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Contagion spread over networks is used to model many important real-world

processes from a wide variety of domains including epidemiology, marketing, and

systems engineering. A large body of research provides strong theoretical guarantees

on simple contagion models, but recent research identifies many real-world processes

that feature complex contagions whose spread may depend on multiple exposures

or other complex criteria.

We present a rigorous study of real-world and artificial networks across simple

and complex contagion models. We identify domain-dependent features of real-

world networks extracted from publicly-available networks as a guide to solving

contagion-related decision problems. We then examine the performance of multiple

influence-maximization algorithms across a space of networks and contagion models

to develop an experimentally justified guide of best practices for related problems. In

particular, genetic algorithms are an extremely viable candidate for these problems,

especially with complex graphs and processes.
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Chapter 1: Introduction

Network science encompasses a broad domain of interdisciplinary sciences that

leverage utility in the representation graph models offer. The explosion of network

data and parallel growth in computing power in the past decades offers fertile ground

for investigating the behavior of complex systems. One area where this is partic-

ularly evident is modeling diffusion processes over graphs. Originally brought into

mainstream network science discussion by Kempe, Kleinberg, and Tardos [1] as well

as Domingos and Richardson [2], many researchers have since developed various dif-

fusion models and sophisticated algorithms to identify vertices or other structures of

interest. Exactly what is “of interest” is application dependent. In some scenarios,

we seek simply to predict the outcome of a process. In viral marketing, we select

a set of initial nodes to maximize how many nodes the process eventually reaches

(frequently referred to as influence maximization). In epidemic mitigation, we desire

to limit the spread of a disease by providing some form of medical care or altering

the connections of the network.

The works of Tang [3] and Sadeh [4] represent the cutting edge of the influence

maximization problem under the classic assumption that the contagion investigated

is simple (see 1.1). But Kempe et al. [1] proved that there is no n1−ε approximation
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factor, ∀ε > 0, where n is the number of nodes, for general complex contagions

on unrestricted graphs unless P = NP. Since then, various attempts to identify

specific cases for complex processes, where a constant approximation is viable, have

identified that this boundary is rather steep: even given restricted classes of graphs

or limiting how many vertices may act in a complex fashion there are drastic costs

on achievable approximation factors [5, 6].

Were these complex processes infrequent in the systems network scientists hope

to study, we might hope or choose to avoid them where possible. However, in the past

decade, researchers leveraged the ability to study massive, real-world contagions on

social media to identify that many real-world processes of interest exhibit distinctly

complex behaviors [7–9]. Furthermore, the complexity of the problem is not just

dependent on the process itself. For example, epidemic mitigation does not admit

a constant approximation guarantee even when the underlying process studied is

simple. Consider the scope of many networks of interest today: upwards of hundreds

of thousands of nodes and millions of edges. As the epidemic research centers of the

world seek to predict and manage the rapid spread of potentially deadly viruses, such

as COVID-19 in early 2020, they must contend with a massive, dynamic network and

continually update their model in real time. Complex processes cannot be avoided.

We take a focused dive into this realm of massive and complex network prob-

lems. Introductions to the terminology, processes, and problem statements are in

this chapter. A reader well acquainted with network processes may safely skip this

chapter on a first pass, with the exception of 1.3, which introduces two novel com-

plex processes. In Chapter 2, using a variety of methods for community detection
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with emphasis on stochastic block models for their flexibility, we extract general

characteristics particular to a variety of real-world networks across many domains.

The community structures found are considered in relation to the performance of

hybrid-approximation algorithms. Readers familiar with basic centrality measures

and stochastic block models may wish to begin reading Chapter 2 with the dis-

cussion of the map equation (Section 2.3.2). Chapter 3 compares various genetic

algorithm variants in the context of influence maximization. Finally, in Chapter 4 we

analyze the performance of greedy algorithms, common heuristics, and alternative

algorithms (in particular genetic algorithms) in simple and complex environments

with artificial and real-world networks. It is our hope that these results will pro-

vide the reader with confidence in selecting appropriate algorithms and models to

understand real-world complex contagion.

1.1 Simple Contagion

Given a graph G = (V,E), where V represents the set of vertices and E

the set of edges, a discrete diffusion process on the network is defined as a set of

states sj ∈ S such that each vertex vi has a state S(vi) ∈ S and transition rules

that map a vertex and its neighborhood to a new state at the next time step:

F (St(vi), N(vi)) → St+1. In this thesis, we will use the terms graph and network

interchangeably, and similarly node or vertex and edge or link. If an edge exists in

the network between nodes vi and vj then eij ∈ E. Typically the neighborhood is the

direct neighbors of a given node: N(vi) = {vj s.t. eij ∈ E}. With the introduction
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of edge weights, node weights, and/or directional edges, processes can be specified

to a high degree of detail. However, unless otherwise specified, we will consider

only undirected and unweighted graphs in this thesis. Given this broad definition of

process, many theoretical and real-world processes of interest may be modeled and

there is a robust literature on diffusion processes over networks that ranges from

digital viruses to biological diseases [10].

A simple contagion is a subset of diffusion processes where the transition func-

tions can be represented entirely by functions involving pairwise interactions and

there are no stored intermediate states –– that is, a node cannot accumulate ev-

idence of multiple interactions prior to a transition. Less precisely but perhaps

more meaningfully, a single infected neighbor is sufficient for a node to (perhaps

probabilistically) become infected itself in any simple contagion. Many real-world

processes are commonly understood to act as simple contagions, most notably the

spread of disease between individuals. For example, one sick associate is all it takes

to become sick yourself; while many interactions with sick people may increase your

risk of sickness, there is no complex interaction between these people that produces

the transmission – they all represent a distinct chance of catching the disease. We

consider three common models of simple contagions used heavily in the literature:

the Independent Cascade (IC) model, the Susceptible Infected Recovered (SIR)

model, and the Random Weighted Linear Threshold (RW-LT) model.
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1.1.1 Independent Cascade (IC) Model

In the IC model, nodes are in either an Active s1 or Inactive s0 state, with

some non-empty set of initially active nodes A0. At each timestep, each newly active

node i has a single chance to infect each neighbor j with probability pij, which may

be determined based on edge weights, or uniform across all edges, etc. The process

terminates when no nodes are infected at a given step (either because all infection

attempts failed, or because the (connected) graph is completely infected).

1.1.2 Susceptible Infected Recovered (SIR) Model

The SIR model has three states: Susceptible s0, Infected s1, and Recovered

s2. It generalizes the IC model, usually following the same mechanics except that

an infected node becomes recovered with some likelihood each timestep or after

a certain number of steps, and afterwards may not be infected again or infect its

neighbors. A standard SIR model with recovery rate equal to zero is the IC model,

but there are many studies where the SIR model is employed with alternative or more

complex transition rules. For example, in the work of Chen et al. [11], an infected

node infects exactly one neighbor chosen at random each timestep, provided that

neighbor is in state s0 (susceptible).

1.1.3 Random-Weighted Linear Threshold (RW-LT) Model

The RW-LT model has two states, Active s1 or Inactive s0, and at t0 each node

is randomly assigned a threshold θi ∈ U[0, 1] where U is the uniform distribution
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—- therefore, the thresholds are not known a priori. When the ratio of infected

neighbors to all neighbors of a node i exceeds its θi, it becomes active in the next

timestep. While this may appear to be a complex transition function, it can be

shown that if all the weights are initialized uniformly at random the process is

equivalent to the IC model [1]. However, the general Linear Threshold (LT) model

is not simple (see Section 1.2.1).

1.2 Complex Contagion

Complex contagion is a subset of diffusion processes where some of the transi-

tion functions are dependent on the total set of infected neighbors or there are stored

intermediate states that can be equated to such a transition function. Intuitively,

in a complex process the presence of n infected neighbors significantly changes the

transition likelihood or next state that cannot be correctly interpreted as n separate

infection attempts. In some real-world settings, the spreading processes are well

modeled by a mixture of simple and complex transition functions [12].

Complex contagions empirically manifest in most commonly in social settings

such as the spread of hashtags across Twitter or the shared usage of voice chat

and other social-media services [7–9]. They can also be found when modeling neural

networks, as the tendency for a neuron to fire depends on a certain number of inputs

exceeding that neuron’s internal threshold. We consider the Linear Threshold (LT)

model and introduce the Saturated Linear Threshold (S-LT), the Ugander Complex

(UC), and Community Complex (CC) models in this thesis, which we define in the
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following subsections.

We first take a moment to define submodular functions, which will be put

into context in Section 1.3, but is relevant to our understanding of these complex

processes. Given a function which maps a subset S of a universe U to a real-valued

or integer number, F (S)→ R/I, we say F is submodular if:

∀A,B ⊆ U s.t. A ⊆ B and ∀i ∈ U \B :

F (A ∪ i)− F (A) ≥ F (B ∪ i)− F (B)

Many functions in combinatorial optimization are submodular which can pro-

vide great insight and guarantees on algorithm design and performance (see Vondrák’s

dissertation for a survey [13]). However, in general, the influence function of an

initially-active set of nodes on any of these complex processes is non-submodular.

1.2.1 Linear Threshold (LT) Model

The LT model has two states, as in the RW-LT above, active and inactive.

Each node vi additionally has a fixed threshold θi and transitions to active when

some function f(N(vi)) ≥ θi. Given a set of initially active nodes A0, the process

runs until there are no new activations in a given time step. Expected influence of

a seed set over the LT process is monotonic and non-submodular.
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1.2.2 Saturated Linear Threshold (S-LT) Model

The S-LT model has three states: susceptible, active, and saturated. Each

node vi has fixed thresholds θAi and θSi , transitions to active when some function

θAi ≤ f(N(vi)) < θSi , and transitions to saturated when f(N(vi)) ≥ θSi . Nodes

remain saturated once they reach this state, regardless of whether f(N(vi)) remains

above the saturation threshold. Nodes may pass directly into the saturated state.

Given a set of initially active nodes A0, the process runs until there are no new

activations in a given time step. In general, expected influence over the S-LT process

is non-monotonic and non-submodular.

1.2.3 Ugander Complex (UC) Model

The UC model exhibits tunable behavior that was empirically found by Ugan-

der et al. [8]: the chance of infection is strongly related to the number of connected

components among a set of infected neighbors. Given a function F (i)→ [0, 1], i ∈ N,

each node has a probability F (k) of becoming active the first time that its infected

neighbors, when considered as a subgraph, represent exactly k different connected

components. For example, the first infected neighbor vj of a node vi is by definition

one connected component (itself), and represents an F (1) chance of infecting vi.

Should another neighbor node, vk, become infected, there are two possibilities. If

there is an edge between vj and vk, i.e. ejk ∈ E, then there is still only one com-

ponent among vi’s set of infected neighbors, and there is no additional chance of

infection. If ejk 6∈ E, then there are now two distinct connected components in vi’s
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Figure 1.1: Two simple graphs, A and B, illustrate the difference in number of
connected components in the subgraph of infected neighbors. In each the subgraph
of infected neighbors for vi includes nodes vj, vk. However, in A there is no edge
ejk, so the number of infected components is 2. In B, ejk ∈ E, and therefore the
number of infected components is simply 1.

infected neighborhood, and there is now an additional F (2) chance to infect vi. See

Fig 1.1 for an illustration. Expected influence over the UC process is non-monotonic

and non-submodular in general.

1.2.4 Community Contagion (CC) Model

In the CC model, nodes are in an active or inactive state, have a threshold θi,

and there is a set of sets of communities C = {C1, ..., Ck}, where Ci = {ci,1, ..., ci,n},

such that each node belongs to a single community in each set Ck. See Fig 1.2 for

an illustration. As such, we can construct a set of k partitions of V according to

these communities. Given the sets of active and inactive nodes at a time step, in

the next step a node becomes active if some function F (Communities(N(i))) >

θi. This model can represent the intuition that hearing something from multiple

different sources is more convincing than hearing it many times from a single source.

Expected influence over the CC process is monotonic and non-submodular in general.
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Figure 1.2: A simple illustration of a graph where each node belongs to a community
in each of three sets of communities. Community membership is represented by the
colors inside each node, and edges are shared between nodes which belong to the
same community in any given set. Some nodes may share multiple edges by having a
common community in more than one set. In this example, supposing vk and vl are
infected, vi would have two infected neighbors from two community sources (yellow
and dark blue). If vk was not infected, vi would have only one infected neighbor but
still two community sources.

As we will see in the following section, these models introduce some inherent

complexity in their representation and additionally happen to be much harder to

provide any approximation guarantees for under well-studied problems. However,

it is increasingly apparent that these are the type of processes we must use to

accurately model many interesting real-world events.

1.3 Influence Maximization and Related Problems

The study of spreading processes on graphs came into mainstream focus when

Domingos and Richardson [2] posed the question of selecting a set of nodes that

maximize the size of a process’ total spread. Define σP (G,A) as the total number

of nodes infected on a graph G under process P and initially active nodes A. Then

the Influence Maximization problem is defined as follows:
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1.3.1 INF-MAX

Given a graph G, process P , and integer K, choose a set of nodes A0 ⊂

V, |A0| = k, s.t. A0 = argmaxAE[σP (G,A)].

