7-Feb -3.0 -13.0 7.0 -8.0 -4.0 -14.0 1.0 -16.0 5.0 -4.0 

8-Feb 4.0 -10.0 7.0 -9.0 -4.0 -17.0 4.0 -1.0 8.0 -2.0 

9-Feb 6.0 -8.0 -3.0 -10.0 -2.0 -11.0 8.0 1.0 3.0 -9.0 
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Table A2 Continued. 

 Daily Maximum and Minimum Temperature (°C) 

 1993 1994 1995 1996 1997 

DATE Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. 

10-Feb 13.0 -6.0 -5.0 -12.0 3.0 -6.0 9.0 -2.0 1.0 -8.0 

11-Feb 9.0 -3.0 -7.0 -12.0 6.0 -8.0 11.0 0.0 2.0 -7.0 

12-Feb 8.0 -2.0 -2.0 -7.0 6.0 -13.0 4.0 -4.0 2.0 -6.0 

13-Feb 4.0 -1.0 3.0 -3.0 -2.0 -12.0 -1.0 -10.0 4.0 -11.0 

14-Feb 3.0 -2.0 2.0 -3.0 2.0 -8.0 7.0 -5.0 9.0 -5.0 

15-Feb 4.0 -8.0 5.0 -16.0 1.0 -9.0 4.0 -3.0 6.0 1.0 

16-Feb 3.0 -1.0 7.0 -2.0 6.0 -1.0 2.0 -4.0 4.0 -7.0 

17-Feb 6.0 -1.0 6.0 -11.0 8.0 -3.0 -2.0 -10.0 5.0 -4.0 

18-Feb 1.0 -8.0 10.0 -11.0 9.0 -7.0 1.0 -6.0 14.0 -3.0 

19-Feb -6.0 -16.0 12.0 -9.0 10.0 -7.0 3.0 -10.0 19.0 5.0 

20-Feb 1.0 -15.0 13.0 -4.0 14.0 -4.0 6.0 1.0 19.0 -1.0 

21-Feb 0.0 -7.0 11.0 1.0 12.0 1.0 11.0 3.0 20.0 2.0 

22-Feb 8.0 -6.0 6.0 -2.0 5.0 -6.0 12.0 4.0 14.0 6.0 

23-Feb 5.0 -3.0 6.0 -3.0 7.0 -3.0 11.0 6.0 11.0 -2.0 

24-Feb -2.0 -8.0 6.0 -2.0 8.0 1.0 14.0 9.0 9.0 -2.0 

25-Feb -2.0 -13.0 3.0 -5.0 8.0 -8.0 20.0 9.0 8.0 -8.0 

26-Feb -2.0 -7.0 1.0 -7.0 6.0 -2.0 19.0 -1.0 12.0 -4.0 

27-Feb -1.0 -7.0 -4.0 -14.0 -1.0 -3.0 12.0 2.0 25.0 7.0 

28-Feb 2.0 -18.0 -3.0 -16.0 7.0 -1.0 16.0 6.0 26.0 5.0 

29-Feb       8.0 -4.0   

1-Mar 6.0 -7.0 -3.0 -7.0 7.0 1.0 3.0 -10.0 11.0 5.0 

2-Mar 11.0 -6.0 -3.0 -5.0 4.0 -4.0 4.0 -4.0 18.0 9.0 

3-Mar 9.0 1.0 2.0 -5.0 4.0 -3.0 2.0 -7.0 18.0 0.0 

4-Mar 6.0 1.0 8.0 2.0 6.0 0.0 5.0 -12.0 7.0 0.0 

5-Mar 2.0 0.0 6.0 2.0 7.0 2.0 12.0 -4.0 8.0 4.0 

6-Mar 6.0 0.0 5.0 -6.0 13.0 4.0 12.0 5.0 10.0 4.0 

7-Mar 11.0 -2.0 7.0 -6.0 13.0 4.0 9.0 -4.0 6.0 -2.0 

8-Mar 11.0 -2.0 7.0 0.0 17.0 5.0 -3.0 -9.0 17.0 -4.0 

9-Mar 9.0 3.0 4.0 -5.0 5.0 -6.0 -5.0 -11.0 14.0 -6.0 

10-Mar 7.0 -2.0 4.0 -2.0 2.0 -9.0 1.0 -14.0 13.0 0.0 

11-Mar 4.0 -1.0 4.0 -4.0 13.0 -7.0 6.0 -11.0 14.0 -2.0 

12-Mar 5.0 -7.0 5.0 -9.0 20.0 -3.0 12.0 -7.0 9.0 -3.0 

13-Mar 4.0 -4.0 9.0 -6.0 21.0 -1.0 15.0 -7.0 8.0 -3.0 

14-Mar -4.0 -9.0 9.0 -1.0 22.0 0.0 19.0 -3.0 6.0 1.0 

15-Mar -2.0 -16.0 13.0 -1.0 22.0 0.0 18.0 5.0 7.0 -1.0 

16-Mar 7.0 -13.0 13.0 -3.0 24.0 0.0 16.0 -1.0 3.0 -4.0 

17-Mar 6.0 2.0 1.0 -8.0 21.0 4.0 11.0 0.0 9.0 -7.0 

18-Mar 4.0 -11.0 1.0 -4.0 16.0 -1.0 14.0 0.0 12.0 5.0 

19-Mar -1.0 -15.0 4.0 -2.0 16.0 -2.0 14.0 -1.0 6.0 -1.0 

20-Mar 3.0 -6.0 11.0 -1.0 16.0 4.0 9.0 2.0 9.0 1.0 
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Table A2 Continued. 

 Daily Maximum and Minimum Temperature (°C) 

 1993 1994 1995 1996 1997 

DATE Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. 

21-Mar 9.0 1.0 10.0 -4.0 16.0 8.0 9.0 1.0 17.0 -1.0 

22-Mar 10.0 -2.0 13.0 -1.0 14.0 4.0 4.0 -3.0 16.0 6.0 

23-Mar 7.0 1.0 24.0 1.0 14.0 -2.0 8.0 -1.0 8.0 -4.0 

24-Mar 9.0 2.0 22.0 0.0 12.0 3.0 13.0 -3.0 7.0 -4.0 

25-Mar 9.0 3.0 20.0 6.0 14.0 -4.0 20.0 -3.0 12.0 -1.0 

26-Mar 13.0 -3.0 7.0 -3.0 17.0 4.0 18.0 4.0 13.0 7.0 

27-Mar 13.0 2.0 6.0 2.0 14.0 2.0 10.0 -3.0 23.0 2.0 

28-Mar 14.0 9.0 8.0 4.0 12.0 5.0 6.0 -3.0 23.0 2.0 

29-Mar 13.0 11.0 8.0 -1.0 13.0 -5.0 4.0 0.0 21.0 10.0 

30-Mar 19.0 9.0 8.0 2.0 11.0 5.0 13.0 1.0 19.0 10.0 

31-Mar 19.0 3.0 11.0 -4.0 13.0 1.0 17.0 0.0 18.0 1.0 

1-Apr 16.0 8.0 14.0 1.0 13.0 -4.0 17.0 0.0 14.0 -1.0 

2-Apr 13.0 8.0 18.0 1.0 13.0 -4.0 11.0 2.0 20.0 5.0 

3-Apr 10.0 3.0 20.0 1.0 17.0 -5.0 21.0 -2.0 22.0 3.0 

4-Apr 10.0 -3.0 20.0 -1.0 18.0 3.0 21.0 2.0 24.0 6.0 

5-Apr 10.0 -3.0 19.0 -2.0 18.0 -4.0 20.0 2.0 24.0 10.0 

6-Apr 12.0 3.0 19.0 9.0 16.0 -3.0 9.0 1.0 18.0 8.0 

7-Apr 14.0 -2.0 17.0 3.0 18.0 -1.0 10.0 1.0 19.0 7.0 

8-Apr 18.0 -2.0 11.0 -4.0 18.0 1.0 10.0 -3.0 18.0 2.0 

9-Apr 18.0 3.0 17.0 -3.0 25.0 3.0 8.0 1.0 14.0 -2.0 

10-Apr 14.0 11.0 17.0 5.0 26.0 3.0 8.0 -1.0 14.0 -4.0 

11-Apr 17.0 4.0 14.0 1.0 13.0 3.0 21.0 2.0 11.0 -1.0 

12-Apr 17.0 6.0 14.0 1.0 17.0 9.0 29.0 13.0 11.0 -1.0 

13-Apr 17.0 2.0 12.0 7.0 17.0 5.0 29.0 7.0 15.0 3.0 

14-Apr 17.0 2.0 22.0 4.0 11.0 4.0 18.0 8.0 13.0 1.0 

15-Apr 24.0 3.0 27.0 7.0 15.0 1.0 14.0 0.0 15.0 -2.0 

16-Apr 25.0 13.0 25.0 9.0 18.0 1.0 13.0 6.0 19.0 -1.0 

17-Apr 17.0 7.0 16.0 5.0 18.0 4.0 12.0 3.0 19.0 5.0 

18-Apr 18.0 1.0 21.0 2.0 17.0 2.0 21.0 -2.0 11.0 3.0 

19-Apr 23.0 4.0 25.0 8.0 30.0 12.0 23.0 3.0 15.0 3.0 

20-Apr 24.0 9.0 23.0 7.0 29.0 7.0 25.0 12.0 17.0 -2.0 

21-Apr 24.0 12.0 17.0 7.0 22.0 11.0 24.0 11.0 17.0 -1.0 

22-Apr 16.0 1.0 15.0 2.0 23.0 8.0 29.0 8.0 17.0 -1.0 

23-Apr 17.0 5.0 16.0 -2.0 17.0 2.0 27.0 14.0 19.0 6.0 

24-Apr 17.0 -1.0 25.0 1.0 13.0 6.0 26.0 5.0 16.0 7.0 

25-Apr 25.0 4.0 27.0 8.0 18.0 4.0 23.0 6.0 17.0 4.0 

26-Apr 25.0 9.0 27.0 10.0 18.0 2.0 23.0 14.0 19.0 6.0 

27-Apr 16.0 1.0 28.0 12.0 24.0 2.0 20.0 5.0 19.0 3.0 

28-Apr 19.0 -1.0 26.0 12.0 23.0 8.0 21.0 2.0 17.0 8.0 

29-Apr 22.0 3.0 21.0 11.0 20.0 1.0 28.0 11.0 19.0 4.0 
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Table A2 Continued. 

 Daily Maximum and Minimum Temperature (°C) 

 1993 1994 1995 1996 1997 

DATE Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. 

30-Apr 22.0 7.0 23.0 12.0 19.0 4.0 28.0 12.0 23.0 3.0 

1-May 25.0 7.0 22.0 13.0 15.0 4.0 18.0 2.0 25.0 3.0 

2-May 26.0 11.0 14.0 1.0 14.0 7.0 21.0 6.0 26.0 6.0 

3-May 25.0 13.0 14.0 1.0 19.0 4.0 21.0 9.0 23.0 10.0 

4-May 22.0 14.0 9.0 6.0 19.0 5.0 24.0 10.0 23.0 8.0 

5-May 23.0 17.0 18.0 8.0 19.0 11.0 24.0 10.0 20.0 0.0 

6-May 26.0 13.0 17.0 8.0 20.0 9.0 20.0 12.0 20.0 12.0 

7-May 26.0 12.0 17.0 1.0 21.0 4.0 16.0 6.0 18.0 1.0 

8-May 24.0 8.0 13.0 6.0 21.0 1.0 13.0 8.0 18.0 -2.0 

9-May 26.0 11.0 19.0 4.0 21.0 4.0 16.0 12.0 19.0 8.0 

10-May 28.0 13.0 19.0 6.0 19.0 11.0 21.0 12.0 18.0 9.0 

11-May 31.0 14.0 20.0 1.0 21.0 11.0 28.0 12.0 20.0 6.0 

12-May 31.0 14.0 20.0 11.0 22.0 7.0 18.0 7.0 24.0 8.0 

13-May 19.0 17.0 18.0 3.0 23.0 6.0 13.0 -1.0 22.0 11.0 

14-May 20.0 7.0 18.0 -1.0 22.0 11.0 15.0 -2.0 19.0 2.0 

15-May 26.0 8.0 24.0 7.0 23.0 10.0 15.0 6.0 21.0 11.0 

16-May 26.0 15.0 23.0 14.0 23.0 4.0 14.0 8.0 21.0 8.0 

17-May 19.0 11.0 14.0 7.0 23.0 13.0 17.0 9.0 21.0 7.0 

18-May 20.0 8.0 14.0 3.0 24.0 18.0 29.0 16.0 23.0 7.0 

19-May 17.0 11.0 13.0 7.0 23.0 12.0 33.0 18.0 31.0 13.0 

20-May 17.0 10.0 16.0 8.0 26.0 11.0 33.0 18.0 31.0 18.0 

21-May 18.0 5.0 23.0 2.0 26.0 8.0 33.0 19.0 21.0 6.0 

22-May 19.0 9.0 26.0 6.0 23.0 8.0 27.0 13.0 18.0 7.0 

23-May 21.0 4.0 29.0 9.0 26.0 6.0 27.0 8.0 22.0 4.0 

24-May 26.0 10.0 28.0 11.0 29.0 16.0 27.0 17.0 25.0 8.0 

25-May 27.0 17.0 26.0 11.0 28.0 16.0 23.0 12.0 25.0 9.0 

26-May 27.0 11.0 22.0 13.0 23.0 17.0 19.0 9.0 22.0 7.0 

27-May 26.0 9.0 22.0 7.0 23.0 15.0 12.0 10.0 19.0 6.0 

28-May 29.0 11.0 22.0 1.0 23.0 13.0 13.0 10.0 21.0 4.0 

29-May 30.0 19.0 22.0 3.0 26.0 13.0 13.0 12.0 22.0 4.0 

30-May 22.0 4.0 26.0 8.0 25.0 16.0 19.0 2.0 22.0 13.0 

31-May 23.0 10.0 26.0 11.0 26.0 8.0 22.0 2.0 24.0 8.0 

1-Jun 22.0 8.0 27.0 11.0 26.0 9.0 25.0 6.0 24.0 11.0 

2-Jun 22.0 4.0 27.0 9.0 28.0 16.0 24.0 9.0 23.0 6.0 

3-Jun 22.0 10.0 22.0 4.0 27.0 19.0 24.0 9.0 15.0 2.0 

4-Jun 22.0 10.0 25.0 6.0 26.0 16.0 25.0 11.0 21.0 10.0 

5-Jun 22.0 13.0 24.0 11.0 27.0 10.0 24.0 12.0 22.0 6.0 

6-Jun 23.0 13.0 27.0 13.0 26.0 12.0 27.0 11.0 22.0 7.0 

7-Jun 24.0 8.0 29.0 18.0 29.0 17.0 29.0 13.0 18.0 6.0 

8-Jun 24.0 16.0 28.0 17.0 30.0 19.0 31.0 16.0 22.0 4.0 
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Table A2 Continued. 

 Daily Maximum and Minimum Temperature (°C) 

 1993 1994 1995 1996 1997 

DATE Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. 

