TeECHNICAL RESEARCH REPORT

Semantics for Hierarchical
Task-Network Planning

by K. Erol, J. Hendler, D.S. Nau

T.R. 95-9

92999,

INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

Technical report CS-TR-3239, UMIACS-TR-94-31, ISR-TR-95-9

Semantics for Hierarchical Task-Network Planning*

Kutluhan Erol James Hendler Dana S. Nau
kutluhan@cs.umd.edu hendler@Qcs.umd.edu nau@cs.umd.edu

Computer Science Department,
Institute for Systems Research,
Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742

Abstract

One big obstacle to understanding the nature of hierarchical task net-
work (HTN) planning has been the lack of a clear theoretical framework. In
particular, no one has yet presented a clear and concise HTN algorithm that
is sound and complete. In this paper, we present a formal syntax and se-
mantics for HTN planning. Based on this syntax and semantics, we are able
to define an algorithm for BTN planning and prove it sound and complete.
We also develop several definitions of expressivity for planning languages
and prove that HTN planning is strictly more expressive than STRIPS-style
planning according to those definitions.

1 Introduction

In AI planning research, planning practice (as embodied in implemented planning systems)
tends to run far ahead of the theories that explain the behavior of those planning systems. For

*This work was supported in part by NSF Grants IRI-9306580 and NSF EEC 94-02384, AFOSR (F49620-
93-1-0065), the ARPA/Rome Laboratory Planning Initiative {F30602-93-C-0039), and ONR, grant N00014-
91-J-1451. Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National Science Foundation or ONR.

example, STRIPS-style planning systems' were developed more than twenty years ago (Fikes
et al., 1971), and most of the practical work on Al planning systems for the last fifteen
years has been based on hierarchical task-network (HTN) decomposition (Sacerdoti, 1977;
Tate, 1990; Wilkins, 1988a; Wilkins, 1988b). In contrast, although the past few years have
seen much analysis of planning using STRIPS-style operators, (Chapman, 1987; Mcallester et
al., 1991; Erol et al., 1992b; Erol et al., 1992a), there has been very little analytical work on
HTN planners.

One big obstacle to such work has been the lack of a clear theoretical framework for
HTN planning. Two recent papers (Yang, 1990; Kambhampati et al., 1992) have provided
important first steps towards formalizing HTN planning, but these focused on the syntax,
rather than the semantics. As a result, no one has presented a clear and concise HTN
algorithm that is sound and complete. In this paper, we present a syntax and semantics for
HTN planning, which enables further analytical work. In particular, our formalism allows
us to evaluate the expressive power of HTN planning and develop correct HTN planning
algorithms.

The paper is organized as follows. Section 2 contains an informal overview of HTN
planning. In Section 3, we present our formalism, and in Section 4 we describe how various
features of HTN planning fit into our formalism. Section 5 contains our provably sound
and complete planning algorithm UMCP. In Section 6, we develop several definitions of
expressivity for planning languages, and prove that HTN planning is more powerful than
STRIPS-style planning according to those definitions.

2 An Overview of HTN planning

This section contains an informal description intended to give an intuitive feel for HTN
planning. A precise formal description is presented in Section 3.

One of the motivations for HTN planning was to close the gap between AI planning
techniques such as STRIPS-style planning, and operations-research techniques for project
management and scheduling (Tate, 1990). Thus, there are some similarities between HTN
planning and STRIPS-style planning, but also some significant differences. 4

HTN planning uses actions and states of the world that are similar to those used in
STRIPS-style planning.? Each state of the world is represented by the set of atoms true in

'We will refer to planning systems that use STRIPS operators (with no decompositions) as STRIPS-style
planners, ignoring algorithmic differences among them that are not relevant to the current work.

2We use the term “sTRIPS-style” planning to refer to any planner (either total- or partial-order) in
which the planning operators are STRIPS-style operators (i.e., operators consisting of three lists of atoms: a
precondition list, an add list, and a delete list). These atoms are normally assumed to contain no function

Go(D.C., Las Vegas)

> Go(Las Vegas, D.C.)}

/
N

Figure 1: A task network

that state. Actions, which in HTN planning are usually called primitive tasks, correspond to
state transitions; i.e., each action is a partial mapping from the set of states to set of states.

The primary difference between HTN planners and STRIPS-style planners is in what they
plan for, and how they plan for it. In STRIPS-style planning, the objective is to find a
sequence of actions that will bring the world to a state that satisfies certain conditions or
“attainment goals.” Planning proceeds by finding operators that have the desired effects,
and by making the preconditions of those operators into subgoals. In contrast, HTN planners
search for plans that accomplish task nctworks, which can include things other than just
attainment goals; and they plan via task decomposition and conflict resolution, which we
shall explain shortly.

A task network is a collection of tasks that need to be carried out, together with con-
straints on the order in which tasks can be performed, the way variables are instantiated,
and what literals must be true before or after each task is performed. For example, Figure 1
contains a task network for a trip to Las Vegas. Unlike STRIPS-style planning, the constraints
may or may not contain conditions on what must be true in the final state.

A task network that contains only primitive tasks is called a primitive task network.
Such a network might occur, for example, in a scheduling problem. In this case, an HTN
planner would try to find a schedule (task ordering and variable bindings) that safisfies all
the constraints.

In the more general case, a task network can contain non-primitive tasks, which the
planner needs to figure out how to accomplish. Non-primitive tasks cannot be executed
directly, because they represent activities that may involve performing several other tasks.
For example the task of traveling to New York can be accomplished in several ways, such as
flying, driving or taking the train. Flying would involve tasks such as making reservations,
going to the airport, buying ticket, boarding the plane; and flying would only work if certain
conditions were satisfied, such as availability of tickets, being at the airport on time, having
enough money for the ticket, and so forth.

symbols.

Go(X,Y)
4
| Rent-a-car |- | Drive(X,Y)

Figure 2: A (simplified) method for going from X to Y.

1. Input a planning problem P.

2. If P contains only primitive tasks, then
resolve the conflicts in P and return the result.
If the conflicts cannot be resolved, return failure.

Choose a non-primitive task ¢ in P.

Choose an expansion for t.

Replace t with the expansion.

Use critics to find the interactions among the tasks in P,
and suggest ways to handle them.

Apply one of the ways suggested in step 6.

. Go to step 2.

S oW

Sl

Figure 3: The basic HTN Planning Procedure.

Ways of accomplishing non-primitive tasks are represented using constructs called meth-
ods. A method is a syntactic construct of the form («,d) where « is a non-primitive task,
and d is a task network. It states that one way to accomplish the task « is to achieve all
the tasks in the task network d without violating the constraints in d. Figure 2 presents a
(simplified) method for accomplishing Go(X,Y).

A number of different systems that use heuristic algorithms have been devised for HTN
planning (Tate, 1990; Vere, 1983; Wilkins, 1988a), and several recent papers have tried to
provide formal descriptions of these algorithms (Yang, 1990; Kambhampati et al., 1992).
Figure 3 presents the essence of these algorithms. As shown in this figure, HTN planning
works by expanding tasks and resolving conflicts iteratively, until a conflict-free plan can be
found that consists only of primitive tasks.

Ezpanding or reducing each non-primitive task (steps 3-5) is done by finding a method

Rent-a-car |- |drive(D.C., Las Vegas) < >‘, Go(L.V., D.C))

Figure 4: A decomposition of the the task network in Fig. 1

capable of accomplishing the non-primitive task, and replacing the non-primitive task with
the task network produced by the method. For example, the task Go(D.C., Las Vegas)
in the task network of Figure 1 can be expanded using the method in Figure 2, producing
the task network in Figure 4.