This problem has many interesting applications even beyond the viral market-

ing scenario Domingos and Richardson imagined. Unfortunately, even calculating

the exact expected influence for a fixed set of nodes E[σP (G,A)] is #P-complete in

general [14,15]. Typically some method of sampling the process is used to obtain an

arbitrarily good estimation of E[σP (G,A)]. For simple contagions, to determine an

approximation of the optimal A0, a greedy algorithm is usually employed that se-

lects at each step the node that most improves the expected number of infections by

the process, given the current set of selected nodes. Nemhauser proved that greedy

maximization of submodular functions provides a 1− 1/e bound on the approxima-

tion factor [16]. Kempe et al. [1] showed that the expected influence of given seed

set for the IC and RW-LT processes is submodular and therefore a greedy algorithm

for influence maximization achieves a 1− 1/e− ε approximation factor, when σP (∗)

is estimated within a 1 ± δ factor and ε is a function of δ. The time complexity of

their algorithm in total is knmn2

ε2
ln 1

δ
.

Nemhauser states that given a function f(·) that is non-negative, monotone

and submodular, a greedy algorithm that adds an element with the largest marginal

increase in f(·) each step produces a k-element set A such that f(A) ≥ (1 − 1/e) ·

maxB:|B|=kf(B). This illuminates a distinction between complex and simple conta-

gions. It can be shown that the simple contagions P as defined in 1.1 produce a
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σP (·) that is submodular and monotone, whereas the expected influence of complex

contagions is frequently non-submodular and perhaps not monotonic. In general,

most simple processes that are strictly progressive (that is, there are no transition

rules that can revert a node to an previous state) will be monotone and submodular.

Since the original result of Kempe et al. [1], much work has been done that

fine tunes their greedy algorithm for the IC process. Notably, Leskovec et al. [17]

recognized that since σP (·) is submodular, considerable computational effort can be

spared by ignoring any candidate additions vi at a given step that contributed less

marginal increase at the last step than the current step’s front runner v∗: that is,

∆σP (A∪vi) < ∆σP (A′∪v∗); |A′| = |A|+1. In a series of papers, Chen et al. [18,19]

considered heuristics such as discounted degree counts and limited neighborhood

process evaluations to improve computational cost. Borgs and Tang, with their

colleagues, reduced the computational cost to a factor of ε−2(k + l)(n + m) log n

with a clever use of “reverse reachable” sets computed prior to execution of the

greedy algorithm [3,20] . More recently, Sadeh, Cohen, and Kaplan [4] presented an

algorithm that runs on order of ε−2k3 ln n
δ
(τm̄+ k(m∗ + nk) lnn), which they prove

is a tight upper bound to achieve the 1−1/e− ε guarantee, which leverages samples

from a limited step process evaluation. Interestingly, and taking a different tack,

Akbarpour and his team recently demonstrated that simply selecting a random set

of k+s nodes is often as influential as carefully selecting k nodes under any of these

methods, even when s is small relative to k [21].

Unfortunately, all of these rigorous reductions in computational effort that

maintain the strong approximation guarantee have no such guarantee under com-
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plex processes. In fact, it can be shown that no n1−ε, ∀ε > 0, can be achieved in the

general case for complex processes unless P = NP [1]. Some recent attempts to find

specific cases with restrictions on graph form or the transition functions illuminate

just how distinct the separation between submodular and non-submodular processes

is: even with a small number nγ of “almost submodular” transitioning nodes (the

rest being completely defined by submodular functions), there is no 1/nγ/c approx-

imation factor unless P = NP [6].

There are many other interesting problems besides INF-MAX, and each usu-

ally increases the complexity beyond constant approximation guarantees, even under

simple contagions. We define two common alternate problems that we explore fur-

ther in Chapter 4.

1.3.2 Epidemic Mitigation

In the Epidemic Mitigation (EM-P , where the P refers to the underlying

process) problem, we seek a set I of size k inoculated nodes that cannot be infected

that minimizes EA[σP (G,A, I)], where the expectation is taken over the distribution

of the epidemic seed set A ∼ A and randomness in the process P . Inoculating a

member of A has no effect. In Chapter 4, we will fix A for each graph to reduce the

computational expense. We select A for all graphs by first infecting a random node,

then conducting a small (10) node breadth-first-search from that “patient zero”.

For clarity and consistency with all other data presented, in Chapter 4 we present

the number of nodes that were not infected (minus the number of inoculated nodes)
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rather than the number that were infected. This casts the problem as a maximization

problem.

Minimizing the spread of a contagion is non-submodular in the set of inocu-

lated nodes. Consider a scenario where two populations are separate but for two

members who travel between each population. If we inoculate both of these mem-

bers, we could completely contain an outbreak that initiates in either of the pop-

ulations; while inoculating just one may have little effect if the process is highly

contagious.

1.3.3 Adversarial Inf Max

Adversarial Influence Maximization (ADV-P ) models two (or more) competing

contagions, A and B, which interact in some manner. A node that is infected at a

given timestep by only one contagion transitions according to the process P rules

normally. However, once infected by a contagion, it may not become infected by

the alternate contagion. Nodes that are contested (satisfy both A and B influence

functions at the same timestep) are declared null, and belong to neither contagion

for the remainder of the process.

The (ADV-P ) problem is as follows: given G, k, P , choose a set a∗ of k nodes

a∗ = argmaxa∈V E[σPA
(G, a, b)] where expectation is taken over the distribution of

b ∼ B and the randomness in P . That is, we seek to select a set of nodes which

will maximize the spread of process A in competition with the expected behavior

of process B. This expected behavior is a function of which seed sets B may select

14



and simulations of the process. Instead of describing a distribution B, we fix the set

b in all Adversarial trials to be the top-10 nodes, ranked by degree (10 nodes was

chosen to be competitive in relation to the k values in all experiments) . This poses

a significant challenge but reduces the cost to effectively estimate process results.

All dual-selected nodes c ∈ a∩b are immediately declared null. Although a strategy

could simply choose a = b to prevent B from spreading well, this would result in a

score of 0, as the process a would not spread either.
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Chapter 2: Modeling and Properties of Real-World Networks

Much of the network-science literature quantifies the form and structural char-

acteristics of networks in order to gain a better understanding of what networks are

similar, how they might behave in various environments, and how to generate artifi-

cial network structures that are useful for modeling purposes. At the most elemental

end of the spectrum, one can measure the number of nodes or edges or degree of

nodes (the number of edges connected to a given node). If instead we consider a

node and its neighborhood we gain more interesting measures such as the clustering

coefficient and a variety of other measures of a node’s (or edge’s) local structure [11].

Additional complexity introduces measures of groups of nodes, such as the size of a

group’s total neighborhood [22].

If we consider the whole graph as input, we can compute betweeness, eigen-

vector centrality (closely related to Google’s PageRank), and many other powerful

metrics. Introducing sets of nodes at this level, we can calculate group betweenness

or the fragmentation or disruption of the group [23]. Most of these measures are

so called centrality measures, which seek to gain some understanding of a node’s

importance (context dependent) to the network. An exhaustive review of centrality

measures is beyond the scope of this thesis, but we define a few that we use consis-
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tently below and refer the reader to Barabási’s textbook [10] for a thorough coverage

of the most frequent measures. In the next few sections, we cover in depth the mea-

sures we will use heavily in this thesis, including degree distribution and stochastic

block models (SBM), in terms of measurement, generative models, and theoretical

relevance to real-world networks. We then leverage these measurements to conduct

a wide survey of real-world networks that identifies in which domains we might

expect to find community structures, scale-free structures, or random structures.

2.1 Classic Centrality Measures

The degree of a vertex vi:

ki = |vj ∈ V s.t. eij ∈ E|. (2.1)

In the case of a directed network, we may distinguish:

kouti = |vj ∈ V s.t. eij ∈ E|. (2.2)

kini = |vj ∈ V s.t. eji ∈ E|. (2.3)

If we define ωst(vi) and ωst as the number of shortest paths from s to t through vi

and total, respectively, then the betweenness of a vertex vi is:

B(vi) =
∑
s 6=vi 6=t

ωst(vi)

ωst
. (2.4)
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Defining Ni = vj s.t. eij ∈ E and edges(Ni) = {ejk s.t. ejk ∈ E ∧ vj, vk ∈ Ni} , the

clustering coefficient of vi is:

C(vi) =
2 ∗ |edges(Ni)|
ki(ki − 1)

. (2.5)

2.2 Degree Distribution and Erdős-Rényi, Barabási-Albert Graphs

As previously mentioned, analyzing the distribution of a graph’s node-specific

properties is a good way to gain perspective on the whole network. The degree

distribution, for example, maps the integers to the number of vertices in the network

that have that degree. This distribution is trivial to compute and can offer many

insights into what type of network is under study. As described in Barabási’s text

[10], Erdős-Rényi random networks tend to have a degree distribution that is well

described by a Poisson distribution: There are a high number of nodes with degree

= pN , and the probability of having many fewer or many more is very low. Erdős-

Rényi networks are parameterized by a number of nodes N and a probability p, and

each eij is sampled independently from ∼ B(p) where B is the Bernoulli distribution.

Although Erdös-Rényi networks exhibit a highly homogeneous structure and are not

often descriptive of real-world networks at large, they can serve as important test

cases and are may be a good approximation of subgraphs of a real networks.

Real-world networks often have a “scale-free” property — they have many

nodes of low degree, but with high probability there is also a small set of nodes with

extremely high degree. Their degree distributions are well modeled by a power law
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with exponent γ ∈ (2, 3) [10]. The Barabási-Albert generative model is parameter-

ized by a number of nodes N , a small integer m, and a (small) initial connected

subgraph of m0 nodes with random links. A single node is added each iteration with

m links, with preferential attachment to nodes in the graph with high degree. This

tends to build scale-free networks and can be a good approximation for real-world

networks or their subgraphs.

2.3 Community Structure and Stochastic Block Models

The community structure of a network refers to a partition of vertices into

groups that tend to associate with each other and/or associate similarly with other

groups of the partition. In a social-network context, these can be directly interpreted

as real-world communities. The partition can also be useful as a clustering tool that

simplifies the model under study or as an input to modeling spreading processes.

There are many techniques for recovering community partitions given a graph G

with a range of complexities and guarantees. In general, one defines some metric

of how “good” a partition is, for example modularity as defined in Newman and

Girvan’s paper [24], and then applies a search algorithm to seek a maximum among

the space of partitions.

The definition of useful metrics is, in particular, an open question, as each

metric may have applications of particularly high utility and an accompanying com-

plexity advantages depending on what search algorithms lend themselves to it. For

a survey of the current state of the community detection in networks, we refer the
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reader to Fortunato’s community detection survey paper [25]. In this thesis, we use

two metrics for structure detection: Stochastic Block Model fit [26], and the length

of the map equation [27].

2.3.1 Stochastic Block Models

Stochastic Block Models (SBM) are an extremely flexible generative model for

representing community structure in networks.

Parameter Specification Meaning

k ∈ Z number of communities

α ∈ {O, 1}k s.t.
∑

i αi = 1
probability node belongs to a commu-
nity i

Π ∈ [0, 1]k×k
a matrix that defines inter-community
interaction (edge) likelihood

Classic SBM parameters.

To generate a graphG ∼ SBM(Z,Π), each edge eij drawn from Bernoulli(πkl)

provided zi = k and zj = l. The spectrum of associative community interactions

enable the SBM to model many real-world structures, but it also encompasses other

structures, such as dis-associative communities. Its generality and statistically prin-

cipled approach make it a rigorous baseline for community detection and the SBM

model enjoys significant attention for this reason.

Daudin et al. [26] leveraged the Integrated Complete-Data Log-Likelihood cri-

terion of Biernacki [28] to build a variational expectation-maximization algorithm

that takes a graph G as input and returns a high likelihood partition Z. Because

the standard SBM does not allow for heterogeneous-degree structures within a com-

munity, as is found in many real-world networks, Karrer and Newman developed a
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heterogeneous-degree SBM model and greedy-partitioning algorithm to recover such

a structure [29]. Côme and Latouche [30] developed a greedy algorithm for faster

performance and simultaneous number of communities detection, while Peixoto [31]

developed an agglomerative heuristic as a starting point for unbiased MCMC sam-

pling methods. Further generalizing the classic model, Airoldi et al. introduced a

mixed SBM model that allows nodes to belong to a distribution of communities [32].

In a later result [33], they developed an additional multi-layered SBM variant that

allows for a community associations to vary across different layers while the commu-

nity affiliations of nodes remains constant. Finally, in an alternative layered model,

Peixoto leveraged a nested SBM model that resolves smaller scale structures than

those that the classic model can identify [34].