9-Jun 33.0 17.0 23.0 6.0 29.0 14.0 29.0 17.0 26.0 7.0 

10-Jun 32.0 21.0 26.0 5.0 23.0 19.0 31.0 21.0 29.0 7.0 

11-Jun 30.0 20.0 26.0 13.0 29.0 20.0 27.0 18.0 29.0 12.0 

12-Jun 28.0 13.0 28.0 17.0 30.0 16.0 27.0 18.0 29.0 12.0 

13-Jun 24.0 12.0 31.0 15.0 21.0 10.0 27.0 16.0 27.0 18.0 

14-Jun 26.0 10.0 32.0 18.0 26.0 10.0 29.0 19.0 26.0 18.0 

15-Jun 27.0 16.0 34.0 18.0 26.0 10.0 29.0 18.0 24.0 13.0 

16-Jun 27.0 13.0 34.0 21.0 26.0 13.0 30.0 14.0 26.0 12.0 

17-Jun 29.0 11.0 28.0 17.0 27.0 11.0 31.0 19.0 28.0 17.0 

18-Jun 32.0 17.0 31.0 17.0 29.0 11.0 31.0 19.0 31.0 13.0 

19-Jun 33.0 21.0 33.0 18.0 31.0 13.0 27.0 20.0 28.0 13.0 

20-Jun 32.0 19.0 30.0 18.0 33.0 18.0 28.0 21.0 32.0 13.0 

21-Jun 29.0 20.0 31.0 18.0 32.0 19.0 28.0 18.0 32.0 14.0 

22-Jun 29.0 19.0 29.0 17.0 26.0 18.0 31.0 18.0 32.0 16.0 

23-Jun 29.0 14.0 30.0 13.0 25.0 18.0 31.0 18.0 31.0 13.0 

24-Jun 27.0 9.0 31.0 13.0 23.0 17.0 28.0 16.0 33.0 14.0 

25-Jun 29.0 11.0 27.0 19.0 28.0 21.0 28.0 19.0 36.0 18.0 

26-Jun 30.0 16.0 29.0 13.0 27.0 21.0 28.0 12.0 36.0 24.0 

27-Jun 30.0 17.0 28.0 17.0 24.0 21.0 27.0 13.0 36.0 16.0 

28-Jun 31.0 17.0 26.0 17.0 21.0 16.0 28.0 14.0 30.0 12.0 

29-Jun 31.0 19.0 27.0 17.0 22.0 16.0 27.0 18.0 30.0 13.0 

30-Jun 28.0 17.0 27.0 16.0 28.0 16.0 31.0 18.0 27.0 13.0 

1-Jul 27.0 18.0 27.0 14.0 28.0 16.0 32.0 22.0 29.0 19.0 

2-Jul 23.0 19.0 30.0 14.0 27.0 18.0 28.0 19.0 26.0 21.0 

3-Jul 30.0 19.0 29.0 18.0 26.0 12.0 28.0 17.0 33.0 22.0 

4-Jul 32.0 18.0 28.0 17.0 28.0 16.0 23.0 13.0 33.0 23.0 

5-Jul 33.0 21.0 29.0 21.0 28.0 22.0 26.0 13.0 28.0 16.0 

6-Jul 33.0 23.0 33.0 19.0 31.0 21.0 28.0 12.0 28.0 12.0 

7-Jul 33.0 22.0 31.0 17.0 28.0 20.0 29.0 14.0 29.0 15.0 

8-Jul 34.0 21.0 32.0 21.0 26.0 16.0 31.0 21.0 31.0 14.0 

9-Jul 34.0 20.0 31.0 21.0 24.0 12.0 29.0 19.0 32.0 18.0 

10-Jul 34.0 22.0 28.0 19.0 27.0 17.0 29.0 17.0 27.0 15.0 

11-Jul 33.0 22.0 28.0 13.0 28.0 16.0 25.0 11.0 28.0 13.0 

12-Jul 31.0 21.0 28.0 12.0 29.0 16.0 25.0 16.0 31.0 12.0 

13-Jul 31.0 19.0 31.0 15.0 32.0 18.0 28.0 20.0 33.0 14.0 

14-Jul 33.0 19.0 31.0 19.0 34.0 18.0 29.0 21.0 33.0 12.0 

15-Jul 29.0 22.0 29.0 20.0 36.0 24.0 28.0 22.0 35.0 14.0 

16-Jul 29.0 13.0 28.0 19.0 35.0 22.0 29.0 19.0 34.0 21.0 

17-Jul 29.0 12.0 28.0 17.0 31.0 22.0 31.0 21.0 34.0 18.0 

18-Jul 28.0 13.0 28.0 19.0 31.0 20.0 29.0 19.0 36.0 18.0 
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Table A2 Continued. 

 Daily Maximum and Minimum Temperature (°C) 

 1993 1994 1995 1996 1997 

DATE Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. 

19-Jul 28.0 20.0 30.0 17.0 30.0 17.0 28.0 21.0 36.0 14.0 

20-Jul 31.0 20.0 31.0 19.0 29.0 17.0 28.0 17.0 32.0 12.0 

21-Jul 30.0 17.0 30.0 21.0 29.0 19.0 27.0 14.0 33.0 18.0 

22-Jul 27.0 13.0 28.0 21.0 29.0 19.0 27.0 18.0 33.0 21.0 

23-Jul 29.0 11.0 27.0 21.0 31.0 20.0 27.0 17.0 26.0 17.0 

24-Jul 28.0 12.0 29.0 17.0 31.0 18.0 28.0 16.0 17.0 16.0 

25-Jul 28.0 18.0 28.0 17.0 31.0 19.0 29.0 18.0 24.0 16.0 

26-Jul 28.0 21.0 25.0 18.0 31.0 19.0 27.0 18.0 29.0 14.0 

27-Jul 33.0 21.0 26.0 16.0 33.0 19.0 26.0 14.0 33.0 20.0 

28-Jul 35.0 18.0 23.0 16.0 31.0 22.0 26.0 14.0 33.0 19.0 

29-Jul 34.0 21.0 25.0 16.0 32.0 23.0 26.0 19.0 29.0 19.0 

30-Jul 30.0 19.0 27.0 16.0 32.0 18.0 26.0 17.0 27.0 9.0 

31-Jul 32.0 17.0 27.0 18.0 32.0 16.0 26.0 19.0 29.0 9.0 

1-Aug 31.0 16.0 27.0 19.0 32.0 18.0 27.0 17.0 32.0 12.0 

2-Aug 29.0 15.0 27.0 19.0 33.0 21.0 27.0 16.0 31.0 12.0 

3-Aug 31.0 17.0 28.0 16.0 33.0 21.0 27.0 19.0 32.0 21.0 

4-Aug 31.0 17.0 29.0 17.0 34.0 21.0 27.0 17.0 32.0 18.0 

5-Aug 26.0 14.0 28.0 17.0 34.0 22.0 28.0 17.0 26.0 13.0 

6-Aug 19.0 15.0 23.0 8.0 28.0 21.0 28.0 17.0 26.0 11.0 

7-Aug 25.0 16.0 23.0 6.0 24.0 18.0 29.0 17.0 26.0 8.0 

8-Aug 26.0 19.0 25.0 9.0 24.0 19.0 28.0 17.0 29.0 6.0 

9-Aug 27.0 13.0 28.0 12.0 25.0 16.0 28.0 20.0 29.0 7.0 

10-Aug 27.0 15.0 27.0 18.0 28.0 19.0 26.0 15.0 31.0 17.0 

11-Aug 27.0 18.0 25.0 12.0 29.0 18.0 26.0 13.0 32.0 13.0 

12-Aug 27.0 14.0 28.0 19.0 31.0 18.0 24.0 16.0 32.0 19.0 

13-Aug 28.0 18.0 30.0 19.0 31.0 21.0 23.0 16.0 30.0 18.0 

14-Aug 31.0 17.0 24.0 19.0 33.0 21.0 28.0 13.0 29.0 21.0 

15-Aug 31.0 16.0 22.0 10.0 33.0 22.0 28.0 17.0 32.0 18.0 

16-Aug 29.0 18.0 21.0 12.0 32.0 21.0 28.0 17.0 37.0 20.0 

17-Aug 29.0 20.0 21.0 16.0 32.0 23.0 27.0 16.0 34.0 23.0 

18-Aug 28.0 18.0 22.0 19.0 33.0 19.0 28.0 17.0 33.0 17.0 

19-Aug 28.0 17.0 26.0 14.0 32.0 19.0 28.0 14.0 26.0 14.0 

20-Aug 29.0 19.0 28.0 16.0 29.0 12.0 27.0 15.0 23.0 14.0 

21-Aug 27.0 18.0 26.0 19.0 33.0 13.0 28.0 18.0 27.0 14.0 

22-Aug 26.0 10.0 26.0 18.0 32.0 14.0 29.0 19.0 27.0 14.0 

23-Aug 29.0 12.0 24.0 8.0 29.0 11.0 31.0 16.0 24.0 13.0 

24-Aug 30.0 18.0 24.0 8.0 32.0 12.0 29.0 13.0 26.0 8.0 

25-Aug 33.0 20.0 27.0 18.0 32.0 16.0 29.0 14.0 26.0 14.0 

26-Aug 32.0 18.0 29.0 16.0 28.0 9.0 28.0 13.0 26.0 14.0 

27-Aug 33.0 18.0 29.0 18.0 29.0 13.0 27.0 16.0 28.0 14.0 
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Table A2 Continued. 

 Daily Maximum and Minimum Temperature (°C) 

 1993 1994 1995 1996 1997 

DATE Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. 

28-Aug 35.0 19.0 29.0 16.0 28.0 20.0 27.0 14.0 28.0 17.0 

29-Aug 35.0 17.0 28.0 16.0 30.0 14.0 27.0 14.0 26.0 16.0 

30-Aug 35.0 16.0 25.0 9.0 31.0 18.0 26.0 15.0 26.0 12.0 

31-Aug 32.0 18.0 26.0 13.0 33.0 15.0 28.0 13.0 29.0 13.0 

1-Sep 31.0 19.0 25.0 18.0 32.0 22.0 28.0 14.0 30.0 16.0 

2-Sep 32.0 20.0 22.0 10.0 28.0 13.0 29.0 13.0 32.0 16.0 

3-Sep 34.0 23.0 22.0 10.0 28.0 11.0 28.0 14.0 31.0 18.0 

4-Sep 24.0 19.0 22.0 12.0 29.0 9.0 25.0 18.0 21.0 9.0 

5-Sep 25.0 15.0 26.0 8.0 30.0 12.0 28.0 20.0 26.0 6.0 

6-Sep 27.0 12.0 24.0 8.0 32.0 9.0 28.0 19.0 27.0 8.0 

7-Sep 26.0 14.0 26.0 16.0 31.0 13.0 28.0 21.0 30.0 10.0 

8-Sep 25.0 16.0 24.0 8.0 29.0 14.0 28.0 17.0 26.0 16.0 

9-Sep 23.0 16.0 27.0 8.0 29.0 19.0 28.0 17.0 24.0 18.0 

10-Sep 24.0 17.0 25.0 9.0 29.0 14.0 28.0 17.0 23.0 17.0 

11-Sep 22.0 7.0 24.0 8.0 23.0 4.0 28.0 19.0 24.0 18.0 

12-Sep 23.0 4.0 24.0 6.0 23.0 4.0 24.0 17.0 25.0 15.0 

13-Sep 26.0 12.0 27.0 8.0 28.0 16.0 24.0 16.0 24.0 11.0 

14-Sep 28.0 13.0 30.0 16.0 31.0 19.0 21.0 9.0 24.0 14.0 

15-Sep 29.0 17.0 29.0 21.0 29.0 8.0 21.0 8.0 25.0 13.0 

16-Sep 26.0 13.0 28.0 20.0 23.0 12.0 22.0 12.0 27.0 10.0 

17-Sep 15.0 13.0 28.0 17.0 22.0 14.0 18.0 14.0 27.0 14.0 

18-Sep 21.0 13.0 26.0 16.0 22.0 14.0 21.0 14.0 26.0 19.0 

19-Sep 21.0 8.0 23.0 7.0 23.0 9.0 23.0 13.0 27.0 9.0 

20-Sep 19.0 6.0 23.0 6.0 22.0 16.0 23.0 7.0 28.0 18.0 

21-Sep 18.0 10.0 23.0 7.0 27.0 18.0 24.0 8.0 28.0 5.0 

22-Sep 18.0 12.0 23.0 13.0 27.0 17.0 23.0 13.0 20.0 2.0 

23-Sep 21.0 9.0 20.0 14.0 17.0 9.0 21.0 13.0 20.0 9.0 

24-Sep 21.0 9.0 23.0 11.0 17.0 3.0 19.0 9.0 18.0 9.0 

25-Sep 18.0 6.0 25.0 16.0 14.0 12.0 21.0 7.0 21.0 4.0 

26-Sep 22.0 11.0 25.0 18.0 19.0 13.0 20.0 7.0 22.0 12.0 

27-Sep 22.0 14.0 24.0 19.0 24.0 7.0 24.0 14.0 21.0 8.0 

28-Sep 17.0 9.0 22.0 12.0 25.0 9.0 22.0 18.0 21.0 11.0 

29-Sep 17.0 6.0 19.0 8.0 22.0 9.0 22.0 9.0 23.0 16.0 

30-Sep 14.0 4.0 21.0 6.0 21.0 6.0 23.0 6.0 23.0 15.0 

1-Oct 14.0 -2.0 25.0 8.0 22.0 6.0 23.0 6.0 19.0 11.0 

2-Oct 21.0 4.0 19.0 13.0 27.0 9.0 22.0 13.0 17.0 0.0 

3-Oct 19.0 9.0 18.0 5.0 27.0 9.0 22.0 12.0 21.0 2.0 

4-Oct 19.0 2.0 16.0 3.0 25.0 18.0 13.0 1.0 26.0 11.0 

5-Oct 19.0 8.0 15.0 7.0 23.0 18.0 14.0 1.0 27.0 11.0 

6-Oct 17.0 -1.0 17.0 1.0 28.0 19.0 16.0 3.0 29.0 13.0 
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Table A2 Continued. 

 Daily Maximum and Minimum Temperature (°C) 

 1993 1994 1995 1996 1997 

DATE Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. 

