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As online reviews increase in their prominence as a critical resource for consumers, 

investigation into their influences are necessary. This dissertation investigates various 

aspects of online reviews and how they affect consumers’ decisions. In Essay I, the 

role average product ratings and review volumes are investigated, and the conditions 

by which the relative influence of these two summary attributes are defined. While 

average product ratings tend to be more diagnostic, and therefore more influential, 

than review volumes, when review volumes in a choice set are low or when the 

average product ratings are somewhat negative, consumers are more likely to rely on 



  

review volumes to also inform their decisions. In Essay II, consumer responses to 

information veracity disclosures are investigated. Some websites now report when 

they have identified fake reviews, and we demonstrate that consumers may be 

overreacting to these alerts due to the salience of the information. Furthermore, we 

argue that consumers not only attempt to correct for fake reviews, but also punish 

brands who solicit them. Both essays have implications for theory and practice, while 

providing interesting avenues for future research. 
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INTRODUCTION 

 This dissertation examines different aspects of online reviews and their effects in 

consumer decisions. Online reviews are proliferating at a tremendous rate, with most 

consumers now stating that online reviews are the most important product attribute in 

online purchase decisions (BrightLocal 2017). As such, it is important to understand how 

various aspects of reviews affect consumers’ decisions, and outline the conditions by 

which some of these attributes may have conditional influences. To that end, we begin 

this dissertation by first investigating two numerical attributes of online reviews, average 

product ratings and review volumes. Furthermore, because online reviews are becoming 

such an influential tool, firms have begun to attempt exploiting consumers via fake 

reviews (Mayzlin, Dover, and Chevalier 2014; Luca and Zervas 2016). Thus, the second 

essay in this dissertation investigates how consumers respond when a website discloses 

that they have caught fake reviews being written for a specific brand. 

In Essay I, we investigate how average product ratings and review volumes 

influence consumers’ decisions when faced with a choice set in which there is no 

dominant option (i.e., when one option has a higher rating, but fewer reviews relative to 

another option). We argue that the diagnosticity (i.e., influence) of both average product 

ratings and review volumes are conditionally influenced by the other attribute, and as 

such, the choice between the higher-rated, fewer reviews option and lower-rated, more 

reviews option is dependent on the specific values of each attribute. While prior research 

has demonstrated the relative influence of both attributes, the findings are still debated 

(Floyd et al. 2014; You, Vadakkepatt, and Joshi 2015). By investigating the conditional 

effects of these attributes on choice, we help to rectify the divergent findings. We argue 

that average product ratings are inherently more diagnostic than review volumes due to 
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the bound versus unbound nature of their scales, respectively. Whereas average product 

ratings have stable scale boundaries (e.g., one to five stars), review volumes do not (e.g., 

zero to infinity). As such, review volumes are more susceptible to relative comparisons 

made within the choice set. We demonstrate how the relative diagnosticity of these 

attributes are a function of the review volumes contained within the choice set, and how 

this ultimately governs choice. We conclude Essay I with the theoretical implications as 

well as a series of simulations demonstrating the practical implications for managers. 

In Essay II, we demonstrate the consequence of websites informing consumers 

that they have identified fake reviews for brands featured on their website. While a 

growing body of literature has investigated the characteristics of fake reviews (Mukherjee 

et al. 2013; Ott et al. 2013), as well as the firms which are likely to solicit them (Mayzlin, 

Dover, and Chevalier 2014; Luca and Zervas 2016), to the best of our knowledge, this is 

the first investigation into the effect of disclosing this information to consumers. While 

fake review alerts inform consumers that websites are monitoring the reviews for 

fraudulent information, we argue that the alerts also activate consumers’ persuasion 

knowledge (Friestad and Wright 1994), leading to attempts to correct for perceived 

biased information, as well as justice against the brand when it is the source of the fake 

reviews. We demonstrate that fake reviews lead consumers to not only attempt correction 

in their perception of the brand, but also in the information that they acquire (i.e., the 

reviews they read). Furthermore, we show that reducing consumers’ perceptions of 

inaccurate information attenuates their corrections. As such, this research holds relevance 

for website managers which provide reviews for their consumers. 
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 In both essays, we demonstrate the consequences of review information in 

consumers’ judgments and decisions. We argue that managers must carefully consider 

what information to provide consumers, and how to present it, in order to avoid biasing 

their consumers’ decisions.  
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With the rise of internet shopping, product reviews have gained prominence, with 

nearly 60% of consumers now saying that the average product rating is the most 

important product attribute in their purchase decisions. Within consumer reviews, 54% of 

consumers report paying attention to average product ratings and 46% to review volumes, 

suggesting a slightly higher weight being placed on the former attribute (BrightLocal 

2017). Because average product ratings and review volumes play such a significant role 

in consumer behavior, marketing academics have tried to understand the processes by 

which consumers incorporate both pieces of information into their decisions (Godes and 

Mayzlin 2004; Chevalier and Mayzlin 2006; Clemons, Gao, and Hitt 2006; Liu 2006; 

Dellarocas, Zhang, and Awad 2007; Duan, Gu, and Whinston 2008; Chintagunta, 

Gopinath, and Venkataraman 2010; Zhu and Zhang 2010; Moe and Trusov 2011; Sun 

2012; Ho-Dac, Carson, and Moore 2014). While the literature supports the positive 

influence of both average product ratings and review volumes on sales, their relative 

influence is still debated. Indeed, two recent meta-analyses arrived at opposing 

conclusions. Floyd et al. (2014) finds support for the claim that average product ratings 

are more influential than review volumes, while You, Vadakkepatt, and Joshi (2015) 

argues for the greater importance of review volumes. 

While a few papers have investigated the interactive effects of various aspects of 

product reviews, they have stopped short of investigating the conditional effects of 

average product ratings and review volumes at various levels of each attribute. For 

example, Chintagunta, Gopinath, and Venkataraman (2010) examine the effect of a 

movie’s average rating and review volume on its box office sales. While they account for 

the average ratings of competing movies, they do not include the review volumes for the 
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competing movies. Thus, they provide only a partial account of the effects of average 

ratings and review volumes in a competitive environment. Further, their analysis yielded 

no conditional effects of average ratings with a movie’s own review volume. Rather than 

investigate reviews at the aggregate level, Chen, Dhanasobhon, and Smith (2008) 

investigated the influence of individual reviews on book sales. They found that reviews 

which received more “helpful” votes from other consumers were more predictive of sales 

relative to other reviews, and this was stronger for less, versus more, popular books. 

Lastly, Khare, Labrecque, and Asare (2011) investigated additional review attributes, and 

found that the ratings dispersion (i.e., the distribution of individual review ratings) 

differentially impacted sales of negatively- and positively-rated products, but only when 

review volumes were “high”. Negatively- (positively-) rated goods benefited from wide 

(narrow) dispersions in consumer evaluations. Taken together, these results demonstrate 

conditional effects of both average product ratings and review volumes relative to other 

attributes, and thus, warrant investigation as to the conditional effects of these attributes 

relative to each other.  

The goal of this paper is to address this gap in the literature and specify the 

conditions by which the interactive effect of average product ratings and review volume 

on consumer preference between options takes place. Theoretically, we draw from and 

contribute to several literatures. First, prior work in numerical cognition has investigated 

the influence of expanding versus contracting bound numeric scales of a single attribute 

on product evaluations (Bagchi and Li 2010; Pandelaere, Briers, and Lembregts 2011; 

Monga and Bagchi 2012; Schley, Lembregts, and Peters 2017), we extend this work by 

demonstrating the influence of multiple attributes that exist on both bound (e.g., average 
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product ratings: one to five stars) and unbound (e.g., review volume: zero to infinity) 

scales. Second, prior literature on attribute diagnosticity has demonstrated the context-

dependent weight of attributes as a function of their perceived representativeness of 

product quality (Feldman and Lynch 1988; Herr, Kardes, and Kim 1991; Purohit and 

Srivastava 2001), we demonstrate that average product ratings are inherently more 

diagnostic than review volumes, though this can difference can be attenuated based on 

high levels of review volumes. In demonstrating this boundary condition, we can outline 

the conditions by which consumer reliance on both bound and unbound scales in their 

judgments varies. 

Substantively, we also contribute to the domain of online product reviews by 

providing a comprehensive examination of the interactive effects of average product 

ratings and review volumes in a multi-option choice set. Whereas prior literature has 

addressed the influence of both average product rating and review volumes on 

evaluations of individual choice options (for a notable exception, see: Chintagunta et al. 

2010), we examine the influence of both attributes in a competitive choice set. 

Increasingly, retailers are providing consumers with choice sets rather than individual 

choice options (e.g., product search pages, “recommended for you” lists, etc.), so 

consumers often encounter the average product ratings and review volumes of more than 

one option simultaneously. Thus, in our investigation, we examine the condition by 

which consumers prefer a higher-rated, fewer reviews choice option relative to a lower-

rated, more reviews choice option. In doing so, we can isolate the relative diagnosticity of 

these two attributes, and the conditions by which this changes. 
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Consider the following scenario. Imagine searching for a new blender online. You 

see two comparable choice options that have the specifications you require. While one 

choice option has a higher rating but fewer reviews (e.g., 3.5 out of 5.0 based on 10 

reviews), the other choice option has a lower rating but more reviews (e.g., 3.2 out of 5.0 

based on 50 reviews). What is the relative diagnosticity of the average product ratings 

versus the review volumes as a signal of product quality? Would these diagnosticities, 

and ultimately your decision, change if the review volumes were instead 310 and 350, 

respectively? And what if the average product ratings were 4.5 and 4.2, respectively? 

Managerially, these are important questions to study. Choice sets in which 

consumers face non-dominant options, in which one option is superior on the average 

product rating while another is superior on the review volume, are very common. Using 

secondary data of Amazon.com products, we compared the average ratings and review 

volumes of over 2.5 million products, across 24 product categories, to the choice options 

featured in the “customers who viewed this item also viewed” recommendation bar. This 

served as a proxy for the choice set of each product. Our analysis demonstrated that 79% 

of the products featured a higher rating, but fewer reviews than at least one option in their 

choice set (see Appendix B1 for additional details of our analysis). Thus, our 

investigation into the interactive effects of average product ratings and review volumes in 

a choice set holds not only theoretical relevance, but also practical relevance given how 

often consumers likely face this decision. 

 In the following sections, we develop our conceptual framework and the 

hypotheses to test it. We then test our hypotheses in a series of studies, before concluding 
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with the managerial and theoretical implications of our findings, and directions for future 

research. 

 

CONCEPTUAL BACKGROUND 

 

The Diagnosticity of Attributes as Signals of Product Quality 

 Consumers infer product quality from multiple product attributes when making 

choices (Slovic 1966; Slovic and Lichtenstein 1971; Rao and Monroe 1988, 1989; 

Richardson, Dick, and Jain 1994; Kirmani and Rao 2000). Slovic and Lichtenstein (1971) 

proposed the concept of attribute diagnosticity, and demonstrated how consumers 

differentially utilize multiple attributes in their decision as a function of the degree to 

which each attribute separates the available choice options relating to their perceived 

quality. Thus, attributes which have a greater degree of diagnosticity hold more influence 

in consumer decisions relative to those which are less able to separate the perceived 

quality options. The accessibility-diagnosticity framework built upon these findings, and 

demonstrated that the diagnosticity of attributes is dynamic in nature, leading to context-

dependent rather than fixed levels of attribute diagnosticity (Feldman and Lynch 1988; 

Lynch, Marmorstein, and Weigold 1988). For example, Lynch, Marmorstein and 

Weigold (1988) demonstrated that when attributes were easily recalled, they were more 

diagnostic, and therefore indicative of choice, than attributes which were difficult to 

recall. Thus, it is not the inherent diagnosticity of an attribute that dictates choice, but 

rather the diagnosticity of each attribute at the moment of choice. 
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One context-dependent influence on diagnosticity is the valence of the available 

attributes. For example, Purohit and Srivastava (2001) demonstrated that manufacturer 

reputation is considered a primary diagnostic cue whereas product warranty is not. As a 

result, when a manufacturer has a very poor reputation, product warrant does not 

influence the evaluation of the product. However, if the manufacturer has an acceptable 

reputation, warranty is used as a secondary diagnostic attribute, where a longer warranty 

increases product evaluations. Thus, the value of one attribute can affect the diagnosticity 

of another attribute, leading to conditional effects of the attributes. 

 A related stream of literature, attribute evaluability, has also demonstrated 

context-dependent effects of attributes on preferences (Hsee 1996; Hsee et al. 1999; Hsee 

2000; González-Vallejo and Moran 2001; Hsee and Zhang 2010). For example, Hsee 

(1996) asked participants to evaluate two dictionaries: one with 10,000 entries and in 

perfect condition, while the other had 20,000 entries with a torn cover. When evaluated 

independently, the former dictionary was preferred, but when evaluated simultaneously, 

preference for the latter dictionary increased. Said another way, independent evaluation 

led to greater diagnosticity of the book’s cover whereas simultaneous evaluation 

increased the diagnosticity of the number of entries. Thus, product quality was judged 

more on the functional rather than aesthetic value of the good in the latter situation. 

 Taken together, these literatures support the claim that the diagnosticity of an 

attribute as a signal of product quality is not fixed. Consumers often evaluate products 

based on the values, and availability, of the attributes in the choice set, with little thought 

to attributes that are not accessible. Next, we apply these findings to our context: the 

usage of average product ratings and review volumes in choices between options. 
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Diagnosticity of Average Product Ratings and Review Volumes 

Most web sites provide consumers with more information than they can process. 

As such, consumers prioritize this information based on the diagnosticity of it in relation 

to their decision. Although, consumer reviews on most sites include the aggregate 

information (average product ratings and review volume) as well as the disaggregate 

information (individual ratings and text), the information, the aggregate and disaggregate 

information is often presented in two separate areas. Whereas aggregate information is 

presented on the search page, then again at the top of the individual product page, 

disaggregate information is often presented at the bottom of the individual product page 

or on another page entirely (i.e., accessed by a link on the product page). Thus, it is a 

more effortful process for consumers to access disaggregate information, and they are 

only likely to do so when highly motivated. For example, when choosing books to read, 

tastes are highly heterogeneous, and so aggregate information may not be diagnostic for a 

consumer. Rather, they may seek individual reviews to investigate fit between the 

reviewer and themselves (e.g., for a mystery book, a mystery fan may find the review 

from another mystery fan more diagnostic than someone who prefers biographies). 

Recent research on the topic has begun to investigate the influence of individual reviews 

on consumer decisions (Ludwig et al. 2013; Villaroel et al. 2017), and demonstrated that 

affective content contained in the individual reviews influence purchase conversion rates 

above and beyond the effects of the aggregate information, such as review volume 

(Ludwig et al. 2013). Given the separate structures of aggregate and disaggregate review 

information, as well as the individual differences associated with the diagnosticity each 

information source provides, investigating the relative influence of aggregate and 
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disaggregate review information would be challenging without compromising external 

validity (e.g., without asking participants which reviews they are reading and why, which 

is not something observed in industry). 

Conversely, the aggregate information has convincingly demonstrate the sizeable 

influence of average product ratings and review volumes on consumers (Chevalier and 

Mayzlin 2006; Liu 2006; Duan, Gu, and Whinston 2008; Chintagunta, Gopinath, and 

Venkataraman 2010), yet as previously mentioned, their relative effects are still debated 

(Floyd et al. 2014; You, Vadakkepatt, and Joshi 2015). Complimenting this work, we 

argue that our investigation into average product ratings and review volumes can rectify 

some of the contrary findings by demonstrating the conditional influences whereby 

average product ratings and review volumes are more versus less influential. 

In this paper, we limit the scope of our analyses to examining the relative 

diagnosticity of average product ratings and review volumes to increase the validity of 

our findings. From a theoretical perspective, accessing and interpreting disaggregate 

reviews is a more effortful process than accessing and interpreting aggregate reviews. As 

such, our focus is on rectifying findings from prior literature rather than integrating effort 

into the framework and providing additional findings which deviate from prior work. 

