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In this dissertation, I examine the importance of specific components of the

skill vector in affecting outcomes across various settings. In particular, I first con-

sider the importance of non-cognitive skills in higher education in the United States,

both in explaining academic undermatch, but also showing their importance towards

successful degree completion. In the Chilean context, I consider how early-life math

skills affect the likelihood of reaching the top of the income distribution, partly

through leading to employment in higher-quality firms. The last chapter of my dis-

sertation presents a discrete choice model of college majors, in which I consider how

non-cognitive skills contribute to the gender gap in STEM majors in the United

States. In particular, I document the importance of mathematical self-efficacy as

an important driver of the gender gap in STEM.

In Chapter 2, I analyze the importance of non-cognitive skills in the context

of higher education. Using longitudinal data for the United States, I first find that

students with higher non-cognitive skills are more likely to enroll in higher-quality

four-year colleges. Furthermore, students who have been previously characterized



as ”under-matched” in higher education have significantly lower non-cognitive skills

than students with equivalent test scores. While enrollment is the first step to-

wards higher education completion, a burgeoning literature has documented falling

completion rates among enrollees. In this context, I find that for both two-year en-

rollees as well as those in four-year colleges of varying qualities, non-cognitive skills

are strong predictors of subsequent college completion.

Chapter 3, written in collaboration with Sergio Urzua, estimates the returns to

skills in the labor market by taking advantage of three administrative data sources.

We first test for non-linearities in these returns and find that the returns to mathe-

matical skills are highly non-linear, with math skill ’superstars’ far outearning other

high math scorers. High math-skilled workers not only complete more years of edu-

cation, but graduate from higher quality universities and earn higher-paying degrees.

We further examine the role of firms as a mediator of the returns to skills, a dimen-

sion not previously explored in the literature. We find that high-skilled workers

match to high-paying firms immediately upon labor market entry. We conduct a

decomposition to examine the separate contribution of education and firms in medi-

ating the returns to skills, and find that worker-firm matching explains almost half

of the estimated returns.

Chapter 4 studies the relationship between pre-college skills and the gender

gap in STEM majors. I expand upon the analysis in the first two chapters, by intro-

ducing structure to students’ human capital investment decisions using a discrete

choice model of college major choices. I implement the model using longitudinal

data for the United States and consider students’ initial and final major choices in



a context where college students sort into majors based on observed characteristics

and unobserved ability. More specifically, I distinguish observed test scores from la-

tent ability. I find that math test scores significantly overstate gender gaps in math

problem solving ability. Math problem solving ability strongly predicts STEM en-

rollment and completion for men and women. I further explore the importance of

math self-efficacy, which captures students’ beliefs about their ability to perform

math-related tasks. Math self-efficacy raises both men’s and women’s probability of

enrolling in a STEM major. Math self-efficacy also plays a critical role in explaining

decisions to drop out of STEM majors for women, but not for men. The correlation

between the two math ability components is higher for men than for women, indi-

cating a relative shortfall of high-achieving women who are confident in their math

ability. Lastly, I estimate the returns to STEM enrollment and completion and find

large returns for high math ability women. These findings suggest that well-focused

math self-efficacy interventions could boost women’s STEM participation and grad-

uation rates. Further, given the high returns to a STEM major for high math ability

women, such interventions also could improve women’s labor market outcomes.
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Chapter 1: Introduction

An extensive literature has shown cognitive and non-cognitive skills to be strong

predictors of various outcomes in adulthood, including employment, occupational

choices, wages, as well as non-market outcomes (Heckman et al., 2006; Lochner,

2011). Nonetheless, the recent growth in college enrollment rates has brought in-

creased prominence to specific human capital investment decisions. For instance,

Altonji et al. (2012) have shown that the difference in wage returns across some

majors exceeds the college wage premium. In this context, understanding the skill

components which drive specific human capital investment decisions is of critical

importance to shape future skill development policies.

In this dissertation, I examine the importance of specific components of the

skill vector in affecting outcomes across different contexts. In particular, I focus my

attention on understanding how early-life skills affect human capital investment de-

cisions, and consider how such decisions subsequently affect labor market outcomes.

The thesis is comprised of three chapters. The first chapter presents reduced form

evidence on how a lack of non-cognitive skills both leads to academic undermatch

in higher education in the United States, but also to a lower likelihood of success-

fully completing a higher education degree. In the second chapter, I consider how
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early-life math skills affect the likelihood of reaching the top of the income distri-

bution, partly through leading to employment in higher-quality firms, presenting

a decomposition to understand the various channels through which early life skills

affect labor market outcomes. In the last chapter, I introduce a discrete choice

model to carefully model how students’ select their college majors. I examine how

non-cognitive skills contribute to the gender gap in STEM majors in the United

States, focusing on the importance of mathematical self-efficacy.

This dissertation contributes to the existing literature on the economics of ed-

ucation in several ways. First, I present extensive evidence of how individuals sort

into college majors based on their pre-college skills. By showing that mathematical

self-efficacy plays a critical role in the decision to pursue a STEM degree, I argue

that boosting women’s self-efficacy in math could lead to narrower gender gaps in

this field. Using data from Chile, I further show how the returns to early-life math

skills follow a non-linear pattern, leading to the presence of math superstars. By

showing that these superstars partly emerge through matching to high-quality firms,

I contribute to the small, but growing literature on firm-worker matching. Lastly, I

show that students who are traditionally considered undermatched in higher educa-

tion have lower non-cognitive skills vis-a-vis their well-matched counterparts. While

the existing literature has argued that undermatch is largely driven by information

frictions, these results indicate that non-cognitive skill interventions may lead to

improved matches in higher education, as well.

The second chapter examines how non-cognitive skills affect college enrollment

decisions and degree completion across colleges of varying qualities in the United

2



States. In particular, I note that non-cognitive skills may play an important role

in enrollment decisions trough the application process, which requires students to

identify the colleges they plan to apply to, take the ACT or the SAT, request high

school transcripts and recommendation letters from teachers, and complete college

essays, among other tasks (Avery and Kane, 2004; Carrell and Sacerdote, 2017).

Moreover, as previous work has found that an important driver of mismatch is the

application process, students who are lacking in grit and perseverance may fail to

complete applications or miss critical deadlines and thus enroll in a lower-quality

college than one they could have been admitted to (Hoxby and Avery, 2013; Dillon

and Smith, 2017). Furthermore, non-cognitive skills may also help students after

enrolling in college, where they often face various difficulties, including living far

from family, adapting to a new environment and facing challenging courses, among

others.

I take advantage of data from the Educational Longitudinal Study of 2002

(ELS), which includes detailed information on multiple measures of pre-college

preparation, non-cognitive skill measures and detailed information on students’ en-

rollment and subsequent completion across higher education institutions of vary-

ing qualities. I estimate various reduced form regressions and first find that non-

cognitive ability positively predicts enrollment in higher-quality institutions. I also

show that this skill dimension is an important predictor of ”academic undermatch,”

where highly-qualified students enroll in lower-quality colleges. In the fact of de-

clining completion rates among college enrollees, I also show that a one standard

deviation increase in non-cognitive skills among four-year college enrollees is asso-

3



ciated with an increased likelihood of completing a Bachelor’s degree by age 26 by

4.5 percentage points. These results suggest that non-cognitive skill development

policies may be a plausible alternative for improving outcomes in higher education.

In the third chapter, written in collaboration with Sergio Urzua, we estimate

the labor market returns to mathematical and language skills in the labor mar-

ket, examine potential non-linearities in these returns and explore how educational

attainment and firm-quality matching mediates the returns to ability. This ques-

tion has gained prominence in the context of skill-biased technological change, which

delivers increased wages for higher-skilled workers, relative to their less skilled coun-

terparts (Katz et al., 1998; Acemoglu, 2002; Card and DiNardo, 2002).

Taking advantage of three administrative data sources from Chile, we examine

the returns to a nationally-administered standardized math and reading exam given

to 10th graders, who are matched to their subsequent educational attainment and

labor market outcomes in their early 30s. We find large returns to the math exam

in the labor market, which follows a non-linear pattern, such that moving from the

50th percentile of the math test score distribution to the 85th percentile results in a

30 percent wage increase, the same returns are observed by moving from the 95th to

the 99th percentile. In examining the mechanisms behind this result, we find that

math superstars attain more years of education relative to their less-skilled peers,

but also attend the highest-quality colleges and graduate from the highest-paying

majors. We extend this analysis to consider how firm-worker matching mediates the

returns to skills. In this context, we find that the math superstars match with high-

quality firms immediately upon labor market entry. To discern the importance of

4



education and firm-worker matching in explaining the returns to skills, we estimate

an augmented human capital equation and find that the estimated returns to math

ability fall from 22% to 7-9% once detailed measures of education and firm quality

are included. We lastly estimate a Gelbach (2016) decomposition and find that firms

explain half of the aggregate returns to math test scores, highlighting an important

mechanism through which skills deliver improved labor market outcomes.

The last chapter examines the factors driving the gender gap in STEM majors

by estimating a discrete choice model of students’ college major choices. The gen-

der gap in STEM majors carries significant policy relevance, as women make-up just

one fourth of recent graduates in math-intensive STEM majors in the United States

(Kahn and Ginther, 2017), and these majors are among the highest-paying college

degrees. Moreover, various colleges across the countries have begun implementing

policies aimed at increasing STEM participation, yet the factors driving students

enrollment/completion decisions across college majors are not well understood. Fol-

lowing from the literature which as documented sizable gender gaps in math test

scores can explain the difference in STEM participation (Turner and Bowen, 1999;

Xie and Shauman, 2003; Dickson, 2010; Riegle-Crumb et al., 2012; Justman and

Méndez, 2018), I analyze whether pre-college skills can account for part of the gen-

der gap in STEM participation. In this context, I extend the existing literature by

distinguishing math test scores from underlying math problem solving ability and

considering the importance of relevant non-cognitive skills, focusing on the on the

role of mathematical self-efficacy, which measures an individual’s perceived ability

to perform math-related tasks.

5



To understand students’ enrollment and completion patterns given their pre-

college ability, I estimate a sequential model of college major choices. The model

builds on Heckman et al. (2016), Heckman et al. (2018) and Humphries et al. (2017)

and assumes that at each stage, individual decisions and labor market outcomes are a

function of observed characteristics and latent math and reading ability, which differ

from observed test scores. I take advantage of Educational Longitudinal Study of

2002 (ELS) data, which follows a nationally-representative cohort of 10th graders

through age 26. ELS data includes detailed information on multiple measures of

math test scores, math class GPA, math self-efficacy measures, detailed information

college major choices and early-career labor market outcomes.

I first find that the gender gap in unobserved math problem solving ability is 40

percent smaller than the 0.30 standard deviation gap in math test scores. This result

is explained by the fact that women outperform men in math high school courses,

and GPA partly reflects underlying math ability. I show that women have lower

math self-efficacy than men, but also document a lower correlation between math

ability and math self-efficacy for women than for men. Since both math problem

solving ability and self-efficacy are strong predictors of STEM enrollment for both

men and women, the relative lack of women at the top of the joint skill distribution

reduces their initial participation in math-intensive STEM majors. Given that 60%

of men initially enrolled in STEM majors end up graduating relative to just 45% of

women, I examine whether math self-efficacy can partly explain differential comple-

tion rates. In this context, I show that women’s lower math self-efficacy accounts

for 20% of the gender gap in STEM completion rates among STEM enrollees.

6



All in all, this dissertation contributes to an extensive literature examining

the factors driving human capital investment decisions as well as the consequences

associated with those decisions. By highlighting how different components of the

skills vector affect these decisions, this thesis sheds light on how early-life skill

development can play a critical role in changing individuals’ educational attainment

as well as their labor market outcomes.

7



Chapter 2: Gritting it Out: The Importance of Non-Cognitive Skills

in Higher Education

2.1 Introduction

The sizable increase in college participation in recent decades has been largely con-

centrated in two-year and less selective four-year institutions (Bound et al., 2010).

At the same time, an extensive literature has shown that students enrolled in higher-

quality colleges are more likely to graduate Brewer et al. (1999); Long (2008); Good-

man et al. (2017); Dillon and Smith (2018), and to earn higher wages (Black and

Smith, 2006; Hoekstra, 2009; Zimmerman, 2014). As a result, understanding the

factors driving students’ enrollment decisions across colleges of varying qualities

is of critical importance, especially in light of falling college completion rates. In

this context, while previous work has considered the importance of family back-

ground Hoxby and Avery (2013); Smith et al. (2013), information frictions Hoxby

and Turner (2015); Pallais (2015); Lincove and Cortes (2016) and cognitive skills

Light and Strayer (2000); Kinsler and Pavan (2011), this literature has not consid-

ered the importance of non-cognitive skills in determining enrollment decisions.

Why might non-cognitive skills play an important role in higher education?

8



An important factor in the determining enrollment decisions in the United States is

the application process, which requires students to identify the colleges they plan to

apply to, take the ACT or the SAT, request high school transcripts and recommen-

dation letters from teachers, and complete college essays, among other tasks (Avery

and Kane, 2004; Carrell and Sacerdote, 2017). In fact, as Hoxby and Avery (2013)

and Dillon and Smith (2017) have found that an important driver of mismatch is

the application process, students who are lacking in grit and perseverance may fail

to complete applications or miss critical deadlines and thus enroll in a lower-quality

college than one they could have been admitted to. Furthermore, non-cognitive

skills may also help students after enrolling in college, where they often face various

difficulties, including living far from family, adapting to a new environment and fac-

ing challenging courses, among others. In this context, Oreopoulos and Ford (2016)

document that less conscientious students are are more likely to under-perform in

college, indicating that non-cognitive skills may affect students’ likelihood of suc-

cessfully completing a college degree.

In this chapter, I analyze how non-cognitive skills affect students’ enrollment

decisions across colleges of varying qualities and examine how this skill dimension

helps them in successfully completing a college degree. While previous work has

shown the positive impact of ”soft” skills on individuals’ final educational attainment

Heckman et al. (2006, 2018), the literature has not yet analyzed the importance of

this skill dimension across the college quality distribution nor has it explored its

differential impacts at enrollment and graduation. I examine this question using data

from the Educational Longitudinal Study of 2002 (ELS), which follows a nationally-
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representative cohort of 10th graders through age 26. ELS data includes detailed

information on multiple measures of pre-college preparation, various measures of

non-cognitive skills and detailed information on students’ enrollment and subsequent

completion across higher education institutions of varying qualities.

I first estimate a multinomial logit model of college enrollment and find that

non-cognitive ability positively predicts enrollment in higher-quality institutions.

For instance, a one standard deviation increase in non-cognitive skills raises the

likelihood of enrollment in a highly-selective college by 3.5 percentage points. This

effect is 40% as large as an equivalent increase in a math test score and larger

than the corresponding impact for the reading exam. I find larger impacts for men

than for women, indicating that this skill dimension may play a role in differential

gender enrollment rates (Goldin et al., 2006). Since non-cognitive skills are impor-

tant for the enrollment decision, I also examine whether this component of skills

plays a role in explaining ”academic undermatch,” where highly-qualified students

enroll in lower-quality colleges. I find that 42% of students in the math test score

decile enroll in institutions below the highly-selective group and this group trails

their ”well-matched” counterparts by 0.28 standard deviations in a composite in-

dex of non-cognitive skills. Furthermore, among students in the top two math test

score quintiles, those enrolled in selective or highly-selective colleges outscore their

undermatched counterparts by 0.31 SDs in the non-cognitive skill index. While

previous work had suggested that undermatch could be partially remedied through

information-based interventions Hoxby and Avery (2013), these results indicate that

a relative lack of non-cognitive skills may be leading highly-qualified students to en-

10



roll in lower-quality colleges.

Given the recent decrease in completion rates among college enrollees, I also

analyze the importance of non-cognitive skills for subsequent degree completion.

Fitting in with findings by Beattie et al. (2017), a one standard deviation increase

in the non-cognitive skill index among four-year college enrollees increases the likeli-

hood of completing a Bachelor’s degree by age 26 by 4.5 percentage points, equaling

half of the effect of the math test score. The magnitude of the effect is similar

across men and women. Furthermore, this result holds across the college quality

distribution. Moreover, among two-year college enrollees, non-cognitive skills have

a similar-sized effect on the likelihood of completing either a two- or a four-year

degree by age 26, and the magnitude of this effect is two-thirds as large as that of

the math test score. All in all, given the importance of non-cognitive skills in driving

enrollment choices and college graduation, the malleability of this skill component

through late adolescence indicates that non-cognitive skill development policies may

be a plausible alternative for improving outcomes in higher education (Kautz et al.,

2014).

The rest of the chapter is organized as follows. Section 2 describes the data

sources and presents summary statistics. In Section 3, I present evidence on how

pre-college test scores and non-cognitive skills shape initial enrollment choices. I also

present evidence on the importance of non-cognitive skills in academic mismatch.

In Section 4, I explore how these dimensions affect students’ final educational at-

tainment by age 26. Finally, in Section 5, I present conclusions and final remarks.
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2.2 Data Sources and Summary Statistics

2.2.1 Data Sources

This chapter uses longitudinal data from the Educational Longitudinal Survey (ELS)

of 2002.1 The ELS is a nationally-representative survey of 16,200 10th grade stu-

dents in 2002 who were interviewed, along with their parents and teachers, in the

initial year, and in 2004, 2006, and 2012, when respondents had turned 26/27 years

old. The first two surveys include detailed information on students’ individual char-

acteristics, including their race and gender, and family characteristics, including

family composition, parents’ educational attainment, labor market outcomes, total

family income and region of residence. Furthermore, ELS data includes students’

performance on a mathematics and reading test developed by the Department of

Education in 10th grade, and a follow-up math exam in 12th grade.

ELS data includes various questions capturing respondents’ non-cognitive skills,

as well, which were measured in the baseline survey. I focus on three measures, which

were directly constructed by ELS staff using exploratory factor analysis on the re-

sponses to these questions. The first variable captures a student’s expectations of

success in academic learning (control expectation scale), which follows from their

responses to four different statements.2 The second measure captures students’ per-

1The ELS is a part of the National Center for Education Statistics’ program which includes
three earlier longitudinal studies of high school students in the United States: the National Longi-
tudinal Study of the High School Class of 1972, the High School and Beyond Longitudinal study
of 1980, and the National Education Longitudinal Study of 1988.

2Students are prompted with the following statements: ”I can learn something really hard,”
”I can get no bad grades if I decide to,” ”I can get no problems wrong if I decide to,” ”I can learn
something well if I want to,” and their responses are graded on a four-point Likert scale.
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ceived effort and persistence when facing difficulties, constructed from the responses

to five statements (action control), as well.3 This question is most closely related to

grit, a non-cognitive measure capturing persistence on tasks (Duckworth, Peterson,

Matthews, and Kelly, Duckworth et al.)). The last variable captures students’ mo-

tivation to perform well academically in order to reach external goals like future job

opportunities or financial security (instrumental motivation). I examine students’

performance in each of these variables, but I also construct an index of non-cognitive

skills, which averages out their responses across the three measures.4

Critical to the analysis of sorting into colleges, ELS data includes detailed in-

formation on respondents’ progression through higher education, including students’

enrollment status in 2006 and final educational attainment in 2012 (age 26). I first

classify students by the level of the their academic institution, which can either

be a two- or four-year college. Four-year college enrollees are further classified by

their college’s selectivity, following an ELS-provided classification in which colleges

pertain to one of three mutually exclusive categories: inclusive, moderately-selective

and highly-selective colleges. The classification follows from the 2005 Carnegie Clas-

sification System, which is based on the distribution on the 25th percentile of ad-

mitted students’ ACT/SAT test scores. Highly selective colleges are those in the

3The statements are as follows: ”I remember most important things when I study,” ”I work as
hard as possible when I study,” ”I keep studying even if the material is difficult,” ”I do my best
to learn,” ”I put forth my best effort when studying.”

4Since Humphries and Kosse (2017) argue that papers in this literature may reach different
conclusions depending on the measures underlying the construction of non-cognitive skill indices,
I construct a non-cognitive index which follows from principal component analysis of the ques-
tions/statements answered by students. The results are unchanged when using this index and
they are available upon request. These concerns are common to other commonly-used longitudinal
data sets, such as the NLS72, NLSY79, NELS88, since there are no comparable non-cognitive skill
measures across these surveys.
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top quintile of this measure, moderately-selective institutions are in the fourth and

third quintile, and inclusive four-year colleges are those in the bottom two quintiles.5

Other papers in this literature use different definitions of selectivity, yet these mea-

sures depend directly on the data source used for empirical analysis. I note that

the measure used in this chapter matches exactly the one used by two other papers

using ELS data (Reardon, 2011).6

2.2.2 Summary Statistics

In the first panel of Table 4.1, I present descriptive statistics on the sample used in

this chapter (Column 1). Women comprise 53% of the sample, 63% of students are

white and the share of black and Asian students reaches almost 10%.7 The majority

of students in the sample come from two parent families, the average surveyed parent

has almost completed 15 years of schooling, and average family income for students

in the sample exceeds $55,000.8 In terms of students’ educational attainment by age

26, just 45% of the sample has completed at least a two-year degree, with 38% of

students having completed a four-year degree and the remaining students finishing

an Associate’s degree.

5I include open admissions institutions in the same category as inclusive colleges. The results
are robust to analyzing these two sets of institutions separately.

6Bound et al. (2010) use NLS72 and NELS:88 data. They classify college selectivity following
US News and World Report rankings. Using NLSY data, Light and Strayer (2000) construct an
index of college quality from Barron’s Profiles of American Colleges. Meanwhile, Black and Smith
(2004) and Dillon and Smith (2017) construct an index of latent college quality using different
measures of institutional quality available in the IPEDS data.

7The over-representation of women is explained by the fact that women are more likely to have
completed the baseline and follow-up surveys. In the empirical results, I use sample weights to
account for survey non-response.

8Family income is reported to pertain to one of 13 mutually exclusive bins and I assign family
income to equal the mid-point of the reported bin. I note that this is a noisy measure of family
resources, though similar issues have been found in NLSY97 data (Dillon and Smith, 2017).
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I further examine students’ baseline characteristics and in final outcomes by

their initial enrollment decision. The characteristics of students not enrolled in

college by age 20/21 are shown in Column 2.9 This group is largely comprised of

males, fitting in with Goldin et al. (2006)’s finding of higher enrollment rates for

women. Moreover, these students are less likely to come from two-parent families

compared to the rest of the sample and their families earn lower annual incomes and

have less educated parents, on average. In terms of their academic achievement, this

group lags far behind the rest of the sample, with average math and reading scores

0.5 standard deviations below their enrolled counterparts.10 This difference is also

present in the three measures of non-cognitive skills, in the range of 0.3 standard

deviations, as well as in the composite index of non-cognitive skills. Unsurprisingly,

this group is the least likely to have completed a higher education degree by age

26, with just 0.9% of students graduating with a four-year college degree. The two-

year college enrollee sample accounts for 23% of the full sample and these students

come from higher-educated and higher-income families relative to the non-enrolled

group. The two-year sample outpaces non-enrollees in academic preparation and in

non-cognitive skills, with an average 0.16 SD difference in average math and reading

scores and a 0.13 standard deviation difference in the composite non-cognitive skill

index. Two-year enrollees have a higher likelihood of completing a higher-education

degree by age 26, although only 40% of students in the sample do so.

Four-year enrollees come from higher-income and higher-educated families rel-

9This category includes students enrolled in < 2-year institutions as well as non-degree seekers.
10Test score and non-cognitive skill measures are standardized to be mean zero and standard

deviation one.
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ative to students in the other two groups. Furthermore, they outperform the rest

of the sample in terms of academic preparation, outscoring two-year enrollees by

0.75 standard deviations in the math test and by 0.72 SDs in the English test.

These differences also appear in the non-cognitive dimension, with four-year en-

rollees outscoring those in the other groups across the three observed measures as

well as in the composite index. As 68% of students complete a four-year degree

by age 26, this group has the highest educational attainment in the final follow-up

survey. Nonetheless, there are sizable differences within this group, depending on

the quality of the college attended. I explore these differences in Panel B. First,

about 40% of college enrollees attend a highly-selective college, with an equal share

attending moderately selective colleges. There are small differences across the three

groups in reported family income, though students in highly-selective colleges are

more likely to come from a two-parent family and have more educated parents.

There are larger differences in academic preparation, though, as the highly-selective

group outscores those in inclusive institutions by 0.9 standard deviations in the math

test and the selective group by 0.5 SDs. These differences are larger than those be-

tween the open-enrollment group and non-enrollees, highlighting the importance of

considering four-year college quality when examining enrollment decisions. These

differences are also present across the skill distribution, as the first panel in Figure

2.1 shows that math test score distribution of students in highly-selective colleges

dominates that of students in the other categories.11 Those in highly-selective col-

11While students enrolled in highly-selective colleges make-up 18 percent of the sample, they
account for 54% of students in the top math test score decile.
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leges outpace the rest of the sample in the non-cognitive skill dimension as well, as

shown in the bottom rows of Table 4.1 and in the second panel of Figure 2.1. Fi-

nally, confirming previous findings by Bound et al. (2010) and by Dillon and Smith

(2018), students in higher-quality institutions are far more likely to have completed

a four-year degree by age 26. While I have so far documented sizable differences in

academic preparation and in non-cognitive skills across students’ enrollment deci-

sions, the descriptive analysis does not control for the importance of other variables

in affecting enrollment choices. I next present reduced-form evidence on the impor-

tance of test scores and non-cognitive skills at enrollment.

2.3 Enrollment Decision

To explore how test scores, non-cognitive skills and background characteristics affect

students’ enrollment decisions by age 20, I first estimate a multinomial logit as

follows:

Y E
i = β0 + β1Xi + β2θ

C
i + β3θ

NC
i + εi (2.1)

The outcome variable Y E
i denotes the student i’s initial enrollment decision by age

20. This variable takes on five values, including non-enrollment, two-year enroll-

ment, four-year non-selective, selective and highly-selective enrollment. Xi includes

race/ethnicity, gender, family composition and income, along with parents’ educa-

tion. θCi includes the baseline math and reading test scores and θNCi captures the

non-cognitive skill index. While equation (2.1) provides descriptive, rather than
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causal, evidence of the determinants of enrollment choices, I note that this analysis

is a first approximation of the importance of non-cognitive skills in students initial

higher education choices.

Table 2.2 presents the marginal effects of each variable on the enrollment de-

cision. Two-year college enrollment is the excluded category. Men are less likely

to enroll in moderately- and highly-selective colleges and more likely to not have

enrolled in college by age 20, confirming patterns found in the descriptive analysis.

Students coming from two-parent households and those with more educated parents

are more likely to have enrolled in a highly-selective four-year institution, yet re-

ported family income does not a significant impact at enrollment. Unsurprisingly,

conditional on background characteristics, academic preparation still has a sizable

impact on students’ college quality at enrollment. For instance, a one standard de-

viation increase in the English test score increases the probability of enrollment in

a highly selective college, relative to two-year college enrollment, by five percentage

points. Meanwhile, an equivalent increase in the math test score raises the relative

likelihood of highly-selective enrollment by 8.5 percentage points, while reducing

the probability of not enrolling in college by a similar magnitude. These results fit

in with previous work by Light and Strayer (2000), Kinsler and Pavan (2011) and

Lovenheim and Reynolds (2013), who use NLSY79 and NLSY97 data and find that

high-AFQT students are more likely to enroll in high-quality four-year colleges.

However, previous research on this topic has not considered the importance

of non-cognitive skills at enrollment. In this context, I find that conditional on

academic preparation and background characteristics, non-cognitive skills have an
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important effect on students’ college enrollment decision by age 20: a one standard

deviation increase in the non-cognitive skill index raises the relative probability

of enrollment in a moderately-selective college by 1.5 percentage points and in a

highly-selective institution by 3.3 percentage points, respectively, while significantly

reducing the likelihood of not enrolling in college by age 20. The magnitude of the

marginal effects of non-cognitive skills on enrollment in a high-quality institution is

similar to that of the English test score, and reaches almost 40% of the estimated

effect of the math test score.

In Appendix Table A.1.1, I examine the contribution of each separate com-

ponent of the non-cognitive skill index. I find that a one standard deviation in-

crease in the action control component, which is the most closely related to ”grit”,

increases the probability of enrollment in a highly-selective college by 2.3 percent-

age points, relative to starting in a two-year college. The instrumental motivation

measure, which captures a student’s motivation to achieve future goals, also has

a positive impact on starting in a high-quality college, yet the magnitude is sig-

nificantly smaller. An equivalent increase in a student’s expectations of academic

success has no discernible effect on enrollment choices. I complement this analysis

by exploring whether sorting patterns differ by gender in Appendix Table A.1.2, as

male college enrollment rates are far behind those of women (Goldin et al., 2006).

For both men and women, students with a higher non-cognitive skill endowment are

more likely to enroll in a highly-selective institution relative to a two-year college.

However, the estimated impact of soft skills is half as large as that of the math

test score for men, whereas the ratio of these coefficients is below 30% for women.
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As a result, non-cognitive skill development strategies may help in increasing male

college enrollment rates, but also in driving them to higher-quality institutions. I

note that while the literature examining the determinants of enrollment decisions

has often equated cognitive test scores, like the AFQT, with students’ pre-college

ability, the results shown so far indicate that non-cognitive skill measures should

be taken into account when analyzing sorting patterns by pre-college ability. I next

examine whether a lack of non-cognitive skills leads high-achieving students to be

more likely to ”undermatch” at enrollment.

2.3.1 Academic Undermatch

An extensive literature has analyzed the drivers of ’academic undermatch,’ which

occurs when a student’s academic qualifications would allow her to enroll in a higher-

quality college compared to their current institution. This phenomenon may nega-

tively impact undermatched students, as previous research has found that higher-

quality colleges increase the likelihood of degree completion Brewer et al. (1999);

Light and Strayer (2000); Dillon and Smith (2018) and improve labor market out-

comes (Black and Smith, 2006; Bowen et al., 2009; Hoekstra, 2009). In the United

States, Smith et al. (2013) found that 40 percent of high school students undermatch

in their postsecondary choice, and Bowen et al. (2009) reach similar conclusions us-

ing data from North Carolina. Various papers in this literature have shown that

undermatch is more prevalent among students from low-income families, students

residing in non-urban areas as well as those not close to a well-matched public
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university (Smith et al., 2013; Hoxby and Avery, 2013; Dillon and Smith, 2017).

On the other hand, this literature has not considered the importance of non-

cognitive skills in determining academic mismatch. This skill dimension may play

a role in enrollment decisions, especially in light of the complexity of the college

application process. As noted above, the structure of the application process implies

that students who are less likely to persist in the face of difficulty (low action control),

may fail to execute each step of this process and thus end up enrolling in colleges

with lower admission requirements. Similarly, students with lower instrumental

motivation may be ceteris paribus less motivated to pursue a college degree, and

thus choose to apply to a less-selective college with a simpler application process,

or enroll in a non-selective two- or four-year institution.

An important consideration in this literature is the exact definition of under-

match, which varies across papers depending on data availability and on the research

question. For instance, Dillon and Smith (2017) classify students as undermatched

if the difference between ASVAB percentile and their college quality percentile is

below a certain threshold. Meanwhile, Roderick et al. (2008) and Smith et al. (2013)

consider students to be undermatched if they enroll in a lower-quality institution

than one in which they are likely to be admitted. Since the main goal of this chapter

is to understand the role of non-cognitive skills in higher education, rather than the

nature or prevalence of undermatch, I define undermatch using three different prox-

imate measures. The first measure focuses on students in the top math test score

decile, who given their academic performance should be able to enroll in a highly-

selective institution. These students are defined to be ”under-matched,” if they have
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not enrolled in one of these colleges by age 20. Among those in the top decile, 42% of

students are classified as undermatched. The second measure also focus on students

not enrolled in highly-selective colleges, but extends the sample to include students

in the top test score quintile: 52% of these students are ”undermatched,” as they

have not enrolled in a highly-selective institution. Finally, I examine the prevalence

of undermatch among students in the top two test score deciles, considering them

to be undermatched if they are either enrolled in an inclusive four-year institution

or enrolled in two-year college. In this case, 37% of students are undermatched.

In Figure 2.2, I first present graphical evidence on the importance of non-

cognitive skills in academic undermatch. The first panel shows that among students

in the top test score decile, the distribution of the non-cognitive skill index for un-

dermatched students is first-order stochastically dominated by that of top achievers

enrolled in highly-selective institutions. In fact, these students outpace their ’under-

matched’ counterparts by 0.31 standard deviations in the index, by 0.32 SDs in the

action control measure and by 0.31 standard deviations in instrumental motivation

dimension. In the second panel, I find similar patterns, as undermatched students

in the top two test score deciles trail their well-matched counterparts in the non-

cognitive skill index. While the results in Figure 2.2 offer preliminary evidence of the

importance of soft skills in determining undermatch, it does not control for family

and individual characteristics. To examine the importance of non-cognitive skills in

academic undermatch, I thus estimate the following linear probability model:

Undermatchi,k = α0 + α1Xi + α2θ
C
i + α3θ

NC
i + εi (2.2)
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where Undermatchi,k represents one of the three measures of undermatch defined

above.12 As in equation (2.1), I include individual and family characteristics as well

as measures of test score performance and non-cognitive skills.

