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Comparison of genetic isotopic compositions of iron meteorites with metal-

silicate segregation ages suggests that the isotopic composition of the NC reservoir 

changed with time. By contrast, no such age-linked changes in the genetic isotopic 

compositions of iron meteorites from the CC reservoir are observed. Results of 

comparing bulk planetesimal genetic isotopic compositions with bulk planetesimal 

siderophile element chemical characteristics indicate that the processes responsible 

for isotopic heterogeneity in the early Solar System are not discerned by the 

siderophile element chemical characteristics of planetesimals. Iron meteorite parent 

bodies from the CC reservoir typically have smaller relative cores and a greater 

proportion of the Fe content in the mantle, consistent with the CC reservoir being a 

more oxidized environment, such as the outer Solar System, compared to the NC 

reservoir. The chemical characteristics of iron meteorite parent bodies, including bulk 

core FeS/Fe ratios and oxidation states, may form relationships with core formation 



  

ages, but whether these characteristics can account for potential differences in the 

formation ages of NC- and CC-type parent bodies presently cannot be constrained.   
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Chapter 1: Introduction and Goals 

1.1 Driving questions 

A fundamental pursuit of planetary science is to understand how the early Solar 

System formed and evolved. Such a task warrants providing constraints to the origins and 

evolution of the earliest formed planetary bodies, the histories of which can be probed 

through the study of meteorites - fragments of asteroids or other planetary bodies that 

have landed on Earth. By determining when, where, and from what planetary bodies 

formed, constraints to the distribution and evolution of material in the early Solar System 

can be placed. This dissertation aims to advance these topics through the coupled study of 

the genetic isotopic compositions, formation ages, and chemical compositions of the 

distinct, early-formed planetary bodies sampled by iron meteorites.  

  

1.2 Background 

1.2.1 Meteorite classification 

Meteorites are commonly classified as either chondrites or achondrites, based on 

mineralogical, petrological, chemical, and isotopic data (Krot et al., 2004). Chondrites, 

which can be further divided into carbonaceous, ordinary, enstatite, rumurutite, and 

kakangari groups, are mixtures of the primary materials of the Solar System, including 

presolar grains, Ca-Al-rich inclusions (CAIs), chondrules, and matrix. Presolar grains are 

minerals that were produced in astronomical events, such as supernovae, prior to the 

formation of the Solar System (e.g., Nittler et al., 2018). Calcium-Al-rich inclusions are 

interpreted to be the first materials to condense in the Solar System from the gas-rich 

solar nebula and Pb-Pb ages date CAI formation to 4567.30 ± 0.16 Mya (Connelly et al., 
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2012). These inclusions are rich in refractory elements and minerals that are expected to 

condense from a solar gas composition at high temperatures, suggesting that CAIs 

formed close to the sun at >1300 K (Grossman, 1972). Chondrules began forming at the 

same time as CAIs and continued to form for an additional 3 Myr (Connelly and 

Bizzarro, 2009; Connelly et al., 2012; Brennecka et al., 2015). The origin of chondrules 

remains highly uncertain and, unlike CAIs, chondrules are interpreted to have formed in 

diverse locations within the solar nebula. Matrix is interpreted as the final Solar System 

condensation product from the nebular gas (e.g., McSween and Richardson, 1977).  

Achondrites are interpreted to have originated as chondrites that have undergone 

varying degrees of melting, thus partially or fully homogenizing the presolar grains, 

CAIs, chondrules, and matrix components. The heat source driving melting can be 

derived internally from the decay of short-lived radionuclides, like 26Al, or externally 

from impacts. Achondrites can be primitive, meaning that the meteorite has a bulk 

chemical composition similar to chondrites, or differentiated, meaning that the meteorites 

have chemical compositions significantly modified by melting and differentiation 

processes. Primitive achondrites can be subdivided to include, among others, 

nonmagmatic iron meteorites. These meteorites are largely interpreted to sample partially 

differentiated bodies or localized impact melts (Worsham et al., 2016a, Hunt et al., 2018). 

Differentiated achondrites consist of many subdivisions, such as Lunar meteorites, 

Martian meteorites, pallasites, and magmatic iron meteorites. Pallasites are metal- and 

olivine-rich meteorites, which have been interpreted to form either at the core-mantle 

boundary of differentiated planetary bodies or above the core in the mantle (Anders, 
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1964; Scott, 1977a; Wood, 1978). Magmatic iron meteorites are interpreted to represent 

fragments of the cores of differentiated planetary bodies.  

Magmatic and nonmagmatic iron meteorites share a common classification scheme 

and have broadly been divided into four categories (I-IV) based on the concentration 

ranges observed for certain volatile trace elements, such as Ga and Ge (Goldberg et al., 

1951; Lovering et al., 1957). These categories additionally have been divided into 

lettered groups, which consist of at least five chemically relatable iron meteorites 

(Wasson, 1974), based primarily on concentrations of Ga, Ge, Ni, and Ir (e.g., Wasson, 

1967; Wasson and Kimberlin, 1967). Eleven different magmatic (IC, IIAB, IIC, IID, IIF, 

IIG, IIIAB, IIIE, IIIF, IVA, and IVB) and two nonmagmatic (IAB-complex and IIE) iron 

meteorite groups have currently been classified this way. Over 100 iron meteorites also 

exist with an “ungrouped” designation, due to the current lack of chemically relatable 

meteorites in the meteorite record to achieve group status.  

 

1.2.2 Genetics 

The various isotopes of most elements in the Solar System were produced in various 

stellar processes, including supernovae. Isotopes of elements heavier than Fe were 

formed primarily by different combinations of the p-, s-, and r-nucleosynthetic processes, 

reflecting photodisintegration reactions, slow neutron capture reactions, and rapid 

neutron capture reactions, respectively (Burbidge et al., 1957; Wallerstein et al., 1997). 

Studies of the nucleosynthetic isotopic compositions of Solar System primary materials 

have reported distinct variations in the isotopic compositions of various elements in 

presolar grains, CAIs, chondrules and matrix (e.g., Budde et al., 2016a,b). For example, 
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presolar grains, such as graphite and silicon carbides, have isotopic compositions of Mo 

with variable s-process enrichments and/or coupled r- and p-process depletions, relative 

to terrestrial materials, with µ95Mo variations between -600,000 and +200,000 (µ is the 

part per 1,000,000 variation in the isotopic ratio of a sample relative to a terrestrial 

standard) (Nicolussi et al. (1998a,b). Calcium-Al-rich inclusions have µ95Mo 

compositions between +185 to +1,106 (Burkhardt et al., 2011), whereas chondrules and 

matrix have µ95Mo compositions between -125 to -49 and +142 to +398, respectively 

(Budde et al., 2016a). The reason behind the distinct isotopic compositions of these 

primary planetary building blocks is not well understood. Some studies have proposed 

that it is due to the formation of these materials in isotopically distinct regions, inherited 

from an isotopically heterogeneous parental molecular cloud, of the Solar nebula (e.g., 

Dauphas et al., 2002). Other studies have argued that the parental molecular cloud was 

isotopically homogenous and isotopic variations in the Solar nebula developed through 

the thermal processing, physical sorting, or late addition of isotopically distinct materials 

(e.g., Regelous et al., 2008; Trinquier et al., 2009; Brennecka et al., 2013).   

Nucleosynthetic isotopic heterogeneities exist in bulk meteorites for some elements, 

indicating that isotopically distinct primary materials were heterogeneously accreted by 

planetary bodies (e.g., Dauphas et al., 2002; Qin et al., 2008; Chen et al., 2010; Burkhardt 

et al., 2011, Fischer-Gӧdde et al., 2015; Kruijer et al., 2017; Bermingham et al., 2018). 

Studies coupling the nucleosynthetic isotopic compositions of multiple elements in 

meteorites have uncovered that at least two isotopically distinct reservoirs existed during 

the early Solar System (e.g., Warren 2011; Budde et al., 2016a; Kruijer et al., 2017). 

Warren (2011) termed these reservoirs the noncarbonaceous (NC) and carbonaceous 
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(CC) reservoirs after noting coupled isotopic variations for Cr, Ti, O, and Ni in silicate-

rich meteorites. Additional variations in siderophile (iron-loving) elements, such as Mo, 

Ru, W, and Pd, have since been noted (Budde et al., 2016a; Kruijer et al., 2017; Poole et 

al., 2017; Worsham et al., 2017, 2019; Bermingham et al., 2018; Ek et al., 2019), 

allowing for the study of the genetic isotopic variability within and between the NC and 

CC reservoirs through iron meteorites.  

 

1.2.3 Metal-silicate segregation ages 

The 182Hf-182W system is a short-lived chronometer, in which 182Hf (t1/2 = 8.9 Myr) 

beta decays to stable 182W, through short-lived 182Ta (t1/2 = 114 days) (Vockenhuber et 

al., 2004). This system is widely applied to constrain the timing of asteroidal melting and 

silicate-metal fractionation in the early Solar System because Hf is lithophile and remains 

in the silicate melt of a planetary object, while W is moderately siderophile and 

preferentially partitions into metallic liquids (Kleine et al., 2009). By measuring the W 

isotopic composition of iron meteorites and comparing this composition to the W isotopic 

composition of chondrites (reflecting the Hf/W ratio of a bulk parent body) and CAIs 

(reflecting the Solar System initial W isotopic composition), the relative timing of metal-

silicate melting and segregation leading to the formation of an iron meteorite can be 

constrained. For magmatic iron meteorites, this age is interpreted to reflect the timing of 

planetary differentiation and core formation (e.g., Kruijer et al., 2014a) while for 

nonmagmatic irons, the interpretation of this age is uncertain (e.g., Worsham et al., 

2017). For magmatic iron meteorites, an age of core formation can be then combined 

with thermal models, which can be used to calculate the heat production and heat loss in 
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a planetary body over time, to determine when an iron meteorite parent body accreted 

(Kruijer et al., 2014a, 2017; Hunt et al., 2018).  

 

1.2.4 Chemical compositions 

The abundances of siderophile elements in iron meteorites are set by numerous 

processes occurring during planetary accretion, differentiation, and crystallization. These 

include nebular fractionations, which reflect the temperatures at which materials 

condensed prior to parent body accretion, as well as subsequent parent body processing, 

including oxidation, metal-silicate partitioning, parent body outgassing, volatile loss due 

to impacts, and fractional crystallization (Scott, 1972). Siderophile elements can be 

grouped in multiple ways based on their geochemical behavior during these different 

processes, such as metal-silicate partitioning behavior and volatility. For example, highly 

siderophile elements (HSE) are defined as elements that have metal-silicate partition 

coefficients of ≥10,000 at 1 bar pressure, moderately siderophile elements have partition 

coefficients from ~3 to 1,000 and slightly siderophile elements have partition coefficients 

slightly above 1 (Walker, 2016). Siderophile elements can also be grouped based on 

volatility, including refractory elements (50% condensation temperatures >1335 K at 1E-

4 atm), moderately volatile elements (50% condensation temperature <1335 K and >665 

K), and volatile elements (50% condensation temperature <665 K) (Davis, 2006). By 

studying the abundances of multiple siderophile elements with different geochemical 

behaviors in iron meteorites, it is, in some cases, possible to provide constraints to the 

various processes occurring before and after planetary accretion.  
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1.2.5 Origins of the NC and CC reservoirs 

Despite numerous studies exploring the link between different nucleosynthetic 

isotope systematics and the extent of isotopic heterogeneity observed among meteorites, 

the origin of the NC and CC reservoirs continues to be debated. Past studies have 

proposed that the isotopic heterogeneity observed within and between the NC and CC 

reservoirs was due to the selective removal of isotopically distinct materials, such as 

through thermal processing (e.g., Poole et al., 2017; Worsham et al., 2019) or physical 

sorting of materials (e.g., Burkhardt et al., 2019). Other studies have proposed that the 

isotopic heterogeneity observed within and between the NC and CC reservoirs was due to 

the addition of isotopically distinct materials, such as through late injection of material to 

the outer Solar System (e.g., Kruijer et al., 2017). It has also been proposed that it was 

inherited from an isotopically heterogeneous parental molecular cloud (Dauphas et al., 

2002). Regardless of the mechanism, a widely accepted hypothesis is that the NC and CC 

reservoirs reflect the inner and outer Solar System, respectively, which became separated 

by the formation of proto-Jupiter (e.g., Warren, 2011; Budde et al., 2016a; Kruijer et al., 

2017; Burkhardt et al., 2019; Nanne et al., 2019). Yet, many questions remain about how, 

when, and where the NC and CC reservoirs formed and evolved.     

 

1.3 Research goals 

The primary goals of this research are to gain new insights to the origin and evolution 

of the isotopically distinct NC and CC reservoirs in the early Solar System. This 

dissertation seeks to advance these fields through the analysis and interpretation of the 

isotopic compositions and chemical abundances of siderophile elements in NC- and CC-
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type meteorites. Specifically, the nucleosynthetic Mo, Ru and W isotopic compositions of 

iron meteorites are reported in order to constrain the extent of isotopic heterogeneity 

among different planetary bodies, the short-lived 182Hf-182W chronometer is employed to 

provide temporal constraints to the timing of planetary body formation, and the 

concentrations of HSE, including Re, Os, Ir, Pu, Pt, and Pd, are used to constrain the 

chemical compositions of bulk planetary bodies. These separate data sets are used 

together to advance the understanding of these early reservoirs by providing insights to 

the genetics, ages, and chemical compositions of bulk planetary bodies sampled by iron 

meteorites.  
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Chapter 2: Genetics, crystallization sequence, and age of the South 

Byron Trio iron meteorites: New insights to carbonaceous 

chondrite (CC) type parent bodies 
 

Note: This chapter has been previously published in the following publication: 

Hilton C.D., Bermingham K.R., Walker R.J., McCoy T.J. (2019) Genetics, crystallization 

sequence, and age of the South Byron Trio iron meteorites: New insights to 

carbonaceous chondrite (CC) type parent bodies. Geochim. Cosmochim. Acta 251, 

217-228.  

  

2.1 Abstract 

The nucleosynthetic Mo, Ru, and W isotopic compositions of the South Byron Trio 

iron meteorite grouplet (SBT) are consistent with all three meteorites originating on a 

single parent body that formed in the carbonaceous chondrite (CC) isotopic domain 

within the Solar nebula. Consistent with a common origin, the highly siderophile element 

(HSE) concentrations of the SBT can be related to one another by moderate degrees of 

fractional crystallization of a parental melt with initially chondritic relative abundances of 

HSE, and with initial S and P contents of ~7 and ~1 wt. %, respectively. Tungsten-182 

isotopic data for the SBT indicate the parent body underwent metal-silicate 

differentiation 2.1 ± 0.8 Myr after calcium aluminum rich inclusion formation, and 

thermal modeling suggests the parent body formed 1.1 ± 0.5 Myr after CAI formation. 

This accretion age is not resolved from the accretion ages of other CC and most 

noncarbonaceous (NC) type iron meteorite parent bodies. Comparison of the projected 

parental melt composition of the SBT to those projected for the IVA and IVB iron 

meteorite groups suggests that at least some portions of the CC nebular domain were 

more oxidized compared to the NC domain. In addition, comparison of the SBT parental 
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melt S content to estimates for parent bodies of the IIAB, IIIAB, IVA, IID, and IVB 

“magmatic” iron meteorite groups suggests that CC type iron meteorite parental melts 

were characterized by a general depletion in S, in addition to depletions in some other 

moderately volatile elements.   

Based on chemical and O isotope similarities, prior studies have suggested the 

possibility of a common parent body for the SBT and the Milton pallasite. Molybdenum 

and Ru isotopic compositions of Milton also provide permissive evidence for this. The 

HSE concentrations in the Milton metal, however, cannot be related to the SBT by any 

known crystal-liquid fractionation or mixing path. Thus, Milton more likely formed on a 

different, chemically distinct, but genetically identical parent body present in the CC 

nebular domain.  

 

2.2 Introduction 

Two isotopically and likely chemically distinct nebular domains, referred to as 

“noncarbonaceous” (NC) and “carbonaceous” (CC), were originally identified to have 

existed in the early Solar System through studies of Ni, Cr, Ti, and O isotopic 

compositions in meteorites (Warren, 2011). The list of isotopically diverse elements to 

discriminate between these domains has been expanded to include the siderophile 

elements Mo, Ru, and W, which allow for the NC and CC classification to be extended to 

iron meteorites and pallasite metal (e.g., Fisher-Gӧdde et al., 2015; Budde et al., 2016a; 

Kruijer et al., 2017; Poole et al., 2017; Worsham et al., 2017; Bermingham et al., 2018). 

Mass independent isotopic heterogeneity observed for Mo, Ru, and W among early Solar 

System materials is due to the incorporation of variable proportions of presolar 
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components with isotopically diverse compositions reflecting different nucleosynthetic 

origins (e.g., Dauphas et al., 2002; Qin et al., 2008; Chen et al., 2010). The distinct Mo, 

Ru, and W isotopic compositions of the NC and CC isotopic domains have been 

interpreted to represent the division and isolation of the inner and outer Solar System, 

possibly due to the formation of proto-Jupiter (Warren, 2011; Budde et al., 2016a; Kruijer 

et al., 2017). As the outer Solar System is expected to be a more oxidizing and volatile-

rich environment compared to the inner Solar System, coupled studies of isotopic and 

chemical compositions of CC type iron meteorites may provide new insights into the NC 

and CC division, and nebular heterogeneity.  

So called “magmatic” iron meteorite groups consist of multiple meteorites whose 

chemical differences can be accounted for by crystal-liquid fractionation and mixing 

processes originating from a single melt. Most of the major magmatic iron meteorite 

groups have been characterized as NC or CC based on Mo, Ru, and W isotopic 

compositions. The NC type irons include the IC, IIAB, IIIAB, IIIE, and IVA groups, and 

the CC type irons include the IIC, IID, IIF, IIIF, and IVB groups (Fisher-Gӧdde et al., 

2015; Budde et al., 2016a; Kruijer et al., 2017; Poole et al., 2017; Worsham et al., 2017; 

Bermingham et al., 2018). Of these ten iron groups, the CC type irons tend toward greater 

Ni contents and more limited ranges in Ir concentrations compared to NC irons, although 

there is considerable overlap (Fig. 2.1). Additional chemical comparisons between NC 

and CC type iron meteorites are limited. For example, the highly siderophile element 

(HSE; Re, Os, Ir, Ru, Pt, Pd) concentrations of parental melts have only been estimated 

for the IVA and IVB iron meteorites (Campbell and Humayun, 2005; Walker et al., 2008; 

McCoy et al., 2011). In addition, S contents of iron meteorite parental melts have been 
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determined using multiple approaches that are not always consistent, limiting direct 

comparisons (e.g., Chabot, 2004; Wasson et al., 2007).   

 

 Fig. 2.1. Compilation of Ni vs. Ir concentration data for the magmatic iron meteorite 

groups. Blue symbols represent CC type meteorites and red symbols represent NC type 

meteorites. Milton and the SBT are shown as dark and light green symbols, respectively. 

Data are compiled from Wasson (1969), Schaudy and Wasson (1972), Scott et al. (1973), 

Scott and Wasson (1976), Scott (1977b), Wasson et al. (1989), Wasson (1999), Wasson 

and Richardson (2001), Jones et al. (2003), Wasson and Huber (2006), and Wasson et al. 

(2007). 

 

The South Byron Trio (SBT) iron meteorite grouplet provides an opportunity to 

expand knowledge regarding the chemical and isotopic variability of the Solar nebula. 

The SBT consists of three ungrouped iron meteorites, Babb’s Mill (Troost’s Iron, herein 



 

 

 

13 

 

referred to as Babb’s Mill), South Byron, and Inland Forts 83500 (ILD 83500), which 

were recognized as having similar Ni, Ga, and Ge concentrations (17.5-17.8 wt. %, 18.6-

20.0 ppm, 41.0-47.9 ppm, respectively) and ataxitic structures by Wasson et al. (1989). In 

addition to potentially originating from the same parent body, the SBT have been 

suggested to also be related to the ungrouped Milton pallasite. Several prior studies have 

noted chemical and isotopic similarities between the SBT and the Milton pallasite, 

warranting study of this potential iron meteorite-pallasite relationship (Jones et al., 2003; 

McCoy et al., 2017). 

In this study, the mass independent isotope systematics of some siderophile elements 

and the modeling of HSE, and Hf-W chronometry are employed to assess the nature of 

the possible relationship among the SBT meteorites, as well as to assess the HSE, S, P, 

and C contents of the parental melt. The short-lived Hf-W system (182Hf  182W + 2β-, 

T1/2 = 8.9 Ma; Vockenhuber et al., 2004) is used to constrain the thermal history of the 

parent body including the timing of primary differentiation. Further, the potential 

relationship of the Milton pallasite to the SBT is evaluated using Mo and Ru isotopic 

compositions and chemical modeling. 

 

2.3 Materials and methods 

2.3.1 Sample preparation 

Samples of Milton and South Byron were obtained from the Smithsonian Institution, 

Department of Mineral Sciences, National Museum of Natural History. Babb’s Mill was 

obtained from Arizona State University and ILD 83500 was obtained from the US 

Antarctic Meteorite Program. Pieces were cut from each meteorite sample using a water-
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cooled Leco Vari-cut saw and a 12.7 cm diamond-wafering blade. The blade was cleaned 

with carborundum prior to cutting each meteorite. Prior to dissolution, the surface of each 

cut meteorite piece was polished using a range of coarse- to fine-grit sandpaper to remove 

sawblade marks, and then sonicated multiple times in ethanol. 

 

2.3.2 Isotopic measurements 

Approximately 1-2 g pieces of each of the SBT irons and a 6 g piece of the Milton 

pallasite were dissolved in 40-120 mL 8M HCl at 130 °C for 72 hours in Teflon® 

beakers. The resulting solution was then centrifuged and the supernatant was divided into 

four aliquots to be separately processed for Os, Mo, Ru, and W isotopic measurements. 

Due to limited material, Milton was not processed for W. Details regarding the chemical 

and mass spectrometric procedures have been previously published (Worsham et al., 

2016b; Bermingham et al., 2016; Archer et al., 2017), reviewed in Appendix 2, and 

briefly described here. Aliquots for Os isotopic analysis were oxidized in sealed Pyrex® 

Carius tubes with 2:1 HNO3:HCl at 220 °C and then Os was extracted from the solution 

using CCl4 solvent-extraction methods, and further purified using microdistillation 

techniques (Shirey and Walker, 1995; Cohen and Waters, 1996; Birck et al., 1997). 

Molybdenum aliquots were processed through three anion columns (Worsham et al., 

2016b) and Ru aliquots were processed through a cation column and then further purified 

using microdistillation techniques (Bermingham et al., 2016). Iron was removed from the 

W aliquots using a diisopropyl ether extraction procedure and then the aliquots were 

processed through a cation column and three anion columns (Dodson et al., 1936; 

Touboul and Walker, 2012). Isotopic compositions for Os, Mo, Ru, and W were 
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measured by thermal ionization mass spectrometry (TIMS) at the University of Maryland 

(UMd).  

The typical blanks for these procedures were <10 pg Os, <1 ng Mo, <10 pg Ru, and 

<1 ng W, which were inconsequential for the measurements reported here. Analytical 

uncertainty was assessed by measuring standard solutions multiple times (n>6) during an 

analytical campaign and assigning the two-standard deviation (2SD) value for the 

standards, which were always greater than the two-standard error (2SE) of the sample 

analyses, to the sample value. Reproducibility per analytical campaign of the Johnson 

Matthey Os standard (2SD) ranged from 189Os/188Os = 5-8 ppm and 190Os/188Os = 4-18 

ppm, and the Alfa Aesar Specpure® Ru standard (2SD) was 100Ru/101Ru = 9-12 ppm. The 

reproducibility of the Alfa Aesar Specpure® W standard (2SD) was 182W/184W (186/184 

normalized) = 6 ppm, 183W/184W = 6-7 ppm, and the Alfa Aesar Specpure® Mo standard 

(2SD) was 94Mo/96Mo = 10-26 ppm, 95Mo/96Mo = 8-15 ppm, and 97Mo/96Mo = 5-6 ppm. 

Results of isotopic measurements are reported in µ units (Eq. 1; e.g., Os). 

Eq. 1:   

 

2.3.3 Isotope dilution 

Concentration data for Re, Os, Ir, Ru, Pt, and Pd were obtained by isotope dilution 

using a chemistry procedure outlined in Walker et al. (2008). About 10-150 mg metal 

pieces of each meteorite were digested with 5 ml of concentrated HNO3 and 2.5 ml of 

concentrated HCl, and equilibrated with a combined platinum-group element spike (191Ir, 

99Ru, 194Pt, and 105Pd) and a Re-Os spike (185Re and 190Os) for at least 24 h at 220 °C in 
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Pyrex® Carius tubes (Shirey and Walker, 1995). Once the tubes were opened, Os was 

separated and purified using the same techniques as discussed in Appendix 2 for 

unspiked Os samples. Spiked Os samples were separately analyzed by TIMS to 

determine Os concentrations and 187Os/188Os ratios (Cook et al., 2004). The remaining 

HSE were purified using an anion column procedure, an additional anion column was 

used for Re and Ru purification (Walker et al., 2008), and solutions were measured using 

a Nu Plasma multi-collector inductively-coupled plasma mass spectrometer at UMd. The 

blanks for these methods were typically <1 pg for Re and Os, and <30 pg for Ir, Ru, Pt, 

and Pd. Blank corrections were made but were not significant. The uncertainties for 

187Re/188Os ratios were estimated to be ±0.15 %, the uncertainties for 187Os/188Os, and Os 

and Re concentrations were estimated to be ±0.1 %, and the uncertainties for Ir, Ru, Pt, 

and Pd concentrations were estimated to be <2 % based on the reproducibility of similar 

samples using identical methods (Walker et al., 2008; McCoy et al., 2011). 

    

2.4 Results 

2.4.1 Osmium, Mo, Ru, and W isotopic results 

Cosmic ray exposure (CRE) can result in neutron capture reactions within meteorites 

(Leya and Masarik, 2013). Such reactions can alter the Mo, Ru, and W isotopic 

compositions of a meteorite (e.g., Wittig et al., 2013; Worsham et al., 2017; Bermingham 

et al., 2018). The effects of CRE are dependent on the neutron fluence, which reflects 

both exposure duration and depth from surface (e.g., Wittig et al., 2013). Consequently, 

CRE must be monitored and corrected for in the same meteorite piece as measured for 

mass independent and radiogenic isotopic compositions. Both Os and Pt isotopes have 
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been applied to monitor and correct for CRE effects on siderophile elements (e.g., 

Walker, 2012; Kruijer et al., 2013; Wittig et al., 2013). Osmium is used as the dosimeter 

here, of which the 189Os/188Os ratio is most sensitive for assessing CRE effects. 

Increasingly greater CRE effects result in increasingly negative µ189Os values. Based on 

the 2SD reproducibility (± 6-8 ppm) of the 189Os/188Os ratio of the terrestrial laboratory 

standard analyzed for this study, it is assumed that meteorite pieces with µ189Os values 

within ± 8 ppm of zero were minimally affected by CRE. Milton, Babb’s Mill, South 

Byron, and ILD 83500 have µ189Os values ranging from -4 ± 8 to +8 ± 7, which are not 

resolved from the terrestrial standard (0 ± 8) (Table A2.1) and indicate that these 

meteorites were minimally affected by CRE. Of these four meteorites, Milton has the 

most negative µ189Os value of -4 ± 8. Assuming a maximum expansion of error to a 

µ189Os value of -12 ppm would require a CRE correction for µ97Mo and µ100Ru values of 

only -2 and +5 ppm, respectively, which are smaller than the measurement uncertainties 

of µ97Mo and µ100Ru values (Worsham et al., 2017; Bermingham et al., 2018). Of the 

meteorites measured for µ182W, Babb’s Mill has the most negative µ189Os value of +1 ± 

6. In this case, the maximum expansion of error to a µ189Os value of -5 ppm would 

require a CRE correction for µ182W of -7 ppm, which is only slightly greater than the 

measurement uncertainty of µ182W values to ±6 ppm (Worsham et al., 2017).  Therefore, 

no CRE corrections have been made to the Mo, Ru, and W isotopic results for these 

meteorites.  

The Mo and Ru isotopic compositions of Milton, Babb’s Mill, South Byron, and ILD 

83500 are provided in Table 2.1. These meteorites are characterized by a limited range of 

µ94Mo values from +121 ± 13 to +132 ± 9, µ95Mo values from +99 ± 9 to +104 ± 9, and 
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µ97Mo values from +46 ± 3 to +54 ± 5. Ruthenium isotopic compositions range from 

µ100Ru = -104 ± 10 to -114 ± 15. Tungsten isotopic compositions are reported in Table 

2.2. The measured µ182W values for the SBT range from -307 ± 6 to -319 ± 6, and the 

measured µ183W values range from +4 ± 7 to +15 ± 6. Collectively, the Mo and Ru 

isotopic compositions of the SBT and Milton, and the W isotopic compositions of the 

SBT are all identical, within analytical uncertainties.  

 

Table 2.1. Molybdenum and Ru isotopic compositions of Milton, the SBT, and the 

average value of the SBT parent body. 

Sample na µ94Mo ± µ95Mo ± µ97Mo ± na µ100Ru ± 

Milton 2 +130 26 +104 9 +54 5 3 -114 15 
           

Babb’s Mill 5 +132 9 +104 5 +46 3 2 -104 9 

South Byron 4 +127 12 +104 6 +50 3 3 -111 9 

ILD 83500 4 +121 13 +99 9 +50 2 3 -104 10 
           

SBT average 13 +127 7 +103 4 +49 2 8 -107 5 
a n is the number of analyses for Mo and Ru isotopic composition. The reported isotopic 

values reflect the average values obtained for each meteorite piece. Uncertainties reflect 

the largest (of n analyses) 2SD of the standards run during an analytical campaign (n ≤ 3) 

or 2SE (n > 3) of the sample values.   

 

Table 2.2. Tungsten isotopic compositions of the SBT. 

Sample na µ182WMeasured ± µ183WMeasured ± µ182WCorrected  ± ΔTCAI  ± 

Babb’s Mill 1 -307 6 +11 6 -323 10 2.3 1.0 

Babb’s Mill 

(rep) 

1 -312 6 +4 7 -318 12 2.8 1.2 

South Byron 1 -311 6 +15 6 -332 10 1.4 0.9 

ILD 83500 1 -319 6 +7 6 -329 10 1.7 1.0 

          

SBT average 4 -312 5 +9 5 -325 8 2.1 0.8 
a n is the number of analyses. The measured µ182W and µ183W values are reported for 

each meteorite piece and the uncertainties reflect the 2SD of the standards run during an 

analytical campaign. The corrected µ182W represents the value corrected for the µ183W 

positive anomaly per sample, where µ182Wcorrected = µ182WMeasured – (1.41±0.06*µ183W) 

(Kruijer et al., 2014b), and the uncertainties reflect the uncertainties from µ182WMeasured, 

µ183WMeasured, and the µ183W correction. The SBT average µ182WCorrected values were 

calculated using the SBT average µ182WMeasured and µ183WMeasured values, and errors 

represent 2SE. The ΔTCAI ages were calculated from the µ182WCorrected values. 
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2.4.2 187Re-187Os and highly siderophile element concentrations 

The 187Re-187Os chronometer is a useful tool for broadly constraining the age of metal 

crystallization, as well as evaluating open-system behavior of HSE. Osmium-187 is the 

β- decay product of 187Re, which has a half-life of 41.6 Gyr (Smoliar et al., 1996). The 

187Re-187Os results are reported in Table 2.3. The 187Re-187Os data were regressed using 

ISOPLOT (Ludwig, 2003) and the isochron yields an age of 4587 ± 230 Ma and an initial 

187Os/188Os of 0.0953 ± 0.0019 (MSWD = 6.4). The limited range in Re/Os coupled with 

the limited number of meteorites result in the large uncertainty for these values, 

compared to some other groups (e.g., McCoy et al., 2011). Milton and the SBT all plot on 

or near a chondritic 4.568 Ga reference isochron (Fig. 2.2). These meteorites have ΔOs 

values, calculated as the part per 10,000 deviation from the 187Os/188Os ratio of a sample 

to the reference isochron, ranging from -0.1 ± 2 to +3.9 ± 2. These results are consistent 

with these meteorites experiencing limited open-system behavior for the HSE since 

crystallization in the early Solar System. 
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Table 2.3. Rhenium-Os isotopic and HSE composition data for Milton and the SBT. 
Sample Wt. Ni Re Os Ir Ru Pt Pd 187Re/188Os 187Os/188Os ΔOs 

Milton Metal 0.011 15.0 5052 46554 42260 31840 36620 5338 0.5237 0.13711 +3.9 

            

Babb’s Mill 0.051 17.7 2858 41286 29990 27250 32990 5205 0.3332 0.12177 +0.8 

South Byron 0.053 17.8 2750 39741 28690 26550 32200 5422 0.3332 0.12174 +1.1 

ILD 83500 0.147 17.5 511.5 4470.0 7159 18910 25610 6934 0.5522 0.13897 -0.1 

Samples are listed in order of descending Re concentration. Units of sample weight are in g. 