Second, consumers receive massive amounts of information online and are likely to 

engage in frugal processing of the information to minimize cognitive effort. As such, our 

paper begins with the least cognitively-demanding review attributes, to provide a 

foundation on which future research can provide greater examination of various levels of 

disaggregation (distributions, ratings trends, individual reviews, etc.). 
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We argue that average product ratings are inherently the most diagnostic due to 

their bound scale which allows consumers to quickly determine perceived product 

quality. Average ratings are generally presented on scales with two endpoints (e.g., 1 – 5 

stars) so the inference process for any value on that scale is relatively easy. In 

comparison, review volumes are presented on unbound scales, where the minimum 

number of reviews is zero, but the maximum possible number of reviews is infinity. As 

such, the diagnosticity of review volumes is context-dependent based on what consumers 

perceive to be relevant review volumes. This leads to a lower inherent diagnosticity of 

review volumes as consumers may not have stable reference points, unlike with the 

average product ratings. However, in a choice set, consumers can compare the product 

review volumes to each other to shape their diagnosticity, leading to context-dependency 

as a function of the other review volumes. Consistent with our proposition, recent work 

by De Langhe, Fernbach, and Lichtenstein (2015) argues that the average product rating 

is the strongest indication of a products’ objective quality. While this finding is not 

without debate (Kozinets 2016; Winer and Fader 2016), it does converge with the notion 

that consumers’ expectations of average product rating as a diagnostic cue is warranted.  

Bound versus Unbound Scales 

Our argument for the relative diagnosticity of bound versus unbound scales is 

based on literature investigating numerical cognition. In general, numbers and 

calculations that are easier to process positively improve brand evaluations and product 

promotions (King and Janiszewski 2011). Applying this to our context, this finding 

would suggest that attributes on bound versus unbound scales would be more influential 

in decisions. Consistent with this view, Chandon and Ordabayeva (2017) examined 
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consumer estimates of increasing versus decreasing food quantities. Results demonstrated 

that consumers were more accurate when estimating decreasing amounts (bound by zero 

and the starting value) versus increasing amounts (bound by the starting value and 

infinity). Revisiting the work of Hsee (1996), we could also view the attributes of a 

dictionary as existing on bound and unbound scales. Individually, the book’s condition is 

bound by completely destroyed and perfect, whereas the number of dictionary entries is 

bound by zero and infinity. Thus, the diagnosticity of dictionary entries is weak without a 

reference point. However, in the simultaneous evaluation context, consumers could use 

the number of dictionary entries for both options to inform the diagnosticity of that 

attribute for the dictionaries’ quality. 

Negative versus Positive Average Product Ratings 

In this work, we argue that average product ratings are inherently more diagnostic 

than review volumes, and the influence of review volumes on preference between choice 

options is context-dependent based on the valence of the average product ratings. 

Consumers are motivated to avoid the acquisition of bad products to minimize post-

decisional regret (Tsiros and Mittal 2000; Zeelenberg and Pieters 2007). As such, 

consumers are likely to engage in a more elaborate assessment of choice options when to 

do so (Bockenholt et al. 1991). 

 Consistent with view, consumers are known to exhibit a negativity bias where 

they attend to, and elaborate more on, available information in the presence of negative 

information (Ito et al. 1998; Baumeister et al. 2001; Rozin and Royzman 2001). As such, 

we argue that the diagnosticity of review volume is likely to increase when consumers 

encounter average product ratings that contain some negative product information (e.g., 
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low or neutral ratings). Conversely, if the average product ratings are considered rather 

positive (e.g., high ratings), then the individual average product ratings will be more 

influential than the review volumes in choice. 

 These predictions are based on the assumption that consumers see some merit in 

choosing the products. If consumers find all available options to be unsatisfactory (e.g., 

very low product ratings), they are unlikely to waste cognitive resources on making a 

decision, thereby showing no influence of either the average product ratings or the review 

volumes on their preference, instead relying on random choice. 

 

----- 

Insert figure 1 about here 

----- 

 

Low versus High Review Volumes 

Thinking back to the opening example, how would consumer preferences between 

choice options be differentially affected if the choice set featured volumes of 10 (310) 

and 50 (350)? Although fewer versus more reviews would actually provide less 

information about the products, we argue that their diagnosticity would actually appear 

greater. Holding the absolute difference in the review volumes constant, the relative 

difference appears larger in the low versus high review volume conditions. Prior 

literature has demonstrated that consumers attend more to relative versus absolute 

differences (Thaler 1980; Tversky and Kahneman 1985). For example, participants 

indicated a greater willingness to drive to a farther-away store to save $5 on a $15 
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relative to a $125 purchase. The authors argued that this occurred as a function of 

Prospect Theory, in which values exhibit a diminishing effect of utility as they grow 

(Kahneman and Tversky 1979; Tversky and Kahneman 1985). Although both conditions 

could receive $5 savings at the further store, the utility from it appeared greater when it 

represented a larger discount (when the value of the item was lower). Thus, applying 

these insights into relative value sensitivities, we would expect that choice seats featuring 

low versus high review volumes would increase the diagnosticity of the review volume 

attribute. 

A change in the perceived diagnosticity of review volumes (relative to average 

product ratings) has direct implications for consumer decisions. Given a choice set with 

non-dominant options (e.g., one option has a higher rating while another has more 

reviews), an increase in the relative diagnosticity of review volumes to average product 

ratings would weaken preference for the higher-rated good. As the diagnosticity of 

review volumes approaches that of average product ratings, a joint influence of both 

attributes emerges. Because the diagnosticity of review volumes increases when the 

review volumes of a choice set are low versus high, consumers are less likely to choose a 

higher-rated good, and more likely to choose a lower-rated (i.e., lower quality) good. 

However, the effect of low review volumes on preference can be attenuated when the 

choice set features average product ratings that are both considered good (i.e., high 

average ratings), as consumers will engage in a less effortful process in the absence of 

negative information, thereby being less likely to incorporate secondary cues like review 

volumes into their decision. Given a choice set in which consumers face a tradeoff 
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between an option with a better average product rating or one with a greater review 

volume, we formally propose: 

H1: Preference for higher-rated, fewer reviews choice option will be weaker when 

average product ratings are low or neutral (versus high), and when the level of 

review volumes is low (versus high). 

H2: Preference between choice options is mediated by the difference in perceived 

diagnosticity of average product ratings and review volumes. 

 

OVERVIEW OF STUDIES 

 

 We test our predictions in a series of seven lab studies. Study 1 demonstrates the 

systematic shift in preference between choice options as a function of review volume 

levels, providing initial support for H1. Study 2 tests the generalizability of this finding 

by demonstrating the effect with an expanded choice set. Study 3 then tests H1 in its 

entirety by examining the interaction of the ratings valence level and review volume level 

on preference between options. Studies 4 and 5 then demonstrate two boundary 

conditions by examining how the ratings size difference between options and the 

inclusion of a scale boundary attenuates the effect of a positive valence, respectively. 

Finally, Studies 6 and 7 test H2, in that the difference in perceived diagnosticity of 

average product ratings and review volumes mediates the effect of review volumes on 

preference, using self-reported weights of attributes and consumers’ visual attention 

(captured by eye-tracking equipment) on the attributes. 
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----- 

Insert tables 1 & 2 about here 

----- 

 

Studies Paradigm 

 In every study, participants were asked to imagine that they were considering the 

purchase of a new product and had narrowed their choice set to two comparable choice 

options (four choice options in Study 2). Participants then saw the choice options side by 

side, with information about the brand name, price, average product rating, and review 

volume for each choice option presented beneath the product images. In each choice set 

(except for Study 2), choice option A always had a higher average product rating with 

fewer reviews and choice option B had a lower average product rating with more 

reviews. Other product attributes were not significantly different. 

Specific values of average product ratings and review volumes varied between 

studies and between the choice sets within the studies to extend the generalizability of our 

results (see Table 1). Review volumes were chosen by selecting values at the lower and 

upper limits of the perceived average review volumes based on a pre-test (N = 182) in 

which we had participants classify various review volumes along a continuum from “1 = 

Far Fewer than Average, 7 = Far More than Average”. 

After viewing each choice set, participants were asked to indicate their relative 

preference between choice options on a 7-point scale (1 = Strongly Prefer Option A, 7 = 

Strongly Prefer Option B” (except for Studies 2 and 6 in which we used a dichotomous 

choice dependent measure). This measure anchored preference for the higher-rated, fewer 
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reviews choice option at “1” and the lower-rated, more reviews choice option at “7”. As 

such, a higher number on this measure would indicate a weaker preference for the higher-

rated, fewer reviews choice option. Figure 2 provides an example of the stimuli 

participants would view. 

 

----- 

Insert figure 2 about here 

----- 

 

Study 1: Effect of Review Volumes on Preference between Options at Various Review 

Volume Levels 

The purpose of this study was to test the review volume levels argument of H1. 

We argue that preference for the higher-rated, fewer reviews options is weaker when 

review volumes are low relative to high. To test this, we examine four increasing review 

volume levels, while keeping average product ratings constant across conditions.  We 

also include a fifth condition in which the review volumes are absent from the 

information provided to participants. This provides a condition in which preference is 

based largely on average product ratings, and comparing the other conditions to this one 

allows for an initial test of the diagnosticity of review volumes (H2). Finally, to 

demonstrate the robustness of this effect, we replicate it across five product categories 

where the brands, prices, average product ratings, and review volumes all slightly vary 

for each product to avoid any demand effects from specific values. 
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 Participants and design. Two-hundred and fifty participants (Mage = 31.35; 31% 

female; Amazon mTurk sample; $0.50 payment) were randomly assigned to one of five 

review volume levels conditions: low (e.g., 8 vs. 64 reviews), moderate (e.g., 72 vs. 128 

reviews), moderately high (e.g., 201 vs. 257 reviews), high (e.g. 456 vs. 512 reviews), or 

control (i.e., review volumes absent), in a between-subjects design. Within-subject, each 

participant viewed five product choice sets. The sample size was determined based on a 

50-subject rule-of-thumb for online samples at the time the study was conducted. 

Choice sets. For each of the five choice sets (headphones, microwaves, 

coffeemakers, speaker systems, and lounge chairs), participants would view two products 

which were nearly identical with the exception of their average product ratings and 

review volumes (see Table 1). In the control condition, review volumes were not 

displayed. 

Measure. After viewing each choice set, participants were asked to “Please 

indicate your preference between options” on a 7-point scale (1 = Strongly Prefer Option 

A [higher-rated, fewer reviews option], 7 = Strongly Prefer Option B [lower-rated, more 

reviews option]). Thus, a lower score on this scale indicates greater preference for the 

higher-rated, fewer reviews choice option. 

Results 

 A 5 (review volume levels: low, moderate, moderately high, high, control) x 5 

(product category: headphones, microwaves, coffeemakers, speaker systems, lounge 

chairs) repeated-measures ANOVA on preference yielded significant main effects of 

review volume level (F(4, 246) = 11.45; p < .001) and product category (F(1, 246) = 

18.54; p < .001). The interaction was not significant (p > .10). Because of this, we 
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collapsed across the product scenarios factor to simplify the reporting of results, though 

the same directional pattern held for all products. Supporting H1, planned contrasts 

demonstrated that preference for the higher-rated, fewer reviews choice option was 

significantly weaker in the low review volumes condition (Mlow = 3.96) compared to all 

other conditions (Mmoderate = 2.93; t(246) = -4.74; p < .001; Mm-high = 2.83; t(246) = -5.12; 

p < .001; Mhigh = 2.63; t(246) = -6.15; p < .001; and Mcontrol = 2.81; t(246) = -5.27; p < 

.001). Importantly, not displaying review volumes led to no significant difference in 

preferences relative to when review volumes were high (Mhigh = 2.63 and Mcontrol = 2.81, 

p> .10). This is consistent with our prediction that review volumes are less diagnostic, 

and therefore, less likely to influence preferences relative to average product ratings, 

when review volumes are high (H2). 

 

----- 

Insert figure 3 about here 

----- 

 

Discussion 

Study 1 demonstrated that consumers’ preference for the higher-rated, fewer 

reviews option is weaker when review volumes in the choice set are low versus high. We 

replicated the effect in a follow-up consequential choice study, where participants were 

entered into a raffle to receive their preferred product option (a blender). Using the low 

and high review volume levels conditions from the main study, we observed the same 

shift in preference away from the higher-rated, fewer reviews option as the review 
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volume level decreased (Mlow = 4.68, Mhigh = 3.08; F(1,104) = 19.10; p < .001), 

consistent with H1. 

One interesting finding from this study demonstrated that preference for the 

higher-rated, fewer reviews option was not significantly different whether the review 

volumes were high or absent. This is consistent with the accessibility-diagnosticity 

framework, as not displaying review volumes decreased the accessibility of review 

volumes, thereby decreasing their ability to influence consumer decisions. As such, this 

study provided initial evidence suggesting that managers may consider reducing the 

accessibility of low review volumes to aid consumers in choosing the higher-rated, and 

presumably higher quality, choice option. 

Study 2: Replication Using an Expanded Choice Set 

This study was designed to demonstrate that the effect of review volumes is 

robust with expanded choice sets. Prior research has demonstrated that large choice sets 

increase the use of noncompensatory decision strategies (Payne 1976; Johnson and 

Meyer 1984), such that consumers are more likely to choose choice options that are 

superior on one of the most important or easiest-to-differentiate attributes rather than 

incorporating multiple attributes. In the context of this research, we argue that when the 

review volume level is low, the diagnosticity of average product ratings and review 

volumes is relatively similar. As such, while consumers are more likely to use a 

noncompensatory strategy in the multiple choice option context, it is difficult for them to 

decide which attribute to rely solely on (ratings or volume), when review volume level is 

low (versus high). Thus, we expect a similar pattern of preferences to emerge as we 

observe in Study 1, where participants will be less likely to choose the highest-rated, 
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fewest reviews option when review volumes are low relative to high or absent, even in 

the context of the multiple options choice set where compromise options are available. 

In addition, this study used a different dependent measure, choice deferral, to 

provide an initial test for H2. While many retailers attempt to provide consumers with 

multiple options to satisfy various consumer needs, an interesting consequence of this is 

that it increases the number of tradeoffs consumers must make with available attributes. 

Because of the increased diagnosticity of review volumes, when review volumes are low 

(relative to high or absent), the tradeoff between the review volumes and average product 

ratings attributes looms much larger. The need to make tradeoffs between choice 

attributes of similar importance increases choice difficulty (Chatterjee and Heath 1996; 

Dhar and Simonson 2003), which makes choice deferral more likely (Tversky and Shafir 

1992; Dhar and Nowlis 1999; Etkin and Ghosh 2017). Thus, we expect the rate of choice 

deferral to be the highest in the low review volumes condition, relative to when review 

volumes are absent (i.e., a tradeoff is not salient) or when review volumes are high (i.e., 

the diagnosticity of review volumes is attenuated relative to average product ratings). 

Demonstrating this difference in deferral rates provides additional evidence for H2, 

which we directly test in Studies 6 and 7. 

Participants and design. One-hundred and forty-four participants (Mage = 20.91; 

50% female; undergraduate sample; course credit) were randomly assigned to one of 

three review volume levels conditions (low, high, control) in a between-subjects design. 

The sample size was a convenience sample based on the undergraduate participants for a 

one-week time period. 
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Choice set. Participants viewed a choice set of four camping lamps, where options 

were nearly identical with the exception of their average product ratings and review 

volumes. While one choice option had the highest rating with the fewest reviews (e.g., 

3.8, 5 reviews), another choice option had the lowest rating with the most reviews (e.g., 

3.2, 61 reviews), and two other choice options in the middle were compromise choice 

options which were neither the highest, nor lowest on either attribute but were superior 

on one relative to the other compromise choice option (e.g., 3.4, 43 reviews and 3.6, 22 

reviews) (see Table 1). Review volume levels were manipulated by either withholding 

the review volumes in the control condition or adding 300 reviews to the volumes 

reported above in the high review volume level condition. 

Measures. To capture preference among the four choice options, participants were 

asked to “which option would you prefer?” and indicated their discrete choice of one of 

the four options. Thus, in this study our variable of interest was the choice of the highest-

rated, fewest reviews choice option, rather than relative preference between options. To 

assess the likelihood of choice deferral, we asked participants “Are you more likely to 

purchase one of the available options or defer purchase, and look elsewhere?” and 

analyzed this as a binary measure. Lastly, to assess the need for more information, 

participants were asked “How would you classify the amount of information provided?” 

on a 7-point scale (1 = not enough information, 7 = too much information). A more 

difficult tradeoff would require more information to help participants make a decision, 

thus participants in the low review volume levels condition would be expected to require 

more information relative to those in the other conditions. 