I present the results in Table 2.3.13 The first column examines the drivers

of undermatch among students in the top math test score decile. As in Hoxby

and Avery (2013) and Dillon and Smith (2017), I find that high-achieving students

with less educated parents and those living in non-urban areas are less likely to

have enrolled in a highly-selective college by age 20. Furthermore, conditional on

reaching the top test score decile, an additional increase in both the math and the

English test score decreases the likelihood of academic undermatch. Non-cognitive

skills also play an important role, as a one standard deviation increase in the non-

cognitive index decreases the probability of undermatch by 6.5 percentage points, or

15 percent of the baseline undermatch rate in this group. In Appendix Table A.1.3, I

examine the separate contribution of each component of the non-cognitive skill, and

find that the estimated effect is largely explained by the action control component,

thus indicating that lower-”grit” high-achievers are more likely to undermatch in

higher education. In the second column, I examine the prevalence of undermatch

among students in the top math quintile. I find similar determinants effects as

in the first column, yet the estimated impact of the math and English test scores

is larger than for students in the top decile. Similarly, a one SD increase in the

12Since each definition of undermatch applies for a sub-sample of students, given their math
test score performance, I estimate equation (2.2) only including students who are potentially
undermatched under each definition.

13The results presented in Table 2.3 include students who had not enrolled in college by age
20 as ’undermatched.’ In Appendix Table A.1.4, I exclude non-enrollees and re-estimate equation
(2.2) across the three definitions of undermatch. The results are unchanged.
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soft-skill index reduces the prevalence of undermatch by 7.5 percentage points, or

14 percent of the baseline rate. I lastly examine the determinants of undermatch

among students in the top two test score deciles. Once again, I find that higher test

score performers and those with a higher stock of non-cognitive skills are less likely

to have undermatched in higher education.

Previous work had found that information-based interventions could help in

reducing undermatch for high-achieving students (Hoxby and Turner, 2015). On

the other hand, the results presented in this section suggest that a subset of high-

achieving students may fail to enroll in high-quality colleges in part due to a shortfall

in the non-cognitive dimension. As a result, students may fail to ”grit out” the

complex application process required for acceptance at a highly-selective college,

and choose to enroll at open-enrollment or two-year colleges, instead. These results

suggest that policies aimed at fostering non-cognitive skills may help in reducing

undermatch. Nonetheless, while improved enrollment choices for students is an

important first step towards increasing educational attainment, a sizable share of

college enrollees fail to complete a degree (Bound et al., 2010). Therefore, I next

explore how pre-college skills affect degree completion rates.

2.4 College Completion

As noted above, college enrollment does not necessarily lead to degree completion.

In fact, NCES (2018) note that among four-year college enrollees in the 2009 start-

ing cohort, only 59 percent had completed a degree within four years of enrollment.
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In this context, previous work has found that enrolled students from lower-income

families are less likely to complete a degree (Bailey and Dynarski, 2011; Stinebrick-

ner and Stinebrickner, 2003), as are under-represented minority students across all

enrollment levels (NCES, 2018). The importance of academic preparation in persis-

tence has also been previously documented, with Bound et al. (2010) finding higher

completion rates among high math-achievers and Agan (2013) finding that college

dropouts have the lower AFQT scores than both Associate- and Bachelor-degree

recipients. At the same time, as students face repeated challenges in higher edu-

cation, including the transitioning from high school to college, making friends in a

new context and persisting through difficult courses, they may need to rely on their

non-cognitive skills in order to complete a degree. To explore the importance of

these components in degree attainment, I estimate the following linear probability

model:

Gi,k = γ0 + γ1Xi + γ2θ
C
i + γ3θ

NC
i + ei (2.3)

where Gi,k indicates whether student i has completed degree k by age 26, which

includes two- and four-year degree completion, as well as graduating with a degree

across each level of institutional selectivity.14 As in equations (2.1) and (2.2), I

include individual and family characteristics as well as measures of test score per-

formance and non-cognitive skills.

14Given the prevalence of college transfers among four-year enrollees (Andrews et al. 2014), I
examine whether students complete a degree in their initial enrollment level or complete a four-year
degree at all.
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I present the results of the determinants of Bachelor’s degree attainment for

four-year enrollees in Table 2.4. In the first column I include both males and fe-

males and find, as in Bowen et al. (2009), that students with more educated par-

ents and those in two-parent households are more likely to successfully complete

a four-year degree. Fitting in with citetbound2010college, I further find that bet-

ter academically-prepared students are more likely to graduate, as a one standard

deviation increase in the math test score is associated with a 9.3 percentage point

increase in predicted completion rates, with a smaller predicted effect of the reading

test score. At the same time, the non-cognitive index indicates that soft skills play

an important role in determining degree completion, as a one SD increase in this

index raises the likelihood of completion by 4.6 percentage points — equaling half

of the magnitude of the math test score and exceeding the relative importance of

reading skills. These results indicate students who are lacking in non-cognitive skills

are paying a ”double penalty” in higher education, first at college enrollment and

subsequently at completion. The last two columns examine the drivers of comple-

tion separately for men and women, respectively. As in Appendix Table A.1.2, I

find that non-cognitive skills play a larger role in determining college completion for

men than for women, which suggests that this skill component could play a role in

explaining lower college persistence among males (Conger and Long, 2010).

In Table 2.5, I expand upon this analysis by exploring whether the determi-

nants of college completion differ across levels of college quality. The first column

analyzes the factors driving college completion for students in open enrollment or

inclusive institution — only 46% of students in these colleges complete a degree
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by age 26. While academic preparation, as measured by the math and reading

test scores, plays an important role in leading to degree receipt, I also find that a

one standard deviation increases in the non-cognitive index raises the likelihood of

completion by 5.1 percentage points. I find similar effects for students enrolled in

selective colleges, though for these students the relative importance of non-cognitive

skills is larger, reaching 70% of the estimated effect of the math test score. On the

other hand, for students enrolled in highly selective colleges, non-cognitive skills do

not affect the likelihood of subsequent degree completion, unlike for their counter-

parts at less selective institutions. These results, combined with those presented in

Section 3, suggest that part of the gap in graduation rates across college selectivity

levels may be explained by a lack of non-cognitive skills among students enrolled in

less selective institutions.

Lastly, as discussed above, degree completion rates are lowest among students

enrolled in two-year institutions. In Table 2.6, I examine the factors affecting two-

year and four-year degree receipt by age 26 among these students. I first note

that women are more likely to complete any higher education degree, as are Asian

students and those coming from families with more educated parents. As with four-

year college enrollees, I find that both academic preparation and non-cognitive skills

affect the likelihood of degree receipt. Nonetheless, there are significant differences

on the relative importance of these skill components by the type of degree attained.

While for two-year degree completion, the estimated effect of a one SD increase in the

math test score is twice as large as one in the non-cognitive index, the relative effect

of these components on four-year completion is not statistically different. Recall
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that since just 22% of two-year enrollees end up completing a bachelor’s degree by

age 26, the combination of the results presented in Tables 4 through 6 indicate that

a boost in non-cognitive skills could significantly increase degree completion rates

both for two-year enrollees but also for those who start in less selective four-year

institutions.

2.5 Conclusion

While students enrolled in higher-quality colleges are more likely to complete a

four-year degree and earn higher wages, the recent increase in college participation

has been concentrated in lower-quality institutions. In this context, an extensive

literature has examined the factors driving academic mismatch, where highly qual-

ified students enroll in lower-quality institutions than they otherwise could, finding

higher mismatch rates among lower-income students and those living in non-urban

areas. In this chapter, I have considered the role of non-cognitive skills in higher

education, aiming to understand their importance in driving enrollment decisions

and academic mismatch. Across these two dimensions, I have found that students

with a higher stock of non-cognitive skills are more likely to enroll in higher-quality

colleges. Moreover, lower non-cognitive-skilled students are more likely to have

undermatched in college, despite being high academic achievers. Since college en-

rollment requires students to sort through the various steps involved in the college

application process, it is possible that less gritty students may instead choose to

enroll in lower-quality colleges with simpler application procedures.
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Recent work has also shown a significant decline in completion rates among

college enrollees. As a result, I have also examined whether non-cognitive skills can

predict subsequent completion, and found that for students in two-year institutions

as well as in less-selective four-year colleges, this skill dimension is a strong predictor

of degree attainment. As Kautz et al. (2014), among others, have shown that

non-cognitive skills are malleable through adolescence, these results suggest that

interventions aimed at fostering non-cognitive could lead to improved outcomes in

higher education, both by reducing mismatch and by increasing college completion

rates. While this chapter has shown descriptive evidence on the importance of non-

cognitive skills in higher education, I have not yet considered how these skills affect

college major choices as well as labor market outcomes. I address this issue in

Chapter 4, where I estimate a discrete choice model of college major choices in the

U.S., using the same dataset as in this chapter.
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2.6 Tables and Figures

Table 2.1: Summary Statistics by Initial Enrollment Decision

Panel A. Summary Statistics by Enrollment Level

Full Sample Not Enrolled 2-Year 4-Year
(1) (2) (3) (4)

Male 0.467 0.550*** 0.434 0.431
White 0.634 0.581 0.609 0.679***
Black 0.098 0.122*** 0.092 0.085
Asian 0.097 0.072*** 0.096 0.112**
Both Parents 0.778 0.723*** 0.760 0.819***
Family Income 10.916 10.771*** 10.987 10.973
Parents’ Education 14.833 13.917*** 14.324 15.633***
Math Test Score 0.000 -0.485*** -0.318 0.446***
English Test Score 0.000 -0.467*** -0.300 0.427***
Control Expectation 0.000 -0.286*** -0.157 0.249***
Instrumental Motivation 0.000 -0.221*** -0.107 0.186***
Action Control 0.000 -0.235*** -0.131 0.206***
Non-Cognitive Index 0.000 -0.279*** -0.148 0.241***
≥Two-Year Graduate 0.449 0.031*** 0.397 0.731***
Four-Year Graduate 0.378 0.009*** 0.224 0.677***
Observations 9,180 2,720 2,050 4,420

Panel B. Summary Statistics by Four-Year College Quality

Inclusive Selective Highly Selective
(1) (2) (3)

Male 0.427 0.417 0.450**
White 0.550*** 0.733 0.690***
Black 0.171*** 0.077 0.046***
Asian 0.078 0.084 0.163***
Both Parents 0.764*** 0.814 0.856***
Family Income 10.954** 11.104 10.838
Parents’ Education 14.830*** 15.402 16.340***
Math Test Score -0.065*** 0.347 0.842***
English Test Score -0.029*** 0.356 0.762***
Control Expectation 0.048*** 0.184 0.433***
Instrumental Motivation 0.043*** 0.147 0.310***
Action Control 0.027*** 0.140 0.379***
Non-Cognitive Index 0.045*** 0.177 0.422***
≥Two-Year Graduate 0.584*** 0.715 0.832***
Four-Year Graduate 0.458*** 0.661 0.815***
Observations 930 1,840 1,650

Source: Educational Longitudinal Study of 2002. * p < 0.05, ** p < 0.01, *** p < 0.001. In the first panel, the
stars follow from a t-test of not enrolled and 4-year enrollees against those in two-year colleges, respectively. In the
second panel, the stars follow from a t-test of students in inclusive colleges and highly-selective ones to those in
selective universities, respectively.
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Table 2.2: Enrollment Decision

Not Enrolled 4-Yr Inclusive 4-Yr Selective 4-Yr Highly Selective
(1) (2) (3) (4)

Math Test Score -0.0375*** -0.00299 0.0376*** 0.0852***
(0.00646) (0.00468) (0.00611) (0.00551)

English Test Score -0.0308*** 0.00406 0.0204*** 0.0501***
(0.00635) (0.00463) (0.00597) (0.00528)

Non-Cognitive Index -0.00932* 0.00197 0.0151*** 0.0324***
(0.00441) (0.00321) (0.00412) (0.00357)

Male -0.0320*** -0.000962 -0.0565*** -0.0289***
(0.00878) (0.00634) (0.00799) (0.00663)

White -0.0151 -0.0343*** 0.0567*** 0.0243*
(0.0118) (0.00861) (0.0130) (0.0113)

Black -0.0655*** 0.0377*** 0.0570** 0.0232
(0.0171) (0.0107) (0.0184) (0.0174)

Asian -0.0125 -0.0298 0.0437* 0.0711***
(0.0250) (0.0181) (0.0222) (0.0169)

Both Parents -0.0123 -0.00429 0.00958 0.0232**
(0.0105) (0.00758) (0.0101) (0.00886)

Family Income 0.0140*** 0.00467 0.00518 -0.00519**
(0.00385) (0.00260) (0.00270) (0.00180)

Parents’ Education -0.00823*** 0.000960 0.00993*** 0.0212***
(0.00187) (0.00134) (0.00172) (0.00147)

Urban -0.0252* 0.0197** 0.00430 0.0368***
(0.0103) (0.00698) (0.00905) (0.00724)

Observations 9,180

Source: Educational Longitudinal Study of 2002. Note: Standard errors in parentheses. * p < 0.05, ** p < 0.01, ***
p < 0.001. Table 2.2 presents the estimated marginal effects from a multinomial logit regression, as in equation (2.1),
examining the determinants of initial enrollment decisions. The omitted category is two-year college enrollment.
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Table 2.3: Determinants of Academic Undermatch

Top Test Score Decile Top Test Score Quintile Top Two Quintiles
(1) (2) (3)

Math Test Score -0.128* -0.190*** -0.160***
(0.0529) (0.0304) (0.0170)

English Test Score -0.132** -0.139*** -0.0999***
(0.0452) (0.0255) (0.0145)

Non-Cognitive Index -0.0664*** -0.0753*** -0.0556***
(0.0181) (0.0121) (0.00827)

Male 0.0650* 0.0632** 0.146***
(0.0321) (0.0221) (0.0154)

White 0.00255 -0.0142 -0.0929***
(0.0604) (0.0416) (0.0253)

Black 0.206 0.160 -0.0533
(0.167) (0.0879) (0.0483)

Asian -0.141 -0.105 -0.102*
(0.0817) (0.0592) (0.0410)

Both Parents -0.129** -0.0501 -0.0264
(0.0432) (0.0302) (0.0203)

Family Income 0.0137 0.00933 0.000135
(0.00747) (0.00575) (0.00440)

Parents’ Education -0.0532*** -0.0453*** -0.0395***
(0.00752) (0.00504) (0.00341)

Urban -0.0921** -0.0879*** -0.0542**
(0.0346) (0.0250) (0.0176)

Constant 1.682*** 1.660*** 1.314***
(0.180) (0.115) (0.0748)

Observations 920 1840 3670
R2 0.142 0.146 0.143

Source: Educational Longitudinal Study of 2002. Note: Standard errors in parentheses. * p < 0.05, ** p < 0.01, ***
p < 0.001. Table 2.3 presents the estimated results from equation (2.2). Equation (2.2) estimates the determinants of
academic undermatch for students at different points of the math test score distribution. In the first two columns,
students are classified to undermatch if they are not enrolled in a highly-selective college. In the third column,
undermatched students are those who have not enrolled in a selective or highly-selective institution by age 20.
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Table 2.4: Determinants of Bachelor’s Degree Completion Among Four-Year
Enrollees

Four-Year Enrollees Males Females
(1) (2) (3)

Math Test Score 0.0925*** 0.0811*** 0.0984***
(0.0112) (0.0172) (0.0147)

English Test Score 0.0297** 0.0170 0.0452**
(0.0108) (0.0162) (0.0147)

Non-Cognitive Index 0.0459*** 0.0514*** 0.0414***
(0.00738) (0.0114) (0.00974)

Male -0.0523***
(0.0140)

White 0.0379 0.0698* 0.0184
(0.0221) (0.0353) (0.0285)

Black -0.0257 0.0352 -0.0652
(0.0303) (0.0484) (0.0389)

Asian 0.0681 0.115* 0.0370
(0.0357) (0.0545) (0.0476)

Both Parents 0.0437* 0.0355 0.0487*
(0.0177) (0.0279) (0.0229)

Family Income -0.00211 -0.000391 -0.00320
(0.00394) (0.00619) (0.00510)

Parents’ Education 0.0276*** 0.0310*** 0.0250***
(0.00306) (0.00485) (0.00394)

Urban 0.0137 -0.0326 0.0486*
(0.0151) (0.0232) (0.0200)

Constant 0.140* 0.0148 0.191*
(0.0661) (0.106) (0.0847)

Observations 4420 1910 2510
R2 0.109 0.096 0.123

Source: Educational Longitudinal Study of 2002. Note: Standard errors in parentheses. * p < 0.05, ** p < 0.01, ***
p < 0.001. Table 2.4 presents the estimated results from equation (2.3). Equation (2.3) estimates the determinants
of four-year degree completion by age 26 for students enrolled in four-year college by age 20. The first column
includes all four-year enrollees, the whereas the next two columns divide the sample by gender.
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Table 2.5: Determinants of Bachelor’s Degree Completion Among Four-Year
Enrollees

Inclusive/Open Enrollees Selective College Enrolees Highly-Selective College Enrolees
Four-Year Grad. Four-Year Grad. >=Selective Grad. Four-Year Graduate Highly Selective Grad.

(1) (2) (3) (4) (5)
Male -0.0350 -0.0577* -0.0280 -0.0431* -0.0159

(0.0318) (0.0229) (0.0237) (0.0197) (0.0232)

White 0.0419 -0.00335 -0.00798 -0.0107 -0.0208
(0.0416) (0.0381) (0.0395) (0.0354) (0.0416)

Black 0.0398 -0.0861 -0.0699 -0.0452 -0.0624
(0.0506) (0.0529) (0.0548) (0.0567) (0.0666)

Asian 0.222* 0.0491 -0.00255 -0.0752 -0.0506
(0.0885) (0.0632) (0.0655) (0.0482) (0.0567)

Both Parents 0.0991** 0.0152 0.00566 0.00965 -0.00638
(0.0365) (0.0286) (0.0296) (0.0273) (0.0320)

Family Income -0.0231 0.00225 0.0115 -0.000292 -0.00363
(0.0133) (0.00724) (0.00750) (0.00440) (0.00517)

Parents’ Education 0.0334*** 0.0217*** 0.0178*** 0.0152*** 0.0215***
(0.00672) (0.00499) (0.00517) (0.00461) (0.00541)

Urban 0.0917** 0.00129 0.00890 -0.0407 -0.0138
(0.0335) (0.0257) (0.0266) (0.0208) (0.0245)

Math Test Score 0.0968*** 0.0661*** 0.0599** 0.0476** 0.0433*
(0.0240) (0.0182) (0.0188) (0.0176) (0.0207)

English Test Score 0.0460* -0.00631 0.00328 0.0168 0.0498**
(0.0231) (0.0175) (0.0181) (0.0164) (0.0193)

Non-Cognitive Index 0.0513** 0.0458*** 0.0458*** 0.0151 0.00272
(0.0162) (0.0120) (0.0124) (0.0109) (0.0128)

Constant 0.0794 0.282* 0.178 0.541*** 0.336**
(0.167) (0.113) (0.117) (0.0968) (0.114)

Observations 930 1,840 1,840 1,650 1,650
R2 0.139 0.039 0.031 0.032 0.035

Source: Educational Longitudinal Study of 2002. Note: Standard errors in parentheses. * p < 0.05, ** p < 0.01, ***
p < 0.001. Table 2.5 presents the estimated results from equation (2.3). Equation (2.3) estimates the determinants
of four-year degree completion by age 26 for students enrolled in four-year college by age 20, separated by initial
four-year college quality. The first column includes four-year enrollees in inclusive/open enrollment colleges. The
second and third columns focus on those in selective colleges. The last two columns only include students in
highly-selective institutions.
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Table 2.6: Determinants of Bachelor’s Degree Completion Among Two-Year
Enrollees

(1) (2)
Higher Education Graduate Four-Year Graduate

Male -0.0671** -0.0802***
(0.0220) (0.0185)

White 0.0567* 0.0294
(0.0285) (0.0240)

Black 0.00868 -0.0196
(0.0414) (0.0348)

Asian 0.128* 0.105*
(0.0604) (0.0507)

Both Parents 0.0341 0.0138
(0.0257) (0.0216)

Family Income 0.0139 0.00500
(0.0110) (0.00923)

Parents’ Education 0.0138** 0.0168***
(0.00470) (0.00395)

Urban -0.0133 0.0317
(0.0261) (0.0219)

Math Test Score 0.0661*** 0.0478***
(0.0163) (0.0137)

English Test Score 0.0158 0.0223
(0.0154) (0.0129)

Non-Cognitive Index 0.0341** 0.0499***
(0.0107) (0.00898)

Constant 0.0412 -0.0498
(0.126) (0.106)

Observations 2050 2050
R2 0.052 0.066

Source: Educational Longitudinal Study of 2002. Note: Standard errors in parentheses. * p < 0.05, ** p < 0.01,
*** p < 0.001. Table 2.6 presents the estimated results from equation (2.3) for two-year college enrollees. The first
column presents the probability of completing either a two- or a four-year degree by age 26.
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Figure 2.1: Math Test Score and Non-Cognitive Skills by Initial Choice
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Source: Educational Longitudinal Study of 2002. The first panel examines the distri-

bution of the 10th grade math test score by initial enrollment decisions. The second

panel presents the distribution of the non-cognitive skill index by students’ initial

enrollment choice.

36



Figure 2.2: Non-Cognitive Skills and Undermatch in Higher Education
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Source: Educational Longitudinal Study of 2002. The first panel examines the dis-

tribution of the non-cognitive index among top test score decile performers by their

’Undermatch’ status. The second panel examines the distribution of the non-cognitive

index among students in the top two math test score deciles, by their ’Undermatch’

status. The definition of undermatch is described in Section 3.
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Chapter 3: Firms as Mediators of the Returns to Skills

Note: This chapter of the dissertation is coauthored with Sergio Urzua.

3.1 Introduction

In recent decades, the advent of skill-biased technological change has brought in-

creased attention to the importance of workers’ skills, with an early literature defin-

ing workers’ skill levels by their educational attainment (Katz et al., 1998; Acemoglu,

2002; Card and DiNardo, 2002). However, recent work has highlighted the distinc-

tion between education and pre-labor market skills, where high-skilled individuals

attain more years of education, resulting in human capital accumulation mediating

the returns to skills (Heckman et al., 2006, 2018; Herrnstein and Murray, 1994; Blau

and Kahn, 2005; Lindqvist and Vestman, 2011; Deming, 2017). Nevertheless, the

bulk of this literature has estimated the returns to skill in regressions where ability

enters as a linear term. As a result, these papers have so far overlooked potential

non-linearities in the returns to skills, thus missing the existence and the returns to

being a skill ”superstar” (Rosen, 1981).

While education has been considered as a mediator of the returns to skills,

the importance of firms as a conduit for these returns has not received extensive
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attention, despite their importance for affecting labor market outcomes (Abowd

et al., 1999; Card et al., 2013, 2018). While previous research has found positive as-

sortative matching between high-quality workers and high-quality firms Card et al.

(2013, 2018), the worker ”quality” measured in these papers is identified from ob-

served labor market outcomes, and cannot be directly tied to measures of pre-labor

market skill measures. Nonetheless, these findings suggest that an additional chan-

nel through which skills may result in higher wages may be through high-skilled

workers matching to higher-quality firms, either immediately upon labor market

entry or incrementally as workers acquire labor market experience.

In this chapter, we estimate the labor market returns to mathematical and

language skills in the labor market, examine potential non-linearities in these re-

turns and explore how educational attainment and firm-quality matching mediates

the returns to ability.1 To answer this question, we take advantage of three admin-

istrative data sources from Chile. First, we use test score data from a nationally-

administered standardized math and reading exam given to 10th graders in 2001

and in 2003, comprising a nationally-representative sample of the 1985 and 1987

birth cohorts. We match these students to administrative data on their high school

records and their higher-education enrollment and graduation records in 2005-2017.

These data sources include detailed information on degrees attained, the fields of

these degrees and measures of university quality. Lastly, we match these individuals

to administrative matched employee-employer data over the 2002-2016 period. This

1Throughout this chapter, we use the terms skills and ability interchangeably. Unlike Chapter
2, as we do not have access to information on students’ non-cognitive skills, we abstract away from
considering this skill dimension.
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data includes monthly frequency of employment spells for workers in the formal

sector, and we are able match over 240,000 workers from the test-taking sample. As

a result, we are able to follow workers from labor market entry through ages 29-31.

We find large returns to mathematical ability in the labor market: a one

standard deviation increase in 10th grade math test scores increases monthly earnings

by 20%, whereas the equivalent returns to language ability are in the range of

3.5%. We find a significant increase in these returns as workers age. From age

24 through age 31, the return to math skills increases by 13 percentage points.

Most interestingly, we find that the returns to mathematical ability are highly non-

linear. For instance, while moving from the 50th percentile of the math test score

distribution to the 85th percentile results in a 30 percent wage increase, the same

returns are observed by moving from the 95th to the 99th percentile. These patterns

become starker for students in the top percentile, who outearn those in the next

percentile by upwards of 14 percent and those in the 90th percentile by upwards of

50 percent. We explore whether the same results are present for language test scores

and find that the estimated returns are small and follow a linear pattern.

We find that educational attainment plays explains part of the return to skills,

as students at the top of the math test distribution attain more years of education

by age 29. Nonetheless, these students separate themselves along other measures

of attainment. First, higher-skilled students have a higher likelihood of having

completed a five-year or graduate degree by age 29. Furthermore, these students

graduate with degrees from the highest-paying business, STEM or medicine majors

(Hastings et al., 2014). Most remarkably, top-tier students differentiate themselves
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through the quality of the university attended. While 41% of 100th math percentile

students graduate from Chile’s top two elite universities, only 13% of those in the

95th percentile do so.

Building on the literature on the importance of firms in the labor market, we

analyze the extent to which firm-worker matching mediates the returns to skills.

We follow Haltiwanger et al. (2018) and present various definitions of firm quality.

Across these measures, we find that high-skilled workers match with high-quality

firms immediately upon labor market entry. While there is mobility up the job

ladder for all workers across the test score distribution, assortative matching takes

place early on in workers’ careers. For instance, at age 25, an average worker in

the top test score percentile works in a firm in the 80th percentile of the firm-wage

distribution, whereas one in the median of the math ability distribution works in a

firm in the 56th percentile. We estimate an augmented human capital equation and

find that the estimated returns to math ability fall from 22% to 7-9% once detailed

measures of education and firm quality are included. We find similar patterns for

the non-linear estimates of the return to skills. To understand the importance of

education and firm quality for the returns to skill, we conduct a decomposition anal-

ysis following Gelbach (2016) and find that the firm-matching component explains

two-thirds of the change in the estimated returns to math ability. All in all, firms

explain half of the aggregate returns to math test scores and these returns hold

across the distribution.

The rest of the chapter proceeds as follows. Section 2 discusses the different

administrative data sources used in the chapter. Section 3 estimates of the returns
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to skill, including linear and non-linear definitions of workers’ skills. Section 4 char-

acterizes heterogeneous educational attainment by skill levels and examines how

such attainment mediates the returns estimated in the previous section. We addi-

tionally show matching patterns between high-ability workers and high-paying firms

and again examine how worker-firm matching mediates the returns to abilities. We

also present evidence from a Gelbach (2016) showing the share of the returns to skill

explained separately by education and firm quality. Finally, in Section 5, we discuss

the results and conclude.

3.2 Data Sources

We make use of three administrative data sources including information on stu-

dents’ mathematics and language test scores in a standardized 10th grade, data on

their high-school and post-secondary educational attainment and matched employee-

employer data. We describe these data sources below.

Test Score Information

To measure students’ pre-college skills, we take advantage of a standardized

language and mathematics test score (SIMCE) administered to all enrolled 10th

graders in Chile. In particular, we focus on data from the 2001 and 2003 exams.2

The goal of the SIMCE test is to evaluate the achievement of objectives and min-

imum content course requirements in Spanish language and mathematics among

2SIMCE was first implemented in 1998, but did not cover a nationally-representative sample.
Starting in 2006, the exam has been carried out bi-annually and has recently changed to annual
testing. SIMCE has algo begun testing students in 4th and 8th grade and it has included tests in
English and science in recent years.
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10th grade students. SIMCE scores are used by policymakers to monitor and eval-

uate schools by their performance in these two subjects and school-level scores are

disseminated to parents to help them make their school choice decisions. On the

other hand, individual scores are not given to students and are thus not used as a

determinant of future educational attainment (or college entry), making them an

attractive indicator of students’ skills while in school.

The 2001 sample included upwards of 150,000 test-takers, whereas the 2003

sample exceeded 160,000. We exclude students who had either repeated a grade or

missed one of the two exams, such that the main sample includes grade-for-age 10th

graders, covering the 1985 and 1987 birth cohorts, respectively. The full sample

includes 131,200 students from the 2001 exam and 142,100 from the 2003 exam. For

both test scores, the average score is 250 points with a standard deviation of 50

points. Within each test-taking sample, we create two measures of student ability.

We first normalize students’ math and reading scores imposing a normal distribution

on the scores. For the second measure, we rank students by their percentile on the

national test score distribution for each exam within the test-taking cohort. The

large sample of test takers allows us to observe over 2,500 students in each percentile

of the skill distribution, thus allowing us to estimate semi-parametric specifications

of the returns to skill.

Educational Attainment

To determine students’ educational attainment, we take advantage of two ad-

ditional administrative data sources. We first link students in the SIMCE sample

to data covering outcomes in high school for the universe of students enrolled in
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Chilean high schools from 2002 through 2016. This link allows us to identify the

time of high school graduation for students in the sample, and also identify high

school dropouts: 12,300 students in the sample have not completed a high school

degree by age 29.

We then take advantage of administrative records from the Higher Education

Information System (SIES) for the 2005-2016 period. SIES is the governmental

body within the Chilean Ministry of Education that manages and discloses official

tertiary education statistics. This student-level data source tracks students higher-

education enrollment and graduation patterns over time, indicating the institution

of enrollment/graduation and the type of degree being being pursued/attained each

year. As a result, we are able to identify the universe of higher education graduates in

Chile and observe in detail the level of degree attained, the granting institution and

the field of degree. We find that over 92,000 students in the sample had received a

higher education degree by age 29, with 47% of them receiving a five-year bachelor’s

degree, 30% earning an associates degree, and the remaining 13% getting a four-year

bachelor’s degree.3

Labor Market Outcomes

To explore labor market outcomes, we use Unemployment Insurance (UI, Se-

guro de Cesantia) data, which contains matched employee-employer data for all

formal sector employment contracts. The UI database has records of all formal

workers’ monthly earnings from November 2002 through June 2016, including up-

3In defining the years of education completed for each students, we include the years of en-
rollment for those who enrolled in higher-education but did not complete a degree by age 29.
Nonetheless, we classify these students together with high-school graduates when defining educa-
tional attainment by highest degree completed.
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wards of seven million workers. UI tracks workers with a unique identifier, and it

includes information on workers’ monthly earnings, sector of employment, state of

residence, and observable characteristics, including gender and age. For every job

held by every worker, we observe the month of entry and exit, allowing us to con-

struct a measure of months worked in each year and a measure of total formal sector

experience. The empirical analysis below includes workers’ labor market outcomes

when aged between 24 and 31. We impose this restriction to avoid including part-

time employment for students still enrolled in college, but we plan on relaxing this

restriction in the future. We note, however, that the measures of experience and

tenure are constructed including workers’ entire labor market trajectories.

UI also includes unique identifiers for each firm, allowing us to construct a

longitudinal panel of the universe of firms in Chile and thus correctly workers’ firm-

tenure as they remain employed at the same firm. As UI covers the universe of

formal sector firms in Chile each year, we use this information to construct an

annual measure of firm quality, ranking firms by their average monthly wages and

their median monthly wages, as in Haltiwanger et al. (2018). We combine the worker

and firm panels to track worker flows across establishments.

3.3 Returns to Skills

The existing literature has largely estimated the returns to skill in linear specifica-

tions, but has sometimes included quadratic terms or interactions between different

measures of abilities. We first estimate a linear model exploring the returns to 10th
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grade test scores, θi:

lnwageit = β0 + β1θi + β2ageit + λt + εit (3.1)

The first panel of Table 3.1 presents the estimated returns to SIMCE test

scores in Chile. In the first column, we find that a one standard deviation increase

in the math score is associated with a 22 percent increase in wages for workers aged

24-31. In the second column, we instead explore the returns to language scores, and

find estimated returns in the range of 16 percent. In the last column, we find that,

upon including both measures of test scores, the estimated returns to language skills

fall significantly, down to 3.5 percent, whereas the returns to the math score remain

large and significant, in excess of 20%. The returns to mathematical ability fall in

line with the results presented by Deming (2017), who finds a return of 20.3 percent

to cognitive ability, defined using AFQT scores, using NLSY data. However, these

returns are significantly larger to those found by Lindqvist and Vestman (2011), who

find a return of 8.6 percent to cognitive ablity in Sweden. We also analyze whether

the returns to skill increase as workers age, following insights from Heckman et al.

(2006) and MacLeod et al. (2017), who find increasing returns to schooling as workers

accumulate labor market experience in the following specification:

lnwageit = β0 + β1θi + β2θi × ageit + β3ageit + λt + εit (3.2)

The second panel in Table 3.1 presents the estimated returns by age. The
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first column shows that the returns to math-related skills increase by 2.4 percentage

points by year. These returns remain large and significant when we include language

test scores in column 2. The returns to math test scores increase by 1.9 percentage

points by year, whereas the returns to language skills increase by just 0.8 percentage

points, though these returns are significant as well. As discussed above, estimating

the returns to ability in a linear functional form may miss critical features of the

returns to skills, such as allowing for differential returns across the distribution.

Taking advantage of the large sample size of SIMCE test takers, we estimate the

return to ability across each percentile of the distribution, θji, in the following

regression:

lnwageit = β0 +
100∑
j=1

βjθji + β2ageit + λt + εit (3.3)

Figure 3.1 presents the estimated returns to math ability from equation (3.3).4

The omitted category represents students in the bottom percentile of the math

distribution, and the figure clearly shows the non-linearity in the returns to skill.