Nickel concentrations are given in wt. % as compiled from Scott et al. (1973), Wasson et al. 

(1989), and Jones et al. (2003). All other concentrations were determined by isotope dilution and 

are reported in ng/g. The uncertainties for 187Re/188Os ratios are ±0.15 %, the uncertainties for 
187Os/188Os, and Os and Re concentrations are ±0.1 %, and the uncertainties for Ir, Ru, Pt, and Pd 

concentrations are <2 %. Δ is the deviation of 187Os/188Os of a sample from a primordial isochron 

in units of per mil, with an uncertainty of ±2 per mil (Cook et al., 2004). A primordial isochron 

was calculated using a Solar System 187Os/188Os = 0.09531, present day chondritic 187Os/188Os = 

0.1270 and 187Re/188Os = 0.40186, and λ = 1.666 x 10-11 yr-1 (Smoliar et al., 1996; Shirey and 

Walker, 1998). 
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Fig. 2.2. (Top) 187Re/188Os vs. ΔOs plot for the Milton metal and SBT, where ΔOs is the 

parts per 10,000 deviation of the 187Os/188Os ratio of a sample from a 4.568 Ga reference 

line. (Bottom) 187Re/188Os vs. 187Os/188Os plot for the Milton metal and SBT. Reference 

line represents the 4.568 Ga hypothetical evolution of the 187Os/188Os ratio in chondrites, 

assuming an initial 187Os/188Os = 0.09531, present day chondritic 187Os/188Os = 0.1270 

and 187Re/188Os = 0.40186, and λ = 1.666 x 10-11 yr-1 (Smoliar et al., 1996; Shirey and 

Walker, 1998). 

 

The HSE abundances of Milton metal and the SBT are reported in Table 2.3. Of the 

suite, Milton has the highest concentrations of Re, Os, Ir, Ru, and Pt, and the lowest 

concentration of Pd. The concentrations of HSE in Babb’s Mill and South Byron are 

similar, with Babb’s Mill slightly enriched in all of the HSE, except for Pd, compared to 

South Byron. ILD 83500 has the lowest concentrations of Re (approximately 10x less 

than Milton metal), Os, Ir, Ru, and Pt, and the highest concentration of Pd. The 
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concentrations of Re and Ir in ILD 83500 are within 2 % of the concentrations reported 

by Wasson et al. (1989) and the Ir concentrations for Babb’s Mill and South Byron are 

within 15 % of the concentrations reported by Scott et al. (1973). The concentrations of 

Re, Ir, and Pt reported by Jones et al. (2003) for Milton metal are within 20 % of the 

concentrations reported here. 

 

2.5 Discussion 

2.5.1 Genetics 

Differences in the proportions of the nucleosynthetic components incorporated into 

NC and CC bodies allow for “genetic” comparisons of meteorites. For example, NC type 

meteorites have Mo and Ru isotopic compositions that reflect a constant r-process input 

with variable s-process depletion (Fig. 2.3, A2.1). Variations in 97Mo/96Mo and 

100Ru/101Ru define a linear trend (Dauphas et al., 2004; Fischer-Gӧdde et al., 2015; 

Bermingham et al., 2018). By contrast, CC type meteorites have Mo and Ru isotopic 

compositions that reflect an additional s-process depletion (Fig. A2.1), and Mo and W 

isotopic compositions that reflect an additional r-process component (Fig. A2.2) (Kruijer 

et al., 2017).  
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Fig. 2.3. Compilation of µ94Mo vs. µ95Mo data for iron meteorites and pallasites from 

Burkhardt et al. (2011), Kruijer et al. (2017), Poole et al. (2017), and Worsham et al. 

(2017). Some data have not been corrected for CRE. Blue squares represent meteorites 

classified as CC type and red diamonds represent meteorites classified as NC type. Data 

from this study for the SBT and Milton are also plotted. Black lines were obtained by 

regressing the NC and CC data using ISOPLOT (Ludwig, 2003); the CC line has a slope 

of 0.57 ± 0.05 and a y-intercept of 26.3 ± 7.5 (MSWD = 1.15) and the NC line has a 

slope of 0.50 ± 0.04 and a y-intercept of -8.5 ± 3.2 (MSWD = 0.49). The inset shows an 

enlarged view of the Mo isotopic compositions of the SBT and Milton without other 

meteorites.    

 

The observation that the SBT have Mo, Ru, and 183W isotopic compositions that are 

analytically indistinguishable provides permissive evidence that these meteorites sample 

the same parent body. If so, the isotopic data for the three meteorites can be averaged to 

obtain a more robust constraint on the isotopic characteristics of the parent body. The 

average µ94Mo, µ95Mo, and µ97Mo values of the SBT meteorites are +127 ± 7, +103 ± 4, 

and +49 ± 2, respectively, where the uncertainties cited are 2SE. Further, the average 

µ100Ru value is -107 ± 5 and the average µ183W value is +9 ± 5. The average Mo and 
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183W isotopic compositions of the SBT are identical, within analytical uncertainty, to 

those determined for the CC type IID, IIF, IIIF, and IVB iron meteorite groups (Fig. 2.3, 

A2.1, A2.2) (Budde et al., 2016a; Kruijer et al., 2017; Poole et al., 2017; Worsham et al., 

2017; Bermingham et al., 2018), and the average Ru isotopic composition of the SBT is 

identical to the CC type IID and IVB iron meteorite groups (Fischer-Gӧdde et al., 2015; 

Bermingham et al., 2018). Ruthenium isotopic data have not yet been determined for IIF 

and IIIF irons. Collectively, the genetic isotopic data indicate that the SBT should be 

defined as CC type meteorites. Because of the limited isotopic variation among CC irons, 

however, these isotopic systems are not useful for discriminating the SBT from most 

other known CC parent bodies. 

The Mo and Ru isotopic compositions of Milton are indistinguishable from the SBT, 

providing permissive evidence for an origin on the SBT parent body, consistent with the 

identical O isotopic composition reported by McCoy et al. (2017). Thus, the Milton 

pallasite should also be defined as a CC type meteorite, and it can be presumed that, at 

the very least, Milton and the SBT were derived from similar presolar materials, likely 

forming in the same region of the Solar nebula.  

 

2.5.2 Crystallization sequence modeling of the SBT  

Given the identical Mo, Ru, and 183W isotopic compositions of the SBT to other CC 

type iron meteorite groups, it is imperative to test the possible SBT relationship through 

chemical modeling. The change in HSE concentrations among the SBT iron meteorites 

are broadly consistent with fractional crystallization in that the concentrations of Re, Os, 

Ir, Ru, and Pt typically decrease in crystallizing metal as the concentration of Pd 
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increases. This trend is in agreement with the observation by Wasson et al. (1989) that, 

given the changes in As, Au, W, and Ir concentrations among these irons, the SBT could 

have originated by fractional crystallization. The similar HSE concentrations determined 

here for Babb’s Mill and South Byron suggest that these irons crystallized at a similar 

point in a crystallization sequence. By contrast, ILD 83500 has about 17 % of the Re 

content and 130 % of the Pd content of Babb’s Mill, indicating that, if they are related, 

ILD 83500 crystallized from a more evolved melt. 

To examine further possible relationships resulting from fractional crystallization, we 

model HSE data for the SBT. To do this, appropriate solid metal-liquid metal D values 

(concentration ratios) must be applied. Some prior studies have derived relative D values 

for HSE for specific iron groups from the slopes of inter-element log-log plots (e.g., 

Campbell and Humayun, 2005; Walker et al., 2008; McCoy et al., 2011), coupled with 

experimental partitioning data for P or Ir, in order to model a crystallization sequence. 

However, due to the similar HSE concentrations of Babb’s Mill and South Byron, the 

data for the SBT essentially define two-point lines. For this reason, we use the approach 

developed by Jones and Malvin (1990) and advanced by Chabot and Jones (2003) and 

Chabot et al. (2017), which uses experimentally derived partitioning data for siderophile 

elements in the Fe-Ni-S, Fe-Ni-P, and Fe-Ni-C systems to determine the D values for 

HSE for given S, P, and C contents. A more detailed description of this approach is 

provided in Appendix 2.  

Here we constrain the initial P content of the SBT parental melt by coupling the 

measured P content of Babb’s Mill and South Byron (0.12-0.22 wt. % P) reported in 

Buchwald (1975) with a solid metal-liquid metal partition coefficient of 0.1 (Chabot et 



 

 

 

26 

 

al., 2017). This suggests a P content in the melt of about 1 wt. % at the point where these 

two irons crystallized. The initial S content was then varied along with different HSE 

initial melt compositions until a model crystallization sequence was generated that 

matched the SBT HSE concentrations.  

The optimal initial light-element concentrations determined are 7 wt. % S, 1 wt. % P, 

and <0.05 wt. % C. This model reproduces the HSE abundances of the SBT through 

fractional crystallization of an initial parental melt with chondritic relative abundances of 

the HSE. The model matches the HSE concentration of Babb’s Mill as the first 1 % of 

metal to crystallize. South Byron is reproduced as 2 % of metal to crystallize, and ILD 

83500 matches the solid HSE composition at 42 % crystallization (Fig. 2.4). 



 

 

 

27 

 

 

Fig. 2.4. CI-chondrite normalized HSE contents of Milton and the SBT, and HSE 

abundance results of a fractional crystallization model (grey lines). Babb’s Mill, South 

Byron and ILD 83500 match 1 %, 2 %, and 42 % metal crystallization in this model, 

respectively. Model results are shown for 10 % to 40 % solid in 5 % increments, as well 

as the 1 %, 2 %, and 42 % model matches to the SBT. Model results for 1 % and 2 % are 

covered by patterns for Babb’s Mill and South Byron. 

 

The calculated initial parental melt HSE composition for the SBT (Table 2.4) is 

shown in Fig. 2.5, normalized to the CI-chondrite Orgueil (Horan et al., 2003; Fischer-

Gӧdde et al., 2010). This initial melt composition has Re/Os, Ir/Os, Ru/Os, Pt/Os, and 

Pd/Os ratios of 0.082, 0.90, 1.1, 1.7, and 0.89, respectively, which are all within the 

ranges of ratios observed in bulk chondrites of 0.059-0.101, 0.77-1.02, 1.1-2.0, 1.4-2.5, 

and 0.54-2.01, respectively (Horan et al., 2003; Fischer-Gӧdde et al., 2010). 
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Table 2.4. Parental melt compositions calculated for HSE, S, P, and C for the best-fit 

model to reproduce the SBT chemical patterns, and comparison to IVA and IVB systems.   

 Re Os Ir Ru Pt Pd S P C 

SBT parental melt 770 9400 8500 13000 16000 8400 7 1 <0.05 

IVA parental melta 295 3250 2700 3900 5900 4500 3 0.1   0  

IVB parental meltb 1410 21600 17500 19600 29800 10900 2 0.65   0 

Concentrations are in ng/g for HSE and wt. % for S, P, and C. 
a From McCoy et al. (2011). 
b From Walker et al. (2008). 

 

 

Fig. 2.5. CI-normalized calculated HSE parental melt composition of the SBT, assuming 

7 wt. % S, 1 wt. % P, and <0.05 wt. % C. Also shown are CI-normalized calculated 

parental melt compositions for the IVA irons (McCoy et al., 2011), IVB irons (Walker et 

al., 2008), and the range of HSE concentrations in chondrites (Horan et al., 2003; 

Fischer-Gӧdde et al., 2010). 

 

The calculated initial parental melt HSE composition of the SBT is about 10 times 

more concentrated than the upper range of HSE concentrations in chondrites. If this upper 
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range is assumed to represent the starting concentration of the SBT parent body, and if it 

is assumed that ~99 % of the HSE were extracted into the core, then the SBT parental 

melt would have accounted for ~10 % the mass of the body. This result suggests that the 

SBT represent samples of a planetesimal core and should be considered magmatic iron 

meteorites. Past studies have estimated the parental melt compositions for the magmatic 

IVA and IVB iron meteorites (Walker et al., 2008; McCoy et al., 2011). The modeled 

HSE parental melt composition of the SBT parent body falls between the compositions 

previously estimated for the parent bodies of the group IVA and IVB iron meteorites 

(Fig. 2.5).  As suggested for the IVB parent body, the high HSE concentration of the SBT 

parental melt may suggest a comparatively oxidized body. In this scenario, a greater 

proportion of oxidized iron would remain in the mantle compared to a more reduced 

body, resulting in relatively higher concentrations of HSE in the core. An oxidized SBT 

body is also supported by the high Ni content (17-18 wt. %) of these meteorites.  

 

2.5.3 Crystallization sequence modeling of Milton 

Since Mo, Ru, and O isotopic compositions of Milton and the SBT only provide 

permissive evidence of a common parent body, a potential relationship for these 

meteorites is further evaluated through chemical modeling. Milton metal has a Pt/Os ratio 

that is similar to that for Babb’s Mill, which is estimated to represent the first 1 % of 

metal to crystallize, yet a Re/Os ratio that is similar to ILD 83500, which is estimated to 

represent crystallization at 42 %. Attempts were made to model Milton as part of the 

same solid metal-liquid metal fractional crystallization sequence as the SBT by varying 

the initial HSE, S, P, and C contents of the system. Changes to the initial S, P, or C 
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contents can have large effects on the concentration of HSE in crystallizing metal, 

however, such changes cannot account for the Re/Os and Pt/Os ratios observed for 

Milton. An example of the modeling is shown in Fig. A2.3.  

Modeling involving solid metal-liquid metal mixing was also undertaken in an 

attempt to relate Milton metal to the SBT. Metal mixing of primitive and evolved metals 

from the core along with residual metal in the mantle has been suggested for the 

formation of the main group pallasites on the IIIAB iron meteorite parent body (Scott, 

1977c; Wasson and Choi, 2003). Such models failed to reproduce Re/Os and Pt/Os ratios 

for Milton and were, therefore, unsuccessful at relating Milton metal and the SBT to the 

same metal system (Fig. A2.4). Consideration was also given to the crystallization of 

Milton metal and the SBT from two immiscible metal melts (one P rich and one S rich) 

within the same core. Models of metal liquid immiscibility have been invoked for the IID 

iron meteorites (Wasson and Huber, 2006) and to relate the IIAB irons to the IIG irons 

(Wasson and Choe, 2009). Milton metal has a similar P content to Babb’s Mill and South 

Byron, however, which suggests that they did not form from immiscible metal melts 

(McCoy et al., 2017). Due to the lack of models that can reproduce the SBT and Milton 

metal HSE concentrations from the same metal liquid, we conclude that Milton metal was 

most likely not generated from the parental melt to the SBT.  

The HSE concentrations in Milton metal suggest a parental melt that was 

characterized by several HSE ratios outside of the range observed in known bulk 

chondrites. Examples of three possible parental melt compositions, which can reproduce 

Milton metal as an early fractional crystallizing metal, are shown in Fig. A2.5. For these 

three models, we assume parental melt abundances of 1 wt. % S, 1 wt. % P, <0.05 wt. % 
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C; 5 wt. % S, 2 wt. % P, <0.05 wt. % C; and 10 wt. % S, 3 wt. % P, <0.05 wt. % C. All 

three models are characterized by calculated parental melt Re/Os ratios (0.12, 0.13 0.15) 

and Ir/Os ratios (1.05, 1.04, 1.10) that are 2 to 50% above the range observed in bulk 

chondrites (Horan et al., 2003; Fischer-Gӧdde et al., 2010). By contrast, all Pt/Os ratios 

(1.4, 1.5, 1.8), and most Ru/Os ratios (1.1, 1.5, 2.5) and Pd/Os ratios (0.43, 0.73, 1.88) are 

within the range of bulk chondrites.  

It is possible that such parental melts described above existed on the SBT parent body 

without interacting with the SBT parental melt, or may have been generated through the 

mixing of variable amounts of liquid metal or solid metal from the SBT crystallization 

sequence with a metal source with fractionated relative abundances of some HSE 

compared to bulk chondrites. Generating and maintaining these separate metal domains 

within the same planetesimal, however, is difficult to envision. Hence, it is more likely 

that Milton formed on a chemically distinct, but genetically identical parent body to the 

SBT. This interpretation would expand the number of chemically distinct parent bodies 

with identical Mo, Ru, and O genetic isotopic compositions to at least three (e.g., SBT, 

Milton, and IVB irons;  Corrigan et al., 2017; McCoy et al., 2017; Bermingham et al., 

2018).  

As may be the case for Milton, the parental melt to the IVB iron meteorites was likely 

non-chondritic with respect to the relative abundances of some HSE (Campbell and 

Humayun, 2005; Walker et al., 2008). Campbell and Humayun (2005) and Walker et al. 

(2008) suggested that the volatile siderophile element depletions projected for the IVB 

parent body may have resulted from high temperature condensation processes. Such a 

model is less plausible for the Milton parent body, as the meteorite is significantly 
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enriched in volatile siderophile elements, such as Ga and Ge, compared to the IVB irons 

(Walker et al., 2008; McCoy et al., 2017). The three parental melt compositions for 

Milton modeled in this study are characterized by Re/Os and Ir/Os ratios that are 

suprachondritic. Both Re/Os and Ir/Os tend to increase as a consequence of crystal liquid 

fractionation (see above modeling of SBT) so it is possible that the parental melt to 

Milton represents a modestly evolved liquid that was somehow segregated from earlier 

formed solids. This could potentially have occurred on the parent body as a result of hit 

and run impacts followed by core dismemberment, melting, and recrystallization, as 

suggested for the group IVA iron meteorites in order to explain rapid rates of cooling in 

the least evolved members (McCoy et al., 2011).       

 

2.5.4 Age of the SBT 

The identical Mo, Ru, and 183W isotopic compositions of the SBT and the ability to 

relate the HSE concentrations of these meteorites through crystal-liquid fractionation 

provide permissive evidence that the SBT meteorites originated on the same parent body 

and are related by fractional crystallization from a common melt. The average µ182W 

value for this body is -312 ± 5 and the average µ183W value is +9 ± 5.  As has been done 

for other CC type iron meteorites (e.g., Kruijer et al., 2017), the µ182W value is corrected 

for additional r-process input revealed by the 183W excess, yielding an average µ182WCorr 

value of -325 ± 8 (see Appendix 2 for details). The µ182WCorr value of the SBT is not 

resolved from the µ182WCorr values of other CC type iron meteorites or NC type iron 

meteorites, except the IC and IIAB groups (Kruijer et al., 2017). The µ182WCorr value of 

the SBT parent body results in a 182W model age of 2.1 ± 0.8 Myr after calcium 
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aluminum rich inclusion (CAI) (Fig. 2.6), which is not resolved from other CC type or 

NC type iron meteorite parent bodies, except for the IC and IIAB groups (Kruijer et al., 

2017). This differentiation age is within the lifetime of 26Al, allowing for the 

differentiation event to have been driven by internal heating, consistent with the 

interpretation that the SBT are magmatic iron meteorites formed in the core of the SBT 

parent body.  

 

Fig. 2.6. Tungsten model metal-silicate differentiation ages (post CAI formation in Myr) 

in ascending order of ages for the SBT parent body compared to data for other CC type 

(blue) and NC type (red) bodies from Kruijer et al. (2017). The SBT has a W model age 

that overlaps with the other CC type bodies and most NC type bodies, within uncertainty.      

 

Differentiation ages can be used to estimate parent body accretion ages by making 

certain assumptions regarding the time required for a parent body to heat sufficiently to 
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allow metal-silicate segregation. Based on this reasoning, Kruijer et al. (2017) proposed 

that all NC type iron meteorite parent bodies accreted simultaneously about 0.5 Myr prior 

to the accretion of all CC type iron meteorite parent bodies. This conclusion relied on the 

averaging of data for only Groups I and II (volatile rich) irons. To estimate a separate 

parent body accretion age for the SBT, we use a similar thermal model to that described 

by Kruijer et al. (2017), which calculates the heat produced from 26Al, the primary heat 

producing radionuclide during the early Solar System. Details about this model are 

provided in Appendix 2. Uncertainties for the model accretion ages represent the range of 

accretion ages calculated using the range of Al concentrations and differentiation age 

uncertainties. For the SBT parent body, the differentiation age, coupled with an assumed 

Al concentration range of 0.86-1.68 wt. % for the parent body, based on the range of Al 

concentrations found in carbonaceous chondrites (Lodders and Fegley, 1998), 

corresponds to a parent body accretion age of 1.1 ± 0.5 Myr after CAI formation (Fig. 

A2.6). Because of differences in the calculation of heat production, our thermal model 

differs somewhat from that of Kruijer et al. (2017). To facilitate comparisons, accretion 

ages for other iron meteorite parent bodies were recalculated using our model coupled 

with the differentiation ages reported by Kruijer et al. (2017) (Table 2.5). When 

considering the uncertainties associated with 182W differentiation ages, NC type iron 

meteorite parent bodies have accretion ages ranging from 0.3 ± 0.3 to 1.0 ± 0.5 Myr after 

CAI formation, whereas CC type iron meteorite parent bodies have accretion ages from 

1.1 ± 0.5 to 1.4 ± 0.5 Myr after CAI formation. Uncertainties of ~0.5 Myr for each body 

mean that permissible model ages of accretion for both CC and NC types overlap.  

 



 

 

 

35 

 

Table 2.5. Model accretion ages for NC and CC type iron meteorites determined using 

the thermal model described in Appendix 2. 

Iron meteorite group Differentiation age ± 2σ (Myr) Accretion age (Myr) 

NC type   

    IC 0.3 ± 0.5 0.3 ± 0.3 

    IIAB 0.8 ± 0.5 0.5 ± 0.5 

    IIIAB 1.2 ± 0.5 0.7 ± 0.4 

    IIIE 1.8 ± 0.7 1.0 ± 0.5 

    IVA 1.5 ± 0.6 0.9 ± 0.5 

CC type   

    SBT 2.1 ± 0.8 1.1 ± 0.5 

    IIC 2.6 ± 1.3 1.2 ± 0.6 

    IID 2.3 ± 0.6 1.2 ± 0.4 

    IIF 2.5 ± 0.7 1.3 ± 0.5 

    IIIF 2.2 ± 1.1 1.1 ± 0.6 

    IVB 2.8 ± 0.7 1.4 ± 0.5 

All model differentiation age data are from Kruijer et al. (2017) except for the SBT. 

 

Kruijer et al. (2017) argued that the assumptions behind a single-stage core formation 

accretion model at a certain temperature are affected by the volatile-enrichment or 

depletion of the parent body, so it is important to compare iron meteorite parent bodies 

from the same volatile type. Kruijer et al. (2017) found that the CC type IIC, IID, and IIF 

irons have µ182WCorr values that are resolved from the NC type IIAB irons, which was 

argued to suggest that CC type iron meteorite parent bodies accreted later than NC type 

iron meteorite parent bodies. The accretion age results of our preferred thermal model, 

however, overlap for the NC type IIAB and the CC type IIC, IID, and IIF irons. In 

addition, the NC type IIIAB and IIIE irons have accretion ages that overlap with the CC 

type IIIF and SBT accretion ages. There is also overlap among the NC type IVA and the 

CC type IVB accretion ages. Thus, we conclude that NC and CC type iron meteorite 

parent body accretion ages cannot be resolved at present, given the current level of 

uncertainties associated with parent body differentiation ages and Al content.  
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Since differences in accretion ages cannot explain the differences in µ182WCorr values 

for Group II irons with current uncertainties, we examine the effects of S content on 

differentiation. Kruijer et al. (2014a) showed that there was a correlation between S 

content of a parental melt with µ182WCorr values for the IIAB, IIIAB, IVA, IID, and IVB 

irons. The determination of the S content for the SBT parent body allows for a 

reexamination of this correlation with three NC and three CC bodies. The S vs. µ182WCorr 

value of the SBT falls directly on the correlation and reduces the scatter observed for the 

IID and IVA iron meteorites (Fig. 2.7). The six meteorites define a single trend with a 

MSWD = 2.7, which may suggest that the S content of a parental melt is the controlling 

factor for µ182WCorr values, possibly by affecting the temperature at which metal melting 

and differentiation begins. Further studies to define the S content of other NC and CC 

type iron parental melts are needed to evaluate this potential correlation. 
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Fig. 2.7. Parental melt S content vs. µ182WCorr values. The IIAB, IIIAB, IVA, IID, SBT, 

and IVB irons define a single trend. Sulfur contents are from Chabot (2004) and 

Goldstein et al., (2009), and µ182W values are from Kruijer et al. (2017).   

 

2.5.5 Comparison of the SBT chemical composition to NC and CC bodies 

The HSE parental melt models of the CC type SBT and IVB iron meteorites, and the 

NC type IVA iron meteorites provide new insights into the chemical conditions of the NC 

and CC nebular domains. The SBT and IVB iron meteorites have parental melt HSE 

compositions that are 2-7 times more concentrated than the IVA parent body. Presuming 

that the concentrations are directly related to the ratio of core metal to silicate shell, this 

result suggests that the SBT and IVB iron meteorite parent bodies had proportionally 

smaller cores than NC type parent bodies, and therefore most likely accreted in more 

oxidizing environments, compared to, e.g., the IVA parent body. Previous studies have 
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proposed that the NC and CC domains represent the inner and outer Solar System, 

respectively, that were separated by the formation of Jupiter (Warren, 2011; Budde et al., 

2016a; Kruijer et al., 2017). Such a model could account for the more oxidizing 

environment of the SBT and IVB parent bodies.  

Additional chemical differences are observed for NC and CC parental melts when 

comparing S content. Past studies, also using experimentally derived partitioning data for 

siderophile elements in the Fe-Ni-S, Fe-Ni-P, and Fe-Ni-C systems to determine D 

values, have concluded that the IIAB, IIIAB, IVA, IID, and IVB iron meteorite parental 

melts had S contents of 17 ± 1.5, 12 ± 1.5, 6 ± 3, 9 ± 3, and 1 ± 1 wt. %, respectively 

(Chabot, 2004; Goldstein et al., 2009). When iron meteorites are compared based on 

volatile content, there is an additional S depletion for CC parental melts compared to NC 

parental melts (Fig. 2.8). This additional depletion in S may reflect parent body processes 

more common on CC type parent bodies, such as core separation into S-rich and P-rich 

liquids, or may be a consequence of nebular processes. 
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Fig. 2.8. S/Ni (CI-normalized) vs. Ga/Ni (CI-normalized) plot for the IIAB, IIIAB, IVA, 

IID, SBT, and IVB irons. Blue symbols are CC bodies and red symbols are NC bodies. 

There are two distinct trends observed for the NC and CC bodies, suggesting that the CC 

parental melts have an additional S depletion not observed for NC parental melts. Since 

the offset is not observed for Ga concentrations, the depletion in S for CC parental melts 

relative to NC parental melts is likely not due to volatile depletion. 

 

2.6 Conclusions 

The isotopic and chemical data presented here for Babb’s Mill, South Byron, and ILD 

83500 support the interpretation that these meteorites sample a core from the same parent 

body and that they should be considered together as a trio. 

1) The SBT parent body originated in the CC nebular domain, based on Mo, Ru, and 

183W isotopic data. Thermal modeling indicates the parent body likely accreted 

1.1 ± 0.5 Myr after CAI formation and the Hf-W isotopic system indicates that the 

parent body differentiated 2.1 ± 0.8 Myr after CAI formation. Both accretion and 
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differentiation ages are similar to the ages for other NC and CC type iron 

meteorite parent bodies. 

2) The siderophile element concentrations of the SBT suggest that Babb’s Mill 

crystallized from a primitive melt, followed soon afterward by South Byron. ILD 

83500 crystallized later in the sequence from a more evolved melt. The HSE 

patterns of these meteorites can be reproduced by a fractional crystallization 

model, in which Babb’s Mill represents the first 1 % of solid to crystallize. South 

Byron can be modeled as the solid composition after 2 % crystallization, and ILD 

83500 represents the solid composition at 42 % crystallization. This model 

suggests an initial melt composition of 7 wt. % S, 1 wt. % P, <0.05 wt. % C, and a 

HSE initial melt composition with chondritic HSE ratios. 

3) The bulk concentrations of the HSE in the SBT parental core suggest that it 

comprised about 10 % the mass of the body, assuming the upper range of HSE 

concentrations observed in chondrites as a starting parent body composition. This 

in turn suggests that the SBT parent body was oxidized, which is also consistent 

with the comparatively high average Ni content for the SBT (17-18 wt. % Ni).  

4) Milton has identical Mo and Ru isotopic compositions to the SBT, providing 

permissive evidence of being from the same parent body. The HSE content of 

Milton, however, cannot be directly related to the SBT by fractional 

crystallization or any other process we attempted to model. Milton metal was 

likely derived from a parental melt with relative abundances of some HSE that 

were modestly fractionated from known chondritic ratios, most likely on a 

different parent body from the SBT. 
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5) Comparison of modeled HSE parental melt compositions of the SBT to the IVA 

(NC) and IVB (CC) iron meteorite parent bodies provides further evidence that 

portions of the CC nebular domain were more oxidizing than the NC domain. In 

addition, comparison of the S parental melt compositions of the IIAB, IIIAB, 

IVA, IID, SBT, and IVB iron meteorites suggest that there was a general S 

depletion among CC type iron meteorite parental melts, compared to NC type 

bodies.  
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2.8 Appendix 2 

2.8.1 Isotopic measurements 

The aliquots for Os isotopic analysis were added into chilled Pyrex® Carius tubes, 

along with 5 ml of concentrated HNO3 and 2.3 ml of concentrated HCl. The Carius tubes 

were sealed and then heated for at least 24 h at 220 °C (Shirey and Walker, 1995). 

Osmium was extracted from the solution using CCl4 solvent-extraction methods (Cohen 

and Waters, 1996), and then further purified using microdistillation from a dichromate 

solution (Birck et al., 1997). This procedure resulted in ~70 % yield for Os. Between 70-
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300 ng of purified Os were loaded onto outgassed Pt filaments in HBr, activated with 

Ba(OH)2, and analyzed as OsO3
- by a Thermo-Fisher Triton thermal ionization mass 

spectrometer (TIMS) at the University of Maryland (UMd) (Walker, 2012). Osmium 

isotopic data were corrected for instrumental and natural mass fractionation by 

normalizing 192Os/188Os to 3.08271 (Allègre and Luck, 1980). Isobaric interferences from 

OsO3
- species with 17O or 18O were corrected using the O isotopic composition reported 

by Nier (1950). 

Molybdenum aliquots were prepared following the methods described in Worsham et 

al. (2016b). In brief, aliquots were dried, dissolved in 1 M HF, and loaded onto an anion 

column of AG 1-X8 (200-400 mesh) resin. Molybdenum was eluted using 6 M HNO3-3 

M HF, dried, and dissolved in 6 M HCl. The Mo solution was then added to a smaller 

anion column with ~0.3 mL AG 1-X8 (200-400 mesh) resin and eluted with 1 M HCl. 

This elution was repeated a second time. This procedure resulted in ~50 % yield for Mo. 