Results 
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Choice of the highest-rated, fewest reviews choice option. A binary logistic 

regression, in which we dummy coded our review volume levels, yielded an omnibus 

effect of review volume levels (χ2(2) = 10.84; p = .004). Consistent with H1, when 

review volumes were low, participants were significantly less likely to choose the 

highest-rated, fewest reviews choice option (Plow = 49%) relative to when review 

volumes were high (Phigh = 78%; χ2(1) = 7.09; p = .004) or absent (Pcontrol = 76%; χ2(1) = 

8.24; p = .008). There was no significant difference in choice in the high and control 

conditions (p > .80).  

Rate of choice deferral. A binary logistic regression, in which we dummy coded 

review volume levels, yielded an omnibus effect of review volume levels (χ2(2) = 6.73; p 

= .035). When review volumes were high (Phigh = 53%; χ2(1) = 4.30; p = .038) or absent 

(Pcontrol = 49%; χ2(1) = 6.02; p = .014) participants were significantly less likely to defer 

choice relative to when review volumes were low (Plow = 73%). There was no significant 

difference between high review volume and control conditions (p > .70). A higher rate of 

choice deferral under low review volumes is consistent with prior work linking choice 

difficulty with choice deferral (Tversky and Shafir 1992; Dhar and Nowlis 1999; Etkin 

and Ghosh 2017). Consistent with our theorizing, when the level of review volumes was 

low (relative to high or absent), the diagnosticity of review volumes increased (H2), 

creating a more difficult choice involving the tradeoffs, ultimately increasing choice 

deferral.  

Need for additional information. A one-way ANOVA of review volume levels on 

need for additional information yielded a marginal effect of review volumes (F(2,144) = 

2.98; p = .054). We define a p-value as marginally significant based on the rule-of-thumb 
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that it falls between .05 and .10. Planned contrasts further demonstrated that participants 

who encountered high review volumes felt they had significantly more information than 

those who had encountered low review volumes (Mhigh = 3.37, Mlow = 2.73; t(144) = 

2.43; p = .016), consistent with our predictions. Participants from whom review volumes 

were withheld were not significantly different from either of the other groups (Mcontrol = 

3.00; p > .15). While low review volumes increased the need for additional information 

consistent with our expectations, when review volumes were absent, participants felt no 

more need for additional information than when the review volumes were high. While not 

predicted, this result suggests that withholding review volumes from the list of attributes 

would not negatively impact consumers’ perceptions of the amount of information they 

are provided with to make a choice. 

Discussion 

 Study 2 provided additional evidence for the effect of review volume by 

demonstrating that low review volumes shift preference away from the higher-rated 

choice options relative to when review volumes are high or absent, consistent with H1. 

Furthermore, this study provided evidence in support of H2, by demonstrating that choice 

deferral rate is the highest when review volumes are low relative to high or absent. 

Further, the need for additional information was greatest when review volumes were low, 

suggesting that consumers felt the need for more information when the tradeoff between 

average product ratings and review volumes was most salient. 

Study 3: Review Volume Effects at Various Valences of Average Product Ratings  

The objective of this study is to provide evidence for the entirety of H1. Using 

relatively neutral average product ratings (e.g., 3.0 – 3.8), our initial studies demonstrated 
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that consumers use both average product ratings and review volumes in their choices 

when review volume levels are low. H1 suggests that the effect of review volumes on 

consumer preferences can be attenuated when consumers make choices between 

positively-rated products. We argue that this occurs because positively-rated products can 

reduce consumers’ desire to elaborate on more information when forming their decisions, 

thereby increasing their reliance on average product ratings relative to review volumes 

even further. Hence, we expect an attenuation of the effect of review volume levels when 

the choice set features positively-rated goods. To test this, in the next study, we 

manipulate the valence of average product ratings, while keeping the difference between 

ratings of options in the choice set the same. 

Participants and design. Four-hundred and thirty-three participants (Mage = 20.28; 

46% female; undergraduate students; course credit) were randomly assigned to a 

condition in a 2 (review volume levels: low, high) x 3 (ratings valence levels: negative, 

neutral, positive) between-subjects design. The sample size was a convenience sample 

based on the undergraduate participants for a two-week time period. 

 Choice set. Participants saw a choice set of two blenders. Choice options were 

nearly identical with the exception of their average product ratings and review volumes 

(see Table 1). In the low (high) review volumes condition, participants chose between 

review volumes of 8 (408) and 64 (464), respectively. Ratings valence levels were 

manipulated by changing the first digit of the average product ratings for both choice 

options. Thus, the negative condition presented consumers with 2.x choice options, the 

neutral condition presented 3.x choice options, and the positive condition presented 4.x 
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choice options. After viewing the choice set, participants indicated relative preference on 

the same 7-point scale used in Study 1. 

Results 

 A 2 (review volume levels: low, high) x 3 (ratings valence levels: negative, 

neutral, positive) ANOVA on preference yielded main effects of review volume level 

(F(1, 427) = 17.26; p < .001) and ratings valence level (F(2, 427) = 12.68; p < .001), 

qualified by the predicted interaction (F(2, 427) = 3.58; p = .029). Replicating prior 

studies, in the neutral valence level conditions, preference for the higher-rated, fewer 

reviews option was weaker when review volumes were low versus high (Mlow = 4.38, 

Mhigh = 3.38; F(1, 427) = 14.28; p < .001). As predicted in H1, a similar effect was 

present in the negative valence condition (Mlow = 4.15, Mhigh = 3.32; F(1, 427) = 9.77; p = 

.002). Furthermore, when the ratings valence level was positive, the effect of review 

volumes on preference was attenuated (Mlow = 3.04, Mhigh = 2.97; F(1, 427) = .07; p > 

.75). As expected, the effect of review volumes on preference is decreased, when the 

more diagnostic cue, average product ratings, is positive. 

 

----- 

Insert figure 4 about here 

----- 

 

Discussion 

This study provided full support for H1 by demonstrating that the effect of review 

volumes on preference between choice options is attenuated when the choice set features 



29 
 

only positive average product ratings. Literature on the negativity bias (Rozin and 

Royzman 2001) has demonstrated that consumers elaborate more on all available 

information in the presence of negative information, As such, when consumer encounter 

positive information (e.g., positive average product ratings), they elaborate less on 

additional information, thereby placing less weight on additional attributes in their 

decisions. Thus, consumers are likely to use average product ratings as their primary 

decision criteria relative to review volumes. 

Study 4: Valence and Volume Effects across Small and Large Differences in Ratings 

The objective of this study was to examine another boundary of the valence effect 

on review volumes by examining how large difference in ratings between choice options 

attenuates the effect of a positive valence. In prior studies, we used relatively small 

differences between average product ratings (e.g., .2 – .4), in this study we expand the 

magnitude of difference to include .6 and .8. In doing so, we demonstrate a boundary 

condition of H1, by demonstrating that positive average product ratings attenuate the 

effect of review volumes only when the difference between average product ratings is 

small (versus large). By demonstrating this effect, we also provide additional evidence 

for the mediating role of attribute diagnosticity as large differences in average product 

ratings make the tradeoff amongst attributes more salient, leading consumers to rely on 

additional attributes to influence their decision. 

To test these predictions, we created choice sets with four magnitudes of 

differences between choice options: .2 (e.g., 3.8 versus 3.6), .4 (e.g., 3.8 versus 3.4), .6 

(e.g., 3.8 versus 3.2), and .8 (e.g., 3.8 versus 3.0). We did so across two different valences 

of product ratings: neutral and high (e.g., 3.x or 4.x). This resulted in a necessarily 
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unbalanced design because there are more differences of .2 within a level than .8, 

however, since there was no significant difference in effect within a given distance (for 

example, a difference of 4.2 versus 4.4 led to similar preference as a choice set that had 

4.4 versus 4.6), we collapsed across those cells for the analysis. Thus, we collapsed 

across all small difference (.2-.4) and large difference conditions (.6-.8) to generalize our 

findings across relatively small and large difference in average product ratings. 

Participants and design. Seven-hundred and five participants (Mage = 35.61; 47% 

female; Amazon mTurk; $0.50 payment) were randomly assigned to a condition in a 2 

(review volume levels: low, high) x 2 (ratings valence levels: neutral, positive) x 2 

(magnitude of ratings difference: small, large) between-subjects design. The sample size 

was determined based on balancing a 100-subject per cell rule-of-thumb for online 

samples at the time the study was conducted with cost considerations. This resulted in an 

a priori goal of 90 subjects per cell. 

Choice Set. Participants saw a choice set of two headphones. Choice options were 

nearly identical with the exception of their average product ratings and review volumes 

as described earlier (see Table 1), and relative preference was measured on the same 7-

point scale as in Studies 1 and 3. 

Results 

A 2 (review volume levels: low, high) x 2 (ratings valence levels: neutral, 

positive) x 2 (ratings difference size: small, large) ANOVA on preference yielded 

significant main effects of review volume levels (F(1, 697) = 40.66; p < .001) and ratings 

valence levels (F(1, 697) = 6.70; p = .01), qualified by the interaction of review volume 

levels and difference size (F(1, 697) = 4.12; p = .043), and a marginal interaction of 
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review volume levels and ratings valence levels (F(1, 697) = 3.47; p = .063). The main 

effect of review volume levels demonstrated that preference for the higher-rated, fewer 

reviews option was greater when review volumes were high (Mlow = 3.63, Mhigh = 2.82), 

consistent with prior studies. The main effect of valence demonstrated that preference for 

the higher-rated, fewer reviews option was greater when valence was positive relative to 

neutral (Mneutral = 3.37, Mpositive = 3.08), consistent with Study 3.  

Consistent with our expectations, the review volume levels by ratings difference 

interaction indicated that the effect of the magnitude of the average product ratings 

difference on consumer preferences depended on review volume levels. When review 

volumes were low, consumers were less sensitive to the magnitude of differences in 

ratings between options (Msmall = 3.62, Mlarge = 3.68; p > .85), suggesting that any ratings 

difference was considered a tradeoff with the review volumes, consistent with H2 that 

proposes an increase in relative diagnosticity of review volumes when the level of review 

volumes is low. By contrast, when review volumes were high, consumers were more 

sensitive to the magnitude of differences in ratings between options, increasing 

preference for the higher-rated choice option, when the magnitude of difference between 

options was large versus small (Mlarge = 2.45, Msmall = 2.98; p = .01). This finding is 

consistent with H2, which proposes that the relative diagnosticity of average product 

ratings is greater when review volumes are high (versus low), thus increasing sensitivity 

to any difference in average product ratings. 

The ratings valence levels by review volume levels interaction was consistent 

with the findings of Study 3. While low review volumes decreased preference for the 

higher-rated, fewer reviews choice option, the magnitude of this effect was larger in the 
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neutral relative to positive valence condition (neutral valence: Mlow = 3.98, Mhigh = 2.77; 

p < .001; positive valence: Mlow = 3.32, Mhigh = 2.66; p = .012). Note that the positive 

valence attenuated, rather than completely eliminated, the effect of review volumes on 

preference (as seen in Study 3). While this nominal difference could be a result of the 

specific stimuli used for each study, both studies demonstrated an attenuation of the 

influence of review volumes, consistent with our prediction, albeit to varying strengths. 

 

----- 

Insert figures 5 & 6 about here 

----- 

 

Discussion 

This study replicated the finding of Study 3 by demonstrating that positive 

valences attenuate the influence of review volumes on consumer decisions. Importantly, 

it also tested how a magnitude of difference in ratings between choice options changes 

consumer preference at different review volume levels. Our results suggested that 

average product ratings are more diagnostic than review volumes when review volume 

levels are high or when the average product ratings are positive, consistent with prior 

studies. Yet, this study also demonstrated that large ratings differences can attenuate the 

influence of positive ratings, leading consumers to utilize both average product ratings 

and review volumes to inform their decisions when there is a large difference in the 

average product ratings, even if they are both positive. Thus, a large ratings difference 
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can decrease the diagnosticity of positive average product ratings, demonstrating further 

importance for understanding the effect of review volumes on consumer decisions. 

Study 5: Review Volume Effects at Ratings Scale Boundaries 

The objective of this study was to demonstrate a potential boundary effect of the 

influence of valence on review volumes. As we argued earlier in the paper rating scales 

have clear defined boundaries (e.g., 1.0 – 5.0) allowing for easier comparisons on that 

scales as compared to unbound scales, leading to increased diagnosticity of this attribute. 

In the next study, we propose and test the idea that endpoints specifically tend to be 

particularly diagnostic for consumer judgments. 

We build this proposition on the work by Isaac and Schindler (2014) which 

demonstrates that consumers often form mental boundaries of ranked lists around the 

numbers that end in zeroes (e.g., “top 10” or “top 100”). Even if a list has more than 10 

options, consumers will evaluate those within and outside of the top 10 differently. Since 

grouping of options affects types of comparisons that people make and final choices 

(Brenner, Rottenstreich, and Wood 1999), 10th option is perceived significantly more 

differently than adjacent options. Isaac and Schindler (2014) demonstrate this effect in 

the context of student rankings. Imagine students in a classroom ranked on performance. 

The 11th-ranked student is perceived to be significantly worse than the 10th-ranked 

student, however there is no difference in evaluation of the 11th- and 12th-ranked students. 

The “top 10” effect could be explained within the confines of Prospect Theory (Tversky 

and Kahneman 1992), where losses are shown to loom larger (i.e., be more important) 

than gains. Thus, if consumers’ point of reference is the top 10, 10th place would meet 

their standard while 11th place would be considered a significant loss. However, if they 
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are evaluating 11th and 12th place, both fall below their reference point of the top 10, 

diminishing sensitivity to the loss on this attribute and leading to an attenuation of the 

importance of their rankings. 

Similarly, in the context of our research, we expect that when the rating of one 

product in a choice set lies at the boundary (i.e., has a rating of 1.0 or 5.0), the 

diagnosticity of average product ratings increases, attenuating the influence of review 

volumes. For example, in a choice set featuring ratings of 5.0 versus 4.7, consumers will 

be more influenced by the ratings rather than the review volumes, relative to when they 

view a choice set featuring 4.9 versus 4.6. While one could expect the same effect to 

occur at the negative boundary of the scale, the effect is likely to be smaller, consistent 

with the Prospect Theory, where a loss relative to the reference point of 5.0 is more 

significant than an equivalent gain relative to the reference point of 1.0. 

Participants and design. Four-hundred and ten participants (51% female; Mage = 

37.88; Amazon mTurk sample; $0.50 payment) were randomly assigned to a condition in 

a 2 (review volume level: low, high) x 2 (ratings valence level: negative, positive) x 2 

(scale boundary included: no, yes) between-subjects design. The sample size was 

determined based on a 50-subject rule-of-thumb for online samples at the time the study 

was conducted. 

Choice set. Participants saw a choice set of two hand mixers. Choice options were 

nearly identical with the exception of their average product ratings and review volumes 

(see Table 1). Valence and scale boundary were manipulated by the specific values used 

for average product ratings. The negative valence conditions were 1.3 versus 1.0 

(boundary included) and 1.4 versus 1.1 (boundary not included). The positive valence 
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conditions were 5.0 versus 4.7 (boundary included) and 4.9 versus 4.6 (boundary not 

included). 

Measures. After viewing the choice options, participants indicated relative 

preference on the same 7-point scale used in previous studies. 

Results 

Relative preference. A 2 (review volume level) x 2 (average product ratings 

valence) x 2 (scale boundary included) ANOVA on relative preference between options 

yielded a significant main effect of valence (F(1, 404) = 3.98; p = .047), a marginal main 

effect of the review volume level (F(1, 404) = 3.12; p = .078), and a significant 

interaction between the review volume level and scale boundary inclusion (F(1, 404) = 

4.47; p = .035), qualified by the three-way interaction (F(1, 404) = 12.98; p < .001). To 

explain the relationship between these factors, we will examine the two-way interactions 

between review volume levels and scale boundary at the negative and positive ends of the 

rating scale. 