2.3.2 The Map Equation

The map equation [27] approaches community detection from a dynamics per-

spective. If one imagined a random walker on a given graph and wished to commu-

nicate its path, a simple solution might be a list of unique node indices in the order

of travel. For efficiency, one might compress this route information by giving each

node a community, and then providing node indices unique to each community or a

community transfer code. If the walker tends to stay within communities more of-

ten that traversing between them, then the code will be shorter due to the frequent,

smaller intra-community node indices.

The map equation formalizes this concept by defining a lower bound on the
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optimal encoding of a random walk on a given network, which is sensitive to the flow

of a given network. The partition-detection algorithm [35] uses an agglomerative

technique for reducing the code length of a partition, where nodes initially belong

to their own partitions and get iteratively combined until the map equation cannot

be further reduced.

2.4 A Variable-Community Multi-Layer Stochastic Block Model

As an alternative extension to the multi layer models of [33,34], we investigate

a “variable-community” multi-layer SBM (VC-ML) that allows each node to belong

to a distinct community in each layer. Although extension to a degree-corrected

form could take the same form as in Karrer’s DC-SBM [29], we leave this for future

work and instead focus on homogeneous degree-distribution SBMs for each layer.

From a generative viewpoint, a set of standard SBMs is sufficient to define this

model, but from a recovery stance current algorithms require extension. We explore

a set of algorithms that take as input a graph G that is the aggregate of a known

number of “layers”, H. Each layer h is itself a graph gh generated from an SBM,

with a consistent set of nodes across layers. eij ∈ G if eij ∈ gh for any h, but the

layer origin of edges is unknown (if it were known, one should simply use current

recovery algorithms per layer). For a simple example, see figure 2.1. The output of

the algorithm is a likely partition of edges into layers and nodes to communities for

each layer.

The likelihood of a given node partition Z and edge partition A will look
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Figure 2.1: Two simple SBMs, g1 and g2, on fifty nodes, combine to form G. Edge
origins are highlighted (blue for g1 and orange for g2). Although there are no over-
laps in this case (g1 and g2 share communities but are strictly associative and dis-
associative, respectively) any edge that is shared by layers would appear only once
in G.

familiar to the classic SBM, simply extended to consider each layer in turn (note

the product over layers):

P (G|Z,A) =
H∏
h=0

N∏
i

k∏
q

α
zhiq
q,h

N∏
i 6=j

k∏
l,p

[
π
Ah

ij

lp,h − (1− πlp,h)(1−A
h
ij)
]zhilzhjp

where Ahij = 1 if Aij ∈ G and that edge belongs to layer h, and zhiq = 1 if node i

belongs to community q in layer h. πlp,h and αq,h are the model probabilities for

inter-community edges of communities l and p and the community q prior likelihood

for layer h.

This is distinctly more difficult than single layer SBM recovery for two reasons.
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The first is an enormous increase in search space: rather than kN partitions, there

are now kHNMH , where M = |E| and k is the number of communities per layer. The

second is that many previous algorithms made use of greedy or other heuristics to

converge to likely partitions quickly, and it is not obvious how (if possible at all) to

extend these techniques when it is not certain whether an edge should be considered

in one layer or another. To illuminate this, consider an algorithm that searches the

space by refining a candidate solution over time. This candidate solution will be a

valid partition of edges into one of the layers and nodes to communities at any given

time. At each refinement, it may either change the community assignment of a node

or the layer assignment of an edge. Suppose it changes the layer assignment of an

edge: this should in turn have an impact on the community-affiliation statistics of

the layers from and to which it moved. To evaluate the true difference in quality of

this swap there may be additional movements needed to optimize the community

assignments in each layer. Over a sequence of many edge swaps, it may be difficult

to migrate candidate solutions’ node partitions away from local maxima even after

edge migrations have taken away the support for those maximums.

The most promising approach was an extension of the variational approxima-

tion scheme originally proposed by Daudin [26] and used in the alternative multi-

layer model of Airoldi [33]. In the variational approximation, we represent edge

membership and node memberships by a distribution over all possible assignments

rather than a discrete choice. In each main iteration of the algorithm, the node

distributions are updated iteratively using the conditional expectations of the node

membership based on all other nodes’ current memberships until numeric conver-
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gence:

zhiq ∝ αq,h
∏
j 6=i

∏
l

[
π
Ah

ij

lq,h − (1− πlq,h)(1−A
h
ij)
]zhjl

.

Then the edge memberships are set proportional to how likely the edge is

by layer according to the current node membership distributions. Finally, current

maximum-likelihood estimates for community prior probabilities αq,h and commu-

nity affiliations πlp,h are calculated by simple average node membership and edge

presence.

With this technique, we were able to resolve simple planted partitions, see Fig

2.2. However, we note that these results required some tuning of initial conditions,

in particular the community affiliations should begin as associative to some degree

to find associative structures (for example, set the main diagonal of the estimated

matrix π to > .5, and the off diagonals < .25). This is important because it detracts

from a fundamental strength of the SBM approach: there is no inherent bias to any

particular type of block structure. We believe it may be necessary to narrow the

massive search space in some way, but that this does not kill the usefulness of the

algorithm; after all, there are many times we might rightfully assume associative

structures (for example, friendship networks). However, if we are going to make

such assumptions on structure, that may indicate that other techniques, which rely

on such assumptions (such as modularity maximization), are better suited to this

task. It may well be that these other techniques are a better starting point to the

VC-ML recovery problem, and we leave that as a direction for future work.
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Figure 2.2: Normalized mutual information, averaged over layers, for two-layer VC-
ML SBM models of 500 nodes. Each layer has 5 equal sized communities with intra-
community connection probabilities varied over the x-axis above. Inter-community
connection probabilities were in {0.0, 0.1, 0.2} and are shown with separate color
lines according to the legend. NMI scores are taken for the most likely partition
found over 10 trials.

2.4.1 Less Promising Techniques

In this section we briefly cover a variety of other algorithms we applied to solve

the VC-ML recovery problem and their results.

• Metropolis-Hastings Algorithm, an extension of Peixoto’s algorithm [31]. To

sidestep the lengthy Monte-Carlo Markov-Chain mixing time, an agglomera-

tive heuristic was used in Peixoto’s work. It is not clear if a similar technique

could be applied to VC-ML, and without such a speed up the mixing times

are too long to reach a stable state even for modest graphs (on the order of
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hundreds of nodes).

• A greedy algorithm that sweeps through a random ordering of nodes and edges,

moving each according to maximum increase in log-likelihood. We observed

no positive effect.

• A greedy algorithm that, each iteration, first moves all nodes to maximize the

model’s log-likelihood, then moves edges according to maximum likelihood

based on current model parameter estimates. This does appear to work with

some consistency, but it appears to prefer separating the layers into an as-

sociative layer and a dissociative layer. In certain test cases we believe this

was caused by the inability of the algorithm to apply an edge to two or more

layers simultaneously (despite two or more being present among the true con-

tributing layers). This forced the algorithm to choose where to “ration its

evidence”. Offering the algorithm a choice to simultaneously place any edge

among 1 to k layers deteriorated performance. We are of the opinion that of-

fering a multigraph as input (and therefore how many edges there are between

any two nodes) is untrue to the problem formulation and the application to

real-world networks we envisioned.

• Multiple genetic algorithms, the best of which used a greedy SBM-maximizer

for each individual’s node membership layers and conducted partition-aware

crossover between the layers’ node partitions that shared the most mutual in-

formation, as well as between the edge partitions. Partition-aware crossover

attempts to find a mapping between two partitions such that community as-
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Figure 2.3: Two example crossover events are pictured, one between partitions that
are identical but labeled alternatively, and one between partitions with different
assignments. The gray highlighting represents the elements chosen for crossover. In
the first we desire any crossover event to produce exactly the same children, because
the partitions actually agree on every element’s community. In the second, we would
expect some change in most crossover events. Regardless, we must determine what
element A in individual 1 should map to in individual 2 (B), etc. We then use these
maps to convert the crossover section before swapping it into the new partitions.

signments that seem to describe similar sets of nodes are respected even though

the absolute mapping among partitions may be different. This mapping is then

used to convert the data that is crossed over so that the true information in

each partition is respected. As an example, see Fig 2.3. We believed this would

allow solutions to collaborate and move past local maxima / prevent known

stable solutions with mixed-community assignments, but this performed sim-

ilar to a simple-greedy algorithm while being much more expensive (both in

memory and run time).

2.5 Domain Dependent Structures of Real-World Networks

In this section, we explore a set of networks made available by Network Repos-

itory [36] to identify predictable and informative trends in the structure of real-world

networks. To survey a wide variety of different network types, our survey includes

up to 30 networks (where available) across 20 domains, resulting in a total pool

of 201 networks. To maintain a feasible computational burden all networks cho-
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sen were restricted to less than 100K edges. For consistency (and because not all

networks documented their properties completely) all networks were assumed to be

undirected. See Appendix A for a complete listing of graphs used. Our approach

explores the community structures, degree distributions, and clustering coefficients

of these graphs as described in the following subsection.

2.5.1 Methodology: Real-World Structure Analysis

Individual graph analysis consists of the following measurements:

1. Community Partitions:

(a) Stochastic Block Model (SBM)

(b) Degree-Corrected SBM (DC-SBM)

(c) Infomap

2. Partition Modularity

3. Partition Robustness

4. Clustering Coefficients

5. Degree Distribution

(a) Power law Fit

(b) Poisson fit

6. Community Degree Distributions

(a) Power law Fit

(b) Poisson fit

For community partition detection (metric 1 above), each graph was subjected

to the partitioning algorithms listed, each being run 5 times and the highest scoring

structure selected. We used the Infomap algorithm in igraph’s Python library [37]

and the SBM partitioning functions in graph-tool [38]. As discussed in Fortunato’s

survey [25], simply finding a partition that maximizes some structure detection

metric (SBM likelihood, map equation) may be misleading. Even in random graphs,
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certain community detection algorithms may report structures with high confidence

that happen to enjoy much higher likelihoods or scores than the field of potential

solutions. In their paper, [39] Karrer and others suggest investigating any alleged

structure’s robustness, which is a measure of any algorithm’s suggested partition

changes as the graph is perturbed. The intuition is that a “true” structure should

be resilient to small changes in the graph structure, whereas random structures will

be volatile and irrecoverable after small changes.

There are two components to the robustness measurement (metric 3): measur-

ing the similarity between two suggested partitions (the outputs of the community-

detection algorithm) and a tunable perturbation model. In Karrer’s case [39], they

use the null configuration model, which randomly samples all graphs that share the

same degree distribution. In order to make this tunable (the default null configu-

ration model rewires every edge) they first select a random proportion α ∈ [0, 1] of

edges to remove from the graph. Then a random sample of αN edges, proportional

to the product of degrees: Pr(selecting eij) ∝ kikj, is added to the graph. This

ensures that the expected degree of each node k
′
i for any perturbed graph remains

equal to the degree in the original graph ki. Palowitch et al. [40] extended the

configuration model to weighted graphs, and we extend their model to incorporate

an α as in Karrer’s study [39]. In this model, we rewire a portion α of edges of a

weighted graph and preserve, in expectation, the degree and strength of each vertex

(strength is the sum of incident edge weights).

To measure the similarity between two partitions, we begin with the Mutual

Information Score between two partitions length n, A and B. If na is the number of
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elements equal to a in A, then we can define the probability that a randomly selected

element is a in A: P (a) = na

n
∀a ∈ A. Similarly for B, we have P (b) = nb

n
∀b ∈ B.

Also let nab be the number of elements that are a in A and b in B, and P (a, b) = nab

n
.

Then we can define the mutual information I:

I(A,B) =
∑

a∈A,b∈B

P (a, b) log
P (a, b)

P (a)P (b)
.

The mutual information is zero for uncorrelated partitions, larger for similar

partitions, and it’s upper limit increases with the size of the partition. Karrer

proposes using the Variation of Information to calculate robustness because it is

additionally a metric among the space of all partitions [39]:

V (A,B) = H(A) +H(B)− 2I(A,B)

where H(A) = −
∑

a∈A P (a) logP (a) is the entropy function. V (A,B) ∈ [0, log n],

and we normalize it in all of our results by dividing by log n to facilitate comparisons

between graphs of different sizes. V (A,B) will be 0 between partitions which are

identical and log n (or 1 for the normalized case) for uncorrelated partitions.

To measure the robustness of a graph structure with respect to a community-

detection algorithm, we evaluate the Variation of Information between the orig-

inal structure and the structure resolved across a range of perturbation values

α ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35}. At each value α the variation is taken

between the original structure and the structure detected among 5 realizations of
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the perturbed graph. The average of these values is stored for each alpha, then

we average across all seven values of α for a total variation in information score.