7-Oct 21.0 3.0 20.0 2.0 28.0 17.0 18.0 2.0 29.0 13.0 

8-Oct 21.0 7.0 22.0 4.0 23.0 9.0 18.0 11.0 28.0 12.0 

9-Oct 23.0 8.0 24.0 8.0 23.0 3.0 20.0 7.0 31.0 12.0 

10-Oct 21.0 4.0 19.0 7.0 22.0 8.0 16.0 11.0 27.0 18.0 

11-Oct 11.0 -2.0 19.0 -1.0 24.0 8.0 13.0 3.0 26.0 2.0 

12-Oct 12.0 5.0 17.0 -1.0 26.0 6.0 15.0 -2.0 21.0 1.0 

13-Oct 12.0 4.0 16.0 1.0 26.0 10.0 21.0 4.0 23.0 6.0 

14-Oct 11.0 4.0 17.0 10.0 24.0 14.0 24.0 12.0 23.0 12.0 

15-Oct 11.0 3.0 18.0 7.0 23.0 9.0 23.0 2.0 18.0 9.0 

16-Oct 17.0 3.0 19.0 2.0 14.0 7.0 24.0 6.0 17.0 4.0 

17-Oct 16.0 9.0 19.0 -1.0 17.0 -1.0 25.0 8.0 15.0 4.0 

18-Oct 19.0 9.0 22.0 1.0 19.0 0.0 23.0 10.0 16.0 7.0 

19-Oct 18.0 7.0 21.0 3.0 22.0 4.0 16.0 5.0 15.0 7.0 

20-Oct 15.0 11.0 22.0 14.0 23.0 5.0 11.0 7.0 18.0 2.0 

21-Oct 19.0 12.0 21.0 5.0 20.0 8.0 14.0 5.0 17.0 -1.0 

22-Oct 14.0 4.0 21.0 3.0 20.0 2.0 13.0 9.0 12.0 2.0 

23-Oct 14.0 -2.0 19.0 11.0 22.0 2.0 19.0 9.0 11.0 -4.0 

24-Oct 17.0 -2.0 19.0 2.0 23.0 3.0 19.0 7.0 12.0 -3.0 

25-Oct 21.0 -1.0 19.0 3.0 22.0 5.0 19.0 4.0 12.0 7.0 

26-Oct 19.0 4.0 15.0 0.0 13.0 -1.0 21.0 8.0 10.0 6.0 

27-Oct 16.0 8.0 15.0 1.0 18.0 4.0 20.0 12.0 13.0 6.0 

28-Oct 16.0 2.0 16.0 -3.0 18.0 14.0 20.0 14.0 13.0 3.0 

29-Oct 16.0 -1.0 18.0 -2.0 14.0 8.0 16.0 3.0 14.0 -3.0 

30-Oct 14.0 4.0 22.0 -2.0 15.0 -1.0 26.0 7.0 17.0 -2.0 

31-Oct 6.0 3.0 19.0 5.0 13.0 6.0 24.0 10.0 17.0 -1.0 

1-Nov 6.0 1.0 19.0 9.0 12.0 8.0 16.0 6.0 16.0 8.0 

2-Nov 9.0 -2.0 19.0 7.0 21.0 12.0 7.0 3.0 16.0 9.0 

3-Nov 6.0 -2.0 18.0 -1.0 21.0 12.0 8.0 -2.0 16.0 -1.0 

4-Nov 12.0 -3.0 25.0 8.0 12.0 -1.0 11.0 -5.0 10.0 5.0 

5-Nov 15.0 4.0 23.0 9.0 7.0 -2.0 15.0 -1.0 12.0 -4.0 

6-Nov 14.0 5.0 24.0 10.0 9.0 -6.0 16.0 3.0 11.0 -2.0 

7-Nov 6.0 -4.0 19.0 7.0 7.0 -4.0 21.0 12.0 11.0 6.0 

8-Nov 7.0 -8.0 21.0 0.0 8.0 -4.0 21.0 12.0 8.0 6.0 

9-Nov 9.0 -7.0 23.0 8.0 4.0 -3.0 12.0 6.0 12.0 7.0 

10-Nov 11.0 -6.0 19.0 5.0 12.0 -6.0 9.0 0.0 11.0 4.0 

11-Nov 13.0 -7.0 10.0 -3.0 18.0 2.0 4.0 -2.0 11.0 4.0 

12-Nov 16.0 2.0 12.0 -6.0 16.0 0.0 5.0 -3.0 8.0 1.0 

13-Nov 8.0 1.0 19.0 4.0 1.0 -4.0 4.0 -4.0 3.0 -3.0 

14-Nov 20.0 1.0 19.0 2.0 2.0 0.0 3.0 -4.0 2.0 0.0 

15-Nov 24.0 15.0 21.0 6.0 5.0 1.0 3.0 -7.0 6.0 1.0 
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Table A2 Continued. 

 Daily Maximum and Minimum Temperature (°C) 

 1993 1994 1995 1996 1997 

DATE Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. 

16-Nov 19.0 3.0 17.0 6.0 6.0 -3.0 6.0 -8.0 4.0 -1.0 

17-Nov 12.0 3.0 10.0 3.0 7.0 -4.0 8.0 -7.0 9.0 -3.0 

18-Nov 14.0 4.0 13.0 8.0 7.0 -2.0 7.0 -1.0 6.0 -8.0 

19-Nov 8.0 -3.0 17.0 6.0 9.0 3.0 11.0 -1.0 11.0 -8.0 

20-Nov 9.0 1.0 17.0 -1.0 8.0 -3.0 7.0 2.0 13.0 -4.0 

21-Nov 8.0 -7.0 13.0 2.0 11.0 1.0 6.0 -6.0 12.0 -2.0 

22-Nov 13.0 -5.0 13.0 6.0 5.0 -2.0 6.0 -1.0 10.0 6.0 

23-Nov 13.0 -6.0 8.0 0.0 5.0 -6.0 8.0 -5.0 11.0 2.0 

24-Nov 11.0 -3.0 6.0 -5.0 3.0 0.0 8.0 -1.0 8.0 -1.0 

25-Nov 8.0 1.0 12.0 -2.0 6.0 -7.0 15.0 -1.0 7.0 -6.0 

26-Nov 4.0 -6.0 9.0 -4.0 7.0 -7.0 10.0 4.0 10.0 2.0 

27-Nov 11.0 1.0 4.0 -3.0 12.0 -1.0 10.0 -2.0 12.0 6.0 

28-Nov 14.0 4.0 13.0 -1.0 14.0 4.0 -1.0 -8.0 11.0 -1.0 

29-Nov 7.0 -2.0 13.0 -1.0 4.0 -2.0 5.0 -7.0 11.0 9.0 

30-Nov 4.0 -6.0 11.0 -2.0 3.0 -7.0 3.0 -6.0 9.0 7.0 

1-Dec 4.0 -8.0 8.0 -3.0 16.0 -3.0 16.0 3.0 8.0 2.0 

2-Dec 7.0 -3.0 12.0 -6.0 14.0 1.0 11.0 3.0 8.0 -1.0 

3-Dec 13.0 -2.0 11.0 -4.0 11.0 -4.0 8.0 -5.0 8.0 -5.0 

4-Dec 9.0 2.0 14.0 3.0 13.0 6.0 8.0 2.0 12.0 1.0 

5-Dec 10.0 6.0 16.0 3.0 6.0 -4.0 5.0 -6.0 9.0 2.0 

6-Dec 7.0 -4.0 18.0 3.0 4.0 -4.0 6.0 0.0 2.0 -2.0 

7-Dec 7.0 3.0 17.0 7.0 6.0 2.0 6.0 -3.0 6.0 -2.0 

8-Dec 7.0 -4.0 17.0 -2.0 6.0 -8.0 8.0 -4.0 6.0 2.0 

9-Dec 7.0 -6.0 3.0 -5.0 3.0 -3.0 6.0 -1.0 3.0 -4.0 

10-Dec 7.0 -3.0 4.0 2.0 1.0 -12.0 4.0 -2.0 4.0 2.0 

11-Dec 7.0 -3.0 6.0 2.0 -6.0 -11.0 4.0 1.0 5.0 2.0 

12-Dec 1.0 -7.0 2.0 -7.0 2.0 -14.0 7.0 2.0 6.0 2.0 

13-Dec 9.0 -5.0 2.0 -7.0 -3.0 -6.0 8.0 6.0 7.0 -5.0 

14-Dec 9.0 -6.0 2.0 -4.0 0.0 -5.0 7.0 3.0 6.0 -2.0 

15-Dec 4.0 -2.0 6.0 1.0 7.0 -5.0 7.0 -2.0 7.0 -8.0 

16-Dec 7.0 4.0 6.0 1.0 7.0 1.0 6.0 4.0 15.0 -6.0 

17-Dec 6.0 -8.0 7.0 2.0 3.0 -4.0 8.0 4.0 13.0 -6.0 

18-Dec 3.0 -6.0 9.0 1.0 2.0 -6.0 8.0 4.0 9.0 -8.0 

19-Dec 7.0 -1.0 7.0 -1.0 1.0 -4.0 6.0 -1.0 15.0 -3.0 

20-Dec 7.0 -3.0 7.0 -3.0 -3.0 -7.0 6.0 -8.0 14.0 -2.0 

21-Dec 3.0 -2.0 10.0 -7.0 -1.0 -8.0 -1.0 -12.0 9.0 -6.0 

22-Dec 2.0 -2.0 7.0 -6.0 -1.0 -6.0 2.0 -9.0 0.0 -5.0 

23-Dec 2.0 -4.0 12.0 -2.0 1.0 -5.0 7.0 -3.0 7.0 -1.0 

24-Dec 2.0 -7.0 9.0 5.0 1.0 -4.0 11.0 0.0 7.0 1.0 
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Table A2 Continued. 

 Daily Maximum and Minimum Temperature (°C) 

 1993 1994 1995 1996 1997 

DATE Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. 

25-Dec -2.0 -9.0 13.0 6.0 -1.0 -3.0 5.0 -3.0 12.0 3.0 

26-Dec -2.0 -11.0 11.0 -4.0 -2.0 -5.0 1.0 -6.0 10.0 6.0 

27-Dec -7.0 -11.0 11.0 -8.0 -1.0 -7.0 9.0 -3.0 6.0 -2.0 

28-Dec -7.0 -9.0 14.0 -7.0 2.0 -4.0 9.0 -2.0 3.0 -4.0 

29-Dec -7.0 -14.0 13.0 1.0 4.0 -4.0 13.0 6.0 2.0 -7.0 

30-Dec -4.0 -10.0 4.0 -8.0 7.0 -9.0 13.0 8.0 2.0 -1.0 

31-Dec -2.0 -13.0 0.0 -9.0 8.0 -4.0 9.0 0.0 2.0 -6.0 
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Table A3 Daily maximum and minimum temperatures for Warner Creek watershed from 
1998 to 2001. 

Daily Maximum and Minimum Temperature (°C) 

 1998 1999 2000 2001 

DATE Max. Min. Max. Min. Max. Min. Max. Min. 

1-Jan -2.0 -12.0 -2.0 -11.0 10.0 -7.0 1.0 -5.0 

2-Jan 11.0 -3.0 -5.0 -12.0 18.0 0.0 -1.0 -7.0 

3-Jan 13.0 2.0 9.0 -9.0 17.0 10.0 0.0 -9.0 

4-Jan 19.0 6.0 4.0 -7.0 19.0 8.0 1.0 -8.0 

5-Jan 16.0 -2.0 -4.0 -11.0 12.0 0.0 -2.0 -10.0 

6-Jan 18.0 7.0 -3.0 -17.0 6.0 -9.0 2.0 -6.0 

7-Jan 18.0 14.0 2.0 -4.0 9.0 -9.0 4.0 -9.0 

8-Jan 20.0 17.0 -4.0 -10.0 6.0 -6.0 3.0 -4.0 

9-Jan 19.0 11.0 4.0 -10.0 6.0 1.0 1.0 -6.0 

10-Jan 12.0 -1.0 0.0 -10.0 8.0 1.0 6.0 -5.0 

11-Jan 9.0 -1.0 -3.0 -8.0 11.0 3.0 12.0 2.0 

12-Jan 7.0 -4.0 11.0 -8.0 11.0 1.0 10.0 -3.0 

13-Jan 8.0 1.0 9.0 4.0 12.0 -1.0 6.0 -9.0 

14-Jan 3.0 -7.0 6.0 -9.0 1.0 -8.0 6.0 -7.0 

15-Jan 3.0 -6.0 0.0 -9.0 1.0 -9.0 4.0 1.0 

16-Jan 4.0 0.0 -2.0 -7.0 15.0 -4.0 5.0 -1.0 

17-Jan 6.0 1.0 12.0 -2.0 4.0 -11.0 3.0 2.0 

18-Jan 5.0 -1.0 12.0 2.0 -7.0 -13.0 3.0 -4.0 

19-Jan 3.0 1.0 9.0 -1.0 3.0 -9.0 2.0 0.0 

20-Jan 3.0 -2.0 9.0 2.0 -1.0 -9.0 2.0 0.0 

21-Jan 2.0 -6.0 8.0 -4.0 -1.0 -11.0 0.0 -6.0 

22-Jan 4.0 -5.0 5.0 3.0 -7.0 -17.0 -1.0 -18.0 

23-Jan 3.0 -1.0 10.0 4.0 -3.0 -8.0 1.0 -19.0 

24-Jan 7.0 -1.0 15.0 6.0 2.0 -8.0 6.0 -13.0 

25-Jan 4.0 -2.0 8.0 -1.0 1.0 -7.0 3.0 -6.0 

26-Jan 6.0 -5.0 9.0 -1.0 -1.0 -7.0 3.0 -13.0 

27-Jan 4.0 -3.0 12.0 -6.0 -2.0 -11.0 5.0 -3.0 

28-Jan 3.0 1.0 19.0 -1.0 -1.0 -11.0 4.0 -7.0 

29-Jan 12.0 -1.0 17.0 3.0 1.0 -18.0 3.0 -8.0 

30-Jan 11.0 3.0 7.0 -8.0 -1.0 -16.0 11.0 -1.0 

31-Jan 6.0 0.0 4.0 -8.0 2.0 -14.0 8.0 -2.0 

1-Feb 8.0 -7.0 4.0 -10.0 1.0 -7.0 8.0 1.0 

2-Feb 8.0 -7.0 6.0 0.0 -1.0 -6.0 8.0 -3.0 

3-Feb 6.0 2.0 12.0 2.0 -1.0 -14.0 2.0 -6.0 

4-Feb 3.0 1.0 13.0 -2.0 3.0 -7.0 7.0 -8.0 

5-Feb 5.0 1.0 9.0 0.0 3.0 -4.0 4.0 -2.0 

6-Feb 8.0 3.0 14.0 0.0 3.0 -3.0 8.0 -1.0 

7-Feb 7.0 -2.0 12.0 -2.0 6.0 -8.0 9.0 -3.0 

8-Feb 5.0 -4.0 12.0 0.0 5.0 -13.0 9.0 -6.0 

9-Feb 9.0 -7.0 7.0 -5.0 7.0 -14.0 17.0 -2.0 
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Table A3 Continued. 

Daily Maximum and Minimum Temperature (°C) 

 1998 1999 2000 2001 

DATE Max. Min. Max. Min. Max. Min. Max. Min. 

10-Feb 12.0 -6.0 14.0 -1.0 11.0 -7.0 17.0 -2.0 

11-Feb 11.0 -4.0 15.0 -5.0 12.0 2.0 5.0 -7.0 

12-Feb 11.0 6.0 22.0 2.0 7.0 -4.0 4.0 -8.0 

13-Feb 8.0 -1.0 5.0 -4.0 -1.0 -11.0 12.0 -1.0 

14-Feb 8.0 -1.0 5.0 -5.0 11.0 -1.0 9.0 1.0 

15-Feb 5.0 -8.0 11.0 -9.0 12.0 -1.0 11.0 4.0 

16-Feb 5.0 -7.0 18.0 -7.0 16.0 -4.0 7.0 3.0 

17-Feb 7.0 0.0 15.0 1.0 12.0 -4.0 5.0 -1.0 

18-Feb 13.0 0.0 10.0 4.0 3.0 -3.0 2.0 -9.0 

19-Feb 10.0 8.0 6.0 -5.0 6.0 -1.0 8.0 -9.0 

20-Feb 9.0 3.0 4.0 -4.0 5.0 0.0 16.0 1.0 

21-Feb 9.0 6.0 4.0 -5.0 8.0 -1.0 16.0 2.0 

22-Feb 9.0 -2.0 0.0 -10.0 13.0 -4.0 2.0 -10.0 

23-Feb 8.0 0.0 -2.0 -12.0 13.0 -4.0 7.0 -8.0 

24-Feb 6.0 2.0 2.0 -10.0 21.0 1.0 6.0 -6.0 

25-Feb 11.0 4.0 2.0 -9.0 26.0 4.0 10.0 -2.0 

26-Feb 14.0 0.0 8.0 -4.0 17.0 6.0 14.0 4.0 

27-Feb 15.0 -2.0 10.0 -7.0 14.0 6.0 13.0 -2.0 

28-Feb 14.0 2.0 8.0 3.0 14.0 3.0 12.0 -1.0 

29-Feb     16 -3   

1-Mar 13.0 1.0 8.0 3.0 16.0 -2.0 7.0 -9.0 

2-Mar 12.0 1.0 12.0 0.0 12.0 4.0 12.0 0.0 

3-Mar 11.0 1.0 19.0 -2.0 13.0 -1.0 12.0 6.0 

4-Mar 8.0 0.0 16.0 -2.0 14.0 -4.0 11.0 1.0 

5-Mar 7.0 -1.0 16.0 -6.0 18.0 2.0 2.0 -2.0 

6-Mar 9.0 -6.0 8.0 -6.0 15.0 -3.0 2.0 -7.0 

7-Mar 14.0 -1.0 9.0 -7.0 21.0 -4.0 8.0 -1.0 

8-Mar 13.0 7.0 2.0 -10.0 28.0 -4.0 8.0 -6.0 

9-Mar 18.0 6.0 -1.0 -7.0 28.0 6.0 8.0 0.0 

10-Mar 17.0 1.0 4.0 -5.0 24.0 8.0 7.0 -2.0 

11-Mar 1.0 -6.0 5.0 -5.0 17.0 7.0 12.0 -6.0 

12-Mar 1.0 -8.0 7.0 -3.0 8.0 3.0 11.0 -6.0 

13-Mar 3.0 -7.0 8.0 -3.0 9.0 -3.0 16.0 2.0 

14-Mar 9.0 -1.0 7.0 -1.0 14.0 -2.0 16.0 4.0 

15-Mar 6.0 -2.0 7.0 1.0 21.0 0.0 12.0 -3.0 

16-Mar 6.0 -4.0 10.0 -2.0 19.0 7.0 7.0 2.0 

17-Mar 7.0 -6.0 21.0 3.0 19.0 4.0 9.0 5.0 

18-Mar 6.0 2.0 19.0 9.0 7.0 -7.0 9.0 -1.0 

19-Mar 14.0 4.0 11.0 4.0 6.0 -1.0 12.0 -6.0 

20-Mar 13.0 6.0 12.0 -5.0 9.0 -1.0 12.0 -6.0 
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Table A3 Continued. 