On average, students in the median of the math score distribution outearns those at

the bottom by 22 log points, whereas those in the 90th percentile outearn those in

the median by 36 log points. The figure clearly shows that the difference in returns

clearly grows as we move up the skill distribution. For instance, while a student

in the 90th percentile of the math test score distribution outearns one at the 50th

percentile by 36 log points at age 30, the same returns are observed from moving

4We estimate equation (3.3) including one-hundred dummy variables for a student’s ranking
in each of the mathematics and language test scores.
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from the 95th through the 99th percentile of the math test score distribution. In fact,

the return to moving from the 99th percentile of the test score distribution to the

top centile results in a wage gain of 14 percent. On the other hand, an equivalent

move up a math-skill percentile results in a wage gain of, at most, 3 percent at any

percentile below the 90th. These results lend credence to the possibility that the

market rewards skill ”superstars”, where students are the very top of the distribution

significantly outearn those just a few percentiles below. In Appendix Table B.1.1,

we present estimated returns from a semi-parametric regression where workers are

placed in one of six bins of math achievement.5 The results are similar to those

presented above: top math achievers outearn those in the middle of the distribution

as well as their peers just a few percentiles below them.

A potential concern with using students’ ranking in the test score distribution

as a measure of ability is that it may mask larger gaps in average test scores between

the 100th and 99th percentile vis-a-vis the equivalent difference between the 96th and

95th percentile, thus creating mechanical non-linearities in the returns to skill.6 To

address this concern, we estimate rank-rank regressions analyzing the relationship

between skill rankings and within-cohort wage rankings. This empirical approach

has been extensively used in the intergenerational mobility literature (Chetty et al.,

2014; Chetty and Hendren, 2018). We define the outcome variable as students’ wage

ranking relative to their birth cohort’s peers’ wages for each year they participate

5The six bins are: below median, between p51 and p80, the second top decile, between p90 and
p95, between p95 and p99, and the top math percentile.

6In the future, we plan to explore alternative rankings of students’ test scores, such as placing
students in a bins comprising 0.1 standard deviations of each test score measure, thus ensuring the
gap across test score percentiles remains equal across the distribution.
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in the labor market. The semi-parametric rank-rank regression is then:

rankwit = β0 + β1rank
θ
i + εit (3.4)

where rankwit denotes person i’s within-cohort wage ranking in year t. We present

the estimated results in Figure 3.2 for workers at age 29. The first panel shows

the relationship between ranking in the math test score and wages, and the non-

linearities in the estimated returns are present as wells. We first note that workers

at the median of the math skill distribution are, on average, in the 46th percentile

of their cohort’s wage distribution at age 29, outpacing their counterparts at the

bottom of the distribution by 13 percentiles. Similarly, there is a significant increase

in the average rank for workers in the 90th percentile of the math distribution, whose

wages are, on average, at the 63rd percentile by age 29. Nonetheless, these differences

become larger when focusing on those at the very top of the math distribution: while

95th percentile math-achievers reach the 68th percentile of the wage distribution,

those in the top math percentile far out-rank them by reaching, on average, the 78th

percentile of the wage distribution. These results confirm the previously-estimated

returns to being a math skill ’superstar.’

Panel B shows results from the same regression, but we instead focus on the

return to students’ ranking in the language exam. The results are strikingly different.

While students in the median of the language distribution fall on the 41st percentile

of the wage distribution, those in the 90th language percentile are, on average, in

the same percentile of the distribution. There is a slight difference for students in
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the top language centile, moving up two percentiles in the wage distribution, yet

this difference is significantly smaller than the corresponding result for math ability.

These findings confirm those presented in Table 3.1 and Figure 3.1, showing both

large (and non-linear) returns to math ability accompanied by small (and largely

linear) returns to language skills. In the next section, we explore how different

measures of educational attainment and firm quality vary by students’ ranking in

the math test score distribution.

3.4 Mechanisms

3.4.1 Educational Attainment

Education can mediate the returns to skill through either signaling or human capital

mechanisms (or both): in a signaling world, it is less costly for skilled students to

attain more years of education, whereas in the human capital story, skilled students

are capable of learning more while in school, thus become more productive and

earning higher wages. The existing literature has confirmed the mediating role

of education. Lindqvist and Vestman (2011) find that the estimated returns to

cognitive ability in Sweden fall from 0.086 to 0.050 once education is controlled for.

Similarly, Deming (2017) finds that the returns to AFQT in the NLSY fall from 0.203

to 0.129 upon controlling for years of education attuned. Prada (2014) estimates a

discrete choice model and reaches a similar conclusion, finding that one-third of the

return to cognitive ability is explained by educational attainment.

In the first panel of Figure 3.3, we show the average years of education com-
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pleted by students’ ranking on the math SIMCE through age 29. Unsurprisingly,

we find that higher skilled students tend to achieve more years of education. For in-

stance, students below the 20th math percentile finish about less than or just twelve

years of education, whereas those in the 80th percentile attain an additional two

years by age 29. While moving to the top of the math distribution results in an ad-

ditional 1.5 years of completed education (reaching upwards of 15.5 total years), the

stark non-linearities present in Figures 3.1 and 3.3 are not observed in this panel. As

Rodriguez et al. (2016) had previously found significant heterogeneity in the returns

to different types of degrees in Chile, such that five-year bachelor’s students outearn

those with a four-year degree and associate’s recipients, in Panel B, we explore the

relationship between math skill ranking and the type of degree attained by 29. We

focus on the share of students who have either received a five-year bachelor’s degree

or a graduate degree by 29. The non-linear patterns in educational attainment by

mathematical skill begin to emerge more clearly. As a result, while just 13 percent

of students in the median of the math distribution attain either of these degrees

by age 29, 45 percent of students in the 90th math percentile do so by age 29. As

with wages, there is a significant difference within students in the top decile, such

that over 70 percent of students in the top of the math distribution earn one of

these degrees, far outpacing the rest of the top math test score decile. These results

indicate that high skilled students differentiate themselves from their lower-skilled

counterparts on dimensions of educational attainment beyond years completed.

In Figure 3.4, we further explore sorting along other educational dimensions.

In the first panel, we examine the share of students receiving either a five-year bach-
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elor’s degree or a graduate degree in either health, science, or medicine. We focus

particularly on these degrees since Hastings et al. (2014) have shown these degrees

deliver the largest returns in Chile. Again, we find significant differences across the

math skill distribution. Whereas 57 percent of students in the top percentile attain

one of these degrees by age 29, this share drops by half, down to 28 percent, for

students in the 90th percentile. At the same time, just 5 percent of students in

the median of the distribution attain either of these degrees. In the second panel,

we analyze the share of students who receive either a 5-year or a graduate degree

from one of Chile’s two elite universities, Universidad Catolica or Universidad de

Chile. These two universities are of particular interest, as Zimmerman (2017) has

found that admission to either one results in a sizable increase in the probability

of reaching the top 0.1% of the income distribution. The non-linearities become

even starker in this context: 41% of top achieving math students attain a degree

from these universities, compared to just 0.2 percent for students in the median

of the distribution. Similarly, students at the top are nine times as likely as their

counterparts in the 90th percentile to receive a degree from an elite institution.

To formally explore how education mediates the returns to skill, we estimate a

human capital regression, including measures of labor market experience and firm-

tenure, as in Altonji and Williams (2005) and Topel (1991):

lnwageit = β0 + β1θi + β2ageit + β3Sit + γ1f(experit) + η1tenureit + λt + εit (3.5)

Sit represents different definitions of educational attainment. We present the results
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in the first panel of Table 3.2. The first column replicates the results from the first

table, showing returns to math skills of upwards of 20 percent. As we move across

columns, the inclusion of labor market experience and tenure increase the estimated

returns to ability, given that low-ability students enter the workforce earlier and

have thus acquired more experience through their late twenties. The last column

includes the years of education completed by worker i in year t.7 These results fit in

with previous findings from the existing literature, as the estimated returns to math

skills fall from 21.7 percent to 16.2 percent, and the returns to language fall from

4.8 percent to 1.4 percent. In Panel B, we explore how the estimated returns change

as we include different definitions of educational attainment. Including dummy

variables for the types of degrees attained in column (3) does not have a significant

effect on the estimated returns to skill. However, when we define attainment by the

interaction of degrees and university quality, as in column (4), or by the interaction

of types and fields of degrees (column 5), the estimated returns fall to 15 and 14

percent, respectively. Table 3.2 confirms that education mediates the returns to

skills, but we argue that different definitions of attainment explain varying shares

of these returns. In Appendix Table B.1.2, we estimate a semi-parametric version

of equation (3.5). We also find that education mediates non-linear returns to math

ability, as the estimated returns for top percentile students, relative to those in the

second decile, fall from 62 percent in the baseline regression (column 1) to 42 percent

once fields and types of degrees are taken into account (column 5). We next explore

7While in Figures 3.3 and 3.4, we had explored how educational attainment at age 29 varied
with workers pre-college skills, the measure of education in Table 3.2 defines attainment as the
concurrent number of years completed by worker i by year t instead on focusing on their completed
educational history.
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the relationship between skills and firm quality.

3.4.2 Firm Quality

An extensive literature in the spirit of Abowd et al. (1999) (AKM) has found that

firms explain an important share of the variance of wages. For instance, Card et al.

(2013) find that firm quality explains upwards of 20 percent of the variance of log

wages in West Germany. As noted above, empirical models following AKM can

be used to examine patterns of assortative matching between high-quality workers

and high-quality firms, and Card et al. (2013, 2018) have found evidence of positive

assortative matching. However, this approach identifies worker quality through labor

market outcomes, which does not offer a direct mapping to workers’ pre-labor market

characteristics, such as ability. In this section, we take advantage of a well defined

measure of worker ability, represented by SIMCE scores, to document patterns of

assortative matching in the labor market and explore how they firms mediate the

returns to skill.

We follow Haltiwanger et al. (2018) and create an annual ranking of firm

quality based on employment-weighted measures of: (1) average wages, (2) median

wages, (3) p25 wages.8 we also explore how the worker-firm match evolves as workers

acquire labor market experience, following insights from Haltiwanger et al. (2018),

among others, who explore the types of workers who move up the firm-quality ladder.

We first examine how workers match with firms across the ability distribution in

8We have also estimated a measure of firm quality by using the estimated firm fixed-effect from
an AKM regression for all workers in the UI data. However, Haltiwanger et al. (2018) note that
these estimates of firm quality follow only if a strict exogenous worker mobility assumption is met.
The results, available upon request, are similar with either measure of firm quality.
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the following specification:

ϕift = β0 + β1θi + β2ageit + +λt + εit (3.6)

In equation (3.6), ϕift represents one of the above-mentioned measures of firm

quality for worker i in year t. Figure 3.5 shows the relationship between math skills

and firm ranking, measured by the firm’s average monthly wage. The first panel

shows evidence of positive assortative matching between high-skilled workers and

high-paying firms as early as age 25. We note that while young workers across the

ability distribution tend to work in firms with average wages above the median,

there is significant sorting as we move up the distribution. As a result, an average

worker at the median of the math test score distribution works in a firm in the

56th percentile of the firm distribution, whereas one in the 90th skill percentile is

on average thirteen ranks higher in the job ladder. Furthermore, similar to the

results shown for educational attainment and wages, the top test score achievers are

employed, on average, at 80th percentile firms, far outpacing their counterparts ten

math skill percentiles below.

The second panel presents evidence from the same regression, but for workers

at age 29, where we find that high-skill workers are employed in higher-paying firms.

We complement these results with alternative measures of firm quality in Appendix

Figure 13, defining quality by firms belonging to the top 10% and top 5% of the

wage distribution. The results again indicate a strong matching component, as, for

instance, 53% of workers in the top math test score centile reach a top 10% firm,
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relative to just 31% of those in the 90th percentile. These patterns become starker

as we focus on firms in the top 5 percent of the wage distributions.

The results presented in Figure 3.5 show clear movement up the job ladder

for workers across the test score distribution. Interestingly enough, low ability

workers seem to be moving further up the distribution vis-a-vis their high ability

counterparts. For instance, those in the median of the math skill distribution have

gone up, on average, from a firm in the 56th percentile of the wage distribution at

age 25 to one in the 63rd percentile at age 29. Meanwhile, those in the top percentile

of math test scores have moved up, on average, four ranks. These results fit in with

Haltiwanger et al. (2018), who had previously found that low educated workers were

most likely to move up the job ladder. In fact, the evidence presented here offers a

potential explanation behind their results: as high ability workers match with high

quality firms early on their labor market career, there does not seem to be much

room for further moves up the ladder as they age.

Given the previously-found importance of firms for explaining wage inequality

and the fact that there is positive assortative matching between workers and firms,

we examine how firms mediate the returns to skill in the following specification:

lnwageift = β0 + β1θi + β2ageit + β3Sit + β4ϕft + γ1expit + η1tenit + λt + εift(3.7)

Table 3.3 presents the estimates from equation (3.7). The first column presents

the returns to math and language test scores from the human capital equation with
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education defined by the fields of degree attained.9 In the second column, we include

a linear term of worker i’s firm of employment’s average wage ranking in year t and

the estimated returns to math test scores fall from 14.1 percent to 8.1 percent. In

the third column, we use the same measure of firm quality, but include one hundred

dummy variables for each of the firm quality percentiles. In this specification, the

estimated returns to math skills fall further to 7.6 percent, or almost half of the

baseline returns in the human capital equation. Finally, the last two columns show

that defining firm quality by the median and the p25 wage ranking still lower the

estimated returns to math skills, though the change is smaller in magnitude than

for the preferred definition.

In Figure 3.6, we present the estimates from a semi-parametric estimation of

equation (3.7), having included dummy variables for each percentile for the math

and language test scores, as in equation (3.3). We find similar results as in the

linear specification. The estimated returns to being in the top math percentile vis-

a-vis those in the bottom of the distribution falls from 120 percent in the baseline

specification to less than 50 percent once field of degree dummies and firm quality

dummies are included in the regression. Similarly, the estimated return to workers

in the 90th percentile of the math distribution compared to those at the median falls

from 46 percent to 19 percent upon including educational and firm quality. The

results presented in this sub-section indicate that both components play a critical

role in mediating the returns to ability. Nonetheless, the results presented so far

9The results are similar when defining attainment by a measure of university quality. These
results are available upon request.
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do not allow us to estimate the separate contribution of the education and the

firm channel, as any such estimation would suffer from sequence dependence, where

the estimated contribution of each component would change by the order in which

controls are added to the model. In the next section, we present evidence from

a decomposition proposed by Gelbach (2016) to estimate how education and firm

quality separately mediate the returns to skills in the labor market.

3.4.3 Gelbach Decomposition

We have so far shown that higher-skilled individuals are morel likely to attain more

years of education, graduate from higher-quality universities and higher paying

fields, as well as work in high-paying firms. In order to explore how these both

education and firm quality mediate the returns to skill, it is useful to re-write equa-

tions (3.1) and (3.7) as follows:

lnwageift = βB0 + βB1 θi + βB2 ageit + γB1 expit + ηB1 tenit + εift (3.8)

lnwageift = βF0 + βF1 θi + βF2 ageit + γF1 expit + ηF1 tenit + βF3 Sit + βF4 ϕft + εift

(3.9)

βB1 provides an estimate of the net returns to pre-college skills in the labor mar-

ket, whereas βF1 represents the estimates after having accounted for educational

attainment and firm matching decisions. To understand the separate contribution

of these two factors, we follow Gelbach (2016) who presents a methodology based on

the omitted variable bias formula. In this analysis, the econometrician can recover
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the separate effect of any omitted variables from the estimation of equation (3.9)

by following these steps. First, estimating the full model (equation (3.9)) and re-

covering (βF1 , β
F
2 , γ

F
1 , η

F
1 , β

F
3 , and β

F
4 ). Second, running a regression of Sit on θi,

yielding a coefficient τS, and one for ϕft on θi, yielding τϕ. The two τ coefficients

are the differences in educational attainment and firm quality by math ability, such

that the difference in the changes in the estimated returns to ability is given by:

βF1 − βB1 = βF3 τS + β4τϕ. The share of change the in β1 explained by educational

attainment is given by βF3 τS, and the share explained by firm matching is βF4 τϕ.

We follow this procedure and present the estimates from the linear returns to

ability in Table 3.4. As seen in Table 3.3, upon including dummy variables for the

field of degree attained and for the firm ranking percentiles, the estimated returns

to math skill fall from 21.7 percent to 7.6 percent. We find that differences in

educational attainment across the skill distribution explain less than one-third of

the estimated change in the returns to skill, with worker-firm assortative matching

accounting for almost 70 percent of the change. The returns to language skills

similarly fall from 4.8 percent to 0.2 percent, and again, this change is largely

driven by the worker-firm match component. In Figure 3.7, we present the results

from this decomposition for analyzing the sources behind the changing non-linear

returns to skill discussed in Figure 3.6. The baseline returns to being in the top

math percentile fall from 120 percent to 102 percent (relative to the bottom math

students) once fields of degrees are accounted for, yet drop significantly, down to 50

percent, due to the worker-firm match component. A similar result is found for the

returns to workers in the median of the skill distribution: over two-thirds of the non-
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linear returns to skills are explained by high ability workers working in high-quality

firms. While the results may seem surprising given the strong relationship between

pre-college skills and various measures of educational attainment, these findings fit

in with the above-mentioned literature which finds that firms play a critical role in

determining labor market outcomes. While future work should consider potential

interactions between education firm matches, these results results indicate that good

workers and good firms meet early and often in the labor market, and that this

mechanism explains a sizable share of the returns to skill.

3.5 Conclusion

The technological revolution which has taken place in recent decades across both de-

veloped and developing countries has brought increased attention to understanding

the returns to pre-labor market abilities. While an extensive literature has found

sizable returns to skill, these papers have largely relied on parametric functional

forms, often focusing on the linear returns to skill. In this chapter, we have shown

that this literature has so far missed a critical component of the returns to skill, by

failing to consider the existence of skill ’superstars’ and exploring the returns for

these workers. To better understand the channels through which skilled workers earn

higher wages, we have also explored different measures of educational attainment

through which these workers may differentiate themselves from their lower-skilled

peers. While the existing literature has often documented that high skilled workers

attain more years of education, we have shown that this relationship is significantly
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stronger when defining attainment by university and degree quality. Furthermore,

this distinction is critical when defining ability in a non-linear functional form.

Lastly, building off an extensive literature showing that firms play a large role

in determining wage dispersion, we have thoroughly examined the importance of

firms for understanding the returns to skills. In a first in the literature, we have

shown that high-ability workers match with high-paying firms immediately upon

labor market entry and that there is subsequent movement up the job ladder for

young workers. In fact, a decomposition analysis indicates that firms explain at least

two-thirds of the explained component of both the linear and non-linear returns to

skills. Further work is required on this topic, in particular in exploring interactions

between educational attainment and firm quality, but we have shown that the inter-

action between workers’ abilities and firms is critical for understanding labor market

outcomes. In the next chapter, I extend this analysis by considering how early life

skills affect individuals’ human capital decisions, focusing in particular on their pro-

gression through higher education and college major choices. By considering the

returns to college majors, the next chapter seeks to decompose the causal returns

to human capital investment decisions, thus building on the contributions in this

chapter.
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3.6 Tables and Figures

Table 3.1: Returns to Ability in Chile (Monthly Wages)
Panel A. Linear Returns to Ability

(1) (2) (3)
Math 0.224*** 0.203***

(0.0002) (0.0003)
Language 0.163*** 0.034***

(0.0002) (0.0003)
Age 0.054*** 0.052*** 0.055***

(0.0006) (0.0002) (0.0002)
Year FE X X X
R2 0.124 0.090 0.125
Observations 10,170,432
Individual Observations 243,267

Panel B. Linear Returns to Ability by Age

(1) (2)
Math 0.147*** 0.141***

(0.0005) (0.0006)
Math × Age 0.024*** 0.019***

(0.0001) (0.0001)
Language 0.009***

(0.0006)
Language × Age 0.008***

(0.0001)
Year FE X X
R2 0.123 0.124
Observations 10,170,432
Individual Observations 243,267

Note: SE clustered at the individual level. * p<0.05, ** p<0.01, *** p<0.001. SIMCE scores from 2001 and 2003 10th grade samples.

SIES Higher Education Degrees — 2007-2016. Unemployment Insurance: 2002-2016. Ability measures are standardized. Wages are

measured monthly in 2010 Real CLP in the highest paid job.
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Table 3.2: Human Capital Equation
Panel A. Educational Attainment

(1) (2) (3) (4)
Math 0.203*** 0.221*** 0.217*** 0.162***

(0.0003) (0.0003) (0.0003) (0.0003)
Language 0.034*** 0.052*** 0.0481*** 0.0144***

(0.0003) (0.0003) (0.0003) (0.0003)
Experience 0.094*** 0.0732*** 0.110***

(0.0003) (0.0003) (0.0003)
Experience2 -0.004*** -0.00426*** -0.00503***

(0.0003) (0.0003) (0.0003)
Tenure 0.053*** 0.047***

(0.0003) (0.0003)
Year FE X X X X
Educational Attainment X
R2 0.125 0.148 0.161 0.230
Observations 10,170,432
Individual Observations 243,267

Panel B. Definitions of Educational Attainment

(1) (2) (3) (4) (5)
Math 0.217*** 0.162*** 0.159*** 0.152*** 0.141***

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Language 0.048*** 0.014*** 0.014*** 0.013*** 0.021***

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Experience 0.073*** 0.110*** 0.112*** 0.112*** 0.111***

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Experience2 -0.004 -0.005 -0.005 -0.005 -0.005

(0.00003) (0.00003) (0.00003) (0.00003) (0.00003)
Tenure 0.053*** 0.047*** 0.047*** 0.047*** 0.047***

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Year FE X X X X X
Years of Ed. X
Degrees Received X
University Quality X
Field of Degree X
R2 0.161 0.206 0.209 0.213 0.223
Observations 10,170,432
Individual Observations 243,267

Note: SE clustered at the individual level. * p<0.05, ** p<0.01, *** p<0.001. SIMCE scores from 2001 and 2003 10th grade samples.

SIES Higher Education Degrees — 2007-2016. Unemployment Insurance: 2002-2016. Ability measures are standardized.

63



Table 3.3: Returns to Ability: Firm Quality Definition

(1) (2) (3) (4) (5)
Math 0.141*** 0.081*** 0.076*** 0.099*** 0.098***

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Language 0.021*** 0.002 0.002 0.010*** 0.016***

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Experience 0.111*** 0.067*** 0.066*** 0.064*** 0.075***

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Experience2 -0.005 -0.004 -0.003 -0.003 -0.003

(0.00003) (0.00003) (0.00003) (0.00003) (0.00003)
Tenure 0.047*** 0.033*** 0.033*** 0.032*** 0.032***

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Year FE X X X X X
Field of Degree X X X X X
Firm Rank (Mean Wage) X
Firm Rank Dummies X
Firm Rank (p50) X
Firm Rank (p25) X
R2 0.244 0.468 0.482 0.425 0.402
Observations 10,170,432
Individual Observations 243,267

Note: SE clustered at the individual level. * p<0.05, ** p<0.01, *** p<0.001. SIMCE scores from 2001 and 2003 10th grade samples.

SIES Higher Education Degrees — 2007-2016. Unemployment Insurance: 2002-2016. Ability measures are standardized. Wages are

measured monthly in 2010 Real CLP in the highest paid job.
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Table 3.4: Returns to Ability: Gelbach Decomposition

(1) (2) (3) (4)
Baseline Full Education Firm Quality

Math 0.217*** 0.076*** 0.045*** 0.096****
(0.0003) (0.0003) (0.0001) (0.0002)

[0.319] [0.681]
Language 0.048*** 0.002*** 0.017*** 0.029***

(0.0003) (0.0003) (0.0001) (0.0002)
[0.369] [0.631]

Year FE X X
Field of Degree X

Firm Rank Dummies X
R2 0.161 0.468

Observations 10,170,432
Individual Observations 243,267

Note: SE clustered at the individual level. * p<0.05, ** p<0.01, *** p<0.001. SIMCE scores from 2001 and 2003 10th grade samples.

SIES Higher Education Degrees — 2007-2016. Unemployment Insurance: 2002-2016. Ability measures are standardized. Wages are

measured monthly in 2010 Real CLP in the highest paid job.
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Figure 3.1: Estimated Returns to Math Ability
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Figure 3.2: Rank-Rank Regressions
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Figure 3.3: Educational Attainment
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Figure 3.4: Educational Attainment: College Quality and Major
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Figure 3.5: Assortative Matching: Firm Quality At Ages 25 and 29
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Figure 3.6: Human Capital Equation
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Figure 3.7: Gelbach Decomposition
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Chapter 4: What’s Math Got to Do With It? Multidimensional Abil-

ity and the Gender Gap in STEM

4.1 Introduction

Women make-up just one fourth of recent graduates in math-intensive STEM ma-

jors in the United States (Kahn and Ginther, 2017). As these majors are among the

highest-paying degrees, understanding the factors contributing to STEM participa-

tion gaps may offer guidance for narrowing gender gaps in labor market outcomes.

In this context, colleges across the country have begun implementing policies aimed

at boosting women’s STEM enrollment rates (EOP, 2014). Nonetheless, while pro-

moting enrollment in STEM majors is a critical first step for reducing gender gaps,

half of initial enrollees fail to complete a STEM degree (Altonji et al., 2016), and

the dropout rate is larger for women than for men (Kugler et al., 2017). As a result,

understanding the factors which drive students to sort into majors and subsequently

finish them can help in designing more effective policies aimed at promoting STEM

participation and persistence.

In this chapter, I examine the interaction between pre-college math ability

and major choices, focusing on women’s enrollment and graduation from math-
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intensive STEM majors. Previous work has analyzed whether gender gaps in math

test scores can explain the difference in STEM participation (Turner and Bowen,

1999; Xie and Shauman, 2003; Dickson, 2010; Riegle-Crumb et al., 2012; Justman

and Méndez, 2018), yet test scores are affected by background characteristics and

contaminated with measurement error, thus potentially mismeasuring the impor-

tance of math ability in gender STEM gaps.1 Moreover, other skill dimensions, such

as non-cognitive skills, may play an important role in determining students’ college

major choices as well as their STEM participation. In this context, I focus on the

role of mathematical self-efficacy, which measures an individual’s perceived ability

to perform math-related tasks, in explaining gender gaps in math-intensive majors.

To understand students’ enrollment and completion patterns given their pre-

college ability, I present and estimate a sequential model of college progression.

In this model, which builds on Heckman et al. (2016), Heckman et al. (2018),

Humphries et al. (2017) and Rodrıguez et al. (2017), students first select a col-

lege major among five broad fields. In the second stage, they either complete their

initial major, switch fields, or dropout of college altogether. In the last decision

node, students are able to complete a graduate degree, or enter the labor market

and earn hourly wages. At each stage, individual decisions and labor market out-

comes are a function of observed characteristics and latent math and reading ability.

I implement the model using Educational Longitudinal Study of 2002 (ELS) data,

which follows a nationally-representative cohort of 10th graders through age 26. ELS

1See Carneiro et al. (2003), Cunha et al. (2006), Heckman et al. (2006), Heckman et al. (2016),
Borghans et al. (2008), and Prada and Urzúa (2017), among others. Niederle and Vesterlund
(2010) have separately shown that competitive pressures explain part of the gender gap in math
test scores.
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data includes detailed information on multiple measures of math test scores, math

class GPA, math self-efficacy measures, detailed information college major choices

and early-career labor market outcomes.

I follow latent factor models to identify the distribution of unobserved ability

through a measurement system. This approach allows me to correct for measurement

error in test scores while controlling for the contribution of background characteris-

tics to test scores. I take advantage of the various observed measures in the data to

identify a non-cognitive skill component, math self-efficacy, along with a math prob-

lem solving factor and a reading ability component. I allow for these components

to be correlated, relaxing the factor independence assumption imposed in previous

work and fitting in with the recent literature on latent factors (Prada and Urzúa,

2017). Furthermore, as I estimate the model separately by gender, I can examine

whether gender gaps in math test scores overstate those in latent math ability and

whether the correlations across the latent ability components differ between men

and women.2 I first find that the gender gap in latent math problem solving ability

is 40 percent smaller than the 0.30 standard deviation gap in math test scores. This

result follows from the finding that math-course GPA reflects problem solving abil-

ity and women outperform their male peers in this dimension. The problem solving

component is highly correlated with the math self-efficacy component, though the

correlation is lower for women. There is thus a relative ’lack’ of high-performing

2I interpret the components of latent ability to be fixed by the time of initial major choices,
but do not consider these measures to be constant from birth. This assumption follows from an
extensive literature showing gender gaps in math performance expand in elementary and middle
school (Kahn and Ginther, 2017). Huang (2013) shows a similar pattern in math self-efficacy
between middle- and high-school.
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women who are confident in their math abilities vis-a-vis their male counterparts.

I find that math problem solving ability and self-efficacy are strong predictors

of STEM enrollment for both men and women, and this decision is non-linear, as an

increase in self-efficacy at the top of the problem solving distribution has a larger

impact on enrollment than one for low math achievers. For instance, for women

in the top math problem solving decile, only 2% of those who are in the bottom

self-efficacy decile enroll in STEM, whereas 13% of those in the top decile do. As

a result, the relative lack of women at the top of the joint skill distribution reduces

their participation in math-intensive majors. On the other hand, gender differences

in latent problem solving ability explain less than ten percent of the gap in STEM

enrollment, fitting in with recent work highlighting the importance of preferences in

driving STEM gaps (Zafar, 2013; Wiswall and Zafar, 2014, 2017). At the same time,

as math self-efficacy explains an additional 7 percent of the enrollment gap, I remark

the importance of considering multiple dimensions of ability when considering STEM

participation decisions.

In terms of subsequent STEM completion, while 60% of men initially enrolled

in these majors end up graduating, fewer than 45% of women do so. There is re-

sorting on the problem solving component for both men and women, such that only

the highest math-achievers graduate from these majors. However, self-efficacy plays

a far larger role for women than it does for men in leading to degree completion. 55%

of male enrollees in the bottom self-efficacy quintile complete a STEM degree, rising

slightly to 64% for those in the top quintile. On the other hand, while only 22%

of female STEM enrollees in the bottom self-efficacy quintile successfully complete
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a degree, the completion rate for those in the top quintile is almost three times as

large, reaching 64%. As a result, a shortfall in this non-cognitive negatively affects

women’s STEM participation both at enrollment and graduation and accounts for

20% of the gender gap in STEM completion rates among STEM enrollees.

Despite the efforts aimed at increasing women’s STEM participation, Altonji

et al. (2012, 2016) note there is limited causal evidence on gender-specific returns

to college majors. Estimating these returns is critical for understanding whether

STEM participation would in fact improve women’s labor market outcomes. I note

that in the context of policies aimed at increased STEM enrollment, policymakers

should be interested in the returns to enrollment, rather than on the returns to

graduation. These parameters are different, as the former allows for the possibility

that students may fail to complete their initial major, whereas the latter assumes

successful completion. Moreover, since specific components of the ability vector may

have differential effects across college majors, the returns to STEM majors may not

be uniform for all students. In this context, estimating heterogeneous returns to

majors allows for the correct identification of students who would benefit the most

from STEM participation.

Following the estimates from the discrete choice model, I present causal evi-

dence on the heterogeneous returns to enrolling in a math-intensive major for men

and women. The returns to STEM enrollment for women vary significantly by the

alternative major under consideration. While STEM enrollment delivers positive

returns relative to the life sciences and other majors, the returns against business
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and health fields are negative.3 The returns to enrollment in math-intensive fields

are lower for women than for men, partly due to sizable gender gaps in potential

wages in these majors, in excess of 15 percent.4 On the other hand, I find sig-

nificant heterogeneity in these returns, such that high math ability women would

largely benefit from enrolling in STEM. I also estimate the returns associated with

STEM graduation after enrollment, relative to either switching fields or dropping

out. These estimates acquire policy relevance in the context of initiatives aimed at

supporting STEM enrollees towards degree completion. I find that all women would

benefit from finishing these degrees relative to dropping out from college. Nonethe-

less, when compared to degree-switchers, only those above the math problem solving

and self-efficacy median would benefit from finishing a STEM degree. These results

suggest that broad-based STEM-inducing policy efforts would not necessarily de-

liver improved labor market outcomes in the early career, and as high math ability

women would unambiguously benefit from enrolling in STEM, targeted policies may

be preferable.5

Lastly, the importance of math self-efficacy in predicting women’s STEM par-

ticipation, coupled with the malleability of non-cognitive skills through adolescence,

indicates that policies focused on boosting self-efficacy could have a sizable impact

3The returns to major are estimated using evidence on early-career labor market outcomes.
These outcomes do not capture the full extent of lifecycle returns to college majors. These results
extend Jiang (2018)’s estimated returns to STEM for women, which are estimated against non-
STEM majors. I find that the pairwise comparison across different majors is key for understanding
which students who are currently enrolled in other majors would benefit from starting in STEM.

4While these differences could be potentially explained by post-graduation occupational
choices, Goldin (2014) has found sizable gender gaps within narrowly-defined science occupations.