For intuitive convenience, we calculate robustness as 1 − average(Variation across

perturbations), so that 1 indicates a completely robust structure (in the explored

range) and 0 a completely volatile structure. The α values were chosen to maximize

exploration of a useful range; in Karrer’s paper [39], a majority of experiments re-

vealed distinct characteristics in this range and perturbing past α = 0.40 provided

little additional qualitative information. Due to computational expense, we were

unable to evaluate robustness for SBM and DC-SBM structures on graphs with

over 5K nodes or 20K edges, which reduced the pool to 141 graphs. Robustness

results for infomap cover the entire original pool of 201 graphs.

For each graph as a whole (metric 5), and then for each community subgraph

within (metric 6, communities defined for each partitioning algorithm according

to the structures resolved), we analyzed the degree distribution and the goodness-

of-fit of a Poisson distribution (which describes Erdös-Rényi random graphs) and a

power-law distribution (which describes scale-free graphs, including Barabási-Albert

graphs). The procedures to fit and test goodness-of-fit for a proposed power-law

distribution are explained in detail in section 4.13 of Clauset’s paper [41], and the

goodness-of-fit of a Poisson distribution is accomplished with a Chi-Squared test.

We considered power laws with a goodness-of-fit p-value ≥ 0.1 to be a good fit [41],

and used 500 synthetic data sets giving our p-value an error ε ≈ .022. For the

Poisson distribution we considered a p-value ≥ 0.05 to be a good fit.

Modularity (metric 2) and global clustering coefficient (metric 4) were calcu-
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lated in the standard fashion.

After gathering the above characteristics for all graphs, we employ a k-means

algorithm as a simple way to cluster the graphs based on their characteristics. Be-

cause many of the graphs provided to Network Repository [36] may share a single

source and/or particular methodology, it would be natural for groups as labeled ac-

cording to Network Repository to share characteristics and group together. There-

fore, if some alternative labeling still correlated with the statistical grouping of the

k-means algorithm that might indicate a general trend. We explore this in the

following results section.

2.5.2 Experimental Results

For all results, we label the graphs according to one of two keys: the Network

Repository source labels or a group of “meta” labels: Biological, Social, Infrastruc-

ture, Other. Fig 2.4 shows the number of networks in each category and the color

mapping that is used in all subsequent figures. Note the secondary color column

of the legend maps the Network Repository labels to the meta label to which it

belongs. Most labels should be self explanatory except “Labeled”, which is not a

type of graph in particular but a collection of interesting graphs where users had

also submitted some type of edge or node labels (not used in this thesis). A com-

plete list of all graph titles is included in Appendix A, as well as additional source

information for the graph data where available (Appendix A.

We first observe summaries of simple characteristics across our graph popu-
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Figure 2.4: Legend for all experimental figures on real-world networks. Number of
networks for each category is in bold to the left of the category. Note meta color for
Network Repository labels is noted in secondary column.

lation. For most results, we will present a pair of charts that are color keyed by

Network Repository label and meta type. Fig 2.5 shows the distribution of average

degree and clustering coefficients across network sizes. There is considerable diver-

sity in the population even among these basic characteristics. As mentioned earlier,

the network repository labels have a tendency to identify self-similar graphs, but the

clustering coefficient meta chart demonstrates that generalities may be drawn. For

example, it appears that most social graphs tend to have a low clustering coefficient,

whereas the infrastructure and biological graphs exercise considerable variance in

this regard.

Only 8 graphs’ degree distributions are well described by by a Poisson dis-

tribution, 7 of which are animal social graphs (the other an enzyme relationship

graph), and all below 40 nodes. 29 networks are well described by a power-law

degree distribution, with sizes from 34 to 40K nodes 2.6. In particular, the retweet

networks happen to fit with high probability (14/29). This may reflect a fairly strict
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Figure 2.5: Average degree and clustering coefficients for all graphs in the set.

and predictable process of that network, where highly shared tweets tend to pass

through the network quickly and people who have many followers and have already

been retweeted many times are much more likely to be seen and retweeted again

within the lifetime of the process. This “first-mover advantage” is a structural prin-

ciple that guides the construction of Barabási-Albert graphs and statistically yields

power-law degree distributions with high probability. This still leaves a vast majority

of networks (164/201) that are not well described by a simple degree distribution.

Next we show the average community size per graph and modularity of par-

titions, for each graph and each partitioning algorithm. Stochastic block model
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Figure 2.6: Power-law fits plotted for each graph, with the goodness-of-fit on the
x-axis and fitted γ on the y-axis. We consider only γ ∈ [2, 3], as below 2 is not valid
in the limit as the network grows to infinity, and above 3 the network is essentially
in the random regime.

results are represented by the circular markers, degree-corrected SBM results by

stars, and infomap results by the down triangular markers in Fig 2.7. We note no

obvious trends for any type of graph appear, but by inspection there is a positive

correlation between infomap and block model partition modularities. Additionally,

the average community size grows very slowly as a function of graph size (note log

scale on x-axis). This relative indifference to total graph size may be of use in certain

heuristics that leverage partitioning algorithms, and is discussed further in Chapter

4.

We gauge the value of the partitions found with a view of the robustness

over modularity and graph size (in nodes) in Figs 2.10, 2.11. Although there is no

objective cut off for a significant partition, we may subjectively determine commu-

nities with a high modularity and robustness and significant. Interestingly, infomap
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Figure 2.7: Average community size and modularity of community partitions for all
graphs in the set.

appears to produce more robust partitions the larger the structure is, while SBM

structures are agnostic or slightly disfavor large graphs. Social networks are fre-

quently non-modular and variably robust, which suggests they have the least ob-

vious structures or are least likely to have significant community structures. This

result is surprising because typically we develop “community detection” algorithms

deliberately for the social context.

Another way to measure the significance of a partition is to evaluate its utility

in the context of dynamic processes on the graph. We go into the detail of hybrid

algorithms in Section 4.2, but for now it is sufficient to understand that the partition
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provided is used to simplify the search space of the algorithm. For all real-world

networks with greater than five hundred nodes, we measured the maximize influ-

ence of seed sets selected using hybrid algorithms under the Linear Threshold and

Saturated Linear Threshold processes. As comparison, for all graphs we evaluated

the spread of the top-K degree nodes, and if the graph was small enough (less than

5000 nodes) a set selected by the simple greedy algorithm. K, the seed set size, was

set to 1% of the nodes, or 30, whichever was less.

The relative performance of the hybrid algorithms are plotted against the

robustness and modularity of the partitions, for SBM and Infomap partitions re-

spectively. Relative performance is measured as:

Relative Performance(Hybrid, Alternate) =
[Spread(Hybrid)− Spread(Alternate)]

N
,

where N is the size of the graph in nodes. In Figs 2.8, 2.9, relative performance

versus Top-K is blue and versus Greedy is orange. Simple linear regressions show

low R2 values, but some positive correlation in robustness and hybrid algorithm

performance, particularly for Infomap hybrid results. This indicates that robustness

is capturing some useful information about the quality of structures found in the

network. It is less clear that a relationship exists between modularity and hybrid

algorithm performance. This may be for many reasons, but at a minimum we know

that a highly modular partition does not necessarily yield a useful simplification of

graph structure in relation to dynamic processes.

Figs 2.12, 2.13 shows a histogram of graphs binned by the fraction of their
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Figure 2.8: Linear Threshold: Relative performance of hybrid algorithms, using
SBM and Infomap partitions, versus Top-K Degree (blue) and Greedy (orange)
selections. Results normalized by graph size, and larger data points correspond to
results where the hybrid algorithm outperformed the given alternate algorithm.

communities that fit a Poisson or power-law distribution, for each partitioning algo-

rithm. For example, the green bar at 0.0 on the x-axis for the power-law distribution

indicates 22 graphs, when partitioned by infomap, had < .02 subgraph communities

that were well fit by a power-law distribution. Fig 2.14 offers a histogram of the γ

fits to all of the intragraph communities. Notably many of the fits are outside of

the acceptable range, and a majority of those that are in [2, 3] are produced by a

degree-corrected SBM recovery. Fig 2.13 indicates the preferences of the partitioning

algorithms: infomap is much less likely to produce partitions with power-law distri-

bution than the SBM models, but interestingly if it does produce such a subgraph it
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Figure 2.9: Saturated Linear Threshold: Relative performance of hybrid algorithms,
using SBM and Infomap partitions, versus Top-K Degree (blue) and Greedy (orange)
selections. Results normalized by graph size, and larger data points correspond to
results where the hybrid algorithm outperformed the given alternate algorithm.

is much more likely to be a valid fit. None of the partitioning algorithms were likely

to find subgraphs with Poisson degree distributions, which informs us that even the

structural and dynamic components of real-world graphs are not well-approximated

by the Erdős-Rényi random graph. These results may be relevant in the context of

designing alternative hybrid approximation algorithms, which may perform best on

certain graph substructures. If one has a subroutine that performs well on scale-free

graphs, one would do well to choose a degree-corrected SBM to partition your graph

first.
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Figure 2.12: Histograms of all graphs, binned by the fraction of their subgraph
communities that were fit by Poisson degree distributions.

Figure 2.13: Histograms of all graphs, binned by the fraction of their subgraph
communities that were fit by power-law degree distributions.
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Figure 2.14: A histogram of the γ fits for all of the subgraph communities, for each
partitioning algorithm.

Finally, we clustered all graphs using K-means clustering, k ∈ [2, 14], using

as attributes the graph’s: {infomap modularity, infomap robustness, poisson fit

(Boolean), power-law fit (gamma or 0 if no fit), global clustering coefficient, average

degree, average comm size}. We normalized all attributes to a mean of zero and

standard deviation of one before clustering. To identify a good candidate k value, we

observed the total distance of all graphs from their assigned cluster centroids and the

mutual information score between the assigned K-means partition and the Network

Repository groups partition. We hypothesized that a meaningful clustering would

exhibit low total mean distance and some agreement with the Network Repository

labels.

Fig 2.15 shows total mean distance as well as cluster’s normalized mutual

information as a function of k. The normalized mutual information of a random
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k-group partition and the Network Repository labeling is also shown in green as a

control. After a handful of runs, it appears that a 6-8 group clustering or 10-12

group clustering is most valid. Fig 2.16 shows a visualization of the clusters by their

Network Repository groups and meta labels. Edge lengths were set proportional to

distance between the centroids, so the visualization offers some relative information

on how different clusters are (but being a 2-D representation of 7-dimensional space

it is by necessity a distorted projection).

Fig 2.16 shows that many of the clusters are determined by Network Repos-

itory labels with a strong identity, for example the 15 group cluster that is almost

entirely Facebook graphs. It is also interesting to note that although there are no

strict guidelines for a majority of the graphs, there are regions of these network vi-

sualizations that correspond to the meta labels (e.g. most of the biological networks

are in the top left quadrant).
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Figure 2.10: Modularity and Robustness of all graphs, for each partitioning algo-
rithm.
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Figure 2.11: Modularity and Robustness of all graphs, for each partitioning algo-
rithm.
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Figure 2.15: Total mean distance and normalized mutual information of a k-
clustering, by value of k in [2, 14]. In this run, it appears that 7 clusters is a
good candidate.
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Figure 2.16: Visualizations of the 7-Cluster assignments, where each pie chart is a
k-cluster and the pie chart reveals the Network Repository labels and meta labels,
respectively. Clusters that are visualized farther apart have relatively more distant
centroids, and the number of graphs belonging to the cluster are noted in the pie
chart centers.
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Chapter 3: Genetic Algorithms for Maximizing Influence

In preparation for use of genetic algorithms in Chapter 4, we first analyze the

sensitivity of performance to a variety of settings and techniques. Genetic algo-

rithms are a combinatorial optimization method that leverage a simulated evolution

of a population of candidate solutions, using random mutations and fitness depen-

dent reproduction, to search the solution space. For a primer on genetic algorithms,

we offer Holland’s introduction [42] and for an in depth exploration of genetic al-

gorithms used for network optimization problems Gen, Cheng, and Lin’s book [43].

Lim provides a more recent survey which covers structured-population variants and

additional refinements to improve performance [44].

The classic genetic algorithm’s summary is presented in Algorithm 1. Even

with this simple pseudocode, we’ve already made some design decisions (only chil-

dren are mutated, for example), while trying to be as general as possible. Exactly

how we implement functionality for parent selection, crossover, mutation, and

selection is a source of considerable research in the evolutionary algorithms commu-

nity. Additionally, we must choose a way to represent our solutions to the problem

at hand (that is, how do we encode a solution as an individual in our population)

and then decide how we score its fitness. Suppose we get all these things tuned well
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— we must then still decide how often to mutate individuals, how often to con-

duct crossover, how big a population to simulate, etc. This chapter explores a wide

breadth of these possibilities in the context of influence-maximization problems on

graphs. We find that genetic algorithms are relatively insensitive to a handful of

domain specific optimizations, and that mutation rate and population size are the

most critical parameters for solution quality.