The task network produced in Step 5 may contain conflicts caused by the interactions
among tasks. For example, in Figure 4, if we use up all our money in order to rent the
car, we may not be able to see a show. The job of finding and resolving such interactions
is performed by critics. Historically speaking, critics were introduced into NOAH (Sacerdoti,
1977) to identify and deal with several kinds of interactions (not just deleted preconditions)
among the different networks used to reduce each non-primitive operator. This is reflected in
Steps 6 and 7 of Figure 3: after each reduction, a set of critics is checked so as to recognize and
resolve interactions between this and any other reductions. Thus, critics provide a general
mechanism for detecting interactions early, so as to reduce the amount of backtracking. For
a more detailed discussion of the many different ways critic functions have been used, see

(Tate et al., 1990).

3 HTN Formalism

Although the basic idea of HTN planning has been around since 1974, the lack of a clear
theoretical foundation has made it difficult to explore its properties. In particular, although
it is easy to state the algorithm shown in Figure 3, proving it sound and complete requires
considerable formal development. Below, we present a syntax and semantics for HTN plan-
ning.

3.1 Syntax for HTN Planning

Our language £ for HTN planning is a first-order language with some extensions, and it
is fairly similar to the syntax of NONLIN (Tate, 1990). The vocabulary of £ is a tuple

ny:

clear(v;)

achieve[clear(v,)]

ns.

ion(v1,v3) |do[move(vy,vs,v3)]

Na:
cleapf{vs)

achieve[clear(v,)]

Figure 5: Graphical representation of a task network.

(V,C,P,F,T,N), where V is an infinite set of variable symbols, C is a finite set of constant
symbols, P is a finite set of predicate symbols, F' is a finite set of primitive-task symbols
(denoting actions), T is a finite set of compound-task symbols, and N is an infinite set of
symbols used for labeling tasks. All these sets of symbols are mutually disjoint.

A state is a list of ground atoms. The atoms appearing in that list are said to be true in
that state and those that do not appear are false in that state.

A primitive task is a syntactic construct of the form do[f(z1,...,zx)], where f € F' and
Ty,...,2 are terms. A goal task is a syntactic construct of the form achieve[l], where [is a
literal. A compound task is a syntactic construct of the form per form[t(z1,...,zx)], where
t € T and zy,...,2 are terms. We sometimes refer to goal tasks and compound tasks as
non-primitive tasks.

A plan is a sequence ¢ of ground primitive tasks.

A task network is a syntactic construct of the form [(nq : a1)...(nm : @), @], where

o each q; is a task;

o n, € N is a label for o; (to distinguish it from any other occurrences of «; in the
network);

¢ ¢ is a boolean formula constructed from variable binding constraints such as (v = v')
and (v = ¢), ordering constraints such as (n < n’), and state constraints such as (n,),
(I,n), and (n,l,n'), where v,v' € V, [is a literal, ¢ € C, and n,n’ € N.? Intuitively
(this will be formalized in Section 3.2, (n < n’) means that the task labeled with n
must precede the one labeled with n’; (n,1), (I,n) and (n,l,n') mean that | must be
true in the state immediately after n, immediately before n, and in all states between
n and n', respectively. Both negation and disjunction are allowed in the constraint
formula.

3We also allow n, n’ to be of the form first[n;,n;,..] or last[n;,n;,..] so that we can refer to the task
that starts first and to the task that ends last among a set of tasks, respectively.

6

[(n1 : achieve[clear(vq)])(ny 1 achieve[clear(vs)])(ns : do[move(vy, v3, v9)])
(n1 < n3) A (ng < ng) A (n1, clear(vy), ns) A (ng, clear(ve),na) A (on(vq,v3), n3)
A =(v1 = v2) A =(vy = v3) A ~(vg = v3)]

Figure 6: Formal representation of the task network of Fig. 5.

A task network containing only primitive tasks is called a primitive task network.

As an example, Fig. 6 gives a formal representation of the task network shown in Figure 5.
In this blocks-world task network there are three tasks: clearing vy, clearing v,, and moving
v1 to ve. The task network also includes the constraints that moving v; must be done last,
that v; and v, must remain clear until we move v;, that vy, v,, v3 are different blocks, and
that on(vi,vs) be true immediately before v; is moved. Note that on(vy,v3) appears as a
constraint, not as a goal task. The purpose of the constraint (on(vy,vs),ns) is to ensure that
vs is bound to the block under v; immediately before the move. Representing on(vy,v3) as
a goal task would mean moving v; onto some block vz before we move it onto vy, which is
not what is intended.

An operator is a syntactic construct of the form

[operator f(vi,...,vi)(pre:ls,. .., L) (post:ly,. .., I)],

where f is a primitive task symbol, and Iy, ..., [, are literals describing when f is executable,
Ii,..., U}, are literals describing the effects of f, and vy,...,v; are the variable symbols
appearing in the literals.

A method is a construct of the form («, d) where a is a non-primitive task, and d is a task
network. As we will define formally in Section 3.2, this construct means that one way of ac-
complishing the task o is to accomplish the task network d, i.e. to accomplish all the subtasks
in the task network without violating the constraint formula of the task network. For exam-
ple, a blocks-world method for achieving on(vy,v2) would look like (achieve(on(vy,v;)),d),
where d is the task network in Fig. 6. To accomplish a goal task (achievell]), [needs to be
true in the end, and this is an implicit constraint in all methods for goal tasks. If a goal is
already true, then an empty plan can be used to achieve it. Thus, for each goal task, we
(implicitly) have a method (achieve[l],[(n : do[f]),(l,n)]) which contains only one dummy
primitive task f with no effects, and the constraint that the goal [is true immediately before
do{f).

Each primitive task has exactly one operator for it, where as a non-primitive task can
have an arbitrary number of methods.

A planning domain D is a pair (Op, Me), where Op is a list of operators, and Me is a

7

list of methods. A planning problem instance P is a triple (d, I, D), where D is a planning
domain, I is the initial state, and d is the task network we need to plan for. solves(o,d, I)
is a syntactic construct which we will use to mean that o is a plan for the task network d at
state 1.

3.2 Model-Theoretic Semantics

Before we can develop a sound and complete planning algorithm for HTN planning, we need
a semantics that provides meaning to the syntactic constructs of the HTN language, which
in turn would define the set of plans for a planning problem.

Semantic Structure

A semantic structure for HTN planning is a triple M = (Sar, Far, Tar). Whenever it is clear
from context which model we are referring to, we will say M = (S,F,7T), omitting the
subscript M. S, F, and T are described below.

S = 2lall ground atoms} iq the set of states. Each state in S is a set, consisting of the atoms
true in that state. Any atom not appearing in a state is considered to be false in that state.
Thus, a state corresponds to a “snapshot” instance of the world.

F : FxC*x8 — § is a partial function for interpreting the actions. Given a primitive
task symbol from F'| with ground parameters from C, and an input state, F tells us which
state we would end up with, if we were to execute the action. For a given action, F might
be undefined for some input states, namely those for which the action is not executable.