At the positive end of the scale (4.6 – 5.0), a 2 (review volume level) x 2 (scale 

boundary inclusion) ANOVA on preference yielded a marginal effect of the review 

volume level (F(1, 202) = 2.84; p = .093) qualified by a significant interaction of the 

review volume level and scale boundary inclusion (F(1, 202) = 13.98; p < .001). When 

the scale extreme was not included (i.e., 4.9 versus 4.6), low review volume level 

weakened preference for the higher-rated option with fewer reviews (Mlow = 4.08, Mhigh = 

2.71; F(1, 202) = 14.86; p < .001), consistent with the results of our prior studies. By 

contrast, when the scale extreme was included (i.e., 5.0 versus 4.7), the effect of review 

volumes was attenuated (Mlow = 3.48, Mhigh = 2.96; F(1, 202) = 2.09; p = .15). Consistent 



36 
 

with Isaac and Schindler (2014) findings, this suggests that when products have perfect 

ratings (5.0), the ratings become significantly more influential in the decision process 

relative to when product have near perfect ratings (4.9). 

At the negative end of the scale (1.0 – 1.4), a 2 (review volume level) x 2 (scale 

boundary inclusion) ANOVA on preference yielded no significant effects (p > .20). 

Across all negative conditions, preference averaged 3.64, where 4 indicate no preference 

between options. This effect was not predicted a priori and we discuss it next. 

 

----- 

Insert figure 7 about here 

----- 

 

Discussion 

 This study demonstrated that the effect of review volume levels is attenuated 

when the scale boundary is included in the ratings for an option in the choice set. An 

interesting asymmetric valence effect emerged, such that at the negative end of the scale, 

review volume levels were attenuated regardless of whether or not the scale boundary 

was included. This could be a function of consumers making a choice between two 

unattractive options (Dhar and Sherman 1996), which is known to increase perceptions of 

choice difficulty. This finding is also consistent with the work of Purohit and Srivastava 

(2001), which demonstrated that when the primary diagnostic attribute is unattractive, 

subsequent attributes are not influential. To further explore this point, in a follow-up 

study we compared the effect of review volumes across very negative ratings (1.3 versus 
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1.0) and somewhat negative ratings (2.4 versus 2.1). Replicating the findings in this 

study, we found no effect of review volumes in the very negative condition (Mlow = 3.51, 

Mhigh = 3.14; F(1, 83) = 1.13; p = .29). However, consistent with our findings of Study 3, 

we replicated the effect of review volumes in the somewhat negative condition (Mlow = 

3.89, Mhigh = 3.16; F(1, 85) = 3.75; p =  .056). Further, consistent with the view that 

choosing between two extremely unattractive choice options increases choice difficulty, 

and potentially leads to the random choice between low valence options in the main 

study, rate of choice deferral was significantly higher in the very negative condition 

(45.9%) as compared to the somewhat negative condition (21.8%, χ2(1) = 10.93; p = 

.001). This interesting finding suggests that consumer decision processes differ in the 

context of extremely negative and somewhat negative choice sets.  

Study 6: Mediation via the Difference in Perceived Diagnosticity of Average Product 

Ratings and Review Volumes  

Having established a robust influence of review volume levels on consumers’ 

decisions, we now shift our focus to demonstrating the underlying process by which the 

effect occurs. Our theorizing suggests that under low review volume levels, consumers 

acknowledge that their previous evaluations of the average product ratings may not be 

accurate, and thus, give additional weight to review volumes in their decisions. 

Conversely, when review volume levels are high, the review volumes merely reinforce 

the opinion formed of the products, resulting in less weight placed on the review 

volumes. Thus, in this study we ask participants how important each attribute was to their 

decision and compute the difference between the importance of average product ratings 
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and review volumes to demonstrate the changing diagnosticity of these attributes between 

conditions. 

Participants and design. One-hundred and eighty-three participants (Amazon 

mTurk sample; $0.50 payment) were randomly assigned to one of three review volume 

levels conditions (low, high, control) in a between-subjects design. The sample size was 

determined based on balancing a 50-subject per cell rule-of-thumb for online samples at 

the time the study was conducted with cost considerations. A priori, the goal per cell was 

60 subjects. 

Choice set. Participants saw a choice set of two blenders. Choice options were 

nearly identical with the exception of their average product ratings and review volumes 

as described earlier (see Table 1). Similar to Study 2, we used discrete choice as our 

dependent measure. However, this time we integrated the choice and deferral measures 

into one, so participants were told that they could choose “Option A”, “Option B”, or 

“Defer purchase and look elsewhere”. Different from other studies, to test H2, we then 

asked participants to “indicate the importance of each attribute in making your decision” 

for the five attributes (image, brand, price, average product rating, review volume) on 7-

point scales (1 = not at all important, 7 = extremely important). As expected, there were 

no significant differences across conditions of the perceived diagnosticity of product 

image, brand, or price (p > .10), because they were relatively comparable across products. 

Next, we computed a difference score of the review attribute diagnosticities (perceived 

diagnosticity of average product ratings minus the perceived diagnosticity of review 

volumes) to demonstrate the changing diagnosticities of the review attributes as a 

function of the review volume levels. Thus, a positive score indicates that average 
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product ratings are more diagnostic than review volumes, and vice versa. As the 

difference score approaches zero, this indicates that consumers would equally weight 

average product ratings and review volumes in their decisions. 

Results 

Choice of the higher-rated, fewer reviews choice option. Examining participants 

who chose one of the two product options (N = 153), a binary logistic regression, in 

which we dummy coded our review volume levels, yielded a significant omnibus effect 

of review volume levels (χ2(2) = 15.07; p = .001). Consistent with our prior studies, when 

review volumes were high (Phigh = 71%; χ2(1) = 11.40; p = .001) or absent (Pcontrol = 71%; 

χ2(1) = 11.83; p = .001) participants were significantly more likely to choose the higher-

rated, fewer reviews choice option relative to when review volumes were low (Plow = 

36%). There was no significant difference in the high and control conditions (p > .95).  

Rate of choice deferral. A binary logistic regression, in which we dummy coded 

our review volume levels, yielded a significant omnibus effect of review volume levels 

(χ2(2) = 9.42; p = .009). When review volumes were high (Phigh = 13%; χ2(1) = 4.64; p = 

.031) or absent (Pcontrol = 8% ; χ2(1) = 7.60; p = .006), participants were significantly less 

likely to defer choice relative to when review volumes were low (Plow = 29%), replicating 

results of Study 3. There was no significant difference in choice deferral between the 

high and control conditions, consistent with earlier studies (p > .40). 

 Difference in diagnosticity of review attributes. A one-way (review volume 

levels: low, high, control) ANOVA on the difference in diagnosticity of average product 

ratings and review volumes yielded a marginal omnibus effect (F(2, 150) = 4.59; p = 

.061). Consistent with H2, the difference in perceived diagnosticity between the review 
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attributes was lower when review volumes were low (Mlow = .26), relative to high (Mhigh 

= .85; t(150) = 2.28; p = .024) or absent (Mabsent = .75; t(150) = 1.89; p = .061). There was 

no significant difference between the absent and high review levels (p > .65). In other 

words, average product ratings were considered significantly more diagnostic than review 

volumes in the absent and high review volumes conditions, relative to when review 

volumes were low. 

 Preference mediation via the difference in diagnosticity of review attributes. A 

mediation analysis (Model 4; Preacher, Rucker, and Hayes 2007) was used to 

demonstrate that the effect of review volumes (low versus high) on consumer preference 

was driven by the difference in the diagnosticity of average product ratings and review 

volumes. As expected, the model demonstrated that the effect of review volumes on 

consumer preference was mediated via the difference in perceived diagnosticity of 

average product ratings and review volumes (B = -.49; CI95% = [-1.22, -.10]). 

Discussion 

 This study provided support for H2 by demonstrating that the effect of review 

volumes on choice option preference was driven by the difference in diagnosticity of 

average product ratings and review volumes: as the perceived diagnosticity of review 

volumes increases (i.e., when review volumes are low) the preference shifts away from 

fewer reviews, higher-rated options towards the more reviews, lower-rated option. It 

further showed, consistent with our propositions, that average product ratings are 

considered more diagnostic than review volumes, but this difference in diagnosticity is 

attenuated when review volumes are low. Furthermore, it demonstrated that as the 

perceived diagnosticity of average product ratings and review volumes become closer, 
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choice deferral increases, consistent with the findings of Study 2 and prior work 

demonstrating the link between tradeoff difficulty and choice deferral (Tversky and 

Shafir 1992; Dhar and Nowlis 1999; Etkin and Ghosh 2017). 

Study 7: Mediation using Eye-tracking 

The objective of this study was to demonstrate the robustness of our proposed 

mediation process by using attentional, rather than self-reported, measures of attribute 

diagnosticity. We have argued that consumers infer different diagnostic values of average 

product ratings and review volumes as a function of the level of review volumes. 

Specifically, in choice sets with neutral and low average product ratings, when consumers 

see that review volumes are low, it signals to them that average product ratings may not 

be as diagnostic of product quality as when review volumes are high or when no review 

volume information is displayed. 

In terms of consumers’ attention when examining review attributes, we would 

expect that consumers would be more likely to return to re-examine average product 

ratings, after viewing low review volumes. This happens, we argue, because consumers 

need to re-evaluate the average product ratings in light of an additional diagnostic 

attribute – review volumes. To test this argument, we use eye-tracking measurements to 

determine not only the gaze times (i.e., time spent looking at) for each attribute, but also 

the sequence of fixations (i.e., order looked at) for all attributes, to determine whether 

consumers are more likely to return to re-examine average product ratings after viewing 

low versus high review volumes. 

 Participants and design. Ninety-two participants (undergraduate sample; course 

credit) were randomly assigned to one of two review volume levels conditions (low, 
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high) between-subjects. The sample size was a convenience sample based on the 

undergraduate participants for a one-week time period. Participants were randomly 

selected two at a time from a larger sample of research participants to participate in the 

eye-tracking study. After engaging in a short eye-tracking calibration task, participants 

followed a similar paradigm to prior studies. 

 Choice set. Participants saw a choice set of two microwaves. Choice options were 

nearly identical with the exception of their average product ratings and review volumes 

as described earlier (see Table 1).  Relative preference between choice options was 

measured on the same 7-point scale as in earlier studies. 

 Additional measures. We defined areas of interest (AOIs) as parts of the screen 

where corresponding product attributes were displayed and measured the number of eye 

fixations and gaze times for each attribute. Fixations refer to the frequency participants 

would look at a given attribute, while gaze times refers to the amount of time spent 

looking at the specific attributes. As expected, there were no significant differences 

across conditions for fixations or gaze times of product images, brand names, prices, or 

highlighted information (p > .10), so we do not discuss these further.  

Results 

Relative preference. A one-way (review volume levels: low, high) ANOVA on 

preference yielded a significant effect (F(1, 90) = 10.32; p = .002). Consistent with prior 

studies, preference for the higher-rated, fewer reviews choice option was weaker when 

review volumes were low (Mlow = 4.89) relative to high (Mhigh = 3.68). 

Transition matrices. To provide further support for underlying process, we also 

derive transition matrices from the eye-tracking data. Doing so allows us to demonstrate 
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the probabilities of participants transitioning their attention from one attribute to the next. 

As we discussed earlier, we argue that low review volumes are perceived to be more 

diagnostic, relative to high review volumes, and this causes consumers to re-evaluate 

average product ratings. To demonstrate this, we assessed the differential probabilities of 

participants shifting their attention from review volumes to average product ratings as a 

function of the review volume levels. Consistent with our theory, participants were 

significantly more likely to return their attention to the average product ratings after 

viewing review volumes when the review volumes were low relative to high (Plow = .24; 

Phigh = .13; z = 3.25; p < .01). This suggests that participants were nearly twice as likely 

to return their attention to average product ratings when review volumes were low versus 

high. Importantly, the transition proportions from review volumes to all other attributes 

were not significantly different across conditions (p > .10). 

 

----- 

Insert table 3 about here 

----- 

 

Difference in fixation counts for the review attributes. Because our variable of 

interest is the difference in attention paid to average product ratings and review volumes, 

we calculated the difference in fixations between average product ratings and review 

volumes. A one-way (review volume levels: low, high) ANOVA on the difference in 

fixation counts yielded a significant effect (F(1, 90) = 7.05; p = .009). As expected, the 

difference in fixations between average product ratings and review volumes was greater 
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when review volumes were low (Mlow = 4.29 fixations) relative to high (Mhigh = 2.11 

fixations). This is consistent with our view that low review volumes cause consumers to 

re-evaluate the average product ratings attribute, thus increasing overall attention paid to 

that attribute. 

Difference in gaze times for the review attributes. A one-way (review volume 

levels: low, high) ANOVA on the difference in gaze times yielded a significant effect 

(F(1, 90) = 10.59; p = .002). As expected, the difference in gaze times between average 

product ratings and review volumes was greater when review volumes were low (Mlow = 

12.40 seconds) relative to high (Mhigh = 5.78 seconds). Consistent with our prior finding, 

consumers seem to pay more attention to average product ratings when review volumes 

are low versus high, and we argue that this occurs because the low review volumes cause 

consumers to re-evaluate their inferences from the average product ratings. 

Mediation via the difference in gaze times. We argue that gaze times are a more 

precise measure of attention relative to fixations because they quantify the time spent on 

an attribute. As such, we demonstrated that consumers are likely to pay more attention to 

average product ratings when review volumes are low, and thus, this difference in gaze 

times would mediate the influence of review volumes on consumer preference. Using the 

mediation analysis (model 4; Preacher and Hayes 2007), we demonstrated that the 

difference in gaze times between average product ratings and review volumes mediated 

the effect of review volumes on consumer preference between choice options (B = .25; 

CI95% = [.04, .62]). 

Discussion 
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This study provided further evidence for H2, by demonstrating that the difference 

in gaze times for the average product ratings and review volumes mediated consumer 

preference between options. When review volumes are low, it signals to consumers that 

the average product ratings may be relatively closer in diagnosticity to review volumes, 

leading them to re-evaluate this attribute before reaching a decision. Yet, when review 

volumes are high, there is a hierarchy in diagnosticity between two attributes, and 

consumers can reach a decision faster without re-evaluating average product ratings. 

 

GENERAL DISCUSSION 

 

Across seven studies we find consistent support for our propositions that average 

review ratings are more diagnostic cue of product quality than review volumes and that 

review volumes can become more influential in consumer decisions when: a) average 

product ratings are low or neutral and b) review volume of the choice set is low. This 

change in attribute diagnosticity leads to a systematic shift in preference away from the 

higher-rated, fewer reviews option towards the lower-rated, more reviews option. 

Furthermore, when the diagnosticity of these two review attributes are closest to each 

other, consumers experience tradeoff difficulty as evidenced by increased choice deferral. 

Robustness Checks and Potential Moderators 

Appendix B, contains eight additional experiments that rule out alternative 

explanations and test additional potential moderators of the review volume effects 

demonstrated in this paper. The studies are reported in full in Appendix B and outlined 

briefly next.  
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In Appendix B2, we examine the role of relative versus absolute differences in 

review volumes. The literature on numerosity suggests that viewing attributes on 

expanded versus contracted scales (e.g., months versus years) changes consumers’ 

interpretations of the attribute, as the absolute difference in values may change while 

keeping the relative difference constant (Burson, Larrick, Lynch 2009; Pandelaere, 

Briers, and Lembregts 2011; Lembregts and Pandelaere 2013). Our work differs from this 

for two reasons. First, our focus is on the effect of an attribute when the absolute 

difference is held constant rather than the relative difference. This is important as it tests 

a best-case scenario for the underdog in which there is no “first mover’s advantage” in 

the acquisition of future reviews. Second, low versus high review volumes are not direct 

comparisons to contracted versus expanded scales as there is diagnostic value in the 

actual values provided. However, it is possible to draw a hypothesis from the findings of 

this literature in suggesting that absolute difference in attributes is more influential than 

the relative difference. In addition to the low and high review volume levels used as in 

prior studies (e.g., 12 versus 45 and 212 versus 245), we also included a high review 

volume level condition where the relative difference was held constant with the low 

condition (e.g., 212 versus 795). We replicate the findings of our previous studies in the 

low and high conditions, while also demonstrating an effect consistent with the 

numerosity literature for the high-relative condition. Yet, in comparing the effect sizes, 

we find that our effect is stronger for multiple product categories. 

