
ABSTRACT

Title of dissertation: DIRECTED GRAPHS: FIXED-PARAMETER
TRACTABILITY & BEYOND

Rajesh Chitnis, Doctor of Philosophy, 2014

Dissertation directed by: Professor MohammadTaghi Hajiaghayi
Department of Computer Science

Most interesting optimization problems on graphs are NP-hard, implying that (un-

less P = NP) there is no polynomial time algorithm that solves all the instances of an

NP-hard problem exactly. However, classical complexity measures the running time as

a function of only the overall input size. The paradigm of parameterized complexity

was introduced by Downey and Fellows to allow for a more refined multivariate analy-

sis of the running time. In parameterized complexity, each problem comes along with

a secondary measure k which is called the parameter. The goal of parameterized com-

plexity is to design efficient algorithms for NP-hard problems when the parameter k is

small, even if the input size is large. Formally, we say that a parameterized problem is

fixed-parameter tractable (FPT) if instances of size n and parameter k can be solved in

f (k) · nO(1) time, where f is a computable function which does not depend on n. A pa-

rameterized problem belongs to the class XP if instances of size n and parameter k can be

solved in f (k) ·nO(g(k)) time, where f and g are both computable functions.

In this thesis we focus on the parameterized complexity of transversal and connec-

tivity problems on directed graphs. This research direction has been hitherto relatively

unexplored: usually the directed version of the problems require significantly different

and more involved ideas than the ones for the undirected version. Furthermore, for di-

rected graphs there are no known algorithmic meta-techniques: for example, there is no

known algorithmic analogue of the Graph Minor Theory of Robertson and Seymour for

directed graphs. As a result, the fixed-parameter tractability status of the directed ver-

sions of several fundamental problems such as MULTIWAY CUT, MULTICUT, SUBSET

FEEDBACK VERTEX SET, ODD CYCLE TRANSVERSAL, etc. was open.

In the first part of the thesis, we develop the framework of shadowless solutions

for a general class of transversal problems in directed graphs. For this class of problems,

we reduce the problem of finding a solution in FPT time to that of finding a shadowless

solution. Since shadowless solutions have a good (problem-specific) structure, this pro-

vides an important first step in the design of FPT algorithms for problems on directed

graphs. By understanding the structure of shadowless solutions, we are able to design

the first FPT algorithms for the DIRECTED MULTIWAY CUT problem and the SUBSET

DIRECTED FEEDBACK VERTEX SET problem.

In the second part of the thesis, we present tight bounds on the parameterized com-

plexity of well-studied directed connectivity problems such as STRONGLY CONNECTED

STEINER SUBGRAPH and DIRECTED STEINER FOREST when parameterized by the

number of terminals/terminal pairs. We design new optimal XP algorithms for the afore-

mentioned problems, and also prove matching lower bounds for existing XP algorithms.

Most of our hardness results hold even if the underlying undirected graph is planar.

Finally, we conclude with some open problems regarding the parameterized com-

plexity of transversal and connectivity problems on directed graphs.

DIRECTED GRAPHS: FIXED-PARAMETER
TRACTABILITY & BEYOND

by

Rajesh Chitnis

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2014

Advisory Committee:
Professor MohammadTaghi Hajiaghayi, Chair/Advisor
Professor Aravind Srinivasan
Professor Dana Nau
Professor Subramanian Raghavan, Robert H. Smith School of Business and Institute for
Systems Research
Professor Erik Demaine, CSAIL, MIT

c© Copyright by
Rajesh Chitnis

2014

Dedication

To my sister Ishwari and my parents Sandhya and Hemant for all their love and support

ii

Acknowledgments

First of all, I would like to thank my thesis advisor Prof. MohammadTaghi Haji-
aghayi for his excellent scientific guidance over the last 4 years. He has been a wonderful
source of problems and ideas. Looking back, I can see his imprint on every aspect of my
scientific development. Mohammad always encouraged me to work on problems that I
found interesting, even when sometimes they might not have been aligned with his re-
search interests. He was always willing to fund me for conferences (even when I did
not have a paper to present) and also for research visits - in Summer ’12 he gave me an
RA while I was away from Maryland the whole summer on research visits to Hungary
and Norway! Thanks Mohammad for everything, and I look forward to our continued
collaboration.

In grad school I was extremely fortunate to have had a chance to work with various
researchers who were very generous with their time and ideas. Daniel Lokshtanov hosted
me on a visit to San Diego which included a wonderful hike. I spent a month at Bergen,
Norway visiting Fedor Fomin and Petr Golovach which led to our collaboration on the
Anchored k-Core problem. I learned a lot about cut problems from Marek Cygan during
the six months that he visited us at Maryland. I owe whatever little knowledge about
streaming algorithms that I have to Morteza Monemizadeh. Two people have had a sig-
nificant impact on me during my PhD studies - Daniel Marx and Saket Saurabh. Daniel
has been a wonderful collaborator - I have learnt a lot from his intuition about important
separators. Thanks also for hosting me for two months in Budapest. Saket has been a
good friend and also the main reason why I began to work in FPT in the first place - in the
last semester of my undergrad studies, I attended two courses by Saket on Parameterized
Complexity and Advanced Graph Theory. These two courses and spending the ensuing
summer working with Saket was enough for me to decide to pursue FPT in my PhD. I
also spent a wonderful three months at TTI-Chicago working with Julia Chuzhoy.

At Maryland one of the best things that happened to me was meeting people from
various countries and getting to know their perspectives on life. I hope it has made me less
narrow-minded than I was before. In the department, I would like to thank Samir Khuller
and Aravind Srinivasan for their continued encouragement and sound advice throughout
my PhD. Many thanks to Aravind Srinivasan, Erik Demaine, Dana Nau, Subramanian
Raghavan for serving on my dissertation committee and informative comments on the
thesis. I was able to remain oblivious to the intricacies of department paperwork thanks to
Jenny Story, Fatima Bangura and Sharron McElroy. Many thanks to all my friends in the
department - Ioana, Theo, Ben, Vahid, Reza, Kotaro, Aishwarya, Vikas, Abdul, Jayanta,
Govind, Udayan, Kanthi, Manish, Amit, David, Hamid, Faezeh and some others whom I
am surely forgetting right now. Doing a PhD becomes very monotonous if one does not
have fun people around - many thanks to Varun, Raka, Prat Di, Puneet, Arvind and Vivek
for various trips, tasty food and cold beer. Finally, thanks to my Persian group of friends
for allowing me into their soccer team and also for the several intramural championships
that we won.

I was very lucky to pursue my undergraduate studies at a unique institution like
Chennai Mathematical Institute (CMI) which provided a lot of academic freedom. After

iii

misusing it for a while, I later was able to take advantage of it and attend various grad
courses to see which subareas interest me more. Prof. K. Narayan Kumar gave me a
second chance after I did not perform well in the first course with him, and I am glad for
that. My first research interaction was with Prof. Samir Datta. Unfortunately our work
together did not lead to a paper, but when my interests became a bit more focused Samir
referred me to Prof. Sunil Chandran at IISc, Bangalore. Working with Sunil was a very
good experience which resulted in my first publication. On the non-academic side, I want
to thank all my friends at CMI (most of whom are part of the bug07 mailing list).

Leaving the most important for the last, I want to thanks my parents, sister and
my extended family. My extended family has always been very encouraging in all my
endeavours, and provide important support to my family in my absence. Talking to friends
from high school is always fun and very relaxing. Special mention goes to Harshad,
Saurabh, Varun, Ambarish and Neeraj. My parents Sandhya and Hemant have been my
role-models in my entire life. Everyday I understand more and more how truly awesome
they are as parents. Talking to my sister Ishwari always gives me a different perspective
of life. She is very enthusiastic about life and is always able to cheer me up. This thesis
is a small token of my love and appreciation for my family - no words or actions can ever
come close to thank you for all that you do for me.

I gratefully acknowledge the support of the following grants during my PhD stud-
ies: NSF CAREER award 1053605, NSF grant CCF-1161626, DARPA/AFOSR grant
FA9550-12-1-0423, ONR YIP award N000141110662, DARPA/AFRL award FA8650-
11-1-7162, NSF CAREER award 0844872, European Research Council (ERC) grant
280152 “PARAMTIGHT”, European Research Council (ERC) grant 267959 “Rigorous
Theory of Preprocessing”, a Summer International Research Fellowship from University
of Maryland, and a Simons Award for Graduate Students in Theoretical Computer Sci-
ence.

iv

Table of Contents

List of Figures vii

1 Introduction and Overview 1
1.1 Notation . 1
1.2 Coping with NP-Completeness . 4

1.2.1 Approximation Algorithms . 7
1.2.2 Randomized Algorithms . 9
1.2.3 Exact Exponential Algorithms 10
1.2.4 Fixed-Parameter Algorithms . 11

1.3 Parameterized Complexity . 12
1.3.1 Classical Complexity vs Parameterized Complexity 14
1.3.2 Algorithmic Techniques For Designing FPT Algorithms 15

1.4 Why are Directed Graphs Harder? . 22
1.4.1 Evidence from Approximation Algorithms 22
1.4.2 Evidence from Parameterized Complexity 24

1.5 Outline of Thesis . 26

2 The Framework of Shadowless Solutions 27
2.1 Covering the Shadow for General F-transversal Problems 30

2.1.1 Important Separators and Random Sampling 33
2.1.2 Derandomization . 44
2.1.3 The COVERING Algorithm . 46
2.1.4 Upper Bound on the Number of Important Separators 52

2.2 Application I: FPT Algorithm for DIRECTED MULTIWAY CUT 60
2.2.1 Torsos and Shadowless Solutions 65
2.2.2 Summary of Algorithm . 70
2.2.3 FPT Algorithm for DIRECTED MULTICUT with two terminals . . 72

2.3 Application II: FPT Algorithm for SUBSET-DFVS 73
2.3.1 Applying Iterative Compression 77
2.3.2 Reduction to Shadowless Solutions 79
2.3.3 Finding a Shadowless Solution 84
2.3.4 Summary of Algorithm . 93

v

3 Optimal Algorithms for Connectivity Problems 96
3.1 Upper Bounds . 101

3.1.1 The nO(k) Algorithm of Feldman-Ruhl for SCSS 101
3.1.2 An 2O(k logk) ·nO(

√
k) Algorithm for SCSS on Planar Graphs 108

3.2 Lower Bounds . 165
3.2.1 Vertex Versions are Harder than Integer Weighted Edge Versions . 166
3.2.2 A Tight Lower Bound for SCSS on Planar Graphs 167
3.2.3 (Almost) Tight Lower Bound for SCSS on General Graphs 211
3.2.4 Tight Lower Bound for DSF on Planar DAGs 217

4 Conclusions and Open Problems 229

Bibliography 233

vi

List of Figures

2.1 Separators and Shadows . 32
2.2 Important Separators and Exact Shadows 35
2.3 Difference between reverse shadow and exact reverse shadow 38
2.4 Structure of shadowless solution for DIRECTED MULTIWAY CUT 67
2.5 The torso operation for DIRECTED MULTIWAY CUT 69
2.6 The torso operation for SUBSET DIRECTED FEEDBACK VERTEX SET . 81
2.7 Structure of shadowless solution for SUBSET DIRECTED FEEDBACK VER-

TEX SET . 85
2.8 Splitting v into vin and vout . 89

3.1 Flipping move between f and b . 104
3.2 Reduction from GRID TILING to SCSS on planar graphs. 175
3.3 Example of Connector Gadget . 219
3.4 Example of Main Gadget . 220
3.5 Reduction from Clique to SCSS in General Graphs 221
3.6 Reduction from Grid Tiling to DSF in Planar DAGs 222
3.7 Savings . 223

vii

CHAPTER 1

Introduction and Overview

1.1 Notation

General Notation: N denotes the set of positive integers. R denotes the set of real

numbers. We use [n] to denote the set {1,2,3, . . . ,n}. A function f : A→ B is said to be

injective if and only if for all a,a′ ∈A the condition f (a)= f (a′) implies a= a′. A (n,r,k)-

splitter is a family of functions from [n]→ [k] such that for every M ⊆ [n] with |M|= r, at

least one of the functions in the family is injective on M. A function f : 2U → N∪{0} is

submodular if for all A,B⊆U we have f (A)+ f (B)≥ f (A∪B)+ f (A∩B). We use
(n

r

)
to

denote the number of subsets of [n] which have size r. We use
(n
≤r

)
to denote the number

of subsets of [n] which have size at most r. A multiset is a generalization of a set where

some elements can appear more than once. A set with a specific property is minimal (resp.

maximal) if no proper subset (resp. superset) of the set satisfies the property.

We say that f (n) = O(g(n)) if there exist constants c > 0 and n′ ≥ 0 such that for

1

each n≥ n′ we have f (n)≤ c ·g(n). We say that f (n) = Ω(g(n)) if there exist constants

c > 0 and n′ ≥ 0 such that for each n ≥ n′ we have f (n) ≥ c · g(n). We say that f (n) =

Θ(g(n)) if both the conditions f (n) = O(g(n)) and f (n) = Ω(g(n)) hold true. We say

that f (n) = o(g(n)) if for every constant ε > 0 there exists a constant Nε such that for

each n≥ Nε we have f (n)≤ ε ·g(n). The O∗ notation hides factors which are polynomial

in the input size. For example, a function g(k,n) can be written as O∗(f (k)) if and only

if g(k,n) = O(f (k) · nO(1)). The Õ notation hides factors which are polynomial in the

logarithm of the input size. For example, a function g(k,n) can be written as Õ(f (k)) if

and only if g(k,n) = O(f (k) · (logn)O(1)).

Undirected Graphs: An undirected graph is a pair G = (V,E) where V is called as the

vertex set and E is called as the edge set. An edge between vertices v and w is denoted by

{v,w} or vw. The edge vw is said to be incident with the vertices v and w. If vw is an edge

then v and w are said to be adjacent or neighbors. All graphs considered in this thesis are

simple and finite (unless otherwise stated explicitly). We do not allow loops (edges of

the type vv) or more than one edge between two vertices. The open neighborhood of v is

given by N(v) = {w : vw ∈ E}. The degree of a vertex v is the number of its neighbors,

i.e, |N(v)|. The closed neighborhood of v is given by N[v] = N(v)∪{v}. A walk is a

sequence of vertices v1,v2, . . . ,vr such that vivi+1 ∈ E for each i ∈ [r− 1]. A walk that

does not repeat a vertex is called as a path. A closed walk is a walk that starts and ends at

the same vertex. A closed walk that repeats exactly one vertex is called a cycle.

A graph H = (VH ,EH) is said to be a subgraph of G = (VG,EG) if VH ⊆ VG and

2

EH ⊆ EG. Given a set S ⊆V the subgraph induced on S is denoted by G[S]: its vertex set

is S and the edge set is the set of all those edges in G which have both endpoints in S.

For S ⊆ V we use G \ S to denote the graph G[V \ S]. For S ⊆ E we use G \ S to denote

the graph (V,E \S). A graph G = (V,E) is bipartite if there exists a set V ′ ⊆V such that

both the graphs G[V ′] and G[V \V ′] do not have any edges. A graph is planar if it can be

drawn in the plane or the sphere without crossings.

Directed Graphs: In directed graphs, the edge set contains ordered pairs of vertices. An

edge from v to w is represented as v→ w or (v,w). In this case, we call v as the tail and

w as the head. Again, we only consider simple, finite directed graphs, i.e., no edges of

the type (v,v) or no multiple edges between two vertices. The out-neighborhood of v is

given by N+(v) = {w : (v,w) ∈ E}. The out-degree of a vertex v is the number of its out-

neighbors, i.e, |N+(v)|. The in-neighborhood of v is given by N−(v) = {w : (w,v) ∈ E}.

The in-degree of a vertex v is the number of its in-neighbors, i.e, |N−(v)|. A walk is a

sequence of vertices v1,v2, . . . ,vr such that (vi,vi+1) ∈ E for each i ∈ [r−1]. A walk that

does not repeat a vertex is called as a path. We denote a path from v to w by v ; w. A

closed walk is a walk that starts and ends at the same vertex. A closed walk that repeats

exactly one vertex is called a cycle. A directed graph without a cycle is called as a di-

rected acyclic graph (DAG). Every directed acyclic graphs has a topological ordering: an

ordering such that for each edge the tail precedes the head in the ordering.

Minors and Treewidth: Given an edge e = {u,v} in an undirected graph G, the contrac-

tion of e in G is the result of identifying the vertices u and v in G and removing all loops

3

and duplicate edges (the resulting graph is denoted by G/e). A graph H obtained by a

sequence of such edge contractions starting from G is said to be a contraction of G. A

graph H is a minor of G if H is a subgraph of some contraction of G. A graph class G

is minor-closed if any minor of any graph in G is also a member of G. A minor-closed

graph class G is H-minor-free if H /∈ G. We use the term H-minor-free to refer to any

minor-closed graph class that excludes some fixed graph H.

A tree decomposition of an undirected graph G is a tree T in which every vertex

x ∈V (T) has an assigned set of vertices Bx ∈V (G) (called a bag) such that the following

properties are satised:

• ⋃x∈V (T)Bx =V (G).

• For each {u,v} ∈ E(G), there exists an x ∈V (T) such that u,v ∈ Bx.

• For each v∈V (G), the set of vertices of T whose bags contain v induce a connected

subtree of T .

The width of a tree decomposition T is maxx∈V (T) |Bx|−1. The treewidth of a graph G,

usually denoted by tw(G), is the minimum width over all possible tree decompositions of

G. A k× k grid is an undirected graph with vertex set [k]× [k] where (i, j) and (i′, j′) are

neighbors if and only if |ii′|+ | j j′|= 1. It is known that a k× k grid has treewidth Θ(k).

1.2 Coping with NP-Completeness

“For every polynomial algorithm you have, there is an exponential algorithm I

would rather run” -Alan Perlis

4

In his seminal 1936 paper “On Computable Numbers, With An Application To The

Entscheidungsproblem” [Tur36] the principle of the modern computer was first described

by Alan Turing. The field of algorithms received a shot in the arm with the rapid de-

velopment in power and easier availability of digital computers. Many combinatorial

optimization problems were recognized as having practical applications. However, the

Combinatorics community at that time was not interested in algorithms. Since the graphs

considered in applications were finite, they had trivial solutions which ran in finite time.

Even the Operations Research community viewed a problem as “solved” if it could be

formulated as an integer programming problem. Edmonds in his seminal paper “Paths,

Trees and Flowers” [Edm65] gave an algorithm for maximum matching in general graphs

whose running time was polynomial in the input size. He called such algorithms as “ef-

ficient” or “good”. We quote the following paragraph from Edmonds’ paper: “There is

an obvious finite algorithm, but that algorithm increases in difficulty exponentially with

the size of the graph. It is by no means obvious whether or not there exists an algorithm

whose difficulty increases only algebraically with the size of the graph.” This criterion of

Edmonds for calling an algorithm as efficient (or good) when its running time is polyno-

mially bounded is now the accepted convention in theoretical computer science. We refer

the interested reader to a related survey by Pulleyblank [Pul12].

The complexity class P is the set of all decision problems that can be solved by a

deterministic Turing machine using polynomial time. The complexity class NP (nonde-

5

terministic polynomial time) is the set of all decision problems for which the instances

where the answer is “YES” have proofs that can be verified polynomial time by a deter-

ministic Turing machine1. In other words, P is the class of problems which have efficient

solutions and NP is the class of problems which have efficient “characterizations”. In

his seminal paper, Cook [Coo71] showed that there is a problem called SATISFIABILITY

(SAT) in the class NP having the property that every other problem in the class NP can be

reduced to it in polynomial time. That is, if SAT can be solved in polynomial time then

every problem in NP can also be solved in polynomial time; conversely if any problem in

NP is “intractable” then the SAT problem must also be intractable. Intuitively, SAT is the

hardest problem in the class NP. Cook also suggested that other problems like CLIQUE

may also share the property of being the hardest member of the class NP. Karp [Kar72]

gave a list of 21 such hardest problems, which came to be known as NP-complete prob-

lems. See [GJ79] for more historical information about NP-completeness, including a list

of over 300 NP-complete problems. As of today, to show NP-hardness of a given problem

at hand, one has a choice of several thousands of known NP-complete problems to choose

to reduce from.

Over the last few decades, a lot of effort has gone into trying to resolve the central

question in theoretical computer science: is P = NP? A large fraction of the theoreti-

1Alternatively, we can think of NP as the set of all decision problems where the ”YES” instances

can be accepted in polynomial time by a non-deterministic Turing machine: in the first step we non-

deterministically guess a solution, and in the second step check deterministically whether the guessed

solution is indeed valid or not.

6

cal computer science community seems to believe that P6=NP. Under this belief there

is no polynomial time algorithm that solves all the instances of an NP-complete prob-

lem exactly. However as noted by Garey and Johnson [GJ79], hardness results such as

NP-hardness should merely constitute the beginning of research. The traditional way to

combat this intractability is to design approximation algorithms or randomized algorithms

which run in polynomial time. These methods have their own shortcomings: we either

get an approximate solution or lose the guarantee that the output is always correct. In

order to not lose the guarantee on the optimality of the solution, one is forced to con-

sider algorithms which require time beyond polynomial time. Two such paradigms are

exact-exponential algorithms and fixed-parameter algorithms.

We now briefly describe the aforementioned four algorithmic approaches to dealing

with NP-completeness.

1.2.1 Approximation Algorithms

The area of approximation algorithms is one of the most active areas of research in

theoretical computer science. The output is allowed to be a (provable) factor away from

the optimal solution but we are forced stay within polynomial time. Let α ≥ 1. For mini-

mization problems, we say that an algorithm is an α-approximation if it outputs a solution

that is at most α times larger than the optimum. Similarly, for maximization problems

we say that an algorithm is an α-approximation if it outputs a solution that is at least an

(1/α)-fraction of the optimum. We now look at various types of known approximation

7

ratios:

Polynomial: Outputting a single vertex gives an n-approximation for CLIQUE. This is

optimal as Håstad [Hås96] and Zuckerman [Zuc06] showed that CLIQUE cannot be ap-

proximated to within a factor of n1−ε for any ε > 0 unless P=NP.

Polylog: The well-known greedy algorithm for SET COVER gives an lnn-approximation,

where n is the size of the universe. This is optimal as Feige [Fei98] showed that SET

COVER cannot be approximated to within a factor better than lnn unless we have that

NP⊆ DTIME(nlog logn).

Constant Factor: The simple algorithm which takes one vertex from each edge of a max-

imal matching gives an 2-approximation for VERTEX COVER. Dinur and Safra [DS05]

showed that VERTEX COVER cannot be approximated to within a factor better than

1.3606 unless P=NP. Khot and Regev [KR08] showed that it is not possible to give an

(2−ε)-approximation for any ε > 0 under the Unique Games Conjecture of Khot [Kho02].

Polynomial Time Approximation Scheme (PTAS): A PTAS is an algorithm which given

a parameter ε > 0 outputs a solution within a factor (1+ ε) of the optimal and has run-

ning time n f (1
ε
) for some function f , i.e., the running time is polynomial in n for every

fixed ε but can be different as ε varies. There is a tradeoff between the approximation

ratio and the running time. The most famous example of a PTAS is for the EUCLIDEAN

TRAVELING SALESMAN problem due to Arora [Aro98].

We refer the reader to the books by Vazirani [Vaz02], Hochbaum [Hoc97] and

Shmoys and Williamson [WS11] for more information on approximation algorithms.

8

Approximation Beyond Polynomial Time: So far we only looked at approximation al-

gorithms which ran in polynomial time. Alternatively, one can also consider exponential

time approximation algorithms [CKW09, BH06, BEP09, DGHK01, VWW06] or FPT ap-

proximation algorithms [Mar08, CHK13, BEKP13, DFMR08, Mar13, GG07]

1.2.2 Randomized Algorithms

Randomized algorithms are algorithms that make random choices during their ex-

ecution. Randomized algorithms are usually simpler, and are often the first step towards

obtaining a deterministic algorithm. There are two types of randomized algorithms:

Monte Carlo and Las Vegas. A Monte Carlo algorithm is a randomized algorithm whose

running time is deterministic, but whose output might be wrong with an (ideally small)

probability that one can bound. A Las Vegas algorithm is an algorithm which always

produces the correct output, but the randomness lies in the running time of the algorithm.

We refer the reader to the books by Motwani and Raghavan [MR95] and Mitzemacher

and Upfal [MU05] for more information on randomized algorithms.

In polynomial time randomized algorithms, one usually tries to do a randomized

selection so that the probability of success is (provably) at most polynomially small. On

the other hand, randomized FPT algorithms are designed by doing a randomized selec-

tion in order to satisfy a bounded number of constraints. In this case, the probability of

success is (provably) at most exponentially small in the parameter. See the survey by

Marx [Mar12b] on randomized techniques for FPT algorithms.

9

1.2.3 Exact Exponential Algorithms

All problems in NP have trivial exponential time algorithms which simply search

and verify all the witnesses [Wig07]. Any algorithm which beats the brute-force algorithm

can be thought of as making a clever search in the big space of all candidate solutions.

For most graph problems, the trivial algorithm which enumerates all subsets and checks

(in polytime) whether each subset is a solution or not runs in time O∗(2n) where n is the

number of vertices in the graph. The goal in exact exponential algorithms is to reduce

the base of the exponent, i.e., to design algorithms which run in O∗((2− ε)n) for some

constant ε > 0. Breaking this barrier turned out to be highly non-trivial for several prob-

lems (see [Bjö14,BFPV13,CFL+13,FGPR08,Raz07] among others) and techniques such

as Inclusion-Exclusion Principle, Measure and Conquer, Subset Convolution, etc. were

used. In some cases, even obtaining an algorithm which runs in O∗(2n) is not trivial. Con-

sider the TRAVELLING SALESMAN problem (TSP): given n distinct cities {c1,c2, . . . ,cn}

and pairwise distances d(ci,c j) for each 1 ≤ i 6= j ≤ n, find a permutation of minimum

distance which visits all the cities and returns to its starting point. Note that the trivial

algorithm runs in O∗(n!) time. Using dynamic programming Bellman [Bel62] and Held

and Karp [HK62] gave an algorithm which runs in O∗(2n) time. Despite many efforts

over the last 50 years, no one has been able to design a faster algorithm.

See the book by Fomin and Kratsch [FK10] for more information on this exciting

and relatively new area of algorithms.

10

1.2.4 Fixed-Parameter Algorithms

In this thesis we consider the paradigm of Parameterized Complexity which is es-

sentially a two-dimensional analogue of P vs NP. Unlike classical complexity, we define

a parameter which is a non-negative integer often denoted by k. We perform a refined

multivariate analysis of the running time by expressing it as a function of both the input

size n and the parameter k, instead of expressing it as solely as a function of n. The goal

is to design algorithms that work efficiently if the parameters of the input instance are

small, even if the size of the input is large. More precisely, we say that an NP-hard prob-

lem is fixed-parameter tractable (FPT) with respect to parameter k if the problem can be

solved in time f (k) · nO(1) where f is a computable function and n is the input size. A

straightforward generalization is to define more than one parameter.

Parameterized complexity allows us to completely determine the effect of a pa-

rameter on the complexity of a certain problem. In particular, if we can design an FPT

algorithm for a problem with respect to a parameter k then this means that instances of

the problem where k is small are easier to handle than others. This theory of multivariate

analysis has found applications to problems in varied areas such as social networks, game

theory, coding theory, machine learning, etc. We refer the reader to the books by Downey

and Fellows [DF99, DF13], Flum and Grohe [FG06] and Niedermeier [Nie06] for more

information on parameterized complexity.

11

1.3 Parameterized Complexity

“The future of algorithms is multivariate”

-Robert G. Downey and Michael R. Fellows

In this section, we give a formal introduction to Parameterized Complexity. We

follow the notation of Downey and Fellows [DF13].

Let Σ be a finite alphabet and N be the set of natural numbers. A parameterized

problem (or language) Q is a subset of Σ∗×N. An instance of Q is given by 〈x,k〉 where

k is called the parameter. For a fixed ` ∈ N, we call Q` = {〈x, `〉 : 〈x, `〉 ∈ Q} as the `th

slice of Q.

The class XP: A problem Q ∈ XP if Qk ∈ P for each k ∈ N (perhaps with a different

algorithm for each k). That is, there exists an algorithm that for a given instance 〈x,k〉

decides whether 〈x,k〉 ∈ Q in time f (k) · |x|O(g(k)) where f ,g are arbitrary computable

functions of k.

The class FPT: A problem Q ∈ FPT if there exists an algorithm that for a given instance

〈x,k〉 decides whether 〈x,k〉 ∈ Q in time f (k) · |x|O(1) where f is an arbitrary computable

function of k.

Parameterized Reductions: A parameterized reduction from a parameterized problem

Q to a parameterized problem Q′ is an algorithm that given an instance 〈x,k〉 of Q outputs

in time f (k) · |x|O(1) an equivalent instance 〈x′,k′〉 of Q′ such that k′ ≤ g(k), where f and

12

g are arbitrary computable functions.

The W -hierarchy2: A Boolean circuit consists of input gates, negation gates, AND gates,

OR gates and a single output gate. In the WEIGHTED CIRCUIT SATISFIABILITY problem

we are given a Boolean circuit C and an integer k, and the objective is to decide if there

is an assignment which sets k inputs to true such that the output is true. The depth of a

circuit is the maximum length of a path from an input to the output. A gate is large if it

has more than 2 inputs. The weft of a circuit is the maximum number of large gates on a

path from an input to the output. Let C[t,d] be the set of all circuits having weft at most t

and depth at most d.

A problem Q ∈W[t] if there exists a constant d such that there is a parameterized

reduction from Q to WEIGHTED CIRCUIT SATISFIABILITY of C[t,d]. In the WEIGHTED

n-SATISFIABILITY problem we are given an n-CNF Boolean formula and a parameter k,

and the question is to find whether there is a satisfying assignment which sets k variables

to true. The following theorem which is an analog of Cook’s theorem was proved by

Downey and Fellows [DF95]:

Theorem 1.1. The WEIGHTED n-SATISFIABILITY problem is W[1]-complete.

W[P] is the class of problems that admit a parameterized reduction from the WEIGHTED

CIRCUIT SATISFIABILITY problem. The following set of classes is known as the W -

hierarchy:

FPT = W[0]⊆W[1]⊆W[2]⊆ . . .⊆W[P]⊆ XP
2Refer to the slides by Marx [Marb]

13

It is conjectured that each of the containment relations above is proper, but the only known

result (via a diagonalization argument) is FPT ⊂ XP. It is widely believed that even

FPT 6=W [1], and hence a W[t]-hardness result (for any t ∈ N) is a strong indication that

the problem does not admit a FPT algorithm. For the purposes of reductions, the most

famous problem W[1]-complete problem is CLIQUE and the most famous W[2]-complete

problem is DOMINATING SET.

1.3.1 Classical Complexity vs Parameterized Complexity

Through the example of the VERTEX COVER problem and the CLIQUE problem, we

illustrate how parameterized complexity allows for a more refined analysis of the running

time than classical complexity, thereby revealing additional structure about the problem

at hand. Consider an undiretced graph G = (V,E). It is a simple fact to check that if S⊆V

is a vertex cover of G if and only if then V \ S is an clique in the complement graph G.

Since classical complexity measures the running time only with respect to the input size,

any classical exact algorithm for VERTEX COVER also works for the CLIQUE problem.

The fastest such exact algorithm for the VERTEX COVER problem and the CLIQUE is due

to Robson [Rob86] and runs in O(1.2108n) time, where n is the number of vertices in the

graph.

In contrast, parameterized complexity shows a remarkable difference between the

running times of the aforementioned two problems when parameterized by the size k of

the solution. First, note that both these problems have a simple brute-force XP algorithm

14

parameterized by the size k of the solution: enumerate all vertex subsets of size k and

check (in polynomial time) whether each subset forms a solution or not. This brute-force

algorithm runs in time
(n

k

)
·nO(1) = nO(k). A simple branching algorithm3 shows that pa-

rameterized VERTEX COVER can be solved in time 2k · nO(1), and the fastest algorithm

is due to Chen et al. [CKX10] and runs in time 1.2738k · nO(1). However for the param-

eterized CLIQUE problem no one was able to design an FPT algorithm, or even improve

upon the brute force XP algorithm. This in fact led Downey and Fellows to develop the

theory of fixed-parameter intractability. Finally, Chen et al. [CHKX06] showed that un-

der the Exponential Time Hypothesis (ETH) [IP01, IPZ01] there is no algorithm for the

parameterized CLIQUE problem which runs in time f (k) ·no(k) for any computable func-

tion f . This shows that for the parameterized CLIQUE problem the brute-force algorithm

enumerating all the
(n

k

)
subsets of size k of the vertex set is asymptotically optimal.

1.3.2 Algorithmic Techniques For Designing FPT Algorithms

1.3.2.1 Kernelization

Kernelization is an efficient preprocessing algorithm which produces a smaller,

equivalent output called the “kernel”. Formally, a kernelization algorithm for a parameter-

ized problem Q⊆ Σ∗×N is an algorithm which takes as an instance 〈x,k〉 and outputs in

3For every edge, branch on choosing either vertex into the solution. At each step we branch into two

directions, and the depth of the search tree is at most k.

15

time polynomial in (|x|+k) an equivalent4 instance 〈x′,k′〉 such that max{|x′|,k′} ≤ f (k)

for some computable function f . The output instance 〈x′,k′〉 is called the kernel, while

the function f is called the size of the kernel.

A folklore observation is that a parameterized problem Q has an FPT algorithm if

and only if it has a kernel. However, the size of the kernel might be exponentially large.

In practice, one would hope to find kernels of polynomial size and indeed many problems

such as FEEDBACK VERTEX SET and VERTEX COVER admit such kernels. On the other

hand, it turned out to be difficult to find polynomial kernels for some problems. This led to

development of methods [BDFH09, DvM10, Dru12, FS11] to show that certain problems

do not admit polynomial kernels unless NP⊆ coNP/poly.

Kernelization is an active subarea of parameterized complexity. After proving that

a new problem is FPT, the next natural step is to try for a polynomial kernel or rule out

such a possibility. We refer the reader to the surveys by Lokshtanov et al. [LMS12] and

Misra et al. [MRS11] for more information on kernelization.

1.3.2.2 Iterative Compression

The technique of Iterative Compression was introduced by Reed et al. [RSV04]

who used it to show that the ODD CYCLE TRANSVERSAL problem is FPT parameter-

ized by the size of the deletion set. Since then it has been used to obtain faster FPT

algorithms [CFL+08,CLL+08,DFL+07,GGH+06,HKMN08,MR11,RO09], exact algo-

4By equivalent we mean that 〈x,k〉 ∈ Q⇔ 〈x′,k′〉 ∈ Q

16

rithms [FGK+10], kernels [DFRS04] and FPT approximation algorithms [MR09]. The

technique of iterative compression can be used for hereditary minimization problems,

i.e., problems where the conditions H is a subgraph of G and S is a solution for G imply

G[S∩H] is a solution for H. We now illustrate the use of iterative compression through

the example of the ODD CYCLE TRANSVERSAL (OCT) problem: given an undirected

graph G = (V,E) and an integer k, the question is whether there exists a set S⊆V of size

at most k such that G\S is odd-cycle free, i.e., bipartite.

The first idea is that by paying a factor of O(n) in the running time, it is enough to

solve a modified compression version of the problem where we are given a solution S′ of

size k+1. Suppose we have a blackbox which can solve the compression version of the

OCT problem in f (k) ·nc for some function f and constant c. Let V = {v1,v2, . . . ,vn} and

for each 1 ≤ i ≤ n let Vi = {v1,v2, . . . ,vi}. Observe that the OCT problem is hereditary:

if G has a solution S of size k then S∩Vi is a solution for G[Vi] for each 1 ≤ i ≤ n. We

now give a f (k) ·nc+1 time algorithm for OCT. Note that Vk+1 is a (trivial) solution of size

k+ 1 for the graph G[Vk+1]. Run the blackbox algorithm for the compression problem.

If it says NO then G[Vk+1] does not have a solution of size k, and hence neither does G.

Otherwise it returns a set, say Sk+1, of size k which is a solution of size k for G[Vk+1].

Now, Sk+1 ∪{vk+2} is a solution of size k+ 1 for the graph G[Vk+2]. Again we run the

blackbox algorithm for the compression version and so on. If the blackbox algorithm

ever returns NO, then we can safely answer that G does not have a solution of size k.

Otherwise after (n− k) calls to the blackbox algorithm we obtain a solution of size k for

17

G.

The second idea is that by paying a factor of O(2k) in the running time, it is enough

to solve a disjoint version of the compression version of the problem where we are given a

solution S′ of size k+1 and we need to find a solution S of size k such that S∩S = /0. This

is easy to see: we guess all the 2k choices for the intersection S′′ = S∩S′, and then solve

the disjoint compression version of the problem on the graph G \ S′′ with the parameter

k−|S′′|.

Finally, Reed et al. [RSV04] gave an FPT algorithm for the disjoint compression

version of the OCT problem which implied an FPT algorithm for the general OCT prob-

lem with an additional factor of O(2k ·n) in the running time.

1.3.2.3 Bidimensionality

WIN-WIN approaches have a long and storied history in the development of FPT

algorithms: see [AKK+11, CCH+12, CMPP13, iKT11] for some recent examples. We

perform a polynomial test on the input, and depending on which condition is satisfied we

decide how to proceed with the next step. The most famous representative of the WIN-

WIN approach is via the so called Excluded Grid Minor theorem which is one of the

cornerstones of the Graph Minors project of Robertson and Seymour [RS04].

Theorem 1.2. [RS86] There is a function f (k) such that every graph with treewidth more

than f (k) contains a k× k grid as a minor.

Theorem 1.2 gives a WIN-WIN approach as follows: either we have a small treewidth

18

(and we can do dynamic programming), or otherwise the graph contains a large grid

which gives allows for some structural insights. The original work of Robertson and Sey-

mour [RS86] gave a bound on f which was huge. Robertson, Seymour and Thomas [RST94]

conjectured that the function f should be a polynomial and gave a lower bound of f (k) =

Ω(k2 logk). In a breakthrough result, Chekuri and Chuzhoy [CC14] proved this conjec-

ture by showing that f (k) = kO(1). Demaine and Hajiaghayi [DH05b] showed a linear

parameter-treewidth bound in H-minor free graphs.

Theorem 1.3. Let H be a fixed graph. There is a computable function f such that any

graph G which excludes H as a minor and has treewidth f (|H|) · k contains a k× k grid

as a minor.

The theory of bidimensionality [DFHT05b] exploits the idea that many problems

can be solved efficiently via dynamic programming on graphs of bounded treewidth. A

problem is said to be bidimensional if the solution on a k× k grid is Ω(k2), and the

solution value does not increase under the operation of taking minors. Theorem 1.3 gives

a WIN-WIN approach for subexponential algorithms for bidimensional problems in H-

minor free graphs as follows: either we have a small treewidth (say at most O(
√

k)) and

can then use the dynamic programming algorithms for bounded treewidth graphs, or the

treewidth is large (say at least f (H) ·
√

k) which implies that the graph contains
√

k×
√

k

grid as a minor. This implies that the solution size is at least k, since the parameter is

bidimensional.

Bidimensionality provides a general framework for designing FPT algorithms and

19

approximation algorithms for NP-hard graph problems in broad classes of graphs. It was

developed in a series of papers [DHT05,DHN+04,DFHT05a,DH04a,DFHT05b,DH04b,

DFHT04,DHT06,DH05b,DH05a]. See the surveys [DH08,DFT08] for more information

on bidimensionality. In the last few years there has been some new progress [FLS12,

FLRS11, FLST10, FGT09] on using the theory of bidimensionality and some extensions.

1.3.2.4 Important Separators in Undirected Graphs

In a seminal paper Marx [Mar06] introduced the concept of important separators

to deal with the UNDIRECTED MULTIWAY CUT problem. Since then it has been used

(implicitly or explicitly) quite frequently [CLL09, CLL+08, CHM12, CCHM12, CFG13,

KPPW12a, LM13, LR12, MR11, RO09] in the design of fixed-parameter algorithms. We

now give a brief introduction on important separators in undirected graphs, and see an

application to the UNDIRECTED MULTIWAY CUT problem.

Definition 1.1. (separator) Let G = (V,E) be an undirected graph and X ,Y ⊆V be two

disjoint non-empty sets. A set W ⊆V \ (X ∪Y) is called as an X −Y separator if there is

no path from X to Y in G\W. A set W is a minimal X −Y separator if no proper subset

of W is an X−Y separator.

Definition 1.2. (important separator) Let G be an undirected graph and let X ,Y ⊆V be

two disjoint non-empty sets. A minimal X −Y separator W is called an important X −Y

separator if there is no X −Y separator W ′ with |W ′| ≤ |W | and RG\W (X) ⊂ RG\W ′(X),

where RA(X) is the set of vertices reachable from X in the graph A.

20

Roughly speaking, an important separator is a separator of small size that is max-

imal with respect to the set of vertices on one side. The first nice property of important

separators is that the number of important X −Y separators of size at most k can be

bounded by a function of (only) k for any two sets X ,Y :

Lemma 1.1. [CLL09, Mar06](number of important separators) Let X ,Y ⊆ V (G) be

disjoint sets in an undirected graph G. Then for every k≥ 0, there are at most 4k important

X −Y separators of size at most k. Furthermore, we can enumerate all these separators

in time O(4k · k(|V (G)+ |E(G)|)).

The 4k upper bound is almost tight: Marx [Mara] showed that there are instances

with ≥ 4k

poly(k) important separators of size k. The second nice property of important sep-

arators is the so called “pushing lemma”. First we define the UNDIRECTED MULTIWAY

CUT problem:

UNDIRECTED MULTIWAY CUT
Input : An undirected graph G = (V,E), an integer k and a set of terminals T =
{t1, t2, . . . , t`}.
Output : A set S⊆V (G) of size at most k such that G\S has no ti− t j path for any
1≤ i 6= j ≤ `, or “NO” if such a set does not exist.

Any solution of the UNDIRECTED MULTIWAY CUT problem contains a t1−T \ t1

separator. The pushing lemma says that we can always branch on choosing one of the 4k

important separators.

Lemma 1.2. [Mar06](pushing lemma) Let S be a solution for the UNDIRECTED MUL-

TIWAY CUT problem. Then there is another solution S′ such that |S′| ≤ |S| and S′ contains

an t1−T \ t1 important separator.

21

The previous two lemmas give a O∗(4k2
) branching algorithm for the UNDIRECTED

MULTIWAY CUT problem: at each step we branch on 4k important separators, and this is

repeated at most k−1 times.

1.4 Why are Directed Graphs Harder?

In the study of graph algorithms, we usually consider the undirected version before

the directed version. However, in some cases we need directions to accurately model the

given network and hence directed graphs are unavoidable. For example, the Internet is

best viewed as a directed graph: introduce a node for every web page, and a directed edge

between nodes u and v if there is a hyperlink from u to v. Unfortunately, in most cases5

the directed versions of the problems turn out to be much harder than their corresponding

undirected variants. Below we present some evidence of this phenomenon as seen in the

areas of approximation algorithms and parameterized complexity.

1.4.1 Evidence from Approximation Algorithms

Multicut: In the (directed) MULTICUT problem, we are given a (directed) graph G =

(V,E) and a set of terminal pairs T = {(s1, t1,),(s2, t2), . . . ,(sk, tk)} and the objective is

to find a set S ⊆ V of minimum size such that G \ S has no si− ti (resp. si ; ti) path.

For k = 2, the undirected version is polynomial time solvable [YKCP83] but the directed

version is NP-hard [GVY04]. For the undirected version the best known approximation

5See [Sta] for some exceptions

22

ratio is O(logk) due to Garg et al. [GVY96], and Chawla et al. [CKK+06] showed that

under the Unique Games Conjecture of Khot [Kho02] no constant factor approximation

is possible. For the directed version the best known approximation ratio is Õ(n11/23) due

to Agarwal et al. [AAC07], and Chuzhoy and Khanna [CK09] showed that it is hard to

approximate within a factor better than 2Ω(log1−ε n) for any constant ε > 0 unless NP=ZPP.

Feedback Vertex Set: In the (directed) FEEDBACK VERTEX SET problem, we are given

a (directed) graph G = (V,E) and the objective is to find a set S ⊆ V of minimum size

such that G \ S has no (directed) cycles. For the undirected version the best known ap-

proximation ratio is 2 due to Bafna et al. [BBF99]. However, for the directed version the

best known approximation ratio is logn log logn due to Even et al. [ENSS95] and Sey-

mour [Sey95].

Metric TSP: In the symmetric TRAVELING SALESMAN problem (TSP), we are given a

complete undirected graph G = (V,E) with costs on the edges such that the cost function

satisfies the triangle inequality. The objective is to find a Hamiltonian cycle of minimum

cost. In the asymmetric TRAVELING SALESMAN problem (TSP) the cost of the edge

(u,v) need not be the same as the cost of the edge (v,u). The best known ratio for the

symmetric version is 3/2 due to Christofides [Chr76], and the best approximation ratio

for the asymmetric version is O(logn/ log logn) due to Asadpour et al. [AGM+10].

23

1.4.2 Evidence from Parameterized Complexity

Lack of a Good Directed Width Measure? There have been several attempts to intro-

duce directed notions of treewidth, viz. directed treewidth [JRST01a], D-width [Saf05],

Kelly width [HK08], DAG-width [BDHK06, Obd06] and entanglement [BG04]. How-

ever, all of these notions failed to have both the nice (algorithmic) properties that treewidth

possesses for undirected graphs: the width measure is small on many simple interesting

graphs, and many hard problems become easy on instances of where the width measure is

small. Ganian et al. [GHK+10] asked the following question: have all the attempts at ob-

taining a directed width measure that is both algorithmically useful and does not increase

under taking minors6 failed because there can be no such measure? The answer is YES:

assuming P 6= NP, for some technical definitions of the terms sensible, algorithmically

useful and nice structural properties they showed that any width measure for directed

graphs which satisfies the aforementioned three properties must be bounded by a function

of the treewidth of the underlying undirected graph. This suggests that there are no good

directed width measures to work with from the viewpoint of algorithms.

Lack of Algorithmic Graph Minor Theory for Directed Graphs? In last paragraph,

we have seen that there is no good notion of minor or treewidth in directed graphs.

However, one can ask the following question: even after fixing some definitions for mi-

6There is no agreed concept of minors in directed graphs. One of the commonly used concept is the so

called butterfly minors [JRST01a]

24

nor and treewidth can one develop a good algorithmic theory (say similar to bidimen-

sionality)? The answer seems be NO: for the notion of butterfly minors and directed

treewidth [JRST01a], an Excluded Grid Minor Theorem was claimed for directed planar

graphs by Johnson et al [JRST01b]. Recently, Kawarayabayashi and Kreutzer [iKK14]

extended the result to directed graphs excluding a fixed minor. However, this result seems

to be of structural value only as so far it has not been possible to develop any good algo-

rithmic consequences out of it.

Gap Between Resolution of Parameterized Complexity of Undirected and Directed

versions: In 2004 Marx [Mar06] showed that the undirected MULTIWAY CUT problem is

FPT parameterized by the size of solution. The directed version was open until Chitnis et

al. [CHM12] showed it to be FPT in 2012. The undirected MULTICUT was known to be

FPT parameterized by size of solution plus number of terminal pairs since 2004 [Mar06].

Marx and Razgon [MR14a] improved this result in 2011 by showing that the problem

is FPT parameterized by the size of solution alone. They also showed that the directed

MULTICUT problem is W[1]-hard parameterized by solution size. The status of directed

MULTICUT parameterized by the size of solution plus number of terminal pairs is still

open, although it is known to be FPT on DAGs [KPPW12a].

The first FPT algorithm for the undirected FEEDBACK VERTEX SET problem was

given by Mehlhorn [Meh84] almost 30 years ago. Since then, there have been a series

of papers [BBYG00,Bod91,CCL10,CFL+08,DFL+07,DF99,GGH+06,KPS04,RSS06,

25

CNP+11] giving faster algorithms. For directed graphs, the fixed-parameter tractability

status of FEEDBACK VERTEX SET was a long-standing open problem (almost 16 years)

until Chen et al. [CLL+08] resolved it by giving an FPT algorithm.

By introducing the technique of iterative compression, Reed et al. [RSV04] showed

in 2004 that the undirected ODD CYCLE TRANSVERSAL problem is FPT parameterized

by the size of the deletion set. The fixed-parameter tractability status of directed ODD

CYCLE TRANSVERSAL parameterized by the size of the deletion set is still open.

1.5 Outline of Thesis

In the first part of this thesis, we develop the framework of shadowless solutions.

This allows us to design the first FPT algorithms for the DIRECTED MULTIWAY CUT

problem (Section 2.2) and the SUBSET DIRECTED FEEDBACK VERTEX SET problem

(Section 2.3). These results have appeared in [CHM12] and [CCHM12].

In the second part of this thesis, we present tight bounds on the parameterized com-

plexity of well-studied directed connectivity problems such as STRONGLY CONNECTED

STEINER SUBGRAPH and DIRECTED STEINER FOREST (even if the underlying undi-

rected graph is planar) when parameterized by number of terminals/terminal pairs. Upper

bounds are presented in Chapter 3.1 and Lower bounds are presented in Chapter 3.2.