T : {ground non-primitive tasks} — 2{ground primitive task networks} 5 5 fypnction that maps
each non-primitive task a to a (not necessarily finite) set of ground primitive task networks
T (c). Each primitive task network d in 7(a) contains a set of actions that would achieve
a under certain conditions (as specified in the constraint formula of d). There are two
restrictions on the way 7 () interprets a goal task achievell]. First, I must be true at the
end of any task network in 7 (achieve[l]). Second, since an empty plan can be used to
accomplish a goal task if the goal literal is already true, 7 (achieve[l]) must contain a task
network consisting of a single dummy task with the constraint that [is true.

Task networks can be interpreted similarly to non-primitive tasks, and we extend the
domain of 7 to cover task networks as follows:

o T(a)={[(n: @), TRUE]}, if a is a ground primitive task. Thus, in order to accomplish
a, it suffices to execute it (provided that it is executable).

o T(d) = {d}, if d is a ground primitive task network.

e To accomplish a non-primitive task network d, we need to accomplish each task in
d without violating the constraint formula. Thus we define T(d) as follows. Let
d=[(n1:01)...(nm : am),d] be a ground task network possibly containing non-
primitive tasks. Then

T(d) = {compose(dy,...,dn,d) | di € T(a;), 1 =1...m},
where compose is defined as follows. Suppose
di = [(ni 2 o) ... (nig, * g,), ¢4
for each i. Then*

compose(dy,...,dm,d) = [(n11: @11) .-« (b, * Ak)y B2 A o O A &),
where ¢’ is obtained from ¢ by making the following replacements:
— replace (n; < n;) with (last[na,...,na] < first[nj, ..., n;), since all tasks in
the decomposition of n; must precede all tasks in the decomposition of n;;
— replace (I,n;) with (I, first[n;,...,ni,]), since | needs to be true immediately
before the first task in the decomposition of n;;
— replace (n;, () with (last[ni,...,ny,],);
~ replace (n;,1,n;) with (last[ni, ..., ni,), 1, firstng, ..., n,));

~ everywhere that n; appears in ¢ in a first[] or a last[] expression, replace it with
Mgty ooy N, -

0 T(d) = Uy is o ground instance of ¢ T (d'), if d is a task network containing variables.

Satisfaction

In this section we describe how syntactic expressions such as operators and methods take
truth values in a given model. We will use the phrases “...is true in model M” and “...is
satisfied by model M” interchangeably.

A model M satisfies an operator if M interprets the primitive task associated with the
operator so that the primitive task is executable under the conditions specified in the pre-
conditions of the operator, and has the effects specified in the postconditions of the operator.

4 Actually, the formula is slightly more complicated than what is shown, because the variables and node
labels in each d; must be renamed so that no common variable or node label occurs.

9

More formally, we will say that an operator [f(v1,... Jop)(pre:ly, . . .y Im)(post:ly, . .., 1) is
satisfied by a model M iff for any ground substitution @ and any state s, Fr has the fol-
lowing properties, where E,, E, are the sets of negative and positive literals in [, ... N
respectively:

o if 116,...,1,0 are true in s, then Far(f,vi0,. .. ,uk0,8) = (s — En0) U E,0;
o otherwise, Far(f,v10,...,vib,s) is undefined.

Next, we want to define the conditions under which a model M satisfies solves(o,d, s),
i.e., the conditions under which o is a plan that accomplishes the task network d starting at
state s, in M. First we consider the case where d is primitive.

Let M be a model, d = [(ny : 1)+ (R : @),] be a ground primitive task network,
s be a state, and o = (fi(ey-- -5 Ciky)y -+ -3 Jm(Cm1y- - ,Cmk,)) be a plan executable at so.
Thus, s; = Fu(fisciny---»Cikiy $i1) for ¢ = 1...m, which are the intermediate states,
are all well-defined. We define a matching = from d to o to be a one-to-one function from
{1,...,m'} to {1,...,m} such that whenever x(i) = j, & = do[fj(cj1,---,¢ik,)]. Thus a
matching provides a total ordering on the tasks. M satisfies solves(a,d,s) if m = m/, and
there exists a matching 7 that makes the constraint formula ¢ true. The constraint formula
is evaluated as follows:

o (¢; = ¢;) is true, if ¢;, ¢; are the same constant symbols;

o firstlni,n;,...] evaluates to min{m(3),7(j),. -}

last[n;, nj, . . .| evaluates to maz{w (i), 7(j),.. N

(n; < n;) is true if (i) < 7(7);

(I,n;) is true if [holds in sx(i)-1;

(n;,1) is true if [holds in sx(i);

(ni,1,n;) is true if ! holds for all s, 7(1) < e < m(J);

e logical connectives =, A,V are evaluated as in propositional logic.

Let d be a task network, possibly containing non-primitive tasks. A model M satisfies
solves(a, d, s) if for some d' € Tn(d), M satisfies solves(o,d', s).

For a method (a, d) to be satisfied by a given model, not only must any plan for d also be
a plan for «, but in addition, any plan for a task network tn containing d must be a plan for

10

the task network obtained from ¢n by replacing d with a. Thus, a method (e, d) is satisfied
by a model M, iff Tpr(a) covers Tps(d), where “covers” is defined as follows:

Given a model M, two sets of ground primitive task networks TN and TN’; TN is said
to cover T'N’, iff for any state s, any plan o executable at s, and any d' € TN’, the following
property holds:

Whenever there exists a matching 7 between d’ and o such that o at s satisfies
the constraint formula of d’, then there exists a d € T'N such that for some
matching ' with the same range as 7, o at s makes the constraint formula of d
true.

A model M satisfies a planning domain D = (Op, Me), if M satisfies all operators in Op,
and all methods in Me.

3.3 Proof Theory

A plan o solves a planning problem P = (d, I, D) if any model that satisfies D also satisfies
solves(o, d, I). However, given a planning problem, how do we find plans that solve it?

Let d be a primitive task network (one containing only primitive tasks), and let I be
the initial state. A plan o is a completion of d at I, denoted by o € comp(d, I, D), if o is
executable (i.e. the preconditions of each action in o are satisfied) and & corresponds to a
total ordering of the primitive tasks in a ground instance of d that satisfies the constraint
formula of d. For non-primitive task networks d, comp(d, I, D) is defined to be §.

Let d be a non-primitive task network that contains a (non-primitive) node (n : a).
Let m = (o/,d’) be a method, and # be the most general unifier of o and o/. We define
reduce(d,n, m) to be the task network obtained from df by replacing (n : o) with the task
nodes of d'6, modifying the constraint formula ¢ of d'6 into ¢' (as we did for compose), and
incorporating d'0’s constraint formula. We denote the set of reductions of d by red(d, I, D).
Reductions formalize the notion of task decomposition.

A plan o solves a primitive task network d at initial state I iff ¢ € comp(d, I, D); a
plan o solves a non-primitive task network d at initial state I iff o solves some reduction
d' € red(d,I,D) at initial state I.

Now, we can define the set of plans sol(d, I, D) that solves a planning problem instance
P=<dI,D>:

soly(d,1,D) = comp(d,1,D)
SOln+1(d, I, D) = SOln(d, I, D) U Ud'ETed(d,I,D) SOIn(d,, I, D)
sol(d, I,D) Un<wsoly(d, I, D)

11

Intuitively, sol,(d, I, D) is the set of plans that can be derived in n steps, and sol(d, I, D) is
the set of plans that can be derived in any finite number of steps.

In Section 3.2, we presented a model-theoretic semantics for HTN planning, and in this
section we have presented an operational, fixed-point semantics that provides a procedural
characterization of the set of solutions to planning problems. The next step is to show that
the model-theoretic semantics and operational semantics are equivalent, so that we can use
the model-theoretic semantics to get a precise understanding of HTN planning, and use the
operational semantics to build sound and complete planning systems. The following theorem
states that sol(d, I, D) is indeed the set of plans that solves (d, I, D).