Daily Maximum and Minimum Temperature (°C) 

 1998 1999 2000 2001 

DATE Max. Min. Max. Min. Max. Min. Max. Min. 

21-Mar 8.0 2.0 12.0 -7.0 8.0 3.0 8.0 3.0 

22-Mar 4.0 0.0 7.0 1.0 8.0 3.0 11.0 4.0 

23-Mar 9.0 -2.0 12.0 -3.0 15.0 0.0 14.0 4.0 

24-Mar 8.0 -4.0 12.0 5.0 19.0 2.0 12.0 -2.0 

25-Mar 11.0 -6.0 11.0 2.0 22.0 6.0 8.0 -4.0 

26-Mar 21.0 4.0 10.0 -4.0 17.0 8.0 7.0 -3.0 

27-Mar 29.0 12.0 12.0 -2.0 18.0 -2.0 4.0 -8.0 

28-Mar 26.0 16.0 14.0 5.0 18.0 -2.0 9.0 -9.0 

29-Mar 28.0 13.0 19.0 -1.0 12.0 5.0 8.0 -3.0 

30-Mar 29.0 8.0 18.0 0.0 17.0 -3.0 10.0 3.0 

31-Mar 28.0 12.0 22.0 -3.0 16.0 -3.0 11.0 4.0 

1-Apr 27.0 16.0 19.0 8.0 19.0 -2.0 11.0 6.0 

2-Apr 21.0 11.0 21.0 11.0 20.0 3.0 11.0 3.0 

3-Apr 19.0 2.0 22.0 10.0 23.0 12.0 17.0 -3.0 

4-Apr 15.0 6.0 24.0 16.0 22.0 12.0 16.0 2.0 

5-Apr 14.0 3.0 20.0 5.0 14.0 2.0 17.0 -2.0 

6-Apr 16.0 1.0 17.0 -1.0 24.0 3.0 17.0 3.0 

7-Apr 18.0 -3.0 22.0 6.0 24.0 5.0 20.0 13.0 

8-Apr 19.0 7.0 28.0 4.0 23.0 6.0 17.0 6.0 

9-Apr 20.0 8.0 28.0 9.0 11.0 -1.0 31.0 8.0 

10-Apr 13.0 4.0 15.0 4.0 16.0 0.0 31.0 11.0 

11-Apr 16.0 -2.0 15.0 0.0 16.0 4.0 15.0 9.0 

12-Apr 18.0 1.0 13.0 4.0 12.0 6.0 18.0 11.0 

13-Apr 20.0 -1.0 16.0 4.0 12.0 -3.0 23.0 14.0 

14-Apr 20.0 7.0 20.0 0.0 15.0 -2.0 22.0 7.0 

15-Apr 22.0 8.0 20.0 -5.0 17.0 6.0 21.0 8.0 

16-Apr 24.0 11.0 17.0 7.0 26.0 6.0 18.0 7.0 

17-Apr 24.0 16.0 17.0 5.0 26.0 8.0 12.0 -1.0 

18-Apr 22.0 4.0 14.0 6.0 9.0 4.0 8.0 2.0 

19-Apr 16.0 8.0 14.0 1.0 19.0 6.0 14.0 -4.0 

20-Apr 16.0 8.0 13.0 4.0 19.0 7.0 17.0 0.0 

21-Apr 18.0 3.0 13.0 1.0 18.0 11.0 18.0 9.0 

22-Apr 19.0 6.0 24.0 -1.0 14.0 8.0 27.0 13.0 

23-Apr 19.0 7.0 24.0 12.0 13.0 7.0 30.0 13.0 

24-Apr 22.0 7.0 24.0 -3.0 18.0 5.0 29.0 15.0 

25-Apr 22.0 8.0 16.0 -1.0 17.0 8.0 18.0 6.0 

26-Apr 22.0 9.0 24.0 2.0 14.0 4.0 17.0 -1.0 

27-Apr 14.0 4.0 24.0 1.0 14.0 6.0 24.0 0.0 

28-Apr 16.0 1.0 18.0 1.0 17.0 7.0 24.0 6.0 

29-Apr 22.0 1.0 19.0 0.0 20.0 3.0 17.0 0.0 

 

 



 

 182 

 

 
Table A3. Continued. 

Daily Maximum and Minimum Temperature (°C) 

 1998 1999 2000 2001 

DATE Max. Min. Max. Min. Max. Min. Max. Min. 

30-Apr 22.0 12.0 19.0 1.0 21.0 9.0 23.0 1.0 

1-May 21.0 11.0 20.0 -1.0 23.0 1.0 28.0 5.0 

2-May 19.0 14.0 21.0 0.0 23.0 12.0 29.0 8.0 

3-May 22.0 11.0 21.0 2.0 22.0 4.0 30.0 9.0 

4-May 22.0 14.0 23.0 6.0 24.0 8.0 31.0 12.0 

5-May 19.0 14.0 25.0 8.0 29.0 12.0 30.0 17.0 

6-May 20.0 11.0 25.0 12.0 31.0 13.0 20.0 8.0 

7-May 22.0 9.0 21.0 14.0 32.0 13.0 20.0 2.0 

8-May 18.0 15.0 24.0 14.0 31.0 16.0 21.0 2.0 

9-May 21.0 13.0 24.0 11.0 31.0 16.0 23.0 11.0 

10-May 19.0 13.0 24.0 2.0 31.0 16.0 27.0 7.0 

11-May 16.0 12.0 24.0 4.0 24.0 8.0 28.0 8.0 

12-May 13.0 11.0 24.0 4.0 30.0 13.0 28.0 11.0 

13-May 20.0 10.0 25.0 9.0 30.0 17.0 22.0 8.0 

14-May 24.0 4.0 19.0 11.0 30.0 12.0 20.0 2.0 

15-May 28.0 8.0 21.0 4.0 22.0 4.0 21.0 2.0 

16-May 31.0 12.0 22.0 7.0 21.0 2.0 22.0 3.0 

17-May 30.0 18.0 23.0 6.0 23.0 2.0 21.0 11.0 

18-May 29.0 11.0 21.0 5.0 28.0 13.0 21.0 11.0 

19-May 31.0 16.0 21.0 11.0 26.0 16.0 24.0 14.0 

20-May 31.0 13.0 22.0 10.0 21.0 10.0 25.0 11.0 

21-May 31.0 18.0 26.0 10.0 20.0 12.0 18.0 12.0 

22-May 30.0 8.0 28.0 9.0 19.0 14.0 22.0 13.0 

23-May 22.0 9.0 27.0 17.0 19.0 14.0 22.0 10.0 

24-May 23.0 7.0 24.0 14.0 26.0 12.0 24.0 7.0 

25-May 28.0 14.0 21.0 10.0 27.0 13.0 24.0 13.0 

26-May 27.0 16.0 24.0 8.0 24.0 9.0 19.0 16.0 

27-May 24.0 14.0 23.0 12.0 24.0 12.0 21.0 13.0 

28-May 27.0 13.0 29.0 6.0 14.0 11.0 22.0 11.0 

29-May 31.0 14.0 29.0 9.0 18.0 11.0 23.0 7.0 

30-May 31.0 16.0 32.0 10.0 19.0 6.0 26.0 7.0 

31-May 31.0 18.0 31.0 12.0 22.0 6.0 21.0 3.0 

1-Jun 30.0 19.0 30.0 13.0 30.0 13.0 21.0 4.0 

2-Jun 27.0 9.0 29.0 18.0 32.0 16.0 23.0 13.0 

3-Jun 27.0 16.0 31.0 16.0 31.0 16.0 23.0 15.0 

4-Jun 23.0 8.0 25.0 11.0 22.0 9.0 23.0 11.0 

5-Jun 23.0 10.0 26.0 8.0 21.0 14.0 26.0 14.0 

6-Jun 21.0 12.0 29.0 14.0 21.0 13.0 26.0 17.0 

7-Jun 19.0 8.0 34.0 16.0 24.0 11.0 23.0 15.0 

8-Jun 22.0 11.0 34.0 22.0 26.0 11.0 26.0 12.0 
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Table A3 Continued. 

Daily Maximum and Minimum Temperature (°C) 

 1998 1999 2000 2001 

DATE Max. Min. Max. Min. Max. Min. Max. Min. 

9-Jun 22.0 5.0 33.0 16.0 29.0 15.0 27.0 8.0 

10-Jun 16.0 13.0 32.0 17.0 31.0 15.0 27.0 8.0 

11-Jun 18.0 14.0 26.0 13.0 33.0 17.0 29.0 12.0 

12-Jun 22.0 17.0 26.0 9.0 32.0 21.0 30.0 15.0 

13-Jun 26.0 17.0 28.0 18.0 28.0 17.0 31.0 18.0 

14-Jun 26.0 18.0 28.0 18.0 21.0 17.0 31.0 19.0 

15-Jun 25.0 14.0 27.0 13.0 26.0 17.0 29.0 18.0 

16-Jun 29.0 14.0 26.0 13.0 29.0 19.0 29.0 21.0 

17-Jun 29.0 17.0 22.0 14.0 29.0 22.0 30.0 18.0 

18-Jun 29.0 17.0 23.0 9.0 28.0 21.0 29.0 15.0 

19-Jun 29.0 16.0 26.0 7.0 27.0 17.0 31.0 13.0 

20-Jun 31.0 19.0 23.0 13.0 27.0 10.0 33.0 16.0 

21-Jun 31.0 18.0 22.0 14.0 28.0 17.0 29.0 16.0 

22-Jun 29.0 19.0 28.0 9.0 29.0 21.0 29.0 19.0 

23-Jun 28.0 21.0 29.0 10.0 28.0 16.0 26.0 18.0 

24-Jun 30.0 19.0 28.0 10.0 30.0 15.0 26.0 13.0 

25-Jun 32.0 18.0 29.0 13.0 32.0 21.0 28.0 12.0 

26-Jun 33.0 18.0 33.0 20.0 31.0 21.0 30.0 13.0 

27-Jun 31.0 24.0 32.0 19.0 31.0 21.0 33.0 15.0 

28-Jun 31.0 19.0 31.0 22.0 23.0 18.0 33.0 18.0 

29-Jun 31.0 19.0 33.0 22.0 27.0 18.0 33.0 18.0 

30-Jun 28.0 21.0 31.0 17.0 27.0 12.0 33.0 21.0 

1-Jul 28.0 18.0 31.0 22.0 26.0 13.0 32.0 21.0 

2-Jul 28.0 12.0 29.0 23.0 28.0 12.0 29.0 9.0 

3-Jul 29.0 12.0 34.0 21.0 28.0 15.0 26.0 7.0 

4-Jul 29.0 16.0 36.0 22.0 29.0 21.0 29.0 18.0 

5-Jul 27.0 16.0 36.0 21.0 29.0 19.0 28.0 16.0 

6-Jul 28.0 13.0 37.0 21.0 28.0 14.0 28.0 10.0 

7-Jul 28.0 16.0 37.0 21.0 26.0 16.0 28.0 8.0 

8-Jul 28.0 17.0 33.0 13.0 26.0 10.0 28.0 19.0 

9-Jul 29.0 17.0 35.0 13.0 29.0 14.0 32.0 17.0 

10-Jul 29.0 17.0 33.0 23.0 31.0 21.0 32.0 16.0 

11-Jul 28.0 11.0 28.0 10.0 27.0 21.0 28.0 18.0 

12-Jul 27.0 11.0 28.0 11.0 27.0 13.0 27.0 11.0 

13-Jul 29.0 12.0 28.0 14.0 26.0 13.0 27.0 10.0 

14-Jul 30.0 17.0 27.0 17.0 28.0 13.0 28.0 12.0 

15-Jul 30.0 17.0 32.0 11.0 26.0 17.0 29.0 11.0 

16-Jul 30.0 21.0 35.0 17.0 27.0 16.0 31.0 13.0 

17-Jul 31.0 22.0 37.0 13.0 27.0 14.0 33.0 15.0 

18-Jul 31.0 19.0 36.0 18.0 29.0 17.0 32.0 20.0 
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Table A3 Continued. 

Daily Maximum and Minimum Temperature (°C) 

  1998 1999 2000 2001 

DATE Max. Min. Max. Min. Max. Min. Max. Min. 