5On the other hand, broad-based policies aimed at increasing women’s STEM graduation
rates may have significant non-pecuniary benefits. Anaya et al. (2017) have shown that girls with
mothers in STEM are more likely to be employed in a math-intensive field.
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on women’s STEM participation rates.6 Using the estimated model parameters, I

examine the impact of a policy increasing women’s self-efficacy by 0.25 standard

deviations. This intervention would increase women’s STEM enrollment rates by

almost 20 percent relative to baseline participation rates, with larger impacts for

women at the top of the problem solving distribution. This policy would also suc-

ceed in boosting graduation rates from math-intensive majors by close to 20 per-

cent, as well. While boosting STEM participation rates may be worthwhile for

non-pecuniary reasons, policymakers may also be interested in the labor market

benefits arising from policy interventions. I analyze the effect of the self-efficacy

intervention on women’s hourly wages and find larger effects for high math ability

women, for whom the returns to STEM are larger. Well-targeted skill development

policies may thus help in reducing gender gaps in STEM and in narrowing gaps in

early-career labor market outcomes.

This chapter contributes to an extensive literature exploring how students sort

into college majors, in particular to the analysis of sorting patterns by pre-college

ability. Arcidiacono (2004) has found that math ability plays a larger role in the

major choice decision than verbal ability, Kinsler and Pavan (2015) find sorting into

science majors based on latent math ability and Humphries et al. (2017) identify

heterogeneous sorting patterns across different majors in Sweden based on grit,

cognitive and interpersonal skills. These papers do not examine gender-specific

sorting patterns, though a parallel set of papers has examined the factors driving

6An extensive literature has found non-cognitive skills to be malleable through adolescence
(see summaries in Kautz et al. (2014) and in Saltiel et al. (2017).
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gender differences in college majors, with Wiswall and Zafar (2014), Zafar (2013)

and Wiswall and Zafar (2017) finding that differences in preferences for majors

and enjoyment from studying certain fields drive the gender gap in major choices.

Other papers have examined the importance of college preparation to gender gaps,

with Turner and Bowen (1999) and Dickson (2010) finding that SAT scores play

a small role in major gaps, and Speer (2017) finding a sizable role for ASVAB

scores in understanding gaps in STEM fields. I contribute to this literature by

first distinguishing between observed test scores and latent ability, as the former are

influenced by background characteristics and may capture ability with measurement

error. Furthermore, I identify a component of non-cognitive ability, mathematical

self-efficacy, which is critical for understanding sorting patterns into STEM majors

and gender gaps in this field.7 By allowing the three components of latent ability to

have gender-specific correlations, I extend the literature on unobserved heterogeneity

(Heckman et al., 2016; Prada and Urzúa, 2017).

A parallel strand of the literature has analyzed the factors driving students’

progression through college majors. Arcidiacono (2004), Arcidiacono et al. (2012)

and Beffy et al. (2012) have estimated structural models, finding that both ex-

pected earnings and skills play a significant factor in determining initial and final

major choices. Stinebrickner and Stinebrickner (2013) have found that students

7Previous psychology papers (Perez-Felkner et al., 2012, 2017; Nix et al., 2015) have found
that self-efficacy positively affects science course completion and enrollment in science majors for
both men and women. However, this work does not differentially examine how self-efficacy affects
STEM enrollment and subsequent completion, nor does it distinguish between observed and latent
measures. Furthermore, it does not estimate the impact of self-efficacy on gender gaps in STEM.
The economics literature, on the other hand, has largely focused on analyzing the importance of
test scores in gender gaps in STEM and has not considered the role of non-cognitive components.
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drop out from science fields in part due to over-optimism with regards to finish-

ing these degrees. Although the discrete choice model introduced in this chapter

does not directly consider students’ learning process while in college, I capture the

multi-dimensional nature of ability and estimate a variety of treatment effects for

quantifying the benefits from STEM enrollment and graduation. Furthermore, I

estimate the model separately by gender, allowing me to understand the factors

driving gender gaps in majors. A set of recent papers have presented reduced form

evidence on STEM gender gaps across enrollment and graduation. Astorne-Figari

and Speer (2017) and Astorne-Figari and Speer (2018) find that female STEM en-

rollees are more likely to switch out of these fields compared to males, and that

women move to less competitive majors. Meanwhile, Kugler et al. (2017) find that

women in male-dominated STEM fields are more likely to drop out in response to

low grades than men. I extend this literature by exploring how different compo-

nents of the latent ability vector contribute to expanding gaps at graduation and by

estimating the returns arising from STEM completion after enrollment.

Lastly, I contribute to an sizable literature on the returns to majors. Altonji

(1993), Rumberger and Thomas (1993), Eide (1994) and Chevalier (2011), among

others, estimate linear wage models including test scores as control variables and

find positive returns to STEM degrees for women, yet these papers do not correct

for endogenous selection into majors. Jiang (2018) addresses this issue by present-

ing a discrete choice model and finds large returns to STEM degrees for women

compared to non-STEM fields. Arcidiacono (2004) similarly estimates a dynamic

discrete choice model in which he also finds positive returns to STEM. I build on
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this literature by correcting for endogenous sorting into initial and final majors,

highlighting the difference in the estimated returns to majors at enrollment and

graduation, analyzing how the returns to STEM vary relative to the alternative

major their are compared against, and by estimating gender-specific returns.

4.2 Data Sources and Summary Statistics

Data Sources

This chapter uses longitudinal data from the Educational Longitudinal Survey

(ELS) of 2002. The ELS is a nationally-representative survey of 16,700 10th grade

students in 2002 who were interviewed, along with their parents and teachers, in

the initial year, and in 2004, 2006, and 2012, when respondents had turned 26

years old. The first two surveys include detailed information on students’ individual

characteristics, including their race and gender, and family characteristics, including

family composition, parents’ educational attainment, labor market outcomes, total

family income and region of residence. Critical to the analysis of sorting into majors,

ELS data includes multiple test score measures. First, respondents were given a

mathematics and reading test developed by the Department of Education in 10th

grade, along with a follow-up math exam in 12th grade. ELS data also includes

ACT and SAT scores for students who took these exams. Moreover, the availability

of high school transcripts allows me to construct different measures of high school

GPA in math and English courses.

ELS data also includes two measures of students’ mathematical self-efficacy
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in the first and second survey. Self-efficacy is defined as an ”individual’s judgment

about being able to perform a particular activity” (Murphy and Alexander, 2000),

and Perez-Felkner et al. (2017) find that math self-efficacy positively predicts enroll-

ment in STEM fields for both genders. The two measures are constructed directly

from five questions measured on a four-point Likert scale using principal component

analysis. The questions ask students to rate themselves on whether they think they

can do an excellent job on math tests, understand difficult math texts, understand

difficult math classes, do an excellent job on math assignments and whether the

student can master math class skills.

To analyze the extent of gender differences in college majors, I restrict my

sample to students enrolled in four-year college by age 20. As I impose few subse-

quent restrictions, the final sample includes students who do not graduate with a

four-year degree, bachelor’s recipients and students who have enrolled in or com-

pleted a graduate degree. I explore students’ progression through college majors by

using their reported major in 2006, including those who had not yet declared one,

and their final major at graduation reported in the last survey. College majors are

defined using a two-digit major code from the Department of Education’s Classi-

fication of Instructional Programs (CIP), yielding fifty different major categories.

Since working with a large number of majors is inconvenient for empirical analysis,

the existing literature has often analyzed majors by aggregating them into broader

categories.8 Since Kahn and Ginther (2017) have shown that the STEM gender gap

8Kinsler and Pavan (2015) group majors into business, science and others, Ransom (2016)
aggregates them into STEM, business, social sciences, education and others, and Jiang (2018)
follows a binary STEM classification.
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is largely driven by differences in math-intensive fields, I aggregate majors into five

categories, which include math-intensive STEM, life sciences, Business, Health, and

the remaining majors.9

Lastly, I analyze students’ labor market outcomes using information from the

third follow-up survey carried out in 2012. This survey includes detailed information

on respondents’ labor force participation and hourly wages. The final sample in-

cludes 4,520 respondents, with 2,010 men and 2,510 women with information for all

test scores, self-efficacy measures, individual and family characteristics. Although

the original ELS sample is evenly balanced between men and women, 55 percent of

respondents in my sample are women.10 In Table C.1.1, I show how the different

restrictions result in the final sample used in the chapter.

Summary Statistics

In Table 4.1, I present descriptive statistics on the sample used in this chapter.

The majority of students come from two parent families and the average surveyed

parent has completed 16 years of schooling. However, male college enrollees are more

likely to come from two-parent, higher income-, and higher-educated households.11

9Math-intensive STEM fields include degrees in engineering, engineering-related fields, com-
puter science, mathematics, economics, statistics and physics. Life science degrees include majors
in agriculture (and related sciences), natural resources and conservation, family science, biology
and related fields and other science technologies. Business degrees includes degrees in business,
management and marketing. The ”Other” group includes the the following college majors: Archi-
tecture, Anthropology, Art, Art History, Communications, Criminal Justice, Education, English,
History, International Relations, Journalism, Literature, Pre-Law, Political Science, Psychology,
Social Work, and Sociology, among others. The Health group is largely composed of majors in
Nursing, Pre-Med, Pre-Vet, Pharmacy, Health and Physical Therapy.

10This difference is partly explained by non-response rates in the first two survey, as restricting
my sample to those who answer questions in the first survey results in a sample which is 53 percent
female. Throughout the analysis, I apply sample weights to account for differential attrition by
gender. The remaining difference can be explained by higher rates of college enrollment for women,
as shown by Goldin et al. (2006).

11This difference is consistent with previous findings in Fortin et al. (2015).
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In the last row, I show log hourly wages for employed men and women who are

college graduates, have not gone on to graduate school and are employed at the

time of the survey.12 93.2% and 94.3% of men and women are employed in the final

survey, respectively. In this sample, the gender wage gap equals 9.5 percent, in line

with the 10.4 percent wage gap for 25-29 year old college graduates in American

Community Survey data.

Table 4.1 also presents evidence on students’ pre-college test scores and self-

efficacy measures. I find significant differences in the various math test scores avail-

able in the ELS, with men outperforming women by 0.27 standard deviations in the

10th grade math exam developed, by 0.32 standard deviations in the 12th grade math

exam and by 0.29 standard deviations in the ACT/SAT college entrance exam. On

the other hand, I examine grades in high school math courses following Niederle

and Vesterlund (2010)’s insight that test scores may be partly explained by gen-

der differences in responses to competitive pressure. I find that women earn higher

grades than men by 0.14 standard deviations, suggesting that test scores overstate

gaps in math ability.13 As in Cheng et al. (2017), I find significant differences in

math self-efficacy, where men’s self-efficacy exceeds that of women by 0.34 stan-

dard deviations in the baseline survey and by 0.30 standard deviations in the 12th

12I impose this restriction as students who report having completed graduate school by age 26
may not have yet transitioned into full-time employment. As a result, their wage observations may
not correctly reflect their earnings potential at the time of the last survey.

13These differences correspond to 0.11 and 0.12 points out of a four-point GPA scale, respec-
tively. While I cannot directly adjust for the quality of courses taken by these students, I find no
evidence of differential course-taking by gender. For instance, out of all individuals in my sample
who take AP Calculus as seniors, 50.3% are women. Meanwhile, out of the sample of 11th graders
who enroll in Honors Pre-Calculus, 54.2% are women. Rothstein (2004) and Riegle-Crumb et al.
(2012) find similar differences in math course grades.
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grade survey. I complement this analysis by examining the relationship between

math test scores and self-efficacy across the distribution in Figure 4.1. The first

panel shows a strong positive relationship between the 10th grade exam score and

reported self-efficacy for both men and women, though the correlation between the

two is larger for men. Furthermore, there are significant gender differences in math

self-efficacy across the test score distribution, For instance, even among students in

the top math test score quintile, men’s observed self-efficacy exceeds that of women

by 0.27 standard deviations. The second panel shows distributional differences in

these two measures, where I find that the ratio of men to women in the top test

score quintile is almost two-to-one, as found by Pope and Sydnor (2010), Ellison

and Swanson (2010), and Guiso et al. (2008).

Major Choices

Table 4.2 shows the share of men and women who enroll and graduate from

the five major categories defined above. There are significant differences in college

major choices immediately upon enrollment. For instance, just 4.5 percent of women

initially enroll in a math-intensive STEM major, relative to 17.9 percent of men. On

the other hand, there are no differences in the life sciences, as seven percent of men

and women start in these majors. The gender gap in STEM participation expands at

graduation. Among four-year degree recipients just 4.1% of women attain a STEM

degree, compared to 20% of men. This difference emerges from gaps in completion

rates for both STEM enrollees and non-STEM enrollees. I explore these patterns

in Figure 4.2, where I find that while 61% of male STEM enrollees subsequently

complete a degree by age 26, just 44 percent of women do so. I find similar patterns
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among non-STEM enrollees, where 5.8 percent of men end up completing a math-

intensive degree, compared to just 1.3% of women. The difference among non-

enrollees plays an important role to expanding STEM gaps at graduation, as the

vast majority of women and men had not initially enrolled in STEM.14

In Table 4.3, I explore sorting patterns into initial and final majors by gender,

focusing on math-intensive STEM fields. I estimate a linear probability model and

find math test scores and self-efficacy positively predict STEM enrollment for both

women and men.15 A one SD increase in either math component would lead to

a one-third increase in enrollment rates relative to baseline participation for both

genders. In the last two columns, I explore the factors driving STEM completion

among students initially enrolled in these majors. For women, self-efficacy play

a critical role in predicting completion, as a one SD increase in this component

increases completion rates by 11.7 percentage points. This is not the case for men,

for whom math test scores play a far larger role in leading to degree completion. In

Table C.1.2, I expand upon this analysis by showing how math test scores and self-

efficacy differ across STEM enrollees, graduates and non-completers. This analysis

indicates that not only is there initial sorting into STEM, but that both men and

women further sort into graduating with a STEM degree on both dimensions of math

performance.16 17 Nevertheless, test scores cannot be considered true measures of

14While the literature has largely focused on differential dropout rates among STEM, I also
explore the sources behind differential sorting-into-STEM rates for those who do not start in these
fields.

15Although the estimated point estimates are larger for men, since that the baseline enrollment
share for men is four times that of women the relative magnitude of the effect is similar.

16Astorne-Figari and Speer (2017), Astorne-Figari and Speer (2017) and Kugler et al. (2017)
find that within-college factors affect switching behavior, including reaction to grades, faculty and
peer composition in majors.

17In Table C.1.3, I examine the contribution of baseline test scores to gender gaps in STEM
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ability, as they are measured with error and affected by background characteristics

(Heckman et al. 2006). I present an empirical strategy which addresses this concern

in Section 4.3.

Lastly, in Table C.1.4, I examine the hourly wages associated with different

college majors by gender. The last three columns indicate that male STEM gradu-

ates earn the highest wages among college graduates. For women, STEM is among

the best-paid fields, though health majors earn higher wages. These patterns differ

when analyzing wages by initial major choice, which includes degree switchers and

college dropouts. Among STEM enrollees, women earn similar wages than business

enrollees and the difference against those in the life sciences falls from 25% among

degree completers to 15% among the enrollee sample. As a result, an open ques-

tion remains as to the magnitude of the benefits arising from STEM enrollment for

women.18 In the next section, I present a discrete choice model which accounts for

endogenous sorting into initial and final college majors for both men and women.

This model allows me to estimate the wage returns associated with each major sep-

arately by gender, examine how these differ at enrollment and graduation and to

identify heterogeneous returns by pre-college ability.

participation. A reduced-form decomposition indicates these factors explain 15% of gaps at en-
rollment.

18While these raw differences do not represent the wage returns associated with these majors, re-
duced form strategies rely on selection-on-observables assumptions, which may not hold if students
select majors based on their latent ability. I explore this question in Section 4.6.
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4.3 Discrete Choice Model

This chapter estimates a sequential model of major choices and educational at-

tainment for students initially enrolled in four-year college. This model builds on

discrete choice models presented by Heckman et al. (2016), Heckman et al. (2018),

Humphries et al. (2017) and Rodrıguez et al. (2017), and it follows a generalized Roy

(1951) framework. It combines components used in reduced form analysis and in

structural models to correct for endogenous educational choices and associated labor

market outcomes. In this framework, students’ decisions depend both on observed

characteristics and unobserved ability.

Figure 4.3 presents the sequential decision process.19 Upon entering college,

individuals select major option Dm1 among the set of possible majors m1 ∈ M1.20

M1 includes the five major categories defined above as well as an option to not

declare a major within the first two years of enrollment. Agents then decide to

continue in four-year college or drop out. Continuers are defined by Dd1 = 1.

Among this group, agents select a major Dm2 at the time of college completion

from the set of five major categories, m2 ∈ M2. Students may thus graduate from

their initial major (Dm1 ≡ Dm2), switch majors or drop out. Finally, agents who

have completed a four-year degree have the option of completing a graduate degree

g, Dg = 1.21 Educational attainment by age 26/27 is given by [Dm1 , Dd1 , Dm2 , Dg].

19Although timing is not directly considered, I am still able to capture the sequential nature of
both initial and final major choices as well as college dropout.

20Dm1
is a random variable which equals one if the student enrolls in major m1.

21Given the sample size in the ELS, I restrict the graduate school decision to a binary completion
decision.
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The set of possible final educational attainment states is S, agents reach one of s ∈ S

and their choice is given by Ds. I estimate the model separately for each gender to

allow for differential sorting patterns by gender and to capture gender-specific labor

market outcomes. Throughout this section, the supra-index G refers to an person’s

gender, which can either be male m or female f .

Initial Major Choice

After graduating from high school and enrolling in four-year college, individu-

als choose an initial major based on observed characteristics and unobserved ability.

The model assumes that every agent is endowed with a finite multi-dimensional

vector of unobserved ability (θ), which includes cognitive and non-cognitive com-

ponents of skills, known to the agent, and constant from high school through labor

market entry. Since there are no direct measures of ability available, θ is assumed

to be unobserved to the econometrician, and its distribution is identified through

a measurement system of pre-college test scores. By identifying the distribution

of multidimensional latent ability, I can analyze how cognitive and non-cognitive

components of ability affect major choices, offering an important advantage relative

to structural models like Arcidiacono (2004) in which ability is unidimensional.

Let V G
i,m1

be the utility for student i of choosing option major m1 from the set

of all possible initial choices,M1. V G
i,m1

represents an approximation of the value of

each major for individual i and it incorporates agents’ perceived economic returns

to each major and non-pecuniary tastes, but does not impose any direct structure

on the decision-making process by postulating preferences and/or information sets.

As a result, students are allowed to make irrational decisions, or even mistakes,
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which may be subsequently changed in their final choice, as additional information

is revealed.22 V G
i,m1

depends on both observed characteristics and unobserved ability.

It is given by:

V G
i,m1

= βGm1
XG
i,m1

+ αGm1
θi
G + εGi,m1

for m1 ∈M1 (4.1)

where XG
i,m1

represents the vector of exogenous characteristics, θi
G captures the

vector of latent ability, and εGi,m1
is the error term. Conditional on individual ob-

served and unobserved characteristics, major choices are unordered. More precisely,

individuals choose the major that yields the highest utility such that DG
i,m1

= 1 if

m1 = argmaxm1∈M1

{
V G
i,m1

}
.

Final Major Choice

After initially enrolling in major DG
i,m1

, students either continue in college

through graduation or drop out. Continuers select their field at graduation m2 from

the set of possible optionsM2. As noted above, the second major choice may involve

continuing with the same major or switching fields.23 This step encompasses two

decisions. First, V G
i,d1,m1

represents an approximation to the net utility associated

with continuing in four-year college after enrollment. V G
i,d1,m1

depends on observed

22Allowing agents to not declare a major upon at college entry fits in with this consideration,
as they may prefer to wait to declaring until acquiring additional information on different fields.

23An extensive structural literature has analyzed the factors behind changing major choices
within college (Arcidiacono, 2004; Stinebrickner and Stinebrickner, 2013; Wiswall and Zafar, 2014),
including learning about academic ability, and changing expectations, among other reasons. As this
model is not structural, I do not impose any specific structure on the learning process associated
with final major choices. Individuals’ choices at each decision node may be influenced by the
realization of the error term, yet these shocks do not persist through future decisions. Unlike this
literature, the discrete choice model presented in this chapter instead focuses on understanding
the importance of cognitive and non-cognitive ability in college major choices. I discuss potential
biases arising from ability updating in Appendix D.1.
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and unobserved characteristics and is defined as follows:

V G
i,d1,m1

= βGd1,m1
XG
i,d1,m1

+ αGd1,m1
θi
G + εGi,d1,m1

(4.2)

Students continue in college if V G
i,d1,m1

> 0. DG
i,d1

= 1 equals one for continuers. Let

V G
i,m2,d1,m1

be the utility for individual i of choosing option major m2 from the set of

all possible final choices, M2, given their initial choice m1. I allow the utility from

the major at graduation to depend on the initial choice m1 as individuals may derive

further pecuniary and non-pecuniary benefits from completing the major they had

initially enrolled in. V G
i,m2,d1,m1

depends on a set of observed characteristics and the

vector of unobserved ability. It is specified as follows:

V G
i,m2

= βGm2
XG
i,m2

+ αGm2
θi
G + εGi,m2

for m2 ∈M2 (4.3)

XG
i,m2

is a vector of exogenous characteristics, θi
G represents latent ability endow-

ments, and εGi,m2
is the error term. DG

i,m2
is a dummy variable representing the final

major choice, given by the major m2 yielding the highest utility.

Graduate School

Since a sizable share of ELS graduates attain a graduate degree by age 26, I

include this decision margin as part of the analysis of educational attainment and

I examine how men and women sort into graduate education based on their ability

endowments. I model this decision as a binary probit model, where students decide

whether to complete a graduate degree by age 26 or not.24 V G
i,g,m2,d1,m1

represents an

24As ELS data does not provide information on subsequent educational attainment, I classify
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approximation to the utility associated with graduate school choices and it depends

on the history of major choices to take into account that, for instance, graduate

school may be more appealing for a STEM graduate relative to a life sciences grad-

uate. The structure behind this decision is similar to that of major choices, depend-

ing on observed characteristics and unobserved ability (for notational simplicity, I

omit dependence on prior choices):

V G
i,g = βGg X

G
i,g + αGg θi

G + εGi,g (4.4)

As in the previous decision, XG
i,g is a vector of exogenous characteristics, θi

G rep-

resents latent ability endowments, and εGi,g is the error term. Di,g is a dummy

variable which equals one if the person chose to finish a graduate degree by the

last survey round. All in all, the combination of student i’s educational decisions

[Di,m1 , Di,d1 , Di,m2 , Di,g] implies that students reach one of s ∈ S final educational

attainment states, captured by the dummy variable Di,s.

Labor Market Outcomes

The labor market outcome of interest in this chapter is a person’s hourly

wage at age 26, given by Wi,s, corresponding to student i’s educational attainment.

Potential wages are also also determined by observed characteristics and unobserved

abilities and are defined as:

WG
i,s = βGs X

G
i,s + αGs θi

G + εGi,s ∀ s ∈ S (4.5)

students by their highest degree attained in the last survey round.
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where XG
i,s represents a vector of exogenous control variables determining hourly

wages and εGi,s is the associated error term, which is assumed to be uncorrelated

with observed and unobserved characteristics. Furthermore, hourly wages are only

observed for individuals who choose to participate in the labor market, Ds,e.
25 This

decision follows the structure of all previous decisions and the latent utility associ-

ated with working is:

V G
i,se = βGseX

G
i,se + αGseθi

G + εGi,se ∀ s ∈ S (4.6)

where XG
i,se represents a vector of exogenous control variables determining hourly

wages and εGi,se is the associated error term. Equations (4.1)-(4.6) imply that unob-

served abilities θ affect labor market productivity, initial and final major choices,

and graduate school decisions. Equation (4.5) describes individual i′’s wages in each

final attainment node, a critical component for understanding the returns to college

majors.

Measurement System

Since latent ability θ drives the endogeneity of decisions and generates all

cross-correlations of outcomes and choices conditional on Xi,m1 , Xi,m2 , Xi,g, Xi,s,

and Xi,se, identifying its distribution is of paramount importance in this model.26

Since θ is unobserved to the researcher, I follow an extensive literature and allow for

25Hourly wages are only modeled for individuals who have not completed graduate school (Dg =
0). Dse = I [Vse > 0] is a dummy variable which equals one for individuals who work in the final
survey round.

26The rest of the unobserved components of the model are independent across educational
choices and and labor market outcomes. Formally, this means that εi,m1

⊥ εi,mj
∀m1,mj ∈ M1,

εi,m2 ⊥ εi,mk
∀m2,mk ∈M2, εi,s ⊥ εi,n∀m,n ∈ S, εi,se ⊥ εi,je∀s, j ∈ S, and εi,m1 ⊥ εi,m2 ⊥ εi,s ⊥

εi,ke∀m1 ∈M1,∀m2 ∈M2, s ∈ S,∀k ∈ S.
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θ to be proxied by multiple measures of pre-college test scores in mathematics and

reading as well as by measures of math self-efficacy (Carneiro et al., 2003; Hansen

et al., 2004; Heckman et al., 2006; Urzua, 2008). Identifying the distribution of θ

through a measurement system also allows me to correct for measurement error in

observed test scores, as each particular test score measures latent ability with error.

In fact, separate estimation by gender allows me to account for the existence of

differential measurement error in test scores for men and women (Cattan, 2013). I

posit a linear model in which test scores are modeled as a linear outcome determined

by latent ability θ, individual and family characteristics.27

I observe nine different test score measures. To determine the number of

factors and the structure of the measurement system, I perform an exploratory factor

analysis (EFA) using the nine observed measures. Assuming orthogonal factors,

exploratory factor analyis yields four factors with positive eigenvalues for women

(3.81, 0.95, 0.68, 0.02) and similar values for men (3.95,1.04,0.64,0.03). Motivated

by Cattell (1966)’s scree test, these results indicate that at three factors are needed to

explain the relationship between the observed measures. In Figure F.2.1, I show the

estimated coefficients associated with each factor by gender. These results indicate

that all nine measures load positively on the first factor, with significantly larger

coefficients on the math test score measures as well as on math grades. Meanwhile,

the second factor loads strongly on the two math self-efficacy measures and on math

GPA and the third factor is only relevant in the English/Reading test scores and in

27As an an extensive literature has shown the importance of family, cultural and social factors
in determining the evolution of ability through childhood, I interpret the components of θ to be
fixed by the time of college enrollment, but not fixed from birth or indicative of gender differences
in inherited ability.
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high school English grades. These results suggest that the first factor largely reflects

students’ math ability, the second factor captures their math self-efficacy and the

third factor identifies their reading ability.

Following the insights from exploratory factor analysis, I posit the existence

of three components of latent ability, which I define as math problem solving ability

θC , math self-efficacy θSE, and reading ability θR.28 Given the estimated loadings

shown in Figure F.2.1, I allow for all math and reading test scores, as well as

math self-efficacy and high school grades to be a function of math problem solving

ability. Since Borghans et al. (2008) find GPA to be a function of both cognitive

and non-cognitive skills, I allow math GPA measures to also be a function of math

self-efficacy, for self-efficacy measures to also depend on θSE. Meanwhile, reading

test scores and English high school grades depend on on the latent reading ability

component.

The model for math test scores (CG
i,j) can be expressed linearly as follows:

CG
i,j = βGCj

XG
i,Cj

+ αGCj
θGC,i + εGi,Cj

(4.7)

28Problem solving ability is defined as the ”process in which an individual uses previously
knowledge ... to satisfy the demands of an unfamiliar situation” (Krulik and Rudnick, 1989).
This component of ability has been previously considered in the context of math problem solving
(Grattoni, 2007). Carneiro et al. (2003) show the identification of the distribution of unobserved
ability requires the at least seven test scores in a model with three components. This requirement
is met in this sample.
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Similarly, the model for math GPA (GG
i,1) and math self-efficacy (SEG

i,n) is given by:

GG
i,1 = βGG1

XG
i,G1

+ γGG1
θGSE,i + αGG1

θGC,i + εGi,G1
(4.8)

SEG
i,n = βGSEn

XG
i,SEn

+ γGSEn
θGSE,i + αGSEn

θGC,i + εGi,SEn
(4.9)

Finally, the model for English GPA and for reading test scores (Rk) follows:

RG
i,k = βGRk

XG
i,Rk

+ ηGRk
θGR,i + αGRk

θGC,i + εGi,Rk
(4.10)

Across equations (4.7)-(4.10), X represents a vector of exogenous control variables

and ε represents the error term. In Appendix D.1, I show how the measurement

system secures the identification of the distribution of latent ability.29 All error

terms, εi,Cj
, εi,G1 , εi,SEn , and εi,Rk

are mutually independent, independent of θC ,

θSE, θR and independent of X.

Early papers in this literature assumed the components of latent ability to be

independent from each other (Hansen et al., 2004; Heckman et al., 2006). Nonethe-

less, given the high correlation present between observed math test scores and self-

efficacy, the two components of latent math ability may be correlated as well. As a

result, I follow two recent papers (Heckman et al., 2006; Prada and Urzúa, 2017), and

29As shown in Heckman et al. (2006), since there are no intrinsic units for the latent ability
measures, one coefficient devoted to each component must be normalized to unity to set the scale
of each component of ability. Therefore, for some math test score measure j, self-efficacy measure
n and reading test score k, I set αC1

= 1, γSE1
= 1 and ηR1

= 1. The results are robust to different
normalizations. I note that the measurement system presented above can be extended to allow for
θSE to affect performance in one math test score. I separately estimated a parallel measurement
system allowing for θSE to affect Math SAT performance and found that latent math self-efficacy
explained less than 0.2% of the variance in math SAT performance.
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allow for the latent ability components to be correlated. In Appendix D.1, I discuss

the assumptions required to identify the correlation between ability components.

This chapter extends the literature on latent factors by allowing the correlation

between latent ability components to be gender specific.

Identification

The identification of the joint distribution of counterfactual outcomes and ed-

ucational choices follows from formal arguments presented in Heckman and Navarro

(2007) and Heckman et al. (2016). The model is identified through a combination

of a matching-on-unobservables assumption and node-specific exclusion restrictions.

First, I secure the identification of the distribution of unobserved ability θ through

the measurement system in equations (4.7)-(4.10), which requires the normalization

of one loading in each latent component and for θ to be orthogonal to X and ε. The

formal argument is laid out in Appendix D.1. Second, a conditional independence

assumption implies that all college major choices, graduate school decisions and

labor market outcomes are independent conditional on all observed characteristics

and unobserved ability components. This assumption can also be understood as

a ”matching” assumption, which extends reduced form approaches by allowing for

matching on unobserved ability, as well as on observed characteristics.

The model can be identified solely through the conditional independence as-

sumption, yet Heckman et al. (2016) note introducing exclusion restrictions at each

decision node allows for an identification at infinity argument. Finding economically-

meaningful shifters of initial and final major choices is challenging, especially in the

U.S. context, where college majors are largely priced uniformly. In the first decision
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node, I use the share of students enrolled in student i’s local four-year college(s) who

completed major m1 ∈ M1 as an exogenous shifter.30 This share is gender-specific

and this variable may affect students’ major choices through a role-modeling effect,

as they reside in areas with a varying shares of college graduates in each specific

major m1. For the next two educational decisions, I follow Heckman et al. (2016)

and Heckman et al. (2018) and use local unemployment rates by major as exogenous

shifters, following the intuition that local major-specific unemployment rates may

affect students’ perceived benefits arising from different choices. For the dropout

decision, I use the local unemployment rate for own-gender college graduates, given

by the commuting zone of residence in the third survey round. For the final major

choice decision, I use local unemployment rates by major. For the employment de-

cision, I consider local unemployment rates by college major, as well, but defined at

the students’ commuting zone of residence in the final survey round.31 Lastly, for

the graduate school decision, I use the share of college graduates aged 25-34 who

have also obtained a graduate degree in person i’s commuting zone of residence in

the final survey round. Table C.1.5 shows the variables used in the implementation

of the model. These variables are the same for both genders.

Implementation

To define the sample likelihood, I collect all exogenous controls in the educa-

30This variable is constructed by identifying students’ commuting zone of residence in the base-
line survey and matching it to IPEDS data indicating the number of students completing major
m1 in the colleges in the respective commuting zone. The IPEDS data used to create this variable
is from 2000 to ensure that students included in the survey are not captured in the average share
of students choosing a particular major. The unemployment rate for the undeclared major option
is the average in each commuting zone for college graduates.

31I construct these variables from American Community Survey 2010 data (obtained from
public-use IPUMS NHGIS data).
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tional choice and outcome equations in the vector Xi and the vector of test scores

in Ti. Given the independence assumptions invoked above, the likelihood for a set

of I individuals is given by:

L =
∏
i∈I

∫∫∫
f(Wis, Di,se, Di,g, Di,m2 , Di,d1 , Di,m1 ,Ti|Xi, θC , θSE, θR)

dFθ,C(.)dFθ,SE(.)dFθ,R(.)

