
#### Abstract

Title of Dissertation:

Intramolecular Carbon-Nitrogen Reductive<br>Elimination from Isolated Monohydrocarbyl<br>Palladium(IV) Complexes Prepared Using<br>$\mathrm{H}_{2} \mathrm{O}_{2}$ as Terminal Oxidant

Elikplim Abada, Doctor of Philosophy, 2017 Dissertation directed by: Professor Andrei N. Vedernikov, Department of Chemistry and Biochemistry University of Maryland, College Park


Carbon-nitrogen coupling is achieved traditionally by coupling of aryl halides and amines through a $\operatorname{Pd}(0) / \mathrm{Pd}(\mathrm{II})$ catalytic cycle (Buchwald-Hartwig amination). A newer, more atom-economical approach to the synthesis of amines is based on oxidative C-H amination. Recent studies of C-H amination propose the involvement of $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ catalytic cycle through a C-H activation step.

This work seeks to develop new stoichiometric and catalytic ways of forming C-N bonds through a $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ cycle using $\mathrm{H}_{2} \mathrm{O}_{2}$ as terminal oxidant. In this effort, di-2-pyridylketone(dpk) ligated palladacycles were synthesized, oxidized with $\mathrm{H}_{2} \mathrm{O}_{2}$, and the reductive elimination of the high oxidation state $\operatorname{Pd}\left(I V, \mathrm{~d}^{6}\right)$ containing species monitored. $N$-R-2-aminobiphenyl - derived substrates with electron donating groups ( $\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Et}$ ) readily form carbazoles at room temperature without formation of appreciable amounts of intermediates. The use of electron withdrawing group ( $\mathrm{R}=$ $\mathrm{COCH}_{3}, \mathrm{COCF}_{3}, \mathrm{SO}_{2} \mathrm{CH}_{3}, \mathrm{SO}_{2} \mathrm{CF}_{3}$ ) slows down the reaction for intermediates to be
observed and isolated. Mechanistic studies of the first ever $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ - N reductive elimination from an isolated $\operatorname{Pd}\left(\mathrm{IV}, \mathrm{d}^{6}\right)$ intermediate was observed to be accelerated in the presence of acids. Reductive elimination is proposed to occur from a 6-coordinate $\operatorname{Pd}\left(I V, \mathrm{~d}^{6}\right)$ center.

The dpk ligated $\operatorname{Pd}\left(\mathrm{IV}, \mathrm{d}^{6}\right)$ palladacycles derived from 4-X-substituted $N-\mathrm{SO}_{2} \mathrm{CF}_{3}-2-$ tert-butylaniline $(\mathrm{X}=\mathrm{H}, \mathrm{Br}, \mathrm{I})$, reductively eliminate the corresponding $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{N}$ coupled products, 5-X-substituted indolines in high yield only in the presence of halohalic acids ( $\mathrm{HCl}, \mathrm{HBr}$ and HI ). This confirms the importance of a proton source and a nucleophilic anion for this process to take place. Reductive elimination is proposed to occur through several competing pathways based on the fractional order of reaction with respect to $\left[\mathrm{Br}^{-}\right]$in solution.

Catalytic heterocyclization reaction was achieved using $\mathrm{H}_{2} \mathrm{O}_{2}$ with N -acetyl-2aminobiphenyl to form N -acetylcarbazole with yields dependent on temperature and rate of addition of $\mathrm{H}_{2} \mathrm{O}_{2}$.

# INTRAMOLECULAR CARBON-NITROGEN COUPLING FROM ISOLATED MONOHYDROCARBYL PALLADIUM(IV) COMPLEXES PREPARED USING $\mathrm{H}_{2} \mathrm{O}_{2}$ AS TERMINAL OXIDANT 

by

Elikplim Abada

Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2017

Advisory Committee:
Professor Andrei N. Vedernikov, (Chair)
Professor Philip DeShong
Professor Lawrence R. Sita
Professor Daniel E. Falvey
Professor Nam S. Wang
© Copyright by
Elikplim Abada
2017

This thesis is dedicated to nothing.

## Acknowledgements

I would like to thank my Advisor, Professor Andrei N. Vedernikov for agreeing to take me into his lab when no one else would. I appreciate his patience, guidance, honesty, invaluable advice, and the opportunity to grow as a scientist.

I want to thank my committee members Prof. Philip DeShong, Prof. Lawrence Sita, and Prof. Daniel Falvey. All of you were my lecturer at a point in time, and your classes formed the basis of my graduate chemistry education. Even though I was not your 'ideal' student, you were excellent in your knowledge, insights, and delivery. Thanks to Dr. Nam Sun Wang for graciously agreeing to serve as Dean's Representative on my thesis committee.

Next are Dr. Patrick K. Arthur, Dr. Kwaku Dayie and Dr. Herman Sintim for facilitating my coming to the University of Maryland, College Park. I will always be indebted to you.

I would also like to thank Dr. Yiu-Fai Lam, Dr. Yinde Wang and Dr. Peter Zavalij for NMR and XRD experiments. You guys were fantastic.

To my lab mates Shrin, Dave, Daoyong, Xiaohang, Courtney, David, Daniel, Anna, Fan, Jiaheng and Vinny, sorry for the huge mess in my hood all the time. Thanks for your tolerance and making the lab a fun place to work.

Lastly, I will like to thank my family and close friends, especially Naa Adei for being my backbone.

## Table of Contents

Dedication .....  i
Acknowledgements ..... iii
Table of Contents ..... iv
List of Schemes ..... xi
List of Figures ..... xvii
List of Abbreviations ..... XXV
Chapter 1: $\mathbf{P d}($ II) $/ \mathbf{P d}($ IV) couple mediated $\mathrm{C}-\mathrm{H}$ functionalization and common oxidants used ..... 1
1.1 C-H Activation at Transition metal centers ..... 1
1.1.1 C-H Activation at Pd(II) centers ..... 3
1.1.2 C-H Activation at Pd(IV) centers ..... 4
1.2 Buchwald-Hartwig Amination ..... 6
1.2.1 Oxidative Addition to $\operatorname{Pd}(0)$ ..... 8
1.2.2 Reductive Elimination from Pd(II) ..... 9
1.3 Intermediacy of high oxidation state Pd(III)/Pd(IV) in C-H functionalization ..... 9
1.3.1 Some selected reagents for oxidation of $\operatorname{Pd}(I I)$ to $\operatorname{Pd}(I V)$ ..... 10
1.3.1.1 lodine(III) based reagents ..... 10
1.3.1.2 N -Halosuccinimides as oxidant ..... 13
1.3.1.3 Peroxide Oxidants ..... 14
1.3.1.4 Dioxygen as a Terminal Oxidant ..... 15
1.3.1.5 Electrophilic Fluorinating Reagents ..... 15
1.3.2 Pd(III)-mediated reactions. ..... 17
1.4 Dpk-enabled C-Pd bond functionalization with hydrogen peroxide ..... 19
1.5 Our goal and approach ..... 21Chapter 2. Synthesis of $\kappa^{2}-C, N-\mathbf{2}^{\prime}-(\mathrm{N}-\mathrm{R}$-amino $)$ biphenyl-2-yl Pd(II)complexes with electron donating groups $\mathrm{R}=\mathrm{H}, \mathrm{Et}, \mathrm{Me}$ and their oxidationwith $\mathrm{H}_{2} \mathrm{O}_{2}$23
2.1 Introduction and Background. ..... 23
2.2 Synthesis of Palladacycles, 30-33 ..... 25
2.3 Oxidation of acetate-bridged palladacycle, 32, with $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$ ..... 26
2.5 Preparation of dpk-ligated palladacycles, 35-38 ..... 27
2.6 Reactivity of palladacycle 35 towards $\mathrm{H}_{2} \mathrm{O}_{2}$ in various solvents ..... 28
2.6.1 $\mathrm{D}_{2} \mathrm{O}$ ..... 28
2.6.2 AcOD ..... 29
2.6.3 MeOD ..... 31
2.7 Reactivity of 37 towards $\mathrm{H}_{2} \mathrm{O}_{2}$ in MeOD ..... 33
2.8 Reactivity of 38 in MeOD ..... 35
2.9 Reactivity of 36 in MeOD ..... 36
2.10 Conclusion ..... 38
2.11 Experimental ..... 40
Chapter 3. Synthesis and Reactivity of $\kappa^{2}-C, N-2^{\prime}$-(N-R-amido)biphenyl-2-yl $\operatorname{Pd}(\mathrm{II})$ complexes with electron withdrawing groups $\mathrm{R}=\mathrm{COCH}_{3}, \mathrm{COCF}_{3}$, $\mathrm{SO}_{2} \mathrm{CH}_{3}, \mathrm{SO}_{2} \mathrm{CF}_{3}$ ..... 48
3.1 Introduction and Background ..... 48
3.2 Preparation of dpk - ligated palladacycles 50, 51, 61 and 66 bearing an electron-withdrawing group at the amide nitrogen atom ..... 50
3.3 Characterization and reactivity of the $\mathbf{N}$-acetyl $\mathrm{Pd}(\mathrm{II})$ complex, 50(MeOH) ..... 51
3.3.1 Structural characterization of $\mathbf{5 0 ( \mathbf { M e O H } )}$ ..... 51
3.3.2 Reactivity of $\mathbf{5 0}$ towards $\mathrm{H}_{2} \mathrm{O}_{2}$ in different solvents. ..... 52
3.3.2.1 MeOD ..... 52
3.3.2.2 AcOD ..... 55
3.3.2.3 $C D_{3} C N$ ..... 56
3.3.2.4 THF ..... 60
3.4 Characterization and reactivity of the $\mathbf{N}$-trifluoroacetyl $\mathbf{P d}($ II ) complex, 51(MeOH) ..... 62
3.4.1 Characterization of the N-trifluoroacetyl Pd(II) complex, 51(MeOH) ..... 62
3.4.2 Reactivity of $\mathbf{5 1}(\mathbf{M e O H})$ towards $\mathrm{H}_{2} \mathrm{O}_{2}$ in different solvents. ..... 63
3.4.2.1 MeOD ..... 63
3.4.2.2 $C D_{3} C N$ ..... 64
3.4.2.3 THF ..... 66
3.4.2.4 AcOD ..... 68
3.4.3 Isolation and reactivity of N-trifluoroacetyl Pd(IV) complex, 59 ..... 71
3.4 Characterization and reactivity of the N -methanesulfonyl Pd(II) complex, 61(MeOH) ..... 73
3.4.1 Characterization of the N -methanesulfonyl $\mathrm{Pd}(\mathrm{II})$ complex $\mathbf{6 1 ( M e O H )}$ ..... 73
3.4.2 Reactivity of $\mathbf{6 1}(\mathbf{M e O H})$ towards $\mathrm{H}_{2} \mathrm{O}_{2}$ in different solvents. ..... 74
3.4.2.1 MeOD ..... 74
3.4.2.2 AcOD ..... 75
3.4.2.3 THF ..... 77
3.4.2.4 $\mathrm{CH}_{3} \mathrm{CN}$ ..... 82
3.5 Isolation and characterization of the methanesulfonyl Pd(IV) amido aryl complex 63. ..... 83
3.6 Characterization and reactivity of the $\mathbf{N}$-trifluoromethanesulfonyl Pd(II) complex 66•MeCN ..... 84
3.6.1 Characterization of the N-trifluoromethanesulfonyl Pd(II) complex 66•MeCN ..... 84
3.6.2 Reactivity of $\mathbf{6 6} \cdot \mathbf{M e C N}$ towards $\mathrm{H}_{2} \mathrm{O}_{2}$ in different solvents. ..... 86
3.6.2.1 AcOD ..... 86
3.6.2.2 MeOD ..... 88
3.6.2.3 THF ..... 88
3.7 Synthesis of the $\mathbf{N}$-trifluoromethanesulfonyl Pd(IV) amido aryl complex68.93
3.8 Conclusions ..... 94
3.9 Experimental. ..... 96
Chapter 4: Reactivity of $\kappa^{2}-C, N-\mathbf{2}^{\prime}-(N-R-a m i d o) b i p h e n y l-2-y l ~ P d(I V) ~$
complexes ..... 109
4.1 Introduction ..... 109
4.2 Characterization and reactivity of $\mathbf{N}$-methanesulfonylamido $\mathbf{P d}(\mathrm{IV})$ complex, 63 ..... 110
4.2.1 H/D exchange of 63 ..... 110
4.2.2 C(sp $\left.{ }^{2}\right)$-N Reductive elimination of 63 ..... 111
4.3 Characterization and reactivity of $\mathbf{N}$-trifluoromethanesulfonylamido Pd(IV) complex 68 ..... 114
4.3.1 H/D exchange ..... 114
4.3.2 $\mathrm{C}\left(\mathrm{sp}^{2}\right)$-N Reductive elimination of 68.MeCN in $\mathrm{CD}_{3} \mathrm{CN}$ at $10{ }^{\circ} \mathrm{C}$ ..... 116
4.3.3 Reactivity of $\mathbf{6 8 . M e C N}$ in THF- $d_{8}$ ..... 118
4.3.4 Reactivity of 68.MeCN in MeOD ..... 119
4.3.5 Reactivity of $\mathbf{6 8} \cdot \mathbf{M e C N}$ in AcOD ..... 121
4.3.6 Reactivity of $\mathbf{6 9} \cdot \mathbf{A c O H}$ in $\mathrm{CD}_{3} \mathrm{CN}$ ..... 126
4.3.7 Reactivity of $\mathbf{6 8}$ in the presence of different acids ..... 126
4.3.7.1 $\mathrm{HClO}_{4}$ ..... 126
4.3.7.2 $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ ..... 126
4.3.7.3 $\mathrm{H}_{2} \mathrm{SO}_{4}$ ..... 127
4.3.7.5 $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$ ..... 128
4.3.7.6 TFA ..... 130
4.3.7.7 HBr and HCl ..... 131
4.3.8 Reaction of 68 in $\mathrm{CD}_{3} \mathrm{CN}$ with different equivalents of $\mathrm{HBF}_{4}$ ..... 133
4.3.8.1 With 1 equivalent of $\mathrm{HBF}_{4}$ to form $N$-trifluoromethanesulfonamidoPd(IV)(MeCN), 75(BF4)...................................................................................... 133
4.3.8.2 With 1.3 equivalents $\mathrm{HBF}_{4}$ ..... 138
4.3.9 Lability of $\mathrm{CD}_{3} \mathrm{CN}$ ligand in $75\left(\mathrm{BF}_{4}\right)$ ..... 140
4.3.9.1 Addition of $\mathrm{CF}_{3} \mathrm{COONa}$ to a solution of $75\left(\mathrm{BF}_{4}\right)$. ..... 140
4.3.9.2 Addition of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{Na}$ to a solution of 75(BF4) ..... 142
4.3.10 Reactivity of $\mathbf{6 8}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ with 1 eq of $\mathrm{HBF}_{4}$ ..... 143
4.3.11 Proposed mechanism for C-N bond elimination of 68 in MeCN containing $\mathrm{HBF}_{4}$ additives ..... 145
4.4 Conclusion ..... 147
4.5 Experimental ..... 148
Chapter 5. Synthesis and Reactivity of $\kappa^{2}-C, N-2^{\prime}-\left(\mathbf{2}^{\prime}, 2^{\prime}-\right.$ dimethylethanediyl)-
N-R-anilido Pd(II) Complexes with Electron Withdrawing Group ..... 150
5.1 Introduction and Background ..... 150
5.2 Preparation, characterization, and oxidation of dpk-supported amido alkyl Pd(II) complex, 81 ..... 151
5.2.1 Preparation and characterization of N -(2- tertbutylphenyl)trifluoromethanesulfo- namidePd(II)(dpk), 81 ..... 151
5.2.2 Oxidation of $\mathbf{8 1}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ to form $\mathbf{8 4}$ ..... 153
5.3 Reactivity of $\mathbf{8 4}$ in different solvents ..... 156
5.3.1 Acetonitrile ..... 157
5.3.2 Acetone ..... 157
5.3.3 Methanol ..... 158
5.3.4 Toluene ..... 158
5.3.5 Dichloromethane ..... 158
5.3.6 Acetic acid ..... 159
5.3.7 DMSO ..... 159
5.4 Reactivity of 84 with different additives ..... 159
5.4.1 Pyridine ..... 159
5.4.2 Pyridine-TFA ..... 160
5.4.3 Trifluoroacetic acid (TFA) ..... 160
5.4.4 Acetic acid ..... 161
5.4.5 Brookhart's acid ..... 161
5.4.6 Hydrochloric acid ..... 162
5.4.7 Hydrobromic acid ..... 164
5.4.8 Hydroiodic acid ..... 165
5.4.9 Addition of salts KBr and LiCl ..... 166
5.4.10 TFA/KBr ..... 166
5.4.11 Tosyl Chloride ..... 166
5.4.12 KOH(aq) ..... 167
5.5 Kinetics ..... 168
5.5.1 Reaction with 2 equivalents of $\operatorname{HBr}(\mathrm{aq})$ ..... 168
5.5.2 Reversibility of protonation. ..... 169
5.5.3 Possible mechanisms of the $\mathrm{C}-\mathrm{N}$ coupling of 84 in the presence of HBr ..... 171
5.5.4 Initial rates ..... 173
5.5.5 Pathway 1 - direct $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{N}$ reductive elimination from a $\operatorname{Pd}(\mathrm{IV})$ complex ..... 175
5.5.6 Pathway 2c $-\mathrm{S}_{\mathrm{N}} 2$ attack at $\mathrm{CH}_{2}$ fragment of $\mathrm{Pd}(\mathrm{IV})$ ..... 176
5.5.7 Pathway 3 - dissociation of the amido donor atom ..... 176
5.6 Characterization and reactivity of a bromo-substituted analog of amido alkyl Pd(IV) complex 84 ..... 179
5.7 Characterization and reactivity of an iodo-substituted analog of amido alkyl Pd(IV) complex 84 ..... 181
5.8 Conclusion ..... 182
5.9 Experimental ..... 184
Chapter 6. Palladium-Catalyzed Oxidative C-H Amination with $\mathrm{H}_{2} \mathrm{O}_{2}$ as
Oxidant. ..... 198
6.1 Introduction ..... 198
6.2 Results and Discussion ..... 199
6.3 Conclusions ..... 203
Chapter 7: Conclusion and Future Directions ..... 204
Appendices ..... 207
References ..... 258

## List of Schemes

Scheme 1.1 Electrophilic aromatic substitution mechanism for C-H activation at a Pd center with indolines. $(\mathrm{L})_{\mathrm{n}}$ is $\mathrm{PPh}_{3}$ ..... 3
Scheme 1.2 Concerted cyclometallation-deprotonation (CDM) mechanism of C-H activation ..... 4
Scheme 1.3 C-H Activation at a $\operatorname{Pd}(I V) d^{6}$ metal center by Sanford ..... 5
Scheme 1.4 Proposed catalytic route involving C-H activation at a $\operatorname{Pd}(I V)$ and a $\operatorname{Pd}(I I)$ metal centers through a dual catalytic pathway ..... 5
Scheme 1.5 General scheme for the Buchwald-Hartwig amination reaction ..... 7
Scheme 1.6 Proposed mechanism for the Buchwald-Hartwig amination reaction ..... 7
Scheme 1.7 Proposed mechanism for oxidative addition of phenyl iodide to $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}$. ..... 8
Scheme 1.8 Proposed mechanism for the acetoxylation of 2-phenylpyridine with $\mathrm{PhI}(\mathrm{OAc})_{2}$ as oxidant and $\mathrm{Pd}(\mathrm{OAc})_{2}$ as a catalyst. ..... 11
Scheme 1.9 Stoichiometric acetoxylation of benzo[h]quinoline with $\operatorname{PhI}(\mathrm{OAc})_{2}$ as the terminal oxidant ..... 11
Scheme 1.10 Proposed mechanisms for the formation of $\mathbf{1 1}$ from $\mathbf{9}$ ..... 12
Scheme 1.11 Proposed ionic mechanism for the formation of $\mathbf{1 1}$ from 9 as proposed by the Sanford group ..... 13
Scheme 1.12 Chlorination of 2-phenylpyridine with N-chlorosuccinimide as terminal oxidant through a $\operatorname{Pd}(I V)$ intermediate. ..... 14
Scheme 1.13 C-O and C-X ( $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ ) reductive elimination from a $\mathrm{Pd}(\mathrm{IV})$ center with $\mathrm{H}_{2} \mathrm{O}_{2}$ as terminal oxidant
Scheme 1.14 Acetoxylation of 8-methylquinoline substrates with $\mathrm{O}_{2}$ as terminal oxidant as reported by Vedernikov. ..... 15
Scheme 1.15 Proposed transformations of 15 into different products based on additives and reaction conditions. ..... 16
Scheme 1.16 Transformation of $\mathbf{1 6}$ into different products 17 or $\mathbf{1 8}$ based on the identity of the cation bound to tosylate by the Sanford group ..... 16
Scheme 1.17 C-N reductive elimination from Pd(IV) alkyl complex, 19, as reported by Sanford ..... 17
Scheme 1.18 C-Cl reductive elimination from isolated dimeric $\mathrm{Pd}(I I I)$ as reported by Ritter ..... 18
Scheme 1.19 Proposed mechanisms for the formation of C-Cl product 23 from the isolated dimeric Pd(III) precursor, 21 ..... 19
Scheme 1.20 Proposed mechanism for the dpk enabled oxidation of a monohydrocarbyl $\mathrm{Pd}(\mathrm{II})$ center with $\mathrm{H}_{2} \mathrm{O}_{2}$ to form the corresponding $\mathrm{Pd}(\mathrm{IV})$ ..... 20
Scheme 1.21 Proposed mechanism for the oxidative C-H amination with $\mathrm{H}_{2} \mathrm{O}_{2}$ as terminal oxidant ..... 21
Scheme 2.1 Proposed mechanism for the reaction of N -acyl-2-aminobiphenyl substrates with $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and $\mathrm{Cu}(\mathrm{OAc})_{2} / \mathrm{O}_{2}$ as oxidant to give the corresponding N-acetylcarbazoles as reported by Gaunt. ...................................................... 23Scheme 2.2 Proposed mechanism for the $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyzed oxidative $\mathrm{C}-\mathrm{H}$ aminationwith $\mathrm{PhI}(\mathrm{OAc})_{2}$ as terminal oxidant as proposed by Gaunt.24
Scheme 2.3 Synthesis of acetate-bridged palladacycles 30-33 ..... 25
Scheme 2.4 Reactivity of 32 with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to form 34 ..... 26
Scheme 2.5 Preparation of dpk-ligated Pd complexes 35-38 ..... 27
Scheme 2.6 Reversible addition of MeOH across the C=O bond of 35 - 38 ..... 28
Scheme 2.7 Oxidation of $\mathbf{3 5}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOH to produce $\mathbf{4 0}$ via intermediate $\mathbf{3 9}$ at 22 ${ }^{0} \mathrm{C}$. ..... 29
Scheme 2.8 Oxidation of $\mathbf{3 5}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CD}_{3} \mathrm{OD}$ to produce $\mathbf{4 0}$ at $22^{\circ} \mathrm{C}$. ..... 31
Scheme 2.9 Proposed neutral Pd(IV) intermediate formed by deprotonation of the ammine group by $\mathrm{OAc}^{-}$. ..... 33
Scheme 2.10 Reactivity of 37 with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in MeOD. ..... 34
Scheme 2.11 Reactivity of $\mathbf{3 8}$ in MeOD with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to give $\mathbf{4 3}$ ..... 35
Scheme 2.12 Reactivity of $\mathbf{3 6}$ in MeOD with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to give 45 ..... 36
Scheme 3.1 Dependence of rate of reductive elimination on the presence of electron donating or electron withdrawing groups at the amide nitrogen atom at a Pd(II) center, as reported by Hartwig. ..... 48
Scheme 3.2 Preparation of dpk ligated palladacycles 50, 51, 61 and 66 ..... 50
Scheme 3.3 Reactivity of $\mathbf{5 0}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in MeOD to form 55 at $5^{0} \mathrm{C}$. ..... 52
Scheme 3.4 Reactivity of $\mathbf{5 0}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD to form 55 at $22{ }^{\circ} \mathrm{C}$. ..... 55
Scheme 3.5 Reactivity of 50 toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$ to form 53 and 55 at $22{ }^{\circ} \mathrm{C}$. ..... 57
Scheme 3.6 Reactivity of 50 toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in THF-d $\mathrm{d}_{8}$ to form 55 at $22{ }^{\circ} \mathrm{C}$. ..... 60
Scheme 3.7 Reactivity of $\mathbf{5 1}$ towards $\mathrm{H}_{2} \mathrm{O}_{2}$ in MeOD at $22{ }^{0} \mathrm{C}$. ..... 63
Scheme 3.8 Reactivity of $\mathbf{5 1}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at $22{ }^{\circ} \mathrm{C}$. ..... 65
Scheme 3.9 Reactivity of $\mathbf{5 1}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ to form $\mathbf{5 8}$ in THF- $\mathrm{d}_{8}$ ..... 66
Scheme 3.10 Proposed reaction of 51 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD to form intermediates 57, 59 and the carbazole 58. ..... 69
Scheme 3.11 Reactivity of $\mathbf{6 1}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ to form $\mathbf{6 4}$ in MeOD. ..... 74
Scheme 3.12 Reactivity of $\mathbf{6 1}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD to form the carbazole 64 ..... 76
Scheme 3.13 Reactivity of $\mathbf{6 1}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in THF- $\mathrm{d}_{8}$ to form the intermediates 62, $\mathbf{6 3}$ and the carbazole 64 ..... 78
Scheme 3.14 The interconversion between the endo and exo isomers of 62. ..... 78
Scheme 3.15 Reactivity of $\mathbf{6 1}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$ to form $\mathbf{6 3}$ at $22{ }^{\circ} \mathrm{C}$. ..... 82
Scheme 3.16 Reactivity of $\mathbf{6 6}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ to form $\mathbf{7 0}$ in AcOD. ..... 86
Scheme 3.17 Reactivity of $\mathbf{6 6}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in THF- $\mathrm{d}_{8}$ to form $\mathbf{7 0}$ ..... 89
Scheme 3.18 Reactivity of $\mathbf{6 6}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ to form $\mathbf{6 8}$ in $\mathrm{CD}_{3} \mathrm{CN}$. ..... 91
Scheme 4.1 Reactivity of a $\mathrm{TpNi}(\mathrm{IV})$ complex to form 3,3`-dimethylindoline as reported by Sanford ..... 110
Scheme 4.2 The H/D exchange of 63 with $\mathrm{D}_{2} \mathrm{O}$. ..... 110
Scheme 4.3 Reductive elimination of $\mathbf{6 3}$ to form $\mathbf{6 4}$ in MeOD at $22{ }^{\circ} \mathrm{C}$. ..... 112
Scheme 4.4 H/D exchange reaction involving 68 and $\mathrm{D}_{2} \mathrm{O}$. ..... 114
Scheme 4.5 Reactivity of 68 at $105^{\circ} \mathrm{C}$ in $\mathrm{CD}_{3} \mathrm{CN}$. ..... 117
Scheme 4.6 Reactivity of 68 in THF-d ${ }_{8}$ ..... 118
Scheme 4.7 Reactivity of 68 in MeOD at $22{ }^{\circ} \mathrm{C}$. ..... 119
Scheme 4.8 Reactivity of $\mathbf{6 8}$ to form $\mathbf{6 9}$ and 70 in AcOD at $22^{\circ} \mathrm{C}$. ..... 121
Scheme 4.9 Reactivity of $\mathbf{6 9}$ in DMSO to form 70 at room temperature. ..... 125
Scheme 4.10 Proposed reactivity of $\mathbf{6 8}$ in $\mathrm{CD}_{3} \mathrm{CN}$ with 3 equiv of $\mathrm{MeSO}_{3} \mathrm{H}$ to form 72 and 70 at $22{ }^{\circ} \mathrm{C}$ ..... 129
Scheme 4.11 Proposed reactivity of $\mathbf{6 8}$ in $\mathrm{CD}_{3} \mathrm{CN}$ with 3 equiv of $\mathrm{CF}_{3} \mathrm{COOH}$ to form $\mathbf{7 3}$ and 70 at $22{ }^{\circ} \mathrm{C}$ ..... 130
Scheme 4.12 Proposed reactivity of $\mathbf{6 8}$ in $\mathrm{CD}_{3} \mathrm{CN}$ with 3 equiv of HCl or HBr at $22{ }^{\circ} \mathrm{C}$.132
Scheme 4.13 Reactivity of $\mathbf{6 8}$ with 1 equiv of $\mathrm{HBF}_{4}$ in $\mathrm{CD}_{3} \mathrm{CN}$ to form 75 at $22{ }^{\circ} \mathrm{C}$. ..... 134
Scheme 4.14 Reactivity of 75 with $\mathrm{CF}_{3} \mathrm{COONa}$ to form 78 at $22{ }^{\circ} \mathrm{C}$. ..... 140
Scheme 4.15 Plausible reaction routes for 68 with 1 equiv of $\mathrm{HBF}_{4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $22{ }^{\circ} \mathrm{C}$.143
Scheme 4.16 Proposed reaction scheme for the C-N reductive elimination from 68 in thepresence of 1 equivalent of $\mathrm{HBF}_{4}$ in $\mathrm{CD}_{3} \mathrm{CN}$ to form 70 at $22{ }^{\circ} \mathrm{C}$................ 145Scheme 5.1 Direct synthesis of substituted N-acylindolines from correspondingsubstituted N-acyl-2-tertbutylanilides as reported by Glorius.151
Scheme 5.2 Synthesis of dpk ligated 2-tertbutylaniline palladacycles 81-83. ..... 152
Scheme 5.3 Synthesis of $\mathbf{8 4}$ ..... 153
Scheme 5.4 Reductive elimination from 84 to form 86 and/or 89 ( $\mathrm{R}=\mathrm{H}$ ). ..... 156
Scheme 5.5 Reactivity of $\mathbf{8 4}$ in the presence of HCl to form a rapidly equilibrating mixture of $\mathbf{8 4}$ and a derived aqua complex $\mathbf{8 5}$ which undergoes reductive elimination to produce $\mathbf{8 6}$ and $\mathbf{8 9}$ ..... 162
Scheme 5.6 Reactivity of $\mathbf{8 4}$ in the presence of KOH to give $\mathbf{8 9}$ as the sole organic product. ..... 167
Scheme 5.7 Reaction of $\mathbf{8 4}$ with 2 equivalents of HBr at $22^{\circ} \mathrm{C}$. ..... 168
Scheme 5.8 Reversibility of protonation of $\mathbf{8 4}$ with in DMSO at $22{ }^{\circ} \mathrm{C}$ ..... 169
Scheme 5.9 Proposed mechanisms for the formation of $\mathbf{8 6}$ from 84. ..... 175
Scheme 5.10 Independent synthesis of $\mathbf{8 6}$ from $\mathbf{9 0}$ ..... 177
Scheme 5.11 Synthesis of complex 91. ..... 179
Scheme 5.12 Reactivity of $\mathbf{9 1}$ to form $\mathbf{9 3}$ with 2 equivalents of HBr in $\mathrm{DMSO}-\mathrm{d}_{6}$. ..... 180
Scheme 5.13 Synthesis of $\mathbf{9 2}$ from 80. ..... 181
Scheme 5.14 Reactivity of $\mathbf{9 2}$ to form $\mathbf{9 4}$ with 2 equivalents of HBr in $\mathrm{DMSO}-\mathrm{d}_{6}$. ..... 182
Scheme 6.1 Screening of substrates towards reactivity with $\mathrm{H}_{2} \mathrm{O}_{2}$ ..... 200
Scheme 6.2 Screening of ligands for catalytic C-H amination with 46 ..... 200
Scheme 6.3 Catalytic C-H amination with 46 to form 54 with Li -(Me-dpms) as ligand. 202
Scheme 7.1 Trends for the reactivity of dpk ligated Pd(II) 2-aminobiphenyl substratestowards $\mathrm{H}_{2} \mathrm{O}_{2}$.204

## List of Figures

Figure 2.1 ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of $\mathbf{3 5}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ to form $\mathbf{4 0}$ in AcOD at 22
$\qquad$
${ }^{0} \mathrm{C}$. 30

Figure 2.2 ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture of $\mathbf{3 5}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ to form 40 in MeOD at $22{ }^{0} \mathrm{C}$.
$\qquad$

Figure 2.3 ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture of $\mathbf{3 8}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ to form $\mathbf{4 3}$ in MeOD at $22{ }^{\circ} \mathrm{C}$

Figure 2.4 Reactivity of 36 in MeOD with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to give 45 . 37

Figure 2.5 ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixture containing 36 and $\mathrm{H}_{2} \mathrm{O}_{2}$ in MeOD at $22{ }^{0} \mathrm{C}$

Figure 3.1 Electronic effects on the rate of reductive elimination of C-N bond from an isolated $\mathrm{Pd}(\mathrm{II})$ complex as reported by Buchwald.

Figure 3.2 X-ray crystal structure of $\mathbf{5 0 ( M e O D )}$ showing the addition of MeOD across the ketone group of $\mathbf{5 0}$.

Figure 3.3 Monitoring of $\mathbf{5 0 ( M e O H )}$ in MeOD with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to give $\mathbf{5 5}$ at $22{ }^{0} \mathrm{C}$

Figure 3.4 Monitoring of $\mathbf{5 0 ( M e O H )}$ in MeOD with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to give 55 at 5
$\qquad$

Figure 3.5 ${ }^{1} \mathrm{H}$ NMR of 52 in $\mathrm{CD}_{3} \mathrm{CN}$ showing the signal of the proton of its peroxyketal fragment at 14.78 ppm . 57

Figure 3.6 ${ }^{1} \mathrm{H}$ NMR monitoring of the reaction of 50 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$ to form $55 . .59$

Figure 3.7 First order plot for the elimination from 53 to form 55 60

Figure 3.8 ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture of 49 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in THF- $\mathrm{d}_{8}$ showing peroxyketal proton signal at 14.81 ppm .

Figure $3.9{ }^{1} \mathrm{H}$ NMR spectroscopy monitoring of the reactivity of $\mathbf{5 1 ( \mathbf { M e O H } ) \text { in MeOD at }}$ $22{ }^{0} \mathrm{C}$ 64

Figure 3.10 ${ }^{1} \mathrm{H}$ NMR spectroscopy monitoring of the reactivity of 51 in $\mathrm{CD}_{3} \mathrm{CN}$ at $22{ }^{\circ} \mathrm{C}$.
$\qquad$

Figure $3.11{ }^{1} \mathrm{H}$ NMR spectroscopy monitoring of the reactivity of 51 in THF- $\mathrm{d}_{8}$ at $22{ }^{\circ} \mathrm{C}$.
$\qquad$

Figure 3.12 A profile of the reaction of $\mathbf{5 1}$ (blue diamonds) with 3 equiv $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD to form intermediates 57, 59 and the carbazole 58, based on ${ }^{1} \mathrm{H}$ NMR monitoring at $22{ }^{\circ} \mathrm{C}$........................................................................................................... 69

Figure 3.13 ${ }^{1} \mathrm{H}$ NMR monitoring of the reaction of 51 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD at $22{ }^{0} \mathrm{C} . \ldots . . .70$

Figure 3.14 ${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- $\mathrm{d}_{6}$ of a mixture containing 59 and $\mathbf{6 0}$ as the major component, before (below) and after addition of two drops of $\mathrm{D}_{2} \mathrm{O}$ (above).

Figure $3.15{ }^{19} \mathrm{~F}$ NMR spectrum of a mixture containing 59 as the major component in DMSO-d ${ }_{6}$.

Figure $3.16{ }^{1} \mathrm{H}$ NMR monitoring of the reaction of $\mathbf{6 1}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in MeOD at $22{ }^{\circ} \mathrm{C}$. 75

Figure 3.17 ${ }^{1} \mathrm{H}$ NMR monitoring of the reaction of $\mathbf{6 1}$ with 3 equiv $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD at 22 ${ }^{0} \mathrm{C}$ 77

Figure $3.18{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6 1}$ (below) and $\mathbf{6 2}$ (above) in THF- $\mathrm{d}_{8}$ 79

Figure 3.19 ORTEP plot of complex 62 with the endo-orientation of the OOH group.79

Figure $3.20{ }^{1} \mathrm{H}$ NMR spectrum of the $\mathrm{Pd}(\mathrm{II})$ hydroperoxo ketal complex 62 (bottom) and its mixture with the $\operatorname{Pd}(I V)$ hydroxo derivative 63 and the carbazole 64 (top) after 24 hours in THF-d 8 at $22{ }^{\circ} \mathrm{C} .$. ................................................................. 81

Figure $3.21{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 1 ( \mathbf { M e O H } )}$ in $\mathrm{CD}_{3} \mathrm{CN}$ (bottom), 30 minutes after adding $\mathrm{H}_{2} \mathrm{O}_{2}$ (middle) and 60 minutes after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ (top).

Figure $3.22{ }^{1} \mathrm{H}$ NMR spectrum in DMSO- $\mathrm{d}_{6}$ of the Pd(IV) amido aryl complex 63 containing $<5 \%$ of the dpk hydroperoxoketal - derived $\operatorname{Pd}($ II $)$ complex 62 as a major impurity. ............................................................................................... 84

Figure 3.23 X-ray crystal structure of $\mathbf{6 6} \cdot \mathbf{M e C N}$ (the solvent of crystallization is not shown)

Figure 3.24 Oxidation of $\mathbf{6 5}$ with 3 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD at $22^{\circ} \mathrm{C}$

Figure $3.25{ }^{1} \mathrm{H}$ NMR spectrum of a 5:1 mixture of endo- and exo-isomers of $\mathbf{6 7}$ in THF$\mathrm{d}_{8}$ with arrows showing the peroxyketal signals at 11.03 ppm and 10.59 ppm .

Figure $3.26{ }^{1} \mathrm{H}$ NMR monitoring of the reaction of $\mathbf{6 6}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in THF- $\mathrm{d}_{8}$ at $22{ }^{0} \mathrm{C} . \ldots 90$

Figure $3.27{ }^{1} \mathrm{H}$ NMR spectrum showing the conversion of 67 into 68 DMSO-d ${ }_{6}$ 91

Figure 3.28 A detailed picture of the downfield region of ${ }^{1} \mathrm{H}$ NMR spectrum showing the conversion of 67 to 68 in DMSO-d ${ }_{6}$.92


Figure 3.30 X-ray crystal structure of 68. 93

Figure $4.1{ }^{1} \mathrm{H}$ NMR spectra of 63 in $\mathrm{DMSO}-\mathrm{d}_{6}$ before (bottom) and after addition of $\mathrm{D}_{2} \mathrm{O}$ (top).............................................................................................................. 111

Figure 4.2 A plot of $\ln \left([63]_{0} /[63]\right)$ vs time for 63 in MeOD at $22^{\circ} \mathrm{C} . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ 112 ~$

Figure 4.3 The DFT-calculated Gibbs energy profile for the C-N reductive elimination of 63 in MeOH. .................................................................................................. 113

Figure $4.4{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6 8} \cdot \mathbf{M e C N}$ in DMSO- $\mathrm{d}_{6}$ before (bottom) and after addition of $\mathrm{D}_{2} \mathrm{O}$ (top) 116

Figure $4.5{ }^{1} \mathrm{H}$ NMR spectra of complex 68 (bottom) after heating for 14 hours at $60{ }^{\circ} \mathrm{C}$ and $105^{\circ} \mathrm{C}$ (top).

Figure 4.6 ${ }^{1} \mathrm{H}$ NMR spectra of complex 68 containing a more soluble impurity of 66 and some 67 in THF- $d_{8}$ after 5 minutes upon dissolution (bottom) and after 46 hours (top) 118

Figure $4.7{ }^{19}$ F NMR spectrum in MeOD of 68 containing impurities of $\mathbf{6 7}$ and $\mathbf{6 6}$. The arrow points to the peak for 70 which was formed only in $3.6 \%$ yield after 95
h 120

Figure $4.8{ }^{1} \mathrm{H}$ NMR spectral monitoring of 68 in AcOD for 51 hours. 122

Figure 4.9 Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6 8}$ observed in the direct oxidation of $\mathbf{6 6}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD (bottom) and isolated 68 dissolved in AcOD (top)...... 123

Figure $4.10{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 8} \cdot \mathbf{M e C N}$ (bottom) and $\mathbf{6 9 \cdot} \mathbf{A c O H}$ (top) in DMSO-d ${ }_{6}$. The aromatic region is expanded for clarity. The apical ligand OAc could be observed at 1.71 ppm for $69 \cdot \mathrm{AcOH}$.

Figure $4.11{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 9} \cdot \mathbf{A c O H}$ in DMSO-d ${ }_{6}$ after 5 minutes (bottom), 48 hours (middle) and nine days (top). 125

Figure 4.12 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 8}$; 5 minutes after adding 3 equivalents of $\mathrm{HBF}_{4}$ and 15 minutes after addition. 128

Figure 4.13 Plot of $\ln \left([68]_{0} /[68]\right)$ vs time with 3 equivalent of $\mathrm{MeSO}_{3} \mathrm{H}$ in $\mathrm{CD}_{3} \mathrm{CN}$ 129

Figure 4.14 Plot of $\ln \left([68]_{0} /[68]\right)$ vs time with 3 equivalent of TFA in $\mathrm{CD}_{3} \mathrm{CN} . . . . . . . . .$.

Figure $4.15{ }^{1} \mathrm{H}$ NMR spectrum of 68; 5 minutes after adding 3 equivalents of $\mathrm{HBr}, 60$ minutes after addition and 72 h after addition.. ............................................ 132

Figure $4.16{ }^{1} \mathrm{H}$ NMR spectrum of 68; 5 minutes after adding 3 equivalents of $\mathrm{HCl}, 60$ minutes after addition and 72 h after addition.