Algorithm 1: Top-level Genetic Algorithm

INPUT: pop size, generations, num elites ∈ N; PR M, PR C ∈ [0, 1]
population ← [pop size * individuals]
for t < generations do

for i in population do
fitness[i] ← fitness(i)

end for
next generation ← [ ]
elites ← top fitness(population, num elites)
next generation.append(elites)
while length(next generation) < pop size do

parents ← parent selection(population)
children ← crossover(parents)
children ← mutation(children)
next generation.append(selection(children + parents))

end while
population ← next generation

end for
OUTPUT best individual(population)

3.1 Representation and Genetic Operator Evaluation

3.1.1 Representation

First we cover a range of likely candidates for solution representation, muta-

tion, and crossover for the influence-maximization problem. We consider two ways
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to encode solutions to the IM problem, which we label K-List and N-List. Given

an IM problem of seed set size k, a K-List is a list of exactly k elements in [0, N−1],

where N is the number of nodes in the graph. Fitness is simply the average addi-

tional nodes infected if the nodes indicated by the K-List are used as a seed set for

the process of the IM problem. Mutation and crossover operators on K-Lists are

always swap operations, resulting in K-Lists themselves.

A N-List is a list of [0, N ] elements in [0, N−1] — any size solution is allowed

during the evolutionary process. Of course, we eventually want only solutions of

size k, so the fitness evaluation of N-List individuals penalizes oversize solutions.

Critically, this penalty increases over time but starts very light, which allows the

algorithm to explore a broad range of nodes and then leverage this knowledge as it

pares its solutions down to size k. Mutation and crossover operations on N-Lists

result in potentially different length children than the original solutions.

3.1.2 Mutation

Genetic algorithms are interesting partly because of how well they work on a

variety of applications without application specific knowledge. Randomly mutating

a bit or gene in an individual is typically sufficient variation to yield useful solu-

tions. However, in certain applications it may be advantageous to leverage problem

knowledge to focus the mutation operator. We compare Random (R) mutation

with Neighbor (N) and Distance (D) mutation. N mutation will select a new

node from the neighbors of the nodes in the set, while D mutation, inspired by the
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work of Zhang et al. [45], selects from the furthest half of nodes, in terms of hops.

One or the other may be preferred based on the type of process for the IM problem.

Each method above is implemented with unbiased selection of nodes (given

they meet the initial selection criteria, i.e. are a neighbor for N), and a weighted

selection chance based on node degree. For example, in D-W, first a pool of nodes

that are distant from a selected node are chosen. Then one node is selected from

this pool, where the chance of selecting a given node from this pool is proportionate

to its degree.

3.1.3 Crossover

Crossover is any operator that takes two individual solutions and results in two

modified solutions, which each contain components from both original solutions. It

is desirable that the crossover operation exhibits respect : the information passed on

should represent the same information in solution space for the child as it did for

the parent. Because our solutions are encoded using a consistent integer labeling of

nodes, this is almost guaranteed, as any solution will interpret a set of integers the

same way: use these nodes in the seed set. We should additionally ensure crossover

is conducted only on portions of the individuals that are different. Otherwise, we

may have awkward situations where one child gets a component solution from parent

A that is very similar or identical to the component solution from parent B, and its

solution would be redundant in total (or no longer a K-List).

We explore three crossover variants, Single/Double Pt (SP/DP), Network
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Mask (NM), and Degree Cooperation (DC). SP and DP point are for K-List

and N-List, respectively, and are the most standard crossover operations: choose a

location in the individual solutions, and swap everything after. DP selects a swap

after point for each individual, since the N-List parents may have different lengths.

NM constructs a set of X nodes starting from a random node in one of the parent

individuals, using a breadth first search (BFS). X is a random integer in [0, N ] and

is analogous to the crossover point in SP/DP. All nodes covered by the BFS are

swapped to one child, and the rest to the other (for each parent). For K-Lists, NM

must conduct two BFS and select the same amount of material to crossover from

each parent’s BFS to maintain solution size. NM is designed to respect solution

components that may be interacting locally in complex ways: it is more likely to

take a regionally coherent sub-solution to incorporate in a new solution this way.

DC is a simplified version of Zhang’s Elite Cooperation Heuristic [45], and conducts

an ordering of the parents according to node degree before swapping. One parent

is ordered in descending degree, the other ascending, and then the crossover occurs

as in SP/DP. This creates one child with a larger proportion of high degree nodes,

ideally resulting in a more favorable new solution.

3.1.4 Representation and Genetic Operators Experiment

To study the impact of these operator variants, we conducted IM trials on

each combination of the above operators (e.g. K-List, R-W, DC) for a total of 36

unique genetic algorithm combinations. Each GA variant was applied to solve a set
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of IM problems as follows:

• Independent Cascade (probability of infection uniformly c = .1, .25, .4)

• Linear Threshold (threshold uniformly T = .2, .3, .4)

Seed sets were size k = 2, 3, 5, 10, 15 on a set of five small (500 nodes with one

exception) graphs as follows (see Fig. 3.1). This results in 150 trials per GA variant,

for a total of 5400 trials. The genetic-algorithm parameters were kept constant

for all trials with a population of 100 individuals evolved over 100 generations,

probability of mutation equal to 1, probability of crossover equal to .75, 2-parent

tournament selection, and one simulated process evaluation to determine fitness.

For mutation, each K-List swapped one gene / node each iteration, and N-Lists

had a slightly more complicated mutation that would preferentially mutate towards

a list of length k, potentially losing more than one node in length if it was greater

than k. Tournament selection randomly samples the population for n (2, in this

case) individuals and selects the one with higher fitness. Typically we would conduct

more simulations to evaluate fitness for IC problems, but since these were all relative

results we were able to increase the breadth of trials at the cost of higher variance in

results. Additionally, strong solutions and their descendants will eventually undergo

many more than one process evaluation as they begin to dominate the population.

Since the fixed threshold LT is deterministic, one trial is all that is needed for fitness

evaluation.

Our results indicate that the specific genetic operators do not have a significant

impact on the fitness of the proposed solution, but the representation heavily favors
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Figure 3.1: 1,2: Barabási-Albert Graphs, m={2,3}. 3: Stochastic Block Model
with 10 communities and expected intra-community degree 8 and expected inter-
community degree 2 (total across all other communities). 4: Degree-Corrected SBM
with the same parameters as the SBM and degree sequence drawn from a power-
law with γ = 2. 5: 532 node subgraph of the Ego-Facebook graph available from
SNAP [46].

K-List. In most trials the N-List representation seems to do a poor job paring down

large solutions to return a size k solution. It is possible that given a much larger

search space (that is, a larger graph), the proposed advantage of N-List (sampling

more of the nodes early on) would produce some benefit. However, building a
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Figure 3.2: Box and whisker plots for all solutions’ spread for K-List and N-List
representations.

fitness function that would pressure the population into size k lists efficiently and

predictably was time consuming and frequently produced poor solutions. We would

only suggest using N-List as a second attempt or if the mutation and crossover

operators were worked to intelligently pare solutions down over time. While the

results presented in Fig.s 3.2, 3.3, 3.4, and 3.5 are averaged over all trials, these

observations were consistent even when we sliced the results into finer subsections

of all trials.

Although solution quality was not dependent on the operators, it did appear

that neighbor mutation had a positive effect on time to find a high quality solution,

see Fig. 3.6.

3.2 Parameter Settings and Parent Selection

For the remainder of the experiments, all genetic algorithms will use K-List

representation, random + unweighted mutation and single point crossover. We next
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Figure 3.3: Box and whisker plots for all solutions’ spread for each mutation type.

Figure 3.4: Box and whisker plots for all solutions’ spread for each crossover type.
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Figure 3.5: Box and whisker plots for all solutions’ spread for degree weighted or
unbiased mutation.

Figure 3.6: Box and whisker plots for all LT solutions’ time (in generations) to find
a solution 90% as strong as it’s final individual over mutation and crossover pairings.
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examine changing the parameters to the GA, starting with probability of mutation

and crossover. We chose IC with c = .1 and LT with t = .4 because these seemed

to most differentiate good solutions from bad in the first experiment. In the IC

trials, the GA estimated individual fitness with 10 IC process simulations. We

created a static test pool by generating 5 DC-SBMs (same parameters as before),

then averaged the best solution’s spread over all test pool graphs at k ∈ 5, 10 for

IC, k ∈ 10, 15 for LT, and k ∈ 15, 25 for a large graph LT trial. For the LT large

graph trials, we generated the DC-SBM with 2000 nodes and 40 communities. The

DC-SBM was chosen as other graphs seemed not to distinguish good solutions and

bad as well in the previous experiment. As Fig. 3.7 indicates, best solution value

typically increases with mutation rate for LT trials, while crossover has a minor

effect if any. These results are consistent with a similar experiment highlighted in

Fig. 5 of Zhang’s paper [45], which finds that as long as the mutation rate is not

very low, the GA should find reasonable solutions.

The IC trials have less clear interpretations: it seems there are many permissi-

ble pairings and no outstanding trend. In all of the IC results the average fitness of

the population quickly converged (within 10 generations the average fitness was .90

of the elite fitness), perhaps revealing that IC problems at this scale are too small

to illustrate impact of parameter decisions.

Next we compare fitness proportionate selection versus tournament selection

(default in all other experiments). Fitness proportionate selection is an alternative

parent selection method that selects from the population with a probability weighted

by fitness of individuals. Fig. 3.8 shows the average fitness over time of the GA
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Figure 3.7: Heatmaps of the average value of solutions in total spread over a set of
graphs using GA’s with various probabilities of mutation and crossover.

populations under LT, t = .4, on five SBMs and five DCSBMs, at k = 10, 15.

Tournament selection produces almost strictly dominating fitness trends in each

case.

Utility of population size seems to be a logarithmic function, as seen in Fig.
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Figure 3.8: Average population fitness over time for tournament selection (crosses)
and fitness proportionate selection (circles) over four test trials. Results averaged
over 5 graphs.
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3.9, which compares the fitness of solutions on LT, t = .4, for a two graphs at

k = 10, 15 and displays a wider study of solution quality versus population size as

graph size (in nodes) increases. In support of some modest trends visible in Fig.

3.9, in Chapter 4 we find that selecting a population size as a constant fraction of

the number of nodes works well. This result is interesting and conflicts with the

results of Cui et al. [47], who found that population size was not a big determinant

of solution value and that it could be quite small without losing value (down to 5

members of the population on graphs up to 15k nodes!).
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Figure 3.9: Top: Average solution spread for various population sizes. Results
averaged over 5 graphs. Bottom: Solution quality for DCSBM of various sizes in
nodes versus population size (1 trial per data point).
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Chapter 4: Maximizing Influence and other Problems

In this chapter we take a look at the performance of multiple set-selection

algorithms in a variety of influence-maximization problem variants. Besides offering

quantitative results on relative performance and suggesting what algorithms work

best for different problem statements, we also wanted to offer some a priori intuition

on whether or not a problem warrants potentially expensive computation in the first

place. To this end we explore relative performance of seed selection algorithms on a

range of process parameters and simple graphs with varying edge densities in Section

4.1. Then we cover the general methodology for all follow-on experiments in Section

4.3, as it is consistent with few exceptions across all experiments, then cover results

by problem type in sequence.

4.1 Simple Graphs and Classic Diffusion Models

In this experiment we explore the performance of four seed-selection strate-

gies on the Independent Cascade and Linear Threshold processes over simple graph

structures. Infection probability and infection threshold are both uniform across

all nodes for each trial, and are varied from .1 to .7 in .1 increments between

trials. For graph types, we explore Erdős-Rényi graphs with average degrees in
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{1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}, Barabási-Albert graphs with m = {1.0, 1.25, 1.5, 1.75,

2.0, 2.25, 2.5}, and Stochastic Block Models with 10 equal sized communities with ex-

pected intra-community degree {0.5, 1.0, 2.0} and inter-community degree {0.5, 1.0, 2.0}

(all pairs were tested except where intra-community and inter-community degrees

were equal, resulting in 6 parameter settings). For each graph type and parameter,

5 graphs were generated with 500 nodes.

We compared four seed-selection algorithms: Greedy, Genetic Algorithm (GA),

Top-Deg, and Random. Seed sets were size k = {5, 10}. These are modest seed set

sizes, which we expect to provide the starkest indicator of relative performance

(small seed sets that terminate quickly can only infect a few additional nodes, while

those that initiate a cascade will have a large influence). As seed-set size grows (with

proportionally higher thresholds or probabilities of infection) we would expect the

relative performance of algorithms to converge. This is because the graph becomes

more saturated at t0 for all algorithms, and even processes that fall off will activate

a number of new nodes proportional to seed-set size. Greedy adds a single node

to the set at a time, choosing the one with the highest delta spread determined by

simulation (in this experiment, 5 process evaluations were executed per candidate

node per k). The GA works as in Chapter 3 and executed one simulation to evaluate

fitness (this may seem very low, but in effect it naturally scales to many simulations

for good solutions, because we expect a good solution to get repopulated, mutated,

and explored over many generations). Top-Deg executes no costly simulations, it

simply takes the top-k nodes ranked by degree. Random selects k nodes at random.