These results have appeared in [CHM14]

26

CHAPTER 2

The Framework of Shadowless

Solutions

In Section 1.4.2 we saw some evidence as to why parameterized complexity of

problems on directed graphs are harder than the corresponding undirected versions. Very

few general techniques are known for the directed problems unlike for the undirected

ones. We try to bridge this gap by developing a general framework of “shadowless so-

lutions” to obtain FPT algorithms for directed graph problems. This was introduced by

Marx and Razgon [MR14a, MR11] for undirected graphs. We adapt and extend their

framework in a highly non-trivial way to the following general family of problems on

directed graphs:

27

Finding an F-transversal for some T -connected F
Input : A directed graph G = (V,E), a positive integer k, a set T ⊆ V and a set
F = {F1,F2, . . . ,Fq} of subgraphs such that F is T -connected, i.e., ∀ i ∈ [q] each
vertex of Fi can reach some vertex of T by a walk completely contained in Fi and is
reachable from some vertex of T by a walk completely contained in Fi.
Parameter : k
Question : Is there an F-transversal W ⊆ V with |W | ≤ k, i.e., a set W such that
Fi∩W 6= /0 for every i ∈ [q]?

Remark 2.1. We emphasize here that the collection F is implicitly defined in a problem

specific-way and we do not assume that it is given explicitly in the input, in fact, it is

possible that F is exponentially large.

We define the “shadow” of a solution X as those vertices that are disconnected from

T (in either direction) after the removal of X . A common idea in [MR11, CHM12] is to

ensure first that there is a solution whose shadow is empty, as finding such a shadowless

solution can be a significantly easier task. Our generic framework shows that for the

F-transversal problems defined above, we can invoke the random sampling of important

separators technique and obtain a set which is disjoint from a minimum solution and

covers its shadow. What we do with this set, however, is problem specific. Typically,

given such a set, we can use (some problem-specific variant of) the “torso operation” to

find an equivalent instance that has a shadowless solution. Therefore, we can focus on

the simpler task of finding a shadowless solution; or more precisely, finding any solution

under the guarantee that a shadowless solution exists. We believe our framework will

provide a useful opening step in the design of FPT algorithms for other transversal and

cut problems on directed graphs.

28

In the case of undirected MULTICUT [MR11], the problem of finding a shadow-

less solution could be reduced to an FPT problem called ALMOST 2SAT [LNR+12,

RO09]. In the case of DIRECTED MULTIWAY CUT [CHM12], the problem of finding

a shadowless solution can be reduced to the undirected version, which is known to be

FPT [CLL09,CPPW13a,Mar06]. For SUBSET-DFVS [CCHM12], the situation turns out

to be a bit more complicated. We first use the technique of iterative compression (see

Section 1.3.2.2) to reduce the problem to an instance where we are given a solution T and

we want to find a disjoint solution of size at most k. Also the “shadows” are defined with

respect to the solution T that we want to compress, whereas for DIRECTED MULTIWAY

CUT the shadows are defined with respect to the terminal set T . The “torso” operation

for the SUBSET-DFVS problem, as it takes into account the set S and modifies it accord-

ingly. Furthermore, even after ensuring that there is a solution T ′ whose shadow is empty,

we are not done unlike in the case of DIRECTED MULTIWAY CUT. We then analyze the

structure of the graph G \T ′ and focus on the last strongly connected component in the

topological ordering of this graph, i.e., the strongly connected component which can only

have incoming edges from other strongly connected components. We would like to find

the subset of T ′ that separates this component from the rest of the graph. In most cases, a

pushing argument can be used to argue that this subset of T ′ is an important separator, and

hence we can branch on removing an important separator from the graph. However, due

to the way the set S interacts with the solution T ′, there is a small number of vertices that

behave in special way. We need surprisingly complex arguments to handle these special

29

vertices.

2.1 General F-transversal Problems: Covering the Shadow of a So-

lution

The purpose of this section is to present the “random sampling of important sep-

arators” technique for the general family of problems given by “F-transversal for T -

connected F”. The technique consists of two steps:

1. First find a set Z small enough to be disjoint from a solution X (of size ≤ k)
but large enough to cover the “shadow” of X .

2. Then define a “torso” operation that uses the set Z to reduce the problem
instance in such a way that X becomes a shadowless solution of the reduced
instance.

We now show that Step 1 can be efficiently performed for the general family of

problems defined earlier in this chapter. The torso operation is problem-specific, and

hence we define it separately later on for the two problems of SUBSET DIRECTED FEED-

BACK VERTEX SET and DIRECTED MULTIWAY CUT. First we start by defining separa-

tors and shadows:

Definition 2.1. (separator) Let G be a directed graph and V ∞(G) be the set of distin-

guished (“undeletable”) vertices. Given two disjoint non-empty sets X ,Y ⊆V , we call a

set W ⊆V \ (X ∪Y ∪V ∞) an X −Y separator if there is no path from X to Y in G\W. A

set W is a minimal X−Y separator if no proper subset of W is an X−Y separator.

Note that here we explicitly define the X−Y separator W to be disjoint from X and Y .

30

Definition 2.2. (shadows) Let G be graph and T be a set of terminals. Let W ⊆ V (G)\

V ∞(G) be a subset of vertices.

1. The forward shadow fG,T (W) of W (with respect to T) is the set of vertices v such

that W is a T −{v} separator in G.

2. The reverse shadow rG,T (W) of W (with respect to T) is the set of vertices v such

that W is a {v}−T separator in G.

The shadow of W (with respect to T) is the union of fG,T (W) and rG,T (W).

That is, we can imagine T as a light source with light spreading on the directed

edges. The forward shadow is the set of vertices that remain dark if the set W blocks the

light, hiding v from T ’s sight. In the reverse shadow, we imagine that light is spreading

on the edges backwards. We abuse the notation slightly and write v−T separator instead

of {v}− T separator. We also drop G and T from the subscript if they are clear from

the context. Note that W itself is not in the shadow of W (as, by definition, a T − v or

v−T separator needs to be disjoint from T and v), that is, W and fG,T (W)∪ rG,T (W) are

disjoint. See Figure 2.1 for an illustration.

Let G be a directed graph and T ⊆ V (G). Let F = {F1,F2, . . . ,Fq} be a set of

subgraphs of G. We define the following property:

Definition 2.3. (T-connected) Let F = {F1,F2, . . . ,Fq} be a set of subgraphs of G. For a

set T ⊆V , we say that F is T -connected if for every i ∈ [q] , each vertex of the subgraph

Fi can reach some vertex of T by a walk completely contained in Fi and is reachable from

some vertex of T by a walk completely contained in Fi.

31

W

t2t1

r(W) f (W)

f (W)∩ r(W)

Figure 2.1: For every vertex v ∈ f (W), the set W is a T − v separator. For every vertex
w ∈ r(W), the set W is a w−T separator. For every vertex y ∈ f (W)∩ r(W), the set W
is both a T − y and y−T separator. Finally for every z ∈V (G)\ [W ∪ r(W)∪ f (W)∪T],
there are both z−T and T − z paths in the graph G\W .

For a set F of subgraphs of G, an F-transversal is a set of vertices that intersects

each subgraph in F .

Definition 2.4. (F-transversal) Let F = {F1,F2, . . . ,Fq} be a set of subgraphs of G. Then

W ⊆V (G) is said to be an F-transversal if ∀ i ∈ [q] we have Fi∩W 6= /0.

The main result of this section is a randomized algorithm for producing a set that

covers the shadow of some F-transversal:

Theorem 2.2. (randomized covering of the shadow) Let T ⊆ V (G). There is an algo-

rithm RandomSet(G,T,k) that runs in O∗(4k) time and returns a set Z ⊆V (G) such that

for any set F of T -connected subgraphs, if there exists an F-transversal of size ≤ k, then

the following holds with probability 2−O(k2): there is an F-transversal X of size ≤ k such

that

1. X ∩Z = /0 and

32

2. Z covers the shadow of X.

Note that F is not an input of the algorithm described by Theorem 2.2: the set

Z constructed in the above theorem works for every T -connected set F of subgraphs.

Therefore, issues related to the representation of F do not arise. Using the theory of

splitters, we also prove the following derandomized version of Theorem 2.2:

Theorem 2.3. (deterministic covering of the shadow) Let T ⊆V (G). We can construct

a set {Z1,Z2, . . . ,Zt} with t = 2O(k2) log2 n in time O∗(2O(k2)) such that for any set F

of T -connected subgraphs, if there exists an F-transversal of size ≤ k, then there is an

F-transversal X of size ≤ k such that for at least one i ∈ [t] we have

1. X ∩Zi = /0 and

2. Zi covers the shadow of X.

Sections 2.1.1–2.1.3 are devoted to the proofs of Theorems 2.2–2.3.

2.1.1 Important Separators and Random Sampling

This subsection reviews the notion of important separators and the random sampling

technique introduced in [MR11] for undirected graphs, and adapts it to directed graphs.

Important separators: In Section 1.3.2.4 we have seen the use of important separators

to design FPT algorithms in undirected graphs. Now we define and use this concept in

the setting of directed graphs. Roughly speaking, an important separator is a separator of

small size that is maximal with respect to the set of vertices on one side.

33

Definition 2.5. (important separator) Let G be a directed graph and let X ,Y ⊆ V be

two disjoint non-empty sets. A minimal X −Y separator W is called an important X −Y

separator if there is no X −Y separator W ′ with |W ′| ≤ |W | and R+
G\W (X) ⊂ R+

G\W ′(X),

where R+
A (X) is the set of vertices reachable from X in the graph A.

Let X ,Y be disjoint sets of vertices of an undirected graph. Then for every k≥ 0, it

is known [CLL09, Mar06] that there are at most 4k important X −Y separators of size at

most k for any sets X ,Y . The next lemma shows that the same bound holds for important

separators even in directed graphs. For the sake of continuity, we defer the proof to

Section 2.1.4

Lemma 2.1. (number of important separators) Let X ,Y ⊆ V (G) be disjoint sets in a

directed graph G. Then for every k ≥ 0 there are at most 4k important X −Y separators

of size at most k. Furthermore, we can enumerate all these separators in time O(4k ·

k(|V (G)+ |E(G)|)).

For ease of notation, we now define the following collection of important separators:

Definition 2.6. Given a graph G, a set T ⊆ V (G), and an integer k, the set Ik contains

the set W ⊆ V (G) if W is an important v−T separator of size at most k in G for some

vertex v in V (G)\T .

Remark 2.4. It follows from Lemma 2.1 that |Ik| ≤ 4k · |V (G)| and we can enumerate the

sets in Ik in time O∗(4k).

We now define a special type of shadows which we use later for the random sampling:

34

Z

X

W

Y

𝑤𝑤1

𝑤𝑤3

𝑤𝑤2

𝑧𝑧3

𝑧𝑧2

𝑧𝑧1

𝑥𝑥2

𝑥𝑥1

𝑦𝑦2

𝑦𝑦1

Figure 2.2: W is a minimal X −Y separator, but it is not an important X −Y separator as
Z satisfies |Z| = |W | and R+

G\W (X) = X ⊂ X ∪W = R+
G\Z(X). In fact it is easy to check

that the only important X−Y separator of size 3 is Z. If k≥ 2 then the set {z1,z2} is in Ik,
since it is an important x1−Y separator of size 2. Finally, x1 belongs to the “exact reverse
shadow” of each of the sets {w1,w2},{w1,z2},{w2,z1} and {z1,z2}, since they are all
minimal x1−Y separators. However x1 does not belong to the exact reverse shadow of
the set W as it is not a minimal x1−Y separator.

Definition 2.7. (exact shadows) Let G be a directed graph and T ⊆V (G) a set of termi-

nals. Let W ⊆V (G)\V ∞(G) be a set of vertices. Then for v ∈V (G) we say that

1. v is in the “exact reverse shadow” of W (with respect to T) if W is a minimal v−T

separator in G, and

2. v is in the “exact forward shadow” of W (with respect to T) if W is a minimal T −v

separator in G.

We refer the reader to Figure 2.2 for examples of Definitions 2.5, 2.6 and 2.7. The

exact reverse shadow of W is a subset of the reverse shadow of W : it contains a vertex v

only if every vertex w ∈ S is “useful” in separating v, i.e., vertex w can be reached from

v and T can be reached from w. Similarly for the forward shadow. This slight difference

between the shadow and the exact shadow will be crucial in the analysis of the algorithm

35

(Section 2.1.3).

The weaker version of the random sampling described in Section 2.1.1 (Theo-

rem 2.6) randomly selects members of Ik and creates a subset by taking the union of

the exact reverse shadows of these sets. The following lemma will be used to give an

upper bound on the probability that a vertex is covered by the union.

Lemma 2.2. Let z be any vertex. Then there are at most 4k members of Ik that contain z

in their exact reverse shadows.

For the proof of Lemma 2.2, we need to establish first the following:

Lemma 2.3. If W ∈ Ik and v is in the exact reverse shadow of W, then W is an important

v−T separator.

Proof. Let w be the witness that W is in Ik, i.e., W is an important w−T separator in G.

Let v be any vertex in the exact reverse shadow of W , which means that W is a minimal

v− T separator in G. Suppose that W is not an important v− T separator. Then there

exists a v−T separator W ′ such that |W ′| ≤ |W | and R+
G\W (v)⊂ R+

G\W ′(v). We will arrive

to a contradiction by showing that R+
G\W (w)⊂R+

G\W ′(w), i.e., W is not an important w−T

separator.

First, we claim that W ′ is a (W \W ′)−T separator. Suppose that there is a path P

from some x ∈W \W ′ to T that is disjoint from W ′. As W is a minimal v−T separator,

there is a path Q from v to x whose internal vertices are disjoint from W . Furthermore,

R+
G\W (v) ⊂ R+

G\W ′(v) implies that the internal vertices of Q are disjoint from W ′ as well.

36

Therefore, concatenating Q and P gives a path from v to T that is disjoint from W ′,

contradicting the fact that W ′ is a v−T separator.

We show that W ′ is a w−T separator and its existence contradicts the assumption

that W is an important w− T separator. First we show that W ′ is a w− T separator.

Suppose that there is a w−T path P disjoint from W ′. Path P has to go through a vertex

y∈W \W ′ (as W is a w−T separator). Thus by the previous claim, the subpath of P from

y to T has to contain a vertex of W ′, a contradiction.

Finally, we show that R+
G\W (w)⊆ R+

G\W ′(w). As W 6=W ′ and |W ′| ≤ |W |, this will

contradict the assumption that W is an important w− T separator. Suppose that there

is a vertex z ∈ R+
G\W (w) \R+

G\W ′(w) and consider a w− z path that is fully contained in

R+
G\W (w), i.e., disjoint from W . As z 6∈ R+

G\W ′(w), path Q contains a vertex q ∈W ′ \W .

Since W ′ is a minimal v− T separator, there is a v− T path that intersects W ′ only in

q. Let P be the subpath of this path from q to T . If P contains a vertex r ∈W , then the

subpath of P from r to T contains no vertex of W ′ (as z 6= r is the only vertex of W ′ on

P), contradicting our earlier claim that W ′ is a (W \W ′)−T separator. Thus P is disjoint

from W , and hence the concatenation of the subpath of Q from w to q and the path P is a

w−T path disjoint from W , a contradiction. 2

Lemma 2.2 easily follows from Lemma 2.3. Let J be a member of Ik such that z is

in the exact reverse shadow of J. By Lemma 2.3, J is an important z−T separator. By

Lemma 2.1, there are at most 4k important z−T separators of size at most k and hence z

belongs to at most 4k exact reverse shadows.

37

𝑏𝑏1

T

𝑏𝑏3

𝑏𝑏2

𝑎𝑎3

𝑎𝑎2

𝑎𝑎1

𝑐𝑐1,2

𝑐𝑐2,3

𝑐𝑐1,3

𝑡𝑡1

𝑡𝑡2

𝑡𝑡3

𝑡𝑡4

Figure 2.3: An illustration of Remark 2.5 in the special case when k = 4 and r = 3.

Remark 2.5. It is crucial to distinguish between “reverse shadow” and “exact reverse

shadow”: Lemma 2.3 (and hence Lemma 2.2) does not remain true if we remove the

word “exact.” Consider the following example (see Figure 2.3). Let a1, . . . , ar be vertices

such that there is an edge going from every ai to every vertex of T = {t1, t2, . . . , tk}. For

every 1≤ i≤ r, let bi be a vertex with an edge going from bi to ai. For every 1≤ i < j≤ r,

let ci, j be a vertex with two edges going from ci, j to ai and a j. Then every set {ai,a j} is in

Ik, since it is an important ci, j−T separator; and every set {ai} is in Ik as well, as it is an

important bi−T separator. Every bi is in the reverse shadow of {a j,ai} for 1≤ i 6= j ≤ r.

However, bi is in the exact reverse shadow of exactly one member of Ik, the set {ai}.

Random sampling: In this subsection, we describe the technique of random sampling of

important separators, which is crucial to the proof of Theorem 2.2. This technique was

introduced in [MR11] and was adapted to directed graphs in [CHM12]. In Section 2.3.2,

in order to reduce the problem (via the “torso” operation) to a shadowless instance, we

need a set Z that has the following property:

38

Property (*)
There is an F-transversal T ∗ such that Z covers the shadow of T ∗, but Z is disjoint
from T ∗.

Of course, when we are trying to construct this set Z, we do not know anything

about the F-transversals of the instance. In particular we have no way of checking if a

given set Z satisfies this property. Nevertheless, we use a randomized procedure that cre-

ates a set Z and we give a lower bound on the probability that Z satisfies the requirements.

For the construction of this set Z, one can use a very specific probability distribution that

was introduced in [MR11]. This probability distribution is based on randomly selecting

“important separators” and taking the union of their shadows. We modify the selection

of important separators in a way that improves the success probability. The precise de-

scription of the randomized procedure and the properties of the distribution it creates is

described in Theorems 2.6 and 2.7. Using the theory of splitters we can derandomize the

randomized selection into a deterministic algorithm that returns a bounded number of sets

such that at least one of them satisfies the required property (see Section 2.1.2).

Roughly speaking, we want to select a random set Z such that for every (W,Y)

where Y is in the reverse shadow of W , the probability that Z is disjoint from W but

contains Y can be bounded from below. We can guarantee such a lower bound only if

(W,Y) satisfies two conditions. First, it is not enough that Y is in the shadow of W (or

in other words, W is an Y − T separator), but W should contain important separators

separating the vertices of Y from T (see Theorems 2.6 and 2.7 for the exact statement).

Second, a vertex of W cannot be in the reverse shadow of other vertices of W , this is

expressed by the following technical definition:

39

Definition 2.8. (thin) Let G be a directed graph. We say that a set W ⊆V (G) is thin in G

if there is no v ∈W such that v belongs to the reverse shadow of W \ v with respect to T .

We first give an easy version of the random sampling, which only gives a double ex-

ponentially small lower bound on the probability of constructing a set Z with the required

properties.

Theorem 2.6. (random sampling) There is an algorithm RandomSet(G,T,k) that pro-

duces a random set Z ⊆V (G)\T in time O∗(4k) such that the following holds. Let W be

a thin set with |W | ≤ k, and let Y be a set such that for every v ∈ Y there is an important

v−T separator W ′ ⊆W. For every such pair (W,Y), the probability that the following

two events both occur is 2−2O(k)
:

1. W ∩Z = /0, and

2. Y ⊆ Z.

Proof. The algorithm RandomSet(G,T,k) first enumerates the collection Ik; let X be the

set of all exact reverse shadows of these sets. By Lemma 2.1, the size of X is O∗(4k) and

can be constructed in time O∗(4k). Let X ′ be the subset of X where each element from

X occurs with probability 1
2 independently at random. Let Z be the union of the exact

reverse shadows in X ′. We claim that the set Z satisfies the requirement of the theorem.

Let us fix a pair (W,Y) as in the statement of the theorem. Let X1,X2, . . . ,Xd ∈ X

be the exact reverse shadows of every member of Ik that is a subset of W . As |W | ≤ k,

we have d ≤ 2k. By the assumption that W is thin, we have X j ∩W = /0 for every j ∈ [d].

Now consider the following events:

40

(E1) Z∩W = /0

(E2) X j ⊆ Z for every j ∈ [d]

First we show that (E2) implies that Y ⊆ Z: v ∈ Y implies there is an important separator

W ′ ⊆W , i.e., there is some ` ∈ [d] such that X` is the exact reverse shadow of W . Also

note that v ∈ X` since W ′ is a minimal (in fact important) v−T separator. Since X j ⊆ Z

for every j ∈ [d], we have that v ∈ Z. This shows that Y ⊆ Z.

Our goal is to show that both events (E1) and (E2) occur with probability 2−2O(k)
.

Let A = {X1,X2, . . . ,Xd} and B = {X ∈ X | X ∩W 6= /0}. By Lemma 2.2, each vertex of

W is contained in the exact reverse shadows of at most 4k members of Ik. Thus |B| ≤

|W | ·4k ≤ k ·4k. If no exact reverse shadow from B is selected, then event (E1) holds. If

every exact reverse shadow from A is selected, then event (E2) holds. Thus the probability

that both (E1) and (E2) occur is bounded from below by the probability of the event that

every element from A is selected and no element from B is selected. Note that A and B

are disjoint: A contains only sets disjoint from W , while B contains only sets intersecting

W . Therefore, the two events are independent and the probability that both events occur

is at least (1
2

)2k(
1− 1

2

)k·4k

= 2−2O(k)

2

We now give an improved version of the random sampling that gives a stronger

lower bound on the success probability than the one guaranteed by Theorem 2.6. Recall

that in Theorem 2.6, we randomly selected members of Ik and took Z as the union of

41

the exact reverse shadows of the selected sets. However, we only had single-exponential

upper bounds on both types of exact reverse shadows: number of shadows intersecting

W was at most k ·4k and the number of exact reverse shadows of every subset of W is at

most 2k. In Theorem 2.7, we take a different view: randomly select a subset of vertices P

and take Z as the union of exact reverse shadows of every subset of P . This will give us a

stronger (single exponentially small) lower bound on the probability that the constructed

set Z satisfies the required properties.

Theorem 2.7. (improved random sampling) There is an algorithm RandomSet(G,T,k)

that produces a random set Z ⊆ V (G) \T in time O∗(4k) such that the following holds.

Let W be a thin set with |W | ≤ k, and let Y be a set such that for every v ∈ Y there is an

important v−T separator W ′ ⊆W. For every such pair (W,Y), the probability that the

following two events both occur is 2−O(k2):

1. W ∩Z = /0, and

2. Y ⊆ Z.

Proof. For each w ∈W , we define

Lw = {S | S is an important w−T separator of size ≤ k},

Iw =
⋃

S∈Lw

S,

I =
⋃

w∈W

Iw.

Since |W | ≤ k and for each w ∈W there are at most 4k important w− T separators of

size at most k, we have |Iw| ≤ k ·4k. Since |W | ≤ k, we have |I| ≤ k2 ·4k. The algorithm

42

RandomSet(G,T,k) picks a subset P of V (G) where each element occurs with probability

4−k uniformly at random. For every S∈Ik with S⊆P, let us add the exact reverse shadow

of S to X ′. Let Z be the union of the exact reverse shadows in X ′. We claim that the set Z

satisfies the requirement of the theorem.

Fix a pair (W,Y) as in the statement of the theorem. Let X be the set of exact

reverse shadows of every set S ∈ Ik. Let X1,X2, . . . ,Xd ∈ X be the exact reverse shadows

of every S ∈ Ik with S ⊆W . Let A = {X1,X2, . . . ,Xd} and B = {X ∈ X | X ∩W 6= /0}.

Now consider the following events:

(E1) Z∩W = /0

(E2) X j ⊆ Z for every j ∈ [d]

First we show that (E2) implies that Y ⊆ Z: v ∈ Y implies there is an important separator

W ′ ⊆W , i.e., there is some ` ∈ [d] such that X` is the exact reverse shadow of W . Also

note that v ∈ X` since W ′ is a minimal (in fact important) v−T separator. Since X j ⊆ Z

for every j ∈ [d], we have that v ∈ Z. This shows that Y ⊆ Z.

Our goal is to show that both events (E1) and (E2) occur with probability 2−O(k2). If

every vertex from W is selected in P, then every reverse shadow from A is selected in X ′

and event (E2) holds. If no vertex from I \W is selected in P, then we claim that no exact

reverse shadow from B is selected in X ′ and hence event (E1) will also hold. Suppose to

the contrary that an exact reverse shadow X ∈ B was selected in X ′. Let J ∈ Ik be the set

whose exact reverse shadow is X . We now claim that J * W , which contradicts the fact

that no vertex of I \W was selected in P. Suppose J ⊆W . Since X is the exact reverse

43

shadow of J, we know that J is a minimal X−T separator. But J ⊆W implies that W \X

is also a X − T separator, i.e., W ∩X lies in the reverse shadow of W \ (W ∩X). This

contradicts the fact that W is a thin set (see Definition 2.8).

Thus the probability that both the events (E1) and (E2) occur is bounded from below

by the probability of the event that every vertex from W is selected in P and no vertex from

I \W is selected in P. Note that the sets W and I \W are clearly disjoint. Therefore, the

two events are independent and the probability that both events occur is at least

(4−k)k(1−4−k)k2·4k ≥ 4−k2 · e−2k2
= 2−O(k2)

where we used the inequalities that 1+ x ≥ e
x

1+x for every x > −1 and 1− 4−k ≥ 1
2 for

every k ≥ 1. 2

2.1.2 Derandomization

We now derandomize the process of choosing exact reverse shadows in Theorem 2.7

using the technique of splitters. An (n,r,r2)-splitter is a family of functions from [n]→

[r2] such that for every M ⊆ [n] with |M|= r, at least one of the functions in the family is

injective on M. Naor et al. [NSS95] give an explicit construction of an (n,r,r2)-splitter of

size O(r6 logr logn) in time poly(n,r).

Theorem 2.8. (deterministic sampling) There is an algorithm DeterministicSets(G,T,k)

that produces t = 2O(k2) log |V (G)| subsets of Z1, . . . , Zt of V (G) \T in time O∗(2O(k2))

such that the following holds. Let W be a thin set with |W | ≤ k, and let Y be a set such

44

that for every v ∈ Y there is an important v−T separator W ′ ⊆W. For every such pair

(W,Y), there is at least one 1≤ i≤ t with

1. W ∩Z = /0, and

2. Y ⊆ Z.

Proof. In the proof of Theorem 2.7, a random subset P of a universe V (G) of size n is

selected. We argued that if every vertex from W is selected in P and no element from

I \W is selected, then both the events (E1) and (E2) occur. Instead of selecting a random

subset P, we will construct several subsets such that at least one of them will contain only

vertices from W . Let n = |V (G)|, a = |W | ≤ k, and b = |I \W | ≤ k2 · 4k. Each subset is

defined by a pair (h,H), where h is a function in an (n,a+b,(a+b)2)-splitter family and

H is a subset of [(a+b)2] of size a (there are
((a+b)2

a

)
=
((k+k2·4k)2

k

)
= 2O(k2) such sets H).

For a particular choice of h and H, we select those vertices v ∈ V (G) into P for which

h(v)∈H. The size of the splitter family is O
(
(a+b)6 log(a+b) log(n)

)
= 2O(k) logn and

the number of possibilities for H is 2O(k2). Therefore, we construct 2O(k2) logn subsets of

V (G). The total time taken for constructing these subsets is poly(n,a+b) = poly(n,4k).

By the definition of the splitter, there is a function h that is injective on W , and there

is a subset H such that h(v) ∈H for every set v ∈W and h(y) 6∈H for every y ∈ I \W . For

such an h and H, the selection will ensure that (E1) and (E2) hold. Thus at least one of

the constructed subsets has the required properties, which is what we had to show. 2

45

Algorithm 1: COVERING (randomized version)
Input: A directed graph G1, integer k.
Output: A set Z.

1: Let Z1 = RandomSet(G1,T,k).
2: Let G2 be obtained from G1 by reversing the orientation of every edge and

setting the weight of every vertex of Z1 to infinity.
3: Let Z2 = RandomSet(G2,T,k).
4: Let Z = Z1∪Z2.

2.1.3 Proof of Theorem 2.2: The COVERING Algorithm

To prove Theorem 2.2, we show that Algorithm 1 gives a set Z satisfying the prop-

erties of Theorem 2.2. Due to the delicate way separators behave in directed graphs, we

construct the set Z in two phases, calling the function RandomSet of Section 2.1.1 twice.

For consistency of notation, we denote the input graph by G1. Our aim is to show that

there is a transversal T ∗ such that we can give a lower bound on the probability that Z1

covers rG1,T (T
∗) and Z2 covers fG1,T (T

∗). Note that the graph G2 obtained in Step 2

depends on the set Z1 returned in Step 1 (as we made the weight of every vertex in Z1

infinite), thus the distribution of the second random sampling depends on the result Z1 of

the first random sampling. This means that we cannot make the two calls in parallel.

To prove the existence of the required transversal T ∗, we need the following defini-

tion:

Definition 2.9. (shadow-maximal transversal) An F-transversal W is minimum if there

is no F-transversal of size less than |W |. A minimum F-transversal W is called shadow-

maximal if rG1,T (W)∪ fG1,T (W)∪W is inclusion-wise maximal among all minimum F-

46

transversals.

For the rest of the proof, let us fix T ∗ to be a shadow-maximal F-transversal such

that |rG1,T (T
∗)| is maximum possible among all shadow-maximal F-transversals. We

bound the probability that Z∩T ∗ = /0 and rG1,T (T
∗)∪ fG1,T (T

∗)⊆ Z. More precisely, we

bound the probability that all of the following four events occur:

1. Z1∩T ∗ = /0,

2. rG1,T (T
∗)⊆ Z1,

3. Z2∩T ∗ = /0, and

4. fG1,T (T
∗)⊆ Z2.

That is, the first random selection takes care of the reverse shadow, the second takes

care of the forward shadow, and none of Z1 or Z2 hits T ∗. Note that it is somewhat

counterintuitive that we choose an T ∗ for which the shadow is large: intuitively, it seems

that the larger the shadow is, the less likely that it is fully covered by Z. However, we

need this maximality property in order to bound the probability that Z∩T ∗ = /0.

We want to invoke Theorem 2.7 to bound the probability that Z1 covers Y = rG1,T (T
∗)

and Z1∩T ∗ = /0. First, we need to ensure that T ∗ is a thin set, but this follows easily from

the fact that T ∗ is a minimum F-transversal:

Lemma 2.4. If W is a minimum F-transversal for some T -connected F , then no v ∈W

is in the reverse shadow of some W ′ ⊆W \{v}.

Proof. Suppose to the contrary that there is a vertex v ∈W such that v ∈ r(W ′) for some

47

W ′ ⊆W \ {v}. Then we claim that W \ {v} is also an F-transversal, contradicting the

minimality of W . Let F = {F1,F2, . . . ,Fq} and suppose that there is a i ∈ [q] such that

Fi ∩W = {v}. As F is T -connected, there is a v→ T walk P in Fi. But P∩W = {v}

implies that there is a v→ T walk in G \ (W \ {v}), i.e., v cannot belong to the reverse

shadow of any W ′ ⊆W \{v}. 2

More importantly, if we want to use Theorem 2.7 with Y = rG1,T (T
∗), then we have

to make sure that for every vertex v of rG1,T (T
∗), there is an important v−T separator

that is a subset of T ∗. The “pushing argument” of Lemma 2.5 shows that if this is not true

for some v, then we can modify the F-transversal in a way that increases the size of the

reverse shadow. The extremal choice of T ∗ ensures that no such modification is possible,

thus T ∗ contains an important v−T separator for every v.

Lemma 2.5. (pushing) Let W be an F-transversal for some T -connected F . For every

v ∈ r(W), either there is an W1 ⊆W that is an important v−T separator, or there is an

F-transversal W ′ such that

1. |W ′| ≤ |W |,

2. r(W)⊂ r(W ′),

3. (r(W)∪ f (W)∪W)⊆ (r(W ′)∪ f (W ′)∪W ′).

Proof. Let W0 be the subset of W reachable from v without going through any other

vertices of W . Then W0 is clearly a v−T separator. Let W1 be the minimal v−T separator

contained in W0. If W1 is an important v− T separator, then we are done as W itself

48

contains W1. Otherwise, there exists an important v−T separator W ′1, i.e., |W ′1| ≤ |W1| and

R+
G\W1

(v) ⊂ R+
G\W ′1

(v). Now we show that W ′ = (W \W1)∪W ′1 is also an F-transversal.

Note that W ′1 ⊆W ′ and |W ′| ≤ |W |.

First we claim that r(W)∪(W \W ′)⊆ r(W ′). Suppose that there is a walk P from β

to T in G\W ′ for some β ∈ r(W)∪ (W \W ′). If β ∈ r(W), then walk P has to go through

a vertex β ′ ∈W . As β ′ is not in W ′, it has to be in W \W ′. Therefore, by replacing β with

β ′, we can assume in the following that β ∈W \W ′ ⊆W1 \W ′1. By the minimality of W1,

every vertex of W1 ⊆W0 has an incoming edge from some vertex in R+
G\W (v). This means

that there is a vertex α ∈ R+
G\W (v) such that (α,β) ∈ E(G). Since R+

G\W (v) ⊂ R+
G\W ′(v),

we have α ∈ R+
G\W ′(v), implying that there is a v→ α walk in G\W ′. The edge α → β

also survives in G\W ′ as α ∈ R+
G\W ′(v) and β ∈W1 \W ′1. By assumption, we have a walk

in G \W ′ from β to some t ∈ T . Concatenating the three walks we obtain a v→ t walk

in G\W ′, which contradicts the fact that W ′ contains an (important) v−T separator W ′1.

This proves the claim. Since W 6=W ′ and |W |= |W ′|, the set W1 \W ′1 is non-empty. Thus

r(W)⊂ r(W ′) follows from the claim r(W)∪ (W \W ′)⊆ r(W ′).

Suppose now that W ′ is not an F-transversal. Then there is some i ∈ [q] such that

Fi ∩W ′ = /0. As W is an F-transversal, there is some w ∈W \W ′ with w ∈ Fi. As F

is T -connected, there is a w→ T walk in Fi, which gives a w→ T walk in G \W ′ as

W ′∩Fi = /0. However, we have W \W ′ ⊆ r(W ′) (by the claim in the previous paragraph),

a contradiction. Thus W ′ is also an F-transversal.

Finally, we show that r(W)∪ f (W)∪W ⊆ r(W ′)∪ f (W ′)∪W ′. We know that

49

r(W)∪ (W \W ′) ⊆ r(W ′). Thus it is sufficient to consider a vertex v ∈ f (W) \ r(W).

Suppose that v 6∈ f (W ′) and v 6∈ r(W ′): there are walks P1 and P2 in G\W ′, going from T

to v and from v to T , respectively. As v∈ f (W), walk P1 intersects W , i.e., it goes through

a vertex of β ∈W \W ′ ⊆ r(W ′). However, concatenating the subwalk of P1 from β to v

and the walk P2 gives a walk from β ∈ r(W ′) to T in G\W ′, a contradiction. 2

Note that if W is a shadow-maximal F-transversal, then the F-transversal W ′ in

Lemma 2.5 is also a minimum F-transversal and shadow-maximal. Therefore, by the

extremal choice of T ∗, applying Lemma 2.5 on T ∗ cannot produce a shadow-maximal

F-transversal T ′ with rG1,T (T
∗) ⊂ rG1,T (T

′), and hence T ∗ contains an important v−T

separator for every v ∈ rG1,T (T
∗). Thus by Theorem 2.7 for Y = rG1,T (T

∗), we get:

Lemma 2.6. With probability at least 2−O(k2), both rG1,T (T
∗)⊆ Z1 and Z1∩T ∗= /0 occur.

In the following, we assume that the events in Lemma 2.6 occur. Our next goal is to

bound the probability that Z2 covers fG1,T (T
∗). Let us define a collection F ′ of subgraphs

of G2 as follows: for every subgraph F ∈ F of G1, let us add to F ′ the corresponding

subgraph F ′ of G2, i.e., F ′ is the same as F with every edge reversed. Note that F ′

is T -connected in G2: the definition of T -connected is symmetric with respect to the

orientation of the edges. Moreover, T ∗ is an F ′-transversal in G2: the vertices in T ∗

remained finite (as Z1∩T ∗ = /0 by Lemma 2.6), and reversing the orientation of the edges

does not change the fact that T ∗ is a transversal. Set T ∗ is also shadow-maximal as an F ′-

transversal in G2: Definition 2.9 is insensitive to reversing the orientation of the edges and

making some of the weights infinite can only decrease the set of potential transversals.

50

Furthermore, the forward shadow of T ∗ in G2 is same as the reverse shadow of T ∗ in G1,

that is, fG2,T (T
∗) = rG1,T (T

∗). Therefore, assuming that the events in Lemma 2.6 occur,

every vertex of fG2,T (T
∗) has infinite weight in G2. We show that now it holds that T ∗

contains an important v−T separator in G2 for every v ∈ rG2,T (T
∗) = fG1,T (T

∗):

Lemma 2.7. If W is a shadow-maximalF-transversal for some T -connectedF and every

vertex of f (W) has infinite weight, then W contains an important v−T separator for every

v ∈ r(W).

Proof. Suppose to the contrary that there exists v ∈ r(W) such that W does not contain

an important v−T separator. Then by Lemma 2.5, there is a another shadow-maximal

F-transversal W ′. As W is shadow-maximal, it follows that r(W)∪ f (W)∪W = r(W ′)∪

f (W ′)∪W ′. Therefore, the nonempty set W ′ \W is fully contained in r(W)∪ f (W)∪W .

However, it cannot contain any vertex of f (W) (as they are infinite by assumption) and

cannot contain any vertex of r(W) (as r(W)⊂ r(W ′)), a contradiction. 2

Recall that T ∗ is a shadow-maximal F ′-transversal in G2. In particular, T ∗ is a

minimal F ′-transversal in G2, hence Lemma 2.4 implies that T ∗ is thin in G2 also. Thus

Theorem 2.7 can be used again (this time with Y = rG2,T (T
∗)) to bound the probability

that rG2,T (T
∗)⊆ Z2 and Z2∩T ∗ = /0. As the reverse shadow rG2,T (T

∗) in G2 is the same

as the forward shadow fG1,T (T
∗) in G, we can state the following:

Lemma 2.8. Assuming the events in Lemma 2.6 occur, with probability at least 2−O(k2)

both fG1,T (T
∗)⊆ Z2 and Z2∩T ∗ = /0 occur.

51

Therefore, with probability (2−O(k2))2, the set Z1∪Z2 covers fG1,T (T
∗)∪ rG1,T (T

∗)

and it is disjoint from T ∗. This completes the proof of Theorem 2.2.

Finally, to prove Theorem 2.3, the derandomized version of Theorem 2.3, we use

the deterministic variant DeterministicSets(G,T,k) of the function RandomSet(G,T,k)

that, instead of returning a random set Z, returns a deterministic set Z1, . . . , Zt of t =

2O(k2) logn sets in poly(n,4k) time (Theorem 2.8). Therefore, in Steps 1 and 3 of Al-

gorithm 1, we can replace RandomSet with this deterministic variant DeterministicSets,

and branch on the choice of one Zi from the returned sets. By the properties of the de-

terministic algorithm, if I is a yes-instance, then Z has Property (*) in at least one of

the 2O(k2) log2 n branches. The branching increases the running time only by a factor of

(O∗(2O(k2)))2 and therefore the total running time is O∗(2O(k2)). This completes the proof

of Theorem 2.3.

2.1.4 Upper Bound on the Number of Important Separators

For the proof of Lemma 2.1, we need to establish first some simple properties of

important separators, which will allow us to use recursion.

Lemma 2.9. Let G be a directed graph and S be an important X−Y separator. Then

1. For every v ∈ S, the set S\ v is an important X−Y separator in the graph G\ v.

2. If S is an X ′−Y separator for some X ′ ⊃ X, then S is also an important X ′−Y

separator.

Proof.
52

1. Suppose S\ v is not a minimal X −Y separator in G\ v. Let S0 ⊂ S\ v be an X −Y

separator in G\v. Then S0∪v is an X−Y separator in G, but S0∪v⊂ S holds, which

contradicts the fact that S is a minimal X −Y separator in G. Now suppose that

there exists an S′ ⊆V (G)\ v such that |S′| ≤ |S\ v|= |S|−1 and R+
(G\v)\(S\v)(X)⊂

R+
(G\v)\S′(X). Noting that (G\ v)\ (S\ v) = G\S and (G\ v)\S′ = G\ (S′∪ v), we

get R+
G\S(X) ⊂ R+

G\(S′∪v)(X). As |S′ ∪ v| = |S′|+ 1 ≤ |S|, this contradicts the fact

that S is an important X−Y separator.

2. As S is an inclusionwise minimal X −Y separator, it is an inclusionwise minimal

X ′−Y separator as well. Let S′ be a witness that S is not an important X ′−Y

separator in G, i.e., S′ is an X ′−Y separator such that |S′| ≤ |S| and R+
G\S(X

′) ⊂

R+
G\S′(X

′). We claim first that R+
G\S(X) ⊆ R+

G\S′(X). Indeed, if P is any path from

X and fully contained in R+
G\S(X), then P is disjoint from S′, otherwise vertices of

P∩S′ are in R+
G\S(X

′), but not in R+
G\S′(X

′), a contradiction. Next we show that the

inclusion R+
G\S(X)⊂ R+

G\S′(X) is proper, contradicting that S is an important X−Y

separator. As |S′| ≤ |S|, there is a vertex v ∈ S \ S′. Since S is a minimal X −Y

separator, it has an in-neighbor u ∈ R+
G\S(X) ⊆ R+

G\S′(X). Now v ∈ S and v 6∈ S′

imply that v ∈ R+
G\S′(X)\R+

G\S(X), a contradiction.

2

Next we show that the size of the out-neighborhood of a vertex set is a submodular

function. Recall that a function f : 2U → N∪{0} is submodular if for all A,B ⊆U we

have f (A)+ f (B)≥ f (A∪B)+ f (A∩B).

53

Lemma 2.10. (submodularity) The function γ(A) = |N+(A)| is submodular.

Proof. Let L= γ(A)+γ(B) and R= γ(A∪B)+γ(A∩B). To prove L≥ R we show that for

each vertex x ∈V its contribution to L is at least as much as its contribution to R. Suppose

that the weight of x is w (in our setting, w is either 1 or ∞, but submodularity holds even

if the weights are arbitrary). The contribution of x to L or R is either 0, w, or 2w. We have

the following four cases:

1. x /∈ N+(A) and x /∈ N+(B).

In this case, x contributes 0 to L. It contributes 0 to R as well: every vertex in

N+(A∩B) or in N+(A∪B) is either in N+(A) or in N+(B).

2. x ∈ N+(A) and x /∈ N+(B).

In this case, x contributes w to L. To see that x does not contribute 2w to R, suppose

that x ∈ N+(A∪B) holds. This implies x /∈ A∪B and therefore x ∈ N+(A∩B) can

be true only if x ∈ N+(A) and x ∈ N+(B), which is a contradiction. Therefore, x

contributes only w to R.

3. x /∈ N+(A) and x ∈ N+(B).

Symmetric to the previous case.

4. x ∈ N+(A) and x ∈ N+(B)

In this case, x contributes 2w to L, and can anyways contribute at most 2w to R.

In all four cases the contribution of x to L is always greater than or equal to its contribution

to R and hence L≥ R, i.e., γ is submodular. 2

54

Recall that R+
G\S(X) is the set of vertices reachable from X in G\S. The following

claim will be useful for the use of submodularity:

Lemma 2.11. Let G be a directed graph. If S1,S2 are X−Y separators, then both the sets

N+(R+
G\S1

(X)
⋃

R+
G\S2

(X)) and N+(R+
G\S1

(X)
⋂

R+
G\S2

(X)) are also X−Y separators.

Proof. 1. Let R∩ = R+
G\S1

(X)
⋂

R+
G\S2

(X) and S∩ = N+(R∩). As S1 and S2 are disjoint

from X and Y by definition, we have X ⊆ R∩ and Y is disjoint from R∩. Therefore, every

path P from X to Y has a vertex u ∈ R∩ followed by a vertex v 6∈ R∩, and therefore v ∈ S∩.

As this holds for every path P, the set S∩ is an X−Y separator.

2. The argument is the same with the sets R∪ = R+
G\S1

(X)
⋃

R+
G\S2

(X) and S∪ =

N+(R∪). 2

Now we prove the well-known fact that there is a unique minimum size separator

whose “reach” is inclusion-wise maximal.

Lemma 2.12. There is a unique X −Y separator S∗ of minimum size such that R+
G\S∗(X)

is inclusion-wise maximal.

Proof. Let λ be the size of a smallest X −Y separator. Suppose to the contrary that there

are two separators S1 and S2 of size λ such that R+
G\S1

(X) and R+
G\S2

(X) are incomparable

and inclusion-wise maximal. Let R1 = R+
G\S1

(X), R2 = R+
G\S2

(X), R∩ = R1 ∩ R2, and

R∪ = R1∪R2. By Lemma 2.10, γ is submodular and hence

γ(R1)+ γ(R2)≥ γ(R∪)+ γ(R∩). (2.1)

55

As N+(R1) ⊆ S1 and N+(R2) ⊆ S2, the left hand side is at most 2λ (in fact, as S1 and

S2 are minimal X −Y separators, it can be seen that the left hand side is exactly 2λ). By

Lemma 2.11, both the sets N+(R∩) and N+(R∪) are X−Y separators. Therefore, the right

hand side is at least 2λ . This implies that equality holds in Equation 2.1 and in particular

|N+(R∪)| = λ , i.e., N+(R∪) is also a minimum X −Y separator. As R1,R2 ⊆ R∪, every

vertex of R1 and every vertex of R2 is reachable from X in G\N+(R∪). This contradicts

the inclusion-wise maximality of the reach of S1 and S2. 2

Let S∗ be the unique X −Y separator of minimum size given by Lemma 2.12. The

following lemma shows that every important X−Y separator S is “behind” this separator

S∗:

Lemma 2.13. Let S∗ be the unique X−Y separator of minimum size given by Lemma 2.12.

For every important X−Y separator S, we have R+
G\S∗(X)⊆ R+

G\S(X).

Proof. Note that the condition trivially holds for S = S∗. Lemma 2.12 implies that the

only important X−Y separator of minimum size is S∗.

Suppose there is an important X−Y separator S 6= S∗ such that R+
G\S∗(X)*R+

G\S(X).

Let R = R+
G\S(X), R∗ = R+

G\S∗(X), R∩ = R∩R∗, and R∪ = R∪R∗. By Lemma 2.10, γ is

submodular and hence

γ(R∗)+ γ(R)≥ γ(R∪)+ γ(R∩). (2.2)

As N+(R∗)⊆ S∗, we have that the first term on the left hand side is at most |S∗|= λ . By

Lemma 2.11, the set N+(R∩) is an X −Y separator, hence the second term on the right

hand side is at least λ . It follows that |N+(R∪)| ≤ |N+(R)(X))| ≤ |S|. Since R∗ * R

56

by assumption, we have R ⊂ R∪. By Lemma 2.11, N+(R∪) is also an X −Y separator

and we have seen that it has size at most |S|. Furthermore, R ⊂ R∪ implies that any

vertex reachable from X in G \ S is reachable in G \N+(R∪) as well, contradicting the

assumption that S is an important separator. 2

Now we finally have all the required tools to prove Lemma 2.1, which we restate

below.

Lemma 2.1 . Let X ,Y ⊆V (G) be disjoint sets in a directed graph G. Then for every k≥ 0

there are at most 4k important X −Y separators of size at most k. Furthermore, we can

enumerate all these separators in time O(4k · k(|V (G)+ |E(G)|)).

Proof. Let λ be the size of a smallest X −Y separator. We show by induction on 2p−λ

that the number of important X −Y separators of size at most p is upper bounded by

22p−λ . Note that if 2p−λ < 0, then λ > 2p ≥ p and so there is no (important) X −Y

separator of size at most p. If 2p−λ = 0, then λ = 2p. Now if p = 0 then λ = p = 0

and the empty set is the unique important X−Y separator of size at most p. If p > 0, then

λ = 2p > p and hence there is no important X −Y separator of size at most p. Thus we

have checked the base case for induction. From now on, the induction hypothesis states

that if X ′,Y ′⊆V (G) are disjoint sets such that λ ′ is the size of a smallest X ′−Y ′ separator

and p′ is an integer such that (2p′−λ ′)< (2p−λ), then the number of important X ′−Y ′

separators of size at most p′ is upper bounded by 22p′−λ ′ .

Let S∗ be the unique X−Y separator of minimum size given by Lemma 2.12. Con-

sider an arbitrary vertex v ∈ S∗. Note that λ > 0 and so S∗ is not empty. Any important

57

X−Y separator S of size at most p either contains v or not. If S contains v, then by Lemma

2.9(1), the set S\{v} is an important X−Y separator in G\ v of size at most p′ := p−1.

As v /∈ X ∪Y ∪V ∞, the size λ ′ of the minimum X −Y separator in G\ v is at least λ −1.

Therefore, 2p′−λ ′ = 2(p−1)−λ ′ = 2p− (λ ′+2)< 2p−λ . The induction hypothesis

implies that there are at most 22p′−λ ′ ≤ 22p−λ−1 important X −Y separators of size p′ in

G\ v. Hence there are at most 22p−λ−1 important X−Y separators of size at most p in G

that contain v.

Now we give an upper bound on the number of important X −Y separators not

containing v. By minimality of S∗, vertex v has an in-neighbor in R+
G\S∗(X). For every

important X −Y separator S, Lemma 2.13 implies R+
G\S∗(X) ⊆ R+

G\S(X). As v /∈ S and v

has an in-neighbor in R+
G\S∗(X), even R+

G\S∗(X)
⋃{v}⊆ R+

G\S(X) holds. Therefore, setting

X ′=R+
G\S∗(X)

⋃{v}, the set S is also an X ′−Y separator. Now Lemma 2.9(2) implies that

S is in fact an important X ′−Y separator. Since S is an X−Y separator, we have |S| ≥ λ .