Figure $4.17{ }^{1} \mathrm{H}$ NMR spectrum of $68+1$ equivalent $\mathrm{HBF}_{4}$ upon mixing and after 24 hours. 135


Figure 4.19 Mass spectrum of $\mathbf{6 8}$ in $\mathrm{CH}_{3} \mathrm{CN}+1$ equivalent of $\mathrm{HBF}_{4}$. The peak at $\mathrm{m} / \mathrm{z}=605.90$ is assigned to a formally 5 -coordinate $\operatorname{Pd}(\mathrm{IV})$ species 74 and the peak at $\mathrm{m} / \mathrm{z}=646.99$ is attributed to 75......................................................... 136


Figure 4.21 First order kinetic plot for the reductive elimination of 75 isolated as a $\mathrm{BF}_{4}$ salts in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. 138

Figure 4.22 Plot of $\ln \left([\operatorname{Pd}(\mathrm{IV})]_{0} /[\mathrm{Pd}(\mathrm{IV})]\right)$ vs. time/min for 68 with 1.3 equivalent of $\mathrm{HBF}_{4}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at $22{ }^{\circ} \mathrm{C}$. 139

Figure 4.23 Plot of $[1 / \mathrm{A}] / \mathrm{mol}^{-1} \mathrm{~L}^{-1}$ vs. time $/ \mathrm{min}$ for 68 with 1.3 equivalents of $\mathrm{HBF}_{4}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at $22{ }^{0} \mathrm{C}$. 139

Figure 4.24 Exchange reaction of 75 with $\mathrm{CF}_{3} \mathrm{COONa}$. 141

Figure 4.25 Comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum of 73 (bottom) and 69 (top) in DMSO$\mathrm{d}_{6}$ at $22{ }^{0} \mathrm{C}$ 141

Figure 4.26 First order kinetic plot for the exchange reaction of the $\mathrm{CH}_{3} \mathrm{CN}$ ligand in 75 with trifluoroacetate ion to form 73 in $\mathrm{CD}_{3} \mathrm{CN}$142

Figure 4.27 Plot of $\ln \left([\operatorname{Pd}(\mathrm{IV})]_{0} /[\mathrm{Pd}(\mathrm{IV})]\right)$ vs time $/ \mathrm{min}$ for $\mathbf{6 8}$ with 1 equivalent of $\mathrm{HBF}_{4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $22{ }^{\circ} \mathrm{C}$. 144

Figure 4.28 The Gibbs energy profile for the C-N reductive elimination of $\mathbf{7 5}^{+}, \mathbf{B F}_{4}{ }^{-}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 146

Figure 5.1 X-ray crystal structure of $\mathbf{8 1} \cdot \mathbf{M e C N}$ (the solvent of crystallization is not shown)

Figure 5.2 X-ray crystal structure of $\mathbf{8 4} \cdot \mathbf{M e C N}$ (the solvent of crystallization and trifluoromethylsulfonyl groups are not shown for clarity).154

Figure 5.3 ${ }^{1} \mathrm{H}$ NMR spectrum of the $\mathrm{CH}_{2} \mathrm{Pd}(\mathrm{IV})$ fragment of $\mathbf{8 4}$ in different solvents: $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (bottom), MeOD (middle) and DMSO-d ${ }_{6}$ (top)............................... 156

Figure 5.4 Reactivity of $\mathbf{8 4}$ with 2 equivalents of HCl . ................................................ 163


Figure 5.6 X-ray crystal structure of 87 ......................................................................... 168

Figure 5.7 The kinetic profile of the reaction between $\mathbf{8 4}$ and 2 equivalents of HBr to form the indoline 86(grey triangle) and $\operatorname{Pd}(\mathrm{dpk}) \mathrm{Br}_{2}$, 87............................... 169

Figure 5.9 Reversibility of protonation of $\mathbf{8 4}$ in DMSO-d D $_{6}$........................................... 170

Figure 5.10 Addition of different equivalents of Brookhart's Acid to $\mathbf{8 4}$ in DMSO-d ${ }_{6}$ at $22{ }^{0} \mathrm{C}$ 172

Figure 5.11 Plot of Chemical shift versus equivalents of acid added for figure 5.10 above.

Figure 5.12 Structures of Brookhart's acid as our source of $\mathrm{H}^{+}$and tetra-nbutylammonium bromide as our source of $\mathrm{Br}^{-}$. 173

Figure 5.13 The reaction Gibbs energy profile corresponding to the most kinetically favorable C(sp3)-N coupling mechanism of the amido alkyl Pd(IV) complex 84 in the presence of HBr in DMSO solution.............................................. 178

Figure 7.1 Trend for reductive elimination from substituted dpk-ligated Pd(IV) alkyl Nanilido complexes. 205

## List of Tables

Table 5.1 Solubility of $\mathbf{8 4} \cdot \mathbf{M e C N}$ in different common solvents. .......................... 155

Table 5.2. Initial rates of reaction involving 84, $\mathrm{H}^{+}$and $\mathrm{Br}^{-}$ 173

Table 6.1. Effect of the ligand on the yield of N -acetylcarbazole (Scheme 6.2). Reaction conditions: 46 ( $30 \mathrm{mg}, 0.14 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ( $10 \mathrm{~mol} \%$ ), Ligand ( $10 \mathrm{~mol} \%$ ), solvent $(0.6 \mathrm{~mL})$, 6 equivalents of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ added at the beginning of reaction, $23^{\circ} \mathrm{C}, 24 \mathrm{~h}$. Yield (\%) of 54 determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy with dioxane as an internal standard.

Table 6.2. Effect of the reaction conditions on the yield of N -acetylcarbazole Reactants loading: 46 ( $30 \mathrm{mg}, 0.14 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ( $10 \mathrm{~mol} \%$ ), Ligand ( $10 \mathrm{~mol} \%$ ), solvent $(0.6 \mathrm{~mL})$, 0.5 equivalent of $\mathrm{H}_{2} \mathrm{O}_{2}$ added each time. Yield (\%) of 54 determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy with dioxane as internal standard
$\qquad$

## List of Abbreviations

| Tf | trifluoromethanesulfonyl |
| :--- | :--- |
| d | days |
| equiv | equivalents |
| h | hours |
| min | minutes |
| s | seconds |
| mL | milliliters |
| Me | Methyl |
| Et | Ethyl |
| $J$ | ${ }^{1}$ H- ${ }^{1}$ H coupling |
| THF | tetrahydrofuran |
| TFA | trifluoroacetic acid |
| AcOH | acetic acid |
| MeCN | acetonitrile |
| g | gram |
| C-H | carbon-hydrogen bond |

## Chapter 1: $\mathbf{P d}(\mathbf{I I}) / \mathbf{P d}(\mathbf{I V})$ couple mediated C-H functionalization and common oxidants used

### 1.1 C-H Activation at Transition metal centers

Carbon-hydrogen bonds are common in most simple natural occurring organic molecules (e.g., Natural gas and oil), this makes them a readily available source of feedstock for the syntheses of complex molecules which contain carbon-oxygen, carbon-halogen, carbon-nitrogen, carbonsulfur, and carbon-carbon bonds. ${ }^{1}$ Traditional methods available for the formation of carboncarbon and carbon-heteroatom bonds rely on pre-functionalized starting materials for both reactivity and selectivity. However, the constraint for installing a functional group prior to the desired C-O, C-X, C-N, C-S, or C-C bond adds unwanted and costly chemical steps to the overall construction of a molecule. ${ }^{2}$ As such, by-passing this issue will not only improve atom economy but also increase the overall efficiency. Current research is involved in the search for mild and selective processes for the syntheses of products for pharmaceuticals, natural products, agrochemicals, polymers, advanced materials, feedstock commodity chemicals and other valueadded commercial products. The use of transition metal catalyzed processes represents essential tools for the construction of C-C and C-heteroatom bonds. Procedures which involve direct C-H functionalization will improve atom economy, increase the efficiency of a multistep reaction sequence and render these transformations more favorable. ${ }^{3}$

Palladium complexes are particularly attractive catalysts for such transformations for several reasons. ${ }^{4}$ First, ligand-directed C-H functionalization at palladium centers can be employed in the formation of different types of bonds, including carbon-oxygen, carbon-halogen, carbon-nitrogen, carbon-sulfur, and carbon-carbon linkages. Just a few other catalysts allow such wide-ranging
bond constructions, and this versatility is largely the result of two key features: (i) the compatibility of many $\mathrm{Pd}(\mathrm{II})$ catalysts with various oxidants (functionalizing agents), and (ii) the ability to preferentially functionalize cyclopalladated intermediates. Second, palladium participates in cyclometalation with a wide variety of directing groups and, unlike many other transition metals, readily promotes $\mathrm{C}-\mathrm{H}$ activation at both $\mathrm{sp}^{2}$ and $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ sites. Finally, majority of Pd -catalyzed directed $\mathrm{C}-\mathrm{H}$ functionalization reactions can be performed in the presence of ambient air and moisture, making them practical for applications in organic synthesis. ${ }^{5}$

Two major challenges limit direct C-H bond functionalization reactions. The first challenge is the inert nature of most carbon-hydrogen bonds; which comprises of a low bond polarity (a value of 0.35 on the Pauling electronegativity scale), high bond strength (between $85-105 \mathrm{kcal} / \mathrm{mol}$ ) and also a relatively high pKa ( $\sim 43$ for benzene). This makes C-H bonds very unreactive towards both heterolytic and homolytic cleavage. ${ }^{6}$ A number of studies have addressed the first challenge by confirming that transition metals can activate C-H bond. C-H activation processes are generally divided into two extreme mechanisms: oxidative addition and $\sigma$-bond metathesis. ${ }^{7}$ Oxidative addition consists of two steps: coordination of the $\sigma(\mathrm{C}-\mathrm{H})$ bond after generation of a vacant site and actual cleavage of the C-H bond. This transformation is most commonly observed for lowvalent electron-rich metals with $\mathrm{d}^{8}$ configuration (e.g. $\mathrm{Ir}^{\mathrm{I}}, \mathrm{Pt}^{\mathrm{II}}$ ) that allow easy access to an oxidized $d^{6}$ configuration accommodating two extra ligands. ${ }^{8,9}$ When no $d$ electrons are available in the metal, an oxidative transformation is not possible and the C-H activation proceeds through a $\sigma$ bond metathesis pathway. ${ }^{10,11}$ Essential to such a transformation are the absence of an intermediate and the concerted bond-breaking and bond-making processes. ${ }^{12,13}$ For transition metal fragments with $d^{4}$ to $d^{8}$ configurations, a $\sigma$-bond metathesis transformation is in principle possible, with the additional potential formation of a stable $\sigma$-adduct before and after the actual metathesis. ${ }^{6}$

### 1.1.1 C-H Activation at Pd(II) centers

With respect to Pd, two major reaction mechanisms for C-H activation have been touted: electrophilic aromatic substitution ( $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ ) with electron-rich, $\pi$-nucleophilic heteroarenes and concerted cyclometallation-deprotonation (CMD) with simple and electron-deficient benzenes. ${ }^{14}$


Scheme 1.1 Electrophilic aromatic substitution mechanism for C-H activation at a Pd center with indolines. $(\mathrm{L})_{\mathrm{n}}$ is $\mathrm{PPh}_{3}$

To probe the $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ mechanism, Sames ${ }^{15}$ and coworkers looked at the $\mathrm{C}-2$ arylation of indolines (Scheme 1.1). Kinetic plots indicated a first order reaction with respect to both substrate and catalyst. A high secondary isotope effect of 1.6 was observed for the 3-position where arylation was not observed. Also, a Hammett plot revealed a negative $\rho$-value, which indicated a positive charge accumulating at the 3-position of indole and affording a strong support for the electrophilic palladation mechanism.

While working on direct arylation of electron deficient benzene groups, Fagnou ${ }^{16}$ and coworkers observed that the reactivity was dependent on the acidity of the hydrogen involved in the $\mathrm{C}-\mathrm{H}$
activation step. Based on a combination of experimental data and computational studies for $\operatorname{Pd}(\mathrm{OAc})_{2}$ as a catalyst in these arylation reactions with electron poor substrates, a concerted cyclometallation-deprotonation (CMD) mechanism was proposed (Scheme 1.2). ${ }^{14,}{ }^{17-19}$ This mechanism explains the dependency of the reaction yield on the basicity of the acetate ion.


Scheme 1.2 Concerted cyclometallation-deprotonation (CDM) mechanism of C-H activation.

### 1.1.2 C-H Activation at Pd(IV) centers

Recently, the C-H activation at a Pd(IV) center was proposed by the Sanford group. ${ }^{20}$ To study the mechanism of the proposed C-H activation at Pd(IV), $\mathbf{1}$ was synthesized, and it was only observed to undergo $\mathrm{C}-\mathrm{Cl}$ reductive elimination even upon heating to $90^{\circ} \mathrm{C}$. Exchanging one of the Cl ligands with OAc formed 2, resulting in facile C-H activation even at room temperature to form 3. It was suggested that C-H activation at the high oxidation state $\operatorname{Pd}(I V)$ occurred through a concerted cyclometallation-deprotonation (CMD) mechanism similar to $\mathrm{C}-\mathrm{H}$ activation at $\operatorname{Pd}(I I) .{ }^{21-24}$


Scheme 1.3 C-H Activation at a Pd(IV) d ${ }^{6}$ metal center by Sanford

The successful C-H activation at a $\mathrm{Pd}(\mathrm{IV})$ center shows a dual catalytic cycle for Pd -catalyzed C H functionalization is feasible. A dual catalytic pathway will include, oxidation of $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$, $\mathrm{C}-\mathrm{H}$ bond activation at $\mathrm{Pd}(\mathrm{IV})$, and reductive elimination to release the product and regenerate the $\operatorname{Pd}(\mathrm{II})$ catalyst. And/or C-H activation at $\mathrm{Pd}(\mathrm{II})$, oxidation of $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$ and its subsequent reductive elimination to release the catalyst. Both of these mechanisms will be at play (Scheme
1.4). ${ }^{20}$


Scheme 1.4 Proposed catalytic route involving C-H activation at a $\operatorname{Pd}(I V)$ and a $\operatorname{Pd}(I I)$ metal centers through a dual catalytic pathway.

### 1.2 Buchwald-Hartwig Amination

Previously, carbon-nitrogen bonds were generally synthesized through electrophilic aromatic substitution, reductive amination, Gabriel's synthesis, Curtius re-arrangement, Schmidt reaction or Ullman coupling and other methods. ${ }^{25}$ Ullman coupling which was discovered over a century ago, involves the use of stoichiometric amounts of copper salts, and was the most common method for C-N coupling even though the exact mechanism was poorly understood. Whiles working on different alternatives to the Ullman coupling reaction, Migita and coworkers developed the first $\mathrm{C}-\mathrm{N}$ bond formation from $\operatorname{Pd}(0)$ using organotin reagents (similar to Stille coupling). ${ }^{26}$ This method was not useful synthetically because of the toxicity which arises from using tin reagents. After the discovery of the Suzuki-Miyaura coupling ${ }^{27}$ to form carbon-carbon bonds, similar methods were developed independently by Buchwald ${ }^{28}$ and Hartwig ${ }^{29}$ to form carbon-nitrogen bonds.

The Buchwald-Hartwig amination involves the formation of carbon-nitrogen bonds via the Palladium-catalyzed cross coupling of amines with aryl halides or pseudohalides (scheme 1.5). Catalysts responsible for Buchwald-Hartwig aminations have been significantly improved upon over several generations which help in increasing the substrate scope and performing the reactions under milder conditions. ${ }^{30,31}$ Aryl and alkyl C-N bonds are very common in pharmaceuticals and natural products, making the Buchwald-Hartwig C-N coupling reactions very useful in synthetic organic chemistry. ${ }^{32}$


Scheme 1.5 General scheme for the Buchwald-Hartwig amination reaction


Scheme 1.6 Proposed mechanism for the Buchwald-Hartwig amination reaction

The Buchwald-Hartwig amination reaction mechanism have been proposed to go through steps similar to the corresponding Suzuki coupling reactions as shown in Scheme 1.6. ${ }^{31}$ These include (i) oxidative addition of the aryl halide to a $\operatorname{Pd}(0)$ species, (ii) the binding of the amine to the oxidative addition $\mathrm{Pd}(\mathrm{II})$ complex (iii) deprotonation of the amine by a base (iv) $\mathrm{C}-\mathrm{N}$ reductive elimination from $\operatorname{Pd}(\mathrm{II})$ complex to form $\operatorname{Pd}(0)$ (scheme 1.22). An unwanted $\beta$-hydride elimination competing
pathway is also usually observed with substrates containing $\beta$-hydrogens. Different people have worked on elucidating the mechanism of the different steps of the Buchwald-Hartwig amination.

### 1.2.1 Oxidative Addition to $\operatorname{Pd}(0)$

Oxidative addition which is usually proposed as the rate determining step for most coupling reactions has been studied by Fitton in detail. The trend $\mathrm{PhI}>\mathrm{PhBr}>\mathrm{PhCl}$ was observed by for the oxidative addition of halides to the $\mathrm{Pd}(0)$ precursor $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)$. Ph -I was observed to react with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ at room temperature to form $\mathrm{Pd} \operatorname{Ph}\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{Ph}-\mathrm{Br}$ reacted at $80{ }^{0} \mathrm{C}$, but the corresponding $\mathrm{Ph}-\mathrm{Cl}$ did not react even at $135{ }^{\circ} \mathrm{C}$. This indicates that, the strength of the $\mathrm{C}-\mathrm{X}$ bond was vital in these type of transformations. ${ }^{33}$ Further studies by Pflüger and Amatore in solvents with different polarities (THF and toluene) showed that the activation parameters are similar in both solvents, suggesting that, oxidative addition proceeds via a neutral concerted, three-centered intermediate as shown in Scheme 1.7. ${ }^{34}$


Scheme 1.7 Proposed mechanism for oxidative addition of phenyl iodide to $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}$

### 1.2.2 Reductive Elimination from Pd(II)

Reductive elimination has been proposed as the product forming step in the cycle of most coupling reactions. Studies have shown that reductive eliminations to form the $\mathrm{C}-\mathrm{N}$ bond in arylamines are faster from complexes with more electron-rich amido ligands than from complexes with more electron-poor amido ligands. ${ }^{35}$ Also, it was demonstrated that complexes with the ligands in cis position reacted faster than the trans isomer and prior isomerization of the trans complex to cis was required before the reductive elimination occurred. ${ }^{36}$ In addition to that, complexes containing more sterically hindered ligands tend to undergo faster C-N reductive elimination than complexes with less hindered ancillary ligands. ${ }^{32}$

### 1.3 Intermediacy of high oxidation state $\mathbf{P d}(\mathrm{III}) / \mathbf{P d}(\mathrm{IV})$ in $\mathrm{C}-\mathrm{H}$ functionalization

Until recently, the $\operatorname{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ hydrocarbyl cycles had received little attention even though it had been implicated in a lot of reactions. ${ }^{37}$ This was partly due to the inability to isolate and characterize well-defined $\operatorname{Pd}(\mathrm{IV})$ complexes which were presumed to be intermediates in different Pd-catalyzed reactions. Different oxidants have been shown to oxidize hydrocarbyl Pd(II) intermediates effectively to their corresponding Pd(IV) forms which can subsequently undergo reductive eliminations to form C-C and C-X bonds. ${ }^{38}$ The $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ route has eliminated the formation of Pd black through mostly beta-hydride elimination mechanism, which usually occurs through a $\operatorname{Pd}(0) / \operatorname{Pd}(\mathrm{II})$ catalytic cycle. Also, since $\mathrm{Pd}(\mathrm{IV})$ is already a high oxidation state for the
metal, it is easier to undergo reductive elimination compared to the corresponding $\mathrm{Pd}(\mathrm{II})$ which is deemed to be more electron rich center. Therefore, no fine tuning of the ligand is necessary to enhance reductive elimination as it occurs with $\operatorname{Pd}(I I) .{ }^{38}$

### 1.3.1 Some selected reagents for oxidation of $\operatorname{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$

### 1.3.1.1 Iodine(III) based reagents

Even though Uson ${ }^{39}$ and co-workers synthesized the very first Pd(IV) compounds containing a PdC bond in 1975, hypervalent iodine based reagents had been used as oxidizing agents for a lot of other reactions including oxidation of alcohols and carbonyl compounds. ${ }^{40}$ The first palladium catalyzed acetoxylation of $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ bonds using $\mathrm{PhI}(\mathrm{OAc})_{2}$ as oxidant was reported by Crabtree where the intermediacy of a Pd(IV) species was proposed. ${ }^{41}$ Sanford optimized the acetoxylation of $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ - H bonds with $\mathrm{PhI}(\mathrm{OAc})_{2}$ and performed detailed mechanistic studies on this reaction. The different steps of this cycle as shown in scheme 1.8 involves: (i) ligand-directed C-H activation to form a cyclopalladated intermediate, (ii) two-electron oxidation of the palladacycle to generate a Pd(IV) species, and, finally, (iii) C-O bond-forming reductive elimination to release the product. ${ }^{42}$


Scheme 1.8 Proposed mechanism for the acetoxylation of 2-phenylpyridine with $\mathrm{PhI}(\mathrm{OAc})_{2}$ as oxidant and $\mathrm{Pd}(\mathrm{OAc})_{2}$ as a catalyst.

Upon changing the substrates to benzo[h]quinoline, the rates of reaction were observed to be comparable using either $\operatorname{Pd}(\mathrm{OAc})_{2}$ or the independently synthesized catalyst 6. Also, 6 was observed to undergo stoichiometric transformation to form 7 which confirms the intermediacy of 6 in the formation of 7.


Scheme 1.9 Stoichiometric acetoxylation of benzo[h]quinoline with $\operatorname{PhI}(\mathrm{OAc})_{2}$ as the terminal oxidant.

To probe the mechanism of reductive elimination, $\mathbf{9}$ was synthesized and monitored under different conditions (Scheme 1.10). Three different mechanisms were proposed for reductive elimination from complexes 9 (scheme 1.11): the ionic mechanism (A), concerted mechanism (B) and chelate dissociation mechanism (C). The ionic mechanism involves dissociation of a carboxylate ligand, followed by reductive elimination from a 5-coordinate $\mathrm{Pd}(\mathrm{IV})$ intermediate. The concerted mechanism involves direct reductive elimination from a 6-coordinate octahedral complex. The chelate dissociation mechanism involves an initial dissociation of the chelate followed by reductive elimination from the resulting 5-coordinate Pd(IV) intermediate formed. ${ }^{43}$


Scheme 1.10 Proposed mechanisms for the formation of $\mathbf{1 1}$ from 9

Kinetic experiments with $\mathbf{9}$ showed that the reductive elimination proceeds through a dissociation of an acetate ligand followed by reductive elimination from a 5-coordinate intermediate (Pathway A). The rapid exchange of bound and free carboxylate ligands was observed, which indicates that the dissociation of the carboxylate ligand from Pd(IV) is possible. ${ }^{44,45}$


Scheme 1.11 Proposed ionic mechanism for the formation of $\mathbf{1 1}$ from $\mathbf{9}$ as proposed by the Sanford group.

### 1.3.1.2 N -Halosuccinimides as oxidant

The Sanford group, explored the corresponding $\mathrm{C}-\mathrm{X}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ reductive elimination from an isolated $\mathrm{Pd}(\mathrm{IV})$ using N -halosuccinimide (NCS) as a representative oxidant. In the model studies, complex 8 was synthesized and oxidation with NCS formed the $\operatorname{Pd}(I V)$ oxidative addition product 12 which could be observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy and isolated. When 12 warmed at $80{ }^{\circ} \mathrm{C}$ it was observed to undergo C - Cl bond-forming reductive elimination to form 13 in high yield confirming a C-Cl bond-forming reductive elimination from $\operatorname{Pd}(\mathrm{IV}) .{ }^{46}$


Scheme 1.12 Chlorination of 2-phenylpyridine with N-chlorosuccinimide as terminal oxidant through a Pd(IV) intermediate.

### 1.3.1.3 Peroxide Oxidants

Peroxide oxidants are better substitutes to much more expensive iodine-based reagents for Pdcatalyzed ligand-directed C-H oxygenation. The Pd-catalyzed oxygenation of C-H bonds has been realized using peroxides such as Oxone, $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ and tertbutylperoxyacetate. ${ }^{47}$ In addition to that, the Vedernikov group reported the oxidation of monohydrocarbyl Pd (II) substrates with $\mathrm{H}_{2} \mathrm{O}_{2}$ to form the corresponding mono-hydrocarbyl Pd(IV) analogs. These Pd(IV) species stabilized by one or two facially chelating ligands such as one derived from a hydrated di-(2-pyridyl)ketone (dpk) were observed to undergo $\mathrm{C}-\mathrm{X} \quad(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ and $\mathrm{C}-\mathrm{O}$ reductive eliminations in $\mathrm{D}_{2} \mathrm{O}$ or other solvents. ${ }^{48}$


Scheme 1.13 C-O and C-X $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ reductive elimination from a $\mathrm{Pd}(\mathrm{IV})$ center with $\mathrm{H}_{2} \mathrm{O}_{2}$ as terminal oxidant

### 1.3.1.4 Dioxygen as a Terminal Oxidant

The use of $\mathrm{O}_{2}$ as an oxidant for catalytic oxygenation of 8-methylquinoline-derived substrates with $\mathrm{Pd}(\mathrm{acac})_{2}$ as the catalyst and 2,6-pyridinedicarboxylate as ligand ( $\mathrm{H}_{2} \mathrm{hpda}$ ) in AcOH as solvent was reported by the Vedernikov group. ${ }^{49}$ It is an exciting development because $\mathrm{O}_{2}$ is readily available and inexpensive, and will serve as the best oxidant for this type of transformations. After the initial report by Vedernikov, there arose questions about whether $\mathrm{O}_{2}$ can be used to produce high oxidation state palladium intermediates. Subsequent works by Mirica group showed that aerobic oxidation of $\mathrm{Pd}(\mathrm{II})$ dimethyl complexes is possible when fac-chelating such as $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime \prime}$ -trimethyl-1,4,7-triazacyclononane (Me3tacn) are used. ${ }^{50}$


Scheme 1.14 Acetoxylation of 8 -methylquinoline substrates with $\mathrm{O}_{2}$ as terminal oxidant as reported by Vedernikov.

### 1.3.1.5 Electrophilic Fluorinating Reagents

The use of electrophilic fluorinating agents to oxidize $\operatorname{Pd}(I I)$ to $\operatorname{Pd}(I V)$ and isolation of $\operatorname{Pd}(I V)$ fluorides was reported by the Sanford ${ }^{22,51}$ and Ritter ${ }^{52}$ groups. One of the isolated $\operatorname{Pd}(I V)$ fluorides, which was observed to undergo $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - N reductive elimination is shown in scheme 1.15 (Pathway 1).


Scheme 1.15 Proposed transformations of 15 into different products based on additives and reaction conditions.

Interestingly, $\mathbf{1 5}$ was also observed to give a product selectivity which is dependent on the type of cation used for the tosylate anion. Changing the nitrate/tosylate source from NaOR to $\mathrm{NBu}_{4} \mathrm{OR}$ under otherwise identical conditions resulted in a dramatic shift in the product distribution. ${ }^{53}$


Scheme 1.16 Transformation of 16 into different products 17 or 18 based on the identity of the cation bound to tosylate by the Sanford group

To study C-N reductive elimination from $\mathrm{Pd}(\mathrm{IV}), \mathrm{NH}_{2} \mathrm{SO}_{2}$ - $p$-tolyl ( $\mathrm{NH}_{2} \mathrm{Ts}$ ) was added to $\mathbf{1 5}$ afford 19 (scheme 1.17) Upon warming, the C-N reductively eliminated product 20 was observed in high yield. ${ }^{54}$


Scheme 1.17 C-N reductive elimination from Pd(IV) alkyl complex, 19, as reported by Sanford.

To probe the reaction mechanism, kinetic studies were conducted to determine the rate dependence on each species. The reaction exhibited clean kinetics with a first-order dependence on substrate and zero order dependence on nucleophile. This rules out a pathway involving a direct $\mathrm{S}_{\mathrm{N}} 2$ reaction between $\mathrm{TsNH}^{-}$and 19, since this should show first-order kinetics in both 19 and the nucleophile confirming an $\mathrm{S}_{\mathrm{N}} 2$-like reductive elimination from a five coordinate $\operatorname{Pd}(\mathrm{IV})$ intermediate. ${ }^{54}$ Subsequent computational studies showed a concerted inner sphere $\mathrm{C}-\mathrm{N}$ bond formation that proceeds via a 5-membered transition state from an O-bound sulfonamide intermediate. ${ }^{55}$

### 1.3.2 Pd(III)-mediated reactions.

$\operatorname{Pd}(I I)$ usually undergoes a facile two-electron oxidation to $\mathrm{Pd}(\mathrm{IV})$, but Ritter and co-workers reported the first isolated $\operatorname{Pd}(\mathrm{III})$-dimeric complex 22. Complex 21 was observed to undergo a
single electron oxidation at each Pd center to form 22 which could be isolated and characterized ( $d^{8}$ to $d^{7}$ ) as shown in scheme 1.18. A d $d^{7}$ electronic configuration is expected to result in a metalmetal single bond. ${ }^{56}$


Scheme 1.18 C-Cl reductive elimination from isolated dimeric $\mathrm{Pd}(\mathrm{III})$ as reported by Ritter

Even though reductive elimination from 22 to form 23 was observed, the exact mechanism was not apparent since there are many possible pathways for this to take place. The first pathway proposed was rate-determining dissociation of 22 into two $\mathrm{Pd}(\mathrm{III})$ monomers followed by fast reductive elimination from $\mathrm{Pd}(\mathrm{III})$ or by pre-equilibrium dissociation of 22 into two monomers with a rate-determining reductive elimination from a monomeric $\mathrm{Pd}(\mathrm{III})$ complex. This pathway was ruled out by kinetic experiments (scheme 1.20). ${ }^{57}$ Kinetic experiments also ruled out disproportionation of 22 into one $\mathrm{Pd}(\mathrm{II})$ and one $\mathrm{Pd}(\mathrm{IV})$ complex followed by reductive elimination from $\operatorname{Pd}(\mathrm{IV})$ (Pathway 2). Kinetic measurements also excluded rate-determining dissociation of chloride or acetate followed by fast reductive elimination from a cationic bimetallic $\operatorname{Pd}($ III ) complex (Path 3. The results of the kinetic experiments and DFT calculations were consistent with a concerted, bimetallic 1,1-reductive elimination from 22 (Path 4). ${ }^{58}$


Scheme 1.19 Proposed mechanisms for the formation of $\mathrm{C}-\mathrm{Cl}$ product 23 from the isolated dimeric $\mathrm{Pd}(\mathrm{III})$ precursor,21.

### 1.4 Dpk-enabled C-Pd bond functionalization with hydrogen peroxide

The use of dpk as a ligand to enable oxidation of $\operatorname{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$ was studied in detail by Oloo from our group. Kinetic studies showed dehydration of $\mathbf{2 4 - \mathbf { H } _ { 2 } \mathbf { O }}$ to form $\mathbf{2 4}$ was rate limiting, which
then undergoes nucleophilic attack by $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of dpk to give endo 24$\mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$ (endo-isomer) or exo $\mathbf{2 4}-\mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$ (exo-isomer) as shown in scheme 1.20.


Scheme 1.20 Proposed mechanism for the dpk enabled oxidation of a monohydrocarbyl $\operatorname{Pd}(I I)$ center with $\mathrm{H}_{2} \mathrm{O}_{2}$ to form the corresponding $\mathrm{Pd}(\mathrm{IV})$

Exo $\mathbf{2 4}-\mathbf{H}_{2} \mathrm{O}_{2}$ cannot form $\mathbf{2 5}$ because the hydroperoxo group is far away from the Pd center. Endo $\mathbf{2 4}-\mathbf{H}_{2} \mathrm{O}_{2}$ has the hydroperoxo group in close proximity to the Pd center and forms the corresponding $\mathrm{Pd}(\mathrm{IV})$, 25, through an intramolecular reaction. Isotopic labelling studies showed the incorporation of only one of the ${ }^{18} \mathrm{O}$ in $\mathrm{H}_{2}{ }^{18} \mathrm{O}_{2}$ into 25 which is consistent with nucleophilic attack at the $\alpha$-oxygen of the hydroperoxo group in endo $\mathbf{2 2 - \mathbf { H } _ { 2 } \mathbf { O } _ { 2 } \text { by the } \operatorname { P d } ( \mathrm { II } ) \text { center. } 2 5 ~ 5 ~}$ undergoes reductive elimination to give the corresponding $\mathrm{C}-\mathrm{O}$ reductive elimination product at elevated temperatures. 25 can also undergo ligand exchange in the presence of HCl or HBr and
subsequent reductive elimination to give the corresponding $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{Br}$ reductive elimination products.

### 1.5 Our goal and approach



Scheme 1.21 Proposed mechanism for the oxidative C-H amination with $\mathrm{H}_{2} \mathrm{O}_{2}$ as terminal oxidant

Previously, Oloo and Vedernikov have demonstrated the ability of the di(2-pyridyl)ketone (dpk) and some di(2-pyridine)methanesulfonate (dpms) family ligands coordinated to various $\mathrm{Pd}(\mathrm{II})$ monohydrocarbyls to enable an efficient functionalization of their $\mathrm{Pd}^{\mathrm{II}}-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ bonds using $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant. ${ }^{59}$ The reactions proceeded via intermediacy of rare $\mathrm{Pd}(\mathrm{IV})$ monohydrocarbyl complexes, some of which could be isolated and fully characterized. Reductive elimination of the isolated Pd(IV) complexes to produce functionalized products with $\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{Cl}, \mathrm{C}-\mathrm{Br}$ or $\mathrm{C}-\mathrm{I}$ bonds could also be characterized in detail in a number of cases. Some of these reactions could be made catalytic in Pd with $\mathrm{H}_{2} \mathrm{O}_{2}$ serving as the oxidant. ${ }^{48}$ At the same time, previous attempts of Oloo to
prepare amido aryl $\operatorname{Pd}(\mathrm{IV})$ compounds and observe their $\mathrm{C}-\mathrm{N}$ reductive elimination were not successful.

In this work, we wanted to extend the previously developed approach to ligand-enabled functionalization of $\mathrm{Pd}^{\mathrm{II}}-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ as well as $\mathrm{Pd}^{\mathrm{II}}-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bonds using $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant towards the C N bond forming processes. Our goals included i) preparation of various dpk - ligated palladacyclic hydrocarbyl amido $\operatorname{Pd}(\mathrm{II})$ complexes, ii) their transformation to the corresponding $\operatorname{Pd}(\mathrm{IV})$ amido hydrocarbyls, iii) detailed characterization of the resulting $\mathrm{Pd}(\mathrm{IV})$ species, including their $\mathrm{C}-\mathrm{N}$ reductive elimination reactivity and iv) development of a catalytic oxidative C-H amination with $\mathrm{H}_{2} \mathrm{O}_{2}$ as the oxidant (scheme 1.24). Our choice of substrates includes N -substituted-2aminobiphenyls which, according to Scheme 1.21, are expected to form N -substituted carbazoles, the products of $\mathrm{C}\left(s p^{2}\right)-\mathrm{N}$ coupling at the $\mathrm{Pd}(\mathrm{IV})$ center and N -substituted-2-tert-butylanilines which are expected to form N -substituted indolines, the products of oxidative $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - N coupling.

Different groups have used other oxidants to perform oxidative amination of $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ or $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ H bonds. Most of these oxidants are relatively expensive and generate waste which need to be removed and treated after the reaction is over. Conversely, the cost of 1 mol of $30 \%$ aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ is only 2 cents and the only waste product expected is $\mathrm{H}_{2} \mathrm{O}$ which is environmentally benign. As such $\mathrm{H}_{2} \mathrm{O}_{2}$ will be a 'greener' and more atom-economical oxidizing reagent and may apply to a large scale synthesis. The disadvantages of using $\mathrm{H}_{2} \mathrm{O}_{2}$ include its ability to decompose with time and/or at elevated temperatures. Also, $\mathrm{H}_{2} \mathrm{O}_{2}$ may become explosive at very high concentrations. Therefore, only low concentrations of $\mathrm{H}_{2} \mathrm{O}_{2}$ will be used in our reactions (Step B).

## Chapter 2. Synthesis of $\kappa^{2}-C, N-2$-(N-R-amino)biphenyl-2-yl Pd(II) complexes with electron donating groups $\mathrm{R}=\mathrm{H}, \mathrm{Et}$, Me and their oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$

### 2.1 Introduction and Background



Scheme 2.1 Proposed mechanism for the reaction of N -acyl-2-aminobiphenyl substrates with $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and $\mathrm{Cu}(\mathrm{OAc})_{2} / \mathrm{O}_{2}$ as oxidant to give the corresponding N -acetylcarbazoles as reported by Gaunt.

In 2005, Buchwald reported the Pd-catalyzed synthesis of N -acetyl substituted carbazoles with $\mathrm{Cu}(\mathrm{OAc})_{2} / \mathrm{O}_{2}$ as the terminal oxidant. This was the first reported synthesis of carbazoles through a direct oxidative $\mathrm{C}-\mathrm{H}$ amination. $\mathrm{A} \mathrm{Pd}(0) / \mathrm{Pd}(\mathrm{II})$ mechanism was proposed, similar to the Buchwald-Hartwig amination reaction, with the amido group serving as a directing group (Scheme 2.1). This mechanism includes: (i) pre-association of the amide moiety of the N -acyl-2-
aminobiphenyl with $\operatorname{Pd}(\mathrm{OAc})_{2}$ which facilitates the ortho-palladation process with concomitant release of an acetic acid, (ii) The formation of the six-membered palladacycle and (iii) subsequent reductive elimination leading to formation of the $\mathrm{C}-\mathrm{N}$ coupled product and $\mathrm{Pd}(0)$ compounds. The $\operatorname{Pd}(0)$ species is re-oxidized to $\mathrm{Pd}(\mathrm{II})$ by $\mathrm{Cu}(\mathrm{OAc}) 2 .{ }^{60}$ The resulting $\mathrm{Cu}(\mathrm{I})$ species may be then oxidized by $\mathrm{O}_{2}$ to form $\mathrm{Cu}(\mathrm{OAc})_{2}$.

Based on the elegant work by the Buchwald group, the Gaunt group reasoned that reductive elimination from a high oxidation state $\mathrm{Pd}(\mathrm{IV})$ center would more readily facilitate $\mathrm{C}-\mathrm{N}$ bond formation. ${ }^{61}$ To realize this process, an amine bearing an electron-donating group should coordinate strongly to a $\mathrm{Pd}(\mathrm{II})$ center, resulting in a complex that could then undergo cyclopalladation. Next, oxidation of the Pd(II) complex to a Pd(IV) species would expedite C-N bond formation (Scheme 2.2). A series of N-benzyl substituted carbazoles were synthesized by using $\mathrm{Pd}(\mathrm{OAc})_{2}$ as catalyst and $\mathrm{PhI}(\mathrm{OAc})_{2}$ as the oxidant from the corresponding 2-aminobiphenyl precursors. ${ }^{62}$


Scheme 2.2 Proposed mechanism for the $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyzed oxidative $\mathrm{C}-\mathrm{H}$ amination with $\operatorname{PhI}(\mathrm{OAc})_{2}$ as terminal oxidant as proposed by Gaunt.

### 2.2 Synthesis of Palladacycles, 30-33



Scheme 2.3 Synthesis of acetate-bridged palladacycles 30-33

Based on the work done Gaunt, we decided to begin our work with 2-aminobiphenyl substrates 26 - 29: attach them to Pd and oxidize the corresponding palladacycles with $\mathrm{H}_{2} \mathrm{O}_{2}$ to form the corresponding carbazoles. Substrates $\mathbf{2 6 - 2 9}$ were combined with 0.9 equivalents of $\operatorname{Pd}(\mathrm{OAc})_{2}$ in toluene and the resulting solutions were stirred for $24 \mathrm{~h}-96 \mathrm{~h}$ at r.t. Resulting acetate-bridged palladacycles 30-33 (Scheme 2.3) were isolated in over 90 \% yields as pink or gray solids. These complexes are expected to be dinuclear acetate-bridged complexes by analogy with numerous known examples. ${ }^{63}$ Complexes 30-33 are not soluble in common solvents such as $\mathrm{MeOH}, \mathrm{AcOH}$, THF and Acetone, except 32 which dissolves in $\mathrm{CD}_{3} \mathrm{CN}$. Compounds $\mathbf{3 0 - 3 3}$ were used in subsequent transformations without additional purification. Notably, various not-whole number of toluene molecules was typically found in elemental analyses of similar compounds. ${ }^{64}{ }^{1} \mathrm{H}$ NMR spectrum of 32 showed a single species in solution with a peak at 1.83 ppm which was indicative of a bridging acetate ligand compared to the non-bridging acetate ligand which normally shows up at about $2.00 \mathrm{ppm} .{ }^{59} \mathrm{~A}$ broad peak at 11.48 ppm integrating for 1 H was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum indicative of an NH signal.

### 2.3 Oxidation of acetate-bridged palladacycle, 32 , with $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$



Scheme 2.4 Reactivity of 32 with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to form 34

We used 31 as a representative OAc-bridged pallada(II)cycle to characterize their reactivity toward $\mathrm{H}_{2} \mathrm{O}_{2}$ (Scheme 2.4). In a typical experiment 32 was combined with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$ and the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Upon addition of 3 equiv of $\mathrm{H}_{2} \mathrm{O}_{2}$, the light brown solution instantly turned dark brown. In $15 \min { }^{1} \mathrm{H}$ NMR spectrum analysis of the resulting solution showed $13 \%$ conversion of the original starting material and formation of N-methylcarbazole, 34, in 7\% yield. There were some tiny broad peaks which could not be assigned to either $\mathbf{3 2}$ or $\mathbf{3 4}$. After 5 hours, the yield of $\mathbf{3 4}$ increased to $15 \%$ with the conversion of $\mathbf{3 2}$ of $22 \%$. After 17 h the yield of $\mathbf{3 4}$ was $\mathbf{1 7 \%}$ with no change in the conversion of $\mathbf{3 2}$. The addition of extra 3 equiv of $\mathrm{H}_{2} \mathrm{O}_{2}$ did not lead to any change in yield of 34 by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and no visual change was observed.

These experiments indicate that $\mathrm{H}_{2} \mathrm{O}_{2}$ can be engaged in $\mathrm{Pd}(\mathrm{II})-\mathrm{C}$ bond functionalization of acetato-bridged pallada(II)cycle 32 albeit with very low yield and conversion. Based on previous work by Oloo and Vedernikov, we expected that by producing the dpk complexes 35-38 derived from the palladacycles $\mathbf{3 0 - 3 3}$ (Scheme 2.5) their reactivity toward $\mathrm{H}_{2} \mathrm{O}_{2}$ could be
enhanced, the corresponding carbazoles could be produced in high yield. Moreover, the ability of the hydrated dpk ligand to stabilize the anticipated Pd(IV) hydrocarbyl intermediates could make it possible to observe and, possibly, isolate the Pd(IV) species involved in the reaction.

### 2.5 Preparation of dpk-ligated palladacycles, 35-38



Scheme 2.5 Preparation of dpk-ligated Pd complexes 35-38

Complexes $\mathbf{3 4 - 3 7}$ were prepared by a combination of the acetate-bridged palladacycle 30-33 with 1.05 equivalent of the dpk ligand in an appropriate solvent. Some of the complexes 35-38 crystallized out of reaction mixtures prepared in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent; some were precipitated upon addition of $\mathrm{Et}_{2} \mathrm{O}$. The identity of the complexes was confirmed by NMR spectroscopy and ESI(+)/MS. The complexes were shown by ${ }^{13} \mathrm{C}$ NMR spectroscopy in MeOD to show a peak between 95-100 ppm which is indicative of hemiketal carbon atom resulting from the addition of a methanol molecule across the ketone group of the dpk fragment (Scheme 2.6). The presence of

OAc counterion was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy as a signal observed at about 2.00 ppm . The ESI $(+) / \mathrm{MS}$ of the complexes in MeOH showed signals derived from both the dpk complexes 35-38 and from their MeOH adducts having about 32 units greater mass/charge ratio. At the same time, their elemental analyses were not ideal even after repeated recrystallizations, presumably, because of the partial loss of acetic acid resulting from deprotonation of the hydrated dpk ligand OH group by the acetate. ${ }^{48}$ That change could also be observed in ${ }^{1} \mathrm{H}$ NMR spectra.