19-Jul 31.0 17.0 36.0 18.0 29.0 16.0 28.0 17.0 

20-Jul 31.0 21.0 35.0 21.0 23.0 16.0 28.0 13.0 

21-Jul 33.0 19.0 29.0 18.0 26.0 13.0 28.0 9.0 

22-Jul 35.0 22.0 33.0 21.0 26.0 14.0 29.0 10.0 

23-Jul 33.0 21.0 35.0 20.0 25.0 13.0 33.0 11.0 

24-Jul 31.0 18.0 35.0 20.0 24.0 18.0 34.0 19.0 

25-Jul 28.0 14.0 34.0 20.0 26.0 17.0 35.0 23.0 

26-Jul 28.0 18.0 35.0 18.0 26.0 16.0 33.0 20.0 

27-Jul 29.0 14.0 34.0 17.0 26.0 16.0 26.0 13.0 

28-Jul 31.0 17.0 34.0 17.0 28.0 15.0 27.0 11.0 

29-Jul 32.0 17.0 33.0 17.0 27.0 18.0 26.0 16.0 

30-Jul 31.0 18.0 35.0 20.0 29.0 21.0 26.0 17.0 

31-Jul 29.0 18.0 37.0 18.0 29.0 21.0 28.0 12.0 

1-Aug 27.0 13.0 33.0 21.0 29.0 22.0 31.0 14.0 

2-Aug 27.0 11.0 29.0 17.0 29.0 20.0 32.0 14.0 

3-Aug 28.0 11.0 31.0 15.0 28.0 22.0 32.0 17.0 

4-Aug 29.0 13.0 31.0 13.0 28.0 19.0 30.0 21.0 

5-Aug 29.0 14.0 31.0 16.0 26.0 16.0 32.0 20.0 

6-Aug 29.0 12.0 31.0 13.0 26.0 14.0 36.0 19.0 

7-Aug 29.0 14.0 31.0 17.0 32.0 21.0 36.0 19.0 

8-Aug 29.0 20.0 31.0 21.0 32.0 21.0 37.0 23.0 

9-Aug 29.0 18.0 28.0 16.0 30.0 22.0 38.0 22.0 

10-Aug 31.0 22.0 28.0 10.0 29.0 19.0 36.0 24.0 

11-Aug 31.0 21.0 33.0 14.0 29.0 18.0 32.0 22.0 

12-Aug 28.0 17.0 33.0 15.0 27.0 16.0 27.0 22.0 

13-Aug 27.0 16.0 35.0 18.0 25.0 16.0 29.0 21.0 

14-Aug 28.0 16.0 32.0 21.0 26.0 16.0 31.0 18.0 

15-Aug 27.0 20.0 28.0 18.0 29.0 15.0 31.0 14.0 

16-Aug 28.0 19.0 31.0 13.0 28.0 22.0 30.0 16.0 

17-Aug 27.0 20.0 37.0 18.0 27.0 13.0 32.0 23.0 

18-Aug 28.0 17.0 36.0 18.0 22.0 17.0 30.0 13.0 

19-Aug 28.0 12.0 31.0 12.0 24.0 12.0 29.0 16.0 

20-Aug 25.0 8.0 29.0 18.0 23.0 12.0 28.0 18.0 

21-Aug 28.0 10.0 28.0 18.0 23.0 8.0 28.0 13.0 

22-Aug 31.0 17.0 27.0 17.0 26.0 10.0 29.0 12.0 

23-Aug 32.0 19.0 29.0 11.0 26.0 16.0 29.0 18.0 

24-Aug 32.0 19.0 26.0 17.0 27.0 17.0 29.0 17.0 

25-Aug 30.0 19.0 25.0 18.0 27.0 14.0 28.0 13.0 

26-Aug 31.0 21.0 27.0 19.0 28.0 12.0 28.0 14.0 

27-Aug 31.0 17.0 27.0 18.0 25.0 16.0 30.0 19.0 
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Table A3 Continued. 

Daily Maximum and Minimum Temperature (°C) 

 1998 1999 2000 2001 

DATE Max. Min. Max. Min. Max. Min. Max. Min. 

28-Aug 31.0 22.0 29.0 17.0 26.0 19.0 32.0 16.0 

29-Aug 31.0 18.0 29.0 17.0 24.0 17.0 32.0 16.0 

30-Aug 32.0 17.0 29.0 12.0 26.0 19.0 30.0 18.0 

31-Aug 31.0 18.0 23.0 12.0 27.0 20.0 31.0 18.0 

1-Sep 29.0 14.0 27.0 13.0 29.0 22.0 31.0 20.0 

2-Sep 29.0 16.0 28.0 11.0 28.0 21.0 27.0 10.0 

3-Sep 30.0 16.0 29.0 15.0 28.0 22.0 27.0 9.0 

4-Sep 30.0 12.0 28.0 18.0 29.0 20.0 31.0 18.0 

5-Sep 29.0 12.0 26.0 22.0 28.0 12.0 31.0 13.0 

6-Sep 34.0 10.0 28.0 22.0 21.0 7.0 31.0 7.0 

7-Sep 34.0 22.0 29.0 21.0 22.0 7.0 29.0 9.0 

8-Sep 30.0 13.0 29.0 16.0 23.0 8.0 30.0 9.0 

9-Sep 22.0 11.0 28.0 16.0 28.0 16.0 30.0 14.0 

10-Sep 24.0 12.0 27.0 19.0 29.0 16.0 29.0 22.0 

11-Sep 28.0 8.0 26.0 9.0 28.0 18.0 28.0 9.0 

12-Sep 33.0 12.0 27.0 9.0 28.0 21.0 28.0 8.0 

13-Sep 33.0 19.0 26.0 9.0 27.0 18.0 31.0 9.0 

14-Sep 33.0 14.0 25.0 15.0 26.0 10.0 31.0 12.0 

15-Sep 32.0 18.0 26.0 15.0 24.0 16.0 21.0 6.0 

16-Sep 33.0 21.0 17.0 15.0 18.0 8.0 24.0 3.0 

17-Sep 32.0 19.0 22.0 13.0 21.0 6.0 27.0 4.0 

18-Sep 29.0 17.0 22.0 6.0 23.0 8.0 27.0 8.0 

19-Sep 28.0 17.0 23.0 6.0 22.0 13.0 27.0 8.0 

20-Sep 28.0 16.0 24.0 10.0 28.0 11.0 25.0 17.0 

21-Sep 28.0 17.0 22.0 11.0 28.0 18.0 26.0 14.0 

22-Sep 28.0 20.0 17.0 6.0 21.0 8.0 28.0 17.0 

23-Sep 23.0 11.0 22.0 4.0 21.0 8.0 27.0 12.0 

24-Sep 22.0 4.0 24.0 7.0 26.0 19.0 27.0 12.0 

25-Sep 22.0 12.0 25.0 9.0 19.0 11.0 22.0 13.0 

26-Sep 31.0 11.0 25.0 10.0 11.0 8.0 18.0 7.0 

27-Sep 32.0 17.0 24.0 18.0 19.0 3.0 17.0 8.0 

28-Sep 32.0 18.0 22.0 18.0 20.0 6.0 17.0 6.0 

29-Sep 24.0 7.0 21.0 18.0 16.0 3.0 18.0 8.0 

30-Sep 28.0 7.0 21.0 13.0 18.0 2.0 17.0 6.0 

1-Oct 29.0 18.0 22.0 4.0 20.0 3.0 23.0 7.0 

2-Oct 20.0 1.0 23.0 6.0 23.0 8.0 24.0 11.0 

3-Oct 18.0 3.0 24.0 9.0 27.0 11.0 28.0 9.0 

4-Oct 15.0 9.0 23.0 13.0 28.0 12.0 27.0 8.0 

5-Oct 16.0 9.0 18.0 7.0 28.0 14.0 26.0 7.0 

6-Oct 18.0 13.0 19.0 2.0 23.0 16.0 25.0 12.0 

 

 



 

 186 

 

 
Table A3 Continued. 

Daily Maximum and Minimum Temperature (°C) 

 1998 1999 2000 2001 

DATE Max. Min. Max. Min. Max. Min. Max. Min. 

7-Oct 19.0 15.0 19.0 2.0 18.0 5.0 16.0 2.0 

8-Oct 22.0 16.0 16.0 1.0 18.0 0.0 13.0 -2.0 

9-Oct 20.0 13.0 20.0 10.0 10.0 1.0 16.0 -6.0 

10-Oct 20.0 13.0 21.0 16.0 13.0 3.0 21.0 -1.0 

11-Oct 22.0 11.0 22.0 14.0 21.0 1.0 24.0 3.0 

12-Oct 22.0 11.0 20.0 3.0 22.0 1.0 24.0 6.0 

13-Oct 19.0 10.0 21.0 6.0 22.0 1.0 26.0 11.0 

14-Oct 18.0 7.0 20.0 10.0 23.0 2.0 26.0 11.0 

15-Oct 17.0 2.0 16.0 -6.0 24.0 8.0 22.0 7.0 

16-Oct 18.0 1.0 20.0 2.0 22.0 8.0 22.0 3.0 

17-Oct 21.0 1.0 19.0 8.0 17.0 13.0 13.0 8.0 

18-Oct 24.0 6.0 19.0 8.0 20.0 14.0 14.0 2.0 

19-Oct 24.0 16.0 15.0 2.0 20.0 9.0 18.0 -2.0 

20-Oct 21.0 8.0 13.0 8.0 21.0 3.0 22.0 4.0 

21-Oct 19.0 6.0 15.0 2.0 24.0 4.0 24.0 4.0 

22-Oct 15.0 4.0 15.0 2.0 24.0 4.0 25.0 4.0 

23-Oct 17.0 -1.0 13.0 5.0 17.0 -1.0 24.0 9.0 

24-Oct 21.0 4.0 13.0 5.0 17.0 4.0 27.0 11.0 

25-Oct 21.0 -1.0 15.0 1.0 22.0 9.0 26.0 14.0 

26-Oct 21.0 4.0 19.0 3.0 21.0 9.0 19.0 8.0 

27-Oct 16.0 9.0 19.0 0.0 21.0 8.0 10.0 4.0 

28-Oct 21.0 8.0 14.0 -2.0 21.0 11.0 10.0 1.0 

29-Oct 20.0 11.0 22.0 0.0 14.0 -1.0 16.0 -6.0 

30-Oct 20.0 -2.0 21.0 2.0 16.0 1.0 17.0 3.0 

31-Oct 18.0 -2.0 25.0 4.0 15.0 1.0 17.0 1.0 

1-Nov 18.0 0.0 24.0 4.0 17.0 -3.0 23.0 3.0 

2-Nov 16.0 3.0 19.0 9.0 20.0 -2.0 26.0 11.0 

3-Nov 12.0 3.0 19.0 5.0 21.0 0.0 23.0 15.0 

4-Nov 9.0 1.0 14.0 2.0 19.0 6.0 20.0 2.0 

5-Nov 7.0 -7.0 18.0 -2.0 14.0 2.0 18.0 3.0 

6-Nov 9.0 -4.0 22.0 6.0 14.0 -5.0 14.0 -4.0 

7-Nov 12.0 4.0 21.0 3.0 16.0 -2.0 21.0 8.0 

8-Nov 10.0 2.0 13.0 -2.0 18.0 4.0 19.0 1.0 

9-Nov 12.0 -1.0 21.0 -2.0 18.0 4.0 19.0 7.0 

10-Nov 9.0 -1.0 21.0 13.0 18.0 11.0 19.0 -4.0 

11-Nov 18.0 9.0 19.0 7.0 13.0 10.0 16.0 8.0 

12-Nov 18.0 1.0 9.0 3.0 11.0 6.0 11.0 -6.0 

13-Nov 18.0 -1.0 16.0 3.0 10.0 -1.0 13.0 -7.0 

14-Nov 18.0 -3.0 21.0 4.0 12.0 4.0 18.0 -6.0 

15-Nov 16.0 7.0 16.0 6.0 8.0 3.0 20.0 1.0 
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Table A3 Continued. 

Daily Maximum and Minimum Temperature (°C) 

 1998 1999 2000 2001 

DATE Max. Min. Max. Min. Max. Min. Max. Min. 

16-Nov 14.0 -3.0 16.0 1.0 8.0 -6.0 22.0 2.0 

17-Nov 15.0 3.0 7.0 -2.0 11.0 1.0 21.0 6.0 

18-Nov 12.0 2.0 11.0 -7.0 7.0 -2.0 21.0 -3.0 

19-Nov 14.0 -4.0 14.0 -2.0 3.0 -2.0 17.0 -3.0 

20-Nov 14.0 7.0 16.0 -1.0 6.0 -8.0 16.0 4.0 

21-Nov 14.0 3.0 21.0 -1.0 3.0 -2.0 9.0 -8.0 

22-Nov 9.0 -4.0 16.0 6.0 2.0 -6.0 16.0 -7.0 

23-Nov 17.0 -4.0 15.0 12.0 2.0 -7.0 16.0 -4.0 

24-Nov 18.0 8.0 16.0 12.0 4.0 -9.0 12.0 -2.0 

25-Nov 13.0 -5.0 15.0 9.0 2.0 -7.0 18.0 11.0 

26-Nov 16.0 3.0 18.0 8.0 13.0 1.0 16.0 6.0 

27-Nov 13.0 8.0 18.0 7.0 11.0 4.0 16.0 2.0 

28-Nov 21.0 -2.0 11.0 1.0 13.0 4.0 16.0 2.0 

29-Nov 23.0 -1.0 8.0 -4.0 9.0 -3.0 14.0 11.0 

30-Nov 23.0 -1.0 8.0 -4.0 7.0 4.0 20.0 13.0 

1-Dec 17.0 6.0 8.0 -7.0 7.0 -3.0 20.0 11.0 

2-Dec 18.0 -3.0 11.0 -8.0 3.0 -6.0 11.0 1.0 

3-Dec 23.0 3.0 17.0 -3.0 2.0 -9.0 13.0 -4.0 

4-Dec 23.0 8.0 18.0 3.0 7.0 -12.0 19.0 -2.0 

5-Dec 23.0 13.0 18.0 2.0 7.0 -6.0 24.0 5.0 

6-Dec 24.0 7.0 18.0 2.0 4.0 -7.0 20.0 8.0 

7-Dec 24.0 12.0 13.0 4.0 2.0 -8.0 16.0 7.0 

8-Dec 19.0 8.0 9.0 -7.0 6.0 -4.0 13.0 2.0 

9-Dec 10.0 3.0 12.0 -4.0 4.0 -4.0 9.0 3.0 

10-Dec 11.0 -6.0 14.0 -1.0 1.0 -9.0 6.0 -6.0 

11-Dec 9.0 1.0 12.0 2.0 4.0 -4.0 12.0 2.0 

12-Dec 8.0 -4.0 12.0 -4.0 9.0 0.0 12.0 -1.0 

13-Dec 9.0 4.0 12.0 -4.0 0.0 -10.0 11.0 6.0 

14-Dec 7.0 -1.0 6.0 3.0 4.0 -3.0 14.0 6.0 

15-Dec 11.0 -9.0 6.0 1.0 4.0 -3.0 17.0 6.0 

16-Dec 12.0 -3.0 7.0 3.0 1.0 -4.0 7.0 -4.0 

17-Dec 8.0 -2.0 8.0 -3.0 10.0 1.0 8.0 1.0 

18-Dec 6.0 0.0 7.0 0.0 3.0 -6.0 12.0 6.0 

19-Dec 10.0 -4.0 4.0 -1.0 -2.0 -8.0 11.0 -2.0 

20-Dec 11.0 4.0 4.0 -1.0 -2.0 -10.0 8.0 -1.0 

21-Dec 13.0 3.0 5.0 1.0 -2.0 -17.0 6.0 -1.0 

22-Dec 16.0 -1.0 3.0 -2.0 -2.0 -9.0 6.0 -7.0 

23-Dec -1.0 -11.0 6.0 -8.0 -2.0 -14.0 7.0 -7.0 

24-Dec 0.0 -6.0 6.0 -9.0 1.0 -14.0 6.0 -2.0 
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Table A3 Continued. 

Daily Maximum and Minimum Temperature (°C) 

  1998 1999 2000 2001 

DATE Max. Min. Max. Min. Max. Min. Max. Min. 

25-Dec 2.0 -11.0 -1.0 -9.0 2.0 -9.0 3.0 -4.0 

26-Dec 1.0 -13.0 5.0 -7.0 -4.0 -12.0 2.0 -7.0 

27-Dec 4.0 -12.0 2.0 -2.0 -2.0 -9.0 2.0 -9.0 

28-Dec 3.0 -3.0 -1.0 -10.0 -3.0 -8.0 3.0 -6.0 

29-Dec 3.0 -2.0 3.0 -10.0 -4.0 -13.0 5.0 -5.0 

30-Dec 2.0 -6.0 10.0 -4.0 -2.0 -11.0 5.0 -7.0 

31-Dec -4.0 -8.0 11.0 1.0 1.0 -7.0 -1.0 -9.0 
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Appendix B 

 

Measured and SWAT Model Simulated Flow, Sediment, and Nutrient Data at 

the Outlet of the Watershed 
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Appendix B-1 

 

Measured and SWAT Model Simulated Flow Data at the Outlet of the 

Watershed from 1994 to 2001 
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Table B1 Measured and SWAT simulated monthly hydrology at the outlet of the 
watershed from 1994-2001. 