Purified Mo aliquots were treated with concentrated HCl and HNO3 multiple times in 

order to destroy organics. The samples were then dissolved in 6 M HCl, about 500-1000 

ng Mo were loaded onto outgassed Re filaments, and activated with ~ 2 µL of a 5 µg/µL 

La(NO3)3 solution. A double filament assembly was used and the same amount of 

La(NO3)3 was added to the ionization Re filament. Molybdenum was measured as MoO3
- 

by the Thermo-Fisher Triton Plus TIMS at UMd. The 100Mo18O16O2
- species was 

measured using a 1013 Ω resistor amplifier for O isotope interference corrections. 

Molybdenum isotopic data were corrected for instrumental and natural mass fractionation 

by normalizing 98Mo/96Mo to 1.453171 (Lu and Masuda, 1994). 
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Aliquots for Ru isotopic analysis were prepared following the procedure discussed by 

Bermingham et al. (2016). In brief, aliquots of the primary dissolution were dried and 

dissolved in 0.15 M HCl and then processed through a cation column of AG50WX8 

(200-400 mesh) resin. Ruthenium was immediately eluted using 0.15 M HCl and dried to 

about 5 µL for microdistillation, in which H2Cr2O7 was used as the oxidant and 6 M HCl 

was used as the trap solution and reductant. This procedure resulted in ~50 % yield for 

Ru. About 1000 ng of purified Ru were loaded onto outgassed single Pt filaments in HBr, 

activated with Ba(OH)2, and analyzed as RuO3
- by a Thermo-Fisher Triton Plus TIMS. 

Ruthenium isotopic data were corrected for instrumental and natural mass fractionation 

by normalizing 99Ru/101Ru to 0.745075 (Chen et al., 2010). The O isotopic composition 

reported by Nier (1950) was used to determine and correct for in-run 17O and 18O 

molecular interferences. 

Tungsten aliquots from the primary dissolution were exposed to air for 1-2 weeks in 

order to oxidize Fe in the solution from +2 to +3. Ferrous Fe was then removed using a 

diisopropyl ether extraction procedure (Dodson et al., 1936). The resulting solution was 

dried, dissolved in 1 M HCl-0.1 M HF, and eluted through a cation column of AG50-X8 

(200-400 mesh) resin with 1 M HCl-0.1 M HF. The solution was then dried, dissolved in 

0.5 M HCl-0.5 M HF, loaded onto a column of AG1-X8 (100-200 mesh) resin, and eluted 

with 6 M HCl-1 M HF. This elution was repeated twice using progressively less resin and 

acid (Touboul and Walker, 2012). This procedure resulted in ~60 % yield for W. 

Organics accrued during the column chemistry were removed by drying the sample 

multiple times in concentrated HCl and HNO3. About 300-1000 ng of purified W were 

then dissolved in 1 M HCl- 0.01 M HF, loaded onto outgassed single Re filaments, 



 

 

 

44 

 

activated with 1 µL of a 5 µg/µL La-5 µg/µL Gd solution, and measured as WO3
- using a 

Thermo-Fisher Triton TIMS following the method of Archer et al. (2017). This method 

allowed independent measurement of both 182W/184W and 183W/184W. Potential mass 

interference from ReO3
- species were also monitored and corrected for. Tungsten isotopic 

data were corrected for instrumental and natural mass fractionation by normalizing 

186W/184W to 0.92767 (Volkening et al., 1991). 

Some prior studies of terrestrial and cosmochemical materials have observed 

deviations in 183W/184W ratios for reference standards and samples that were processed 

through certain column chemistry procedures and analyzed by multi-collector 

inductively-coupled plasma mass spectrometry (e.g., Kruijer et al., 2013; Cook and 

Schӧnbächler, 2016; Kruijer and Kleine, 2018). Such deviations have been interpreted to 

be the result of nuclear field shift effects, requiring corrections to be made to account for 

the observed deviations (Cook and Schӧnbächler, 2016). However, no such effects have 

been observed for reference standards, terrestrial samples, or meteorite samples using the 

column chemistry procedures described here, coupled with thermal ionization mass 

spectrometry (Archer et al., 2017; Mundl et al., 2017; Mundl et al., 2018; Archer et al., 

2019). Consequently, no corrections to the measured 183W/184W ratios from this study 

have been made.      

Values of µ182W for the SBT were corrected for nucleosynthetic variations using the 

method reported by Kruijer et al. (2014b). In this correction, variation in the r-process 

component for irons is subtracted from the µ182W value using µ183W as an r-process 

component proxy. This correction is based on the 182/184W vs. 183/184W isotopic 

composition of fine- and coarse-grained CAI, which give a 182/184W vs. 183/184W (186/184 
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normalized) correlation of +1.41 ± 0.06. The ΔTCAI ages were then calculated using the 

CAI initial value µ182W of -349 ± 7 (Kruijer et al., 2014b), the present-day chondritic 

µ182W value of -190 ± 10 (Kleine et al., 2004), and the decay constant for 182Hf of 0.078 

± 0.002 Myr-1 (Vockenhuber et al., 2004). The ΔTCAI ages for Babb’s Mill, South Byron, 

and ILD 83500 were calculated from the µ182W and µ183W values determined by 

normalizing to 186W/184W. The uncertainties for the ΔTCAI ages include the 2SD 

determined from the analysis of standards run during an analytical campaign for µ182W 

and µ183W compositions, and the uncertainty associated with the µ183W r-process 

correction only (Kruijer et al., 2014b). Tungsten isotopic data were not obtained for 

Milton because there was insufficient material to make this measurement. 

 

2.8.2 Fractional crystallization modeling 

In this study, Eq. S1 is used to calculate the concentration of an element throughout 

the evolution of a liquid melt, where Fn is the fraction of liquid (n = 100 is pure liquid), 

CLn is the concentration of an element in the liquid phase at Fn, and Dn is the partition 

coefficient of an element. The concentration of an element is calculated at each 0.1 % 

fraction of liquid with respect to the concentration of the previous liquid fraction. For S, a 

constant partition coefficient of 0.001 is used (Walker et al., 2008). The partition 

coefficients for P and C are determined at each Fn by considering the concentration of S 

and P or S and C, respectively, in the liquid at Fn+1. Equation S2 is used to account for the 

effects of S on P and C partitioning behavior (Chabot and Jones, 2003).  

Values of Do for P and C are taken from Chabot et al. (2017) and Worsham et al. 

(2016a), respectively. The βSPC variable is determined using Eq. S3 (Jones and Malvin, 
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1990), in which βS and βP are taken from Chabot et al. (2017) and βC is taken from 

Worsham et al. (2016a). For P, the effects of C are not considered and for C, the effects 

of P are not considered. The βSPC and “Fe domains” (Eq. S4; Chabot et al., 2017) 

variables are calculated at each Fn, where Xi is the mole fraction of an element. 

 

 

 

 

 

After determining the concentration of S, P, and C at each Fn, the D values for the 

HSE are calculated at each Fn using Eq. S2-S4 by collectively considering the changes in 

S, P, and C content in the liquid (Jones and Malvin, 1990; Chabot and Jones, 2003; 

Worsham et al., 2016a; Chabot et al., 2017). The concentration of HSE in the liquid at 

each Fn is then determined using Eq. S1 and the solid composition (CSn) at each Fn is 

determined using Eq. S5.  

 

2.8.3 Thermal accretion model 

This study uses a thermal accretion model (Eq. S6) that describes a solid sphere, 

which gains heat through 26Al decay and loses heat by conduction (Carslaw and Jaeger, 

1959). The model solves for the temperature at a certain depth within the sphere at any 
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time (t) after accretion and we assume that differentiation occurred instantaneously when 

the temperature halfway to the center of the body from the surface reached 1600 K 

(Kruijer et al., 2017). This assumption is made since ~50 % of silicate melt fractions may 

be necessary for core formation (Taylor, 1992). In order to be consistent with past 

studies, we assume a radius of R = 40 km for the parent body and the temperature is 

evaluated at a depth of r = 20 km (Kruijer et al., 2017). The background nebular 

temperature is represented as T0, thermal conductivity is represented as K, thermal 

diffusivity is represented as k, and a 26Al decay constant of λ = 9.83 x 10-7 yr-1 is used 

with a Solar System initial 26Al/27Al ratio of 5.23 x 10-5 (Norris et al., 1983; Jacobsen et 

al., 2008). All values used in this model are listed in Table A2.2. 

Eq. S6:  

 

The background temperature is assumed to be 250 K, consistent with models by 

Hevey and Sanders (2006), Kruijer et al. (2014a), and Kruijer et al. (2017), which is the 

average temperature estimated for a circumsolar disk at 2.5 AU and 1 Myr after T-Tauri 

star formation (Woolum and Cassen, 1999). The power per unit volume A (W m-3) = 

H*ρ, where H is the power per unit mass (W kg-1) and ρ is the density of the planetesimal 

(kg m-3). The power per unit mass, H, is equal to (total Al atoms/kg)*(26Al/27Al)*(2.0 x 

10-26 W/atom), where (26Al/27Al) is a function of time, the parent body concentration of 

Al is based off of the range observed in carbonaceous chondrites (0.86-1.68 wt. %; 

Lodders and Fegley, 1998), and the decay power of 26Al is calculated from a decay 

energy of 26Al of 6.4 x 10-13 J/atom with its half-life of 9.83 x 10-7 yr-1 (Hevey and 
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Sanders, 2006). We note that this calculation of heat production differs from that reported 

by Kruijer et al. (2017). Kruijer et al. (2017) report using a range of Al concentration 

from 8.65-16.8 wt. %, which is an order of magnitude greater than used here. In addition, 

Kruijer et al. (2017) report calculating heat production as A = Al 

concentration*(26Al/27Al) and it is calculated in this study as A = (total Al 

atoms/kg)*(26Al/27Al)*(2.0 x 10-26 W/atom)*(ρ), where (26Al/27Al) is a function of time 

in both models. Despite these differences between the model inputs, the results of both 

models differ by less than 0.2 Myr. For this study, 0.86 wt. % Al relates to A = 

12.3*(26Al/27Al), 1.20 wt. % Al relates to A = 17.1*(26Al/27Al) and 1.68 wt. % Al relates 

to A = 23.9*(26Al/27Al). Therefore, the results in this study for 0.86 wt. % Al and 1.20 wt. 

% Al are similar to the results by Kruijer et al. (2017) for 12 wt. % Al and 16.8 wt. % Al, 

respectively. 

 

Supplementary Tables 
Table A2.1. Osmium isotopic composition data for Milton and the SBT. 

Sample na µ189Os 2SD µ190Os 2SD 

Milton 1 -4 8 25 18 
      

Babb’s Mill 2 1 6 -4 7 

Babb’s Mill (rep) 1 8 7 -1 4 

South Byron 3 8 7 -4 7 

ILD 83500 1 3 6 -3 7 
a n is the number of analyses. The reported µ189Os and µ190Os 

values reflect the average values obtained for each meteorite 

piece. Uncertainties reflect the largest (of n analyses) 2SD of the 

standards run during an analytical campaign.  
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Table A2.2. Terms and values used in the thermal accretion model. 

Term Symbol Units Value Source 

Al concentration Al Wt. % 0.86-

1.68 

Lodders and Fegley 

(1998) 

Ambient temperature To K 250 Woolum and Cassen 

(1999) 

Decay constant λ yr-1 9.83 x 

10-7 

Norris et al. (1983) 

Decay energy E J atom-1 6.4 x 10-

13 

Hevey and Sanders (2006) 

Density ρ kg m-3 3200 Kruijer et al. (2017) 

Diffusivity k m2 s-1 5 x 10-7 Kruijer et al. (2017) 

Initial 26Al/27Al 26Al/27Ali atom/atom 5.23 x 

10-5 

Jacobsen et al. (2008) 

Power per unit mass H W kg-1 a  

Power per unit volume A W m-3 H x ρ  

Depth assessed for 

temperature 

r km 20 Kruijer et al. (2017) 

Radius of body R km 40 Kruijer et al. (2017) 

Thermal conductivity K W m-1 K-1 2.1 LaTourrette and 

Wasserburg (1998) 
a H = (Al atoms/kg)*(26Al/27Al)*(E*λsec), where (26Al/27Al) is a 

function of time and λ is in units of s-1. 
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Supplementary Figures 

 

Fig. A2.1. Compilation of CRE-corrected µ97Mo vs. µ100Ru data for iron meteorites from 

Bermingham et al. (2018). Blue squares represent meteorites classified as CC type and 

red diamonds represent meteorites classified as NC type. Data from this study for the 

SBT and Milton are also plotted. The black line represents the regression of the Mo-Ru 

cosmic correlation from Bermingham et al. (2018). The inset shows the Mo and Ru 

isotopic composition of the SBT and Milton without other meteorites.    
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Fig. A2.2. Compilation of µ183W vs. µ182W data for iron meteorites from Kruijer et al. 

(2017). Blue squares represent meteorites classified as CC type and red diamonds 

represent meteorites classified as NC type. The average SBT W isotopic composition is 

also plotted (green triangle). The average µ183W value for the SBT (+9 ± 5, 2SE, n = 4) is 

resolved from the W standard value obtained during the analytical campaigns for this 

work (0 ± 2, 2SE, n = 16).   
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Fig. A2.3. CI-normalized HSE patterns calculated from a constant HSE initial 

concentration from Table 2.4 and varying S and P parental melt compositions. Assuming 

Milton metal crystallized in the first ~10% of solid, the Re/Os of Milton metal resembles 

a high S system with 17 wt. % S, 1.5 wt. % P, and <0.05 wt. % C. However, the Pt/Os of 

Milton metal resembles a lower S system with 8 wt. % S, 1 wt. % P, and <0.05 wt. % C. 
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Fig. A2.4. Fractional crystallization models for Re (ppb) vs. Re/Os and Pt (ppb) vs. Pt/Os 

for two pairs of parental melt compositions. Black lines represent mixing between solid 

and liquid, at 0 % solid-100 % liquid, 20 % solid-80 % liquid, and 40 % solid-60 % 

liquid. (Upper left and right) Fractional crystallization model, which reproduce the HSE 

patterns observed for the SBT, calculated for the initial parameters listed in Table 2.4. 

(Bottom left and right) Fractional crystallization model with 7 wt. % S and 1 wt. % P, 

which can reproduce the observed HSE patterns for Milton metal. This model requires a 

starting liquid composition of Re = 1,350 ppb, Os = 11,000 ppb, and Pt = 17,500 ppb. 

Neither model can reproduce both Re/Os and Pt/Os observed in Milton metal and the 

SBT through solid metal-liquid metal mixing. 
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Fig. A2.5. CI-normalized HSE parental melt compositions, with varying S and P 

contents, which reproduce the Milton HSE pattern as an early (<10 %) fractional 

crystallizing metal. The parental melt composition of the SBT is shown for comparison. 
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Fig. A2.6. Thermal model results for a 40 km radius body when evaluating the 

temperature midway to the center of the body (r = 20 km). The model is based on an 

assumption of instantaneous differentiation when the temperature reaches 1600 K. 

Thermal model results are shown for Al concentrations of 0.86, 1.20, and 1.68 wt. %. The 

differentiation age of the SBT (2.1 ± 0.8 Myr after CAI formation; blue solid line ± blue 

dashed lines) fits an accretion age range of 1.1 ± 0.5 Myr after CAI formation. 
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Chapter 3: New implications for the origin of the IAB main group 

iron meteorites and the isotopic evolution of the noncarbonaceous 

(NC) reservoir 
 

Note: This chapter has been previously published in the following publication: 

Hilton C.D. and Walker R.J. (2020) New implications for the origin of the IAB main 

group iron meteorites and the isotopic evolution of the noncarbonaceous (NC) 

reservoir. Earth Planet. Sci. Lett. 540, 116248.   

 

3.1 Abstract 

The origin of the IAB main group (MG) iron meteorites is explored through 

consideration of 182W isotopic compositions, thermal modeling of 26Al decay, and mass 

independent (nucleosynthetic) Mo isotopic compositions of planetesimals formed in the 

noncarbonaceous (NC) protosolar isotopic reservoir. A refined 182W model age for the 

meteorites Campo del Cielo, Canyon Diablo, and Nantan suggests that the IAB-MG 

parent body underwent some form of metal-silicate segregation as early as 5.3 ± 0.4 Myr 

after calcium-aluminum rich inclusion (CAI) formation or as late as 13.8 ± 1.4 Myr after 

CAI formation. If melting of the IAB-MG occurred prior to 7 Myr after CAI formation, it 

was likely driven by 26Al decay for a parent body radius >40 km. Otherwise, additional 

heat from impact is required for melting metal this late in Solar System history. If melting 

was partially or wholly the result of internal heating, a thermal model of 26Al decay heat 

production constrains the accretion age of the IAB-MG parent body to ~1.7 ± 0.4 Myr 

after CAI formation. If melting was, instead, dominantly caused by impact heating, 

thermal modeling suggests the parent body accreted more than 2 Myr after CAI 

formation. Comparison of Mo mass independent isotopic compositions of the IAB-MG to 

other NC bodies with constrained accretion ages suggests that the Mo isotopic 
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composition of the NC reservoir changed with time, and that the IAB-MG parent body 

accreted between 2 to 3 Myr after CAI formation, thus requiring an origin by impact. The 

relationship between nucleosynthetic Mo isotopic compositions and accretion ages of 

planetesimals from the NC reservoir suggests that isotopic heterogeneity developed from 

either addition of s-process material to, or removal of coupled r-/p-process material from 

the NC reservoir. 

 

3.2 Introduction 

“Nonmagmatic” iron meteorite groups (e.g., IAB complex, IIE) are so termed due to 

their chemical and textural differences compared to “magmatic” irons (e.g., IIAB, IIIAB, 

IVA) (e.g., Willis, 1981; Wasson and Kallemeyn, 2002). Magmatic iron meteorites 

consist of members that have chemical compositions that can largely be related to one 

another through fractional crystallization of liquid metal (e.g., Scott, 1972). As such, they 

are widely interpreted to sample planetary cores. By contrast, nonmagmatic irons are 

characterized by chemical compositions that cannot be accounted for by simple fractional 

crystallization (e.g., Wasson and Kallemeyn, 2002; Worsham et al., 2016a). Many are 

also silicate-bearing (Benedix et al., 2000; Hunt et al., 2017a), leading to proposals that 

nonmagmatic irons represent partially differentiated bodies and/or bodies partially melted 

by impact. While the term “nonmagmatic” is intended to highlight differences with 

“magmatic” irons, this title is somewhat of a misnomer, as the metal initially crystallized 

from a molten state.  

The IAB main group (MG), which is the largest nonmagmatic iron group, is 

characterized by variations in siderophile element abundances that reflect the dominant 

effects of physical mixing processes rather than simple fractional crystallization (Wasson 
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and Kallemeyn, 2002; Worsham et al., 2016a). As with other nonmagmatic iron 

meteorites, many IAB-MG metals also contain trapped silicate and graphite inclusions, 

despite their strong density contrasts with metal, consistent with the interpretation of 

formation by physical mixing (Wasson and Kallemeyn, 2002). Some studies have sought 

to explain the chemical and mineralogical characteristics of the IAB-MG irons as a result 

of partial differentiation of a planetesimal driven by internal heating (e.g., Kratcher, 

1985). Other studies have called for an impact-related origin (e.g., Wasson and 

Kallemeyn, 2002), or have argued for hybrid models, which combine partial 

differentiation with a subsequent impact (e.g., Benedix et al., 2000). Keys to discerning 

between these models include the interpretation of age constraints. If metal melting and 

metal-silicate segregation on the IAB-MG parent body occurred sufficiently early that 

26Al decay would contribute significant heat to the body, then internal heating was likely 

involved in the process. If instead, melting occurred after the viability of 26Al internal 

heating, impact related heating of an undifferentiated body must be involved.  

The extent of 26Al internal heating is related to the accretion age of a planetary body 

(e.g., Kruijer et al., 2014a; Hunt et al., 2018). This age, in some cases, can be constrained 

using thermal models of 26Al decay with a calculated age of metal-silicate segregation for 

an iron meteorite (e.g., Hilton et al., 2019). The segregation age, in turn, can be 

constrained by application of the Hf-W chronometer (182Hf → 182W + 2β-, T1/2 = 8.9 Myr; 

Vockenhuber et al., 2004). Despite its importance, however, the metal-silicate 

segregation age of the IAB-MG is debated, with different studies reporting different ages. 

One problem encountered by earlier studies is the effect of meteorite exposure to galactic 

cosmic rays, which can induce nuclear reactions within meteorites and cause burnout of 
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some W isotopes (e.g., Masarik, 1997; Leya et al., 2003). Initial studies of 182W isotopic 

compositions of IAB-MG irons reported model metal-silicate segregation ages ranging 

from 1.2 ± 1.8 to 9.1 ± 3.6 Myr after calcium-aluminum rich inclusion (CAI) formation, 

possibly reflecting cosmic ray exposure (CRE) effects that were uncorrected or 

inadequately corrected for (Markowski et al, 2006; Qin et al., 2008; Schulz et al., 2009, 

2012). Methods to monitor and correct siderophile elements for CRE were subsequently 

developed, involving measurement of Os or Pt isotopes in the same meteorite chunk 

being analyzed for 182W isotopic composition (e.g., Walker, 2012; Kruijer et al., 2013; 

Wittig et al., 2013). Both of these methods have been applied to IAB-MG irons, yet 

somewhat discrepant ages of 3.4 ± 0.7 (Worsham et al., 2017) and 5.3 ± 0.5 (Hunt et al., 

2018) Myr after CAI formation have been most recently reported. Assuming a maximum 

expansion of errors, these values differ by as little as 0.7 Myr, or as much as 3.1 Myr. 

The differences have implications for how the IAB-MG irons formed. 

Potentially useful in the interpretation of the IAB-MG origin is their “genetic” 

isotopic compositions. Past studies have proposed that variations in mass independent, 

nucleosynthetic Cr and Ca isotopic compositions of bulk meteorites are related to the 

accretion ages of their parent bodies (Sugiura and Fujiya, 2014; Schiller et al., 2018). 

This relationship for the IAB-MG can instead be assessed using mass independent 

isotopic compositions of some siderophile elements (Mo, Ru, Pd) (Dauphas et al., 2004; 

Burkhardt et al., 2011; Fischer-Gödde et al., 2015; Budde et al., 2016a, 2019; Poole et al., 

2017; Worsham et al., 2017; Bermingham et al., 2018; Ek et al., 2019). Overall, the 

nucleosynthetic isotopic heterogeneity observed for these elements (as well as Ti, Ni; 

Trinquier et al., 2007, 2009; Regelous et al., 2008; Nanne et al., 2019) reveal the 
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existence of at least two isotopically distinct nebular reservoirs during the first few 

millions of years of Solar System history, that have been termed “noncarbonaceous” 

(NC) and “carbonaceous” (CC) (e.g., Trinquier et al., 2007; Warren, 2011; Kruijer et al., 

2017). The NC reservoir, in which the IAB-MG irons formed, was characterized by 

variable s-process depletions and/or coupled r-/p-process enrichments for certain 

elements, relative to terrestrial materials (e.g., Dauphas et al., 2004; Fisher-Gӧdde et al., 

2015; Budde et al., 2016a, 2019; Kruijer et al., 2017; Poole et al., 2017; Worsham et al., 

2017; Bermingham et al., 2018; Ek et al., 2019). The CC reservoir was characterized by 

an additional enrichment of r- and possibly p-process material compared to the NC 

reservoir, as well as also having its own variable s-process depletions and/or coupled r-

/p-process enrichments (e.g., Dauphas et al., 2004; Fisher-Gӧdde et al., 2015; Budde et 

al., 2016a, 2019; Kruijer et al., 2017; Poole et al., 2017; Worsham et al., 2017; 

Bermingham et al., 2018; Ek et al., 2019). If isotopic compositions of siderophile 

elements in meteorites reflect accretion ages as well, it has important implications for the 

origins of the NC and CC reservoirs.  

For this study, we analyzed the IAB-MG meteorites Campo del Cielo, Canyon 

Diablo, and Nantan for W isotopic compositions. These meteorites were classified as 

IAB-MG irons by Wasson and Kallemeyn (2002) based on relatable chemical 

compositions, and were chosen for intensive study here because Campo del Cielo and 

Nantan have young CRE ages (Nagai et al., 1993; Nishiizumi et al., 1995), and prior 

applications of CRE dosimeters to Campo del Cielo and Canyon Diablo showed minimal 

effects from cosmic rays (Worsham et al., 2017; Hunt et al., 2018). One possible cause of 

prior differences in reported segregation ages could be the calibration of the dosimeters 
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used to correct for CRE. Worsham et al. (2017) applied Os isotopes while Hunt et al. 

(2018) applied Pt. Consequently, for comparison purposes, here we assess CRE applying 

both Os and Pt dosimeters. 

 

3.3 Methods  

3.3.1 Sample preparation 

A ~5 g chunk of Campo del Cielo (USNM 5615) was obtained from the Division of 

Meteorites, Department of Mineral Sciences, Smithsonian Institution. Chunks of Canyon 

Diablo (~6 g) and Nantan (~7 g) were obtained from private collectors. These meteorite 

chunks were cut into smaller pieces, using a water-cooled Leco Vari-cut saw and a 12.7 

cm diamond-wafering blade, to be processed through chemical purification procedures 

for Os, Pt and W. The blade was cleaned with carborundum prior to cutting each 

meteorite piece. The surface of each cut piece was polished to remove sawblade marks 

using a range of coarse- to fine-grit sandpaper, then each meteorite piece was sonicated 

multiple times in ethanol, prior to dissolution, to remove adhering particles formed by 

sanding.  

 

3.3.2 Osmium, Pt and W isotopic measurements 

Cleaned pieces of Campo del Cielo, Canyon Diablo and Nantan were dissolved in 40 

mL 8 M HCl at 120 °C for 72 hours in Teflon beakers. The resulting solutions were then 

centrifuged and the supernatants were divided into two aliquots to be separately 

processed for Os and Pt/W isotopic measurements. Aliquots for Os isotopic analyses 

were added into chilled Pyrex® Carius tubes, along with 4 ml of concentrated HNO3 and 
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1.5 ml of concentrated HCl. The Carius tubes were sealed and then heated for 72 h at 240 

°C (Shirey and Walker, 1995). Additional solid metal pieces of each meteorite, which 

were adjacent to the pieces dissolved in Teflon beakers, were also separately dissolved in 

Carius tubes in the same way. Solutions were removed from the Carius tubes and Os was 

then extracted from the solutions using CCl4 solvent-extraction methods (Cohen and 

Waters, 1996), and purified using microdistillation techniques (Birck et al., 1997). 

Purified Os samples were loaded onto outgassed Pt filaments in concentrated HBr, 

activated with Ba(OH)2, and analyzed as OsO3
- using a Thermo-Fisher Triton thermal 

ionization mass spectrometer (TIMS) at the University of Maryland (UMd) (Walker et 

al., 2008). Osmium isotopic data were corrected for instrumental and natural mass-

fractionation by normalizing 192Os/188Os to 3.08271 (Allègre and Luck, 1980). Isobaric 

interferences from OsO3
- species with 17O or 18O were corrected using the oxygen 

isotopic composition reported by Nier (1950). The typical blanks for this procedure were 

<10 pg Os. The two-standard deviation (2SD) values for multiple analyses of the Johnson 

Matthey Os standard analyzed during two analytical campaigns (n = 9 and 12, 

respectively) were µ189Os = 3 and 5 ppm (µ represents the part per million deviation of an 

isotopic ratio of a sample compared to a standard). The Os standard was not processed by 

the described microdistillation procedure.  

The aliquots for Pt/W isotopic measurements were dried, dissolved in 1 M HCl-0.1 M 

HF, and eluted through a cation column of AG50-X8 (200-400 mesh) resin with 1 M 

HCl-0.1 M HF. This step was repeated until sufficient amounts of Fe were removed from 

the solutions so as not to overload secondary columns. Solutions were then dried, 

dissolved in 0.5 M HCl-0.5 M HF, loaded onto an anion column of AG1-X8 (100-200 
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mesh) resin, W was eluted with 6 M HCl-1 M HF, and Pt was eluted with concentrated 

HNO3. 

The Pt elution was dried, refluxed in 2:1 concentrated HNO3:HCl, then dried in 

concentrated HCl, and finally dissolved in 0.5 M HCl. Samples were loaded onto an 

anion column with AG1-X8 (200-400 mesh) resin and eluted with concentrated HNO3 

(Method 2 - Hunt et al., 2017b). Solutions were dried, treated with 2:1 concentrated 

HNO3:HCl, dried, and dissolved in 5 % HNO3 for analysis, using Faraday cups on a 

Thermo-Fisher Neptune Plus MC-ICP-MS at UMd. Platinum isotopic data were 

corrected for instrumental and natural mass-fractionation by normalizing 198Pt/195Pt to 

0.2145 (Kruijer et al., 2013). External reproducibility (2SD) of a Pt standard (made from 

high purity Pt ribbon, and not processed by the described chemical procedure), for 

196Pt/195Pt was 12 ppm (n = 10). No systematic drift in the measured standard 

composition was observed over the duration of the measurement campaign. The typical 

blanks for these procedures were <40 pg Pt, which is negligible for the purposes of Pt 

isotopes in this study. Additional information about the Pt measurement routine is 

provided in Appendix 3.  

The W eluant was dried and the column procedure was repeated two more times with 

sequentially less resin and acid (Touboul and Walker, 2012). Organics accrued during the 

W column chemistry were removed by drying the sample multiple times in concentrated 

HCl and HNO3. About 600-1000 ng of purified W were then dissolved in 1 M HCl-0.01 

M HF, loaded onto outgassed Re filaments, activated with 1 µL of a 5 µg/µL La-5 µg/µL 

Gd solution, and measured as WO3
- using a Thermo-Fisher Triton TIMS, at UMd, 

following the method of Archer et al. (2017). Tungsten isotopic data were corrected for 
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instrumental and natural mass-fractionation by normalizing 186W/184W to 0.92767 

(Volkening et al., 1991). The reproducibility (2SD) of the Alfa Aesar Specpure® W 

standard from three analytical campaigns (n = 9, 10 and 6, respectively) was 8 ppm for 

182W/184W (all campaigns) and 7, 4, and 8 ppm for 183W/184W. The typical blanks for this 

procedure were <1 ng W, which constituted an inconsequential <0.2 % of total W 

analyzed per sample. 

 

3.4 Results 

3.4.1 Assessment of CRE 

Cosmic ray exposure effects on W isotopic compositions were monitored by 

measuring the 189Os/188Os and 196Pt/195Pt ratios of each meteorite chunk. Increasingly 

greater CRE effects result in increasingly negative µ189Os and increasingly positive 

µ196Pt values. Campo del Cielo (n = 4), Canyon Diablo (n = 4), and Nantan (n = 5) have 

µ189Os values (± 2 SE of sample values) of +3 ± 1,  +1 ± 1, and +2 ± 2, respectively, 

which are not resolved from the Os terrestrial standard analyzed with the samples, 

indicating that the meteorite chunks examined were not measurably modified by CRE 

(Table 3.1). The average µ189Os values include the additional metal pieces that were 

digested separately in Carius Tubes. No isotopic differences between these pieces and 

those dissolved in Teflon beakers were observed. Consistent with minimal CRE 

modification, Campo del Cielo, Canyon Diablo, and Nantan (n = 1 for each) have µ196Pt 

values (± 2 SD of standard values) of +1 ± 12, +7 ± 12, and -3 ± 12, respectively, which 

are also not resolved from the Pt terrestrial standard analyzed with the samples, and 
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indicate no corrections for CRE to the W isotopic compositions of these meteorites are 

warranted. 

 

Table 3.1. Osmium, Pt and W isotopic compositions of Campo del Cielo, Canyon 

Diablo and Nantan. 
Sample n 

Os 

µ189Os ± n 

Pt 

µ196Pt ± n 

W 

µ182WMeasured ± µ183W ± ΔTCAI ± 

              

Campo del 

Cielo 

4 +3 1 1 +1 12 1 -297 8 -5 4 5.1 1.0 

Canyon Diablo 4 +1 1 1 +7 12 2 -294 8 -6 8 5.4 1.0 

Nantan 5 +2 2 1 -3 12 3 -296 8 +0 8 5.2 1.0 

              

IAB-MG 

Average 

      6 -295 3 -3 3 5.3 0.4 

The number of measurements per sample is represented as n. For n<4, uncertainties 

reflect the largest of the 2SD of the standards run during an analytical campaign or 2SE 

of individual sample analyses. For n≥4, the 2SE of the average sample values are 

reported. Values of ΔTCAI are reported assuming µ182WChondrite = -190 ± 10 (Kleine et al., 

2004). 