I assume the error terms in the measurement system, initial major choice, drop out

decision, final major choice, graduate school decision, employment decision and in

the wage equation are normally distributed. The initial and final major decisions

are estimated with a multinomial probit. The employment, graduate school and

college dropout decisions are estimated using a probit model.32

The model is estimated separately by gender and to estimate the density func-

tion of each unobserved factor, I use flexible distributional assumptions. I initially

assume that the vector of unobserved ability is an independent random variable with

mean zero. I later relax this assumption to examine gender differences in latent abil-

ity. I approximate the distribution of each ability component k ∈ {C, SE,R} using a

mixture of two normal distributions with means (µ1,k, µ2,k), probabilities (p1,k, p2,k),

32In some initial majors, few individuals switch into every possible option inM2. For instance,
no women switch from the life sciences to business. As a result, I impose a restriction similar to
Cameron and Heckman (2001) such that for individuals starting in STEM, life sciences, business
and health,M2 includes remaining in the major or switching to any other major. For those starting
in Other majors or non-declared, M2 includes the full set of majors. This assumption leads to
only 30 men and 40 women being misclassified. Note that in the final educational states s ∈ S
which include having completed a graduate degree by age 26, neither the employment decision nor
hourly wages are considered.
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with p1,k + p2,k = 1, and variances ((σ1,k)
2, (σ2,k)

2) as follows:

θk ∼ p1,k N(µ1,k, (σ1,k)
2) + p2,k N(µ2,k, (σ2,k)

2)

Given the numeric complexity in estimating the likelihood, the model is estimated

by Markov Chain Monte Carlo (MCMC) as in Hansen et al. (2004), and Heckman

et al. (2006), among others.33 Using the estimated model, I simulate 100 samples

from the original sample, such that each new sample comes from a different draw

from the posterior of distribution of structural parameters, yielding a total of 451,000

observations.

Table C.1.5 shows the variables used in the implementation of the model.

These variables are the same for both genders. Meanwhile, Table C.1.6 presents

the estimated coefficients for the choice equations and labor market outcomes for

women initially enrolled in STEM. As shown in the Table, the coefficients on the

various exclusion restrictions follow the expected sign, yet are of varying statistical

significance. As such, I remark the importance of the conditional independence

assumption, which ensures model identification.

Goodness of Fit

To examine the validity of the discrete choice model in matching observed

educational choices, I conduct various goodness of fit tests. In Panel A of Table

33Using a vector of initial parameters from the transition kernel, the Markov Chain is generated
according to the Gibbs sampler, such that as n → ∞, the limiting distribution is the posterior.
Once convergence is achieved, I make 1,000 draws from the posterior distribution of estimated
model parameters to compute the mean and the standard errors of the parameters of interest. For
more details, see Hansen et al. (2004) and Heckman et al. (2006).
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C.1.7, I contrast workers’ observed initial major choices by gender against those

simulated in the model. The model accurately predicts major choices by gender,

with the majority of students in ’Other’ majors and men outpacing women in math-

intensive majors. I confirm this result with a χ2 test of the equality of means,

finding that observed and simulated major choices are not statistically different for

either gender. In Panel B, I compare the observed and simulated final major for

students who started in a STEM field. Again, I find no significant differences for

either gender. Finally, in Panel C, I explore the final major for students who had

not initially declared a major and find that the observed and simulated transition

shares are well-predicted. In Table C.1.8, I present evidence on the goodness of

fit for the employment decision and log hourly wages in each higher education for

women. The model predicts well the employment decision and the mean in hourly

wages across choices, except in two nodes, though the differences are only significant

at the 5 percent level.

4.4 Model Results: Latent Ability

Measurement System

Tables B.1.3 and B.1.4 present the estimated coefficients from equations (4.7)-

(4.10) on the nine observed test score measures for both genders. Men and women

from two parent families and those with more educated parents are more likely

to score higher on the various test score, GPA and self-efficacy measures. This

component is relevant to the analysis of gender gaps in test scores, as male college
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enrollees come from more educated families relative to women. For both men and

women, having a parent in a STEM occupation increases test score performance,

both in math and reading, yet for women, the point estimates associated with having

a mother in STEM are generally larger than those whose father is in STEM. Women’s

math self-efficacy is positively affected by having a mother in STEM, as is the

case for men, for whom the magnitudes are smaller. Moreover, the positive factor

loadings across the measurement system indicate that observed measures are partly

determined by latent ability. Lastly, the magnitude of the factor loadings is similar

across genders.34

To understand the relative contribution of students’ background characteristics

and their latent ability vector for each test score, I present a variance decomposition

of the measurement system in Figure 4.4. For the math and reading test scores, the

share explained by observable characteristics reaches 10 percent for both men and

women. Observed characteristics explain a much smaller share of the variance in

math GPA and self-efficacy, indicating that despite the positve loading on ’Mother

in STEM,’ students backrground characteristics do not explain a sizable share of

their self-efficacy in mathematics. On the other hand, this exercise confirms the

critical role of latent ability for explaining the variance in the observed measures.

For the three math test scores, the latent math problem solving component explains

between 60 and 75 percent of the variance in test scores. Meanwhile, a large share of

the variance in observed self-efficacy measures is explained by the latent self-efficacy

34In the context of cross-gender comparisons of factor distributions, configural invariance re-
quires for observed measures to be dedicated to the same unobserved ability component for both
men and women. Following Gregorich (2006), Cattan (2013) argues that similar point estimates
in the loadings structure across genders can be interpreted as evidence of configural invariance.
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component, which accounts for 35-70% of the variance, whereas the problem solving

factor explains less than 10% of the variance in these measures. Moreover, one-third

of the variance of high school math GPA is explained by the problem solving compo-

nent with less than 10% explained by self-efficacy, confirming Borghans et al. (2008)

finding that GPA is a function of both cognitive and non-cognitive skills. Lastly,

around 25-50% of the variance in reading/English test scores is explained by the

reading factor, with an additional 5-15% being explained by the math problem solv-

ing factor. This evidence supports the argument that test scores cannot be equated

with latent ability, as they are direct functions of background characteristics and

capture distinct components of the ability vector. As a result, any empirical strat-

egy which equates math test scores with latent math ability should be interpreted

with caution.

Gender Differences in Latent Ability

In Section 4.3, I had initially assumed that the mean of each factor for both

males and females equalled zero. To identify gender differences in the means of

unobserved abilities, I extend Urzua (2008)’s method to accommodate a measure-

ment system in which observed measures depend on multiple measures of ability.

Given the variance decomposition presented in Figure 4.4, I assume that gender

differences in average math test scores only contribute to gaps in the mean of latent

math problem-solving ability and that differences in math GPA reflect gender gaps

in the mean of the problem solving factor.35 In Appendix D.2, I present the formal

35As discussed in Appendix D.2, the results are robust to different assumptions. I assume that
gender gaps in the average reading test score and in the English SAT score explain average differ-
ences in the reading factor. This assumption is restrictive, as Figure 4.4 shows these two measures
loading on the problem solving factor as well. I do not focus much attention in Sections 4.5 and
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argument behind the identification of gender differences in the latent ability means

after imposing these assumptions.

Estimating the model separately by gender allows me to recover gender-specific

distributions of unobserved ability and correlations between each ability component.

In the first panel of Table 4.4, I present summary statistics on each component of

latent ability by gender. The gap in the math problem solving component equals

0.16 standard deviations, which is significantly smaller than the average gap of 0.29

SDs in math test scores. This difference is explained both by the fact that college-

enrolled men come from more educated families and by high school GPA loading

positively on the problem solving component. I remark that empirical analyses

which equate gaps in math test scores with gender differences in math skills vastly

overstate the gap.

I also find significant average differences in the latent math self-efficacy com-

ponent, in the range of 0.151 standard deviations. Finally, the gender gap is reversed

in the reading component, with women surpassing men by 0.13 standard deviations,

on average. Figure C.1.1 shows the marginal densities of each component of math

ability by gender. The distribution of women’s problem solving ability is dominated

by the male distribution, confirming average gaps presented in Table 4.4. These dif-

ferences emerge across the latent ability distribution, with men making up 62% of

the top problem solving ability decile, far exceeding their 44.5% share in the sample.

Panel B shows the marginal distribution of the self-efficacy component, where again

4.6 exploring gaps in reading ability, however. These assumptions do not affect the interpretation
nor the magnitude of subsequent empirical analysis.
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the distribution of women’s self-efficacy is dominated by that of men.

Correlation of Latent Abilities

I find a large and positive correlation across the three ability components for

men and women. Most important to the analysis of sorting into STEM, however,

is the correlation between the two math ability components, which equals 0.56 for

men, far surpassing the 0.47 correlation for women. In Figure 4.5, I present the

joint distribution of the two math ability factors by gender, which shows the high

correlation between these components. For instance, a large share of men and women

in their own-gender’s top decile of the math problem solving component are also in

their the top self-efficacy decile. Nonetheless, interesting gender differences emerge:

while 32% of men in the top problem solving decile are also in the top self-efficacy

decile, the equivalent share is 27% for women. Furthermore, just 15% of men in

the top math decile are below the median of the self-efficacy component, yet this is

the case for 23% of women, confirming an over-representation of high-skilled women

who aren’t confident in their math ability. In this context, Carlana (2018) finds that

teachers’ gender stereotypes lower girls’ subsequent performance and self-confidence

in math, indicating that the lower correlation in latent math ability for girls may

be a function of external influences.36 In the next section, I analyze the nature of

36In ongoing work, I explore the timing at which these differences may emerge. Using ECLS-
K data, I find significant gender gaps in children’s self-reported math competence/interest in
the third and fifth grade, in the range of 0.15-0.20 standard deviations. At the same time, the
correlation between math test scores and math interest in both grades is lower than 0.20, with
small differences indicating a larger correlation for boys than for girls. I complement this analysis
with data from the High School Longitudinal Study (HSLS), where, among ninth graders, I find
that a math test score has a correlation of 0.35 with girls’ math identity, but of 0.41 among boys.
This preliminary analysis suggests that an important component of math skill development among
children is the progressive reinforcement of math performance and perceived math interest, though
the relationship between these components is weaker for girls than it is for boys.
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sorting into majors by pre-college skills for men and women.

4.5 Model Results: College Major Choices

4.5.1 Enrollment Decisions

Using the estimated model parameters, I examine how students sort into initial

majors based on their pre-college latent ability vector. Men and women sort into

math-intensive majors based on both components of mathematical ability. The cu-

mulative ability distribution for students enrolled in STEM majors stochastically

dominates the distribution of those in other majors. For instance, women in STEM

have problem solving ability and self-efficacy that is 0.39 and 0.34 standard devia-

tions higher than that of those enrolled in business-related majors, respectively. I

find the same pattern for men, with a difference of 0.48 and 0.44 standard devia-

tions in problem solving and self-efficacy between students enrolled in STEM and

business. For students in other fields, sorting patterns are less clear, though both

men and women in ’Other’ majors rank the lowest in both components of latent

math ability.37

Figure 4.6 shows the relationship between both components of math ability

and STEM enrollment. The left panel shows that women who are in the top joint

decile of problem solving and self-efficacy are far more likely to start in STEM

(13 percent) than those in the middle joint decile (3.5 percent). Self-efficacy plays a

37Sorting patterns based on reading ability are less stark. For instance, women in the life sciences
and in STEM have the highest reading ability, yet outpace those in between Health, Other fields
and non-declared students by just 0.2 SD. I find a similar pattern for men, though those in STEM
have higher reading ability than students in the life sciences.
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critical role in this decision: among women in the top problem solving decile, moving

from the bottom self-efficacy decile to the top one increases STEM participation

rates by 11 percentage points. This result gains importance in the context of the

lack of women at the top of the joint math ability distribution shown in Figure 4.5.

Figure 4.6 also shows that STEM participation is a non-linear decision for women.

For instance, a woman in the bottom problem solving decile who moves from the

bottom self-efficacy decile to the top one would only increase her expected STEM

participation by 2.1 percentage points, less than one-fifth of the corresponding effect

for a student in the top problem solving decile. Despite the pronounced sorting

patterns on math ability, a sizable share of high-achieving women instead enroll in

other majors. Among women in the top decile of the joint math distribution, 17%

enroll in the life sciences, 33% in a major in the ’Other’ category, and 11.6% do so

in a health-field.

The panel on the right of Figure 4.6 shows sorting patterns for men on both

dimensions of math ability. There are significant gender differences in the share

enrolled in STEM, both in levels and in slope. For instance, 14.9% of men in

the middle of the joint math distribution initially enroll in STEM, which exceeds

enrollment rates for women in the top of their gender’s joint distribution of math

ability (13 percent). Upwards of 41 percent of men in the top joint decile begin in

STEM, almost tripling women’s participation in the equivalent skill ranking. In fact,

for men in the top decile of their gender’s joint math ability distribution, 11% in the

life sciences, 2.6% in health and 19% in other fields. The largest gender differences

among high-ability students appear in STEM enrollment and in health-related fields,
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and these differences persist across the math ability distribution.

An alternative identification strategy could have analyzed semi-parametric

sorting patterns using observed math test scores as proxies for ability. I present

these results in Table B.1.5 and Figure C.1.2, which show that reduced-form anal-

ysis cannot correctly capture the importance of non-linearities in math ability in

determining STEM enrollment patterns for men and women, as test scores measure

latent ability with significant error.

4.5.2 Final Major Choices

STEM graduation rates are a combination of completion rates among students who

started in this field and switching-into-STEM rates among students in other majors.

Among STEM enrollees, women were are less likely to complete a degree in this field

than men. The left panel of Figure 4.7 shows heterogeneous completion rates for

women who started in STEM. Both components of math ability affect the likelihood

of degree completion among female STEM enrollees. For instance, a woman in the

middle quintile of the marginal problem solving distribution has a 35 percent chance

of eventually graduating with a STEM degree, yet this probability increases to 58

percent for those in the top quintile. Non-cognitive skills are similarly important:

22 percent of STEM-enrollees in the bottom self-efficacy quintile complete a degree,

rising to 35 percent for those in the middle quintile, and reaching upwards of 56

percent of women in the top self-efficacy decile. The joint skill distribution presents

a similar story, as 63 percent of women in the top joint quintile graduate with a
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STEM degree, yet this share drops to below 28 percent for those in the top problem

solving quintile and in the bottom of the self-efficacy distribution. These patterns

are strikingly different for men, for whom self-efficacy plays a far smaller role in

determining degree completion. While 55% of STEM enrollees in the bottom quintile

complete a degree after enrollment, this share rises only slightly to 59% and 64% for

those in the middle and top self-efficacy quintiles, respectively. This result shows the

importance of considering how different margins of ability differentially affect men

and women’s progress through majors in college. In particular, non-cognitive skills

play a critical role for women’s exit from STEM, yet this margin has not received

much attention in the existing literature. In fact, a shortfall in math self-efficacy

may explain female dropout from STEM fields in response to low grades (Kugler

et al., 2017).

In Section 4.2, I had shown that the small share of women switching into

STEM from other majors vis-a-vis male switching rates played an important role

in expanding gender gaps in STEM majors at graduation. In Figure C.1.3, I exam-

ine sorting-into-STEM patterns for women who had not initially enrolled in these

fields. While the average switching-into-STEM-rate is small (one percent), there is

significant sorting on the problem solving ability component: 0.8 percent of women

in the middle decile end up completing a STEM degree, which is far lower than the

2.7 completion rate for those in the top decile. Sorting on the self-efficacy compo-

nent is less prevalent, where, on average, 1.7 percent of women in the top of the

distribution complete a STEM degree compared to 1.2 percent of those in the mid-

dle decile. This result differs from the importance of self-efficacy for female STEM
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enrollees in completing those degrees. A potential story behind this result is that

being exposed to difficult math-intensive classes early on in college requires students

to persevere by relying on their non-cognitive skills. On the other hand, as women

in other majors do not face equivalent challenges, they choose to switch into STEM

largely based on their math problem solving ability.

In Table B.1.6, I expand upon these results by analyzing the productivity of

different components of the latent ability vector in leading to college and STEM

completion among students enrolled in STEM and in other fields. I estimate the

impact of a one standard deviation increase in each of the ability components. Math

problem solving ability has a sizable impact on STEM completion rates for female

STEM enrollees, increasing completion rates by 13.6 percentage points, with similar

impacts for men. Confirming the results in Figure 4.7, the returns to self-efficacy

for women are large and significant, increasing completion rates by 10 percentage

points. On the other hand, the effect for men is not different from zero. For students

enrolled in other fields, both components of math ability have an negligible effect

on subsequent STEM completion.

4.5.3 Closing Gender Gaps in STEM

Since women sort positively into STEM based on both components of math ability,

and as I had found gender gaps in math ability in Section 4.4, I examine whether

closing gaps in math skills could lead to increased female enrollment in STEM.

Following equation (4.1), women’s participation in any initial major m1 can be
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generally expressed as: Df
m1

= g(Xf
m1
,θf ). This expression can be used to compute

the contribution of observed and unobserved factors to women’s enrollment in any

major m1. I analyze how closing distributional gender gaps in math could increase

women’s STEM enrollment in:

Df
m1,∆

= g(Xf
m1
,θC

m,θSE
m) ∀ m1 ∈M1 (4.11)

where θk
m represents the male distribution of the kth component of latent ability.38

I present the results in Table B.1.7. Compensating women with men’s marginal

distribution of unobserved math ability would only increase the share of women

choosing math-intensive fields from 4.5 percent to 5.3 percent, with a corresponding

increase to 5.3 percent for the self-efficacy compensation. Furthermore, closing the

distributional gap in both dimensions would increase women’s STEM enrollment to

6.2 percent, making up 14 percent of the initial enrollment gap in this field.

As enrollment does not imply completion, I also examine how eliminating

distributional gaps in math skills would affect women’s STEM completion rates.

Following equation (4.11), this effect is given by:

Df
m2,∆

= g(Xf
m2
,θC

m,θSE
m) ∀ m2 ∈M2

I present the results in the second panel of Table B.1.7. Similar to the estimated

impact on initial STEM enrollment, eliminating distributional gaps in the prob-

38Following Kahn and Ginther (2017) ’s review of the emergence of gender gaps in math test
scores, this exercise can be considered an approximation of the effect of holding gender math
achievement gaps constant from elementary school through high school.
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lem solving dimension would increase women’s estimated completion rates in math-

intensive fields from 2.9 percent to 3.8 percent, whereas the equivalent increase in

self-efficacy would yield a corresponding increase to 3.7 percent. The elimination of

gender gaps in both dimensions of math ability would increase the share of women

completing a STEM degree to 4.7 percent, thus closing almost 15 percent of the

gender gap in math-intensive STEM majors.

The existing literature on this topic has found that gender differences in prefer-

ences can explain a sizable share of gaps in STEM fields. For instance, Zafar (2013)

has found that beliefs about enjoying coursework explain 50 percent of gender gaps

in engineering majors. The results presented in this section indicate that gender

differences in math skills do not explain a majority of the gap in STEM enrollment

and graduation rates, yet the role of skills is non-negligible, as distributional gaps in

math ability explain almost fifteen percent of gaps in STEM enrollment and gradua-

tion rates. Furthermore, I have found that women with higher endowments in both

dimensions of math ability are more likely to enroll and persist in these fields. I

lastly note that the interaction between ability and preference formation remains an

open question, as, for instance, preferences among college enrollees may be a func-

tion of both cognitive and non-cognitive skills while in high school.39 The results

presented in this section complement the existing literature analyzing the factors

which drive women’s participation in STEM. Nonetheless, the evidence on whether

39In ongoing work, I take advantage of HSLS data to analyze how math test scores and self-
efficacy in ninth grade affects students’ future occupational expectations in 11th grade. I classify
occupations by their math content following O*NET guidelines. I find that both men and women
with higher math test scores and self-efficacy are more likely to expect a future occupation with
higher math-related content. These results suggest that the preferences for major choices may be
a function of early-life skills.
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women would in fact benefit from enrolling and graduating from math-intensive

fields is scarce. As a result, I present evidence on the returns to STEM majors for

college students.

4.6 Labor Market Outcomes

Returns to College Majors: Conceptual Framework

While STEM-promoting policies may create important non-pecuniary benefits

(Anaya et al., 2017), understanding the wage returns associated with these majors is

a first-order concern for quantifying the benefits arising from such interventions. An

extensive literature has estimated the returns to graduating from different majors.

Altonji et al. (2012) highlight papers which have previously estimated gender-specific

returns. A common empirical strategy, followed by Altonji (1993), Rumberger and

Thomas (1993), and Eide (1994), among others, estimates a linear regression with

controls for pre-college test scores. These papers find positive returns for women

graduating from engineering, math and science degrees, relative to a degree in edu-

cation. Altonji et al. (2016) report similar findings using ACS data without controls

for test scores. While these results indicate positive returns to STEM degrees, they

do not account for sorting into majors on unobserved characteristics, potentially

resulting in biased estimates of the returns to major.40

40Jiang (2018) advances this literature by introducing a discrete choice model of college majors,
where she finds positive returns to STEM-completion for women, relative to non-STEM fields.
However, classifying majors in a binary fashion takes away from the analysis of heterogeneous
returns across major pairings, as, for instance, the returns to STEM may vary depending on the
major used as the counterfactual. Moreover, I discuss below how the returns to major completion
differ from the returns to enrollment, a critical consideration in a sequential major choice model.
Humphries et al. (2017) address these issues using Swedish data, but they do not examine gender-
specific returns.
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Furthermore, in a context of sequential nature of major choices, the returns to

major completion capture a different parameter than the returns to enrollment, as

the latter incorporate the possibility that a student may not subsequently complete

the major. In fact, when considering the benefits arising from a policy nudging

students to enroll in a different major, the policymaker should be interested in the

latter parameter, which represents a linear combination of the wages of major com-

pleters, major switchers and college dropouts. Using the Quandt (1958) switching

regression framework, I define the wages associated with any initial major m1 as:

Wm1 = Dm1,GWm1,G +Dm1,SWm1,S +Dm1,DWm1,D ∀ m1 ∈M1 (4.12)

where Dm1,G, Dm1,S, and Dm1,D represent dummy variables for individuals grad-

uating from field m1, switching to a different major, or dropping out of college,

respectively. Wm1,k is the hourly wage associated with each of these outcomes. Let-

ting E[.] denote the expected value taken with respect to the distribution of (X,θ),

I define the returns to enrollment in major m1 as follows:

ATEm1,mk
= E [Wm1 −Wmk

] ∀ mk ∈M1 (4.13)

As the discrete choice model presented in section 4.3 allows me to recover the la-

tent wages across initial majors, I can estimate the gender-specific average returns

to STEM enrollment from equation (4.13) using model estimates. Heckman et al.

(2016) show that the difference in the average returns and the observed wage dif-
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ference across any two majors is explained both by selection bias, defined by the

difference in latent wages in major mk for those in this major against those in

STEM-fields, and by the sorting gains parameter. This parameter captures the pos-

sibility that students who have the most to gain from STEM majors may be the

ones enrolled in these majors.41 The difference in observed wages and the average

returns to enrollment in major m1 relative to major mk is given by:

E[YE|E = M1]− [YE|E = Mk]︸ ︷︷ ︸
Observed Difference

= E[YE=M1 − YE=Mk
]︸ ︷︷ ︸

ATE (Enrollment)

+

E[YE=M1 − YE=Mk
|E = M1]− E[YE=M1 − YE=Mk

]︸ ︷︷ ︸
Sorting Gains

+

E[YE=M2|E = M1]− E[YE=Mk
|E = Mk]︸ ︷︷ ︸

Selection Bias

(4.14)

In Appendix E.1, I show the contribution of selection bias and sorting-on-gains

for explaining the differences in the estimated wage benefits.

Returns to College Majors: Empirical Evidence

In the first panel of Figure 4.8, I present the average returns to STEM-

enrollment for women relative to various alternative majors and compare it to ob-

served wage differences across initial major pairs. First, as shown in Table C.1.4,

the wages of women who start in STEM exced larger than those in the life sciences,

other majors and non-declared students by upwards of 10 percent. Nonetheless, the

average returns to STEM enrollment, estimated using simulated parameters from

41In the context of the latent wage equation (4.5), the sorting gains parameter would differ from
zero if αm1 6= αmk

. Selection bias and sorting gains can be explained by agents sorting-into-majors
based both on observed (X) and unobserved characteristics (θ).
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the model, are lower than raw wage differences. The returns to STEM enrollment

for women are heterogeneous across major pairings, as starting in STEM instead of

in the life sciences yields an expected wage gain of 10 percent, but a negative return

of 3 percent against business majors. Meanwhile, the returns to STEM relative to

the life sciences, a major in the ’Other’ category and for not declaring a major reach

5-8%, but the returns relative to health-related fields reach close to negative 20%.42

In the second panel, I present the average returns to STEM completion, where I find

positive returns relative to graduating with a life science or majors in the ’Other’

category, as well as against college dropouts. The returns to enrollment are lower

than those at graduation as the former parameter captures the possibility of sub-

sequent dropout or switching into lower paying fields. As a result, for the returns

to graduation to represent a policy-relevant parameter, students would need to be

able to directly choose their major at college graduation. This is not an actionable

margin in a model with sequential major choices.

In Figure C.1.4, I present the returns to enrollment in STEM for men, which

are different than for women. Enrolling in STEM delivers large positive returns

relative to any other field, except for in business, where the returns are indistin-

guishable from zero. The average treatment effect associated with STEM exceeds

20 percent vis-a-vis starting in the life sciences, ’Other’ majors or not declaring a

major. Why are the returns to enrolling in STEM significantly for women than they

are for men? Differential STEM completion rates could explain part of the effect, as

42In Appendix E.1, I estimate the returns to STEM enrollment using various reduced-form ap-
proaches, including OLS, OLS with test scores as control variables and nearest-neighbor matching
techniques, and show these estimates are significantly different than the average returns defined in
equation (4.13).
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just 44 percent of women finish this degree compared to 61 percent of men. On the

other hand, following equations (4.5) and (4.12), I can examine gender differences

in potential wages of STEM graduates. The comparison of potential wages corrects

for endogenous sorting into completion, as these wages represent expected outcomes

for any STEM enrollee if he/she were to graduate. As I find that latent wages for

male STEM graduates exceed those of women by 15 percent, these results indicate

that wage discrimination still plays a significant role in these fields.43 While these

results do not control for post-graduation occupational sorting, Goldin (2014) has

found significant gender differences in within-STEM-occupation wages, indicating a

sizable margin for pay disparities.

Heterogeneous Returns to Majors

The average returns to enrollment are computed by integrating out the latent

skill distribution, yet may be heterogeneous across the ability vector, depending on

the returns to each component of skills in both leading to college graduation and in

increasing labor market productivity. I examine how the average treatment effect

of enrolling in major m1 varies across the unobserved ability distribution in:

ATEm1,mk
(θC = θ, θSE = θ) = E

[
Wm1 −Wmk

|θC = θ, θSE = θ
]
∀ mk ∈M1

Furthermore, the returns to major m1 (ATEm1,mk
) may also differ across students

who chose to enroll in major m1, given by the treatment on the treated (TT) pa-

rameter, and those who instead enrolled in major mk, captured by the treatment

43The gender gap in potential wages in STEM equals 14 percent after controlling for gender
differences in latent math skills.
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on the untreated parameter (TUT). These parameters are defined as follows:

TTm1,mj
= E

[
Wm1 −Wmj

|Dm1 = 1
]
∀ mj ∈M1 (4.15)

TUTm1,mj
= E

[
Wm1 −Wmj

|Dmj
= 1
]
∀ mj ∈M1 (4.16)

In Table 4.5, I present the estimated returns to STEM enrollment. The returns

from enrolling in STEM for women who have done so (TT) are positive relative to

other majors (except for health fields), and larger than the estimated ATE across

all alternative choices. As a result, students who stand to benefit the most from

enrolling in STEM are more likely to have done so. On the other hand, the TUT

parameters are negative across all major choices, indicating that had women enrolled

in these majors instead started in a STEM field, they would have earned lower wages.

The difference between the TT and TUT is statistically significant across all majors,

which provides further confirmation of sorting into STEM (Heckman et al. 2016).

I examine heterogeneous returns by math ability in Panels B and C. For women

below the median in each component of math ability, the average returns from

enrolling in STEM are significantly smaller than the average treatment effect against

all other majors, with positive returns relative to the life sciences, other degrees

and not-declaring an initial major. The returns for those above the median of each

component are significantly larger, yet not statistically different from zero in business

fields, and remaining negative for health majors. On the other hand, the estimated

returns are larger for women in the top decile of each component of math ability

across most alternatives. For instance, I find that women in the top problem solving
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decile would enjoy wage returns of 16 percent by enrolling in STEM instead of in the

life sciences and 10 percent by choosing STEM instead of not declaring a major. I

find similar-sized returns for women in the top self-efficacy decile. The heterogeneity

in the estimated returns suggests that while the average returns associated with

a math-intensive field are lower than the observed wage differences across majors,

high-skilled women would generally benefit from starting in STEM. While the results

presented so far indicate that broad-based programs aimed at increasing women’s

STEM enrollment rates would lead to limited improvements in early-career labor

market outcomes, increased female participation in STEM may have significant non-

pecuniary benefits. For instance through parental role modeling effects for future

generations. Furthermore, these results indicate that targeted programs aimed at

high math ability women would uniformly yield positive returns.

Conditional Returns to STEM Completion

In a sequential model of major choices, students are not able to directly choose

their major at college graduation. However, as they decide whether to complete

their initial major after enrollment, understanding whether completion would deliver

positive returns relative to switching majors or dropping out can inform students

whether they should persist in their initial choice. The conditional returns to major

completion are defined as follows:

ATEm1,S = E [Wm1,G −Wm1,S|Dm1 = 1] ∀ m1 ∈M1 (4.17)

ATEm1,D = E [Wm1,G −Wm1,D|Dm1 = 1] ∀ m1 ∈M1 (4.18)
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The average treatment effect parameters defined above represent the benefits from

completing major m1 after having enrolled in it, relative to switching to a different

field (equation (4.17)) or dropping out (equation (4.18)).44 I present the estimated

conditional returns to STEM completion in Table 4.6. The observed differences for

students across their final decision (first row) do not represent a causal estimate of

the returns to STEM completion. The second row estimates a regression including

test scores, which indicate that women who graduate from STEM enjoy positive

returns relative to switchers and college dropouts. As in equation (4.14), these

results do not represent causal estimates of the returns to graduation. I present

the causal returns following the discrete choice model in the second panel, where I

find the average treatment effect for STEM completion for women is positive and

significant both relative to switching majors (6.7 percent) and to dropping out from

college (34.2 percent). For men, meanwhile, I both treatment effect margins are

large and significant, exceeding 35 percent.

The difference in the treatment effect parameters shows significant sorting at

STEM completion, as well. For instance, the treatment on the treated returns equal

15 percent for women graduating from STEM relative to major-switchers, which is

significantly larger than the ATE presented above. On the other hand, the TUT

parameter is small and not different from zero.

I find similar results in Panels B and C, where I analyze heterogeneous returns

across both dimensions of math ability. The ATE associated with STEM completion,

44These returns are defined for agents who had initially enrolled in major m1, though the
parameters could be estimated for individuals in any other major. However, as noted by Heckman
et al. (2018), these returns would not correspond to an actionable decision for an agent, so I restrict
my attention to parameters which hold potential policy relevance.
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relative to switching majors, is negative for women below the median of the problem

solving distribution, while exceeding 11 percent for those above the median and

17 percent for those in the top decile. This result highlights the productivity of

math ability in STEM-related fields, as higher skilled women earn higher wages

by completing these degrees. I find similar results in the self-efficacy component,

although the heterogeneity is less pronounced, as women in the top decile earn

an average return of 8.7 percent. These results indicate that well-targeted policies

aimed at increasing STEM completion among female enrollees may lead result in

higher hourly wages. Given the heterogeneous returns to STEM majors by pre-

college math ability and the sorting on math skills found in Section 4.4, I next

examine whether skill-based interventions can offer a pathway for increasing women’s

STEM participation along with early-career labor market outcomes.

4.7 Policy Simulation: Math Self-Efficacy Intervention

Colleges across the country have implemented policies aimed at boosting students’

STEM participation and subsequent completion rates, ranging from mentoring ini-

tiatives, STEM-program exposure, increased lab experience and summer preparation

programs.45 In this section, I follow the LATE framework, introduced by Imbens

and Angrist (1994), to capture the effect of these interventions on any outcome

45These policies are summarized in EOP (2014). Cal Poly Pomona has launched a program
which combines faculty mentoring, role models and an orientation for STEM enrollees. Alma
College has a program focused on first-year STEM students, which offers access to various research
opportunities. Mary Baldiwn College has an initiative offering summer research support and
faculty mentorship for women in STEM fields. Michigan State University has launched a program
to support under-prepared STEM students prior to matriculation by offering targeted courses and
access to STEM faculty.
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variable of interest Y . This framework allows me to separate the impact of STEM-

promoting policies on students affected by the intervention (compliers) as well as

those unaffected (always-takers and never-takers).46 The effect of any policy p′ on

outcome Y is given by:

∆Y = E[Y (p′)− Y ] =

E[Y (p′)− Y |Ds(p
′) = 1, Ds = 0]× P [Ds(p

′) = 1, Ds = 0]︸ ︷︷ ︸
STEM Enrollment Compliers

+

E[Y (p′)− Y |Ds(p
′) = 1, Ds = 1]× P [Ds(p

′) = 1, Ds = 1]︸ ︷︷ ︸
STEM Enrollment Always−Takers

+

E[Y (p′)− Y |Ds(p
′) = 0, Ds = 0]× P [Ds(p

′) = 0, Ds = 0]︸ ︷︷ ︸
STEM Enrollment Never−Takers

(4.19)

where Ds is a dummy variable which equals one for students enrolled in STEM.

Equation (4.19) indicates that the aggregate effect of policy p′ on outcome variable

Y can be estimated by the linear combination of the effect on STEM always-takers,

never-takers, and compliers, who are the students changing the enrollment decision

due to the policy.47 The effect of these interventions may vary by students’ latent

ability, depending on the nature of the policy and the outcome variable of interest.

I focus my attention on evaluating the potential benefits arising from skill-based

46Different types of policies may have impacts on students not directly changing majors as
a consequence of the intervention. For instance, a mentoring-based policy may successfully lead
students to switch into STEM (compliers), while also increasing the likelihood of college graduation
(Yτ ) for students not directly switching their initial major due to the policy. The LATE framework
allows me to capture the effect that different policies may have on a variety of relevant outcome
variables, even for students not changing their enrollment decision.