Theorem 1 (Equivalence Theorem) Given a task network d, an initial state I, and a
plan o, o is in sol(d, I, D) iff any model that satisfies D also satisfies solves(o,d, I).

This theorem follows from the fact that sol(d,I,D) is constructed such that it always
contains only the plans for a task network d with respect to the minimum model. We prove
the theorem by constructing a model M such that for any non-primitive task a, Tp(c)
contains the primitive task networks that can be obtained by a finite number of reduction
steps from a. Then we prove M to be the minimum model satisfying D. The details of the
proof are in the appendix.

Since the set of plans that can be derived using R1 and R2 is exactly sol(d, I, D), the
corollary immediately follows from the equivalence theorem.

4 Features of HTN Planning

Using the syntax and semantics as defined above, we can now define and/or explain a number
of items that are often discussed in the literature:

Tasks and Task-decomposition

There appears to be some general confusion about the nature and role of tasks in HTN
planning. This seems largely due to the fact that HTN planning emerged, without a formal
description, in implemented planning systems (Sacerdoti, 1977; Tate, 1990). Many ideas in-
troduced in HTN planning (such as nonlinearity, partial order planning, etc.) were formalized
only as they were adapted to STRIPS-style planning, and only within that context (Chapman,
1987; Mcallester et al., 1991; Minton et al., 1991; Barett et al., 1992; Collins et al., 1992;
Kambhampati, 1992). Those ideas not adapted to STRIPS-style planning (such as compound
tasks and task decomposition) have even been dismissed as mere efficiency hacks. In fact,

12

one view of HTN planning totally discards compound tasks, and views methods for goal tasks
as heuristic information on how to go about achieving the goals (i.e., which operator to use,
in which order to achieve the preconditions of that operator). Although this is a perfectly
coherent view, we find it restrictive, and we believe there is more to HTN planning, as we try
to demonstrate in our formalism and in the section on expressive power.

We view tasks as activities we need to plan i.e. things that need to be accomplished.
Each method tells us one way of achieving a task, and it also tells us under which conditions
that way is going to succeed (as expressed in the constraint formula) Finally, the task de-
composition refers to choosing a method for the task, and using it to achieve the task. For
example, possible methods for the task of traveling to a city might be flying (under the con-
dition that airports are not closed due to bad weather), taking the train (under the condition
that there is an available ticket), or renting a car (under the condition that I have a driver’s
license). Tasks and task networks provide a more natural and flexible way of representing
planning problems than STRIPS-style attainment goals, as Lansky (Lansky, 1988) argues for
action-based planning in general.

Our formalism is mostly shaped after NONLIN (Tate, 1990) and the works of Yang and
Kambhampati (Yang, 1990; Kambhampati et al., 1992) on hierarchical planning. However,
our terminology for referring to compound tasks is slightly different from theirs, which instead
uses the term “high level actions” (Sacerdoti, 1977; Yang, 1990). Although this term has
some intuitive appeal, we prefer not to use it, in order to avoid any possible confusion with
STRIPS-style actions. STRIPS-style actions are atomic, and they always have the same effect
on the world; non-primitive tasks can be decomposed into a number of primitive tasks, and
the effect of accomplishing a non-primitive task depends not only on the methods chosen for
doing decompositions, but also on the interleavings with other tasks. For example, consider
the task of “round-trip to New York”. The amount of money I have got after the trip depends
on whether I flew or took a train, and also on my activities in New York (night clubs, etc).
Unlike STRIPS-style actions, tasks are not “executed” for their effects in the world, but they
are ends by themselves. In this aspect, tasks are more similar to STRIPS-style goals than
STRIPS-style actions.

Here are some more examples to further clarify the distinctions among different types of
tasks and STRIPS-style goals. Building a house requires many other tasks to be performed
(laying the foundation, building the walls, etc.), thus it is a compound task. It is different
from the goal task of “having a house,” since buying a house would achieve this goal task,
but not the compound task of building a house (the agent must build it himself). As another
example, the compound task of making a round trip to New York cannot easily be expressed
as a single goal task, because the initial and final states would be the same. Goal tasks
are very similar to STRIPS-style goals. However, in STRIPS-style planning, any sequence of

13

actions that make the goal expression true is a valid plan, where as in HTN planning, only
those plans that can be derived via decompositions are considered as valid. This allows
the user to rule out certain undesirable sequences of actions that nonetheless make the goal
expression true. For example, consider the goal task of “being in New York”, and suppose the
planner is investigating the possibility of driving to accomplish this goal, and suppose that
the agent does not have a driver’s license. Even though learning how to drive and getting a
driver’s license might remedy the situation, the user can consider this solution unacceptable,
and while writing down the methods for be-in(New York), add the constraint that the
method of driving succeeds only when the agent already has a driver’s license.

High-Level Effects

Typically, HTN planners allow one to attach “high-level” effects to subtasks in methods,
similar to the way we attach effects to primitive tasks using operators. Some HTN-planners
such as NONLIN assume that the high-level effects will be true immediately after the corre-
sponding subtasks, even if they are not asserted by any primitive tasks. This is problematic:
one can obtain the same sequence of primitive tasks with different tasks and methods, and
given high-level effects, the final state might depend on what particular task(s) the sequence
was intended for. Yang (Yang, 1990) addresses this problem by attaching high-level effects
to tasks directly using operators. In addition, he requires that for each high-level effect !
associated with a task «, every decomposition of @ must contain a subtask with the effect
[, which is not clobbered by any other subtask in the same decomposition. However, this
solution does not preclude the possibility that ! might be clobbered by actions in the de-
compositions of other tasks. In our framework, only primitive tasks can change the state
of the world, non-primitive tasks are not allowed to have direct effects. Instead, we express
high-level effects as constraints of the form (n,[) so that the planner verifies those effects
to hold. Thus we avoid the previous problem, but we still benefit from guiding search with
high level effects (one of the primary reasons they are often used in implemented planning
systems).

Conditions

HTN planners often allow several types of conditions in methods. For instance NONLIN has
use-when, supervised, and unsupervised conditions.

Supervised conditions, similar to preconditions in STRIPS-style planning, are those that
the planner needs to accomplish, thus in our framework, they appear as goal nodes in task
networks. In the task network shown in Fig. 5, the conditions clear(vi) and clear(vs)
appear as goal tasks for that reason.

14

Unsupervised conditions are conditions that are needed for achieving a task but supposed
to be accomplished by some other part of the task network (or the initial state). For example,
a load(package,vehicle) task in a transport logistics domain would require the package and
vehicle to be at the same location, but it might be the responsibility of another task (e.g. a
vehicle dispatcher) to accomplish that condition. Thus, the load task must only verify the
condition to be true and it must not try to achieve it by task decompositions, or insertions of
new actions. In our framework, we represent unsupervised conditions as state constraints so
that the planner tries to find variable bindings/task orderings that would make them true,
but it does not plan for them by inserting new actions or doing task decompositions. NONLIN
ignores the unsupervised conditions until all tasks are expanded into primitive tasks, which
is not always an efficient strategy. UMCP, on the other hand, tries to process unsupervised
conditions at higher levels to prune the search space.