 

3.4.2 Tungsten isotopic composition of IAB-MG 

Campo del Cielo (n = 1), Canyon Diablo (n = 2), and Nantan (n = 3) have µ182W 

values of -297 ± 8, -294 ± 8, and -296 ± 8, respectively, as well as corresponding µ183W 

values of -5 ± 4, -6 ± 8, and +0 ± 8, respectively (Table 3.1). Combining data for all three 

meteorites, the average µ183W value (± 2SE of sample values, n = 6) of -3 ± 3 is not 

resolved from the terrestrial W standard, indicating that no detectible nucleosynthetic 

variations or effects from nuclear field shift (e.g., Cook and Schӧnbächler, 2016; Kruijer 

et al., 2017; Kruijer and Kleine, 2019) are observed. Combining data for all three 

meteorites, an average µ182W value of -295 ± 3 (± 2SE of sample values, n = 6) is 

obtained and presumed to be representative of the IAB-MG.  
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3.5 Discussion 

3.5.1 µ182W of the IAB-MG 

The µ182W values of Campo del Cielo, Canyon Diablo, Nantan, and the average IAB-

MG are compared to results of past studies in Fig. 3.1. The µ182W values of individual 

iron meteorites typically agree within analytical uncertainties, with measurements by 

Markowski et al. (2006), Qin et al. (2008), Schulz et al. (2012), Worsham et al. (2017), 

and Hunt et al. (2018). There is less agreement among the group averages, however. The 

average value of -295 ± 3 from this study is resolved from the average values of -283 ± 3 

reported by Schulz et al. (2012) and -312 ± 6 reported by Worsham et al. (2017). The 

value is identical to the value of -295 ± 4 reported by Hunt et al. (2018). 
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Fig. 3.1. Comparison of µ182W values for Campo del Cielo, Canyon Diablo and Nantan 

from this study to past studies. The gray box represents the 2SE (n=6) uncertainty field 

for the average µ182W value for the IAB-MG from this study. This average value is 

compared to the group average values (red symbols), which include µ182W values for 

some IAB-MG irons not analyzed in this study, from past studies.  

 

The origins behind the discrepant µ182W values of Schulz et al. (2012) and Worsham 

et al. (2017) to the µ182W values of this study and Hunt et al. (2018) are unknown. Schulz 

et al. (2012) monitored and corrected for CRE using ages determined from cosmogenic 
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noble gases. As discussed by Hunt et al. (2018), this approach is inadequate for 

correcting µ182W values modified by CRE, possibly accounting for the discrepant µ182W 

value from that study. Worsham et al. (2017) monitored and corrected for CRE using Os 

isotopes, which has been shown to be a viable method (e.g., Wittig et al., 2013) and is 

confirmed as applicable in this study. As the µ182W values from this study and Worsham 

et al. (2017) were determined from the same laboratory using the same mass 

spectrometer, the discrepant µ182W value from that study may be a result of the 

measurement routine used, which applied a secondary oxide correction (Touboul and 

Walker, 2012) to the measured W isotopic composition as opposed to a line-by-line 

correction used by the current study (Archer et al., 2017). The only IAB-MG iron 

measured by Worsham et al. (2017) using the line-by-line oxide correction method was 

modified by CRE, inhibiting a definitive assessment of this possibility. Despite 

discrepancies with past studies, the agreement of the µ182W value from this study with the 

value from Hunt et al. (2018) suggests that the correct µ182W value for the IAB-MG is -

295 ± 3.  

 

3.5.2 Metal-silicate segregation age 

Calcium-aluminum rich inclusions, considered the earliest objects to form in the Solar 

System, have been examined in order to constrain the initial Solar System µ182W value to 

-349 ± 7 (Kruijer et al., 2014b). Iron meteorites with µ182W values that are greater than 

the CAI value dominantly reflect addition of 182W from the decay of 182Hf subsequent to 

CAI formation. Assuming that the Solar System at its inception had a uniform W isotopic 
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composition, variations in µ182W values among iron meteorites can represent differences 

in timing of Hf/W fractionation and/or differences in parental Hf/W ratios.  

If the parental Hf/W ratios of NC bodies are assumed to be constant, a relative model 

age of metal-silicate segregation can be calculated for an iron meteorite assuming 

separation of metal and silicate in a single event from a reservoir with a “chondritic” 

composition. A model age is determined relative to CAI formation using Eq. 1, where λ = 

0.078 ± 0.002 Myr-1 (Vockenhuber et al., 2004), and µ182WChondrite is the modern-day 

composition of chondrites reflecting the Hf/W ratio of the parent body (Kleine et al., 

2004).  

Eq. 1: ΔtCAI =  

 

Model 182W ages are commonly calculated using a µ182WChondrite value of -190 ± 10 

(Kleine et al., 2004), obtained from bulk carbonaceous chondrites, which have an average 

180Hf/184W ratio of 1.37 ± 0.11 (Kruijer et al., 2014b; Budde et al., 2016b, 2018).  A 

model metal-silicate segregation age of 5.3 ± 0.4 Myr after CAI formation for the IAB-

MG is obtained assuming that the parent body of the IAB-MG formed with this 

180Hf/184W ratio. This age is substantially younger than most magmatic NC iron 

meteorites, which have model ages between 0 and 3 Myr after CAI formation (Kruijer et 

al., 2014a, 2017), but is similar to IAB subgroups sLL and sLM, and IIE iron meteorites, 

which have model ages between ~4 and 5 Myr after CAI formation (Worsham et al., 

2017; Kruijer and Kleine, 2019).  

One potential complication with the calculation of a model 182W age of metal-silicate 

segregation is the assumption that the bulk parent body had a 180Hf/184W ratio similar to 
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carbonaceous chondrites. Carbonaceous chondrites formed in the CC reservoir from 

isotopically distinct material from the IAB-MG iron meteorites (e.g., Burkhardt et al., 

2011). As such, if chemical compositions of parent bodies varied with isotopic 

composition, the carbonaceous chondrite average 180Hf/184W may be unsuitable for NC-

type iron meteorites (Hellmann et al., 2019). Of the chondrites that formed in the NC 

reservoir (e.g., enstatite, ordinary, rumuruti; Budde et al., 2019), enstatite chondrites are 

genetically most similar to the IAB-MG (Fischer-Gӧdde et al., 2017; Budde et al., 2019), 

suggesting that the 180Hf/184W ratio of bulk enstatite chondrites may be most appropriate 

for the IAB-MG parent body. Lee and Halliday (2000) reported a range of 180Hf/184W 

ratios in bulk enstatite chondrites from 0.7156 ± 0.0036 to 1.344 ± 0.007. A ratio of 

0.7156 would lead to a present-day chondritic µ182W value of -267, which in turn results 

in a model age of metal-silicate segregation of 13.8 ± 1.4 Myr after CAI formation for the 

IAB-MG. By contrast, a ratio of 1.344 is unresolved from the 180Hf/184W ratio of the 

carbonaceous chondrite average and, thus, results in an unresolved model age of 5.3 ± 0.4 

Myr after CAI formation. Discerning between these possible ages without further 

constraints on the Hf/W ratio of the IAB-MG parent body is currently impossible. 

Support for a Hf/W ratio lower than carbonaceous chondrites includes proposals for 

lower ratios for the NC-type acapulcoites-lodranites, and ordinary chondrites (Touboul et 

al., 2009; Hellmann et al., 2019). Additionally, it is noteworthy that the younger model 

age is similar to the age of ~12 Myr after CAI formation of a potential impact event to the 

IAB-MG parent body obtained by Pd-Ag, Pb-Tl, and Ar-Ar chronometers (Vogel and 

Renne, 2008; Baker et al., 2010; Theis et al., 2013).  
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3.5.3 Accretion age 

An assessment of whether metal-silicate segregation ages of 5.3 ± 0.4 or 13.8 ± 1.4 

Myr after CAI formation could reflect metal melting driven by internal heating or require 

additional external heat from impact can be made using a thermal model of heat 

production from 26Al decay, and heat loss by conduction for a planetary body (Fig. 3.2). 

The thermal model is described in detail by Hilton et al. (2019). In brief, metal-silicate 

segregation is assumed to occur when the midpoint to the center of a planetary body 

reaches a temperature of 1470 K, based on the peak temperatures recorded by IAB-MG 

meteorites (Benedix et al., 2000; Hunt et al., 2018). The effect of different Al 

concentrations for the parent body on the thermal model are also assessed, with 

consideration to the range of Al concentrations observed in chondrites. We use a 

minimum Al content of 0.82 wt. % from EH chondrites and a maximum of 1.68 wt. % 

from CV chondrites (Lodders and Fegley, 1998). 
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Fig. 3.2. Thermal model of heat production from 26Al decay, relating metal-silicate 

segregation ages (assumed to occur at 1470 K) to accretion ages. The range of Al 

concentrations reflects the range observed in chondrites (Lodders and Fegley, 1998). The 

value of 0.82 wt. % is from EH chondrites, while the value of 1.68 wt. % is from CV 

chondrites.  Also shown is the metal-silicate segregation age of the IAB-MG assuming 

Hf/W of carbonaceous chondrites. Models of two bodies with radii of 40 km (left) and 80 

km (right) are shown. 

 

 

The results of the thermal model show that internal heating, driven by 26Al decay, 

cannot cause metal-silicate segregation at 13.8 ± 1.4 Myr after CAI formation for a body 

of any size, or 5.3 ± 0.4 Myr after CAI formation for bodies with a radius ≤40 km. 

Therefore, these scenarios require additional external heat by impact to an 

undifferentiated body to cause metal-silicate segregation. Model results reported by 

Davison et al. (2012) suggest that impacts can generate sufficient heat to cause localized 

melting, making this process a plausible scenario in the case of the IAB-MG. For a 

planetesimal to remain undifferentiated by the time of impact, it likely would have 

accreted >2 Myr after CAI formation (Fig. 3.2). Internal heat from 26Al decay, on the 

other hand, can cause metal-silicate segregation up to 7 Myr after CAI formation for 

bodies with a radius >40 km. For example, an accretion age of 1.7 ± 0.4 Myr after CAI 

formation is predicted for a parent body with a radius of 80 km, and a metal-silicate 

segregation age of 5.3 ± 0.4 Myr after CAI formation (Fig. 3.2). This result is in 
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agreement with the thermal model results of Hunt et al. (2018), in which the authors 

proposed that metal-silicate segregation as late as 6.0 ± 0.8 Myr after CAI formation 

could be driven by internal heating from 26Al decay if the IAB-MG parent body had a 

radius ≥60 km and accreted by ~1.4 Myr after CAI formation. For this interpretation, the 

IAB-MG could represent a partially formed planetesimal core modified by a subsequent 

impact that resulted in core disruption and metal-silicate mixing (Benedix et al., 2000; 

Hunt et al., 2017a, 2018). Due to the present uncertainty in the Hf/W ratio and radius of 

the IAB-MG parent body, we find that neither model can be ruled out from µ182W alone.  

 

3.5.4 Accretion age inferred from nucleosynthetic isotopic compositions 

Since the accretion age of the IAB-MG inferred from the µ182W value is ambiguous, 

it may be possible to add additional constraints by comparison of mass independent 

isotopic compositions of the IAB-MG to other NC bodies. Some past studies have 

proposed that mass independent isotopic compositions for Cr and Ca of planetary bodies 

vary as per their accretion ages (Sugiura and Fujiya, 2014; Schiller et al., 2018). Sagiura 

and Fujiya (2014) determined accretion ages for numerous parent bodies using thermal 

models of 26Al decay coupled with estimates of the maximum temperatures recorded by 

different meteorite groups while Shiller et al. (2018) used estimates of the masses of 

planetary bodies to infer accretion age. If Cr and Ca isotopic compositions of planetary 

bodies did vary with accretion ages, isotopic compositions of other elements, such as Mo, 

Ru, and Pd, may have varied with accretion age as well. Given that more meteorites have 

been characterized for Mo isotopic compositions compared to Ru and Pd, comparison of 

mass independent Mo isotopic compositions of the IAB-MG to other NC meteorites 
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interpreted to form from fully differentiated, partially differentiated, and undifferentiated 

bodies may prove useful. 

The mass independent µ97Mo isotopic compositions (Burkhardt et al., 2011; Budde et 

al., 2016a, 2019; Poole et al., 2017; Worsham et al., 2017; Bermingham et al., 2018) and 

accretion ages (Sugiura and Fujiya, 2014) of NC meteorites (magmatic iron meteorites, 

primitive achondrites, achondrites, and chondrites) are compared in Fig. 3.3a (also see 

Fig. A3.1). Although uncertainties associated with Mo isotopic compositions and 

accretion ages are significant, meteorites from planetesimals with younger accretion ages, 

as a whole, are characterized by less Mo s-process depletions. The IAB-MG has a µ97Mo 

value that is s-process un-depleted while enstatite, ordinary, and rumuruti chondrites have 

modest s-process depletions (Worsham et al., 2017; Budde et al., 2019). The shift of s-

process depleted µ97Mo values toward s-process un-depleted µ97Mo values with younger 

accretion age is suggestive of the IAB-MG parent body accreting after the enstatite, 

ordinary, and rumuruti chondrite parent bodies. If this interpretation is accurate, the IAB-

MG parent body may have accreted between 2 to 3 Myr after CAI formation. Since 

results of thermal models indicate 26Al decay alone is not an effective heat source to 

cause metal melting after 2 Myr, impact is required to add the additional heat required to 

melt metal in the IAB-MG parent body. 
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Fig. 3.3. (a) Accretion ages vs. µ97Mo of magmatic iron meteorites (yellow symbols), 

primitive achondrites (light blue symbols), achondrites (purple symbols), and chondrites 

(green symbols) from the NC reservoir. The gray box represents the µ97Mo value of the 

IAB-MG (Worsham et al., 2017). Accretion ages are from Sugiura and Fujiya (2014). (b)  

µ182W vs. µ97Mo of magmatic (square symbols) and nonmagmatic (circle symbols) iron 

meteorites from the NC reservoir. The gray box represents the initial µ182W value of CAI 

(Kruijer et al., 2014b). Tungsten isotope data are from Kruijer et al. (2017), Worsham et 

al. (2017) and Kruijer and Kleine (2019). The µ97Mo values for (a) and (b) are from 

Burkhardt et al. (2011), Budde et al., (2016a, 2019), Poole et al. (2017), Worsham et al. 

(2017), and Bermingham et al. (2018). Linear regressions for both data sets are shown 

with corresponding R2 values, although linear fits are not required.   

 

A corollary of this relationship is that µ97Mo and µ182W values (Burkhardt et al., 

2011; Budde et al., 2016a, 2019; Kruijer et al., 2017; Poole et al., 2017; Worsham et al., 

2017; Bermingham et al., 2018; Kruijer and Kleine, 2019) of metals formed in single-

stage melting events are also linked (Figs. 3.3b, A3.2). The µ182W and µ97Mo values of 

NC iron meteorites define two distinct clusters, possibly indicating a relationship between 

radiogenic and nucleosynthetic isotopic compositions. If so, this is likely a reflection of 

the relationship between Mo nucleosynthetic isotopic compositions and accretion ages. 

The isotopically similar IAB-sLL and IAB-sLM groups to the IAB-MG are chemically 

distinct from the IAB-MG, suggesting this cluster may represent three separate bodies 

(Worsham et al., 2016a). The IIE iron meteorites, which fall in the middle of both 
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clusters, are isotopically unresolved from either cluster making identification of any clear 

trend difficult. Similar clusters are also observed for Ru and Pd isotopes, although these 

data sets are more limited by number of samples and, for Pd, associated uncertainties 

(Bermingham et al, 2018; Ek et al., 2019).  

 

3.5.5 Implications for NC reservoir 

Correlations between some isotopic compositions reflecting distinct nucleosynthetic 

origins in meteorites (Trinquier et al., 2009), coupled with the lack of isotopic anomalies 

for certain elements observed for bulk meteorites (e.g., Os, Pt) (Walker, 2012; Kruijer et 

al., 2013; Worsham et al., 2019) provide strong evidence that the protoplanetary disk was 

initially well-mixed. Consequently, some studies have sought to explain the isotopic 

heterogeneity observed among bulk meteorites for some elements by the subsequent 

addition/removal of certain materials to/from parts of the Solar System (e.g., Trinquier et 

al., 2007, 2009; Regelous et al., 2008; Dauphas et al., 2010; Burkhardt et al., 2012; 

Brennecka et al., 2013).  

The observation that Mo nucleosynthetic isotopic compositions of NC bodies may 

vary with accretion ages has important implications for the formation of isotopic 

heterogeneity in the NC reservoir. Specifically, the data suggest that the oldest 

planetesimals formed from more s-process depleted materials, while younger 

planetesimals formed from increasingly less s-process depleted materials. Correlations 

between Mo isotopic compositions with Ru and Pd isotopic compositions for NC 

materials suggest that this observation may apply to these elements as well (Bermingham 

et al, 2018; Ek et al., 2019). As such, this indicates that there was an addition of s-process 
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rich material to the NC reservoir, and/or destruction and removal of a coupled r-/p-

process rich component. Models calling for adding a coupled r-/p-process rich 

component or removing a s-process rich component can likely be excluded. 

Whether this apparent relationship indicates a rapid or gradual addition/removal of 

isotopically distinct materials cannot presently be constrained. For example, if mixing of 

the NC reservoir was relatively rapid, variations in isotopic compositions for bodies that 

accreted over 2 Myr may indicate a gradual addition/removal of material. If, instead, 

mixing was relatively slow, addition/removal of material to part of the NC reservoir may 

have been rapid and isotopic compositions for bodies that accreted over 2 Myr may 

reflect spatial heterogeneities (e.g., Yamakawa et al., 2010). While accretion ages 

represent at least a 2 Myr range, this is not necessarily the timeline of isotopic 

heterogeneity in the NC reservoir as accretion ages provide only an upper limit of when 

isotopically variable precursor materials existed in the protoplanetary disk. One possible 

avenue of adding material to the reservoir could be by late infalling of material from the 

parental molecular cloud (Burkhardt et al., 2019; Nanne et al., 2019; Kruijer et al., 2019). 

If correct, new constraints indicate this material was s-process rich. It is also possible that 

thermal processing (e.g., Trinquier et al., 2009; Burkhardt et a., 2012; Poole et al., 2017; 

Worsham et al., 2019) may have removed certain materials from the reservoir. If so, this 

material was likely coupled r-/p-process rich.  

 

3.6 Conclusions 

Study of the IAB-MG iron meteorites Campo del Cielo, Canyon Diablo, and Nantan 

indicate that the IAB-MG iron meteorites have mass independent µ189Os and µ196Pt 
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values that are unresolved from terrestrial standards. The IAB-MG iron meteorites have a 

µ182W value of -295 ± 3, which results in a W model age of metal-silicate segregation 

between 5.3 ± 0.4 and 13.8 ± 1.4 Myr after CAI formation, based on the range of 

180Hf/184W observed in enstatite chondrites. Results of a thermal model of 26Al decay heat 

production indicate that the IAB-MG iron meteorites could have formed by impact 

heating or internal heating, depending on the size of the parent body and the true age of 

metal-silicate segregation. The IAB-MG origin is constrained to impact heating, 

however, if nucleosynthetic Mo isotopic compositions of NC meteorites are linked to 

accretion ages. This relationship suggests that s-process isotopic variation in the NC 

reservoir occurred from addition of s-process rich material and/or removal of coupled r-

/p-process rich material. 
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3.8.1 Platinum methods 
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Platinum isotopic compositions of Campo del Cielo, Canyon Diablo, and Nantan 

were determined using a Neptune Plus MC-ICPMS at UMd using the cup configuration 

in Table A3.1. A gain calibration was made prior to an analysis. Samples and standards 

were prepared as 200 ppb solutions using 5 % HNO3. Solutions were introduced to the 

mass spectrometer using an Aridus 3, Ar sweep gas, and N2 gas to stabilize the signal. A 

solution baseline was taken at the start of an analytical session and subtracted from all 

subsequent measurements. Every measurement included a peak center on 194Pt. 

Measurements were made for 1 block with 30 cycles, with an integration time of 16.777 

seconds and a 7 second idle time.  

 

Table A3.1. Cup configuration of the Neptune Plus MC-ICPMS for Pt isotope analysis. 

Cup L4 L3 L2 L1 C H1 H2 H3 H4 

Resistor 1013 1011 1013 1011 1011 1011 1011 1011 1013 

Mass 189Os 191Ir 192Pt 193Ir 194Pt 195Pt 196Pt 198Pt 200Hg 
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3.8.2 Supplemental figures 

 

Fig. A3.1. Accretion ages vs. µ94,95Mo of magmatic iron meteorites (yellow symbols), 

primitive achondrites (light blue symbols), achondrites (purple symbols), and chondrites 

(green symbols) from the NC reservoir. The gray box represents the µ94,95Mo value of the 

IAB-MG (Worsham et al., 2017). Accretion ages are from Sugiura and Fujiya (2014). 

The µ94,95Mo values are from Burkhardt et al. (2011), Budde et al. (2016a, 2019), Poole 

et al. (2017), Worsham et al. (2017), and Bermingham et al. (2018). 

 

 

Fig. A3.2. µ182W vs. µ94,95Mo of magmatic (square symbols) and nonmagmatic (circle 

symbols) iron meteorites from the NC reservoir. The gray box represents the initial 

µ182W value of CAI (Kruijer et al., 2014b). Tungsten isotope data are from Kruijer et al. 

(2017), Worsham et al. (2017) and Kruijer and Kleine (2019). The µ94,95Mo values are 

from Burkhardt et al. (2011), Budde et al., (2016a, 2019), Poole et al. (2017), Worsham 

et al. (2017), and Bermingham et al. (2018). 
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Chapter 4: Origin of the Eagle Station Pallasites from the IIF iron 

meteorite core 
 

Note: This chapter is currently in revision with Meteoritics and Planetary Science. 

 

4.1 Abstract 

The group IIF iron meteorites and Eagle Station Pallasites (PES) have siderophile 

element abundances that are permissive of derivation of all from the same parental metal 

liquid. Previously published genetic Mo isotopic compositions and cooling rates of these 

meteorites also support a common parent body origin. Modeling of highly siderophile 

element (Re, Os, Ir, Ru, Pt, Pd) abundances of IIF and PES metal suggests these 

meteorites formed mainly by mixing of primitive and evolved solid metals and liquid 

metals during a fractional crystallization sequence, rather than simple fractional 

crystallization. This type of process can be most parsimoniously explained as a result of 

impact induced core disruption and mixing.  

 

4.2 Introduction 

Some past studies have sought to explain the silicate and metal textures of pallasites 

by formation at the core-mantle boundary of planetesimals (Anders, 1964; Scott, 1977a; 

Wood, 1978). Other studies have called for pallasite origins by mixing of core metal and 

mantle materials through impact (Wasson and Choi, 2003; Yang et al., 2010), or mixing 

of mantle-derived metal and silicate above the core-mantle boundary (Urey, 1966; 

Mittlefehldt, 1980; Malvin et al., 1985; Davis and Olsen, 1991; Boesenberg et al., 2012). 

A key issue with most models of pallasite formation is the requirement for co-mingling 

silicate and liquid metal which, because of density differences, is difficult to achieve, 
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even in low gravity environments. Nevertheless, density separation of tightly-packed 

liquid metal and silicates may have been prevented in some circumstances by the high 

pressure of overlying materials, or rapid crystallization of the metal (Rayleigh, 1942; 

Scott, 1977c). 

One potential key to discerning between different pallasite origin scenarios is to 

assess whether or not metal in pallasites share a relation to any of the planetesimal cores 

sampled by magmatic iron meteorites (Lovering et al., 1957). Most attention relating to 

pallasite-iron relations has been focused on main group pallasites (PMG) and the group 

IIIAB iron meteorites. The PMG and IIIAB irons share similar “genetic” O, Mo, and S 

isotopic compositions, supporting an origin on the same parent body (Clayton and 

Mayeda, 1996; Burkhardt et al., 2011; Dottin et al., 2018). In addition, the metal in PMG 

is compositionally similar to that in IIIAB iron meteorites, allowing for the possibility 

that the pallasite metal formed from the parental melt to the IIIAB iron meteorites (Scott, 

1977a; Wasson and Choi, 2003). However, differences in the measured cooling rates of 

IIIAB irons (50-350 K/Myr) and PMG metal (2.5-18 K/Myr) are difficult to explain in a 

common core scenario, and have been interpreted by some to suggest that the IIIAB irons 

and PMG ultimately formed on separate parent bodies (Yang et al., 2010). A pallasite-

iron relationship may also exist for the ungrouped Milton pallasite and South Byron Trio 

(SBT) iron meteorites, which share identical genetic isotope signatures, although it is 

problematic to chemically relate them to the same parental melt (Hilton et al., 2019; 

McCoy et al., 2019). 

A potential iron-pallasite relationship for the IIF iron meteorites and Eagle Station 

Pallasites (PES) was suggested by Kracher et al. (1980), based on similar, elevated Ge/Ga 
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ratios of metal. Iron meteorites typically have Ge/Ga ratios of <4 (Lovering et al., 1957), 

while the IIF irons and PES metal have unusually high ratios near 14 (Kracher et al., 

1980). However, these authors ultimately ruled out any petrogenetic relationship due to 

the lack of any clear relationships in the limited suite of measured siderophile element/Ni 

plots. As such, this potential relationship has not been further explored in much depth. 

The PES now ostensibly consists of five pallasites (Eagle Station, Cold Bay, Itzawisis, 

Karavannoe and Oued Bourdim 001) that have been grouped based on chemical 

compositions of metal and the unusual 16O-rich oxygen isotopic compositions (Δ17O = -

4.68 ‰) of olivines (Scott, 1977d; Clayton and Mayeda, 1996; Korochantsev et al., 2013; 

Humayun et al., 2014; Bouvier et al., 2017). The IIF iron meteorite group currently 

consists of six members (Dorofeevka, Del Rio, Monahans (1938), Repeev Khutor, 

Corowa, and Purmela), which are grouped based on similar chemical compositions of 

some siderophile elements (Kracher et al., 1980; Connolly, Jr. et al., 2006). In this study, 

we analyze all six IIF irons and four PES for siderophile element abundances and Re-Os 

isotope systematics to re-assess a common parent body origin. 

 

4.3 Materials and methods 

Chunks of Eagle Station, Cold Bay, Corowa, and Del Rio, and a polished section of 

Itzawisis (USNM 7796a) were obtained from the Division of Meteorites, Department of 

Mineral Sciences, Smithsonian Institution. Chunks of Dorofeevka and Repeev Khutor 

were obtained from the Committee on Meteorites at the Russian Academy of Sciences, 

and Oued Bourdim 001, Monahans (1938) and Purmela were obtained from the Center of 

Meteorite Studies at Arizona State University. Smaller metal pieces were cut from the 
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meteorite chunks, when necessary, using a water-cooled Leco Vari-cut saw and a 12.7 cm 

diamond-wafering blade. Carborundum was used to clean the blade prior to cutting each 

meteorite. Each cut meteorite piece was polished using a range of coarse- to fine-grit SiC 

sandpaper to remove sawblade marks, then sonicated in ethanol to remove sawing and 

polishing residue.  

All six IIF irons and two PES were analyzed for siderophile element abundances in 

situ using laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). A 

New Wave UP213 ultraviolet laser was used, coupled to a Thermo Finnigan Element 2 at 

the University of Maryland (UMd), following similar methods reported by Walker et al. 

(2008). Absolute concentrations were obtained from comparison with in-house laboratory 

reference iron meteorites Coahuila, North Chile, and Hoba. Data normalization was 

achieved using Ni concentrations reported by Wasson (1969), Scott and Wasson (1976), 

Scott (1977d), Connolly, Jr. et al. (2006), and Bouvier et al. (2017). Concentrations of Fe, 

Ni, and Co were then totaled to 100 % and concentrations of other siderophile elements 

were calculated relative to this total. Average concentrations and 1SD uncertainties for 

two to eight laser ablation tracks from each meteorite were determined. Eagle Station and 

Cold Bay were not analyzed by LA-ICP-MS.  

With the exception of Itzawisis, concentrations of highly siderophile elements (HSE; 

Re, Os, Ir, Ru, Pt, Pd) and 187Re-187Os isotopic data were determined using the isotope 

dilution method used by Walker et al. (2008). About 40 to 90 mg metal pieces of each 

meteorite were combined in a Pyrex® Carius tube with 5 ml of concentrated HNO3, 2.5 

ml of concentrated HCl, a platinum-group element spike (191Ir, 99Ru, 194Pt, and 105Pd), 

and a Re-Os spike (185Re and 190Os). Tubes were sealed and heated for at least 24 h at 
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240 °C (Shirey and Walker, 1995). The tubes were allowed to cool, opened and solutions 

were transferred to centrifuge tubes, containing CCl4. Osmium was extracted using the 

CCl4 solvent-extraction method of Cohen and Waters (1996) and then Os was purified 

using a microdistillation procedure (Birck et al., 1997). Spiked Os samples were analyzed 

by a Thermo-Fisher Triton thermal ionization mass spectrometer to determine Os 

concentrations and 187Os/188Os ratios (Walker et al., 2008). Osmium isotopic data were 

corrected for instrumental and natural mass-fractionation by normalizing 192Os/188Os to 

3.08271 (Allègre and Luck, 1980).  

The other HSE were separated and purified using an anion column procedure, then Re 

and Ru separates were further purified using an additional anion column (Walker et al., 

2008). The HSE solutions were evaporated to dryness and dissolved in 0.8 N HNO3. 

Aliquots for Re analyses were doped with W in order to correct for instrumental mass 

bias. Final solutions were measured using a Thermo-Fisher Neptune Plus multi-collector 

inductively-coupled plasma mass spectrometer at UMd, except for Eagle Station and 

Cold Bay, which were analyzed using a Nu Plasma multi-collector inductively-coupled 

plasma mass spectrometer, also at UMd. The blanks (n = 3) for these methods ranged 

from 1 to 3, 3 to 5, 1 to 2, 3 to 80, 5 to 6, and 2 to 500 pg Re, Os, Ir, Ru, Pt, and Pd, 

respectively, which have an inconsequential effect on the reported concentrations. The 

uncertainties for Re, Os, Ir, Ru, Pt, and Pd abundances were estimated to be  ±0.2 %,  

±0.3 %,  ±0.2 %,  ±0.08 %,  ±0.4 %, and  ±0.2 %, respectively, based on the 

reproducibility of two separately prepared samples of Monahans (1938). Uncertainties for 

187Os/188Os ratios were estimated to be ±0.1 %, and the uncertainties for 187Re/188Os ratios 

were estimated to be ±0.2 %. 



 

 

 

86 

 

 

4.4 Results 

Siderophile element abundances determined by LA-ICP-MS for the IIF irons and two 

PES are reported in Table 4.1. Average concentrations generally agree with those 

reported by past studies within 20 %, with a few values differing as much as 150 % (the 

three greatest deviations are 150 %, 83 % and 44 %, observed for W – Corowa, Re – 

Corowa, and As – Itzawisis, respectively) (Wasson, 1969; Scott and Wasson, 1976; Scott, 

1977d; Connolly, Jr. et al., 2006; Bouvier et al., 2017). Highly siderophile element 

abundances, determined by isotope dilution, are reported in Table 4.2. Abundances of 

HSE agree with those determined by LA-ICP-MS within 34 %. The Re-Os isotopic data 

are also reported in Table 4.2. The IIF irons are characterized by a moderate range of 

187Re/188Os and 187Os/188Os ratios of 0.3675 to 0.5901 and 0.12444 to 0.14315, 

respectively. The PES are characterized by a lesser range in 187Re/188Os and 187Os/188Os 

ratios of 0.3654 to 0.4836 and 0.12477 to 0.13456, respectively. The IIF irons and PES 

have ΕOs values ranging from +1 ± 1 to +25 ± 1, calculated as the part per 10,000 

deviation from the 187Os/188Os ratio of a sample to a 4.568 Ga reference isochron, 

assuming an initial Solar System 187Os/188Os = 0.09517 and λ = 1.666 x 10-11 yr-1 

(Smoliar et al., 1996; Archer et al., 2014) (Fig. 4.1). The largest deviation of +25 ± 1 was 

determined for Cold Bay, of which our piece was highly rusted (Scott, 1977d). 