In Appendix B3, we compare the diagnostic value of the aggregate reviews 

ratings with more disaggregated information, ratings distributions the ratings of 

individual reviews. Some literature investigating the role of a ratings distribution has 
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demonstrated a significant effect of skew on product evaluations (Fisher, Newman and 

Dhar 2018; Khare et al. 2011). This work largely differs from ours in that it explores only 

single-option choice sets. In the context of multi-option choice sets, we argue that it is 

more cognitively-demanding to compare and interpret different ratings distributions 

relative to the other review attributes (i.e., average product ratings and review volumes). 

This is because the ratings distribution is a more complex attribute with several values, 

one for each rating. Thus, we argue, and demonstrate that the effect of a ratings 

distribution is diminished in multi-option choice sets. We tested this effect using several 

different distributions (e.g., positively-, negatively-, and even-skewed). 

In Appendix B4, we further examine whether aggregate reviews information is 

diagnostic in the presence of other diagnostic information. Specifically, we look at the 

context of products with primarily aesthetic value. Prior literature has suggested that 

consumer responses to reviews differs as a function of the self-expression goals of the 

consumer and the product being evaluated (He & Bond 2015; Rozenkrants, Wheeler, and 

Shiv 2017). Consistent with this literature, in this study, we demonstrate that aggregate 

review attributes are less diagnostic when consumers can easily infer preference based on 

the aesthetics of the good, rather than concerns of functional attributes. Thus, we expect 

and demonstrate that the effects of review volumes are attenuated when consumers face 

choice sets with high aesthetic value and low functional value (e.g., artwork). 

In Appendix B5, we examine the role of single versus joint evaluations. Prior 

literature investigating this aspect of choice has demonstrated that joint evaluation 

increases the diagnosticity of difficult-to-evaluate attributes (Hsee 1996) and attenuates 

the effects of numerosity (Schley, Lembregts, and Peters 2017). In our research, we argue 
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that average product ratings and review volumes are both common attributes to 

consumers which allows them to easily hold values in memory across choices. As such, 

single versus joint evaluations would play a minimal role in choice sets where average 

product ratings and review volumes are the differentiating attributes. Thus, we 

demonstrate a null effect of evaluation mode in Appendix B5. 

In Appendix B6, we examine the role of the presence versus absence of a 

popularity cue. Some people might theorize that review volumes act solely as a signal of 

product popularity. If this were the case, the effect of review volumes should be 

attenuated in the presence of another popularity cue. Thus, in this study we test the effect 

of labeling options as a “Best Seller” and demonstrate that this does not attenuate the 

effect of review volumes. We argue that this occurs because it is more challenging to 

quantify the “Best Seller” label relative to review volumes, thus it is difficult to 

determine the diagnostic value of the label. 

In Appendix B7, we examine the role of production years of the goods. One 

reason that some products have more reviews than others is simply because they have 

been on the market longer. While this may be a positive signal for some products, for 

tech products, this should signal outdated technology. We argue that the effect of review 

volumes is so strong, it leads consumers to discount the inferior technology if it has more 

reviews. We demonstrate that consumers are more apt to choose older products with 

more reviews (e.g., a 2013 DVD player or Galaxy S6) relative to newer products with 

fewer reviews (e.g., a 2015 DVD player or Galaxy S7) when the level of review volumes 

is low versus high. As such, it is quite likely that review volumes may bias consumers’ 

decisions, leading to inferior, or suboptimal, outcomes. 
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In Appendix B8, we examine the role of a “new arrival” label on the effect of 

review volumes. Because new products have been on the market for a shorter period than 

other products, a lower review volume should be justified. In theory, consumers should 

be more accepting of “new arrivals” with low review volumes relative to options that do 

not feature this label as their low volume may not be justified. However, it is difficult to 

quantify the diagnostic value of a “new arrival” label and arrive at a proper discount rate 

for the review volumes relative to simply comparing the review volumes of competing 

products. As such, we theorize, and demonstrate that the effect of review volumes 

persists in the presence of a “new arrival” label. 

In Appendix B9, we examine the role of credible reviews. Some may argue that 

low review volumes contain more risk relative to high review volumes due to a higher 

likelihood of fraud (Luca and Zervas 2016; Mayzlin, Dover, and Chevalier 2014). Thus 

one might conclude that if consumers could be certain of the veracity of low review 

volumes, it may attenuate the effect of review volumes. Yet, once again, we argue that it 

is cognitively-demanding to interpret and quantify the value of “credible” reviews 

relative general reviews, resulting in a null effect. We test this proposition by labeling the 

higher-rated, fewer reviews option as “Consumer Reports Verified” and demonstrate 

once again, that this label does not attenuate the effect of review volumes. 

Across the eight experiments featured in Appendix B, we consistently 

demonstrate the persistent effect of review volumes. While it is quite plausible that 

additional moderators of review volume effects, besides those exhibited in this paper, 

exist, it seems that many of the additional attributes websites use to help their consumers 

do not actually attenuate the weight consumers place on review volumes. As such, 
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retailers should be cautious in how they present review volumes to consumers as it is a 

very powerful attribute in shaping decisions. 

Managerial Implications 

Next, we provide an illustration of how the results of our study can be 

incorporated into the business practices. We interviewed two managers involved with 

product review acquisition strategies for their respective brands. One, the CEO of a 

nutritional supplement company, instructs his team to employ a proactive strategy where 

they aggressively pursue reviews from customers via email nudges after purchase, as well 

as steep product discounts. The latter strategy is used to increase the absolute number of 

reviews as a function of more sales, whereas the former strategy is used to increase the 

sales-to-review conversion ratio. The other, an associate brand manager for a leading 

home electrics company, relies on a reactive strategy in which they offer free product in 

exchange for honest reviews once they perceive their sales to have stagnated. This 

strategy drives review volumes but not sales. Both managers mentioned that product 

ratings and review volumes are very important for their sales, and they would like both 

attributes to excel. When pressed on the tradeoff of the two attributes, both managers said 

that they would prefer a 4.0 rated product with 100 reviews over a 4.3 rated product with 

15 reviews. Furthermore, when we discussed that the promotions may bring about 

heterogeneity in customers (i.e., customers who normally would not use the product, and 

therefore, be more likely to have less of a fit with the product), they both agreed that they 

would welcome customers who did not love their product in exchange for a higher review 

volume, assuming that it did not bring a wave of completely negative reviews. Next, we 

will discuss how managers could benefit from actively managing their review volumes to 
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increase review volumes in early- and mid-stage product life cycles when they have 

competitors with more reviews. 

We conducted a simulation where the higher-rated good with fewer reviews 

accrued reviews at the same rate as the lower-rated, more reviews good or at twice the 

rate (e.g., when a review acquisition strategy was employed). We then crossed this with 

whether the firm employed a proactive review acquisition strategy early on in the product 

life cycle (e.g., at 5 reviews) or a reactive strategy later on in the life cycle (e.g., at 15 

reviews). The simulation was conducted in MATLAB using choice shares computed 

from Study 1. We took the relative preference measure used in that study and pooled the 

numbers that indicated preference for the higher-rated, fewer reviews option (i.e., “1 – 

3”) and the numbers that indicated preference for the lower-rated, more reviews option 

(i.e., “5 – 7”). Participants who indicated no preference (i.e., “4”) were excluded from the 

choice share computation. This resulted in several data points ranging from low to mid to 

high review volumes. Then we used the MATLAB surface fitting function ("fit") to 

interpolate choice shares for various combinations of review volume pairs. 

 Our simulations were agnostic as to what type of review acquisition strategy was 

employed (e.g., email nudges, price promotions, free product, etc.), but we modeled the 

effect of employing an acquisition strategy by doubling the likelihood of a review being 

written. We seeded the baseline likelihood of receiving a review after a purchase at 50%, 

and the likelihood of receiving a review when a review acquisition strategy is employed 

at 100%. The likelihood of leaving a review has been estimated as low as .001% 

depending on the product category. Thus, the results we discuss here are extremely 
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conservative estimates of the impact review volumes might have on choice shares over 

time. 

In the first two simulations, we investigated a proactive strategy where the higher-

rated option had five reviews, whereas the lower-rated option had 10 reviews. In Scenario 

A, we held the likelihood of receiving a review constant across both products at 50%. 

Thus, the first scenario investigated how long it would take for a product with a higher 

rating, but five fewer reviews, to accumulate more sales than the other products. As seen 

in figure 8A, we see that it would take approximately 240 consumers purchasing options 

in this category. In Scenario B, we assume that the manager of the higher-rated product 

employs an active review management strategy and doubles the likelihood of receiving 

product reviews. In this scenario, we see that the higher-rated product reaches the 

dominant sales position roughly 33% more quickly, or around 160 consumer category 

purchases (see figure 8B). 

 

----- 

Insert figures 8A-D about here 

----- 

 

 In Scenarios C and D, we investigate a reactive strategy where the market has 

matured (i.e., 15 and 45 reviews, respectively). Once again, in Scenario C we assume that 

each product has a 50% likelihood of receiving a review after it is purchased. Here, it 

takes about 75 additional customer purchases in the product category before the higher-

rated good surpasses the lower-rated good in sales (see figure 8C). In Scenario #4, we 
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once again assume that the higher-rated good actively manages their reviews, and can 

double the likelihood of receiving a review after purchase. This results in the higher-rated 

good surpassing the lower-rated good in sales roughly 20% earlier, or after 60 consumer 

category purchases (see figure 8D). 

 While these scenarios are just a few of the many possible that exist in 

marketplace, they provide additional support for our claim that review volumes are 

highly influential in consumer decisions, and managers would be wise to oversee their 

growth. As new products with fewer reviews enter against incumbents with more 

reviews, employing a proactive strategy to spur review volume growth can quickly 

decrease the disadvantage that a product manager faces when competing against 

established products. While there may be costs associated with discounted products or 

additional review nudging, early on in the product life cycle, it would appear to be quite 

beneficial to incur these costs. 

Conclusions and Future Research 

 This research outlines conditions where the diagnosticity of review volumes as 

cues of product quality increases relative to diagnosticity of average product ratings, 

potentially leading to suboptimal decisions for consumers, and an increase in choice 

deferral for brands and retailers. Theoretically, we argue that an inherent difference in the 

types of scale in which these attributes are presented (bound and unbound) leads to the 

observed difference in their diagnosticity, and by demonstrating how consumers integrate 

attributes on both scales into a single judgment, we contribute to the literature in 

numerical cognition. Furthermore, we provide some clarity to the debate on the relative 

influence of average product ratings and review volumes (see: Floyd et al. 2014; You, 
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Vadakkepatt, and Joshi 2015) by demonstrating the conditional influences of volume 

under various valence conditions. 

Future research should explore how review volumes affect interpretation of 

average product ratings presented on expanded (e.g., 0 – 100%) or more contracted 

bound scales (e.g., “Thumbs Up/Down” votes). Furthermore, research on strategies to 

bind review volumes to a scale (e.g., classifying review volumes based on “ideal” or 

“sufficient” values but not quantifying the actual number) can attenuate the bias created 

by review volumes. Future research could also explore how the relative versus absolute 

difference in values across the attributes would affect the difficulty of tradeoffs between 

the review attributes.  

From a managerial perspective, future research demonstrating how consumers 

interpret the presence versus absence of different product attributes across multiple 

retailers would be an interesting avenue, though this is ultimately an empirical question to 

answer. Furthermore, in applying these findings in a field setting, individual retailers 

could determine the optimal strategy for their website. For example, given the 

demographics and preferences of a specific retailer’s clientele, would their customer base 

prefer one strategy over another? Lastly, while consumers read very few reviews before 

making decisions (BrightLocal 2017), exploring the tradeoffs made between review 

content and aggregate review valence and volume is an important future direction. While 

the aggregate information is more representative of the products, individual reviews may 

heighten saliency of specific product details, leading to shift in weights of the various 

attributes in their decisions. For example, a review highlighting a bad service experience 

may outweigh the aggregate information indicating that a restaurant is rather popular with 
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high quality food. Thus, understanding when consumers want to read reviews in addition 

to summary information, and the relationship between these two sources of information is 

also an important future direction. 
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Red Flag! The Consequences of Alerting Consumers 
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“TripAdvisor has reasonable cause to believe that individuals or entities associated with 

or having an interest in this property may have interfered with traveler reviews.” – 

TripAdvisor, 2018 

 Defined as those written with the intent to mislead or deceive, fake reviews 

appear to be a major concern online. Recent research suggests that upwards of 15% of 

online reviews may be fake (Luca and Zervas 2016). And this seems to be consistent with 

industry perceptions, as Yelp has disclosed that they remove roughly 20% of their 

reviews for lacking credibility and helpfulness. Amazon has even taken legal action in an 

attempt to curb the problem, recently suing over 1,100 individuals they believe to have 

created fake reviews (Tuttle 2015). Yet, the lawsuits may not have made much impact as 

a recent Forbes article concluded that “Amazon’s fake review problem is now worse than 

ever” (Woolacott 2017). Indeed, an entire industry has arisen around the creation of fake 

reviews, as “online reputation management” firms will post positive reviews for your 

business, and negative reviews for your competitors, for a nominal fee (Segal 2011). This 

would suggest that the fake review problem may be more pervasive than academics have 

previously considered.  

In an effort to increase transparency, some websites (e.g., Yelp and TripAdvisor) 

inform consumers when they have caught a brand featured on their website involved in 

the creation of fake reviews, but it is unclear how consumers respond to this message. We 

term this message a fake review alert. For example, once Yelp identifies that a brand has 

attempted review fraud (e.g., purchasing fake reviews, incentivizing positive reviews, 

etc.), that brand’s sub-page within Yelp will feature an alert for the next 90 days (Yelp 

2013; Curtis 2014). These alerts, like the one above, explain the brand’s infraction, but 
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they are only temporary. Do consumers penalize the brand by lowering ratings? Does 

their reading behavior for reviews change? We address these questions in this paper.  

 Prior research has examined the characteristics of fake reviews, as well as the 

brands which are likely to solicit them. Computer scientists have developed complex 

algorithms which determine the veracity of reviews based on certain syntactical cues 

(e.g., excessive capitalization or repetitious punctuation) and contextual cues (e.g., IP 

addresses, review frequency, etc.) (Feng, Banerjee, and Choi 2012; Akoglu, Chandy, and 

Faloutsos 2013; Ott et al. 2013; Mukherjee et al. 2013). In marketing, a few papers have 

investigated the brand characteristics of firms that solicit fake reviews and the propensity 

for a brand to solicit fake reviews. Mayzlin, Dover, and Chevalier (2014) find that 

independent brands have a greater incentive to solicit fake reviews relative to chain 

brands, and competitors of independent brands are likely to leave fake negative reviews, 

when customers are not verified. Similarly, Luca and Zervas (2016) find that a restaurant 

is more likely to engage in review fraud when it has a weak reputation (e.g., few reviews 

or recent negative reviews), and that chain restaurants are less likely to engage in review 

fraud relative to independent restaurants, presumably because the brand name is better 

known. 

Rather than identifying characteristics of fake reviews or the brands which solicit 

them, our paper investigates the effects of fake review alerts on how consumers process 

reviews and, ultimately, affect their brand ratings. In general, consumers read reviews in 

order to make an informed decision (Gilbert 1991). But in the presence of a fake review 

alert, consumers become suspicious of the information, leading to concerns of 

information accuracy. We propose that the effects of a fake review alert depend on 
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whether the alert is for positive or negative reviews. A fake positive (negative) review 

alert discloses that reviews which have attempted to increase (decrease) brand 

evaluations have been identified. In conjunction with accuracy concerns, a fake review 

alert activates persuasion knowledge, leading consumers to be suspicious about the 

brand’s other reviews. As a result, they are more likely to read negative reviews in order 

to avoid making a poor decision.  

In terms of brand ratings, we propose that a fake review alert will lead consumers 

to deviate from the average rating in an attempt to correct for false information. When 

persuasion knowledge is activated, consumers adjust their initial impressions to correct 

for the perceived bias inherent in the persuasion attempt (Kirmani and Campbell 2004). 