HTN planners employ filter conditions (called use-when conditions in NONLIN) for deciding
which methods to try for a task expansion and reduce the branching factor by eliminating
irrelevant methods. For example consider the task of going to New York, and the method of
accomplishing it by drjving. One condition necessary for this method to succeed is having
a driver’s license. Although a driver’s license can be obtained by learning how to drive and
going through the paperwork, the user of the planner might consider this unacceptable, and in
that case he would specify having a driver’s license not as a goal task but as a filter condition
, and the method of driving to New York would not be considered if the agent does not have
a driver’s license at the appropriate point in the plan. In (Collins et al., 1992), Collins and
Pryor state that filter conditions are ineffective. They argue that filter conditions do not
help pruning the search space for partial order planners, because it is not possible to check
whether they hold or not in an incomplete plan. They also empirically demonstrate that
ignoring the filter conditions until all the subgoals are achieved is quite inefficient. Although
their study of filter conditions is in the context of STRIPS representation, to a large extend it
also applies to HTN planning. NONLIN, for instance, evaluates filter conditions as soon as they
are encountered, and unless it can establish those conditions to be necessarily true, it will
backtrack. Thus, NONLIN sometimes backtracks over filter conditions which would have been
achieved by actions in later task expansions. Hence NONLIN is not complete. Although it
might not always be possible to determine whether a filter condition is true in an incomplete
plan, filter conditions can still be used to prune the search space. Our framework represents
filter conditions as state constraints and planning algorithms based on this framework can
employ constraint satisfaction/propagation techniques to prune inconsistent task networks.
For example if a task network contains the filter condition (l,n), and also another constraint
(n1,I,n3), one can deduce that n should be either before ny, or after ny. Furthermore,
some filter conditions might not be affected by the actions (e.g. conditions on the type of

15

objects), and thus it suffices to check the initial state to evaluate those. This kind of filter
conditions can also be very helpful in pruning the search space.

Overall, our constraint language provides a principled way of representing many kinds of
conditions, and our planner UMCP employs techniques for using them effectively without
sacrificing soundness or completeness.

Constraints and Critics

One attractive feature of HTN systems is that by using various sorts of critics, they can
handle many different kinds of interactions, thus allowing the analysis of potential problems
in plans, and preventing later failure and backtracking. However, this mechanism has been
little explored in the formal literature, primarily due to the procedural nature of handling
interactions between subtasks. ® In our framework, we represent interactions using con-
straints: temporal constraints of the form (n < n’) denote temporal interactions, and state
constraints of the form (n,[,n’) denote deleted condition interactions. We have provided a
conservative set of constraints in section 3.1 to keep the paper in focus. This set can easily
be extended to express other kinds of interactions (for example the resource interactions of
(Wilkins, 1988b)).

HTN planners typically use their critics for guiding the search at higher levels, before all
subtasks have been reduced to primitive tasks. In our formalism, this job is performed by
the critic function 7. 7 inputs an initial state I, and a task network d, and outputs a set
of task networks I'. 7 manipulates the constraints and the tasks in d. For example, if 7
encounters a constraint (ny,[,n2), and a primitive task(labeled with nz) that asserts —I, it
might augment the constraint formula to contain (ns < n1) V (ny < nz). Alternatively, 7
might decide that it is time to commit to an ordering, and output two task networks, one
with (n3 < n1), and another with (ns < n3).

Another usage of constraints is encoding control information. When the user encodes
a domain, it might be known in advance that certain variable bindings, task orderings etc.
lead to dead ends. These can be eliminated by posting constraints (in methods) so that
the planner does not go waste time deriving this information, thus gaining efficiency. (This
ability to encode known shortcuts and/or pitfalls was offered as a major motivation for the
move to procedural networks in NOAH (Sacerdoti, 1977)).

5 A Hierarchical Planning Procedure.

5The obvious exception is deleted precondition interactions, which have been analyzed ad nauseum.

16

procedure UMCP:

1. Input a planning problem P = {d, I, D).

2. if d is primitive, then
If comp(d, I, D) # 0, return a member of it.
Otherwise return FAILURE.

3. Pick a non-primitive task node (n : a) in d.

4. Nondeterministically choose a method m for a.
5. Set d := reduce(d, n, m).

6. Set I := 7(d,1,D).

7. Nondeterministically set d := some element of T'.
8. Go to step 2.

Figure 7: UMCP: Universal Method-Composition Planner

Using the syntax and semantics developed in the previous section, we can now formalize
the HTN planning procedure that we presented in Figure 3. Figure 7 presents our formaliza-
tion, which we call UMCP (for Universal Method-Composition Planner).

It should be clear that UMCP mimics the definition of sol(d, I, D), except for Steps 6
and 7 (which correspond to the critics). As discussed before, HIN planners typically use
their critics for detecting and resolving interactions among tasks (expressed as constraints)
in task networks at higher levels, before all subtasks have been reduced to primitive tasks.
By eliminating some task orderings and variable bindings that lead to dead ends, critics help
prune the search space. In our formalism, this job is performed by the critic function 7. 7
takes as input an initial state I, a task network d, and a planning domain D; and produces
as its output a set of task networks I'. Each member of T' is a candidate for resolving some®
of the conflicts in d. We need to put two restrictions on 7:

1. If & € 7(d,I,D) then sol(d', I, D) C sol(d, I, D). Thus, any plan for d must be a plan
for d ensuring soundness.

2. If 0 € soli(d,1,D) for some k, then there exists d' € 7(d,I,D) such that o €
soly(d', 1, D).

Thus, whenever there is a plan for d, there is a plan for some member d’ of 7(d, I, D).
In addition, if the solution for d is no further than k expansions, so is the solution

61t might be impossible or too costly to resolve some conflicts at a given level, and thus handling those
conflicts can be postponed.

17

for d’. The latter condition ensures that 7 does not create infinite loops by undoing
previous expansions.

In contrast to the abundance of well understood STRIPS-style planning algorithms (such
as (Fikes et al., 1971; Chapman, 1987; Barett et al., 1992; Kambhampati, 1992)), HTN
planning algorithms have typically not been proven to be sound or complete. However,
using the formalism in this paper, we can establish the soundness and completeness of the
HTN planning algorithm UMCP.

Theorem 2 (Soundness) Whenever UMCP returns a plan, it achieves the input task
network at the initial state with respect to all the models that satisfy the methods and the
operators.

Theorem 3 (Completeness) Whenever UMCP fails to find a plan, there is no plan that
achieves the input task network at the initial state with respect to all the models that satisfy
the methods and the operators.

These results follow directly from the equivalence theorem using the fact that UMCP
directly mimics sol(). The restrictions on the critic function ensure that 7 does not introduce
invalid solutions and that it does not eliminate valid solutions. The details of the proofs are
in the appendix.

6 Expressivity

It has long been a topic of debate whether HTN planning is merely an “efficiency hack”
over STRIPS-style ,planning, or HTN planning is actually more expressive than STRIPS-style
planning. Our HTN framework enables us to address this question formaily.

There is not a well established definition of expressivity for planning languages. It is
possible to define expressivity based on model-theoretic semantics, operational semantics,
and even on the computational complexity of problems that can be represented in the plan-
ning language. We have devised formal definitions for each of these cases, and proved that
HTN planning is strictly more expressive than STRIPS-style planning according to all three
of them.

6.1 Model-Theoretic Expressivity

Baader (Baader, 1990) has presented a definition of expressivity for knowledge representation
languages. Below we describe Baader’s definition of expressivity and adapt it to planning
languages.