Nevertheless, these ΕOs values are consistent with these meteorites experiencing limited 

open-system behavior for the HSE since metal crystallization in the early Solar System.
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Table 4.1. Average siderophile element abundances of IIF iron meteorites and two Eagle Station Pallasites (PES) 

determined by LA-ICP-MS.  
 Dorofeevka Del Rio Monahans (1938) Purmela  Repeev Khutor Corowa Itzawisis Oued Bourdim 001 

Re 2.04 ± 0.03 1.60 ± 0.07 1.06 ± 0.05 0.74 ± 0.05  0.19 ± 0.04 0.06 ± 0.01 1.7 ± 0.2 0.35 ± 0.02 

Os 27 ± 1 21 ± 1 11.5 ± 0.2 9.6 ± 0.4  1.33 ± 0.08 0.64 ± 0.04 24 ± 2 3.5 ± 0.2 

W 1.26 ± 0.07 1.2 ± 0.1 2.6 ± 0.5 0.76 ± 0.05  0.72 ± 0.04 0.21 ± 0.03 0.3 ± 0.1 0.33 ± 0.05 

Ir 23 ± 1 19.6 ± 0.8 13.8 ± 0.2 9.8 ± 0.4  2.8 ± 0.2 0.80 ± 0.04 21 ± 1 5.7 ± 0.1 

Mo 11.4 ± 0.6 11.9 ± 0.7 13 ± 2 10.4 ± 0.4  13.1 ± 0.9 17 ± 2 13 ± 1 14.4 ± 0.7 

Ru 21.7 ± 0.7 19.2 ± 0.8 18.6 ± 0.4 12.0 ± 0.4  11.0 ± 0.3 3.8 ± 0.5 19 ± 1 11.3 ± 0.8 

Pt 27.3 ± 0.7 24 ± 1 25.4 ± 0.4 15.3 ± 0.4  16.1 ± 0.5 4.6 ± 0.1 24 ± 1 17.0 ± 0.5 

Rh 2.55 ± 0.09 2.2 ± 0.1 2.34 ± 0.08 1.60 ± 0.02  2.12 ± 0.05 1.48 ± 0.03 2.4 ± 0.2 2.0 ± 0.1 

Ni 11.3 ± 0.2 11.6 ± 0.5 9.9 ± 0.3 11.1 ± 0.3  12.2 ± 0.1 13.2 ± 0.6 15 ± 2 16 ± 1 

Co 6690 ± 60 6900 ± 100  6200 ± 100 6000 ± 100  7030 ± 60 6900 ± 200 8400 ± 600 9400 ± 500 

Fe 88.0 ± 0.2 87.7 ± 0.5 89.5 ± 0.3 88.3 ± 0.3  87.1 ± 0.2 86.1 ± 0.6 84 ± 2 83.2 ± 0.9 

Pd 3.0 ± 0.2 2.7 ± 0.1 2.8 ± 0.2 2.6 ± 0.2  4.3 ± 0.2 5.0 ± 0.1 4.2 ± 0.7 5.4 ± 0.7 

As 5.5 ± 0.4 4.9 ± 0.1 5.0 ± 0.2 5.1 ± 0.1  11.9 ± 0.2 17 ± 1 11 ± 2 11.6 ± 0.8 

Au 0.80 ± 0.04 0.69 ± 0.3 0.69 ± 0.05 0.62 ± 0.01  1.4 ± 0.1 2.06 ± 0.03 1.4 ± 0.3 1.6 ± 0.1 

Cu 320 ± 20 336 ± 3 240 ± 10 307 ± 1  293 ± 7 250 ± 9 330 ± 50 230 ± 10 

Ga 10.0 ± 0.5 9.4 ± 0.2 9.3 ± 0.6 12.7 ± 0.5  10.4 ± 0.2 10.3 ± 0.3 5.9 ± 0.5 7.8 ± 0.2 

Ge 132 ± 4 100 ± 2 123 ± 2 32 ± 1  159 ± 3 165 ± 4 90 ± 10 118 ± 2 

Abundances are reported in ppm and wt. % (Ni and Fe). 1SD uncertainties are also reported.   
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Table 4.2. Highly siderophile element abundances and Re-Os isotope systematics of PES and IIF iron meteorites 

determined by isotope dilution.  
Meteorite Catalog Mass Re Os Ir Ru Pt Pd 187Re/188Os 187Os/188Os ΕOs 

IIF            

Dorofeevka KMAN 0.0735 2275 29818 24610 23750 27770 3494 0.3675 0.12444 +2 ± 1 

Del Rio USNM 6160 0.0415 1832 23474 20560 21490 25880 3282 0.3760 0.12505 +2 ± 1 

Monahans (1938)  ASU 256 0.0630 1103 12037 14100 20770 25520 3231 0.4415 0.13119 +11 ± 1 

Monahans (1983) rep ASU 256 0.0824 1100 12007 14080 20760 25620 3226 0.4418 0.13118 +11 ± 1 

Purmela ASU 1515 0.0954 863.6 10988 10730 13850 17220 3484 0.3786 0.12519 +1 ± 1 

Repeev Khutor KMAN 0.0405 186.4 1524.5 2867 11880 16860 4997 0.5901 0.14315 +13 ± 2 

Corowa USNM 7230 0.0751 75.69 795.62 868.2 3330 4931 6339 0.4585 0.13155 +1 ± 2  

            

PES            

Eagle Station USNM 0.0386 1167 15099 12310 17910 22240 4534 0.3723 0.12477 +2 ± 1 

Cold Bay USNM 0.0452 638.2 8413.1 7705 14310 20030 6497 0.3654 0.12656 +25 ± 1 

Oued Bourdim 001 ASU 1860 0.0643 369.7 3687.0 5819 12400 17060 6066 0.4836 0.13456 +12 ± 1 

Values are reported in grams for mass and ppb for HSE. ΕOs is the part per 10,000 deviation of the 187Os/188Os 

ratio of a meteorite from a 4.568 Ga reference isochron, calculated from an initial Solar System 187Os/188Os = 

0.09517 and λ = 1.666 x 10-11 yr-1 (Smoliar et al., 1996; Archer et al., 2014). KMAN = Committee on Meteorites, 

Academy of Sciences, Russia. USNM = Division of Meteorites, Department of Mineral Sciences, Smithsonian 

Institution. ASU = Center for Meteorite Studies at Arizona State University. 
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Fig. 4.1. (top) 187Re/188Os vs. ΕOs plot for the iron meteorites and pallasites from this 

study. ΕOs is the parts per 10,000 deviation of the 187Os/188Os ratio of a sample from the 

4.568 Ga reference isochron in the bottom figure. (bottom) 187Re/188Os vs. 187Os/188Os 

plotted with a 4.568 Ga reference isochron, calculated from an initial Solar System 
187Os/188Os = 0.09517 and λ = 1.666 x 10-11 yr-1 (Smoliar et al., 1996; Archer et al., 

2014).  

 

4.5 Discussion 

4.5.1 IIF iron meteorites 

Wasson (1969) reported similar Ni, Ga, Ge, and Ir abundances for Corowa and 

Monahans (1938), leading to the suggestion that the two may be related. Publication of 

Ni, Ga, Ge, and Ir abundances for Dorofeevka, Del Rio, and Repeev Khutor by Scott and 

Wasson (1976) led to a new interpretation that Dorofeevka, Del Rio, and Monahans 

(1938) should be considered an iron trio, and that Repeev Khutor and Corowa may be a 
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possible iron duo. This idea was then modified by Kracher et al. (1980) after measuring 

these five irons for abundances of additional siderophile elements, including Co, Cu, As, 

W, Re, and Au. Kracher et al. (1980) concluded that these irons should be designated as a 

new iron meteorite group they termed the IIF irons. Purmela was later analyzed for Ni, 

Co, Ga, As, and Ir abundances (Connolly et al., 2006), and classified as the sixth member 

of this group.  

Siderophile element abundances determined by LA-ICP-MS for the six IIF irons are 

compared in Fig. 4.2. Major variations (200 to 4,000 %) are observed in the abundances 

of Re, Os, W, Ir, Ru, Pt, As, Au, and Ge among the IIF irons, while moderate variations 

(4 to 100 %) are observed for Mo, Rh, Ni, Co, Fe, Pd, Cu, and Ga. Kracher et al. (1980) 

interpreted the variations in siderophile element abundances in IIF irons to be a result of 

fractional crystallization in a common core. The variations observed here are broadly 

consistent with those observed for other iron groups interpreted to be products of 

fractional crystallization (SBT, IVA, IVB), measured using similar techniques (Walker et 

al., 2008; McCoy et al., 2011, 2019), supporting this idea. If true, the degree of variations 

for the element concentrations of IIF irons likely reflect the partition coefficients (D 

values) of these elements between solid metal and liquid metal during fractional 

crystallization. Major variations of certain element abundances may be explained by 

highly compatible (D values >> 1) or incompatible behavior (D values << 1) during 

fractional crystallization, while moderate variations of certain elements suggest D values 

closer to 1. 
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Fig. 4.2. (top) Siderophile element abundances, normalized to CI chondrites (Lodders, 

2003), for six IIF irons and metal for two PES obtained by LA-ICP-MS. (bottom) Highly 

siderophile element abundances, normalized to CI chondrites (Horan et al., 2003), for the 

IIF irons (left) and PES (right). Data were obtained by isotope dilution except for 

Itzawisis (LA-ICP-MS). 

 

An origin of the IIF irons by fractional crystallization can be further evaluated by 

comparison of the high-precision HSE concentration data (Fig. 4.2), obtained by isotope 

dilution, to fractional crystallization models (e.g., Walker et al., 2008; McCoy et al., 

2011; Hilton et al., 2019). To do this, we use the parameterization method most recently 

discussed by Chabot et al. (2017) for calculating solid metal-liquid metal D values during 

fractional crystallization. This approach is necessary as D values of siderophile elements 

typically vary depending on the S, P, and/or C content of a liquid (e.g., Jones and Malvin, 

1990, Chabot and Jones, 2003; Worsham et al., 2016a). The approach used here treats the 

initial S content of a liquid as the only free parameter, and the D values of P and C are 
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calculated as the initial S content is varied, based on experimentally-derived S vs. D value 

relationships (Chabot et al., 2017). The corresponding initial P and C contents for each 

initial S content model are then calculated by applying the calculated P and C D values to 

the P and C contents of the first iron assumed to have formed by “simple” fractional 

crystallization. The D values for the HSE and their initial concentrations are then 

determined in a similar way, but with consideration to the combined effect of the liquid 

S, P, and C content on HSE D values. Element D values are then calculated at each 0.1 % 

of fractional crystallization, while calculating the change in S, P, and C content of the 

liquid as fractional crystallization progresses. Additional details about these calculations 

are provided in Appendix 4.  

For iron meteorites that form as a result of simple fractional crystallization, 

abundances of compatible (Re, Os, Ir, Ru, Pt) and incompatible (Pd) HSE typically 

produce well correlated trends. This is not observed for the IIF irons (Fig. 4.2), however, 

indicating that the IIF irons are either not all related to the same parental melt as 

envisioned by Kracher et al. (1980), or require an additional process(es) to account for 

deviations from a simple fractional crystallization model. This is highlighted in Fig. 

A4.1, which shows that no simple fractional crystallization model can account for the 

HSE abundances of more than one IIF iron at a time. Therefore, to further examine their 

possible origin by fractional crystallization, we consider the effects of mixing solids with 

equilibrium or non-equilibrium melts, which are scenarios that have been applied to other 

iron meteorite groups with complex chemical compositions (e.g., IIIAB; Smoliar, 1999; 

Wasson, 1999; Cook et al., 2004). If, for example, crystallizing solid traps liquid that it 

crystallized from, subsequent diffusion may result in equilibrium solid metal-liquid metal 
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mixing (Wasson, 1999). Alternatively, solid metal and liquid metal produced at different 

intervals of a crystallization sequence (i.e., non-equilibrium) may mix if a solid portion of 

a partially crystallized core is fractured, evolved liquid infiltrates the fractures, and the 

primitive solid and evolved liquid equilibrate by diffusion (Smoliar, 1996; Cook et al., 

2004). The additional details of equilibrium and non-equilibrium mixing calculations are 

provided in Appendix 4 (Chabot, 2019). 

Since the IIF irons cannot be related by simple fractional crystallization, we constrain 

our model by assuming Monahans (1938), which has the lowest abundance of Pd, is the 

only “simple” solid. The HSE abundances of the other IIF irons can then be accounted for 

by invoking non-equilibrium solid metal-liquid metal mixing (Fig. 4.3). If most IIF irons 

are the products of non-equilibrium solid metal-liquid metal mixing, there are potentially 

endless parental melt compositions that the IIF irons could have crystallized from. This is 

because multiple combinations of solid metal-liquid metal mixing, including between 

three or more endmember compositions, can produce the same HSE compositions (e.g., 

Fig. A4.2: Re vs. Pd systematics between the three models of Table 4.3). Given this, we 

restrict the possible parental melt compositions for the IIF irons to those with relative 

abundances of HSE that are within the ranges observed in chondrites (Horan et al., 2003; 

Fischer-Gödde et al., 2010). Possible compositions are listed in Table 4.3 and shown in 

Fig. 4.4, with Model 1 (S = 14 wt. %) having relative abundances of HSE in the middle 

of the range observed in chondrites, while Model 2 (S = 11 wt. %) and Model 3 (S = 17 

wt. %) have relative abundances of HSE that are at the extremes observed in chondrites. 

Changing the S content >17 wt. % or <11 wt. % requires parental melts with relative 

abundances of Pd, compared to the other HSE, that are outside the ranges observed in 
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chondrites (Pd depleted and Pd enriched, respectively). A Pd depletion relative to the 

other HSE was observed for the IVB iron meteorite parental melt (Campbell and 

Humayun, 2005; Walker et al., 2008), but it was coupled with depletions for volatile 

elements. The IIF irons are volatile-rich compared to the IVB irons, making a relative 

depletion in Pd composition due to volatility unlikely. Worsham et al. (2016a) observed, 

for the parental melt of the IAB-sLM iron meteorite subgroup, a Pd enrichment relative 

to other HSE, which was suggested to reflect fractionation of refractory elements by a 

volatility-driven process. However, the IIF irons do not exhibit depletions in other 

refractory elements (e.g., Mo), making this explanation for the IIF irons also unlikely 

(Fig. 4.2). 
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Fig. 4.3. Fractional crystallization model of Model 1 from Table 3. This model can 

account for the HSE compositions of the IIF irons and PES through various degrees of 

solid metal-liquid metal mixing. Solid metal and liquid metal evolution lines are shown in 

black and red, respectively. Initial solid and liquid compositions are shown as black and 

red stars, respectively. Grey lines reflect mixing of solid at initial, 10 %, and 20 % 

fractional crystallization with a liquid after 45 % crystallization. Tick marks on mixing 

lines reflect 10 % increments. 
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Table 4.3. Projected parental melt compositions of the IIF-PES 

parental core based on three models discussed in the text.  

 Re Os Ir Ru Pt Pd S P C 

Model 1 300 3600 3450 6000 7200 4300 14 0.4 <0.05 

Model 2 480 5800 5500 8500 10300 4300 11 0.5 <0.05 

Model 3 175 2050 2100 3950 4750 4050 17 0.3 <0.05 

Values are in ppb for HSE and wt. % for S, P, and C. Models 2 and 3 

define the endmembers of the possible parental melt compositions 

with chondritic relative abundances of HSE. Model 1 is the middle 

solution in this range. 

 

   

Fig. 4.4. Calculated HSE parental melt compositions, normalized to CI chondrites (Horan 

et al., 2003), of the IIF-PES for Models 1, 2, and 3 compared to parental melt 

compositions of the IVB (Walker et al., 2008), IVA (McCoy et al., 2011), and SBT irons 

(Hilton et al., 2019). The average HSE composition of carbonaceous chondrites is also 

shown (Horan et al., 2003; Fischer-Gödde et al., 2010). 

 

Using composition Model 1, Monahans (1938) is accounted for as a solid produced 

after 13 % fractional crystallization (Fig. 4.3). The compositions of Dorofeevka and Del 
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Rio can be accounted for by mixing solids formed after 3 % and 5 % crystallization, 

respectively, with evolved liquid present after ~45 % crystallization. The HSE 

abundances of Repeev Khutor can be broadly re-created by mixing a solid formed from 

23 % fractional crystallization with a liquid present after ~45 % fractional crystallization. 

This non-equilibrium mixing of evolved liquid with earlier formed solids may have been 

achieved by fracturing of the crystallizing core, followed by mobilization of the evolved 

melt throughout the fractures (Smoliar, 1996). One way to fracture a crystallizing core 

may be through impact.  

The composition of Corowa is more difficult to reproduce by mixing of primitive 

solids and evolved liquids. It is best accounted for by mixing evolved solid and primitive 

liquid, such as solid formed after ~45 % fractional crystallization with liquid formed after 

~13 % fractional crystallization. This scenario is difficult to envision, however. One 

possible mechanism leading to the mixing of an evolved solid and primitive liquid may 

be in an inward-out crystallizing core coupled with late segregation of primitive metal 

from the mantle. Addition of primitive, residual liquid from the mantle may have caused 

the evolved composition of the liquid outer core to shift toward a more primitive 

composition. Subsequent non-equilibrium solid metal-liquid metal mixing may then 

appear as mixing between evolved solid and primitive liquid (Smoliar, 1996). 

Alternatively, Corowa may sample the same IIF core but formed in a magma chamber 

that was isolated from the domain in which the other IIF irons crystallized. Separate 

magma chambers in the IIF core may have been produced by inward dendritic 

crystallization, which could have resulted in slightly chemically variable magma 

chambers that ultimately crystallized somewhat different solid compositions (Haack and 
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Scott, 1992). This possibility has been envisioned to explain the deviations of some 

IIIAB iron meteorites chemical compositions from simple fractional crystallization 

models (Haack and Scott, 1993). 

While all other IIF irons can be produced by invoking solid metal-liquid mixing, 

Purmela is the exception. For example, as shown in Fig. 4.3, mixing is needed to explain 

abundances of Re, Os, Ru, and Pt, but not Pd. In addition, while our new Ge/Ga ratios for 

the IIF irons of between 11 to 16 are consistent with the ratios of 11 to 17 reported by 

Kracher et al. (1980), Purmela has a Ge/Ga ratio of 3. This lower ratio is due to a lower 

Ge abundance than observed for any other IIF iron. Fractionating Ge from Ga in order to 

obtain this ratio is difficult to envision by fractional crystallization since Ge and Ga have 

similar partitioning behaviors (Chabot et al., 2017). As such, these chemical differences 

together suggest that Purmela may not be a IIF iron and may instead derive from a parent 

body with a similar, but different bulk chemistry. As such, we question Purmela’s current 

status as a IIF iron and submit that further study of this meteorite is warranted. 

 

4.5.2 Eagle Station Pallasites 

Itzawisis, Eagle Station and Cold Bay were designated the Eagle Station Trio by Scott 

(1977d). Karavannoe and Oued Bourdim 001 have since been added to this trio 

(Korochantsev et al., 2013; Humayun et al., 2014; Bouvier et al., 2017), bringing the total 

number of PES members to five. Highly siderophile element abundances of four PES are 

compared in Fig. 4.2. Like the IIF irons, the PES metal do not form well correlated trends 

for compatible and incompatible HSE abundances. For example, Cold Bay is enriched in 

compatible and incompatible HSE compared to Oued Bourdim 001. As a result, the metal 
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in these pallasites cannot be produced by simple fractional crystallization from a common 

liquid. This is also highlighted in Fig. A4.1, which shows that the PES metals match solid 

compositions for Re vs. Pd with 6 wt. % S, but Pt vs. Pt/Os compositions require 14 wt. 

% S. These chemical trends suggest PES metal formation from solid metal-liquid metal 

mixing, as discussed for the IIF irons.  

 

4.5.3 Common IIF-PES core 

The limited data sets of Kracher et al. (1980) were used to suggest that the IIF irons 

and PES share chemical similarities, although not enough to indicate derivation from the 

same body. We find that the new siderophile element abundances of Itzawisis and Oued 

Bourdim 001 fall near the siderophile element ranges observed among the IIF irons and 

are permissive of a common parent body origin (Fig. 4.2). The PES also have HSE 

abundances that fall within the ranges observed for the IIF irons (Fig. 4.2). For example, 

the PES form a striking trend with Del Rio and Dorofeevka for Pt vs. Pt/Os (Fig. 4.3). 

The HSE compositions in PES metal are compared to the fractional crystallization Model 

1 of the IIF irons in Fig. 4.3. The HSE abundances of the PES fall within the ranges 

permitted by mixing of initial solid and solid produced after ~20 % crystallization with a 

liquid produced following  25 % to 45 % crystallization. Invoking two endmember 

mixing between these solid and liquid ranges can broadly reproduce the HSE 

compositions of the PES (Fig. 4.3). As such, it is plausible that the IIF irons and PES 

formed from a common liquid and, consequently, a common core. 

Proposed origins for the PES include formation at the core-mantle boundary, based 

on the concentrations of rare earth elements in phosphates present in Eagle Station (Davis 
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and Olsen, 1991), and formation through two impacts, the first of which caused metal-

silicate melting and the second of which caused metal intrusion into olivine (Malvin et 

al., 1985). Contrary to the model by Malvin et al. (1985), an origin of PES metal in 

association with the IIF core suggests formation near the core-mantle boundary on a 

differentiated body that was melted by internal heating. However, as proposed by Malvin 

et al. (1985), an impact may have caused metal intrusion into olivine. An impact could 

also explain the non-equilibrium mixing required for IIF and PES metal HSE 

compositions. For example, an impact could have fractured a partially crystallized core, 

causing multiple endmember mixing of solids with liquids, in addition to mixing between 

metal and olivine (Fig. 4.5). Impact is also consistent with the highly angular (and likely 

fractured) olivines in the PES (Scott, 1997c; Scott and Taylor, 1990).  
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Fig. 4.5. Cartoon depicting the preferred scenario for forming the PES. An impactor 

disrupts a partially crystallized IIF core, resulting in the non-equilibrium mixing of 

“primitive” solid and “evolved” liquid. Silicates are mixed into the metal and the metal 

rapidly cools. Cartoon is not to scale. 

 

 

Mixing of primitive solids and evolved liquids, as proposed here for most IIF irons 

and all PES, was also invoked for the IIIAB-PMG (Scott, 1977a; Wasson and Choi, 

2003). However, this scenario was discounted by Yang et al. (2010), in which the authors 

noted faster cooling rates for IIIAB irons (50-350 K/Myr) compared to PMG (2.5-18 

K/Myr). These authors interpreted the cooling rate differences to reflect that the IIIAB 

irons and PMG did not form on the same parent body. In comparison, the IIF irons and 

PES have more consistent cooling rates of 1-5 K/Myr (Rasmussen et al., 2001) and 15 

K/Myr (Yang et al., 2010), respectively, permissive of a common core origin. In addition, 
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the potential iron-pallasite relationship is also supported by identical genetic Mo isotopic 

compositions reported for the PES (Burkhardt et al., 2011) and IIF irons (Kruijer et al., 

2017; Worsham et al., 2019). Due to these consistencies in chemical compositions, 

cooling rates, and genetic isotopic compositions between the IIF irons and PES, this may 

be the most promising iron-pallasite relationship yet discovered. 

 

4.6 Conclusions 

Study of the siderophile element abundances present in metal in IIF irons and PES 

provides permissive evidence for derivation from a common planetesimal core. The HSE 

compositions of neither group can be explained solely by simple fractional crystallization 

and require substantial solid metal-liquid metal mixing. As such, these meteorites most 

likely formed as a result of mixing of various components of a partially crystallized core, 

disrupted by an impact.    
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4.8.1 Fractional crystallization modeling 
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The concentrations of S, P, C, and HSE in liquid during fractional crystallization were 

determined using Eq. S1. In this equation, Fn is the fraction of liquid (n = 100 is pure 

liquid), CLn is the concentration of an element in the liquid phase at Fn, and Dn is the 

partition coefficient of an element. The concentrations of these elements were calculated 

at each 0.1 % of crystallization. A constant partition coefficient of 0.001 was used for S 

(Walker et al., 2008). The partition coefficients for P and C were determined at each Fn 

by considering the concentration of S and P or S and C, respectively, in the liquid at Fn+1. 

Equation S2 is used to account for the effects of S on P and C partitioning behavior 

(Chabot and Jones, 2003).  

Values of Do for P and C are taken from Chabot et al. (2017) and Worsham et al. 

(2016a), respectively. The βSPC variable is determined using Eq. S3 (Jones and Malvin, 

1990), in which βS and βP are taken from Chabot et al. (2017) and βC is taken from 

Worsham et al. (2016a). For P, the effects of C are not considered and for C, the effects 

of P are not considered. The βSPC and “Fe domains” (Eq. S4; Chabot et al., 2017) 

variables are calculated at each Fn, where Xi is the mole fraction of an element. The 

initial P content of the IIF parental melt was constrained by considering the P content of 

Monahans (1938), 0.09 wt. % (Buchwald, 1975). Initial S and C contents were 

determined iteratively.  

After determining the concentration of S, P, and C at each Fn, the D values for the 

HSE are calculated at each Fn using Eq. S2-S4 by collectively considering the changes in 

S, P, and C content in the liquid (Jones and Malvin, 1990; Chabot and Jones, 2003; 

Worsham et al., 2016a; Chabot et al., 2017). The concentration of HSE in the liquid at 

each Fn is then determined using Eq. S1 and the solid composition (CSn) at each Fn is 



 

 

 

104 

 

determined using Eq. S5. For solid metal-liquid metal mixing, the composition of the 

liquid endmember (“trapped melt”) was determined from CLn following the approach of 

Chabot (2019). The concentration of S in the liquid at each Fn was divided by 36.5 to 

determine the “x” value. The HSE concentrations of the trapped melt were determined by 

Eq. S6.   
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Fig. A4.1. Fractional crystallization models compared to IIF irons (top) and PES 

(bottom). (top) The Pt vs. Pt/Os compositions of IIF irons can be explained as metal from 

simple fractional crystallization for a system with 16 wt. % S, but Re vs. Pd compositions 

require 3 wt. % S. Corowa cannot be related to the other IIF irons as a simple fractionally 

crystallized solid in any model. (bottom) The Pt vs. Pt/Os compositions of PES can be 

explained as metal from simple fractional crystallization for a system with 14 wt. % S, 

but Re vs. Pd compositions require 6 wt. % S.  
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Fig. A4.2. Re vs. Pd compositions of the IIF irons and PES metal compared to fractional 

crystallization models using parental melt compositions of Model 1, Model 2, and Model 

3. Solid metal and liquid metal evolution lines are shown in black and red, respectively. 

Initial solid and liquid compositions are shown as black and red stars, respectively. Grey 

lines reflect mixing of solid at initial, 10 %, and 20 % fractional crystallization with a 

liquid after 45 % crystallization. Tick marks on mixing lines reflect 10 % increments. 
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Chapter 5:  Constraints on the chemical characteristics of the 

noncarbonaceous (NC) and carbonaceous (CC) nebular reservoirs 
 

 

5.1 Abstract 

The projected bulk highly siderophile element (HSE; Re, Os, Ir, Ru, Pt, and Pd) 

characteristics of the parent bodies of ten magmatic iron meteorite groups/grouplet (IC, 

IIAB, IIC, IID, IIF, IIIAB, IIIF, IVA, IVB, and South Byron Trio) are compared in order 

to assess whether there are chemical differences between the isotopically distinct 

noncarbonaceous (NC) and carbonaceous (CC) nebular reservoirs. With few exceptions, 

the relative abundances of HSE inferred for each of the parent bodies are similar and 

show no resolvable difference between NC and CC heritage. Thus, the processes driving 

genetic isotopic heterogeneity in the early Solar System evidently did not leave 

discernable chemical fingerprints, with respect to processing of HSE, on the bulk 

planetesimal scale. By contrast, the absolute abundances of HSE projected for parent 

body cores, on average, are higher in the CC bodies compared to the NC bodies. This 

most likely reflects proportionally smaller cores, on average, which in turn may indicate 

that at least some CC parent bodies were more oxidized than NC parent bodies. The 

distribution of Fe inferred between the core and mantle of these planetary bodies shows a 

weak correlation with model core segregation ages, suggesting that the timing of 

planetary differentiation may have been affected by the oxidation state of the body.  

 

5.2 Introduction 

It is well established from the nucleosynthetic, “genetic”, isotopic compositions of 

certain elements (e.g., Cr, Ti and Ni) in bulk meteorites that parent bodies accreted from 
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differing proportions of precursor materials with diverse isotopic compositions (e.g., 

Trinquier et al., 2007, 2009; Leya et al., 2008; Regelous et al., 2008). Further, studies 

comparing genetic isotopic compositions of bulk meteorites have shown that two 

isotopically distinct reservoirs, referred to as the noncarbonaceous (NC) and 

carbonaceous (CC) reservoirs, were present in the early Solar System (e.g., Warren, 

2011). This division is especially well documented with respect to nucleosynthetic 

anomalies present for certain siderophile elements (e.g., Ni, Mo, W, Ru, and Pd) in iron 

meteorites and pallasites (e.g., Budde et al., 2016a; Kruijer et al., 2017; Bermingham et 

al., 2018; Ek et al., 2019; Nanne et al., 2019).  

The process(es) resulting in the heterogeneous accretion of isotopically diverse 

presolar materials to parent bodies accreting within and between the NC and CC 

reservoirs remains unconstrained. Numerous ideas have been proposed, including that the 

heterogeneous accretion of isotopically diverse materials reflects the initially 

heterogeneous distribution of these materials in the parental molecular cloud (e.g., 

Dauphas et al., 2002). It has also been suggested that the heterogenous distribution of 

isotopically distinct materials was due to the physical sorting of materials by size or type 

(e.g., Regelous et al., 2008) or the thermal processing of materials (e.g., Trinquier et al., 

2009). The heterogenous distribution of isotopically distinct materials may also result 

from the late addition of isotopically distinct materials (e.g., Brennecka et al., 2013).         

To complement genetic information, the 182Hf-182W isotopic systematics of iron 

meteorites have been used to provide constraints on the relative timing of metal-silicate 

segregation of parent bodies (e.g., Kleine et al., 2009; Kruijer et al., 2014a, 2017). In 

certain instances, model 182W ages can be combined with thermal models of heat 
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production in a planetesimal to constrain parent body accretion ages (e.g., Kruijer et al., 

2014a, 2017; Hilton et al., 2019). Such ages may be important for understanding the 

origins of the NC and CC domains (e.g., Kruijer et al., 2017).    

One aspect of the NC-CC dichotomy that has been pursued less vigorously than 

genetic and chronologic differences is the exploration of potential chemical differences 

between the two nebular reservoirs. So-called “magmatic” iron meteorite groups and 

grouplets (defined as having 5 or more, and 3 or more members, respectively; Wasson, 

1974) are particularly valuable for comparing the siderophile element compositions of 

individual parent bodies from these reservoirs, as they are commonly interpreted to be 

fragments of planetesimal cores, dominantly related by fractional crystallization (e.g., 

Scott, 1972). As such, the siderophile element content for group/grouplet members can be 

used to determine the fractional crystallization and mixing sequence involved in the 

generation of the group/grouplet, and viable crystallization models can be projected back 

to a parental melt composition. This composition is normally presumed to represent the 

composition of the bulk core. This method can additionally provide constraints on the 

parental melt S, P, and C concentrations as these elements can strongly affect siderophile 

element solid metal-liquid metal partition coefficients (D values) (e.g., Jones and Malvin, 

1990; Chabot and Jones, 2003; Chabot et al., 2017). For highly siderophile elements 

(HSE; Re, Os, Ir, Ru, Pt, and Pd), a bulk core composition may reflect the relative 

abundances of the bulk planetesimal, whereas for moderately and/or multivalent elements 

(e.g., Fe, Ni, and S), constraints on the bulk core composition can, in turn, be used to 

constrain the distribution of these elements between the core and mantle, assuming 

chondritic absolute abundances for the bulk planetesimal.  
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Prior studies have focused most attention on modeling HSE, given their well 

constrained, absolute and relative liquid metal-solid metal partitioning characteristics 

with varying S, P, and C contents (Chabot et al., 2017). Such models have been 

previously reported for the NC-type IC and IVA and CC-type IIC, IIF, IVB, and South 

Byron Trio (SBT) magmatic iron meteorite groups/grouplet (Walker et al., 2008; McCoy 

et al., 2011; Hilton et al., 2019, in revision; Tornabene, 2020; Tornabene et al., 2020). 