47Throughout this section, I define response types by agents’ initial major decisions. As a result,
always-takers represent students who enroll in STEM both under baseline as well as in policy p′.
Never-takers are those who do not enroll in STEM in either case. Compliers are those who choose
to enroll in STEM as a function of p′, yet had not done so in the baseline. I test for the presence
of defiers in the context of the simulated policies.
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interventions for female college enrollees.48

Math Self-Efficacy Based Interventions

The results presented in Sections 4.5 and 4.6 indicate that boosting math prob-

lem solving ability and self-efficacy would result in increased female participation in

STEM. However, although cognitive and non-cognitive skills are highly malleable

in the early years of life, non-cognitive skills are malleable through adolescence,

unlike cognitive sills (Kautz et al., 2014). As a result, policies aimed at boosting

women’s math self-efficacy in high school could have greater effectiveness than those

focused on the problem solving component. In this context, Huang (2013) has found

that gender gaps in math self-efficacy expand from 0.06 SDs from middle school to

0.20 SDs in early high school. The psychology literature has found different strate-

gies to be successful at increasing self-efficacy. Siegle and McCoach (2007) found

a four-week course focused on improving high school math teachers’ self-efficacy

instructional strategies, which encompassed improving teacher feedback, establish-

ing goals and presenting models of success, boosted students’ math self-efficacy by

0.46 standard deviations. Cordero et al. (2010) and Betz and Schifano (2000) have

similarly found positive effects of student-level self-efficacy interventions.

Following this literature, I use the estimated model parameters to examine the

impact of an increase in women’s math self-efficacy on STEM participation rates

and on early-career labor market outcomes. As the psychology literature is not

precise about the feasibility of interventions of varying magnitudes, I examine the

48In Appendix F.1, I examine the effects of a ”nudging” policy, which would target female
students closest to having started in STEM but who chose not to do so. These students are
identified with the estimated utility parameters associated with each major (equations (4.1) and
(4.3)), thus creating a cardinal ranking of all major choices for each student.
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effects of simulated policies delivering math self-efficacy increases ranging from 0.1

to 1 standard deviations.49 Despite the positive correlation between θSE and θC ,

I assume that self-efficacy interventions would not jointly affect women’s problem

solving ability. As a result, the estimated impacts presented below likely represent

a lower bound on the potential effect arising from self-efficacy-based policies.

Effect on STEM Enrollment Rates

I first examine the effect of a self-efficacy boost on STEM enrollment rates

(Y E). Following equation (4.19), the aggregate effect on Y E is fully captured by the

share of compliers, as these students would be the sole group changing their decision

on the basis of the simulated intervention p′. The effect on enrollment rates is thus

given by:

∆E = E[Ds(p
′)−Ds] = P [Ds(p

′) = 1, Ds = 0]︸ ︷︷ ︸
Compliers

Increasing women’s math self-efficacy would raise STEM enrollment rates, as mea-

sured by the share of compliers. An 0.5 SD boost in θSE would move enrollment

rates from 4.5 percent to six percent, whereas an increase in a full standard devia-

tion would further increase them to 7.7 percent, reducing the gender gap in STEM

enrollment by almost one-fourth. This policy could have differential impacts across

the θC distribution, depending on the complementarity of the two components of

math ability in STEM fields. In the first panel of Figure 4.9, I examine how baseline

49I am agnostic as to the nature of the policy intervention which would deliver self-efficacy
increases in the 0.1-1 SD range. The psychology literature indicates these interventions fall within
a reasonable policy range.
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participation rates change for women at each decile of the problem solving distri-

bution. For women in the bottom θC decile, a 0.5 SD increase in self-efficacy would

move enrollment rates to from 1.1 percent to just 1.8 percent. The largest impact

appears for women in the top problem solving decile, whose STEM enrollment rates

would increase from 8.8 percent to 11.4 percent, thus confirming the non-linear

sorting patterns presented in Section 4.5.50 As larger sized interventions have an

positive linear impact on participation rates, the optimal self-efficacy intervention

would depend on the structure of the cost function of achieving such gains.51 As

information on the cost function is not available, I focus on a simulated θSE boost

of 0.25 standard deviations for the rest of the chapter.52

In the second panel of Figure 4.9, I show that a 0.25 SD self-efficacy boost

would yield the largest increase STEM enrollment for women in the top problem

solving decile, amounting to a 1.5 percentage point increase in enrollment rates, or al-

most one-sixth of baseline enrollment rates. These findings indicate that skill-based

interventions could have larger impacts if well-targeted to high-achieving women.

As noted above, depending on how preferences are formed during childhood, an

early-life math self-efficacy intervention could have larger impacts on STEM par-

50Policymakers could alternatively be interested in boosting STEM participation rates by 1
percentage point at one of the deciles of the problem solving distribution. Such an effort would
require a boost of θSE of 0.2 SDs for women in the top problem solving decile, of 0.4 SDs for those
in the middle decile and of 1.2 standard deviations for those in the bottom decile.

51The cost function could be convex in nature, with small θSE increases requiring small costs,
like teacher-training programs, yet larger increases may require repeated interventions during child-
hood.

52Only 0.9% of female college enrollees would change their STEM enrollment decision under an
intervention of this magnitude. The majority of the sample would be comprised by never-taker
(94.7%). The rest of the sample represents women already enrolled in STEM who would remain
in those fields (4.5%). The bulk of the aggregate effects on any other outcome variable Y are thus
explained by the impact of this policy on never-takers. There are no defiers in the sample.
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ticipation if it shaped women’s preferences to increase interest and enjoyment from

studying these fields.

Effect on STEM Graduation Rates

While increasing enrollment rates is an important first step for gauging the

effectiveness of any STEM-promoting policy, this effect may not translate into in-

creased graduation rates. Unlike the effect at enrollment, these policies could have

an additional impact on graduation rates through always- and never-takers, as long

as the intervention increased the likelihood of STEM completion despite not having

changed the enrollment margin. In the context of the self-efficacy intervention, this

effect would take place through the productivity of math self-efficacy in leading to

STEM completion.

I examine the effects of the intervention on STEM completion rates in Table

4.7. A 0.25 SD increase in math self-efficacy would increase the share of women

graduating from this field from 2.9% to 3.6%, which represents a relative increase of

almost 20 percent. This effect is largely driven by increased completion rates among

compliers, which would move from 3 percent to 46 percent. The effect on women

already enrolled in STEM (always-takers) plays an important role in the aggregate

effect, as their graduation rates would increase from 43.8% to 47.6%, which fits in

with the productivity of self-efficacy in STEM majors presented in Figure 4.7.

As with the effect on enrollment rates, there may be heterogeneous impacts

of the simulated intervention across the math problem solving distribution. In the

first panel of Figure 4.10, I present the effects on always-takers, whose graduation

rates increase largely uniformly across all θC deciles. For compliers, there is sig-
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nificant heterogeneity in their completion rates after having switched into STEM.

For instance, while only 13% of those in the bottom problem solving decile end up

completing a math-intensive degree, this share is four times larger for those in the

top decile, exceeding 60 percent. Since math problem solving ability is a necessary

component for successfully completing a STEM degree, low-ability students who

are nudged into STEM through the self-efficacy intervention would still be lack-

ing a critical component for subsequent success in these fields. Finally, the effect

on never-takers is largely zero, as self-efficacy is not productive in non-STEM ma-

jors. All in all, the simulated policy would have much larger effects on students in

the top problem solving decile, upping their completion rates from 8.5% to 10.2%,

with a corresponding increase of only 0.1 percentage points for those in the bot-

tom decile. The results presented so far indicate that small interventions focused

on non-cognitive skills can help in increasing women’s participation and graduation

from math-intensive fields, with larger impacts for high math achievers.

Effect on Labor Market Outcomes

While I have so far shown that small self-efficacy-based interventions can lead

to increased STEM participation rates for women, an open question remains about

whether this policy would lead to improved labor market outcomes, especially in

the context of the heterogeneous returns to math-intensive majors shown in Sec-

tion 4.6. A self-efficacy boost could affect labor market outcomes both through an

increased likelihood of STEM completion but also through increased labor market

productivity, given the positive returns to non-cognitive skills found by Heckman

et al. (2006) and by Lindqvist and Vestman (2011).
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In Table 4.8, I show that the simulated self-efficacy boost would increase hourly

wages for female college enrollees by 0.4%. The aggregate impact follows from a

linear combination of the effect across the three potential response groups, which

may be heterogeneous depending on the productivity of self-efficacy and the returns

to STEM relative to the baseline major choices of compliers. First, the θSE boost

would result in a 0.35% increase in hourly wages among never-takers. The small

return to this component of non-cognitive ability is explained by the fact that math

self-efficacy does not increase productivity in non-STEM majors, as few students

in this group end up graduating from math-intensive fields. The small aggregate

effect of the simulated policy on hourly wages is thus explained by the impact on

never-takers.53

For always-takers, on the other hand, the effect would be positive and sig-

nificant, increasing hourly wages by almost 3 percent. In Figure 4.11, I explore

heterogeneous wage effects of the simulated policy for women already enrolled in

STEM. The simulated self-efficacy boost delivers sizable returns for STEM enrollees

in the top θC decile, exceeding 4%, while remaining at around 1-1.5% for those below

the median. The heterogeneity in these returns associated with the intervention is

explained by the fact that both margins of math ability non-linearly increase the

probability of STEM completion, but also through the direct productivity of both

components of ability in the labor market. These results contribute to the nascent

literature showing the productivity of non-cognitive skills in improving labor market

53There is no heterogeneity in these returns across the problem solving distribution. High math
achieving women not in STEM would not enjoy further benefits from a θSE boost. The results are
available upon request.
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outcomes.

Lastly, I find that the impact on the women switching from other fields into

STEM enrollment (compliers) is not be statistically different from zero. However,

this result masks the differential impact for students switching away from different

non-STEM majors, which may be an important source of heterogeneity, as the

returns to STEM enrollment vary by the alternative major under consideration.

Note that compliers represent the linear combination of students switching out of

the set of non-STEM fields:

P [Ds(p
′) = 1, Ds = 0]︸ ︷︷ ︸
Compliers

= P [Ds(p
′) = 1, Ds1 = 1]︸ ︷︷ ︸

Compliers: Life Sciences

+...+ P [Ds(p
′) = 1, Ds2 = 1]︸ ︷︷ ︸

Compliers: Other

I follow this framework to first examine the majors from which compliers are switch-

ing out of (Table 4.8). 45% of compliers switch out of ’Other’ majors, similar to

the non-STEM enrollment share in the full sample. The largest difference appears

among students who had not declared a major, who constitute 30% of the complier

sample, almost doubling the baseline share of female non-declarees. A sizable share

of women currently not declaring a major at enrollment would instead choose to

start in a math-intensive field with a small self-efficacy boost. I find that this in-

tervention would have heterogeneous impacts depending on the alternative major

under consideration.54 Students moving out of the life sciences, Other majors, as

well as non-declarees would enjoy positive returns, in the range of 5-9%. On the

54These results match the heterogeneous returns to STEM by alternative major option shown
in Table 4.5. Nonetheless, the wage returns to compliers capture a different parameter than the
average treatment effects presented in equation (4.13).
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other hand, the benefits arising from switching-into-STEM for students in health and

business majors would be largely negative, exceeding -20% and -3%, respectively.

As a result, the aggregate null effect on compliers masks important heterogeneity

for students depending on which major they are switching out of. Policymakers

should thus consider the alternative major under consideration when assessing the

labor market returns to STEM-promoting policies. In the second panel of Figure

4.11, I expand upon these results by analyzing the heterogeneous benefits from the

θSE boost for compliers across the problem solving distribution. Echoing the re-

sults for always-takers, I find positive wage returns for high-achieving women, who

would earn higher wages under the simulated policy, exceeding 7 percent for high

math-ability compliers.

Building on the heterogeneous impacts found for always-takers and compliers,

I analyze how the simulated policy would affect labor market outcomes for the full

sample of female college enrollees across the math ability distribution in Figure 4.12.

I once again find positive impacts for women above the median of the distribution,

with hourly wages increasing by one percent for those in the top decile of the prob-

lem solving distribution. While the magnitude of the wage effect may not appear to

be economically significant, the simulated self-efficacy intervention is small in mag-

nitude. Larger labor market impacts could potentially be achieved with improved

math non-cognitive skill development for girls prior to college entry. Moreover, the

proposed intervention would have a sizable impact on the labor market outcomes of

high-achieving women who would switch into STEM, thus indicating that in a con-

text of time/budget constraints, identifying individuals who would benefit the most
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from such interventions is of paramount importance. Although the heterogeneous

impacts presented so far depend on women’s unobserved math problem solving com-

ponent, policymakers could instead target the top test score performers. While test

scores are a noisy measure of ability, I find similar, though slightly muted, wage ef-

fects for top female test score performers (Figure C.1.6). All in all, well-targeted skill

development policies can go a long way towards increasing women’s participation in

STEM and in improving early-career labor market outcomes.

4.8 Conclusion

In recent years, women’s under-representation in STEM has received increased at-

tention in both the economics literature and in policy discussion. In this chap-

ter, I have examined the interaction between pre-college ability and major choices,

with the goal of understanding the factors driving women’s participation in STEM

majors. Building on the other two chapters presented in this dissertation, I have

introduced a discrete choice model, aimed at better understanding how students

choose their college majors. Moreover, I have identified a particular element of the

non-cognitive skill vector, mathematical self-efficacy, which plays a crucial role in

determining students’ enrollment and graduation from STEM majors. The iden-

tification of a particular non-cognitive skill component in this chapter differs from

the general conception of non-cognitive skills pursued in Chapter 2. Relative to

Chapter 3, this chapter considers the endogeneity of college major choices, rather

than painting a descriptive picture. As a result, in this chapter, I have presented
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estimates of the causal returns to college majors to differentiate between observed

and causal earnings differences across college majors.

Relative to the existing literature, while previous work has examined the role of

pre-college preparation in explaining gender gaps in college majors, this analysis has

been largely based on observed math test scores. To overcome this limitation, I have

introduced a measurement system, where I have found that gender gaps in math

test scores overstate differences in math problem solving by upwards of 40 percent.

I have further identified an important non-cognitive component of math ability, self-

efficacy, and found gender gaps in this dimension, as well. The correlation between

these two components is lower for women than it is for men, indicating a relative

lack of women at the top of the joint math skill distribution. This difference is

particularly relevant to the analysis of STEM participation, as students sort into

these majors non-linearly based on both dimensions of math ability. Furthermore,

self-efficacy has a sizable effect in explaining female drop out from math-intensive

fields, yet this pattern does not appear for men. The shortfall of high-achieving

who are confident in their math skills thus reduces their participation in STEM

majors. While I have offered preliminary evidence from alternative data sources

on the origins of gender differences in the correlation in these components of math

skills, future research should further explore this issue given the importance of math

ability in driving STEM enrollment.

Given the focus on increasing women’s STEM participation rates, I have also

brought evidence to a relatively understudied aspect of the debate, which is whether

women’s labor market outcomes would improve from STEM enrollment. While in-
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creasing participation in these fields may bring important non-pecuniary benefits,

I find significant heterogeneity in the wage returns in STEM, depending both on

the alternative major under consideration but also across the math ability distribu-

tion. As I find large returns to STEM participation for high math ability women,

STEM-promoting policies targeted towards high math-achievers would also deliver

improved labor market outcomes.

Lastly, building on an extensive literature showing the malleability of non-

cognitive skills through late adolescence, I have explored whether self-efficacy inter-

ventions could help in closing gender gaps in STEM. I have found that small skill

development interventions could increase STEM enrollment and graduation rates

by upwards of 15 percent, with larger impacts for high math performers. Further-

more, as the self-efficacy boost results in a small increase in hourly wages for top

female math achievers, non-cognitive skill development interventions offer a promis-

ing pathway for future policy development.
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4.9 Tables and Figures

Table 4.1: Descriptive Statistics

Women Men Difference
(1) (2) (3)

Observable Characteristics
White 0.665 0.677 -0.011
Both Parents 0.815 0.836 -0.021*
Parental Education 15.65 15.88 -0.228***
Log Family Income 10.88 11.02 -0.140**

Educational Attainment

College Dropout 0.204 0.210 -0.007
Bachelor’s Degree 0.59 0.637 -0.039***
Graduate School 0.198 0.152 0.046***

Test Scores

10th Grade Math Exam -0.086 0.175 -0.261***
12th Grade Math Exam -0.113 0.211 -0.325***
10th Grade Math Self-Efficacy -0.134 0.209 -0.343***
12th Grade Math Self-Efficacy -0.115 0.183 -0.299***
Math GPA 0.103 -0.064 0.168***
Math SAT/ACT -0.131 0.137 -0.294***
English SAT/ACT 0.011 -0.014 0.024
10th Grade Reading Exam 0.021 -0.026 0.047
English GPA 0.185 -0.174 0.359***

(Log) Hourly Wage 2.823 2.918 -0.095***

Observations 2,510 2,010

Source: Educational Longitudinal Study of 2002.
Note: * p<0.10, ** p<0.05, *** p<0.01.
Note: This sample includes all students in the ELS 2002 who were enrolled in four-year college in
the second follow-up survey. Students are required to have reported grades/scores for all the test
scores presented above. All test score and GPA measures are normalized (0,1) for comparability.
GPA measures represent an average over math/English courses taken in high school. Hourly wages
are reported for employed college graduates who had not completed a graduate degree by 2012.
Wages are reported as natural logarithms.
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Table 4.2: Gender Participation by Major
Initial Major Final Major

Women Men Difference Women Men Difference
Share in Option (1) (2) (3) (4) (5) (6)
Math-Intensive STEM 0.045 0.179 -0.134*** 0.032 0.158 -0.126***

(0.207) (0.383) (0.009) (0.177) (0.365) (0.004)

Life Sciences 0.076 0.072 0.005 0.072 0.070 0.002
(0.266) (0.258) (0.008) (0.316) (0.255) (0.009)

Business 0.116 0.181 -0.065*** 0.118 0.176 -0.058***
(0.320) (0.385) (0.010) (0.323) (0.381) (0.010)

Health 0.135 0.036 0.099*** 0.105 0.042 0.064***
(0.342) (0.186) (0.008) (0.307) (0.199) (0.008)

Other 0.470 0.340 0.130*** 0.468 0.345 0.124***
(0.499) (0.474) (0.015) (0.495) (0.475) (0.015)

Not Declared 0.158 0.193 -0.035***
(0.365) (0.394) (0.011)

Not Graduated 0.204 0.210 -0.006
(0.403) (0.408) (0.012)

Source: Educational Longitudinal Study of 2002.
Note: * p<0.10, ** p<0.05, *** p<0.01.
Note: This sample includes all students in the ELS 2002 who were enrolled in four-year college
in the second follow-up survey. Columns (3) and (6) present the gender difference across initial
majors and final outcomes from a two-tailed t-test. Math-intensive STEM fields include degrees in
engineering, engineering-related fields, computer science, mathematics, economics, statistics and
physics. Life science degrees include majors in agriculture (and related sciences), natural resources
and conservation, family science, biology and related fields and other science technologies. Business
degrees includes degrees in business, management and marketing. The ”Other” group includes
the the following college majors: Architecture, Anthropology, Art, Art History, Communications,
Criminal Justice, Education, English, History, International Relations, Journalism, Literature,
Pre-Law, Political Science, Psychology, Social Work, and Sociology, among others. The Health
group is largely composed of majors in Nursing, Pre-Med, Pre-Vet, Pharmacy, Health and Physical
Therapy.
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Table 4.3: Sorting into STEM Majors and Enrollment and Graduation

STEM Enrollment STEM Completion
Women Men Women Men

(1) (2) (3) (4)
White -0.015 -0.005 0.177 0.091*

(0.010) (0.020) (0.096) (0.049)

Fam. Income 0.004* 0.005 0.008 -0.024*
(0.002) (0.004) (0.026) (0.014)

Dad in Field 0.017 0.061* 0.074 0.024
(0.016) (0.031) (0.158) (0.072)

Mom in Field 0.017 0.022 -0.113 0.032
(0.027) (0.055) (0.250) (0.130)

Math Test 0.015* 0.082*** 0.072*** 0.096***
(0.006) (0.012) (0.065) (0.031)

Self-Efficacy 0.017*** 0.057*** 0.117*** 0.026
(0.004) (0.009) (0.054) (0.028)

English Test -0.004 -0.038*** 0.055 0.003
(0.006) (0.011) (0.060) (0.039)

Constant -0.032 0.155* 0.198 0.759
(0.038) (0.078) (0.298) (0.156)***

N 2510 2010 110 460
R2 0.018 0.066 0.173 0.065

Baseline Share 0.045 0.179 0.442 0.626

Source: Educational Longitudinal Study of 2002.
Note: * p<0.10, ** p<0.05, *** p<0.01.
Note: The first two columns include all the males and females in the college enrollee sample. I
estimate a linear probability model with a dummy variable for STEM enrollment as the outcome
variable. The Math Test score and the English Test variables represent the 10th grade exam test
scores, normalized (0,1). The Self-Efficacy measure is also taken in 10th grade. The results are
robust to other test score measures. The last two columns examine STEM completion rates among
students initially enrolled in STEM. I once again estimate a linear probability model with STEM
completion as the outcome variable. The set of explanatory variables remains the same across the
four columns.
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Table 4.4: Descriptive Statistics: Latent Factors v. Baseline Test Scores

Panel A. Latent Factors
Men Women

Correlation Correlation
Factor Mean (SD) θC θSE θR Factor Mean (SD) θC θSE θR
θC 0.166 1 θC -0.001 1

(0.682) (0.647)
θSE 0.151 0.561 1 θSE -0.001 0.471 1

(0.746) (0.761)
θR -0.129 0.863 0.483 1 θR 0 0.848 0.412 1

(0.873) (0.808)

Panel B. Baseline Test Scores

Men Women
Correlation Correlation

Measure Mean (SD) Math SE Read Measure Mean (SD) Math SE Read
Math Exam 0.261 1 Math Exam 0 1

(0.949) (0.988)
Self-Efficacy 0.343 0.347 1 Self-Efficacy -0.001 0.292 1

(0.995) (0.957)
Reading Exam -0.048 0.642 0.178 1 Reading Exam 0 0.647 0.092 1

(0.957) (1.017)

Source: Educational Longitudinal Study of 2002.
Note: Table 4.4 displays the mean, standard deviation and correlation between the three ability
components separately by gender. θC represents the problem solving factor, θSE is the math
self-efficacy component and θR is the reading ability component. Results are simulated from the
estimates of the model. The second panel displays the mean, standard deviation and correlation
between the three baseline math and reading test scores as well as the baseline math self-efficacy
measure.
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Table 4.5: Estimated Returns to STEM Enrollment for Women

Panel A. Returns to Enrollment Relative to Other Majors
Life Sciences Business Health Other Not Declared

ATE 0.097 -0.041 -0.192 0.087 0.059
(0.005)*** (0.005)*** (0.005)*** (0.005)*** (0.005)***

TT 0.152 -0.032 -0.209 0.108 0.046
(0.021)*** (0.013)** (0.022)*** (0.021)*** (0.014)***

TUT 0.116 -0.041 -0.196 0.098 0.062
(0.010)*** (0.013)*** (0.007)*** (0.006)*** (0.007)***

MTE 0.060 -0.044 -0.207 0.079 0.040
(0.019)*** (0.021)** (0.022)*** (0.021)*** (0.022)*

*Panel B. Heterogeneous Returns by Math Problem Solving Ability

Life Sciences Business Health Other Not Declared

ATE (Low θC) 0.070 -0.075 -0.180 0.055 0.040
(0.006)*** (0.006)*** (0.006)*** (0.006)*** (0.006)***

ATE (High θC) 0.124 -0.008 -0.204 0.119 0.077
(0.006)*** (0.006) (0.006)*** (0.006)*** (0.006)***

ATE (Top θC Decile) 0.158 0.025 -0.201 0.153 0.099
(0.014)*** (0.014) (0.014)*** (0.014)*** (0.014)***

Panel C. Heterogeneous Returns by Math Self-Efficacy

Life Sciences Business Health Other Not Declared

ATE (Low θSE) 0.071 -0.071 -0.204 0.060 0.038
(0.006)*** (0.006)*** (0.006)*** (0.006)*** (0.006)***

ATE (High θSE) 0.123 -0.012 -0.180 0.115 0.079
(0.006)*** (0.006)* (0.006)*** (0.006)*** (0.006)***

ATE (Top θSE Decile) 0.148 0.040 -0.162 0.146 0.107
(0.014)*** (0.014)*** (0.014)*** (0.014)*** (0.014)***

Source: Educational Longitudinal Study of 2002.
Note: * p<0.10, ** p<0.05, *** p<0.01.
Note: Table 4.5 presents the returns to enrollment to women from the simulated discrete choice
model. The returns are estimated separately against each alternative major choice, m1 ∈ M∞.
The average treatment effect (ATE) refers to the parameter indicated in equation (4.13). The
treatment on the treated parameter (TT) refers to the parameter indicated in equation (4.15).
The treatment on the untreated parameter (TUT) refers to the parameter indicated in equation
(4.16). In Panel B, the ATE (Low θC) denotes the benefits for women below the math problem
solving median, whereas the (High θC) refers to those above the median. A similar definition is
used in Panel C.
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Table 4.6: Estimated Returns to STEM Completion

*Panel A. Returns to Completion by Gender
Women Men

v. Switchers v. Dropouts v. Switchers v. Dropouts

Reduced Form

No Controls 0.175 0.401 0.442 0.401
(0.144) (0.014)*** (0.143)*** (0.075)***

Full Model 0.131 0.257 0.442 0.357
(0.149) (0.155) (0.088)*** (0.077)***

Model Estimates

ATE 0.067 0.342 0.442 0.349
(0.014)*** (0.014)*** (0.010)*** (0.010)***

TT 0.149 0.439 0.450 0.349
(0.021)*** (0.021)*** (0.013)*** (0.013)***

TUT 0.042 0.218 0.450 0.349
(0.024) (0.029)*** (0.021)*** (0.023)***

MTE 0.270 0.286 0.367 0.338
(0.099)** (0.128)** (0.069)*** (0.076)***

Panel B. Heterogeneous Returns by Math Problem Solving Ability

Women Men
v. Switchers v. Dropouts v. Switchers v. Dropouts

ATE (Low θC) -0.063 0.236 0.446 0.370
(0.026)*** (0.026)*** (0.018)*** (0.018)***

ATE (High θC) 0.118 0.383 0.440 0.342
(0.016)*** (0.016)*** (0.012)*** (0.012)***

ATE (Top θC Decile) 0.172 0.461 0.438 0.320
(0.030)*** (0.030)*** (0.022)*** (0.022)***

Panel C. Heterogeneous Returns by Math Self-Efficacy

Women Men
v. Switchers v. Dropouts v. Switchers v. Dropouts

ATE (Low θSE) 0.071 0.291 0.439 0.355
(0.027)*** (0.027)*** (0.018)*** (0.018)***

ATE (High θSE) 0.066 0.360 0.442 0.346
(0.016)*** (0.016)*** (0.012)*** (0.012)***

ATE (Top θSE Decile) 0.087 0.365 0.436 0.352
(0.030)*** (0.030)*** (0.022)*** (0.022)***

Source: Educational Longitudinal Study of 2002. Note: * p<0.10, ** p<0.05, *** p<0.01. Note: Table 4.6 presents
the returns to graduation to math-intensive STEM majors for women and men. The reduced form estimates
presented in the first two rows of Panel A follow from pairwise comparisons of STEM graduates to switchers and
dropouts, respectively, among initial STEM enrollees. The first row includes individual and family background
characteristics as controls. The second row adds baseline test scores as control variables.
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Table 4.7: Aggregate Effects of Self-Efficacy Intervention on Graduation Rates
and Hourly Wages

Graduation Rates Hourly Wages
Baseline Post-Intervention Baseline Post-Intervention

(1) (2) (3) (4)
Full Sample 0.029 0.036 2.770 2.774

(0.001)***
Always-Takers 0.438 0.476 2.778 2.807

(0.001)*** (0.019)*
Compliers 0.032 0.462 2.817 2.821

(0.002)*** (0.043)
Never-Takers 0.010 0.011 2.769 2.772

(0.000)*** (0.001)***

Source: Educational Longitudinal Study of 2002. Note: * p<0.10, ** p<0.05, *** p<0.01. Note: Table 4.7 examines
the aggregate impact of the self-efficacy intervention on outcomes for female college students. The standard errors
refer to a comparison of enrollment rates relative to the baseline. I explore the impact of the 0.25SD boost in
θSE across the potential response groups and the SEs follow from a comparison of graduation rates relative to the
baseline.
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Table 4.8: Aggregate Effects of Self-Efficacy Intervention Across Complier Types

Composition Compliers’ Hourly Wages
% in Sample Complier Share Baseline Post-Intervention

(1) (2) (3) (4)

Life Sciences 0.082 0.027 2.687 2.752
(0.022)***

Business 0.123 0.092 2.833 2.799
(0.018)*

Health 0.142 0.126 2.949 2.684
(0.016)***

Other 0.486 0.456 2.719 2.795
(0.004)***

Not Declared 0.168 0.299 2.756 2.835
(0.006)***

Source: Educational Longitudinal Study of 2002. Note: * p<0.10, ** p<0.05, *** p<0.01. Note: Table 4.7
examines the aggregate impact of the self-efficacy intervention on outcomes for female college students. This table
explores the impact on hourly wages across these groups. Column (2) in Panel D compares the share of compliers in
each of the five non-STEM majors to their baseline non-STEM participation in the full female sample. The fourth
column compares their hourly wages post-intervention to their hourly wages in the baseline. The SEs correspond
to a test of the difference of wages in the baseline v. post-intervention.
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Figure 4.1: Math Test Score and Self-Efficacy Measures
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Source: Educational Longitudinal Study of 2002. Note: This sample includes all

students in the ELS 2002 who were enrolled in four-year college in the second follow-

up survey. In Panel A, baseline self-efficacy scores are standardized normal (0,1),

while math test scores are divided into quintiles. The second panel shows the ratio of

men to women in each quintile of baseline math test scores and self-efficacy measures.
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Figure 4.2: STEM Enrollment Patterns and Subsequent Completion by Gender

Initial Major Choice by Age 20: Men

Final Major Choice

5.8%

17.5%

61.4%

21.0%

Other Majors: 81.1% STEM Enrollee: 17.9%

STEM Graduate Drop Out

STEM Graduate

Switcher

Initial Major Choice by Age 20: Women

Final Major Choice

1.3%

23.0%

44.2%

32.8%

Other Majors: 95.5% STEM Enrollee: 4.5%

STEM Graduate Drop Out

STEM Graduate

Switcher

Source: Educational Longitudinal Study of 2002.
Note: This Figure depicts sequential progression through college majors for men and women by
initial major choice (STEM and non-STEM). The left line depicts the share of students starting
in other majors and the line below it, the share among these students who subsequently switch
into a STEM major at graduation. The right line captures the share of men and women who start
in a STEM field. In the second line, I then show the share of students in this group who end up
completing a STEM degree, switching into another field, or dropping out of college altogether.
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Figure 4.3: Structure of Discrete Choice Model

Initial Major Choice: Eq. (4.1)

Dropout Decision: Eq. (4.2)

Work Final Major Choice: Eq. (4.3)

Graduate School: Eq. (4.4)
Graduate School: Eq. (4.4)

Hourly Wage
Hourly Wage

Other Majors STEM Enrollment

Drop Out Continue

Switch Stay in Major

Work

Graduate Degree

Work Graduate Degree

Source: Educational Longitudinal Study of 2002.
Note: This Figure depicts sequential progression through college majors for initial STEM enrollees.
Despite this process not being depicted for students enrolled in ’Other’ majors (due to limited
space), college progression for these students, and for those in all other categories, follows the
same pattern.
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Figure 4.4: Measurement System: Variance Decomposition
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Source: Educational Longitudinal Study of 2002. Note: This Figure shows the con-

tribution of each variable to the variance of test scores using the simulated sample the

model. The row Observables indicates the share of the variance of the measurement

variables explained by the observed variables: child’s race, parental education and oc-

cupation, and household income. Each Factor bar indicates the share of the variance

explained by each component of latent ability. Finally, the label Error term repre-

sents the share of each test score variance explained by the unobserved idiosyncratic

error of the measurement system.
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Figure 4.8: Estimated Causal Returns to STEM Majors for Women
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Source: Educational Longitudinal Study of 2002. Note: Figure 4.8 presents the

returns to enrollment in math-intensive STEM majors. The returns are estimated

separately against each alternative major choice, m1 ∈M∞ and educational outcome

m2 ∈ M∈ in each panel, respectively. The returns presented represent the average

treatment effect (ATE) of each major, as defined in equation (4.13). The returns to

enrollment and graduation are compared to the raw wage differences among STEM

enrollees and completers, respectively, against the alternative outcome. The ’Causal

Returns’ estimate follows from estimated parameters in the dynamic discrete choice

model.
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Figure 4.9: Estimated Impacts of Self-Efficacy Interventions on STEM
Enrollment
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Source: Educational Longitudinal Study of 2002. Note: The first panel of Figure

4.9 examines the impacts of self-efficacy interventions of varying magnitudes (from

0.1 SD to 1 SD) on women’s enrollment rates in STEM, as measured by the share

of compliers at each decile of the θC distribution. The vertical red line is drawn

at 0.25 SDs, which is the magnitude of the policy intervention analyzed in Section

4.7. The second panel analyzes the impact of the 0.25 SD intervention on aggregate

enrollment rates across each decile of the θC distribution. The green line captures

baseline enrollment rates, whereas the orange line analyzes enrollment rates after the

intervention.
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Figure 4.11: Effect of Self-Efficacy Intervention on Wages by Response Type
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Source: Educational Longitudinal Study of 2002. Note: The first panel of Figure

4.11 presents the impact of a 0.25 SD boost in θSE for the set of female college

students who start in a STEM field and do so under the intervention, as well. I

present heterogeneous impacts across the θC distribution. The second panel presents

the same analysis for compliers, that is, the students who in the baseline did not

enroll in STEM, but did so following the intervention.
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Figure 4.12: Estimated Impacts of Self-Efficacy Intervention on Hourly Wages
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Source: Educational Longitudinal Study of 2002.