Scheme 2.6 Reversible addition of MeOH across the C=O bond of 35-38

### 2.6 Reactivity of palladacycle 35 towards $\mathrm{H}_{2} \mathrm{O}_{2}$ in various solvents

### 2.6.1 $\mathrm{D}_{2} \mathrm{O}$

Complex 35 is sparingly soluble in $\mathrm{D}_{2} \mathrm{O}$ to form a light-yellow solution. 35 was dissolved in $\mathrm{D}_{2} \mathrm{O}$ and 3 equiv of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added leading to the formation of a deep yellow solution which was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. A broadening of the signals in the ${ }^{1} \mathrm{H}$ NMR spectrum was observed after about 3 h . As a result, no reaction intermediates could be reliably detected. The solution was then heated at $60^{\circ} \mathrm{C}$ for 48 h resulting in a turbid mixture, possibly, containing waterinsoluble reaction products. About $61 \%$ of the starting material remained unchanged.

### 2.6.2 AcOD



Scheme 2.7 Oxidation of $\mathbf{3 5}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOH to produce $\mathbf{4 0}$ via intermediate $\mathbf{3 9}$ at $22{ }^{\circ} \mathrm{C}$.

Since products of the reaction of 35 and $\mathrm{H}_{2} \mathrm{O}_{2}$ appeared to be insoluble in $\mathrm{D}_{2} \mathrm{O}$, we changed the solvent to AcOD. 35 was dissolved in AcOD and combined with 5 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ which turned the light yellow solution to orange. ${ }^{1} \mathrm{H}$ NMR analysis of the resulting solution just after 10 min showed the formation of carbazole in $76 \%$ yield together with 4 different intermediates which were observed in small quantities (Scheme 2.7, Fig. 2.1). One of these intermediates can be viewed as the $\mathrm{Pd}(\mathrm{IV})$ complex $\mathbf{3 9}$ which is the expected $\mathrm{Pd}(\mathrm{IV})$ intermediate which reductively eliminates $\mathbf{3 5}$ (Scheme 2.7). This assumption is based on observations which are described later in the chapter. The yield of carbazole increased to $86 \%$ after 60 minutes, and after 48 hours, the yield of carbazole was $94 \%$. A small amount ( $<5 \%$ ) of a different product was present whose identity could not be determined.


Figure 2.1 ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of $\mathbf{3 5}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ to form $\mathbf{4 0}$ in AcOD at $22{ }^{\circ} \mathrm{C}$. Arrows show 40 in solution and blue triangles show intermediates in small concentrations which were assigned to 39 (i) 35 in solution before addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, (ii) 5 minutes after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, (iii) 60 minutes after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, (iv) 24 hours after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$

A decrease in the amount of $\mathrm{H}_{2} \mathrm{O}_{2}$ to 1.5 equ did not noticeably affect the rate of the reaction. ${ }^{1} \mathrm{H}$ NMR analysis of the resulting solution 10 min after addition of 1.5 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ showed the formation of carbazole in $68 \%$ yield together with 4 different intermediates which were observed in small quantities in a total of about $28 \%$. The yield of carbazole increased to $81 \%$ after 60 minutes, and when the solution was observed after 48 hours, the yield of carbazole was $95 \%$. Since the rate of product formation was not dramatically different between 5 equivalents and 1.5 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$, it infers that, most likely, the addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the dpk fragment was not rate limiting, consistent with previous observations by Oloo. ${ }^{59}$

### 2.6.3 MeOD



Scheme 2.8 Oxidation of $\mathbf{3 5}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CD}_{3} \mathrm{OD}$ to produce 40 at $22{ }^{\circ} \mathrm{C}$.

Since no appreciable amount of intermediates was observed in previous cases, we ran the same reaction in MeOD as a solvent which has a sufficiently low freezing point to allow for a low temperature reaction monitoring (Scheme 2.8, Fig. 2.2). $\mathbf{3 5}$ was dissolved in MeOD and combined with 5 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ which turned the light-yellow solution to deep yellow. ${ }^{1} \mathrm{H}$ NMR spectral analysis of the resulting solution just after 5 min showed the formation of carbazole in $12 \%$ yield together with no appreciable amount of any intermediates. The yield of carbazole increased to $45 \%$ after 60 minutes, and when the solution was observed after 13 hours, a turbid mixture had formed with the yield of carbazole increased to $92 \%$. No signals of the dpk ligand were observed in solution after 13 h ; in turn, the solid dissolved in DMSO- $\mathrm{d}_{6}$ showed the presence of a $\mathrm{Pd}(\mathrm{dpk})$ fragment in it. No intermediates were observed upon varying the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$, changing the counter ion from $\mathrm{OAc}^{-}$to $\mathrm{BF}_{4}^{-}$, and performing the reactions at $-5{ }^{\circ} \mathrm{C}$.


Figure 2.2 ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture of $\mathbf{3 5}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ to form $\mathbf{4 0}$ in MeOD at $22{ }^{0} \mathrm{C}$. Arrows show 40 in solution. (i) 35 in solution before addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, (ii) 5 minutes after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, (iii) 60 minutes after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, (iv) 120 minutes after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ (v) 13 hours after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$

In summary, the reaction of 35 with $\mathrm{H}_{2} \mathrm{O}_{2}$ was much faster in AcOD , as compared to MeOD. Decreasing the reaction temperature and changing counter ion could not help noticeably increase the fraction of the reaction intermediates in these experiments.

We postulate a reaction mechanism where the carbazole reductive elimination from $\mathrm{Pd}(\mathrm{IV}$ ) aryl intermeidates is fast, as compared to the $\mathrm{Pd}(\mathrm{II})-\mathrm{Pd}(\mathrm{IV})$ oxidation, so making it impossible to observe any $\operatorname{Pd}(I V)$ intermediates. We also propose formation of a neutral $\mathrm{Pd}(\mathrm{IV})$ intermediate
having a deprotonated ammine ligand which may additionally enhance nucleophilicity of the nitrogen atom and the rate of the reductive elimination to form 40 (Scheme 2.9).


Scheme 2.9 Proposed neutral Pd(IV) intermediate formed by deprotonation of the ammine group by OAc ${ }^{-}$.

### 2.7 Reactivity of 37 towards $\mathbf{H}_{2} \mathbf{O}_{2}$ in $\mathbf{M e O D}$

Since no $\operatorname{Pd}(I V)$ intermediates were observed with 35 as a substrate we decided to modify the structure of the 2-aminobiphenyl - derived pallada(II)cycle 35 and prepare its N -methyl- and N -ethyl-2-aminobiphenyl analogs. Our assumption was that since the $\operatorname{Pd}(\mathrm{IV})$ intermediate would be very electron poor $\mathrm{d}^{6}$ metal center, electron donating groups might help stabilize it. ${ }^{65}$ Preparation of the corresponding dpk complexes 37 and $\mathbf{3 8}$ was achieved as shown previously in Scheme 2.5.

37 was dissolved in MeOD and combined with 5 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ which turned the lightyellow solution to deep yellow, similar to the oxidation of 35 in MeOD with $\mathrm{H}_{2} \mathrm{O}_{2} .{ }^{1} \mathrm{H}$ NMR
analysis of the resulting solution after about 15 min showed the formation of N -methylcarbazole, 34, in $18 \%$ yield with no appreciable amount of other intermediates. The yield of 34 increased to 52\% after 60 minutes.


Scheme 2.10 Reactivity of 37 with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in MeOD.

After 21 h the mixture turned turbid and the yield of 34 had increased to $91 \%$. No signals of the $\operatorname{Pd}(\mathrm{dpk})$ fragment were observed in solution after 21 h . In turn, the solid formed was collected and dissolved in DMSO to show the presence of the $\operatorname{Pd}(\mathrm{dpk})$ fragment. We postulate a reaction mechanism similar to that for the oxidation of 35 where the $\mathrm{C}-\mathrm{N}$ reductive elimination of the resulting $\operatorname{Pd}(\mathrm{IV})$ intermediate is very fast thereby making it difficult to observe any $\operatorname{Pd}(\mathrm{IV})$ intermediates involved.

### 2.8 Reactivity of 38 in MeOD



Scheme 2.11 Reactivity of 38 in MeOD with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to give 43.

Complex 38 was dissolved in MeOD and combined with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ which turned the light yellow solution to deep yellow. ${ }^{1} \mathrm{H}$ NMR spectral analysis of the resulting solution just after 5 min showed the formation of the carbazole 43 in $3 \%$ yield; no appreciable amount of intermediates were observed (Scheme 2.11, Fig. 2.3). After 15 h a turbid mixture was produced with the yield of carbazole increasing to $94 \%$. The solid isolated from the mixture and dissolved in DMSO showed the presence of the $\operatorname{Pd}(\mathrm{dpk})$ fragment in it. No $\mathrm{Pd}(\mathrm{IV})$ intermediates were observed in solution. There was no qualitative trend observed in the formation of N-R-carbazoles upon using different neutral and electron donating R groups $(\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Et})$

Since no $\mathrm{Pd}(\mathrm{IV})$ intermediates were observed in reactions of $\mathrm{H}_{2} \mathrm{O}_{2}$ with electron-rich pallada(II)cycles containing Me and Et donor groups at the Pd-coordinated nitrogen atom, we next explored oxidation of electron-poorer substrates. In this vein, complex 36 was synthesized which bore a Br group para to the $\mathrm{NH}_{2}$ group of the 2-aminobiphenyl fragment.


Figure 2.3 ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture of $\mathbf{3 8}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ to form $\mathbf{4 3}$ in MeOD at 22 ${ }^{0} \mathrm{C}$. Arrows show 43 in solution. (i) 38 in solution before addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, (ii) 5 minutes after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ (iii)15 hours after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$. Structures are on p. 35 Scheme 2.11.

### 2.9 Reactivity of 36 in $\mathbf{~ M e O D}$



Scheme 2.12 Reactivity of $\mathbf{3 6}$ in MeOD with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to give 45.

Complex 36 was dissolved in MeOD and combined with 3 equiv of $\mathrm{H}_{2} \mathrm{O}_{2}$ which turned the light brown solution to deep brown. ${ }^{1} \mathrm{H}$ NMR spectral analysis of the resulting solution just after 5 min showed a less than $5 \%$ conversion of the 36 (Scheme 2.12, Fig. 2.5). The product was observed to form gradually, and a small fraction of less than 3\% intermediate was observed which persisted in solution but disappeared after the reaction was over. All attempts to increase the fraction of the intermediate by changing the counterion to $\mathrm{BF}_{4}{ }^{-}$, decreasing the equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ added or performing the reaction at $0^{\circ} \mathrm{C}$ were unsuccessful.


Figure 2.4. Reactivity of 36 in MeOD with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to give 45. Blue diamonds is 36, green triangles is 45 and red squares is the proposed intermediate $\mathbf{4 4}$. Structures are on p. 36 Scheme 2.12.


Figure 2.5 ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixture containing 36 and $\mathrm{H}_{2} \mathrm{O}_{2}$ in MeOD at $22{ }^{0} \mathrm{C}$. Arrows show dissolved 45. (i) 36 in solution before addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, (ii) 60 minutes after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ (iii) 6 hours after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$.

### 2.10 Conclusion

In summary, we synthesized a number of new 2-aminobiphenyl - derived pallada(II)cycles supported by dpk ligand, $36-38$, bearing a substituent at the amine nitrogen $(\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Et})$ or in the aniline fragment (para-Br). Their reactivity toward $\mathrm{H}_{2} \mathrm{O}_{2}$ was explored and, in the case of 36, compared to that of their dpk-free precursors. It has been demonstrated that, as opposed to dpkfree palladacycles, all the dpk complexes undergo a clean oxidation and $\mathrm{C}-\mathrm{N}$ oxidative coupling
in $90-95 \%$ yield at $22^{\circ} \mathrm{C}$ in 12 h or less. Therefore, we have shown, for the first time, that the use of tripod fac-chelating ligands such as hydrated dpk enhances the rate and selectivity of Pdmediated oxidative C-N coupling, allowing to use the environmentally friendly oxidant $\mathrm{H}_{2} \mathrm{O}_{2}$ in these reactions. This effect is, presumably, due to some stabilization provided by dpk of the $\mathrm{Pd}(\mathrm{IV})$ center in the transient amido aryl $\mathrm{Pd}(\mathrm{IV})$ species. The presence of electron donating groups $(\mathrm{R}=$ $\mathrm{Me}, \mathrm{Et}$ ) on the amine nitrogen of the 2-aminobiphenyl fragment did not lead to any dramatic changes in the rate of oxidation and reductive elimination compared to the parent compound $(\mathrm{R}=$ H). Placing a modestly electron-withdrawing group (4-Br) on the aniline fragment slowed down the oxidation reaction but only modestly. It also appears that, consistent with Buchwald's observations of the oxidative C-N coupling of his $\mathrm{Pd}(\mathrm{II})$ amido aryl complexes, ${ }^{66}$ the oxidative C-N coupling at the $\operatorname{Pd}(I V)$ center is not slowed down by electron-donating substituents at the nitrogen atom involved in the coupling. Hence, it may be reasonable to explore the effect of electron-withdrawing substituents at the amine (or amido) nitrogen atom with an expectation to observe and/or isolate the corresponding less reactive Pd(IV) amido aryl intermediates.

Among solvents used, $\mathrm{MeOH}, \mathrm{AcOH}$, and $\mathrm{H}_{2} \mathrm{O}$, the first might be the best for potential observation of $\mathrm{Pd}(\mathrm{IV})$ intermediates in the reaction of dpk-supported pallada(II)cycles with $\mathrm{H}_{2} \mathrm{O}_{2}$ at $22{ }^{\circ} \mathrm{C}$. The oxidative $\mathrm{C}-\mathrm{N}$ coupling is too fast in AcOD, whereas poor solubility of reaction products precludes reliable ${ }^{1} \mathrm{H}$ NMR reaction monitoring in $\mathrm{D}_{2} \mathrm{O}$. Running the reactions in MeOH would allow one to avoid both issues. Finally, it is worth noting that there was no effect on the reactivity by changing the counter ion from $\mathrm{AcO}^{-}$to $\mathrm{BF}_{4}{ }^{-}$.

### 2.11 Experimental

All manipulations were carried out under ambient conditions unless otherwise stated. Solvents were obtained from Acros or Aldrich and used directly without further purification. All NMR solvents were purchased from Cambridge Isotopes Inc. and were used as received. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on Varian-Inova ( $400 \mathrm{MHz}, 100.58 \mathrm{MHz}$ and 376.31 MHz , respectively) and Bruker-DRX (500 MHz, 125.72 MHz and 470.38 MHz , respectively) instruments internally referenced to residual solvent resonances. High-resolution mass spectra were recorded at Center for Mass Spectrometry, UMCP using a JEOL AcuTOF-CS instrument. All reagents for which synthesis is not reported are commercially available from Alfa-Aesar, Acros, Sigma-Aldrich, TCI and Pressure Chemical and used as received. Elemental analysis was carried out by Columbia Analytical Services, Tucson, Az. All oxidation reactions were carried out with $30 \%(\mathrm{w} / \mathrm{v}) \mathrm{H}_{2} \mathrm{O}_{2}$ standardized with oxalic acid and stored in the refrigerator at $5{ }^{0} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR yields were calculated with 1,4-dioxane as an internal standard.

## 4-bromo-2-aminobiphenyl (27):


1.0 g ( 6.0 mmol ) of $N$-acetyl-2-aminobiphenyl was dissolved in 20 mL of acetic acid and placed in an ice bath. $0.15 \mathrm{~mL}(6.0 \mathrm{mmol})$ of bromine was dissolved in 10 mL of dried chloroform. The chloroform solution was added dropwise to the acetic acid mixture with stirring. The mixture was allowed to warm to room temperature and then stirred overnight. After the reaction was complete, the solvent was removed in vacuo and the mixture was partitioned between ethyl acetate and water
(1:1) mixture. Solvent was removed from the ethyl acetate layer and the residue dissolved in 15 mL of ethanol. 0.5 mL of concentrated HCl is added to the ethanol solution and refluxed overnight. The solution is quenched with 10 mL of water and ethyl acetate $(2 \times 10 \mathrm{~mL})$ is added to extract the organic layer. The organic layer was washed with sodium bicarbonate solution, then brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Separation of the mixture on a silica gel column using hexane:ethyl acetate 70:30 gave $1.3 \mathrm{~g}(90 \%)$ of the target compound as a light purple tar-like liquid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H})$.

## Synthesis of N-methyl-2-aminobiphenyl (28):


$1.0 \mathrm{~g}(6.0 \mathrm{mmol})$ of 2-aminobiphenyl was dissolved in anhydrous THF in the glove box. 0.15 g ( 6.0 mmol ) of NaH and 0.37 mL of MeI was added, and the resulting solution stirred for 5 days. The color of the solution turned brownish pink. After 5 days, THF was removed on a rotavap and the residue dissolved in dichloromethane. Washing of the resulting solution with brine ( $2 \times 30 \mathrm{~mL}$ ) and drying with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ resulted in the formation of the target compound in 0.91 g (84\%) after removal of the solvent on a rotavap. ${ }_{-}^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform-d) $\delta 7.52-7.41$ $(\mathrm{m}, 4 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{td}, J=7.4$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (dd, $J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H})$.

## Synthesis of N-ethyl-2-aminobiphenyl (29)



N-ethyl-2-aminobiphenylwas synthesized by reduction of N -acetyl-2-aminobiphenyl. 1.0 g of 46 was dissolved in 15 mL of THF. 0.35 g of $\mathrm{NaBH}_{4}$ was added to 0.58 g of $\mathrm{I}_{2}$ in 10 mL THF. The $\mathrm{NaBH}_{4}-\mathrm{I}_{2}$ mixture was added dropwise to the solution of 46 at $0{ }^{0} \mathrm{C}$. The mixture was monitored by TLC until the spot of the starting material disappeared. The solvent was removed on a rotavap. The residue was worked up by adding water and DCM 15 mL each. The water layer was extracted with 10 mL DCM. The combined organic layer was washed with brine and dried with anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Removal of solvent on a rotavap gave $0.79 \mathrm{~g}(85 \%)$ of the target product. ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.54-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.27$ (ddd, $J=8.2,7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.12 (dd, $J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{q}, J=9.0,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.1$ Hz, 3H).

General procedure for the synthesis of 2-aminobiphenyl - derived pallada(II)cycle 30-33


These were synthesized according to literature. 0.50 g of $\mathrm{Pd}(\mathrm{OAc})_{2}$ was weighed and combined in 20 mL of toluene to form a suspension. 1.1 equivalent of the corresponding 2-aminobiphenyl substrate was added to the suspension and stirred for 96 h at room temperature and a precipitate forms which is filtered. The precipitate is washed with about 5 mL of cold $\mathrm{Et}_{2} \mathrm{O}$ and dried under
vacuum to give the target compound. These compounds were used in subsequent steps without any characterizations. Attempts to get elemental analyses for these compounds were not successful.

## General procedure for the synthesis of 2-aminobiphenylPddpk substrates 35-38

0.50 g of $\mathbf{3 0 - 3 3}$ was stirred in 10 mL of MeOH for about 10 min . 1.0 equivalent of dpk ligand was dissolved in 1.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The dpk solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to the methanol solution of 30-33. After stirring for about 10 min , the solution became clear and stirring was continued for about 4 hours. The resulting solution was concentrated on a rotavap to about 1.0 mL . $\mathrm{Et}_{2} \mathrm{O}$ (or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for only 31) was added dropwise precipitate started to form. More $\mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added until precipitation was complete. The resulting precipitate was filtered and washed with cold $\mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried under vacuum to give the target compound.

## 2-aminobiphenylPddpk(OAc),(35):



Yellowish orange solid, (65\% yield): ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Methanol- $d_{4}$ ) $\delta 8.63(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 8.25 (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ - 7.96 (m, 4H), 7.78 - 7.69 (m, 1H), 7.60 (ddd, $J=12.1,7.3,3.3$ Hz, 2H), $7.48-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{dq}, J=5.4,3.4,2.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{td}$, $J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (MeOD) $\delta: 99.0,119.2$, 123.3, 123.5, 124.8, 125.6, 125.7, 125.8, 125.9, 126.1, 127.6, 127.9, 128.3, 125.4, 137.2, 137.6,

4-bromo-2-aminobiphenylPddpk(36):


Brown solid, (87\% yield): ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , methanol- $\mathrm{d}_{4}$ ) $\delta 8.61$ (d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.28-$ $8.20(\mathrm{~m}, 1 \mathrm{H}), 8.18-8.03(\mathrm{~m}, 4 \mathrm{H}), 7.86(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{ddd}, J=7.1,5.1,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.56 (dd, $J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.48 (dd, $J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ - 7.30 (m, 2H), 7.21 (td, $J=$ 7.4, 1.3 Hz, 1H), 7.03 (td, $J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.82 (dd, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.88 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD) $\delta 177.14,156.18,155.38,152.64,149.17,148.44,140.36,138.14$, 135.42, 135.17, 129.01, 128.45, 126.22, 123.69, 122.83, 116.41, 97.06, 21.30. Esi/MS. Found/Calculated: 535.89/535.96 Anal. Found / Calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{BrN}_{3} \mathrm{OPd}$.OAc.MeOH : C : 48.86/49.66, H : 4.05/3.85, N : $6.63 / 6.68$

N-methyl-2-aminobiphenylPddpk(37):


Yellowish orange solid, (70\% yield): ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Methanol- $d_{4}$ ) $\delta 8.57(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 8.23 (dd, $J=5.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.20-8.05(\mathrm{~m}, 5 \mathrm{H}), 7.85(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ (ddd, $J=7.7$, $2.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.35$ (ddd, $J=7.2,5.3,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ (s, 3H), 1.92 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD) $\delta 178.68,157.74,157.01,154.33,154.14$, 153.72, 151.98, 149.97, 149.87, 148.60, 142.04, 140.24, 139.83, 139.73, 137.19, 137.01, 136.32, 136.08, 128.99, 127.85, 127.75, 127.40, 127.35, 127.12, 126.68, 125.84, 125.61, 125.29, 125.22, 125.05, 124.92, 124.85, 124.62, 123.20, 123.15, 123.04, 122.96, 119.24, 114.42, 98.64, 65.42, 43.21, 22.86, 14.01 Esi/MS. Found/Calculated: 471.98/472.06

N-ethyl-2-aminobiphenylPddpk(38)


Yellowish orange solid, ( $54 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Methanol- $d_{4}$ ) $\delta 8.60-8.53(\mathrm{~m}, 1 \mathrm{H})$, 8.21 - 8.04 (m, 5H), 7.84 (dd, $J=7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{td}, J=5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (dd, $J=$ $7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (dd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{ddd}, J=7.4,5.6,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{td}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}$, 1H), $2.79(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{MeOD}$ ) $\delta 178.71,157.40,157.22,154.30,152.26,149.85,141.26,140.36,139.86,139.76,137.29,135.93$, 128.95, 127.90, 127.50, 127.12, 125.70, 125.25, 125.16, 124.59, 123.70, 122.76, 119.90, 98.48, 65.45, 50.91, , 23.10, 14.20, 14.04. Esi/MS. Found/Calculated: 486.01/486.08

General procedure for oxidation of dpk ligated 2-aminobiphenyl substrates(35-38)

10 mg of the dpk ligated palladacycle was dissolved in 0.60 mL of solvent. 3 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added to the solution. The solution was then monitored by ${ }^{1} \mathrm{H}$ NMR until no further change was observed or only peaks corresponding to the product were observed. All solutions were monitored at $22{ }^{\circ} \mathrm{C}$ unless otherwise stated. Isolation was by removing solvent on a rotavap, stirring the residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and passing the solution through silica gel to adsorb any Pd-containing species. All reductively eliminated products were compared to literature data.

## Carbazole(40):


${ }^{1} \mathrm{H}$ NMR (400 MHz, methanol- $d_{4}$ ) $\delta 8.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35$ (ddd, $J=$ 8.2, 7.1, $1.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.14 (ddd, $J=8.0,7.0,1.1 \mathrm{~Hz}, 2 \mathrm{H}$ ).

## 3-bromocarbazole(45):


${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform-d) $\delta 8.19$ (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.11 (s, 1H), 8.03 (d, $J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50$ (dd, $J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.44 (dd, $J=3.7,1.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.32 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.25-$ 7.23 (m, 1H).

N-methylcarbazole(34):

${ }^{1} \mathrm{H}$ NMR ( 400 MHz, Chloroform- $d$ ) $\delta 8.11(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.49 (ddd, $J=8.2,7.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$.

N-ethylcarbazole(43):

${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Methanol- $\mathrm{d}_{4}$ ) $\delta 8.05$ (dt, $J=7.8,1.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.48-7.37$ (m, 2H), 7.16 (ddd, $J=8.0,6.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

## Chapter 3. Synthesis and Reactivity of $\kappa^{2}-C, N-2^{\prime}-(N-R-$ amido)biphenyl-2-yl Pd(II) complexes with electron withdrawing groups $\mathrm{R}=\mathrm{COCH}_{3}, \mathrm{COCF}_{3}, \mathrm{SO}_{2} \mathrm{CH}_{3}, \mathrm{SO}_{2} \mathrm{CF}_{3}$

### 3.1 Introduction and Background

Even though complexes 35 - 38 were observed to undergo an oxidative C-N coupling to form corresponding carbazoles in high yield, no appreciable amount of reaction intermediates were observed. Previous work by Hartwig ${ }^{35}$ and a recent work by Buchwald ${ }^{66}$ had shown that reductive eliminations from $\mathrm{Pd}(\mathrm{II})$ to form the $\mathrm{C}-\mathrm{N}$ bond was faster from complexes with more electron-rich amido ligands than from complexes with more electron-poor amido ligands. These data were first revealed by the studies of 1,1 '-bis(diphenylphosphino)ferrocene (DPPF)-ligated aryl palladium amido complexes summarized in Scheme 3.1. ${ }^{32,35,67}$


Scheme 3.1 Dependence of rate of reductive elimination on the presence of electron donating or electron withdrawing groups at the amide nitrogen atom at a $\mathrm{Pd}(\mathrm{II})$ center, as reported by Hartwig.

The diarylamido $\operatorname{Pd}(\mathrm{II})$ complexes underwent reductive elimination at elevated temperatures over the course of 1-2 h . The analogous anilide complex underwent reductive elimination at room temperature over a similar time period, and the alkylamide underwent reductive elimination at $0{ }^{\circ} \mathrm{C}$ over this time. ${ }^{68}$ Also, the Buchwald group reported a similar trend whiles working with different palladium precursors and substrates. ${ }^{66}$ Interestingly, it was also observed that electron donating groups on the aryl ligand slowed down the rate of reductive elimination so as electron withdrawing groups on the aryl amido fragment (Figure 3.1).


Slowing the rate of reductive elimination
$\mathrm{R}_{1}$ Methoxy substituent
$\mathrm{R}_{2}$ Electron donating
$\mathrm{R}_{3}$ Electron donating
$\mathrm{R}_{4}$ Electron withdrawing

Figure 3.1 Electronic effects on the rate of reductive elimination of C-N bond from an isolated $\mathrm{Pd}(\mathrm{II})$ complex as reported by Buchwald.

Based on the work by Hartwig and Buchwald, we decided to explore the effect of electron withdrawing groups on the C-N reductive elimination reaction from $\mathrm{Pd}(\mathrm{IV})$ centers and see if there will be any similarities with C-N reductive elimination from analogous Pd(II) center. To this end, we needed, at least, to observe or, ideally, isolate the corresponding amido aryl $\operatorname{Pd}(I V)$ intermediates. The key question here was whether these electron-poorer Pd(IV) amido complexes could still be produced at a reasonably fast rate by oxidation of their $\mathrm{Pd}(\mathrm{II})$ precursors with $\mathrm{H}_{2} \mathrm{O}_{2}$.

### 3.2 Preparation of dpk - ligated palladacycles 50, 51, 61 and 66 bearing an electron-withdrawing group at the amide nitrogen atom

The dpk supported palladacycles 50,51, $\mathbf{6 1}$ and $\mathbf{6 6}$ bearing at the amide nitrogen atom an electronwithdrawing group, $\mathrm{Ac}, \mathrm{CF}_{3} \mathrm{CO}, \mathrm{SO}_{2} \mathrm{Me}$ and $\mathrm{SO}_{2} \mathrm{CF}_{3}$, respectively, were prepared by a one-pot synthesis from their corresponding 2-(N-R-amino)biphenyl precursors (Scheme 3.2). A 2-(N-Ramino)biphenyl 46-49 was combined with 0.9 equivalents of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in $\mathrm{CH}_{3} \mathrm{CN}$, and the resulting solution refluxed at $70{ }^{\circ} \mathrm{C}$ for between 2 to 12 hours until formation Pd black became apparent. This solution was filtered through Celite and 0.9 equivalents of dpk added and stirred at room temperature for about 4 h . The resulting solution was concentrated and combined with $\mathrm{Et}_{2} \mathrm{O}$, or MeOH to afford the target compounds 50, 51, $\mathbf{6 1}$ or $\mathbf{6 6}$ in good yields as yellow or off white precipitates. Their identity was confirmed by NMR spectroscopy and their purity confirmed by elemental analyses.


Scheme 3.2 Preparation of dpk ligated palladacycles 50, 51, 61 and 66

### 3.3 Characterization and reactivity of the N -acetyl $\mathrm{Pd}(\mathrm{II})$ complex, $\mathbf{5 0 ( M e O H )}$

### 3.3.1 Structural characterization of $\mathbf{5 0 ( M e O H})$

We started our studies with ( $\kappa^{2}-C, N-2^{\prime}$-( N -acetylamido)biphenyl-2-yl) palladium(II) complex 50 which was isolated as a yellow solid in a form of its MeOH adduct $\mathbf{5 0 ( M e O H})$. As expected, ${ }^{59}$ the compound was shown by ${ }^{13} \mathrm{C}$ NMR spectroscopy to exist in MeOD solution predominantly in the form of an adduct with methanol added across the dpk ligand carbonyl group. There was a peak at about 95 ppm in its ${ }^{13} \mathrm{C}$ NMR spectra characteristic of the ketal carbon whereas the signal of the dpk carbonyl group at about 195 ppm was missing. The connectivity of $\mathbf{5 0}$ was not obvious since amides may bond to a metal center via either oxygen or nitrogen atom. To confirm the proposed structure of $\mathbf{5 0}(\mathbf{M e O H})$, X-ray quality crystals were grown from a cold solution of $\mathbf{5 0}$ in methanol. The crystal structure demonstrated the presence of an anionic nitrogen rather than oxygen atom bonded to the Pd(II) center as well as the presence of the hemiketal fragment in the product that can be designated as $\mathbf{5 0 ( \mathbf { M e O H } )}$. No signals were observed in the $\mathrm{ESI}(+) / \mathrm{MS}$ spectrum of methanolic solutions of $\mathbf{5 0}$, so confirming that the compound is charge-neutral.


Figure 3.2 X-ray crystal structure of $\mathbf{5 0 ( M e O D )}$ showing the addition of MeOD across the ketone group of 50 .

The X-ray diffraction shows the square planar geometry around the palladium center which is typical for a $\operatorname{Pd}(\mathrm{II}) \mathrm{d}^{8}$ center. The dpk fragment is coordinated to Pd in the $\kappa^{2}-N, N$ mode which allows the hemiketal $\mathbf{5 0}(\mathbf{M e O H})$ to exist in equilibrium with the corresponding ketone form $\mathbf{5 0}$ in solutions. The latter can add $\mathrm{H}_{2} \mathrm{O}_{2}$ across the carbonyl $\mathrm{C}=\mathrm{O}$ bond to form a hydroperoxoketal 52 (Scheme 3.3) that can be involved in the $\mathrm{Pd}(\mathrm{II})-$ to-Pd(IV) oxidation. ${ }^{59}$ In the solid $\mathbf{5 0 ( \mathbf { M e O H } )}$ the Pd1-N2 bond trans- to the aryl is elongated (2.146(2) $\AA$ ) relative to the Pd1-N1 (2.062(2) $\AA$ ) bond and shows stronger trans-influence of the phenyl group in comparison to the amido fragment of the Pd-bound 2'-amidobiphenyl-2-yl ligand. Also, the Pd-aryl bond, Pd1-C41, is shorter, 1.991(2)
$\AA$, as compared to the Pd-amide bond, Pd1-N3, 2.011(2) Å.

### 3.3.2 Reactivity of $\mathbf{5 0}$ towards $\mathrm{H}_{2} \mathrm{O}_{2}$ in different solvents.

### 3.3.2.1 MeOD



Scheme 3.3. Reactivity of $\mathbf{5 0}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in MeOD to form 55 at $5^{0} \mathrm{C}$.


Figure 3.3 Monitoring of $\mathbf{5 0}(\mathbf{M e O H})$ in MeOD with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to give 55 at $22{ }^{\circ} \mathrm{C}$.

When complex $\mathbf{5 0}(\mathbf{M e O H})$ was treated with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in methanol solution and monitored by ${ }^{1} \mathrm{H}$ NMR at room temperature, three sets of signals were observed. First were the signals belonging to the starting material which disappeared gradually with a half-life of about 45 min. Second were the signals belonging to a reaction intermediate which were relatively constant throughout the reaction but eventually disappeared when the reaction was complete. Third were the signals belonging to the N -acetylcarbazole whose concentration increased gradually until reaction was over. Also, the reaction product, N -acetylcarbazole, was found not to be bound to $\operatorname{Pd}(\mathrm{II})$; the addition of 3 equivalents of pyridine- $d_{5}$ did not lead to a change in the ${ }^{1} \mathrm{H}$ NMR spectrum.

Attempts were made to determine the identity of the intermediate. The ortho-pyridyl ${ }^{1} \mathrm{H}$ NMR signals of dpk-derived species were used as "NMR-handles" to recognize some key dpk derivatives in our chemistry. These signals are typically most downfiled shifted and well resolved
in our systems. ${ }^{59}$ A mixture of $\mathbf{5 0 ( \mathbf { M e O H } )}$ with 10 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ in MeOH was monitored at $5{ }^{\circ} \mathrm{C}$ by
${ }^{1} \mathrm{H}$ NMR spectroscopy. There was an initial spike in the fraction of the intermediate to about $30 \%$ and the corresponding initial drop in the amount of starting material to about $70 \%$, but both concentrations did not change much after monitoring for 170 min . When the solution was allowed to warm to room temperature, the carbazole 55 was observed in $87 \%$ yield after 120 minutes. This was the first time an intermediate was observed in high concentration in our system. The high concentration of the intermediate observed showed that the formation of this intermediate was fast even at low temperatures. The ortho-pyridyl ${ }^{1} \mathrm{H}$ NMR signals corresponding to this intermediate were upfield shifted ( 8.60 ppm ) compared to the starting material ( 8.69 ppm ). This made us assign these signals to the peroxyketal 52 resulting from the addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of $\mathbf{5 0}$. The corresponding ortho-pyridyl signals of an anticipated $\mathrm{Pd}(\mathrm{IV})$ intermediate were expected to be more downfield shifted compared to the starting material since the $\operatorname{Pd}(I V)$ center is more electron poor than a $\mathrm{Pd}(\mathrm{II})$ center. ${ }^{59}$


Figure 3.4 Monitoring of $\mathbf{5 0}(\mathbf{M e O H})$ in MeOD with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to give 55 at $5{ }^{\circ} \mathrm{C}$. Blue diamonds is $\mathbf{5 0}(\mathbf{M e O H})$, orange squares is $\mathbf{5 2}$, and gray triangles is 55 .

If our assignments are correct, these observations suggest that the rate of $\mathrm{Pd}(\mathrm{II})-\mathrm{to}-\mathrm{Pd}(\mathrm{IV})$ oxidation is strongly affected (slowed down) by the temperature and that the C-N coupling of the expected $\operatorname{Pd}(\mathrm{IV})$ intermediate is still much faster than the $\mathrm{Pd}(\mathrm{II})$-to- $\mathrm{Pd}(\mathrm{IV})$ oxidation step. To be able to observe $\operatorname{Pd}(\mathrm{IV})$ intermediates we need to make the oxidation step faster than the $\mathrm{C}-\mathrm{N}$ coupling of the $\mathrm{Pd}(\mathrm{IV})$ species. A possible way to accelerate the rate of the oxidation step is by using more powerful $\mathrm{H}_{2} \mathrm{O}_{2}$ and solvent-derived peroxo species such as AcOOH :

$$
\mathrm{AcOH}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{AcOOH}+\mathrm{H}_{2} \mathrm{O}
$$

### 3.3.2.2 AcOD



Scheme 3.4 Reactivity of 50 toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD to form 55 at $22{ }^{\circ} \mathrm{C}$. In the absence of MeOH solvent the adduct $\mathbf{5 0 ( M e O H )}$ is expected to dissociate readily into its components, MeOH and $50 .{ }^{59}$

When a yellow solution of complex $\mathbf{5 0 ( \mathbf { M e O H } )}$ in AcOD was treated with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$, and monitored by ${ }^{1} \mathrm{H}$ NMR at room temperature, broadening of signals was observed
with subsequent formation of the C-N coupled product 55 in $84 \%$ yield by ${ }^{1} \mathrm{H}$ NMR after 60 minutes with the formation of a dark brown colored solution. Decreasing the equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ from 5 to 1.5 did not lead to a change in the reaction rate. Attempts were not made to repeat the reaction at lower temperatures since AcOD freezes at about $16{ }^{\circ} \mathrm{C}$. The increase in the rate of formation of the carbazole 55 in AcOD suggests that the rate of $\mathrm{Pd}(\mathrm{II})$-to- $\mathrm{Pd}(\mathrm{IV})$ oxidation is strongly accelerated in this solvent and, possibly, involves peroxoacetic acid, a more powerful oxidizing agent, as compared to $\mathrm{H}_{2} \mathrm{O}_{2}$. At the same time, the rate of the C-N reductive elimination step of the $\mathrm{Pd}(\mathrm{IV})$ complex 53 may also be affected by AcOH . That might involve formation of an electron-poorer and, hence, more reactive cationic Pd(IV) aqua complex 54. Hence, the use of less acidic solvents might allow us to observe Pd(IV) amido hydrocarbyl species. In particular, MeCN can also, similar to AcOH , produce strongly oxidizing peroxo imino acetic acid:

$$
\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{~N}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{C}(=\mathrm{NH}) \mathrm{OOH}
$$

At the same time, MeCN should not be affecting dramatically stability of Pd(IV) amido hydrocarbyls.

### 3.3.2.3 $C D_{3} C N$

When a yellow solution of complex $\mathbf{5 0 (} \mathbf{M e O H})$ in $\mathrm{CD}_{3} \mathrm{CN}$ was treated with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$, and monitored by ${ }^{1} \mathrm{H}$ NMR at room temperature, one new major species was observed in solution produced immediately after mixing (Scheme 3.5). This species was assigned to the 52 due to the presence of the strongly downfield shifted signal at 14.78 ppm (Fig. 3.5) due to the peroxyketal fragment of the 52.


Figure $3.5{ }^{1} \mathrm{H}$ NMR of 52 in $\mathrm{CD}_{3} \mathrm{CN}$ showing the signal of the proton of its peroxyketal fragment at 14.78 ppm .

After 15 minutes upon mixing, $\mathbf{5 2}$ was observed to fully convert to a new major species $\mathbf{5 3}$ (Scheme 3.5).


Scheme 3.5 Reactivity of $\mathbf{5 0}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$ to form 53 and 55 at $22{ }^{\circ} \mathrm{C}$.

This new species was assigned to the corresponding $\mathrm{Pd}(\mathrm{IV})$ amido aryl complex since the signals of its ortho-pyridyl hydrogen atoms were much more downfield shifted compared to the starting material. Complex 53 was observed to slowly produce the carbazole 55 with a half-life of (182 $\pm$ 6) minutes. The latter was observed in $93 \%$ yield after 24 h along with a $\operatorname{Pd}(\mathrm{dpk})$-derived compound which crystallized out of solution to give a yellowish-brown precipitate. The precipitate
was isolated and dissolved in DMSO- $d_{6}$. An ${ }^{1} \mathrm{H}$ NMR analysis of the resulting solution showed the presence of a dpk - derived species and the absence of 55 which confirms that 55 was not bound to Pd. This was the first time a high concentration of intermediates were observed in our system at room temperature with their possible assignment as a $\mathrm{Pd}(\mathrm{II})$ hydroperoxoketal derivative 52 and its isomeric $\operatorname{Pd}(\mathrm{IV})$ amido aryl complex 53. Our attempts to crystallize proposed intermediates, 52 and 53 at low temperatures were not successful. 52 showed one set of signals in the ${ }^{1} \mathrm{H}$ NMR spectrum with the peroxyketal fragment at 14.78 ppm and an upfield shift in the most downfield ortho-pyridyl signal from 8.86 ppm to 8.58 ppm .53 also showed a single set of signals in the ${ }^{1} \mathrm{H}$ NMR spectrum with a downfield shift of the most downfield shifted ortho-pyridyl signal from8.86 ppm to 9.12 ppm (Figure 3.6). The use of $\mathrm{HBF}_{4}$ additives which could help crystallize 53 as a derived salt led instead to faster rates of elimination of 55 . This effect was similar to what we observed when reaction of $\mathbf{5 0}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ was set up in AcOD solutions. Excited by the ability to observe hypothetical Pd(IV) intermediates in high concentration in MeCN and educated by unsuccessful attempts to isolate them we were led to believe that the success at isolating these intermediates may be highly dependent on the choice of a non-acidic solvent and the R group on the nitrogen atom of the 2-aminobiphenyl fragment.


Figure 3.6 ${ }^{1} \mathrm{H}$ NMR monitoring of the reaction of $\mathbf{5 0}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$ to form $\mathbf{5 5}$. Green circles show 50, arrows show 55, blue triangles show 52 and and red diamonds show 53 in solution (i) 50 in solution before addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, (ii) 15 minutes after addition (iii) 45 minutes after addition (iv) 3 hours after addition (v) 14 hours after addition.


Figure 3.7 First order plot for the elimination from 53 to form 55; the first order rate constant is $(3.8 \pm 0.2) \times 10^{-3} \mathrm{~min}^{-1}$ in MeCN at $22{ }^{\circ} \mathrm{C}$.


Scheme 3.6 Reactivity of $\mathbf{5 0}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in THF- $d_{8}$ to form 55 at $22^{\circ} \mathrm{C}$.

When $\mathbf{5 0}(\mathbf{M e O H})$ was dissolved in THF- $d_{8}, 3$ different species were observed in the yellow solution formed in its ${ }^{1} \mathrm{H}$ NMR spectrum which could be assigned to the methanol adduct $\mathbf{5 0}(\mathbf{M e O H})$, its isomer with an opposite configuration of the ketal carbon and $\mathbf{5 0}$. No change in the
${ }^{1} \mathrm{H}$ NMR spectrum was observed after letting the solution stand for 2 hours. When a yellow
solution above was treated with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$, and monitored by ${ }^{1} \mathrm{H}$ NMR at room temperature, a new major species was observed in solution. This species was assigned to the $\mathbf{5 2}$ due to the presence of the strongly downfield shifted singlet at 14.81 ppm (Fig. 3.8). The peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum were observed to broaden after 1 h which persisted for the next 8 hours. The broad peaks could not be individually assigned. After 14 hours, carbazole 55 formed in $91 \%$ yield along with a brown precipitate. A small fraction of another species that could be assigned to 53 (7\% yield) was also observed in solution after 14 h .