We claim that in fact |S| > λ : otherwise |S| = |S∗| = λ and R+
G\S∗(X)

⋃{v} ⊆ R+
G\S(X),

contradicting the fact that S∗ is an important X −Y separator. So the minimum size λ ′

of an X ′−Y separator in G is at least λ +1. By the induction hypothesis, the number of

important X ′−Y separators of size at most p in G is at most 22p−λ ′ ≤ 22p−λ−1. Hence

there are at most 22p−λ−1 important X −Y separators of size at most p in G that do not

contain v.

Adding the bounds in the two cases, we get the required upper bound of 22p−λ . An

algorithm for enumerating all the at most 4p important separators follows from the above

58

proof. First, we can find a maximum X −Y flow in time O(p(|V (G)|+ |E(G)|)) using at

most p rounds of the Ford-Fulkerson algorithm, where n and m are the number of vertices

and edges of G. It is well-known that the separator S∗ of Lemma 2.12 can be deduced

from the maximum flow in linear time by finding those vertices from which Y cannot be

reached in the residual graph [FF62]. Pick any arbitrary vertex v∈ S∗. Then we branch on

whether vertex v∈ S∗ is in the important separator or not, and recursively find all possible

important separators for both cases. The formal description is given in Algorithm 2.

Algorithm 2: IMPSEP(G,X ,Y, p)

Input: A directed graph G, disjoint sets X ,Y ⊆V and an integer p.
Output: A collection of X−Y separators that is a superset of all important X−Y
separators of size at most p in G.

1: Find the minimum X−Y separator S∗ of Lemma 2.12
2: Let λ = |S′|
3: if p < λ then
4: return /0
5: else
6: Pick any arbitrary vertex v ∈ S∗

7: Let S1 =IMPSEP(G\{v},X ,Y, p−1)
8: Let S ′1 = {v∪S | S ∈ S1}
9: Let X ′ = R+

G\S∗(X)∪{v}
10: Let S2 =IMPSEP(G,X ′,Y, p)
11: return S ′1∪S2

Note that this algorithm enumerates a superset of all important separators: by our

analysis above, every important separator appears in either S′1 or S2, but there is no guar-

antee that all the separators in these sets are important. Therefore, the algorithm has to

be followed by a filtering phase where we check for each returned separator whether it is

important. Observe that S is an important X −Y separator if and only if S is the unique

59

minimum R+
G\S(X)−Y separator. As the size of S is at most p, this can be checked in

time O(p(|V (G)|+ |E(G)|)) by finding a maximum flow and constructing the residual

graph. The search tree has at most 4p leaves and the work to be done in each node is

O(p(|V (G)|+ |E(G)|)). Therefore, the total running time of the branching algorithms

is O(4p · p(|V (G)|+ |E(G)|)) and returns at most 4p separators. This is followed by the

filtering phase, which takes time O(4p · p(|V (G)|+ |E(G)|)).

2

2.2 Application I: FPT Algorithm for DIRECTED MULTIWAY CUT

Ford and Fulkerson [FF56] gave the classical result on finding a minimum cut that

separates two terminals s and t. A natural and well-studied generalization of the minimum

s− t cut problem is MULTIWAY CUT, in which given a graph G and a set of terminals

{s1,s2, . . . ,sp}, the task is to find a minimum subset of vertices or edges whose deletion

disconnects all the terminals from one another. Dahlhaus et al. [DJP+94] showed the edge

version in undirected graphs is APX-complete for p≥ 3.

The problem behaves very differently on directed graphs. Interestingly, for directed

graphs, the edge and vertex versions turn out to be equivalent. Garg et al. [GVY04]

showed that computing a minimum multiway cut in directed graphs is NP-hard and MAX

SNP-hard already for p = 2. Dahlhaus et al. [DJP+94] showed that undirected MULTI-

WAY CUT can be solved in time nO(p) on planar graphs, which can be an efficient solution

if the number of terminals is small. On the other hand, on general graphs the problem be-

60

comes NP-hard already for p = 3. In both the directed and the undirected version, brute

force can be used to check in time nO(k) if a solution of size at most k exists: one can go

through all sets of size at most k. Thus the problem can be solved in polynomial time if

the optimum is assumed to be small. In the undirected case, significantly better running

time can be obtained: the current fastest algorithms run in O∗(2k) time for both the vertex

version [CPPW13a] and the edge version [Xia10] (the O∗ notation hides all factors which

are polynomial in size of input).

Our main result in this chapter is that the directed version of MULTIWAY CUT is

also fixed-parameter tractable parameterized by the solution size:

Theorem 2.9. DIRECTED VERTEX MULTIWAY CUT and DIRECTED EDGE MULTIWAY

CUT can be solved in O∗(2O(k2)) time.

Note that the hardness result of Garg et al. [GVY04] shows that in the directed case

the problem is nontrivial (in fact, NP-hard) even for p = 2 terminals; our result holds

without any bound on the number of terminals. The question was first asked explicitly

in [Mar06] and was also stated as an open problem in [MR11]. Our result shows in

particular that DIRECTED MULTIWAY CUT is solvable in polynomial time if the size of

the optimum solution is O(
√

logn), where n is the number of vertices in the digraph.

We now formally define the DIRECTED MULTIWAY CUT problem. A multiway cut

is a set of edges/vertices that separate the terminal vertices from each other:

Definition 2.10. (multiway cut) Let G be a directed graph and let T = {t1, t2, . . . , tk} ⊆

V (G) be a set of terminals.

61

1. S⊆V (G) is a vertex multiway cut of (G,T) if G\S does not have a path from ti to

t j for any i 6= j.

2. S⊆ E(G) is a edge multiway cut of (G,T) if G\S does not have a path from ti to t j

for any i 6= j.

In the edge case, it is straightforward to define the problem we are trying to solve:

DIRECTED EDGE MULTIWAY CUT
Input : A directed graph G, an integer p and a set of terminals T .
Output : A multiway cut S ⊆ E(G) of (G,T) of size at most p or “NO” if such a
multiway cut does not exist.

In the vertex case, there is a slight technical issue in the definition of the problem:

are the terminal vertices allowed to be deleted? We focus here on the version of the

problem where the vertex multiway cut we are looking for has to be disjoint from the set

of terminals. More generally, we define the problem in such a way that the graph has some

distinguished vertices which cannot be included as part of any separator (and we assume

that every terminal is a distinguished vertex). This can be modeled by considering weights

on the vertices of the graph: weight of ∞ on each distinguished vertex and 1 on every

non-distinguished vertex. We only look for solutions of finite weight. From here on, for a

graph G we will denote by V ∞(G) the set of distinguished vertices of G with the meaning

that these distinguished vertices cannot be part of any separator, i.e., all separators we

consider are of finite weight. In fact, for any separator we can talk interchangeably about

size or weight as these notions are the same since each vertex of separator has weight 1.

Our main focus is the following vertex version, where we require T ⊆V ∞(G), i.e.,

terminals cannot be deleted:

62

DIRECTED VERTEX MULTIWAY CUT
Input : A directed graph G, an integer p, a set of terminals T and a set V ∞ ⊇ T of
distinguished vertices.
Output : A multiway cut S ⊆V (G)\V ∞(G) of (G,T) of size at most p or “NO” if
such a multiway cut does not exist.

We note that if we want to allow the deletion of the terminal vertices, then it is

not difficult to reduce the problem to the version defined above. For each terminal t we

introduce a new vertex t ′ and we add the directed edges (t, t ′) and (t ′, t). Let the new graph

be G′ and let T ′ = {t ′ | t ∈ T}. Then there is a clear bijection between vertex multiway

cuts which can include terminals in the instance (G,T, p) and vertex multiway cuts which

cannot include terminals in the instance (G′,T ′, p).

The two versions DIRECTED VERTEX MULTIWAY CUT and DIRECTED EDGE

MULTIWAY CUT defined above are known to be equivalent. For sake of completeness,

we prove the equivalence below. Now we concentrate on finding an FPT algorithm for

DIRECTED VERTEX MULTIWAY CUT, which will be henceforth called as DIRECTED

MULTIWAY CUT for brevity.

Equivalence of Vertex and Edge versions of DIRECTED MULTIWAY CUT: We first

show how to solve the vertex version using the edge version. Let (G,T, p) be a given in-

stance of DIRECTED VERTEX MULTIWAY CUT and let V ∞(G) be the set of distinguished

vertices. We construct an equivalent instance (G′,T ′, p) of DIRECTED EDGE MULTIWAY

CUT as follows. Let the set V ′ contain two vertices vin, vout for every v ∈ V (G)\V ∞(G)

and a single vertex uin = uout for every u ∈V ∞(G). The idea is that all incoming/outgoing

edges of v in G will now be incoming/outgoing edges of vin and vout, respectively. For

63

every vertex v ∈ V (G) \V ∞(G), add an edge (vin,vout) to G′. Let us call these as Type

I edges. For every edge (x,y) ∈ E(G), add (p+ 1) parallel (xout,yin) edges. Let us call

these as Type II edges. Define T ′ = {vin | v ∈ T}. Note that the number of terminals is

preserved. We have the following lemma:

Lemma 2.14. (G,T, p) is a yes-instance of DIRECTED VERTEX MULTIWAY CUT if and

only if (G′,T ′, p) is a yes-instance of DIRECTED EDGE MULTIWAY CUT.

Proof. Suppose G has a vertex multiway cut, say S, of size at most p. Then the set

S′ = {(vin,vout) | v ∈ S} is clearly a edge multiway cut for G′ and |S′|= |S| ≤ p.

Suppose G′ has an edge multiway cut say S′ of size at most p. Note that it does not

help to pick in S any edges of Type II as each edge has (p+ 1) parallel copies and our

budget is p. So let S = {v | (vin,vout) ∈ S′}. Then S is a vertex multiway cut for G and

|S| ≤ |S′| ≤ p. 2

We now show how to solve the edge version using the vertex version. Let (G,T, p)

be a given instance of DIRECTED EDGE MULTIWAY CUT. We construct an equivalent

instance (G′,T ′, p) of DIRECTED VERTEX MULTIWAY CUT as follows. For each vertex

u ∈ V (G)\T , create a set Cu which contains u along with p other copies of u. For t ∈ T

we let Ct = {t}. For each edge (u,v) ∈ E(G) create a vertex βuv. Add edges (x,βuv) for

all x ∈Cu and (βuv,y) for all y ∈Cv. Define T ′ =
⋃

t∈T Ct = T . Let V ∞(G′) = T ′

Lemma 2.15. (G,T, p) is a yes-instance of DIRECTED EDGE MULTIWAY CUT if and

only if (G′,T ′, p) is a yes-instance of DIRECTED VERTEX MULTIWAY CUT.

64

Proof. Suppose G has an edge multiway cut, say S, of size at most p. Then the set

S′ = {βuv | (u,v) ∈ S} is clearly a vertex multiway cut for G′ and |S′|= |S| ≤ p.

Suppose G′ has a vertex multiway cut say S′ of size at most p. Note that it does not

help to pick in S any vertices from the Cz of any vertex z ∈ V (G) \T as each vertex has

(p+1) equivalent copies and our budget is p. So let S = {(u,v) | βuv ∈ S′}. Then S is a

edge multiway cut for G and |S| ≤ |S′| ≤ p. 2

2.2.1 Torsos and Shadowless Solutions

First we show that DIRECTED MULTIWAY CUT belongs to the general family of

problems described by “F-transversal for T -connected F”. Take T as the set of termi-

nals and F as the set of all walks between different terminals; note that F is clearly

T -connected. It is now easy to see that the problem exactly becomes the DIRECTED

MULTIWAY CUT cut problem, and hence we can use the framework developed in Chap-

ter 2. Applying Theorem 2.3, we obtain the following theorem

Theorem 2.10. (deterministic covering of the shadow) For the DIRECTED MULTIWAY

CUT problem, we can construct a set Z = {Z1,Z2, . . . ,Zt} with t = 2O(k2) log2 n in time

O∗(2O(k2)) such that if there exists a solution of size ≤ k, then there is a solution X of size

≤ k such that for at least one i ∈ [t] we have

1. X ∩Zi = /0 and

2. Zi covers the shadow of X.

65

Shadowless Solutions: Recall that a solution S of DIRECTED MULTIWAY CUT is shad-

owless (with respect to T) if f (S) = r(S) = /0. The following lemma shows the importance

of shadowless solutions for DIRECTED MULTIWAY CUT. Clearly, any solution of the un-

derlying undirected instance (where we disregard the orientation of the edges) is a solution

for DIRECTED MULTIWAY CUT cut. The converse is not true in general: a solution of

the directed problem is a not always solution of the undirected problem. However, the

converse statement is true for shadowless solutions of the directed instance:

Lemma 2.16. Let G∗ be the underlying undirected graph of G. If S is a shadowless

solution for an instance (G,T, p) of DIRECTED MULTIWAY CUT, then S is also a solution

for the instance (G∗,T, p) of UNDIRECTED MULTIWAY CUT.

Proof. If S is a shadowless solution, then for each vertex v in G\S, there is a t1→ v path

and a v→ t2 path for some t1, t2 ∈ T . As S is a solution, it is not possible that t1 6= t2:

this would give a t1→ t2 path in G\S. Therefore, if S is a shadowless solution, then each

vertex in the graph G \ S belongs to the strongly connected component of exactly one

terminal. A directed edge between the strongly connected components of ti and t j would

imply the existence of either a ti→ t j or a t j → ti path, which contradicts the fact that S

is a solution of the DIRECTED MULTIWAY CUT instance. Hence the strongly connected

components of G\S are exactly the same as the weakly connected components of G\S,

i.e., S is also a solution for the underlying instance of UNDIRECTED MULTIWAY CUT. 2

An illustration of Lemma 2.16 is given in Figure 2.4. Lemma 2.16 shows that if we

can transform the instance in a way that ensures the existence of a shadowless solution,

66

S

t2t1

Figure 2.4: A shadowless solution S for a DIRECTED MULTIWAY CUT instance. Every
vertex of G \ S is in the strongly connected component of some terminal ti. There are
no edges between the strongly connected components of the terminals ti, thus S is also a
solution of the underlying UNDIRECTED MULTIWAY CUT instance.

then we can reduce the problem to undirected MULTIWAY CUT and use the O∗(4k) algo-

rithm for that problem due to Guillemot [Gui11] which can handle the case when there

are some distinguished vertices similar to what we consider.

Torsos: Suppose there is a set Z of vertices that we want to get rid of. However we must

be careful: when getting rid of the set Z we should ensure that the information relevant

to Z is captured in the reduced instance. This is exactly accomplished by the torso

operation which removes a set of vertices without making the problem any easier. We

formally define this operation as follows:

Definition 2.11. (torso) Let G be a directed graph and let C⊆V (G). The graph torso(G,C)

has vertex set C and there is a (directed) edge (a,b) in torso(G,C) if there is an a→ b

path in G whose internal vertices are not in C.

See Figure 2.6 for an example of the torso operation. Note that if a,b ∈ C and

(a,b) is a directed edge of G, then torso(G,C) contains (a,b) as well. Thus G[C],

which is the graph induced by C in G, is a subgraph of torso(G,C). The following

67

lemma shows that the torso operation preserves separation inside C.

Lemma 2.17. (torso preserves separation) Let G be a directed graph and C ⊆ V (G).

Let G′ = torso(G,C) and S ⊆C. For a,b ∈C \S, the graph G\S has an a→ b path if

and only if G′ \S has an a→ b path.

Proof. Let P be a path from a to b in G. Suppose P is disjoint from S. Then P con-

tains vertices from C and V (G) \C. Let u,v be two vertices of C such that every vertex

of P between u and v is from V (G) \C. Then by definition there is an edge (u,v) in

torso(G,C). Using such edges we can modify P to obtain an a→ b path that lies com-

pletely in torso(G,C) but avoids S.

Conversely suppose P′ is an a→ b path in torso(G,C) and it avoids S ⊆C. If P′

uses an edge (u,v) /∈ E(G), then this means that there is a u→ v path P′′ whose internal

vertices are not in C. Using such paths we modify P to get an a→ b path P0 that only uses

edges from G. Since S ⊆C we have that the new vertices on the path are not in S and so

P0 avoids S. 2

If we want to remove a set Z of vertices, then we create a new instance by taking

the torso on the complement of Z:

Definition 2.12. Let I = (G,T, p) be an instance of DIRECTED MULTIWAY CUT and

Z ⊆V (G)\T . The reduced instance I/Z = (G′,T ′, p) is defined as

• G′ =torso(G,V (G)\Z)

• T ′ = T

68

c1

c2

c3

c1

c2

c3

c4
c4

Figure 2.5: Let C = {c1,c2,c3,c4}. In the graph torso(G,C) the edges (c4,c3) and
(c4,c2) carry over from G. The new edges (shown by dotted arrows) that get added
because of the torso operation are (c1,c3) and (c2,c3).

The following lemma states that the operation of taking the torso does not make

the DIRECTED MULTIWAY CUT problem easier for any Z⊆V (G)\T in the sense that any

solution of the reduced instance I/Z is a solution of the original instance I. Moreover, if

we perform the torso operation for a set Zi that satisfies the conditions of Theorem 2.10,

i.e., Zi is large enough to contain the shadow of some solution X but at the same time

small enough to be disjoint from X , then X remains a solution for the reduced instance

I/Zi and in fact it is a shadowless solution for I/Zi. Then by Lemma 2.16, we can apply

the algorithm for undirected MULTIWAY CUT.

Lemma 2.18. (creating a shadowless instance) Let I = (G,T, p) be an instance of DI-

RECTED MULTIWAY CUT and Z ⊆V (G)\T .

1. If S is a solution for I/Z, then S is also a solution for I.

2. If S is a solution for I such that fG,T (S)∪ rG,T (S) ⊆ Z and S∩Z = /0, then S is a

shadowless solution for I/Z.

69

Proof. Let G′ be the graph torso(G,V (G) \ Z). To prove the first part, suppose that

S ⊆ V (G′) is a solution for I/Z and S is not a solution for I. Then there are terminals

t1, t2 ∈ T such that there is an t1→ t2 path P in G\S. As t1, t2 ∈ T and Z ⊆V (G)\T , we

have that t1, t2 ∈ V (G) \Z. In fact, we have t1, t2 ∈ (V (G) \Z) \ S. Lemma 2.17 implies

that there is an t1→ t2 path in G′ \S, which is a contradiction as S is a solution for I/Z.

For the second part of the lemma, let S be a solution for I such that S∩Z = /0 and

fG,T (S)∪ rG,T (S) ⊆ Z. We want to show that S is a shadowless solution for I/Z. First

we show that S is a solution for I/Z. Suppose to the contrary that there are terminals

x′,y′ ∈ T ′(= T) such that G′ \ S has an x′→ y′ path. As x′,y′ ∈ V (G) \Z, Lemma 2.17

implies G\S also has an x′→ y′ path, which is a contradiction as S is a solution of I.

Finally, we show that S is shadowless in I/Z, i.e., rG′,T (S) = /0 = fG′,T (S). We

only prove that rG′,T (S) = /0: the argument for fG′,T (S) = /0 is analogous. Assume to the

contrary that there exists w ∈ rG′,T (S) (note that we have w ∈V (G′), i.e., w /∈ Z). So S is

a w−T separator in G′, i.e., there is no w−T path in G′ \S. Lemma 2.17 gives that there

is no w−T path in G\S, i.e., w ∈ rG,T (S). But rG,T (S)⊆ Z and so we have w ∈ Z which

is a contradiction. Thus rG,T (S)⊆ Z in G implies that rG′,T (S) = /0. 2

2.2.2 Proof of Theorem 2.9

The description of our algorithm is given in Algorithm 3. Recall that we are trying

to solve a version of DIRECTED MULTIWAY CUT where we are given a set V ∞ of distin-

guished vertices which are undeletable, i.e., have infinite weight. To solve the undirected

70

Algorithm 3: FPT ALGORITHM FOR DIRECTED MULTIWAY CUT

Input: An instance I = (G,T,k) of DIRECTED MULTIWAY CUT.
1: Let Z = {Z−1,Z2, . . . ,Zt} be the set given by Theorem 2.10.
2: for Each 1≤ i≤ t do
3: Let Gi = torso(G,V (G)\Zi). {Get rid of Zi}
4: Solve the underlying undirected instance (G∗i ,T,k) of MULTIWAY CUT.
5: if (G∗i ,T,k) has a solution S then
6: return S
7: else
8: return “NO”

MULTIWAY CUT instance (obtained by disregarding the orientation of the edges), we can

use the algorithm of Guillemot [Gui11] that solves the undirected problem in time O∗(4k).

Note that the algorithm for undirected MULTIWAY CUT in [Gui11] explicitly considers

the variant where we have a set of distinguished vertices which cannot be deleted. By The-

orem 2.10, the set Z = {Z1,Z2, . . . ,Zt} can be constructed in time O∗(2O(k2)). For each

Zi, we need O∗(4k) time to solve the underlying undirected instance (G∗i ,T,k). Hence the

total running time of Algorithm 3 is O∗(2O(k2))×O∗(4k) = O∗(2O(k2))

The following two lemmas show the correctness of Algorithm 3. One direction is

easy to see: the algorithm has no false positives.

Lemma 2.19. Let I = (G,T,k) be an instance of DIRECTED MULTIWAY CUT. If Algo-

rithm 3 returns a set S, then S is a solution for I.

Proof. Any solution S of the undirected instance (G∗i ,T,k) returned by Algorithm 3 is

clearly a solution of the directed instance (Gi,T,k) as well. By Lemma 2.24(1) the torso

operation does not make the problem easier by creating new solutions. Hence S is also a

solution for I = (G,T,k) 2

71

The following lemma shows that if the instance has a solution, then the algorithm

finds one with certain probability.

Lemma 2.20. Let I = (G,T,) be an instance of DIRECTED MULTIWAY CUT. If I is a

yes-instance of DIRECTED MULTIWAY CUT, then Algorithm 3 returns a set X which is a

solution for I.

Proof. By Theorem 2.10, there exists i ∈ [t] and a solution X of the DIRECTED MULTI-

WAY CUT instance such that X ∩Zi = /0 and Zi covers the shadow of X . By Lemma 2.24,

X is a shadowless solution of the instance I/Zi. Lemma 2.16 implies that X is a solution

of the underlying undirected instance (G∗i ,T,k). Hence Algorithm 3 will return the set X .

2

2.2.3 FPT Algorithm for DIRECTED MULTICUT with two terminals

A more general problem than MULTIWAY CUT is MULTICUT: the input contains

a set {(s1, t1), . . . ,(sp, tp)} of p pairs, and the task is to break every path from si to its

corresponding ti by the removal of at most k vertices. Very recently, it was shown that

undirected MULTICUT is FPT parameterized by k [BDT11, MR11], but the directed ver-

sion is unlikely to be FPT as it is W[1]-hard [MR11] with this parameterization. However,

in the special case of p = 2 terminal pairs, there is a simple reduction from DIRECTED

MULTICUT to DIRECTED MULTIWAY CUT, thus our result shows that the latter prob-

lem is FPT parameterized by k for p = 2. Let us briefly sketch the reduction. (Note that

the reduction we sketch works only for the variant of DIRECTED MULTICUT which al-

72

lows the deletion of terminals. Marx and Razgon [MR11] asked about the FPT status of

this variant which is in fact equivalent to the one which does not allow deletion of the

terminals.)

Corollary 2.1. DIRECTED MULTICUT with p = 2 can be solved in time O∗(2O(k2)).

Proof. Consider a given instance (G,T,k) of DIRECTED MULTICUT, and let T = {(s1, t1),(s2, t2)}.

We construct an equivalent instance of DIRECTED MULTIWAY CUT as follows: Graph G′

is obtained by adding two new vertices s, t to the graph and adding the four edges s→ s1,

t1→ t, t→ s2, and t2→ s. It is easy to see that the DIRECTED MULTIWAY CUT instance

(G′,{s, t},k) is equivalent to the original DIRECTED MULTICUT instance. G has a si→ ti

path for some i if and only if G′ has a s→ t or t→ s path. This is because G has a s1→ t1

path if and only if G′ has a s→ t path and G has a s2 → t2 path if and only if G′ has a

t→ s path. This property of paths also holds after removing some vertices/edges and thus

the two instances are equivalent. 2

The complexity of DIRECTED MULTICUT for the case with p = 3 terminals remains an

interesting open problem.

2.3 Application II: FPT Algorithm for SUBSET-DFVS

The FEEDBACK VERTEX SET (FVS) problem has been one of the most extensively

studied problems in the parameterized complexity community. Given a graph G and an

integer k, it asks if there is a set T ⊆ V (G) of size at most k which hits all cycles in G.

The FVS problem in both undirected and directed graphs was shown to be NP-hard by

73

Karp [Kar72]. A generalization of the FVS problem is SUBSET FEEDBACK VERTEX

SET (SFVS): given a subset S ⊆ V (G) (resp., S ⊆ E(G)), find a set T ⊆ V (G) of size at

most k such that T hits all cycles passing through a vertex of S (resp., an edge of S). It is

easy to see that S =V (G) (resp., S = E(G)) gives the FVS problem.

As compared to undirected graphs, FVS behaves quite differently on directed graphs.

In particular the trick of replacing each edge of an undirected graph G by arcs in both di-

rections does not work: every feedback vertex set of the resulting digraph is a vertex cover

of G and vice versa. Any other simple transformation does not seem possible either and

thus the directed and undirected versions are very different problems.

In the undirected case, the first FPT algorithm for FVS in undirected graphs was

given by Mehlhorn [Meh84] almost 30 years ago. Since then there have been a number of

papers [BBYG00,Bod91,CCL10,CFL+08,DFL+07,DF99,GGH+06,KPS04,RSS06] giv-

ing faster algorithms and the current fastest (randomized) algorithm runs in time O∗(3k) [CNP+11].

For directed graphs, the fixed-parameter tractability status of FVS was a long-standing

open problem (almost 16 years) until Chen et al. [CLL+08] resolved it by giving an

O∗(4kk!) algorithm. This was recently generalized by Bonsma and Lokshtanov [BL11]

who gave a O∗(47.5kk!) algorithm for FVS in mixed graphs, i.e., graphs having both

directed and undirected edges.

In the more general SUBSET FEEDBACK VERTEX SET problem, an additional sub-

set S of vertices is given and we want to find a set T ⊆V (G) of size at most k that hits all

cycles passing through a vertex of S. In the edge version, we are given a subset S⊆ E(G)

74

and we want to hit all cycles passing through an edge of S. The vertex and edge ver-

sions are indeed known to be equivalent in the parameterized sense in both undirected

and directed graphs. Recently, Cygan et al. [CPPW13b] and independently Kakimura

et al. [KKK12] have shown that SUBSET FEEDBACK VERTEX SET in undirected graphs

is FPT parameterized by the size of the solution. Our main result in this chapter is that

SUBSET FEEDBACK VERTEX SET in directed graphs is also fixed-parameter tractable

parameterized by the size of the solution. This completes the picture for the parameter-

ized complexity of feedback vertex set problems and their subset versions in undirected

and directed graphs.

Theorem 2.11. SUBSET FEEDBACK VERTEX SET (SUBSET-DFVS) in directed graphs

can be solved in time O∗(2O(k3)).

Observe that a directed graph contains no cycles if and only if it contains no closed

walks; moreover, there is a cycle going through S if and only there is a closed walk going

through S. For this reason, throughout we use the term closed walks instead of cycles,

since it is sometimes easier to show the existence of a closed walk and avoid discussion

whether it is a simple cycle or not. A feedback vertex set is a set of vertices that hits all

the closed walks of the graph.

Definition 2.13. (feedback vertex set) Let G be a directed graph. A set T ⊆ V (G) is a

feedback vertex set of G if G\T does not contain any closed walks.

This gives rise to the DIRECTED FEEDBACK VERTEX SET (DFVS) problem where

we are given a directed graph G and we want to find if G has a feedback vertex set of size

75

at most k. The DFVS problem was shown to be FPT by Chen et al. [CLL+08], answering

a long-standing open problem in the parameterized complexity community. We consider

a generalization of the DFVS problem where given a set S⊆V (G), we ask if there exists

a vertex set of size ≤ k that hits all closed walks passing through S.

SUBSET DIRECTED FEEDBACK VERTEX SET (SUBSET-DFVS)
Input: A directed graph G, a set S⊆V (G), and a positive integer k.
Parameter: k
Question: Does there exist a set T ⊆ V (G) with |T | ≤ k such that G \ T has no
closed walk containing a vertex of S?

It is easy to see that DFVS is a special case of SUBSET-DFVS obtained by setting

S = V (G). We also define a variant of SUBSET-DFVS where the set S is a subset of

edges. In this variant, we have destroy the following type of closed walks:

Definition 2.14. (S-closed-walk) Let G be a directed graph and S⊆ E(G). A closed walk

(starting and ending at same vertex) C in G is said to be a S-closed-walk if it contains an

edge from S.

EDGE SUBSET DIRECTED FEEDBACK VERTEX SET (EDGE-SUBSET-DFVS)
Input : A directed graph G, a set S⊆ E(G), and a positive integer k.
Parameter : k
Question : Does there exist a set T ⊆ V (G) with |T | ≤ k such that G \ T has no
S-closed-walks?

The above two problems can be shown to be equivalent as follows. If (G,S,k) is an

instance of SUBSET-DFVS we create an instance (G,S′,k) of EDGE-SUBSET-DFVS by

taking S′ as the set of edges incident to any vertex of S. Then any closed walk passing

through a vertex of S must pass through an edge of S′, and conversely any closed walk

passing through an edge of S′ must contain a vertex from S.

76

On the other hand, given an instance (G,S′,k) of EDGE-SUBSET-DFVS we create

an instance (G′,S,k) of SUBSET-DFVS where G′ is obtained from G by the following

modification: For every edge (u,v)∈ E(G) we add a new vertex xuv and path u→ xuv→ v

of length 2. We set S = {xe : e ∈ S′}. Then any closed walk in G passing through an

edge of S′ corresponds to a closed-walk in G′ which must pass through a vertex of S, and

conversely any closed walk in G′ passing through a vertex of S can be easily converted to

a closed walk in G passing through an edge of S′. Both the reductions work in polynomial

time and do not change the parameter. Henceforth we concentrate on solving the EDGE

SUBSET DIRECTED FEEDBACK VERTEX SET problem and we shall refer to both the

above problems as SUBSET-DFVS.

2.3.1 Applying Iterative Compression

The first step of our algorithm is to use the technique of iterative compression in-

troduced by Reed et al. [RSV04]. who used it to show that the ODD CYCLE TRANSVER-

SAL1 problem is FPT parameterized by the size of the deletion set. Since then it has been

used to obtain faster FPT algorithms [CFL+08, CLL+08, DFL+07, GGH+06, HKMN08,

MR11,RO09] and also in exact algorithms [FGK+10]. We transform the SUBSET-DFVS

problem into the following problem:

1In this problem, we are given an undirected graph G = (V,E) and the question is whether there exists

a set S⊆V such that G\S is odd-cycle free, i.e., bipartite

77

SUBSET-DFVS COMPRESSION
Input: A directed graph G, a set S ⊆ E(G), a positive integer k, and a set
T ⊆V such that G\T has no S-closed-walks.
Parameter: k+ |T |
Question: Does there exist a set T ′ ⊆ V (G) with |T ′| ≤ k such that G \T ′

has no S-closed-walks?

Lemma 2.21. (power of iterative compression) SUBSET-DFVS can be solved by O(n)

calls to an algorithm for the SUBSET-DFVS COMPRESSION problem with |T | ≤ k+1.

Proof. Let V (G)= {v1, . . . ,vn} and for i∈ [n] let Vi = {v1, . . .vi}. We construct a sequence

of subsets Xi ⊆ Vi, such that Xi is a solution for G[Vi]. Clearly, X1 = /0 is a solution for

G[V1]. Observe that if Xi is a solution for G[Vi], then Xi∪{vi+1} is a solution for G[Vi+1].

Therefore, for each i∈ [n−1], we set T =Xi∪{vi+1} and use, as a blackbox, an algorithm

for SUBSET-DFVS COMPRESSION, to construct a set Xi+1 that is a solution of size at

most k for G[Vi+1]. Note that if there is no solution for G[Vi] for some i ∈ [n], then there

is no solution for the whole graph G and moreover, since Vn =V (G), if all the calls to the

reduction problem are successful, then Xn is a solution for the graph G. 2

Now we transform the SUBSET-DFVS COMPRESSION problem into the following

problem whose only difference is that the subset feedback vertex set in the output must

be disjoint from the one in the input:

DISJOINT SUBSET-DFVS COMPRESSION
Input: A directed graph G, a set S ⊆ E(G), a positive integer k, and a set T ⊆ V
such that G\T has no S-closed-walks.
Parameter: k+ |T |
Question: Does there exist a set T ′ ⊆V (G) with |T ′| ≤ k such that T ∩T ′ = /0 and
G\T ′ has no S-closed-walks?

Lemma 2.22. (adding disjointness) SUBSET-DFVS COMPRESSION can be solved by

78

O(2|T |) calls to an algorithm for the DISJOINT SUBSET-DFVS COMPRESSION problem.

Proof. Given an instance I = (G,S,T,k) of SUBSET-DFVS COMPRESSION we guess the

intersection X of T and the subset feedback vertex set T ′ in the output. We have at most

2|T | choices for X . Then for each guess for X , we solve the DISJOINT SUBSET-DFVS

COMPRESSION problem for the instance IX = (G \X ,S,T \X ,k−|X |). It is easy to see

that if T ′ is a solution for instance I of SUBSET-DFVS COMPRESSION, then T ′ \X is

a solution of instance IX of DISJOINT SUBSET-DFVS COMPRESSION for X = T ′ ∩T .

Conversely, if T ′′ is a solution to some instance IX , then T ′′∪X is a solution for X . 2

From Lemmas 2.21 and 2.22, an FPT algorithm for DISJOINT SUBSET-DFVS

COMPRESSION translates into an FPT algorithm for SUBSET-DFVS with an additional

blowup factor of O(2|T |n) in the running time.

2.3.2 Reduction to Shadowless Solutions

In DISJOINT SUBSET-DFVS COMPRESSION, the set T is the solution that we want

to compress and F is the set of all S-closed-walks passing through some vertex of T .

Again, F is T -connected: every S-closed-walk goes through T (as T is a solution), hence

any vertex on an S-closed-walk is reachable from T , and some vertex of T is reachable

from every vertex of the S-closed-walk. Hence, we can use the framework developed

in Chapter 2 and apply Theorem 2.3 to construct a set Z of vertices that we want to

get rid of. The second ingredient of our algorithm is an operation that removes a set of

79

vertices without making the problem any easier. This transformation can be conveniently

described using the operation of taking the torso of a graph. For DISJOINT SUBSET-

DFVS COMPRESSION, we define it as follows:

Definition 2.15. (torso) Let (G,S,T,k) be an instance of DISJOINT SUBSET-DFVS

COMPRESSION and C ⊆ V (G). Then torso(G,C,S) is a pair (G′,S′) defined as fol-

lows:

• G′ has vertex set C and there is (directed) edge (a,b) in G′ if there is an a→ b walk

in G whose internal vertices are not in C,

• S′ contains those edges of S whose both endpoints are in C; furthermore, we add

the edge (a,b) to S′ if there is an a→ b walk in G that contains an edge from S and

whose internal vertices are not in C.

In particular, if a,b ∈ C and (a,b) is a directed edge of G and torso(G,C,S) =

(G′,S′), then G′ contains (a,b) as well. Thus G′ is a supergraph of the subgraph of

G induced by C. Figure 2.6 illustrates the definition of torso with an example. The

following lemma shows that the torso operation preserves S-closed-walks inside C.

Lemma 2.23. (torso preserves S-closed-walks) Let G be a directed graph with C⊆V (G)

and S ⊆ E(G). Let (G′,S′) = torso(G,C,S), v ∈C, and W ⊆C. Then G\W has an S-

closed-walk passing through v if and only if G′\W has an S′-closed-walk passing through

v.

Proof. Let P be an S-closed-walk in G \W passing through v. If P is not contained in

G, then it contains vertices from C and V (G)\C. Let u,w be two vertices of C such that

80

The graph G

v1 v2 v3 v4

v5 v7v6

v1
v2 v3 v4

The graph torso(G,C,S)

Figure 2.6: In the top graph G we have C = {v1,v2,v3,v4}. The edges in S are given by
the dotted lines. In the bottom graph we show the graph torso(G,C,S). All edges from
G[C] appear in this graph. In addition, we also add the edges (v1,v2),(v2,v4) and (v4,v2).
The edge (v2,v3) ∈ G[C]∩S appears in S′. In addition, we also add the edge (v4,v2) to S′

since the v4→ v7→ v5→ v2 path in G has an edge (v7,v5) ∈ S.

every vertex of P between u and w is from V (G)\C. Then, by definition of torso, there is

an edge (u,w) in G′. Using such edges, we can modify P to obtain another closed walk

say P′ passing through v that lies completely in G′ but avoids W . Note that since P is

a S-closed-walk, at least one of the edges on some u→ w walk that we short-circuited

above must have been from S and by Definition 2.15 we would have put the edge (u,w)

edge into S′, which makes P′ an S′-closed-walk in G′.

Conversely, suppose that P′ is an S′-closed-walk passing through a vertex v in G′

and it avoids W ⊆ C. If P′ uses an edge (u,w) /∈ E(G), then this means that there is a

81

u→ w walk Puw whose internal vertices are not in C. Using such walks, we modify P′ to

get a closed walk P passing through v that only uses edges from G, i.e., P is a closed walk

in G \W . It remains to show that P is an S-closed-walk: since P′ is an S′-closed-walk,

either some edge of P′ was originally in S or there exist some a,b ∈ P′ such that there is a

a→ b walk does not contain any vertex from C and some edge on this walk was originally

in S. 2

If we want to remove a set Z of vertices, then we create a new instance by taking

the torso on the complement of Z:

Definition 2.16. (reduced instance) Let I = (G,S,T,k) be an instance of DISJOINT

SUBSET-DFVS COMPRESSION and Z⊆V (G)\T . The reduced instance I/Z =(G′,S′,T,k)

is obtained by setting (G′,S′) = torso(G,V (G)\Z,S).

The following lemma states that the operation of taking the torso does not make the

DISJOINT SUBSET-DFVS COMPRESSION problem easier for any Z ⊆ V (G) \T in the

sense that any solution of the reduced instance I/Z is a solution of the original instance

I. Moreover, if we perform the torso operation for a Z that is large enough to cover

the shadow of some solution T ∗ and also small enough to be disjoint from T ∗, then T ∗

becomes a shadowless solution for the reduced instance I/Z.

Lemma 2.24. (creating a shadowless instance) Let I = (G,S,T,k) be an instance of

DISJOINT SUBSET-DFVS COMPRESSION and Z ⊆V (G)\T .

1. If I is a no-instance, then the reduced instance I/Z is also a no-instance.

82

2. If I has solution T ′ with fG,T (T ′)∪ rG,T (T ′)⊆ Z and T ′∩Z = /0, then T ′ is a shad-

owless solution of I/Z.

Proof. Let C = V (G) \ Z and (G′,S′) = torso(G,C,S). To prove the first statement,

suppose that T ′ ⊆ V (G′) is a solution for I/Z. We show that T ′ is also a solution for

I. Suppose to the contrary that there exists a vertex v ∈ T such that G \ T ′ has an S-

closed-walk passing through v (since G\T has no S-closed-walks). Note that v ∈ T and

Z ⊆ V (G) \T implies v ∈ C. Then by Lemma 2.23, G′ \T ′ also has an S′-closed-walk

passing through v contradicting the fact that T ′ is a solution for I/Z.

For the second statement, let T ′ be a solution of I with T ′∩Z = /0 and fG,T (T ′)∪

rG,T (T ′) ⊆ Z. We claim T ′ is a solution of I/Z as well. Suppose to the contrary that

G′ \T ′ has an S′-closed-walk passing through some vertex v ∈C. As v ∈C, Lemma 2.23

implies G\T ′ also has an S-closed-walk passing through v, which is a contradiction as T ′

is a solution of I.

Finally, we show that T ′ is a shadowless solution, i.e, rG′,T (T ′) = fG′,T (T ′) = /0.

We only prove rG′,T (T ′) = /0: the argument for fG′,T (T ′) = /0 is analogous. Assume to

the contrary that there exists w ∈ rG′,T (T ′) (note that we have w ∈ V (G′), i.e., w /∈ Z).

This means that T ′ is a w−T separator in G′, i.e., there is no w−T walk in G′ \T ′. By

Lemma 2.23, it follows that there is no w−T walk in G\T ′ either, i.e., w ∈ rG,T (T ′). But

rG,T (T ′)⊆ Z and therefore we have w ∈ Z, which is a contradiction. 2

For every Zi in the output of Theorem 2.3, we use the torso operation to remove the

vertices in Zi. We prove that this procedure is safe in the following sense:

83

Lemma 2.25. Let I = (G,S,T,k) be an instance of DISJOINT SUBSET-DFVS COM-

PRESSION. Let the sets in the output of Theorem 2.3 be Z1,Z2, . . . ,Zt . For every i ∈ [t], let

Gi be the reduced instance G/Zi.

1. If I is a no-instance, then Gi is also a no-instance for every i ∈ [t].

2. If I is a yes-instance, then there exists a solution T ∗ of I which is a shadowless

solution of some G j for some j ∈ [t].

Proof. The first claim is easy to see: any solution T ′ of the reduced instance (Gi,S,T,k)

is also a solution of (G,S,T,k) (by Lemma 2.24(1), the torso operation does not make the

problem easier by creating new solutions).

By the derandomization of COVERING algorithm, there is a j ∈ [t] such that Z has

the Property (∗), i.e., there is a solution T ∗ of I such that Z∩T ∗ = /0 and Z covers shadow

of T ∗. Then Lemma 2.24(2) implies that T ∗ is a shadowless solution for the instance

G j = I/Z j. 2

2.3.3 Finding a Shadowless Solution

Consider an instance (G,S,T,k) of DISJOINT SUBSET-DFVS COMPRESSION. First,

let us assume that we can reach a start point of some edge of S from each vertex of T ,

since otherwise we can clearly remove such a vertex from the graph (and from the set T)

without changing the problem. Next, we branch on all 2O(k2) log2 n choices for Z taken

from {Z1,Z2, . . . ,Zt} (given by Theorem 2.3) and build a reduced instance I/Z for each

choice of Z. By Lemma 2.24, if I is a no-instance, then I/Z j is a no-instance for each

84

𝐶1

𝐶3

𝐶2

𝐶𝑙

𝑇0

Figure 2.7: We arrange the strongly connected components of G\T ′ in a topological order
so that the only possible direction of edges between the strongly connected components
is as shown by the blue arrow. We will show later that the last component C` must contain
a non-empty subset T0 of T and further that no edge of S can be present within C`. This
allows us to make some progress as we shall see in Theorem 2.13.

j ∈ [t]. If I is a yes-instance, then by the results of Section 2.1.2, there is at least one

i ∈ [t] such that I has a shadowless solution for the reduced instance I/Zi.

Let us consider the branch where Z = Zi and let T ′ ⊆V \T be a hypothetical shad-

owless solution for I/Z. We know that each vertex in G\T ′ can reach some vertex of T

and can be reached from a vertex of T . Since T ′ is a solution for the instance (G,S,T,k)

of DISJOINT SUBSET-DFVS COMPRESSION, we know that G \ T ′ does not have any

S-closed-walks. Consider a topological ordering C1, C2, . . ., C` of the strongly connected

components of G\T ′, i.e., there can be an edge from Ci to C j only if i≤ j. We illustrate

this in Figure 2.7.

Definition 2.17. (starting/ending points of S) Let S− and S+ be the sets of starting and

ending points of edges in S respectively, i.e., S− = {u | (u,v) ∈ S} and S+ = {v | (u,v) ∈

S}.

Lemma 2.26. (properties of C`) For a shadowless solution T ′ for an instance of DIS-

JOINT SUBSET-DFVS COMPRESSION, let C` be the last strongly connected component

85

in the topological ordering of G\T ′ (refer to Figure 2.7). Then

1. C` contains a non-empty subset T0 of T .

2. No edge of S is present within C`.

3. For each edge (u,v) ∈ S with u ∈C`, we have v ∈ T ′.

4. If T ′∩S+ = /0, then C`∩S− = /0.

Proof.

1. If C` does not contain any vertex from T , then the vertices of C` cannot reach

any vertex of T in G \ T ′. This means that C` is in the shadow of T ′, which is a

contradiction to the fact that T ′ is shadowless.

2. If C` contains an edge of S, then we will have an S-closed-walk in the strongly con-

nected component C`, which is a contradiction, as T ′ is a solution for the instance

(G,S,T,k) of DISJOINT SUBSET-DFVS COMPRESSION.

3. Consider an edge (u,v) ∈ S such that u ∈C` and v 6∈ T ′. All outgoing edges from u

must lie within C`, since C` is the last strongly connected component. In particular

v ∈C`, which contradicts the second claim of the lemma.

4. Assume that (u,v) ∈ S and u ∈C` (which means u ∈C`∩S−). Since T ′ contains no

vertex of S+ we have v 6∈ T ′ and by the third property we have u 6∈C`, a contradic-

tion.

2

86

Given a set X of removed vertices, we say that edge (u,v) ∈ S is traversable from

T0 in G \X if u,v 6∈ X and vertex u (and hence v) is reachable from T0 in G \X . If T ′ is

a shadowless solution, then Lemma 2.26(2) implies that no edge of S is traversable from

T0 in G\T ′. There are two ways of making sure that an edge (u,v) ∈ S is not traversable:

(i) by making u unreachable, or (ii) by including v in T ′. The situation is significantly

simpler if every edge of S is handled the first way, that is, S− is unreachable from T0 in

G\T ′. Then T ′ contains a T0−S− separator, and (as we shall see later) we may assume

that T ′ contains an important T0−S− separator. Therefore, we can proceed by branching

on choosing an important T0− S− separator of size at most k and including it into the

solution.

The situation is much more complicated if some edges of S are handled the second

way. Given a set X of vertices, we say that an edge (u,v)∈ S is critical (with respect to X)

if v ∈ X and u is reachable from T0 in G\X . Our main observation is that only a bounded

number of vertices can be the head of a critical edge in a solution. Moreover, we can

enumerate these vertices (more precisely, a bounded-size superset of these vertices) and

therefore we can branch on including one of these vertices in the solution. We describe

next how to enumerate these vertices.

Let us formalize the property of the vertices we are looking for:

Definition 2.18. (critical vertex) For a fixed non-empty set T0 ⊆ V , a vertex v ∈ (V \

T0)∩ S+ is called an `-critical vertex, with respect to T0, if there exist an edge (u,v) ∈ S

and a set W ⊆V \T0 such that:

87

• |W | ≤ `,

• edge (u,v) is critical with respect to W (that is, u is reachable from T0 in G\W and

v ∈W),

• no edge of S is traversable from T0 in G\W.

We say that v is witnessed by u, T0 and W.

We need an upper bound on the number of critical vertices, furthermore our proof

needs to be algorithmic, as we want to find the set of critical vertices, or at least its

superset. Roughly speaking, to test if v is a critical vertex, we need to check if there is

a set T ′ that separates every edge of S from T0 in a way that some vertex u with (u,v) ∈

S is still reachable from T0. One could argue that it is sufficient to look at important

separators: if there is such a separator where u is reachable from T0, then certainly there is

an important separator where u is reachable from T0. However, describing the requirement

as “separating every edge of S from T0” is imprecise: what we need is that no edge of S is

traversable from T0, which cannot be simply described by the separation of two sets. We

fix this problem by moving to an auxiliary graph G′ by duplicating vertices; whether or

not an edge of S is traversable from T0 translates to a simple reachability question in G′.

However, due to technical issues that arise from this transformation, it is not obvious how

to enumerate precisely the k-critical vertices. Instead, we construct a set F of bounded

size that contains each k-critical vertex, and potentially some additional vertices. Thus if

the solution has a critical edge, then we can branch on including a vertex of F into the

solution.

88

v

6∈ S

∈ S
vin vout

∈ S′

6∈ S′

Figure 2.8: On the left there is a vertex v of G and on the right the corresponding vertices
vin and vout of G′.

Theorem 2.12. (bounding critical vertices) Given a directed graph G, a subset of its

edges S, and a fixed non-empty subset T0 ⊆V (G), we can find in time O∗(2O(k)) a set FT0

of 2O(k) vertices that is a superset of all k-critical vertices with respect to T0.

Proof. We create an auxiliary graph G′, where the vertex set of G′ consists of two copies

for each vertex of V and two extra vertices s and t, i.e., V (G′) = {vin,vout : v ∈V}∪{s, t}.

The edges of G′ are defined as follows (see also Fig. 2.8):

• For each edge e = (u,v) ∈ E(G), we add the following edges to E(G′): if e ∈ S,

then add to E(G′) an edge (uout,vin), otherwise add to E(G′) an edge (uout,vout).

• For each vertex v ∈V , we add to E(G′) an edge (vin,vout).

• For each vertex v ∈V , we add an edge (vin, t) to E(G′).

• For each vertex v ∈ T0, we add an edge (s,vout) to E(G′).