We are interested in regions where the spread between algorithm performance (that
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is, greatest seed-set performance minus worst seed-set performance) is very high or

very low.

Figs 4.1,4.2 demonstrate a clear relationship between the graph and process

parameters and the differential impact between algorithms. In general, if the graph

is sparse and the process not very contagious, it won’t matter much how we select our

seed set, and the similarly for very contagious and highly connected graphs. The

comparison between Erdős-Rényi and Barabási-Albert graphs reveals that scale-

free structures should be considered as an accelerant - note the sharper slope of the

sensitive region in the BA heatmap. There also appears to be a periodic pattern on

the Stochastic Block Model results, which may be a result of how many communities

are easily reachable / possibly reachable given a certain contagion probability or

threshold. The dominant algorithm is different for each process, it appears that

Top-Deg is sufficient for the simple IC process while Greedy is a good starting

point for the non-submodular LT process. Had we allowed the Greedy algorithm

or GA more simulations they certainly would have performed better, so this is not

to say that very simple heuristics like Top-Deg are better than Greedy or GA on

IC processes. It was simply to show there are sensitive and indifferent regions in

the process / graph space that can inform our dedication of computing resources in

certain algorithms. As a final note, the heatmaps in Figs 4.1,4.2 do not significantly

change in character when the comparison is just between Top-Deg, GA, and Greedy,

although the magnitude of the quality spread does change considerably. We mention

this to argue these result are more general than simply showing where Random

selection fails.
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Figure 4.1: Heatmaps of the average spread of best solution and worst solution
for all algorithms at each IC process parameter and graph parameter combination,
followed by the best algorithm at each. All results averaged over 10 trials, 5 graphs
each at k = {5, 10}.

Figure 4.2: Heatmaps of the average spread of best solution and worst solution
for all algorithms at each LT process parameter and graph parameter combination,
followed by the best algorithm at each. All results averaged over 10 trials, 5 graphs
each at k = {5, 10}.
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4.2 Hybrid Partitioning Algorithm

Before moving on to Methodology in 4.3, we introduce one final algorithm we

term a Hybrid Partitioning Algorithm. In a hybrid partitioning algorithm we

seek to reduce the search space considerably by leveraging a partition of the graph’s

structure. A hybrid algorithm will place k nodes among the m subgraphs defined by

the partition, using any appropriate algorithm, resulting in a “high-level” solutions

of the form {x1, x2, ..., xm} where xi is the number of nodes the solution will put

in partition i, and
∑m

i=1 xi = k. A (potentially different) algorithm will determine

which nodes actually get chosen for each partition i, given xi. The hybrid algorithm

will then evaluate the total set built by the high and low level algorithms in its

search for a seed set. If the structure of the graph is meaningful and in particular

associative, we hypothesize that focusing attention on the structures to target and

ignoring complex (but possibly small) inter-community interactions will yield strong

solutions more efficiently.

A similar technique was recently used by Angell and Schoenebeck [48], where,

instead of a single partition, a hierarchical-structure detection algorithm based on

distance between nodes was used to process the input graph into a full binary

tree. Then they employed a dynamic programming technique using the binary

tree to assemble max influence seed sets. In our results going forward, we refer to

each hybrid algorithm by a tuple 〈partition type, high-level alg, low-level alg〉. For

example, 〈SBM, GA, Greedy〉 would refer to a hybrid algorithm that partitions the

graph with a SBM recovery algorithm, searches the high-level structures using a
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GA, and given xi determines which nodes for each community in the partition using

a Greedy algorithm.

4.3 Methodology

In the experiments that follow, we take a look at the relative performance of

various algorithms on a variety of IM problem variants. In particular, for each we

compare the solution quality of a Greedy algorithm, a Genetic Algorithm, Top-K

Degree, and Random. For Greedy and GA solutions we also record the number

of process evaluations required and real time to calculate. All experiments were

run on Intel i5 processors between 2.6 and 3.5 GHz with serial computation (no

parallelization across cores was implemented). Due to the variance in processor

speeds and use of the computers for additional tasks as the experiments ran in

the background, the real time run data has influences beyond just computational

difficulty of the problem at hand. However, all results for any given problem variant

were executed on the same processor, and the trials were executed for each algorithm

in sequence for any given graph / process pair, such that any temporary resource

scarcity would likely impact all algorithms equally (but perhaps not equally across all

process parameters / graph types). Therefore we expect relative performance with

respect to run time within each problem variant to provide informative insights.

Run times shown are for the GA to calculate its k = 15 node seed set and for the

Greedy algorithm to calculate all of its seed sets (as it is an incremental algorithm,

this is the same as if we only asked it to calculate a k = 15 node set). We cover
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problem specific parameters and exceptions in their associated sections, and cover

here the constants across all experiments.

4.3.1 Algorithm Variants and Parameters

All greedy algorithms featured no optimization with the exception of using

the reverse-reachable set variant of Tang [3] for the IC trials. The basic genetic

algorithm (labeled “GA”) used 100 max generations, a population of 100 individuals,

2-member tournament selection, Pm = .8, Pc = .3, 2 elites, random (unweighted)

mutations, and single-point crossover. Additionally, in all trials we explore a GA

that scales its population based off the graph size (labeled “Scaled GA”), where

pop size = N/5. We also introduced two heuristics to improve run time. The first

is an early-stopping criterion: if the best elite each generation remains unchanged

for X generations, the GA is terminated and that individual returned (X = 10 in

all basic results, and X = 20 in all scaled results). The second heuristic is a cache

of fitness evaluation results that stores the fitness of 3×pop size recent evaluations.

On deterministic processes, each algorithm evaluated fitness only once per

candidate individual. The total number of trials per evaluation, for each algorithm,

is noted. Final estimated spread results for stochastic processes are estimated with

100 process simulations per solution.
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4.3.2 Graphs

We conduct all experiments on the same set of 60 graphs. Each type of graph

is represented at three different scales: N = {500, 1000, 2000}. For each scale, we

generate five graphs as follows:

• Five Barabasi-Albert Graphs with average degrees 〈k〉 = {2, 4, 6, 8, 10}

• Six Stochastic Block Models, 10 equal size communities, with 〈kintra.〉 =

{1, 3, 5} and 〈kinter〉 = {1, 3, 5}. To keep the sets of each type similar in

size, graphs with equal average intra-community and inter-community degrees

were omitted.

• Six Degree-Corrected SBMs, 10 equal size communities, 〈kintra〉 = {1, 3, 5},

〈kinter〉 = {1, 3, 5}, γ = 2. Again, if 〈kintra〉 == 〈kinter〉, the graph was

omitted.

• Real-World Networks (see Table 4.3)

4.4 Results: Influence-Maximization and Variants

Due to the breadth of the study, we start first with some general trends and

insights before presenting process specific parameter settings and their results. Pre-

sented in Fig. 4.4 is a comparison of algorithm performance and run time across

all process types. Relative spread for a single trial is calculated as the algorithm’s

seed selection’s performance divided by the best performing selection for that trial
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Figure 4.3: Network names (as taken from Network Repository [36]) followed by
number of nodes and edges, by category and size. We attempted to sample propor-
tionately across the graph meta domains for each size. There was not a suitable 500
node infrastructure graph nor 1000 node biological graph, so instead there are two
biological graphs at the first scale and two infrastructure at the second. All graphs
were unweighted and undirected.

(whichever algorithm chose it). The results in Fig. 4.4 are averaged over every

single trial for each given process. Relative time is calculated similarly, where this

time the fastest algorithm’s time is the divisor.

Immediately we see that the scaled genetic algorithm and greedy solutions are

dominant over the heuristic and random choices. Further they are typically very

close in solution quality with each other, however the scaled GA is better on average

for most processes. It is interesting to note the greedy algorithm is most competitive

on all of the Linear Threshold type processes, only being outperformed by the scaled

GA on ADV-LT. Top-K also performs relatively well for the LT processes, when

compared to how poorly it does on the others. The only exception is that Top-

K is almost the dominant algorithm for EM-IC, suggesting that the very simple

heuristic is a strong candidate for inoculation strategies. If we compare the effects

of introducing an adversary, the margin between the Greedy algorithm and scaled

GA greatly increases in favor of the GA; we see this by comparing LT versus ADV-LT
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and UC versus ADV-UC. Despite generally stronger performance on most processes,

the Scaled GA is a bit faster on average and when it does take longer it appears to

find much better solutions.

The comparison between GA and Scaled GA results suggests that the GA

performance is resilient to a poorly selected population size. With results from

Chapter 3 and the data that a low population GA runs significantly faster than a

Greedy algorithm, this makes a small population GA an ideal algorithm for probing

an unknown problem domain. A quick run time and relatively competitive results

— as long as the population is within a wide, reasonable range — should grant some

idea of whether the scenario warrants employment of more expensive algorithms. As

can be seen in the process specific results, the Scaled GA typically had many more

process simulations even when total runtime was lower than the greedy approach.

This is likely because the greedy approach, when adding to the “tail end” of the set,

has already selected a strong subset of nodes. Then it must simulate the process

with this subset plus each next node as a candidate, potentially spending a lot of

time on multi-step process simulations. While we might expect a similar situation

in the GAs, where stronger populations begin taking longer to evaluate, the early

stopping mechanism prevents that in the case where value is no longer being added

by variation.

As a final general highlight, in the IC and LT trials we explored hybrid al-

gorithms and found them to be unpredictable and frequently perform worse than

Top-K, even when given similar processing time as the Scaled GA and Greedy algo-

rithms. As these are supposed to be much more efficient and still produce reasonable
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Figure 4.4: A summary of results between Greedy, Scaled GA (Sc-GA), fixed popu-
lation GA, Top-K Degree, and Random K seed sets on all problem variants explored.
Relative spread is calculated as the average of the selected algorithm’s spread divided
by maximum spread for each trial, across all trials (graphs, process parameters, seed
set size), for every process. Similarly, relative time is calculated as the average of
the algorithm’s time divided by the fastest algorithm for each trial (excluding Top-K
and Random). For example, a relative spread of 1.00 would indicate that algorithm
was the maximum performer on every single trial, and a relative time of 1.00 would
indicate it was the fastest on each trial.

seed selections, we caution their use to cases with well-defined structures, as sug-

gested by Figs 2.8, 2.9.

4.4.1 Independent Cascade

Fig. 4.5 shows the Independent Cascade (monotonic, submodular) process

with uniform infection probabilities scaled by the average degree 〈k〉 of the graph:

c = { .2〈k〉 ,
.4
〈k〉 ,

.6
〈k〉 ,

.8
〈k〉}. The greedy algorithm in this experiment comes from Tang [3]

and makes use of reverse-reachable set sampling to improve runtime. Because of the

large number of trials to run, we allowed a maximum expected error ε = .3 such that

the total approximation guarantee on the seed sets returned is α ≈ .33. In practice,

the actual performance of the seed sets returned is probably well within that bound.

The genetic algorithm conducts 10 process simulations per fitness evaluation.

As the most studied and tractable model, here we expected the fine-tuned
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greedy algorithm from Tang to perform well. As seen in Fig. 4.5, it is strictly

dominant in all cases. Top-K is also a strong contender for this simple process.

4.4.2 Linear Threshold

Fig. 4.6 shows the Linear Threshold (monotonic, non-submodular) process

with uniform thresholds scaled by the median degree k∗ of the graph: t0 = 1
2k∗
, t3 =

1
2
, and t1, t2 uniformly between t0 and t3. Greedy algorithms from here on are

classic greedy algorithms: to determine which node to add, every node is considered

as an addition to the current set and simulations are run to determine the maximal

addition.

The results show a drastic reduction in the capacity of Top-K and Random.

Scaled GA appears to be the dominant algorithm on more complex and larger

graphs, while Greedy is best on simpler graphs.

4.4.3 Ugander Complex

Fig. 4.7 shows the Ugander Complex (non-monotonic, non-submodular) pro-

cess with infection probabilities defined by pr infection(xi) = infection factor(xi)×

c, where infection factor(x) is 0 if x <= 1, 1 if x == 2, 1.5 if x == 3, and .1

otherwise. xi is the number of distinct, connected components that are infected in

the neighborhood of vi and c ranges in c = {.2, .4, .6, .8}. Both the Greedy and GA

algorithms evaluated solutions with 5 simulations during their search process.

In these results we see a dramatic reduction in the simple heuristic’s value,
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in particular on the DC-SBM graphs. Top-K likely spreads its seed sets too far

across the many communities, choosing the highest degree node in each, but failing

to saturate many nodes past their thresholds for activation. With this complex

process, only our more expensive algorithms offer reliable performance.