This correction means that consumers are likely to increase the brand rating in the 

presence of a fake positive review alert and decrease the rating in the presence of a fake 

negative review alert. At the same time, because a fake review indicate that someone is 

trying to mislead them, consumers may use their brand ratings to seek justice against the 

source of the fake review. 

 We use multiple methodologies to investigate the effect of a fake review alert on 

consumer review search and brand ratings. In Study 1, we employ web-scraping to 

collect data on brands that have received fake positive review alerts, and analyze their 

brand ratings before, during, and after the alert is active. We demonstrate that brand 

ratings decrease during the alert but are restored after the alert is removed. In Study 2, a 

longitudinal laboratory experiment replicates these findings and shows a different pattern 

for fake negative review alerts; brand ratings increase during the alert, and this positive 

increase persists after the alert is removed. Study 3 then demonstrates the process by 
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which perceptions of average rating accuracy and the desire for justice mediate the effect 

of a fake review alert on brand ratings. Finally, Study 4 demonstrates how consumers’ 

overcorrection in the presence of a fake review alert can be attenuated.  

 In the following sections, we develop our conceptual framework regarding 

consumers’ responses to fake review alerts and propose several hypotheses. We then test 

these hypotheses employing multiple methodologies and conclude with a discussion of 

the implications and directions for future research. 

 

CONCEPTUAL BACKGROUND AND HYPOTHESES 

 

 Reviews affect consumers’ product evaluations (Khare, Labrecque, and Asare 

2011; Moe and Trusov 2011; Schlosser 2011; Chen and Kirmani 2015) and purchase 

incidence (Chevalier and Mayzlin 2006; Clemons, Gao, and Hitt 2006; Dellarocas, 

Zhang, and Awad 2007; Duan, Gu, and Whinston 2008; Chintagunta, Gopinath, and 

Venkataraman 2010; Zhu and Zhang 2010; Sun 2012; Ho-Dac, Carson, and Moore 2013; 

Floyd et al. 2014; You, Vadakkepatt, and Joshi 2015). Almost 85% of consumers now 

trust online reviews as much as a personal recommendation (BrightLocal 2017), because 

reviews can reduce uncertainty and transaction costs (Brown and Reingen 1987; Murray 

1991; Banerjee 1992; Udo and Marquis 2002). In general, online reviews are perceived 

as a source of diagnostic information rather than a source of persuasion. Thus, in the 

absence of a fake review alert, consumers are likely to form opinions consistent with the 

information they encounter. This means that prior to experiencing the brand, consumers’ 

ratings are likely to be consistent with the brands’ average rating. 
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We first discuss how consumers might process reviews in the presence of a fake 

review alert as well as the effect on brand ratings. We then discuss the mediation by the 

desire for justice and accuracy perceptions. Lastly, we discuss how the effect of a fake 

review alert can be attenuated by reinforcing the aggregate brand information after 

consumers encounter an alert. 

Review Processing in the Presence of a Fake Review Alert 

A fake review alert informs consumers that someone has attempted to present 

them with fraudulent information. Once fake reviews are identified, websites such as 

Yelp remove the fake reviews, and post an alert. While this suggests that the remaining 

reviews are trustworthy, the alert creates suspicion regarding the veracity of the available 

information (Kirmani and Zhu 2007). We argue that the fake review alert leads to the 

activation of persuasion knowledge (Friestad and Wright 1994), as consumers draw 

inferences about the source and intention of the fake reviews. Although fake review alerts 

inform consumers that misleading information has been identified and removed, it 

increases the saliency of fake reviews, leading to an attempt to correct bias. 

 Persuasion Knowledge and Correction 

Persuasion knowledge is activated when consumers are suspicious of a marketing 

agent’s motives, statements, or actions, which results in less favorable brand and agent 

attitudes (Campbell 1995; Campbell and Kirmani 2000; Jain and Posavac 2004; Kirmani 

and Zhu 2007). For example, when consumers are suspicious of an advertising tactic, 

they may decrease their purchase intentions for the focal product (Campbell 1995). 

Sometimes, however, accessing persuasion knowledge can lead to increased brand and 

agent attitudes (Isaac and Grayson 2017). For example, when a marketer employs a 
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credible tactic (e.g., reinforcing the availability of a price-matching opportunity), it can 

actually increase perceptions of the marketer and purchase intentions. In our research, we 

argue that consumers perceive fake reviews as manipulative, leading to negative effects. 

 When persuasion knowledge is activated, consumers correct their initial 

impressions to take into account the information they perceive to be biased (Campbell 

and Kirmani 2000). This means that consumers will determine the valence and size of the 

bias, and adjust their brand perceptions. However, the flexible correction model (Petty 

and Wegener 1993; Wegener and Petty 1995b; Wegener and Petty 1997) suggests that 

people can easily overcorrect due to inaccurate perceptions of the bias. In the context of a 

fake review alert, consumers are unlikely to account for the trustworthy review volume 

due to the salience of fake reviews, leading to brand rating corrections even when there 

are potentially hundreds of accurate reviews.  

 The type of correction will depend on the valence of the fake review alert. Fake 

positive reviews are created by companies with the goal of increasing favorable 

perceptions of their brand in an attempt to attract customers. Companies also incentivize 

consumers to write these reviews in exchange for discounts. In contrast, fake negative 

reviews are created with the goal of increasing unfavorable perceptions of the brand. The 

likely source of these reviews is a competitor of the brand, who may also pay third parties 

to write the negative reviews (Mayzlin, Dover, and Chevalier 2014). Thus, the source of 

fake positive reviews is the brand, whereas the source of fake negative reviews is the 

competition. 

 Following the work of Wegener and Petty, we argue that consumers use a naïve 

theory of persuasion in an attempt to correct for bias (Thompson 1981; Baumeister and 



63 
 

Newman 1994). After determining the valence of the bias, consumers will adjust their 

brand ratings in the opposite direction of the perceived bias without properly accounting 

for the size of the bias. Because fake review alerts signal that the fake reviews have been 

identified and removed, only reviews presumed to be authentic by the website remain. 

The authentic reviews are what factor into the average brand rating and review volume, 

but consumers may still correct for a perceived bias.  Formally: 

H1: Relative to when a fake review alert is absent, a fake negative (positive) review 

alert increases (decreases) brand ratings. 

Mediation via Perceived Rating Accuracy and the Desire for Justice 

 Because reviews reduce uncertainty in consumers’ decisions (Brown and Reingen 

1987; Udo and Marquis 2002), consumer’s brand ratings are dependent on how accurate 

they perceive the reviews to be. Thus, the expectant brand rating is a function of the 

perceived average rating accuracy. And relative to when an alert is absent, a fake review 

alert decreases the perception of average rating accuracy, regardless of valence.  

Furthermore, the desire for justice may also come into play for positive fake 

review alerts. Justice is a multi-faceted construct relating to the outcomes, interactional 

behaviors, and procedures that arise in a situation (Tax, Brown, and Chandrashekaran 

1998). Literature exploring the desire for revenge has associated it with intense cognitive 

(McCullough, Fincham, and Tsang 2003) and emotional (Bonifield and Cole 2007) 

investment. If a brand mistreats a consumer, that consumer may seek justice in the form 

of revenge by spreading negative word of mouth about their experience (Ward and 

Ostrom 2006) or avoiding the brand (Bechwati and Morrin 2003; Bonifield and Cole 

2007; Ward and Ostrom 2006; Grégoire, Tripp, and Legoux 2009).While a desire for 
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revenge may persist as long as consumers hold a grudge (McCullough, Fincham, and 

Tsang 2003), it is likely to fade over time (Bies, Tripp, and Kramer 1997) due to the 

psychological cost associated with maintaining the desire (Bechwati and Morrin 2003). 

Consumers can further satisfy their desire for revenge by punishing the brand at-fault 

(Grégoire, Tripp and Legoux 2009). 

However, consumers will only punish the brand when they can attribute the fake 

reviews to the brand itself. Since the positive fake review alert states that the brand is the 

source of the fake reviews, consumers are likely to blame the brand for trying to mislead 

them. Thus, the desire for justice will be stronger in the presence of a fake positive versus 

negative review alert. 

H2: A fake review alert, regardless of valence, decreases the perception of average 

rating accuracy. 

H3: Relative to when a fake review alert is absent or negative, a fake positive review 

alert increases the desire for justice. 

Taken together, we argue that brand ratings are mediated by the perception of average 

rating accuracy in the presence of a fake negative review alert, while being mediated by 

the perception of average rating accuracy and the desire for justice in the presence of a 

fake positive review alert. Formally: 

H4a: In the presence of a fake negative review alert, the effect of the alert on brand 

ratings is mediated by the perception of average rating accuracy. 

H4b: In the presence of a fake positive review alert, the effect of the alert on brand 

ratings is mediated by both the perception of average rating accuracy and the desire 

for justice simultaneously. 
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Effects of Fake Review Alerts on Reading Behavior 

The correction process entails not only a deviation from initial brand impressions 

but also changes to how consumers acquire information (Wilson and Brekke 1994; 

Wegener and Petty 1995b; Wegener and Petty 1997). So the fake review alerts have the 

potential to bias consumers’ decisions by not only leading them to correct for a bias that 

has already been corrected for by the website, but also by leading them to read reviews 

which they suspect are more credible and avoid reviews which they suspect are less 

credible. 

One benefit of online reviews is that they generally provide consumers access to a 

variety of opinions (Udo and Marquis 2002), so consumers can find both negative and 

positive reviews. Because the alert makes consumers suspicious, they may be more likely 

to scrutinize negative rather than positive reviews. Since the alert makes them question 

the accuracy of the reviews, they may want to avoid making a poor decision. This 

suggests that they will pay more attention to negative than positive information. The 

negativity bias suggests that consumers attend to, and elaborate more on, negative 

information (Baumeister et al. 2001; Rozin and Royzman 2001). It has been 

demonstrated in the context of online reviews as well (Schlosser 2005). Specifically, 

Schlosser found that consumers’ reviews were more influenced by others’ negative 

reviews, relative to positive reviews. As such, we would expect that consumers generally 

read more negative than positive reviews in an effort to learn what brands to avoid. 

Formally: 

H5: The average valence of reviews read by consumers will decrease in the presence 

of a fake positive (versus negative) review alert. 
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Moderating the Effect of Fake Review Alerts on Brand Ratings 

 Our hypothesized process is that consumers’ brand ratings are a function of their 

perceived accuracy of the average rating, as well as their desire for justice in the presence 

of a fake positive review alert. One implication of our theoretical process is that making 

the average rating salient should attenuate the effect of a fake review alert on a brand’s 

rating. Drawing attention to the review volume should make consumers perceive the 

reviews as more accurate and lessen the impact of the few fake reviews. Formally: 

H6: Presenting a brand’s aggregate information after a fake review alert is displayed 

attenuates the desire for justice, and ultimately, attenuates the effect of the fake 

review alert on brand ratings. 

In the next section, we test these hypotheses over several studies. 

 

OVERVIEW OF STUDIES 

 

We present four studies to test the hypotheses. Study 1 uses web-scraped data 

from Yelp.com to provide support for the effect of a fake positive review alert on brand 

ratings. The next three studies were conducted in the lab. Study 2 tests the effect of fake 

positive and negative review alerts on brand ratings (H1), the perception of average rating 

accuracy (H2), the desire for justice (H3), and the average valence of reviews read (H5) 

over three rounds. Study 3 then tests all of these hypotheses in a single period, while also 

testing H4 by demonstrating the dual mediating roles of the perceptions of average rating 

accuracy and the desire for justice. Lastly, Study 4 provides evidence for H6 by 
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demonstrating the moderating role of an aggregate information disclaimer on the effect of 

fake review alerts, while also providing additional evidence for H1 – H5. 

 

----- 

Insert table 1 about here 

----- 

 

Study 1: Empirical Investigation of Positive Fake Review Alerts on Yelp 

Study 1 examines the effect of fake positive review alerts on consumers’ brand 

ratings on Yelp.com. In 2012, Yelp began their “Consumer Alert” program in which 

brands caught attempting to manipulate reviews received an alert displayed on their 

subpage within Yelp for 90 days. This alert informs consumers who visited the brand’s 

subpage that the brand had been caught attempting to manipulate reviews in an attempt to 

inflate the rating of their business. After 90 days, the alert is removed. Yelp currently 

displays alerts for brands which have been caught trying to increase their own rating, but 

not for those who have received fake negative reviews from competitors. 

 In addition to the fake review alerts, Yelp uses an algorithm to determine the 

likely veracity of reviews and automatically filters reviews into “recommended” and “not 

recommended” lists. Not recommended reviews are separated from the recommended 

reviews, are not prominently displayed, and do not impact the calculation of the average 

rating and review volume. Although Yelp’s sorting algorithm is proprietary, it is thought 

to include attributes such as the reviewer’s IP address, the reviewer’s review volume, and 

syntactical cues within the review. While reviews can be filtered for reasons other than 



68 
 

being fraudulent (e.g., lacking usefulness), they do serve as a proxy for fake reviews. 

Thus, we examine the effect of a fake review alert on both the recommended and not 

recommended reviews 

Data and Procedure 

 To create the dataset, we analyzed news articles and press releases that mention 

the “Consumer Alert” program, which resulted in a list of 32 brands across 11 product 

categories (e.g., medical, restaurants, entertainment, etc.) that were known to have 

received the fake review alert. We then web-scraped all Yelp reviews of these brands. 

This resulted in an initial dataset of 32 brands and over 9000 reviews. However, to avoid 

concerns of a brand’s time on the market, we trimmed the data for each brand to only 

include a 270-day timeframe split into three periods: 90 days before the alert was active, 

90 days during the active alert, and 90 days after the alert. This resulted in 1885 reviews 

for the 32 brands. These reviews were further classified as “recommended” and “not 

recommended” reviews by Yelp’s algorithm, which served as a proxy for authentic and 

fake reviews. Though tangential to the purpose of this research, this allowed us to 

examine the effect of a fake positive review alert on both review types. The time periods 

and review types were both treated as between-subjects factors, as we assume that most 

consumers are not leaving multiple reviews for the same brand. The dependent variable 

of interest was the average rating, so we extracted the rating from each review, and 

pooled the data across brands. We used the average ratings that occurred in the 90 days 

before the alert as the baseline, and compared the ratings during and after the alert to 

determine the effect of a fake positive review alert. 

Results and Discussion 
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H1 posits that relative to when a fake review alert is absent, a fake positive review 

alert decreases brand ratings. A 2 (review type: not recommended, recommended) x 3 

(90-day time period: before alert, during alert, after alert) ANOVA on brand ratings 

yielded main effects of review type (F(1, 1879) = 18.35; p < .001) and time period (F(2, 

1879) = 94.83; p < .001), qualified by a significant interaction (F(2, 1879) = 4.18; p = 

.015). Before the alert, ratings were significantly higher for the not recommended than the 

recommended reviews (Mnot recommended = 4.64, Mrecommended = 4.01; F(1, 1879) = 59.74; p < 

.001). This finding is consistent with the notion that not recommended reviews contained 

more fake positive versus negative reviews. During the alert, ratings were marginally 

higher for the not recommended reviews (Mnot recommended = 3.26, Mrecommended = 2.98; F(1, 

1879) = 3.29; p = .07). We define a p-value as marginally significant based on the rule-

of-thumb that it falls between .05 and .10. This suggests that an alert attenuates the 

prevalence of fake positive reviews. After the alert, ratings were not significantly 

different for review types (Mnot recommended = 4.19, Mrecommended = 4.04; F(1, 1879) = .76; p 

> .35), which suggests that fake review alerts may have a long-lasting impact in reducing 

the volume of fake reviews. The main effects demonstrated that the ratings of not 

recommended reviews were higher than those which were recommended (Mnot recommended 

= 4.35, Mrecommended = 3.81), while the ratings before an alert (Mbefore = 4.33) were greater 

than those after an alert (Mafter = 4.12; t(1882) = -2.63; p = .009), which were greater than 

those during an alert (Mduring = 3.13; t(1882) = -8.33; p < .001). 