Let F ′T0
be the set of vertices of G′ which belong to some important s− t separator

of size at most 2k. By Lemma 2.1 the cardinality of F ′T0
is at most 2k ·42k. We define FT0

as {v ∈ V : vin ∈ F ′T0
}. Clearly, the claimed upper bound of 2O(k) on |FT0 | follows, hence

it remains to prove that each k-critical vertex belongs to FT0 .

89

Let x be an arbitrary k-critical vertex witnessed by u, T0 and W . Define W ′ =

{vin,vout : v ∈W} and note that |W ′| ≤ 2k. The only out-neighbors of s are {vout | v ∈ T0}

while the only in-neighbors of t are {vin | v ∈V}. Hence the existence of an s− t path in

G′ implies that there is in fact an edge (a,b) ∈ S that is traversable from T0 in G\W . This

is a contradiction to Definition 2.18. Therefore, no in-neighbor of t is reachable from s in

G′ \W ′, i.e., W ′ is an s− t separator. Finally, a path from T0 to u in G\W translates into a

path from s to uout in G′ \W ′. Consider an important s− t separator W ′′, i.e., |W ′′| ≤ |W ′|

and R+
G′\W ′(s) ⊂ R+

G′\W ′′(s). As uout is reachable from s in G′ \W ′ we infer that uout is

also reachable from s in G′ \W ′′. Consequently xin ∈W ′′, as otherwise there would be an

s− t path in G′ \W ′′. Hence xin belongs to F ′T0
, which implies that x belongs to FT0 and

the theorem follows. 2

The following theorem characterizes a solution, so that we can find a vertex con-

tained in it by inspecting a number of vertices in V bounded by a function of k. We apply

Theorem 2.12 for each subset T0 ⊆ T and let F =
⋃

T0⊆T FT0 . Note that |F | ≤ 2|T | ·2O(k) =

2O(|T |+k), and we can generate F in time 2|T | ·O∗(2O(k)) = O∗(2O(|T |+k))

Theorem 2.13. (pushing) Let I = (G,S,T,k) be an instance of DISJOINT SUBSET-

DFVS COMPRESSION having a shadowless solution and let F be a set generated by

the algorithm of Theorem 2.12. Let G+ be obtained from G by introducing a new vertex t

and adding an edge (u, t) for every u ∈ S−. Then there exists a solution T ′ ⊆ V \T for I

such that either

• T ′ contains a vertex of F \T , or

90

• T ′ contains an important T0− ({t}∪ (T \T0)) separator of G+ for some non-empty

T0 ⊆ T .

Proof. Let T ′ be any shadowless solution for I and by Property 1 of Lemma 2.26 let T0 be

the non-empty subset of T belonging to the last strongly connected component of G\T ′.

We consider two cases: either there is a T0−S− path in G\T ′ or not. First assume

that there is a path from T0 to a vertex u∈ S− in G\T ′. Clearly, u∈C`, since all vertices of

T0 belong to C` and no edge from C` can go to previous strongly connected components.

Consider any edge from S that has u as its starting point, say (u,v) ∈ S. By Property 3 of

Lemma 2.26, we know that v ∈ T ′. Observe that v is a k-critical vertex witnessed by u,

T0, and T ′, since |T ′| ≤ k, by definition of u, there is a path from T0 to u in G \T ′; and

by Property 3 of Lemma 2.26, no edge of S is traversable from T0. Consequently, by the

property of the set F , we know that v ∈ T ′∩F 6= /0 and the theorem holds.

Now we assume that no vertex of S− is reachable from T0 in G\T ′. By the definition

of T0, the set T ′ is a T0− (T \T0) separator in G, hence we infer that T ′ is a T0− ({t}∪

(T \T0)) separator in G+. Let T ∗ be the subset of T ′ reachable from T0 without going

through any other vertices of T ′. Then T ∗ is clearly a T0− ({t}∪ (T \T0)) separator in

G+. Let T ∗∗ be the minimal T0− ({t}∪ (T \T0)) separator contained in T ∗. If T ∗∗ is an

important T0− ({t}∪ (T \T0)) separator, then we are done, as T ′ itself contains T ∗∗.

Otherwise, there exists an important T0− ({t}∪ (T \T0)) separator T ∗∗∗ that dom-

inates T ∗∗, i.e., |T ∗∗∗| ≤ |T ∗∗| and R+
G+\T ∗∗(T0) ⊂ R+

G+\T ∗∗∗(T0). Now we claim that

T ′′ = (T ′ \ T ∗∗)∪ T ∗∗∗ is a solution for the instance (G,S,T,k) of DISJOINT SUBSET-

91

DFVS COMPRESSION. If we show this, then we are done, as |T ′′| ≤ |T ′| and T ′′ contains

the important T0− ({t}∪ (T \T0)) separator T ∗∗∗.

Suppose T ′′ is a not a solution for the instance (G,S,T,k) of DISJOINT SUBSET-

DFVS COMPRESSION. We have |T ′′| ≤ |T ′| ≤ k (as , |T ∗∗∗| ≤ |T ∗∗|) and T ′′ ∩ T = /0

(as T ∗∗∗ is an important T0− ({t}∪ (T \ T0)) separator of G+, hence disjoint from T).

Therefore, the only possible problem is that there is an S-closed-walk in G \T ′′ passing

through some vertex v ∈ T ∗∗ \T ∗∗∗; in particular, this implies that there is a v−S− walk

in G\T ′′. Since T ∗∗ is a minimal T0− ({t}∪ (T \T0)) separator, we have (T ∗∗ \T ∗∗∗)⊆

R+
G+\T ′′(T0), implying v ∈ R+

G+\T ′′(T0). This gives a T0 − S− walk via v in G \ T ′′, a

contradiction as T ′′ contains an (important) T0−({t}∪(T \T0)) separator by construction.

2

Theorem 2.13 tells us that there is always a minimum solution which either contains

some critical vertex of F or an important T0− ({t}∪ (T \T0)) separator of G+ where T0

is a non-empty subset of T . In the former case, we branch into |F | instances, in each of

which we put one vertex of F to the solution, generating 2O(|T |+k) instances with reduced

budget. Next we can assume that the solution does not contain any vertex of F and we

try all 2|T |− 1 choices for T0. For each guess of T0 we enumerate at most 4k important

T0− ({t}∪ (T \T0)) separators of size at most k in time O∗(4k) as given by Lemma 2.1.

This gives the branching algorithm described in Algorithm 4.

92

Algorithm 4: BRANCH

Input: An instance I = (G,S,T,k) of DISJOINT SUBSET-DFVS COMPRESSION.
Output: A new set of 2O(|T |+k) instances of DISJOINT SUBSET-DFVS
COMPRESSION where the budget k is reduced.

1: for every vertex v ∈ F \T found by Theorem 2.12 do
2: Create a new instance Iv = (G\ v,S,T,k−1) of DISJOINT SUBSET-DFVS

COMPRESSION.
3: for every non-empty subset T0 of T : do
4: Use Lemma 2.1 to enumerate all the at most 4k important T0− ({t}−∪ (T \T0))

separators of size at most k in G+.
5: Let the important separators be B = {B1,B2, . . . ,Bm}.
6: for each i ∈ [m] do
7: Create a new instance IT0,i = (G\Bi,S,T,k−|Bi|) of DISJOINT

SUBSET-DFVS COMPRESSION.

2.3.4 DISJOINT SUBSET-DFVS COMPRESSION: Summary of Algo-

rithm

Lemma 2.25 and the BRANCH algorithm together combine to give a bounded search

tree FPT algorithm for DISJOINT SUBSET-DFVS COMPRESSION described in Algo-

rithm 5.

We then repeatedly perform Steps 1 and 2. Note that for every instance, one execu-

tion of steps 1 and 2 gives rise to 2O(k2) log2 n instances such that for each instance, either

we know that the answer is NO or the budget k has decreased, because we have assumed

that from each vertex of T one can reach the set S−, and hence each important separator is

non-empty. Therefore, considering a level as an execution of Step 1 followed by Step 2,

the height of the search tree is at most k. Each time we branch into at most 2O(k2) · log2 n

directions (as |T | is at most k+1). Hence the total number of nodes in the search tree is

93

Algorithm 5: FPT Algorithm for SUBSET-DFVS
Step 1: For a given instance I = (G,S,T,k), use Theorem 2.3 to obtain a set of instances

{Z1,Z2, . . . ,Zt} where t = 2O(k2) · log2 n and Lemma 2.25 implies

• If I is a no-instance, then all the reduced instances G j = G/Z j are no-instances for
all j ∈ [t]
• If I is a yes-instance, then there is at least one i ∈ [t] such that there is a solution T ∗

for I which is a shadowless solution for the reduced instance Gi = G/Zi.

At this step we branch into 2O(k2) · log2 n directions.

Step 2 : For each of the instances obtained from the above step, we run the BRANCH

algorithm to obtain a set of 2O(k+|T |) instances where in each case either the answer is NO,
or the budget k is reduced. We solve these instances recursively and return YES if at least
one of them returns YES.

(
2O(k2) · log2 n

)k
.

Lemma 2.27. For every n and k ≤ n, we have (logn)k ≤ (2k · logk)k + n
2k

Proof. If logn
1+log logn ≥ k, then n ≥ (2logn)k. Otherwise we have logn

1+log logn < k and then

(4k logk) ≥ (2logn) as follows: 2k logk ≥ 2logn logk
1+log logn . Now 2logn logk

1+log logn ≥ logn⇔ 2logk ≥

1+ log logn⇔ k2 ≥ 2logn. But, k2

2logn = logn
2(1+log logn)2 which is greater than 1 for n≥ 227

.

2

The total number of nodes in the search tree is
(

2O(k2) ·log2 n
)k

=
(

2O(k2)
)k
(log2 n)k =

(2O(k3))(log2 n)k ≤ (2O(k3))
(
(2k · logk)k + n

2k

)2
≤ 2O(k3)n2.

We then check the leaf nodes and see if there are any S-closed-walks left even after

the budget k has become zero. If the graph in at least one of the leaf nodes is S-closed-walk

free, then the given instance is a yes-instance. Otherwise it is a no-instance. This gives

an O∗(2O(k3)) algorithm for DISJOINT SUBSET-DFVS COMPRESSION. By Lemma 2.21,

94

this gives an O∗(2O(k3)) algorithm for the SUBSET-DFVS problem.

95

CHAPTER 3

Optimal Algorithms for Connectivity

Problems

The STEINER TREE (ST) problem is one of the earliest and most fundamental prob-

lems in combinatorial optimization: given an undirected graph G= (V,E) and a set T ⊆V

of terminals, the objective is to find a tree of minimum size which connects all the ter-

minals. The STEINER TREE problem is believed to have been first formally defined by

Gauss in a letter in 1836. The first combinatorial formulation of the ST problem is at-

tributed independently to Hakimi [Hak71] and Levin [Lev71] in 1971. The ST problem

is known be to NP-complete, and was in fact was one of Karp’s original list [Kar72] of

21 NP-complete problems. In the directed version of the ST problem, called DIRECTED

STEINER TREE (DST), we are also given a root vertex r and the objective is to find a

minimum size arborescence which connects the root r to each terminal from T .

96

DIRECTED STEINER TREE (DST)
Input : A directed graph G = (V,E), a root vertex r and a set of terminals T =
{t1, t2, . . . , tk}.
Question : Find the smallest S ⊆ V (G) such that G[S] has a r ; ti path for each
i ∈ [k].

Steiner-type of problems arise in the design of networks. Since many networks are

symmetric, the directed versions of Steiner type of problems were mostly of theoretical

interest. However in recent years, it has been observed [Ram96, SRV97] that the con-

nection cost in various networks such as satellite or radio networks are not symmetric.

Therefore, directed graphs form the most suitable model for such networks. In addition,

Ramanathan [Ram96] also used the DST problem to find low-cost multicast trees, which

have applications in point-to-multipoint communication in high bandwidth networks. We

refer the interested reader to Winter [Win87] for a survey on applications of Steiner prob-

lems in networks.

We consider two generalizations of the DST problem, namely the STRONGLY CON-

NECTED STEINER SUBGRAPH problem (by requiring two-way connectivity) and the DI-

RECTED STEINER FOREST problem (by requiring connectivity between terminal pairs).

We define the problems formally:

STRONGLY CONNECTED STEINER SUBGRAPH (SCSS)
Input : A directed graph G = (V,E) and a set of terminals T = {t1, t2, . . . , tk}.
Question : Find the smallest S ⊆ V (G) such that G[S] has a ti ; t j path for each
1≤ i 6= j ≤ k.

DIRECTED STEINER FOREST (DSF)
Input : A directed graph G = (V,E) and a pair of terminals T =
{(s1, t1),(s2, t2), . . . ,(sk, tk)}.
Question : Find the smallest S ⊆ V (G) such that G[S] has a si ; ti path for each
i ∈ [k].

97

The following reduction shows that SCSS is a special case of DSF: an instance of

SCSS with k terminals can be viewed as an instance of DSF with k(k−1) terminal pairs

by listing all ordered two-tuples of the terminals. Now we describe the known results for

both SCSS and DSF.

Previous Work on SCSS and DSF: Since both DSF and SCSS are NP-complete, one

can try to design polynomial-time approximation algorithms for these problems. An

α-approximation for DST implies a 2α-approximation for SCSS as follows: fix a ter-

minal t ∈ T and take the union of the solutions of the DST instances (G, t,T \ t) and

(Grev, t,T \ t), where Grev is the graph obtained from G by reversing the orientations of

all edges. The best known approximation ratio in polynomial time for SCSS is kε for

any ε > 0 [CCC+99]. A result of Halperin and Krauthgamer [HK] implies SCSS has

no Ω(log2−ε n)-approximation for any ε > 0, unless NP has quasi-polynomial Las Vegas

algorithms. For the more general DSF problem, the best known approximation ratio is

n2/3+ε for any ε > 0. Berman et al. [BBM+13] showed that DSF has no Ω(2log1−ε n)-

approximation for any 0 < ε < 1, unless NP has a quasi-polynomial time algorithm.

Rather than finding approximate solutions in polynomial time, one can look for

exact solutions in time that is still better than the running time obtained by brute force

solutions. For both SCSS and DSF problems, brute force can be used to check in time

nO(p) if a solution of size at most p exists: one can go through all sets of size at most p.

Recall that a problem is fixed-parameter tractable (FPT) with a particular parameter p if

it can be solved in time f (p) · nO(1), where f is an arbitrary function depending only on

98

p. One can also consider parameterization by the number k of terminals (terminal pairs);

with this parameterization, it is not even clear if there is a polynomial-time algorithm

for every fixed k, much less if the problem is FPT. It is known that STEINER TREE on

undirected graphs is FPT: the classical algorithm of Dreyfus and Wagner [DW71] solves

the problem in time 3k ·nO(1), where k is the number of terminals. The running time was

recently improved to 2k ·nO(1) by Björklund et al. [BHKK07]. The same algorithms work

for DIRECTED STEINER TREE as well.

For the SCSS and DSF problems, we cannot expect fixed-parameter tractability:

Guo et al. [GNS11] showed that SCSS is W[1]-hard parameterized by the number of

terminals k, and DSF is W[1]-hard parameterized by the number of terminal pairs k. In

fact, it is not even clear how to solve these problems in polynomial time for small fixed

values of the number k of terminals/pairs. The case of k = 1 in DSF is the well-known

shortest path problem in directed graphs, which is known to be polynomial time solvable.

For the case k = 2 in DSF, an O(n5) algorithm was given by Li et al. [LMSL92] which

was later improved to O(mn+n2 logn) by Natu and Fang [NF97]. The question regarding

the existence of a polynomial algorithm for DSF when k = 3 was open. Feldman and

Ruhl [FR06] solved this question by giving an nO(k) algorithm for DSF, where k is the

number of terminal pairs. They first designed an nO(k) algorithm for SCSS, where k is

the number of terminals, and used it as a subroutine in the algorithm for the more general

DSF problem.

99

Steiner Problems on Planar Graphs: Given the amount of attention the planar ver-

sion of Steiner-type problems received from the viewpoint of approximation (see, e.g.,

[BCE+11, BHM11, BKM09, DHK09, EKM12]) and the availability of techniques for pa-

rameterized algorithms on planar graphs (see, e.g., [BFL+09, DH08, FG01]), it is natural

to explore SCSS and DSF restricted to planar graphs. In general, one can have the ex-

pectation that the problems restricted to planar graphs become easier, but sophisticated

techniques might be needed to exploit planarity. For the SCSS problem, we show in Sec-

tion 3.1.2 that one can obtain a faster algorithm in planar graphs as compared to general

graphs. However, for the more general DSF problem it turns out that the best known

algorithm is tight even for planar graphs (see Section 3.2.4)

Other Parameterizations: Instead of parameterizing by the number of terminals/terminal

pairs, we can consider parameterization by the number of edges/vertices. Let us briefly

and informally discuss this parameterization. Note that the number of terminals is a

lower bound on the number of edges/vertices of the solution (up to a factor of 2 in the

case of DSF parameterized by the number of edges), thus fixed-parameter tractability

could be easier to obtain by parameterizing with the number of edges/vertices. However,

our lower bound for SCSS on general graphs (as well as the W[1]-hardness of Guo et

al. [GNS11]) actually proves hardness also with these parameterizations, making fixed-

parameter tractability unlikely. On the other hand, it follows from standard techniques

that both SCSS and DSF are FPT on planar graphs when parameterizing by the number

k of edges/vertices in the solution. The main argument here is that the solution is fully

100

contained in the k-neighborhood of the terminals, whose number is O(k). It is known that

the k-neighborhood of O(k) vertices in a planar graph has treewidth O(k), thus one can

use standard techniques on bounded-treewidth graphs (dynamic programming or Cour-

celle’s Theorem). Alternatively, at least in the unweighted case, one can formulate the

problem as a first order formula of size depending only on k and then invoke the result of

Frick and Grohe [FG01] stating that such problems are FPT. Therefore, as fixed-parameter

tractability is easy to establish on planar graphs, the challenge here is to obtain optimal

dependence on k. One would expect a subexponential dependence on k (e.g., 2O(
√

k) or

kO(
√

k)) at least for SCSS, but this is not yet fully understood even for undirected STEINER

TREE [PPSvL13]. A slightly different parameterization is to consider the number k of

nonterminal vertices in the solution, which can be much smaller than the number of ter-

minals. This leads to problems of somewhat different flavor, see, e.g., [JLR+13].

3.1 Upper Bounds

3.1.1 The nO(k) Algorithms of Feldman-Ruhl for SCSS

In this section we give a self-contained description of Feldman-Ruhl algorithms for

SCSS [FR06].

101

3.1.1.1 Legal Token Moves

Let the set of terminals for SCSS be T = {t1, t2, . . . , tk}. For ease of notation, we set

q := k−1 and r = tk. Any solution H for SCSS contains paths from each of t1, t2, . . . , tk−1

to r. These paths together can be chosen to form an in-tree Tin rooted at r. Similarly

H must also contain paths from r to each of t1, t2, . . . , tk−1: these paths together can be

chosen to form an out-tree Tout rooted at r. Furthermore, any subgraph H which is the

union of such an in-tree and an out-tree rooted at r is a solution for SCSS. However, a

crucial feature of the problem is that these two trees can share edges/vertices, thus taking

the union of an optimum in-tree and an optimum out-tree is not necessarily an optimum

solution.

The algorithm can be visualized as follows: we have two types of tokens, namely

F-tokens and B-tokens. Place a “F-token” and a “B-token” at each ti for i ∈ [q]. The

F-tokens move forward along edges of the in-tree Tin towards r. The B-tokens move

backward along edges of the out-tree Tout towards r. The set of tokens left at any stage

are called “alive” tokens. Since tokens of the same type trace out a tree, as soon as two

tokens of the same type arrive at a common vertex we can merge them into one token.

This can also be viewed as one token “eating up” the other token, which then becomes

dead. Therefore it is enough to describe the pair of sets 〈F,B〉 which denote the set of

nodes occupied by the F-tokens and B-tokens, respectively. Since there are at most q

tokens of each type, the sets F,B have size at most q. Let
(V
≤q

)
denote the set of subsets

of V (G) of size at most q. We now define the set of “legal” token moves and show that a

102

minimum solution corresponds to a solution for SCSS.

Legal Token Moves for SCSS

1. Single Moves for F-tokens: For each edge (u,v)∈ E and all token sets F,B∈(V
≤q

)
such that u ∈ F , we have the move

〈F,B〉 c−→ 〈(F \u)∪{v},B〉.

The cost c of this move is 1 if v /∈ F ∪B and 0 otherwise.
2. Single Moves for B-tokens: For each edge (u,v) ∈ E and all token sets F,B ∈(V

≤q

)
such that v ∈ B we have the move

〈F,B〉 c−→ 〈F,(B\ v)∪{u}〉.

The cost c of this move is 1 if u /∈ F ∪B and 0 otherwise.
3. Flipping: For every pair f ,b and vertex sets F,B,F ′ ⊂ F,B′ ⊂ B such that

• f ∈ F and F ∈
(V
≤q

)
,

• b ∈ B and B ∈
(V
≤q

)
, and

• there is an f ; b walk in G going through all vertices in F ′∪B′,

we have the move

〈F,B〉 c−→ 〈(F \ ({ f}∪F ′)∪{b}),(B\ ({b}∪B′)∪{ f})〉.

The cost c of this move is discussed below.

Cost of flips. There is a technical issue about the cost of a flipping move that is not

explained in detail in [FR06]. Initially, [FR06] defines the cost c of the move as the size

of the set M of vertices of a shortest walk from f to b in G going through all vertices in

F ′∪B′, excluding f ,b and vertices in F ′∪B′. The problem is that it is not clear how to find

a walk minimizing this definition of cost. However, one can try all possible ordering of

the tokens in F ′∪B′, and find a shortest walk that visits the tokens in this order. Then we

can define the cost of the walk as its lengths plus one (i.e., the number of visited vertices,

possibly with repetitions), minus the size of the set { f ,b}∪F ′∪B′. We will denote the

103

Figure 3.1: Flipping move between f and b: the black nodes form the set M and tokens

F ′∪B′ need to be “picked up”. Figure taken from [FR06]

cost as c1-cost and c2-cost if the cost of a flip is interpreted these two ways, respectively.

Clearly, the c1-cost is at most the c2-cost. It turns out that these two costs are the same in

optimum solutions (see Lemmas 3.1 and 3.2 below).

Intuition about the legal moves. A single move for an F-token corresponds to that F-

token moving forward along an edge. Similarly, a single move for a B-token corresponds

to that B-token moving backward along an edge. We charge only if the new vertex (where

the token has now moved to) does not already have a token on it. The flipping move

allows F-tokens and B-tokens to pass each other. The two outer tokens are an F-token

f and a B-token b (see Figure 3.1). In between the outer tokens f and b, there are other

F-tokens moving forward along the edges and trying to pass b, and B-tokens moving

backward along edges and trying to pass f . These tokens, which occupy the vertex sets

F ′ and B′ respectively, are picked up during the flipping move.

Building the game graph G̃. Let Ṽ =
(V
≤q

)
×
(V
≤q

)
. Build a game graph G̃ = (Ṽ , Ẽ),

where Ẽ is the set of all legal token moves. We assign weights to the edges of G̃ according

to the costs of the corresponding legal moves. Consider a single move for an F-token

104

given by 〈F,B〉 c−→ 〈(F \u)∪{v},B〉. Its cost can be computed easily: it is 1 if v /∈ F ∪B,

and 0 otherwise. Similarly, the cost of a single move for a B-token can be computed

easily. On the other hand, to compute the cost of a flipping move between f and b, we

need to find the size of the shortest f ; b walk in G that passes through all vertices in

F ′∪B′. The main observation is the following: if we know the order in which the vertices

from F ′∪B′ appear on the f ; b walk, then the shortest walk is just the concatenation of

shortest paths between two consecutive nodes in the ordering. The number of tokens is

at most 2q and hence |F ′∪B′| ≤ 2q−2. We try all the at most (2q−2)! permutations of

vertices from F ′∪B′, and select the one that gives the shortest walk. In this way, we can

build the game graph G̃ and assign weights to its edges.

3.1.1.2 nO(k) Algorithm for SCSS

Recall that initially each of the vertices t1, t2, . . . tq has an F-token and a B-token as

well. Finally we want all the F-tokens and all the B-tokens to reach the vertex r via legal

moves. This suggests the following algorithm for SCSS.

Algorithm 6: Feldman-Ruhl Algorithm for SCSS
1: Construct the game graph G̃ = (Ṽ , Ẽ), where Ẽ is the set of all legal token moves.
2: Find a minimum weight path P in G̃ from ({t1, t2, . . . , tq},{t1, t2, . . . , tq}) to (r,r).
3: Let H be the union of {t1, t2, . . . , tq,r} and all nodes given by P (including those in

sets M for flipping moves).
4: return H

To show the correctness, the main idea is that when we move the tokens, we only

pay a cost when a new vertex is encountered. The following two lemmas demonstrate the

105

correctness of Algorithm 6:

Lemma 3.1. (Lemma 3.1 from [FR06]) If there is a move sequence from ({t1, t2, . . . , tq},{t1, t2, . . . , tq})

to (r,r) of c1-cost c, then there is a solution H for k-SCSS of size≤ c+q. Moreover given

the move sequence the subgraph H can be easily constructed.

The proof of Lemma 3.1 follows easily from the definition of the legal moves for

the game. The converse statement saying that there is a move sequence corresponding to

an optimum solution is more surprising and its proof is more involved.

Lemma 3.2. (Lemma 3.2 from [FR06]) For any minimal solution H∗ to SCSS there is a

move sequence from ({t1, t2, . . . , tq},{t1, t2, . . . , tq}) to (r,r) of c2-cost at most |H∗|−q.

Note that having c1-cost in Lemma 3.1 (instead of c2-cost) makes it stronger and

having c2-cost in Lemma 3.2 (instead of c1-cost) makes it stronger. Lemmas 3.1 and 3.2

together imply that if a move sequence minimizes the c2-cost, then its c1-cost is the same

as its c2-cost. Henceforth, we define the cost as the c2-cost and note that for minimum

move sequences the two functions give the same value. It follows that all the flips of a

minimum move sequence should have the same cost under both interpretations:

Proposition 3.1. For every move sequence from ({t1, t2, . . . , tq},{t1, t2, . . . , tq}) to (r,r)

having minimum cost, every flip in the move sequence has the following proprety: the

walk of minimum length visiting F ′∪B′ is a simple path.

The crucial point in the proof of Lemma 3.2 is that when moving the tokens, we

“pay” each time we encounter a new vertex. However, it can happen that we pay twice for

106

a vertex if a token enters the vertex, then leaves it, then later some token visits the vertex

again. Feldman and Ruhl are able to avoid this situation by enforcing the following rule:

Once a token moves off a vertex, no other token will ever move to that vertex again (*)

Feldman-Ruhl say that a vertex becomes “dead” once a token moves from it, so

that tokens are allowed to only move to vertices in H∗ that are “alive.” We need to clarify

what we mean by “moving off” in a flipping move. We imagine that tokens f and b

change places by following the walk, hence we consider all vertices of M becoming dead.

However, Feldman and Ruhl do not state explicitly whether or not the original locations

of f and b become dead in a flipping move. Observation of [FR06, Claim 3.4] shows

that we may make f and b dead (the proof of Claim 3.4 works even in the case when

some token f ′ requires b itself; in fact, the first step of the proof is to conclude that f ′

requires b). Therefore, we interpret Property (*) in such a way that the locations of f

and b also become dead in a flipping move. An important consequence is that a vertex v

can participate in at most one flip, as it becomes dead after the first flip and then no other

token can move to it with a flip.

For the analysis of the running time of Algorithm 6, we refer to Section 6.1 of [FR06].

Using this algorithm for SCSS as a blackbox, Feldman and Ruhl also design an nO(k) al-

gorithm for DSF. We do no use that algorithm in this thesis, and hence the description is

omitted (see Section 5 of [FR06]).

107

3.1.2 An 2O(k logk) ·nO(
√

k) Algorithm for SCSS on Planar Graphs

In this section we design a faster algorithm for the SCSS problem on planar graphs.

Theorem 3.1. An instance (G,T) of the STRONGLY CONNECTED STEINER SUBGRAPH

problem with |G| = n and |T | = k can be solved in 2O(k logk) · nO(
√

k) time, when the un-

derlying undirected graph of G is planar (or more generally, H-minor-free for any fixed

graph H).

This algorithm presents a major improvement over Feldman-Ruhl algorithm [FR06]

for SCSS in general graphs which runs in nO(k) time (see Section 3.1.1.2). Before de-

scribing the algorithm formally, we first give a very high-level intuition. The algorithm of

Feldman-Ruhl for SCSS is based on defining a game with 2k tokens and costs associated

with the moves of the tokens such that the minimum cost of the game is equivalent to the

minimum cost of a solution of the SCSS problem; then the minimum cost of the game can

be computed by exploring a state space of size nO(k). We slightly generalize this game by

introducing supermoves, which are sequences of certain types of moves. The generalized

game still has a state space of nO(k), but it has the advantage that we can now give a bound

of O(k) on the number of supermoves required for the game (such a bound is not possible

for the original version of the game). We define a description of Feldman-Ruhl game: it

is essentially a running commentary of the moves that occur in Feldman-Ruhl game in

the sense that we report each move as it happens. As we can bound the length of the de-

scription by O(k), we can guess the description (types and order of moves etc.), with the

108

exception of the actual location of the vertices appearing in the description. We then need

to map each of the O(k) vertices appearing in the description to an actual vertex of the

planar graph; trying all possibilities by brute force would still need nO(k) time. This is the

point where planarity comes into play. With each description Γ we associate a graph DΓ

where the edges are added according to the moves in the description. Since the number

of supermoves was bounded by O(k), we are able to conclude that there is a description

of Feldman-Ruhl game whose associated graph is also planar and has O(k) non-isolated

vertices. It is well-known that a planar graph with O(k) vertices has treewidth O(
√

k),

hence the treewidth of the graph DΓ associated with the description is O(
√

k). Therefore,

we can use an embedding theorem given in Marx and Klein [KM] to find in time nO(
√

k) a

minimum cost mapping of the vertices in the description and obtain a minimum-cost sub-

graph corresponding to the given description of the Feldman-Ruhl game. Our algorithm

uses planarity in a very robust way: the only result on planarity we need is the planar grid

minor theorem; we argue that DΓ is planar by showing that it is a minor of the input graph.

This allows transparent generalization to the case when the underlying undirected graph

is H-minor-free. All we need to do is to use the grid minor theorem for H-minor-free

graphs due to Demaine and Hajiaghayi [DH05b], which implies for any fixed graph H,

every H-minor-free graph G has treewidth O(
√
|V (G)|).

109

3.1.2.1 Another Look at Moves of the Feldman-Ruhl game

In this section, we introduce notation describing the moves of the Feldman-Ruhl

game in more detail. This will allow us to prove our 2O(k2) ·nO(
√

k) algorithm for SCSS on

planar (and more generally H-minor-free) graphs. Recall that the legal moves for SCSS

are defined in Section 3.1.1.1.

3.1.2.1.1 The Flipping Move

For ease of notation, we call the Flipping move as Flip(f ,b,u,v,F ′,B′), which is

used to denote that the forward token f located at v flips with the backward token b

located at v, and the sets of vertices F ′ and B′ that denote the locations of the forward

and backward tokens, respectively, are picked up. Let P be the shortest u→ v walk in G

which goes through all the vertices where the tokens from F ′∪B′ are located. Then the

cost of this move is the number of vertices on P which do not have a token from the set

F ′∪B′∪{ f ,b}.

We have two cases: either the set F ′∪B′ is empty, or not.

• If F ′∪B′ = /0, then we call this move an EmptyFlip(f ,b,u,v) move.

• Otherwise F ′ ∪ B′ 6= /0, and we call this move a NonEmptyFlip(f ,b,u,v,F ′,B′)

move. In particular, we use NonEmptyFlip(f ,b,u,v,g1,g2, . . . ,g`,w1,w2, . . . ,w`)

to denote the NonEmptyFlip that picks up the tokens gi at vertex wi for each 1 ≤

i≤ `.

110

3.1.2.1.2 Single Moves for F and B tokens

We define various types of possible moves of the type Single Move for an F-token.

The discussion for B tokens is similar, and we do not repeat it again. For ease of notation,

we call the “Single Move for F-token” as Forward(f ,u,v) if the forward token f located

at u moves forward to the vertex v along the edge (u,v) in this move. Similarly we call the

“Single Move for B-token” as Backward(b,u,v) if the backward token b located at vertex

u moves to vertex v backward along the edge (v,u) in this move.

For the Forward(f ,u,v) move, the cost of this move is 1 if there is a token from

F ∪B present on v, and 0 otherwise. We have three cases:

• If there was no token at v, then the cost of this move is 1. We call this move a Sin-

gleForwardAlone(f ,u,v) move since at the end of this move the token originally

located at f does not encounter any token.

• If there was no forward token at v, but there was a backward token b, then again

the cost of this move is 0. We call this move a SingleForwardMeet(f ,u,v,b)

move since after this move the forward token f meets the backward token b at the

vertex v. We follow the convention that every SingleForwardMeet is followed by

an EmptyFlip (of length 0) at vertex v; as this does not move the tokens at all, it

does not influence the solution. This convention simplifies some of the arguments

later in Section 3.1.2.5.

• If there was a forward token f ′ and a backward token b at v, then the cost of this

111

move is 0. We call this move a SingleForwardAbsorbAndMeet(f ,u,v, f ′,b) move

since after this move the forward token f absorbs the forward token f ′. However,

in this case we do not require an EmptyFlip of length 0 to occur.

• If there was a forward token f ′ (but no backward) at v, then the cost of this move

is 0. We call this move a SingleForwardAbsorb(f ,u,v, f ′) move since after this

move the forward token f absorbs the forward token f ′.

Similarly, we can also define the SingleBackwardAlone move, the SingleBackward-

Absorb move, and the SingleBackwardMeet move.

3.1.2.2 A Bird’s-eye View of the Feldman-Ruhl game

In this section, we take a bird’s-eye view of the Feldman-Ruhl game for SCSS.

More formally, we introduce new “supermoves” for their game. The Feldman-Ruhl game

takes place in a sequence of moves: each “supermove” is nothing but a collection of

contiguous moves from the Feldman-Ruhl game. The advantage is that we are able to

show that there is a solution for the Feldman-Ruhl game that can be partitioned into O(k)

supermoves, where k is the number of terminals in the SCSS instance. We now define the

supermoves. Let H be an optimum solution of the Feldman-Ruhl game satisfying (*), and

let the moves in H be M1,M2, . . . ,Mp.

112

3.1.2.2.1 Forward, Backward and Flip Supermoves

First, we define the supermoves associated with forward tokens. Let f be a forward

token. Consider a contiguous sequence of moves Hi1,Hi2, . . . ,Hi j−1,Hi j (with i1 < i2 <

.. . < i j) such that

• His is the move SingleForwardAlone(f ,vs,vs+1) for each 1≤ s≤ i j−1.

• Hi j is a single move involving f which takes f from vi j to vi j+1

• The only moves between Hi1 and Hi j involving f are Hi1,Hi2, . . . ,Hi j−1,Hi j

Then we can delete the moves Hi1 ,Hi2, . . . ,Hi j−1 . Depending on the type of the move Hi j ,

we replace it with a “supermove” M as follows:

• If there was no token at vi j+1 , then the cost of M is i j. We call M as the Forward-

Alone(f ,vi1,vi j+1) supermove, and set involved(M) = { f}.

• If there was a backward token b (but no forward token) at the vertex vi j+1 , then the

cost of M is i j− 1. We call this the ForwardMeet(f ,vi1,vi j+1 ,b) supermove, and

set involved(M) = { f ,b}. For ease of notation, we say that an EmptyFlip (of

length 0) occurs at this point, freeing the tokens f ,b to move along their subsequent

paths.

• If there was both a forward token f ′ and a backward token b at the vertex vi j+1 , then

the cost of M is i j−1 and f absorbs the token f ′. We call this as the ForwardAbsorb-

AndMeet(f ,vi1,vi j+1, f ′,b) supermove, and set involved(M) = { f , f ′,b}. How-

ever, in this case we do not require an EmptyFlip of length 0 to occur.

113

• If there was a forward token f ′ (but no backward token) at the vertex vi j+1 , then

the cost of M is i j− 1 and f absorbs the token f ′. We call this as the Forward-

Absorb(f ,vi1,vi j+1 , f ′) supermove, and set involved(M) = { f , f ′}.

We also define corner(M) = {vi1,vi j+1} and internal(M) = {vi2,vi3 , . . . ,vi j}.

Similarly, we can also define the BackwardAlone supermoves, the BackwardAb-

sorb supermoves, the BackwardAbsorbAndMeet and the BackwardMeet supermoves. By

Alone supermoves, we refer to the union of BackwardAlone supermoves and the For-

wardAlone supermoves. The Absorb supermoves, AbsorbAndMeet and Meet supermoves

are also defined similarly.

The NonEmptyFlip moves defined in Section 3.1.2.1.1 are also included in the set

of supermoves1.

If M = NonEmptyFlip(f ,b,u,v,g1,g2, . . . ,g`,w1,w2, . . . ,w`), then we define

• involved(M) = { f ,b,g1,g2, . . . ,g`},

• corners(M) = {u,v}, and

• internal(M) = P\{u,v,w1,w2, . . . ,w`}, where P is a shortest u→ v walk in G

passing through each wi.

1The NonEmptyFlip is considered both as a move and as a supermove.

114

3.1.2.2.2 MultipleFlips

Our final supermove is called MultipleFlip. Let H be an optimum solution of the

Feldman-Ruhl game satisfying (*), and let the moves in H be H1,H2, . . .H`.

Definition 3.1. Let f and b be forward and backward tokens, respectively. Consider a

consecutive sequence of moves Hi,Hi+1, . . . ,H j−1,H j such that

• There exists i ≤ s ≤ j such that Hs is an EmptyFlip involving f and b (potentially

of length 0)

• For each i≤ r ≤ j, the move Hr is of one of the following types:

– EmptyFlip move involving f and b.

– SingleForwardAlone move involving f .

– SingleBackwardAlone move involving b.

– SingleForwardMeet or SingleBackwardMeet move involving both f and b.2

Let v1,w1 be the initial locations of f ,b before Hi occurs are v1,w1 respectively. Simi-

larly, let the final locations of f ,b after Hi occurs are v2,w2 respectively. Then we define

M= MultipleFlip(f ,b,v1,v2,w1,w2) as the supermove which is given by the sequence of

consecutive moves Hi,Hi+1, . . . ,H j. We say that the Hi,Hi+1, . . . ,H j are the components

of M.

2Recall from Section 3.1.2.2.1 that every SingleForwardMeet or SingleBackward Meet move must be

followed by an EmptyFlip of length 0.

115

Note that an EmptyFlip is a special case of a MultipleFlip with just one compo-

nent which is an EmptyFlip, and also v1 = w2 and v2 = w1. For the supermove M =

MultipleFlip (f ,b,v1,v2,w1,w2), we define the following sets:

• involved(M) = { f ,b}

• corners(M) = {v1,v2,w1,w2}

• internal(M)=
(⋃

H∈M corner(H)∪internal(H)
)
\{v1,v2,w1,w2}, where

H ∈M means that H is a component of the MultipleFlip M.

The following property of a MultipleFlip will be helpful for our algorithm:

Definition 3.2. Let M be given by MultipleFlip (f ,b,v1,v2,w1,w2). Then corners(M)

is given by {v1,v2,w1,w2}. We say that M is a clean MultipleFlip if either

• |corners(M)|= 2, or

• |corners(M)| ≥ 3 and internal(M) is connected (in the undirected sense),

and adjacent to every vertex of corner(M)

Note that if M is an EmptyFlip, then |corners(M)|= 2 and it is clean by defini-

tion.

3.1.2.2.3 List of all supermoves

The final set of supermoves that we consider are the following:

Final Set of Supermoves

• Alone, Absorb, AbsorbAndMeet and Meet
• NonEmptyFlip
• MultipleFlip

116

3.1.2.3 Description Associated with a Partition of a Solution to the

Feldman-Ruhl Game

Consider a solution H for the Feldman-Ruhl game and a partition P(H) of H into

supermoves. Then the description ΓP(H) associated with P(H),is essentially a running

commentary of the game as it happens, i.e., we list all the supermoves which form the

partition P(H).

First there are k entries of the form Location(fi,bi,vi) for 1 ≤ i ≤ k which tell that

the initial location of the tokens fi,bi is vertex vi of G. Note that the vertices v1,v2, . . . ,vk

are given in the input instance. Then there is a sequence of entries where each entry has

one of the following types:

1. ForwardAlone(f ,w1,w2): The forward token f went from vertex w1 to w2 in G and

then did not meet any other token at w2.

2. BackwardAlone(b,w1,w2): The backward token b went from vertex w2 to w1 in G

and then did not meet any other token at w1.

3. ForwardAbsorb(f1,w1,w2, f2): The forward token f1 went from vertex w1 to w2 in

G and then absorbed another forward token f2.

4. BackwardAbsorb(b1,w2,w1,b2): The backward token b1 went from vertex w2 to

w1 in G and then absorbed another backward token b2.

5. ForwardMeet(f ,w1,w2,b): The forward token f went from w1 to w2 in G, and then

performed an EmptyFlip (of length 0) with a backward token b at w2.

117

6. BackwardMeet(b,w2,w1, f): The backward token b went from w2 to w1 in G, and

then performed an EmptyFlip (of length 0) with a forward token f at w1.

7. ForwardAbsorbAndMeet(f1,w1,w2, f2,b): The forward token f1 went from vertex

w1 to w2 in G and then absorbed another forward token f2 at w2, where a backward

token b was also present.

8. BackwardAbsorbAndMeet(b1,w2,w1,b2, f): The backward token b1 went from

vertex w2 to w1 in G and then absorbed another backward token b2 at w1, where a

forward token f was also present.

9. NonEmptyFlip(f ,b,v1,v2,e1,e2, . . . ,e`,w1,w2, . . . ,w`): The tokens f and b were

initially located at vertices v1 and v2 respectively in G. They then made a NonEmpty

flip picking up the tokens ei which was located at vertex wi in G along the way, in

that order.

10. MultipleFlip(f ,b,v1,v2,w1,w2): The tokens f ,b were located initially at vertices

v1,w1 in G respectively. They then participated in a MultipleFlip and finally were

located at vertices v2,w2 respectively.

The next theorem is the main combinatorial result that we use in the algorithm. It

justifies introducing the supermoves: it shows that there is a solution and a partition of

this solution into O(k) supermoves.

Theorem 3.2. There is an optimum solution H∗ of the Feldman-Ruhl game and a partition

P′(H∗) of this solution into supermoves such that the total number of entries (i.e., the

number of supermoves) in the description of P′(H∗), say X∗label, are O(k). Furthermore,

118

every MultipleFlip supermove is clean.

As the proof of Theorem 3.2 requires a deep analysis of the game, we defer it to

Section 3.1.2.5. We observe here the following simple property of an optimum solution:

Lemma 3.3. Let M,M′ be any two supermoves of P′(H∗). Then we have internal(M)∩

internal(M′) = /0.

Proof. By definition, each vertex in the set internal(M) is visited by some token.

Hence Property (*) implies that if M and M′ are any two supermoves then internal(M)∩

internal(M′) 6= /0.

2

3.1.2.3.1 Unlabeled Descriptions

In this section, we consider unlabeled descriptions, i.e., descriptions where we re-

place the vertices in the descriptions by variables (which will always be denoted by Greek

letters). Recall that we have 2k tokens. We now show that it is enough to consider O(k)

variables to represent the unlabeled descriptions.

Corollary 3.1. The number of vertices of G (with multiplicities) listed over all entries of

the description X∗label is O(k).

Proof. By Theorem 3.2, we know that the description has O(k) entries. We now refer

to Section 3.1.2.3. For the Alone, Absorb, Meet and MultipleFlip type of entries in the

description we use a O(1) number of vertices of G per entry. For the NonEmptyFlip case

119

we might add some more vertices in the description (like the w1,w2, . . . ,w`) but their total

number is bounded by 2k, as each such vertex is picked up in the NonEmptyFlip and

hence can occur in only one such entry. Therefore, the total number of vertices of G (with

multiplicities) listed over all entries of the description X∗label is O(k). 2

Our goal is to guess the description X∗label. We will do it as follows: first guess

an unlabeled description, and then guess a labeling of the vertices of G to the variables

of the unlabeled description. The next lemma bounds the number of distinct unlabeled

descriptions having O(k) entries.

Lemma 3.4. The number of distinct unlabeled descriptions having O(k) entries is 2O(k logk)

Proof. For an unlabeled description, we call each of the following as a bit of the descrip-

tion: the names of the supermoves, the listed variables or the listed tokens.

Referring to Section 3.1.2.3, Each supermove (except NonEmptyFlip) contains

O(1) variable bits. In addition to two variables corresponding to the endpoints of the flip,

each NonEmptyFlip also lists several internal variables, each of which corresponds to a

token that gets picked up in the NonEmptyFlip. Hence the total number of internal vari-

able bits listed by the NonEmptyFlip is at most 2k. Since the number of NonEmptyFlips

is upper bounded by the total number of supermoves, which is O(k), the number of non-

internal variable bits listed by NonEmptyFlips is also upper bounded by 2×O(k) = O(k).

Hence the total number of variable bits is O(k)+2k+O(k) = O(k). By Corollary 3.1, it

is enough to consider only O(k) variables in our unlabeled descriptions. Hence, the total

number of guesses for the variable bits is kO(k).

120

We have O(1) = 10 choices for the type of the supermove. Since we want to enu-

merate only unlabeled descriptions with O(k) entries, the number of choices for this is

10O(k). Each supermove (except NonEmptyFlip) lists at most 3 tokens. Any non-internal

token listed in a NonEmptyFlip does not appear in any other supermove, and hence their

number is upper bounded by the total number of tokens which is 2k. Also we consider

only unlabeled descriptions with O(k) entries. Hence the total number of token bits is

O(k). Since there are 2k tokens, the number of choices for the token bits is (2k)O(k).

Therefore, the total number of distinct unlabeled descriptions with O(k) entries is

10O(k)× (2k)O(k)× kO(k) = 2O(k logk).

2

Let the set of all unlabeled descriptions beX . It is easy to see that we can enumerate

all elements of X in time |X | = 2O(k logk). We now show how to check if an unlabeled

description X ∈ X is valid or not:

Definition 3.3. Consider an unlabeled description X ∈ X . We say that X is valid if the

following holds:

• The first k entries of X are given by Location(fi,bi,αi) for i ∈ [k] such that αi 6= α j

for each i 6= j.

• For every token f , the variables assigned to f in its current supermove is the same

variable that ended up being assigned to f at the end of the last supermove in X

involving f (if it exists).

• Any token which is absorbed (in an Absorb or AbsorbAndMeet supermove) or

121

picked up (in a NonEmptyFlip) supermove cannot be involved in any subsequent

move in X.

• At the end of all the supermoves in X, all the alive tokens are assigned to the vari-

able αk.

Given an unlabeled description X ∈ X , it is easy to see that we can check whether

X is valid in O(k) time by simply keeping a list of alive tokens are their currently assigned

variables. Hence, in 2O(k logk) time, we can build the setX ′ of valid unlabeled descriptions.

3.1.2.3.2 Directed Graphs Associated with Descriptions

With each valid unlabeled description X ∈ X ′, we can associate a directed graph

DX = (VE ,EX). The vertex set VX contain all the variables listed in X , plus at most one

additional variable for each MultipleFlip. By Theorem 3.2 and Corollary 3.1, we have

that |VX |= O(k). The edge set EX is defined as follows:

122

The edge set EX for the digraph DX corresponding to a valid unlabeled
description X

1. ForwardAlone(f ,α,α ′): Add the edge (α,α ′).
2. BackwardAlone(b,α,α ′): Add the edge (α ′,α).
3. ForwardAbsorb(f1,α,α ′, f2): Add the edge (α,α ′).
4. BackwardAbsorb(b1,α,α ′,b2): Add the edge (α ′,α).
5. ForwardMeet(f ,α,α ′,b): Add the edge (α,α ′).
6. BackwardMeet(b,α,α ′, f): Add the edge (α ′,α).
7. ForwardAbsorbAndMeet(f ,α,α ′, f ′,b): Add the edge (α,α ′).
8. BackwardAbsorbAndMeet(b,α,α ′,b′, f): Add the edge (α ′,α).
9. NonEmptyFlip(f ,b,α,α ′,e1,e2, . . . ,e`,γ1,γ2, . . . ,γ`): Add the path α →

γ1→ γ2→ . . .→ γ`→ α ′).
10. MultipleFlip(f ,b,α,α ′,γ,γ ′): Let L be the (multi)set {α,α ′,γ,γ ′}

• If |L| = 2 then we know that α = α ′ and γ = γ ′ cannot occur since in
this case both tokens do not move at all. So the only two cases are:

– If α = γ and α ′ = γ ′, then add the edge (α,α ′) and color it red.
– If α = γ ′ and α ′ = γ , then add the edge (α,α ′) and color it blue.

• If |L| ≥ 3 then introduce a new vertex δ , and add the edges E(δ ,1) =
(δ ,α),E(δ ,2) = (δ ,α ′),E(δ ,3) = (δ ,γ) and E(δ ,4) = (δ ,γ ′)

By the way we defined this directed graph, if the description corresponds to a solu-

tion in a graph G, then the graph of the description is a minor of G (and in particular, it is

planar if G is planar).

Theorem 3.3. Let X∗label be as in Theorem 3.2 and let X∗ be the corresponding unlabeled

description. The underlying undirected graph of the directed graph DX∗ is a minor of the

underlying undirected graph of G.