Note: Figure 4.12 presents the impact of a 0.25 SD boost in θSE for all female college students

included in the sample. The blue bars represent the gain in log hourly wages from the simulated

policy. I present heterogeneous impacts across the θC distribution.
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A.1 Appendix Tables and Figures

Table A.1.1: Determinants of Enrollment Decision: Non-Cognitive Components

Not Enrolled 4-Yr Inclusive 4-Yr Selective 4-Yr Highly Selective
(1) (2) (3) (4)

Math Test Score -0.0817*** -0.00384 0.0371*** 0.0870***
(0.00662) (0.00472) (0.00617) (0.00557)

English Test Score -0.0437*** 0.00369 0.0201*** 0.0511***
(0.00644) (0.00463) (0.00599) (0.00530)

Control Expectation -0.0223** 0.00590 0.00922 0.0000950
(0.00682) (0.00475) (0.00588) (0.00496)

Instrumental Motivation -0.0234*** -0.00239 0.00811 0.0115**
(0.00680) (0.00452) (0.00536) (0.00424)

Action Control -0.000620 -0.000784 0.000435 0.0231***
(0.00783) (0.00537) (0.00645) (0.00524)

Male 0.120*** -0.00170 -0.0576*** -0.0261***
(0.00892) (0.00640) (0.00808) (0.00671)

White -0.0317** -0.0342*** 0.0568*** 0.0241*
(0.0119) (0.00861) (0.0130) (0.0113)

Black -0.0528** 0.0369*** 0.0568** 0.0243
(0.0167) (0.0107) (0.0184) (0.0174)

Asian -0.0722** -0.0294 0.0438* 0.0707***
(0.0264) (0.0181) (0.0222) (0.0169)

Both Parents -0.0162 -0.00406 0.00954 0.0230**
(0.0106) (0.00759) (0.0101) (0.00886)

Family Income -0.0185*** 0.00469 0.00515 -0.00515**
(0.00356) (0.00260) (0.00270) (0.00180)

Parents’ Education -0.0239*** 0.000973 0.00994*** 0.0212***
(0.00190) (0.00134) (0.00172) (0.00147)

Urban -0.0355*** 0.0195** 0.00414 0.0373***
(0.0105) (0.00698) (0.00906) (0.00724)

Observations 9,180

Source: Educational Longitudinal Study of 2002. Note: Standard errors in parentheses. * p < 0.05, ** p < 0.01,
*** p < 0.001. Table A.1.1 presents the estimated marginal effects from a multinomial logit regression, as in
equation (2.1), examining the determinants of initial enrollment decisions. The omitted category is two-year college
enrollment. The three different components of the non-cognitive skill index are included separately.
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Table A.1.2: Determinants of Initial Enrollment Decisions by Gender

Panel A. Determinants of Enrollment Decision for Women
Outcome 0 Outcome 2 Outcome 3 Outcome 4

Math Test Score -0.0802*** 0.000000381 0.0361*** 0.0975***
(0.00909) (0.00667) (0.00894) (0.00775)

English Test Score -0.0458*** -0.00310 0.0294** 0.0466***
(0.00899) (0.00674) (0.00903) (0.00768)

Non-Cognitive Index -0.0343*** 0.0110* 0.0159** 0.0263***
(0.00598) (0.00448) (0.00597) (0.00502)

Both Parents -0.00459 -0.0154 0.0276 0.0195
(0.0138) (0.0101) (0.0145) (0.0120)

Family Income -0.0149** 0.00394 0.00459 -0.00785**
(0.00496) (0.00371) (0.00390) (0.00245)

Parents’ Education -0.0209*** 0.000684 0.0106*** 0.0206***
(0.00246) (0.00182) (0.00242) (0.00200)

Observations 4,890

Panel B. Determinants of Enrollment Decision for Men

Outcome 0 Outcome 1 Outcome 2 Outcome 3
Math Test Score -0.0859*** -0.00441 0.0386*** 0.0713***

(0.00960) (0.00656) (0.00823) (0.00778)

English Test Score -0.0411*** 0.0106 0.0109 0.0547***
(0.00934) (0.00635) (0.00768) (0.00721)

Non-Cognitive Index -0.0467*** -0.00789 0.0148** 0.0382***
(0.00675) (0.00462) (0.00557) (0.00505)

Both Parents -0.0322* 0.0101 -0.0113 0.0274*
(0.0164) (0.0115) (0.0138) (0.0131)

Family Income -0.0215*** 0.00532 0.00499 -0.00154
(0.00516) (0.00363) (0.00370) (0.00266)

Parents’ Education -0.0271*** 0.00169 0.00910*** 0.0216***
(0.00293) (0.00201) (0.00243) (0.00217)

Observations 4,290

Source: Educational Longitudinal Study of 2002. Note: Standard errors in parentheses. * p < 0.05, ** p < 0.01, ***
p < 0.001. Table A.1.2 presents the estimated marginal effects from a multinomial logit regression, as in equation
(2.1), examining the determinants of initial enrollment decisions by gender. The omitted category is two-year college
enrollment. The coefficients on urban status and racial categories are included in the regression, but not presented
here for expositional simplicity.
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Table A.1.3: Determinants of Academic Undermatch: Non-Cognitive
Components

Top Test Score Decile Top Test Score Quintile Top Two Quintiles
(1) (2) (3)

Math Test Score -0.129* -0.199*** -0.164***
(0.0531) (0.0307) (0.0172)

English Test Score -0.132** -0.146*** -0.103***
(0.0452) (0.0257) (0.0146)

Control Expectation -0.0233 0.00819 0.00196
(0.0236) (0.0161) (0.0110)

Instrumental Motivation -0.0149 -0.0226 -0.0176
(0.0177) (0.0132) (0.00952)

Action Control -0.0374 -0.0612*** -0.0430***
(0.0217) (0.0162) (0.0117)

Male 0.0638 0.0511* 0.140***
(0.0329) (0.0226) (0.0156)

White 0.00336 -0.0136 -0.0926***
(0.0604) (0.0416) (0.0253)

Black 0.204 0.157 -0.0553
(0.167) (0.0878) (0.0483)

Asian -0.142 -0.0992 -0.101*
(0.0820) (0.0592) (0.0410)

Both Parents -0.129** -0.0497 -0.0253
(0.0432) (0.0302) (0.0203)

Family Income 0.0134 0.00865 -0.0000807
(0.00750) (0.00575) (0.00440)

Parents’ Education -0.0532*** -0.0446*** -0.0393***
(0.00753) (0.00505) (0.00341)

Urban -0.0919** -0.0915*** -0.0551**
(0.0348) (0.0250) (0.0177)

Constant 1.689*** 1.669*** 1.318***
(0.181) (0.115) (0.0748)

Observations 920 1,840 3,670
R2 0.143 0.149 0.145

Source: Educational Longitudinal Study of 2002. Note: Standard errors in parentheses. * p < 0.05, ** p < 0.01, ***
p < 0.001. Table A.1.3 presents the estimated results from equation (2.2). Equation (2.2) estimates the determinants
of academic undermatch for students at different points of the math test score distribution.
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Table A.1.4: Determinants of Academic Undermatch: Excluding Non-Enrolled
Students

Top Test Score Decile Top Test Score Quintile Top Two Quintiles
(1) (2) (3)

Math Test Score -0.0940 -0.158*** -0.134***
(0.0554) (0.0328) (0.0172)

English Test Score -0.128** -0.134*** -0.0712***
(0.0465) (0.0274) (0.0150)

Non-Cognitive Index -0.0636*** -0.0775*** -0.0469***
(0.0190) (0.0132) (0.00849)

Male 0.0125 0.0368 0.0932***
(0.0333) (0.0238) (0.0158)

White 0.0529 0.0147 -0.0933***
(0.0654) (0.0464) (0.0267)

Black 0.316 0.203* -0.0553
(0.179) (0.0990) (0.0501)

Asian -0.137 -0.138* -0.129**
(0.0874) (0.0658) (0.0424)

Both Parents -0.134** -0.0616 -0.0184
(0.0449) (0.0327) (0.0210)

Family Income 0.0153* 0.0133* 0.00578
(0.00761) (0.00619) (0.00446)

Parents’ Education -0.0497*** -0.0429*** -0.0313***
(0.00784) (0.00548) (0.00348)

Urban -0.0981** -0.0999*** -0.0599***
(0.0358) (0.0268) (0.0179)

Constant 1.499*** 1.488*** 0.994***
(0.188) (0.126) (0.0764)

Observations 840 1,630 3,120
R2 0.133 0.133 0.106

Source: Educational Longitudinal Study of 2002. Note: Standard errors in parentheses. * p < 0.05, ** p < 0.01, ***
p < 0.001. Table A.1.4 presents the estimated results from equation (2.2). Equation (2.2) estimates the determinants
of academic undermatch for students at different points of the math test score distribution. This table excludes
students who had not enrolled in a higher education institution by age 20. In the first two columns, students are
classified to undermatch if they are not enrolled in a highly-selective college. In the third column, undermatched
students are those who have not enrolled in a selective or highly-selective institution by age 20.
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B.1 Appendix Tables and Figures

Table B.1.1: Non-Linear Returns to Mathematical Ability

(1) (2)
P51 − P80 0.210*** 0.182***

(0.0007) (0.0008)
P81 − P90 0.415*** 0.362***

(0.0009) (0.0009)
P91 − P95 0.583*** 0.519***

(0.0009) (0.0009)
P96 − P99 0.770*** 0.697***

(0.0009) (0.0009)
P100 1.011*** 0.930***

(0.0009) (0.0009)
Language X
Year FE X X
R2 0.125 0.126
Observations 10,170,432
Individual Observations 243,267

Note: SE clustered at the individual level. * p<0.05, ** p<0.01, *** p<0.001. SIMCE scores from 2001 and 2003 10th grade samples.

SIES Higher Education Degrees — 2007-2016. Unemployment Insurance: 2002-2016. Ability measures are standardized. Wages are

measured monthly in 2010 Real CLP in the highest paid job.
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Table B.1.2: Non-Linear Returns to Mathematical Ability (Monthly Wages)

(1) (2) (3) (4) (5)
P51 − P80 0.185*** 0.129*** 0.129*** 0.130*** 0.125***

(0.0005) (0.0005) (0.0005) (0.0005) (0.0005)
P81 − P90 0.389*** 0.281*** 0.277*** 0.277*** 0.253***

(0.0009) (0.0009) (0.0009) (0.0009) (0.0009)
P91 − P95 0.569*** 0.421*** 0.414*** 0.405*** 0.367***

(0.0011) (0.0011) (0.0011) (0.0011) (0.0011)
P96 − P99 0.765*** 0.584*** 0.575*** 0.540*** 0.495***

(0.0013) (0.0013) (0.0013) (0.0013) (0.0013)
P100 1.010*** 0.787*** 0.777*** 0.695*** 0.644***

(0.0025) (0.0025) (0.0025) (0.0025) (0.0025)
Year FE X X X X X
Years of Ed. X
Degrees Received X
University Quality X
Field of Degree X
R2 0.165 0.233 0.234 0.236 0.244
Observations 10,170,432
Individual Observations 243,267

Note: SE clustered at the individual level. * p<0.05, ** p<0.01, *** p<0.001. SIMCE scores from 2001 and 2003 10th grade samples.

SIES Higher Education Degrees — 2007-2016. Unemployment Insurance: 2002-2016. Ability measures are standardized. Wages are

measured monthly in 2010 Real CLP in the highest paid job.

Source: Educational Longitudinal Study of 2002.
Note: Table B.1.3 displays the estimation results from the measurement system of test scores sep-
arately by gender. The dependent variable is the normalized (0,1) test score. Both Par. represents
a dummy variable for whether the individual lives in a two-parent family and parents’ education is
a continuous variable for the surveyed parent’s years of education completed. Urban is a dummy
variable indicating whether the family resides in an urban area. Father in STEM and mother in
STEM are dummy variables which equal one if the father and/or mother work in a STEM occu-
pation, respectively. Standard errors are in parentheses. Various loadings are normalized to one
for model identification.
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Table B.1.3: Factor Loadings: Measurement System for Women

BY Math F1 Math SAT Math Math GPA BY SE F1 SE BY Engl Engl GPA SAT Read
Constant -1.26 -1.26 -1.20 -0.18 -0.41 -0.28 -1.58 -0.09 -1.60

(0.13) (0.12) (0.12) (0.12) (0.11) (0.10) (0.13) (0.12) (0.13)
White 0.01 -0.10 -0.19 -0.01 -0.02 0.02 0.28 -0.00 0.25

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Black -0.82 -0.93 -0.85 -0.67 0.02 -0.02 -0.44 -0.74 -0.52

(0.05) (0.05) (0.05) (0.05) (0.06) (0.06) (0.06) (0.05) (0.06)
Both Par. 0.12 0.13 0.11 0.08 0.09 0.04 0.11 0.06 0.01

(0.04) (0.03) (0.03) (0.03) (0.04) (0.03) (0.03) (0.03) (0.04)
Fam. Income -0.00 -0.01 -0.02 -0.02 -0.01 -0.01 0.01 -0.01 0.00

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Parents’ Ed. 0.07 0.08 0.09 0.03 0.02 0.01 0.08 0.03 0.09

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Urban -0.12 -0.05 -0.08 -0.15 -0.00 0.00 -0.09 -0.17 -0.06

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Father in STEM 0.15 0.11 0.10 -0.00 0.01 0.07 0.16 0.05 0.12

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
Mother in STEM 0.18 0.18 0.26 0.15 0.23 0.13 0.25 0.03 0.25

(0.10) (0.10) (0.10) (0.10) (0.10) (0.08) (0.10) (0.09) (0.09)
θC 0.99 1.10 1.00 0.69 0.42 0.34 0.70 0.20 0.67

(0.01) (0.01) (0.00) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
θSE 0.00 0.00 0.00 0.29 0.67 1.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.02) (0.02) (0.00) (0.00) (0.00) (0.00)
θR 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.57 1.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.03) (0.02) (0.00)
Precision 4.31 9.60 5.64 1.88 1.90 10.76 2.44 1.67 10.82

(0.11) (0.41) (0.16) (0.04) (0.05) (1.77) (0.07) (0.03) (2.96)
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Table B.1.4: Factor Loadings: Measurement System for Men

BY Math F1 Math SAT Math Math GPA BY SE F1 SE BY Engl Engl GPA SAT Read
Constant -1.16 -0.83 -1.11 -0.46 0.07 0.08 -1.47 -0.73 -1.91

(0.15) (0.14) (0.15) (0.15) (0.12) (0.08) (0.14) (0.17) (0.15)
White -0.09 -0.08 -0.17 -0.04 -0.06 0.01 0.13 -0.06 0.07

(0.03) (0.03) (0.04) (0.04) (0.03) (0.02) (0.04) (0.04) (0.03)
Black -0.94 -0.96 -0.97 -0.72 -0.11 -0.07 -0.61 -0.74 -0.66

(0.07) (0.07) (0.06) (0.07) (0.06) (0.04) (0.07) (0.07) (0.06)
Both Par. 0.12 0.06 0.06 0.06 0.01 0.01 0.11 0.02 0.06

(0.04) (0.04) (0.04) (0.04) (0.04) (0.02) (0.05) (0.05) (0.04)
Fam. Income -0.01 -0.01 -0.02 -0.00 -0.00 -0.00 -0.02 0.01 -0.02

(0.01) (0.01) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01)
Parents’ Ed. 0.09 0.08 0.10 0.03 0.01 0.01 0.09 0.03 0.13

(0.01) (0.01) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01)
Urban 0.01 0.02 0.05 -0.12 0.05 -0.01 0.06 -0.15 0.04

(0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.03) (0.04) (0.03)
Father in STEM 0.20 0.17 0.06 0.14 0.06 0.00 0.16 0.12 0.16

(0.06) (0.06) (0.06) (0.06) (0.05) (0.03) (0.06) (0.06) (0.05)
Mother in STEM 0.12 0.08 0.25 -0.15 0.12 0.03 0.27 0.10 0.26

(0.10) (0.11) (0.11) (0.13) (0.09) (0.06) (0.11) (0.12) (0.12)
θC 1.01 1.06 1.00 0.59 0.31 0.14 0.69 0.25 0.67

(0.01) (0.01) (0.00) (0.02) (0.02) (0.01) (0.02) (0.02) (0.02)
θSE 0.00 0.00 0.00 0.25 0.59 1.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00)
θR 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.54 1.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.06) (0.03) (0.00)
Precision 4.52 9.99 3.63 1.61 2.08 44.97 2.03 1.27 6.49

(0.14) (0.51) (0.10) (0.04) (0.05) (5.35) (0.08) (0.03) (1.55)

Source: Educational Longitudinal Study of 2002.
Note: Table B.1.4 displays the estimation results from the measurement system of test scores sep-
arately by gender. The dependent variable is the normalized (0,1) test score. Both Par. represents
a dummy variable for whether the individual lives in a two-parent family and parents’ education is
a continuous variable for the surveyed parent’s years of education completed. Urban is a dummy
variable indicating whether the family resides in an urban area. Father in STEM and mother in
STEM are dummy variables which equal one if the father and/or mother work in a STEM occu-
pation, respectively. Standard errors are in parentheses. Various loadings are normalized to one
for model identification.
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Table B.1.5: Participation in Math-Intensive STEM Majors

Initial Major Final Major
Women Men Women Men

(1) (2) (3) (4)
White -0.009 0.021 -0.014 -0.038

(0.015) (0.031) (0.016) (0.033)
Parental Education 0.003 -0.004 0.000 -0.005

(0.002) (0.006) (0.003) (0.006)
Log Family Income 0.006** 0.003 0.005* 0.004

(0.003) (0.006) (0.003) (0.007)
Father in Field 0.020 0.074 0.024 0.074

(0.027) (0.046) (0.028) (0.049)
Mother in Field 0.021 0.073 0.019 -0.028

(0.043) (0.101) (0.044) (0.099)
Low Math

x Medium-SE -0.006 0.094** 0.019 0.126***
(0.009) (0.041) (0.014) (0.042)

x High-SE 0.039 0.118** 0.065** 0.172***
(0.025) (0.054) (0.030) (0.059)

Medium Math
x Low-SE 0.009 0.034 0.012 0.059

(0.016) (0.037) (0.012) (0.038)
x Medium-SE 0.016 0.086** 0.022 0.156***

(0.015) (0.041) (0.016) (0.044)
x High-SE 0.070*** 0.264*** 0.089*** 0.305***

(0.025) (0.053) (0.027) (0.054)
High Math
x Low-SE -0.004 0.021 0.027 0.074

(0.022) (0.059) (0.026) (0.063)
x Medium-SE 0.062** 0.155*** 0.057** 0.268***

(0.024) (0.045) (0.022) (0.048)
x High-SE 0.101*** 0.396*** 0.126*** 0.464***

(0.022) (0.046) (0.024) (0.046)
R2 0.039 0.096 0.044 0.113

Observations 1,340 1,090 1,340 1,090

Source: Educational Longitudinal Study of 2002. Note: * p<0.10, ** p<0.05, *** p<0.01. Note:

This sample includes students in the ELS 2002 who were enrolled in four-year college in the

second follow-up survey, had completed a college degree by 2012, yet not a graduate degree and

had reported a positive hourly wage in 2012. Students are required to have reported

grades/scores for all the baseline math test score and self-efficacy measure, individual and family

background characteristics. The estimated regression is a linear probability model with STEM

enrollment and STEM graduation as the outcome variables, respectively. This regression is

separately estimated by gender. For each gender, I divide the sample in tertiles of the math test

score and of the self-efficacy measure and then interact these categories creating nine separate

gender-specific ”math skill bins.” The omitted category represents individuals in the bottom

math test score and math self-efficacy tertiles.166



Table B.1.6: Productivity of Latent Ability Across Initial Majors by Gender

Women Men
Initial Major STEM Enrollee Other Majors STEM Enrollee Other Majors
Outcome STEM College STEM College STEM College STEM Graduate

(1) (2) (3) (4) (5) (6) (7) (8)
θC 0.136*** 0.190*** 0.011*** 0.076*** 0.154*** 0.025*** 0.042*** 0.066***

(0.012) (0.010) (0.001) (0.002) (0.006) (0.005) (0.001) (0.002)

θSE 0.0989*** 0.184*** 0.005*** -0.018*** -0.009 0.029*** 0.023*** 0.012***
(0.010) (0.008) (0.001) (0.002) (0.006) (0.005) (0.001) (0.002)

θR 0.0528*** -0.113*** -0.002*** 0.031*** 0.003 0.053*** -0.039*** -0.022***
(0.0117) (0.009) (0.001) (0.002) (0.009) (0.007) (0.001) (0.004)

Source: Educational Longitudinal Study of 2002.
Note: * p<0.10, ** p<0.05, *** p<0.01.
Note: Table B.1.6 estimates the effect of an increase in each of the three latent factor dimensions
on the probability of STEM completion (odd columns) and college completion (even columns) for
men and women, depending on their initial major choice (columns (1)-(2) and (5)-(6) explore these
patterns for STEM enrollees, whereas (3)-(4) and (7)-(8) do so for non-enrollees). The results are
estimated following a linear probability model using simulated model parameters.
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Table B.1.7: Sorting into College Continuation by Initial Major and Gender
STEM Enrollment Rates

Baseline Problem Solving Comp. Self-Efficacy Comp. Joint Compensation Male Share
(1) (2) (3) (4) (5)

0.045 0.053 0.053 0.062 0.179
(0.001) (0.001)*** (0.001)*** (0.001)***

STEM Graduation Rates
Baseline Problem Solving Comp. Self-Efficacy Comp. Joint Compensation Male Share

(1) (2) (3) (4) (5)
0.029 0.038 0.037 0.047 0.158

(0.001) (0.001)*** (0.001)*** (0.001)***

Source: Educational Longitudinal Study of 2002. Note: * p<0.10, ** p<0.05, *** p<0.01. Note:
Table B.1.7 explores changing female STEM participation under different counterfactual compen-
sation policies described in the paper. Stars on columns (2)-(4) represent the significance of the
t-tes examining whether participation rates have changed under the counterfactual scenarios.
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Figure 13: Alternative Firm Quality Measures
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C.1 Appendix Tables

Table C.1.1: Sample Restrictions

Sample Restriction Number of Observations
Full Sample 16,200
Baseline Respondents 15,890
Baseline Test Takers 13,440
SAT and High School Grades 12,390
HS Graduates by Second Follow-Up 12,510
Enrolled in Four-Year College 4,630
Missing Initial Majors 4,600
Missing Final Attainment 4,520

Source: Educational Longitudinal Study of 2002.
Note: Table C.1.1 shows the sample restrictions imposed on ELS data. I require respondents to
have participated in the baseline survey and to have taken the two baseline math and reading
scores, the follow-up math test and report an ACT/SAT score. The sample is comprised students
who had graduated high school by 2004 (age 18/19) and were enrolled in four-year college by age
20/21. I drop students who do not report information on their college major at enrollment as well
as those not participating in the final follow-up survey.
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Table C.1.2: Summary Statistics by Major

Panel A. STEM Enrollment Patterns by Gender
Women Men

STEM Non-STEM Difference STEM Non-STEM Difference
(1) (2) (3) (4) (5) (6)

Share in Major 0.045 0.955 0.179 0.821
Baseline Math Test 0.274 -0.103 0.377*** 0.539 0.095 0.444***

(1.033) (0.942) (0.091) (0.963) (0.976) (0.057)

Baseline Self-Efficacy 0.331 -0.157 0.488*** 0.607 0.122 0.485***
(0.917) (0.994) (0.095) (0.869) (0.953) (0.055)

Panel B. Final Outcomes for Women by Initial Degree

STEM Enrollees Non-STEM Enrollees
STEM Other Dropout STEM Other Dropout

(1) (2) (3) (4) (5) (6)
Final Outcome 0.442 0.327 0.230 0.013 0.784 0.202

Baseline Math Test 0.666 0.095*** -0.225*** 0.434 -0.026*** -0.435***
(0.209) (0.212) (0.163) (0.177)

Baseline Self-Efficacy 0.637 0.309*** -0.224*** 0.070 -0.133*** -0.263***
(0.184) (0.198) (0.176) (0.180)

Panel C. Final Outcomes for Men by Initial Degree

STEM Enrollees Non-STEM Enrollees
STEM Other Dropout STEM Other Dropout

(1) (2) (3) (4) (5) (6)
Final Outcome 0.614 0.211 0.175 0.058 0.784 0.218

Baseline Math Test 0.730 0.282*** 0.183*** 0.555 0.125*** -0.128***
(0.120) (0.130) (0.100) (0.116)

Baseline Self-Efficacy 0.698 0.522 0.388* 0.514 0.104** 0.077***
(0.113) (0.121) (0.101) (0.108)

Source: Educational Longitudinal Study of 2002.
Note: * p<0.10, ** p<0.05, *** p<0.01.
Note: This sample includes all students in the ELS 2002 who were enrolled in four-year college in
the second follow-up survey. Majors are categorized by STEM and non-STEM fields. All test score
measures are normalized (0,1) for comparability. Table C.1.2 shows sorting patterns across initial
and final majors on the baseline math test score and self-efficacy. In Panels B and C, stars on
columns (2)-(3) and (5)-(6) represent the significance of the t-test examining whether baseline test
scores are differences among switchers and completers and dropouts and completers. To interpret
the tests, note that in those columns, I report the baseline value of each corresponding test. The
difference is given by the subtraction off the column (1) and column (4) values, respectively The
values in parentheses in Panels B and C represent the standard errors of these tests.
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Table C.1.3: Gender Gaps in in Math-Intensive STEM Major Participation
Initial Choice Final Choice

Baseline Linear Non-Linear Baseline Linear Non-Linear
(1) (2) (3) (4) (5) (6)

Gender Wage Gap 0.161*** 0.135*** 0.134*** 0.195*** 0.163*** 0.162***
(0.013) (0.014) (0.014) (0.013) (0.014) (0.014)

Math Test Score 0.012*** 0.016***
(0.003) (0.003)
[0.075] [0.082]

Math Self-Efficacy 0.012*** 0.014***
(0.003) (0.003)
[0.075] [0.072]

Reading Test Score 0.002* 0.002* 0.002* 0.002*
(0.001) (0.001) (0.001) (0.001)
[0.012] [0.012] [0.011] [0.011]

Test Score × SE Bins (25) 0.026*** 0.031***
(0.005) (0.005)
[0.161] [0.164]

Source: Educational Longitudinal Study of 2002.
Note: * p<0.10, ** p<0.05, *** p<0.01.
Note: This sample includes all students in the ELS 2002 who were enrolled in four-year college in
the second follow-up survey and who had not completed a graduate degree in the final round. I
examine gender gaps in STEM enrollment and completion. Table C.1.3 examines the contribution
of baseline test scores to gender gaps in STEM participation, both at enrollment and graduation.
All test score measures are normalized (0,1) for comparability. All regressions include students’
race, family composition, parental income, parents’ education, region of residence dummy variables
and urban residence as control variables. Bracketed terms indicate the share of the gender gap in
majors which is explained by each component of observed test scores. The ”Test Score x SE Bins
(25)” row denotes a semi-parametric model, in which I placed all students in one of five quintiles of
baseline math test scores and self-efficacy. After interacting these categories, students were placed
in one of 25 bins.
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Table C.1.4: Hourly Wages by Major
Initial Major Final Major

Women Men Difference Women Men Difference
Hourly Wages (1) (2) (3) (4) (5) (6)
Math-Intensive STEM 2.843 3.034 -0.191*** 2.965 3.147 -0.182***

(0.504) (0.486) (0.067) (0.517) (0.489) (0.069)
Life Sciences 2.673 2.757 -0.085 2.705 2.691 0.014

(0.480) (0.482) (0.067) (0.447) (0.489) (0.055)
Business 2.840 2.986 -0.145*** 2.893 3.047 -0.154***

(0.433) (0.513) (0.046) (0.447) (0.489) (0.041)
Health 2.951 2.810 0.141 3.149 3.045 0.104

(0.453) (0.472) (0.087) (0.376) (0.489) (0.084)
Other 2.715 2.732 -0.016 2.749 2.748 -0.001

(0.457) (0.549) (0.028) (0.472) (0.489) (0.032)
Not Declared 2.737 2.778 -0.041

(0.512) (0.515) (0.044)
Not Graduated 2.626 2.665 -0.039

(0.517) (0.489) (0.034)

Source: Educational Longitudinal Study of 2002.
Note: * p<0.10, ** p<0.05, *** p<0.01.
Note: This sample includes all students in the ELS 2002 who were enrolled in four-year college
in the second follow-up survey. Students are required to have reported grades/scores for all the
test scores presented above. Table C.1.4 presents average hourly wages’ by students’ initial majors
and final outcomes, by gender. The first three panels include all college enrollees who had not
completed a graduate degree by 2012. The final three columns report wages for college graduates
in each node (including non-completers in the last row) who had not completed a graduate degree
in 2012. Wages are reported as natural logarithms.
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Table C.1.6: Choice Equations: Loadings for Women. STEM Decisions.
Initial Major Continuation Major Switch Master’s Work Decision Wages

Constant -2.28 3.71 -0.47 -4.79 8.36 2.84
(0.42) (1.65) (0.82) (2.46) (2.79) (0.13)

White -0.08 0.53 0.13 0.02 -0.08 0.20
(0.12) (0.26) (0.21) (0.44) (0.68) (0.14)

Black -0.04
(0.19)

Both Parents -0.14 -0.62 0.50 0.34
(0.11) (0.33) (0.24) (0.60)

Fam. Income 0.07 0.03 0.10 0.11
(0.03) (0.06) (0.05) (0.15)

Parents’ Ed. 0.04 -0.10
(0.02) (0.05)

Urban 0.29
(0.09)

θC 0.42 0.83 0.30 0.70 0.40 0.09
(0.07) (0.19) (0.18) (0.37) (0.50) (0.07)

θSE 0.43 0.59 0.39 0.11 0.41 -0.19
(0.11) (0.26) (0.20) (0.37) (0.15) (0.13)

θR -0.14 -0.55 0.20 -0.68 -0.94 0.00
(0.14) (0.34) (0.31) (0.65) (1.07) (0.00)

Local Share in Major 0.02
(0.05)

Local UN (College) -0.116
(0.082)

Local UN Rate in Major -0.050 -0.023
(0.027) (0.004)

Local Share in Master’s 0.161
(0.149)

Precision 1.00 1.00 1.00 1.00 1.00 3.60
(0.00) (0.00) (0.00) (0.00) (0.00) (0.54)

Source: Educational Longitudinal Study of 2002.
Note: Table C.1.6 displays the estimation results from choice and wage equations for women. The
second column shows the estimated parameters associated with an initial major in a math-intensive
STEM field. The local share in major variable represents the share of students enrolled in student
i’s local four-year college(s) who completed a math-intensive STEM major. The third column is the
continuation decision for women initially enrolled in STEM and ’Local UN (College)’ is the average
unemployment share in student i’s commuting zone of residence in the first follow-up survey. The
fourth column represents the decision to stay in a STEM field or to switch to a different major
for these students and the ’Local UN Rate in Major’ captures local the unemployment rate for
female STEM college graduates in student i’s commuting zone in the first follow-up survey. The
Master’s decision column considers the graduate degree decision and the ’Local Share in Master’s’
variable represents the share of college graduates aged 25-34 who have also obtained a graduate
degree in person i’s commuting zone of residence in the final survey round. The Work Decision
column represents the employment decision and the ’Local UN Rate in Major’ variable captures
local the unemployment rate for female STEM college graduates in student i’s commuting zone
in final survey round. Both Par. represents a dummy variable for whether the individual lives
in a two-parent family and parents’ education is a continuous variable for the surveyed parent’s
years of education completed. Urban is a dummy variable indicating whether the family resides
in an urban area. The male coefficients are similar, as are those for other majors. These are not
presented for presentation simplicity and available upon request.
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Table C.1.7: Goodness of Fit: Educational Choices

*Panel A. Initial Enrollment for Men and Women
Women Men

Observed Simulated Observed Simulated
(1) (2) (3) (4)

STEM 0.045 0.044 0.179 0.177
Life Sciences 0.077 0.078 0.071 0.071

Business 0.116 0.116 0.181 0.184
Health 0.135 0.136 0.036 0.038
Other 0.470 0.468 0.340 0.337

Not Declared 0.158 0.158 0.193 0.194
Goodness of Fit (p-value) 0.781 0.823

*Panel B. Final Majors among STEM Enrollees

Women Men
Observed Simulated Observed Simulated

(1) (2) (3) (4)
Graduate 0.442 0.429 0.614 0.607

Switch 0.327 0.339 0.211 0.214
Dropout 0.231 0.232 0.175 0.179

Goodness of Fit (p-value) 0.525 0.612

*Panel C. Final Majors among Non-Declared Students

Women Men
Observed Simulated Observed Simulated

(1) (2) (3) (4)
STEM 0.035 0.036 0.093 0.096

Life Sciences 0.093 0.098 0.070 0.067
Business 0.151 0.151 0.186 0.181
Health 0.078 0.078 0.021 0.025
Other 0.418 0.410 0.344 0.343

Not Declared 0.224 0.227 0.287 0.289
Goodness of Fit (p-value) 0.745 0.794

Source: Educational Longitudinal Study of 2002.