  Measured Hydrologic Data (mm) Simulated Hydrologic Data (mm) 

  Surface Adjusted Adjusted Surface   

Month Precipitation (mm) Runoff Baseflow Streamflow Runoff Baseflow Streamflow 

Apr-94 79.1 10.61 39.24 49.85 10.79 19.51 30.30 

May-94 97.7 4.75 10.4 15.15 9.11 16.49 25.60 

Jun-94 45.5 0.7 3.42 4.12 1.52 2.76 4.28 

Jul-94 108.9 1.4 5.01 6.41 2.87 5.19 8.05 

Aug-94 151.2 7.98 3.53 11.51 7.80 14.11 21.91 

Sep-94 82.2 2.43 2.36 4.79 4.38 7.93 12.31 

Oct-94 38.8 0.92 7.93 8.85 2.53 4.58 7.12 

Nov-94 125.8 18.98 34.07 53.05 16.04 29.02 45.07 

Dec-94 71.3 19.51 46.78 66.29 18.37 33.23 51.59 

Jan-95 121 60.09 63.32 123.41 32.99 59.67 92.66 

Feb-95 78 5.64 19.81 25.45 14.77 26.72 41.49 

Mar-95 35 1.61 27.47 29.08 9.62 17.40 27.02 

Apr-95 46.2 1.38 6.83 8.21 2.00 3.61 5.60 

May-95 119.9 2.86 9.72 12.58 6.23 11.27 17.50 

Jun-95 93.1 4.22 8.18 12.4 4.85 8.77 13.62 

Jul-95 133.6 34.19 1.49 35.68 13.17 23.82 36.98 

Aug-95 52.9 1.03 7.02 8.05 2.73 4.94 7.67 

Sep-95 65.5 0.24 5.23 5.47 1.94 3.51 5.45 

Oct-95 126.1 8.62 8.11 16.73 10.34 18.70 29.04 

Nov-95 110.3 13.33 36.79 50.12 21.01 38.00 59.01 

Dec-95 90.5 10.74 43.41 54.15 23.18 41.94 65.12 

Jan-97 79.2 34.22 60.11 94.33 19.04 34.45 53.49 

Feb-97 75.4 34.22 10.26 44.48 20.81 37.65 58.46 

Mar-97 143.8 13.1 22.47 35.57 24.93 45.09 70.02 

Apr-97 48 0.46 18.38 18.84 5.88 10.63 16.50 

May-97 53.6 0.14 4.68 4.82 2.32 4.20 6.52 

Jun-97 57 0.1 3.99 4.09 3.98 7.20 11.19 

Jul-97 45.3 0.05 2.7 2.75 0.75 1.36 2.12 

Aug-97 87.7 0.02 3.14 3.16 1.85 3.35 5.21 

Sep-97 82 1.09 3.69 4.78 2.88 5.21 8.09 

Oct-97 49.5 1.97 10.81 12.78 2.00 3.62 5.62 

Nov-97 157.3 45.62 24.28 69.9 23.78 43.02 66.80 

Dec-97 49.7 0.9 9.46 10.36 8.28 14.98 23.25 

Jan-98 199.9 93.05 45.83 138.88 57.47 103.97 161.44 

Feb-98 141.6 30.31 72.25 102.56 38.45 69.56 108.01 

Mar-98 165.7 *28.84 *90.61 *119.45 44.25 80.05 124.29 

Apr-98 102.3 *8.77 *89.15 *97.93 15.63 28.27 43.90 

May-98 148.3 *17.23 *50.15 *67.38 28.58 51.70 80.28 

Jun-98 101.3 *8.61 *9.32 *17.93 3.98 7.20 11.18 

Jul-98 121.1 *5.48 *4.30 *9.78 4.38 7.92 12.29 
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Table B1 Continued. 

  Measured Hydrologic Data (mm) Simulated Hydrologic Data (mm) 

  Surface Adjusted Adjusted Surface   

Month Precipitation (mm) Runoff Baseflow Streamflow Runoff Baseflow Streamflow 

Aug-98 53.9 *12.54 *5.24 *17.78 2.33 4.21 6.53 

Sep-98 42 *4.4 *5.41 *9.80 1.13 2.04 3.17 

Oct-98 53.8 *6.97 *4.81 *11.78 2.66 4.82 7.48 

Nov-98 16.5 *2.41 *4.85 *7.26 0.62 1.13 1.75 

Dec-98 16.9 *3.63 *8.74 *12.38 0.58 1.04 1.62 

Jan-99 182.9 79.78 74.21 153.99 36.68 66.36 103.05 

Feb-99 76.4 2.48 16.30 18.78 11.03 19.96 30.99 

Mar-99 119.6 7.09 35.69 42.78 26.48 47.91 74.39 

Apr-99 90.1 5.57 38.50 44.07 10.62 19.22 29.84 

May-99 43.2 0.44 7.90 8.35 2.09 3.78 5.87 

Jun-99 52.1 0.44 6.00 6.44 1.28 2.31 3.59 

Jul-99 33.9 2.4 5.13 7.52 0.65 1.18 1.84 

Aug-99 152.4 2.74 4.76 7.49 7.03 12.72 19.75 

Sep-99 223.4 23.14 11.28 34.42 30.63 55.41 86.04 

Oct-99 66.1 16.37 82.08 98.45 18.08 32.71 50.79 

Nov-99 43.3 0.34 6.21 6.54 3.36 6.07 9.43 

Dec-99 73.4 16.54 30.17 46.71 17.70 32.01 49.71 

Jan-00 65.4 4.77 20.24 24.93 1.47 2.65 4.12 

Feb-00 63 24.41 24.56 48.53 27.05 48.93 75.97 

Mar-00 107.1 30.96 30.24 60.66 22.17 40.10 62.27 

Apr-00 111.7 6.12 23.58 29.59 18.79 33.99 52.78 

May-00 97 9.22 26.32 35.38 6.35 11.48 17.83 

Jun-00 109.6 4.90 8.05 12.86 6.43 11.64 18.07 

Jul-00 150.8 8.52 6.72 15.09 6.03 10.91 16.94 

Aug-00 82.4 1.47 6.12 7.56 2.37 4.29 6.65 

Sep-00 182 33.35 13.05 45.81 24.06 43.53 67.59 

Oct-00 11.8 0.01 11.44 11.45 3.10 5.61 8.71 

Nov-00 48.3 0.15 3.03 3.18 2.72 4.93 7.65 

Dec-00 91 0.18 3.33 3.51 22.48 40.67 63.15 

Jan-01 66.7 11.00 3.51 14.31 12.97 23.47 36.44 

Feb-01 32.5 1.23 8.42 9.63 7.26 13.13 20.39 

Mar-01 100.6 20.16 11.10 30.90 15.51 28.06 43.57 

Apr-01 68.2 4.94 14.39 19.24 11.45 20.71 32.16 

May-01 74.2 0.0 2.23 2.23 4.13 7.47 11.60 

Jun-01 79.3 0.0 0.00 0.00 2.82 5.11 7.93 

Jul-01 40.4 0.0 0.00 0.00 1.07 1.93 3.00 

Aug-01 65.3 0.0 0.00 0.00 1.66 3.00 4.67 

Sep-01 66.3 0.0 0.00 0.00 2.59 4.68 7.27 

Oct-01 20.7 0.81 0.82 1.61 1.04 1.87 2.91 

Nov-01 28.5 0.76 1.11 1.85 0.70 1.27 1.98 

Dec-01 45.5 0.03 1.10 1.13 2.21 4.00 6.21 

*Values in italics were generated using ANN models. 
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Appendix B-2  

 

Measured and Simulated Sediment Loads at the Outlet of the Watershed from 

1994 to 1997 
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Table B2 Measured and SWAT simulated monthly sediment loads at the outlet of the 
watershed from 1994 to 1997. 

  Measured Sediment  SWAT Simulated Sediment 

Month Loading (kg/ha) in Streamflow  Loading (kg/ha) in Streamflow 

Apr-94 999.02 138.44 

May-94 40.95 175.96 

Jun-94 25.95 3.19 

Jul-94 188.37 23.07 

Aug-94 318.28 96.48 

Sep-94 59.35 37.55 

Oct-94 9.1 20.26 

Nov-94 355.79 407.10 

Dec-94 219.93 300.33 

Jan-95 3889.64 655.23 

Feb-95 1.13 391.59 

Mar-95 7.58 126.57 

Apr-95 5.22 17.63 

May-95 0.48 114.49 

Jun-95 70.39 62.33 

Jul-95 459.97 290.46 

Aug-95 4.32 16.56 

Sep-95 0.53 10.46 

Oct-95 60.62 116.79 

Nov-95 87.07 298.24 

Dec-95 8.7 208.59 

Jan-96 407.89 942.44 

Feb-96 38.13 356.40 

Mar-96 217.33 409.48 

Apr-96 229.26 209.25 

May-96 422.97 453.33 

Jun-96 1866.81 400.54 

Jul-96 1106.93 944.23 

Aug-96 70.94 374.29 

Sep-96 261.13 434.83 

Oct-96 337.18 335.22 

Nov-96 621.05 291.29 

Dec-96 32.54 645.69 
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Table B2 Continued. 

 Measured Sediment SWAT Simulated Sediment 

Month Loading (kg/ha) in Streamflow Loading (kg/ha) in Streamflow 

Jan-97 14.11 146.79 

Feb-97 3.63 258.04 

Mar-97 11.86 367.43 

Apr-97 2.55 54.88 

May-97 0.72 16.99 

Jun-97 0.63 50.55 

Jul-97 0.12 0.44 

Aug-97 0.59 14.36 

Sep-97 5.07 25.78 

Oct-97 12.6 13.00 

Nov-97 200.94 329.56 

Dec-97 0.08 100.21 
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Appendix B-3  

 

Measured and Simulated Nitrate and Phosphate Loads at the Outlet of the 

Watershed from 1994 to 2001 
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Table B3 Measured and simulated monthly NO3-N and PO4-P Loadings at the outlet of 
the watershed from 1994 to 2001. 

  NO3-N Loadings (kg/ha) PO4-P Loadings (kg/ha) 

Month Adjusted Measured SWAT Simulated Adjusted Measured SWAT Simulated 

Apr-94 1.749 0.73 0.318 0.04 

May-94 0.453 1.46 0.053 0.24 

Jun-94 0.079 0.00 0.028 0.00 

Jul-94 0.109 0.11 0.076 0.04 

Aug-94 0.607 0.24 0.371 0.14 

Sep-94 0.16 0.09 0.125 0.04 

Oct-94 0.261 0.07 0.096 0.02 

Nov-94 2.521 1.61 0.451 0.42 

Dec-94 3.492 1.98 0.278 0.21 

Jan-95 4.527 4.20 1.315 0.87 

Feb-95 1.105 1.10 0.08 0.65 

Mar-95 1.39 1.05 0.024 0.01 

Apr-95 0.266 0.19 0.022 0.02 

May-95 0.279 0.97 0.272 0.12 

Jun-95 0.367 0.27 0.62 0.07 

Jul-95 0.913 0.47 0.536 0.41 

Aug-95 0.2 0.10 0.037 0.03 

Sep-95 0.06 0.03 0.028 0.01 

Oct-95 0.541 1.04 0.428 0.21 

Nov-95 3.408 1.48 0.438 0.25 

Dec-95 3.779 1.10 0.211 0.66 

Jan-96 8.874 2.64 1.079 3.74 

Feb-96 1.133 1.52 0.121 0.76 

Mar-96 4.21 1.90 0.361 0.35 

Apr-96 2.67 1.81 0.173 0.12 

May-96 2.181 3.30 0.371 0.35 

Jun-96 2.937 1.65 0.519 0.47 

Jul-96 2.624 1.63 0.521 1.25 

Aug-96 0.892 0.74 0.155 0.38 

Sep-96 0.602 0.55 0.452 0.50 

Oct-96 1.07 2.07 0.54 0.48 

Nov-96 3.577 2.75 1.288 0.40 

Dec-96 1.4 4.56 0.084 0.46 

Jan-97 2.269 2.14 0.161 0.63 

Feb-97 4.207 1.62 0.082 0.32 

Mar-97 1.357 2.81 0.178 0.18 

Apr-97 0.77 0.23 0.059 0.01 

May-97 0.123 0.12 0.011 0.01 

Jun-97 0.072 0.26 0.017 0.05 

Jul-97 0.006 0.00 0.007 0.00 
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Table B3 Continued. 

  NO3-N Loadings (kg/ha) PO4-P Loadings (kg/ha) 

Month Adjusted Measured SWAT Simulated Adjusted Measured SWAT Simulated 

Aug-97 0.018 0.04 0.052 0.01 

Sep-97 0.055 0.04 0.124 0.01 

Oct-97 0.325 0.04 0.252 0.00 

Nov-97 2.921 1.57 3.016 0.50 

Dec-97 0.707 0.63 0.051 0.03 

Jan-98 5.7775 6.06 0.80 1.07 

Feb-98 3.2251 4.42 0.36 0.29 

Mar-98 3.7378 2.77 0.50 0.56 

Apr-98 3.6261 1.60 0.28 0.22 

May-98 1.3533 4.14 0.31 0.37 

Jun-98 0.4849 0.12 0.08 0.01 

Jul-98 0.1854 0.15 0.05 0.05 

Aug-98 0.1934 0.05 0.11 0.01 

Sep-98 0.0697 0.00 0.06 0.00 

Oct-98 0.0948 0.07 0.09 0.02 

Nov-98 0.0873 0.00 0.06 0.00 

Dec-98 0.1457 0.10 0.05 0.00 

Jan-99 2.5694 2.02 1.62 2.02 

Feb-99 0.7428 0.96 0.25 0.07 

Mar-99 1.8514 2.31 0.22 0.26 

Apr-99 2.0533 1.71 0.17 0.09 

May-99 0.3026 0.07 0.05 0.01 

Jun-99 0.0623 0.01 0.04 0.00 

Jul-99 0.1026 0.00 0.07 0.00 

Aug-99 0.2834 0.34 0.15 0.12 

Sep-99 1.4334 1.36 0.91 1.30 

Oct-99 6.4294 1.00 0.74 0.24 

Nov-99 0.2114 0.15 0.02 0.01 

Dec-99 2.8686 1.90 0.42 0.28 

Jan-00 1.7573 0.00 0.09 0.00 

Feb-00 3.3594 4.19 0.27 1.27 

Mar-00 3.0421 2.24 0.41 0.49 

Apr-00 0.9793 3.53 0.27 0.36 

May-00 1.5363 1.02 0.25 0.11 

Jun-00 0.5379 0.29 0.10 0.19 

Jul-00 0.5473 0.25 0.16 0.13 

Aug-00 0.3123 0.09 0.06 0.01 

Sep-00 1.8566 0.85 1.57 0.69 

Oct-00 0.3369 0.03 0.13 0.00 

Nov-00 0.1330 0.25 0.03 0.04 

Dec-00 0.0728 1.22 0.01 0.86 
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Table B3 Continued. 