Figure $3.8{ }^{1} \mathrm{H}$ NMR spectrum of a mixture of 49 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in THF- $\mathrm{d}_{8}$ showing peroxyketal proton signal at 14.81 ppm .

In conclusion, the reaction of $\mathbf{5 0}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in THF led to a fast formation of the hydroperoxoketal-derived $\mathrm{Pd}(\mathrm{II})$ intermediate 52. Its subsequent $\mathrm{Pd}(\mathrm{II})$-to- $\mathrm{Pd}(\mathrm{IV})$ oxidation and

C-N coupling are not very much different in their rates so not allowing for a clean observation of the $\operatorname{Pd}(\mathrm{IV})$ species. In turn, in MeCN solution, according to ${ }^{1} \mathrm{H}$ NMR spectroscopy, the reaction of 50 with $\mathrm{H}_{2} \mathrm{O}_{2}$ produces consecutively two major intermediates assignable as a $\mathrm{Pd}(\mathrm{II})$ hydroperoxoketal derivative and its isomeric Pd(IV) amido aryl complex. The latter can cleanly produce the corresponding $\mathrm{C}-\mathrm{N}$ coupled product, the carbazole 55 . Our attempts to isolate these intermediates in a pure form were not successful. At the same time, the successful observation of the $\operatorname{Pd}(\mathrm{IV})$ amido aryl complex 53 is, most likely, a result of the presence of an electronwithdrawing group at the nitrogen atom of the Pd-coordinated amido ligand. This conclusion led us to a decision to synthesize and explore other amido aryl Pd(II) complexes containing electron withdrawing groups at the amido nitrogen atom, such as trifluoroacetyl in $\mathrm{Pd}(\mathrm{II})$ complex 51.

### 3.4 Characterization and reactivity of the N -trifluoroacetyl $\mathrm{Pd}(\mathrm{II})$ complex,

## 51(MeOH)

### 3.4.1 Characterization of the N -trifluoroacetyl $\mathrm{Pd}(\mathrm{II})$ complex, $51(\mathrm{MeOH})$

$\mathbf{5 1 ( M e O H )}$ was isolated from methanolic solutions and shown by ${ }^{1} \mathrm{H}$ NMR spectroscopy to contain one mol of MeOH per mol of $\mathbf{5 1}$ which is presumably added across the dpk fragment $\mathrm{C}=\mathrm{O}$ bond, similar to $\mathbf{5 0}(\mathbf{M e O H})$. The purity of $\mathbf{5 1}(\mathbf{M e O H})$ was confirmed by elemental analysis. No signals were observed in the ESI(+)/MS spectrum of methanolic solutions of $\mathbf{5 1 ( \mathbf { M e O H } )}$ so confirming the target compound as being neutral. In AcOD solutions, according to ${ }^{13} \mathrm{C}$ NMR spectroscopy, this compound dissociates completely into free MeOH and the "keto form" 51. Such solutions exhibit no peak at about 95 ppm in ${ }^{13} \mathrm{C}$ NMR spectra characteristic of the dpk-derived ketal carbon whereas the signal of the dpk carbonyl group at about 195 ppm is present.

### 3.4.2 Reactivity of $\mathbf{5 1}(\mathbf{M e O H})$ towards $\mathrm{H}_{2} \mathrm{O}_{2}$ in different solvents.

### 3.4.2.1 MeOD



Scheme 3.7 Reactivity of 51 towards $\mathrm{H}_{2} \mathrm{O}_{2}$ in MeOD at $22{ }^{\circ} \mathrm{C}$.

The off-white $\mathbf{5 1 ( M e O H )}$ dissolves in MeOD readily to form a yellow solution. ${ }^{1} \mathrm{H}$ NMR analysis of this solution showed two species in a ratio of about 19:1; the minor species being presumably complex 51, by analogy with similar systems studied previously by Oloo (Scheme 3.7). ${ }^{59}$ When a yellow solution of $\mathbf{5 1 ( \mathbf { M e O H } )}$ in MeOD was treated with 5 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ and monitored by ${ }^{1} \mathrm{H}$ NMR at room temperature, no new species was observed in solution until about 4 hours when two downfield shifted ortho-pyridyl signals appeared ( 9.19 ppm and 9.69 ppm ) corresponding to a plausible Pd(IV) intermediate, 57, formed in 23\% yield (Fig. 3.9). After 24 h, no peaks which could be assigned to the corresponding carbazole 58 were detected. Upon allowing the solution to stand for seven days, no products of reductive elimination were observed. Our attempts to isolate intermediate 57 were not successful.

The Sanford group observed $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - N reductive elimination at $60^{\circ} \mathrm{C}$ which may be due to the relatively high energy barrier needed for this to happen. ${ }^{54}$ Similarly, we also tried raising the temperature to see if this could increase the rate of reductive elimination. A new experiment was set up and after 16 hours the solution was heated at $70{ }^{\circ} \mathrm{C}$ for 4 hours. No carbazole 58 was observed by ${ }^{19}$ F NMR after heating; dark brownish decomposition products including Pd black on
the walls of the Young tube were observed. This result may be associated with the ability of MeOH to reduce Pd compounds under harsh conditions to the metal.


Figure $3.9{ }^{1} \mathrm{H}$ NMR spectroscopy monitoring of the reactivity of $\mathbf{5 1 ( M e O H )}$ in MeOD at $22{ }^{0} \mathrm{C}$. Arrows show intermediates observed in solution which was attributed to both 56 and 57, and blue triangle shows 51. (i) $\mathbf{5 1}$ in solution before addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, (ii) 12 hours after addition (iii) 12 hours after addition and warming at $70^{\circ} \mathrm{C}$ for 4 hours.

### 3.4.2.2 $\mathrm{CD}_{3} \mathrm{CN}$

$\mathbf{5 1 ( M e O H )}$ dissolves in $\mathrm{CD}_{3} \mathrm{CN}$ to give yellow solutions. A yellow solution of complex 51 in $\mathrm{CD}_{3} \mathrm{CN}$ was combined with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at room temperature. According to ${ }^{1} \mathrm{H}$ NMR spectroscopy, a new major species was immediately formed in the mixture, along with some small quality of the starting material 51. This species was hypothesized to be the hydroperoxoketal 56 due to the presence of the strongly downfield shifted signal at 13.57 ppm assigned to the proton of the hydroperoxyketal OOH fragment of 56. Notably, 56 was observed to quickly convert to
another species in the course of 30 minutes (Fig. 3.10). This new species persisted for about 8 hours as the major product in solution but our attempts to crystallize it were not successful.

Interestingly, according to ${ }^{1} \mathrm{H}$ NMR of the dark brown solution formed after 24 hours, 51 was observed to reform as the major product, apparently, with $\mathrm{O}_{2}$ evolution, whereas no carbazole 58 was detected. These results suggest that both species observed in solution could be isomeric hydroperoxoketals, with the OOH group positioned exo- or endo- with respect to the metal chelate ring (Scheme 3.8). This assumption is based on the consideration that the corresponding $\operatorname{Pd}(I V)$ complex 57 could not be reduced to 51 in $\mathrm{CD}_{3} \mathrm{CN}$ solvent, which is known to be not a good reducing agent. In addition to the signals of the starting material 51, after 24 h two ortho-pyridyl peaks of equal intensity were observed at 9.14 ppm and 9.35 ppm ( $4 \%$ yield). This product may correspond to the $\mathrm{Pd}(\mathrm{IV})$ amido aryl complex 57. As in the case of MeOH as a solvent, after warming up the reaction mixture at $60^{\circ} \mathrm{C}$ for 3 hours no clean formation of the carbazole 58 was observed by ${ }^{19}$ F NMR, which may be because of a low content of 57 in the mixture.


Scheme 3.8 Reactivity of 51 toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at $22{ }^{\circ} \mathrm{C}$.


Figure $3.10^{1} \mathrm{H}$ NMR spectroscopy monitoring of the reactivity of 51 in $\mathrm{CD}_{3} \mathrm{CN}$ at $22^{\circ} \mathrm{C}$. Black arrows show endo-isomer of $\mathbf{5 6}$, orange arrows show exo isomers of 56 observed in solution and blue triangle shows 51 . (i) 51 in solution before addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, (ii) 15 minutes after addition (iii) 60 minutes after addition (iv) 13 hours after addition.

### 3.4.2.3 THF



Scheme 3.9 Reactivity of $\mathbf{5 1}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ to form 58 in THF- $d_{8}$

A picture similar to what was observed in $\mathrm{CD}_{3} \mathrm{CN}$ solutions was also seen in THF. Complex 51 dissolves in THF- $d_{8}$ to give yellow solutions. When a yellow solution of complex 51 in $\mathrm{CD}_{3} \mathrm{CN}$ was treated with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ and monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at room temperature, a new major species was observed. This species was assigned to the $\mathbf{5 6}$ (Scheme 3.9) due to the presence of a strongly downfield shifted signal at 13.68 ppm of the peroxyketal OOH fragment. Complex 56 persisted for about 8 hours as the major product in solution (Fig. 3.11). After 24 hours, according to ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR of the dark yellow solution formed, 51 was observed to reform in a high yield. A new species was also detected which was presumed to be Pd(IV), 57, based on the presence of more downfield shifted signals of pyridyls’ ortho-hydrogen atoms ( 9.25 ppm and 9.31 ppm ), as compared to the starting material ( 8.80 ppm ). Warming up of the solution to $60{ }^{0} \mathrm{C}$ resulted in the formation of the carbazole 58 in $18 \%$ yield by ${ }^{19} \mathrm{~F}$ NMR spectroscopy.


Figure $3.11{ }^{1} \mathrm{H}$ NMR spectroscopy monitoring of the reactivity of 51 in THF- $d_{8}$ at $22{ }^{\circ} \mathrm{C}$. Arrows show 56, black diamond shows peaks presumed to be 57 and blue triangle shows 51. (i) 51 and 51- $\mathrm{H}_{2} \mathrm{O}$ in solution before addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, (ii) 15 minutes after addition (iii) 60 minutes after addition (iv) 500 minutes after addition (v) 24 hours after addition.

### 3.4.2.4 AcOD

Complex 51 dissolves in AcOD after 15 minutes on a rotator to form a clear yellow solution. After 50 min upon addition of 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ almost all of the starting material disappears to form two intermediates, 57 and 59 (Scheme 3.10, Fig. 3.12). The former was observed to form
faster than $\mathbf{5 9}$ (the $\mathbf{5 7}$ : $\mathbf{5 9}$ ratio is 2:1 after 10 min ) but after 60 minutes both intermediates were present in about equal amounts (Fig. 3.13). This ratio remained constant for 16 h .


Scheme 3.10 Proposed reaction of 51 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD to form intermediates 57, 59 and the carbazole 58.


Figure 3.12 A profile of the reaction of $\mathbf{5 1}$ (blue diamonds) with 3 equiv $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD to form intermediates 57, 59 and the carbazole 58, based on ${ }^{1} \mathrm{H}$ NMR monitoring at $22{ }^{\circ} \mathrm{C}$.



Figure 3.13 ${ }^{1} \mathrm{H}$ NMR monitoring of the reaction of 51 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD at $22{ }^{\circ} \mathrm{C}$. Arrows show 58, black diamond shows 57, blue squares show 59 and blue triangle shows 51. (i) 51 in solution before addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, (ii) 10 minutes after addition (iii) 30 minutes after addition (iv) 50 minutes after addition (v) 50 minutes after addition and warming at $60^{\circ} \mathrm{C}$ for 3 hours.

The tentative assignment of both 57 and 59 as $\operatorname{Pd}(I V)$ complexes was based on the position of the most downfield-shifted signals of their ortho-pyridyl hydrogen atoms ( 9.67 ppm and 9.37 $\mathrm{ppm})$, much more downfield as compared to the starting material (8.82 ppm).

We hypothesize that the intermediate 57 is a Pd(IV) hydroxo complex which forms upon attack by the Pd at the corresponding peroxyketal O-O bond. Complex 59 may be viewed as a
derived $\operatorname{Pd}(\mathrm{IV})$ acetoxo complex. The mixture of 57 and 59 in AcOD produces slowly the carbazole 58; this reaction is accelerated at $60^{\circ} \mathrm{C}$.

Notably, the carbazole formation is rate limiting in AcOH , as opposed to the reaction of 51 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in other solvents, $\mathrm{MeOD}, \mathrm{CD}_{3} \mathrm{CN}$ and THF, where the $\mathrm{Pd}(\mathrm{II})$-to-Pd(IV) oxidation was rate limiting. This shows the dramatic effect of solvent on our reaction. It is likely that AcOD enhances the electrophilicity of the derived peroxoketal OOH group leading to a more facile attack at it by the $\operatorname{Pd}(\mathrm{II})$ center.

### 3.4.3 Isolation and reactivity of $\mathbf{N}$-trifluoroacetyl $\mathbf{P d}(\mathrm{IV})$ complex, 59

From our observations illustrated in Fig. 3.13 it follows that the highest fraction of intermediates 57 and 59 is observed after about 50 minutes. We, therefore, attempted isolation of 57 and 59 after 50 minutes of reaction at $22^{\circ} \mathrm{C}$. The solvent was removed under vacuum and the resulting brown solid was washed with $\mathrm{H}_{2} \mathrm{O}$ to remove any remaining $\mathrm{H}_{2} \mathrm{O}_{2}$ and AcOH . The solid is insoluble in $\mathrm{H}_{2} \mathrm{O}$ and toluene, slightly soluble in $\mathrm{MeOH}, \mathrm{CH}_{3} \mathrm{CN}$, acetone and THF and perfectly soluble in DMSO. Complex 57 did not survive the isolation, presumably, due to an extended exchange of the OAc for OH ligand.

An ${ }^{1} \mathrm{H}$ NMR spectrum of the so-produced solid in DMSO- $d_{6}$ showed the presence of two species in a ratio of 6:1 (Fig. 3.14). This ratio was also observed using ${ }^{19} \mathrm{~F}$ NMR which showed two fluorine-containing species with the signals at -69.66 ppm and -70.91 ppm in a ratio of $6: 1$ (Fig. 3.15). A molecule of AcOH was observed to crystallize with the precipitate which was observed at 1.91 ppm . Two $\mathrm{CH}_{3}$ group signal were also observed at 2.01 ppm and 1.36 ppm in a ratio of 6:1 for the major and minor species, respectively. The major signal was attributed to $\mathbf{5 9}$
while the other signal which is more upfield shifted might be attributed to $\mathbf{6 0}$, an isomeric acetate (see C-N reductive elimination reactivity below).

The addition of two drops of $\mathrm{D}_{2} \mathrm{O}$ to the above mixture of $\mathbf{5 9}$ and $\mathbf{6 0}$ in $\mathrm{DMSO}-d_{6}$ leads to the disappearance of the peaks at 8.62 ppm and 8.82 ppm which could be attributed to the OH group of the hydrated dpk ligand of the major and minor components, respectively. No change in the high field region from 0 ppm to 5 ppm was observed. Since the signal of the $\mathrm{Pd}(\mathrm{IV})(\mathrm{OH})$ ligand in 57 would be present in this range, we concluded that 57 was not in the mixture.


Figure 3.14 ${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- $d_{6}$ of a mixture containing 59 and $\mathbf{6 0}$ as the major component, before (below) and after addition of two drops of $\mathrm{D}_{2} \mathrm{O}$ (above). Arrows show the peaks affected.


Figure $3.15{ }^{19} \mathrm{~F}$ NMR spectrum of a mixture containing 59 as the major component in DMSO- $d_{6}$.

No change in ${ }^{1} \mathrm{H}$ NMR spectra of mixtures of 59 and 60 in DMSO- $d_{6}$ was observed after 2 hours at $22{ }^{\circ} \mathrm{C}$, but after warming the solution to $60^{\circ} \mathrm{C}$ for 30 minutes, there was a complete conversion of both components to the target carbazole 58 in $95 \%$ yield together with (dpk) $\operatorname{Pd}(\mathrm{OAc})_{2}$. Hence, both Pd(II)-to-Pd(IV) oxidation and C-N coupling of the latter are severely slowed down by the electron withdrawing $\mathrm{CF}_{3} \mathrm{CO}$ - group. The use of less electron withdrawing methanesulfonyl group may lead to more reactive yet isolable amido aryl $\mathrm{Pd}(\mathrm{IV})$ complexes.

### 3.4 Characterization and reactivity of the N -methanesulfonyl $\operatorname{Pd}(\mathrm{II})$ complex, 61(MeOH)

### 3.4.1 Characterization of the N -methanesulfonyl Pd(II) complex 61(MeOH)

The title compound was isolated from methanolic solutions and its composition as 61(MeOH) was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy and elemental analysis. The MeOH molecule is most likely added across the $\mathrm{C}=\mathrm{O}$ group of $\mathbf{6 1}$, similar to $\mathbf{5 1 ( M e O H )}$. In AcOD solutions the title compound exist predominantly in the keto form 61 as it was shown by ${ }^{13} \mathrm{C}$ NMR spectroscopy.

In particular, there was no peak at about 95 ppm in its ${ }^{13} \mathrm{C}$ NMR spectra characteristic of the ketal carbon whereas the signal of the dpk carbonyl group at about 195 ppm was observed. No signals were observed in the $\operatorname{ESI}(+) / \mathrm{MS}$ spectra of methanolic solutions of $\mathbf{6 1}$ so confirming the target compound as being neutral.

### 3.4.2 Reactivity of $\mathbf{6 1}(\mathbf{M e O H})$ towards $\mathrm{H}_{2} \mathrm{O}_{2}$ in different solvents

### 3.4.2.1 MeOD (Scheme 3.11)



Scheme 3.11 Reactivity of $\mathbf{6 1}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ to form $\mathbf{6 4}$ in MeOD.

Two sets of signals corresponding to two species in a ratio of 1:1.7 were observed for 61(MeOH) in MeOD (Fig. 3.16). These were attributed to two isomeric methanol adducts. The addition of 3 equiv of $\mathrm{H}_{2} \mathrm{O}_{2}$ to the yellow solution of $\mathbf{6 1}(\mathbf{M e O H})$ in MeOD showed a gradual formation of an orange solution. ${ }^{1} \mathrm{H}$ NMR spectral analyses of the resulting solution showed the
gradual disappearance of $\mathbf{6 1}(\mathbf{M e O H})$ (the component with the ortho-pyridine hydrogen atom signal at 9.13 ppm disappeared at a faster rate) and formation of two new species with the orthopyridine hydrogen atom signals at 9.07 and 8.92 ppm, upfield shifted compared to signals for $\mathbf{6 1}$, after about 30 min. These two new species were attributed to two isomers of $\mathbf{6 2}$ with the -OOH group positioned endo- or exo- with respect to the metal chelate ring. Complexes 62 and 61 disappeared at about the same rate to form the carbazole 64 ( $88 \%$ yield, 6 h by ${ }^{1} \mathrm{H}$ NMR). Since no new intermediates were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy, transformation of $\mathbf{6 2}$ to form $\mathbf{6 3}$ was rate limiting.


Figure $3.16{ }^{1} \mathrm{H}$ NMR monitoring of the reaction of $\mathbf{6 1}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in MeOD at $22{ }^{\circ} \mathrm{C}$. Arrows show the carbazole $\mathbf{6 4}$ (i) $\mathbf{6 1 ( M e O H )}$ in solution before addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, (ii) 5 minutes after addition (iii) 45 minutes after addition (iv) 6 hours

Only one set of signals was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 1}(\mathbf{M e O H})$ in AcOD which was assigned to 61, similar to previous observations. ${ }^{59}$ In 5 min upon mixing of 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ and a solution of $\mathbf{6 1}$ in AcOD the carbazole $\mathbf{6 4}$ formed in $87 \%$ yield (Fig. 3.17). ${ }^{1} \mathrm{H}$ NMR spectral analysis of the resulting mixture showed the presence of two minor species in solution in a total combined yield of less than $8 \%$. The two minor species were assigned as $\operatorname{Pd}(\mathrm{IV})$ complexes 63 and 65 . As it is typical for $\mathrm{Pd}(\mathrm{IV}) \mathrm{dpk}$ - supported complexes, the signals of their ortho-pyridine hydrogen atoms were more downfield shifted ( 9.41 ppm and 9.32 ppm ) as compared to the starting material ( 9.23 ppm ). Finally, the yield of the carbazole increased to $97 \%$ after 30 min . Since no peroxoketal 62 was detected in the system, our observations imply that the oxidation step was fast and the $\mathrm{C}-\mathrm{N}$ coupling was rate determining.


Scheme 3.12 Reactivity of $\mathbf{6 1}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD to form the carbazole 64 .


Figure $3.17{ }^{1} \mathrm{H}$ NMR monitoring of the reaction of $\mathbf{6 1}$ with 3 equiv $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD at $22{ }^{0} \mathrm{C}$. Arrows show the carbazole 64 (i) 61 in solution before addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, (ii) 5 minutes after addition (iv) 20 minutes after addition (iv) 30 minutes

### 3.4.2.3 THF (Scheme 3.13)

A combination of a yellow solution of $\mathbf{6 1}(\mathbf{M e O H})$ in THF- $d_{8}$ with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ led to a rapid color change to a very light yellow. ${ }^{1} \mathrm{H}$ NMR analysis of the resulting solution showed the formation of one major and one minor new species in about 4:1 ratio which could be assigned to the isomers of $\mathbf{6 2}$ with the OOH group positioned endo- or exo- with respect to the metal chelate ring (Scheme 3.14 ). For both species the resonances of the ortho-pyridine hydrogen atoms were shifted upfield, as compared to the starting material (Fig. 3.18). The isomer endo-62 was observed to slowly precipitate out of solution. Using crystallization at a lower temperature, $0^{\circ} \mathrm{C}$, this
compound could be isolated in 76\% yield. The so-produced crystals were suitable for single-crystal X-ray diffraction analysis.


Scheme 3.13 Reactivity of $\mathbf{6 1}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in THF- $d_{8}$ to form the intermediates $\mathbf{6 2}, 63$ and the carbazole 64.




Scheme 3.14 The interconversion between the endo and exo isomers of $\mathbf{6 2}$.


Figure $3.18{ }^{1} \mathrm{H}$ NMR spectra of 61 (below) and 62 (above) in THF- $d_{8}$. The major set of signals(black arrows) in $\mathbf{6 2}$ was assigned to the endo-isomer whiles the minor set of signals(blue arrows) were assigned to the endo-isomer.


Figure 3.19 ORTEP plot of complex 62 with the endo-orientation of the OOH group. Selected bond lengths (Å): Pd1-O42 2.888, O42-O43 1.465 (3), H43-O2 1.764

The X-ray diffraction analysis of $\mathbf{6 2}$ shows the expected square planar geometry around the palladium(II) center. The dpk fragment is coordinated to Pd in the $\kappa^{2}-N$, $N$-fashion, and $\mathrm{H}_{2} \mathrm{O}_{2}$ added across the ketone group to form the peroxyketal. Notably, the hydroperoxo group in $\mathbf{6 2}$ is in the endo-configuration with respect to the metal chelate ring. The O43-O42 bond length (1.465(2) Å) of the peroxo fragment of the peroxyketal is comparable to the O-O bond length (1.49 Å) of $\mathrm{H}_{2} \mathrm{O}_{2}{ }^{69}$ The hydroperoxo group hydrogen atom H 43 was found to be hydrogen-bonded to the sulfonyl group oxygen atom O2 with a bond length of $1.764 \AA$ which is slightly longer than a typical H -bond in $\mathrm{H}_{2} \mathrm{O}\left(1.74 \AA\right.$ Å). ${ }^{70}$ This intramolecular interaction may be responsible for some additional stability of the endo-isomer of $\mathbf{6 2}$ crystallized from the reaction mixture. The Pd1-N31 bond trans- to the aryl ligand is elongated (2.148(2) Å) relative to the Pd1-N51 bond (2.058(2) Å) trans- to the amido group nitrogen atom due to the stronger trans-influence of the aryl group. Also, the metal-aryl carbon bond, Pd1-C21, is shorter (1.986(2) Å) as compared to the metal - amide nitrogen bond, Pd1-N1(2.020(2) Å), which may reflect a greater ionic character of the latter. Importantly, the hydroperoxo group found in $\mathbf{6 2}$ in the endo-position is perfectly suitable for a nucleophilic attack by the $\operatorname{Pd}(\mathrm{II})$ atom utilizing its $\mathrm{d}_{\mathrm{z} 2}$ electrons to cause a $\operatorname{Pd}(\mathrm{II})$-to- $\mathrm{Pd}(\mathrm{IV})$ transformation. The corresponding distance Pd1-O42 is $2.888 \AA$ which is equal to the sum of the Pd and O atoms' van der Waals radii. Based on the previous work from our group, ${ }^{59}$ the endoisomer of $\mathbf{6 2}$ may be a few $\mathrm{kcal} / \mathrm{mol}$ more stable than the exo-adduct, in perfect agreement with the results of this study (Fig. 3.14).

When 62 dissolved in THF- $d_{8}$ was left for several hours at $22{ }^{\circ} \mathrm{C}$, it slowly reacted to produce a mixture of the corresponding carbazole 62 and the $\mathrm{Pd}(\mathrm{IV})$ hydroxo complex 63, along with the starting material, 61, (Fig. 3.20) with apparent evolution of $\mathrm{O}_{2}$ gas. The reaction was complete after 24 hours to form the corresponding carbazole 64 in $67 \%$ yield and the starting $\operatorname{Pd}(I I)$
amido aryl complex $\mathbf{6 1}$ in $21 \%$ yield. This observation suggests that the addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ across the $\mathrm{C}=\mathrm{O}$ bond of the dpk ligand in $\mathbf{6 1}$ is reversible and that $\mathbf{6 2}$ could lose $\mathrm{H}_{2} \mathrm{O}_{2}$ to produce $\mathbf{6 1}$ or be transformed to the isomeric $\operatorname{Pd}(I V)$ amido aryl complex 63 which, in turn, can reductively eliminate the carbazole 64 at $22^{\circ} \mathrm{C}$. The simultaneous observation in THF solutions of the $\mathrm{Pd}(\mathrm{II})$ peroxoketal complex 62, its $\mathrm{Pd}(\mathrm{IV})$ hydroxo derivative 64 and the product of the $\mathrm{C}-\mathrm{N}$ elimination from the latter of the carbazole 64 allow us to conclude that in THF the rates of both redox reactions can be comparable.


Figure $3.20{ }^{1} \mathrm{H}$ NMR spectrum of the $\mathrm{Pd}(\mathrm{II})$ hydroperoxo ketal complex 62 (bottom) and its mixture with the $\operatorname{Pd}(I V)$ hydroxo derivative 63 and the carbazole 64 (top) after 24 hours in THF$d_{8}$ at $22{ }^{0} \mathrm{C}$. Blue circles: 61, yellow triangles: 62, green squares: 64 . The signals assigned to $\mathbf{6 3}$ are marked with red arrows.

### 3.4.2.4 $\mathrm{CH}_{3} \mathrm{CN}$ (Scheme 3.15)

A combination of a yellow solution of $\mathbf{6 1}(\mathbf{M e O H})$ in $\mathrm{CD}_{3} \mathrm{CN}$ with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ led to a rapid color change to produce a deep orange solution. ${ }^{1} \mathrm{H}$ NMR spectral analysis of the solution showed the formation of a new species which was assigned to 62 because of the presence of the characteristic signal of the peroxyketal fragment OOH at 11.79 ppm . When produced in high concentration, complex 62 could be crystallized out of solution. In turn, when the heterogeneous mixture was left for 24 hours at $22{ }^{\circ} \mathrm{C}$, a new solid formed which was assigned as the $\operatorname{Pd}(I V)$ hydroxo complex 63 (vide infra), along with 7\% of the corresponding carbazole 64 in solution. The fact that $\mathbf{6 3}$ could be crystallized out of solution without being much engaged in the subsequent elimination of the carbazole $\mathbf{6 4}$ suggests that the $\mathrm{C}-\mathrm{N}$ coupling of $\mathbf{6 4}$ can only occur in solution and that the overall rate of the latter reaction was very slow because of the poor solubility of 63 in MeCN .


Scheme 3.15 Reactivity of $\mathbf{6 1}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$ to form $\mathbf{6 3}$ at $22{ }^{\circ} \mathrm{C}$.


Figure $3.21{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 1 ( \mathbf { M e O H } )}$ in $\mathrm{CD}_{3} \mathrm{CN}$ (bottom), 30 minutes after adding $\mathrm{H}_{2} \mathrm{O}_{2}$ (middle) and 60 minutes after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ (top). The intensity of the peak at 11.78 ppm was observed to decrease with time. Blue diamonds show 61 and arrows show 62.

### 3.5 Isolation and characterization of the methanesulfonyl Pd(IV) amido aryl complex 63

The Pd(IV) amido aryl complex 63 could be prepared in the most pure form from the dpk hydroperoxoketal - derived Pd(II) complex 62 isolated from a cold solution in THF and dried at room temperature. The solid 62 so-produced was stirred in MeCN and after 5 minutes was observed to dissolve completely. In 15 minutes after dissolution, a new precipitate formed and was isolated. ${ }^{1} \mathrm{H}$ NMR spectral analysis of this precipitate in DMSO- $d_{6}$ suggests that the solid is $\mathbf{6 3}$ containing less than $5 \%$ of $\mathbf{6 2}$ as the impurity (Fig. 3.22). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 3}$ exhibits two signals of the hydrogen atoms in the $6^{\text {th }}$ positions of its two pyridine rings, each integrating as 1 H and appearing as a doublet, one at $9.19(J=5.9 \mathrm{~Hz}) \mathrm{ppm}$ and another at $9.00(J=5.7 \mathrm{~Hz}) \mathrm{ppm}$. The signal of the OH fragment of the hydrated dpk ligand integrating as 1 H is observed as a sharp singlet at 8.22 ppm . The $\mathrm{Pd}(\mathrm{IV})-\mathrm{OH}$ group proton produces an upfield shifted broadened singlet at 3.74 ppm . The signal of the $\mathrm{SO}_{2} \mathrm{Me}$ group methyl is observed at 2.29 ppm . Due to the remarkable
availability of the amido aryl $\mathrm{Pd}(\mathrm{IV})$ complex 63 , its $\mathrm{C}-\mathrm{N}$ reductive elimination reactivity could be studied in detail (see Chapter 4). To reveal existing reactivity trends in this high-valent Pd(IV) chemistry, we explored synthetic approaches to its more electron poorer analog bearing trifluoromethanesulfonyl group at the amido nitrogen atom.


Figure $3.22{ }^{1} \mathrm{H}$ NMR spectrum in DMSO- $d_{6}$ of the Pd(IV) amido aryl complex 63 containing $<5 \%$ of the dpk hydroperoxoketal - derived Pd(II) complex 62 as a major impurity. Black arrows show 62, blue triangle shows ( $\mathrm{HOD}+\mathrm{H}_{2} \mathrm{O}$ ) and blue rectangle shows solvent residual signal DMSO- $d_{6}$

### 3.6 Characterization and reactivity of the N -trifluoromethanesulfonyl $\mathbf{P d}($ II $)$ complex $\mathbf{6 6} \cdot \mathrm{MeCN}$

### 3.6.1 Characterization of the N -trifluoromethanesulfonyl $\mathrm{Pd}(\mathrm{II})$ complex $\mathbf{6 6} \cdot \mathbf{M e C N}$

Complex $\mathbf{6 6} \cdot \mathbf{M e C N}$ was prepared and isolated from MeCN solutions without using MeOH and shown by ${ }^{13} \mathrm{C}$ NMR spectroscopy to exist in $\mathrm{CD}_{3} \mathrm{CN}$ in the keto-form 66. There was no peak at about 95 ppm in its ${ }^{13} \mathrm{C}$ NMR spectra characteristic of the dpk ketal carbon whereas the signal
of the dpk carbonyl group at about 188 ppm was observed. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{6 6}$ confirmed the presence of only one fluorine-containing species in solution. No signals were observed in the $\operatorname{ESI}(+) / \mathrm{MS}$ spectrum of a methanol solution of $\mathbf{6 6}$ confirming the target compound as being neutral. In turn, ${ }^{1} \mathrm{H}$ NMR spectroscopy showed the presence of one mole of MeCN of crystallization per one formula unit of $\mathbf{6 6}$. The composition $\mathbf{6 6} \cdot \mathbf{M e C N}$ was also confirmed by elemental analysis. Finally, the X-ray diffraction analysis of crystals of $\mathbf{6 6}$ grown from $\mathrm{CH}_{3} \mathrm{CN}$ confirmed that $\mathbf{6 6}$ crystalized with one molecule of $\mathrm{CH}_{3} \mathrm{CN}$.


Figure 3.23 X-ray crystal structure of $\mathbf{6 6} \cdot \mathbf{M e C N}$ (the solvent of crystallization is not shown).

The X-ray diffraction of $\mathbf{6 6} \cdot \mathbf{M e C N}$ (Fig. 3.25) shows the square planar geometry around the palladium center, typical for $\mathrm{Pd}(\mathrm{II})$ complexes. The dpk fragment is coordinated to Pd in the $\kappa^{2}-N, N$ mode and the $\mathrm{C}=\mathrm{O}$ group is out of the planes of either of the pyridine fragments forming a boat-like metal chelate ring. The $\mathrm{C}=\mathrm{O}$ bond length of $1.212(2) \AA$ is in strong agreement with a double bond character between C and O. The Pd1-N31 bond trans- to the aryl is longer (2.135(1) $\AA$ ) relative to the Pd1-N21 (2.039(1) $\AA$ ) bond trans- to the amido nitrogen atom which shows the stronger trans-influence of the aryl group in comparison to the amido fragment of the Pd bound

2'-aminobiphenyl-2-yl fragment. Also, the bond Pd1-C19 is shorter (1.986(1) Å) compared to Pd1N11 (2.051(1) Å).

### 3.6.2 Reactivity of $\mathbf{6 6} \cdot \mathbf{M e C N}$ towards $\mathrm{H}_{2} \mathrm{O}_{2}$ in different solvents

### 3.6.2.1 AcOD (Scheme 3.16)

The compound $\mathbf{6 6} \cdot \mathbf{M e C N}$ is poorly soluble in AcOD; it forms a pale yellow solution. ${ }^{1} \mathrm{H}$ NMR spectroscopy showed the presence of a single metal complex in the solution.


Scheme 3.16 Reactivity of $\mathbf{6 6}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ to form 70 in AcOD.

Upon addition of 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to a suspension of $\mathbf{6 6}$ and stirring for about 12 h , all the solid had dissolved and a reddish brown solution was produced. ${ }^{1} \mathrm{H}$ NMR spectral analysis of the solution showed the presence of $13 \%$ of unreacted 66, $38 \%$ of each the carbazole 70 and $\operatorname{Pd}(\mathrm{dpk})(\mathrm{OAc})_{2}$ which confirms that reductive elimination had taken place, and two intermediates,

68 and 69, in 49 \% combined yield (Fig. 3.24). No peaks of interest were observed in the $\mathrm{ESI}(+) / \mathrm{MS}$ spectrum of the resulting solution. When the reddish brown solution formed after 12 h was warmed up at $60^{\circ} \mathrm{C}$ for 30 min , the carbazole $\mathbf{7 0}$ was produced as the only organic product in $98 \%$ yield together with $\operatorname{Pd}(\mathrm{dpk})(\mathrm{OAc})_{2}$. Our attempts to isolate intermediates $\mathbf{6 9}$ and $\mathbf{6 8}$ were not successful. The slow rate of dissolution, coupled with $\operatorname{Pd}(\mathrm{II})$-to- $\mathrm{Pd}(\mathrm{IV})$ oxidation and carbazole elimination made us propose a mechanism, where the rates of the $\operatorname{Pd}(\mathrm{II})$-to- $\mathrm{Pd}(\mathrm{IV})$ oxidation and the C-N reductive elimination are comparable.


Figure 3.24 Oxidation of 65 with 3 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD at $22^{\circ} \mathrm{C}$. Arrows show product peaks. Blue circles show two intermediates 68 and 69.

### 3.6.2.2 MeOD

The compound $\mathbf{6 6} \cdot \mathbf{M e C N}$ is virtually insoluble in MeOD; no signals were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture after stirring it for 12 h . Addition of 3 equiv of $\mathrm{H}_{2} \mathrm{O}_{2}$ led to a gradual dissolution of $\mathbf{6 6}$ to form a reddish brown solution. ${ }^{1} \mathrm{H}$ NMR spectrum after 12 hours showed the formation of 4 different species in solution in a ratio of 1:0.9:0.4:0.5, based on the intensity of their signals associated with the hydrogen atoms in the $6^{\text {th }}$ position of the pyridine rings. The identity of the four species in solution could not be determined. When the mixture was left for 7 days, only one of the species was observed in solution; no 70 formed, according to ${ }^{19} \mathrm{~F}$ NMR spectroscopy. These results suggest that the $\mathrm{Pd}(\mathrm{II})$-to- $\mathrm{Pd}(\mathrm{IV})$ oxidation did not occur at any appreciable rate whereas the C-N reductive elimination was expected to be observable in MeOD under these conditions (vide infra).

### 3.6.2.3 THF (Scheme 3.17)

A combination of a yellow solution of $\mathbf{6 6} \cdot \mathbf{M e C N}$ in THF- $d_{8}$ with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ led to a rapid change of color to a very light yellow. ${ }^{1} \mathrm{H}$ NMR spectral analysis of the resulting mixture after about 30 minutes showed the formation of two new species in $80 \%$ combined yield which were assigned to the isomeric dpk hydroperoxoketal - derived complexes 67 with endoand exo-orientation of the OOH group with respect to the metal chelate ring. Unreacted $\mathbf{6 6}$ was observed in $20 \%$ yield. The signals of the hydrogen atoms in the $6^{\text {th }}$ position of the pyridyl groups of the resulting species were upfield shifted as compared to the starting material 66 (Fig. 3.25). In turn, two signals assigned to the OOH group protons of endo- and exo-isomeric 67 appeared at
11.03 ppm and 10.59 in a ratio of $5: 1$, respectively, which is similar to other systems studied in this work previously.


Scheme 3.17 Reactivity of $\mathbf{6 6}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ in THF- $d_{8}$ to form $\mathbf{7 0}$.


Figure $3.25{ }^{1} \mathrm{H}$ NMR spectrum of a 5:1 mixture of endo- and exo-isomers of 67 in THF-d $d_{8}$ with arrows showing the peroxyketal signals at 11.03 ppm and 10.59 ppm .

When the solution containing 66 was left for 24 h at $22{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR spectroscopy showed the reformation of $\mathbf{6 6}$ so that its total fraction in the mixture was $55 \%$ whereas the fraction of $\mathbf{6 7}$ had decreased to $17 \%$. Formation of a new species in $16 \%$ yield having more downfield shifted
signals of the ortho-pyridyl protons ( 9.21 ppm and 9.14 ppm ), as compared to the starting material ( 8.97 ppm ) was also observed in solution. This new species was assigned to the $\mathrm{Pd}(\mathrm{IV})$ amido aryl complex 68 by using an authentic sample of independently synthesized 68 (vide infra). Finally, about $12 \%$ of the carbazole product 70 was also present in the solution ( ${ }^{19} \mathrm{~F}$ NMR).

The formation of the carbazole 70 and reformation 66 after 24 h suggest that the $\mathrm{Pd}(\mathrm{II})$-to$\mathrm{Pd}(\mathrm{IV})$ transformation (67-to-68) is slow and comparable with $\mathrm{H}_{2} \mathrm{O}_{2}$ decomposition. The slow oxidation may be attributed to the presence of a very strong electron withdrawing triflyl group placed on the amido nitrogen atom.


[^0]Figure $3.26{ }^{1} \mathrm{H}$ NMR monitoring of the reaction of 66 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in THF- $d_{8}$ at $22{ }^{0} \mathrm{C}$. Green arrow shows the major dpk hydroperoxoketal - supported complex 67, yellow triangles show the derived $\operatorname{Pd}(I V)$ amido aryl complex 68, blue circle labels $\mathbf{6 6}$ and black arrow shows 70 in solution: (i) 66 in solution before addition of $\mathrm{H}_{2} \mathrm{O}_{2}$, (ii) 20 minutes after addition (iii) 60 minutes after addition (iv) 22 hours after addition.

### 3.6.2.4 $\mathrm{CD}_{3} \mathrm{CN}$ (Scheme 3.18)

The compound $\mathbf{6 6} \cdot \mathbf{M e C N}$ dissolves readily in $\mathrm{CD}_{3} \mathrm{CN}$ to give a yellow solution. When the resulting solution was combined with 3 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$, there was no change in the ${ }^{1} \mathrm{H}$ NMR spectrum for about 30 minutes but after 1 h an off-white precipitate 67 formed which was isolated. ${ }^{1} \mathrm{H}$ NMR spectrum of this compound DMSO- $d_{6}$ showed the presence of a single species. Interestingly, solutions of 67 in DMSO- $d_{6}$ were observed to gradually change their color from an almost colorless to orange. ${ }^{1} \mathrm{H}$ NMR monitoring of these solutions showed the gradual conversion of $\mathbf{6 7}$ to the Pd(IV) amido aryl complex 68 (Fig. 3.27-3.28) following clean $1^{\text {st }}$ order kinetics (Fig. 3.29) with the half-life of $50 \pm 3 \mathrm{~min}$ at $22^{\circ} \mathrm{C}$.


Scheme 3.18 Reactivity of $\mathbf{6 6}$ toward $\mathrm{H}_{2} \mathrm{O}_{2}$ to form $\mathbf{6 8}$ in $\mathrm{CD}_{3} \mathrm{CN}$.


Figure $3.27{ }^{1} \mathrm{H}$ NMR spectrum showing the conversion of 67 into 68 DMSO- $d_{6}$. Green squares are ortho-pyridyl signals of $\mathbf{6 7}$, blue circles are ortho-pyridyl signals for $\mathbf{6 8}$.


Figure 3.28. A detailed picture of the downfield region of ${ }^{1} \mathrm{H}$ NMR spectrum showing the conversion of $\mathbf{6 7}$ to $\mathbf{6 8}$ in DMSO-d . $^{\text {. Green squares correspond to the ortho-pyridyl signals of } \mathbf{6 7} \text {, }}$ blue circles correspond to $\mathbf{6 8}$ and yellow triangles are 66 .


Figure 3.29. Plot of $\ln \left([67]_{0} /[67]\right)$ vs time in DMSO- $d_{6}$. The reaction first order rate constant is $(1.38 \pm 0.03) \times 10^{-3} \mathrm{~min}^{-1}$ giving the reaction half-life of $50 \pm 3 \mathrm{~min}$.