18

Definition of Model-Theoretic Expressivity

Baader’s notion of expressivity is based on the idea that if a language Ly can be expressed by
another language L,, then for any set of sentences I'y in L;, there must be a corresponding
set of sentences I'; in Ly with the same meaning. Baader captures “the same meaning” by
requiring the two set of sentences have the same set of models. Since it is possible that L,
can contain symbols not necessary for expressing L;, and the name of the symbols used must
not make a difference, it suffices for the set of models for I'y and the set of models for I'; be
equivalent modulo a symbol translation function w.

More formally, given a function w from the set of symbols in L; into the set of symbols in
L,, two models M; and M, are defined to be equivalent module w, denoted as My =* M, iff
for any symbol s in L, M;(s) = Ma(w(s)), in other words, s and w(s) must have the same
interpretation.

The equivalence between models can be extended to sets of models as follows: Two sets
of models My, and M, are equivalent modulo a symbol translation function w, denoted by
My =¥ M,, iff for any model My € M, there exists a model M, € M, such that My =¥ M,,
and for any model M, € M,, there exists a model M; € M; such that M; =* M,.

A knowledge representation language L; can be expressed by another knowledge repre-
sentation language Lo, iff there exists a function v from the set of sentences in Ly to the set
of sentences in L, and a function w from the set of symbols in L; to the set of symbols in
L, such that for any set of sentences I' from L, the set of models M, satisfying I' and the
set of models M, satisfying ¥(T") are equivalent modulo w, i.e. My =“ M.

Although the internal structures of the models for planning languages and knowledge
representation languages are different, we can still use the same definition of expressivity, by
providing a definition for equivalence of HTN models:

Given two HTN models M;, M, for two HTN languages L;,L,, and a symbol translation
function w from L, to £, My =¥ M, iff

1. For any ground primitive task «, any state s, and any ground literal [in £y,
lis true in Farq(a, s) iff w(l) is true in Fypa(w(a),w(s)).
2. For any ground non-primitive task o in £,

w(Ta1(a)) covers Tya(w(a)), and Tyz(w(a)) covers w(Ty(a)).

Recall that “covers” was defined in Section 3.2.
Now we can formally define expressivity of planning languages. A planning language(,
can be expressed by a planning language L£,, iff the following three conditions hold:

1. There exists a symbol translation function w from the set of symbols in £; to the set
of symbols in C,,

19

2. There exists a function 1 from the set of sentences in £, to the set of sentences in £,,

3. For any set of sentences I'y in £y, whenever M is the set of all models that satisfy T'y
and M, is the set of all models that satisfy 1(I';), it is the case that M; =* M,.

When a planning language £; can be expressed by a planning language L3, but not vice
versa, then L, is strictly more expressive than (.

Before proceeding to compare the expressive power of HTN planning and STRIPS-style
planning, we need to present a formal semantics for STRIPS-style planning that is compatible
with the semantics for HTN planning.

Semantics for STRIPS

A semantic structure for STRIPS-style planning has the same form as a semantic structure
for HTN planning, with some restrictions. Thus it is a triple M = (Sar, Fu, Tyr), where S
is the set of states, F interprets actions as state transitions, and 7 interprets non-primitive
tasks as sets of ground primitive task networks, with the following restrictions:

1. Since STRIPS representation lacks the notion of compound tasks, non-primitive tasks
consist of only goal tasks, and 7 is not defined for compound tasks.

2. In STRIPS-style planning, any executable sequence of actions that make the goals true
is a valid plan, thus, given any goal task achievell], T maps achievell] to the set of all
ground sequences of actions, each with the (implicit) constraint that [is true in the
final state.

HTNs versus STRIPS

It is fairly easy to show that the STRIPS language can be expressed by the HTN planning
language. All we need to is to present two functions ¢ and w and show that the translation
preserves the set of models.

Since HTN planning does not require any extra symbols for expressing STRIPS-style plan-
ning, w is defined to be the identity function. Thus the HTN representation is going to use
exactly the same set of constants, predicates, and actions (primitive tasks) as its STRIPS
counterpart.

Given a set of STRIPS-style operators T', here is how we define ¥ (T'):

e (') contains exactly the same set of operators as I'.

20

e For each goal task achieve[l] and each action f, ¥(I') contains the method
(achieve[l], [(ny : do[f])(ns : achieve[l]), (ny < n3)])

Since there is an implicit method for each goal task stating it can be expanded to a
dummy task when the goal literal is already true, with the methods in ¥ ('), any goal task
can be expanded to any sequence of actions, and such a sequence of actions would be a
plan for the goal task whenever all the actions are executable and the goal literal is true
in the end of the plan. Thus, the methods precisely reflect the restrictions on the models
of STRIPS-style planning, and as a result I' and 9(I') have exactly the same set of models.
Thus we conclude

Lemma 1 The STRIPS language can be expressed by the HTN language with respect to model-
theoretic expressivity.

The converse is not true. To prove that the STRIPS language is not as expressive as
the HTN language, we are going to construct an HTN planning domain I', and show that
there does not exist any STRIPS-style planning domain (i.e. set of STRIPS operators) with
an equivalent set of models.

Note that the set of plans for any STRIPS-style planning domain always forms a regular
set: One can define a finite autornata with the same states as the STRIPS domain, with state
transitions corresponding to the actions, and the goal states in the STRIPS domain would
be designated as the final states in the automata. On the other hand, the set of plans for
an HTN planning domain can be any arbitrary context-free set, including those context-free
sets that are not regular. Given a context-free grammar, we can declare one compound task
symbol for each non-terminal of the grammar, one primitive task symbol for each terminal
of the grammar, and for each grammar rule of the form X — Y Z, we can declare a method
(ex [(n1:ay)(ng:az) (n1 < n2)]).

Given an HTN planning domain I' that corresponds to a context-free but not regular
grammar, I' will have a minimum model” M such that Ty will map compound task symbols
(which correspond to the non-terminal symbols of the grammar) to sets of totally ordered
primitive task networks (or equivalently, to context-free sets of strings from the terminal
symbols of the grammar). Since Ty maps compound tasks into context-free but not regular
sets, no STRIPS-style planning domain can have a model equivalent to M. Thus we state the
following lemma:

Lemma 2 The HTN language cannot be expressed by the STRIPS language with respect to
model-theoretic expressivity.

“refer to the proof of Theorem 1 to see how to construct a minimum model

21

Thus, from Lemma 1 and Lemma 2 we can conclude the following:

Theorem 4 The HTN language is strictly more expressive than the STRIPS language with
respect to model-theoretic expressivity.

6.2 Alternative Definitions of Expressivity

There are other ways of defining expressivity. For instance, we can modify the third condition
in the definition for the expressivity of planning languages so that it reads as follows:

o For any set of sentences I'y in £;, whenever M; is the minimum model that satisfies
Iy, and M, is the minimum model that satisfies ¢(I'y), it is the case that My =* M.

From the operational semantics point of view, this corresponds to requiring that for every
planning problem expressed in L1, there exists a corresponding planning problem expressed
in L, and the set of solutions for both these problems are equivalent. Although this definition
of expressivity based on operational semantics is quite different from the definition of model-
theoretic expressivity, it yields the same result: Since the set of solutions to an HTN planning
problem can be any context-free set, whereas the set of solutions to a STRIPS-style planning
problem always is a regular set, a proof similar to that of Lemma 2 can be constructed to
prove that HTN planning is strictly more expressive according to this definition of expressivity.
Thus, we can conclude the following:

Theorem 5 The HTN language is strictly more expressive than the STRIPS language with
respect to operational expressivity.