4.4.4 Community Contagion

Fig. 4.8 shows for Community Contagion (monotonic, non-submodular) pro-

cess with uniform thresholds scaled by the median number of communities known k
′

of the graph: t0 = 1
2k′

, t3 = 1
2
, and t1, t2 uniformly between t0 and t3. Since we need

a special type of graph with labeled edges and communities to run this process, we

generated our own with Algorithm 2. Given a set of graphs with known community

partitions, algorithm 2 generates a new graph with all edges from the union of the

set. The merged graph’s nodes and edges aggregate all original graph community

affiliations of nodes and edges. We generate the CC merged graphs from the same

set of SBM, DCSBM, and RWN graphs used in all other trials by merging each set

of (X − 1) graphs from the original set of X. For example, one merged SBM is the

merge of the first four SBMs, leaving out the fifth. In the special case of the RWN

graphs, we used the best fit communities from SBM recovery to define the original

communities for each RWN graph.

In Fig. 4.8 we find extremely diverse behaviors across algorithms and non-

linear growth as seed-set size increases. More than any other process, CC has

much of its dynamic information hidden from simple analysis, resulting in a sharp
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Algorithm 2: Merge Algorithm for Community Contagion Graph Generation from
Experiment Graphs

for type in [”SBM”,”DCSBM”,”RWN”] do
for size in [500,1000,2000] do

graph subset ← all graphs[type,size]
for i == 0, i < 4 do

cc graph = merge(graph subset - graph subset[i])
cc graphs.append(cc graph)

end for
end for

end for

divide between our expensive algorithms and heuristics. This is not to say some

fast heuristics might not work - perhaps Top-K sorted by number of communities

to which each node belongs would perform well.

4.4.5 Epidemic Mitigation

Fig. 4.9 shows results for epidemic mitigation (monotonic, non-submodular)

with Independent Cascade process with uniform infection probabilities scaled by the

average degree 〈k〉 of the graph: c = { .2〈k〉 ,
.4
〈k〉 ,

.6
〈k〉 ,

.8
〈k〉}. The epidemic begins with

a random node (sampled and fixed before all trials began, for each graph) and up

to 10 neighbors infected. The algorithm cannot inoculate an infected node. GA

and Greedy algorithms evaluated solutions with 10 simulations during their search

process.

EM-IC shows an unexpectedly strong performance from Top-K, with only

Scaled GA outperforming on average and only specifically on the SBM and RWN

graphs. Here we note a stark contrast from the UC case where spreading the seed

selection with Top-K was detrimental. In an epidemic mitigation scenario, reducing
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the connectivity of many distributed communities appears to work very well (see

DC-SBM results).

4.4.6 Adversarial LT

Fig. 4.11 shows results for Adversarial (monotonic, non-submodular) Linear

Threshold process with uniform thresholds scaled by the median degree k∗ of the

graph: t0 = 1
2k∗
, t3 = 1

2
, and t1, t2 uniformly between t0 and t3. The adversary seed

set selection is always the top 10 nodes ranked by degree.

4.4.7 Adversarial UC

Fig. 4.10 shows results for Adversarial (non-monotonic, non-submodular)

Ugander Complex process with parameters as in uncontested UC above. The adver-

sary seed set selection is always the top 10 nodes ranked by degree. GA and Greedy

algorithms evaluated solutions with 5 simulations during their search process.

For both ADV-UC and ADV-LT, we see the Scaled GA took much longer

to compute solutions but that these solutions were on average better than greedy

selections.

4.4.8 Saturated Linear Threshold

Fig. 4.12 shows results for the Saturated Linear Threshold (non-monotonic,

non-submodular) process with activation threshold as in Linear Threshold trials

but also a saturation threshold equal to tS = 1.5t. This model spreads as in the
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Linear Threshold model, except when a node’s infected neighbors cross its saturation

threshold tS it becomes saturated and no longer can be infected or exerts influence

on other nodes.

We introduced S-LT specifically to test for a breaking point in the greedy

algorithm. We imagined a deliberately non-monotonic process would prove difficult

for a greedy strategy, however this was not the case. Greedy still performed quite

well, outperforming Scaled GA results on average. The only significant exception

seems to be some trials on the larger RWN graphs.
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Figure 4.5: Performance of seed sets in expected spread across various graph types,
averaged over the IC process with uniform infection probabilities scaled by the
average degree 〈k〉 of the graph: c = { .2〈k〉 ,

.4
〈k〉 ,

.6
〈k〉 ,

.8
〈k〉} and 5 graphs per point. Each

row represents a different graph type, and the columns correspond to graph size,
from left to right: 500, 1000, and 2000 nodes.
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Figure 4.6: Linear Threshold: Performance of seed sets in expected spread across
various graph types, averaged over the LT process with uniform thresholds scaled
by the median degree k∗ of the graph. Each row represents a different graph type,
and the columns correspond to graph size, from left to right: 500, 1000, and 2000
nodes. The final row includes timing results (excluding Rand and Top-K, which are
O(K) and O(M) respectively).
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Figure 4.7: Ugander Complex: Performance of seed sets in expected spread across
various graph types, averaged over the UC process. Each row represents a different
graph type, and the columns correspond to graph size, from left to right: 500, 1000,
and 2000 nodes.
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Figure 4.8: Community Contagion: Performance of seed sets in expected spread
across various graph types, averaged over the CC process. Each row represents a
different graph type, and the columns correspond to graph size, from left to right:
500, 1000, and 2000 nodes.
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Figure 4.9: Epidemic Mitigation: Performance of seed sets in expected number
of nodes never infected across various graph types, averaged over the IC process
with uniform infection probabilities scaled by the average degree 〈k〉 of the graph:
c = { .2〈k〉 ,

.4
〈k〉 ,

.6
〈k〉 ,

.8
〈k〉} and 5 graphs per point. Each row represents a different graph

type, and the columns correspond to graph size, from left to right: 500, 1000, and
2000 nodes.
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Figure 4.10: Adversarial UC: Performance of seed sets in expected spread across
various graph types, averaged over the Adversarial UC process. Each row represents
a different graph type, and the columns correspond to graph size, from left to right:
500, 1000, and 2000 nodes.
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Figure 4.11: Adversarial LT: Performance of seed sets in expected spread across
various graph types, averaged over the Adversarial LT process. Each row represents
a different graph type, and the columns correspond to graph size, from left to right:
500, 1000, and 2000 nodes.
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Figure 4.12: Saturated LT: Performance of seed sets in expected spread across
various graph types, averaged over the Saturated Linear Threshold process. Each
row represents a different graph type, and the columns correspond to graph size,
from left to right: 500, 1000, and 2000 nodes.
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Chapter 5: Conclusion

Through the course of this thesis, we have examined the complexity of real-

world graphs and processes which are (mostly) intractable to approximation guaran-

tees. We began with studies of real-world graphs, up to a hundred-thousand edges,

and attempted to find patterns in their community and flow structures. We found

few strong generalizations and what correlations did exist might be attributed to

specific data collection and graph design decisions. We also found that very few com-

ponent structures within real-world graphs matched commonly used random-graph

structures. Robustness, our measure of community structure “truth”, revealed some

correlation with the ability to leverage found structures to understand process dy-

namics.

Then, in Chapter 3, we took a deep dive into various design choices for genetic

variation and other parameter settings in genetic algorithms. We found little moti-

vation to pursue domain or problem specific genetic operators, noting competitive

results for genetic algorithms with classic, network agnostic operators. Furthermore,

we noted general resilience to the settings of mutation and crossover probability: so

long as the mutation probability is above .3, typically the evolutionary algorithm

performed well. Motivated by the performance invariance to crossover probabil-
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ity, we considered a Probabilistic Model Building Genetic Algorithm which better

shares information among the population. Initial trials indicate this as a promising

direction for future work, but that it is sensitive to some parameter settings. In par-

ticular, PMBGA’s may be a very strong candidate for selecting large seed sets, for

while most algorithms scale poorly with seed set size (Greedy is linear in seed set),

PMBGA can actually run faster with larger seed sets. We concluded the chapter

with a study of the strong positive relationship between the size of the population

and the size of the network, noting in particular a sharp drop-off for increasing

population size based on size of the graph.

Using this knowledge, we build a set of synthetic and real-world graphs across

small and moderate graph sizes. This single test bed was exposed to each process

introduced in Chapter 1, each under a specialized and dynamic range of process

parameters, for the set of algorithms we discussed throughout. We note that per-

formance for linear heuristics is unpredictable but frequently competitive. Greedy

algorithms typically perform well but scale poorly for large graphs and high-variance

processes. Without specific modifications, they also are relatively rigid in their per-

formance. We leave these additional adaptations for a greedy approach for future

work, specifically the following: an optimization similar to CELF but without any

approximation guarantee [17], which keeps track of which nodes had a high delta

spread on the last round and rations the total process simulations for each itera-

tion across the most promising nodes from the prior step. This may greatly reduce

runtime spent evaluating poor node candidates which add negligible influence to an

already high-performing subset. Introducing simulated annealing is also a strong
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candidate for further study, as this allows the greedy strategy to explore some with

some variation (see Zhang’s paper [45] for some comparison work with simulated

annealing and evolutionary algorithms).

Genetic algorithms seemed quite robust, offering strong performance even

without problem-specific parameter settings. Given a similar amount of process-

ing time, genetic algorithms frequently outperformed all other algorithms, partic-

ularly on more complex processes. Finally we note that the hybrid algorithms are

unpredictable but very fast (although if we have measured the robustness of the

partitioning algorithm we have some insights). An additional direction for future

work is a hierarchical, rather than fixed two-tier, hybrid system, which may yield

more consistent results.

As might be expected, the depth of graph and process complexity did not offer

us any dominant algorithm choice or perfect predictor of which algorithm will work

best for a given scenario. Instead we have learned that it is best to have a variety

of techniques, at least some of which accept tuning to the scale and complexity of

the problem. As a rule of thumb, running a linear time heuristic and greedy or

genetic algorithm at a small scale should be done to probe an unfamiliar problem

territory. Based on the relative performance an investigator can then move forward

more confidently, adjusting and improving a more complex algorithm like the GA,

or accepting the heuristic as good enough.
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Appendix A: Real-World Networks

Tables A.1-A.6 lists all graphs used in the real-world networks by name, type,

size, and edge type.

Network Name Type Meta Type Nodes Edges Weighted Discrete

aves-barn-swallow-contact-network animal social social 17 53 TRUE TRUE

aves-barn-swallow-non-physical animal social social 17 122 TRUE TRUE

aves-geese-female-foraging animal social social 20 156 TRUE TRUE

aves-geese-male-foraging animal social social 23 203 TRUE TRUE

aves-hens-pecking-order animal social social 32 496 FALSE TRUE

aves-songbird-social animal social social 110 1027 TRUE FALSE

aves-sparrow-social-2009 animal social social 31 211 TRUE FALSE

aves-sparrow-social-2010 animal social social 40 305 TRUE FALSE

aves-sparrow-social animal social social 52 454 TRUE FALSE

aves-sparrowlyon-flock-season2 animal social social 46 348 TRUE TRUE

aves-sparrowlyon-flock-season3 animal social social 27 163 TRUE TRUE

aves-thornbill-farine animal social social 62 1151 TRUE TRUE

aves-weaver-social animal social social 445 1304 TRUE TRUE

aves-wildbird-network animal social social 202 4574 TRUE FALSE

insecta-ant-trophallaxis-colony2 animal social social 39 245 TRUE TRUE

insecta-beetle-group-c1-period-2 animal social social 30 207 TRUE FALSE

insecta-beetle-group-c2-period-2 animal social social 30 195 TRUE FALSE

mammalia-asianelephant animal social social 73 60 FALSE TRUE

mammalia-bat-roosting-indiana animal social social 43 546 TRUE TRUE

mammalia-bison-dominance animal social social 26 222 TRUE TRUE

mammalia-dolphin-florida-forage animal social social 190 1134 TRUE TRUE

mammalia-dolphin-florida-overall animal social social 291 3182 TRUE TRUE

mammalia-hyena-networkb animal social social 36 585 TRUE FALSE

mammalia-voles-bhp-trapping animal social social 1686 4623 TRUE TRUE

mammalia-voles-kcs-trapping animal social social 1218 3592 TRUE TRUE

Table A.1: Real world networks used from Network Repository [36].
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Network Name Type Meta Type Nodes Edges Weighted Discrete