### 3.7 Synthesis of the N -trifluoromethanesulfonyl Pd(IV) amido aryl complex 68

The Pd(IV) amido aryl complex 68 could be synthesized in a reasonably pure ( $96 \%+$ ) form by adding 10 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to $\mathbf{6 6}$ dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ and stirring the solution for 24 hours. The off-white precipitate of $\mathbf{6 7}$ which forms initially gradually turns orange. The orange solid is filtered off and washed with cold $\mathrm{CH}_{3} \mathrm{CN}$ to afford orange crystals of 68 in $83 \%$ yield. The product usually contains $<4 \%$ of 66 and 67 altogether even when more $\mathrm{H}_{2} \mathrm{O}_{2}$ is used and the reaction time increased to 7 days. Our attempts to recrystallize $\mathbf{6 8}$ to get rid of $\mathbf{6 7}$ and $\mathbf{6 6}$ were not successful.

The C-N reductive elimination reactivity of 68 could be studied in detail (see Chapter 4).


Figure 3.30 X-ray crystal structure of 68. Selected bond lengths ( $\AA$ ): Pd1B-N1B 2.035 (3), Pd1BO1B 1.970 (2), Pd1B-O21B 2.030 (2), Pd1B-N31B 2.040 (3), Pd1B-N41B 2.200 (2), Pd1B-C21B 2.013 (2)

### 3.8 Conclusions

In summary, we synthesized a number of N -substituted amido aryl $\mathrm{Pd}(\mathrm{II})$ complexes bearing various electron withdrawing groups R at the amido nitrogen atom $\left(\mathrm{R}=\mathrm{COCH}_{3}, \mathrm{COCF}_{3}\right.$, $\mathrm{SO}_{2} \mathrm{CH}_{3}$ and $\mathrm{SO}_{2} \mathrm{CF}_{3}$ ) supported by dpk ligand, 50, 51, 61, 66. For the first time, we have demonstrated clean oxidation of the latter complexes with $\mathrm{H}_{2} \mathrm{O}_{2}$ to form moderately stable or even very stable amido aryl $\operatorname{Pd}(\mathrm{IV})$ derivatives through the use of fac-chelating hydrated dpk ligand. The latter ligand provides both thermodynamic and kinetic stabilization to the $\operatorname{Pd}(I V)$ center. The rates of oxidation of the pallada(II)cycles $\mathbf{5 0}, \mathbf{5 1 , 6 1 , 6 6}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ and subsequent $\mathrm{C}-\mathrm{N}$ reductive elimination of the resulting $\mathrm{Pd}(\mathrm{IV})$ species are a function of solvent used and the nature of the R group at the amido fragment. The N -acetyl substituted $\mathrm{Pd}(\mathrm{II})$ complex $50\left(\mathrm{R}=\mathrm{COCH}_{3}\right)$ reacts at the fastest rate with $\mathrm{H}_{2} \mathrm{O}_{2}$ in all solvents ( MeOH , THF, AcOH and $\mathrm{CH}_{3} \mathrm{CN}$ ). In MeCN solution the we were able to observe the derived amido aryl Pd(IV) complex 53 as a major species and monitor its C-N coupling to produce a carbazole.

The N -methanesulfonyl substituted $\mathrm{Pd}(\mathrm{II})$ complex $61\left(\mathrm{R}=\mathrm{SO}_{2} \mathrm{CH}_{3}\right)$ reacts with $\mathrm{H}_{2} \mathrm{O}_{2}$ at slower rates, as compared to $\mathbf{5 0}$. Notably, by exploiting the difference in solubility in THF of $\mathbf{6 1}$ and the derived hydroperoxyketal $\mathrm{Pd}(\mathrm{II})$ intermediate 62, the latter $\mathrm{Pd}(\mathrm{II})$ compound could be isolated and characterized by single crystal X-ray diffraction. In turn, in $\mathrm{CH}_{3} \mathrm{CN}$ solution, the hydroperoxyketal intermediate $\mathbf{6 2}$ could be cleanly converted to a poorly soluble isolable amido aryl $\mathrm{Pd}(\mathrm{IV})$ complex 63, which appears to be less reactive in $\mathrm{C}-\mathrm{N}$ coupling as compared to its N acetyl analog 57.

The use of an even more electron-withdrawing group $\mathrm{R}=\mathrm{SO}_{2} \mathrm{CF}_{3}$, leads to an even more difficult oxidation of the derived $\operatorname{Pd}(\mathrm{II})$ amido aryl complex 66 to give the $\mathrm{Pd}(\mathrm{IV})$ species $\mathbf{6 8}$. This reaction is only efficient in acetylperoxide-forming solvents, MeCN and AcOH . Once again, by using difference in solubility in MeCN of 66 and the derived $\mathrm{Pd}(\mathrm{II})$ hydroperoxoketal 67 and the $\operatorname{Pd}(I V)$ amido aryl complex 68 these two intermediates could also be isolated. The latter compound was also structurally characterized by XRD and was found to be poorly reactive in C-N coupling.

Finally, when R was changed to a more electron-withdrawing $\mathrm{COCF}_{3}$, the $\mathrm{Pd}(\mathrm{II})$-to- $\mathrm{Pd}(\mathrm{IV})$ oxidation could be accomplished at $22{ }^{\circ} \mathrm{C}$ only in AcOD. In other solvents, MeOD, THF and $\mathrm{CH}_{3} \mathrm{CN}$, higher temperatures were needed to promote formation of the corresponding carbazole. Some of the amido aryl Pd(IV) intermediates could also be isolated from $\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{AcOH}$ mixtures. These $\operatorname{Pd}(I V)$ compounds are very robust when it comes to C-N coupling.

Overall, the use of $\operatorname{Pd}(\mathrm{II})$ aryl complexes bearing electron-poor amido ligands was very fruitful in terms of our ability to get an access to the key intermediates involved in Pd-mediated oxidative $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{N}$ coupling. Most of the anticipated intermediates could be isolated which allowed us to study their reactivity in more detail and establish some important structure-reactivity relationships.

### 3.9 Experimental

## N-acyl-2-aminobiphenyl, (46)


2.0 g of $\mathbf{2 5}$ was stirred in 5.0 mL of acetic anhydride vigorously for 10 min . A white precipitate forms which is poured onto ice, allowed to stand for about 1 hour and filtered. Recrystallization from water gives 2.2 g ( $87 \%$ yield) of target product. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) $\delta 8.27$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.49 (dd, $J=8.1,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.41$ (m, 1H), 7.37 (ddd, $J=8.3,5.2,1.8$ $\mathrm{Hz}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=18.0,10.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$.

## N-trifluoroacyl-2-aminobiphenyl, (47)



Trifluoroacetic anhydride ( $0.85 \mathrm{~mL}, 6.0 \mathrm{mmol}, 1.25$ equiv) was added dropwise to $1.0 \mathrm{~g}(6.0$ mmol ) of $\mathbf{2 5}$ in 15 mL of dichloromethane in a round bottom flask cooled by an ice bath. This was allowed to warm to room temperature and stirred for 6 hours at room temperature. The solution was washed with 1 N aqueous $\mathrm{HCl}(20 \mathrm{~mL})$ and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent on a rotavap yielded 1.2 g ( of crystals. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- d ) $\delta 8.33$ (dd, $J=$ 8.2, 1.1 Hz, 1H), $8.01(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 4 \mathrm{H})$.

1.0 g ( 6.0 mmol ) of 25 was dissolved in dry pyridine ( 15 mL flask equipped with a reflux condenser. Methanesulfonyl chloride ( $0.35 \mathrm{~mL}, 6.1 \mathrm{mmol}, 1.05$ equiv) was added dropwise at room temperature. The reaction mixture was stirred at room temperature for 12 h , then evaporated under reduced pressure. The crude product was dissolved in dichloromethane, washed with water and brine, dried over $\mathrm{MgSO}_{4}$ and concentrated under reduced pressure and 1.1 g ( $75 \%$ crude yield) of target compound was isolated. ${ }^{1} \mathrm{H}$ NMR shows the presence of pyridine signals. ${ }_{-}^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.70-8.55(\mathrm{~m}, 3 \mathrm{H}), 7.76-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.19(\mathrm{~m}, 11 \mathrm{H}), 6.58(\mathrm{~s}$, 1H), 2.89 (s, 3H).

## N-trifluoromethanesulfonyl-2-aminobiphenyl, (48):



Triflic anhydride ( $0.45 \mathrm{~mL}, 6.0 \mathrm{mmol}, 1.0$ equiv) was added dropwise to a solution of 2aminobiphenyl ( $1.0 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.0$ equiv) and triethylamine $(0.8 \mathrm{~mL}, 6.0 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ (dry ice in acetone). The solution was allowed to warm to room temperature and stirred for 16 h . Then the mixture was washed with water ( $2 \times 20 \mathrm{~mL}$ ) and brine ( 20 mL ), dried over MgSO4 and evaporated under reduced pressure to give a brown liquid which solidifies after standing for over a week at room temperature. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ )
$\delta 7.70-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{ddd}, J=8.3,5.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}$, 4H), $6.70(\mathrm{~s}, 1 \mathrm{H})$.

## General procedure for the synthesis of 2-aminobiphenylPddpk substrates (49,50, 60 and 65)

0.50 g ( 2.2 mmol ) of $\mathrm{Pd}(\mathrm{OAc})_{2}$ was weighed and combined in 20.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ to form a suspension. Then 1.1 equivalents of substrates $\mathbf{4 5 - 4 8}$ was added to the suspension and heated at $(60-80)^{\circ} \mathrm{C}$ for between 3-14 hours. Palladium black was observed and the resulting solution was filtered through Celite and used in further synthesis without isolation. 0.9 equivalents of dpk is dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ and the dpk solution was added dropwise to the palladacycle solution. After stirring the mixture for 4 h , solvent is removed on a rotavap. 15 mL of MeOH ( $\mathbf{5 0}$ and $\mathbf{6 0}$ ) or $\mathrm{Et}_{2} \mathrm{O}$ ( only for 49) was added to the residue and stirred for 2 h and the target compound crystallizes out of solution. The precipitate is washed with cold MeOH or $\mathrm{Et}_{2} \mathrm{O}$ to afford target compound. 65 crystallized directly from $\mathrm{CH}_{3} \mathrm{CN}$ solution.


## N-acyl-2-aminobiphenylPddpk (49):



Yellowish orange solid, ( $63 \%$ yield) : ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, Methanol $-d_{4}$ ) $\delta 8.69$ (d, $J=5.2 \mathrm{~Hz}$, 1H), 8.22 (dd, $J=5.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.15-8.10(\mathrm{~m}, 1 \mathrm{H}), 8.08-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.98$ (td, $J=7.8,1.7$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 7.66 (dd, $J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{td}, J=5.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{ddd}, J=10.3,7.7,1.4$ Hz, 2H), 7.31 - 7.20 (m, 2H), 7.14 (td, $J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.87(\mathrm{~m}$, 2H), 2.21 (s, 3H) ${ }^{13} \mathrm{C}$ NMR ( 126 MHz , Acetic) $\delta$ 186.34, 173.64, 154.35, 152.35, 152.19, 150.84, $150.31,149.28,141.51,141.25,140.95,140.49,140.29,139.83,138.50,138.25,136.21,135.51$, $129.28,128.83,128.49,128.24,127.57,127.22,127.16,126.62,126.39,125.98,125.63,125.53$, 125.32, 125.10, 124.05, 123.94, 123.71, 48.61, 24.92, 16.66.

N-trifluoroacyl-2-aminobiphenylPddpk, (50) :


Off white solid ( $65 \%$ yield) : ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Acetic Acid- $d_{4}$ ) $\delta 8.83(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.31$ - 8.18 (m, 4H), 8.15 (dd, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=5.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (dd, $J=7.7,1.5$ Hz, 1H), $7.69-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.58$ (ddd, $J=7.4,5.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}$,

1H), 6.46 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, Acetic) $\delta 186.59,160.04,159.77,154.30$, 152.51, 151.00, 150.52, 148.44, 140.61, 140.59, 140.39, 140.24, 140.19, 138.34, 135.04, 129.11, $128.28,127.25,127.17,127.13,126.25,125.71,125.53,125.44,125.24,124.98,124.51,118.58$, 116.30, 48.61. Anal. Found / Calculated ( $\left.\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Pd}\right) . \mathrm{MeOH}: \mathrm{C}: 53.00 / 53.30, \mathrm{H}: 3.67 / 3.44$, N: 7.20/7.17

N-methanesulfonyl-2-aminobiphenylPddpk, (61):


Yellow solid, $1.38 \mathrm{~g}\left(58 \%\right.$ yield). ${ }_{-}^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}$ ) $\delta 9.29(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$, 1H), $8.35-8.21(\mathrm{~m}, 3 \mathrm{H}), 8.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.66$ (ddt, $J=7.4,5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (dd, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}$, $1 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.54(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Acetic) $\delta 186.83,154.71,152.63,151.25,150.36,148.39,143.16,139.94,139.80,139.62$, 139.06, 136.29, 128.67, 128.54, 128.16, 127.30, 126.97, 126.36, 125.56, 125.44, 124.95, 124.66, 37.49.

Anal. Found / calc for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{PdS}$ : C: 53.53/53.79, H: 3.38/3.57, N: 7.96 /7.84

N-trifluoromethanesulfonyl-2-aminobiphenylPddpk, (66):


Yellow solid, (65\% yield): ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Acetic Acid- $\mathrm{d}_{4}$ ) $\delta 8.84-8.77$ (m, 1H), 8.31 - 8.15 (m, 4H), 8.12 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.97-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.77$ (dd, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ (dd, $J$ $=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{ddd}, J=7.5,5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J$ $=8.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CD ${ }_{3} \mathrm{CN}$ ) $\delta$ 187.66, 154.88, 153.06, 151.27, 151.23, 147.96, 142.81, 141.07, 140.68, 139.31, 138.98, 136.51, 129.08, 129.06, 127.98, 127.47, 127.44, 127.31, 126.89, 125.98, 125.74, 125.63, 125.08, 122.75, 119.50. ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$ ) ס-76.27 Anal. Found / Calculated for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ PdS. $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{C}: 49.37 / 49.50, \mathrm{H}: 3.04 / 3.44, \mathrm{~N}: 8.40 / 8.88$

Synthesis and reductive elimination from 53


An NMR tube was charged with 10 mg of 49.0 .6 mL of CD3CN is added together with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ and monitored by ${ }^{1} \mathrm{H}$ NMR at $22{ }^{\circ} \mathrm{C} .53$ was observed to form in $88 \%$ yield
in solution 15 minutes after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ but could not be isolated. 53 was slowly observed to reductively eliminate 54.
${ }^{1} \mathrm{H}$ NMR ( 500 MHz , Acetonitrile- $d_{3}$ ) $\delta 9.12(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-$ $7.89(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-$ $7.31(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}$, $3 \mathrm{H})$.

## Synthesis of 62

A combination of 15 mg of $\mathbf{6 1}$ in 0.6 mL THF with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ led to a slow formation of 62 which, due to its poor solubility, could be isolated as a crystalline solid at $0^{0} \mathrm{C}$. The crystals were suitable for single crystal X-ray diffraction analysis.

${ }^{1} \mathrm{H}$ NMR ( 500 MHz, THF- $\mathrm{d}_{8}$ ) $\delta$ Major: $11.91(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=5.3$ Hz, 1H), 8.31 (s, 1H), $8.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=13.1,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{dd}, J=16.6,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$.

Minor $\delta 8.93(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})($ Other minor peaks are buried under the major ones)

## Synthesis of 63

A combination of 15 mg of $\mathbf{6 1}$ in 1.0 mL with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CH}_{3} \mathrm{CN}$ led to a slow formation of 63 as an orange solid in 4 h . The orange solid was filtered off and washed with cold $\mathrm{CH}_{3} \mathrm{CN}$; yield $68 \%$. All attempts to grow crystals suitable for X-ray diffraction for $\mathbf{6 3}$ were not successful.

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$ ) $\delta 9.19(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.07-8.94(\mathrm{~m}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.04$ (tdd, $J=7.7,6.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.63$ (m, 3H), $7.63-7.58$ (m, 2H), 7.52 (ddd, $J=7.6,5.6$, $1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{td}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (dd, $J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $\mathrm{d}_{6}$ ) $\delta$ 164.94, 162.01, 148.65, 146.68, 145.73, 140.68, 139.51, 138.55, 137.26, 130.57, 128.80, 128.13, 127.47, 127.30, 126.27, 126.18, 125.99, 124.78, 121.99, 102.60.

Synthesis of 67

Addition of 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to 10 mg of $\mathbf{6 6}$ in THF- $d_{8}$ led to formation of $\mathbf{6 7}$ containing presumably its minor isomer with an exo-orientation of the - OOH group.


67
$\mathrm{R}=\mathrm{SO}_{2} \mathrm{CF}_{3}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, THF- $d_{8}$ ) Major: $\delta 11.03(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dt}, J=5.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H})$, 8.29 (dd, $J=5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.20(\mathrm{~m}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dt}, J=$ 8.0, 1.1 Hz, 1H), $8.07-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.64$ (ddd, $J=7.7,4.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H})$, 7.39 (dd, $J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (ddd, $J=7.3,5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dtd}, J=17.6,7.4,1.7 \mathrm{~Hz}$, 2H), 7.03 (td, $J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H})$.

Minor: $\delta 10.95(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{dd}, J=6.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.98-7.92(\mathrm{~m}$, $1 \mathrm{H}), 7.89(\mathrm{dt}, J=9.5,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{ddd}, J=7.6,5.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=$ 7.4, 1.5 Hz, 1H), 6.88 (dd, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H})$.

## Synthesis of 68

68 was synthesized by adding 10 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to 50 mg of $\mathbf{6 6}$ dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ (5.0 mL ) and stirring the solution for 24 hours. The off-white precipitate which forms initially gradually turns orange. The orange solid was filtered off and washed with cold $\mathrm{CH}_{3} \mathrm{CN}$; yield $83 \%$. The product usually contains $<4 \%$ of $\mathbf{6 6}$ and 67 even when more $\mathrm{H}_{2} \mathrm{O}_{2}$ is used and the reaction time increased to 7 days. Attempts at getting an elemental analysis of $\mathbf{6 8}$ was not successful since it slowly decomposes at room temperature.

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $\mathrm{C}_{6}$ ) $\delta 9.19(\mathrm{dd}, J=5.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.01(\mathrm{dd}, J=5.3,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 8.33 (s, 1H), 8.07 (tdd, $J=7.7,3.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dt}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}$, 3H), 7.60 (dd, $J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{td}, J=7.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{pd}, J=7.1,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.17 (td, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (dd, $J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (s, 1H). ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 164.78,161.60,148.23,146.09,144.97,142.22,140.67$, 138.94, 138.01, 136.58, 131.11, 128.46, 127.67, 127.59, 127.49, 127.31, 127.13, 126.16, 126.09, 124.97, 121.84, 120.86, 102.13. ${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta-74.23$.

## Synthesis of 56

Addition of 3.0 equiv of $\mathrm{H}_{2} \mathrm{O}_{2}$ to 15 mg of $\mathbf{5 0}$ in THF rapidly produced $\mathbf{5 6}$ in solution.


56
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}$ ) $\delta$ (Major) $14.12(\mathrm{~s}, 1 \mathrm{H}), 9.04$ (dd, $J=5.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.76 (dd, $J$ $=5.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{dtd}$, $J=17.3,7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.39-8.30(\mathrm{~m}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.86(\mathrm{~m}, 2 \mathrm{H})$,
7.78 - 7.69 (m, 2H), 7.66 - $7.55(\mathrm{~m}, 2 \mathrm{H}), ~, 7.44$ (td, $J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}$, 1H)

Minor $\delta 11.37(\mathrm{~s}, 1 \mathrm{H}), 9.20(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.12(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.66-8.62(\mathrm{~m}, 1 \mathrm{H}), 8.50$ (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.38-8.30(\mathrm{~m}, 2 \mathrm{H}), 8.05-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{dt}, J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$.

## Synthesis of 57

30 mg of 50 was oxidized with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOH at $22{ }^{\circ} \mathrm{C}$. The solvent was removed under vacuum after 50 minutes. The precipitate ( $69 \%$ yield) was washed with water and dried to give a brown precipitate.

${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Acetic Acid- $d_{4}$ ) Major $\delta 9.42$ (ddd, $J=5.3,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.96-8.91$ (m, 1H), $8.61(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{td}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=$ 8.0, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (ddt, $J=7.6,3.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{td}, J=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{td}, J=7.6$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( 376 MHz , Acetic Acid- $d_{4}$ ) $\delta$ 64.66.

## General procedure for oxidation of dpk ligated 2-aminobiphenyl substrates $(54,58,63,69)$

15 mg of the dpk ligated palladacycle was dissolved in 0.60 mL of solvent. 3 or 5 equivlents of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added to the solution. The solution is then monitored by ${ }^{1} \mathrm{H}$ NMR until no further change was observed or peaks corresponding to the product were observed. All solutions were monitored at $22{ }^{\circ} \mathrm{C}$ unless otherwise stated. Isolation was by removing solvent on a rotavap, stirring the residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and passing the solution through silica gel to adsorb any Pd containing species. All reductively eliminated products were compared to literature data except 70 and 58 which were confirmed by independent synthesis.

N-acylcarbazole(54): :

${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) $\delta 8.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 8.03 (ddd, $J=7.6,1.4,0.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.56-7.47$ (m, 2H), 7.42 (td, $J=7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H})$.

## N-methanesulfonylcarbazole(64):


${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) $\delta 8.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 8.03 (ddd, $J=7.6,1.4,0.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.53 (ddd, $J=8.4,7.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H})$.

N-trifluoromethanesulfonylcarbazole(70):

${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Acetic Acid- $d_{4}$ ) $\delta 8.15-8.07(\mathrm{~m}, 4 \mathrm{H}), 7.58$ (ddd, $J=8.4,7.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.52 (td, $J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( 376 MHz , Acetic) $\delta-75.82 .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , Acetic) $\delta 138.10,128.34,126.92,125.87,120.81,115.05$.

N-trifluoromethanesulfonylcarbazole(58):

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetic Acid- $\left.d_{4}\right) \delta 8.23(\mathrm{dd}, J=8.3,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{ddd}, J=7.4,1.5,0.7$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 7.54 (ddd, $J=8.5,7.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, Acetic Acid- $d_{4}$ ) $\delta-70.92 .{ }^{13} \mathrm{C}$ NMR (101 MHz, Acetic Acid- $d_{4}$ ) $\delta$ 138.14, 128.12, 127.37, 125.75, $120.28,119.12,116.58\left(\mathrm{q}, J=3.7 \mathrm{~Hz}, C F_{3}\right), 110.91$.

## Chapter 4: Reactivity of $\kappa^{2}$ - $\mathbf{C}, \mathbf{N}-\mathbf{2}^{\prime}$-(N-R-amido)biphenyl-2-yl Pd(IV) complexes

### 4.1 Introduction

Even though some detailed information is available on $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{X}(\mathrm{C}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{S}, \mathrm{Se})$ reductive elimination from isolated $\mathrm{Pd}(\mathrm{IV})$ complexes, surprisingly, the corresponding $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{N}$ reductive elimination reactivity eluded such characterization. ${ }^{37}$ Only recently has Sanford characterized a few examples of the $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - N reductive elimination reactivity of an isolated $\mathrm{Pd}(\mathrm{IV})$ alkyl aryl amido complex. Previously, the Goldberg group has also reported $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-N reductive elimination from a series of $\operatorname{Pt}(\mathrm{IV})$ complexes. ${ }^{61}$ In both cases, mechanistic studies made them propose a two-step pathway which involves initial dissociation of the amido ligand from the metal center, followed by a nucleophilic attack of the amido ligand on the metal-bound alkyl group carbon of the transient cationic 5-coordinate species. The transformations reported by the Sanford group are shown in Scheme 1.17. ${ }^{54}$ It should be noted that, no $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ - N reductive elimination has never been reported for group 10 monohydrocarbyl M(IV) complexes. To study the reactivity at the corresponding $\mathrm{Ni}(\mathrm{IV})$ compounds, the Sanford group synthesized the $\mathrm{TpNi}(\mathrm{IV})$ complex in scheme 4.1. ${ }^{71}$ The $\mathrm{Ni}(\mathrm{IV})$ complex reacts slowly with tetrabutylammonium azide to form 3,3`dimethylindoline in quantitative yield. This reaction was proposed to go through an $\mathrm{S}_{\mathrm{N}} 2$ attack by the azide at the $\mathrm{Ni}(\mathrm{IV})-\mathrm{CH}_{2}$ group and subsequent insertion of the azide group into the $\mathrm{Ni}(\mathrm{II})-$ $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ bond concomitant with loss of $\mathrm{N}_{2}$ to give the target product in quantitative yield. Holding this information in mind, we wanted to explore the $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ - N reductive elimination reactivity of our isolated $\operatorname{Pd}(\mathrm{IV})$ complexes and characterize the mechanism of this reaction.


Scheme 4.1 Reactivity of a $\mathrm{TpNi}(\mathrm{IV})$ complex to form 3,3`-dimethylindoline as reported by Sanford.

### 4.2 Characterization and reactivity of $\mathbf{N}$-methanesulfonylamido $\operatorname{Pd}(\mathbf{I V})$ complex, 63

### 4.2.1 H/D exchange of 63 (Scheme 4.2)

To confirm the assignment of the OH group signals, addition of 2 drops of $\mathrm{D}_{2} \mathrm{O}$ to a solution of 63 in DMSO- $d_{6}$ leads to the disappearance of two singlets at 8.22 ppm and 3.74 ppm (Scheme 4.2, Fig. 4.1) which are attributed to the OH of the hydrated dpk ligand and the $\mathrm{Pd}(\mathrm{IV})-\mathrm{OH}$ group, respectively.


63

Scheme 4.2 The H/D exchange of 63 with $\mathrm{D}_{2} \mathrm{O}$.


Figure 4.1 ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6 3}$ in DMSO- $d_{6}$ before (bottom) and after addition of $\mathrm{D}_{2} \mathrm{O}$ (top). The arrows show the peaks affected.

### 4.2.2 C(sp ${ }^{2}$ )-N Reductive elimination of 63 (Scheme 4.3)

When a freshly prepared solution of $\mathbf{6 3}$ in DMSO- $d_{6}$ was left to stand at $22^{\circ} \mathrm{C}$ and checked after 46 h , formation of the carbazole $\mathbf{6 4}$ in $76 \%$ yield was evident. An unknown species was observed in 18 \% yield, and 61 was observed in 5 \% yield, presumably, originating from the 5\% impurity of the parent peroxo compound 62.

The kinetics of the $\mathrm{C}-\mathrm{N}$ coupling of the amido aryl $\mathrm{Pd}(\mathrm{IV})$ complex 63 to form the carbazole 64 and unidentified $\mathrm{Pd}(\mathrm{II})(\mathrm{dpk})$ complex was monitored in $\mathrm{CD}_{3} \mathrm{OD}$ (Scheme 4.3). An orange solution of $\mathbf{6 3}$ in the latter solvent was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $22{ }^{\circ} \mathrm{C}$. The reaction followed a clean $1^{\text {st }}$ order kinetics with a half-life of $37 \pm 2$ minutes (Fig. 4.2).


Scheme 4.3 Reductive elimination of $\mathbf{6 3}$ to form $\mathbf{6 4}$ in MeOD at $22^{\circ} \mathrm{C}$.


Figure 4.2. A plot of $\ln \left([63]_{0} /[63]\right)$ vs time for $\mathbf{6 3}$ in MeOD at $22^{\circ} \mathrm{C}$. The first order rate constant is $(1.85 \pm 0.07) \times 10^{-2} \mathrm{~min}^{-1}$ giving a half-life of $37 \pm 2 \mathrm{~min}$.

This was our first observation of the $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ - N reductive elimination from an isolated aryl amido $\mathrm{Pd}(\mathrm{IV})$ complex.
$\Delta \mathrm{G}^{\mathrm{o}}{ }_{298}, \mathrm{kcal} / \mathrm{mol}$ in MeOH
Standard state: 1M solution


Figure 4.3. The DFT-calculated Gibbs energy profile for the C-N reductive elimination of $\mathbf{6 3}$ in MeOH .

Our DFT study of this reaction ${ }^{72}$ in MeOH suggests that this concerted reductive elimination occurs directly from a six-coordinate Pd(IV) complex. This reaction goes through a transition state $\mathbf{T S}_{63}(\Delta \mathrm{G}=21.4 \mathrm{kcal} / \mathrm{mol})$ which involves a partial dissociation of one of the pyridine fragments of the hydrated-dpk ligand situated trans-to the aryl ligand. Overall, the C-N
bond forming reaction of $\mathbf{6 3}$ leading to the liberation of the carbazole $\mathbf{6 4}$ and formation of a $\operatorname{Pd}(\mathrm{II})$ dpk complex TS $\mathbf{6 3}_{3}$-product-2 (Fig. 4.3) is strongly exergonic ( $\Delta \mathrm{G}=-24.9 \mathrm{kcal} / \mathrm{mol}$ ).

### 4.3 Characterization and reactivity of N -trifluoromethanesulfonylamido Pd(IV) complex 68

### 4.3.1 H/D exchange (Scheme 4.4)

The $\mathrm{Pd}(\mathrm{IV})$ amido aryl complex $\mathbf{6 8} \cdot \mathbf{M e C N}$ is insoluble in $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{COCH}_{3}$, toluene, $\mathrm{H}_{2} \mathrm{O}$, poorly soluble in MeOH , THF, acetone, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and perfectly soluble in DMSO at room temperature. An ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 8} \cdot \mathbf{M e C N}$ in DMSO- $d_{6}$ showed the presence of the following most characteristic signals: two downfield shifted multiplets of the ortho-pyridyl protons at 9.19 ppm and 9.01 ppm , as compared to the starting material ( 8.97 ppm ), one sharp singlet at 8.33 ppm of the hydrated dpk ligand OH group and one broad singlet at 3.71 ppm assigned to the $\mathrm{Pd}(\mathrm{IV}) \mathrm{OH}$ group, all integrating as 1 H . To prove the assignment of the singlets at 8.33 ppm and 3.71 ppm , an $\mathrm{H} / \mathrm{D}$ exchange experiment with $\mathrm{D}_{2} \mathrm{O}$ was carried out. The addition of 2 drops of $\mathrm{D}_{2} \mathrm{O}$ to a solution of $\mathbf{6 8}$ in $\mathrm{DMSO}-d_{6}$ leads to the disappearance of both singlets (Fig. 4.3).


Scheme 4.4 H/D exchange reaction involving 68 and $\mathrm{D}_{2} \mathrm{O}$.

The spectra in Fig. 4.3 also show the presence of a small impurity of the starting amido aryl $\mathrm{Pd}(\mathrm{II})$ complex 66 and derived hydroperoxoketal 67. When MeCN, MeOH or THF solvents were used to prepare solutions of $\mathbf{6 6}$, these impurities produced stronger signals due to their greater solubility in these solvents, as compared to 68.


Figure 4.4. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6 8} \cdot \mathbf{M e C N}$ in $\mathrm{DMSO}-d_{6}$ before (bottom) and after addition of $\mathrm{D}_{2} \mathrm{O}$ (top). The arrows show the peaks affected.

Interestingly, in the course of ${ }^{1} \mathrm{H}$ NMR our experiments with DMSO solutions of complex 67 it was found that the compound appears to be somewhat oxidizing: monitoring solutions of 68 in DMSO- $d_{6}$ showed a slow gradual transformation of $\mathbf{6 8}$ to $\mathbf{6 6}$, so that after about 90 h all $\mathbf{6 8}$ has reacted to produce the $\mathrm{Pd}(\mathrm{II})$ complex 66 in $64 \%$ yield together with another product whose identity could not be determined in 33\% yield.

### 4.3.2 C(sp ${ }^{2}$ )-N Reductive elimination of 68.MeCN in $\mathrm{CD}_{3} \mathrm{CN}$ at $105^{\circ} \mathrm{C}$ (Scheme 4.5)

Since $68 \cdot \mathrm{MeCN}$ is insoluble in $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature, the temperature in the following experiments was raised to $60{ }^{\circ} \mathrm{C}$ and $105^{\circ} \mathrm{C}$. Heating 68 in MeCN at $60^{\circ} \mathrm{C}$ led to an increase in its solubility and formation of an orange solution in equilibrium with the solid sample of $68 .{ }^{1} \mathrm{H}$ NMR spectral analysis of the resulting solution showed the presence of $\mathbf{6 8}$ along with an impurity of the starting $\operatorname{Pd}(\mathrm{II})$ complex 66 which has a much better solubility in this solvent.

Leaving this solution at room temperature for 5 h led to slow crystallization of $\mathbf{6 8} \cdot \mathbf{M e C N}$ and subsequent disappearance of any ${ }^{1} \mathrm{H}$ NMR signals in the solution.

Warming up of the suspension of $\mathbf{6 8 \cdot} \mathbf{M e C N}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at $105^{\circ} \mathrm{C}$ for 14 h led to the formation of a brownish solution containing the carbazole 70 in a low $4 \%$ yield by ${ }^{19} \mathrm{~F}$ NMR along with some unidentified products (Fig. 4.4). These experiments showed that the $\mathrm{C}-\mathrm{N}$ reductive elimination from 68 containing a strong electron-withdrawing triflyl group at the amido nitrogen atom is not facile in $\mathrm{CD}_{3} \mathrm{CN}$ even at $105^{\circ} \mathrm{C}$.


Scheme 4.5 Reactivity of 68 at $105^{\circ} \mathrm{C}$ in $\mathrm{CD}_{3} \mathrm{CN}$.


Figure $4.5{ }^{1} \mathrm{H}$ NMR spectra of complex 68 (bottom) after heating for 14 hours at $60{ }^{0} \mathrm{C}$ and 105 ${ }^{0} \mathrm{C}$ (top). Arrows show 68 whiles blue triangles show 66.

### 4.3.3 Reactivity of $\mathbf{6 8 . M e C N}$ in THF- $\boldsymbol{d}_{\boldsymbol{8}}$ (Scheme 4.6)

In spite of poor solubility of $\mathbf{6 8} \cdot \mathbf{M e C N}$ in THF- $d_{8}$, the resulting orange solutions of $\mathbf{6 8}$ in THF- $d_{8}$ could be monitored by ${ }^{1} \mathrm{H}$ NMR at $22{ }^{0} \mathrm{C}$ (Fig. 4.5). After 46 h , similar to the solutions of $\mathbf{6 8}$ in DMSO, a reduction of 68 to $\mathbf{6 6}$ was observed with the solution colour turning from orange to yellow. No product of C-N reductive elimination was detected. This experiment shows that reductive elimination of $\mathbf{6 8}$ to form $\mathbf{7 0}$ is not facile in THF- $d_{8}$.


Scheme 4.6 Reactivity of 68 in THF- $d_{8}$.


Figure $4.6{ }^{1} \mathrm{H}$ NMR spectra of complex 68 containing a more soluble impurity of $\mathbf{6 6}$ and some $\mathbf{6 7}$ in THF- $d_{8}$ after 5 minutes upon dissolution (bottom) and after 46 hours (top). Blue triangle shows 68, red diamonds show 66 and arrow shows 67.

### 4.3.4 Reactivity of 68.MeCN in MeOD (Scheme 4.7)

Complex $68 \cdot \mathbf{M e C N}$ is slightly soluble in MeOD to form orange solutions. A solution of $68 \cdot \mathbf{M e C N}$ in MeOD was monitored by ${ }^{19} \mathrm{~F}$ NMR at $22{ }^{0} \mathrm{C}$ for 95 h (Fig. 4.6). ${ }^{19} \mathrm{~F}$ NMR analysis showed the presence of three species in a ratio of 0.15:1:3.7. The major component (76\%) was assigned to $\mathbf{6 8}$. The next major species (21\%) was assigned to 67 which is more soluble in methanol than 68 and was extracted in a large extent from the sample of 68 contaminated with 67 . The smallest peak (2\%) was assigned to the impurity of the starting Pd(II) dpk complex 66.


Scheme 4.7 Reactivity of $\mathbf{6 8}$ in MeOD at $22^{\circ} \mathrm{C}$.

After $24 \mathrm{~h},{ }^{19} \mathrm{~F}$ NMR spectrum of the solution showed a decrease in the fraction of $\mathbf{6 8}$ from $76 \%$ to $44 \%$ and a slight decrease of the fraction of 67 from $21 \%$ to $15 \%$. Two new major species present in 1:1 ratio were observed in solution in $35 \%$ combined yield which could be attributed to products of some modification of $\mathbf{6 8}$ where the OH group on the hydrated dpk ligand has been replaced with OMe from the solvent. The fraction of these two new species increased to a $55 \%$ and the reductively eliminated product 70 was observed in $1.3 \%$ yield after 72 hours. After 95 h the corresponding numbers were $94 \%$ and $3.6 \%$, respectively (Fig. 4.6). This result shows that
$\mathrm{C}-\mathrm{N}$ reductive elimination from 68 in MeOD is not facile at room temperature but is faster than in THF or MeCN.


Figure 4.7. ${ }^{19} \mathrm{~F}$ NMR spectrum in MeOD of $\mathbf{6 8}$ containing impurities of $\mathbf{6 7}$ and $\mathbf{6 6}$. The arrow points to the peak for 70 which was formed only in $3.6 \%$ yield after 95 h . Red square shows $\mathbf{6 6}$, green diamond shows 67 and blue triangle shows 68. Purple circles show unknown intermediates observed in solution.

### 4.3.5 Reactivity of $\mathbf{6 8} \cdot \mathrm{MeCN}$ in AcOD (Scheme 4.8)

The compound $\mathbf{6 7} \cdot \mathbf{M e C N}$ dissolves slowly in AcOD (about 20 minutes). Analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum of the resulting solution showed the presence of 67 and two other species in solution (Fig. 4.7, top). The peak at 9.28 ppm was assigned to the hydrogen atoms in the ortho-position of the pyridyl group of 69, and the multiplet at 9.42 ppm was assigned to the carbazole 70. Notably, 68 and 69 were also observed when the Pd(II) amido aryl precursor 66 was reacted with $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD (Fig. 4.7, bottom). This result suggests that the reaction of $\mathbf{6 6}$ with 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ leads to the formation of $\mathrm{Pd}(\mathrm{IV})$ intermediates.


Scheme 4.8 Reactivity of $\mathbf{6 8}$ to form $\mathbf{6 9}$ and $\mathbf{7 0}$ in AcOD at $22^{\circ} \mathrm{C}$.

After 24 h , the originally orange solution of 68 in AcOD had turned brown with some brown solid precipitating out of the solution. The peak corresponding to 68 had disappeared, but 69 was still present (Fig. 4.8). The yield of the carbazole 70 formed along with $\operatorname{Pd}(\mathrm{dpk})(\mathrm{OAc})_{2}$ has increased to $26 \%$. After 51 h , 70 was observed in $42 \%$ yield together with (dpk) $\operatorname{Pd}(\mathrm{OAc})_{2}$. The brown solid precipitate was isolated in $53 \%$ yield and its identity was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopy and an independent synthesis (see below) to be 69. The most probable pathway
for the formation of $\mathbf{6 9}$ is the protonation of the $\mathrm{Pd}(\mathrm{OH})$ group of $\mathbf{6 8}$ to form an aqua complex with subsequent displacement of the aqua ligand with the acetate ligand derived from the solvent.


Figure 4.8. ${ }^{1} \mathrm{H}$ NMR spectral monitoring of $\mathbf{6 8}$ in AcOD for 51 hours. Green squares show 70 and blue circles show (dpk) $\operatorname{Pd}(\mathrm{OAc})_{2}$.


Figure 4.9 Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6 8}$ observed in the direct oxidation of $\mathbf{6 6}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD (bottom) and isolated 68 dissolved in AcOD (top). Green squares show 69, blue circle shows 68, Arrows show 67 and red diamond shows 66.

In the experiments above the OAc ligand in 69 was not observed in the ${ }^{1} \mathrm{H}$ NMR spectra because it was derived from a deuterated solvent. To confirm the identity of the precipitate formed, 68. MeCN was dissolved in neat $\mathrm{CH}_{3} \mathrm{COOH}$, the resulting solid collected and its ${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- $d_{6}$ was analyzed. According to ${ }^{1} \mathrm{H}$ NMR analysis, the so-formed product 69 showed the presence of a single Pd complex in solution. Since $\mathbf{6 8}$ and 69 are similar except in the apical ligand, their ${ }^{1} \mathrm{H}$ NMR spectra in DMSO- $d_{6}$ were also expected to be very similar which was, in fact, observed (Fig. 4.9). Notably, complex 69 crystallized with one molecule of AcOH, so that two OAc signals were present in the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6 9} \cdot \mathbf{A c O H}$, one attributable to the OAc ligand at 1.71 ppm and another assignable to AcOH of crystallization at 2.07 ppm (Fig. 4.9, top). The signals of two hydrogen atoms in the ortho-positions of the pyridine fragments were observed as doublets at $9.16(\mathrm{~d}, J=5.3 \mathrm{~Hz}) \mathrm{ppm}$ and $8.91(\mathrm{~d}, J=5.8 \mathrm{~Hz}) \mathrm{ppm}$. The OH fragment of the
hydrated dpk ligand produced a singlet at $8.71 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR spectra also showed a single fluorine-containing species in solution.

Upon standing for 48 h at $22{ }^{\circ} \mathrm{C}$ a solution of $\mathbf{6 9} \cdot \mathbf{A c O H}$ in DMSO- $d_{6}$ produced a new species 71 in $45 \%$ yield (Scheme 4.9, Fig. 4.10). An ${ }^{1} \mathrm{H}$ NMR spectrum of the new species showed two signals of ortho-pyridyl hydrogen atoms observed as doublets at $9.39(\mathrm{~d}, J=5.4 \mathrm{~Hz}) \mathrm{ppm}$ and $8.46(\mathrm{~d}, J=5.7 \mathrm{~Hz}) \mathrm{ppm}$. The OH fragment of the hydrated dpk ligand produced a singlet at 9.01 ppm, and the $\mathrm{CH}_{3}$ ligand was observed as a singlet at 1.25 ppm integrating as 3 H . The product 71 was proposed to be an isomer of $\mathbf{6 9}$.

After the continued monitoring of the mixture for nine days, the carbazole $\mathbf{7 0}$ was observed in $5 \%$ yield together with the $\operatorname{Pd}($ II ) species 66 in $15 \%$ yield and a minor unidentified species in less than $5 \%$ yield. A new Pd(IV) species was observed in solution in $68 \%$ yield whose identity we could not determine but was proposed to form from a DMSO solvent modification of 69.


Figure 4.10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 8} \cdot \mathbf{M e C N}$ (bottom) and $\mathbf{6 9} \cdot \mathbf{A c O H}$ (top) in DMSO- $d_{6}$. The aromatic region is expanded for clarity. The apical ligand OAc could be observed at 1.71 ppm for 69•AcOH.


69

Scheme 4.9 Reactivity of 69 in DMSO to form 70 at room temperature.


| .5 | 9.4 | 9.3 | 9.2 | 9.1 | 9.0 | 8.9 | 8.8 | 8.7 | 8.6 | 8.5 | 8.4 | 8.3 | 8.2 | 8.1 | 8.0 | 7.9 | 7.8 | 7.7 | 7.6 | 7.5 | 7.4 | 7.3 | 7.2 | 7.1 | 7.0 | 6.9 | 6.8 | 6.7 | 6.6 | 6.5 | 6.4 | 6.3 | 6.2 | 6.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure $4.11{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 9} \cdot \mathbf{A c O H}$ in $\mathrm{DMSO}-d_{6}$ after 5 minutes (bottom), 48 hours (middle) and nine days (top). Blue circles show 69 and green squares show 71.