Proof. We construct an undirected graph G′ from the underlying undirected graph of G

the following way. For every supermove, we do the following:

• In the first 8 cases above, there are two corner vertices. Either the two corner

123

vertices are adjacent in G, or the internal vertices of the supermove give a path

between them. In the latter case, we contract this path to make the two corner

vertices adjacent.

• In the case of a NonEmptyFlip, by Proposition 3.1, there is a simple v1 → w1 →

. . .w`→ v2 path on the internal vertices of the supermove. Then we contract sub-

paths of this path to make v1w1 . . .w`v2 a path (i.e., to make these vertices adjacent).

• In the case of a MultipleFlip with two corner vertices, there is a path on the internal

vertices between the two corner vertices (note that the case v1 = v2 and w1 = w2

need not be considered, since then the two tokens do not move at all). As in the first

case, we contract this path to make the two corners adjacent.

• In the case of a MultipleFlip with at least three corner vertices, Theorem 3.3 implies

that this MultipleFlip is clean, that is, the internal vertices induce a connected graph

that is adjacent to all corners. Then we contract the internal vertices to a single

vertex.

By Lemma 3.3, no two supermoves of P′(H∗) share any internal vertex, thus these

contractions are independent. It is easy to see now that the underlying undirected graph of

DX∗ is a subgraph of G′. In particular, for every MultipleFlip with at least three corner ver-

tices, the newly introduced vertex δ can be mapped to the vertex obtained by contracting

the internal vertices of the supermove. 2

Since |VX | = O(k), a result of Demaine and Hajiaghayi [DH05b] implies that the

treewidth of the underlying undirected graph of DX∗ is O(
√

k). Therefore, for every valid

124

unlabeled description X ∈ X ′, we check if the treewidth of the underlying undirected

graph of DX is O(
√

k) by using the constant factor approximation algorithm of Bodlaen-

der et al. [BDD+13], which runs in 2O(
√

k) · k time. Discard all those unlabeled descrip-

tions X ∈ X ′ for which this does not hold, and let X ′′ be the resulting set of unlabeled

descriptions. Note that we can construct X ′′ in |X ′|×2O(
√

k)× k = 2O(k logk) time.

3.1.2.4 Guessing a Labeling for an Unlabeled Description Using Dy-

namic Programming

For each valid unlabeled description X ∈ X ′′, the digraph DX comes with k special

variables, say α1,α2, . . . ,αk, that must be mapped to the vertices v1,v2, . . . ,vk where the

terminals are placed in G. We try to map the remaining vertices of DX to elements of

U =V ∪V 4 so that the unlabelled description coincides with X∗label.

For this purpose, we use the following theorem due to Klein and Marx [KM]:

Theorem 3.4. Let D be a directed graph, U a set of elements, and functions cv : V (D)×

U → Z+∪{∞}, ce : V (D)×V (D)×U×U → Z+∪∞. In time |U |O(tw(D)) we can find a

mapping φ : V (D)→U that minimizes

Bφ = ∑
v∈V (D)

cv(v,φ(v))+ ∑
(u,v)∈E(D)

ce(u,v,φ(u),φ(v))

where tw(D) denotes the treewidth of the underlying undirected graph of D.

Recall that each X ∈ X ′′ has treewidth O(
√

k). Note that |U | = nO(1), and hence

for any choice of functions ce and cv we will be able to compute the minimum map-

125

ping φ in time nO(
√

k). Our goal is to now apply Theorem 3.4 for the graph DX for each

X ∈X ′′, and define the functions ce and cv in a way such that the objective value of The-

orem 3.4 exactly captures the cost of the labeled description Xlabel obtained by replacing

each variable α by the vertex φ(α) .

3.1.2.4.1 Defining the Functions ce and cv

First we see how to compute the minimum cost of a MultipleFlip, since we need it

in the cv function. Let v1,v2, . . . ,vk be the vertices of G which have the k terminals of the

SCSS instance.

Lemma 3.5. The minimum cost of MultipleFlip(fi,b j) can be found in polynomial time.

Proof. Let the initial locations of fi,b j be ui,u j and the final locations be vi,v j respec-

tively. We first build a game graph G̃ where the vertex set is V ×V . Then we add the

weights between the edges similar to Section 6.1 of the Feldman-Ruhl paper [FR06].

Since all the flips in between are empty flips, their cost is just the shortest paths in G.

Then we find a shortest path in the game graph G̃ from (ui,vi) to (u j,v j). 2

We now define the cv and ce functions below:

126

The Function cv : V (DX)×U → Z+∪{∞}

• For u ∈V we define

cv(α,u) =


1 if α = αi and u = vi for some i ∈ [k]
∞ if α = αi and u 6= vi for some i ∈ [k]
1 otherwise

• For u = (v1,v2,w1,w2) ∈V 4, let L be the multiset {v1,v2,w1,w2}.

– If |L| ≥ 3, then define cv(α,u) = (cost of
MultipleFlip(v1,v2,w1,w2)) − |X |, where X is the multiset
= {v1,v2,w1,w2}\{v1,w1}

– Otherwise if |L|= 2, then define cv(∗,u) = ∞ where ∗ denotes any vari-
able in DX

If u ∈ V , then we make sure that the cost is infinity if a “marked” vertex in DX is

not mapped to the correct vertex having a terminal in G. For all other vertices in D they

get a cost of one to be assigned to other vertices in G. If u ∈V 4, then the cost of mapping

α ∈DX to u = (u1,u2,u3,u4) is the cost of the MultipleFlip between (u1,u3) and (u2,u4).

127

The Function ce : V (DX)×V (DX)×U×U → Z+∪∞

If (α,α ′) /∈ E(DX) define ce(α,α ′,∗,∗) = ∞, where ∗ denote any element of U .
In the remaining cases below, we assume that (α,α ′) ∈ E(DX).

• For v,w ∈V

– If (α,α ′) is a red edge in DX , then define ce(α,α ′,v,w) = [cost of the
MultipleFlip (v,w,v,w)] ·cv(α,v) ·cv(α ′,w)

– If (α,α ′) is a blue edge in DX , then define ce(α,α ′,v,w) = [cost of the
MultipleFlip (v,w,w,v)] ·cv(α,v) ·cv(α ′,w)

– If (α,α ′) is a edge in DX with no color, then define ce(α,α ′,v,w) =
(dG(v,w)−1) ·cv(α,v) ·cv(α ′,w), where dG(v,w) is the length of the
shortest v ; w path in G.

• For y = (v1,v2,w1,w2) ∈V 4 and x ∈V , let L be the multiset {v1,v2,w1,w2}.

– If |L| = 2, then define ce(∗,∗,y,x) = ∞, where ∗ denotes any variable
from DX .

– If |L| ≥ 3, then define

ce(α,α ′,y,x) =


0 if x = v1 and (α,α ′) = E(α,1)
0 if x = v2 and (α,α ′) = E(α,2)
0 if x = w1 and (α,α ′) = E(α,3)
0 if x = w2 and (α,α ′) = E(α,4)
∞ otherwise

• All others are set to ∞

Recall that we defined a special optimal solution H∗ in Theorem 3.2.

Lemma 3.6. If the cost of the solution H∗ for the Feldman-Ruhl game is C, then there is

an unlabeled description X∗ ∈ X ′′ and a mapping φ : V (DX∗)→U such that Bφ =C

Proof. Consider the (labeled) description X∗label corresponding to the solution H∗ and

partition P′(H∗) given in Theorem 3.2. Consider the corresponding unlabeled description

X∗ obtained from X∗label by the following procedure: for each vertex v listed in X∗label ,

replace all its occurrences in X∗label by the same variable (but use distinct variables for

distinct vertices). Let us denote the variable which we used to replace v by φ ′(v). By

128

Theorem 3.3, we have X∗ ∈ X ′′.

Consider the mapping φ : V (DX∗)→U given by φ(α) = v if and only if φ ′(v) =

α . This is well-defined since every variable in V DX∗ has an unique preimage w.r.t the

mapping φ ′. We know that the sum of the costs of the supermoves P′(H∗) is OPT. We

now show that for each supermove M, its contribution to the cost of H∗ is the same as the

sum of the ce and cv contributions to Bφ of the vertices involved in M. Recall that in

H∗, we pay for a vertex the first (and only) time we encounter it. Also the cv function

pays for a variable the first time it is encountered. Initially, we have to pay a cost of 1 for

each of the vertices v1,v2, . . . ,vk−1 which are the locations of k−1 of the tokens: This is

paid for by the cv(φ ′(vi)) costs. We have the following choices for M:

1. M= ForwardAlone(f ,w1,w2): In DX∗ we have the edge (β1,β2) such that φ ′(wi) =

βi for i ∈ [2]. Hence φ(βi) = wi for each i ∈ [2]. Let d be the length of the shortest

w1 ; w2 path in G. Since it is an Alone supermove the vertex w2 is being encoun-

tered for the first time, but w1 has been encountered before. Hence the contribu-

tion of M to H∗ is d. The ce(β1,β2,w1,w2) cost is equal to (d− 1) ·cv(β1,w1) ·

cv(β2,w2) = (d− 1). Also cv(β2,w2) = 1 is paid for in Bφ since this is the first

time we encounter the variable β2. Hence, the contribution to cost of H∗ and to Bφ

is exactly d.

2. M= BackwardAlone(b,w1,w1): This case can be handled similar to the above case.

3. M= ForwardAbsorb(f ,w1,w2, f ′): In DX∗ we have the edge (β1,β2) such that

φ ′(wi) = βi for i ∈ [2]. Hence φ(βi) = wi for each i ∈ [2]. Let d be the length

129

of the shortest w1 ; w2 path in G. Since it is an Absorb supermove, both w1 or

w2 have been encountered before. Hence the contribution of M to H∗ is d−1. The

ce(β1,β2,w1,w2) cost is equal to (d−1) ·cv(β1,w1) ·cv(β2,w2) = (d−1). Also

the cv function does not pay for the variables β1 and β2 since we have encountered

them before. Hence, the contribution to cost of H∗ and to Bφ is exactly d−1.

4. M= BackwardAbsorb(b,w1,w2,b′): This case can be handled similar to Case 3.

5. M= ForwardMeet(f ,w1,w2,b): This case can be handled similar to Case 3.

6. M= BackwardMeet(b,w1,w2, f): This case can be handled similar to Case 3.

7. M= ForwardAbsorbAndMeet(f ,w1,w2, f ′,b): This case can be handled similar to

Case 3.

8. M= BackwardAbsorbAndMeet(b,w1,w2,b′, f): This case can be handled similar

to Case 3.

9. M= NonEmptyFlip(f ,b,w1,w2,e1,e2, . . . ,e`,x1,x2, . . . ,x`):In DX∗ we have the path

β1→ γ1→ γ2→ . . .→ γ`→ β2 such that φ ′(wi) = βi for each i∈ [2] and φ ′(x j) = γ j

for each j ∈ [`]. Note that each of the vertices w1,w2,x1, . . . ,x` has a token on them,

and hence have been encountered before. For the sake of notation, let us denote

w1,w2 by x0,x`+1 respectively and β1,β2 by γ0,γ`+1 respectively . For each 0≤ i≤

` let the length of shortest xi ; xi+1 path in G be di. Then the contribution of M to

the cost of H∗ is (∑`
i=0 di)−(`+1). For each 0≤ i≤ `, the ce(γi,γi+1,xi,xi+1) cost

is equal to (di−1) ·cv(γi,xi) ·cv(γi+1,xi+1) = (di−1). Hence the total summation

of the ce costs is also (∑`
i=0 di)− (`+ 1). Note that we do not pay any cv costs

130

since all the variables γ0,γ1, . . . ,γ`,γ`+1 have been encountered before.

10. M is a MultipleFlip with |corners(M)| = 2. Let corners(M) = {v,w}. Then

we know that both v,w have been encountered before. Hence the cv cost is 0, while

the ce cost for (either the blue or red) edge is exactly equal to the cost of M.

11. M is a MultipleFlip with |corners(M)| ≥ 3. Let the multiset corners(M) =

{v1,w1,v2,w2}, and define X to be the multiset {v1,v2,w1,w2}\{v1,w1}. Hence X

is exactly the subset of corners(M) that is first discovered by M, and so we pay

the cv cost for each vertex in X for a total cost of |X |. In Bφ , we do not pay for the

cv costs of v1 or w1 since they have been encountered before (as they had tokens at

the start of M). Here the ce cost for the edges is 0, while the cv cost for the newly

created variable δ is exactly equal to (cost of M)−|X |. Hence the contribution of

M to Bφ is exactly equal to cost of M.

All the above cases together imply that Bφ = OPT .

2

Lemma 3.7. If there is a valid unlabeled description X ∈X ′′ and a mapping φ : V (DX)→

U such that Bφ = R for some R<∞, then there is a solution H for the Feldman-Ruhl game

of cost exactly R.

Proof. From the unlabeled description X , we first obtain a labeled description Xlabel by

replacing each variable α ∈V (DX) by the vertex φ(α) ∈U . Since X is a valid unlabeled

descriptio, it follows that Xlabel is the description associated with (H,P(H)), where H is

131

a solution of the Feldman-Ruhl game and P(H) is a partition of H into supermoves. We

now show that the cost of H is at most Bφ = R.

For each supermove M ∈ P(H), we add some edge(s) to the directed graph DX (see

Section 3.1.2.3.2). In fact, if M was a MultipleFlip with |corners(M)| ≥ 3, then we

also added a new vertex δ and some edges incident to it. Recall that in Bφ , we pay the cv

cost for a variable the first time we encounter it. We have the following cases for M:

1. M= ForwardAlone(f ,w1,w2): In DX we have the edge (β1,β2) such that φ(βi) =wi

for each i ∈ [2]. Let d be the length of the shortest w1 ; w2 path in G. Since it

is an Alone supermove the vertex w2 is being encountered for the first time, but

w1 has been encountered before. Hence the contribution of M to H∗ is d. The

ce(β1,β2,w1,w2) cost is equal to (d−1) ·cv(β1,w1) ·cv(β2,w2) = (d−1). Also

we pay the cost cv(β2,w2) = 1 in Bφ since this is the first time we encounter the

variable β2. Hence, the contribution to cost of H∗ and to Bφ is exactly d.

2. M= BackwardAlone(b,w1,w1): This case can be handled similar to the above case.

3. M= ForwardAbsorb(f ,w1,w2, f ′): In DX∗ we have the edge (β1,β2) such that

φ(βi) = wi for each i ∈ [2]. Let d be the length of the shortest w1 → w2 path in

G. Since it is an Absorb supermove, both w1 or w2 have been encountered before.

Hence the contribution of M to H∗ is d− 1. The ce(β1,β2,w1,w2) cost is equal

to (d− 1) ·cv(β1,w1) ·cv(β2,w2) = (d− 1). Also the cv function does not pay

for the variables β1 and β2 since we have encountered them before. Hence, the

contribution to cost of H∗ and to Bφ is exactly d−1.

132

4. M= BackwardAbsorb(b,w1,w2,b′): This case can be handled similar to Case 3.

5. M= ForwardMeet(f ,w1,w2,b): This case can be handled similar to Case 3.

6. M= BackwardMeet(b,w1,w2, f): This case can be handled similar to Case 3.

7. M= ForwardAbsorbAndMeet(f ,w1,w2, f ′,b): This case can be handled similar to

Case 3.

8. M= BackwardAbsorbAndMeet(b,w1,w2,b′, f): This case can be handled similar

to Case 3.

9. M= NonEmptyFlip(f ,b,w1,w2,e1,e2, . . . ,e`,x1,x2, . . . ,x`):In DX∗ we have the path

β1→ γ1→ γ2→ . . .→ γ`→ β2 such that φ(βi) = wi for each i ∈ [2] and φ(γ j) = x j

for each j ∈ [`]. Note that each of the vertices w1,w2,x1, . . . ,x` has a token on them,

and hence have been encountered before. For the sake of notation, let us denote

w1,w2 by x0,x`+1 respectively and β1,β2 by γ0,γ`+1 respectively . For each 0≤ i≤

` let the length of shortest xi ; xi+1 path in G be di. Then the contribution of M to

the cost of H∗ is (∑`
i=0 di)−(`+1). For each 0≤ i≤ `, the ce(γi,γi+1,xi,xi+1) cost

is equal to (di−1) ·cv(γi,xi) ·cv(γi+1,xi+1) = (di−1). Hence the total summation

of the ce costs is also (∑`
i=0 di)− (`+ 1). Note that we do not pay any cv costs

since all the variables γ0,γ1, . . . ,γ`,γ`+1 have been encountered before.

10. M is a MultipleFlip with |corners(M)| = 2. Let corners(M) = {v,w}. Then

we know that both v,w have been encountered before. Hence the cv cost is 0, while

the ce cost for (either the blue or red) edge is exactly equal to the cost of M.

11. M is a MultipleFlip with |corners(M)| ≥ 3. Let the multiset corners(M) =

133

{v1,w1,v2,w2}, and define X to be the multiset {v1,v2,w1,w2}\{v1,w1}. Hence X

is exactly the subset of corners(M) that is first discovered by M, and so we pay

the cv cost for each vertex in X for a total cost of |X |. In Bφ , we do not pay for the

cv costs of v1 or w1 since they have been encountered before (as they had tokens at

the start of M). Here the ce cost for the edges is 0, while the cv cost for the newly

created variable δ is exactly equal to (cost of M)−|X |. Hence the contribution of

M to Bφ is exactly equal to cost of M.

2

Lemma 3.6 and Lemma 3.7 give the correctness of the following algorithm:

Algorithm 7: Computing minimum cost mapping
1: Enumerate the set X ′′
2: for each X ∈ X ′′ do
3: Apply Theorem 3.4 to the graph DX to get the minimum mapping say φX which

gives cost CX .
4: Output minX∈X ′′{CX}

We now analyze the running time. As seen before in Section 3.1.2.3.2, we can

compute the set X ′′ in 2O(k logk) time. For each X ∈ X ′′, we can create the graph DX in

O(k2) time, since it has O(k) vertices. Finally, applying Theorem 3.4 to DX takes nO(
√

k)

time. Hence, the total running time of the algorithm is 2O(k logk) ·nO(
√

k). This concludes

the proof of Theorem 3.1.

134

3.1.2.5 Bounding the Number of Supermoves: Proof of Theorem 3.2

Consider an optimum solution H of the Feldman-Ruhl game. Let the moves that

constitute the solution H be H1,H2, . . . ,H`, and the number of alive tokens in H after

move Hi be ti for each i ∈ [`]. We assign to H the tuple λ (H) = (t1, t2, . . . , t`). Let �lex

be the standard lexicographic order over tuples of non-negative integers. Now we define

an ordering over the solutions of the Feldman-Ruhl game as follows:

Definition 3.4. Let H,H ′ be two optimum solutions of the Feldman-Ruhl game. Then we

define H �FR H ′ if λ (H)�lex λ (H ′).

Any solution H of the Feldman-Ruhl game can be partitioned into contiguous se-

quences of supermoves in various ways.

We fix a pair (H∗,P(H∗)), where H∗ is an optimum solution for the Feldman-Ruhl

game and P(H∗) is a partition of H∗ into supermoves, satisfying the following additional

property:

H∗ is an optimal solution satisfying property (*) and among such solutions,
minimal with respect to the ordering �FR.

Among all partitions of H∗ into supermoves, let P(H∗) be a partition that has the
minimum number of supermoves. (**)

We now show that the |P(H∗)| = O(k). Recall from Section 3.1.1.1 that if two

tokens of same type meet at a common vertex, then we merge them into one token.

Lemma 3.8. The total number of Absorb supermoves plus AbsorbAndMeet supermoves

in P(H∗) is O(k).

135

Proof. Each Absorb supermove or AbsorbAndMeet supermove reduces the number of

tokens, and hence the total number of such supermoves is O(k). 2

By definition, a NonEmptyFlip supermove picks up at least one token along the

way, and these tokens no longer need to be considered.

Lemma 3.9. The total number of NonEmptyFlip supermoves in P(H∗) is O(k).

Proof. Each NonEmptyFlip supermove reduces the number of tokens, and hence the total

number of such supermoves is O(k). 2

Next we bound the number of Alone supermoves in the special partition P(H∗).

Lemma 3.10. The total number of Alone supermoves in P(H∗) is O(k).

Proof. The proof is by a charging argument: we charge each Alone supermove to either

a token or to a NonEmptyFlip supermove.

By symmetry, it is enough to prove the lemma only for the ForwardAlone super-

moves. Consider a ForwardAlone supermove M = ForwardAlone(f ,v1,v2) in P(H∗)

involving a forward token f .

If there is no later supermove in P(H∗) involving f , then we can charge this For-

wardAlone move to the token f . Otherwise, let M′ be the next supermove after M in

P(H∗) which involves f . We have the following cases corresponding to the different

possibilities for M′.

1. M′ = ForwardAlone(f ,x1,x2). Since M′ is the first supermove after M in P(H∗)

that involves f , we have x1 = v2. Delete the supermove M, and replace M′ by the

136

supermove M′′ = ForwardAlone(f ,v1,x2) to get a new partition P′(H∗).

2. M′ = ForwardAbsorb(f ,x1,x2, f ′). Since M′ is the first supermove after M in

P(H∗) that involves f , we have x1 = v2. Delete the supermove M, and replace M′

by the supermove M′′ = ForwardAbsorb(f ,v1,x2, f ′) to get a new partition P′(H∗).

3. M′ = ForwardMeet(f ,x1,x2,b). Since M′ is the first supermove after M in P(H∗)

that involves f , we have x1 = v2. Delete the supermove M, and replace M′ by the

supermove M′′ = ForwardMeet(f ,v1,x2,b) to get a new partition P′(H∗).

4. M′ = ForwardAbsorbAndMeet(f ,x1,x2, f ′,b). Since M′ is the first supermove

after M in P(H∗) that involves f , we have x1 = v2. Delete the supermove M, and

replace M′ by the supermove M′′ = ForwardAbsorbAndMeet(f ,v1,x2, f ′,b) to get

a new partition P′(H∗).

5. M′ = MultipleFlip(f ,b,x1,x2,y1,y2). Since M′ is the first supermove after M in

P(H∗) that involves f , we have v2 = x1. Delete the supermove M, and replace M′ by

the supermove M′′ = MultipleFlip(f ,b,v1,x2,y1,y2) to get a new partition P′(H∗).

6. M′ is a NonEmptyFlip(f b, ,x1,x2,g1,g2, . . . ,g`,w1,w2, . . . ,w`). In this case, charge

M to M′.

To summarize, in each of Cases 1–5 we can construct another partition P′(H∗) that

has one less supermove than P(H∗). We now show that P′(H∗) is indeed a valid partition

of H∗ into supermoves, which contradicts Property (**). Note that the only token whose

location is different between the supermoves M and M′ is f . But since M′ is the first

supermove after M in P(H∗) which involves f , we do not create any inconsistencies and

137

do not change the cost of any move between T and T ′. Moreover, M′′ transports f from

its original location before M happened at time T to its final location after M′ happened

at time T ′. Therefore, Cases 1–5 cannot occur.

In Case 6, we can charge the ForwardAlone supermove involving f in P(H∗) to the

next supermove in P(H∗), which happens to be a NonEmptyFlip supermove involving f .

Note that at most two Alone supermoves are charged to a NonEmptyFlip move of tokens

f and b: the last Alone supermoves of f and b before the NonEmptyFlip supermove.

There is one initial case when there is no supermove involving f after M in P(H∗): in this

case we charge M to the token f . The total number of tokens is O(k), and Lemma 3.9

bounds the number of NonEmptyFlips in P(H∗) to O(k). Hence the total number of

ForwardAlone supermoves in P(H∗) is O(k). Similarly, it can be shown that the number

of BackwardAlone supermoves in P(H∗) is O(k).

2

Lemma 3.11. There are no Meet supermoves in P(H∗).

Proof. Consider a Meet supermove M = Meet(f ,v1,v2,b) in P(H∗) involving a forward

token f . By our convention, an Meet supermove is always followed by an EmptyFlip of

length 0 between tokens f and b; let E = EmptyFlip(f ,b,v2,v2) be this move. Let M′ be

the supermove in P(H∗) that E belongs to. We have the following two cases for M′:

1. M′ = M: Delete the supermove M, and replace M′ by M′′= MultipleFlip(f ,b,v1,v2,v2,v2)

to get a new partition say P′(H∗).

138

2. M′ 6= M: In this case, E is an EmptyFlip of length 0 which is neither a supermove in

P(H∗) nor is it a supermove by itself. Hence M′ must be a MultipleFlip with E as

its first component, and say M′ = MultipleFlip(f ,b,x1,x2,y1,y2). Also E being the

first component of the MultipleFlip M′ implies x1 = v2 = y1. Delete the supermove

M, and replace M′ by M′ = MultipleFlip(f ,b,v1,x2,v2,y2) to get a new partition

say P′(H∗).

In both the cases, we were able to construct another partition P′(H∗) into super-

moves which has one less supermove than P(H∗): by replacing M and M′ by a single

supermove M′′. Note that the next supermove after M in the partition P(H∗) is M′′ (since

M′ occurs immediately after M), and hence we do not change (or reorder) any other su-

permoves of the partition. 2

3.1.2.5.1 Removable Tokens

The following notion will be needed in proofs modifying the solution.

Definition 3.5. Consider a solution H of the Feldman-Ruhl game satisfying Property (*).

Let the moves in H be H1,H2, . . . ,H`. Let T be the set of alive tokens after move Hi has

occurred for some i ∈ [`]. LetM be the sequence of moves that occur in H after Hi, i.e,

M= {Hi+1, . . . ,H`}. We say that the token b is removable after move Hi has occurred if:

• There exists a sequence M′ of moves that moves the tokens in T \ b from their

positions after move H(i) to the root.

• The cost ofM′ is at most the cost ofM.

139

• The sequenceM′ satisfies Property (*).

Intuitively, the meaning of token b being removable after move Hi is that if b some-

how magically “disappears” after move Hi, then we can modify the rest of the game

without increasing the cost. Therefore, if we modify the solution locally in a way that the

only difference after move Hi is that b is no longer present, then the rest of the game can

be changed accordingly.

The next lemma states that the tokens that have just performed a flip are removable.

Lemma 3.12. If b is a token whose last move in the sequence H1, . . . ,Ht was a flip (po-

tentially a flip of length 0), then b is removable after move Ht .

Proof. In this proof, we consider a backward token b, but the arguments for forward

tokens are similar. Let H = H1, . . . ,H` be the original solution and suppose that b is at

vertex x after move Ht . We define the index q as the least index greater than t such that Hq

that is either a SingleBackwardAbsorb (or SingleBackwardAbsorbAndMeet) move where

b absorbs another token b′, or a SingleBackwardAbsorb (or SingleBackwardAbsorbAnd-

Meet) move where another token b′ absorbs b, or a NonEmptyFlip where b together with

a forward token f ′ picks up at least one backward token; we define q= ` if there is no such

move. For t < i ≤ q, we replace each Hi with a sequence of moves H ′i ; we describe this

in detail below3. For the analysis of how the cost changes by these replacement, let Q be

3The following is a brief sketch of why it suffices to only replace moves Hi for t < i ≤ q: if Hq is a

SingleBackwardAlone (or SingleBackwardAbsorbAndMeet) move involving b, then either b gets absorbed

(and we do not worry about it) or b absorbs another backward token b′ (we can pretend b′ is b henceforth).

140

the set of vertices on which b steps with an SingleBackwardAlone move during the steps

Ht+1, . . . , Hq; each of these steps incur a cost of 1 in the original solution H. We show

that the replacement decreases the cost by |Q| (as each of these SingleBackwardAlone

moves involving b will be removed) and increases the cost by at most |Q| (as an increase

of cost can occur only when a token moves on a vertex of Q). More precisely, we need

the following claim:

Claim 3.1. If for some t < i≤ q, move Hi moves some token to a vertex w containing only

b, then w ∈ Q.

Proof. Suppose that b is at vertex w and a token moves to w, which is only possible if w

is not dead. We show first that w is not the same vertex where b is after move Ht . Suppose

the contrary. Then we know by assumption that b made a flip at w during the moves H1,

. . . , Ht . If this flip was not of length 0, then w became dead and hence no token can

move to w in move Hi, a contradiction. If this flip was a flip of length 0, then a forward

token was at w at some point before move Ht+1. Thus before move Hi, either there is still

a forward token at w (contradicting that w contains only b), or a forward token already

moved off w, in which case w is dead, again a contradiction.

Therefore, b made a move after Ht to reach w. As this move occurred before Hq,

it is not a SingleBackwardAbsorb move. As no token moved off w before Hi, the only

In the remaining case when Hq is a NonEmptyFlip with f ′ which picks up a backward token, then we can

again pretend that some other backward token picked up in the NonEmptyFlip will henceforth play the role

of b (see Case 10 of Lemma 3.12)

141

possibility is that b reached w with a SingleBackwardAlone. As this move occurred after

Ht , it follows that w ∈ Q. 2

Now we continue with the proof of Lemma 3.12. The following detailed list shows

we modify the moves after Ht .

1. Hi = SingleBackwardAlone(b,y,z): Then z ∈ Q. Set H ′i = /0; this decreases cost

by 1.

2. Hi = SingleBackwardAbsorb(b,y,z,b′): This means that i = q. At this point, the

token b would have eaten up the token b′. Set H ′i = /0, and for every q < i ≤ `,

replace b with b′. That is, instead of b eating b′, we pretend that b′ survives and

takes on the role of b.

3. Hi = SingleBackwardAbsorb(b′,z,y,b): This means that i = q. At this point the

token b′ would have eaten up the token b. Let H ′i = SingleBackwardAlone (b′,z,y).

T his increases cost by 1, but note that Claim 3.1 implies that y ∈ Q.

4. Hi = SingleBackwardMeet(b,y,z, f): Set H ′i = /0; this modification does not changes

the cost.

5. Hi = SingleForwardMeet(f ,z,y,b): This implies that there is no forward token at

y when Hi occurs, otherwise a SingleForwardAlone move would have taken place.

Set H ′i = SingleForwardAlone (f ,z,y). This modification increases cost by 1, but

note that Claim 3.1 implies that y ∈ Q.

6. Hi = SingleBackwardAbsorbAndMeet(b,y,z,b′, f): This means that i = q. At

this point, the token b would have eaten up the token b′. Set H ′i = /0, and for every

142

q < i ≤ `, replace b with b′. That is, instead of b eating b′, we pretend that b′

survives and takes on the role of b.

7. Hi = SingleBackwardAbsorbAndMeet(b′,z,y,b, f): This means that i = q. At

this point the token b′ would have eaten up the token b. Let H ′i = SingleBackward-

Meet(b′,z,y, f); this does not change the cost.

8. Hi = EmptyFlip(f ,b,z,y): Replace this move by a sequence H ′i of ForwardSin-

gleAlone moves, which takes f from z to y. Note that these set of moves have a

combined cost of 1 more than the cost of Hi, as they also pay for the vertex y unlike

Hi. However, note that Claim 3.1 implies that y ∈ Q.

9. Hi = NonEmptyFlip(f ,b,z,y,g1,g2, . . . ,gr,u1,u2, . . . ,ur) picking up no backward

token: Denote z by u0 for sake of notation. We replace Hi with the following

sequence H ′i of moves. For 1 ≤ i ≤ r, add the collection of moves resulting in

ForwardAbsorb(f ,ui−1,ui,gi). Finally, add the collection of moves resulting in

ForwardAlone(f ,gr,y). It is easy to see that the cost of H ′i is 1 more than the cost

of Hi, since it paid for the vertex y and Hi did not. However, note that by Claim 3.1,

we have y ∈ Q.

10. Hi = NonEmptyFlip(f ,b,z,y,g1,g2, . . . ,gr,u1,u2, . . . ,ur) picking up at least one

backward token: Then i = q. We replace Hi with the following sequence H ′i

of moves. Let 1 ≤ j ≤ r be the largest index such that gi is a backward token

(such an index exists, otherwise we are in the previous case). The sequence H ′i

starts with the move NonEmptyFlip(f ,g j,z,u j,g1,g2, . . . ,g j−1,u1,u2, . . . ,u j−1) if

143

j > 1 and with the move EmptyFlip(f ,g1,z,u1) if j = 1. Then for j < i ≤ `, ev-

ery gi is a forward token and we add to H ′i the collection of moves resulting in

ForwardAbsorb(f ,ui−1,ui,gi). Finally, we add the collection of moves which re-

sult in ForwardAlone(f ,g`,y). Note that Hi moves token f to y, token b to z, and

destroys the tokens {g1, . . . ,gr}; whereas H ′i moves token f to y, backward token

g j to z, and destroys the tokens {b,g1, . . . ,g j−1,g j+1, . . . ,gr}. Thus by renaming b

to g j in the moves Hq+1, . . . , H`, we get a consistent sequence of moves. It is easy

to see that cost of H ′i is 1 more than the cost of Hi, since it paid for the vertex y and

Hi did not. However, by Claim 3.1, we have y ∈ Q.

It can be seen that the modified sequence satisfies Property (*): for every step of the

modified sequence where a vertex becomes dead, there is a corresponding move in the

original sequence where the same vertex becomes dead. Furthermore, we can see that the

cost increases only when a token moves to a vertex in Q containing only b. Note that such

a cost increase cannot happen two times for the same vertex w: the first such token arriving

to w has to leave before the second such token can enter, but then vertex w is already

dead when the second token arrives, contradicting that the modified sequence satisfies

Property (*). Therefore, the total increase of the cost is at most |Q|, while removing the

SingleBackwardAlone moves of b decreases the cost by exactly |Q|. 2

144

3.1.2.5.2 Bounding the number of “bad” EmptyFlips in H∗

We now show that the number of MultipleFlip moves in P(H∗) is O(k). First, we

define the following special type of EmptyFlip move:

Definition 3.6. A EmptyFlip(f ,b,u,v) in H∗ is said to be good if the next move (if it

exists) in the Feldman-Ruhl game, which is not an SingleAlone move involving either f

or b, is one of the following:

• EmptyFlip involving f and b, or

• SingleForwardMeet or SingleBackwardMeet involving both f and b.

Otherwise, we call the EmptyFlip move as bad.

We would now like to give an upper bound on the number of bad EmptyFlip moves

in H∗. Let the moves in H∗ be H1,H2, . . . ,H`

Theorem 3.5. The total number of bad EmptyFlip moves in H∗ is O(k).

Proof. We consider the Feldman-Ruhl game as it progresses and assign time to the se-

quence of moves as they occur. Let Hi = EmptyFlip(f ,b,v1,v2) be the first EmptyFlip

involving either of these tokens

If there is no other EmptyFlip involving either f or b after Hi, then in the worst case

this EmptyFlip is a bad one. We charge this (possibly) bad move to the tokens f and b.

Otherwise, w.l.o.g let the first EmptyFlip after Hi involving either f or b be H j =

EmptyFlip (f ,b′,w1,w2).

145

Let Hr be the first move after Hi that is not a SingleAlone move, and involves at

least one of f and b. Hence i < r ≤ j. We have the following cases for Hr:

1. Hr is a SingleAbsorb or SingleAbsorbAndMeet move: This means that Hi is a

bad EmptyFlip; but we can charge it to this SingleAbsorb or SingleAbsorbAndMeet

move Hr.

2. Hr is a NonEmptyFlip: This means that Hi is a bad EmptyFlip; but we can charge

it to this NonEmptyFlip move Hr.

3. Hr = EmptyFlip(f ,b′,x1,x2): If b′ = b, then Hi is a good EmptyFlip. Otherwise,

if b′ 6= b, then we arrive at a contradiction to Property (**) in Section 3.1.2.5.

4. Hr = SingleForwardMeet(f ,b′,x1,x2): If b′ = b, then Hi is a good EmptyFlip.

Otherwise, if b′ 6= b, then we arrive at a contradiction to Property (**) in Sec-

tion 3.1.2.5.

5. Hr = SingleBackwardMeet(b′, f ,x2,x1): If b′ = b, then Hi is a good EmptyFlip.

Otherwise, if b′ 6= b, then we arrive at a contradiction to Property (**) in Sec-

tion 3.1.2.5.

To summarize, if Hi is the last EmptyFlip involving either f or b, then we can

charge this (possibly) bad EmptyFlip to the tokens f or b. In Case 1, we charge the bad

EmptyFlip Hi to a SingleAbsorb or SingleAbsorbAndMeet move Hr that is the next move

in H∗ involving either f or b. Observe that we can charge at most two bad EmptyFlip

moves to one SingleAbsorb move, and at most three bad EmptyFlips to one SingleAb-

sorbAndMeet move: two EmptyFlips charged to a SingleAbsorb or SingleAbsorbAnd-

146

Meet move cannot share a token (otherwise it would not be true that the SingleAbsorb or

SingleAbsorbAndMeet is the next move involving these tokens), and the SingleAbsorb

move involves 2 tokens while the SingleAbsorbAndMeet move involves 3 tokens. Now

Lemma 3.8 implies that only O(k) bad EmptyFlip moves can be charged to SingleAbsorb

or SingleAbsorbAndMeet moves.

In Case 2, we charge the bad EmptyFlip Hi to the NonemptyFlip Hr that is the next

move in H∗ involving either f or b. Again, if two bad EmptyFlip moves are charged to the

same NonemptyFlip Hi, then the EmptyFlip moves cannot share any tokens. Therefore,

the number of bad EmptyFlips that can be charged to Hr is at most |involved(Hr)|. The

sum of involved vertices in all NonemptyFlip moves can be upper bounded by 3 ·2k: the

factor 3 comes from the fact that a NonEmptyFlip involving 3 tokens picks up only a sin-

gle token. Therefore, only O(k) bad EmptyFlip moves can be charged to NonemptyFlip

moves.

In Lemma 3.13, Lemma 3.14 and Lemma 3.15 we show that Case 3, Case 4 and

Case 5 respectively cannot occur by arriving at a contradiction. Therefore, the number of

bad EmptyFlip moves is O(k). 2

Lemma 3.13. Case 3 from Theorem 3.5 leads to a contradiction.

Proof. Suppose that Hr = EmptyFlip(f ,b′,x1,x2). Then j = r and w1 = x1 and w2 = x2.

If b′ = b, then Hi is a good EmptyFlip. Hence suppose b′ 6= b. By the definition of Hr, the

only possible moves involving f or b between Hi and Hr. Hence after move Hr, the token

b must still be present in the game: let it be located at say vertex v3.

147

We know that f travels from v2 to x1 between time T0 and T . So currently the moves

in H∗ are as follows:

1. The move Hi = EmptyFlip(f ,b,v1,v2) takes place.

2. Between the moves Hi and Hr, the tokens f and b complete a series of SingleAlone

moves to travel v2→ x1 and v1← v3, respectively.

3. Then the move Hr = EmptyFlip(f ,b′,x1,x2) takes place.

Therefore, after move Hr, the tokens b, b′ and f are at the vertices v3, x1, and x2, respec-

tively. By Lemma 3.12, the token b′ is removable after move Hr, since its last move was

a flip. LetM′ be the sequence of moves given by Definition 3.5 that can be used after Hr

if we can make b′ “disappear.”

We now construct another solution H∗∗ for the game, which violates Property (**),

as follows:

1. Until the move Hi, the solution H∗∗ has the same moves as H∗.

2. Delete the move Hi

3. Between the moves Hi to Hr, any move in H∗ that does not involve f or b is included

in H∗∗.

4. Replace Hr by the move NonEmptyFlip(f ,b′,v1,x2,b,v2) followed by the Single-

BackwardAlone moves that take b′ from v1← v3 (the same ones that b used in H∗

to go from v1← v3). Rename b′ as b, i.e., henceforth b′ plays the role of b.

5. Observe now that the tokens b and f are at vertices v3 and x2, respectively, which

148

is exactly the same situation as in H∗. The token b′ no longer appears. Therefore,

we can finish the solution H∗∗ with the sequenceM′ guaranteed by Definition 3.5.

Observe that the cost of the solution did not increase with these modifications and

it still satisfies property (*). In H∗, the tokens b,b′ and f were all present after move Hr.

In H∗∗, let NonEmptyFlip(f ,b′,v1,x2,b,v2) be the z-th move. Then it is easy to see that

z < r, since we replaced the two EmptyFlips Hi and Hr by a single NonEmptyFlip in H∗∗

(also the bunch of SingleBackwardAlone moves of b occur before Hr in H∗, and after

the NonEmptyFlip in H∗∗). Hence it is easy to see that H∗∗ ≺FR H∗, a contradiction to

Property (**). 2

Lemma 3.14. Case 4 from Theorem 3.5 leads to a contradiction.

Proof. Suppose Hr = SingleForwardMeet(f ,b′,x1,x2). If b′ = b, then Hi is a good Emp-

tyFlip. Hence suppose b′ 6= b. By definition of Hr the only possible moves involving f or

b between Hi to Hr are SingleAlone moves. Hence after move Hr in H∗, the token b must

still be present in the game: let it be located at say vertex v3.

Also between the moves Hi and Hr, the token f makes a bunch of SingleAlone

moves and travels from v2 to x1. So currently the moves in H∗ are as follows:

1. The move Hi = EmptyFlip(f ,b,v1,v2) takes place.

2. Between the moves Hi and Hr, the tokens f ,b complete a bunch of SingleAlone

moves to travel from v2→ x1 and v1← v3 respectively.

3. After move Hr−1, the move Hr = SingleForwardMeet(f ,b′,x1,x2) takes place. Both

149

the tokens f ,b′ are located at x2, and then an EmptyFlip of length 0 takes place at

x2.

Therefore, after move Hr, the tokens b, b′ and f are at the vertices v3, x2, and x2,

respectively. By Lemma 3.12, the token b′ is removable after move Hr, since its last move

was a flip (in fact an EmptyFlip on length 0). LetM′ be the sequence of moves given by

Definition 3.5 that can be used after Hr if we can make b′ “disappear.” We now construct

another solution H∗∗ for the game, which violates Property (**), as follows:

1. Until the move Hi, the solution H∗∗ has the same moves as H∗.

2. Delete the move Hi

3. Between the moves Hi to Hr, any move in H∗ that does not involve f or b is included

in H∗∗.

4. Replace Hr by the move NonEmptyFlip(f ,b′,v1,x2,b,v2) followed by the Single-

BackwardAlone moves that take b′ from v1← v3 (the same ones that b used in H∗

to go from v1← v3). Rename b′ as b, i.e., henceforth b′ plays the role of b.

5. Observe now that the tokens b and f are at vertices v3 and x2, respectively, which

is exactly the same situation as in H∗. The token b′ no longer appears. Therefore,

we can finish the solution H∗∗ with the sequenceM′ guaranteed by Definition 3.5.

Observe that the cost of the solution did not increase with these modifications and it still

satisfies property (*). In H∗, the tokens b,b′ and f were all present after move Hr. In

H∗∗, let NonEmptyFlip(f ,b′,v1,x2,b,v2) be the z-th move. Then it is easy to see that

150

z < r, since we replaced the two moves Hi and Hr by a single NonEmptyFlip in H∗∗

(also the bunch of SingleBackwardAlone moves of b occur before Hr in H∗, and after

the NonEmptyFlip in H∗∗). Hence it is easy to see that H∗∗ ≺FR H∗, a contradiction to

Property (**). 2

Lemma 3.15. Case 5 from Theorem 3.5 leads to a contradiction.

Proof. Suppose Hr = SingleBackwardMeet(b′, f ,x2,x1). If b′ = b, then Hi is a good

EmptyFlip. Hence suppose b′ 6= b. By definition of Hr the only possible moves involving

f or b between the moves Hi and Hr are SingleAlone moves. Hence after move Hr in H∗,

the token b must still be present in the game: let it be located at say vertex v3.

Also between Hi and Hr, the token f makes a bunch of SingleAlone moves and

travels from v2 to x1. So currently the moves in H∗ are as follows:

1. The move Hi = EmptyFlip(f ,b,v1,v2) takes place.

2. Between the moves Hi and Hr, the tokens f ,b complete a bunch of SingleAlone

moves to travel from v2→ x1 and v1← v3 respectively.

3. After move Hr−1, the move Hr = SingleBackwardMeet(b′, f ,x2,x1) takes place.

Both the tokens f ,b′ are located at x1, and then an EmptyFlip of length 0 takes

place at x1.

Therefore, after move Hr, the tokens b, b′ and f are at the vertices v3, x1, and x1,

respectively. By Lemma 3.12, the token b′ is removable after move Hr, since its last move

was a flip (in fact an EmptyFlip on length 0). LetM′ be the sequence of moves given by

151

Definition 3.5 that can be used after Hr if we can make b′ “disappear.” We now construct

another solution H∗∗ for the game, which violates Property (**), as follows:

1. Until the move Hi, the solution H∗∗ has the same moves as H∗.

2. Delete the move Hi

3. Between the moves Hi to Hr, any move in H∗ that does not involve f or b is included

in H∗∗.

4. Replace Hr by the move SingleBackwardAlone(b′,x2,x1) followed by the move

NonEmptyFlip(f ,b′,v1,x1,b,v2) and then the bunch of SingleBackwardAlone moves

that take b′ from v1 ← v3 (the same ones that b used in H∗ to go from v1 ← v3).

Rename b′ as b, i.e., henceforth b′ plays the role of b.

5. Observe now that the tokens b and f are at vertices v3 and x1, respectively, which

is exactly the same situation as in H∗. The token b′ no longer appears. Therefore,

we can finish the solution H∗∗ with the sequenceM′ guaranteed by Definition 3.5.

Observe that the cost of the solution did not increase with these modifications and

it still satisfies property (*). In H∗, the tokens b,b′ and f were all present after move Hr.

In H∗∗, let NonEmptyFlip(f ,b′,v1,x2,b,v2) be the z-th move. Then it is easy to see that

z≤ r, since we replaced the two moves Hi and Hr by a SingleBackwardAlone move and a

NonEmptyFlip in H∗∗ (also the bunch of SingleBackwardAlone moves of b occur before

Hr in H∗, and after the NonEmptyFlip in H∗∗). Hence it is easy to see that H∗∗ ≺FR H∗,

a contradiction to Property (**).

2

152

3.1.2.5.3 Bounding the number of MultipleFlips in P(H∗)

Theorem 3.6. If M is a MultipleFlip in P(H∗) involving f and b such that no EmptyFlip

component of M is bad, then there is no further MultipleFlip in P(H∗) involving either f

or b. As a corollary, we obtain that the total number of MultipleFlips in P(H∗) is O(k).

Proof. Let M = MultipleFlip(f ,b,v1,v2,w1,w2) and its components be Hi,Hi+1, . . . ,H j.

We are given that all EmptyFlips of M are good. Let H` be the last EmptyFlip component

of M. Hence i≤ `≤ j. If there is no further MultipleFlip in P(H∗) involving either f or

b, then we have nothing to prove. Hence, suppose there is such a MultipleFlip and w.l.o.g

let M′ = MultipleFlip(f ,b′,x1,x2,y1,y2) be the next MultipleFlip in P(H∗) involving f

or b. The next claim shows that in fact M′ is the next supermove in P(H∗) which involves

f or b.

Claim 3.2. M′ is the next supermove involving f or b after M in P(H∗).

Proof. Suppose to the contrary that there is another supermove (involving f or b) after M

and before M′ in P(H∗): let M′′ 6= M′ be the first such supermove after M in P(H∗). We

consider the following choices for M′′.

• M′′ is an Absorb, NonEmptyFlip or AbsorbAndMeet supermove: In this case, Def-

inition 3.6 implies that the move H` is a bad EmptyFlip, which is a contradiction

since no EmptyFlip of M is bad.

• M′′ is an Alone supermove: W.l.o.g let the Alone supermove be F = ForwardAlone(f ,v2,v3).

Note that M′′ is the next supermove (involving f or b) after M in P(H∗). Also,

153

M′′ pays for each vertex from the set internal(F)∪{v3}. If there is any super-

move M′′′ in between M and M′′ such that
(
internal(M′′′)∪corners(M′′′)

)
∩(

internal(F)∪{v3}
)
6= /0, then both M′′′ and M′′ would pay for any vertex in

the intersection , which is a contradiction. Hence we can reorder the partition P(H∗)

so that the next supermove (not necessarily involving f or b) after M in P(H∗) is

M′′. But then we can merge the two supermoves M and F into a single Multiple-

Flip, which reduces the number of supermoves in P(H∗) and contradicts Property

(**).

• M′′ is a Meet supermove: By Lemma 3.11, there are no Meet supermoves in P(H∗)

and hence this case does not need to be considered.

• M′′ is a MultipleFlip: This implies that M′′ = M′, a contradiction.

In each of the cases, we were able to derive a contradiction. Hence M′ is indeed the next

supermove involving f or b after M in P(H∗). 2

We now continue with the proof of Theorem 3.6. There are now two cases depend-

ing on whether b′ = b, or not:

• b′ = b: Note that M′ is the next supermove (involving f or b) after M in P(H∗).

Also, M′ pays for each vertex from the set internal(F)∪{v2,w2}\{v1,w1}. If

there is any supermove M∗ in between M and M′ such that
(
internal(M∗)∪

corners(M∗)
)
∩
(
internal(F)∪{v2,w2}\{v1,w1}

)
6= /0, then both M∗ and

M′ would pay for all the vertices in the intersection, which is a contradiction. Hence

we can reorder the partition P(H∗) so that the next supermove (not necessarily in-

154

volving f or b) after M in P(H∗) is M′. But then we can merge the two supermoves

M and M′ into a single MultipleFlip, which reduces the number of supermoves in

P(H∗) and contradicts Property (**).