  NO3-N Loadings (kg/ha) PO4-P Loadings (kg/ha) 

Month Adjusted Measured SWAT Simulated Adjusted Measured SWAT Simulated 

Jan-01 1.0515 0.45 0.15 0.54 

Feb-01 0.7858 0.37 0.03 0.05 

Mar-01 1.9798 1.38 0.13 0.24 

Apr-01 1.5805 1.01 0.11 0.09 

May-01 0.0434 0.50 0.01 0.04 

Jun-01 0.0000 0.21 0.00 0.03 

Jul-01 0.0000 0.02 0.00 0.00 

Aug-01 0.0000 0.10 0.00 0.01 

Sep-01 0.0000 0.10 0.00 0.04 

Oct-01 0.0216 0.00 0.01 0.00 

Nov-01 0.0393 0.07 0.04 0.00 

Dec-01 0.0112 0.20 0.01 0.00 
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Appendix C 

 

MATLAB Program Scripts for MFORM Tabulation 
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Appendix C-1 

 

 

Matlab Scripts to Tabulate MFORM Results for Monthly and Annual  

Streamflow, Sediment, Nitrate, and Phosphate Loads  

  

MFORMSolverA4.m 

calc29Ann4.m 
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%M-File Name: MFORMSolverA4.m 

%M-File Description: This program will load output files from SWAT to calculate Mean  

%   Value First Order Reliability Method (MFORM) or uncertainty for 

%    annual and monthly streamflow, sediment, nitrate and phosphate 

%    output variables. 

% 

 

clear 

rootdir = ['C:\Documents and Settings\Aisha\Desktop\Input29Eg']; % directory where the 

% files are stored 

cd (rootdir);   % move to the directory where the files are stored 

sourcefiles = dir;         % Names of the elements in the start_folder directory - struct array 

numfiles = length(dir); % Number of elements in the start_folder directory 

first=3;   % first position where starting counting  

for i = first:numfiles 

    name = sourcefiles(i).name; %name of the file 

    fname = sprintf('%s\\%s',rootdir,name);   % directory path of the file 

    trick=['my_file',int2str(i),'=load(fname);'];  %load file and call it my_file 

    eval(trick); %execute trick for each i 

end 

cd 'C:\Documents and Settings\Aisha\Desktop\mfiles' % back to the initial directory 

    %  where the script is stored 

Mout=zeros(96,6,29); % Creates a matrix of zeros for monthly data (2-D Matrix 

% 96rows=#months 6columns=Date&OutputVars  

% 29depth=29input files) 

Aout=zeros(8,4,29); % This is same as Aoutmv in calc29Ann4 (2-D Matrix  

         %8rows=#years94-01 4columns=OutputVars 29depth=29input files) 

for ii=3:31 

      eval(['a=sortrows(my_file',int2str(ii),',[1]);']) % For each file named 'my_file#(3-31)'  

% sortrows in descending order *using the 1st row, hence [1] 

      if(ii==3) 

          

[Mout(:,:,ii),Aout(:,:,ii),AnMzistr,AnMzised,AnMziNO3,AnMziMinP,Mmzistr,Mmzised,

MmziNO3,MmziMinP]=calc29Ann4(a); % Take info in brackets from specified file  

      % using the function calc29Ann4(a) 

      else 

          [Mout(:,:,ii),Aout(:,:,ii)]=calc29Ann4(a); 

      end 

end 

% 

%Annual new output arrays 

% 

FlowCNwgs=Aout(:,1,4); 

FlowCNskp=Aout(:,1,5); 

FlowCNsgs=Aout(:,1,6); 

FlowES=Aout(:,1,7); 
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FlowHR=Aout(:,1,9); 

FlowRC=Aout(:,1,10); 

FlowSM=Aout(:,1,11); 

FlowSA1=Aout(:,1,12); 

FlowSA2=Aout(:,1,13); 

FlowSK1=Aout(:,1,14); 

FlowSK2=Aout(:,1,15); 

AnNzistr= [ FlowCNwgs FlowCNskp FlowCNsgs FlowES FlowGW FlowHR FlowRC  

FlowSM FlowSA1 FlowSA2 FlowSK1 FlowSK2]'; %Creates array of annual changes in  

%"FLOW" output 

                                                                                    %Apostrophe to transpose the array                                                                                                                                 

SedAP=Aout(:,2,16);                                                                                                              

SedBM=Aout(:,2,17); 

SedCC=Aout(:,2,18); 

SedCE=Aout(:,2,19); 

SedHR=Aout(:,2,9); 

SedSL=Aout(:,2,20); 

SedSPC=Aout(:,2,21); 

SedSPE=Aout(:,2,22); 

SedUP=Aout(:,2,23); 

AnNzised= [SedAP SedBM SedCC SedCE SedHR SedSL SedSPC SedSPE SedUP]';  

% Creates array of annual changes in "Sed" output 

% 

NO3AE=Aout(:,3,24); 

NO3BM=Aout(:,3,17); 

NO3CMN=Aout(:,3,25); 

NO3FS=Aout(:,3,26); 

NO3S_NO3_1=Aout(:,3,27); 

NO3S_NO3_2=Aout(:,3,28); 

NO3NP=Aout(:,3,29); 

AnNziNO3= [NO3AE NO3BM NO3CMN NO3FS NO3S_NO3_1 NO3S_NO3_2 

NO3NP]'; 

% 

MinBM=Aout(:,4,17); 

MinPPP=Aout(:,4,30); 

MinPS_LP=Aout(:,4,31); 

AnNziMinP= [MinBM MinPPP MinPS_LP]'; 

% 

%Monthly new output arrays 

% 

MFlowCNwgs=Mout(:,3,4); 

MFlowCNskp=Mout(:,3,5); 

MFlowCNsgs=Mout(:,3,6); 

MFlowES=Mout(:,3,7); 

MFlowGW=Mout(:,3,8); 

MFlowHR=Mout(:,3,9); 



 

 204 

 

MFlowRC=Mout(:,3,10); 

MFlowSM=Mout(:,3,11); 

MFlowSA1=Mout(:,3,12); 

MFlowSA2=Mout(:,3,13); 

MFlowSK1=Mout(:,3,14); 

MFlowSK2=Mout(:,3,15); 

Mnzistr= [ MFlowCNwgs MFlowCNskp MFlowCNsgs MFlowES MFlowGW 

MFlowHR MFlowRC  MFlowSM MFlowSA1 MFlowSA2 MFlowSK1 MFlowSK2]';  

% Creates array of monthly changes in "FLOW" output 

% Apostrophe to transpose the array                                                                                  

MSedAP=Mout(:,4,16);                                                                                                             

MSedBM=Mout(:,4,17); 

MSedCC=Mout(:,4,18); 

MSedCE=Mout(:,4,19); 

MSedHR=Mout(:,4,9); 

MSedSL=Mout(:,4,20); 

MSedSPC=Mout(:,4,21); 

MSedSPE=Mout(:,4,22); 

MSedUP=Mout(:,4,23); 

Mnzised= [MSedAP MSedBM MSedCC MSedCE MSedHR MSedSL MSedSPC 

MSedSPE MSedUP]'; % Creates array of annual changes in "Sed" output 

% 

MNO3AE=Mout(:,5,24); 

MNO3BM=Mout(:,5,17); 

MNO3CMN=Mout(:,5,25); 

MNO3FS=Mout(:,5,26); 

MNO3S_NO3_1=Mout(:,5,27); 

MNO3S_NO3_2=Mout(:,5,28); 

MNO3NP=Mout(:,5,29); 

MnziNO3= [MNO3AE MNO3BM MNO3CMN MNO3FS MNO3S_NO3_1 

MNO3S_NO3_2 MNO3NP]'; 

% 

MMinBM=Mout(:,6,17); 

MMinPPP=Mout(:,6,30); 

MMinPS_LP=Mout(:,6,31); 

MnziMinP= [MMinBM MMinPPP MMinPS_LP]'; 

% 

load meanxistr3.txt; load meanxised3.txt; load meanxiphos3.txt; load meanxinitr3.txt; 

load stdevxistr3.txt; load stdevxised3.txt; load stdevxinitr3.txt; load stdevxiphos3.txt; 

%********************************************************************** 

%***************MFORM Output Tabulations******************************* 

%********************************************************************** 

% Annual Streamflow uncertainty 

newxistr = meanxistr3*1.05; 

dxistr = newxistr-meanxistr3; 

dzistr = AnNzistr-AnMzistr; 
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b = [size(dzistr)];  % size of array # of rows and columns in dzistr 

h = b(2);  % number of columns in dzistr 

FOVstr = (dzistr./dxistr(:,ones(h,1))).^2.*(stdevxistr3(:,ones(h,1))).^2; 

%the term (:,ones(h,1)) duplicates the first and only column h times 

%creating 8Xh matrix/array 

FOSTDEVstr = sqrt (FOVstr); 

VARZstr = sum (FOVstr); 

STDZstr = sqrt (VARZstr); 

% 

% Annual Sediment uncertainty 

newxised = meanxised3*1.05; 

dxised = newxised-meanxised3; 

dzised = AnNzised-AnMzised; 

c = [size(dzised)];  % size of array # of rows and columns in dzised 

d = c(2);  % number of columns in dzised 

FOVsed = (dzised./dxised(:,ones(d,1))).^2.*(stdevxised3(:,ones(d,1))).^2; 

%the term (:,ones(d,1)) duplicates the first and only column d times 

%creating 8Xd matrix/array 

FOSTDEVsed = sqrt (FOVsed); 

VARZsed = sum (FOVsed); 

STDZsed = sqrt (VARZsed); 

% 

% Annual Nitrogen uncertainty 

newxinitr = meanxinitr3*1.05; 

dxinitr = newxinitr-meanxinitr3; 

dzinitr = AnNziNO3-AnMziNO3; 

n = [size(dzinitr)];   %  size of array # of rows and columns in dzinitr 

p = n(2);   %  number of columns in dzinitr 

FOVnitr = (dzinitr./dxinitr(:,ones(p,1))).^2.*(stdevxinitr3(:,ones(p,1))).^2; 

%the term (:,ones(p,1)) duplicates the first and only column p times 

%creating 8Xp matrix/array 

FOSTDEVnitr = sqrt (FOVnitr); 

VARZnitr = sum (FOVnitr); 

STDZnitr = sqrt (VARZnitr); 

% 

% Annual Phosphate uncertainty 

newxiphos = meanxiphos3*1.05; 

dxiphos = newxiphos-meanxiphos3; 

dziphos = AnNziMinP-AnMziMinP; 

k = [size(dziphos)];   % size of array # of rows and columns in dziphos 

m = k(2);   % number of columns in dziphos 

FOVphos = (dziphos./dxiphos(:,ones(m,1))).^2.*(stdevxiphos3(:,ones(m,1))).^2; 

% the term (:,ones(m,1)) duplicates the first and only column m times 

% creating 8Xm matrix/array 

FOSTDEVphos = sqrt (FOVphos); 

VARZphos = sum (FOVphos); 
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STDZphos = sqrt (VARZphos); 

% 

VarStDev=[VARZstr;STDZstr;VARZsed;STDZsed;VARZnitr;STDZnitr;VARZphos;ST

DZphos]; 

%********************************************************************** 

%********************************************************************** 

%********************************************************************** 

% Monthly Streamflow uncertainty 

mdzistr = Mnzistr-Mmzistr; 

mb = [size(mdzistr)];   % size of array # of rows and columns in mdzistr 

mh = mb(2);   % number of columns in mdzistr 

mSensCoefstr= 

abs((mdzistr./dxistr(:,ones(mh,1))).*(meanxistr3(:,ones(mh,1))./Mmzistr)); 

mFOVstr = (mdzistr./dxistr(:,ones(mh,1))).^2.*(stdevxistr3(:,ones(mh,1))).^2; 

% the term (:,ones(mh,1)) duplicates the first and only column mh times 

% creating 8Xmh matrix/array 

mFOSTDEVstr = sqrt (mFOVstr); 

mVARZstr = sum (mFOVstr); 

mSTDZstr = sqrt (mVARZstr); 

% 

% Monthly Sediment uncertainty 

mdzised = Mnzised-Mmzised; 

mc = [size(mdzised)];  % size of array # of rows and columns in mdzised 

md = mc(2);   % number of columns in mdzised 

mSensCoefsed= 

abs((mdzised./dxised(:,ones(md,1))).*(meanxised3(:,ones(md,1))./Mmzised)); 

mFOVsed = (mdzised./dxised(:,ones(md,1))).^2.*(stdevxised3(:,ones(md,1))).^2; 

% the term (:,ones(md,1)) duplicates the first and only column md times 

% creating 8Xmd matrix/array 

mFOSTDEVsed = sqrt (mFOVsed); 

mVARZsed = sum (mFOVsed); 

mSTDZsed = sqrt (mVARZsed); 

% 

% Monthly Nitrogen uncertainty 

mdzinitr = MnziNO3-MmziNO3; 

mn = [size(mdzinitr)];  % size of array # of rows and columns in mdzinitr 

mp = mn(2);   % number of columns in mdzinitr 

mSensCoefnitr= 

abs((mdzinitr./dxinitr(:,ones(mp,1))).*(meanxinitr3(:,ones(mp,1))./MmziNO3)); 

mFOVnitr = (mdzinitr./dxinitr(:,ones(mp,1))).^2.*(stdevxinitr3(:,ones(mp,1))).^2; 

% the term (:,ones(mp,1)) duplicates the first and only column mp times 

% creating 8Xmp matrix/array 

mFOSTDEVnitr = sqrt (mFOVnitr); 

mVARZnitr = sum (mFOVnitr); 

mSTDZnitr = sqrt (mVARZnitr); 

% 



 

 207 

 

%Monthly Phosphate uncertainty 

mdziphos = MnziMinP-MmziMinP; 

mk = [size(mdziphos)];  % size of array # of rows and columns in mdziphos 

mm = mk(2);   % number of columns in mdziphos 

mSensCoefphos= 

abs((mdziphos./dxiphos(:,ones(mm,1))).*(meanxiphos3(:,ones(mm,1))./MmziMinP)); 

mFOVphos = (mdziphos./dxiphos(:,ones(mm,1))).^2.*(stdevxiphos3(:,ones(mm,1))).^2; 

%the term (:,ones(mm,1)) duplicates the first and only column mm times 

%creating 8Xmm matrix/array 

mFOSTDEVphos = sqrt (mFOVphos); 

mVARZphos = sum (mFOVphos); 

mSTDZphos = sqrt (mVARZphos); 

% 

mVarStDev=[mVARZstr;mSTDZstr;mVARZsed;mSTDZsed;mVARZnitr;mSTDZnitr;m

VARZphos;mSTDZphos]; 
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%M-File Name: calc29Ann4.m 

%M-File Description: This program sorts and converts the data from SWAT output files 

%                      and creates the arrays for annual and monthly 

%                      streamflow, sediment, nitrate and phosphate output variables. 