### 4.3.6 Reactivity of $\mathbf{6 9} \cdot \mathbf{A c O H}$ in $\mathrm{CD}_{3} \mathrm{CN}$

The compound $69 \cdot \mathbf{A c O H}$ is soluble in $\mathrm{CD}_{3} \mathrm{CN}$ and a solution of 69 in $\mathrm{CD}_{3} \mathrm{CN}$ was monitored for nine days. No carbazole 70 was observed after that time.

### 4.3.7 Reactivity of 68 in the presence of different acids

Since there was no reductive elimination from 68 in $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature, we decided to 'force' the reaction using additives which could make reductive elimination more facile. We envisioned that the addition of an acid would protonate the OH ligand of $\mathbf{6 8}$ thereby producing a more electrophilic cationic species which can reductively eliminate $\mathbf{7 0}$ more readily.

### 4.3.7.1 $\mathrm{HClO}_{4}$

The addition of 3 equivalents of $70 \% \mathrm{HClO}_{4}(\mathrm{aq})$ to a suspension of 68 in $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature led to the formation of a purple solution. ${ }^{1} \mathrm{H}$ NMR spectral analysis of the solution showed the formation of the carbazole 70 in $98 \%$ yield in 5 minutes; no intermediates were observed in the reaction. The purple solution turned light yellow by the moment the NMR tube was removed from the probe. A single $\mathrm{Pd}(\mathrm{dpk})$ complex was observed in solution which was tentatively assigned to $\left[\mathrm{Pd}(\mathrm{dpk})(\mathrm{MeCN})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$. No Pd-black was observed.

### 4.3.7.2 $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$

We next use trifluoromethanesulfonic acid. The addition of 3 equivalents of anhydrous $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ to a suspension of 68 in $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature led to the formation of a purple solution. ${ }^{1} \mathrm{H}$ NMR spectral analysis of the solution showed the formation of the carbazole 70 in $97 \%$ yield in 5 minutes, and no intermediates were observed in the reaction. The purple solution had turned light
yellow by the moment the NMR tube was removed from the probe. Two different $\operatorname{Pd}(\mathrm{dpk})$ complexes were observed which were assigned to $\left[\mathrm{Pd}(\mathrm{dpk})(\mathrm{MeCN})_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ and $\operatorname{Pd}(\mathrm{dpk})\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$.

### 4.3.7.3 $\mathrm{H}_{2} \mathrm{SO}_{4}$

The addition of 3 equivalents of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to a suspension of 68 in $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature led to the formation of a purple solution. ${ }^{1} \mathrm{H}$ NMR spectral analysis of the solution showed the formation of the carbazole 70 in 98\% yield in 5 minutes, and no intermediates were observed in the reaction. The purple solution had turned light yellow by the moment the NMR tube was removed from the probe after 5 minutes. Two different $\mathrm{Pd}(\mathrm{dpk})$ complexes were observed and were assigned to $\left[\mathrm{Pd}(\mathrm{dpk})(\mathrm{MeCN})_{2}\right]\left(\mathrm{HSO}_{4}\right)_{2}$ and $\mathrm{Pd}(\mathrm{dpk})\left(\mathrm{HSO}_{4}\right)_{2}$.

### 4.3.7.4 $\mathrm{HBF}_{4}$

The addition of 3 equivalents of $50 \% \mathrm{HBF}_{4}(\mathrm{aq})$ to a suspension of 68 in $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature led to the formation of a purple solution. ${ }^{1} \mathrm{H}$ NMR spectral analysis of the solution showed the formation of the carbazole 70 in $98 \%$ yield in 15 minutes. After about 5 minutes, two intermediates were observed in $8 \%$ and $19 \%$ yield respectively but have disappeared after 15 minutes. The purple solution had turned light yellow after 15 minutes. Two $\mathrm{Pd}(\mathrm{dpk})$ complexes were observed in solution and were tentatively assigned to $\left[\mathrm{Pd}(\mathrm{dpk})(\mathrm{MeCN})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ and $\left[\mathrm{Pd}(\mathrm{dpk})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ and were found to be in a ratio of 1.00:1.76.

Since acids with weakly coordinating anions reacted fast to reductively eliminate the target product 70, we switched to acids with more strongly coordinating anions.


Figure 4.12. ${ }^{1} \mathrm{H}$ NMR spectrum of 685 minutes after adding 3 equivalents of $\mathrm{HBF}_{4}$ and 15 minutes after addition. Blue circles show 70.

### 4.3.7.5 $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$

The addition of 3 equivalents of $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$ to a suspension of $\mathbf{6 8}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature led to the formation of a purple solution. ${ }^{1} \mathrm{H}$ NMR spectral analysis of the solution after about 5 minutes showed formation of a single intermediate. This intermediate, which we propose to be 72 (Scheme 4.10) was observed to form gradually the carbazole 70. The rate of decomposition of 72 to form 70 followed a first order rate law with a half-life of $46 \pm 2$ minutes (Fig. 4.12). The slow rate of the $\mathrm{C}-\mathrm{N}$ reductive elimination in the presence of $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$ additives, as compared to $\mathrm{HClO}_{4}, \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ and $\mathrm{HBF}_{4}$ made us to propose that the presence of a more coordinating $\mathrm{CH}_{3} \mathrm{SO}_{3}{ }^{-}$anion is responsible for this diminished reactivity involving the $\mathrm{Pd}(\mathrm{IV})$ species 72.


Scheme 4.10 Proposed reactivity of $\mathbf{6 8}$ in $\mathrm{CD}_{3} \mathrm{CN}$ with 3 equiv of $\mathrm{MeSO}_{3} \mathrm{H}$ to form 72 and 70 at $22{ }^{0} \mathrm{C}$


Figure 4.13 Plot of $\ln \left([68]_{0} /[68]\right)$ vs time with 3 equivalent of $\mathrm{MeSO}_{3} \mathrm{H}$ in $\mathrm{CD}_{3} \mathrm{CN}$. The slope of the straight line is $(1.53 \pm 0.05) \times 10^{-2} \mathrm{~min}^{-1}$ giving a half-life of $46 \pm 2 \mathrm{~min}$.

### 4.3.7.6 TFA

Since new $\mathrm{Pd}(\mathrm{IV})$ intermediates were observed when using $\mathrm{MeSO}_{3} \mathrm{H}$, we chose trifluoroacetic acid $\left(\mathrm{CF}_{3} \mathrm{COOH}\right)$ with a similar pKa ( -0.25 in $\mathrm{H}_{2} \mathrm{O}$ ) and reacted it with 68 in $\mathrm{CD}_{3} \mathrm{CN}$. Addition of 3 equivalents of $\mathrm{CF}_{3} \mathrm{COOH}$ to a suspension of $\mathbf{6 8}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature led to the formation of a purple solution. According to ${ }^{1} \mathrm{H}$ NMR spectral analysis of the solution after about 5 minutes, a single intermediate was formed. This intermediate, which we tentatively assign to 73 (Scheme 3.28) was observed to gradually form $\mathbf{7 0}$. The rate of decomposition of $\mathbf{7 3}$ to form $\mathbf{7 0}$ was observed to follow a first order rate law with a half-life of $66 \pm 1$ minutes (Fig. 3.43). The slow rate of the $\mathrm{C}-\mathrm{N}$ reductive elimination in the presence of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ additives, as compared to $\mathrm{HClO}_{4}$, $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}, \mathrm{HBF}_{4}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$, made us to propose that the presence of a more coordinating $\mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}$anion is responsible for this diminished reactivity involving the $\mathrm{Pd}(\mathrm{IV})$ species 73 .


Scheme 4.11 Proposed reactivity of $\mathbf{6 8}$ in $\mathrm{CD}_{3} \mathrm{CN}$ with 3 equiv of $\mathrm{CF}_{3} \mathrm{COOH}$ to form 73 and 70 at $22{ }^{\circ} \mathrm{C}$.


Figure 4.14 Plot of $\ln \left([68]_{0} /[68]\right)$ vs time with 3 equivalent of TFA in $\mathrm{CD}_{3} \mathrm{CN}$. The slope of the straight line is $(1.05 \pm 0.03) \times 10^{-2} \mathrm{~min}^{-1}$ giving a half-life of $66 \pm 1 \mathrm{~min}$.

### 4.3.7.7_HBr and HCl

Based on the experiments above, we envisioned that, using strong hydrohalic acids with strongly coordinating anions might inhibit the $\mathrm{C}-\mathrm{N}$ elimination reaction due to the formation of corresponding $\operatorname{Pd}(\mathrm{IV})$ halides (Scheme 4.12). Upon addition of 3 eq of $\operatorname{HBr}(\mathrm{aq})$ to a suspension of 68 in $\mathrm{CD}_{3} \mathrm{CN}$, the solution immediately turned dark red, and the resulting mixture was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. 5 different species were observed in solution whose identity was not determined except 68. After 72 hours, a yellow solution was formed together with some brown precipitate. ${ }^{1} \mathrm{H}$ NMR spectrum of the solution showed that a partial reduction of the $\mathrm{Pd}(\mathrm{IV})$ amido aryl complex 68 has occurred to form the amido aryl Pd(II) complex 66 (34 \% yield) (Fig. 4.14). The precipitate was isolated and dissolved in DMSO- $d_{6} .{ }^{1} \mathrm{H}$ NMR spectrum in of the isolated precipitate in DMSO- $d_{6}$ showed one major species whose identity we could not determine. It should be noted that the carbazole $\mathbf{7 0}$ was not produced.


Scheme 4.12 Proposed reactivity of $\mathbf{6 8}$ in $\mathrm{CD}_{3} \mathrm{CN}$ with 3 equiv of HCl or HBr at $22{ }^{\circ} \mathrm{C}$.


Figure 4.15. ${ }^{1} \mathrm{H}$ NMR spectrum of 685 minutes after adding 3 equivalents of $\mathrm{HBr}, 60$ minutes after addition and 72 h after addition. Blue circles show 66.

The addition of 3 equivalents of $\mathrm{HCl}(\mathrm{aq})$ to a suspension of $\mathbf{6 8}$ in $\mathrm{CD}_{3} \mathrm{CN}$ resulted in the formation of a reddish brown solution. ${ }^{1} \mathrm{H}$ NMR spectrum of the solution showed the presence of 5 different species whose identity was not determined. After 72 hours, a red solution was produced together with some precipitate. ${ }^{1} \mathrm{H}$ NMR spectrum of the solution showed a reduction of $\mathbf{6 8}$ to $\mathbf{6 6}$ in $14 \%$ yield (Fig. 4.15). No carbazole 70 was observed. The precipitate was isolated, dissolved in DMSO-
$d_{6} \cdot{ }^{1} \mathrm{H}$ NMR spectrum in of the isolated precipitate in DMSO- $d_{6}$ showed one major species whose identity we could not determine. Notably, the reduction of 68 to 66 in $\mathrm{CD}_{3} \mathrm{CN}$ in the presence of HBr was faster and the yield of $\mathbf{6 6}$ higher in comparison to HCl .


Figure $4.16{ }^{1} \mathrm{H}$ NMR spectrum of 685 minutes after adding 3 equivalents of $\mathrm{HCl}, 60$ minutes after addition and 72 h after addition. Blue circles show 66.

### 4.3.8 Reaction of 68 in $\mathrm{CD}_{3} \mathrm{CN}$ with different equivalents of $\mathrm{HBF}_{4}$

4.3.8.1 With 1 equivalent of $\mathrm{HBF}_{4}$ to form N -trifluoromethanesulfonamido $\mathrm{Pd}(\mathrm{IV})(\mathrm{MeCN})$, 75 (BF4)

Since no appreciable amount of intermediates were observed in our previous systems where we used excess of strong acids with weakly coordinating anions, $\mathrm{HClO}_{4}, \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ and $\mathrm{HBF}_{4}$, we decided to reduce the amount of acid to 1 equivalent. We used $\mathrm{HBF}_{4}$ in these experiments.

The addition of 1 equivalent of $\mathrm{HBF}_{4}$ to $\mathbf{6 8}$ in $\mathrm{CD}_{3} \mathrm{CN}$ led to the formation of a purple solution which was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $22{ }^{\circ} \mathrm{C}$. The NMR showed the presence of a single species (Fig. 4.16, bottom). The intermediate was observed to slowly produce 70 following a clean first-order reaction kinetics with the reaction half-life of $104 \pm 2 \mathrm{~min}$ (Fig. 4.17). The identity of the reactive species formed by the addition of 1 equivalent of $\mathrm{HBF}_{4}$ to $\mathbf{6 8}$ was revealed by running the reaction in neat $\mathrm{CH}_{3} \mathrm{CN}$ and subjecting the resulting solution to ESI(+)/MS. Two mass envelopes were observed with m/z 605.9 and 646.9 and assigned to 74 and 75 (Scheme 4.13, Fig. 4.18), respectively. This shows that the species formed upon protonation of 68 may be the $\mathrm{CH}_{3} \mathrm{CN}$ adduct 75 and not the aquo adduct.


Scheme 4.13 Reactivity of $\mathbf{6 8}$ with 1 equiv of $\mathrm{HBF}_{4}$ in $\mathrm{CD}_{3} \mathrm{CN}$ to form 75 at $22{ }^{\circ} \mathrm{C}$.


Figure 4.17. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 8}+1$ equivalent $\mathrm{HBF}_{4}$ upon mixing and after 24 hours. Blue circles show 70 (yield 83 \%) peaks after 24 hours. $\mathbf{7 0}$ can be observed as a major component after 120 min .


Figure 4.18. Plot of $\ln \left([75]_{0} /[75]\right)$ vs time $/ \mathrm{min}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at $22{ }^{\circ} \mathrm{C}$. The slope of the straight line is $(6.67 \pm 0.03) \times 10^{-3} \mathrm{~min}^{-1}$ giving a half-life of $(104 \pm 2) \mathrm{min}$.


Figure 4.19. Mass spectrum of $\mathbf{6 8}$ in $\mathrm{CH}_{3} \mathrm{CN}+1$ equivalent of $\mathrm{HBF}_{4}$. The peak at $\mathrm{m} / \mathrm{z}=605.90$ is assigned to a formally 5-coordinate $\operatorname{Pd}(I V)$ species 74 and the peak at $\mathrm{m} / \mathrm{z}=646.99$ is attributed to 75.

To additionally confirm the identity of $\mathbf{7 5}$, $\mathbf{6 8}$ was combined with $\mathrm{CH}_{3} \mathrm{CN}$ in which it is virtually insoluble at $0{ }^{\circ} \mathrm{C} .0 .9$ equivalent of $\mathrm{HBF}_{4}$ was added to the mixture and stirred to cause the dissolution of most of the solid. Then the liquid was decanted, the solvent was quickly removed under vacuum at $0{ }^{0} \mathrm{C}$ and the residue dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the solution showed the presence of two types of $\mathrm{CH}_{3} \mathrm{CN}$ molecule (Fig. 4.19). The $\mathrm{CH}_{3} \mathrm{CN}$ bound to the $\operatorname{Pd}(I V)$ center in 75 was observed at 2.73 ppm , much more downfield shifted compared to free
$\mathrm{CH}_{3} \mathrm{CN}$ in solution which was observed at 1.97 ppm . The peak at 2.73 integrates for 3 H . The OH group of the dpk fragment was observed at 5.18 ppm .

Reductive elimination of 75 was then monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy to reveal first order kinetics behavior with the reaction half-life of $87 \pm 2 \mathrm{~min}$ (Fig. 4.20).


Figure $4.20{ }^{1} \mathrm{H}$ NMR spectrum of 75 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Blue circle shows dpk-OH. Arrow shows $\mathrm{Pd}(\mathrm{IV})-$ bound $\mathrm{CH}_{3} \mathrm{CN}$ which integrates for 3 H at 2.73 ppm and free $\mathrm{CH}_{3} \mathrm{CN}$ at 1.97 ppm (green square).


Figure 4.21 First order kinetic plot for the reductive elimination of $\mathbf{7 5}$ isolated as a $\mathrm{BF}_{4}$ salts in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Slope is $(7.9 \pm 0.2) \times 10^{-3} \mathrm{~min}^{-1}$ giving a half-life of $87 \pm 2$ minutes.

### 4.3.8.2 With 1.3 equivalents $\mathrm{HBF}_{4}$

We repeated the same reaction as above but this time we combined $68 \cdot \mathbf{M e C N}$ with a small excess (1.3 equivalents) of $\mathrm{HBF}_{4}$. The rate of the $\mathrm{C}-\mathrm{N}$ reductive elimination was monitored. The reaction plots in coordinates $\ln \left([\mathbf{P d}(\mathbf{I V})]_{0} /[\mathbf{P d}(\mathbf{I V})]\right)$ vs. time (Fig. 4.21) and $1 /[\mathbf{P d}(\mathbf{I V})]$ vs. time (Fig. 4.22) were not linear suggesting that, possibly, there are several reactions taking place. This confirms that the second equivalent of acid is critical to lower the activation energy for the $\mathrm{C}-\mathrm{N}$ elimination reaction.


Figure 4.22. Plot of $\ln \left([\mathbf{P d}(\mathbf{I V})]_{0} /[\mathbf{P d}(\mathbf{I V})]\right)$ vs. time/min for $\mathbf{6 8}$ with 1.3 equivalent of $\mathrm{HBF}_{4}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at $22{ }^{0} \mathrm{C}$


Figure 4.23. Plot of $[1 / \mathrm{A}] / \mathrm{mol}^{-1} \mathrm{~L}^{-1}$ vs. time $/ \mathrm{min}$ for $\mathbf{6 8}$ with 1.3 equivalents of $\mathrm{HBF}_{4}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at $22{ }^{\circ} \mathrm{C}$.

### 4.3.9 Lability of $\mathrm{CD}_{3} \mathrm{CN}$ ligand in $75\left(\mathrm{BF}_{4}\right)$

### 4.3.9.1 Addition of $\mathrm{CF}_{3} \mathrm{COONa}$ to a solution of $\mathbf{7 5 ( \mathrm { BF } _ { 4 } )}$



Scheme 4.14 Reactivity of 75 with $\mathrm{CF}_{3} \mathrm{COONa}$ to form 78 at $22{ }^{\circ} \mathrm{C}$.

To check how labile the $\mathrm{CH}_{3} \mathrm{CN}$ ligand in 75 is we run an exchange reaction with $\mathrm{CF}_{3} \mathrm{COONa}$ 1.0 equivalent of $\mathrm{CF}_{3} \mathrm{COONa}$ was added to a solution of 75 in $\mathrm{CD}_{3} \mathrm{CN}$. The mixture was stirred, allowed to settle for 5 minutes and the ${ }^{1} \mathrm{H}$ NMR spectrum was recorded. ${ }^{1} \mathrm{H}$ NMR spectrum of the resulting solution showed the formation of a new species in solution (Fig. 4.23). This new species observed in solution has an identical ${ }^{1} \mathrm{H}$ NMR spectral pattern to a trifluoroacetato $\mathrm{Pd}(\mathrm{IV})$ complex 73 (Fig. 4.24). We therefore assigned this new compound to 73. The ligand exchange reaction was observed to follow a first order rate law with a half-life of $32 \pm 1$ minutes (Fig. 4.25). It should be noted that, after 24 h , 73 was observed in solution in $73 \%$ yield together with other Pd-containing species whose identities we could not determine. Also, the carbazole 70 was observed in $17 \%$ yield. Our attempts to crystalize 73 were not successful.


Figure 4.24. Exchange reaction of 75 with $\mathrm{CF}_{3} \mathrm{COONa}$. Blue circles show 75 and green squares show 70. Arrows show intermediates or products which were observed in less than $5 \%$ yield.


Figure 4.25 Comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum of 73 (bottom) and 69 (top) in DMSO- $d_{6}$ at 22 ${ }^{0} \mathrm{C}$


Figure 4.26 First order kinetic plot for the exchange reaction of the $\mathrm{CH}_{3} \mathrm{CN}$ ligand in 75 with trifluoroacetate ion to form 73 in $\mathrm{CD}_{3} \mathrm{CN}$. The slope is $(2.14 \pm 0.06) \times 10^{-2} \mathrm{~min}^{-1}$ giving a half-life of $32 \pm 1$ minutes

### 4.3.9.2 Addition of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{Na}$ to a solution of $\mathbf{7 5 ( B F 4 )}$

Since the more nucleophilic trifluoroacetate ligand was observed to undergo ligand exchange with $\mathrm{CD}_{3} \mathrm{CN}$ as our apical ligand, we set out to see if a weakly nucleophilic trifluoromethyl sulfonate ligand can also undergo the same process. 1.0 equivalent of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{Na}$ was added to a solution of the cationic acetonitrile $\mathrm{Pd}(\mathrm{IV})$ complex 75 in $\mathrm{CD}_{3} \mathrm{CN}$ and the mixture stirred and allowed to settle for 5 minutes, and the ${ }^{1} \mathrm{H}$ NMR spectrum was recorded. ${ }^{1} \mathrm{H}$ NMR spectrum of the resulting solution showed the formation of no new species in solution and no change in ${ }^{1} \mathrm{H}$ NMR pattern. This shows the trifluoromethyl sulfonate ligand is not nucleophilic enough to displace $\mathrm{CD}_{3} \mathrm{CN}$ from 75 .

### 4.3.10 Reactivity of 68 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ with 1 eq of $\mathrm{HBF}_{4}$

We envisioned that the use of a very weakly coordinating solvent such as $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ might help preserve the aqua ligand expected to form upon protonation of the $\mathrm{Pd}(\mathrm{IV}) \mathrm{OH}$ fragment with a strong acid. That, in turn, might help additionally speed up the reaction if the $\mathrm{Pd}(\mathrm{IV})$ aqua complex 76 is more reactive than the $\operatorname{Pd}(\mathrm{IV})$ MeCN complex 75 (Scheme 4.15). The displacement of the $\mathrm{H}_{2} \mathrm{O}$ ligand in 76 with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to form 77 might also be considered but is less likely. 1 equivalent of $\mathrm{HBF}_{4}(\mathrm{aq})$ was added to a suspension of $\mathbf{6 8}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and a purple solution was produced. The resulting solution was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and the rate of the $\mathrm{C}-\mathrm{N}$ reductive elimination of $\mathbf{7 0}$ was monitored.


Scheme 4.15 Plausible reaction routes for 68 with 1 equiv of $\mathrm{HBF}_{4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $22{ }^{\circ} \mathrm{C}$.


Figure 4.27. Plot of $\ln \left([\mathrm{Pd}(\mathrm{IV})]_{0} /[\mathrm{Pd}(\mathrm{IV})]\right)$ vs time/min for 68 with 1 equivalent of $\mathrm{HBF}_{4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $22{ }^{0} \mathrm{C}$. Slope is ( $5.8 \pm 0.2$ ) $\times 10^{-2} \mathrm{~min}^{-1}$ giving a half-life of $(119 \pm 4)$ minutes.

The reaction followed a clean first-order kinetics with the half-life of $119 \pm 4$ min at $22{ }^{\circ} \mathrm{C}$ (Fig. 4.27). The rate of the $\mathrm{C}-\mathrm{N}$ reductive elimination of this solution is comparable to that of 75 (half-life $87 \pm 2$ min at $22^{\circ} \mathrm{C}$ ) which does not allow one to conclude if the C-N reductive elimination occurs from the aqua complex 76 or from the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct 77. To add to the complexity of the system, 75,76 and 77 are proposed to exist in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions as ion-pairs with $\mathrm{BF}_{4}{ }^{-}$. Accordingly, our attempts to observe $\mathbf{7 5}$, $\mathbf{7 6}$ or $\mathbf{7 7}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions by $\mathrm{ESI}(+) / \mathrm{MS}$ were not successful.

### 4.3.11 Proposed mechanism for C-N bond elimination of 68 in MeCN containing HBF4 additives



Scheme 4.16 Proposed reaction scheme for the C-N reductive elimination from 68 in the presence of 1 equivalent of $\mathrm{HBF}_{4}$ in $\mathrm{CD}_{3} \mathrm{CN}$ to form 70 at $22{ }^{\circ} \mathrm{C}$.

Based on our observations presented in this Chapter, we can propose several mechanisms for the $\mathrm{C}-\mathrm{N}$ coupling of $\mathbf{6 8}$ in the presence of $\mathrm{HBF}_{4}$ in $\mathrm{CD}_{3} \mathrm{CN}$ solutions (Scheme 4.16). In all the mechanisms the first step is just protonation of the most basic $\mathrm{Pd}(\mathrm{IV}) \mathrm{OH}$ fragment of $\mathbf{6 8}$ which produces the aqua complex 76. In neat MeCN the weakly bound aquo ligand is easily displaced by $\mathrm{CD}_{3} \mathrm{CN}$ to form the acetonitrile complex 75.75 can undergo a direct $\mathrm{C}-\mathrm{N}$ reductive elimination to form 70 without prior loss of any ligand. The corresponding 6-coordinate transition state ( $\Delta \mathrm{G}=$ $25.4 \mathrm{kcal} / \mathrm{mol}$ ) has a partly dissociated pyridyl nitrogen trans to the aryl ligand (path A), as shown by our DFT calculations (Fig. 4.28). The cation 75 is involved in strong ion-pairing with $\mathrm{BF}_{4}{ }^{-}$counterion; the contact ion pairs $\mathbf{7 5}^{+}, \mathrm{BF}_{4}{ }^{-}$, according to the DFT , are involved in the ratelimiting C-N reductive elimination step. ${ }^{72}$ Alternatively, 75 can be further protonated to form a
more electron-poor dicationic Pd(IV) species which might undergo reductive elimination more readily (Path B).


Figure 4.28. The Gibbs energy profile for the $\mathrm{C}-\mathrm{N}$ reductive elimination of $\mathbf{7 5}^{+}, \mathbf{B F}_{4}{ }^{-}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

### 4.4 Conclusion

In conclusion, we explored reactivity of two similar N -sulfonylated amido aryl $\mathrm{Pd}(\mathrm{IV}$ ) complexes 62 and 68 and were able to characterize the $\mathrm{C}\left(\mathrm{sp}^{2}\right)$-N elimination from $\operatorname{Pd}(\mathrm{IV})$ center for the first time. The electron richer N -methanesulfonyl complex $\mathbf{6 2}$ reductively eliminates the corresponding carbazole 65 under ambient conditions in MeOH and DMSO solutions. According to DFT calculations, the elimination occurs directly from a 6-coordinate $\operatorname{Pd}(I V)$ center. This mechanism is rare for $\mathrm{d}^{6}$ metal complexes and is enforced by the presence of a relatively rigid faccoordinating hydrated dpk ligand. Conversely, the electron poorer N -trifluoromethanesulfonyl complex 68 was observed to undergo reductive elimination very slowly in MeOH at $22{ }^{\circ} \mathrm{C}$ and slightly faster in AcOH . In turn, an additive of a strong acid with a weakly coordinating anion such as $\mathrm{HBF}_{4}, \mathrm{HClO}_{4}$ or HOTf can speed up the reaction rate dramatically both in MeCN and in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions. The reactions involve formation of reactive cationic MeCN or aqua complexes which, according to our DFT calculations, are expected to exist as ion-pairs in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions. The rate of reductive elimination is also dependent on the amount of acids added which is proposed to alter the reaction mechanism to involve, presumably, dicationic 5 -coordinate intermediates where one of the dpk nitrogen atoms is protonated and cannot participate inn coordination with $\mathrm{Pd}(\mathrm{IV})$ center. Addition of 1 equivalent of acid showed a reductive elimination half-life of about a 100 minutes at $22{ }^{\circ} \mathrm{C}$ whereas 2 equivalents of strong acid lead to complete reductive elimination in about 15 minutes.

### 4.5 Experimental

## Synthesis of 69

69 was synthesized by stirring 15 mg of 68 in $\mathrm{AcOH}(1.0 \mathrm{~mL})$ for 24 h . A brown precipitate which formed was isolated and washed with cold $\mathrm{Et}_{2} \mathrm{O}$; yield of the target compound is $53 \%$.

${ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO- $\mathrm{d}_{6}$ ) $\delta 9.17(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.92(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H})$, $8.10(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.52$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=7.7,7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 1H), $7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 174.06,171.92,163.35,158.82,150.93,148.72,147.41,141.70,139.70,137.89,137.79,135.75$, $129.88,128.55,127.80,127.52,127.31,126.96,125.82,125.47,123.58,121.83,119.63,102.57$, 23.66. ${ }^{19}$ F NMR ( 376 MHz, DMSO- $d_{6}$ ) $\delta-73.56$

## Synthesis of 75

In a small vial containing 12 mg of $\mathbf{6 8}, 0.40 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ was added in which it is virtually insoluble at $0{ }^{0} \mathrm{C} .0 .9$ equivalents of $\mathrm{HBF}_{4}$ was added to the system and stirred for 5 minutes. The liquid turned purple; a small amount of precipitate remained on the bottom and the solution was
transferred into another vial. Solvent was quickly removed under vacuum at $0^{\circ} \mathrm{C}$ and the residue dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}-d_{2}$ ) $\delta 9.43(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.31(\mathrm{dt}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.07$ (tdd, $J=8.6,6.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.96$ (td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.68-7.63$ (m, $2 \mathrm{H}), 7.61(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{td}, J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.15$ (m, 2H), 5.17 (s, 1H), 2.73 (s, 3H).

## General procedure for the reactivity of 68 with acids

An NMR tube was charged with 10 mg of complex 68 and 0.60 mL of $\mathrm{CD}_{3} \mathrm{CN}$ was added. To the resulting solution was added the appropriate equivalent of acid at $22^{\circ} \mathrm{C}$. The resulting solution was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy for the $\mathrm{C}-\mathrm{N}$ reductive eliminated product.

General procedure for the C-N reductive from 68 or 63

An NMR tube was charged with 10 mg of complex 68 or 63 and 0.60 mL of appropriate solvent was added (MeOD, $\mathrm{CD}_{3} \mathrm{CN}, \mathrm{AcOD}, \mathrm{THF}-\mathrm{d}_{8}$ or $\mathrm{DMSO}-d_{6}$ ). The resulting solution at the stated temperature for the formation of the C-N reductively eliminated products.

## Chapter 5. Synthesis and Reactivity of $\kappa^{2}-C, N-2^{\prime}-\left(2^{\prime}, 2^{\prime}-\right.$ dimethylethanediyl)-N-R-anilido Pd(II) Complexes with Electron Withdrawing Group $\mathrm{R}=\mathrm{SO}_{2} \mathrm{CF}_{3}$

### 5.1 Introduction and Background

The direct amination of C-H bonds is a unique synthetic approach towards the important class of alkylated nitrogen compounds. ${ }^{73}$ In this context, the palladium-catalyzed intermolecular $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - H oxidative amination of alkyl groups is a notably unexplored process. ${ }^{74}$ The Glorius group ${ }^{75}$ reported the first direct intramolecular $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - H amination of 2-tert-butylanilines to form indolines with AgOAc as oxidant and $\mathrm{Pd}(\mathrm{OAc})_{2}$ as a catalyst. Intermolecular competition experiments using differently 4-substituted anilines did not show any significant effect of the electronic properties of the aromatic ring on the reaction rate. A Pd(IV) complex was postulated as an intermediate which undergoes a direct reductive elimination to give the corresponding indolines. ${ }^{75}$ The Muniz group, whiles working on the formation of alkyl-nitrogen bonds from $\sigma$-alkyl palladium intermediates in the context of developing intermolecular di-amination reactions of alkenes employing high-oxidation-state palladium catalysis, reported an oxidative $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H amidation reactions. ${ }^{76,77} \mathrm{DFT}$ calculations and kinetic experiments showed the reaction of the amide group in an $\mathrm{S}_{\mathrm{N}} 2$ like fashion with a highly electrophilic Pd(IV) intermediate. ${ }^{78}$ The Yu group while working on synthesizing indolines from 2-phenethylamine substrates reported two novel approaches to achieve highly selective reductive elimination of an amino nucleophile from oxidized $\mathrm{Pd}(\mathrm{III})$ or $\mathrm{Pd}(\mathrm{IV})$ species to form indolines using either a one-electron Ce(IV) oxidant or a two-electron oxidant $\left(\mathrm{F}^{+}\right) .{ }^{79}$

Based on these findings, the Sanford group decided to study the direct $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-N reductive elimination from an isolated Pd(IV) complex. Both kinetic experiments and DFT calculations
showed an $\mathrm{S}_{\mathrm{N}} 2$ like reductive elimination from the $\operatorname{Pd}(\mathrm{IV})$ center to give the target compound (Chapter 1). ${ }^{54,55}$


Scheme 5.1 Direct synthesis of substituted N -acylindolines from corresponding substituted N -acyl-2-tertbutylanilides as reported by Glorius.

### 5.2 Preparation, characterization, and oxidation of dpk-supported amido alkyl Pd(II) complex, 81

### 5.2.1 Preparation and characterization of N -(2-tertbutylphenyl)trifluoromethanesulfonamidePd(II)(dpk), 81

Based on the work done by Glorius, ${ }^{75}$ we decided to study the intramolecular oxidative $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - H amination reaction involving cyclopalladated 2-tert-butylanilines to form the corresponding indolines (Scheme 5.1). Our attempts to produce the derived pallada(II)cycles by reacting $\operatorname{Pd}(\mathrm{OAc})_{2}$ with various N -R-tert-butylanilines $(\mathrm{R}=\mathrm{H}$, acetyl, trifluoroacyl and methanesulfonyl) were only successful with the N-triflyl-2-tert-butylaniline substrates 78-80 (Scheme 5.2). The dpksupported palladacycles 81-83 were prepared by a one-pot synthesis from the corresponding N-R-2-tert-butylaniline precursors. The 2-tert-butylanilide precursors were combined with 0.9 equivalents of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in $\mathrm{CH}_{3} \mathrm{CN}$, and the resulting solution refluxed at $78{ }^{\circ} \mathrm{C}$ for between 4 to 8 hours until Pd black is observed. This solution is passed through Celite and 0.9 equivalents of
dpk was added. The mixture was stirred at room temperature for about 4 h to produce the target compounds 81-83 which could be isolated by crystallization.


Scheme 5.2 Synthesis of dpk ligated 2-tertbutylaniline palladacycles 81-83.


Figure 5.1 X-ray crystal structure of $\mathbf{8 1} \cdot \mathbf{M e C N}$ (the solvent of crystallization is not shown).

The so-prepared parent complex $\mathbf{8 1} \cdot \mathbf{M e C N}$ bearing no substituents on the anilide fragment was characterized by ${ }^{13} \mathrm{C}$ NMR spectroscopy in $\mathrm{CD}_{3} \mathrm{CN}$. In the absence of hydroxylic co-solvents the compound was found to exist in its keto-form 81. There was no peak at about 95 ppm in its ${ }^{13} \mathrm{C}$ NMR spectra characteristic of the ketal carbon whereas the signal of the dpk carbonyl group at about 188 ppm was observed. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{8 1}$ confirmed the presence of only one species
in solution. The composition $\mathbf{8 1} \cdot \mathbf{M e C N}$ was confirmed by elemental analysis. The presence of one molecule of $\mathrm{CH}_{3} \mathrm{CN}$ of crystallization was confirmed by single crystal X-ray diffraction (Fig. 5.1).

The X-ray diffraction shows the square planar geometry around the palladium center in $\mathbf{8 1}$ which is expected for a $\mathrm{d}^{8} \mathrm{Pd}(\mathrm{II})$ center. The dpk fragment is coordinated to Pd in the $\kappa^{2}-N, N$ mode and the $\mathrm{C}=\mathrm{O}$ group is slightly bent out to form a boat-like structure. The $\mathrm{C}=\mathrm{O}$ bond length of $1.216(2) \AA$ is in strong agreement with a double bond character between C40 and O4. The Pd1N2 bond is elongated (2.146 $\AA$ (3)) relative to the Pd1-N3(2.062(2) $\AA$ ) bond which shows the stronger trans influence of the alkyl group in comparison to the amido fragment of the Pd bound 2-tertbutylaniline fragment. Also, the bond between the Pd1-C19 is shorter (2.029(3) $\AA$ ) compared to Pd1-N1(2.039(2) $\AA$ ).

### 5.2.2 Oxidation of 81 with $\mathrm{H}_{2} \mathrm{O}_{2}$ to form 84 (Scheme 5.3)



Scheme 5.3 Synthesis of $\mathbf{8 4}$

Upon addition of 3 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to $\mathbf{8 1}$ dissolved in $\mathrm{CD}_{3} \mathrm{CN}$, the singlet at about 2.17 ppm assigned to the $\mathrm{Pd}(\mathrm{II})$-bound $\mathrm{CH}_{2}$ group was transformed to two doublets at 4.69 and 4.58 ppm, consistent with the formation of a more electron deficient Pd(IV) center and an increased rigidity of the resulting molecule $\mathbf{8 4}$ allowing for a convenient observation of signals of two
inequivalent diastereotopic protons of the $\mathrm{CH}_{2} \mathrm{Pd}$ group. Also, the singlet at $1.46 \mathrm{ppm}(6 \mathrm{H})$, which was assigned to two methyl groups present in the metallacycle $\mathbf{8 1}$ was transformed to two singlets at 1.70 ppm and 1.58 ppm so additionally confirming the formation of an electron deficient and rigid $\mathrm{Pd}(\mathrm{IV})$ structure. After allowing the reaction to stand at room temperature, the intensity of the NMR signals diminished gradually with the formation of a precipitate. The identity of the precipitate as a solvate $\mathbf{8 4} \cdot \mathbf{M e C N}$ was confirmed by X-ray crystallography and its purity confirmed by elemental analysis.


Figure 5.2 X-ray crystal structure of $\mathbf{8 4} \cdot \mathbf{M e C N}$ (the solvent of crystallization and trifluoromethylsulfonyl groups are not shown for clarity). Selected bond lengths ( $\AA$ ): Pd1-O21 2.032 (2), Pd1-O1 1.980 (3), Pd1-N1 2.052 (3), Pd1-C17 2.042 (4), Pd1-N21 2.283 (3), Pd1N312.031 (3)

Table 5.1 Solubility of $\mathbf{8 4} \cdot \mathbf{M e C N}$ in different common solvents.

| Solvent | Solubility |
| :--- | :--- |
| DMSO | good |
| MeOD | poor |
| Acetone | Negligible |
| Dichloromethane | poor |
| Toluene | Negligible |
| Acetic Acid | good |
| Acetonitrile | Negligible |

${ }^{1} \mathrm{H}$ NMR spectrum of the isolated product in DMSO shows the presence of only one metalcontaining species in solution. The two downfield shifted doublets at 9.0 ppm and 8.60 ppm were assigned to the ortho-pyridyl protons. The singlet at 8.21 ppm was assigned to the OH group of the hydrated dpk fragment. The multiplet at about 4.41 ppm was assigned to the Pd bound $\mathrm{CH}_{2}$ fragment. The Pd bound OH group signal was observed at 2.67 ppm .


Figure 5.3 ${ }^{1} \mathrm{H}$ NMR spectrum of the $\mathrm{CH}_{2} \mathrm{Pd}(\mathrm{IV})$ fragment of $\mathbf{8 4}$ in different solvents: $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (bottom), MeOD (middle) and DMSO- $d_{6}$ (top). Arrow points to protons of interest.

### 5.3 Reactivity of $\mathbf{8 4}$ in different solvents



Scheme 5.4 Reductive elimination from $\mathbf{8 4}$ to form $\mathbf{8 6}$ and/or $\mathbf{8 9}(\mathrm{R}=\mathrm{H})$.

### 5.3.1 Acetonitrile

Although $\mathbf{8 4}$ is not soluble in $\mathrm{CD}_{3} \mathrm{CN}$, the addition of 3 equivalents of TFA, led to its dissolution with a change in color from the yellowish orange crystals to a deep reddish brown solution. ${ }^{1} \mathrm{H}$ NMR spectrum analysis of this mixture showed the presence of a complex mixture. Analysis of chemical shift range between 3.5 ppm and 6 ppm shows the presence of three different species in solution in the ratio of $1: 0.3: 0.04$. This is the chemical shift range where the characteristic signals of the methylene fragment bound to the $\mathrm{Pd}(\mathrm{IV})$ center show up (Fig. 5.4). The major component of the acidic solution of $\mathbf{8 4}$ produced two doublets at 5.04 ppm and 5.36 ppm. When this mixture was allowed to stand for 42 hours and then heated at $60{ }^{\circ} \mathrm{C}$ for 3 h , the expected C-N coupled product, indoline 86, formed only in 3\% yield whereas the major organic product of the reaction was the C-O coupled compound, alcohol 89, produced in about $40 \%$ yield. About four different species containing a rigid methylene fragment in the form of AB quartets were observed in solution.

### 5.3.2 Acetone

Similar to acetonitrile, $\mathbf{8 4}$ is not soluble in Acetone- $d_{6}$ but the addition of 3 equivalents of TFA leads to dissolution of $\mathbf{8 4}$ with a change in color from the yellowish orange crystals into deep orange solution. ${ }^{1} \mathrm{H}$ NMR analysis of the resulting solution in the chemical shift range between 3.5 and 6 ppm revealed the presence of 6 sets of signals originating from a $\mathrm{CH}_{2} \mathrm{Pd}$ fragment. The major species produced two doublets at 5.06 ppm and 5.32 ppm each ( $J=1.5 \mathrm{~Hz}$ ). The C-O coupled product $\mathbf{8 9}$ was observed in about $5 \%$ yield with no $\mathrm{C}-\mathrm{N}$ coupled product $\mathbf{8 6}$ present. After the solution had been allowed to stand at $22{ }^{\circ} \mathrm{C}$ for about 42 h and heated at $60^{\circ} \mathrm{C}$ for 3 hours, the composition of the mixture showed no apparent change.

### 5.3.3 Methanol

84 is poorly soluble in MeOD and its $\mathrm{Pd}(\mathrm{IV})-\mathrm{CH}_{2}$ group signal is observed as a multiplet at 4.68 ppm. Addition of 3eq of TFA to $\mathbf{8 4}$ dissolved in MeOH led to the rapid formation of a deep yellow solution. ${ }^{1} \mathrm{H}$ NMR spectrum analysis of the solution showed the presence of four different sets of signals originating from a $\mathrm{CH}_{2} \mathrm{Pd}$ fragment, together with the $\mathrm{C}-\mathrm{O}$ coupled product $\mathbf{8 9}$. After the solution was allowed to stand at $22{ }^{\circ} \mathrm{C}$ for about 42 h and heated at $60^{\circ} \mathrm{C}$ for 3 hours, the $\mathrm{C}-\mathrm{O}$ coupled product was the only organic product observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

### 5.3.4 Toluene

84 is not soluble in Toluene- $d_{8}$ but addition of 3 equivalents of TFA leads to its dissolution with a change in color from the yellowish orange crystals to a deep reddish brown solution. ${ }^{1} \mathrm{H}$ NMR spectral analysis of the resulting solution showed the presence of six different sets of signals originating from a $\mathrm{CH}_{2} \mathrm{Pd}$ fragment. The major species produces two doublets at 5.06 ppm and $5.32 \mathrm{ppm}(J=1.5 \mathrm{~Hz}$ ). The C-O reductively eliminated product $\mathbf{8 9}$ was observed in about $5 \%$ yield; no C-N product was found. After the solution was allowed to stand at $22{ }^{\circ} \mathrm{C}$ for about 42 h and heated at $60^{\circ} \mathrm{C}$ for 3 hours, the C-O coupled product 89 was observed in $27 \%$ yield.