• b′ 6= b: In this case, the first component of M′ which involves f and is not a Sin-

gleAlone move4, leads to H` being a bad EmptyFlip, which is a contradiction since

no EmptyFlip of M is bad.

We now show that the total number of MultipleFlips in P(H∗) is O(k) by a charging

argument: we charge each MultipleFlip in P(H∗) to either a bad EmptyFlip, or to both

the tokens involved in the MultipleFlip. Note that the number of tokens is 2k, and Theo-

rem 3.5 bounds the number of bad EmptyFlips in H∗ by O(k). Hence the claim follows.

2

Theorem 3.7. The total number of supermoves in P(H∗) is O(k).

Proof. Follows from Lemma 3.8, Lemma 3.9, Lemma 3.10, Lemma 3.11 and Theo-

rem 3.6. 2

3.1.2.5.4 Clean MultipleFlips

We have seen in the previous section that the partition P(H∗) has O(k) supermoves.

Now we define a special property of MultipleFlip supermoves, which will be useful for

us later.
4We are guaranteed that such a move exists since one of the components of M′ is the EmptyFlip move

involving f and b′.

155

Now we state a lemma which shows how to decompose a MultipleFlip into other

types of supermoves.

Lemma 3.16. Let M be a MultipleFlip involving f and b that contains EmptyFlips

E1,E2, . . . ,Er. Then we can subpartition M into O(r) supermoves such that each su-

permove belongs to the set {Alone, MultipleFlip, Meet}, and each of the newly created

MultipleFlips is clean (in fact is an EmptyFlip).

Proof. Since M is a MultipleFlip, we know that r ≥ 1. Also M contains at most r + 1

SingleMeet moves involving f and b, since each such move is followed by an Emp-

tyFlip between f and b of length 0 (it may happen that the last EmptyFlip of length 0

might not be included in M, but all the previous ones must be included). We consider

each of these SingleMeet moves as a Meet supermove. Finally, note that we can merge

all the SingleAlone moves of both f and b, which lie in between any two moves from

the set {EmptyFlip(f ,b),Meet(f ,b)}, into Alone moves of the respective tokens. Hence

the total number of SingleAlone moves is 2(r + (r + 1) + 1) = 4r + 4: there are a to-

tal of r +(r + 1)+ 1 gaps formed in between, before and after the moves from the set

{EmptyFlip(f ,b),Meet(f ,b)}. Therefore, by considering each EmptyFlip as a (clean)

MultipleFlip, we can subpartition M into r+(r+ 1)+ (4r+ 4) = 6r+ 5 = O(r) super-

moves such that each supermove belongs to the set {Alone, MultipleFlip, Meet} and each

newly created MultipleFlip is clean. 2

We now show the following lemma which says that no vertex can be involved in

more than two flips.

156

Lemma 3.17. No vertex v can be the corner5 of more than two flips

Proof. We show the following equivalent statement: if a vertex v is a corner in at least

two flips, then it becomes dead after the second flip (which implies that v cannot be a

corner of any other flip henceforth). If v is a corner of at most flip, then we are fine. So

suppose that v is a corner of at least two flips: let the first two of these flips be F1 and

F2. If F1 is a flip (Empty or NonEmpty) of non-zero length, then the vertex v becomes

dead after F1 occurs (refer to end of Section 3.1.1.2). Therefore, we can assume that F1 is

an EmptyFlip of length 0. Now if F2 is a flip (Empty or NonEmpty) of non-zero length,

then the vertex v becomes dead after F2 occurs.

So, the only case to be considered is when both F1 and F2 are EmptyFlips of length

0. Let H1,H2 be the Meet moves which precede the EmptyFlips F1,F2 respectively. Let

the two tokens involved in H1 be f and b. So after F1 occurs the two tokens f and b

will be located at the vertex v. If either of this tokens leaves v before H2 occurs, then v

becomes dead and then F2 cannot occur. Hence both the tokens f and b remain at v when

H2 occurs. But this implies that H2 must be a AbsorbAndMeet move instead of a Meet

move, since v has both a forward and a backward token. This leads to a contradiction. 2

From Theorem 3.7, we know that there is a partition P(H∗) of H∗ into O(k) su-

permoves. We want to prove that the MultipleFlip supermoves can be assumed to be

clean:

Theorem 3.8. There is a partition P′(H∗) of H∗ into O(k) supermoves, such that each

5Recall the definition of corners of EmptyFlip and NonEmptyFlips from Section 3.1.2.2.1

157

MultipleFlip in P′(H∗) is clean.

We now consider various cases that can occur in a MultipleFlip entry in a descrip-

tion of the game. Let the MultipleFlip entry be M = MultipleFlip(f ,b,v1,v2,w1,w2).

We have three cases depending on the number of different elements in the multiset L =

{v1,v2,w1,w2} = corners(M). Recall that the MultipleFlip move takes the token f

from v1 to v2 and the token b from w1 to w2.

First we define a special type of EmptyFlip that we will use in our proofs:

Definition 3.7. Let M = MultipleFlip(f ,b,v1,v2,w1,w2). Then we say that an EmptyFlip

E is independent if corners(E)∩corners(M) = /0.

We now consider two possibilities for the number of distinct elements in L.

L has 3 distinct elements

By symmetry we only need to consider the following three cases:

Case 1: Only v1 = v2 and w1,w2 are distinct

The initial and final location of f is the same implies that there is always a token at vertex

v1: otherwise we would violate Property (*). Hence v1 is an endpoint of every EmptyFlip

that is contained in the Multiple M. By Lemma 3.17, M has at most two EmptyFlips.

By Lemma 3.16, we can subpartition M into O(1) supermoves such that each super-

move is from the set {Alone, MultipleFlip, Meet} and each newly created MultipleFlip is

clean.

158

Case 2: Only v1 = w2 and v2,w1 are distinct

Since the final location of b is w2 = v1, which is the initial location of f , we know that

there is always a token at v1 = w2 throughout the MultipleFlip, i.e., every EmptyFlip in M

has v1 as one endpoint. By Lemma 3.17, M has at most two EmptyFlips. By Lemma 3.16,

we can subpartition M into O(1) supermoves such that each supermove is from the set

{Alone, MultipleFlip, Meet} and each newly created MultipleFlip is clean.

Case 3: Only v1 = w1 and v2,w2 are distinct

If M does not have an independent EmptyFlip, then by Lemma 3.17 the number of Emp-

tyFlips is M is upper bounded by 6. By Lemma 3.16, we can subpartition M into O(1)

supermoves such that each supermove is from the set {Alone, MultipleFlip, Meet} and

each newly created MultipleFlip is clean.

Hence suppose that M contains an independent EmptyFlip say E, and let corners(E)=

{v3,w3}. Let G∗M be the underlying undirected graph of the induced graph G[corners(M)∪

internal(M)] By the definition of a MultipleFlip, every vertex of G∗M lies on a v1− v3

path or a v3− v2 path or a w3−w1 path. Also there is a v3−w3 path in G∗M. Hence the

induced graph G∗M[internal(M)] is connected: each vertex can reach either v3 or w3,

which are themselves connected via a path. It is clear that v1 = 21 has a path to both v3

and w3 that does not go through any other vertex of corners(M). Let the (undirected)

v3− v2,w3−w2 paths be P1,P2 respectively. We have the following four possibilities:

• If neither P1 passes through w2 or P2 passes through v2, then internal(M) is

159

adjacent to each vertex of L, and hence M is clean.

• P1 passes through w2 and P2 passes through v2: In this case, the last component

of M is an EmptyFlip. Consider this EmptyFlip separately as a (clean) Multiple-

Flip say M′′. Since M contains an independent EmptyFlip, the remaining compo-

nents of M form a MultipleFlip, say M′ = MultipleFlip (f ,b,v1,w2,v1,v2). Note

that internal(M′) ⊆ internal(M) and corners(M) = corners(M’).

Observe now that the set internal(M′) is adjacent in G∗M′ to each vertex of

corners(M′). Also G∗M[internal(M’)] remains connected since we know

that G∗M[internal(M)] is connected and there is a v2−w2 path in G∗M′
6. Since

the conditions of Definition 3.2 are satisfied, we get that M′ is clean.

• P1 passes through w2 but P2 does not pass through v2: In this case, the last com-

ponent say C of M is an SingleForwardAlone(f ,w2,v2) move.7 By considering

C separately as an Alone supermove say M′′, the rest of M is reduced to M′ =

MultipleFlip(f ,b,v1,w2,v1,w2). Since |corners(M′)| = 2, by Definition 3.2 we

get that M′ is clean.

• P1 does not pass through w2 but P2 passes through v2: In this case, the last com-

ponent say C of M is an SingleBackwardAlone(b,v2,w2) move.8 By considering

6This path is a concatenation of v2−w3 subpath of P2 followed by w3−v3 path given by the EmptyFlip

followed by the v3−w2 subpath of P1
7The last move cannot be a EmptyFlip (since otherwise P2 would also pass through v2), a SingleMeet

move (since v2 6= w2) or a SingleBackward move (since then P2 would pass through v2).
8The last move cannot be a EmptyFlip (since otherwise P1 would also pass through w2), a SingleMeet

move (since v2 6= w2) or a SingleBackward move (since then P1 would pass through w2).

160

C separately as an Alone supermove say M′′, the rest of M is reduced to M′ =

MultipleFlip(f ,b,v1,v2,v1,v2). Since |corners(M′)| = 2, by Definition 3.2 we

get that M′ is clean.

To summarize, if either P1 passes through w2 or P2 passes through v2, then we can

either split M into two clean MultipleFlips, or into one Alone supermove and one clean

MultipleFlip.

L has 4 distinct elements

Case 4: There is an independent EmptyFlip E in the MultipleFlip M

Let {v3,w3}= corners(E). Let G∗M be the underlying undirected graph of the induced

graph G[corners(M)∪internal(M)] By the definition of a MultipleFlip, every ver-

tex of G∗M lies on a v1− v3 path or a v3− v2 path or a w1−w3 path or a w3−w1 path9.

Also there is a v3−w3 path in G∗M. Hence the induced graph G∗M[internal(M)] is

connected: each vertex can reach either v3 or w3, which are themselves connected via

a path. Let the v1− v3,w1−w3 paths in G∗M be P1,P2 respectively. Similarly, let the

v3− v2,w3−w2 paths in G∗M be P3,P4 respectively. We now set the following notation:

9Observe that the v1− v3 path may go through w1, but cannot go through v2 or w2 since these vertices

are only discovered after the EmptyFlip between v3 and w3 occurs. That is, the set vertices discovered until

the EmptyFlip between v3 and w3 occurs is disjoint from the set of vertices discovered after the EmptyFlip

between v3 and w3

161

let x1 = w1,x2 = v1,x3 = w2,x4 = v2. Now a four tuples from the set {0,1}4 has its i-th

co-ordinate as 0 if Pi does not pass through xi, and 1 otherwise.

We consider the following possibilities corresponding the 16 tuples:

• (0,0,0,0): In this case, internal(M) is adjacent in G∗M to each vertex of the set

corners(M), and hence M is clean.

• (0,0,1,1): In this case, the last component of M is an EmptyFlip, and internal(M)

is adjacent in G∗M to both v1 and w1. Consider this EmptyFlip separately as a (clean)

Multiple say M′′. Since M has an independent flip, the remaining components

of M form a MultipleFlip given by M′ = MultipleFlip(f ,b,v1,w2,w1,v2). Note

that internal(M′) ⊆ internal(M) and corners(M) = corners(M’).

Observe now that the set internal(M′) is adjacent in G∗M′ to each vertex of

corners(M). Also G∗M′ [internal(M’)] remains connected since we know

that G∗M[internal(M)] is connected and there is a v2−w2 path in G∗M′
10. Since

the conditions of Definition 3.2 are satisfied, we get that M′ is clean. Hence we can

subpartition M into two clean MultipleFlips M′ and M′′

• (1,1,0,0): In this case, the first component of M is an EmptyFlip, and internal(M)

is adjacent in G∗M to both v2 and w1. Similar to the above case, we can subpartition

M into two clean MultipleFlips M′ and M′′.

• (1,1,1,1): In this case, the first component say M′′ and last component say M′′′ of

10This path is a concatenation of v2−w3 subpath of P2 followed by w3−v3 path given by the EmptyFlip

followed by the v3−w2 subpath of P1

162

M are EmptyFlips. Consider M′′ and M′′′ as (clean) MultipleFlips. Since M has

an independent flip, the remaining components of M form a MultipleFlip given by

M′= MultipleFlip(f ,b,w1,w2,v1,v2). Note that internal(M′)⊆internal(M)

and corners(M) = corners(M’). Observe now that the set internal(M′)

is adjacent in G∗M′ to each vertex of corners(M). Also G∗M′[internal(M’)]

remains connected since G∗M[internal(M)] is connected and there is a v2−w2

path and a v1−w1 path in G∗M′ (by arguments similar to those in above cases). Since

the conditions of Definition 3.2 are satisfied, we get that M′ is clean. Hence, we can

subpartition M into three clean MultipleFlips M′,M′′ and M′′′

• For all the other 12 tuples either the first two co-ordinates or the last two coor-

dinates form (0,1) or (1,0). Without loss of generality, let us consider the case

when the tuple has first two co-ordinates as (1,0). In this case, the first com-

ponent say C of M is an SingleForwardAlone(f ,v1,w1) move.11 By considering

C separately as an Alone supermove say M′′, the rest of M is reduced to M′ =

MultipleFlip(f ,b,w1,v2,w1,w2). Since |corners(M′)| = 3, we get reduced to

Cases 1–3.

Case 5: There is no independent EmptyFlip in the MultipleFlip

11The last move cannot be a EmptyFlip (since otherwise P2 would also pass through v1), a SingleMeet

move (since v1 6= w1) or a SingleBackward move (since then P2 would pass through v1).

163

This means that at least one endpoint of each EmptyFlip belongs to the set {v1,v2,w1,w2}.

By Lemma 3.17, M has at most 8 EmptyFlips. By Lemma 3.16, we can subpartition M

into O(1) supermoves such that each supermove belongs to the set {Alone, MultipleFlip,

Meet} and each newly created MultipleFlip is clean.

Finally we are now ready to prove Theorem 3.8, which is restated below:

Theorem 3.8 . There is a partition P′(H∗) of H∗ into O(k) supermoves, such that each

MultipleFlip in P′(H∗) is clean.

Proof. We analyze what happens in each of the 5 cases considered previously. Recall that

every EmptyFlip is a clean Multiple Flip.

• In Cases 1–2, it was shown that the MultipleFlip can be subpartitioned into O(1) su-

permoves such that each supermove belongs to the set {Alone, MultipleFlip, Meet}

and each of the newly created MultipleFlips is clean.

• In Case 3, if the MultipleFlip does not contain a independent EmptyFlip then it was

shown that the MultipleFlip can be subpartitioned into O(1) supermoves such that

each supermove belongs to the set {Alone, MultipleFlip, Meet} and each of the

newly created MultipleFlips is clean. In the case when the MultipleFlip contains an

independent EmtpyFlip, then it was shown that one of the following must occur:

– M is itself clean

– M can be subpartitioned into two clean MultipleFlips M′ and M′′

164

– M can be subpartitioned into a clean MultipleFlip M′ and an Alone supermove

M′′

• In Case 4, it was shown that one of the following must occur:

– M is itself clean

– M can be subpartitioned into two clean MultipleFlips M′ and M′′

– M can be subpartitioned into three clean MultipleFlips M′,M′′ and M′′′

– We can reduce to Cases 1–3.

• In Case 5, it was shown that the MultipleFlip can be decomposed into O(1) super-

moves such that each supermove belongs to the set {Alone, MultipleFlip, Meet}

and each of the newly created MultipleFlips is clean.

In each of the cases, at the expense of a O(1) blowup in the number of supermoves,

we can convert P(H∗) into a partition P′(H∗) such that each MultipleFlip is clean. Since

Theorem 3.7 gives a partition P(H∗) of H∗ into O(k) supermoves, we get that P′(H∗) also

has O(k) supermoves. 2

3.2 Lower Bounds

First we show that the unweighted vertex version of both SCSS and DSF problems

are harder than the edge versions with integer weights. In this thesis all our hardness

reductions are for edge weighted graphs with integer weights, and hence they also carry

over to the unweighted vertex versions.

165

3.2.1 Vertex Versions are harder than Integer Weighted Edge Ver-

sions

For both the SCSS and DSF problems we show that the edge version with integer

weights can be solved using the unweighted vertex version. Hence all our hardness results

of Theorem 3.17, Theorem 3.14 and Theorem 3.10 holds for unweighted vertex versions

as well.

We give a formal proof for the DSF problem; the proof for the SCSS problem

is similar. Consider an instance I1 = (G,T) of Edge DSF with integer weights where

T = {(si, ti) | i∈ [k]}. Replace each edge of weight ` by n` internal vertices where |G|= n.

Let the new graph be G′. Consider the instance I2 of unweighted Vertex DSF where the

set of terminals is the same as in I1.

Theorem 3.9. There is a solution I1 of weight at most C if and only if there is a solution

for Vertex DSF to I2 with weight at most Cn+n vertices.

Proof. Suppose there is a solution E1 for I1 of weight at most C. For each edge in E1

pick all its internal vertices and two endpoints in E2. Clearly E2 is a solution for I2. The

weight of E2 is Cn+ γ where γ is the number of vertices of G incident to the edges in E1.

Since γ ≤ n we are done.

Suppose there is a (minimal) solution E2 for I2 of weight at most Cn+ n. For any

edge e ∈G of weight c we need to pick all the cn internal vertices (plus the two endpoints

of e) in E2 if we actually want to use e in a solution for I1. So for every edge e ∈ E we

166

know that E2 contains either or none of the internal vertices obtained after splitting up e

according to its weight in G. Let the set of edges of G all of whose internal vertices are in

E2 be E1 = {e1,e2, . . . ,er} and theirs weights be c1,c2, . . . ,cr. Since E2 is a solution for

I2 we have E1 is a solution for I1. Let S be the union of set of endpoints of the edges in

E1. Therefore Cn+n≥ |S|+n(∑r
i=1 ci). Since |S| ≥ 0 we have C ≥ ∑

r
i=1 ci, i.e., |E1| has

weight at most C. 2

3.2.2 A Tight Lower Bound for SCSS Planar Graphs

After designing faster algorithm for SCSS planar graphs from Section 3.1.2, the

next natural question is whether we can obtain a better speedup than the improvement

from O(k) to O(
√

k) in the exponent of n? Our main hardness result matches our algo-

rithm: it shows that O(
√

k) is best possible.

Theorem 3.10. The STRONGLY CONNECTED STEINER SUBGRAPH problem restricted

to the case when the underlying undirected graph is planar is W[1]-hard parameterized

by the number of terminals, and cannot be solved in time f (k) ·no(
√

k) unless ETH12 fails,

where f is any computable function, k is the number of terminals, and n is the number of

vertices in the instance.

This also answers the question of Guo, Niedermeier and Suchy [GNS11], who

showed the W[1]-hardness of these problems on general graphs and left the fixed-parameter

12Recall that ETH can be stated as the assumption that n-variable 3SAT cannot be solved in time 2o(n)

[IP01, IPZ01].

167

tractability status on planar graphs as an open question. Note that there are relatively few

parameterized problems that are W[1]-hard on planar graphs [BLP09, CFJR07, EFG+09,

Mar12a]. The reason for the scarcity of such hardness results is mainly because for most

problems, the fixed-parameter tractability of finding a solution of size k in a planar graph

can be reduced to a bounded-treewidth problem by standard layering techniques. How-

ever, in our case the parameter k is the number of terminals, hence such a simple reduction

to the bounded-treewidth case does not seem to be possible. Our reduction is from the

GRID TILING problem formulated by Marx [Marc, Mar12a], which has turned out to be

a convenient starting point for parameterized reductions for planar problems.

GRID TILING
Input : Integers k,n, and k2 non-empty sets Si, j ⊆ [n]× [n] where 1≤ i, j ≤ k
Question: For each 1≤ i, j ≤ k does there exist a value γi, j ∈ Si, j such that

• If γi, j = (x,y) and γi, j+1 = (x′,y′) then x = x′.
• If γi, j = (x,y) and γi+1, j = (x′,y′) then y = y′.

Chen et al. [CHKX06] showed that under ETH the k-CLIQUE problem cannot be

solved in f (k) ·no(k) time for any computable function f . Marx [Marc] gave a reduction

from k-CLIQUE to k×k GRID TILING. Composing these two reductions together implies

that under ETH the problem of k× k GRID TILING cannot be solved in time f (k) ·no(k),

for any computable function f .

To prove Theorem 3.10, we give a reduction which transforms the problem of k×k

GRID TILING into an instance of SCSS with O(k2) terminals. We design two types

of gadgets: the connector gadget and the main gadget and arrange them in a grid-like

fashion (see Figure 3.2). Each cell of the grid with a copy of the main gadget, with a

168

connector gadget between main gadgets that are adjacent either horizontally or vertically.

The main technical part of the reduction is the structural results regarding the existence

and construction of particular types of connector gadgets and main gadgets (Lemma 3.18

and Lemma 3.19). Interestingly, the construction of the connector gadget poses a greater

challenge: here we exploit in a fairly delicate way the fact that the ti ; t j and the t j ; ti

paths appearing in the solution subgraph might need to share edges to reduce the weight.

The proof of Theorem 3.10 is divided into the following steps: In Sections 3.2.2.1

we introduce the connector gadget and main gadget. Lemma 3.18 proves the existence

of a particular type of connector gadget and Lemma 3.19 proves the existence of a par-

ticular type of main gadget. Using Lemmas 3.18 and 3.19 as a blackbox, we prove

Theorem 3.10 in Section 3.2.2.3. The proofs of Lemmas 3.18 and Lemma 3.19 are given

later in Sections 3.2.2.4 and 3.2.2.5 respectively.

3.2.2.1 Existence of Connector And Main Gadgets

Connector Gadgets: A connector gadget CGn is an embedded planar graph with O(n2)

vertices and weights on its edges. It has a total of 2n+ 2 distinguished vertices divided

into the following 3 types:

• The vertices p,q are called internal-distinguished vertices

• The vertices p1, p2, . . . , pn are called source-distinguished vertices

• The vertices q1,q2, . . . ,qn are called sink-distinguished vertices

169

Let P = {p1, p2, . . . , pn} and Q = {q1,q2, . . . ,qn}. The vertices P∪Q appear in the order

p1, . . . , pn, qn, . . . , q1 on the boundary of the gadget. In the connector gadget CGn, every

vertex in P is a source and has exactly one outgoing edge. Also every vertex in Q is a sink

and has exactly one incoming edge.

Definition 3.8. We say an edge set E ′ ⊆ E(CGn) satisfies the connectedness property if

each of the following four conditions hold for the graph CGn[E ′]:

1. p can be reached from some vertex in P

2. q can be reached from some vertex in P

3. p can reach some vertex in Q

4. q can reach some vertex in Q

Definition 3.9. We say an edge set E ′ satisfying the connectedness property represents

an integer i ∈ [n] if in E ′ the only outgoing edge from P is the one incident to pi and the

only incoming edge into Q is the one incident to qi.

The next lemma shows we can construct a particular type of connector gadgets:

Lemma 3.18. Given an integer n one can construct in polynomial time a connector gad-

get CGn and an integer C∗n such that the following two properties hold 13:

1. For every i∈ [n], there is an edge set Ei⊆E(CGn) of weight C∗n such that Ei satisfies

the connectedness property and represents i. Note that, in particular, Ei contains a

pi ; qi path (via p or q).
13We use the notation C∗n to emphasize that C∗ depends only on n

170

2. If there is an edge set E ′ ⊆ E(CGn) such that E ′ has weight at most C∗n and E ′

satisfies the connectedness property, then E ′ has weight exactly C∗n and it represents

some β ∈ [n].

Main Gadgets: A main gadget MG is an embedded planar graph with O(n3) vertices and

weights on its edges. It has 4n distinguished vertices given by the following four sets:

• The set L = {`1, `2, . . . , `n} of left-distinguished vertices.

• The set R = {r1,r2, . . . ,rn} of right-distinguished vertices.

• The set T = {t1, t2, . . . , tn} of top-distinguished vertices.

• The set B = {b1,b2, . . . ,bn} of bottom-distinguished vertices.

The distinguished vertices appear in the order t1, . . . , tn, r1, . . . , rn, bn, . . . , b1, `n,

. . . , `1 on the boundary of the gadget. In the main gadget MG, every vertex in L∪T is

a source and has exactly one outgoing edge. Also each vertex in R∪B is a sink and has

exactly one incoming edge.

Definition 3.10. We say an edge set E ′ ⊆ E(MG) satisfies the connectedness property if

each of the following four conditions hold for the graph MG[E ′]:

1. There is a directed path from some vertex in L to R∪B

2. There is a directed path from some vertex in T to R∪B

3. Some vertex in R can be reached from L∪T

4. Some vertex in B can be reached from L∪T

171

Definition 3.11. An edge set E ′ ⊆ E(MG) satisfying the connectedness property repre-

sents a pair (i, j) ∈ [n]× [n] if each of the following four conditions holds:

• The only edge of E ′ leaving L is the one incident to `i

• The only edge of E ′ entering R is the one incident to ri

• The only edge of E ′ leaving T is the one incident to t j

• The only edge of E ′ entering B is the one incident to b j

The next lemma shows we can construct a particular type of connector gadgets:

Lemma 3.19. Given a subset S ⊆ [n]× [n], one can construct in polynomial time a main

gadget MGS and an integer M∗n such that the following three properties hold 14:

1. For every (x,y) ∈ S there is an edge set Ex,y ⊆ E(MGS) of weight M∗n such that Ex,y

satisfies the connectedness property and represents (x,y). Moreover, Ex,y contains

a ty ; by path and a `x ; rx path.

2. If there is an edge set E ′ ⊆ E(MGS) such that E ′ has weight at most M∗n and sat-

isfies the connectedness connectivity property, then E ′ has weight exactly M∗n and

represents some (α,β) ∈ S.

3.2.2.2 Constructing the SCSS instance

In order to prove Theorem 3.10, we reduce from the GRID TILING problem. The

following assumption will be helpful in handling some of the border cases of the gadget
14We use the notation M∗n to emphasize that M∗ depends only on n, and not on the set S

172

construction. We may assume that 1< x,y< n holds for every (x,y)∈ Si, j: indeed, we can

increase n by two and replace every (x,y) by (x+1,y+1) without changing the problem.

Given an instance of GRID TILING, we construct an instance of SCSS the following

way (see Figure 3.2):

• We introduce a total of k2 main gadgets and 2k(k+1) connector gadgets.

• For every non-empty set Si, j in the GRID TILING instance, we construct a main

gadget MGi, j using Lemma 3.19 for the subset Si, j.

• Half of the connector gadgets have the same orientation as in Figure 3.3, and we call

them HCG to denote horizontal connector gadgets. The other half of the connector

gadgets are rotated anti-clockwise by 90 degrees with respect to the orientation

of Figure 3.3, and we call them VCG to denote vertical connector gadgets. The

internal-distinguished vertices of the connector gadgets are shown in Figure 3.2.

• For each 1 ≤ i, j ≤ k, the main gadget MGi, j is surrounded by the following four

connector gadgets:

1. The horizontal connector gadgets HCGi, j are on the top and HCGi+1, j are

on the bottom. Identify (or glue together) each sink-distinguished vertex of

HCGi, j with the top-distinguished vertex of MCGi, j of the same index. Simi-

larly identify each source-distinguished vertex of HCGi+1, j with the bottom-

distinguished vertex of MCGi, j of the same index.

2. The vertical connector gadgets VCGi, j are on the left and VCGi, j+1 are on

the right. Identify (or glue together) each sink-distinguished vertex of VCGi, j

173

with the left-distinguished vertex of MCGi, j of the same index. Similarly iden-

tify each source-distinguished vertex of VCGi, j+1 with the right-distinguished

vertex of MCGi, j of the same index.

• We introduce to special vertices x∗,y∗ and an edge (x∗,y∗) of weight 0.

• For each 1 ≤ i ≤ k, consider the horizontal connector gadget HCG1,i and collapse

all its source-distinguished vertices into y∗.

• For each 1≤ j ≤ k, consider the vertical connector gadget VCG j,1 and collapse all

its source-distinguished vertices into y∗.

• For each 1≤ i≤ k, consider the horizontal connector gadget HCGk+1,i and collapse

all its sink-distinguished vertices into x∗.

• For each 1 ≤ j ≤ k, consider the vertical connector gadget VCG j,k+1 and collapse

all its sink-distinguished vertices into x∗.

• For each i ∈ [k+1], j ∈ [k], denote the internal-distinguished vertices of HCGi, j by

{ph
i, j,q

h
i, j}

• For each i ∈ [k], j ∈ [k+1], denote the internal-distinguished vertices of VCGi, j by

{pv
i, j,q

v
i, j}

• The set of terminals T ∗ for the SCSS instance on G∗ is {x∗,y∗}∪{ph
i, j,q

h
i, j | 1≤ i≤

k+1,1≤ j ≤ k}∪{pv
i, j,q

v
i, j | 1≤ i≤ k,1≤ j ≤ k+1}.

• We note that the total number of terminals is |T ∗|= 4k(k+1)+2 = O(k2)

• The edge set of G∗ is a disjoint union of edge sets of all main gadgets, vertical

connector gadgets, horizontal gadgets, and the edge (x∗,y∗).

174

y
*

x*

M
G
1
,1

M
G
1
,3

M
G
1
,2

M
G
2
,2

M
G
2
,1

M
G
2
,3

M
G
3
,2

M
G
3
,1

M
G
3
,3

V
C
G
1,
1

V
C
G
1,
3

V
C
G
1,
2

V
C
G
1,
4

H
C
G
1,
2

H
C
G
1,
1

H
C
G
2,
1

H
C
G
1,
3

H
C
G
2,
3

H
C
G
2,
2

V
C
G
2,
1

V
C
G
2,
3

V
C
G
2,
2

V
C
G
2,
4

H
C
G
3,
1

H
C
G
3,
3

H
C
G
3,
2

V
C
G
3,
2

V
C
G
3,
1

V
C
G
3,
4

V
C
G
3,
3

H
C
G
4,
2

H
C
G
4,
1

H
C
G
4,
3

Fi
gu

re
3.

2:
T

he
fig

ur
e

fo
rr

ed
uc

tio
n

fr
om

G
R

ID
T

IL
IN

G
to

SC
SS

on
pl

an
ar

gr
ap

hs
.

175

Define the following quantity 15:

W ∗n = k2 ·M∗n +2k(k+1) ·C∗n . (3.1)

In the next two sections, we show that GRID TILING has a solution if and only if the

SCSS instance (G∗,T ∗) has a solution of weight at most W ∗n .

3.2.2.3 Finishing the Reduction

First we show the easy direction: GRID TILING has a solution implies that the

SCSS instance (G∗,T ∗) constructed in Section 3.2.2.2 has a solution of weight at most

W ∗n .

Lemma 3.20. If the GRID TILING instance has a solution, then the SCSS instance (G∗,T ∗)

has a solution of weight at most W ∗n .

Proof. Since GRID TILING has a solution, for each 1≤ i, j≤ k there is a value (xi, j,yi, j)=

γi, j ∈ Si, j such that

• For every i ∈ [k], we have xi,1 = xi,2 = xi,3 = . . .= xi,k = αi

• For every j ∈ [k], we have y1, j = y2, j = y3, j = . . .= yk, j = β j

We build a solution E∗ for the SCSS instance (G∗,T ∗) and show that it has weight at most

W ∗n . In the edge set E∗, we take the following edges:

1. The edge (x∗,y∗) which has weight 0.

15We use the notation W ∗n to emphasize that W ∗ depends only on n

176

2. For each 1 ≤ i, j ≤ k for the main gadget MGi, j, use Lemma 3.19(1) to generate a

solution EM
i, j which has weight M∗n and represents (αi,β j).

3. For each 1 ≤ j ≤ k and 1 ≤ i ≤ k + 1 for the horizontal connector gadget, use

Lemma 3.18(1) to generate a solution EHC
i, j of weight C∗n which represents β j.

4. For each 1≤ i≤ k and 1≤ j≤ k+1 for the vertical connector gadget, use Lemma 3.18(1)

to generate a solution EVC
i, j of weight C∗n which represents αi.

The weight of E∗ is k2 ·M∗n + k(k+ 1) ·C∗n + k(k+ 1) ·C∗n = W ∗n . It remains to show that

E∗ is a solution for the SCSS instance (G∗,T ∗). Since we have already picked up the

edge (x∗,y∗), it is enough to show that for any terminal t ∈ T ∗ \{x∗,y∗}, both t ; x∗ and

y∗; t paths exist in E∗. Then for any two terminals t1, t2, there is a t1 ; t2 path given by

t1 ; x∗→ y∗; t2.

We only show that the existence of both a t ; x∗ path and a y∗; t path in E∗ when

t is a terminal, say ph
i, j, in a horizontal connector gadget. The case when t is a terminal in

a vertical connector gadget is similar.

• Existence of ph
i, j ; x∗ path in E∗: By Lemma 3.18(1) ph

i, j can reach the sink-distinguished

vertex of HCGi, j which has the index β j. This vertex is the top-distinguished vertex

of the index β j of the main gadget MGi, j. By Lemma 3.19(1) there is a path from

this vertex to the bottom-distinguished vertex of the index β j of the main gadget

MGi, j. However this vertex is exactly the same as the source-distinguished vertex

of the index β j of HCGi+1, j. By Lemma 3.18(1), the source-distinguished vertex

of the index β j of HCGi+1, j can reach the sink-distinguished vertex of the index β

177

of HCGi+1, j. This vertex is exactly the top-distinguished vertex of MGi+1, j. Con-

tinuing in this way we can reach the source-distinguished vertex of the index β j of

HCGk+1, j. By Lemma 3.18(1), this vertex can reach the sink-distinguished vertex

of the index β j of HCGk+1, j. But this sink-distinguished vertex was identified with

x∗, and hence there is a ph
i, j ; x∗ path in E∗.

• Existence of y∗; ph
i, j path in E∗: There is an edge from y∗ to the source-distinguished

vertex of the index β j of HCG1, j. If i = 1, then by Lemma 3.18(1) there is a path

from this vertex to ph
1, j. If i ≥ 2, then by Lemma 3.18(1) there is a path from

source-distinguished vertex of the index β j of HCG1, j to the sink-distinguished

vertex of the index β j of HCG1, j. But this is the top-distinguished vertex of MG1, j

of the index β j. By Lemma 3.19(1), from this vertex we can reach the bottom-

distinguished vertex of the index β j of MG1, j. Continuing this way we can reach

the source-distinguished vertex of the index β j of HCGi, j. By Lemma 3.18(1), from

this vertex we can reach ph
i, j. Hence there is a y∗; ph

i, j path in E∗.

2

Now we show the harder direction: the SCSS instance (G∗,T ∗) constructed in Sec-

tion 3.2.2.2 has a solution of weight at most W ∗n implies that GRID TILING has a solution.

First we show that the following preliminary claim:

Claim 3.3. Let E ′ be any solution to the SCSS instance (G∗,T ∗). Then

• E ′ restricted to each connector gadget satisfies the connectedness property (see

Definition 3.8).

178

• E ′ restricted to each main gadget satisfies the connectedness property (see Defini-

tion 3.10).

Proof. First we show that the edge set E ′ restricted to each connector gadget satisfies

the connectedness property. Consider a horizontal connector gadget HCG1,i for some

i ∈ [k]. The only incoming edges into HCG1,i are from y∗, and hence y∗ must reach

both terminals inside HCG1,i. Since the only outgoing edges from HCG1,i are the ones

to its sink-distinguished vertices, both the terminals inside HCG1,i must be able to reach

some sink-distinguished vertex, i.e., HCG1,i satisfies the connectedness property. By very

similar reasoning, one can see that all the following types of connector gadgets also satisfy

the connectedness property

1. All horizontal connector gadgets HCGk+1, j for 1≤ j≤ k: We use the argument that

the only outgoing edges for each such gadget are into x∗, and the only incoming

edges are from MGk,i.

2. All vertical connector gadgets VCGi,1 for 1 ≤ i ≤ k: We use the argument that the

only incoming edges for each such gadget are from y∗, and the only outgoing edges

are into MG1,i.

3. All vertical connector gadgets VCG j,k+1 for 1 ≤ j ≤ k: We use the argument that

the only outgoing edges for each such gadget are into x∗, and the only incoming

edges are from MG j,k.

For any connector gadget other than of the four types described above, the only incoming

edges are from its source-distinguished vertices and the only outgoing edges are from its

179

sink-distinguished vertices. Hence E ′ restricted to this connector gadget must satisfy the

connectedness property since the two terminals within this connector gadget need to be

strongly connected to other terminals.

Now we argue that E ′ restricted to each main gadget satisfies the connectedness

property. Consider a main gadget MGi, j. The outgoing edges from the terminals in

HCGi, j enter MGi, j via its top-distinguished vertices. These edges can leave MGi, j only

through the bottom-distinguished or right-distinguished vertices of MGi, j. Hence the first

condition of Definition 3.10 is satisfied. Similarly it can be shown the other three condi-

tions of Definition 3.10 also hold, and hence E ′ restricted to each main gadget satisfies

the connectedness property. 2

Now we are ready to prove the following lemma:

Lemma 3.21. If the SCSS instance (G∗,T ∗) has a solution say E ′′ of weight at most W ∗n ,

then the GRID TILING instance has a solution.

Proof. By Claim 3.3, the edge set E ′′ restricted to any connector gadget satisfies the

connectedness property and the edge set E ′′ restricted to any main gadget satisfies the

connectedness property. Let C andM be the sets of connector and main gadgets respec-

tively. Recall that |C| = 2k(k + 1) and |M| = k2. Recall that we have defined W ∗n as

k2 ·M∗n +2k(k+1)C∗n . Let C′ ⊆ C be the set of connector gadgets that have weight at most

C∗n in E ′′. By Lemma 3.18(2), each connector gadget from the set C′ has weight exactly

C∗n . Since all weights are positive integers, each connector gadget from the set C \C′ has

weight at least C∗n + 1. Similarly, let M′ ⊆M be the set of main gadgets which have

180

weight at most M∗n in E ′′. By Lemma 3.19(2), each main gadget from the set M′ has

weight exactly M∗n . Since all weights are positive integers, each main gadget from the set

M\M′ has weight at least M∗n + 1. As any two gadgets are pairwise edge-disjoint, we

have

W ∗n = k2 ·M∗n +2k(k+1)C∗n

≥ |M\M′| · (M∗n +1)+ |M′| ·M∗n + |C \C′| · (C∗n +1)+ |C′| ·C∗n

= |M| ·M∗n + |C| ·C∗n + |M\M′|+ |C \C′|

= k2 ·M∗n +2k(k+1) ·C∗n + |M\M′|+ |C \C′|

=W ∗n + |M\M′|+ |C \C′|.

This implies |M\M′|= 0 = |C \C′|. However, we hadM′ ⊆M and C′ ⊆ C. Therefore,

M′ =M and C′ = C. Hence in E ′′, each connector gadget has weight C∗n and each main

gadget has weight M∗n .

From Lemma 3.18(2) and Lemma 3.19(2), we have

• For each horizontal connector gadget HCGi, j, the restriction of the edge set E ′′ to

HCGi, j represents an integer say βi, j ∈ [n] where i ∈ [k+1], j ∈ [k].

• For each vertical connector gadget VCGi, j, the restriction of the edge set E ′′ to

VCGi, j represents an integer say αi, j where i ∈ [k], j ∈ [k+1].

• For each main gadget MGi, j, the restriction of the edge set E ′′ to MGi, j represents

an ordered pair say (α ′i, j,β
′
i, j) ∈ Si, j where i, j ∈ [k].

Consider the main gadget MGi, j for any 1 ≤ i, j ≤ k. We can make the following obser-

181

vations:

• βi, j = β ′i, j: By Lemma 3.18(2) and Definition 3.9, the terminal vertices in HCGi, j

can exit the horizontal connector gadget only via the unique edge entering the sink-

distinguished vertex of index βi, j. By Lemma 3.19(2) and Definition 3.11, the only

edge in E ′′ incident to any top-distinguished vertex of MGi, j is the unique edge

leaving the top-distinguished vertex of the index β ′i, j. Hence if βi, j 6= β ′i, j then the

terminals in HCGi, j will not be able to reach other terminals.

• β ′i, j = βi+1, j: By Lemma 3.18(2) and Definition 3.9, the unique edge entering

HCGi+1, j is the edge entering the source-distinguished vertex of the index βi+1, j.

By Lemma 3.19(2) and Definition 3.11, the only edge in E ′′ incident to any bottom-

distinguished vertex of MGi, j is the unique edge entering the bottom-distinguished

vertex of index β ′i, j. Hence if β ′i, j 6= βi+1, j, then the terminals in HCGi+1, j cannot

be reached from the other terminals.

• αi, j = α ′i, j: By Lemma 3.18(2) and Definition 3.9, the paths starting at the terminal

vertices in VCGi, j can leave the vertical connector gadget only via the unique edge

entering the sink-distinguished vertex of index αi, j. By Lemma 3.19(2) and Defi-

nition 3.11, the only edge in E ′′ incident to any left-distinguished vertex of MGi, j

is the unique edge leaving the left-distinguished vertex of the index α ′i, j. Hence if

αi, j 6= α ′i, j then the terminals in VCGi, j will not be able to reach other terminals.

• α ′i, j = αi, j+1: By Lemma 3.18(2) and Definition 3.9, the unique edge entering

VCGi, j+1 is the edge entering the source-distinguished vertex of index αi, j+1. By

182

Lemma 3.19(2) and Definition 3.11, the only edge in E ′′ incident to any right-

distinguished vertex of MGi, j is the unique edge entering the bottom-distinguished

vertex of index α ′i, j. Hence if α ′i, j 6= αi, j+1, then the terminals in VCGi, j+1 cannot

be reached from the other terminals.

We claim that for 1 ≤ i, j ≤ k, the values (α ′i, j,β
′
i, j) ∈ Si, j form a solution for the GRID

TILING instance. For this we need to check two conditions:

• α ′i, j = α ′i, j+1: This holds because αi, j = α ′i, j = αi, j+1 = α ′i, j+1.

• β ′i, j = β ′i+1, j: This holds because βi, j = β ′i, j = βi+1, j = β ′i+1, j.

This completes the proof of the lemma. 2

Finally we are ready to prove Theorem 3.10, which is restated below. Recall that

Marx [Marc] showed the W[1]-hardness of GRID TILING parameterized by k.

Theorem 3.10 . The STRONGLY CONNECTED STEINER SUBGRAPH problem restricted

to the case when the underlying undirected graph is planar is W[1]-hard parameterized

by the number of terminals, and cannot be solved in time f (k)no(
√

k) unless ETH fails,

where f is any computable function, k is the number of terminals, and n is the number of

vertices in the instance.

Proof. We note that the number of terminals in the SCSS instance is 2k(k + 1)+ 2 =

O(k2). By Lemmas 3.18 and 3.19, the connector and main gadgets are constructed in

polynomial time, hence their size can be bounded by a polynomial in n. It follows that the

constructed instance has polynomial size. It is easy to see the underlying undirected graph

183

of G∗ constructed in Figure 3.2 is planar, since the underlying graph of each connector

gadget (see Figure 3.3) and each main gadget (see Figure 3.4) is planar. Lemma 3.20 and

Lemma 3.21 together imply the W[1]-hardness of SCSS parameterized by the number of

terminals, even when the underlying graph is planar.

Chen et al. [CHKX06] showed for any function f an f (k) · no(k) algorithm for

CLIQUE implies ETH fails. Marx [Marc] gave a reduction that transforms the problem

of finding a k-clique into a k× k GRID-TILING instance. Lemma 3.20 and Lemma 3.21

together give a reduction which transforms the problem of k× k GRID TILING into an

instance of SCSS with O(k2) terminal pairs. Composing the two reductions, we obtain

that, under ETH, there is no f (k) ·no(
√

k) time algorithm for SCSS (even when the under-

lying undirected graph is planar) for any function f . This shows that the 2O(k logk) ·nO(
√

k)

algorithm for SCSS given in Theorem 3.1 is essentially optimal. 2

3.2.2.4 Proof of Lemma 3.18: Constructing the Connector Gadget

We prove Lemma 3.18 in this section, by constructing a connector gadget satisfying

the specifications of Section 3.2.2.1.

3.2.2.4.1 Different types of edges in connector gadget

Before proving Lemma 3.18, we first describe the construction of the connector

gadget in more detail (see Figure 3.3). The connector gadget has 2n+ 4 rows denoted

by R0,R1,R2, . . . ,R2n+3 and 4n+1 columns denoted by C0,C1, . . . ,C4n. Let us denote the

184

vertex at the intersection of row Ri and column C j by v j
i . We now describe the different

kinds of edges present in the connector gadget.

1. Source Edges: For each i ∈ [n], there is an edge (pi,v2i−1
0). These edges are to-

gether called as the source edges.

2. Sink Edges: For each j ∈ [n], there is an edge (v2n+2i−1
2n+3 ,qi). These edges are

together called as the sink edges.

3. Terminal Edges: We call the union of the sets of edges incident to the terminals

p or q as terminal edges. The set of edges incident on p is {(v0
2i, p) : 0 ≤ i ≤

n+1}⋃{(p,v0
2i+1) : 0 ≤ i ≤ n+1}. The set of edges incident on q is {(v4n

2i ,q) :

0≤ i≤ n+1}⋃{(q,v4n
2i+1) : 0≤ i≤ n+1}.

4. Inrow Edges:

• Inrow Up Edges: For each 0≤ i≤ n+1, we call the ↑ edges connecting ver-

tices of row R2i+1 to R2i as inrow up edges. An example of an inrow up edge

is (v0
1,v

0
0).

• Inrow Left Edges: For each 0 ≤ i ≤ 2n+ 3, we call the← edges connecting

vertices of row Ri as inrow left edges. An example of an inrow left edge is

(v1
3,v

0
3).

• Inrow Right Edges: For each 0≤ i≤ 2n+3, we call the→ edges connecting

vertices of row Ri as inrow right edges. An example of an inrow right edge is

(v0
0,v

1
0).

• Inrow Down Edges: For each 0 ≤ i ≤ n+ 1, we call the ↓ edges connecting

185

vertices of row R2i to R2i+1 as inrow down edges. An example of an inrow

down edge is (v1
0,v

1
1).

5. Interrow Edges: For each i ∈ [n+ 1] and each j ∈ [2n], we subdivide the edge

(v2 j−1
2i−1 ,v

2 j−1
2i) by introducing a new vertex wi, j and adding the edges (v2 j−1

2i−1 ,w
j
i)

and (w j
i ,v

2 j−1
2i). All these edges are together called as interrow edges. Note that

there are 4n(n+1) interrow edges.

6. Shortcuts: There are 2n shortcut edges, namely e1,e2, . . . ,en and f1, f2, . . . , fn.

They are drawn as follows:

• The edge ei is given by (v2i−2
2n−2i+2,w

i
n−i+1).

• The edge fi is given by (wn+i
n−i+2,v

2n+2 j
2n−2i+3).

3.2.2.4.2 Assigning Weights in the Connector Gadget

Fix the quantity B = 18n2. We assign weights to the edges as follows

1. For i ∈ [n], the source edge (pi,v2i−1
0) has weight B5 +(n− i+1).

2. For i ∈ [n], the sink edge (v2n+2i−1
2n+3 ,qi) has weight B5 + i.

3. Each terminal edge has weight B4.

4. Each inrow up edge has weight B3.

5. For each i ∈ [n+ 1] and each j ∈ [2n], the edge (v2 j−1
2i−1 ,w

j
i) has weight 0, and the

edge (w j
i ,v

2 j−1
2i) has weight B2.

6. Each inrow right edge has weight B.

186

7. For each i ∈ [n], the edge ei has weight n · i.

8. For each j ∈ [n], the edge f j has weight n(n− j+1).

9. Each inrow left edge and inrow down edge has weight 0.

Now we define the quantity C∗n stated in statement of Lemma 3.18:

C∗n = 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−2)B+(n+1)2. (3.2)

In the next two sections, we prove the two statements of Lemma 3.18.

3.2.2.4.3 i ∈ [n]⇒∃ a solution Ei of weight C∗n that satisfies connectedness property

& represents i

Let Ei be the union of the following sets of edges:

• Select the edges (pi,v2i−1
0) and (v2n+2i−1

2n+3 ,qi). This incurs a weight of B5 +(n− i+

1)+B5 + i = 2B5 +(n+1).

• The two terminal edges (p,v0
2n−2i+2) and (v0

2n−2i+1, p). This incurs a weight of 2B4.

• The two terminal edges (q,v4n
2n−2i+2) and (v4n

2n−2i+1,q). This incurs a weight of 2B4.

• All the 2n+ 1 inrow up edges that are between vertices of R2n−2i+2 and R2n−2i+3.

These edges are given by (v2 j
2n−2i+3,v

2 j
2n−2i+2) for 0≤ j ≤ 2n. This incurs a weight

of (2n+1)B3.

• The vertically downward path P1 = v2i−1
0 → v2i−1

1 → . . .→ v2i−1
2n−2i+1→ wi

n−i+1→

v2i−1
2n−2i+2→ v2i−1

2n−2i+3 and the vertically downward path P2 = v2n+2i−1
2n−2i+2→ v2n+2i−1

2n−2i+3→

187

hi → v2n+2i−1
2n−2i+4 → . . .→ v2n+2i−1

2n+2 → v2n+2i−1
2n+3 . These two paths incur a weight of

(n+1)B2, since the inrow down edges have weight 0.