Here, additional HSE parental melt compositions are constrained by modeling for NC-

type IIAB and IIIAB and CC-type IID and IIIF magmatic iron meteorite groups. The 

chemical characteristics of ten magmatic iron meteorite parent bodies are then compared 

within the framework of their corresponding genetic isotopic compositions and metal-

silicate segregation ages.  

 

5.3 Materials and methods 

Chunks of IIAB, IID, IIIAB, and IIIF iron meteorites were obtained from the Division 

of Meteorites, Department of Mineral Sciences, Smithsonian Institution, and a sample of 

Northeast Africa (NEA) 002 (IID) was obtained from the University of California, Los 

Angeles (UCLA) meteorite collection. Emphasis was placed on obtaining samples 

representing the earliest stages of fractional crystallization, i.e., those with the least 

fractionated HSE patterns. Bulk pieces of all iron meteorites examined were measured for 

HSE abundances and 187Re-187Os isotopic compositions using isotope dilution methods 

(e.g., Walker et al., 2008). Between 25 to 300 mg pieces of metal were cut from each 

meteorite chunk using a water-cooled Leco Vari-cut saw and a 12.7 cm diamond-

wafering blade, which was cleaned with SiC blocks prior to cutting each meteorite. Cut 
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meteorite pieces were polished using a range of coarse- to fine-grit SiC sandpaper to 

remove sawblade marks, then sonicated in ethanol to remove sawing residue. Cut and 

polished metal chunks of each meteorite were combined in a Pyrex® Carius tube with a 

platinum-group element spike (191Ir, 99Ru, 194Pt, and 105Pd), a Re-Os spike (185Re and 

190Os), 5 ml of concentrated HNO3, and 2.5 ml of concentrated HCl. Tubes were sealed 

and heated for a minimum of 24 h at 240 °C (Shirey and Walker, 1995). The tubes were 

then opened and solutions were transferred to centrifuge tubes and mixed with CCl4 in 

order to extract Os (Cohen and Waters, 1996). Osmium was further purified using the 

microdistillation procedure of Birck et al. (1997).  

Spiked Os samples for the IIIAB irons were analyzed by a VG Sector 54 thermal 

ionization mass spectrometer (TIMS), while those for the IIAB, IID, and IIIF irons were 

analyzed using a Thermo-Fisher Triton or Triton Plus TIMS to determine Os 

concentrations and 187Os/188Os ratios (Walker et al., 2008). Osmium isotopic data were 

corrected for instrumental and natural mass-fractionation by normalizing 192Os/188Os to 

3.08271 (Allègre and Luck, 1980). The other HSE were separated and purified using an 

anion column procedure, and then Re and Ru separates were further purified using an 

additional miniature anion column (Walker et al., 2008). The Re and Ru aliquot was split 

and HSE fractions were evaporated to dryness and dissolved in 0.8 N HNO3. Aliquots for 

Re analyses were doped with natural W in order to correct for instrumental mass bias. 

Final solutions were measured using a Neptune Plus multi-collector ICP-MS at UMd for 

all IID and IIIF irons, as well as the Re, Ir, and Pt fractions for IIAB irons. Solutions of 

all IIIAB irons were analyzed using a Nu Plasma multi-collector ICP-MS, also at UMd. 
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Finally, Ru and Pd abundances of the IIAB irons were analyzed using a Thermo Finnigan 

Element 2 ICP-MS. 

The blanks for these methods (n = 6) ranged from  0.4 to 3, 1 to 5, 0.4 to 2, 3 to 80, 4 

to 30, and 2 to 500 pg for Re, Os, Ir, Ru, Pt, and Pd, respectively, which are sufficiently 

low (<0.1%) to have an inconsequential effect on the reported concentrations, except for 

Klamath Falls (IIIF). The external reproducibility of Re and Os abundances, estimated 

based on the reproducibility of similar samples analyzed using identical techniques 

(Walker et al., 2008), were ≤0.2 % and ≤0.1 %, respectively, and <3 % for the other HSE. 

Measurement uncertainties for 187Os/188Os ratios were estimated to be ≤0.1 % and the 

uncertainties for 187Re/188Os ratios were estimated to be ≤0.2 %.  

 

5.4 Results 

The Re-Os isotopic data and HSE abundances of the IIAB, IID, IIIAB, and IIIF iron 

meteorites are provided in Table 5.1. Meteorites from these groups span a large range of 

187Re/188Os ratios from 0.3196 to 1.152 and 187Os/188Os ratios from 0.12057 to 0.18766. 

Values of ΕOs, representing the part per 10,000 deviation of each meteorite’s Re-Os 

systematics from a 4.568 Ga reference Re-Os isochron, calculated with a Solar System 

initial 187Os/188Os = 0.09517 and slope = 0.07908 (Archer et al., 2014), are also reported 

in Table 5.1. These values range from -11 ± 2 to +40 ± 2.  

The abundances of HSE in the IIAB, IID, IIIAB, and IIIF iron meteorites examined 

are typically within ±20 % of values reported by Schaudy et al. (1972), Scott and Wasson 

(1976), Pernicka and Wasson (1987), Wasson (1999), Grossman (2000), Cook et al. 
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(2004), Wasson and Huber (2006), and Wasson et al. (2007). The concentrations reported 

here are compared to literature values in Table A5.1 of Appendix 5.    
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Table 5.1. Highly siderophile element concentrations and 187Re-187Os isotopic data for members of the IIAB, IID, 

IIIAB, and IIIF iron meteorites groups.  
Sample ID  Wt. (g) Re Os Ir Ru Pt Pd 187Re/188Os 187Os/188Os ΕOs 

IIAB irons            

Forsyth County USNM 0.0681 3700 44554 39270 27300 37610 1754 0.4000 0.12665 -1 ± 1 

Cincinnati USNM 0.0436 1530 13199 19940 24070 33330 1757 0.5671 0.13915 -9 ± 2 

Braunau USNM 0.0650 772.5 5445.9 11020 17680 30080 1820 0.6849 0.14900 -3 ± 2 

North Chile USNM 0.0482 208.8 1067.5 3585 15810 26590 2006 0.9473 0.16956 -5 ± 2 

Sikhote-Alin USNM 0.1338 1.528 12.110 23.08 4862 5377 2449 0.6079 0.14242 -8 ± 2 

            

IID irons            

NEA 002 UCLA 0.0276 1960 28741 21480 16990 22310 2774 0.3284 0.12210 +10 ± 1 

Arltunga USNM 2467 0.2297 1914 26255 20540 17220 23180 2868 0.3510 0.12311 +2 ± 1 

Losttown USNM 1071 0.0408 1912 26303 20490 17340 22660 2988 0.3500 0.12295 +1 ± 1 

N'Kandhla USNM 2397 0.1912 1779 23869 19160 16970 22780 2959 0.3589 0.12371 +2 ± 1 

Bridgewater USNM 0.1645 1767 23628 19100 17000 22880 2950 0.3602 0.12386 +2 ± 1 

Mount Ouray USNM 777 0.0986 1586 20594 17240 16510 22550 3280 0.3710 0.12464 +1 ± 1 

Elbogen USNM 309 0.0490 1415 18114 15570 15080 20700 2890 0.3763 0.12508 +2 ± 1 

Carbo USNM 838 0.2951 1292 15544 14080 16030 22080 3097 0.4004 0.12698 +1 ± 1 

Puquios USNM 3008  0.0994 1263 16060 14190 15550 20500 3185 0.3788 0.12613 +10 ± 1 

Rodeo USNM 3016 0.0438 754.1 9383.0 8726 12180 16690 3930 0.3872 0.12683 +10 ± 1 

Needles USNM 3533 0.2222 453.8 5056.0 5139 10200 14610 4935 0.4326 0.12945 +1 ± 1 

Wallapai USNM 788 0.0473 343.7 3532.0 3830 9449 12530 5133 0.4693 0.13348 +12 ± 2 

            

IIIAB irons            

Costilla Peak  USNM 702 0.1190 1421 18319 13750 12740 15870 3349 0.3780 0.12428 -8 ± 1 

Henbury - 0.1015 1287 15053 13630 13180 16670 2127 0.4121 0.12796 +2 ± 1 

Charcas  USNM 467A 0.1302 150.8 1082.3 2240 8411 12110 2619 0.6781 0.14767 -11 ± 2 

Tamarugal USNM 6680 0.1064 33.88 235.30 562.6 4854 7624 3336 0.6939 0.14961 -4 ± 2 

Maldyak KMAN 1402 0.1444 25.37 167.01 462.5 4602 7148 4325 0.7397 0.15311 -6 ± 2 

            

IIIF irons            

Nelson County USNM 2951 0.1073 794.8 11970 8650 7064 10310 2517 0.3196 0.12057 +1 ± 1 

Clark County USNM 1304 0.0899 665.1 9271.0 7240 6747 10150 2681 0.3454 0.12222 -3 ± 1 

Oakley USNM 780 0.0381 507.2 6500.8 5529 6307 9635 3016 0.3758 0.12505 +2 ± 1 

Cerro del Inca USNM 7062 0.0735 282.9 2873.2 3251 6348 8719 3298 0.4747 0.13327 +6 ± 2 

St. Genevieve County USNM 454 0.1373 159.8 1345.7 1950 5651 8315 3554 0.5732 0.14051 +0 ± 2 



 

 

 

115 

 

Moonbi USNM 1467 0.0397 110.2 854.60 1398 5126 7611 3782 0.6225 0.14586 +15 ± 2 

Klamath Falls USNM 7008 0.3060 0.2787 1.3166 3.229 1033 1455 5702 0.9994 0.17821 +40 ± 2 

Samples are listed by decreasing Re concentrations for each group and concentrations are reported in ppb. ΕOs 

represents the part per 10,000 deviation from a 4.568 Ga reference Re-Os isochron, calculated with a Solar System 

initial 187Os/188Os = 0.09517 and slope = 0.07908 (Archer et al., 2014). KMAN = Committee on Meteorites, 

Academy of Sciences, Russia. USNM = Division of Meteorites, Department of Mineral Sciences, Smithsonian 

Institution. UCLA =  University of California, Los Angeles meteorite collection.  
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5.5 Discussion 

5.5.1 Chemical characteristics vs. genetics 

5.5.1.1 Modeling HSE abundances of magmatic iron meteorite groups 

The 187Re-187Os system, when applied to magmatic iron meteorites, can be used to 

date the absolute timing of core crystallization, albeit with relatively low resolution of 

typically  >±5 Ma  (e.g., Smoliar et al., 1996). The system has been used to assess 

whether iron meteorites have maintained closed-system behavior since crystallization. 

The Re-Os isotope systematics of the IIAB, IID, IIIAB, and IIIF iron meteorites fall 

within the ranges previously observed for other magmatic iron meteorite groups (IC, IIC, 

IIF, IVA, IVB, and SBT) (Fig. 5.1), indicating that the range of Re-Os fractionation 

during core crystallization was similar among these parent bodies. The IIAB, IID, IIIAB, 

and IIIF irons dominantly fall within ±10 part per 10,000 of a 4.568 Ga reference 

isochron, indicating that most of the iron meteorites from these groups maintained 

closed-system behavior of Re and Os, and presumably the other HSE, since 

crystallization. 
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Fig. 5.1. (top) 187Re/188Os vs. ΕOs plot for the iron meteorites from ten magmatic iron 

meteorite groups. ΕOs is the parts per 10,000 deviation of the 187Os/188Os ratio of a sample 

from the 4.568 Ga reference isochron in the bottom figure. (bottom) 187Re/188Os vs. 
187Os/188Os plotted with a 4.568 Ga reference isochron, calculated from an initial Solar 

System 187Os/188Os = 0.09517 and λ = 1.666 x 10-11 yr-1 (Smoliar et al., 1996; Archer et 

al., 2014). Data are from Walker et al. (2008), McCoy et al. (2011), Hilton et al. (2019, in 

revision), Tornabene (2020), and Tornabene et al. (2020).  

 

The CI chondrite normalized HSE patterns of iron meteorites from the IIAB, IID, 

IIIAB, and IIIF iron meteorite groups display similar relative and absolute variations to 

other magmatic iron meteorites (Figs. 5.2 and 5.3). For example, the abundance of the 

incompatible element Pd typically increases within an iron meteorite group with 

decreasing abundances of the compatible elements Re, Os, Ir, Ru, and Pt. These 

variations have typically been interpreted to be products of fractional crystallization with 

the degree of absolute and relative variations in HSE reflecting the abundances of S, P, 
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and C in the parental melt. Variations in the absolute abundances of HSE of iron 

meteorites between groups may also reflect variations in the HSE parental melt 

composition. 

 

 
Fig. 5.2. Highly siderophile element abundances, normalized to CI chondrites (Horan et 

al., 2003), of NC-type IC, IIAB, IIIAB, and IVA iron meteorites (McCoy et al., 2011; 

Tornabene, 2020). Calculated parental melt compositions are shown as black lines. 
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Fig. 5.3. Highly siderophile element abundances, normalized to CI chondrites (Horan et 

al., 2003), of the CC-type IIC, IID, IIF, IIIF, IVB, and SBT iron meteorites (Walker et al., 

2008; Hilton et al., 2019, in revision; Tornabene et al., 2020). Calculated parental melt 

compositions are shown as grey lines. 

 

Comparisons of measured HSE abundances of IIAB, IID, IIIAB, and IIIF iron 

meteorites with those predicted by liquid-crystal fractionation models, in order to assess 

their adherence to simple fractional crystallization and constrain parental melt 

compositions, were made following the approach initially discussed by Walker et al. 

(2008). In this approach, initial S, P, C, and HSE contents are treated as free parameters 

and all D values (solid metal-liquid metal partition coefficients) are calculated relative to 

experimentally-derived S, P, and C abundances vs. D value relationships (e.g., Jones and 

Drake, 1983; Jones and Malvin, 1990; Chabot and Jones, 2003; Chabot et al., 2017). 

Here, the parameterization method outlined by Jones and Malvin (1990), and modified by 

Chabot and Jones (2003), Worsham et al (2016a), and Chabot et al. (2017), is used to 

integrate the effects of S, P, and C abundances on HSE partitioning behavior. Additional 



 

 

 

120 

 

details and figures related to the modeling of bulk core HSE, S, P, and C contents, 

including assessment of uncertainties, for the IIAB, IID, IIIAB, and IIIF iron meteorites 

are discussed in Appendix 5. Initial composition data for all iron systems examined are 

provided in Table 5.2. 
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Table 5.2. Compositions of bulk cores of ten magmatic iron meteorites.  
 Re Os Ir Ru Pt Pd S P Ni Fe FeS/Fe ratio  

of core 

Relative mass  

of core (%) 

% of Fe  

in core 

% of Ni  

in core 

 

NC-type                

   ICa 250 2900 2700 4200 5500 3500 19 0.1 6 75 1.24 ± 0.12 21 ± 1 63 +17
/-11 82 +30

/-17  

   IIAB 150 1700 1700 2600 4100 2100 20 0.5 4 75 1.36 ± 0.14 34 ± 7  101 +27/-18 104 +38/-22  

   IIIAB 260 2800 2800 4400 5900 3100 12 0.2 7 80 0.55 ± 0.06 21 ± 3 67 +18/-12 107 +40/-23  

   IVAb 295 3250 2700 3900 5900 4500 6 0.1 8 86 0.22 ± 0.04 19 ± 4 66 +18/-12 108 +40/-23  

Average 240 2700 2500 3800 5400 3300 14 0.2 6 79 0.84 24  75 100  

                

CC-type                

   IICc 280 3350 3050 4340 6070 5300 8 3 11 78 0.34 ± 0.05 18 ± 5 49 +27/-13 102 +68/-29  

   IID 370 4400 4100 6300 8000 4300 10 1 10 79 0.45 ± 0.06 14 ± 1 39 +21/-10 76 +53/-23  

   IIFd 300 3600 3450 6000 7200 4300 14 0.4 10 75 0.75 ± 0.08 16 ± 2 43 +23/-11 89 +60/-26  

   IIIF 275 3600 3100 4300 6100 4000 5 1 8 86 0.18 ± 0.04 18 ± 2 55 +30/-14 75 +50/-21  

   IVBe 1410 21600 17500 19600 29800 10900 1 0.65 19 80 0.04 ± 0.04 4 ± 2 11 +6/-3 40 +27/-11  

   SBTf 770 9400 8500 13000 16000 8400 7 1 19 73 0.31 ± 0.05 7 ± 1 18 +10/-5 70 +47/-20  

Average 570 7700 6600 8900 12000 6200 8 1.2 13 79 0.34 13 36 76  

Concentrations are in ppb for HSE and wt. % for S, P, Ni, and Fe. Carbon contents are estimated to be <0.05 wt. % and are not listed. 

Bulk core HSE, S, and P data are from aTornabene (2020), bMcCoy et al. (2011), cTornabene et al. (2020), dHilton et al. (in revision), 
eWalker et al. (2008), and fHilton et al. (2019). Uncertainties on FeS/Fe ratio of core values reflect the ±1.5 wt. % uncertainties on 

bulk core S and Fe values. The relative mass of core values reflect the average ± 2SD enrichment factors of HSE compared to NC- or 

CC-type chondrites. Percent of Fe and Ni in core values were calculated using the median Fe or Ni content of NC- or CC-type 

chondrites and uncertainties reflect the min and max contents. Values >100 may indicate these parent bodies had Fe or Ni contents 

lower than the median Fe or Ni content of chondrites used in the calculation.      
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For the IIAB iron meteorites, HSE abundances are best explained by an initial melt 

composition of ~ 20 wt. % S, 0.5 wt. % P, <0.05 wt. % C. Using these parameters, the 

IIAB irons can be accounted for as solids produced as a result of fractional crystallization 

from a primary initial melt characterized by Re, Os, Ir, Ru, Pt, and Pd abundances of 150, 

1700, 1700, 2600, 4100, and 2100 ppb, respectively. The IID iron meteorites, by contrast, 

have HSE abundances that are most consistent with crystallization from a melt with ~ 10 

wt. % S, 1 wt. % P, <0.05 wt. % C, and Re, Os, Ir, Ru, Pt, and Pd abundances of 370, 

4400, 4100, 6300, 8000 and 4300 ppb, respectively. For this composition, five of the 12 

studied IID irons can be accounted for as solids formed directly by fractional 

crystallization while the other seven irons require various amounts of equilibrium solid 

metal-liquid metal mixing, ranging from mixing of initial solid and liquid, to mixing of 

solid and liquid produced after 25 % of crystallization.  

The HSE abundances of five IIIAB irons with limited fractionations of HSE were 

successfully modeled using initial parameters of ~ 12 wt. % S, 0.2 wt. % P, <0.05 wt. % 

C, and Re, Os, Ir, Ru, Pt, and Pd abundances of 260, 2800, 2800, 4400, 5900, and 3100 

ppb, respectively. Using this parental melt composition, two of the five examined IIIAB 

irons can be explained as direct products of fractional crystallization while the others 

likely required additional processes, such as equilibrium solid metal-liquid metal mixing. 

For the IIIF iron meteorites, the HSE abundances can largely be accounted for by a 

simple fractional crystallization model, with most representing equilibrium solids. The 

best fit model is characterized by initial parameters of ~ 5 wt. % S, 1 wt. % P, and <0.05 
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wt. % C, as well as Re, Os, Ir, Ru, Pt, and Pd abundances of 275, 3600, 3100, 4300, 

6100, and 4000 ppb, respectively.  

Using the parental melt S contents constrained by HSE modeling and the 

corresponding D values for Ni, the parental melt Ni abundance of each iron meteorite 

group can be determined from the Ni content of the least evolved group member. For 

example, a parental melt content of 20 wt. % S (IIAB) results in a Ni D value of 1.18, 

whereas a content of 1 wt. % S (IVB) results in a Ni D value of 0.88 (Chabot et al., 

2019). This range of Ni D values results in parental melt Ni contents within 0 to 2 wt. % 

of the least evolved member. The Fe content of the core can then be calculated by mass 

balance. Results of these calculations, applied to all ten magmatic iron meteorite groups, 

are provided in Table 5.2 and Fig. 5.4.  
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Fig. 5.4. The proportions of Fe, Ni, S, and P determined for bulk cores from ten 

magmatic iron meteorite parent bodies (Walker et al., 2008; McCoy et al., 2011; Hilton et 

al., 2019, in revision; Tornabene, 2020; Tornabene et al., 2020). The NC-type parent 

bodies are identified with a red background while CC-type parent bodies are identified 

with a blue background. 

 

5.5.1.2 Accretion of HSE 

Since ~99 % of the HSE in a planetesimal likely reside in its core, the relative 

abundances of these elements in a bulk core presumably reflect the relative abundances 

of these elements in the entire body. Most of the HSE ratios inferred for NC-type iron 

meteorite parent bodies are similar to one another, and within the average ± 2SD range of 

ratios defined by bulk enstatite and ordinary (NC-type) chondrites (Horan et al., 2003; 

Fischer-Gödde et al., 2010) (Fig. 5.5). Most of the HSE ratios inferred for CC-type iron 

meteorite parent bodies, except the IVB, are also similar to one another, and within the 

average ± 2SD range of ratios defined by bulk carbonaceous (CC-type) chondrites (Horan 

et al., 2003; Fischer-Gödde et al., 2010) (Fig. 5.6). Furthermore, the iron meteorite and 

chondrite parent bodies do not show appreciable differences in HSE/Ir ratios between the 
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NC and CC reservoirs (Fig. 5.6). Given that Re, Os, Ir, Ru, and Pt condense out of a solar 

nebular gas into an assortment of refractory metal phases, while Pd condenses at lower 

temperatures into a Fe alloy (Lodders, 2003), the similar HSE/Ir ratios among these 

examined iron meteorite and chondrite parent bodies suggest that most of them accreted 

similar proportions of these different phases. 

 

Fig. 5.5. Ir- and CI-normalized parental melt HSE abundances of ten iron meteorite 

parent bodies (Walker et al., 2008; McCoy et al., 2011; Hilton et al., 2019, in revision; 

Tornabene, 2020; Tornabene et al., 2020) compared to the average ± 2SD ranges 

observed in NC-type ordinary and enstatite chondrites, as well as CC-type carbonaceous 

chondrites (grey fields) (Horan et al., 2003; Fischer-Gödde et al., 2010). 



 

 

 

126 

 

 

 
Fig. 5.6. The Ru/Ir vs. Os/Ir and Pd/Ir vs. Pt/Ir ratios of NC- and CC-type iron meteorite 

parent bodies compared to the average ± 2SD ratios of NC-type enstatite and ordinary 

chondrites (red box) and CC-type carbonaceous chondrites (blue box) (Horan et al., 2003; 

Fischer-Gödde et al., 2010). 

 

The IVB iron meteorites are the only core materials considered here that were 

evidently not derived from a parental melt with relative abundances of some HSE in the 

ranges observed for other iron meteorite or chondrite parent bodies (Campbell and 

Humayun, 2005; Walker et al., 2008). This indicates that the IVB iron meteorite parent 

body, or precursor materials, had a distinctly different formation history compared to 

other magmatic irons considered. Past studies have suggested that this may be due to high 

temperature processing event, which fractionated elements by volatilization during the 

condensation of precursor materials (Campbell and Humayun, 2005; Walker et al., 2008). 

The fractionated abundances of HSE appear unrelated to the genetic isotopic 

compositions of this parent body, however, as it is isotopically identical to other CC-type 

planetesimals without fractionated Pd/Ir.  

Of the six HSE considered in this study, nucleosynthetic isotopic variations between 

NC- and CC-type magmatic iron meteorite groups are observed for Ru (e.g., 

Bermingham et al., 2018) and Pd (Ek et al., 2019) but absent for Os (Walker, 2012) and 
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Pt (Kruijer et al., 2013). Past studies have proposed that the isotopic variations that are 

observed between NC and CC materials were a product of variable thermal processing 

(e.g., Trinquier et al., 2009; Poole et al., 2017; Ek et al., 2019; Worsham et al., 2019). 

Specifically, these studies have envisioned that unstable presolar carriers with a certain 

isotopic composition were variably destroyed based on heliocentric distance in the solar 

nebula prior to planetesimal accretion or otherwise excluded from the accretionary 

processes leading to planetesimal formation. If so, the selective loss of Ru and Pd from 

certain planetary precursor materials did not fractionate these elements relative to Os and 

Pt on the bulk planetary scale to the level that is resolvable by this kind of approach. 

There are no systematic variations in Ru/Ir or Pd/Ir ratios of iron meteorite or chondrite 

parent bodies from Os/Ir or Pt/Ir ratios with genetic isotopic composition (Fig. 5.6).  

It has also been proposed that the genetic isotopic compositions of CC-type materials 

reflect a potential mixing of NC-type materials with materials that are isotopically similar 

to Ca-Al-rich inclusions (CAIs) (Burkhardt et al., 2019; Nanne et al., 2019). This idea is 

supported by the conclusions of Rubin (2018), in which it was proposed that CC-type 

planetesimals accreted more CAIs than NC-type planetesimals based on an observation 

that CC-type iron meteorites are enriched in refractory siderophile elements (Re, Os, Ir, 

Ru, and Pt), of which most CAIs are strongly enriched relative to bulk chondrites. This 

idea can be further evaluated by considering the abundance of Pd relative to the other 

HSE, since Pd is not a refractory siderophile element and condenses into Fe alloys rather 

than refractory metal phases (Lodders, 2003). As such, most CAIs have depletions in Pd 

relative to Re, Os, Ir, Ru, and Pt (Campbell et al., 2003; Archer et al., 2014). Only Group 

2 CAIs have no systematic relative depletions in Pd compared to Re, Os, Ir, Ru, and Pt, 
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but they are not strongly enriched in HSE (0.1 to 1xCI) and, therefore, unlikely to enrich 

the refractory siderophile element content of a planetary body relative to another (Archer 

et al., 2014).  

If differences in the bulk core refractory siderophile element abundances of NC- and 

CC-type bodies were the result of variable accretion of CAIs, this would likely present 

itself with bulk core compositions characterized by relative Pd depletions. However, this 

is not observed (Fig. 5.6) among most NC- and CC-type iron meteorite parent bodies 

and, therefore, no chemical indication from siderophile elements for the heterogeneous 

accretion of CAIs is apparent. Only the projected bulk core composition for the IVB irons 

has a sub-chondritic Pd/Ir ratio (Fig. 5.6), permissive of accreting more refractory metal 

phases and CAIs (Rubin, 2018). However, this characteristic at present cannot be related 

to genetic isotopic composition.  

 

5.5.1.3 Relative masses of NC vs. CC cores 

Past studies have commonly interpreted the range of Ni contents among magmatic 

iron meteorite groups to reflect the relative distribution of Fe between the core and 

mantle of a planetary body and thus, the mass of the core relative to the mantle (e.g., 

Kelly and Larimer, 1977). Consequently, as CC-type magmatic iron meteorites in most 

instances have higher Ni/Fe ratios relative to NC-type magmatic iron meteorites, their 

parent bodies have been interpreted to have a lower proportion of metallic Fe and 

relatively smaller cores (Rubin, 2018).  

The relative mass of a planetary core compared to the mantle can be quantitatively 

constrained from the bulk core HSE abundances compared in this study. This is made 
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possible by assuming ~99 % of HSE partition into the core and that NC- and CC-type 

iron meteorite parent bodies had bulk HSE compositions of NC- and CC-type chondrites, 

respectively. Of the projected abundances of HSE in the parental melts of the four NC-

type parent bodies, bulk core HSE abundances are concentrated by factors of 3 to 5 

compared to the average HSE composition of the NC-type enstatite and ordinary 

chondrites (Horan et al., 2003; Fischer-Gödde et al., 2010). These enrichment factors 

suggest that these parent bodies had cores consisting of 19 to 34 % the mass of the whole 

asteroid (Fig. 5.7). For the six CC-type parent bodies, bulk core HSE abundances are 

enriched compared to the average abundance of CC-type carbonaceous chondrites by 

factors of 6 to 27, which correspond to parent bodies with cores consisting of 4 to 18 % 

the mass of the whole asteroid (Fig. 5.7). Overall, these core sizes are grouped with 

genetic isotopic compositions, with CC-type bodies typically having proportionally 

smaller cores than NC-type bodies. However, within a single reservoir, bodies with 

identical genetic isotopic compositions formed cores with variable sizes.  
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Fig. 5.7. Parental melt HSE abundances, normalized to CI chondrites (Horan et al., 

2003), of ten iron meteorite parent bodies (Walker et al., 2008; McCoy et al., 2011; 

Hilton et al., 2019, in review; Tornabene, 2020; Tornabene et al., 2020). Average HSE 

abundances of NC-type ordinary and enstatite chondrites and CC-type carbonaceous 

chondrites are shown for reference (Horan et al., 2003; Fischer-Gödde et al., 2010) as 

well as lines representing the HSE content of a bulk core that is 5, 8, and 20 % the mass 

of a planetary body. 

 

5.5.1.4 Oxidation  

Upon recognizing the existence of the NC and CC reservoirs, Warren (2011) posited 

that these reservoirs may represent the inner and outer Solar System, respectively, 

relative to Jupiter. This argument was based on the limited number (at the time) of CC-

type samples derived from differentiated bodies, which was interpreted to indicate that 

CC-type planetesimals were less likely to undergo major heating, coupled with the 

widespread hypothesis that carbonaceous chondrites, some of which bear hydrous 

minerals, likely formed at greater radial distances from the Sun than NC chondrites (e.g., 

Wood, 2005). While numerous CC-type differentiated meteorites, such as the IIC, IID, 

IIF, IIIF, IVB, and SBT iron meteorites, have since been identified (Kruijer et al., 2017; 

Hilton et al., 2019), indicating that NC- and CC-type planetesimals both underwent major 

heating sufficient for core segregation, the locations of the NC and CC reservoirs as the 

inner and outer Solar System, relative to Jupiter, continue to be favored by many 
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subsequent studies (e.g., Budde et al., 2016a; Kruijer et al., 2017; Burkhardt et al., 2019; 

Nanne et al., 2019; Worsham et al., 2019). For example, Worsham et al. (2019) built 

upon an inner and outer Solar System divide to propose that the variable isotopic 

compositions observed for Mo, Ru, and W among NC- and CC-type iron meteorites were 

consistent with these reservoirs evolving under distinct redox conditions, specifically 

reduced conditions for NC-type materials as envisioned for the inner Solar System and 

oxidized conditions for CC-type materials as expected for the outer Solar System.  

While the oxidation conditions of the four NC-type parent bodies and the six CC-type 

parent bodies considered here can be indirectly inferred from the relative mass of their 

cores, a more direct comparison can be made by constraining the distribution of Fe and 

Ni in these planetary bodies between the core and mantle (Kelly and Larimer, 1977). 

Quantitative Fecore/Fetotal and Nicore/Nitotal ratios can be determined from the bulk Fe and 

Ni contents of each core, coupled with the mass proportion of each parent body residing 

in a core, and using the Fe and Ni contents of NC- and CC-type chondrites (Lodders and 

Fegley, 1998) as a proxy for the bulk Fe and Ni compositions of NC- and CC-type iron 

meteorite parent bodies (Table 5.2).  