### 5.3.5 Dichloromethane

84 is poorly soluble in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, and the $\mathrm{CH}_{2} \mathrm{Pd}$ group signal is observed as a two doublets at 4.60 ppm and 4.84 ppm . The addition of 3eq of TFA to the solution of $\mathbf{8 4}$ led to the rapid formation of a deep yellow solution. ${ }^{1} \mathrm{H}$ NMR spectrum analysis of the solution showed the presence of four different species containing a $\mathrm{PdCH}_{2}$ fragment together with the $\mathrm{C}-\mathrm{O}$ coupled product $\mathbf{8 9}$. After the solution was allowed to stand at $22{ }^{\circ} \mathrm{C}$ for about 42 h and heated at $60{ }^{\circ} \mathrm{C}$ for 3 hours, the $\mathrm{C}-\mathrm{O}$ reductively eliminated product was the only organic product observed in the ${ }^{1} \mathrm{H}$ NMR.

### 5.3.6 Acetic acid

84 is soluble in AcOD and the $\mathrm{PdCH}_{2}$ group signal is observed as a multiplet at 4.68 ppm . The addition of 3eq of TFA to the above solution of $\mathbf{8 4}$ led to the rapid formation of a deep yellow solution. ${ }^{1} \mathrm{H}$ NMR spectrum analysis of the solution showed the presence of four different species containing a $\mathrm{PdCH}_{2}$ fragment together with a C-O coupled product. After the solution was allowed to stand at $22{ }^{\circ} \mathrm{C}$ for about 42 h and heated at $60^{\circ} \mathrm{C}$ for 3 hours, the $\mathrm{C}-\mathrm{O}$ reductively eliminated product 89 was the only organic product observed in the ${ }^{1} \mathrm{H}$ NMR spectrum.

### 5.3.7 DMSO

84 is soluble in DMSO, and the $\mathrm{PdCH}_{2}$ group signal is observed as a multiplet at 4.41 ppm . The addition of 3eq of TFA to the solution of $\mathbf{8 4}$ led to the rapid formation of a deep reddish-yellow solution. ${ }^{1} \mathrm{H}$ NMR spectrum analysis of the solution showed the presence of one species containing a $\mathrm{PdCH}_{2}$ fragment together with a peak at about 3.59. After the solution had been allowed to stand at $22{ }^{\circ} \mathrm{C}$ for about 42 h and heated at $60^{\circ} \mathrm{C}$ for 3 hours, the peak at 3.59 ppm was persistent together with the C-N coupled product 86. 3 different Pd(IV) containing species were also observed in addition to the C-N coupled product 86.

### 5.4 Reactivity of $\mathbf{8 4}$ with different additives

### 5.4.1 Pyridine

In our previous work dealing with oxidative C-N coupling of 2-aminobiphenyl substrates (Chapter 4), we observed that various acid additives affect the rate of $\mathrm{C}-\mathrm{N}$ reductive elimination of $\mathrm{Pd}(\mathrm{IV}$ ) amido aryl complexes. Based on these results, effect of additives of varied acidity was also
explored on the C-N reductive elimination of the Pd(IV) amido alkyl complex 84. Free pyridine, its salt with trifluoroacetic acid (TFA) and TFA itself were used in these experiments.

No change in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 4}$ in DMSO- $d_{6}$ was observed after adding 5 equivalents of pyridine. The solution was then heated at $90{ }^{\circ} \mathrm{C}$ for about 2 hours which led to the formation of Pd black. No C-N reductively eliminated product was observed.

### 5.4.2 Pyridine-TFA

We next used a more acidic compound, a pyridine-TFA adduct produced by mixing one equivalent of TFA to 1 equivalent to pyridine in ice. A white /colorless solid salt was isolated. When 3 equivalents of this salt was added to DMSO- $d_{6}$ solution of $\mathbf{8 4}$, a change in the chemical shift was observed for the $\mathrm{Pd}-\mathrm{CH}_{2}$ group. Its original multiplet signal at 4.1 ppm was transformed to two doublets at 5.1 and 4.8 ppm whereas the color of the solution has changed from light orange to dark red. When the resulting solution was allowed to stand for 14 h , the C-N coupled product $\mathbf{8 6}$ was observed in $8 \%$ NMR yield. In addition to the indoline $\mathbf{8 6}$, the C-O coupled product $\mathbf{8 9}$ was produced in $11 \%$ yield. 6 different sets of signals originating from minor $\operatorname{Pd}(\mathrm{IV})$ species were also observed between 4.5 ppm and 6.0 ppm . When the reaction was heated at $60^{\circ} \mathrm{C}$ for 3 hours, the yield of the indoline $\mathbf{8 6}$ has increased to about $23 \%$ whereas the amount of $\mathbf{8 9}$ did not change noticeably. Hence, the selectivity of the C-N coupling increased at higher temperatures.

### 5.4.3 Trifluoroacetic acid (TFA)

Based on the above observations, we expected a more dramatic consequences for the C-N coupling reaction in the presence free TFA. Therefore, the reaction was attempted in the presence of TFA. 3 equivalents of TFA was added to a solution of $\mathbf{8 4}$ in DMSO- $d_{6}$. Similar to the experiment with the py-TFA adduct, two doublets were produced at 5.1 ppm and 4.8 ppm . When the resulting
solution was allowed to stand for 18 h , the $\mathrm{C}-\mathrm{N}$ coupled product was observed in $3 \%$ yield. In addition, 4 sets of signals originating from a $\mathrm{Pd}(\mathrm{IV}) \mathrm{CH}_{2}$ fragment were observed between 4.5 ppm and 6.0 ppm . When the reaction was heated at $60{ }^{\circ} \mathrm{C}$ for 3 hours, the yield of the $\mathrm{C}-\mathrm{N}$ coupled product has increased to about 5\% yield. The C-O coupled product $\mathbf{8 9}$ producing a signal at 3.59 ppm was observed in about 2\% yield.

To rationalize these results, we needed to find out if the reaction C-N vs. C-O coupling selectivity depends solely on a fine balance of the solution acidity or there may be other factors involved, such as the coordinating ability / nucleophilicity of the acid anion. As such, the effect of different acids on the $\mathbf{8 6}: \mathbf{8 9}$ product ratio was explored.

### 5.4.4 Acetic acid

When 3 equivalents of acetic acid was added to a DMSO- $d_{6}$ solution of $\mathbf{8 4}$, there was no change in color. ${ }^{1} \mathrm{H}$ NMR spectrum analysis of the resulting solution showed the presence of two doublets at about 4.47 and 4.43 ppm . No indoline was produced. Hence, the acetic acid is too weak to induce the C-N coupling.

### 5.4.5 Brookhart's acid

Brookhart's acid, $\left[\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right]\left[\mathrm{BAr}^{\mathrm{F}} 4\right]$, was synthesized according to the literature. ${ }^{80}$ In this case, the $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$ - counterion is virtually non-coordinating, and all the effects could be ascribed to the acidity change of the mixture. 2 equivalents of Brookhart's acid were added to a DMSO- $d_{6}$ solution of 84. Immediately, the color of the solution changed from light orange to deep red. ${ }^{1} \mathrm{H}$ NMR spectrum analysis of the solution showed two doublets at 5.00 ppm and 4.82 ppm . When the resulting solution was allowed to stand for 60 hours, the C-N coupled product was observed in 6\%

NMR yield and the C-O product was observed in about $86 \%$ yield. Hence, high acidity of the mixture alone favors formation of the C-O coupled product.

### 5.4.6 Hydrochloric acid



Scheme 5.5. Reactivity of 84 in the presence of HCl to form a rapidly equilibrating mixture of $\mathbf{8 4}$ and a derived aqua complex $\mathbf{8 5}$ which undergoes reductive elimination to produce $\mathbf{8 6}$ and $\mathbf{8 9}$

Upon addition of 2 equivalents of HCl to DMSO solution of 84, immediately, the color of the solution turned from light orange to deep red. ${ }^{1} \mathrm{H}$ NMR spectrum analysis of the solution showed two $\mathrm{PdCH}_{2}$ group - containing intermediate species in solution; a major and minor one. The major signal at 5.33 ppm was broad and had an intensity-matching doublet at $4.76 \mathrm{ppm}(J=4.8 \mathrm{~Hz})$. The minor species produced two doublets at 4.92 ppm and $4.50 \mathrm{ppm}(J=4.8 \mathrm{~Hz})$. The major signals were observed to shift over time whereas those corresponding to the minor species were stationary (Figure 5.4). For instance, the original broad peak at 5.33 ppm shifted to 5.00 ppm , and the matching doublet shifted from 4.76 ppm to 4.70 ppm in about 1 hour. Both signals decreased in intensity with the simultaneous formation of the C-O and C-N coupled products. When the resulting solution was allowed to stand for 2 hours, and heated to at $60^{\circ} \mathrm{C}$ for 1 h , the $\mathrm{C}-\mathrm{N}$ coupled product 86 was observed in $33 \%$ yield and the C-O coupled product $\mathbf{8 9}$ was observed in about $36 \%$ yield.

We assign the major signals observed in the $4-6 \mathrm{ppm}$ range to a rapidly equilibrating mixture of $\mathbf{8 4}$ and a derived aqua complex $\mathbf{8 5}$. The position of the equilibrium and the resulting averaged $\mathrm{Pd}(\mathrm{IV}) \mathrm{CH}_{2}$ group signals are sensitive to changes of acid concentration in solution, so explaining their evolution in time as HCl was gradually consumed (Scheme 5.5).


Figure 5.4 Reactivity of $\mathbf{8 4}$ with 2 equivalents of HCl . Blue triangle shows $\mathbf{8 5}$ in solution, purple circle shows an unknown intermediate observed, arrow shows $\mathbf{8 4}$, red square shows $\mathbf{8 6}$ and green diamond shows 89.(i) Before addition of HCl (ii) 15 minutes after addition of HCl (iii) 30 minutes after addition of HCl (iv) 45 minutes after addition of HCl (v) 60 minutes after addition of HCl .

### 5.4.7 Hydrobromic acid

Since the reaction of $\mathbf{8 4}$ with HCl was more selective with respect to the C-N coupled product than in the case of the Brookhart acid, we assumed that the nucleophilicity of the former acid counterion, $\mathrm{Cl}^{-}$, may be important for the reaction selectivity. Hence, we next tried aqueous $\mathrm{HBr}(48 \% \mathrm{v} / \mathrm{v})$ that can produce an even more nucleophilic bromide anion. The addition of 3 equivalents of HBr to a $\mathrm{DMSO}-d_{6}$ solution of $\mathbf{8 4}$, led to the rapid formation of the $\mathrm{C}-\mathrm{N}$ coupled product in about $58 \%$ yield after 15 min . At this time three sets of signals born by the $\mathrm{PdCH}_{2}$ group were also apparent between 4.5 ppm and 6 ppm (Fig. 5.5). The major of these sets included two doublets in the ${ }^{1} \mathrm{H}$ NMR spectrum at 5.10 ppm and 4.81 ppm . The peak at 5.10 shifted to 5.01 in about 1 h , as the $\mathrm{C}-\mathrm{X}$ coupling reaction progressed, whereas the corresponding peak at 4.81 ppm was only slightly affected. As previously, the major set of signals was assigned to a rapidly equilibrating mixture of $\mathbf{8 4}$ and $\mathbf{8 5}$. The second major set of signals included two doublets at 5.26 ppm and 5.00 ppm . The third set of signals included a multiplet at 5.48 ppm . When the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR for 7 hours, only trace amounts of intermediates were left unreacted. The C-O coupled product $\mathbf{8 9}$ formed in less than 5\% yield whereas the major reaction product was the C-N coupled compound $\mathbf{8 6}$ produced in about $87 \%$ yield. These results suggest once more that the $\mathrm{C}-\mathrm{N}$ reductive coupling of $\mathbf{8 4}$ is favored by strong acids having strongly nucleophilic counterions. Hence, we next tried HI additives that can produce the most nucleophilic halide anion in solution, $\mathrm{I}^{-}$.


Figure 5.5 Reactivity of $\mathbf{8 4}$ with 2 equivalents of HBr . Blue triangle shows $\mathbf{8 5}$ in solution, purple circle shows an unknown intermediate observed, arrow shows $\mathbf{8 4}$, red square shows $\mathbf{8 6}$ and green diamond shows a second unknown intermediate .(i) Before addition of HBr (ii) 15 minutes after addition of $\mathrm{HBr}, 58 \%$ yield of the indoline $\mathbf{8 6}$, (iii) 30 minutes after addition of HBr (iv) 45 minutes after addition of $\mathrm{HBr}(\mathrm{v}) 60$ minutes after addition of HBr .

### 5.4.8 Hydroiodic acid

Addition of 3 equivalents of HI to a solution of $\mathbf{8 4}$ in DMSO- $d_{6}$ led to the appearance of only one set of signals born by the $\mathrm{Pd}(\mathrm{IV}) \mathrm{CH}_{2}$ group in the ${ }^{1} \mathrm{H}$ NMR spectrum, two doublets, one at 4.97 ppm and another at 5.8 ppm . The C-N coupled product was observed in about $60 \%$ yield.

When the solution was monitored by ${ }^{1} \mathrm{H}$ NMR, no other presumed Pd(IV) species was observed. The disappearance of the peak at 4.97 ppm was accompanied by the increase of the amount of the C-N product. Notably, the starting $\operatorname{Pd}(I I)$ complex 81 also formed in $30 \%$ yield. This observation shows that the iodide was also undergoing a competitive redox transformation by reducing $\operatorname{Pd}(I V)$ to $\operatorname{Pd}(\mathrm{II})$ species.

### 5.4.9 Addition of salts KBr and LiCl

The addition of 3 equivalents of $\operatorname{KBr}(\mathrm{aq})$ and $\operatorname{LiCl}(\mathrm{aq})$ to $\mathbf{8 4}$ in $\mathrm{DMSO}-d_{6}$ showed no change in the ${ }^{1} \mathrm{H}$ NMR and no color change of the solution. When the solution was left for 5 hours, there was still no change in the ${ }^{1} \mathrm{H}$ NMR spectrum. These observations show that, in addition to a highly nucleophilic counterion, a proton source is needed for the C-N coupling reaction to proceed.

### 5.4.10 TFA/KBr

To confirm that the presence of both a proton source and a nucleophilic anion such as $\mathrm{Br}^{-}$is needed for an efficient C-N coupling of $\mathbf{8 4}$, we repeated the reaction of $\mathbf{8 4}$ with KBr as our source of $\mathrm{Br}^{-}$and TFA as the source of acid in DMSO- $d_{6} .{ }^{1} \mathrm{H}$ NMR spectral analysis of the solution after 14 h showed the formation of $\mathbf{8 6}$ in $78 \%$ yield together with $\mathbf{8 9}$ in $13 \%$ yield

### 5.4.11 Tosyl Chloride

Instead of HCl , we tried out tosyl chloride. When 3 equivalents of tosyl chloride were added to DMSO- $d_{6}$ solution of $\mathbf{8 4}$, two new sets of signals were observed. Two doublets at 5.26 ppm and 5.00 ppm were observed together with an AB multiplet at 5.47 ppm . The $\mathrm{C}-\mathrm{N}$ coupled product $\mathbf{8 6}$ was observed in about $14 \%$ yield. When the solution was heated, the two doublets at 5.26 ppm and
5.00 ppm disappeared and formed an AB multiplet at 5.47 ppm . The yield of the $\mathrm{C}-\mathrm{N}$ coupled product increased only a little to $16 \%$. No C-O coupled product was observed.

### 5.4.12 KOH(aq)

The addition of 3 equivalents of $\mathrm{KOH}(\mathrm{aq})$ to a solution of $\mathbf{8 4}$ in $\mathrm{DMSO}-d_{6}$ showed the formation of a new species in solution which was attributed to a deprotonated dpk ligand of $\mathbf{8 4}$ to give a potassium salt of the anionic compound. When this solution was left at $22{ }^{\circ} \mathrm{C}$ for 24 h , the $\mathrm{C}-\mathrm{O}$ coupled product 89 was observed in $87 \%$ yield as the only organic product.


Scheme 5.6 Reactivity of 84 in the presence of KOH to give $\mathbf{8 9}$ as the sole organic product.

### 5.5 Kinetics

### 5.5.1 Reaction with 2 equivalents of $\mathrm{HBr}(\mathrm{aq})$

The highest $87 \%$ yield of the C-N coupled product $\mathbf{8 6}$ was observed with the addition of HBr to DMSO- $d_{6}$ solution of $\mathbf{8 4}$. We, therefore, looked at the kinetic profile of the reaction highlighting the change in concentration of the starting material 84 plus its protonated form 85 that exist in equilibrium which is fast in NMR time scale (Scheme 4.4), the indoline 86, and intermediates (Fig. 5.6). The cationic complex $\mathbf{8 5}$ formed upon addition of HBr undergoes a first order reaction with a half-life of $(64 \pm 2)$ minutes at $22^{\circ} \mathrm{C}$ to form the indoline $\mathbf{8 6}$ and the $\mathrm{Pd}(\mathrm{dpk}) \mathrm{Br}_{2}$ complex $\mathbf{8 7}$. The latter could be isolated and characterized by single crystal X-ray diffraction (Fig. 5.8).


Scheme 5.7 Reaction of $\mathbf{8 4}$ with 2 equivalents of HBr at $22{ }^{\circ} \mathrm{C}$.


Figure 5.6 X-ray crystal structure of $\mathbf{8 7}$


Figure 5.7 The kinetic profile of the reaction between $\mathbf{8 4}$ and 2 equivalents of HBr to form the indoline $\mathbf{8 6}$ (grey triangle) and $\mathrm{Pd}(\mathrm{dpk}) \mathrm{Br}_{2}, \mathbf{8 7}$. Blue diamonds correspond to a mixture of $\mathbf{8 4}$ and 85. Orange circle square is an observed intermediate whose identity could not be accurately determined.

### 5.5.2 Reversibility of protonation



Scheme 5.8 Reversibility of protonation of $\mathbf{8 4}$ with in DMSO at $22{ }^{\circ} \mathrm{C}$

To study the first part of our proposed mechanism, which involves protonation of 84, we added 1 equivalent of TFA to a DMSO solution of $\mathbf{8 4}$. Analysis of the ${ }^{1} \mathrm{H}$ NMR showed the transformation of the $\mathrm{Pd}-\mathrm{CH}_{2}$ group multiplet at 4.41ppm into two doublets at 5.05 ppm and 4.82 ppm. After 5 minutes, 1.2 equivalents of aqueous KOH was then added to the mixture. ${ }^{1} \mathrm{H}$ NMR
analysis of the solution showed the reformation of the multiplet of the starting material $\mathbf{8 4}$ at 4.42 ppm. Two new signals were also observed. These new signals, one at 4.71 ppm and another at 4.48 ppm were most likely the effect of partial deprotonation of OH of dpk fragment present in $\mathbf{8 4}$.


Figure 5.9 Reversibility of protonation of $\mathbf{8 4}$ in DMSO- $d_{6}$. Red diamonds show 84 in solution, blue triangles show $\mathbf{8 5}$ and arrows show deprotonated $\mathbf{8 4}$ in solution. $\mathbf{8 4}$ in solution before the addition of 1 equivalent of TFA (bottom). After addition of 1 equivalent of TFA(middle). Addition of 1.2 equivalent of $\mathrm{KOH}(\mathrm{aq})$ to the middle spectrum after 5 minutes.

### 5.5.3 Possible mechanisms of the $\mathrm{C}-\mathrm{N}$ coupling of $\mathbf{8 4}$ in the presence of $\mathbf{H B r}$

Since the C-X coupling does not occur in the absence of strong acids, we propose that the reaction begins with a reversible protonation of $\mathbf{8 4}$ to form $\mathbf{8 5}$, as shown in Scheme 4.4. To study the efect of this protonation on the position of the signals produced by the $\mathrm{Pd}(\mathrm{IV}) \mathrm{CH}_{2}$ group, different equivalents of Brookhart's acid were added to a DMSO solution of 84. Analysis of the ${ }^{1} \mathrm{H}$ NMR chemical shifts of the resulting species shows a linear dependence between the amount of the acid added ( $0-1$ equivalent) and the chemical shift of the most downfield shifted doublet of the $\mathrm{Pd}(\mathrm{IV})-\mathrm{CH}_{2}$ fragment which was monitored. This linear dependence discontinues after addition of 1.0 equivalent of acid. The addition of excess acid shows no change in the chemical shift of the monitored signal, consistent with a complete conversion of $\mathbf{8 4}$ to $\mathbf{8 5}$. Since there was only one $\mathrm{Pd}(\mathrm{IV}) \mathrm{CH}_{2}$ group - containing species present in solution, this observation suggests i) a relatively high basicity of $\mathbf{8 4}$ in DMSO, and ii) the existence of a fast proton transfer equilibrium involving 84 and $\mathbf{8 5}$, so that the signals observed are weight-averaged, according to the fraction of each species present.


Figure 5.10 Addition of different equivalents of Brookhart's Acid to 84 in DMSO- $d_{6}$ at $22{ }^{\circ} \mathrm{C}$.


Figure 5.11 Plot of Chemical shift versus equivalents of acid added for figure 5.10 above.

### 5.5.4 Initial rates

To get more information about the reaction in Scheme 4.4, the initial rates of the reaction were studied by independently by varying concentrations of $\mathbf{8 4}, \mathrm{H}^{+}$and $\mathrm{Br}^{-}$(Table 2). The initial rates were determined by measuring the decrease of the combined concentrations [84]+[85] during the reaction period corresponding to a less than $10 \%$ conversion of the $\mathrm{Pd}(\mathrm{IV})$ complex.

Table 5.2. Initial rates of reaction involving 84, $\mathrm{H}^{+}$and $\mathrm{Br}^{-}$.

| Entry | $[\mathrm{Pd}(\mathrm{IV})], \mathrm{mM}$ | $\left[\mathrm{H}^{+}\right], \mathrm{mM}$ | $\left[\mathrm{Br}^{-}\right], \mathrm{mM}$ | Initial Rate, $(d[\mathrm{Pd}(\mathrm{IV})] / d t) \times 10^{-7} \mathrm{M} \times \mathrm{s}^{-1}$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | $13.0 \pm 0.5$ | $26.3 \pm 0.5$ | $25.6 \pm 0.5$ | $9.4 \pm 0.8$ |
| 2 | $25.8 \pm 0.2$ | $26.3 \pm 0.5$ | $25.6 \pm 0.5$ | $19.2 \pm 0.4$ |
| 3 | $25.8 \pm 0.3$ | $13.2 \pm 0.7$ | $25.6 \pm 0.5$ | $8.9 \pm 0.3$ |
| 4 | $25.8 \pm 0.3$ | $26.3 \pm 0.7$ | $52.2 \pm 0.7$ | $31.2 \pm 0.2$ |




Figure 5.12 Structures of Brookhart's acid as our source of $\mathrm{H}^{+}$and tetra-n-butylammonium bromide as our source of $\mathrm{Br}^{-}$.

We used tetra-n-butylammonium bromide as a source of $\mathrm{Br}^{-}$ions and Brookhart's acid (Fig. 5.12) as an $\mathrm{H}^{+}$source. The counterions, tetra-n-butylammonium and tetrakis[3,5bis(trifluoromethyl)phenyl]borate are known as virtually non-coordinating, hence, they are not expected to interfere with the target reaction. Based on the results provided in Table 2, the C-X coupling reaction is first order in [84], first order in $\left[\mathrm{H}^{+}\right]$but has an order in $\left[\mathrm{Br}^{-}\right]$which is intermediate between 0 and 1 .

The transformations of $\mathbf{8 4}$ and the derived aqua complex $\mathbf{8 5}$ produced according to Scheme 4.4, may operate by several mechanisms shown in Scheme 4.6 and commented upon below.

As it is illustrated in Fig. 5.5-5.6, reaction mixtures containing 2 equivalents of HBr and 84 in DMSO solution show a relatively fast formation of the indoline $\mathbf{8 6}$ at $22{ }^{\circ} \mathrm{C}$. The major species observed in the solutions for more than one reaction half-life is the cationic complex $\mathbf{8 5}$. Two minor intermediates whose NMR chemical shifts are not affected by excess acid and are, therefore, not so basic as $\mathbf{8 4}$. These intermediates may result from bromide or DMSO - for aqua ligand substitution in $\mathbf{8 5}$. When the reaction in Scheme 4.4. was allowed to run for about 7 hours, complete conversion of $\mathbf{8 5}$ and both minor intermediates to C-X coupled products $\mathbf{8 6}$ and $\mathbf{8 9}$ was observed. Hence, the minor intermediates, presumably a bromo- and DMSO analogs of $\mathbf{8 4}$ and $\mathbf{8 5}$, respectively, also react to form the C-X coupled products, perhaps, following an independent reaction pathway such as pathway 1 in Scheme 4.6.

### 5.5.5 Pathway 1 - direct $C\left(s p^{3}\right)$-N reductive elimination from a $\operatorname{Pd}(I V)$ complex

This mechanism involves direct rate-limiting $\mathrm{C}-\mathrm{N}$ reductive elimination from a sixcoordinate $\mathrm{Pd}(\mathrm{IV})$ bromo complex 88 or a cationic DMSO complex analogous to $\mathbf{8 4}$. The reaction rate for the pathway 1a involving $\mathbf{8 8}$ should be first order in [ $\left.\mathrm{Br}^{-}\right]$.

Alternatively, $\mathrm{Br}^{-}$can dissociate from 88 in a rate-determining step to form a five coordinate complex 88b, which then undergoes a direct C-N reductive elimination to give the target indoline 86. In this case (pathway 1b) the effective reaction order in [ $\mathrm{Br}^{-}$] may be between 0 and 1 , as observed. The pathway 1 b cannot be the only pathway operational since $\mathbf{8 8 b}$ can be produced directly from 85 without participation of bromide anion (pathway 2a) resulting in 0 order in [ $\left.\mathrm{Br}^{-}\right]$.


Scheme 5.9 Proposed mechanisms for the formation of $\mathbf{8 6}$ from $\mathbf{8 4}$.

Hence, pathway 2a would be operational in the absence of bromide additive which does not correspond our observation that the C-N coupling does not happen in the absence of strong nucleophiles such as $\mathrm{Br}^{-}$. Altogether, this analysis suggests that the 5 -coordinate $\mathrm{Pd}(\mathrm{IV})$ species $\mathbf{8 8 b}$ is unlikely to be involved in the C-N coupling.

The pathway 1a is consistent with the available observations. Notably, it might compete with pathway 2 b where the direct $\mathrm{C}-\mathrm{N}$ coupling occurs from the aqua complex 85 , so that the overall reaction order in [ $\left.\mathrm{Br}^{-}\right]$for a combination of these two reactions may be between 0 and 1 .

### 5.5.6 Pathway 2c $-\mathrm{S}_{\mathrm{N}} 2$ attack at $\mathrm{CH}_{2}$ fragment of $\mathrm{Pd}(\mathrm{IV})$

Literature precedence (Sanford and Muniz) ${ }^{78,81}$ shows that the $\operatorname{Pd}(I V)-\mathrm{CH}_{2}$ group may be very electrophilic and should be easily attacked by a nucleophile through an $\mathrm{S}_{\mathrm{N}} 2$-like mechanism. This mechanism has the overall first reaction order in [ $\mathrm{Br}^{-}$] and, therefore, to be consistent with our experimental observations should be accompanied with another process for which the order in [ $\mathrm{Br}^{-}$] is less than 1.

### 5.5.7 Pathway 3 - dissociation of the amido donor atom

The third plausible pathway involves an intramolecular cyclization to form carbazole. This mechanism was proposed when we tried to independently synthesize the ester $\mathbf{9 5}$. Instead of $\mathbf{9 5}$, 86 was produced as the sole organic product observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.


Scheme 5.10 Independent synthesis of $\mathbf{8 6}$ from $\mathbf{9 0}$.

The same result was observed when the reaction of $\mathbf{9 0}$ was run with only one equivalent of triflic anhydride. Even in that instance, $\mathbf{8 6}$ was isolated as the major product in $72 \%$ yield. The proposed mechanism for the formation of $\mathbf{8 6}$ from $\mathbf{9 0}$ and $\mathrm{Tf}_{2} \mathrm{O}$ is shown in Scheme 5.7.

Based on these considerations, the C-N coupling of the Pd(IV) complex $\mathbf{8 5}$ may also follow pathway 3, where the amido ligand is displaced by bromide first, which is followed by intramolecular cyclization to give the target compound $\mathbf{8 6}$.

In this mechanistically complex situation a DFT analysis the reaction pathways in Scheme 5.9 turned out to be very helpful. This analysis suggests that the cationic aqua complex $\mathbf{8 5}$ exists in DMSO as a tight H -bonded $\left(\mathrm{OH}_{2} \ldots \mathrm{Br}^{-}\right)$ion pair $\mathbf{8 5 , \mathbf { B r } ^ { - }}$ (Figure 5.13 ). This ion pair reacts following the pathway 2c and involves the lowest energy transition state $\mathbf{T S} \mathbf{S N}_{\text {sNIP }}$ with the calculated Gibbs activation energy $\Delta G^{\#} 19.5 \mathrm{kcal} / \mathrm{mol}$ vs. experimental value of $20.8 \mathrm{kcal} / \mathrm{mol}$ (see left part of the figure 5.13). The transition state $\mathbf{T S}_{\text {sN2IP }}$ corresponds to a nucleophilic attack of a $\mathrm{Br}^{-}$on the $\mathrm{Pd}(\mathrm{IV})$-bound $\mathrm{CH}_{2}$ group of the ion pair.

Other competing reaction pathways have their transition states of prohibitively high energy. E.g., pathway 3 in Scheme 5.9 is represented in the right part of figure 5.13; its effective

Gibbs activation energy ( $\mathbf{T S}_{\mathbf{c}-\mathrm{CN}}$ ) is $9.6 \mathrm{kcal} / \mathrm{mol}$ higher than $\mathbf{T S s n 2 I P}$. A partial Gibbs energy diagram showing the preferred reaction mechanism is given in figure 5.13 , left. Note, that the $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-N coupling step itself, according to our proposed mechanism, occurs outside of the Pd coordination sphere (see an insert on the bottom of figure 5.13). The C-N coupling step is very fast with the Gibbs activation energy of only $12.5 \mathrm{kcal} / \mathrm{mol}\left(\mathbf{T S}_{\mathrm{a}-\mathrm{CN}}\right)$, consistent with our observations illustrated in Scheme 5.10.


Figure 5.13 The reaction Gibbs energy profile corresponding to the most kinetically favorable $\mathrm{C}(\mathrm{sp} 3)-\mathrm{N}$ coupling mechanism of the amido alkyl $\mathrm{Pd}(\mathrm{IV})$ complex $\mathbf{8 4}$ in the presence of HBr in DMSO solution.

### 5.6 Characterization and reactivity of a bromo-substituted analog of amido alkyl Pd(IV) complex 84

To get additional insight into the reaction mechanism, we decided to look at the effect of substituents in the anilide ligand aromatic ring on the rate of reductive elimination. To study this behavior, we synthesized 82 which could be achieved from a one pot synthesis from 79 in MeCN solution.


Scheme 5.11 Synthesis of complex 91.

The $\operatorname{Pd}(\mathrm{II})$ alkyl amido complex 82 was shown by ${ }^{13} \mathrm{C}$ NMR spectroscopy in $\mathrm{CD}_{3} \mathrm{CN}$ to exist in the keto form as expected. There was no peak at about 95 ppm in its ${ }^{13} \mathrm{C}$ NMR spectra characteristic of the ketal carbon whereas the signal of the dpk carbonyl group at about 188 ppm was observed. ${ }^{19}$ F NMR spectrum of $\mathbf{8 2}$ confirmed the presence of only one species in solution.

82 was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ to give a clear solution yellow solution. 5 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added to the solution which turned orange. ${ }^{1} \mathrm{H}$ NMR spectrum analysis of the resulting solution showed a single product which was assigned to structure $\mathbf{9 1}$. The purity of $\mathbf{9 1}$ was confirmed by elemental analysis.

Upon the oxidation of $\mathbf{8 2}$ to $\mathbf{9 1}$ the $\mathrm{PdCH}_{2}$ group signal has transformed from a singlet at 2.14 ppm two doublets at 4.42 ppm and 4.34 ppm , which indicated a more electron deficient $\operatorname{Pd}(\mathrm{IV})$ center and the increased rigidity of the palladacyclic fragment. Also, the singlet at 1.43 ppm , which was assigned to two methyl groups in $\mathbf{8 2}$ has transformed to two singlets at 1.44 ppm and 1.65 ppm in 91.

We next looked at the reductive elimination of $\mathbf{9 3}$ from $\mathbf{9 1}$ in the presence of 2 equivalents of HBr . The reaction followed a first-order kinetics with a half-life of ( $9.5 \pm 0.4$ ) minutes at $22{ }^{\circ} \mathrm{C}$. This was observed to be much faster compared to reductive elimination from 84, $(17 \pm 1)$ minutes. This shows that an electron withdrawing group at the para-position increases the rate of the C-N reductive elimination from the corresponding $\mathrm{Pd}(\mathrm{IV})$.


91

Scheme 5.12 Reactivity of $\mathbf{9 1}$ to form $\mathbf{9 3}$ with 2 equivalents of HBr in $\mathrm{DMSO}-d_{6}$.

### 5.7 Characterization and reactivity of an iodo-substituted analog of amido alkyl Pd(IV) complex 84

To further study the effect of substituents on the rate of reductive elimination, we synthesized the amido alkyl $\mathrm{Pd}(\mathrm{II})$ complex 83 bearing an iodo substituent in the aniline core. Complex 83 did not crystallize out of MeCN solution due to its high solubility and was used as is in the subsequent oxidation to the isolable $\mathrm{Pd}(\mathrm{IV})$ product 92.


Scheme 5.13 Synthesis of $\mathbf{9 2}$ from 80.

The $\mathrm{PdCH}_{2}$ group signals in $\mathbf{9 2}$ were observed as two doublets at 4.40 ppm and 4.34 ppm , which indicated an electron deficient $\operatorname{Pd}(\mathrm{IV})$ center. The methyl groups of 92 were observed as two singlets at 1.43 ppm and 1.64 ppm confirming the presence of rigid palladacyclic fragment. The purity of $\mathbf{9 2}$ was confirmed by elemental analysis.

Reductive elimination of $\mathbf{9 2}$ to form $\mathbf{9 4}$ in the presence of 2 equivalents of HBr followed a first-order kinetics with a half-life of $(9.5 \pm 0.4)$ minutes at $22^{\circ} \mathrm{C}$. This was observed to be faster compared to reductive elimination from 84, $(17 \pm 1)$ minutes and comparable to the reductive elimination of $91,(6.9 \pm 0.4)$ minutes. Similar to 91 , this results shows that an electron withdrawing group at the para-position increases the rate of reductive elimination from the corresponding $\mathrm{Pd}(\mathrm{IV})$ complex.


Scheme 5.14 Reactivity of $\mathbf{9 2}$ to form $\mathbf{9 4}$ with 2 equivalents of HBr in $\mathrm{DMSO}-d_{6}$.

### 5.8 Conclusion

In conclusion, we have synthesized a series of $\kappa^{2}-C, N-2-\left(2^{\prime}, 2^{\prime}\right.$-dimethylethanediyl)- N (trifluoromethanesulfonyl)anilido $\operatorname{Pd}(\mathrm{II})$ complexes supported by dpk ligand. Two of the three complexes bear a halogen substituent (Br, I) in the anilide ligand core. We next performed their oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ to produce the corresponding amido alkyl $\mathrm{Pd}(\mathrm{IV})$ derivatives. Hence, we have demonstrated again the power of our approach to enabling the employment of this environmentally benign oxidizing agent for production of $\operatorname{Pd}(I V)$ monoalkyl complexes, for the first time, through the use of fac-chelating hydrated dpk ligand. The reactivity of the resulting amido alkyl $\operatorname{Pd}(I V)$ complexes was probed in the intramolecular C-N coupling leading to N-triflylindolines. These compounds were observed to form the $\mathrm{C}-\mathrm{N}$ coupled product as the major or the sole organic product only in the presence of $\mathrm{HCl}, \mathrm{HBr}$ or HI .

Notably, intramolecular $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-N coupling at Pd(IV) center has never been observed and characterized before. Our combined experimental and computational mechanistic investigation of this new reaction showed that this intramolecular $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - N coupling at the $\mathrm{Pd}(\mathrm{IV})$ is assisted by an attack of external nucleophiles such as $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$or $\mathrm{I}^{-}$. The reaction mechanism that we proposed
includes first a nucleophilic attack of a halide anion at the $\mathrm{Pd}(\mathrm{IV})$-bound alkyl group carbon atom in the derived cationic aqua complex - bromide ion pair. This reaction leads to a $\mathrm{Pd}(\mathrm{II})$ amido complex having a so-produced alkylhalide fragment in the amido ligand. The amido ligand nitrogen atom is next involved in an intramolecular nucleophilic attack at the haloalkane fragment. Electron withdrawing groups, Br and I , at the para position of the $4^{\text {th }}$ position of the anilide ligand were shown to increase the rate of the $\mathrm{C}-\mathrm{N}$ reductive coupling.

### 5.9 Experimental

## Synthesis of N-triflyl-2-tertbutylanilide, 78



This was synthesized according to literature. $1.2 \mathrm{~mL}(7.6 \mathrm{mmol})$ of $\mathbf{N}$ - 2-tertbutylaniline was added to 15 mL of DCM at $-78{ }^{0} \mathrm{C}$ using a dry-ice acetone bath together with 1.1 mL ( 7.7 mmol ). After stirring for $10 \mathrm{~min}, 1.3 \mathrm{~mL}(7.7 \mathrm{mmol})$ of trifluoromethanesulfonic anhydride is added dropwise with stirring. When the addition was complete, the mixture was slowly allowed to warm to room temperature. After stirring at room temperature overnight, it is quenched with 15 mL of ice water. The mixture is extracted with $3 \times 10 \mathrm{~mL}$ of DCM, washed with sodium bicarbonate, then brine and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was concentrated and eluted on a silica gel column with $\mathrm{EtOAc} /$ Hexane 20:80 to give the target compound in $73 \%$ yield.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Acetonitrile- $d_{3}$ ) $\delta 7.62(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}$, 1H), $7.35-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.

## Synthesis of 79



This was synthesized according to literature. ${ }^{75} \mathrm{~N}$-(2-tert-butylphenyl)trifluoromethanesulfonamide ( $1.0 \mathrm{~g}, 2.7 \mathrm{mmol}, 1.0$ equiv) was dissolved in acetic acid (10 mL ) and a solution of bromine ( $0.30 \mathrm{~mL}, 5.8 \mathrm{mmol}, 2.0$ equiv) in acetic acid ( 5 mL ) was added over a period of 2 h . The reaction mixture was stirred at room temperature for 20 h . After addition of saturated aqueous $\mathrm{NaHSO}_{3}(5 \mathrm{~mL})$, the mixture was evaporated under reduced pressure. The residue was dissolved in CH 2 Cl 2 , washed with saturated aqueous Na 2 CO 3 and brine, dried over MgSO4 and concentrated under reduced pressure. After work-up as described above, the product was observed as white needles in $91 \%$ yield.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, Chloroform- $d$ ) $\delta 7.57(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$.

## Synthesis of $\mathbf{8 0}$



This was synthesized according to literature. ${ }^{82} \mathrm{H}_{2} \mathrm{SO}_{4}$ acid ( 0.3 mmol ) was dissolved in MeOH (3 $\mathrm{mL})$; substrate ( $0.08 \mathrm{~g}, 0.2 \mathrm{mmol}$ ) and KI ( 0.2 mmol ) were added into the solution. Finally, 30\% $\mathrm{H}_{2} \mathrm{O}_{2}(0.4 \mathrm{mmol})$ was added and stirred at room temperature overnight. After the reaction was finished, the reaction mixture was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, organic phase was washed with 0.1 M NaHSO 3 ( 5 mL ), water ( 10 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and solvent was evaporated.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, Chloroform-d) $\delta 7.75(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.12 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ (s, 1H), 1.46 (s, 9H).

## General Procedure for the synthesis of N-triflyl-2-tertbutylanilidePddpk

$0.50 \mathrm{~g}(2.2 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ was weighed and combined in 20.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ to form a suspension. Then 1.1 equivalents of substrates $\mathbf{7 8 - 8 0}$ was added to the suspension and heated at $(60-80)^{\circ} \mathrm{C}$ for between 3-14 hours. Palladium black was observed and the resulting solution was filtered through Celite and used in further synthesis without isolation. 1.0 equivalents of dpk is dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ and the dpk solution was added dropwise to the palladacycle solution. The target compounds except $\mathbf{8 3}$ are observed to crystallize out of solution after stirring for about 5 h .

${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Acetonitrile- $d_{3}$ ) $\delta 8.95(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.90(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.20$ (td, $J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=7.9,1.5$ Hz, 1H), 7.79 (ddd, $J=7.7,4.6,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.44$ (m, 2H), $7.15-7.00(\mathrm{~m}, 2 \mathrm{H}), 2.17$ (s, 2H), 1.47 (s, 6H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, Methylene Chloride- $\mathrm{d}_{2}$ ) $\delta 206.91,187.15,154.83,152.84$, $152.18,151.48,147.03,140.13,140.00,139.65,129.19,128.84,128.80,127.03,126.52,125.81$, 125.73, 124.16, 123.13, 120.51, 40.50, 36.30, 31.15. ${ }^{19}$ F NMR ( 376 MHz , Acetonitrile- $d_{3}$ ) $\delta-$ 73.57. Anal. Found/Calculated for $\left(\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{PdS} . \mathrm{CH}_{3} \mathrm{CN}\right)$ : C, $47.03 / 47.18 ; \mathrm{H}, 3.78 / 3.79$; N, 7.97/9.17;

${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Acetonitrile- $d_{3}$ ) $\delta 8.88(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.84(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22$ $8.14(\mathrm{~m}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}$, 1H), 7.75 (ddd, $J=7.5,5.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (dd, $J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.14 (s, 2H), 1.43 (s, 6H).