• All 2n inrow right edges and 2n inrow left edges which occur between vertices of

R2n−2i+2. This incurs a weight of 2n ·B since inrow left edges have weight 0 and

each inrow right edge has weight B.

• All inrow right edges and inrow left edges which occur between vertices of R2n−2i+3.

This incurs a weight of 2n ·B since inrow left edges have weight 0 and there are 2n

such inrow right edges each having weight B.

• The edges ei and fi. This incurs a weight of n · i+n(n− i+1) = n(n+1).

• All 2n inrow down edges that occur between vertices of row R2n−2i+2 and row

R2n−2i+3. This incurs a weight of 0, since the each inrow down edge has weight 0.

Finally, remove the two inrow right edges (v2i−2
2n−2i+2,v

2i−1
2n−2i+2) and (v2n+2i−1

2n−2i+3,v
2n+2i
2n−2i+3)

from E ′. This saves a weight of 2B. From the above paragraph and Equation 3.2 it fol-

lows that the total weight of Ei is exactly C∗n . Note that we can still travel from v2i−2
2n−2i+2 to

v2i−1
2n−2i+2 as follows: take the path v2i−2

2n−2i+2→ wi
n−i+1→ v2i−1

2n−2i+2. Similarly, even though

we removed the edge (v2n+2i−1
2n−2i+3,v

2n+2i
2n−2i+3) we can still travel from v2n+2i−1

2n−2i+3 to v2n+2i
2n−2i+3 in

E ′ via the path v2n+2i−1
2n−2i+3→ wn+i

n−i+2→ v2n+2i
2n−2i+3.

It remains to show that Ei satisfies the connectedness property and it represents i. It

is easy to see Ei represents i since the only edge in Ei which is incident to P is the edge

leaving pi. Similarly, the only edge in Ei incident to Q is the one entering qi. We show

that the connectedness property holds as follows:

188

1. There is a pi ; p path in Ei by starting with the source edge leaving pi and then

following downward path P1 from v2i−1
0 ; v2i−1

2n−2i+3. Then travel towards the left

from v2i−1
2n−2i+3 to p by using inrow left, inrow up and inrow down edges from rows

R2n−2i+2 and R2n−2i+3. Finally, use the edge (v0
2n−2i+2, p)

2. For the existence of a pi ; q path in Ei, we have seen above that there is a pi ;

v2i−1
2n−2i+3 path. Then travel towards the right from v2i−1

2n−2i+2 to q by using inrow right,

inrow up and inrow down edges from rows R2n−2i+2 and R2n−2i+3 (and one shortcut

edge as well). Finally, use the edge (v4n
2n−2i+2,q).

3. For the existence of a p ; qi path in Ei, first use the edge (p,v0
2n−2i+3). Then travel

towards the right by using inrow right, inrow up and inrow down edges from rows

R2n−2i+2 and R2n−2i+3 (and one shortcut edge as well) until you reach the vertex

v2n+2i−1
2n−2i+2. Then take the downward path P2 from v2n+2i−1

2n−2i+2 to v2n+2i−1
2n+3 . Finally, use

the sink edge incident to qi.

4. For the existence of a q ; qi path in Ei, first use the terminal edge (q,v4n
2n−2i+3).

Then travel towards the left by using inrow left, inrow up and inrow down edges

from rows R2n−2i+2 and R2n−2i+3 until you reach the vertex v2n+2i−1
2n−2i+2. Then take the

downward path P2 from v2n+2i−1
2n−2i+2 to v2n+2i−1

2n+3 . Finally, use the sink edge incident to

qi.

Therefore, Ei indeed satisfies the connectedness property.

189

3.2.2.4.4 E ′ satisfies connectedness property and has weight ≤C∗n ⇒ E ′ represents

some β ∈ [n] and has weight exactly C∗n

Next we show that if a set of edges E ′ satisfies the connectedness property and has

weight at most C∗n , then in fact the weight of E ′ is exactly C∗n and it represents some

β ∈ [n]. We do this via the following series of claims and observations.

Claim 3.4. E ′ contains exactly one source edge and one sink edge.

Proof. Since E ′ satisfies the connectedness property it must contain at least one source

edge and at least one sink edge. Without loss of generality, suppose that there are at least

two source edges in E ′. Then the weight of E ′ is a least the sum of the weights of these

two source edges plus the weight of at least one sink edge.

Thus if E ′ contains at least two source edges, then its weight is at least 3B5. How-

ever, from Equation 3.2 we get that

C∗n = 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−2)B+(n+1)2

≤ 2B5 +4n ·B4 +3n ·B4 +2n ·B4 +4n ·B4 +4n ·B4

≤ 2B5 +17n ·B4

< 3B5,

since B = 18n2 > 17n.

2

Thus we know that E ′ contains exactly one source edge and exactly one sink edge.

Let the source edge be incident to pi′ and the sink edge be incident to q j′ .

190

Claim 3.5. E ′ contains exactly four terminal edges.

Proof. Since E ′ satisfies the connectedness property, it must contain at least one incoming

and one outgoing edge for both p and q. Therefore, we need at least four terminal edges.

Suppose we have at least five terminal edges in E ′. We already know that the source and

sink edges contribute at least 2B5 to weight of E ′, hence the of E ′ is at least 2B5 + 5B4.

However, from Equation 3.2, we get that

C∗n = 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−2)B+(n+1)2

≤ 2B5 +4B4 +3n ·B3 +2n ·B3 +4n ·B3 +4n ·B3

= 2B5 +4B4 +13n ·B3

< 2B5 +5B4,

since B = 18n2 > 13n. 2

Hence we know that E ′ contains exactly four terminal edges.

Claim 3.6. E ′ contains exactly 2n+1 inrow up edges.

Proof. Observe that for each 1≤ j≤ 2n−1, the inrow up edges in column C2 j form a cut

between vertices from columns C2 j−1 and C2 j+1. Since E ′ must have a pi′ ; p path, we

need to use at least one inrow up edge from each of the columns C0,C2, . . . ,C2i′−2. Since

E ′ must have a pi′ ; q, path we need to use at least one inrow up edge from each of the

columns C2i′,C2i′+2, . . . ,C4n. Hence E ′ has at least 2n+1 inrow up edges, as we require

at least one inrow up edge from each of the columns C0,C2, . . . ,C4n.

191

Suppose E ′ contains at least 2n+2 inrow up edges. We already know that E ′ has a

contribution of 2B5 +4B4 from source, sink, and terminal edges. Hence the weight of E ′

is at least 2B5 +4B4 +(2n+2)B3. However, from Equation 3.2, we get that

C∗n = 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−2)B+(n+1)2

≤ 2B5 +4B4 +(2n+1)B3 +2n ·B2 +4n ·B2 +4n ·B2

= 2B5 +4B4 +(2n+1)B3 +10n ·B2

< 2B5 +4B4 +(2n+2)B3,

since B = 18n2 > 10n. 2

Therefore, we know that E ′ contains exactly one inrow edge per column C2i for

every 0≤ i≤ 2n. By Claim 3.5, we know that exactly two terminal edges incident to p are

selected in E ′. Observe that the terminal edge leaving p should be followed by an inrow

up edge, and similarly, the terminal edge entering p follows an inrow up edge. Since we

select exactly one inrow up edge from column C0, it follows that the two terminal edges in

E ′ incident to p must be incident to the rows R2`+1 and R2` respectively for some ` ∈ [n].

Similarly, the two terminal edges in E ′ incident to q must be incident to the rows R2`′+1

and R2`′ for some `′ ∈ [n]. We summarize this in the following claim:

Observation 3.11. There exist integers `,`′ ∈ [n] such that

• the only two terminal edges in E ′ incident to p are (p,v0
2`+1) and (v0

2`, p), and

• the only two terminal edges in E ′ incident to q are (q,v4n
2`′+1) and (v4n

2`′,q).

192

Definition 3.12. For i∈ [n+1], we call the 4n interrow edges which connect vertices from

row R2i−1 to vertices from R2i as Type(i) interrow edges. We can divide the Type(i) inter-

row edges into 2n pairs of adjacent interrow edges given by (v2 j−1
2i−1 ,w

j
i) and (w j

i ,v
2 j−1
2i)

for each 1≤ j ≤ 2n

Note that there are a total of n+1 types of interrow edges. Moreover, we can assume

that if we select one interrow edge, then we also pick up the other adjacent interrow edge

in the “pair,” otherwise there is no use for selecting the first interrow edge (even though it

has weight 0).

Claim 3.7. E ′ contains exactly one pair of interrow edges of Type(r) for each r ∈ [n+1].

Proof. Observation 3.11 implies that we cannot avoid using interrow edges of any type

by, say, going into p via an edge from some R2i and then exiting p via an edge to some

R2 j+1 for any j > i (similarly for q). By the connectedness property, set E ′ contains a

pi′ ; p path. By Observation 3.11, the only edge entering p is (v0
2`, p). Hence E ′ must

contain at least one pair of interrow edges of Type(r) for 1≤ r ≤ `. Similarly E ′ contains

a p ; qi path and the only outgoing edge from p is (p,v0
2`+1). Hence E ′ must contain at

least one pair of interrow edges of Type(r) for each `+1 ≤ r ≤ n+1. Therefore, set E ′

contains at least one pair of interrow edges of each type.

Suppose E ′ contains at least two pairs of interrow edges of some Type(r) for some

r ∈ [n+ 1]. This means E ′ gets a weight of least (n+ 2) ·B2 from the interrow edges.

We have already seen E ′ has contribution of 2B5 + 4B4 +(2n+ 1)B3 from source, sink,

terminal, and inrow up edges. Hence the weight of E ′ is at leas 2B5+4B4+(2n+1)B3+

193

(n+2) ·B2. However, from Equation 3.2, we get that

C∗n = 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−2)B+(n+1)2

≤ 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +4n ·B+4n ·B

= 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +8n ·B

< 2B5 +4B4 +(2n+1)B3 +(n+2)B2,

since B = 18n2 > 8n. 2

Claim 3.8. For each r ∈ [n+1], let the unique pair of interrow edges in E ′ (guaranteed

by Claim 3.7) of Type(r) belong to column C2ir−1. If the unique source and sink edges

in E ′ (guaranteed by Claim 3.4) are incident to pi′ and q j′ , respectively, then we have

i′ ≤ i1 ≤ i2 ≤ . . .≤ in+1 ≤ n+ j′.

Proof. Observation 3.11 implies the only way to get from row R2i to R2i+1 is to use a pair

of interrow edges of Type(i). By Claim 3.7, we use exactly one pair of interrow edges of

each type. Recall that there is a path P = pi′ ; p ; q j′ in E ′, and this path must use each

of these interrow edges.

First we show that i1 ≥ i′. Suppose i1 < i′ ≤ n. Since we use the source edge

incident to pi′ , we must reach vertex v2i′−1
0 . Since i′ > i1, to use the pair of interrow edges

to travel from v2i1−1
1 to v2i1−1

2 , the path P must contain a v2i′−1
0 ; v2i1−1

1 subpath say P′.

By the construction of the connector gadget this subpath P′ must use the inrow up edge

(v2i′−2
1 ,v2i′−2

0). Now the path P has to reach column C2n+2 j′−1 from column C2i1−1, and

so it must use another inrow edge from column C2i′−2, which contradicts Claim 3.6.

194

Now we prove in+1 ≤ n+ j′. Suppose to the contrary that in+1 > n+ j′. Then by

reasoning similar to that of above one can show that at least two inrow up edges from

column C2n+2 j′ are used, which contradicts Claim 3.6.

Finally suppose there exists r ∈ [n] such that ir > ir+1. We consider the following

three cases:

• ir+1 < ir ≤ n: Then by using the fact that there is a pi′ ; q j′ path in E ′ we get at

least two inrow up edges are used from column C2ir−2, which contradicts Claim 3.6.

• n < ir ≤ n+ j′: Then we need to use at least two inrow up edges from column

C2ir−2, which contradicts Claim 3.6.

• ir > n+ j′: Then we need to use at least two inrow up edges from column C2n+2 j′ ,

which contradicts Claim 3.6.

2

Claim 3.9. E ′ contains at most two shortcut edges.

Proof. For the proof we will use Claim 3.8. We will show that we can use at most one

e-shortcut. The proof for f -shortcut is similar.

Suppose we use two e-shortcuts viz. ex and ey such that x > y. Note that it makes

sense to include a shortcut into E ′ only if we use the interrow edge that continues it.

Hence ix = x and iy = y. By Claim 3.8, we have y = iy ≥ ix = x, which is a contradiction.

2

Claim 3.10. E ′ contains exactly 4n−2 inrow right edges.

195

Proof. E ′ contains a p ; q j′ path. Thus E ′ has an inrow right edge between columns

Ci,Ci+1 for each 0≤ i≤ 2n+2 j′−2. Similarly E ′ contains a pi′ ; q path. So E ′ has an

inrow right edge between columns C j,C j+1 for each 2i′−1≤ i≤ 4n−1.

Since 2n+ 2 j′− 2 ≥ 2n and 2i′− 1 ≤ 2n it follows E ′ must contain at least 4n

inrow right edges. However, as we have seen before, a shortcut can replace an inrow right

edge as follows: for example the inrow edge (v2n−2
2 ,v2n−1

2) can be replaced by the path

v2n−2
2 → wn

1→ v2n−1
2 . But Claim 3.9 implies we can use at most two shortcuts. Therefore

we need to use at least 4n−2 inrow right edges. Suppose E ′ contains at least 4n−1 edges.

We have already seen the contribution of source, sink, terminal, inrow up and interrow

edges is 2B5 + 4B4 +(2n+ 1)B3 +(n+ 1)B2. If E ′ contains at least 4n− 1 inrow right

edges, then the weight of E ′ is at least 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−1)B.

However, from Equation 3.2, we get that

C∗n = 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−2)B+(n+1)2

= 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−2)B+4n2

< 2B5 +4B4 +(2n+1)B3 +(n+1)B2 +(4n−1)B,

since B = 18n2 > 4n2.

2

From Claim 3.9 and the proof of Claim 3.10, we can make the following observa-

tion:

Observation 3.12. E ′ contains exactly two shortcuts.

196

Let the shortcuts used be ei′′ and f j′′ . Recall that Claim 3.4 implies that at most one

edge incident to P and at most one edge incident to Q is used in E ′. Therefore, if we show

that i′ = j′, then it follows that E ′ represents β = i′ = j′.

Claim 3.11. The following inequalities hold:

• i′′ ≥ i′ and j′′ ≤ j′

• i′′ ≥ j′′

Proof. To use the shortcut ei′′ , we need to use the lower half of a pair of interrow edge

from column C2i′′−1. Claim 3.8 implies i′ ≤ i1 and the pairs of interrow edges used are

monotone from left to right. Hence i′′ ≥ i′. Similarly, to use the shortcut f j′′ , we need

to use the upper half of an interrow edge from Column C2n+2 j′′−1. Claim 3.8 implies

n+ j′ ≥ in−1 ≥ n+ j′′. Hence j′′ ≤ j′.

Now we prove i′′ ≥ j′′. Since both i′′, j′′ ∈ [n], if either i′′ = n or j′′ = 1, then we are

done. So suppose i′′ ≤ n− 1 and j′′ ≥ 2. To use the shortcut edge ei′′ after entering the

connector gadget through the source edge incident to pi′ , we must use pairs of interrow

edges of Type(1), Type(2), . . ., Type(n− i′′). To use the shortcut edge f j′′ and exit the

connector gadget through the sink edge incident to b j′ , we must use pairs of interrow

edges of Type(n+ 1), Type(n), . . ., Type(n− j′′+ 1). If i′′ < j′′, then this implies we

use at least two pairs of interrow edges of Type(n− i′′), which contradicts Claim 3.7.

Therefore, i′′ ≥ j′′ holds. 2

Theorem 3.13. The weight of E ′ is exactly C∗n , and E ′ represents some integer β ∈ [n].

197

Proof. As argued above it is enough to show that i′ = j′. We have already seen E ′ has the

following contribution to its weight:

• The source edge incident to pi′ has weight B5 +(n− i′+1) by Claim 3.4.

• The sink edge incident to q j′ has weight B5 + j′ by Claim 3.4.

• The terminal edges incur weight 4B4 by Claim 3.5.

• The inrow up edges incur weight (2n+1)B3 by Claim 3.6.

• The interrow edges incur weight (n+1)B2 by Claim 3.7.

• The inrow right edges incur weight (4n−2)B by Claim 3.10.

• The shortcut ei′′ incurs weight n ·i′′ and f j′′ incurs weight n(n− j′′+1) by Claim 3.12.

Thus we already have a weight of

C∗∗=(2B5+(n−i′+ j′+1))+4B4+(2n+1)B3+(n+1)B2+(4n−2)B+n(n− j′′+i′′+1)

(3.3)

Observe that adding any edge of non-zero weight to E ′ (other than the ones mentioned

above) increases the weight C∗∗ by at least B, since Claim 3.9 does not allow us to use

any more shortcuts. Equation 3.2 and Equation 3.3 imply C∗∗+B−C∗n = B−n(i′− j′)−

(j′′− i′′)≥ 20n3−n(i′− j′)− (j′′− i′′)≥ 0, since i′, i′′, j′, j′′ ∈ [n]. This implies that the

weight of E ′ is exactly C∗∗. We now show that in fact C∗∗−C∗n ≥ 0, which will imply that

C∗∗ =C∗n . From Equation 3.2 and Equation 3.3, we have C∗∗−C∗n = (j′− i′)+n(i′′− j′′).

We now show that this quantity is non-negative. Recall that from Claim 3.11, we have

i′′ ≥ j′′.

198

• If i′′ > j′′ then n(i′′− j′′)≥ n. Since j′, i′ ∈ [n], we have j′− i′ ≥ 1−n. Therefore,

(j′− i′)+n(i′′− j′′)≥ n+(1−n) = 1

• If i′′ = j′′ then by Claim 3.11 we have i′ ≤ i′′ = j′′ ≤ j′. Hence (j′− i′)≥ 0 and so

(j′− i′)+n(i′′− j′′)≥ 0.

Therefore C∗∗ =C∗n , since we were given that the weight of E ′ is C∗∗. However C∗n =C∗∗

implies

j′− i′ ≤ n(j′′− i′′) (3.4)

Since i′, j′ ∈ [n] we have n−1 ≥ j′− i′ ≥ 1−n. Therefore Equation 3.4 implies j′′ = i′′

and j′ = i′.

2

3.2.2.5 Proof of Lemma 3.19: Constructing the Main Gadget

We prove Lemma 3.19 in this section, by constructing a main gadget satisfying the

specifications of Section 3.2.2.1. Recall that, as discussed in Section 3.2.2.2, we may

assume that 1 < x,y < n holds for every (x,y) ∈ Si, j.

3.2.2.5.1 Different Types of Edges in Main Gadget

Before proving Lemma 3.19, we first describe the construction of the main gadget

in more detail (see Figure 3.4). The main gadget has n2 rows denoted by R1,R2, . . . ,Rn2

and 2n+1 columns denoted by C0,C1, . . . ,C2n+1. Let us denote the vertex at intersection

199

of row Ri and column C j by v j
i . We now describe the various different kinds of edges in

the main gadget gadget.

1. Left Source Edges: For every i ∈ [n], the edge (`i, `
′
i) is a left source edge.

2. Right Sink Edges: For every i ∈ [n], the edge (r′i,ri) is a right sink edge.

3. Top Source Edges: For every i ∈ [n], the edge (ti,vi
1) is a top source edge.

4. Bottom Sink Edges: For every i ∈ [n], the edge (vn+i
n2 ,bi) is a bottom sink edge.

5. Source Internal Edges: It is the set of n2 edges of the form (`′i,v
0
j) for i ∈ [n] and

n(i−1)+1≤ j≤ n · i. Number the source internal edges from top to bottom, i.e., the

edge (`′i,v
0
j) is called the jth source internal edge, where i ∈ [n] and n(i−1)+1 ≤

j ≤ n · i.

6. Sink Internal Edges: It is the set of n2 edges of the form (v2n+1
j ,r′i) for i ∈ [n] and

n(i−1)+1≤ j ≤ n · i. Number the sink internal edges from top to bottom, i.e., the

edge (v2n+1
j ,r′i) is called the jth sink internal edge, where i ∈ [n] and n(i−1)+1≤

j ≤ n · i.

7. Bridge Edges: It is the set of n2 edges of the form (vn
i ,v

n+1
i) for 1 ≤ i ≤ n2. We

number the bridge edges from top to bottom, i.e., the edge (vn
i ,v

n+1
i) is called the

ith bridge edge.

8. Inrow Right Edges: For each i ∈ [n2] we call the→ edges (except the bridge edge

(vn
i ,v

n+1
i)) connecting vertices of row Ri as inrow right edges. An example of an

inrow right edge is (v0
1,v

1
1).

200

9. Interrow Down Edges: For each i ∈ [n2− 1] we call the 2n ↓ edges connecting

vertices of row Ri to Ri+1 as interrow down edges. The 2n edges interrow edges

between row Ri and Ri+1 are (v j
i ,v

j
i+1) for each 1≤ j ≤ 2n.

10. Shortcut Edges: There are 2|S| shortcut edges, namely e1,e2, . . . ,e|S| and f1, f2, . . . , f|S|.

The shortcut edge for a (x,y)∈ S for some 1< x,y< n is defined the following way:

• Introduce a new vertex gy
x at the middle of the edge (vy

n(x−1)+y−1,v
y
n(x−1)+y) to

create two new edges (vy
n(x−1)+y−1,g

y
x) and (gy

x,v
y
n(x−1)+y). Then the edge ex,y

is (vy−1
n(x−1)+y,g

y
x).

• Introduce a new vertex hy
x at the middle of the edge (vn+y

n(x−1)+y,v
n+y
n(x−1)+y+1)

to create two new edges (vn+y
n(x−1)+y,h

y
x) and (hy

x,v
n+y
n(x−1)+y+1)). Then the edge

fx,y is (hy
x,v

n+y+1
n(x−1)+y).

3.2.2.5.2 Assigning Weights in the Main Gadget

Define B = 11n2. We assign weights to the edges as follows:

1. Each left source edge has weight B4.

2. Each right sink edge has weight B4.

3. For every 1≤ i≤ n, the ith top source edge (ti,vi
1) has weight B4.

4. For every 1≤ i≤ n, the ith bottom sink edge (vn+i
n2 ,bi) has weight B4.

5. For each i ∈ [n2], the ith bridge edge (vn
i ,v

n+1
i) has weight B3.

6. For each i ∈ [n2], the ith source internal edge has weight B2(n2− i).

7. For each j ∈ [n2], the jth sink internal edge has weight B2 · j.

201

8. Each inrow right edge has weight 3B.

9. For each (x,y) ∈ S, both the shortcut edges ex,y and fx,y have weights B each.

10. Each interrow down edge that does not have a shortcut incident to it has weight 2.

If an interrow edge is split into two edges by the shortcut incident to it, then we

assign a weight 1 to each of the two parts.

Now we define the quantity M∗n stated in statement of Lemma 3.19:

M∗n = 4B4 +B3 +B2n2 +B(6n−4)+2(n2−1). (3.5)

Next we are ready to prove the statements of Lemma 3.19.

3.2.2.5.3 (x,y) ∈ S⇒∃ a solution Ex,y of weight M∗n that represents (x,y)

For (x,y) ∈ S⊆ [n]× [n] define z = n(x−1)+y. Let Ex,y be the union of the follow-

ing sets of edges:

• The xth left source edge and xth right sink edge. This incurs a weight of 2B4.

• The yth top source edge and the yth bottom sink edge. This incurs a weight of 2B4.

• The zth bridge edge. This incurs a weight of B3.

• The zth source internal edge and zth sink internal edge. This incurs a weight of B2n2.

• All inrow right edges from row Rz except (vy−1
z ,vy

z) and (vn+y
z ,vn+y+1

z). This incurs

a weight of 3B · (2n−2).

• The shortcut edges ex,y and fx,y. This incurs a weight of 2B.

• The vertically downward path vy
1→ vy

2→ . . .→ vy
z . This incurs a weight of 2(z−1).

202

• The vertically downward path vn+y
z → vn+y

z+1 → . . .→ vn+y
n2 . This incurs a weight of

2(n2− z).

From the above paragraph and Equation 3.5, it follows the total weight of Ex,y is

exactly M∗n . Note that we can still travel from (vy−1
z to vy

z) as follows: take the path

(vy−1
z → gy

x→ vy
z). Similarly, even though the edge (vn+y

z ,vn+y+1
z) is not present in Ex,y,

we can still travel from (vn+y
z to vn+y+1

z) in Ex,y via the path (vn+y
z → hx,y→ vn+y+1

z).

It remains to show that Ex,y satisfies the connectedness property and it represents

(x,y) ∈ S. Ex,y represents (x,y) because

• In Ex,y the only outgoing edge from L is the one incident to `x

• In Ex,y the only incoming edge to R is the one incident to rx

• In Ex,y the only outgoing edge from T is the one incident to ty

• In Ex,y the only incoming edge to B is the one incident to by

We now show that the connectedness property follows:

1. There is a `x ; rx path in Ex,y obtained by taking the edges in the following order:

• the left source edge (`x, `
′
x),

• the source internal edge (`′x,v
0
z),

• the horizontal path v0
z → v1

z → . . .vn
z given by inrow right edges in row Rz,

• the bridge edge (vn
z ,v

n+1
z),

• the horizontal path vn+1
z → vn+2

z → . . .v2n+1
z given by inrow right edges in row

Rz,

203

• the sink internal edge (v2n+1
z ,r′x), and

• the right sink edge (r′x,rx).

2. There is a ty ; by path in Ex,y obtained by taking the edges in the following order:

• the top source edge (ty,v
y
1),

• the downward path vy
1→ vy

2→ . . .vy
z given by interrow down edges in column

Cy,

• the horizontal path vy
z → vy+1

z → . . .vn
z given by inrow right edges in row Rz,

• the bridge edge (vn
z ,v

n+1
z),

• the horizontal path vn+1
z → vn+2

z → . . .vn+y
z given by inrow right edges in row

Rz,

• the downward path vn+y
z → vn+y

z+1 → . . .vn+y
n2 given by interrow down edges in

column Cn+y, and

• the bottom sink edge (vn+y
n2 ,by).

Therefore, Ex,y indeed satisfies the connectedness property.

3.2.2.5.4 E ′ satisfies connectedness property and has weight ≤M∗n ⇒ E ′ represents

some (α,β) ∈ S and has weight exactly M∗n

In this section we show that if a set of edges E ′ satisfies the connectedness property

and has weight M∗n , then it represents some (α,β)∈ S. We do this via the following series

of claims and observations.

Claim 3.12. E ′ contains

204

• exactly one left source edge,

• exactly one right sink edge,

• exactly one top source edge, and

• exactly one bottom sink edge.

Proof. Since E ′ satisfies the connectedness property, it must contain at least one edge

of each of the above types. Without loss of generality, suppose we have at least two left

source edges in E ′. Then the weight of the edge set E ′ is greater than or equal to the sum

of weights of these two left source edges and the weight of a right sink edge, the weight

of a top source edge, and the weight of a bottom sink edge. Thus if E ′ contains at least

two left source edges, then its weight is at least 5B4. However, from Equation 3.5, we get

that

M∗n = 4B4 +B3 +B2n2 +B(6n−4)+2(n2−1)

≤ 4B4 +n ·B3 +n ·B3 +6n ·B3 +2n ·B3

= 4B4 +10n ·B3

< 5B4,

since B = 11n2 > 10n.

2

Therefore, we can set up the following notation:

• Let iL ∈ [n] be the unique index such that the left source edge in E ′ is incident to

`iL .

205

• Let iR ∈ [n] be the unique index such that the right sink edge in E ′ is incident to riR .

• Let iT ∈ [n] be the unique index such that the top source edge in E ′ is incident to tiT .

• Let iB ∈ [n] be the unique index such that the bottom sink edge in E ′ is incident to

biB .

Claim 3.13. The edge set E ′ contains exactly one bridge edge.

Proof. To satisfy the connectedness property, we need at least one bridge edge, since the

bridge edges form a cut between the top-distinguished vertices and the right-distinguished

vertices as well as between the top-distinguished vertices and the bottom-distinguished

vertices. Suppose that the edge set E ′ contains least two bridge edges. This contributes a

weight of 2B3. We already have a contribution on 4B4 to weight of E ′ from Claim 3.12.

Therefore, the weight of E ′ is at least 4B4 + 2B3. However, from Equation 3.5, we get

that

M∗n = 4B4 +B3 +B2n2 +B(6n−4)+2(n2−1)

≤ 4B4 +B3 +B2n2 +6n ·B+2n2

≤ 4B4 +B3 +B2n2 +6n2B2 +2n2B2

= 4B4 +B3 +9B2n2

< 4B8 +2B3,

since B = 11n2 > 9n2. 2

Let the index of the unique bridge edge in E ′ (guaranteed by Claim 3.13) be γ ∈ [n2].

The connectedness property implies that we need to select at least one source internal

206

edge incident to `′iL and at least one sink internal edge incident to r′iR . Let the index of the

source internal edge incident to `′iL be jL and the index of the sink internal edge incident

to r′iR be jR.

Claim 3.14. iL = iR and jL = jR = γ .

Proof. By the connectedness property, there is a path from `iL to some vertex in riR ∪

biB . This path starts with `iL → `′iL → v1
jL and has to use the γ th bridge edge. By the

construction of the main gadget (all edges are either downwards or towards the right), this

path can never reach any row R` for ` < jL. Therefore, γ ≥ jL. By similar logic, we get

jR ≥ γ . Therefore jR ≥ jL.

If jR > jL, then the weight of the source internal edge and the sink internal edge

is B5(n2− jL + jR) ≥ B5(n2 + 1). We already have a contribution of 4B4 + B3 to the

weight of E ′ from Claim 3.12 and Claim 3.13. Therefore, the weight of E ′ is at least

4B4 +B3 +B2(n2 +1). However, from Equation 3.5, we get that

M∗n = 4B4 +B3 +B2n2 +B(6n−4)+2(n2−1)

≤ 4B4 +B3 +B2n2 +6n ·B+2n2

≤ 4B4 +B3 +B2n2 +6n2 ·B+2n2 ·B

= 4B4 +B3 +B2n2 +8n2 ·B

< 4B4 +B3 +B2(n2 +1),

since B = 11n2 > 8n2. Hence jR = jR = γ . Observing iL = b jL
n c and iR = b jR

n c, we obtain

iL = iR. 2

207

Let iL = iR = α and γ = n(α−1)+β . We will show that below E ′ represents the

pair (α,β). For this, we need to show three conditions:

1. The only left source edge in E ′ is the one incident to `α and the only right sink edge

in E ′ is the one incident to rα .

2. The only top source edge in E ′ is the one incident to tβ and the only bottom sink

edge in E ′ is the one incident to bβ .

3. The pair (α,β) is in S.

The first statement above follows from Claim 3.12 and Claim 3.14. To prove the

second claim it is sufficient to show that iT = iB = β , since Claim 3.12 implies E ′ contains

exactly one top source edge and exactly one bottom sink edge. We now continue with the

proof of the last two statements mentioned above:

Claim 3.15. E ′ contains exactly 2n−2 inrow right edges, all of them from row Rγ . As a

corollary, we get that there are two shortcuts incident to row Rγ , i.e., (α,β) ∈ S and also

that E ′ uses both these shortcuts.

Proof. Claim 3.14 implies jL = jR = γ . Hence the `α ; rα ∪ biB path in E ′ contains a

v0
γ ; vn

γ subpath P1. By the construction of the main gadget, we cannot reach an upper

row from a lower row. Hence this subpath P1 must be the path v0
γ → v2

γ → . . .→ vn
γ . This

path P1 can at most use the unique shortcut edge incident to row Rγ and column Cβ to

replace an inrow right edge. Hence P1 uses at least n−1 inrow right edges, with equality

only if Rγ has a shortcut incident to it.

208

Similarly, the `α ∪ tiT ; rα path in E ′ contains a vn+1
γ ; v2n+1

γ subpath P2. By the

construction of the main gadget, we cannot reach an upper row from a lower row. Hence

this subpath P2 must be the path vn+1
γ → vn+2

γ → . . .→ v2n+1
γ . This path P2 can at most

use the unique shortcut edge incident to row Rγ and column Cn+β to replace an inrow

right edge. Hence P2 uses at least n−1 inrow right edges, with equality only if Rγ has a

shortcut incident to it.

Clearly, the sets of inrow edges used by P1 and P2 are disjoint, and hence E ′ contains

at least 2n−2 inrow right edges from row Rγ . Suppose E ′ contains at least 2n−1 inrow

right edges. Then it incurs a weight of 3B · (2n− 1). From Claim 3.12, Claim 3.13 and

Claim 3.14 we already have a contribution of 4B4 +B3 +B2n2. Therefore the weight of

E ′ is at least 4B4 +B3 +B2n2 +3B · (2n−1).

However, from Equation 3.5, we get that

M∗n = 4B4 +B3 +B2n2 +B(6n−4)+2(n2−1)

≤ 4B4 +B3 +B2n2 +B(6n−4)+2n2

< 4B4 +B3 +B2n2 +3B · (2n−1),

since B = 11n2 > 2n2. Therefore, E ′ can only contain at most 2n− 2 inrow right edges.

Hence there must be two shortcut edges incident to row Rγ , which are both used by E ′.

Since γ = n(α − 1) + β , the fact that row Rγ has shortcut edges incident to it implies

(α,β) ∈ S. 2

Note that the remaining budget left for the weight of E ′ is at most 2(n2−1).

Claim 3.16. iT = iB = β

209

Proof. Recall that the only bridge edge used is the one on row Rγ . So the tiT ; rα ∪biB

path in E ′ contains a viT
1 ; vn

γ subpath P3 (of interrow edges). By Claim 3.15, all inrow

right edges are only from row Rγ . As the only remaining budget is 2(n2−1), we cannot

use any other shortcuts or inrow right edges since B = 11n2 > 2(n2− 1). Therefore, P3

contains another viT
1 ; viT

γ subpath P′3. If iT 6= β , then P′3 incurs weight 2(γ − 1). Note

that we also pay a weight of 1 to use half of the interrow edge when we use the shortcut

edge which is incident to row Rγ and column Cβ .

Similarly, the `α ∪ tiT ; biB path in E ′ contains a vn+1
γ ; vn+iB

n2 subpath P4 (of

interrow edges). By Claim 3.15, all inrow horizontal edges are only from row Rγ . As

the only remaining budget is 2(n2−1), we cannot use any other shortcuts or inrow right

edges. Therefore, P4 contains another vn+iB
γ ; vn+iB

n2 subpath say P′4. If iB 6= β , then P′4

incurs weight 2(n2− γ). Note that we also pay a weight of 1 to use half of the interrow

edge when we use the shortcut edge which is incident to row Rγ and column Cβ .

Suppose without loss of generality that iT 6= β . Then P′3 incurs a weight of 2(γ−1),

and the half interrow edge used incurs an additional weight of 1. Also P′4 incurs a weight

of 2(n2− γ). Hence the total weight incurred is 2(γ−1)+1+2(n2− γ) = 2(n2−1)+1

which is greater than our allowed budget. Hence iT = β . It can be shown similarly that

iB = β . 2

Claim 3.12, Claim 3.14, Claim 3.15 and Claim 3.16 together imply that E ′ repre-

sents (α,β) ∈ S. We now show that weight of E ′ is exactly M∗n .

Lemma 3.22. Weight of E ′ is exactly M∗n

210

Proof. Claim 3.12 contributes a weight of 4B8 to E ′. Claim 3.13 contributes a weight of

B7 to E ′. From the proof of Claim 3.14, we can see that E ′ incurs weight B5n2 from the

source internal edge and sink internal edge. Claim 3.15 implies that E ′ contains exactly

2n− 2 inrow right edges from row Rγ ′ and also both shortcuts incident to row Rγ . For

each of the shortcuts we need to use an additional half interrow edge of weight 1. Hence

this incurs a weight of 3B3 · (2n− 2)+ 2B3 + 2. By reasoning similar to Claim 3.16, E ′

contains at least n2−1 interrow edges. Out of these at most 2 half interrow edges could

have been counted in the above step. Hence this incurs a weight of 2(n2−1)−2.

Therefore, we have weight of E ′ ≥ 4B8+B7+B5n2+
(

3B3 · (2n−2)+2B3+2
)
+(

2(n2−1)−2
)
= M∗n . Hence the weight of E ′ is exactly M∗n . 2

This completes the proof of the second statement of Lemma 3.19.

3.2.3 (Almost) Tight Lower Bound for SCSS on General Graphs

Given our speedup for SCSS in planar graphs (see Section 3.1.2), one may ask if it

is possible to get any similar speedup in general graphs. Our next result shows that the

nO(k) algorithm of Feldman-Ruhl is almost optimal in general graphs:

Theorem 3.14. The STRONGLY CONNECTED STEINER SUBGRAPH problem cannot

be solved in time f (k) · no(k/ logk) where f is an arbitrary function, k is the number of

terminals and n is the number of vertices in the instance, unless ETH fails.

Our proof is similar to the W[1]-hardness proof of Guo et al. [GNS11]. They

showed the W[1]-hardness of SCSS on general graphs parameterized by the number k

211

of terminals by giving a reduction from k-CLIQUE. However, this reduction uses “edge

selection gadgets” and since a k-clique has Θ(k2) edges, the parameter is increased at

least to Θ(k2). Combining with the result of Chen et al. [CHKX06] regarding the non-

existence of an f (k) ·no(k) algorithm for k-CLIQUE under ETH, this gives a lower bound

of f (k) · no(
√

k) for SCSS on general graphs. To avoid the quadratic blowup in the pa-

rameter and thereby get a stronger lower bound, we use the COLORED SUBGRAPH ISO-

MORPHISM (CSI) problem as the source problem of our reduction. For this problem,

Marx [Mar10] gave a f (k) · no(k/ logk) lower bound under ETH, where k = |E(G)| is the

number of edges of the subgraph G to be found in graph H. The reduction of Guo et

al. [GNS11] from CLIQUE can be turned into a reduction from CSI which uses only

|E(G)| edge selection gadgets, and hence the parameter is Θ(|E(G)|). Then the lower

bound of f (k) ·no(k/ logk) transfers from CSI to SCSS.

We now define the COLORED SUBGRAPH ISOMORPHISM problem formally:

COLORED SUBGRAPH ISOMORPHISM (CSI
Input : Undirected graphs G = (VG = {g1,g2, . . . ,g`},EG) and H = (VH ,EH), and a parti-
tion of VH into disjoint subsets H1,H2, . . . ,H`

Question: Is there an injection φ : VG→VH such that

1. For every i ∈ [`] we have φ(gi) ∈ Hi.
2. For every edge {gi,g j} ∈ EG we have {φ(gi),φ(g j)} ∈ EH .

Marx [Mar10] showed the following hardness result:

Theorem 3.15. COLORED SUBGRAPH ISOMORPHISM (CSI) cannot be solved in time

f (r) · no(r/ logr) where f is an arbitrary function, r is the number of edges in G and n is

the number of vertices in H, unless ETH fails.

212

By giving a reduction from CSI to SCSS where k = O(|EG|) we will get a no(k logk)

hardness for SCSS under the ETH, where k is the number of terminals. Consider an

instance (G,H) of CSI. We now construct an instance of SCSS as follows:

• B = {bi | i ∈ [`]}

• C = {cv | v ∈VH}

• C′ = {c′v | v ∈VH}

• D = {duv′ ∪dvu′ | {u,v} ∈ EH}

• A = {auv′ ∪avu′ | {u,v} ∈ EH}

• F = { fi j | 1≤ i, j ≤ ` | gig j ∈ EG}

• V ∗ = B∪C∪C′∪D∪A∪F

• E1 = {(cv,bi) | v ∈ Hi,1≤ i≤ `}

• E2 = {(bi,c′v) | v ∈ Hi,1≤ i≤ `}

• E3 = {(c′v,cv) | v ∈VH}

• E4 = {(cv,dvu′) | {u,v} ∈ EH}

• E5 = {(avu′,c′u) | {u,v} ∈ EH}

• E6 = {(dvu′,avu′) | {u,v} ∈ EH}

• E7 = {(fi j,dvu′)∪ (avu′, fi j) | {u,v} ∈ EH ;v ∈ Hi;u ∈ H j;1≤ i, j ≤ `}

• E∗ = E1∪E2∪E3∪E4∪E5∪E6∪E7

An illustration of the construction for a small graph in given in Figure 3.5. We

imagine that the edges of E4 are colored red to help us argue the proof. Let the termi-

213

nals be T = B∪ F . In the instance of COLORED SUBGRAPH ISOMORPHISM we can

assume the graph G is connected, otherwise we can solve the problem for each connected

component. Therefore k = |T |= `+2|EG|= O(|EG|).

Theorem 3.16. The instance (G,H) of CSI answers YES if and only if there is a solution

for the SCSS instance (V ∗,E∗,T) of size 3`+10|EG|.

Proof.

Suppose the instance (G,H) of CSI answers YES and let φ be the injection from

VG→VH . Then we claim the following set M′ of 3`+10|EG| edges forms a solution for

the SCSS instance:

• M1 = {(c′φ(gi)
,cφ(gi)) | i ∈ [`]}

• M2 = {(bi,c′φ(gi)
) | i ∈ [`]}

• M3 = {(cφ(gi),bi) | i ∈ [`]}

• M4 = {(cφ(gi),dφ(gi)φ ′(g j))∪ (dφ(gi)φ ′(g j),aφ(gi)φ ′(g j))∪ (aφ(gi)φ ′(g j),c
′
φ(g j)

) | gig j ∈

EG;1≤ i, j ≤ `}.

• M5 = {(fi j,dφ(gi)φ ′(g j))∪ (aφ(gi)φ ′(g j), fi j) | gig j ∈ EG;1≤ i, j ≤ `}.

• M′ = M1∪M2∪M3∪M4∪M5

First consider i 6= j such that gig j ∈ EG. Then there is a bi ; b j path in M′, namely

bi→ c′
φ(gi)
→ cφ(gi)→ dφ(gi)φ ′(g j)→ aφ(gi)φ ′(g j)→ c′

φ(g j)
→ cφ(g j)→ b j. Generalizing this

and observing G is connected we can see any two terminals in B are strongly connected.

Now consider two terminals fi j and bq such that 1 ≤ i, j,q ≤ `. The existence of the

214

terminal fi j implies gig j ∈ EG and hence φ(gi)φ(g j) ∈ EH . There is a path in M′ from

fi j to bq: use the path fi j ; dφ(gi)φ ′(g j) → aφ(gi)φ ′(g j) → c′
φ(g j)

→ cφ(g j) → b j followed

by the b j ; bq path (which is shown to exist above). Similarly there is a path in M′

from bq to fi j: use the bq ; bi path (which is shown to exist above) followed by the path

bi ; c′
φ(gi)
→ cφ(gi)→ dφ(gi)φ ′(g j)→ aφ(gi)φ ′(g j)→ fi j. Hence each terminal in B can reach

every terminal in F and vice versa. Finally consider any two terminals in F , say fi j and

fst : fi j can first reach bi and we have seen above that bi can reach any terminal in F . This

shows M′ forms a solution for the SCSS instance.

Now we claim if there is solution of size 3`+10|EG| to the SCSS instance, then the

instance (G,H) of CSI answers YES. Consider a terminal fi j ∈F . The only out-neighbors

of fi j are vertices from D and so we need to pick an edge say (fi j,dvu′) such that v ∈ Hi

and u ∈ H j. Now the only neighbor of dvu′ is avu′ and hence we need to pick this edge as

well. Finally, we also need one incoming edge into fi j since we desire strong connectivity.

So for each fi j, we need three “private” edges in the sense that every terminal in F needs

three such edges in any optimum solution. This uses up 6|EG| of the budget. Referring to

Figure 3.5, we can see any fi j ∈ F needs two “private” red edges: one edge coming out of

some vertex in A and some edge going into a vertex of D. This uses up 4|EG| more from

the budget leaving us with only 3` edges.

Consider bi for i ∈ [`]. First we claim at least three edges must be selected for bi to

have incoming and outgoing paths to the other terminals. The only outgoing edge from

bi is to vertices of C′, and hence we need to pick an edge say (bi,c′v) such that v ∈ Hi.

215

Since the only out-neighbor of c′v is cv, we need to pick this edge as well. We need at

least one incoming edge into bi to account for incoming paths from other terminals to

bi. So each bi needs to have at least three edges selected in order to have incoming and

outgoing paths to other terminals. Moreover, all these edges are clearly ”private”, i.e.,

different for each bi. But as seen in last paragraph, our remaining budget is exactly 3`,

and hence we must selected exactly three such edges for each bi. In other words, once we

select the edges (bi,c′v) and c′v,cv such that v ∈ Hi then we must select the edge (cv,bi).

Else to have paths incoming to bi, if we select the edge (cw,bi) for some w ∈ Hi,w 6= v

then since c′w is the only neighbor of cw we would need to select this edge also causing

four edges to be selected for bi, a contradiction. So for every i ∈ [`], there is a vertex

vi ∈ Hi such that the edges (bi,c′vi
),(c′vi

,cvi) and (cvi,bi) are selected in the solution for

the SCSSS instance. Further these are the only chosen bold black edges corresponding to

bi (refer to Figure 3.5). It also follows for each fi j ∈ F we can select at most three of the

dotted black edges.

Define φ : VG→ VH by φ(gi) = vi for each i ∈ [`]. Since vi ∈ Hi and since the H ′i s

form a disjoint partition of VH the function φ is an injection. Consider any edge gig j ∈EG.

We have seen above that we only pick three black dotted edges per fi j. Suppose for fi j

we have picked the edges (fi j,dvu′),(dvu′ ,avu′) and (avu′, fi j) for some v ∈Hi,u ∈H j. The

only incoming path for fi j is via dvu′ . Also the only outgoing path from bi is via cvi . If

vi 6= v then we will need two other black dotted edges to reach fi j, which is a contradiction

since have already picked the allocated budget of three such edges. Similarly v j = u and

216

the existence of dvu′ vertex implies vu′ ∈ EH , i.e., φ(gi)φ(g j) ∈ EH .

2

Finally we are now ready to prove Theorem 3.14, which we restate below:

Theorem 3.14 . The STRONGLY CONNECTED STEINER SUBGRAPH (SCSS) problem

cannot be solved in time f (k) ·no(k/ logk) where f is an arbitrary function, k is the number

of terminals and n is the number of vertices in the instance, unless ETH fails.

Proof. Observe that the number of terminals k of the SCSS instance is |B∪F |= |V (G)|+

2|EG|=O(|EG|) since we had the assumption that G is connected. The number of vertices

in the SCSS instance is |V ∗| = |VG|+2|VH |+4|EH |+2|EG| = O(|EH |). Therefore from

Theorem 3.15 we can conclude under the ETH there is no f (k) · no(k/ logk) algorithm for

SCSS where n is the number of vertices in the graph and k is the number of terminals. 2

3.2.4 Tight Lower Bound for DSF on Planar DAGs

Even though Feldman and Ruhl [FR06] were able to generalize their nO(k) time

algorithm from SCSS to DSF, we show that, surprisingly, such a generalization is not

possible for our 2O(k logk) ·nO(
√

k) time algorithm for planar SCSS from Section 3.1.2.

Theorem 3.17. The DIRECTED STEINER FOREST problem on planar directed acyclic

graphs (DAGs) is W[1]-hard parameterized by the number k of terminal pairs and there

is no f (k) ·no(k) algorithm for any function f , unless the ETH fails.

This implies that the nO(k) algorithm of Feldman-Ruhl for DSF is optimal, even on

217

planar directed acyclic graphs. As in our lower bound for planar SCSS (see Section 3.2.2),

the proof is by reduction from an instance of k× k GRID TILING problem. However,

unlike in the reduction to SCSS where we needed O(k2) terminals, the reduction to DSF

needs only O(k) pairs of terminals (see Figure 3.6). Since the parameter blowup is linear,

the f (k) · no(k) lower bound for GRID TILING from [Marc] transfers to DSF. We show

hardness for the edge version with integer weights. By Section 3.2.1, our hardness results

also carry over to unweighted vertex version of DSF.

Consider an instance of GRID TILING. We now build an instance of edge-weighted

DSF as shown in Figure 3.6. We consider 2k pairs to be connected: (ai,bi) and (ci,di)

for each i ∈ [k]. We introduce k2 red gadgets where each gadget is an n×n grid. Let the

weight of each black edge be 2.

Definition 3.13. An ai ; bi canonical path is a path from ai to bi which starts with a blue

edge coming out of ai, then follows a horizontal path of black edges and finally ends with

a blue edge going into bi. Similarly an c j ; d j canonical path is a path from c j to d j

which starts with a blue edge coming out of c j, then follows a vertically downward path

of black edges and finally ends with a blue edge going into d j.

218

p q

p1 p2 p3

q1 q2 q3

R3

R2

R4

R5

R6
R7

C7 C8 C10C9 C12C11

e3

e1

e2

f1

f3

f2w3
1

w2
2

w3
1

w4
4

w5
3

w6
2

R8
R9

C0 C1 C2 C3 C4 C5 C6

R1

R0

Figure 3.3: The connector gadget for n = 3. A set of edges representing 3 is highlighted

in the figure.