bio-yeast-protein-inter biological biological 1870 2203 FALSE TRUE

bio-dmela biological biological 7393 25569 FALSE TRUE

bio-diseasome biological biological 516 1188 FALSE TRUE

bio-CE-PG biological biological 1871 47754 TRUE FALSE

bio-celegans biological biological 453 2025 FALSE TRUE

bio-HS-LC biological biological 4227 39484 TRUE FALSE

bn-cat-mixed-species brain 1 brain biological 65 730 TRUE TRUE

bn-fly-drosophila medulla 1 brain biological 1781 8911 TRUE TRUE

bn-macaque-rhesus brain 1 brain biological 242 3054 TRUE TRUE

bn-macaque-rhesus cerebral-cortex 1 brain biological 91 1401 TRUE TRUE

bn-mouse brain 1 brain biological 213 16089 TRUE TRUE

ca-CondMat collaboration social 21363 91286 FALSE TRUE

ca-CSphd collaboration social 1882 1740 FALSE TRUE

ca-Erdos992 collaboration social 5094 7515 FALSE TRUE

ca-GrQc collaboration social 4158 13422 FALSE TRUE

ca-netscience collaboration social 379 914 FALSE TRUE

ENZYMES g1 cheminformatics biological 37 84 FALSE TRUE

ENZYMES g10 cheminformatics biological 32 53 FALSE TRUE

ENZYMES g13 cheminformatics biological 42 75 FALSE TRUE

ENZYMES g15 cheminformatics biological 36 64 FALSE TRUE

ENZYMES g16 cheminformatics biological 55 97 FALSE TRUE

ENZYMES g103 cheminformatics biological 59 115 FALSE TRUE

ENZYMES g105 cheminformatics biological 33 69 FALSE TRUE

ENZYMES g108 cheminformatics biological 38 82 FALSE TRUE

ENZYMES g112 cheminformatics biological 51 95 FALSE TRUE

ENZYMES g113 cheminformatics biological 52 98 FALSE TRUE

ENZYMES g118 cheminformatics biological 95 121 FALSE TRUE

ENZYMES g121 cheminformatics biological 42 82 FALSE TRUE

ENZYMES g123 cheminformatics biological 90 127 FALSE TRUE

ENZYMES g134 cheminformatics biological 32 51 FALSE TRUE

ENZYMES g147 cheminformatics biological 40 84 FALSE TRUE

ENZYMES g148 cheminformatics biological 39 80 FALSE TRUE

ENZYMES g149 cheminformatics biological 39 82 FALSE TRUE

ENZYMES g158 cheminformatics biological 40 63 FALSE TRUE

ENZYMES g167 cheminformatics biological 43 94 FALSE TRUE

ENZYMES g171 cheminformatics biological 48 99 FALSE TRUE

ENZYMES g172 cheminformatics biological 25 46 FALSE TRUE

Table A.2: Real world networks used from Network Repository [36].
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Network Name Type Meta Type Nodes Edges Weighted Discrete

ENZYMES g173 cheminformatics biological 46 96 FALSE TRUE

ENZYMES g176 cheminformatics biological 48 96 FALSE TRUE

ENZYMES g183 cheminformatics biological 42 94 FALSE TRUE

ENZYMES g185 cheminformatics biological 44 95 FALSE TRUE

ENZYMES g187 cheminformatics biological 44 94 FALSE TRUE

ENZYMES g189 cheminformatics biological 42 95 FALSE TRUE

ENZYMES g203 cheminformatics biological 56 100 FALSE TRUE

ENZYMES g204 cheminformatics biological 57 105 FALSE TRUE

ENZYMES g209 cheminformatics biological 57 101 FALSE TRUE

cit-DBLP citation social 12591 49620 TRUE TRUE

eco-everglades eco infrastructure 69 880 TRUE FALSE

eco-florida eco infrastructure 128 2075 TRUE FALSE

eco-foodweb-baydry eco infrastructure 128 2106 TRUE FALSE

eco-foodweb-baywet eco infrastructure 128 2075 TRUE FALSE

eco-mangwet eco infrastructure 97 1446 TRUE FALSE

eco-stmarks eco infrastructure 54 350 TRUE FALSE

econ-beaflw econ infrastructure 502 44899 TRUE FALSE

econ-beause econ infrastructure 507 39427 TRUE FALSE

econ-mahindas econ infrastructure 1258 7461 TRUE FALSE

econ-mbeacxc econ infrastructure 487 41686 TRUE FALSE

econ-orani678 econ infrastructure 2529 86767 TRUE FALSE

econ-poli econ infrastructure 4008 4119 TRUE FALSE

econ-poli-large econ infrastructure 15575 17427 TRUE FALSE

econ-wm1 econ infrastructure 260 2389 TRUE FALSE

email-dnc email social 1892 4385 TRUE TRUE

email-dnc-corecipient email social 906 10429 TRUE TRUE

email-enron-only email social 143 623 FALSE TRUE

email-EU email social 32430 54397 FALSE TRUE

email-univ email social 1133 5451 FALSE TRUE

ia-crime-moreno interaction social 829 1473 TRUE TRUE

ia-escorts-dynamic interaction social 10106 35032 TRUE TRUE

ia-fb-messages interaction social 1266 6451 FALSE TRUE

ia-hospital-ward-proximity interaction social 75 1139 TRUE TRUE

ia-infect-dublin interaction social 410 2765 FALSE TRUE

ia-infect-hyper interaction social 113 2196 FALSE TRUE

ia-workplace-contacts interaction social 92 755 TRUE TRUE

inf-euroroad infrastructure infrastructure 1174 1417 FALSE TRUE

inf-openflights infrastructure infrastructure 2939 15677 TRUE TRUE

inf-power infrastructure infrastructure 4941 6594 FALSE TRUE

inf-USAir97 infrastructure infrastructure 332 2126 TRUE FALSE

Table A.3: Real world networks used from Network Repository [36].
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Network Name Type Meta Type Nodes Edges Weighted Discrete

AIDS labeled other 31175 32390 FALSE TRUE

citeseer labeled other 3264 4536 FALSE TRUE

CL-10K-1d8-L5 labeled other 9221 44228 TRUE TRUE

COIL-RAG labeled other 11687 11794 FALSE TRUE

cora labeled other 2708 5278 TRUE TRUE

COX2 labeled other 19252 20289 FALSE TRUE

DD6 labeled other 4152 10320 FALSE TRUE

DD21 labeled other 5748 14267 FALSE TRUE

DD68 labeled other 775 2093 FALSE TRUE

DD199 labeled other 841 1902 FALSE TRUE

DD242 labeled other 1284 3303 FALSE TRUE

DD244 labeled other 291 822 FALSE TRUE

DD349 labeled other 897 2087 FALSE TRUE

DD497 labeled other 903 2453 FALSE TRUE

DD687 labeled other 725 2600 FALSE TRUE

escorts labeled other 10106 35032 TRUE TRUE

gene labeled other 1103 1672 FALSE TRUE

internet-industry-partnerships labeled other 219 630 TRUE TRUE

KKI labeled other 2238 4019 FALSE TRUE

Letter-high labeled other 10482 10125 FALSE TRUE

MSRC-9 labeled other 8968 21644 FALSE TRUE

Peking-1 labeled other 3341 6575 FALSE TRUE

PTC-FM labeled other 4925 5055 FALSE TRUE

PTC-FR labeled other 5110 5266 FALSE TRUE

PTC-MM labeled other 4695 4812 FALSE TRUE
PTC-MR labeled other 4915 5054 FALSE TRUE

TerroristRel labeled other 881 8592 FALSE TRUE

ca-opsahl-collaboration miscellaneous other 22015 58585 TRUE TRUE

Erdos02 miscellaneous other 5534 8472 FALSE TRUE

Erdos971 miscellaneous other 433 1314 FALSE TRUE

Erdos991 miscellaneous other 454 1417 FALSE TRUE

Harvard500 miscellaneous other 500 2043 TRUE TRUE

Journals miscellaneous other 124 5972 TRUE TRUE

ODLIS miscellaneous other 2900 16377 TRUE TRUE

Sandi authors miscellaneous other 86 124 TRUE TRUE

USAir97 miscellaneous other 332 2126 TRUE FALSE

USpowerGrid miscellaneous other 4941 6594 FALSE TRUE

power-494-bus power infrastructure 494 586 TRUE FALSE

power-662-bus power infrastructure 662 906 TRUE FALSE

power-685-bus power infrastructure 685 1282 TRUE FALSE

power-1138-bus power infrastructure 1138 1458 TRUE FALSE

Table A.4: Real world networks used from Network Repository [36].
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Network Name Type Meta Type Nodes Edges Weighted Discrete

power-bcspwr09 power infrastructure 1723 2394 FALSE TRUE

power-bcspwr10 power infrastructure 5300 8271 FALSE TRUE

power-eris1176 power infrastructure 1176 8688 FALSE TRUE

power-US-Grid power infrastructure 4941 6594 FALSE TRUE

rt alwefaq retweet social 4171 7059 TRUE TRUE

rt assad retweet social 2139 2786 TRUE TRUE

rt bahrain retweet social 4676 7977 TRUE FALSE

rt barackobama retweet social 9631 9772 TRUE FALSE

rt damascus retweet social 3052 3869 TRUE TRUE

rt dash retweet social 6288 7434 TRUE FALSE

rt gmanews retweet social 8373 8717 TRUE FALSE

rt gop retweet social 4687 5529 TRUE FALSE

rt http retweet social 8917 10314 TRUE FALSE

rt islam retweet social 4497 4616 TRUE FALSE

rt israel retweet social 3698 4164 TRUE TRUE

rt justinbieber retweet social 9405 9583 TRUE FALSE

rt ksa retweet social 7302 8107 TRUE FALSE

rt lebanon retweet social 3961 4435 TRUE TRUE

rt libya retweet social 5067 5540 TRUE FALSE

rt lolgop retweet social 9765 10075 TRUE FALSE

rt mittromney retweet social 7974 8534 TRUE FALSE

rt obama retweet social 3212 3422 TRUE TRUE

rt occupy retweet social 3225 3939 TRUE TRUE

rt occupywallstnyc retweet social 3609 3830 TRUE FALSE

rt oman retweet social 4904 6226 TRUE FALSE

rt onedirection retweet social 7987 8100 TRUE FALSE

rt p2 retweet social 4902 6016 TRUE FALSE

rt qatif retweet social 7537 8559 TRUE FALSE

rt saudi retweet social 7252 8060 TRUE FALSE

rt tcot retweet social 4547 5501 TRUE FALSE

rt uae retweet social 5248 6385 TRUE FALSE

rt voteonedirection retweet social 2280 2464 TRUE FALSE

rt-twitter-copen retweet social 761 1029 FALSE TRUE

fb-pages-company social social 14115 52127 FALSE TRUE

Table A.5: Real world networks used from Network Repository [36].
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Network Name Type Meta Type Nodes Edges Weighted Discrete

fb-pages-food social social 620 2091 FALSE TRUE

fb-pages-government social social 7057 89429 FALSE TRUE

fb-pages-politician social social 5908 41706 FALSE TRUE

fb-pages-public-figure social social 11565 67038 FALSE TRUE

fb-pages-sport social social 13866 86811 FALSE TRUE

fb-pages-tvshow social social 3892 17239 FALSE TRUE

soc-advogato social social 6551 39432 TRUE FALSE

soc-dolphins social social 62 159 FALSE TRUE

soc-hamsterster social social 2426 16630 FALSE TRUE

soc-karate social social 34 78 FALSE TRUE

soc-tribes social social 16 58 TRUE TRUE

soc-wiki-Vote social social 889 2914 FALSE TRUE

socfb-Amherst41 facebook social 2235 90954 FALSE TRUE

socfb-Bowdoin47 facebook social 2252 84387 FALSE TRUE

socfb-Hamilton46 facebook social 2314 96394 FALSE TRUE

socfb-Haverford76 facebook social 1446 59589 FALSE TRUE

socfb-Mich67 facebook social 3748 81903 FALSE TRUE

socfb-nips-ego facebook social 2888 2981 FALSE TRUE

socfb-Oberlin44 facebook social 2920 89912 FALSE TRUE

socfb-Reed98 facebook social 962 18812 FALSE TRUE

socfb-Simmons81 facebook social 1518 32988 FALSE TRUE

socfb-Smith60 facebook social 2970 97133 FALSE TRUE

socfb-Swarthmore42 facebook social 1659 61050 FALSE TRUE

socfb-USFCA72 facebook social 2682 65252 FALSE TRUE

socfb-Wellesley22 facebook social 2970 94899 FALSE TRUE

tech-as-caida2007 tech infrastructure 26475 53381 FALSE TRUE

tech-internet-as tech infrastructure 40164 85123 FALSE TRUE

tech-pgp tech infrastructure 10680 24316 TRUE TRUE

tech-WHOIS tech infrastructure 7476 56943 FALSE TRUE

web-edu web infrastructure 3031 6474 FALSE TRUE

web-EPA web infrastructure 4271 8909 TRUE TRUE

web-indochina-2004 web infrastructure 11358 47606 FALSE TRUE

web-polblogs web infrastructure 643 2280 FALSE TRUE

web-spam web infrastructure 4767 37375 FALSE TRUE

web-webbase-2001 web infrastructure 16062 25593 FALSE TRUE

mammalia-macaque-contact-sits animal social social 28 378 TRUE TRUE

mammalia-primate-association animal social social 25 280 TRUE FALSE
mammalia-raccoon-proximity animal social social 24 226 TRUE TRUE

reptilia-lizard-network-social animal social social 60 318 TRUE FALSE

reptilia-tortoise-network-fi-2009 animal social social 185 237 FALSE TRUE

Table A.6: Real world networks used from Network Repository [36].
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[10] Albert-László Barabási et al. Network science. Cambridge university press,
2016.
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