%                      Output from this script is fed into MFORMSolverA4.m 

% 

function 

[g,Aoutmv,AnMzistr,AnMzised,AnMziNO3,AnMziMinP,Mmzistr,Mmzised,MmziNO3,

MmziMinP]=calc29Ann4(a) 

% 

SubDat= a(769:864, 1:2);     % extracting first 2 columns (Subbasin# and Date) from txt 

file 

Flow_Out= a(769:864, 4);       % extracting column 4 (Flow_Out) 

disp(size(SubDat)) 

for t=1:96 

if round(SubDat(t,2)/10000)==2           %This for loop divides date column (b) by 10000  

   % and rounds to nearest integer to selected  

        Flow_Out(t)=Flow_Out(t)*86400*28/335.3/10000*1000;        %specific months to  

% convert Flow_Out (c) from m3/s to mm/month according to 

    elseif (round(SubDat(t,2)/10000)==4 | round(SubDat(t,2)/10000)==6 | 

round(SubDat(t,2)/10000)==9 |  round(SubDat(t,2)/10000)==11)    % # days in month 

        Flow_Out(t)=Flow_Out(t)*86400*30/335.3/10000*1000;       % e.g. in this equation 

% 30 days in months 4(Apr),6(Jun),9(Sept),and 11(Nov) 

    else 

        Flow_Out(t)=Flow_Out(t)*86400*31/335.3/10000*1000; 

    end 

end 

Sed_Out= a(769:864, 8)*1000/335.3;   %extracting Column 8 (Sed_Out) and converting  

   % from MT to kg/ha 

NO3_Out= a(769:864, 15)/335.3;        %extracting Column 15(NO3_Out) and converting 

  % from kg to kg/ha 

MinP_Out= a(769:864, 21)/335.3;       %extracting Column 15(MinP_Out) and 

converting from kg to kg/ha 

g= [SubDat Flow_Out Sed_Out NO3_Out MinP_Out];             %Creates Array of  

% monthly values of output variables 

% 

Aoutmv=ones(8,4);   %Creates a matrix of ones with dimensions 8x4 

Aoutmv(1,:)=sum(g(1:12,3:6));   %Sum of 12 months of 1st year for each output variable 

     % "Flow_Out" "Sed_Out" "NO3_Out" "MinP_Out" 

Aoutmv(2,:)=sum(g(13:24,3:6));  %           " 

Aoutmv(3,:)=sum(g(25:36,3:6));  %           " 

Aoutmv(4,:)=sum(g(37:48,3:6));  %           " 

Aoutmv(5,:)=sum(g(49:60,3:6));  %           " 

Aoutmv(6,:)=sum(g(61:72,3:6));  %           " 

Aoutmv(7,:)=sum(g(73:84,3:6));  %           " 

Aoutmv(8,:)=sum(g(85:96,3:6));  % Sum of 12 months of 8th year 
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% 

Flowmv=Aoutmv(:,1);  % Column of mean flow values with each row representing a  

  % year 

AnMzistr=Flowmv(:,ones(12,1))';   % repeats flow column for # of flow parameters(in  

% this case 12 (columns))then transpose columns to rows 

% 

Sedmv=Aoutmv(:,2); 

AnMzised=Sedmv(:,ones(9,1))';      

% 

NO3mv=Aoutmv(:,3); 

AnMziNO3=NO3mv(:,ones(7,1))';      

% 

MinPmv=Aoutmv(:,4); 

AnMziMinP=MinPmv(:,ones(3,1))'; 

% 

Flow=g(:,3); 

Mmzistr=Flow(:,ones(12,1))'; 

Sed=g(:,4); 

Mmzised=Sed(:,ones(9,1))'; 

NO3=g(:,5); 

MmziNO3=NO3(:,ones(7,1))'; 

MinP=g(:,6); 

MmziMinP=MinP(:,ones(3,1))'; 
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Appendix C-2 

 

 

Matlab Scripts to Tabulate MFORM Results for Daily 

Streamflow, Sediment, Nitrate, and Phosphate Concentrations  

 

DailyMFORMSolver.m  

calc29Daily.m 
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%M-File Name: DailyMFORMSolver.m 

%M-File Description: This program will load output files from SWAT to calculate 

%   Mean Value First Order Reliability Method (MFORM) or 

%   uncertainty for daily streamflow, sediment, nitrate and phosphate  

%   output varaibles. 

% 

clear 

rootdir = ['C:\Documents and Settings\Aisha\Desktop\DailySLOutput']; %directory  

% where the files are stored 

cd (rootdir);   % move to the directory where the files are stored 

sourcefiles = dir;         % Names of the elements in the start_folder directory - struct array 

numfiles = length(dir); % Number of elements in the start_folder directory 

first=3;   % first position where starting counting  

for i = first:numfiles 

    name = sourcefiles(i).name; %name of the file 

    fname = sprintf('%s\\%s',rootdir,name);   % directory path of the file 

    trick=['my_file',int2str(i),'=load(fname);'];  % load file and call it my_file 

    eval(trick);       % execute trick for each i 

end 

cd 'C:\Documents and Settings\Aisha\Desktop\mfiles'  % back to the initial directory 

where the script is stored 

Dout=zeros(2922,6,29);  % This is same as g in calc29Daily (2-D Matrix  

% #rows=2922 days #columns=6 Date&OutputVars  

% #depth=29 input files)  

for ii=3:31 

      eval(['a=sortrows(my_file',int2str(ii),',[1]);'])  % For each file named 'my_file#(3- 

% 31)' sortrows in descending order *using the 1st row, hence [1] 

      if(ii==3) 

          [Dout(:,:,ii),DMzistr,DMzised,DMziNO3,DMziMinP]=calc29Daily(a);  

%Take info in brackets from specified file using the function calc29Ann4(a) 

      else 

          [Dout(:,:,ii)]=calc29Daily(a); 

      end 

end 

% 

%Daily new output arrays 

% 

dFlowCNwgs=Dout(:,3,4); 

dFlowCNskp=Dout(:,3,5); 

dFlowCNsgs=Dout(:,3,6); 

dFlowES=Dout(:,3,7); 

dFlowGW=Dout(:,3,8); 

dFlowHR=Dout(:,3,9); 

dFlowRC=Dout(:,3,10); 

dFlowSM=Dout(:,3,11); 

dFlowSA1=Dout(:,3,12); 
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dFlowSA2=Dout(:,3,13); 

dFlowSK1=Dout(:,3,14); 

dFlowSK2=Dout(:,3,15); 

DNzistr= [ dFlowCNwgs dFlowCNskp dFlowCNsgs dFlowES dFlowGW dFlowHR 

dFlowRC dFlowSM dFlowSA1 dFlowSA2 dFlowSK1 dFlowSK2]';  

% Creates array of annual changes in "FLOW" output 

                                    % Apostrophe to transpose the array                                                                                                                                 

dSedAP=Dout(:,4,16);                                                                                                             

dSedBM=Dout(:,4,17); 

dSedCC=Dout(:,4,18); 

dSedCE=Dout(:,4,19); 

dSedHR=Dout(:,4,9); 

dSedSL=Dout(:,4,20); 

dSedSPC=Dout(:,4,21); 

dSedSPE=Dout(:,4,22); 

dSedUP=Dout(:,4,23); 

DNzised= [dSedAP dSedBM dSedCC dSedCE dSedHR dSedSL dSedSPC dSedSPE 

dSedUP]';   %Creates array of annual changes in "Sed" output 

% 

dNO3AE=Dout(:,5,24); 

dNO3BM=Dout(:,5,17); 

dNO3CMN=Dout(:,5,25); 

dNO3FS=Dout(:,5,26); 

dNO3S_NO3_1=Dout(:,5,27); 

dNO3S_NO3_2=Dout(:,5,28); 

dNO3NP=Dout(:,5,29); 

DNziNO3= [dNO3AE dNO3BM dNO3CMN dNO3FS dNO3S_NO3_1 dNO3S_NO3_2 

dNO3NP]'; 

% 

dMinBM=Dout(:,6,17); 

dMinPPP=Dout(:,6,30); 

dMinPS_LP=Dout(:,6,31); 

DNziMinP= [dMinBM dMinPPP dMinPS_LP]'; 

% 

% 

load meanxistr3.txt; load meanxised3.txt; load meanxiphos3.txt; load meanxinitr3.txt; 

load stdevxistr3.txt; load stdevxised3.txt; load stdevxinitr3.txt; load stdevxiphos3.txt; 

%**********************************************************************

**** 

%***************MFORM Output 

Tabulations*********************************** 

%**********************************************************************

**** 

% Daily Streamflow uncertainty 

newxistr = meanxistr3*1.05; 

dxistr = newxistr-meanxistr3; 
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ddzistr = DNzistr-DMzistr; 

db = [size(ddzistr)];   % size of array # of rows and columns in ddzistr 

dh = db(2);   % number of columns in ddzistr 

dFOVstr = (ddzistr./dxistr(:,ones(dh,1))).^2.*(stdevxistr3(:,ones(dh,1))).^2; 

% the term (:,ones(dh,1)) duplicates the first and only column dh times 

% creating 8Xdh matrix/array 

dFOSTDEVstr = sqrt (dFOVstr); 

dVARZstr = sum (dFOVstr); 

dSTDZstr = sqrt (dVARZstr); 

% 

% Daily Sediment uncertainty 

newxised = meanxised3*1.05; 

dxised = newxised-meanxised3; 

ddzised = DNzised-DMzised; 

dc = [size(ddzised)];   % size of array # of rows and columns in ddzised 

dd = dc(2);   % number of columns in ddzised 

dFOVsed = (ddzised./dxised(:,ones(dd,1))).^2.*(stdevxised3(:,ones(dd,1))).^2; 

% the term (:,ones(dd,1)) duplicates the first and only column dd times 

% creating 8Xdd matrix/array 

dFOSTDEVsed = sqrt (dFOVsed); 

dVARZsed = sum (dFOVsed); 

dSTDZsed = sqrt (dVARZsed); 

% 

% Daily Nitrogen uncertainty 

newxinitr = meanxinitr3*1.05; 

dxinitr = newxinitr-meanxinitr3; 

ddzinitr = DNziNO3-DMziNO3; 

dn = [size(ddzinitr)];   % size of array # of rows and columns in ddzinitr 

dp = dn(2);   % number of columns in ddzinitr 

dFOVnitr = (ddzinitr./dxinitr(:,ones(dp,1))).^2.*(stdevxinitr3(:,ones(dp,1))).^2; 

% the term (:,ones(dp,1)) duplicates the first and only column dp times 

% creating 8Xdp matrix/array 

dFOSTDEVnitr = sqrt (dFOVnitr); 

dVARZnitr = sum (dFOVnitr); 

dSTDZnitr = sqrt (dVARZnitr); 

% 

% Daily Phosphate uncertainty 

newxiphos = meanxiphos3*1.05; 

dxiphos = newxiphos-meanxiphos3; 

ddziphos = DNziMinP-DMziMinP; 

dk = [size(ddziphos)];  % size of array # of rows and columns in ddziphos 

dm = dk(2);   % number of columns in ddziphos 

dFOVphos = (ddziphos./dxiphos(:,ones(dm,1))).^2.*(stdevxiphos3(:,ones(dm,1))).^2; 

% the term (:,ones(dm,1)) duplicates the first and only column dm times 

% creating 8Xdm matrix/array 

dFOSTDEVphos = sqrt (dFOVphos); 
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dVARZphos = sum (dFOVphos); 

dSTDZphos = sqrt (dVARZphos); 

% 

dVarStDev=[dVARZstr;dSTDZstr;dVARZsed;dSTDZsed;dVARZnitr;dSTDZnitr;dVAR

Zphos;dSTDZphos]'; 
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%M-File Name: calc29Daily.m 

%M-File Description: This program sorts and converts the data from SWAT output files 

%                    and creates the arrays for daily streamflow, sediment, nitrate 

%                    and phosphate output variables. 

%                    Output from this script is fed into DailyMFORMSolver.m 

% 

function [g,DMzistr,DMzised,DMziNO3,DMziMinP]=calc29Daily(a) 

% 

SubDat= a(23375:end, 1:2);     % extracting first 2 columns (Subbasin# and Date) from 

txt file 

Flow_Out= a(23375:end, 4)*1000*86400;   % extracting column 4 (Flow_Out) and 

converting from m3/s to L/d 

Sed_Out= a(23375:end, 8)*1000*1000000./Flow_Out;    %extracting Column 8 

(Sed_Out) and converting from MT to mg 

NO3_Out= a(23375:end, 15)*1000000./Flow_Out;        %extracting Column 

15(NO3_Out) and converting from kg to mg 

MinP_Out= a(23375:end, 21)*1000000./Flow_Out;        %extracting Column 

15(MinP_Out) and converting from kg to mg 

g= [SubDat Flow_Out Sed_Out NO3_Out MinP_Out];       %Creates Array of daily 

values of output variables 

% 

% 

DMzistr=Flow_Out(:,ones(12,1))';    %repeating flow column for # of flow parameters 

(in this case 12 columns) then transpose column to rows 

DMzised=Sed_Out(:,ones(9,1))';      %each column then representing days and rows 

representing each important parameter 

DMziNO3=NO3_Out(:,ones(7,1))'; 

DMziMinP=MinP_Out(:,ones(3,1))'; 
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Appendix D 

 

Comparison of daily NO3-N concentration, MFORM STD (standard deviation), 

with precipitation for each year of study (1994-2001) 
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Figure D1 Comparison of daily NO3-N concentration, MFORM STD (standard deviation), with Precipitation during 1994. 
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Figure D2 Comparison of daily NO3-N concentration, MFORM STD (standard deviation), with precipitation during 1995. 

 

 

 

 

 



 

 219 

 

 

 

 

 

 

 

 

 

0.0

5.0

10.0

15.0

20.0

25.0

0
1
0
1
1
9
9
6

0
1
2
9
1
9
9
6

0
2
2
6
1
9
9
6

0
3
2
5
1
9
9
6

0
4
2
2
1
9
9
6

0
5
2
0
1
9
9
6

0
6
1
7
1
9
9
6

0
7
1
5
1
9
9
6

0
8
1
2
1
9
9
6

0
9
0
9
1
9
9
6

1
0
0
7
1
9
9
6

1
1
0
4
1
9
9
6

1
2
0
2
1
9
9
6

1
2
3
0
1
9
9
6

Time (Days)

N
O

3
 a

n
d

 S
T

D
 (

m
g

/l
) 0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

P
re

c
ip

. 
(m

m
)

NO3 Conc

STD

Precipitation

 

Figure D3 Comparison of daily NO3-N concentration, MFORM STD (standard deviation), with precipitation during 1996. 
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Figure D4 Comparison of daily NO3-N concentration, MFORM STD (standard deviation), with precipitation during 1997. 
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Figure D5 Comparison of daily NO3-N concentration, MFORM STD (standard deviation), with precipitation during 1998. 
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Figure D6 Comparison of daily NO3-N concentration, MFORM STD (standard deviation), with precipitation during 1999. 
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Figure D7 Comparison of daily NO3-N concentration, MFORM STD (standard deviation), with precipitation during 2000. 
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Figure D8 Comparison of daily NO3-N concentration, MFORM STD (standard deviation), with precipitation during 2001.
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Appendix E 

 

Monthly normalized sensitivity coefficients for all important input parameters 

based on years 1994 to 2001 

 

 

The sensitivity coefficient is often normalized to get a dimensionless index which 

provides a more unbiased ranking of basic parameters for sensitivity analysis. The 

normalized sensitivity coefficient S is defined as: 
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Figure E1 Monthly normalized sensitivity coefficients for important input parameters to streamflow output based on years 1994 to 

2001. 
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Figure E2 Monthly normalized sensitivity coefficients for important input parameters to streamflow output based on years 1994 to 

2001. 
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Figure E3 Monthly normalized sensitivity coefficients for important input parameters to sediment output based on years 1994 to 2001. 
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Figure E4 Monthly normalized sensitivity coefficients for important input parameters to sediment output based on years 1994 to 2001. 
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Figure E5 Monthly normalized sensitivity coefficients for important input parameters to nitrate output based on years 1994 to 2001. 



 

 231 

 

 

 

 

 

 

 

 

 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Time (Months)

A
v
e
ra

g
e
 N

o
rm

a
li
z
e
d
 S

e
n
s
it
iv

it
y
 

C
o
e
ff
ic

ie
n
t

BIOMIX

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

J
a
n

F
e
b

M
a
r

A
p
r

M
a
y

J
u
n

J
u
l

A
u
g

S
e
p

O
c
t

N
o
v

D
e
c

Time (Months)

A
v
e
ra

g
e
 N

o
rm

a
li
z
e
d
 S

e
n
s
it
iv

it
y
 

C
o
e
ff
ic

ie
n
t

SOL_LABP1

 
 

 

 

Figure E6 Monthly normalized sensitivity coefficients for important input parameters to phosphate output based on years 1994 to 

2001.
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