The CC-type planetesimals, on average, have a smaller proportion of total Fe in their 

cores, compared to NC-type planetesimals, permissive of the CC reservoir being a more 

oxidized environment, such as the outer Solar System (Fig. 5.8). However, this 

environment was not oxidizing to the extent that it affected the distribution of Ni between 

the core and mantle. Additionally, significant overlap in the inferred oxidation state of 

NC- and CC-type iron meteorite parent bodies is observed, making any distinction 

between the oxidation state of individual planetary bodies with genetic isotopic 
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composition ambiguous. If the NC and CC reservoirs represent the inner and outer Solar 

System, respectively, relative to Jupiter, one possible explanation for the overlap in 

oxidation conditions is if the snow line was located sunward of Jupiter (Lacar et al., 

2006; Garaud and Lin, 2007; Kennedy and Kenyon, 2008). If so, this could explain why 

some NC-type bodies have similar oxidation states to some CC-type bodies.  

 

 
Fig. 5.8. µ97Mo isotopic compositions vs. (left) percent of total Fe of a planetary body in 

the core and (right) percent of total Ni of a planetary body in the core for ten iron 

meteorite parent bodies. Isotopic compositions are from Kruijer et al. (2017), Worsham et 

al. (2017), Bermingham et al. (2018), and Hilton et al. (2019). Error bars for percent of 

total Fe and Ni in the core represent the range of Fe and Ni contents observed in NC- and 

CC-type chondrites (Lodders and Fegley, 1998).  

 

As noted for core size, there is no relationship between projected oxidation conditions 

and genetic isotopic compositions for parent bodies that formed within the same reservoir 

(Fig. 5.8). For example, the CC-type IIC iron meteorites have a distinct Mo isotopic 

composition from the other CC-type iron meteorites considered in this study (Kruijer et 

al., 2017; Tornabene et al., 2020), yet an indistinguishable relative oxidation state. As 

such, if the distinct isotopic composition of the IIC irons compared to other CC-type iron 

meteorites is related to oxidation conditions, this is not reflected in the chemical 
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characteristics of bulk planetary bodies. Whether or not oxidation states of NC-type 

bodies vary with genetic isotopic compositions cannot currently be constrained since the 

IC, IIAB, IIIAB, and IVA irons have similar genetic isotopic compositions (e.g., 

Bermingham et al., 2018). Only some non-magmatic (e.g., IAB main group) and 

ungrouped (e.g., Gebel Kamil) iron meteorites have been reported to have Mo and Ru 

genetic isotopic compositions that differ from the IC, IIAB, IIIAB, and IVA iron 

meteorites (Bermingham et al., 2018). Unlike for magmatic irons, however, the origins of 

these types of iron meteorites remain uncertain (e.g., Hilton and Walker, 2020), making a 

comparison of their chemical compositions to those of magmatic iron meteorite groups 

ambiguous.  

 

5.5.1.5 Volatility  

Bulk core S contents vary among NC-type asteroids from 6 wt. % (IVA) to 20 wt. % 

(IIAB) and among CC-type asteroids from 1 wt. % (IVB) to 14 wt. % (IIF). These 

variations may be the result of pre- and/or post-accretion processes. For example, pre-

accretion, the S content of precursor materials is set by the formation of FeS through the 

reaction of Fe metal with H2S (Kelly and Larimer, 1977). As such, FeS formation can 

vary with the temperature at which an asteroid’s precursor materials condensed. Post-

accretion, it may be possible to lose S through planetary outgassing (e.g., Rasmussen et 

al., 1984). Secondary processes, such as aqueous alteration, metamorphic process, and/or 

oxidation, may also transport S between different phases, such as sulfides, sulfates, S0, 

and organic compounds, as evidenced in carbonaceous chondrites (Gao and Thiemens, 
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1993). Finally, the bulk core S content is set by the efficiency of the segregation of 

remaining FeS to the core (e.g., Kruijer et al., 2014a).  

Since S, which has a 50 % condensation temperature (T50) of 664 K (Lodders, 2003), 

is the most volatile element considered in this study, possible S variations by volatile-

related processes, such as condensation or outgassing, may be assessed through 

comparison to other elements with similar condensation temperatures. These include Ga 

and Ge, which have 50 % condensation temperatures of 968 K and 883 K, respectively 

(Lodders, 2003). Since Ga and Ge typically have solid metal-liquid metal partition 

coefficients near 1 regardless of initial S content (Chabot et al., 2017), the average iron 

meteorite group Ga and Ge abundances provide first-order constraints on bulk core 

compositions. Bulk core S contents form broad positive relationships between Ga and Ge 

average group abundances, suggesting that at least some variations in bulk core S 

contents are likely volatility-related (Fig. 5.9). The variations are decoupled from genetic 

isotopic compositions, however, indicating both NC- and CC-type asteroids were 

variably affected by volatility-related processes, such as processes affecting precursor 

materials (i.e., inductive heating of nebular materials) and/or parent body processes (i.e., 

impacts). Since the bulk core content of volatile siderophile elements is not diagnostic of 

which volatility-related processes were occurring, NC- and CC-type iron meteorite parent 

bodies may have been affected by both processes similarly or variably.  
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Fig. 5.9. Comparisons of Ga/CI, Ge/CI, and S/CI abundances of bulk cores from ten 

magmatic iron meteorite parent bodies (Walker et al., 2008; McCoy et al., 2011; Hilton et 

al., 2019, in revision; Tornabene, 2020; Tornabene et al., 2020). CI-chondrite reference 

lines are also shown (Lodders and Fegley, 1998). Average group Ga and Ge abundances 

are compiled from the literature. 

 

5.5.2 Chemical characteristics vs. ages 

One aspect concerning the origins of the NC and CC reservoirs that remains uncertain 

is the relative timing of the introduction of the isotopically distinct materials of these 

reservoirs to the early Solar System. Kruijer et al. (2017) proposed that CC-type materials 

were added to the Solar System after NC-type materials, due to differences in model 182W 

ages of some NC- and CC-type iron meteorites. That study noted that NC-type magmatic 

iron meteorites, compared to CC-type irons, tend to have µ182W isotopic compositions 

more similar to CAIs, which are interpreted as the first materials to condense in the Solar 
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System (e.g., Amelin et al., 2002). This observation was interpreted to indicate that NC-

type bodies began forming cores, on average, about 1 Myr earlier than CC-type iron 

meteorite parent bodies. Thermal modeling conducted by Kruijer et al. (2017) also 

suggested the NC parent bodies accreted about 0.5 Myr, on average, earlier than CC 

parent bodies.  

By contrast, more recent studies have proposed that CC-type materials were present 

in the Solar System prior to NC materials, based on the genetic isotopic similarities of 

CC-type materials to CAIs (Burkhardt et al., 2019; Kruijer et al., 2019; Nanne et al., 

2019). If so, then the observed offset in µ182W values between some NC- and CC-type 

bodies warrants explanation. Some past studies have proposed that factors other than 

accretion ages, such as chemical compositions, may account for differences in initial 

µ182W values. For example, Hellmann et al. (2019) proposed that differences in µ182W 

values between NC and CC bodies may reflect differences in the bulk Hf/W ratios of 

precursor materials and parent bodies. Hilton et al. (2019) proposed that differences in 

µ182W values could represent differences in the FeS vs. Fe content of NC- vs. CC-type 

planetary cores. If either is true, then the interpretation of W model ages, and thus the 

current interpretations regarding the timing of core formation on NC- and CC-type 

bodies, may be problematic.  

Whether the FeS vs. Fe content of a planetary core can account for differences in the 

µ182W isotopic composition of NC- and CC-type magmatic iron meteorites can be further 

assessed using the additional chemical constraints compiled by this study. Kruijer et al. 

(2014a) initially proposed that differences in core formation ages could reflect 

differences in the relative proportions of FeS vs. Fe in planetary cores since FeS and Fe 
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melt at different temperatures and, therefore, FeS and Fe liquids may evolve distinct 

µ182W isotopic compositions. As such, a bulk core µ182W isotopic composition could be 

the product of mixing variable proportions of FeS and Fe. This idea was then applied by 

Hilton et al. (2019) to explain the core formation age dichotomy observed for some NC- 

and CC-type parent bodies using bulk core S contents for three NC-type and three CC-

type iron meteorite parent bodies. With the new constraints provided by this study on the 

Fe and S contents of bulk cores, it is possible to calculate the FeS/Fe ratio of bulk cores 

for ten magmatic iron meteorite parent bodies (Table 5.2). These calculations are based 

on the assumptions that all S in the core is sourced from FeS and no S was lost from the 

core following differentiation. Overall, there is a tendency for FeS-rich cores to have 

more negative µ182W isotopic compositions (Fig. 5.10). However, highlighting a clear 

relationship is problematic since CC-type irons, which have a 14 wt. % range in bulk core 

S contents, have no resolved differences in µ182W isotopic compositions.  

 

 
Fig. 5.10. Radiogenic µ182W isotopic compositions vs. (left) bulk core FeS/Fe ratio and 

(right) percent of the planetary body Fe content in the core. Radiogenic µ182W isotopic 

compositions are from Kruijer et al. (2017) and Hilton et al. (2019). 
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The µ182W values of NC- and CC-type magmatic iron meteorites also do not correlate 

with percent of Fe of a planetary body in the core (Fig. 5.10) since many of these values 

are not resolved among parent bodies. Since the distribution of Fe in a planetary body 

serves as a proxy for oxidation state, a relationship could suggest that more oxidized 

bodies form cores at slower rates than reduced bodies, possibly by the heterogeneous 

accretion of ice. Ice can increase the oxidation state of a planetary body as well as vary 

the planetesimal’s density and concentration of 26Al, the dominant heat-producing 

radionuclide in the early Solar System. As a result, the overall power per unit volume 

from 26Al decay for melting planetary bodies could be reduced (e.g., Hilton et al., 2019). 

Additionally, if any ice melted and then evaporated during planetary processing, it is 

plausible that there could be a loss of energy from the system and, thus, a slowing and 

prolonging of core formation. It is also possible that a relationship between the 

distribution of Fe in a planetary body and the timing of core formation simply reflects the 

relative proportions of FeS vs. Fe in the core since less Fe will segregate into the core of 

an oxidized body. Overall, since the FeS/Fe content of a core and the oxidation state of a 

body do not form definitive relationships with timing of core formation, the observed 

offset in µ182W values between some NC- and CC-type bodies may still reflect 

differences in accretion ages (Kruijer et al., 2017) or bulk planetesimal Hf/W ratios 

(Hellmann et al., 2019). Further work is needed to discriminate between these 

possibilities. 

 

5.5.3 Isotopic heterogeneity of the NC and CC reservoirs 
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A common explanation for the isotopic heterogeneity of the NC and CC reservoirs is 

the inheritance of isotopic heterogeneities to planetary bodies based on the initial 

heterogeneous distribution of isotopically distinct precursor materials in the parental 

molecular cloud (Dauphas et al., 2002; Burkhart et al., 2019; Nanne et al., 2019). A 

shortcoming of this model, however, is that it fails to account for the apparent 

homogenous distribution of certain precursor materials, such as those hosting Hf, Os, and 

Pt (Sprung et al., 2010; Walker, 2012; Kruijer et al., 2013). Other studies, therefore, have 

argued for an isotopically homogenized molecular cloud, which then developed certain 

isotopic heterogeneities due to a specific process, including sorting of materials by type 

(Regelous et al., 2008) or size (Dauphas et al., 2010), thermal processing of materials 

under variable oxidation conditions (Poole et al., 2017; Worsham et al., 2019), or the late 

injection of isotopically distinct materials (Brennecka et al., 2013; Sugiura and Fujiya, 

2014; Kruijer et al., 2017).  

  We find that the chemical characteristics of the studied iron meteorite parent bodies 

neither support nor disprove the previously proposed mechanisms. For example, 

Regelous et al. (2008) proposed that phases of metal, sulfides, and silicates, which had 

distinct genetic Ni isotopic compositions, were physically separated (further details were 

not provided) in the Solar System and, therefore, heterogeneously accreted by planetary 

bodies. In this study, we find that the FeS/Fe ratio of magmatic iron meteorite cores, 

while variable, do not vary with genetic isotopic composition. This lack of relationship 

does not disprove the proposed idea of Regelous et al. (2008), however, as the FeS/Fe 

ratio of the core does not constrain the FeS/Fe ratio of the parent body. 
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The abundance of volatile elements in the cores of the examined magmatic iron 

meteorites does not provide a clear assessment of the possible effects of thermal 

processing. Trinquier et al. (2009) argued for the thermal processing of materials to 

explain the correlated variations in isotopes of Ti derived from different nucleosynthetic 

processes. In this scenario, certain precursor materials were destroyed by sublimation, 

separated from other materials as a gas, and re-condensed elsewhere in the Solar System. 

This idea was expanded by Poole et al. (2017) to also account for Mo and further 

expanded by Worsham et al. (2019) to account for decoupled variations for Mo and 183W 

among CC-type materials and Mo and Ru among NC-type materials. If thermal 

processing was occurring at relatively high temperatures (~ >700 K), volatile siderophile 

elements may also have sublimated and abundances of these elements in a parent body 

may correlate with degree of isotopic heterogeneity. Yet no variations among Ga, Ge, and 

S abundances with genetic isotopic composition are observed for the cores of iron 

meteorite parent bodies, suggesting thermal processing at high temperatures did not 

dominantly cause the isotopic heterogeneity among asteroids. This observation does not 

fully exclude this idea, however, as the Ga, Ge, and S content of a core may also be set 

by processes occurring after planetary accretion. Overall, if thermal processing did 

produce isotopic heterogeneities, it may have been a relatively lower temperature 

process.  

Poole et al. (2017) and Worsham et al. (2019) argued for additional affects of 

oxidation to the thermal processing of precursor materials. Specifically, Poole et al. 

(2017) noted that decoupled isotopic variations of Mo and W for some meteorites, despite 

the hosting of these elements in the same carriers (Burkhardt et al., 2012), indicated Mo 
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was volatilized under oxidizing conditions. Worsham et al. (2019) applied this logic 

further to account for correlated variations for isotopic compositions of Mo and Ru 

among NC-type iron meteorites and correlated variations for isotopic compositions of Mo 

and 183W among CC-type iron meteorites, calling upon thermal processing of Mo and Ru 

carriers in the NC reservoir under reduced conditions and thermal processing of Mo and 

183W carriers  in the CC reservoir under oxidizing conditions. If true, it may be expected 

that the IIC iron meteorite parent body, which has the greatest s-process Mo deficits 

relative to terrestrial materials of the examined iron meteorite parent bodies, would be the 

most oxidized body. However, that is not observed, with the IIC iron meteorite parent 

body having an oxidation state similar to isotopically distinct CC and NC iron meteorites. 

Yet, it remains possible that additional oxidation processes overprinted those involved in 

generating isotopic heterogeneities on the parent body scale.  

Late injection of isotopically distinct materials remains a possible mechanism to 

explain the isotopic variability of the NC and CC reservoirs. While there are no clear 

differences in the accretion ages of NC- and CC-type parent bodies that would indicate 

differences in the relative timing of the addition of NC- or CC-type materials to the Solar 

System (Hilton et al., 2019; Kaminski et al., 2020), there may be evidence for the late 

injection of isotopically distinct materials (or removal of isotopically distinct materials) 

to just the NC reservoir. Hilton and Walker (2020) observed a relationship between 

genetic isotopic composition and age of iron meteorite formation for NC-type irons. By 

contrast, no such relationship is observed for CC-type materials (Kruijer et al., 2017). 

These observations may indicate that the causes of isotopic heterogeneity varied between 

the two reservoirs. If true and the cause of isotopic heterogeneity of the CC reservoir was 
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not time related, the cause is not apparent when comparing the chemical characteristics of 

CC-type iron meteorite parent bodies. 

Overall, the chemical characteristics of NC- and CC-type magmatic iron meteorite 

parent bodies do not form clear relationships with genetic isotopic compositions in ways 

that indicate the cause of isotopic heterogeneity to the early Solar System. This may be 

due to the overwriting of signatures by the process of planetary formation and 

differentiation. Alternatively, this may indicate that the cause of isotopic heterogeneity on 

the planetary scale was due to the minor heterogeneous accretion of materials with major 

isotopic anomalies. As such, isotopic anomalies on the parent body scale would be 

observed without any clear variations in the chemical characteristics of a bulk body. If 

true, more insights to the cause of isotopic heterogeneity may be gained by studying the 

isotopic and chemical compositions of planetary precursor materials, such as through 

leachate analyses of chondrites and studies of presolar grains, CAI, chondrule, and matrix 

separates. Both of these applications have shown distinct isotopic compositions exist 

among the individual components of a parent body (e.g., Burkhardt et al., 2011, 2019; 

Budde et al., 2016a, 2018, 2019). By improving our understanding of the degree of 

isotopic anomalies present in different host phases, host phases with the largest isotopic 

anomalies can be further studied to determine their stabilities under different nebular 

conditions. It may then be possible to identify the specific precursor material(s) varying 

in abundance among planetary bodies.   

 

 



 

 

 

143 

 

5.6 Conclusions 

Through the study of HSE abundances in magmatic iron meteorites, we draw the 

following conclusions: 

1. Comparison of the parent body HSE/Ir ratios and bulk core inventories of volatile 

elements (i.e. Ga, Ge, and S) of NC- and CC-type iron meteorite parent bodies 

indicate that the processes setting planetesimal genetic isotopic compositions and 

these chemical characteristics in early formed iron meteorite parent bodies are 

largely decoupled.  

2. The bulk core chemical compositions (HSE, S, P, C, Ni, and Fe) and core-mantle 

distribution of Fe of NC- and CC-type iron meteorite parent bodies are permissive 

of CC-type bodies typically having smaller relative cores and accreting in more 

oxidized environments.  

3. Comparison of the chemical characteristics of NC- and CC-type iron meteorite 

parent bodies with radiogenic µ182W isotopic compositions suggest that a model 

182W age may be partially controlled by the core FeS/Fe content and/or oxidation 

state of a planetary body, although there is no clear relationship. As such, the 

differences in µ182W values among some NC- and CC-type magmatic iron 

meteorites remain largely unaccounted for. 

 

5.7 Appendix 5 

5.7.1 Fractional crystallization modeling overview 

The concentration of S (and eventually the other elements) is calculated throughout 

the evolution of a liquid melt using Eq. 1, in which Fn is the fraction of liquid (n = 100 is 
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pure liquid), CLn is the concentration of an element in the liquid phase at Fn, and Dn is the 

partition coefficient of an element. A constant partition coefficient of 0.001 is used for S 

(Walker et al., 2008). The partition coefficients for P and C are determined at each Fn by 

considering the concentration of S and P or S and C, respectively, in the liquid at Fn+1. 

Equation 2 is used to account for the effects of S on P and C partitioning behavior 

(Chabot and Jones, 2003), where values of Do for P and C are taken from Chabot et al. 

(2017) and Worsham et al. (2016a), respectively. The “Fe domains” value, where Xi is 

the mole fraction of an element in the liquid, represents the conceptual combination of Fe 

metal, FeS, Fe3P, and Fe3C components in the liquid (Eq. 3; Chabot et al., 2017). This 

term is used with β, which represents the correlation between Fe domains and D values. 

The βSPC variable is determined using Eq. 4 (Jones and Malvin, 1990), in which βS and βP 

are taken from Chabot et al. (2017) and βC is taken from Worsham et al. (2016a). For P, 

the effects of C are not considered and for C, the effects of P are not considered. The βSPC 

and “Fe domains” variables are calculated at each Fn.  

After determining the concentration of S, P, and C at each Fn for a given initial S, P, 

and C content, the corresponding D values for the HSE are calculated using Eq. 2-4 

(Jones and Malvin, 1990; Chabot and Jones, 2003; Worsham et al., 2016a; Chabot et al., 

2017). After assuming an initial HSE composition, the concentration of HSE in the liquid 

at each Fn is then determined using Eq. 1 and the solid composition (CSn) crystallizing at 

each Fn is determined using Eq. 5. The composition of trapped melt (the liquid 

endmember in sold metal-liquid metal mixing) is then determined from CLn following the 

approach of Chabot (2019) for considering the effects of troilite formation. The 
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concentration of S in the liquid at each Fn is divided by 36.5 to determine the “x” value. 

The HSE concentrations of the trapped melt are determined by Eq. 6.   

 

 

 

 

 

 

These calculations are performed iteratively as the initial S, P, C, and HSE 

abundances are adjusted. The initial P and C contents are, to a first-order, constrained by 

applying the calculated D values for a given initial S content to the P and C contents, 

determined from modal analysis of phosphide and carbide inclusions (Buchwald, 1975), 

of the most primitive irons, which are assumed to crystallize within the first ~10 % of 

factional crystallization. Initial HSE abundances are then determined in a similar way by 

applying calculated D values for a given initial S, P, and C content to the HSE 

abundances of the same primitive irons. Ultimately, the initial S, P, C, and HSE parental 

melt contents are varied until a best fit to the measured HSE abundances is identified. 

Values for Do, βS, βP, and βC are allowed to vary within the 2σ uncertainties provided by 

Chabot et al (2017) in order to achieve the best model fit. In the event that there are 

multiple parental melt compositions that can account for the HSE data, the parental melt 

composition with relative abundances of HSE closest to the ranges observed in chondrites 
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is reported as the best-fit model (e.g., Hilton et al., in revision). Examples of predicted 

HSE patterns for solids and liquids produced during fractional crystallization with 

various initial S and P contents are shown in Figs. A5.1 and A5.2).  

 

5.7.2 Fractional crystallization modeling of IIAB irons 

Conflicting initial S, P, and C contents of the IIAB liquid have been previously 

proposed, ranging from as low as 6 wt. % S and 1.5 wt. % P, to as great as 16 to 18 wt. % 

S and 1 wt. % P (Chabot, 2004; Wasson et al., 2007; Goldstein et al., 2009). We find that 

the HSE abundances of the IIAB irons are best explained by an initial parental melt 

composition of 20 wt. % S, 0.5 wt. % P, <0.05 wt. % C.  Using these initial parameters, 

the IIAB irons can be accounted for as solids produced as a result of fractional 

crystallization from a primary initial melt characterized by Re, Os, Ir, Ru, Pt, and Pd 

abundances of 150, 1700, 1700, 2600, 4100, and 2100 ppb, respectively (Fig. A5.3). 

Comparisons of the HSE abundances of the IIAB irons to a system with 6 wt. % S and 

1.5 wt. % P are shown in Fig. A5.4. This model does not properly account for the Pd 

abundances of the IIAB irons, indicating that this initial S content is too low to account 

for the HSE systematics of the IIAB irons, or partitioning behavior that is different from 

experimental observations.  

 

5.7.3 Fractional crystallization modeling of IID irons 

Wasson and Huber (2006) interpreted the observations of low FeS abundances in the 

most chemically evolved IID irons (i.e., Needles and Wallapai) to mean that solid metal-

liquid metal mixing was negligible, and determined that the parental melt S content of the 
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IID irons was 0.7 wt. %, in order for Wallapai to be produced as a solid directly by 

fractional crystallization. In contrast to this conclusion, Goldstein et al. (2009) 

determined that the Ir, Au, and Ga abundances of the IID irons were most consistent with 

a parental melt S content of 6 to 12 wt. %. The HSE abundances of the IID irons are most 

consistent with crystallization from a melt with ~10 wt. % S, 1 wt. % P, <0.05 wt. % C, 

and Re, Os, Ir, Ru, Pt, and Pd abundances of 370, 4400, 4100, 6300, 8000 and 4300 ppb, 

respectively (Fig. A5.5). For this model, five of the 12 studied IID irons are accounted 

for as solids formed directly by fractional crystallization. The other seven irons require 

various amounts of equilibrium solid metal-liquid metal mixing, ranging from mixing of 

initial solid and liquid, to mixing of solid and liquid produced after 25 % of 

crystallization. Comparisons of HSE abundances to the Wasson and Huber (2006) model 

with a parental melt abundance of 0.7 wt. % S are shown in Fig. A5.6. While a parental 

melt composition with 0.7 wt. % S can account for the Re and. Pd abundances of the IID 

irons, it fails to account for abundances of the other HSE, making this initial composition 

unlikely.  

 

5.7.4 Fractional crystallization modeling of IIIAB irons 

Although large-scale variations in siderophile element abundances are broadly 

consistent with fractional crystallization, many of the highly evolved IIIAB iron 

meteorites or Cape York suite cannot be explained as direct products of it (e.g., Cook et 

al., 2004). This has led to numerous explanations of their origins, including division of 

the core into separate magma chambers by early formed dendrites (Haack and Scott, 

1993), crystallization from immiscible S-rich and P-rich liquids (Ulff-Møller, 1998), 
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equilibrium mixing of solids and trapped liquids by diffusion (Wasson, 1999; Chabot, 

2019), and non-equilibrium mixing of primitive solids with evolved liquids (Cook et al., 

2004). Further, past studies have also proposed parental melt S contents for the IIIAB 

irons ranging from 1.4 to 12 wt. % (Willis and Goldstein, 1982; Jones and Drake, 1983; 

Haack and Scott, 1993; Ulff-Møller, 1998; Chabot and Drake, 1999; Wasson, 1999; 

Wasson and Richardson, 2001; Chabot, 2004, 2019; Goldstein et al., 2009). Here, the 

HSE abundances of five of the IIIAB irons with limited fractionations of HSE were 

modeled. The best fit model is characterized by initial parameters of 12 wt. % S, 0.2 wt. 

% P, <0.05 wt. % C, and Re, Os, Ir, Ru, Pt, and Pd abundances of 260, 2800, 2800, 4400, 

5900, and 3100 ppb, respectively. Using this parental melt composition, two of the five 

examined IIIAB irons can be explained as direct products of fractional crystallization 

while the others likely required additional processes, such as equilibrium solid metal-

liquid metal mixing (Fig. A5.7). The HSE abundances of the IIIAB iron meteorites are 

compared to a model using 1.4 wt. % S in Fig. A5.8. As highlighted by the Re vs. Pd 

systematics, the IIIAB iron meteorites are not consistent with crystallizing from a 

parental melt with a S content this low.  

 

5.7.5 Fractional crystallization modeling of IIIF irons 

The IIIF irons examined have HSE abundances that can largely be accounted for by a 

simple fractional crystallization model, with most representing equilibrium solids (Fig. 

A5.9). The best fit model is characterized by initial parameters of 5 wt. % S, 1 wt. % P, 

and <0.05 wt. % C, as well as Re, Os, Ir, Ru, Pt, and Pd abundances of 275, 3600, 3100, 

4300, 6100, and 4000 ppb, respectively. The IIIF iron Klamath Falls deviates slightly 
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from the solid metal HSE evolution curves, suggesting it may have been affected by an 

additional process, such as equilibrium solid metal-liquid metal mixing.  

 

5.7.6 Assessment of uncertainties 

Potential sources of uncertainties when modeling parental melt HSE, S, P, and C 

contents include uncertainties from measured HSE abundances as well as uncertainties on 

experimentally-determined D values. As uncertainties on HSE abundances are <3 %, the 

dominant sources of uncertainties for this modeling are from Do, βS, βP, and βC values, the 

uncertainties on which range from 4 to 9 %, 4 to 10 %, 12 to 69 %, and 23 to 133 %, 

respectively (Chabot et al., 2017). To assess the effect of these uncertainties on the 

calculation of D values, the maximum and minimum values of the 2σ expansions of error 

on Do, βS, βP, and βC values are applied to the fractional crystallization model of the IIIF 

iron meteorites (Fig. A5.10). Results of varying these values within the 2σ ranges 

indicate that some elements (e.g., Re, Ru, and Pd) provide better constraints on parental 

melt composition than others, due to differences in the uncertainties on HSE D values. 

The greatest variations are observed when coupling two elements together (e.g., Re/Os 

and Pt/Os).  

The results of varying S content on parental melt modeling is shown in Fig. A5.11. 

Typically, most scatter around a given fractional crystallization model is accounted for by 

a parental melt S content uncertainty of ±1.5 wt. % (Chabot, 2004). As highlighted in 

Fig. A5.11, adjusting the parental melt S content by ±1.5 wt. % results in corresponding 

changes to the HSE concentration of the initial solid. In order to keep the concentration of 

the initial solid consistent between all models within ±1.5 wt. % S, in the case of the IIIF 
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irons, requires adjusting the parental melt Re, Os, Ir, Ru, Pt, and Pd content by ±18 %, 

±21 %, ±19 %, ±14 %, ±16 %, and ±3 %, respectively. These percentages are interpreted 

to be representative of the uncertainties on HSE parental melt compositions for the IIAB, 

IID, IIIAB, and IIIF iron meteorites.       
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Table A5.1. Comparison of HSE abundances to previous studies.  
Sample Re Re (literature) Os Os (literature) Ir Ir (literature) Ru Ru (literature) Pt Pt (literature) Pd Pd (literature) 

IIAB irons             
Forsyth County 3700 4044a 44554  39270 40400a 27300  37610 35100a 1754  

Cincinnati 1530 172 a 13199  19940 20300a 24070  33330 30000a 1757  

Braunau 772.5 877a 5445.9  11020 11300a 17680  30080 30400a 1820  
North Chile 208.8 212a, 199.61b 1067.5 1033.4b 3585 3430a 15810  26590 21800a, 25340b 2006  

Sikhote-Alin 1.528 <30a 12.110  23.08 24a 4862  5377 5500a 2449  

             
IID irons             

NEA 002 1960 2150c 28741  21480 22600c 16990 20300c 22310 22400c 2774  

Arltunga 1914 2070c 26255  20540 20600c 17220 19800c 23180 21600c 2868  

Losttown 1912 2020c 26303  20490 20700c 17340  22660 19300c 2988  

N'Kandhla 1779 1940c 23869  19160 19600c 16970  22780 19900c 2959  

Bridgewater 1767 2020c 23628  19100 19700c 17000  22880 22000c 2950  
Mount Ouray 1586 1740c 20594  17240 17800c 16510  22550 23000c 3280  

Elbogen 1415 1580c 18114  15570 15900c 15080  20700 19000c 2890  

Carbo 1292 1420c 15544  14080 14300c 16030  22080 22400c 3097  
Puquios 1263 1390c 16060  14190 14300c 15550  20500 19900c 3185  

Rodeo 754.1 1070c 9383.0  8726 10200c 12180  16690 15500c 3930  

Needles 453.8 510c 5056.0  5139 5370c 10200  14610 13300c 4935  
Wallapai 343.7 410c 3532.0  3830 3990c 9449  12530 11600c 5133  

             

IIIAB irons             
Costilla Peak  1421 1429.8b 18319 18675b 13750 14000d 12740  15870 17400b, 13400d 3349  

Henbury 1287  15053  13630  13180  16670  2127  
Charcas  150.8 149.40b 1082.3 1090.9b 2240  8411  12110 12530b 2619  

Tamarugal 33.88 36.104b 235.30 255.19b 562.6 570d 4854  7624 7859b, 6300d 3336  

Maldyak 25.37  167.01  462.5  4602  7148  4325  
             

IIIF irons             

Nelson County 794.8  11970  8650  7064  10310  2517  
Clark County 665.1  9271.0  7240  6747  10150  2681  

Oakley 507.2  6500.8  5529  6307  9635  3016  

Cerro del Inca 282.9  2873.2  3251  6348  8719  3298  
St. Genevieve County 159.8  1345.7  1950  5651  8315  3554  

Moonbi 110.2  854.60  1398  5126  7611  3782  

Klamath Falls 0.2787  1.3166  3.229  1033  1455  5702  
aWasson et al. (2007), bCook et al. (2004), cWasson and Huber (2006), dWasson (1999), Schaudy et al. (1972), Scott and Wasson 

(1976), Pernicka and Wasson (1987), Grossman (2000). 
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Fig. A5.1. Model HSE abundances, normalized to CI-chondrites (Horan et al., 2003), of solid and trapped melt produced at 5 % 

intervals between initial and 30 % fractional crystallization for three different S parental melt contents.   
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Fig. A5.2. Model HSE abundances, normalized to CI-chondrites (Horan et al., 2003), of 

solid and trapped melt produced at 5 % intervals between initial and 30 % fractional 

crystallization for two different P parental melt contents.  
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Fig. A5.3. Fractional crystallization model compared to the HSE abundances of IIAB 

irons (orange diamonds). Additional IIAB Re, Os, and Pt data from Cook et al. (2004) are 

shown as orange diamonds with black crosses. Solid metal and liquid metal evolution 

lines are shown in black and red, respectively. Initial solid and liquid compositions are 

shown as black and red stars, respectively. Grey lines reflect equilibrium mixing of solid 

and liquid at initial, 5 %, and 10 % crystallization steps. Tick marks on mixing lines 

reflect 10 % increments.  
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Fig. A5.4. Fractional crystallization model of 6 wt. % S and 1.5 wt. % P compared to the 

HSE abundances of IIAB irons (orange diamonds). Additional IIAB Re, Os, and Pt data 

from Cook et al. (2004) are shown as orange diamonds with black crosses. Solid metal 

and liquid metal evolution lines are shown in black and red, respectively. Initial solid and 

liquid compositions are shown as black and red stars, respectively.  
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Fig. A5.5. Fractional crystallization model compared to the HSE abundances of IID irons 

(blue squares). Solid metal and liquid metal evolution lines are shown in black and red, 

respectively. Initial solid and liquid compositions are shown as black and red stars, 

respectively. Grey lines reflect equilibrium mixing of solid and liquid at initial, 10 %, and 

20 % crystallization steps. Tick marks on mixing lines reflect 10 % increments.
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Fig. A5.6. IID fractional crystallization model assuming an initial S content of 0.7 wt. % 

(and corresponding 2 wt. % P) compared to the HSE abundances of IID irons (blue 

squares). Solid metal and liquid metal evolution lines are shown in black and red, 

respectively. Initial solid and liquid compositions are shown as black and red stars, 

respectively.  