The details of the definition of operational expressivity and the proof can be found in (Erol
et al., 1994b).

Note that in previous definitions of expressivity, 1 is not restricted to be computable
in polynomial time (or even to be computable at all!), nor are there any restrictions on
the size of ¥(I') in terms of the size of '. In defining expressivity, one can discard the
equivalence of models and instead ask whether there exists a polynomial (or computable)
transformation 7 from the set of planning problems that can be represented in £, to the
set of planning problems that can be represented in £, such that any planning problem
P in £, has a solution iff 7(P) also has a solution. This definition of expressivity for
a planning language is based on the computational complexity of telling which planning
problems represented in that language have solutions. In (Erol et al., 1994b) we show that the
complexity of HTN planning is strictly semi-decidable, whereas in (Erol et al., 1992a), we show

22

that the complexity of STRIPS-style planning is much easier, more specifically, EXPSPACE-
complete. This clearly shows that there does not exist any computable transformation from
HTN planning to STRIPS-style planning. Hence we can state the following theorem:

Theorem 6 The HTN language is strictly more ezpressive than the STRIPS language with
respect to complezity-based expressivity.

The details of the definition of complexity-based expressivity, together with the proofs
that HTN planning is more expressive with respect to this definition can be found in (Erol
et al., 1994b).

7 Conclusions

One big obstacle to understanding the nature of hierarchical task network (HTN) planning
has been the lack of a clear theoretical framework. In this paper, we have presented a formal
syntax and semantics for HTN planning. Based on this syntax and semantics, we have defined
an algorithm for HTN planning, and have proved it to be sound and complete.

This formalism also enables us to do complexity analyses of HTN planning, to assess the
expressive power of the use of HTNs in planning, and to compare HTNs to planning with
STRIPS-style operators. For example, we have been able to prove that HTN planning, as
defined here, is formally more expressive than planning without decompositions (Erol et al.,
1994c; Erol et al., 1994b). We are working on a deeper complexity analysis of HTNs and
towards an understanding of where the complexity lies.

Our semantics characterizes various features of HTN planning systems, such as tasks, task
networks, filter conditions, task decomposition, and critics. We believe that this more formal
understanding of these aspects of planning will make it easier to encode planning domains as
HTNs and to analyze HTN planners. Furthermore, the definition for whether a given model
satisfies a planning domain can provide a criterion for telling whether a given set of methods
and operators correctly describe a particular planning domain. We are currently exploring
these further.)

Finally, we are starting to explore the order in which tasks should be expanded to get the
best performance, and more generally, in which order all commitments (variable bindings,
temporal orderings, choice of methods) should be made. This will involve both algorithmic
and empirical studies. Our long term goals are to characterize planning domains for which
HTN planning systems are suitable, and to develop eflicient planners for those domains. Our
framework provides the necessary foundation for such work.

23

References

(Allen et al., 1990) Allen, J.; Hendler, J. and Tate, A. editors. Readings in Planning.
Morgan-Kaufmann, San Mateo, CA, 1990.

(Baader, 1990) Baader, F. A formal definition for expressive power of knowledge representa-
tion languages. In Proceedings of the 9th European Conference on Artificial Intelligence,
Stockholm, Sweden, Aug. 1990. Pitman.

(Barett et al., 1992) Barrett, A. and Weld, D. Partial Order Planning. Technical report 92-
05-01, Computer Science Dept., University of Washington, June, 1992.

(Chapman, 1987) Chapman, D. Planning for conjunctive goals. Artifictal Intelligence,
32:333-378, 1987.

(Collins et al., 1992) Gregg Collins and Louise Pryor. Achieving the functionality of filter
conditions in a partial order planner In Proc. AAAI-92, 1992, pp. 375—380.

(Drummond, 1985) Drummond, M. Refining and Extending the Procedural Net. In Proc.
IJCAI-85, 1985.

(Erol et al., 1992a) Erol, K.; Nau, D.; and Subrahmanian, V. S. On the Complexity of
Domain Independent Planning. In Proc. AAAI-92, 1992, pp. 381—387.

(Erol et al., 1992b) Erol, K.; Nau, D.; and Subrahmanian, V. S. When is planning decidable?
In Proc. First Internat. Conf. AI Planning Systems, pp. 222-227, June 1992,

(Erol et al., 1994b) Erol, K.; Hendler, J.; and Nau, D. Complexity results for hierarchi-
cal task-network planning. To appear in Annals of Mathematics and Artificial Intelli-
gence Also available as Technical report CS-TR-3240, UMIACS-TR-94-32, ISR-TR-95-
10, Computer Science Dept., University of Maryland, March 1994.

(Erol et al., 1994c) Erol, K.; Hendler, J.; and Nau, D. HTN Planning: Complex1ty and
Expressw1ty To appear in Proc. AAAI—94, 1994.

(Fikes et al., 1971) Fikes, R. E. and Nilsson, N. J. STRIPS: a new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2(3/4):189-208, 1971.

(Kambhampati et al., 1992) Kambhampati, S. and Hendler, J. “A Validation Structure
Based Theory of Plan Modification and Reuse” Artificial Intelligence, May, 1992.

24

(Kambhampati, 1992) Kambhampati, S. “On the utility of systematicity: understanding
trade-offs between redundancy and commitment in partial-ordering planning,” unpub-
lished manuscript, Dec., 1992.

(Lansky, 1988) Lansky, A.L. Localized Event-Based Reasoning for Multiagent Domains.
Computational Intelligence Journal, 1988.

(Mcallester et al., 1991) Mcallester, D. and Rosenblitt, D. Systematic nonlinear planning.
In Proc. AAAI-91, 1991.

(Minton et al., 1991) Minton, S.; Bresna, J. and Drummond, M. Commitment strategies in
planning. In Proc. [JCAI-91, 1991.

(Nilsson, 1980) Nilsson, N. Principles of Artificial Intelligence, Morgan-Kaufmann, CA.
1980.

(Penberthy et al., 1992) Penberthy, J. and Weld, D. S. UCPOP: A Sound, Complete, Partial
Order Planner for ADL Proceedings of the Third International Conference on Knowledge
Representation and Reasoning, October 1992

(Sacerdoti, 1977) Sacerdoti, E. D. A Structure for Plans and Behavior, Elsevier-North Hol-
land. 1977.

(Té,te et al., 1990) Tate, A.; Hendler, J. and Drummond, D. AI planning: Systems and
techniques. Al Magazine, (UMIACS-TR-90-21, CS-TR-2408):61-77, Summer 1990.

(Tate, 1990) Tate, A. Generating Project Networks In Proc. IJCAI-77, 1971. pp. 888-893.

(Vere, 1983) Vere, S. A. Planning in Time: Windows and Durations for Activities and Goals.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-5(3):246-247,
1983.

(Wilkins, 1988a) Wilkins, D. Domain-independent Planning: Representation and Plan Gen-
eration. In Allen, James; Hendler, James; and Tate, Austin, editors 1990, Readings in
Planning. Morgan Kaufman. 319—335.

(Wilkins, 1988b) Wilkins, D. Practical Planning: Extending the classical Al planning
paradigm, Morgan-Kaufmann, CA. 1988.

(Yang, 1990) Yang, Q. Formalizing planning knowledge for hierarchical planning Computa-
tional Intelligence Vol.6., 12-24, 1990.