These findings provide initial evidence for H1, as the presence of a fake positive 

review alert was shown to decrease brand ratings. Although unlikely, it is possible that 

the changes in brand ratings corresponded to changes in actual quality, or unique to the 
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consumers who left reviews in each period. Thus, in the following studies, we use 

controlled lab studies to avoid these concerns. While outside the scope of this research, 

this study also provided evidence for the long-term effects of a fake review alert. It 

appears that the effect of the fake positive review alert on brand ratings only occur so 

long as the alert active, but may curb fake reviews in the long-term, as witnessed by the 

lower rating of the “not recommended” reviews. While this research focuses on the 

effects of alerts on consumers, rather than fake review providers, it does provide some 

interesting insights into firm behavior as well.  

 

----- 

Insert figure 9 about here 

----- 

 

Study 2: The Effect of Fake Negative Review Alerts 

 Study 2 provides tests of H1 – H3 (the effect of fake review alerts on brand 

ratings, perceptions of average rating accuracy, and the desire for justice), and also H5 

(the effect of fake review alerts on reading behavior). We employed a longitudinal 

experiment that took place over three rounds of data collection. The manipulation 

occurred in the second round when participants saw either a fake negative or positive 

review alert. In the first and third time periods, fake review alerts were not present. Thus, 

we employed a 2 (fake review alert: negative, positive) x 3 (time period: before alert, 

during alert, after alert) mixed design, where the alert was between-subjects and the time 

period was within-subject. Therefore, it is important to note that this study examines the 
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effect of a fake review alert on the same reviewer’s brand ratings over time, whereas 

Study 1 assumed that the reviewers were unique in each time period. 

Design and Procedure 

Participants were undergraduates at a large American university who participated 

in three rounds of studies in exchange for course credit. Round 1 included 388 

participants. Round 2 included 375 participants. Round 3 included 348 participants. 

Ultimately, 278 participants (48% female; Mage = 20.38) completed all three rounds, 

representing an attrition rate of 24.93%. In Round 1, all participants completed the fake 

review alert absent condition. In Round 2, participants were randomly assigned to either 

the fake positive or negative review alert condition. In Round 3, all participants 

completed a fake review alert absent condition. Thus, the between-subjects manipulation 

only occurred in Round 2. The sample size was a convenience sample based on the 

undergraduate participants for a two-week time period in each round. In Round 1, 

participants read a scenario which detailed an upcoming trip to San Diego, CA, which 

was far away from their university. They were told that they had not yet booked a hotel, 

and thus, decided to view some hotel reviews online. In both of the subsequent rounds, 

they were told that they still had not booked the hotel and decided to read some additional 

reviews. Using a template similar to Yelp, at the top of the page participants viewed 

summary information of the hotel detailing the location (San Diego, CA), price range 

($$), average rating (3.2 out of 5 stars), number of reviews (264), and a few photos of the 

hotel room (see Appendix C). They also saw 11 snippets of reviews (ten labeled 

“recommended” and one labeled “not recommended”). The “not recommended” review 

was included to determine if participants were interested in reading information that was 
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likely fake. The review set contained two reviews of each valence (1-star, 2-star, etc.) 

plus the “not recommended” review. Furthermore, the not recommended review had a 

disclosure informing participants that this review lacked credibility and did not impact 

the average rating or number of reviews. After viewing the review snippets, participants 

had the opportunity to read the full-length review for any, and as many, of the 11 reviews 

as they wanted, one at a time. 

After reading the reviews, participants were asked a series of questions. The 

brand rating was assessed by asking participants “What star rating would you assign this 

brand? That is, what rating do you think reflects the true quality of West End Hotel?” (1 – 

5 stars, continuous scale). Perception of average rating accuracy was assessed with the 

question “Given the available information, how accurate is the 3.2 out of 5.0 average star 

rating from other consumers for West End Hotel?” (1 = not at all – 7 = extremely). The 

desire for justice was computed by calculating a difference score of two measures: “To 

what degree would you say that your rating was made to punish the brand” and “To what 

degree would you say that your rating was made to reward the brand” and (1 = not at all – 

7 = definitely). Measuring justice in this manner provides robust test of our hypothesis as 

it allows us to demonstrate asymmetric effects of justice as a function of the alert valence. 

Thus, a positive score on this scale indicated a desire to punish while a negative score 

indicated a desire to reward the brand. In addition to the measured variables, we also 

computed several variables based on the full-length reviews participants chose to read. 

We computed the average valence of the reviews read by participants, the number of 

recommended reviews read, and whether participants chose to read the not recommended 

review. 
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Results 

Brand Rating. H1 posits that relative to when a fake review alert is absent, a fake 

negative (positive) review alert increases (decreases) brand ratings (Figure 2 shows these 

findings). A 2 (fake review alert: negative, positive) x 3 (time period: before alert, during 

alert, after alert) repeated measures mixed ANOVA on brand rating yielded a significant 

main effect of the alert (F(1, 276) = 19.99; p < .001), qualified by a significant interaction 

(F(1, 276) = 43.96; p < .001). The main effect of the time period was not significant (p > 

.10). Planned contrasts were conducted within each alert condition across time periods. 

Consistent with H1, for brands which received a fake positive review alert, brand ratings 

decreased from before to during the active alert (Mbefore = 2.62, Mduring = 2.44; F(1, 133) 

= 7.22; p = .008). This suggests that participants punished brands which received fake 

positive reviews. Consistent with Study 1, after a fake positive review alert was removed, 

the brand ratings returned to similar levels as they were before the alert (Mafter = 2.64; 

F(1, 134) = 9.33; p = .003), suggesting that the effect of a fake positive review alert did 

not persist once the alert was removed, as ratings before and after the alert were not 

significantly different (F(1, 133) = .122; p > .70). 

Consistent with H1, for brands which received a fake negative review alert, brand 

ratings increased from before to during the active alert (Mbefore = 2.63, Mduring = 3.02; F(1, 

143) = 47.34; p < .001). This suggests that participants discounted negative information 

about the brand. After a fake negative review alert was removed, the brand ratings 

decreased (Mafter = 2.82; F(1, 143) = 12.77; p < .001) but remained higher than before the 

alert (F(1, 143) = 8.71; p = .004), demonstrating a persistent effect of a fake negative 

review alert. It is possible that the fake negative review alert was more memorable to 
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participants or that it led them to attempt retroactive correction for the brand rating they 

assigned in the first time period. While we were agnostic as to the longitudinal effects 

that emerged in round 3, this finding emerged as a potentially interesting avenue for 

future research. 

 

----- 

Insert figure 10 about here 

----- 

 

Perception of Average Rating Accuracy. H2 posits that the presence of a fake 

review alert, regardless of valence, decreases the perception of average rating accuracy. 

A 2 x 3 repeated measures mixed ANOVA on the perception of average rating accuracy 

yielded a significant main effect of time period (F(1, 276) = 6.20; p = .013), qualified by 

a significant interaction (F(1, 276) = 6.20; p = .013). The main effect of the alert was not 

significant (p > .15). Planned contrasts were conducted within each alert type. 

Surprisingly, perceptions of the average rating accuracy was not affected by the fake 

negative review alert (p > .15). However, as expected, within the fake positive review 

alert condition, the average ratings were perceived to be more accurate before versus 

during the active alert (Mbefore = 4.63, Mduring = 4.05; F(1, 132) = 16.89; p < .001). After 

the alert was removed, the perceived accuracy of the average rating marginally increased 

(Mafter = 4.29; F(1, 132) = 3.62; p = .059), but this was still significantly lower than 

before the alert (F(1, 132) = 6.91; p = .01). Taken together, these findings suggest that 

consumers attend more to accuracy perceptions in the presence of a fake positive versus 
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negative review alert, and also suggest that fake positive review alerts have persistent 

effects, on both brand ratings and the perception of ratings accuracy, even once they are 

removed. 

 

----- 

Insert figure 11 about here 

----- 

 

 Desire for Justice. H3 posits that a fake positive review alert increases the desire 

for justice relative to other conditions. A 2 x 3 repeated measures mixed ANOVA on the 

desire for justice yielded significant main effects of the alert (F(1, 276) = 14.52; p < .001) 

and time period (F(1, 276) = 12.81; p < .001), qualified by a significant interaction (F(1, 

276) = 41.49; p < .001). Planned contrasts were conducted within each alert type. In the 

fake negative review alert condition, the desire for justice was significantly higher before 

than during the active alert (Mbefore = .54, Mduring = -.81; F(1, 143) = 40.95; p < .001), 

indicating a greater desire to reward the brand in the presence of the fake negative review 

alert. This may suggest that consumers attempted to retroactively correct for the ratings 

they assigned in Round 1 when they learn that the brand has been a victim of fake 

negative reviews, possibly because they think they may have been influenced by fake 

reviews in the previous round. After the alert was removed, this effect was attenuated 

(Mafter = .15; F(1, 143) = 43.08; p < .001), but remained less negative than before the alert 

being active (F(1, 143) = 4.49; p = .036). Consistent with H3, in the fake positive review 

alert condition, the desire for justice was significantly higher during than before the 
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active alert (Mbefore = .37, Mduring =-.83; F(1, 133) = 43.08; p < .001), indicating a desire 

to punish the brand when the alert is active. After the alert was removed, this desire for 

justice did not significantly decrease (Mafter = .63; F(1, 133) = 1.06; p > .30), however 

there was also no difference in the desire for justice before and after alert was active (p > 

.10).  Taken together, these results suggest that justice may lead to increased brand 

evaluations, when consumers perceive that their prior brand perceptions were biased by 

fake reviews. 

 

----- 

Insert figure 12 about here 

----- 

 

 Average Valence of Reviews Read. H5 posits that the average valence of reviews 

read will decrease in the presence of a fake positive versus negative review alert. A 2 x 3 

repeated measures mixed ANOVA on the average valence of reviews read yielded 

significant main effects of the alert (F(1, 269) = 11.72; p = .001) and time period (F(1, 

269) = 4.88; p = .028), qualified by a marginal interaction (F(1, 269) = 2.80; p = .095). 

Planned contrasts within each alert type were conducted. In the fake negative review alert 

condition, relative to before (Mbefore = 2.63), participants read significantly more positive 

reviews during (Mduring = 2.94; F(1, 139) = 17.43; p < .001) and after (Mafter = 2.84; F(1, 

139) = 17.43; p < .001) the active alert. There was no difference during and after the 

active alert (p > .20). In the fake positive review alert condition, there was no effect of the 

alert on review reading behavior (p > .70). Thus, this study demonstrated that, in a 
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longitudinal context, fake negative review alerts increase the average valence of reviews 

read relative to fake positive review alerts. This could be because most participants 

seemed to have an overall negative impression of the restaurant, thus their baseline 

reading behavior established a floor, or that consumers are likely to engage in retroactive 

correction when they encounter a fake negative review alert, but not a fake positive 

review alert. 

 

----- 

Insert figure 13 about here 

----- 

 

 Number of Recommended Reviews Read. A 2 (fake review alert: negative, 

positive) x 3 (time period: before alert, during alert, after alert) repeated measures mixed 

ANOVA on the number of recommended reviews read yielded a significant main effect 

of time period (F(1, 279) = 16.79; p < .001). Neither the main effect of the alert type nor 

the interaction were significant (p > .15). Participants read significantly fewer reviews 

after the active alert (Mafter = 3.59) than before (Mbefore = 4.36; F(1, 279) = 16.79; p < 

.001) and during (Mafter = 4.36; F(1, 279) = 31.25; p < .001). There was no significant 

difference before and during the alert being active (p > .90). This suggests that 

participants required fewer reviews to reach their decisions as the exposures to the brand 

increased. Interestingly, there was no difference between before and during the active 

alert, suggesting that the presence of an alert may increase participants’ need to acquire 

additional information. 
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 Did Participants Read the “Not Recommended” Review? The effects of the fake 

review alert and time period did not significantly impact participants’ likelihood of 

reading the not recommended review (p > .10). On average, 34% of participants chose to 

read the not recommended review in at least one time period. 

Discussion 

 The findings of this study provide support for H1 by replicating the effects 

in Study 1 while also demonstrating the effect of fake negative review alerts. 

Furthermore, this study provided internal validity to bolster the findings of Study 1 by 

using a fictitious brand and avoiding concerns of self-selection as all participants were 

asked to rate the brand. However, it is important to note that this study involved the same 

participants across three rounds, where it is unlikely that the same consumers reviewed 

the brand across each time period in Study 1. As such, the repeated-measures element of 

this study may be able to account for some of the unpredicted effects witnessed in this 

study. For example, our theory posits that the desire for justice is significantly lower 

(indicating a desire to punish) for a fake positive review alert, relative to negative or 

absent. Yet, our results demonstrated that the fake negative review alert led to a 

significantly higher desire for justice (indicating a desire to reward)a, relative to positive 

or absent. We posit that this occurred as participants engaged in a retroactive correction 

process in the latter rounds to correct for Round 1. Although participants generally held 

an unfavorable opinion of the brand in Round 1, in Round 2 it appeared that a fake 

positive review alert merely reinforced this viewpoint. On the other hand, a fake negative 

review alert may have led participants to attribute their initial brand rating to undue 

influence from fake reviews, which caused them to correct for Round 1 in the latter 
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rounds. Although tangential to the focus of this paper, this would suggest that consumers 

may more strongly attempt to correct past actions when they were effectively 

manipulated into discounting a brand. This would also inform the persistent effects of a 

fake negative review alert even after it is removed for consumers who were impacted by 

it in prior periods (e.g., lingering effects of a guilty conscience). While it is unlikely that 

consumers would review a brand in multiple periods, this is an area for future research 

which may have implications for repeat consumers. 

In the remaining studies, we will focus on a single time period to assess the effect 

of fake review alerts between-subjects. In doing so, we can isolate the effect of a fake 

review alert on consumers from their previous brand familiarity and brand dispositions. 

Study 3: The Dual Mediating Roles of Perception of Average Rating Accuracy and 

Desire for Justice 

Study 3 provides a direct test of H4 in that we demonstrate the mediation paths of 

the perception of average rating accuracy and the desire for justice on fake review alert 

effects on brand ratings. While the previous study demonstrated the effects of fake review 

alerts on these variables independently, due to the complexity of longitudinal mediation 

analysis, we did not directly test this proposition. In addition to replicating the findings of 

prior studies, and demonstrating the mediating roles of both average rating accuracy and 

the desire for justice, in this study we seek to further expand the robustness of our 

findings by using a different category as well, restaurants. 

Procedure 

 One-hundred and fifty participants (68% female; Mage = 21.15; undergraduate  

negative, positive) between-subjects design. The sample size was a convenience sample 
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based on the undergraduate participants for a one-week time period. Participants read a 

scenario in which they were looking for a new café and found one that seemed suitable. 

Participants viewed summary information of the restaurant detailing the price range ($), 

average rating (3.5 out of 5 stars), number of reviews (85), and a small picture of the café 

interior. They were told that they could view some reviews for the brand before making a 

decision. As before, participants had access to 11 reviews (10 “recommended” and one 

“not recommended”) and could read as few or as many reviews as they liked. After 

reading their reviews, participants responded to the same measures as Study 2. See 

Appendix C for stimuli. 

Results 

Brand Rating. A 3-cell (fake review alert: absent, negative, positive) ANOVA on 

brand ratings yielded a significant effect (F(2, 147) = 35.30; p < .001). Planned contrasts 

demonstrated that relative to when an alert was absent (Mabsent = 3.10), a fake negative 

review alert increased brand ratings (Mnegative = 3.43; t(147) = 3.11; p = .002) while a fake 

positive review alert decreased brand ratings (Mpositive = 2.55; t(147) = -5.20; p < .001). 

This provided support for H1. 

 

----- 

Insert figure 14 about here 

----- 

 

Perception of Average Rating Accuracy. H2 posits that a fake review alert, 

regardless of valence, decreases the perception of average rating accuracy. A 3-cell (fake 
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review alert: absent, negative, positive) ANOVA on perception of average rating 

accuracy yielded a significant effect (F(2, 147) = 20.65; p < .001). Planned contrasts 

demonstrated that a fake negative review alert decreased the perception of average rating 

accuracy relative to absent condition (Mabsent = 5.12; Mnegative = 4.24; t(147) = -3.95; p < 

.001). Furthermore, a fake positive review alert decreased perceptions of accuracy even 

further than that of the negative alert (Mpositive = 3.70; t(147) = -2.42; p = .017). Thus, 

both fake review alerts decreased the perception of average rating accuracy relative to 

when the alert was absent, supporting H2.. 