 



 

 

 

158 

 

Fig. A5.7. Fractional crystallization model compared to the HSE abundances of IIIAB 

irons (red circles). Additional IIIAB Re, Os, and Pt data from Cook et al. (2004) are 

shown as red circles with black crosses. Solid metal and liquid metal evolution lines are 

shown in black and red, respectively. Initial solid and liquid compositions are shown as 

black and red stars, respectively. Grey lines reflect equilibrium mixing of solid and liquid 

at initial, 15 %, and 30 % crystallization. Tick marks on mixing lines reflect 10 % 

increments.
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Fig. A5.8. Fractional crystallization model of 1.4 wt. % S compared to the HSE 

abundances of IIIAB irons (red circles). Additional IIIAB Re, Os, and Pt data from Cook 

et al. (2004) are shown as red circles with black crosses. Solid metal and liquid metal 

evolution lines are shown in black and red, respectively. Initial solid and liquid 

compositions are shown as black and red stars, respectively.   
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Fig. A5.9. Fractional crystallization model compared to the HSE abundances of IIIF irons 

(green triangles). Solid metal and liquid metal evolution lines are shown in black and red, 

respectively. Initial solid and liquid compositions are shown as black and red stars, 

respectively. 
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Fig. A5.10. The fractional crystallization model of the IIIF iron meteorites (solid lines) 

compared to models using the minimum and maximum expansion of 2σ uncertainties on 

Do, βS, βP, and βC values (Chabot et al., 2017). Solid metal and liquid metal evolution 

lines are shown in black and red, respectively. Initial solid and liquid compositions are 

shown as black and red symbols, respectively.  
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Fig. A5.11. The fractional crystallization model of the IIIF iron meteorites (solid lines) 

compared to models using parental melt S contents of 3.5 and 6.5 wt. % (5±1.5 wt. % S 

range). Solid metal and liquid metal evolution lines are shown in black and red, 

respectively. Initial solid and liquid compositions are shown as black and red symbols, 

respectively.    
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Chapter 6:  Decoupled variations in the genetics and ages of iron 

meteorites from the noncarbonaceous (NC) and carbonaceous (CC) 

reservoirs 
 

6.1 Abstract 

Potential relationships between radiogenic W isotopic compositions and genetic Mo 

isotopic compositions of iron meteorites from the noncarbonaceous (NC) and 

carbonaceous (CC) reservoirs are explored. New Mo and W isotopic data for six 

ungrouped iron meteorites are consistent with a relationship between radiogenic W 

isotopic compositions and genetic Mo isotopic compositions for NC-type iron meteorites, 

while no relationship is apparent for CC-type iron meteorites. The meaning behind this 

observation remains unconstrained.  

 

6.2 Introduction 

Studies coupling various nucleosynthetic isotopic compositions of bulk meteorites 

have shown that two isotopically distinct reservoirs, referred to as the noncarbonaceous 

(NC) and carbonaceous (CC) reservoirs, were present in the early Solar System (e.g., 

Warren, 2011). While this observation was initially limited to silicate-bearing meteorites, 

studies over the last five years have expanded the understanding of isotopic variations 

between and within these reservoirs for siderophile (iron-loving) elements (e.g., Budde et 

al., 2016a; Poole et al., 2017; Worsham et al., 2017, 2019; Bermingham et al., 2018; Ek 

et al., 2019; Nanne et al., 2019). This has allowed for further study of the origins and 

evolution of the NC and CC reservoirs through iron meteorites.  
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Iron meteorites have proven particularly useful for studying the origins of the NC and 

CC reservoirs since the process of melting portions of a planetary body to cause metal-

silicate segregation and iron meteorite formation homogenizes the various, isotopically 

diverse precursor materials in a planetesimal. As such, nucleosynthetic, “genetic” 

isotopic compositions of iron meteorites provide constraints on the bulk genetic isotopic 

compositions of the planetary bodies from which they were derived. In addition, the 

timing of metal-silicate segregation leading to iron meteorite formation can be 

constrained by the 182Hf-182W chronometer (e.g., Kruijer et al., 2014a). In some cases, 

this timing can then be translated into an accretion age of the planetesimal (e.g., Kruijer 

et al., 2017).  

Most attention by past studies has been paid to grouped iron meteorites, which consist 

of, at minimum, five iron meteorites that can be chemically related to a common metal 

liquid (Wasson, 1974). Currently, 13 iron meteorite groups, consisting of the IAB-

complex, IC, IIAB, IIC, IID, IIE, IIF, IIG, IIIAB, IIIE, IIIF, IVA, and IVB iron 

meteorites, are known based on this criteria. Due to the ability to compare chemical 

compositions of multiple iron meteorites from a common group, grouped iron meteorites 

can then be classified as “magmatic” or “nonmagmatic” based largely on whether 

chemical compositions can be accounted for by fractional crystallization processes or not, 

respectively (e.g., Scott, 1972; Wasson and Kallemeyn, 2002). Magmatic iron meteorites 

are interpreted to sample fragments of planetary cores while nonmagmatic iron 

meteorites have been interpreted to be products of partial differentiation and/or impact 

melting/mixing of a planetesimal (Kracher, 1985; Benedix et al., 2000; Wasson and 
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Kallemeyn, 2002; Worsham et al., 2016a, 2017; Kruijer and Kleine, 2019; Hilton and 

Walker, 2020).  

Less attention has been paid to “ungrouped” iron meteorites, of which there are 

currently over 100. Ungrouped iron meteorites likely sample >20 distinct parent bodies. 

While constraining the origin of ungrouped meteorites as magmatic or nonmagmatic is 

problematic without the chemical context provided by additional group members, 

ungrouped irons nevertheless provide important new insights to the genetics and ages of 

NC- and CC-type planetary bodies. As such, six ungrouped iron meteorites are targeted 

here to assess the extent of isotopic heterogeneity observed among NC- and CC-type 

planetary bodies as well as constrain the relative timing of metal-silicate segregation 

occurring on these bodies. 

 

6.3 Methods 

Chunks of ungrouped iron meteorites Chinga, Santiago Papasquero, Sombrerete, 

Tishomingo, and Willow Grove were obtained from the Smithsonian Institution, 

Department of Mineral Sciences, National Museum of Natural History, and a chunk of 

Auburn was obtained from Arizona State University. Pieces were cut from each meteorite 

chunk using a water-cooled Leco Vari-cut saw and a 12.7 cm diamond-wafering blade. 

The blade was cleaned with SiC blocks prior to cutting each meteorite. The surface of 

each cut meteorite piece was polished using a range of coarse- to fine-grit SiC sandpaper 

to remove sawblade marks, and then sonicated multiple times in ethanol. 

Pieces of each iron meteorite were dissolved using 40 mL 8M HCl per gram metal at 

130 °C for 72 hours in Teflon® beakers. The resulting solutions were then processed 
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using the methods discussed by Hilton et al. (2019) and Hilton and Walker (2020) 

(Chapters 2 and 3 of this dissertation, respectively). In brief, aliquots of solution were 

removed for Os isotopic measurements and processed using a Carius Tube method, a 

CCl4 solvent-extraction method, and a microdistillation method (Shirey and Walker, 

1995; Cohen and Waters, 1996; Birck et al., 1997). The remaining solution was 

processed through the W column chemistry procedure of Touboul and Walker (2012). 

The primary cation exchange column was repeated until Fe was significantly separated 

from the solution. The sample was then processed through an anion exchange column, in 

which W, Mo, and Pt were separately eluted. Tungsten and Mo were then each processed 

through two additional anion exchange columns following methods outlined by Touboul 

and Walker (2012) and Worsham et al. (2016b), respectively, while Pt was processed 

through a single anion exchange column following the method of Hunt et al. (2017b). 

Isotopic compositions for Os, W, and Mo were measured by TIMS, while isotopic 

compositions for Pt were measured by MC-ICP-MS.  

Analytical uncertainty was assessed by measuring standard solutions multiple times 

during an analytical campaign and assigning either the two-standard deviation (2SD) 

value for the standards or the 2SE value of the samples, whichever were greater. 

Reproducibility (2SD) of the Johnson Matthey Os standard over three analytical 

campaigns ranged from 189Os/188Os = 5 to 7 ppm and  the reproducibility (2SD) of the 

Alfa Aesar Specpure® W standard over five analytical campaigns ranged from 182W/184W 

= 4 to 9 ppm and 183W/184W = 3 to 8 ppm (186/184 normalized). The reproducibility 

(2SD) of the Alfa Aesar Specpure® Mo standard over five analytical campaigns ranged 

from 94Mo/96Mo = 7 to 45 ppm, 95Mo/96Mo = 8 to 24 ppm, and 97Mo/96Mo = 3 to 9 ppm 



 

 

 

167 

 

and the reproducibility (2SD) of a Pt standard made from a high purity Pt ribbon over a 

single analytical campaign was 196Pt/195Pt = 7 ppm. Results of isotopic measurements are 

reported in µ units (part per million difference in the isotopic ratio of a sample compared 

to a standard). 

 

6.4 Results 

It is important to monitor cosmic ray exposure (CRE) and, when necessary, correct 

for its effects when reporting certain isotopic compositions of meteorites. Exposure to 

galactic cosmic rays results in nuclear reactions within meteorites that cause creation and 

burnout of, for example, 182W isotopes (e.g., Masarik, 1997; Leya et al., 2003). 

Measuring Os or Pt isotopes in the same meteorite aliquot being studied for Mo or W 

isotopic composition has proven useful to monitor and correct for CRE (Kruijer et al., 

2017; Worsham et al., 2017). For this, the 189Os/188Os and 196Pt/195Pt ratios are the most 

sensitive to CRE effects and increasingly greater CRE effects result in increasingly 

negative µ189Os values and increasingly positive µ196Pt values. The µ189Os and µ196Pt 

values of the ungrouped irons range from -33 ± 6 to +7 ± 6 and +10 ± 7 to +48 ± 7, 

respectively (Table 6.1). Based on the 2SD reproducibility of the 189Os/188Os ratio (±5 to 

8 ppm) and the 196Pt/195Pt ratio (±7 ppm) of the terrestrial laboratory standards analyzed 

for this study, it is assumed that meteorite pieces with µ189Os and µ196Pt values within ±8 

ppm and ±7 ppm, respectively, of zero were minimally affected by CRE. As such, 

Chinga, Santiago Papasquero, and Sombrerete are interpreted to be minimally affected by 

CRE, whereas corrections are necessary for Tishomingo and Willow Grove. The µ189Os 
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value of Auburn suggests it was minimally affected by CRE whereas its µ196Pt value 

suggests a CRE correction is necessary.  

 

Table 6.1. Osmium and Pt isotopic 

compositions of ungrouped iron 

meteorites. 

Iron Meteorite µ189Os µ196Pt 

NC-type   

    Auburn +7 ± 6 +13 ± 7 

    Santiago Papasquero +0 ± 5 n.d. 

   

CC-type    

    Chinga +1 ± 7 n.d. 

    Sombrerete +4 ± 8 n.d. 

    Tishomingo -9 ± 6 +10 ± 7 

    Willow Grove -33 ± 6 +48 ± 7 

 

 

The Mo and W isotopic compositions of the ungrouped iron meteorites are provided 

in Tables 6.2 and 6.3, respectively. The µ94Mo values for these meteorite range from +62 

± 35 to +190 ± 17, µ95Mo values from +25 ± 24 to +121 ± 7, and µ97Mo values from +12 

± 3 to +51 ± 7. The measured µ182W values (uncorrected for CRE) of the ungrouped irons 

range from -363 ± 7 to -282 ± 9, and the µ183W values range from +2 ± 8 to +22 ± 4.  
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Table 6.2. CRE-uncorrected Mo isotopic compositions of ungrouped iron meteorites. 

Sample na µ92Mo µ94Mo µ95Mo µ97Mo µ100Mo 

NC-type       

    Auburn 2 +157 ± 43 +118 ± 17 +46 ± 8 +24 ± 9 +49 ± 5 

    Santiago Papasquero 1 +95 ± 98 +62 ± 35 +25 ± 24 +12 ± 3 +34 ± 19 

CC-type       

    Chinga 3 +309 ± 59 +190 ± 17 +121 ± 7 +51 ± 7 +104 ± 28 

    Tishomingo 9 +210 ± 26 +141 ± 11 +99 ± 4 +46 ± 5 +75 ± 13 

    Willow Grove 4 +125 ± 21 +110 ± 10 +61 ± 6 +42 ± 3 +75 ± 5 
a n is the number of analyses for Mo isotopic composition. The reported isotopic 

values reflect the average values obtained for each meteorite piece. Uncertainties 

reflect the largest (of n analyses) 2SD of the standards run during an analytical 

campaign (n ≤ 4) or 2SE (n > 4) of the sample values.    

 

Table 6.3. Tungsten isotopic compositions of ungrouped iron meteorites. 

Sample µ182W µ183W µ182WCRE-corrected µ182WNuclsyn-corrected ΔTCAI 

NC-type      

    Auburn -351 ± 4 +4 ± 3 -334 ± 10 -334 ± 10 1.3 ± 0.9 

    Santiago Papasquero -323 ± 8 +2 ± 8 -323 ± 8 -323 ± 8 2.3 ± 0.8 

      

CC-type      

    Chinga -294 ± 6 +15 ± 7 -294 ± 6 -315 ± 12 3.1 ± 1.2 

    Sombrerete -282 ± 9 +12 ± 5 -282 ± 9 -299 ± 11 4.8 ± 1.3 

    Tishomingo -288 ± 8 +22 ± 4 -276 ± 12 -307 ± 13 3.9 ± 1.5 

    Willow Grove -363 ± 7 +16 ± 4 -300 ± 12 -323 ± 13 2.3 ± 1.3 

The µ182W and µ183W values are reported for each meteorite piece and the uncertainties reflect the 2SD of 

the standards run during an analytical campaign. The CRE-corrected µ182W values represent the measured 

µ182W values corrected for CRE, when necessary, using either µ189Os or µ196Pt values. The Nuclsyn-

corrected µ182W values represent the CRE-corrected µ182W values corrected for nucleosynthetic 

anomalies, when necessary, using the µ183W values (Kruijer et al., 2014b). The ΔTCAI ages were 

calculated from the µ182WNuclsyn-corrected values. 
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6.5 Discussion 

6.5.1 Genetics 

The heterogeneous accretion of isotopically diverse precursor materials among 

asteroids from the NC and CC reservoirs results in differences among the genetic isotopic 

compositions of some iron meteorites. For example, NC-type meteorites have Mo 

isotopic compositions that reflect a variable s-process depletion from terrestrial standards 

and W isotopic compositions that reflect no variations. By contrast, CC-type meteorites 

have Mo isotopic compositions that reflect even greater s-process depletions and Mo and 

W isotopic compositions that reflect an additional r-process component compared to 

terrestrial materials (Kruijer et al., 2017). The CRE assessed and, when necessary, 

corrected (Table 6.4) Mo isotopic compositions of Auburn, Chinga, Santiago 

Papasquero, Tishomingo, and Willow Grove fall within the ranges of Mo isotopic 

compositions defined by previously studied NC- and CC-type iron meteorites (Fig. 6.1). 

This is the same observation for the genetic µ183W values of these meteorites (Fig. 6.2). 

Taken together, the Mo and W genetic isotopic compositions of Auburn and Santiago 

Papasquero indicate that these iron meteorites are derived from planetesimals that 

accreted in the NC reservoir whereas Chinga, Sombrerete, Tishomingo, and Willow 

Grove are derived from planetesimals that accreted in the CC reservoir. 
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Table 6.4. CRE-assessed Mo isotopic compositions of ungrouped irons. 

Sample µ92Mo µ94Mo µ95Mo µ97Mo µ100Mo 

NC-type      

    Auburn +157 ± 43 +118 ± 17 +46 ± 8 +24 ± 9 +49 ± 5 

    Santiago Papasquero +95 ± 98 +62 ± 35 +25 ± 24 +12 ± 3 +34 ± 19 

CC-type      

    Chinga +309 ± 59 +190 ± 17 +121 ± 7 +51 ± 7 +104 ± 28 

    Tishomingo +221 ± 27 +146 ± 11 +104 ± 5 +47 ± 5 +76 ± 13 

    Willow Grove +164 ± 23 +131 ± 12 +79 ± 7 +47 ± 5 +76 ± 5 

Uncertainties include the uncertainties from the Mo isotopic compositions, Os isotopic 

compositions, and µ189Os vs. µxMo regressions reported by Worsham et al. (2017).    
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Fig. 6.1. Compilation of µ94Mo vs. µ95Mo data for iron meteorites from Kruijer et al. 

(2017), Poole et al. (2017), Worsham et al. (2017), Bermingham et al. (2018), and Hilton 

et al. (2019). Blue squares represent meteorites classified as CC type (including IIC, IID, 

IIF, IIIF, IVB, South Byron Trio (SBT), Wiley, Dronino, and Sombrerete), and red 

diamonds represent meteorites classified as NC type (including IC, IIAB, IIIAB, IIIE, 

IVA, IIE, IAB-MG, and Gebel Kamil). Black lines represent the NC and CC lines 

reported by Budde et al. (2019). 
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Fig. 6.2. Compilation of µ97Mo vs. µ183W data for iron meteorites from Kruijer et al. 

(2017), Worsham et al. (2017), Hilton et al. (2019), and Hilton and Walker (2020). Blue 

squares represent meteorites classified as CC type (including IIC, IID, IIF, IIIF, IVB, 

SBT, and Wiley) and red diamonds represent meteorites classified as NC type (including 

IC, IIAB, IIIAB, IIIE, IVA, IIE, and IAB-MG).  
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6.5.2 Ages 

Ages of metal-silicate segregation (model 182W age) leading to the formation of iron 

meteorites are commonly calculated using the 182Hf-182W chronometer, in which 182Hf 

double beta decays to 182W with a half-life of 8.9 Myr (Vockenhuber et al., 2004). During 

silicate-metal fractionation, Hf remains in silicate melt while W preferentially partitions 

into metallic melt. As such, the 182W/184W ratio of an iron meteorite is proportional to the 

relative amount of time since the start of the Solar System that iron meteorite formation 

occurred. Model 182W ages are calculated using Eq. 1, in which the µ182W value of Ca-

Al-rich inclusions (CAI) is used as a proxy for the 182W/184W ratio of the initial Solar 

System and the µ182W value of carbonaceous chondrites is used as a proxy for the 

present-day, bulk 182W/184W ratio of an asteroid.   

Eq. 1: ΔtCAI =  

In order to calculate meaningful metal-silicate segregation ages from iron meteorites, 

measured µ182W values of iron meteorites must first be corrected for CRE and 

nucleosynthetic anomalies, when necessary (e.g., Kruijer et al., 2017). Auburn, 

Tishomingo, and Willow Grove were corrected for effects of CRE using measured µ196Pt 

values and the µ196Pt vs. µ182W regression reported by Kruijer et al. (2017) and CRE-

assessed µ182W values of Chinga, Sombrerete, Tishomingo, and Willow Grove were 

corrected for effects of nucleosynthetic anomalies, assessed by µ183W anomalies, using 

the µ183W vs. µ182W regression reported by Kruijer et al. (2014b) (Table 6.3). Ages of 

metal-silicate segregation were then calculated from these corrected µ182W values (Table 

6.3). If NC- and CC-type iron meteorite parent bodies have a constant parental Hf/W 

ratio, then the metal-silicate segregation ages of most of the ungrouped iron meteorites 
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examined in this study are not resolved (Fig. 6.3). Only the NC-type Auburn has a 

resolved older age than the CC-type Sombrerete. If the parental Hf/W ratio of these 

parent bodies was identical to that of the CC-type carbonaceous chondrites, then these 

iron meteorites formed between 1.3 ± 0.9 to 4.8 ± 1.3 Myr after CAI formation.  
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Fig. 6.3. Compilation of µ182W values and model 182W metal-silicate segregation ages 

(post CAI formation in Myr assuming carbonaceous chondrite parental Hf/W ratio) for 

iron meteorites from Kruijer et al. (2017), Worsham et al. (2017), Hilton et al. (2019), 

and Hilton and Walker (2020). Blue squares represent meteorites classified as CC type 

(including IIC, IID, IIF, IIIF, IVB, SBT, and Wiley) and red diamonds represent 

meteorites classified as NC type (including IC, IIAB, IIIAB, IIIE, IVA, IIE, IAB-MG, 

IAB-sLL, IAB-sLM, IAB-sHH, and IAB-sHL).  

 

6.5.3 Genetics vs. ages 

One key aspect to constraining the origins of the NC and CC reservoirs is determining 

the relative timing of isotopic heterogeneity in the early Solar System. Past studies have 

sought to provide such constraints through the comparison of genetic isotopic 

compositions to ages of metal-silicate segregation. For magmatic iron meteorites, ages of 
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metal-silicate segregation correspond to core formation ages. These ages, in turn, can be 

compared to thermal models of heat production by the decay of 26Al, the primary heat-

producing element in the early Solar System, in a planetary body. Kruijer et al. (2017) 

concluded from the determination of µ182W isotopic compositions of NC- and CC-type 

magmatic iron meteorites that NC-type materials were initially present in the Solar 

System and CC-type materials were added to the outer Solar System approximately 0.5 

Myr later.  

Less attention has been focused on the relative timing of developing isotopic 

heterogeneity within a given reservoir. In part, this may be due to the debated 

interpretation of how nonmagmatic iron meteorites formed (impact heating vs. internal 

heating). Nonmagmatic iron meteorites in certain cases have distinct genetic isotopic 

compositions from magmatic iron meteorites but without constrained origins, the 

interpretation of their metal-silicate segregation ages are ambiguous. Nevertheless, this 

exercise was attempted by Hilton and Walker (2020) for NC-type iron meteorites. The 

authors of that study argued that a metal-silicate segregation age for nonmagmatic iron 

meteorites at least provide a lower age limit for tracing the timing of developing isotopic 

heterogeneity. This is because the precursor materials that form a planetesimal must have 

been in a given reservoir prior to the melting and metal-silicate segregation of the 

asteroid. By comparing genetic µ97Mo and radiogenic µ182W values, Hilton and Walker 

(2020) proposed that there was an addition of s-process rich material to the NC reservoir, 

and/or destruction and removal of a coupled r-/p-process rich component. Whether this 

was a rapid or gradual event was not constrained.  
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The genetic µ97Mo and radiogenic µ182W values of Auburn and Santiago Papasquero 

fall along the relationship observed by Hilton and Walker (2020) for NC-type iron 

meteorites (Fig. 6.4), permissive of a change in the isotopic composition of NC-type 

precursor materials with time. The same comparison for CC-type iron meteorites (Fig. 

6.5) shows no relationship between µ97Mo and µ182W values for iron meteorites from this 

reservoir. Overall, this decoupled behavior for genetic µ97Mo and radiogenic µ182W 

values between the NC and CC reservoirs suggests that the causes of isotopic 

heterogeneity between these reservoirs may have differed. 

 Whether variations in µ182W values among NC- and CC-type iron meteorites 

dominantly reflect differences in timing of metal-silicate segregation, however, has 

recently been challenged (Hellmann et al., 2019). Hellmann et al. (2019) proposed that 

variations may also reflect differences in parental Hf/W ratios and proposed that these 

ratios differed between NC- and CC-type parent bodies. If so, then identical µ182W values 

of iron meteorites derived from parent bodies with variable parental Hf/W ratios could 

result in metal-silicate segregation ages that vary by 0 to 10 Myr (Hilton and Walker, 

2020). As such, whether the µ182W values of the ungrouped iron meteorites examined 

here reflect differences in metal-silicate segregation ages cannot currently be constrained 

and whether variations in genetic µ97Mo and radiogenic µ182W values partially or wholly 

represent variations in the isotopic composition of precursor materials with Hf/W ratio 

must also be considered.       
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Fig. 6.4. µ182W vs. µ97Mo of NC-type iron meteorites. The gray box represents the initial 

µ182W value of CAI (Kruijer et al., 2014b). Data are from Kruijer et al. (2017), Worsham 

et al. (2017), Kruijer and Kleine (2019), and Hilton and Walker (2020).  
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Fig. 6.5. µ182W vs. µ97Mo of CC-type iron meteorites. The gray box represents the initial 

µ182W value of CAI (Kruijer et al., 2014b). Data are from Kruijer et al. (2017) and Hilton 

et al. (2019). 

 

6.6 Conclusions 

Genetic µ97Mo and radiogenic µ182W values of NC-type iron meteorites form a 

relationship while such a relationship among CC-type iron meteorites is absent. This 

observation may indicate that the isotopic composition of the NC reservoir varied with 

time, while the isotopic variability of the CC reservoir was not time-related.  
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Chapter 7: Conclusions 
 

7.1 Key conclusions 

This dissertation examines the origin and evolution of the noncarbonaceous (NC) and 

carbonaceous (CC) reservoirs by providing constraints on the genetics, ages, and 

chemical compositions of distinct, bulk planetary bodies sampled by iron meteorites. In 

Chapter 2, the genetics, ages, and chemical compositions of the South Byron Trio are 

reported, resulting in the isotopic and chemical characterization of a unique planetary 

body. In Chapter 3, the genetics and ages of NC-type meteorites are explored, and a 

potential relationship between these parameters is identified, suggesting that the isotopic 

composition of the NC reservoir may have changed with time, from a s-process depleted 

composition, relative to terrestrial materials, to a composition with no s-process 

depletion. In Chapters 4 and 5, the chemical compositions of the group IIAB, IID, IIF, 

IIIAB, and IIIF iron meteorite parent bodies are estimated, and relationships between 

bulk planetesimal chemical compositions and genetics/ages are examined. Finally, in 

Chapter 6, relationships between the genetics and ages of CC- and NC-type iron 

meteorites are explored. Variations in the genetic isotopic composition of iron meteorites 

with ages of metal-silicate segregation are decoupled between these two reservoirs. 

Overall, the major conclusions of this dissertation are: 

1. Genetics vs. ages: Accretion ages of NC- and CC-type iron meteorite parent 

bodies are permissive of precursor materials to either reservoir being initially 

present in the Solar nebula. As such, it remains possible that the reservoirs 

formed simultaneously and the isotopic heterogeneity of these reservoirs 

reflects an initially heterogeneous parental molecular cloud or that some 
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isotopic heterogeneity was inherited from the parental molecular cloud while 

other heterogeneity was subsequently developed through a certain process, 

such as thermal processing, late injection of material, or physical sorting of 

materials. Finally, it remains possible that the initial parental molecular cloud 

was isotopically homogenous and a certain process caused isotopic 

heterogeneity in the Solar nebula.  

Genetic isotopic compositions of iron meteorite parent bodies in the NC 

reservoir vary with the ages of iron meteorite formation while no such 

variations are observed for iron meteorite parent bodies from the CC reservoir. 

This indicates some time dependent association with isotopic evolution in at 

least one of the reservoirs. As such, the isotopic heterogeneity of the CC 

reservoir may be inherited from the parental molecular cloud while that of the 

NC reservoir may have evolved from thermal processing, late injection of 

material, or physical sorting of materials in the Solar nebula. 

2. Genetics vs. chemical compositions: Comparison of the siderophile element 

chemical characteristics of NC- and CC-type iron meteorite parent bodies 

indicate that the processes setting planetesimal genetic isotopic compositions 

and planetesimal chemical characteristics in early-formed iron meteorite 

parent bodies were largely decoupled. If true, this may indicate that the cause 

of isotopic heterogeneity was due to the thermal processing, late injection, or 

physical sorting of materials with relatively large isotopic anomalies. As such, 

the minor addition or removal of an element from a given region of the Solar 
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nebula could impose an isotopic anomaly on the parent body scale without 

affecting the bulk chemical characteristics of the body.  

3. Ages vs. chemical compositions: Bulk core chemical compositions and 

oxidation states of NC- and CC-type iron meteorite parent bodies may account 

for some differences in core formation ages among these planetesimals. If 

true, chemical characteristics of a parent body may account for some of the 

earlier core formation ages observed for NC-type parent bodies rather than an 

earlier formation age of the NC reservoir. The core/mantle mass ratios of NC-

type iron meteorite parent bodies are estimated to be relatively larger than for 

CC-type iron meteorite parent bodies, indicating that more iron was 

segregated into NC-type cores. This, in turn, suggests that NC-type bodies 

may have been more reduced than CC-type bodies. This observation may 

indicate that NC-type bodies formed in the inner Solar System while CC-type 

bodies formed in the outer Solar System. As the outer Solar System is 

interpreted to be a more oxidizing, ice-rich environment, the accretion of a 

greater proportion of ice to CC bodies may hinder the melting of metal and 

silicate in these parent bodies and, therefore, delay core formation.   

 

7.2 Future directions 

The isotopic heterogeneity observed on the bulk meteorite scale for some elements 

indicates the heterogeneous accretion of isotopically distinct precursor materials by 

asteroids. This process has been proposed to be a product of the heterogeneous 

distribution of isotopically distinct precursor materials in the parental molecular cloud, 
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the heterogeneous distribution of isotopically distinct precursor materials in the Solar 

nebula, or a combination of these two ideas. This dissertation attempts to discern between 

these possibilities through the coupled genetic, chronologic, and chemical study of iron 

meteorite parent bodies. Ultimately, no clear relationships are observed among these 

parameters on the planetary scale that highlight the origin of isotopic heterogeneity for 

planetary bodies.   

Consequently, I propose that additional study of the precursor materials to planetary 

bodies is needed. Since the isotopic heterogeneity of iron meteorite parent bodies is not 

clearly related to the chemical characteristics of these bodies, the cause of isotopic 

heterogeneity may be due to the processing or late injection of materials with highly 

variable isotopic compositions. As such, minor variations in the accretion of these 

materials may induce significant isotopic anomalies without altering chemical 

compositions on the planetary scale. It is, therefore, critical to identify the most 

isotopically anomalous materials in the parental molecular cloud and Solar nebula. These 

materials may be presolar grains, CAIs, chondrules, or matrix components.  

Coupled isotopic and chemical study of presolar grains, CAIs, chondrules, or matrix 

components may allow for identifying the most isotopically anomalous materials as well 

as identify the materials that have been most affected by thermal processing, oxidation 

processing, physical sorting, or other conditions/processes that may have acted on 

nebular materials. This task could be completed through leaching protocols of chondrites. 

The occurrence of thermal processing may be evaluated by measuring the abundances of 

volatile elements in different leachates with isotopic composition whereas the occurrence 
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of oxidation processing may be evaluated by measuring the abundances of redox-

sensitive elements.  

The potential for a late injection of isotopically distinct materials to the Solar nebula 

may be explored by providing additional age constraints to presolar grains, CAIs, 

chondrules, and matrix components. Such age constraints, however, may require precise 

ages with < 1 Myr uncertainties. If isotopic anomalies are found for later forming 

materials, it may provide clear evidence for the late addition of materials.   
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