Note: Table C.1.7 examines goodness of fit of educational decisions in the discrete choice model.

Goodness of fit is tested using a χ2 test where the Null Hypothesis is Model = Data. Observed

majors at enrollment and graduation follow from the sample described in Section 4.2. Simulated

results come from the 200,000 observations simulated for each gender using estimated model

parameters.
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Table C.1.8: Goodness of Fit: Labor Market Outcomes

*Panel A. Initial Major Choices
Employment Hourly Wages

Observed Simulated Difference Observed Simulated Difference
(1) (2) (3) (4) (5) (6)

STEM 0.921 0.901 -0.020 2.843 2.814 0.029*
Life Sciences 0.927 0.908 -0.019 2.673 2.686 0.013

Business 0.955 0.951 -0.004 2.841 2.836 -0.005
Health 0.967 0.962 -0.005 2.951 2.943 -0.008
Other 0.942 0.938 -0.004 2.715 2.723 0.008

Not Declared 0.947 0.937 -0.010 2.737 2.749 0.012

*Panel B. Final Majors among STEM Enrollees

Employment Hourly Wages
Observed Simulated Difference Observed Simulated Difference

(1) (2) (3) (4) (5) (6)
Graduate 0.884 0.852 -0.032* 2.970 2.952 0.018

Switch 0.900 876 -0.024 2.772 2.790 0.018
Dropout 1.000 1.000 0.000 2.690 2.708 0.018

*Panel C. Final Majors among Non-Declared Students

Employment Hourly Wages
Observed Simulated Difference Observed Simulated Difference

(1) (2) (3) (4) (5) (6)
STEM 0.909 0.901 -0.008 2.892 2.868 -0.026

Life Sciences 0.911 0.883 -0.028 2.720 2.724 0.004
Business 0.944 0.931 -0.013 2.886 2.890 0.004
Health 1.000 0.997 -0.003 2.986 3.060 0.072**
Other 0.947 0.945 -0.002 2.756 2.758 0.002

Not Declared 0.955 0.947 -0.008 2.562 2.534 -0.028

Source: Educational Longitudinal Study of 2002.

Note: Table C.1.8 examines the goodness of fit for labor market outcomes in the discrete choice

model. Goodness of fit is tested using a t-test for employment and hourly wages where the Null

Hypothesis is Model = Data. Note: * p<0.10, ** p<0.05, *** p<0.01. Observed majors at

enrollment and graduation follow from the sample described in Section 4.2. Simulated results

come from the 200,000 observations simulated for each gender using estimated model parameters.
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Figure C.1.2: Sorting into STEM Enrollment by Baseline Test Scores

Source: Educational Longitudinal Study of 2002. Note: Figure C.1.2 explores how

women and sort into STEM enrollment based on baseline math test scores and self-

efficacy. These measures are classified into gender-specific quintiles.
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Figure C.1.3: STEM Completion Rates for Women Enrolled in Other Majors

Source: Educational Longitudinal Study of 2002.
Note: Figure C.1.3 shows the share of women who graduate from a math-intensive major by age 26
among those who had not initially enrolled in these fields by the joint decile of the math problem
solving and the self-efficacy ability components. The deciles of problem solving and self-efficacy
are defined relative to the within-female ability distribution.
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Figure C.1.4: Estimated Causal Returns to STEM Majors for Men
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Source: Educational Longitudinal Study of 2002. Note: Figure C.1.4 presents the

returns to enrollment in math-intensive STEM majors for men. The returns are esti-

mated separately against each alternative major choice, m1 ∈ M∞ and educational

outcome m2 ∈ M∈ in each panel, respectively. The returns presented represent the

average treatment effect (ATE) of each major, as defined in equation (4.13). The re-

turns to enrollment and graduation are compared to the raw wage differences among

STEM enrollees and completers, respectively, against the alternative outcome. The

’Causal Returns’ estimate follows from estimated parameters in the dynamic discrete

choice model.
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Figure C.1.5: Effects of Self-Efficacy Intervention on Wages for Never-Takers
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Source: Educational Longitudinal Study of 2002.

Note: Figure C.1.5 presents the impact of a 0.25 SD boost in θSE for the set of female college students who do

not start in a STEM field and do so under the intervention, as well. I present heterogeneous impacts across the θC

distribution. The second panel presents the same analysis for compliers, that is, the students who in the baseline

did not enroll in STEM, but did so following the intervention.
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Figure C.1.6: Effects of Self-Efficacy Intervention on Wages by Test Score Decile
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Source: Educational Longitudinal Study of 2002.
Note: Figure C.1.6 shows the impact of the 0.25 SD self-efficacy intervention across the baseline
math test score deciles. This exercise corresponds to a policy intervention in which policymakers
could only target students at a specific decile of the test score distribution.
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D.1 Identification of the Measurement System

This section presents the identification of the measurement system presented in

Section 4.3. The identification of the distribution of unobserved ability follows the

formal arguments presented in Carneiro et al. (2003), Hansen et al. (2004) and

Heckman et al. (2006). In the measurement system presented in equations (4.7)-

(4.10), the covariance between all test scores is observed and relied on as part of

the identification strategy. Throughout this section, I keep the conditioning on X

implicit. Let Cj denote math test test score measures (j = 1, 2, 3). Using the

covariances between these test scores, I can compute:

Cov(C1, C2) = αC1αC2σ
2
θ,C

Cov(C2, C3) = αC2αC3σ
2
θ,C

Cov(C1, C3) = αC1αC3σ
2
θ,C

where σ2
θ,C represents the variance of the problem solving factor. As noted in Section

4, by normalizing the loading associated with the baseline math test score (αC1 = 1),

I get a system with three equations and three unknowns. I can therefore identify

the remaining three unknown parameters αC2 , αC3 , and σ2
θ,C .

I can similarly identify the loadings associated with the problem solving factor

for the math GPA measures, self-efficacy measures and reading test scores using
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their respective covariances as follows:

Cov(C1, G1) = αC1αG1σ
2
θ,C

Cov(C1, SE1) = αC1αSE1σ
2
θ,C

Cov(C1, R1) = αC1αR1σ
2
θ,C

Since I have already identified αC1 and σ2
θ,C , I can identify the remaining loadings

αG1 , αSE1 , and αR1 from each equation presented above. A similar argument applies

to the identification of the following loadings: αSE2 ,αR2 , and αR3 .

To identify the variance of the self-efficacy factor and the self-efficacy loadings

in the math GPA and self-efficacy measures, I follow a similar argument. Recall

that so far I have assumed that the three components of ability are independent,

such that θC ⊥ θSE ⊥ θR. I relax this assumption later. The covariances between

these measures are given by:

Cov(G1, SE1) = αG1αSE1σ
2
θ,C + γG1γSE1σ

2
θ,SE

Cov(G1, SE2) = αG1αSE2σ
2
θ,C + γG1γSE2σ

2
θ,SE

Cov(SE1, SE2) = αSE1αSE2σ
2
θ,C + γSE1γSE2σ

2
θ,SE

σ2
θ,SE represents the variance of the self-efficacy factor. As with the problem solving

factor, I normalize the loading associated with the baseline self-efficacy measure

(γSE1 = 1) leaving a system with three equations with three unknowns, given that

all the α loadings have been identified in the previous step along with σ2
θ,C . I can
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therefore identify the remaining three unknown parameters γG1 , γSE2 , and σ2
θ,SE.

Following this framework, I can identify the variance of the remaining com-

ponent of ability, the reading factor, as well as the reading loadings in the read-

ing/English test score equations. The covariances between these measures are given

by:

Cov(R1, R2) = αR1αR2σ
2
θ,C + ηR1ηR2σ

2
θ,R

Cov(R1, R3) = αR1αR3σ
2
θ,C + ηR1ηR3σ

2
θ,R

Cov(R2, R3) = αR2αR3σ
2
θ,C + ηR2ηR3σ

2
θ,R

where σ2
θ,R represents the variance of the self-efficacy factor. As the αRj

and σ2
θ,C

components are already identified, the system above includes three equations and

four unknowns. By normalizing the loading associated with the baseline reading

test score (ηR1 = 1), I can identify the remaining loadings (ηR2 and ηR3), as well as

the variance of the reading ability component, σ2
θ,R.

Having secured the identification of all the loadings and the variance of each

component of latent ability, I apply the following transformation to the measurement

system:55

Cj
αCj

= θC +
εCj

αC1

(20)

I can apply Kotlarski (1967)’s theorem to equation (20) to non-parametrically iden-

55I show the transformation for math test score measures Cj , but the argument applies across
all test score equations.
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tify the distributions of:

fθC (.), fεCj
(.) (21)

Applying the same argument to equations (4.7)-(4.10) identifies the distributions of:

fθSE
(.), fεG1

(.), fεSEn
(.), fθR(.), fεRk

(.) (22)

Correlated Factors: Identification

To identify the correlation between unobserved abilities, I follow Heckman

et al. (2016) and Prada and Urzúa (2017). Self-efficacy measures depend on both

θC and θSE. The correlation between both components is generated through the

following linear association:

θSE = α1θC + θA (23)

where θA is an auxiliary factor, independent of θC (θC ⊥ θA). For math GPA and

self-efficacy measures, we can thus re-write the measurement system as:

G1 = αG1θC + (γG1α1)θC + γGj
θA + εGj

G1 = βG1θC + γG1θA + εGj

where βG1 = αG1 + γG1α1. Note that βG1 and γG1 are identified through the argu-

ments presented above. This argument similarly holds for the self-efficacy measures,

188



yielding a system with three equations and four unknown parameters:

βG1 = αG1 + γG1α1

βSE1 = αSE1 + γSE1α1

βSE2 = αSE2 + γSE2α1

The four unknown parameters are αG1 , αSE1 , αSE2 , and α1, which denotes the cor-

relation between θC and θSE. As in Prada and Urzúa (2017), I apply an additional

assumption, requiring the problem solving factor to affect the baseline self-efficacy

measure only indirectly, through its correlation with the self-efficacy factor.56 As a

result, since αSE1 = 0, the remaining parameters in the system above are identified.

To identify the correlation between the problem solving component and the

reading component, a similar argument follows. I again rely on auxiliary factor,

positing the linear correlation between these two components:

θR = β1θC + θR (24)

Following the same argument presented above yields a system of four equations

and three unknown parameters, requiring an additional assumption to identify the

correlation between θC and θR. I assume that the problem solving factor affects

the English GPA measure only indirectly, through its correlation with the reading

56I apply the normalization to the baseline self-efficacy measure as it has the lowest loading on
the problem solving factor (Figure 3). The estimated correlations are robust to the choice of the
other self-efficacy measure or to any math GPA measure.

189



factor, as this measure has the lowest loading on the problem solving factor. This

assumption thus allows me to identify β1 following the argument presented above.

The results are robust to alternative assumptions regarding the indirect relationship

between any reading/English measure and the problem solving component.

Ability Updating Assumptions

I note that if students’ ability were to change between enrollment, dropout

and final major decisions, the ability loadings (α) in equations (4.2) and (4.3) would

be biased, as the latent ability with which students sort into majors would be mea-

sured with error. The direction of the bias would directly depend on the structure

of ability updating. While the structural literature cited above often assumes a

linear updating process, where college ability is linear combination of pre-college

ability and major-specific grades, the updating process could have different func-

tional forms. As a result, signing the direction of the bias is not straight-forward.

Furthermore, as Carroll et al. (1995) have argued, correcting for such measurement

error is non-linear models, as in the multinomial probits used to estimate equations

(4.2) and (4.3), is a more difficult problem than in linear models. Moreover, as

there are no measures of math ability available in the follow-up surveys, I argue

that pre-college ability remains a reasonable proxy for ability latent ability while in

college and after graduation.
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D.2 Identification of Gender Differences in Latent Ability

In Section 4.3, I assumed that each component of latent ability for both males

and females equaled zero. This assumption is required for the identification of the

distribution of unobserved ability. However, given my interest in gender differences

in latent math ability for understanding gaps in STEM participation and graduation,

I relax this assumption. As a result, to identify gender differences in the means of

unobserved abilities, I extend Urzua (2008)’s approach to identify these differences

in a system in which observed measures depend on various latent factors.

Consider the math test score measure CJ for men and women (I omit depen-

dence on background characteristics for notational simplicity):

Cm
j = ϕmj + αmCj

θmC + εmCj

Cf
j = ϕfj + αfCj

θfC + εfCj

where E(εmCj
) = E(εfCj

) = 0. Let µhC and µfC denote the means of the distribution

of latent math problem solving ability for males and females, respectively, and ∆C

represent the difference across genders, given by ∆C = µmC − µ
f
C .57 Assuming that

ϕmj = ϕfj , equation (25) can then be re-written as:

[E(Cm
j )− E(Cf

j )] = αfCj
∆C − (αfCj

− αmCj
)µfC

57Similarly, ∆SE represent the difference across genders in the self-efficacy component, given
by ∆SE = µmSE − µ

f
SE and ∆R captures differences in latent reading ability.
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Assuming µfC = 0 normalizes the mean of the factor for females, though it could

normalized to any number, making the assumption relatively innocuous. As such,

gender differences in latent problem solving ability are given by:

[E(Cm
j )− E(Cf

j )] = αfCj
∆C (25)

I apply the same analysis to math grades, self-efficacy measures and reading/English

test scores, yielding the following equations: Equation (25) can then be re-written

as:

[E(Cm
j )− E(Cf

j )] = αfCj
∆C (26)

[E(Gm
1 )− E(Gf

1)] = αfG1
∆C + γfG1

∆SE (27)

[E(SEm
n )− E(SEf

n)] = αfSEn
∆C + γfSEn

∆SE (28)

[E(Rm
k )− E(Rf

k)] = αfRk
∆C + ηfRk

∆R (29)

The left-hand side can be directly computed for each of the nine test scores used in

the measurement system. I note that while gender differences in math GPA, shown

in equation (27) reflect both problem math solving ability and self-efficacy, as the

variance of math GPA is largely explained by the latent problem solving factor

(Figure 4.4), I assume that gender differences in math GPA reflect latent differences

in problem solving ability, and are not reflective of gaps in latent math self-efficacy

(note that the model still allows latent self-efficacy to affect math grades).58 Given

58The results are not sensitive to this assumption. I find similar results in a measurement
system in which observed self-efficacy measures are dedicated measures of latent self-efficacy, math
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this set-up, I follow Urzua (2008) and identify gender differences in ∆C from the

average across all observed math test scores and grades affected by θC .59

With ∆C on hand, note that equation (27) has one unknown, ∆SE. As a result,

∆SE is also identified from the average difference in [E(SEm
n )−E(SEf

n)]−αfSEn
∆C ,

weighted by the relative share of the variance of θSE explained by each of the two

observed self-efficacy measures. The same logic applies to the identification of ∆R,

which is computed from the weighted average gender difference in the reading SAT

component, the English test score and the English GPA measure, given the prior

identification of ∆C .

test scores depend on both math problem solving ability and self-efficacy and reading test scores
depend on the three factors.

59Empirically, the average is calculated as a weighted average, where the weights are given by
the relative share of the variance in test score measure Cj or GPA G1 explained by θC . This
procedure relaxes the linear average in gender differences in test scores in Urzua (2008).
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E.1 Reduced Form Returns to College Majors

In this Section, I estimate the returns to STEM enrollment and graduation for

men and women. I compare the model-based estimates of the average treatment

effect presented in equation (4.13) to OLS regression and nearest-neighbor matching

estimates.

194



F
ig

u
re

E
.1

.1
:

R
ed

u
ce

d
-F

or
m

R
et

u
rn

s
to

S
T

E
M

E
n
ro

ll
m

en
t

fo
r

W
om

en

-.2-.10.1.2
Causal Returns to Enrollment

Li
fe

 S
ci

en
ce

s
B

us
in

es
s

H
ea

lth
O

th
er

N
ot

 D
ec

la
re

d
A

lte
rn

at
iv

e 
M

aj
or

 C
ho

ic
e

O
bs

er
ve

d 
D

iff
er

en
ce

s
C

au
sa

l R
et

ur
ns

C
au

sa
l R

et
ur

ns
 to

 S
T

E
M

 E
nr

ol
lm

en
t f

or
 W

om
en

-.2-.10.1.2
Causal Returns to Enrollment

Li
fe

 S
ci

en
ce

s
B

us
in

es
s

H
ea

lth
O

th
er

N
ot

 D
ec

la
re

d
A

lte
rn

at
iv

e 
M

aj
or

 C
ho

ic
e

O
LS

 F
ul

l E
st

im
at

es
C

au
sa

l R
et

ur
ns

C
au

sa
l R

et
ur

ns
 to

 S
T

E
M

 E
nr

ol
lm

en
t f

or
 W

om
en

-.2-.10.1.2
Causal Returns to Enrollment

Li
fe

 S
ci

en
ce

s
B

us
in

es
s

H
ea

lth
O

th
er

N
ot

 D
ec

la
re

d
A

lte
rn

at
iv

e 
M

aj
or

 C
ho

ic
e

O
LS

 B
as

el
in

e 
E

st
im

at
es

C
au

sa
l R

et
ur

ns

C
au

sa
l R

et
ur

ns
 to

 S
T

E
M

 E
nr

ol
lm

en
t f

or
 W

om
en

-.2-.10.1.2
Causal Returns to Enrollment

Li
fe

 S
ci

en
ce

s
B

us
in

es
s

H
ea

lth
O

th
er

N
ot

 D
ec

la
re

d
A

lte
rn

at
iv

e 
M

aj
or

 C
ho

ic
e

M
at

ch
in

g 
E

st
im

at
es

C
au

sa
l R

et
ur

ns

C
au

sa
l R

et
ur

ns
 to

 S
T

E
M

 E
nr

ol
lm

en
t f

or
 W

om
en

S
ou

rc
e:

E
d

u
ca

ti
on

al
L

on
gi

tu
d

in
al

S
tu

d
y

o
f

2
0
0
2
.

N
o
te

:
F

ig
u

re
E

.1
.1

sh
ow

s
th

e
co

m
p

a
ri

so
n

o
f

th
e

es
ti

m
a
te

d
re

tu
rn

s
to

S
T

E
M

en
ro

ll
m

en
t

ag
ai

n
st

re
d

u
ce

d
fo

rm
es

ti
m

at
es

.
T

h
e

fi
rs

t
p

a
n

el
a
n

a
ly

ze
s

o
b

se
rv

ed
d

iff
er

en
ce

s
a
cr

o
ss

m
a
jo

r
a
lt

er
n

a
ti

ve
s.

T
h

e
se

co
n
d

p
a
n

el
es

ti
m

a
te

s

an
O

L
S

re
gr

es
si

on
w

it
h

in
d

iv
id

u
al

an
d

fa
m

il
y

ch
a
ra

ct
er

is
ti

cs
a
s

co
n
tr

o
l

va
ri

a
b

le
s.

T
h

e
th

ir
d

p
a
n

el
in

cl
u

d
es

b
a
se

li
n

e
m

a
th

,
re

a
d

in
g

a
n

d

se
lf

-e
ffi

ca
cy

te
st

sc
or

es
as

co
n
tr

ol
va

ri
ab

le
s.

T
h

e
fo

u
rt

h
p

a
n

el
p

re
se

n
ts

es
ti

m
a
te

s
fr

o
m

n
ea

re
st

-n
ei

g
h
b

o
r

m
a
tc

h
in

g
in

cl
u

d
in

g
in

d
iv

id
u

a
l

an
d

fa
m

il
y

ch
ar

ac
te

ri
st

ic
s

an
d

te
st

sc
or

es
.

195



F
ig

u
re

E
.1

.2
:

R
ed

u
ce

d
-F

or
m

R
et

u
rn

s
to

S
T

E
M

E
n
ro

ll
m

en
t

fo
r

M
en

0.1.2.3
Causal Returns to Enrollment

Li
fe

 S
ci

en
ce

s
B

us
in

es
s

H
ea

lth
O

th
er

N
ot

 D
ec

la
re

d
A

lte
rn

at
iv

e 
M

aj
or

 C
ho

ic
e

O
bs

er
ve

d 
D

iff
er

en
ce

s
C

au
sa

l R
et

ur
ns

C
au

sa
l R

et
ur

ns
 to

 S
T

E
M

 E
nr

ol
lm

en
t f

or
 M

en

-.10.1.2.3
Causal Returns to Enrollment

Li
fe

 S
ci

en
ce

s
B

us
in

es
s

H
ea

lth
O

th
er

N
ot

 D
ec

la
re

d
A

lte
rn

at
iv

e 
M

aj
or

 C
ho

ic
e

O
LS

 F
ul

l E
st

im
at

es
C

au
sa

l R
et

ur
ns

C
au

sa
l R

et
ur

ns
 to

 S
T

E
M

 E
nr

ol
lm

en
t f

or
 M

en

0.1.2.3
Causal Returns to Enrollment

Li
fe

 S
ci

en
ce

s
B

us
in

es
s

H
ea

lth
O

th
er

N
ot

 D
ec

la
re

d
A

lte
rn

at
iv

e 
M

aj
or

 C
ho

ic
e

O
LS

 B
as

el
in

e 
E

st
im

at
es

C
au

sa
l R

et
ur

ns

C
au

sa
l R

et
ur

ns
 to

 S
T

E
M

 E
nr

ol
lm

en
t f

or
 M

en

-.10.1.2.3
Causal Returns to Enrollment

Li
fe

 S
ci

en
ce

s
B

us
in

es
s

H
ea

lth
O

th
er

N
ot

 D
ec

la
re

d
A

lte
rn

at
iv

e 
M

aj
or

 C
ho

ic
e

M
at

ch
in

g 
E

st
im

at
es

C
au

sa
l R

et
ur

ns

C
au

sa
l R

et
ur

ns
 to

 S
T

E
M

 E
nr

ol
lm

en
t f

or
 M

en

S
ou

rc
e:

E
d

u
ca

ti
on

al
L

on
gi

tu
d

in
al

S
tu

d
y

o
f

2
0
0
2
.

N
o
te

:
F

ig
u

re
E

.1
.2

sh
ow

s
th

e
co

m
p

a
ri

so
n

o
f

th
e

es
ti

m
a
te

d
re

tu
rn

s
to

S
T

E
M

en
ro

ll
m

en
t

ag
ai

n
st

re
d

u
ce

d
fo

rm
es

ti
m

at
es

fo
r

m
en

.
T

h
e

fi
rs

t
p

a
n

el
a
n

a
ly

ze
s

o
b

se
rv

ed
d

iff
er

en
ce

s
a
cr

o
ss

m
a
jo

r
a
lt

er
n

a
ti

ve
s.

T
h

e
se

co
n

d
p

a
n

el

es
ti

m
at

es
an

O
L

S
re

gr
es

si
on

w
it

h
in

d
iv

id
u

a
l

a
n

d
fa

m
il

y
ch

a
ra

ct
er

is
ti

cs
a
s

co
n
tr

o
l

va
ri

a
b

le
s.

T
h

e
th

ir
d

p
a
n

el
in

cl
u

d
es

b
a
se

li
n

e
m

a
th

,

re
ad

in
g

an
d

se
lf

-e
ffi

ca
cy

te
st

sc
or

es
as

co
n
tr

o
l

va
ri

a
b

le
s.

T
h

e
fo

u
rt

h
p

a
n

el
p

re
se

n
ts

es
ti

m
a
te

s
fr

o
m

n
ea

re
st

-n
ei

g
h
b

o
r

m
a
tc

h
in

g
in

cl
u

d
in

g

in
d

iv
id

u
al

an
d

fa
m

il
y

ch
ar

ac
te

ri
st

ic
s

an
d

te
st

sc
o
re

s.

196



F
ig

u
re

E
.1

.3
:

R
ed

u
ce

d
-F

or
m

R
et

u
rn

s
to

S
T

E
M

G
ra

d
u
at

io
n

fo
r

W
om

en

-.4-.20.2.4
Causal Returns to Graduation

Li
fe

 S
ci

en
ce

s
B

us
in

es
s

H
ea

lth
O

th
er

D
ro

po
ut

A
lte

rn
at

iv
e 

O
ut

co
m

e

O
bs

er
ve

d 
D

iff
er

en
ce

s
C

au
sa

l R
et

ur
ns

C
au

sa
l R

et
ur

ns
 to

 S
T

E
M

 G
ra

du
at

io
n 

fo
r 

W
om

en

-.4-.20.2.4
Causal Returns to Graduation

Li
fe

 S
ci

en
ce

s
B

us
in

es
s

H
ea

lth
O

th
er

D
ro

po
ut

A
lte

rn
at

iv
e 

O
ut

co
m

e

O
LS

 F
ul

l E
st

im
at

es
C

au
sa

l R
et

ur
ns

C
au

sa
l R

et
ur

ns
 to

 S
T

E
M

 G
ra

du
at

io
n 

fo
r 

W
om

en

-.4-.20.2.4
Causal Returns to Graduation

Li
fe

 S
ci

en
ce

s
B

us
in

es
s

H
ea

lth
O

th
er

D
ro

po
ut

A
lte

rn
at

iv
e 

O
ut

co
m

e

O
LS

 B
as

el
in

e 
E

st
im

at
es

C
au

sa
l R

et
ur

ns

C
au

sa
l R

et
ur

ns
 to

 S
T

E
M

 G
ra

du
at

io
n 

fo
r 

W
om

en

-.4-.20.2.4
Causal Returns to Graduation

Li
fe

 S
ci

en
ce

s
B

us
in

es
s

H
ea

lth
O

th
er

D
ro

po
ut

A
lte

rn
at

iv
e 

O
ut

co
m

e

M
at

ch
in

g 
E

st
im

at
es

C
au

sa
l R

et
ur

ns

C
au

sa
l R

et
ur

ns
 to

 S
T

E
M

 G
ra

du
at

io
n 

fo
r 

W
om

en

S
ou

rc
e:

E
d

u
ca

ti
on

al
L

on
gi

tu
d

in
al

S
tu

d
y

o
f

2
0
0
2
.

N
o
te

:
F

ig
u

re
E

.1
.3

sh
ow

s
th

e
co

m
p

a
ri

so
n

o
f

th
e

es
ti

m
a
te

d
re

tu
rn

s
to

S
T

E
M

en
ro

ll
m

en
t

ag
ai

n
st

re
d

u
ce

d
fo

rm
es

ti
m

at
es

.
T

h
e

fi
rs

t
p

a
n

el
a
n

a
ly

ze
s

o
b

se
rv

ed
d

iff
er

en
ce

s
a
cr

o
ss

m
a
jo

r
a
lt

er
n

a
ti

ve
s.

T
h

e
se

co
n
d

p
a
n

el
es

ti
m

a
te

s

an
O

L
S

re
gr

es
si

on
w

it
h

in
d

iv
id

u
al

an
d

fa
m

il
y

ch
a
ra

ct
er

is
ti

cs
a
s

co
n
tr

o
l

va
ri

a
b

le
s.

T
h

e
th

ir
d

p
a
n

el
in

cl
u

d
es

b
a
se

li
n

e
m

a
th

,
re

a
d

in
g

a
n

d

se
lf

-e
ffi

ca
cy

te
st

sc
or

es
as

co
n
tr

ol
va

ri
ab

le
s.

T
h

e
fo

u
rt

h
p

a
n

el
p

re
se

n
ts

es
ti

m
a
te

s
fr

o
m

n
ea

re
st

-n
ei

g
h
b

o
r

m
a
tc

h
in

g
in

cl
u

d
in

g
in

d
iv

id
u

a
l

an
d

fa
m

il
y

ch
ar

ac
te

ri
st

ic
s

an
d

te
st

sc
or

es
.

197



F.1 ”Nudging” Policies

Could smaller-sized policies, such as ”nudging” women towards STEM, increase

participation rates? For instance, colleges could hire dedicated counselors to meet

with women and discuss benefits associated with STEM while guiding them through

first-year courses. In this context, it is also important to understand which majors

these women would be coming from, as the benefits arising from STEM may be

heterogeneous across different fields. The discrete choice model presented above

allows me to identify the utility associated with each major (equations (4.1) and

(4.3)), thus creating a cardinal ranking of all major choices for each student. As

I calculate this utility for all individuals in the sample, I can identify those for

whom the estimated utility between any two initial majors is largely equivalent,

but who marginally choose a major not in a math-intensive field. This exercise is

similar to the estimation of policy-relevant treatment effects, which first requires the

identification of agents who would be affected by the policy of interest (Heckman

et al., 2018; Humphries et al., 2017). ”Nudged” individuals are defined by:

IDm1 = 1

 ∑
mj∈M1

Vmj
− Vm1 ≤ ε

 ∀ mj ∈ M1 (30)

where IDm1 represents agents whose initial major is any of mj ∈ M1\m1 but who

would be indifferent between having chosen major m1 (in this case, a STEM field).

ε is an arbitrarily small neighborhood around the margin of indifference.60 As the

60As in Heckman et al. (2018), I define the margin of indifference (ε) to be
Vm1

σm1
≤ 0.01, where

σm1 is the standard deviation of Vm1 .
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agents identified in equation (30) are largely indifferent between their current ma-

jors towards math-intensive fields, I can examine how ”nudging” these individuals

towards STEM enrollment would affect aggregate enrollment rates. Furthermore,

since I identify the distribution of Vmj
, I can discern the observed and unobserved

characteristics of the agents included in the set IDm1 . Heckman and Vytlacil (2007)

and Heckman and Urzua (2010) note that in models with multiple choices, the indif-

ference set may contain multiple margins. This analysis corresponds to identifying

women who would be nudged from different majors into STEM, and analyzing the

characteristics of agents in each subset of the indifference set IDm1 .

I present the results in Table D1. I find that nudging women who were in-

different between their current choices and a math-intensive major would increase

their aggregate enrollment in these fields from 4.4 percent to 4.7 percent. Women

included in IDm1 are more likely to come from two-parent and higher income fam-

ilies compared to the rest of the sample. Furthermore, these women have higher

endowments along the three dimensions of ability, surpassing the sample average in

math problem solving by 0.33 standard deviations, in self-efficacy by 0.41 SDs and

in the reading component by 0.14 SDs, as well. Lastly, over half of these women

would be switching over from ’Other’ majors, indicating that there is a margin for

nudging high ability women towards enrolling in STEM and away from lower-paying

fields.

In Table D1, I present the same results for women initially enrolled in STEM,

who are largely indifferent between graduating from this field, yet choose to either

switch fields or drop out of college. Women included in the set IDm1,G represent
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upwards of 7 percent of initial STEM enrollees, indicating that a sizable share of

women could be potentially nudged into remaining in STEM. A ”nudging” policy at

this stage could thus increase female graduation rates in this field from 43 percent

to 50 percent, among initial enrollees. As with the ”indifferent” individuals identi-

fied in Panel A, women in this indifference set have higher endowments in the three

skill dimensions than women who are enrolled in STEM but end up not finishing

this major.61 The difference equals 0.17 standard deviations in the problem solving

dimension, 0.20 SDs in self-efficacy and 0.15 in the reading component. The com-

bination of these indifference sets suggests there is a margin for high ability women

to be ”nudged” into either enrolling or completing a STEM major. These policies

could follow insights from Carrell et al. (2010) who find that a higher share of female

faculty induces women towards STEM majors.

61I compare women in IDm1,G to those who either switch majors or drop out to describe the
types of individuals who could potentially be affected by a ”nudging” policy.
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Table F.1.1: Characteristics of Women Affected by ”Nudging” policies

Panel A. Initial Major Choices
IDm1 IDm1,m2 IDm1,m3 IDm1,m4 IDm1,m5 IDm1,m6

Full Set Life Sciences Business Health Other Not Declared
(1) (2) (3) (4) (5) (6)

Both Parents 0.796 0.817 0.813 0.770 0.772 0.833
Family Income 11.21 11.49 10.82 10.85 11.19 11.41

θC 0.325 0.395 0.366 0.010 0.332 0.268
θSE 0.417 0.601 0.352 0.086 0.398 0.391
θR 0.137 0.212 0.006 -0.221 0.176 0.108

Share of Women 0.0027 0.0004 0.0003 0.0001 0.0013 0.0004

Panel B. Final Majors among STEM Enrollees

IDm1,G IDm1,G,S IDm1,G,D

Full Set Major Switchers Dropout
(1) (2) (3)

Both Parents 0.845 0.839 0.855
Family Income 11.30 11.32 11.26

θC 0.362 0.409 0.286
θSE 0.440 0.560 0.247
θR 0.157 0.173 0.133

Share of Women 0.076 0.045 0.031

Source: Educational Longitudinal Study of 2002.
Note: Appendix Table D1 displays the observed and unobserved characteristics who would be
included in each respective nudging set. The first column in Panel A denotes the share of women
in the full sample (0.27%) who would change their majors from their current choices to STEM, and
the five columns on the right show which majors these women would be leaving behind. In Panel
B, the ”Share of Women” row is relative to the baseline STEM enrollment rate, such that among
women currently not graduating from STEM, 7.6% would be included in the indifference set at
graduation. θC represents the problem solving factor, θSE is the math self-efficacy component and
θR is the reading ability component. Results are simulated from the estimates of the model.

F.2 Exploratory Factor Analysis
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