Anal. Found / Calculated for ( $\left.\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrF}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{PdS}\right)$ : C, $40.44 / 40.73$; H, 2.66/2.95; N, 6.38/6.48;

## General Procedure for oxidation of $\mathbf{8 1 - 8 3}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CH}_{3} \mathrm{CN}$

10.0 mg of $\mathbf{8 1 - 8 2}$ was dissolved in 0.60 mL of solvent to give a clear solution yellow solution. 5 eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added to the solution which turned orange. After about 5 minutes, a precipitate was observed. The solution was then cooled to increase the rate of precipitation. The precipitate was isolated and washed with cold $\mathrm{CH}_{3} \mathrm{CN}$ to afford the target compounds. X-ray quality crystals were grown by placing 30 mg of $\mathbf{8 1}$ in 1.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$, and warming it slightly for full dissolution. The solution was placed in ice for about 10 m and 3 drops of $\mathrm{H}_{2} \mathrm{O}_{2}$ was added and the resulting solution left in ice for a further 20 minutes. After that the solution was transferred into a freezer overnight.


84
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $\mathrm{d}_{6}$ ) $\delta 8.99(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H})$, 8.08 (td, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02$ (td, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (ddd, $J=7.4,5.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (ddd, $J=7.5,5.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (dd, $J=6.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.12 - 6.95 (m, 3H), $4.47-4.35(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$.

Anal. Found / Calculated for ( $\left.\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{PdS} . \mathrm{CH}_{3} \mathrm{CN}\right)$ : C, 44.34/44.69; H, 3.75/3.91; N, 8.37/8.69;


91
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta 8.99(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H})$, 8.09 (td, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03$ (td, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (ddd, $J$ $=7.4,5.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ (dd, $J=7.8,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=8.6$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}$, 1H), 1.65 (s, 3H), 1.45 (s, 3H).

Anal. Found / Calculated for $\left(\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrF}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{PdS}\right)$ : C, $38.43 / 38.70$; H, 2.83/3.10; N, 6.15/6.15;


92
${ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO-d $\mathrm{d}_{6}$ ) $\delta 8.99(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H})$, $8.10(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=6.7 \mathrm{~Hz}$, 1H), 7.56 (q, $J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.45$ (dd, $J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42$ (d, $J$ $=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$.

Anal. Found / Calculated for ( $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{IF}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{PdS}$ ): C, 33.07/36.21; H, 2.64/2.90; N, 5.70/5.76;

General procedure for reaction of 84 with different additives


An NMR tube was charged with 10 mg of complex 84 and 0.60 mL of DMSO- $d_{6}$ was added. To the resulting solution was added 2 eq of the appropriate additive. The resulting solution was monitored and the yield of indoline which shows a peak at 3.97 ppm and the yield of the $\mathrm{C}-\mathrm{O}$ product (peak at 3.60 ) were determined by ${ }^{1} \mathrm{H}$ NMR integration with the bound $\mathrm{CH}_{3} \mathrm{CN}$ as internal standard. Yields were determined after 24 h .

| ADDITIVE | PKA ( $\mathrm{H}_{2} \mathrm{O} /$ DMSO) | YIELD OF 86 | YIELD OF 89 |
| :--- | :--- | :--- | :--- |
| None |  | none | 13 |
| $\mathrm{CH}_{3} \mathrm{COOH}$ | $4.76 / 12.3$ | trace | 48 |
| $\mathrm{CF}_{3} \mathrm{COOH}$ | $-0.25 / 3.45$ | 10 | 60 |
| $\mathrm{H}_{2} \mathrm{SO}_{4}$ | $-3 / 1.99$ | 3 | - |
| HCl | $-8 / 1.8$ | 32.5 | 30 |
| HBr | $-9 / 0.9$ | 84 | 1 |
| $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ | $-14 / 0.3$ | 3 | - |
| KBr | none | none | 21 |

## Kinetics

Determining order with respect to 84


In a glove box, Young tubes were charged with different masses of 84 together with 5.00 mg of tetra- $n$-butylammonium bromide and 16.0 mg of Brookhart acid. 0.6 mL of DMSO is added and $2 \mu \mathrm{~L}$ of benzyltrimethylsilane is added as internal standard. The rate of reductive elimination was
monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy with the integration of the $\mathrm{Pd}(\mathrm{IV})$ bound methylene group of 85 .


Initial rate plot for the reactivity of $10.6 \mathrm{mg}(27.3 \mathrm{mM})$ of 84 . Slope is $1.88 \times 10^{-6} \mathrm{Mxs}^{-1}$


Initial rate plot for the reactivity of $10.1 \mathrm{mg}(25.8 \mathrm{mM})$ of 84 . Slope is $1.97 \times 10^{-6} \mathrm{Mxs}^{-1}$


Initial rate plot for the reactivity of $5.5 \mathrm{mg}(14 \mathrm{mM})$ of 84 . Slope is $9.5 \times 10^{-7} \mathrm{Mxs}^{-1}$


Initial rate plot for the reactivity of $5.5 \mathrm{mg}(14 \mathrm{mM})$ of 84 . Slope is $9.3 \times 10^{-7} \mathrm{Mxs}^{-1}$


Initial rate plot for the reactivity of $8.1 \mathrm{mg}(21 \mathrm{mM})$ of 84 . Slope is $1.46 \times 10^{-6} \mathrm{Mxs}^{-1}$


Initial rate plot for the reactivity of $8.5 \mathrm{mg}(22 \mathrm{mM})$ of 84 . Slope is $1.42 \times 10^{-6} \mathrm{Mxs}^{-1}$

## Determining order with respect to Acid

A Young tube was charged with $10.0 \mathrm{mg}(26 \mathrm{mM})$ of 84 together with 5.00 mg of tetrabutylammonium bromide. 0.6 mL of DMSO is added and 2 uL of benzyltrimethylsilane is added as internal standard. Different masses of Brookhart acid is dissolved in 0.2 mL of DMSO.


Initial rate plot for the reactivity of $8.3 \mathrm{mg}(14 \mathrm{mM})$ of Brookhart's acid. Slope is $8.8 \times 10^{-7} \mathrm{Mxs}^{-1}$


Initial rate plot for the reactivity of $8.5 \mathrm{mg}(14 \mathrm{mM})$ of Brookhart's acid. Slope is $8.86 \times 10^{-7} \mathrm{Mxs}^{-}$ 1

## Determining order with respect to bromide

A Young tube was charged with 10.0 mg of 84 together with a different mass of tetrabutylammonium bromide. 0.4 mL of DMSO is added and 2 uL of benzyltrimethylsilane is added as internal standard. 16 mg of Brookhart acid is dissolved in 0.2 mL of DMSO. The Brookhart's acid solution is pulled into a syringe and capped. Both solutions are taken into the NMR room. The Young tube is partially opened, and the Brookhart's acid solution is added to make up the total volume to 0.6 mL . The Young tube is quickly re-sealed and is placed in the 500 MHz NMR probe at 295 K . The rate of decomposition of the $\mathrm{Pd}\left(\mathrm{CH}_{2}\right)$ signal is monitored by ${ }^{1} \mathrm{H}$ NMR.


Initial rate plot for the reactivity of $10.1 \mathrm{mg}(51.1 \mathrm{mM})$ of tetra- $n$-butylammonium bromide. Slope is $3.09 \times 10^{-6} \mathrm{Mxs}^{-1}$


Initial rate plot for the reactivity of $10.3 \mathrm{mg}(52.3 \mathrm{mM})$ of tetra- $n$-butylammonium bromide. Slope is $3.15 \times 10^{-6} \mathrm{Mxs}^{-1}$

Independent synthesis of $\mathbf{9 0}$

This was synthesized as reported by Glorius. ${ }^{75}$


Total yield from starting material is $17 \%$


98

97 was dissolved in a mixture of toluene ( 20 mL ) and THF ( 60 mL ). $\mathrm{LiBH}_{4}(600 \mathrm{mg}, 27.5 \mathrm{mmol}$, 2.75 equiv) was added, and the mixture was heated at $100^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{H}_{2} \mathrm{O}$ were added and the mixture was extracted with EtOAc (2 X 100 mL ). The combined organic phases were dried over $\mathrm{MgSO}_{4}$ and the solvent was removed to give a 98.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.08$ (ddd, $J=7.8,7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.82 (ddd, $J=7.8,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 1.45$ (s, 6H).


90

This was synthesized by reduction of $\mathbf{9 8}$ by a use of $\mathrm{H}_{2} \mathrm{NNH}_{2} . \mathrm{H}_{2} \mathrm{O}$ on $\mathrm{Pd} / \mathrm{C}$ system as reported by $\mathrm{Li}^{83}$
${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform-d) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}$, 1H), 6.81 (td, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.67-3.24$ (s, 2H), 1.46 (s, 6H).

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta 7.39$ (dt, $J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.32-7.27$ (m, 2H), 7.20 (ddd, $J$ $=7.4,6.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d $\mathrm{d}_{6}$ ) $\delta 141.27$, 138.10, 128.53, 125.99, 123.92, 121.56, 118.97, 113.77, 64.70, 27.52.

${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d $\mathrm{d}_{6}$ ) $\delta 7.65(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H})$.

${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $\mathrm{d}_{6}$ ) $\delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.96 (s, 2H), 1.31 (s, 6H).

## Chapter 6. Palladium-Catalyzed Oxidative C-H Amination with $\mathrm{H}_{2} \mathrm{O}_{2}$ as Oxidant

### 6.1 Introduction

The development of a mild and selective catalytic oxidative C-H amination reactions remains a challenge in modern organic synthesis. Traditionally, the Buchwald-Hartwig amination reactions have been used to construct C-N bonds. As an alternative to the Buchwald-Hartwig amination reactions, current research is focused on oxidative catalytic C-H amination without the use of prefunctionalized substrates. Palladium catalyzed C-H amination reactions have been reported in literature with different oxidants. Buchwald first reported the direct catalytic C-H amination of 2aminobiphenyl substrates to form carbazoles with the use of the $\mathrm{Cu}(\mathrm{OAc})_{2} / \mathrm{O}_{2}$ as the terminal oxidant. ${ }^{60}$ The Gaunt group used $\mathrm{PhI}(\mathrm{OAc})_{2}$ as a terminal oxidant to achieve the same direct catalytic C-H amination of carbazoles. ${ }^{62}$ Youn and coworkers later reported the use of Oxone as the terminal oxidant for the direct catalytic C-H amination to form carbazoles. Mechanistic studies showed an electrophilic aromatic substitution ( $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ ) mechanism for the C-H activation step. A $\operatorname{Pd}(I V)$ intermediate was proposed, similar to Gaunt. ${ }^{84}$ The Cho group later used a Pd catalyst together with $\mathrm{O}_{2}$ in a $\mathrm{Cp} * \operatorname{Ir}(\mathrm{III})$-photoredox system to achieve a direct $\mathrm{C}-\mathrm{H}$ amination to form carbazoles. The Antonchik group reported a metal-free oxidative C-H amination reaction to form carbazoles with AcOOH in a mixed hexafluoro-2-isopropanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent system with 2,2'-diiodo-4,4',6,6'-tetramethylbiphenyl as an organocatalyst. ${ }^{85}$ Interestingly, different research groups have also used different types of oxidants like $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}{ }^{86} \mathrm{AgOAc}^{75} \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}{ }^{79}$ or N -fluoro-2,4,6-trimethylpyridinium triflate ${ }^{79}$ to achieve oxidative catalytic $\mathrm{C}-\mathrm{H}$ amination of $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - H and
$\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ bonds. Based on these and the previous work by Oloo, ${ }^{48}$ we attempted direct oxidative C-H amination of 2-aminobiphenyls and 2-tertbutylaniline substrates with $\mathrm{H}_{2} \mathrm{O}_{2}$.

### 6.2 Results and Discussion

We began our catalytic studies with the addition of 2 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ to a mixture of $5 \mathrm{~mol} \%$ $\operatorname{Pd}(\mathrm{OAc})_{2}$ and 25 in AcOD with no ligand present (Scheme 6.1). The solution was observed to turn greenish-blue which shows oxidation of the amino group by the $\mathrm{H}_{2} \mathrm{O}_{2}$ together with evolution of $\mathrm{O}_{2}$ gas. ${ }^{1} \mathrm{H}$ NMR spectroscopy was not informative due to the formation of presumed free radicals during this process. We repeated the reaction with 26-28 which were all found to be oxidized by $\mathrm{H}_{2} \mathrm{O}_{2}$ to form most likely the corresponding nitrosobenzene. We then reacted 46 with only $\mathrm{H}_{2} \mathrm{O}_{2}$ in AcOD and no change in color was observed for 5 hours but 54 was not observed (Scheme 6.1). This confirmed that, the nitrogen atom in anilides were less reactive towards oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ compared to anilines. We proceeded to optimize the catalytic C-H amination of 46 with $\operatorname{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$. The optimal catalyst loading was found to be $10 \mathrm{~mol} \%$ which led to only $4 \%$ yield of 54 upon addition of 6 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ after 24 h at $23^{\circ} \mathrm{C}$. We then screened different ligands which are common in our group (Scheme 6.2) at the initial conditions stated previously (Table 6.1).


Scheme 6.1 Screening of substrates towards reactivity with $\mathrm{H}_{2} \mathrm{O}_{2}$


Scheme 6.2 Screening of ligands for catalytic C-H amination with 46

The ligands dpk and $\mathrm{K}(\mathrm{dpms}$ ) were observed not to support catalysis. This may be due to the formation of $\mathrm{Pd}(\mathrm{II})(\mathrm{dpk})$ or $\mathrm{Pd}(\mathrm{II})(\mathrm{dpms})$ complexes that are ineffective in the substrate $\mathrm{C}-\mathrm{H}$ activation. We therefore switched our ligand systems to bulkier $\mathrm{Me}_{2}$-dpk and $\mathrm{K}\left(\mathrm{Me}_{2}\right.$-dpms) which have methyl groups at both 6-positions. We presumed that the ligands more loosely bound to the Pd center because of steric effects would allow the substrate to coordinate to the Pd center and undergo C-H activation. The use of $\mathrm{Me}_{2}$-dpk showed only a modest yield of $3 \%$ which was even lower than the ligandless system. Conversely, using $\mathrm{K}\left(\mathrm{Me}_{2}\right.$-dpms) showed over a 2 fold increase in the yield, as compared to the ligandless system, making $\mathrm{K}\left(\mathrm{Me}_{2}\right.$-dpms) a viable candidate for catalytic C-H amination. We then tried out the monomethylated ligands $\mathrm{Me}-\mathrm{dpk}$ and $\mathrm{Li}(\mathrm{Me}-\mathrm{dpms})$
having a single methyl group at one of the 6-positions. Me-dpk showed a low yield of $2 \%$ which ruled out the use of dpk or any of its modified analogues (Me-dpk and $\mathrm{Me}_{2}$-dpk) for catalytic C-H amination. The use of $\mathrm{Li}(\mathrm{Me}-\mathrm{dpms})$ showed an increase in the yield of 54 to $14 \%$.

Table 6.1. Effect of the ligand on the yield of N-acetylcarbazole (Scheme 6.2). Reaction conditions: 46 ( $30 \mathrm{mg}, 0.14 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ( $10 \mathrm{~mol} \%$ ), Ligand ( $10 \mathrm{~mol} \%$ ), solvent( 0.6 mL ), 6 equivalents of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ added at the beginning of reaction, $23^{\circ} \mathrm{C}, 24 \mathrm{~h}$. Yield (\%) of $5 \mathbf{f}$ determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy with dioxane as internal standard.

| Entry | Ligand | Yield |
| :--- | :--- | :--- |
| $\mathbf{1}$ | No Ligand | 4 |
| $\mathbf{2}$ | dpk | 0 |
| $\mathbf{3}$ | Me-dpk | 2 |
| $\mathbf{4}$ | Me2-dpk | 3 |
| $\mathbf{5}$ | K-dpms | 0 |
| $\mathbf{6}$ | Li-(Me-dpms) | 14 |
| $\mathbf{7}$ | K-(Me2-dpms) | 10 |

This shows the dpk ligand might be perfect for studies involving stoichiometric reactions and isolation of intermediates but may not be viable for catalytic applications. After selecting the best ligand for our reaction, $\mathrm{Li}(\mathrm{Me}-\mathrm{dpms})$, we tried to optimize the yield of 54 by varying temperature and rate of addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ since $\mathrm{H}_{2} \mathrm{O}_{2}$ can decompose over time. C-H activation has been implicated in different catalytic reactions and previous work showed this process occurs
faster at higher temperatures. ${ }^{87} \mathrm{We}$ increased the temperature of our reaction to $50{ }^{0} \mathrm{C}$ and upon addition of 6 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ small bubbles were observed which is indicative of the formation of $\mathrm{O}_{2}$ due to decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$. The yield of 54 after 6 hours was observed to be $20 \%$. The modest yield was attributed to slow decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$. We therefore added the 6 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ in 0.5 equivalent portions over specific time intervals. When the time between additions was 15 minutes, the yield of 54 was observed to be $13 \%$ after 180 minutes.


Scheme 6.3 Catalytic C-H amination with 46 to form 54 with Li -(Me-dpms) as ligand.

Table 6.2. Effect of the reaction conditions on the yield of N -acetylcarbazole Reactants loading: 46 ( $30 \mathrm{mg}, 0.14 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ( $10 \mathrm{~mol} \%$ ), Ligand ( $10 \mathrm{~mol} \%$ ), solvent( 0.6 mL ), 0.5 equivalent of $\mathrm{H}_{2} \mathrm{O}_{2}$ added each time. Yield (\%) of 54 determined by ${ }^{1} \mathrm{H}$ NMR

| Entry | Time between | $50^{0} \mathrm{C}$ |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  | Yield (\%) | Conversion (\%) | Total Time / min |
| 1 | 15 | 13 | 19 | 180 |
| 2 | 30 | 22 | 29 | 360 |
| 3 | 60 | 38 | 45 | 720 |
| 4 |  | $70^{0} \mathrm{C}$ |  |  |
|  |  | 37 | 43 | 180 |

Increasing the time between additions to 30 minutes increased the yield of 54 to $22 \%$ after 360 minutes. The time between additions was further increased to 60 minutes and the yield of 54 was observed to increase to $38 \%$ after 720 minutes. This shows the yield of 54 was dependent on the amount of oxidant present in the system at constant temperature. The temperature of the catalytic reaction was then increased to $70^{\circ} \mathrm{C}$ and adding 0.5 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at a time with 15 minutes in between additions. The yield of carbazole formed was observed to be $37 \%$. We propose an increase in temperature increases the rate of $\mathrm{C}-\mathrm{H}$ activation and thereby increases overall, the rate of C-H amination since previous work had shown that C-H activation is usually the rate limiting step of this process. ${ }^{88}$ Repeating the reaction in table entry in the absence of the $\mathrm{Li}(\mathrm{Me}-\mathrm{dpms})$ ligand gave $6 \%$ yield of 54.

### 6.3 Conclusions

In conclusion, we synthesized N -acyl carbazole through a direct $\mathrm{C}-\mathrm{H}$ functionalization with $\mathrm{H}_{2} \mathrm{O}_{2}$ as terminal oxidant and $\operatorname{Pd}(\mathrm{OAc})_{2}$ as catalyst. N - R -2-aminobiphenyl substrates with $\mathrm{R}=\mathrm{H}$, Me and Et were observed to undergo oxidation of the aniline fragment to form nitrosamine. N -acetyl-2-aminobiphenyl, 46, was the only substrate observed to undergo catalytic C-H amination with $\mathrm{Li}(\mathrm{Me}-\mathrm{dpms})$ as the desired ligand. The use of other electron withdrawing $\mathrm{N}-\mathrm{R}$-2-aminobiphenyl ( $\mathrm{R}=\mathrm{COCF}_{3}, \mathrm{SO}_{2} \mathrm{CH}_{3}, \mathrm{SO}_{2} \mathrm{CF}_{3}$ ) substrates apart from 46 did not lead to the formation of the target carbazoles. The yield of the C-N coupled product, 54, was observed to be dependent on the temperature of the reaction and the rate of addition of the terminal oxidant, $\mathrm{H}_{2} \mathrm{O}_{2} .{ }^{89}$ The dependence of the yield on temperature implicates the C-H activation step as turnover limiting for this catalytic C-H oxidative amination reaction.

## Chapter 7: Conclusion and Future Directions



Scheme 7.1 Trends for the reactivity of dpk ligated Pd(II) 2-aminobiphenyl substrates towards $\mathrm{H}_{2} \mathrm{O}_{2}$.

In conclusion, in this work we have synthesized the first amido aryl $\mathrm{Pd}(\mathrm{IV})$ complexes including a series of different cationic $\kappa^{2}-C, N-2^{\prime}-(N-R-a m i n o) b i p h e n y l-2-y l ~ P d(I I) ~ a n d ~ n e u t r a l ~ \kappa^{2}-$ C,N-2’-(N-R-amido)biphenyl-2-yl Pd(II) complexes (Scheme 7.1). As a result, the intermediacy of amido aryl Pd(IV) complexes in oxidative C-N coupling was unambiguously demonstrated for the first time. The reactions of the amido aryl $\mathrm{Pd}(\mathrm{II})$ precursors toward $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{N}$ coupling of the resulting amido aryl $\operatorname{Pd}(\mathrm{IV})$ intermediates were explored in detail.

In general, the rates of oxidation and $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ - N reductive elimination followed a common trend corresponding to the nature of the R group involved. The stronger the electron withdrawing ability of the R group, the slower the rates of both oxidation and reductive elimination. These reactivities can be related to the $p K_{a}$ of the corresponding NH acids of the R group involved. The higher the $p K_{a}$ of the corresponding acid, the faster the rates of oxidation and reductive elimination reactions. The outlier was $\mathrm{R}=\mathrm{COCF}_{3}$ which, based on the NH acidity trend, was expected to have a reactivity intermediate between that for $\mathrm{R}=\mathrm{COCH}_{3}$ and $\mathrm{R}=\mathrm{SO}_{2} \mathrm{CH}_{3}$ but was observed to be the
least reactive towards $\mathrm{H}_{2} \mathrm{O}_{2}$ of all the $\mathrm{Pd}(\mathrm{II})$ complexes synthesized. Overall, according to our DFT calculations, the $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{N}$ coupling in all our systems occurred as a concerted process from a 6coordinate $\operatorname{Pd}(\mathrm{IV})$ center. The reactivity trend observed at the $\operatorname{Pd}(\mathrm{IV})$ center was found to be similar to that found earlier by other groups for $\mathrm{C}-\mathrm{N}$ coupling at $\mathrm{Pd}(\mathrm{II})$; in both cases more electronrich amido complexes react faster. These results may become useful for design of various systems relying on the utilization of high-valent metal mediated $\mathrm{C}\left(\mathrm{sp}^{2}\right)$-N coupling step. Finally, based on our observations related to the isolation of high oxidation state amido aryl Pd(IV) complexes, we conclude that the use of a combination of a strong electron withdrawing ligands on the nitrogen and the use of weakly polar, weakly coordinating and non-reducing aprotic solvents for the oxidation process is the best strategy for success at isolating these otherwise very reactive and elusive species.


Figure 7.1 Trend for reductive elimination from substituted dpk-ligated $\mathrm{Pd}(\mathrm{IV})$ alkyl N -anilido complexes.

In this work we have also synthesized the first monohydrocarbyl amido alkyl $\operatorname{Pd}(I V)$ complexes (Figure 7.1) and explored the mechanism of their intramolecular $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - N reductive
eliminations leading to the formation of corresponding indolines. Notably, intramolecular $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{N}$ coupling at $\mathrm{Pd}(\mathrm{IV})$ center has never been observed and characterized before. Our mechanistic investigation of this new reaction showed that the intramolecular $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{N}$ coupling at the $\mathrm{Pd}(\mathrm{IV})$ is mediated by an attack of external nucleophiles such as $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$or $\mathrm{I}^{-}$. The reaction mechanism that we proposed includes first a nucleophilic attack of a halide anion at the $\operatorname{Pd}(\mathrm{IV})$ bound alkyl group carbon atom. This reaction leads to a $\operatorname{Pd}(\mathrm{II})$ amido complex having an alkylhalide fragment. The amido ligand nitrogen atom is next involved in an intramolecular nucleophilic attack at the haloalkane fragment to form a corresponding indoline. Accordingly, in the $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{N}$ coupling reaction, electron withdrawing halogen atoms in the aniline core were observed to slightly speed up the rate of reductive elimination from the Pd(IV) center. These results may become useful for design of various systems relying on the utilization of high-valent metal mediated $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{N}$ coupling step.

Finally, in this work we were able to demonstrate a catalytic $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ - H oxidative amination reactions utilizing $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid solutions. The reaction was enabled through the use of weekly binding fac-chelating ligands. Future work may be focused on optimization of reaction conditions for this catalytic process and its expansion to a broad range of substrates.

## Appendices

(NMR Spectra)



Figure A1. ${ }^{1} \mathrm{H}$ NMR of 48 in $\mathrm{CDCl}_{3}$ at $22^{\circ} \mathrm{C}$.




Figure A2. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 1}$ in $\mathrm{THF}-\mathrm{d}_{8}$ at $22^{\circ} \mathrm{C}$


Figure A3. ${ }^{13} \mathrm{C}$ NMR of 61 in Acetic acid-d $\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$



Figure A4. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 3}$ in DMSO- $\mathrm{d}_{6}$ at $23^{\circ} \mathrm{C}$. Minor signals in the aromatic region correspond to $\mathbf{6 \%}$ impurity of $\mathbf{2 a}$ and $\mathbf{3 a}$.



Figure A5. ${ }^{13} \mathrm{C}$ NMR of 63 in $\mathrm{DMSO}-\mathrm{d}_{6}$ at $22{ }^{\circ} \mathrm{C}$





Figure A6. ${ }^{1} \mathrm{H} \mathrm{NMR}$ of 64 in $\mathrm{CDCl}_{3}$ at $22{ }^{\circ} \mathrm{C}$.



Figure A7. ${ }^{1} \mathrm{H}$ NMR of 49 in $\mathrm{CDCl}_{3}$ at $22^{\circ} \mathrm{C}$.



Figure A8. ${ }^{1} \mathrm{H}$ NMR of 66 in $\mathrm{CD}_{3} \mathrm{CN}$ at $22^{\circ} \mathrm{C}$.



Figure A9. ${ }^{13} \mathrm{C}$ NMR spectrum of 66 in $\mathrm{CD}_{3} \mathrm{CN}$ at $22^{\circ} \mathrm{C}$.



Figure A10. ${ }^{19} \mathrm{~F}$ NMR spectrum of 66 in $\mathrm{CD}_{3} \mathrm{CN}$ at $22{ }^{\circ} \mathrm{C}$.



Figure A11. ${ }^{1} \mathrm{H}$ NMR of 68 in DMSO- $d_{6}$ at $22^{\circ} \mathrm{C}$. Minor signals in the aromatic region correspond to $4 \%$ impurity of 67 and 66


## 




Figure A12. ${ }^{13} \mathrm{C}$ NMR of 68 in $\mathrm{DMSO}-d_{6}$ at $22{ }^{\circ} \mathrm{C}$.



Figure A13. ${ }^{19} \mathrm{~F}$ NMR of 68 in DMSO- $d_{6}$ at $22{ }^{\circ} \mathrm{C}$. Minor signals to $5 \%$ impurity of 67 and 66


Figure A14. ${ }^{1} \mathrm{H}$ NMR of 69 in $\mathrm{DMSO}-\mathrm{d}_{6}$ at $22^{\circ} \mathrm{C}$.





Figure A15. ${ }^{13} \mathrm{C}$ NMR of 69 in DMSO- $d_{6}$ at $22{ }^{\circ} \mathrm{C}$.



Figure A16. ${ }^{19} \mathrm{~F}$ NMR of 69 in DMSO- $d_{6}$ at $22{ }^{\circ} \mathrm{C}$.



Figure A17. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{7 5 B F}_{4}$ in DMSO- $d_{6}$ at $22^{\circ} \mathrm{C}$. Minor signals in the aromatic region correspond to $4 \%$ impurity of 66 and 67





Figure A18. ${ }^{1} \mathrm{H}$ NMR of 70 in $\mathrm{AcOD}-\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$.




Figure A19. ${ }^{19} \mathrm{~F}$ NMR of 70 in $\mathrm{AcOD}-\mathrm{d}_{4}$ at $22{ }^{\circ} \mathrm{C}$.



Figure A20. ${ }^{13} \mathrm{C}$ NMR of 70 in AcOD- $\mathrm{d}_{4}$ at $22{ }^{\circ} \mathrm{C}$.



Figure A21. ${ }^{1} \mathrm{H}$ NMR of 47 in $\mathrm{CDCl}_{3}$ at $22^{\circ} \mathrm{C}$



Figure A22. ${ }^{1} \mathrm{H}$ NMR of 51 in Acetic Acid- $\mathrm{d}_{4}$ at $22{ }^{\circ} \mathrm{C}$.



Figure A23. ${ }^{13} \mathrm{C}$ NMR of 51 in Acetic Acid- $d_{4}$ at $22{ }^{\circ} \mathrm{C}$.



Figure A24. ${ }^{19} \mathrm{~F}$ NMR of 51 in Acetic Acid- $d_{4}$ at $22^{\circ} \mathrm{C}$.



Figure A25. ${ }^{1} \mathrm{H}$ NMR of 58 in Acetic Acid- $d_{4}$ at $22^{\circ} \mathrm{C}$.



Figure A26. ${ }^{19} \mathrm{~F}$ NMR of 58 in Acetic Acid- $d_{4}$ at $22{ }^{\circ} \mathrm{C}$.

$\stackrel{\rightharpoonup}{\circ}$
$\stackrel{\text { m }}{n}$
1


咅


Figure A27. ${ }^{13} \mathrm{C}$ NMR of 58 in Acetic Acid- $d_{4}$ at $22{ }^{\circ} \mathrm{C}$.



Figure A28. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 0}$ in methanol- $\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$.



Figure A29. ${ }^{13} \mathrm{C}$ NMR of 30 in methanol- $\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$.



Figure A30. ${ }^{1} \mathrm{H}$ NMR of 45 in methanol- $\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$.


Figure A31. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 2}$ in methanol- $\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$.



Figure A32. ${ }^{13} \mathrm{C}$ NMR of 32 in methanol- $\mathrm{d}_{4}$ at $22{ }^{\circ} \mathrm{C}$.



Figure A33. ${ }^{1} \mathrm{H}$ NMR of 34 in $\mathrm{CDCl}_{3}$ at $22^{\circ} \mathrm{C}$.



Figure A34. ${ }^{1} \mathrm{H}$ NMR of 46 in $\mathrm{CDCl}_{3}$ at $22^{\circ} \mathrm{C}$.



Figure A35. ${ }^{1} \mathrm{H}$ NMR of 54 in $\mathrm{CDCl}_{3}$ at $22^{\circ} \mathrm{C}$.


, ndindinl


Figure $\mathbf{A} 35^{1} \mathrm{H}$ NMR of $\mathbf{5 0}$ in methanol- $\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$



Figure A36 ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 0}$ in methanol- $\mathrm{d}_{4}$ at $22{ }^{\circ} \mathrm{C}$



Figure $\mathbf{A} 37{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 7}$ in $\mathrm{CDCl}_{3}$ at $22{ }^{\circ} \mathrm{C}$



Figure A38 ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 1}$ in methanol- $\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$


念



Figure A39 ${ }^{13} \mathrm{C}$ NMR of 31 in Methanol- $\mathrm{d}_{4}$ at $20^{\circ} \mathrm{C}$



Figure $\mathbf{A} 40{ }^{1} \mathrm{H}$ NMR of 45 in $\mathrm{CDCl}_{3}$ at $20^{\circ} \mathrm{C}$



Figure $\mathbf{A 4 1}{ }^{1} \mathrm{H}$ NMR of 29 in $\mathrm{CDCl}_{3}$ at $22^{\circ} \mathrm{C}$


Figure $\mathbf{A 4 2}{ }^{1} \mathrm{H}$ NMR of $\mathbf{3 3}$ in methanol- $\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$



Figure A43 ${ }^{13} \mathrm{C}$ NMR of 33 in methanol- $\mathrm{d}_{4}$ at $22{ }^{\circ} \mathrm{C}$



Figure A44 ${ }^{1} \mathrm{H}$ NMR of 43 in methanol- $\mathrm{d}_{4}$ at $22^{\circ} \mathrm{C}$



ऽ $5 / / f$


Figure $\mathbf{A 4 5}{ }^{1} \mathrm{H}$ NMR of 78 in $\mathrm{CD}_{3} \mathrm{CN}$ at $22^{\circ} \mathrm{C}$


Figure A46 ${ }^{1} \mathrm{H}$ NMR of 84 in DMSO- $d_{6}$ at $22^{\circ} \mathrm{C}$



Figure $\mathbf{A 4 7}{ }^{1} \mathrm{H}$ NMR of 86 in DMSO-d ${ }_{6}$ at $22^{\circ} \mathrm{C}$


$$
\pi \iiint \int J J
$$



Figure $\mathrm{A} 48{ }^{1} \mathrm{H}$ NMR of 82 in $\mathrm{CD}_{3} \mathrm{CN}$ at $22^{\circ} \mathrm{C}$

ㅋgy
 Is


|  |  | $\begin{aligned} & \text { T-1 } \\ & \hline-1 \end{aligned}$ | 껑 | $\begin{aligned} & \text { onNㅓㅇ } \\ & \text { 엉잉 } \end{aligned}$ |  | - |  |  |  |  | ¢1 |  |  |  | 荷 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 |

Figure $\mathrm{A} 49{ }^{1} \mathrm{H}$ NMR of 91 in $\mathrm{DMSO}-d_{6}$ at $22^{\circ} \mathrm{C}$


Figure A50 ${ }^{1} \mathrm{H}$ NMR of 92 in DMSO- $d_{6}$ at $22^{\circ} \mathrm{C}$

## References

1. Hartwig, J. F. J. Am. Chem. Soc. 2016, 138, 2-24.
2. Hartwig, J. F., Palladium-Catalyzed Amination of Aryl Halides and Related Reactions. In Handbook of Organopalladium Chemistry for Organic Synthesis, John Wiley \& Sons, Inc.: 2002; pp 1051-1096.
3. Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442-4489.
4. Lyons, T. W.; Sanford, M. S. Tetrahedron 2009, 65, 3211-3221.
5. Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439-2463.
6. Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507-514.
7. Jones, W. D., Activation of C-H Bonds: Stoichiometric Reactions. In Activation of Unreactive Bonds and Organic Synthesis, Murai, S.; Alper, H.; Gossage, R. A.; Grushin, V. V.; Hidai, M.; Ito, Y.; Jones, W. D.; Kakiuchi, F.; van Koten, G.; Lin, Y. S.; Mizobe, Y.; Murai, S.; Murakami, M.; Richmond, T. G.; Sen, A.; Suginome, M.; Yamamoto, A., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 1999; pp 9-46.
8. Jones, W. D.; Feher, F. J. Acc. Chem. Res. 1989, 22, 91-100.
9. Julia, F.; Gonzalez-Herrero, P. J. Am. Chem. Soc. 2016, 138, 5276-5282.
10. Lin, Z. Coord. Chem. Rev. 2007, 251, 2280-2291.
11. Ephritikhine, M. Chem. Rev. 1997, 97, 2193-2242.
12. Burger, B. J.; Thompson, M. E.; Cotter, W. D.; Bercaw, J. E. J. Am. Chem. Soc. 1990, 112, 15661577.
13. Barros, N.; Eisenstein, O.; Maron, L.; Tilley, T. D. Organometallics 2008, 27, 2252-2257.
14. Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848-10849.
15. Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050-8057.
16. Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 8754-8756.
17. Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496-16497.
18. Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am. Chem. Soc. 2005, 127, 13754-13755.
19. Ryabov, A. D. Chem. Rev. 1990, 90, 403-424.
20. Topczewski, J. J.; Sanford, M. S. Chem. Sci. 2015, 6, 70-76.
21. Racowski, J. M.; Ball, N. D.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18022-18025.
22. Ball, N. D.; Gary, J. B.; Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 7577-7584.
23. Maleckis, A.; Sanford, M. S. Organometallics 2011, 30, 6617-6627.
24. Maleckis, A.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2013, 135, 6618-6625.
25. Lindley, J. Tetrahedron 1984, 40, 1433-1456.
26. Kosugi, M.; Kameyama, M.; Migita, T. Chem. Lett. 1983, 12, 927-928.
27. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-83.
28. Guram, A. S.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 7901-2.
29. Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 8232-8245.
30. Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046-2067.
31. Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805-818.
32. Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1998, 120, 3694-3703.
33. Fitton, P.; Rick, E. A. J. Organomet. Chem. 1971, 28, 287-291.
34. Amatore, C.; Pfluger, F. Organometallics 1990, 9, 2276-2282.
35. Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 8232-8245.
36. Gillie, A.; Stille, J. K. J. Am. Chem. Soc. 1980, 102, 4933-4941.
37. Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39, 712-733.
38. Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev. 2010, 110, 824-889.
39. Uson, R.; Fornies, J.; Navarro, R. J. Organomet. Chem. 1975, 96, 307-12.
40. Moriarty, R. M.; Om, P., Oxidation of Carbonyl Compounds with Organohypervalent Iodine Reagents. In Organic Reactions, John Wiley \& Sons, Inc.: 2004.
41. Yoneyama, T.; Crabtree, R. H. J. Mol. Catal. A: Chem. 1996, 108, 35-40.
42. Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300-2301.
43. Dick, A. R.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 12790-12791.
44. Racowski, J. M.; Dick, A. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 10974-10983.
45. Byers, P. K.; Canty, A. J.; Crespo, M.; Puddephatt, R. J.; Scott, J. D. Organometallics 1988, 7, 1363-1367.
46. Whitfield, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 15142-15143.
47. Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8, 1141-1144.
48. Oloo, W.; Zavalij, P. Y.; Zhang, J.; Khaskin, E.; Vedernikov, A. N. J. Am. Chem. Soc. 2010, 132, 14400-14402.
49. Zhang, J.; Khaskin, E.; Anderson, N. P.; Zavalij, P. Y.; Vedernikov, A. N. Chem. Comm. 2008, 44, 3625-3627.
50. Qu, F.; Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M. Chem. Comm. 2014, 50, 3036-3039.
51. Racowski, J. M.; Gary, J. B.; Sanford, M. S. Angew. Chem., Int. Ed. 2012, 51, 3414-3417.
52. Furuya, T.; Kaiser, H. M.; Ritter, T. Angew. Chem., Int. Ed. 2008, 47, 5993-5996, S5993/1S5993/78.
53. Camasso, N. M.; Perez-Temprano, M. H.; Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 1277112775.
54. Perez-Temprano, M. H.; Racowski, J. M.; Kampf, J. W.; Sanford, M. S J. Am. Chem. Soc. 2014, 136, 4097-4100.
55. Pendleton, I. M.; Perez-Temprano, M. H.; Sanford, M. S.; Zimmerman, P. M. J. Am. Chem. Soc. 2016, 138, 6049-60.
56. Powers, D. C.; Ritter, T. Organometallics 2013, 32, 2042-2045.
57. Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302-309.
58. Powers, D. C.; Lee, E.; Ariafard, A.; Sanford, M. S.; Yates, B. F.; Canty, A. J.; Ritter, T. J. Am. Chem. Soc. 2012, 134, 12002-12009.
59. Oloo, W. N.; Zavalij, P. Y.; Vedernikov, A. N. Organometallics 2013, 32, 5601-5614.
60. Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560-14561.
61. Pawlikowski, A. V.; Getty, A. D.; Goldberg, K. I. J. Am. Chem. Soc. 2007, 129, 10382-10393.
62. Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 16184-16186.
63. Hursthouse, M. B.; Sloan, O. D.; Thornton, P.; Walker, N. P. C. Polyhedron 1986, 5, 1475-1478.
64. Albert, J.; Granell, J.; Zafrilla, J.; Font-Bardia, M.; Solans, X. J. Organomet. Chem. 2005, 690, 422-429.
65. Klinkenberg, J. L.; Hartwig, J. F. J. Am. Chem. Soc., 2012, 134, 5758-5761.
66. Arrechea, P. L.; Buchwald, S. L. J. Am. Chem. Soc. 2016, 138, 12486-12493.
67. Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 4708-4709.
68. Hartwig, J. F. Inorg. Chem. 2007, 46, 1936-1947.
69. Abrahams, S. C.; Collin, R. L.; Lipscomb, W. N. Acta Crystallographica 1951, 4, 15-20.
70. Soper, A. K.; Benmore, C. J. Phys. Rev. Lett. 2008, 101, 065502.
71. Camasso, N. M.; Sanford, M. S. Science 2015, 347, 1218-1220.
72. Abada, E.; Zavalij, P. Y.; Vedernikov, A. N. J. Am. Chem. Soc. 2017, 139, 643-646.
73. Collet, F.; Lescot, C.; Dauban, P. Chem. Soc. Rev. 2011, 40, 1926-1936.
74. Ramirez, T. A.; Zhao, B.; Shi, Y. Chem. Soc. Rev. 2012, 41, 931-942.
75. Neumann, J. J.; Rakshit, S.; Dröge, T.; Glorius, F. Angew. Chem., Int. Ed. 2009, 48, 6892-6895.
76. Muniz, K. Angew. Chem., Int. Ed. 2009, 48, 9412-9423.
77. Iglesias, A.; Perez, E. G.; Muniz, K. Angew. Chem., Int. Ed. 2010, 49, 8109-8111.
78. Iglesias, A.; Alvarez, R.; de Lera, A. R.; Muniz, K. Angew. Chem., Int. Ed. 2012, 51, 2225-2228.
79. Mei, T.-S.; Wang, X.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 10806-10807.
80. Brookhart, M.; Grant, B.; Volpe, A. F. Organometallics 1992, 11, 3920-3922.
81. Pendleton, I. M.; Pérez-Temprano, M. H.; Sanford, M. S.; Zimmerman, P. M. J. Am. Chem. Soc. 2016, 138, 6049-6060.
82. Iskra, J.; Stavber, S.; Zupan, M. Synthesis 2004, 2004, 1869-1873.
83. Li, F.; Frett, B.; Li, H.-y. Synlett 2014, 25, 1403-1408.
84. Youn, S. W.; Bihn, J. H.; Kim, B. S. Org. Lett. 2011, 13, 3738-3741.
85. Antonchick, A. P.; Samanta, R.; Kulikov, K.; Lategahn, J. Angew. Chem., Int. Ed. 2011, 50, 86058608.
86. Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006, 128, 9048-9049.
87. Davies, H. M. L.; Morton, D. J. Org. Chem. 2016, 81, 343-350.
88. Holland, P. L.; Andersen, R. A.; Bergman, R. G.; Huang, J.; Nolan, S. P. J. Am. Chem. Soc. 1997, 119, 12800-12814.
89. Riehl, J. F.; Jean, Y.; Eisenstein, O.; Pelissier, M. Organometallics 1992, 11, 729-737.

[^0]:    $\begin{array}{lllllllllllllllllllllllllllllllllllll}9.3 & 9.2 & 9.1 & 9.0 & 8.9 & 8.8 & 8.7 & 8.6 & 8.5 & 8.4 & 8.3 & 8.2 & 8.1 & 8.0 & 7.9 & 7.8 & 7.7 & 7.6 & 7.5 & 7.4 & 7.3 & 7.2 & 7.1 & 7.0 & 6.9 & 6.8 & 6.7 & 6.6 & 6.5 & 6.4 & 6.3 & 6.2 & \end{array}$