25

A Appendix

Theorem 1 (Equivalence Theorem) Given a task network d,an initial state I, and a
plan o, o is in sol(d, I, D) iff any model that satisfies D also satisfies solves(o,d, I).

Proof. — . Since sol(d, I, D) is defined recursively in terms of completions and reductions,
it suffices to show that (a)Given any primitive task-network d, if o € comp(d, I, D), then
any model that satisfy D also satisfies solves(a,d, I), (b) for any model M that satisfies D,
if M satisfies solves(a,d',I), and d' € red(d, I, D), it also satisfies solves(o,d, I).

(a) Assume o € comp(d,I,D). Then, o is a totally ordered ground instance of d that
makes the constraint formula true. Let M be any model that satisfies D. Because M satisfies
the operators, Far will project the intermediate states to be exactly the same as projected
in the completion. Furthermore, the constraint formula is evaluated in the same way both
for finding completions and for determining whether a model satisfies solves(co,d, I). Thus,
given a primitive task network d, and a model M that satisfies D, M satisfies solves(o,d,I)
iff o € comp(d,1,D).

(b) Let d’ be in red(d, I, D). Then there exists a method m, and a task node n in d such
that d' = reduce(d,n,m). Let M be a model that satisfies D, and also solves(o,d', I).

Without loss of generality, let’s assume d, m, d’ have the following forms:

ny:ap)...(np:ag) (n:a),dl,
ny:ay)...(n) 1 af), 9],
npiag)...(nfial) (man)... (g ag), &' Al

d= [(
m = (a’ (

|
d=

Since M satisfies solves(a,d', I), there exists
dy € T(a}),...,d; € T(c),dy € T(ama),...,dx € T(ax) such that o is a plan for
compose(dy, ..., d;, di,...,dp, ¢ Ap).

Thus, there exists a matching = between o and compose(dy,...,d;, dy,...,dp,¢' A),
such that the constraint formula of compose(ds, ..., d}, 1), which correspond to the portion
of the task network corresponding to the expansion of «, is satisfied. From this fact and that
M satisfies the method m, we conclude there exists a d” € T(a) and a matching 7’ such
that o makes the constraint formula of d" true.

Consider compose(dy,...,dr, d’,¢) € T(d). Construct a matching 7" by extending '
to dy, ..., d; (taking the same value as 7 for those places). o satisfies ¢ and the constraints
of dy,...,dx, d’. Thus M satisfies solves(o,d,I).

«— . We will show that whenever o ¢ sol(d, I, D), there exists a model M that satisfies
D, but not solves(o,d, I).

Here is how we construct M =< S, F,T >:

26

e S = 2{gr0und atoms}.

o F(f,ci...,¢k,8) =(s— N8)U PO, whenever the operator for f is of the form
(f(vi,...,v8), by, ..., k), where 6 is the substitution {¢;/v;|]1 <1 < k}, and N, P are
the sets of negative and positive literals in {l3,..., I}, respectively.

o T(a) = {d|d is a ground instance of a primitive task-network obtained from « by a
finite number of reductions}, for any non-primitive task a.

When 7T is extended to cover task networks as defined in Section 3.2, we observe that
T(d) = {d'|d'is a ground instance of a primitive task-network obtained from d by a finite
number of reductions} for any task network d.

F is defined such that M satisfies all the operators in D. By definition of 7', whenever
d' € red(d,I,D), T(d") C T(d). Thus M also satisfies all the methods in D.

Given a primitive task network d, and a model M that satisfies D, M satisfies solves(a, d, I)
iff o € comp(d, 1, D)

Let d be a primitive task network such that ¢ ¢ sol(d,I,D). Then o ¢ comp(d, I, D),
either. In part (a) of the proof, we showed that for any model that satisfies the operators,
comp(d, I, D) is exactly the set of plans that solves the primitive task network d. Thus we
conclude M does not satisfy solves(o,d, I).

Consider the alternative where d is a non-primitive task network such that o ¢ sol(d, I, D).
Assume M satisfies solves(o,d,). Then there exists a primitive task network d' € 7 (d)
such that o is a plan for d'. From part (a) of the proof, o must be in comp(d’, I, D). However,
since 7 (d) contains only primitive task networks that can be obtained by a finitenumber of
reductions from d, we conclude o € sol(d, I, D), which is a contradiction. [|

Theorem 2 (Soundness) Whenever UMCP returns a plan, it achieves the input task
network at the initial state with respect to all the models that satisfy the methods and the
operators.

Proof. Let’s assume on input P =< d,1,D >, UMCP halts in n iterations. and returns
o. Using induction on n, we prove that o € sol(d, I, D), and from the equivalance theorem
we conclude that any model that satisfies D also satisfies solves(a, d, I).

[Base case: n = 0.] d must be a primitive task network and o € comp((d, I ,D). Thus,
o € sol(d,1,D).

(Induction Hypothesis] Assume for n < k if UMCP returns o in n iterations, then
o € sol(d,I,D).

27

Suppose on input P =< d,1,D > UMCRP halts in n = k iterations. and returns o.
Then d is a non-primitive task network. Let di = reduce(d, n,m) be the value assigned to d
at step 5 of UMCPin the first iteration, and let d; € 7(dy, I, D) be the value assigned to d
at step 7 of UMCPin the first iteration.

On input P =< dy,I,D >, the planner halts in & — 1 steps and returns o. Thus, by
induction hypothesis, o € sol(dz, I, D). From restriction 1 on the critic function 7() and
from d; € 7(dy, 1, D) we conclude o € sol(dy,I,D). Since d; € red(d,I,calD), from the
definition of sol() we conclude o € sol(d, I, D). |

Theorem 3 (Completeness) Whenever UMCP fails to find a plan, there is no plan
that achieves the input task network at the initial state with respect to all the models that
satisfy the methods and the operators.

Proof. Assume o € sol(d,1,D). Let k be the minimum number of reductions needed to.
derive o5 i.e. 0 € soliy1(d, I, D), but o ¢ soli(d, I, D). We show that there exists a sequence
of non-deterministic choices such that the UMCP halts in & iterations and returns a plan.

Proof by induction on k.

[Base case: k = 0.] In that case o € comp(d, I, D), and UMCP finds a plan in in step 2.

{Induction Hypothesis] Assume whenever the number of reductions needed to derive o
is less then j (i.e. k < j), there exists a sequence of non-deterministic choices for which
UMCP returns a plan in k iterations. ’

Let o € sol((d, I, D), and it takes exactly j reductions to derive 0. Let (n : a) be the
node picked by UMCP in step 3 in the first iteration (Since this is not a non-deterministic
choice, the planner could pick any non-primitive node at that step.) Let m be the method
used for reducing (n : @) in the derivation. Let dy = reduce(d,n,m). reduce() is defined in
Section 3.2 such that the order of reductions does not matter; i.e. For a task network d that
contains two non-primitive tasks ny,n, with corresponding methods m;, ms,

reduce(reduce(d, ny, my),ny,m3) and reduce(reduce(d,ny, msy),ny,my)

are equal modulo variable and node label names. Thus, since we obtained d; from d by
reducing n with the same method used in the derivation, we conclude o € sol;_1((dy, I, D).

As o € sol;_1((d1,1,D), by the second restriction on 7(), there exists d; € 7(dy, I, D)
such that o € sol;_1((dz, I, D). Let the planner non-deterministically choose d; to assign to
d at step 7 in the first iteration. By induction hypothesis, the planner will halt in j — 1 more
iterations and return a plan. n

28