219

`1

t1 t2 t3

b1 b3 b4

R1

`′1

C0 C1 C2 C3

C7C5 C9C8

g2
2e2,2

b2

C6

t4

C4

r1r′1

`2
`′2 h2

2 f2,2
r2r′2

`3
`′3

r3r′3

`4
`′4

r4r′4

R4

R5

R8

R9

R12

R13

R16

g3
2e2,,3

g2
3e3,2

h3
2 f2,3

h2
3 f3,2

Figure 3.4: The main gadget representing the set {(2,2),(2,3),(3,2)}. The highlighted
edges represent the pair (2,3).

220

𝑐𝑣

𝑎𝑣𝑢′
𝑑𝑣𝑢′

𝑐′𝑤𝑐𝑤𝑐′𝑣

𝑓𝑖𝑗

𝑑𝑤𝑢′

𝑏𝑗

𝑎𝑤𝑢′

𝑏𝑖

𝑓𝑗𝑖

𝑐𝑢 𝑐′𝑢

𝑎𝑢𝑤′𝑑𝑢𝑤′𝑎𝑢𝑣′
𝑑𝑢𝑣′

𝑤𝑢𝑣

Figure 3.5: Part of the construction from Theorem 3.16 with three vertices: v,w of color i
and u of color j and two edges {v,u} and {u,w}.

221

𝑎
1

 𝑎

𝑘

 𝑎
𝑖

𝑏 1

 𝑏
𝑘

 𝑏

𝑖

𝑐 1

𝑐 𝑘

𝑐 𝑗

𝑑
1

𝑑 𝑗

𝑑
𝑘

Δ

Δ
(n

-1
)

Δ
n

Δ

 2
 Δ

Δ

 n

 Δ
 n

Δ
 n

 Δ
 n

Δ
n

Δ

n

Δ

n

Δ
n

Δ

n

Δ

n

Δ
(n

-1
)

Δ
(n

-1
)

Δ
(n

-1
)

Δ
(n

-1
)

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

2
 Δ

 2
 Δ

2
Δ

2
Δ

2
Δ

Δ

 Δ
 n

 Δ
(n

-1
)

Δ

𝑃
𝑖1

 𝑃
𝑖𝑛

𝑄
𝑗1

𝑄
𝑗𝑛

Fi
gu

re
3.

6:
T

he
in

st
an

ce
of

D
SF

cr
ea

te
d

fr
om

an
in

st
an

ce
of

G
ri

d
Ti

lin
g.

222

1

2

1

1

u v

x

y

Figure 3.7: Let u,v be two consecutive vertices on the canonical path say P`
i . Let v be

on the canonical path Q`′
j and let y be the vertex preceding it on this path. If v is a green

vertex then we subdivide the edge (y,v) by introducing a new vertex x and adding two
edges (y,x) and (x,v) of weight 1. We also add an edge (u,x) of weight 1. The idea is if
both the edges (y,v) and (u,v) were being used initially then now we can save a weight
of 1 by making the horizontal path choose (u,x) and then we get (x,v) for free, as it is
already being used by the vertical canonical path.

There are n edge-disjoint ai ; bi canonical paths: let us call them P1
i ,P

2
i , . . . ,P

n
i as

viewed from top to bottom. They are named using magenta color in Figure 3.6. Similarly

we call the canonical paths from c j to d j as Q1
j ,Q

2
j , . . . ,Q

n
j when viewed from left to

right. For each i ∈ [k] and ` ∈ [n] we assign a weight of ∆(n+ 1− `),∆` to the first, last

blue edges of P`
i respectively. Similarly for each j ∈ [k] and ` ∈ [n] we assign a weight

of ∆(n+ 1− `),∆` to the first, last blue edges of Q`
j respectively. Thus the total weight

of first and last blue edges on any canonical path is exactly ∆(n+ 1). The idea is to

choose ∆ large enough such that in any optimum solution the paths between the terminals

will be exactly the canonical paths. We will see ∆ = 4n2 will suffice for our purposes.

Any canonical path uses two blue edges (which sum up to ∆(n+1)), (k+1) black edges

not inside the gadgets and (n− 1) black edges inside each gadget. Since the number of

gadgets each canonical path visits is k and the weight of each black edge is 2, we have the

total weight of any canonical path is ∆(n+1)+2(k+1)+2k(n−1).

Intuitively the k2 gadgets correspond to the k2 sets in the GRID TILING instance.

223

Let us denote the gadget which is the intersection of the ai ; bi path and c j ; d j path by

Gi, j. If (x,y) = si, j ∈ Si, j then we color green the vertex in the gadget Gi, j which is the

unique intersection of the canonical paths Px
i and Qy

j. Then we add a shortcut as shown in

Figure 3.7. The idea is if both the ai ; bi path and c j ; d j path pass through the green

vertex then the ai ; bi path can save a weight of 1 by using the green edge and a vertical

edge to reach the green vertex, instead of paying a weight of 2 to use the horizontal

edge reaching the green vertex. It is easy to see there is an easy solution (without using

green edges) for the DSF instance of weight β = 2k
(

∆(n+ 1)+ 2(k+ 1)+ 2k(n− 1)
)

:

each terminal pair just uses a canonical path and these canonical paths are pairwise edge-

disjoint.

We need a small technical modification: we add one dummy row and column to

the GRID TILING instance. Essentially we now have a dummy index 1. So neither the

first row nor the first column of any Si, j has any elements in the GRID TILING instance.

That is, no green vertex can be in the first row or first column of any gadget. Combining

this fact with the orientation of the edges we get the only gadgets which can intersect any

ai ; bi path are Gi,1,Gi,2, . . . ,Gi,k. Similarly the only gadgets which can intersect any

c j ; d j path are G1, j,G2, j, . . . ,Gk, j.

We now prove two theorems which together give a reduction from GRID TILING to

DSF.

Theorem 3.18. GRID TILING has a solution implies OPT for DSF is at most β − k2.

Proof. For each 1≤ i, j≤ k let si, j ∈ Si, j be the vertex in the solution of the GRID TILING

224

instance. Therefore for every i ∈ k we know that each of the k vertices si,1,si,2, . . . ,si,k

have the same x-coordinate, say αi. Similarly for every j ∈ [k] each of the k vertices

s1, j,s2, j, . . . ,sk, j has the same x-coordinate, say γ j. We now use the canonical path Pαi
i

for (ai,bi) and the canonical path Qγ j
j for (c j,d j). Each of the c j ; d j paths will pay the

full weight of a canonical path, which is ∆(n+1)+2(k+1)+2k(n−1). However each

ai → bi path will encounter a green vertex in each of the k gadgets along its way, and

hence will save one in each gadget (as shown in Figure 3.7) for a total saving of k. Hence

over all the terminals we save a weight of k2, and this is a solution for DSF instance of

weight β − k2. 2

Now we show the other direction which is more involved. First we show some

preliminary lemmas:

Lemma 3.23. In any optimum solution for DSF there is a c j ; d j canonical path for

some j ∈ [k].

Proof. Suppose to the contrary that for some j ∈ [k] there is no canonical c j ; d j path in

the optimum solution. From the orientation of the edges, we know that there is a c j ; d j

path in the optimum solution that starts with the blue edge from Q`
j and ends with a blue

edge from Q`′
j for some `′ > `. We add to the solution those edges of Q`

j which were not

present: in particular we at least add the last edge of Q`
j. Delete from the solution the last

edge of Q`′
j . Both these operations do not change the fact that the current set of edges

forms a solution for DSF. This is because the last (blue) edge of any c j ; d j canonical

path cannot be on any ai ; bi path. Changing the last edge saves us (`′− `)∆≤ ∆ = 4n2.

225

However we have to be careful since we added some edges to the solution. But these

edges are the internal (black) edges of Q`
j, and their weight is 2(k+1)+2k(n−1)< 4n2

since 1≤ k≤ n. Therefore we are able to create a new solution whose weight is less than

that of an optimum solution, which is a contradiction. 2

Note the shortcut described in Figure 3.7 again brings the ai ; bi path back to the

same horizontal canonical path.

Definition 3.14. We call an ai ; bi path as an almost canonical path if it is basically

a canonical path, but can additionally take the small detour given by the green edge in

Figure 3.7. An almost canonical path must however end on the same horizontal level on

which it began.

Lemma 3.24. In any optimum solution for DSF there is an ai ; bi almost canonical path

for every i ∈ [k].

Proof. Suppose to the contrary that for some i ∈ [k] there is no almost canonical ai ; bi

path in the optimum solution. From the orientation of the edges, we know that there is

a ai ; bi path in the optimum solution that starts with the blue edge from P`
i and ends

with a blue edge from P`′
i for some `′ > ` (note that the construction in Figure 3.7 does

not allow any ai ; bi path to climb onto an upper canonical path). We add to the solution

those edges of P`
i which were not present: in particular we at least add the last edge of

P`
i . Delete from the solution the last edge of P`′

i . Both these operations do not change

the fact that the current set of edges forms a solution for DSF: this is because the last

(blue) edge of any ai ; bi canonical path cannot be on any c j ; d j path. Changing the

226

last edge saves us (`′− `)∆ ≤ ∆ = 4n2. But we have to careful: we added some edges

to the solution. But these edges are the internal (black) edges of P`
i , and their weight is

2(k+1)+2k(n−1)< 4n2 since 1≤ k≤ n. So we are able to create a new solution whose

weight is less than that of an optimum solution, which is a contradiction. 2

Theorem 3.19. OPT for DSF is at most β − k2 implies the GRID TILING instance has a

solution.

Proof. Consider any optimum solution say X . By Lemma 3.23 and Lemma 3.24 we

know that X has a ai ; bi almost canonical path and a c j ; d j canonical path for every

1≤ i, j ≤ k. Moreover these set of 2k paths form a solution for DSF. Since any optimum

solution is minimal X is the union of these 2k paths: one for each terminal pair. For the

moment let us forget the modifications we did in Figure 3.7. So the ai ; bi path and

c j ; d j path in X intersect in a unique point (in the gadget Gi, j). The weight of X is

exactly β . However we know that there is a solution of weight at most β − k2. It is easy

to see any ai ; bi almost canonical path and a c j ; d j canonical path can have at most

one edge in common: the edge which comes vertically downwards into the green vertex

(see Figure 3.7). There are k2 gadgets, and there is at most one edge per gadget which

is double counted in X . Hence for each gadget Gi, j there is exactly one edge which is

used by both the ai ; bi almost canonical path and the c j ; d j canonical path in X . So

the endpoint of each of these common edges must be green vertices, and at each such

point we save a weight of one as described in Figure 3.7. Since each ai ; bi path is an

almost canonical path and each c j ; d j path is a canonical path, the green vertices form

227

a solution for the GRID TILING instance. 2

We are now ready the prove Theorem 3.17 (restated below) which essentially says

the nO(k) algorithm of Feldman-Ruhl [FR06] for DSF is optimal.

Theorem 3.17 . The DIRECTED STEINER FOREST problem on planar directed acyclic

graphs (DAGs) is W[1]-hard parameterized by the number k of terminal pairs and there

is no f (k) ·no(k) algorithm for any function f , unless the ETH fails.

Proof. Theorem 3.18 and Theorem 3.19 together imply the W[1]-hardness. It is not hard

to see the graph we constructed in Figure 3.6 is a planar DAG.

Chen et al. [CHKX06] showed for any function f an f (k) · no(k) algorithm for

CLIQUE implies ETH fails. Theorem 3.17 gives a reduction which transforms the prob-

lem of k× k GRID TILING into an instance of DSF with 2k terminal pairs. Composing

this reduction with the reduction of Marx [Marc] from k× k GRID TILING to k-CLIQUE,

we obtain under ETH there is no f (k) · no(k) algorithm for DSF (even on planar DAGs)

for any function f . 2

228

CHAPTER 4

Conclusions and Open Problems

Shadowless Solutions: As a first step towards developing general techniques for estab-

lishing the fixed-parameter tractability of problems on directed graphs, we developed the

framework of shadowless solutions. We gave a general family of problems, called as

“Finding an F-transversal for some T -connected F”, for which we can do random sam-

pling of important separators and obtain a set which is disjoint from a minimum solution

and covers its shadow. After taking the torso operation (which is problem-specific,

but usually straightforward) the general problem reduces to finding a shadowless solu-

tion. For the DIRECTED MULTIWAY CUT problem and the SUBSET-DFVSproblem, we

were able to analyze the structure of shadowless solutions and find them in FPT time

thus giving the first FPT algorithms for these problems parameterized by the size of the

solution. Our algorithms used various tools from the FPT world such as iterative com-

pression, bounded-depth search trees, random sampling of important separators, splitters,

etc. We believe that this general approach will be useful for deciding the fixed-parameter

229

tractability status of other problems in directed graphs. We now describe the two main

open problems for directed graphs. Both these problem fit within our template of “Find-

ing an F-transversal for some T -connected F”. The respective torso operations are

also clear and hence it is enough to find shadowless solutions. Unfortunately, we are

not yet able to understand the structure of shadowless solutions for these problems well

enough to find them in FPT time.

DIRECTED MULTICUT
Input : A directed graph G = (V,E), an integer k and a set of terminal pairs T =
{(s1, t1),(s2, t2), . . . ,(sp, tp)}.
Parameter: k+ p
Output : A set S⊆V (G) of size at most k such that G\S has no si ; ti path for any
i ∈ [p], or “NO” if such a set does not exist.

Open Problem 1: Is DIRECTED MULTICUT FPT parameterized by p+ k? We know

that the problem is FPT on directed acyclic graphs [KPPW12b]. Is DIRECTED MUL-

TICUT FPT parameterized by k for p = 3? In Section 2.2.3, we gave an FPT algorithm

parameterized by k for p = 2. For general p, it is known that the problem is W[1]-hard

parameterized by k [MR14b].

DIRECTED ODD CYCLE TRANSVERSAL
Input : A directed graph G = (V,E) and an integer k.
Parameter: k
Output : A set S ⊆V (G) of size at most k such that G\S has no directed cycles of
odd length, or “NO” if such a set does not exist.

Open Problem 2: Is DIRECTED ODD CYCLE TRANSVERSAL FPT parameterized by k?

The undirected version is known to be FPT parameterized by k [RSV04].

230

Connectivity Problems: We considered two generalizations of the DIRECTED STEINER

TREE (DST) problem, namely the STRONGLY CONNECTED STEINER SUBGRAPH (SCSS)

problem (by requiring two-way connectivity) and the DIRECTED STEINER FOREST (DSF)

problem (by requiring connectivity between terminal pairs). Feldman and Ruhl [FR06]

gave nO(k) algorithms for both these problems where k is the number of terminals/terminal

pairs. In the second part of this thesis, we obtained the following results:

• An 2O(k logk) ·nO(
√

k) algorithm for SCSS on planar graphs (and more generally H-

minor-free graphs for any fixed graph H). We modify the Feldman-Ruhl game in a

highly non-trivial way to obtain a planar structure and then use the Excluded Grid

Minor theorem for planar graphs.

• A matching lower bound for our algorithm for SCSS on planar graphs: there is no

f (k) ·no(
√

k) algorithm under ETH, for any function f .

• An almost tight lower bound for the Feldman-Ruhl algorithm for SCSS on general

graphs: there is no f (k) ·no(k/ logk) algorithm under ETH, for any function f .

• A tight lower bound for the Feldman-Ruhl algorithm for DSF: there is no f (k) ·no(k)

algorithm under ETH, for any function f .

Our results leave open the following two open problems:

Open Problem 3: The best algorithm for SCSS on general graphs is nO(k) [FR06] and

the best known hardness is f (k) ·no(k/ logk). What is the correct time complexity?

A more general problem than SCSS and DSF is the DIRECTED STEINER NET-

WORK (DSN) problem:

231

DIRECTED STEINER NETWORK
Input : A directed graph G = (V,E), a set of terminal pairs T =
{(s1, t1),(s2, t2), . . . ,(sk, tk)}, and a set of demands d1,d2, . . . ,dk.
Output : A set S⊆V (G) of minimum size G[S] has di disjoint si ; ti paths for each
i ∈ [k].

Open Problem 4: Can we design an algorithm for DSN which runs in time nO(d) where

d = ∑
k
i=1 di? This would generalize the nO(k) algorithm of Feldman and Ruhl for DSF.

232

Bibliography

[AAC07] Amit Agarwal, Noga Alon, and Moses Charikar. Improved Approximation
for Directed Cut Problems. In STOC, pages 671–680, 2007. 23

[AGM+10] Arash Asadpour, Michel X. Goemans, Aleksander Madry, Shayan Oveis
Gharan, and Amin Saberi. An O(log n/ log log n)-Approximation Algorithm
for the Asymmetric Traveling Salesman Problem. In SODA, pages 379–389,
2010. 23

[AKK+11] Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause, Daniel Lok-
shtanov, Saket Saurabh, and Dimitrios M. Thilikos. Tight Bounds for Link-
ages in Planar Graphs. In ICALP (1), pages 110–121, 2011. 18

[Aro98] Sanjeev Arora. Polynomial Time Approximation Schemes for Euclidean
Traveling Salesman and other Geometric Problems. J. ACM, 45(5):753–
782, 1998. 8

[BBF99] Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-Approximation Al-
gorithm for the Undirected Feedback Vertex Set Problem. SIAM J. Discrete
Math., 12(3):289–297, 1999. 23

[BBM+13] Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya
Raskhodnikova, and Grigory Yaroslavtsev. Approximation Algorithms for
Spanner Problems and Directed Steiner Forest. Inf. Comput., 222:93–107,
2013. 98

[BBYG00] Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized Algorithms
for the Loop Cutset Problem. J. Artif. Intell. Res. (JAIR), 12:219–234, 2000.
25, 74

233

[BCE+11] MohammadHossein Bateni, Chandra Chekuri, Alina Ene, Moham-
mad Taghi Hajiaghayi, Nitish Korula, and Dániel Marx. Prize-Collecting
Steiner Problems on Planar Graphs. In SODA, pages 1028–1049, 2011. 100

[BDD+13] Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin,
Daniel Lokshtanov, and Michal Pilipczuk. An O(ck · n) 5-Approximation
Algorithm for Treewidth. In FOCS, pages 499–508, 2013. 125

[BDFH09] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny
Hermelin. On Problems Without Polynomial Kernels. J. Comput. Syst. Sci.,
75(8):423–434, 2009. 16

[BDHK06] Dietmar Berwanger, Anuj Dawar, Paul Hunter, and Stephan Kreutzer. DAG-
Width and Parity Games. In STACS, pages 524–536, 2006. 24

[BDT11] Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT.
In STOC, pages 459–468, 2011. 72

[BEKP13] Edouard Bonnet, Bruno Escoffier, Eun Jung Kim, and Vangelis Th. Paschos.
On Subexponential and FPT-Time Inapproximability. In IPEC, pages 54–
65, 2013. 9

[Bel62] Richard Bellman. Dynamic Programming Treatment of the Travelling
Salesman Problem. Journal of the ACM (JACM), 9(1):61–63, 1962. 10

[BEP09] Nicolas Bourgeois, Bruno Escoffier, and Vangelis Th. Paschos. Efficient
Approximation of Min Set Cover by Moderately Exponential Algorithms.
Theor. Comput. Sci., 410(21-23):2184–2195, 2009. 9

[BFL+09] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx,
Saket Saurabh, and Dimitrios M. Thilikos. (Meta) Kernelization. In FOCS,
pages 629–638, 2009. 100

[BFPV13] Ivan Bliznets, Fedor V. Fomin, Michal Pilipczuk, and Yngve Villanger.
Largest Chordal and Interval Subgraphs Faster Than 2n. In ESA, pages
193–204, 2013. 10

[BG04] Dietmar Berwanger and Erich Grädel. Entanglement - A Measure for the
Complexity of Directed Graphs with Applications to Logic and Games. In
LPAR, pages 209–223, 2004. 24

[BH06] Andreas Björklund and Thore Husfeldt. Inclusion–Exclusion Algorithms
for Counting Set Partitions. In FOCS, pages 575–582, 2006. 9

[BHKK07] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto.
Fourier Meets Möbius: Fast Subset Convolution. In STOC, pages 67–74,
2007. 99

234

[BHM11] MohammadHossein Bateni, Mohammad Taghi Hajiaghayi, and Dániel
Marx. Approximation Schemes for Steiner Forest on Planar Graphs and
Graphs of Bounded Treewidth. J. ACM, 58(5):21, 2011. 100

[Bjö14] Andreas Björklund. Determinant Sums for Undirected Hamiltonicity. SIAM
J. Comput., 43(1):280–299, 2014. 10

[BKM09] Glencora Borradaile, Philip N. Klein, and Claire Mathieu. An O(n logn)
Approximation Scheme for Steiner Tree in Planar Graphs. ACM Transac-
tions on Algorithms, 5(3), 2009. 100

[BL11] Paul Bonsma and Daniel Lokshtanov. Feedback Vertex Set in Mixed
Graphs. In WADS, pages 122–133, 2011. 74

[BLP09] Hans L. Bodlaender, Daniel Lokshtanov, and Eelko Penninkx. Planar Ca-
pacitated Dominating Set Is W[1]-Hard. In IWPEC, pages 50–60, 2009.
168

[Bod91] Hans L. Bodlaender. On Disjoint Cycles. In WG, pages 230–238, 1991. 25,
74

[CC14] Chandra Chekuri and Julia Chuzhoy. Polynomial Bounds for the Grid-
Minor Theorem. In STOC, pages 60–69, 2014. 19

[CCC+99] Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel,
Sudipto Guha, and Ming Li. Approximation Algorithms for Directed
Steiner Problems. J. Algorithms, 33(1):73–91, 1999. 98

[CCH+12] Rajesh Hemant Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi,
Marcin Pilipczuk, and Michal Pilipczuk. Designing FPT Algorithms for
Cut Problems Using Randomized Contractions. In FOCS, pages 460–469,
2012. 18

[CCHM12] Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and
Dániel Marx. Directed Subset Feedback Vertex Set Is Fixed-Parameter
Tractable. In ICALP (1), pages 230–241, 2012. 20, 26, 29

[CCL10] Yixin Cao, Jianer Chen, and Yang Liu. On Feedback Vertex Set: New
Measure and New Structures. In SWAT, pages 93–104, 2010. 25, 74

[CFG13] Rajesh Hemant Chitnis, Fedor V. Fomin, and Petr A. Golovach. Parameter-
ized Complexity of the Anchored k-Core Problem for Directed Graphs. In
FSTTCS, pages 79–90, 2013. 20

[CFJR07] Liming Cai, Michael R. Fellows, David W. Juedes, and Frances A. Rosa-
mond. The Complexity of Polynomial-Time Approximation. Theory Com-
put. Syst., 41(3):459–477, 2007. 168

235

[CFL+08] Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger.
Improved Algorithms for Feedback Vertex Set Problems. J. Comput. Syst.
Sci., 74(7):1188–1198, 2008. 16, 25, 74, 77

[CFL+13] Rajesh Hemant Chitnis, Fedor V. Fomin, Daniel Lokshtanov, Pranabendu
Misra, M. S. Ramanujan, and Saket Saurabh. Faster Exact Algorithms for
Some Terminal Set Problems. In IPEC, pages 150–162, 2013. 10

[CHK13] Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Guy Kortsarz.
Fixed-Parameter and Approximation Algorithms: A New Look. In IPEC,
pages 110–122, 2013. 9

[CHKX06] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong Computa-
tional Lower Bounds via Parameterized Complexity. J. Comput. Syst. Sci.,
72(8):1346–1367, 2006. 15, 168, 184, 212, 228

[CHM14] Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx.
Tight Bounds for Planar Strongly Connected Steiner Subgraph with Fixed
Number of Terminals (and Extensions). In SODA, pages 1782–1801, 2014.
26

[CHM12] R. Chitnis, M. Hajiaghayi, and D. Marx. Fixed-Parameter Tractability of Di-
rected Multiway Cut Parameterized by the Size of the Cutset. SIAM Journal
on Computing, 42(4):1674–1696, 2013. A preliminary version appeared in
SODA ’12. 20, 25, 26, 28, 29, 38

[Chr76] Nicos Christofides. Worst-case Analysis of a New Heuristic for the Travel-
ling Salesman Problem. Technical report, Technical Report 388, Graduate
School of Industrial Administration, CMU, 1976. 23

[CK09] Julia Chuzhoy and Sanjeev Khanna. Polynomial Flow-Cut Gaps and Hard-
ness of Directed Cut Problems. J. ACM, 56(2), 2009. 23

[CKK+06] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and
D. Sivakumar. On the Hardness of Approximating Multicut and Sparsest-
Cut. Computational Complexity, 15(2):94–114, 2006. 23

[CKW09] Marek Cygan, Lukasz Kowalik, and Mateusz Wykurz. Exponential-time
Approximation of Weighted Set Cover. Inf. Process. Lett., 109(16):957–
961, 2009. 9

[CKX10] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved Upper Bounds for Vertex
Cover. Theor. Comput. Sci., 411(40-42):3736–3756, 2010. 15

[CLL+08] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A
Fixed-Parameter Algorithm for the Directed Feedback Vertex Set Problem.
J. ACM, 55(5), 2008. 16, 20, 26, 74, 76, 77

236

[CLL09] Jianer Chen, Yang Liu, and Songjian Lu. An Improved Parameterized
Algorithm for the Minimum Node Multiway Cut Problem. Algorithmica,
55(1):1–13, 2009. 20, 21, 29, 34

[CMPP13] Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk.
The Planar Directed K-Vertex-Disjoint Paths Problem Is Fixed-Parameter
Tractable. In FOCS, pages 197–206, 2013. 18

[CNP+11] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Jo-
han M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving Connectiv-
ity Problems Parameterized by Treewidth in Single Exponential Time. In
FOCS, pages 150–159, 2011. 25, 74

[Coo71] Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In
STOC, pages 151–158, 1971. 6

[CPPW13a] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wo-
jtaszczyk. On Multiway Cut Parameterized Above Lower Bounds. TOCT,
5(1):3, 2013. 29, 61

[CPPW13b] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Woj-
taszczyk. Subset Feedback Vertex Set Is Fixed-Parameter Tractable. SIAM
J. Discrete Math., 27(1):290–309, 2013. 75

[DF95] Rodney G. Downey and Michael R. Fellows. Fixed-Parameter Tractabil-
ity and Completeness II: On Completeness for W[1]. Theor. Comput. Sci.,
141(1&2):109–131, 1995. 13

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity.
Springer-Verlag, 1999. 530 pp. 11, 25, 74

[DF13] Rodney G Downey and Michael R Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013. 11, 12

[DFHT04] Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dim-
itrios M. Thilikos. Bidimensional Parameters and Local Treewidth. SIAM
J. Discrete Math., 18(3):501–511, 2004. 20

[DFHT05a] Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dim-
itrios M. Thilikos. Fixed-Parameter Algorithms for (k, r)-center in Planar
Graphs and Map Graphs. ACM Transactions on Algorithms, 1(1):33–47,
2005. 20

[DFHT05b] Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dim-
itrios M. Thilikos. Subexponential Parameterized Algorithms on Bounded-
Genus Graphs and H-minor-free Graphs. J. ACM, 52(6):866–893, 2005. 19,
20

237

[DFL+07] Frank Dehne, Michael R. Fellows, Michael A. Langston, Frances A. Rosa-
mond, and Kim Stevens. An O(2O(k)n3) FPT Algorithm for the Undirected
Feedback Vertex Set Problem. Theory Comput. Syst., 41(3):479–492, 2007.
16, 25, 74, 77

[DFMR08] Rodney G. Downey, Michael R. Fellows, Catherine McCartin, and
Frances A. Rosamond. Parameterized Approximation of Dominating Set
Problems. Inf. Process. Lett., 109(1):68–70, 2008. 9

[DFRS04] Frank Dehne, Michael R. Fellows, Frances A. Rosamond, and Peter Shaw.
Greedy Localization, Iterative Compression, Modeled Crown Reductions:
New FPT Techniques, an Improved Algorithm for Set Splitting, and a Novel
2k Kernelization for Vertex Cover. In IWPEC, pages 271–280, 2004. 17

[DFT08] Frederic Dorn, Fedor V. Fomin, and Dimitrios M. Thilikos. Subexponential
Parameterized Algorithms. Computer Science Review, 2(1):29–39, 2008.
20

[DGHK01] Evgeny Dantsin, Michael Gavrilovich, Edward A. Hirsch, and Boris Konev.
MAX SAT Approximation Beyond the Limits of Polynomial-Time Approx-
imation. Ann. Pure Appl. Logic, 113(1-3):81–94, 2001. 9

[DH04a] Erik D. Demaine and Mohammad Taghi Hajiaghayi. Diameter and
Treewidth in Minor-Closed Graph Families, Revisited. Algorithmica,
40(3):211–215, 2004. 20

[DH04b] Erik D. Demaine and Mohammad Taghi Hajiaghayi. Equivalence of Local
Treewidth and Linear Local Treewidth and its Algorithmic Applications. In
SODA, pages 840–849, 2004. 20

[DH05a] Erik D. Demaine and Mohammad Taghi Hajiaghayi. Bidimensionality:
New Connections between FPT Algorithms and PTASs. In SODA, pages
590–601, 2005. 20

[DH05b] Erik D. Demaine and Mohammad Taghi Hajiaghayi. Graphs Excluding a
Fixed Minor Have Grids as Large as Treewidth, with Combinatorial and Al-
gorithmic Applications Through bBidimensionality. In SODA, pages 682–
689, 2005. 19, 20, 109, 124

[DH08] Erik D. Demaine and MohammadTaghi Hajiaghayi. The Bidimensionality
Theory and Its Algorithmic Applications. Comput. J., 51(3):292–302, 2008.
20, 100

[DHK09] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Philip N. Klein. Node-
Weighted Steiner Tree and Group Steiner Tree in Planar Graphs. In ICALP
(1), pages 328–340, 2009. 100

238

[DHN+04] Erik D. Demaine, Mohammad Taghi Hajiaghayi, Naomi Nishimura, Prab-
hakar Ragde, and Dimitrios M. Thilikos. Approximation Algorithms for
Classes of Graphs Excluding Single-Crossing Graphs as Minors. J. Com-
put. Syst. Sci., 69(2):166–195, 2004. 20

[DHT05] Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Exponential Speedup of Fixed-Parameter Algorithms for Classes of Graphs
Excluding Single-Crossing Graphs as Minors. Algorithmica, 41(4):245–
267, 2005. 20

[DHT06] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos.
The Bidimensional Theory of Bounded-Genus Graphs. SIAM J. Discrete
Math., 20(2):357–371, 2006. 20

[DJP+94] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Sey-
mour, and Mihalis Yannakakis. The Complexity of Multiterminal Cuts.
SIAM J. Comput., 23(4):864–894, 1994. 60

[Dru12] Andrew Drucker. New Limits to Classical and Quantum Instance Compres-
sion. In FOCS, pages 609–618, 2012. 16

[DS05] Irit Dinur and Samuel Safra. On the Hardness of Approximating Minimum
Vertex Cover. Annals of Mathematics, pages 439–485, 2005. 8

[DvM10] Holger Dell and Dieter van Melkebeek. Satisfiability Allows no Nontrivial
Sparsification Unless the Polynomial-Time Hierarchy Collapses. In STOC,
pages 251–260, 2010. 16

[DW71] S. E. Dreyfus and R. A. Wagner. The Steiner Problem in Graphs. Networks,
1(3):195–207, 1971. 99

[Edm65] Jack Edmonds. Paths, Trees, and Flowers. Canad. J. Math., 17:449–467,
1965. 5

[EFG+09] Rosa Enciso, Michael R. Fellows, Jiong Guo, Iyad A. Kanj, Frances A.
Rosamond, and Ondrej Suchý. What Makes Equitable Connected Partition
Easy. In IWPEC, pages 122–133, 2009. 168

[EKM12] David Eisenstat, Philip N. Klein, and Claire Mathieu. An Efficient
Polynomial-time Approximation Scheme for Steiner Forest in Planar
Graphs. In SODA, pages 626–638, 2012. 100

[ENSS95] Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan. Approximat-
ing Minimum Feedback Sets and Multi-Cuts in Directed Graphs. In IPCO,
pages 14–28, 1995. 23

239

[Fei98] U. Feige. A Threshold of lnn for Approximating Set Cover. Journal of the
ACM, 45(4):634–652, 1998. 8

[FF56] L.R. Ford and D.R. Fulkerson. Maximal Flow Through A Network. Canad.
J. Math., 8:399–404, 1956. 60

[FF62] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton University
Press, Princeton, N.J., 1962. 59

[FG01] Markus Frick and Martin Grohe. Deciding First-Order Properties of Locally
Tree-decomposable Structures. J. ACM, 48(6):1184–1206, 2001. 100, 101

[FG06] Jorge Flum and Martin Grohe. Parameterized Complexity Theory. Springer-
Verlag, 2006. 493 pp. 11

[FGK+10] Fedor V. Fomin, Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Saket
Saurabh. Iterative Compression and Exact Algorithms. Theor. Comput. Sci.,
411(7-9):1045–1053, 2010. 17, 77

[FGPR08] Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin, and Igor Razgon. On
the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algo-
rithms. Algorithmica, 52(2):293–307, 2008. 10

[FGT09] Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Contraction
Bidimensionality: The Accurate Picture. In ESA, pages 706–717, 2009. 20

[FK10] Fedor V Fomin and Dieter Kratsch. Exact Exponential Algorithms.
Springer, 2010. 10

[FLRS11] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh.
Bidimensionality and EPTAS. In SODA, pages 748–759, 2011. 20

[FLS12] Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality
and Geometric Graphs. In SODA, pages 1563–1575, 2012. 20

[FLST10] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thi-
likos. Bidimensionality and Kernels. In SODA, pages 503–510, 2010. 20

[FR06] Jon Feldman and Matthias Ruhl. The Directed Steiner Network Prob-
lem is Tractable for a Constant Number of Terminals. SIAM J. Comput.,
36(2):543–561, 2006. 99, 101, 103, 104, 106, 107, 108, 126, 217, 228, 231

[FS11] Lance Fortnow and Rahul Santhanam. Infeasibility of Instance Compres-
sion and Succinct PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011.
16

240

[GG07] Martin Grohe and Magdalena Grüber. Parameterized Approximability of
the Disjoint Cycle Problem. In ICALP, pages 363–374, 2007. 9

[GGH+06] Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian
Wernicke. Compression-Based Fixed-Parameter Algorithms for Feedback
Vertex Set and Edge Bipartization. J. Comput. Syst. Sci., 72(8):1386–1396,
2006. 16, 25, 74, 77

[GHK+10] Robert Ganian, Petr Hlinený, Joachim Kneis, Daniel Meister, Jan Ob-
drzálek, Peter Rossmanith, and Somnath Sikdar. Are There Any Good Di-
graph Width Measures? In IPEC, pages 135–146, 2010. 24

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-completeness. W. H. Freeman and Co., San
Francisco, Calif., 1979. 6, 7

[GNS11] Jiong Guo, Rolf Niedermeier, and Ondrej Suchý. Parameterized Complex-
ity of Arc-Weighted Directed Steiner Problems. SIAM J. Discrete Math.,
25(2):583–599, 2011. 99, 100, 167, 211, 212

[Gui11] Sylvain Guillemot. FPT Algorithms for Path-Transversal and Cycle-
Transversal Problems. Discrete Optimization, 8(1):61–71, 2011. 67, 71

[GVY96] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate
Max-Flow Min-(Multi)Cut Theorems and Their Applications. SIAM J.
Comput., 25(2):235–251, 1996. 23

[GVY04] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Multiway Cuts in
Node Weighted Graphs. J. Algorithms, 50(1):49–61, 2004. 22, 60, 61

[Hak71] S L Hakimi. Steiner’s Problem in Graphs and Its Implications. Networks,
1:113–133, 1971. 96

[Hås96] Johan Håstad. Clique is Hard to Approximate Within n1−ε . In FOCS, 1996.
8

[HK] Eran Halperin and Robert Krauthgamer. Polylogarithmic Inapproximability.
STOC ’03, pages 585–594. 98

[HK62] Michael Held and Richard M Karp. A Dynamic Programming Approach
to Sequencing Problems. Journal of the Society for Industrial & Applied
Mathematics, 10(1):196–210, 1962. 10

[HK08] Paul Hunter and Stephan Kreutzer. Digraph Measures: Kelly Decomposi-
tions, Games, and Orderings. Theor. Comput. Sci., 399(3):206–219, 2008.
24

241

[HKMN08] Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Nieder-
meier. Fixed-Parameter Algorithms for Cluster Vertex Deletion. In LATIN,
pages 711–722, 2008. 16, 77

[Hoc97] Ed. Dorit Hochbaum. Approximation Algorithms for NP-hard problems.
PWS Publishing Co., Boston, MA, USA, 1997. 8

[iKK14] Ken ichi Kawarabayashi and Stephan Kreutzer. An Excluded Grid Theorem
for Digraphs with Forbidden Minors. In SODA, pages 72–81, 2014. 25

[iKT11] Ken ichi Kawarabayashi and Mikkel Thorup. The Minimum k-way Cut
of Bounded Size is Fixed-Parameter Tractable. In FOCS, pages 160–169,
2011. 18

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT.
J. Comput. Syst. Sci., 62(2), 2001. 15, 167

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Prob-
lems Have Strongly Exponential Complexity? J. Comput. System Sci.,
63(4):512–530, 2001. 15, 167

[JLR+13] Mark Jones, Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and On-
drej Suchý. Parameterized Complexity of Directed Steiner Tree on Sparse
Graphs. In ESA, pages 671–682, 2013. 101

[JRST01a] Thor Johnson, Neil Robertson, Paul D. Seymour, and Robin Thomas. Di-
rected Tree-Width. J. Comb. Theory, Ser. B, 82(1):138–154, 2001. 24, 25

[JRST01b] Thor Johnson, Neil Robertson, Paul D. Seymour, and Robin Thomas. Ex-
cluding a Grid Minor in Directed Graphs. Unplublished manuscript, 2001.
25

[Kar72] Richard M. Karp. Reducibility Among Combinatorial Problems. In Com-
plexity of Computer Computations, pages 85–103, 1972. 6, 74, 96

[Kho02] Subhash Khot. On the Power of Unique 2-prover 1-round Games. In STOC,
pages 767–775, 2002. 8, 23

[KKK12] Naonori Kakimura, Kenichi Kawarabayashi, and Yusuke Kobayashi. Erdös-
Pósa Property and Its Algorithmic Applications: Parity Constraints, Subset
Feedback Set, and Subset Packing. In SODA, pages 1726–1736, 2012. 75

[KM] Philip N. Klein and Dániel Marx. Solving Planar k-Terminal Cut in O(nc
√

k)
time. ICALP ’12, pages 569–580. 109, 125

242

[KPPW12a] Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Magnus
Wahlström. Fixed-Parameter Tractability of Multicut in Directed Acyclic
Graphs. In ICALP (1), pages 581–593, 2012. 20, 25

[KPPW12b] Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Magnus
Wahlström. Fixed-Parameter Tractability of Multicut in Directed Acyclic
Graphs. In ICALP (1), pages 581–593, 2012. 230

[KPS04] Iyad A. Kanj, Michael J. Pelsmajer, and Marcus Schaefer. Parameterized
Algorithms for Feedback Vertex Set. In IWPEC, pages 235–247, 2004. 25,
74

[KR08] Subhash Khot and Oded Regev. Vertex Cover Might be Hard to Approxi-
mate to Within 2− ε . J. Comput. Syst. Sci., 74(3):335–349, 2008. 8

[Lev71] A Levin. Algorithm for the Shortest Connection of a Group of Graph Ver-
tices. Soviet Math. Dokl., 12:1477–1481, 1971. 96

[LM13] Daniel Lokshtanov and Dániel Marx. Clustering With Local Restrictions.
Inf. Comput., 222:278–292, 2013. 20

[LMS12] Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Kernelization -
Preprocessing with a Guarantee. In The Multivariate Algorithmic Revolu-
tion and Beyond, pages 129–161, 2012. 16

[LMSL92] Chung-Lun Li, S. Thomas McCormick, and David Simchi-Levi. The point-
to-point delivery and connection problems: Complexity and algorithms.
Discrete Applied Mathematics, 36(3):267–292, 1992. 99

[LNR+12] Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ra-
manujan, and Saket Saurabh. Faster Parameterized Algorithms using Linear
Programming. CoRR, abs/1203.0833, 2012. 29

[LR12] Daniel Lokshtanov and M. S. Ramanujan. Parameterized Tractability of
Multiway Cut with Parity Constraints. In ICALP (1), pages 750–761, 2012.
20

[Mara] Dániel Marx. http://www.cs.bme.hu/ dmarx/papers/bertinoro-spider-
talk.pdf. 21

[Marb] Dániel Marx. http://www.cs.bme.hu/ dmarx/papers/marx-warsaw-fpt3. 13

[Marc] Dániel Marx. On the Optimality of Planar and Geometric Approximation
Schemes. FOCS ’07, pages 338–348. 168, 183, 184, 218, 228

[Mar06] Dániel Marx. Parameterized Graph Separation Problems. Theor. Comput.
Sci., 351(3):394–406, 2006. 20, 21, 25, 29, 34, 61

243

http://www.cs.bme.hu/~dmarx/papers/bertinoro-spider-talk.pdf
http://www.cs.bme.hu/~dmarx/papers/bertinoro-spider-talk.pdf
http://www.cs.bme.hu/~dmarx/papers/marx-warsaw-fpt3

[Mar08] Dániel Marx. Parameterized Complexity and Approximation Algorithms.
Comput. J., 51(1):60–78, 2008. 9

[Mar10] Dániel Marx. Can You Beat Treewidth? Theory of Computing, 6(1):85–112,
2010. 212

[Mar12a] Dániel Marx. A Tight Lower Bound for Planar Multiway Cut with Fixed
Number of Terminals. In ICALP (1), pages 677–688, 2012. 168

[Mar12b] Dániel Marx. Randomized Techniques for Parameterized Algorithms. In
IPEC, page 2, 2012. 9

[Mar13] Dániel Marx. Completely Inapproximable Monotone and Antimonotone
Parameterized Problems. J. Comput. Syst. Sci., 79(1):144–151, 2013. 9

[Meh84] Kurt Mehlhorn. Data Structures and Algorithms 2: Graph Algorithms and
NP-Completeness. Springer, 1984. 25, 74

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-
bridge University Press, 1995. 9

[MR09] Dániel Marx and Igor Razgon. Constant Ratio Fixed-parameter Approxima-
tion of the Edge Multicut problem. Inf. Process. Lett., 109(20):1161–1166,
2009. 17

[MR11] Dániel Marx and Igor Razgon. Fixed-parameter Tractability of Multicut
Parameterized by the Size of the Cutset. In STOC, pages 469–478, 2011.
16, 20, 27, 28, 29, 33, 38, 39, 61, 72, 73, 77

[MR14a] Dániel Marx and Igor Razgon. Fixed-Parameter Tractability of Multicut
Parameterized by the Size of the Cutset. SIAM J. Comput., 43(2):355–388,
2014. 25, 27

[MR14b] Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut pa-
rameterized by the size of the cutset. SIAM J. Comput., 43(2):355–388,
2014. 230

[MRS11] Neeldhara Misra, Venkatesh Raman, and Saket Saurabh. Lower Bounds on
Kernelization. Discrete Optimization, 8(1):110–128, 2011. 16

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. Cambridge University
Press, 2005. 9

[NF97] Madan Natu and Shu-Cherng Fang. The Point-to-Point Connection Problem
- Analysis and Algorithms. Discrete Applied Mathematics, 78(1-3):207–
226, 1997. 99

244

[Nie06] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Uni-
versity Press, 2006. 312 pp. 11

[NSS95] Joseph Naor, Leonard Schulman, and Aravind Srinivasan. Splitters and
Near-Optimal Derandomization. In FOCS, 1995. pages 182-191. 44

[Obd06] Jan Obdrzálek. DAG-width: Connectivity Measure for Directed Graphs. In
SODA, pages 814–821, 2006. 24

[PPSvL13] Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van
Leeuwen. Subexponential-Time Parameterized Algorithm for Steiner Tree
on Planar Graphs. In STACS, pages 353–364, 2013. 101

[Pul12] William R. Pulleyblank. Edmonds, Matching and the Birth of Polyhedral
Combinatorics. Documenta Mathematica, pages 181–197, 2012. 5

[Ram96] S Ramanathan. Multicast Tree Generation in Networks with Asymmetric
Links. IEEE/ACM Transactions on Networking (TON), 4(4):558–568, 1996.
97

[Raz07] Igor Razgon. Computing Minimum Directed Feedback Vertex Set in
O(1.9977n). In ICTCS, pages 70–81, 2007. 10

[RO09] Igor Razgon and Barry O’Sullivan. Almost 2-SAT is Fixed-Parameter
Tractable. J. Comput. Syst. Sci., 75(8):435–450, 2009. 16, 20, 29, 77

[Rob86] J. M. Robson. Algorithms for Maximum Independent Sets. J. Algorithms,
7(3):425–440, 1986. 14

[RS86] Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a Planar
Graph. J. Comb. Theory, Ser. B, 41(1):92–114, 1986. 18, 19

[RS04] Neil Robertson and Paul D. Seymour. Graph Minors. XX. Wagner’s Con-
jecture. J. Comb. Theory, Ser. B, 92(2):325–357, 2004. 18

[RSS06] Venkatesh Raman, Saket Saurabh, and C. R. Subramanian. Faster Fixed
Parameter Tractable Algorithms for Finding Feedback Vertex Sets. ACM
Transactions on Algorithms, 2(3):403–415, 2006. 25, 74

[RST94] Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly Excluding
a Planar Graph. J. Comb. Theory, Ser. B, 62(2):323–348, 1994. 19

[RSV04] Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding Odd Cycle
Transversals. Oper. Res. Lett., 32(4):299–301, 2004. 16, 18, 26, 77, 230

[Saf05] Mohammad Ali Safari. D-Width: A More Natural Measure for Directed
Tree Width. In MFCS, pages 745–756, 2005. 24

245

[Sey95] Paul D. Seymour. Packing Directed Circuits Fractionally. Combinatorica,
15(2):281–288, 1995. 23

[SRV97] Hussein F. Salama, Douglas S. Reeves, and Yannis Viniotis. Evaluation
of Multicast Routing Algorithms for Real-Time Communication on High-
Speed Networks. Selected Areas in Communications, IEEE Journal on,
15(3):332–345, 1997. 97

[Sta] CS Theory StackExchange. Directed problems that are easier than their
undirected variant. 22

[Tur36] Alan Mathison Turing. On Computable Numbers, with an Application to
the Entscheidungsproblem. J. of Math, 58:345–363, 1936. 5

[Vaz02] V. Vazirani. Approximation Algorithms. Springer Verlag, 2002. 8

[VWW06] Virginia Vassilevska, Ryan Williams, and Shan Leung Maverick Woo. Con-
fronting Hardness Using a Hybrid Approach. In SODA, pages 1–10, 2006.
9

[Wig07] Avi Wigderson. P, NP and Mathematics: A Computational Complexity Per-
spective. International Congress of Mathematicians (ICM 06), EMS Pub-
lishing House, Zurich, 1:665–712, 2007. 10

[Win87] Pawel Winter. Steiner Problem in Networks: A Survey. Networks,
17(2):129–167, 1987. 97

[WS11] David P Williamson and David B Shmoys. The Design of Approximation
Algorithms. Cambridge University Press, 2011. 8

[Xia10] Mingyu Xiao. Simple and Improved Parameterized Algorithms for Multi-
terminal Cuts. Theory Comput. Syst., 46(4):723–736, 2010. 61

[YKCP83] Mihalis Yannakakis, Paris C. Kanellakis, Stavros S. Cosmadakis, and Chris-
tos H. Papadimitriou. Cutting and Partitioning a Graph aifter a Fixed Pattern
(Extended Abstract). In ICALP, pages 712–722, 1983. 22

[Zuc06] David Zuckerman. Linear Degree Extractors and the Inapproximability of
Max Clique and Chromatic Number. In STOC, pages 681–690, 2006. 8

246

http://cstheory.stackexchange.com/questions/9257/directed-problems-that-are-easier-than-their-undirected-variant
http://cstheory.stackexchange.com/questions/9257/directed-problems-that-are-easier-than-their-undirected-variant

	List of Figures
	Introduction and Overview
	Notation
	Coping with NP-Completeness
	Approximation Algorithms
	Randomized Algorithms
	Exact Exponential Algorithms
	Fixed-Parameter Algorithms

	Parameterized Complexity
	Classical Complexity vs Parameterized Complexity
	Algorithmic Techniques For Designing FPT Algorithms

	Why are Directed Graphs Harder?
	Evidence from Approximation Algorithms
	Evidence from Parameterized Complexity

	Outline of Thesis

	The Framework of Shadowless Solutions
	Covering the Shadow for General F-transversal Problems
	Important Separators and Random Sampling
	Derandomization
	The Covering Algorithm
	Upper Bound on the Number of Important Separators

	Application I: FPT Algorithm for Directed Multiway Cut
	Torsos and Shadowless Solutions
	Summary of Algorithm
	FPT Algorithm for Directed Multicut with two terminals

	Application II: FPT Algorithm for Subset-DFVS
	Applying Iterative Compression
	Reduction to Shadowless Solutions
	Finding a Shadowless Solution
	Summary of Algorithm

	Optimal Algorithms for Connectivity Problems
	Upper Bounds
	The nO(k) Algorithm of Feldman-Ruhl for SCSS
	An 2O(klogk)nO(k) Algorithm for SCSS on Planar Graphs

	Lower Bounds
	Vertex Versions are Harder than Integer Weighted Edge Versions
	A Tight Lower Bound for SCSS on Planar Graphs
	(Almost) Tight Lower Bound for SCSS on General Graphs
	Tight Lower Bound for DSF on Planar DAGs

	Conclusions and Open Problems
	Bibliography