 

----- 

Insert figure 15 about here 

----- 

 

Desire for Justice. H3 posits that the desire for justice increases in the presence of 

fake positive review alert relative to when it is negative or absent. A 3-cell (fake review 

alert: absent, negative, positive) ANOVA on brand ratings yielded a significant effect 

(F(2, 145) = 16.49; p < .001). Planned contrasts demonstrated an asymmetric effect of the 

alert on participants’ desire for justice such that there was no difference between when 

the alert was absent or negative (p > .25). However, the desire for justice was 

significantly greater in the presence of a fake positive review alert (Mpositive = .60) relative 

to when the alert was absent (Mabsent = -.84; t(145) = 4.29; p < .001) or a fake negative 

alert (Mnegative = -1.23; t(145) = 5.44; p < .001), supporting H3. This demonstrated that 
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participants’ desire to punish the brand was greater in presence of a fake positive review 

alert, relative to when the alert was absent or negative. 

 

----- 

Insert figure 16 about here 

----- 

 

Mediation via Perception of Average Rating Accuracy and Desire for Justice. H4 

proposes a dual mediation process such that consumers’ perception of the accuracy of the 

average rating and their desire for justice mediate the effect of fake review alerts on 

brand ratings as a function of the valence of the fake reviews. We tested this proposition 

using the PROCESS macro (model 4: Preacher, Rucker, and Hayes 2007) using the alert 

type (absent, negative, positive) as our independent variable, brand rating as our 

dependent variable, and average rating accuracy and desire for justice as our mediators. 

Results demonstrated significant omnibus mediation effects through both average rating 

accuracy (β = .02; CI95% = [.003, .042]) and the desire for justice (β = -.03; CI95% = [-

.048, -.011]). Dummy coding our independent variable demonstrated the effects of both 

alert types relative to when an alert was absent. When consumers encountered a fake 

negative review alert, only mediation through average rating accuracy remained 

significant (average rating accuracy (β = -.08; CI95% = [-.166, -.017]), desire for justice (β 

= .06; CI95% = [-.032, .179]). Yet, when consumers encountered a fake positive review 

alert, both pathways were significant (average rating accuracy (β = -.12; CI95% = [-.252, -

.019]), desire for justice (β = -.22; CI95% = [-.380, -.117]). This finding provides evidence 
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for H4 as accuracy perceptions always mediate but the desire for justice only mediates 

when consumers encounter fake positive review alerts, where they can attribute the 

manipulative intent to a specific brand. 

Average Valence of Reviews Read. A 3 (fake review alert: absent, negative, 

positive) ANOVA on average valence of reviews read yielded a significant effect (F(2, 

147) = 3.11; p = .048). Planned contrasts further demonstrated that relative to when an 

alert was absent (Mabsent = 2.82), a fake positive review alert decreased the valence of 

reviews read (Mpositive = 2.38; t(147) = -2.38; p = .019) while a fake negative review alert 

did not (Mnegative = 2.72; t(147) = -1.83; p > .55), supporting H5. Furthermore, we tested 

this as a mediating variable and demonstrated that it did not mediate (i.e., the 95% 

confidence interval included zero), ruling out a possible alternative explanation in that 

participants’ brand ratings might be a direct result of averaging the reviews they have 

read. 

Number of Recommended Reviews Read. Consistent with Study 2, the effect of 

the fake review alert did not significantly impact participants’ likelihood of reading the 

not recommended review (p > .95). On average, participants read 3.39 reviews. 

 Did Participants Read the “Not Recommended” Review? Consistent with Study 

2, the effect of the fake review alert did not significantly impact participants’ likelihood 

of reading the not recommended review (p > .60). On average, 20% of participants chose 

to read the not recommended review. 

 

----- 

Insert figure 17 about here 
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----- 

 

Discussion 

 This study provided support for H4, by demonstrating the effect of a fake review 

alert on brand ratings was mediated by the perception of average rating accuracy 

(regardless of valence), and the desire for justice (for fake positive review alerts). 

Participants are always likely to correct for any perceived inaccuracies in the average 

ratings, but the desire for justice yielded additional influence in the presence of positive 

fake review alerts relative to the other conditions. We argue that this occurs because 

consumers can attribute the fake reviews to the brand in the fake positive review alert 

condition, whereas in the fake negative review alert condition, the brand is not at fault. 

We also provided evidence additional evidence for several of our hypotheses. Participants 

increased brand ratings in the presence of a fake negative review alert and decreased 

brand ratings in the presence of a fake positive review alert (H1). We demonstrated that 

this was mediated by both participants’ perceptions of the average rating accuracy and 

their desire for justice. Furthermore, we demonstrated that participants read significantly 

more negative information in the presence of a fake positive review alert relative to other 

conditions (H5), but their brand ratings were not mediated by the valences read, ruling 

out a possible alternative explanation. 

Study 4: The Moderating Effect of Salient Aggregate Information 

Thus far, we have demonstrated that fake review alerts influence brand ratings by 

via perceptions of average rating accuracy and the desire for justice. If our process is 

correct, the effect of a fake review alert on brand ratings can be attenuated by 
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emphasizing the accuracy of the remaining reviews. In doing so, the need to correct is 

attenuated, as well as the desire for justice, and as a result, so is the effect of the fake 

review alert. Study 4 provides a test of this proposition (H6), by reinforcing the accuracy 

of the brand rating and review volume after the fake review alert is encountered. 

Design and Procedure 

Three-hundred and ten participants (50% female; Mage = 38.27; Amazon mTurk 

sample; $0.50 payment) were randomly assigned to a cell in a 2 (fake review alert: 

negative, positive) x 2 (aggregate information disclaimer: absent, present) between-

subjects design. The sample size was determined a priori based on a 75-subject rule-of-

thumb for online samples at the time the study was conducted. Having already 

established the directional effects of the fake review alert valences, in this study we only 

used the negative and positive conditions. Participants viewed the same stimuli for the 

hotel used in Study 2. To manipulate the salience of the aggregate information, we placed 

a disclaimer at the bottom of the alert which read “We have removed the fraudulent 

reviews, resulting in a 3.2 out of 5.0 rating, based on 264 reviews” in the present 

aggregate information disclaimer condition. Participants followed the same procedure as 

in the previous study and the same measures were assessed. See Appendix C for the 

stimuli. 

Results 

Brand Ratings. H6 posits that presenting a brand’s aggregate information after a 

fake review alert is displayed attenuates the effect of the fake review alert on brand 

ratings. A 2 (fake review alert: negative, positive) x 2 (aggregate information disclaimer: 

absent, present) ANOVA on brand ratings yielded a significant main effect of the alert 
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(F(1, 306) = 48.27; p < .001), qualified by a significant interaction (F(1, 306) = 12.69; p < 

.001). The main effect of the aggregate information disclaimer was not significant (p > 

.80). In the absence of the aggregate information disclaimer, a fake positive review alert 

(Mpositive = 2.08) decreased brand ratings relative to a fake negative review alert (Mnegative 

= 3.03; F(1, 306) = 55.28; p < .001). This replicated our prior findings. In the presence of 

the aggregate information disclaimer, the effects of the alerts were attenuated (Mpositive = 

2.43, Mnegative = 2.73; F(1, 306) = 5.72; p = .017). This finding provides support for H6 as 

it demonstrates that the effects of fake review alerts are attenuated in the presence of 

salient aggregate information. 

 

----- 

Insert figure 18 about here 

----- 

 

Perception of Average Rating Accuracy. A 2 (fake review alert: negative, 

positive) x 2 (aggregate information disclaimer: absent, present) ANOVA on the 

perception of average rating accuracy yielded significant main effects of the alert (F(1, 

306) = 14.97; p < .001) and the aggregate information disclaimer (F(1, 306) = 5.45; p = 

.02), qualified by a significant interaction (F(1, 306) = 5.41; p = .021). In the absence of 

the aggregate information disclaimer, the perception of average rating accuracy was 

significantly lower in the positive versus negative alert condition (Mnegative = 4.70; 

Mpositive = 3.62; F(1, 306)) = 19.21; p < .001). Consistent with prior studies, participants 

felt that the average rating was less accurate in the presence of a positive versus negative 
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alert. Conversely, in the presence of the aggregate information disclaimer, the alerts had 

no significant effect on the perception of average rating accuracy (Mnegative = 4.70, 

Mpositive = 4.43; F(1, 306)) = 1.19; p > .25), as expected. This suggests that by re-

emphasizing the average rating after participants viewed an alert, the effect of the alert on 

the perception average rating accuracy was attenuated. 

 

----- 

Insert figure 19 about here 

----- 

 

 Desire for Justice. A 2 (fake review alert: negative, positive) x 2 (aggregate 

information disclaimer: absent, present) ANOVA on desire for justice yielded a 

significant main effect of the alert (F(1, 306) = 30.86; p < .001), qualified by a significant 

interaction (F(1, 306) = 11.31; p = .001). The main effect of aggregate information 

disclaimer was not significant (p > .10). In the absence of the aggregate information 

disclaimer, the desire for justice was significantly greater in the presence of a fake 

positive versus negative review alert (Mnegative = -.88; Mpositive = 1.28; F(1, 306)) = 39.81; 

p < .001), consistent with prior studies. Conversely, in the presence of the aggregate 

information disclaimer, the alerts had no significant effect on the desire for justice 

(Mnegative = -.45, Mpositive = .09; F(1, 306)) = 2.40; p > .10). This suggests that the 

aggregate information disclaimer refocuses participants’ attention on the aggregate 

information, attenuating their desire for justice.  
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----- 

Insert figure 20 about here 

----- 

 

Moderated-Mediation of Brand Ratings via the Perception of Average Rating 

Accuracy and Desire for Justice. A PROCESS Model 8 analysis (Preacher, Rucker, and 

Hayes 2007) with the fake review alert and the aggregate information disclaimer as 

independent variables, brand rating as the dependent variable, and the perception of 

average rating accuracy and desire for justice as the mediators, yielded significant indices 

of moderated-mediation (perception average rating accuracy: β = .14; CI95% = [.026, 

.307]; desire for justice: β = .21; CI95% = [.087, .382]). 

In the absence of the aggregate information disclaimer, both the perception of 

average rating accuracy (β = -.18; CI95% = [-.329, -.095]) and desire for justice (β = -.28; 

CI95% = [-.428, -.159]) mediated the effect of an alert on consumers’ brand ratings. As 

expected, participants used both their perception of average rating accuracy and their 

desire for justice to inform their brand ratings when positive fake review alerts were 

present. Yet, in the presence of the aggregate information disclaimer, both pathways were 

no longer significant (perception of average rating accuracy: β = -.05; CI95% = [-.141, 

.029]; desire for justice: β = -.07; CI95% = [-.178, .016]). This suggests that by making the 

aggregate information salient after consumers view an alert, a website could ease 

concerns about rating accuracy and also attenuate their consumers’ desire for justice. 

These results provide additional evidence for H5, as we demonstrated the mediation 

process once more, and how it can be attenuated. 
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 Average Valence of Reviews Read. A 2 (fake review alert: negative, positive) x 2 

(aggregate information disclaimer: absent, present) ANOVA on the average valence of 

reviews read yielded a significant effect of the alert (F(1, 306) = 10.40; p = .001). Neither 

the main effect of the aggregate information disclaimer, nor the interaction term, were 

significant (p > .30). On average, participants read more negative reviews when they 

encountered a fake positive review alert (Mpositive = 2.54) relative to when they viewed a 

fake negative review alert (Mnegative = 2.89). In testing for the mediating role of this 

variable, we once again rule out this alternative explanation (i.e., the confidence interval 

included zero). 

 Number of Recommended Reviews Read. A 2 (fake review alert: negative, 

positive) x 2 (aggregate information disclaimer: absent, present) ANOVA on the number 

of recommended reviews read yielded a significant main effect of the alert (F(1, 306) = 

6.95; p = .009). Neither the main effect of the aggregate information disclaimer, nor the 

interaction term, were significant (p > .20). On average, participants read more reviews 

when they encountered a fake negative review alert (Mnegative = 3.90) relative to when 

they viewed a fake positive review alert (Mpositive = 3.28). While not a replication of our 

previous finding, this may suggest category effects (e.g., hotel versus restaurant) when 

reading reviews, though this is left as an interesting avenue for future research. 

 Did Participants Read the “Not Recommended” Review? A 2 (fake review alert: 

negative, positive) x 2 (aggregate information disclaimer: absent, present) binary logistic 

regression on the likelihood of reading the not recommended review yielded a significant 

main effect of the alert (χ2(1) = 8.60; p = .003). Neither the main effect of the aggregate 

information disclaimer, nor the interaction term, were significant (p > .70). Participants 
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were more likely to read the not recommended review when they viewed a fake negative 

review alert (Pnegative = .31) versus a fake positive review alert (Ppositive = .11), suggesting 

that participants were more curious about fake negative, versus positive, reviews. Once 

again, while this did not replicate the findings of our previous studies, it does provide the 

basis for future exploration of category effects on review reading behavior. 

Discussion 

 This study provided support for H6 by demonstrating that the negative effects of 

fake review alerts (i.e., leading consumers’ expectations to deviate from the average 

ratings) could be attenuated by reinforcing the aggregate information after consumers 

encounter the alert. This holds managerial relevance for websites that choose to use fake 

review alerts, as the alerts may be biasing their consumers’ judgments. Furthermore, this 

study provided additional evidence for the mediating roles of the perception of average 

rating accuracy and the desire for justice by demonstrating significant moderated-

mediation of their influences on brand ratings. By refocusing consumers’ attention on the 

aggregate statistics, they are less likely to perceive the average ratings as inaccurate and 

also less likely to seek justice. 

 One interesting finding of this study stems from the differing reading behaviors of 

the reviews across studies. While prior studies largely showed null effects of fake review 

alerts on the number of reviews read and whether participants read the not recommended 

review, this study did not. This is perhaps due to the different study paradigms (i.e., 

longitudinal versus static) or categories (e.g., hotels versus restaurants) or perhaps a 

combination of the two. In this study, participants were significantly more likely to read 

the not recommended review when it was a negative, versus positive, review. This could 
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be due to the perceived relative novelty of this review type versus fake positive reviews, 

or it could be because consumers think they can extract diagnostic information from these 

reviews. While outside the scope of this paper, the factors which influence the choice to 

read specific reviews is a rather interesting future direction.  

 

GENERAL DISCUSSION 

 

 Websites which host reviews are attempting to improve their consumers’ 

experiences by removing fake reviews. In doing so, they must expertly navigate 

perceptions of fraudulence and censorship. To do so, some websites, like Yelp, use fake 

review alerts to increase the transparency with their consumer base. However, our 

findings demonstrate that this attempt at transparency may backfire by biasing 

consumers’ decisions. That is, these alerts cause consumers’ opinions of the brands to 

deviate significantly from the honest reviews which have evaluated the brand. 

 Study 1 provided empirical support for the effect of fake positive review alerts on 

brand ratings. Study 2 replicated these findings in the lab while also demonstrating the 

effects of a fake negative review alert. Study 3 demonstrated the dual mediation process 

via the perception of average rating accuracy and the desire for justice on brand ratings, 

while also demonstrating the effect of an alert on reading behaviors. Study 4 then 

demonstrated one such way that managers can attenuate the bias created by fake review 

alerts; by refocusing consumers’ attention on the average brand rating and review volume 

after encountering a fake review alert. 

Theoretical Implications 
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 Prior research has largely demonstrated that the activation of persuasion 

knowledge decreases brand attitudes when the marketing tactics are salient (Campbell 

1995; Campbell and Kirmani 2000) or increases brand attitudes when the marketing 

tactic is credible (Isaac and Grayson 2017). In this work, we demonstrate that consumers 

not only hold accuracy goals in the presence of fraudulent information, but also justice 

goals against the source of the manipulative behavior. Rather than merely discount the 

fraudulent information, we demonstrate that consumers desire justice against those 

responsible and will actually punish or reward a brand depending on its role in the fake 

reviews. Unfortunately, this creates a bias as consumers overcorrect for the fake review 

alerts, perhaps increasing or decreasing a consumer’s expectation beyond the actual 

experience they will receive. However, we demonstrate that by refocusing consumers’ 

attention on the aggregate brand information after encountering an alert, consumers’ 

brand ratings are more in line with the average. 

Managerial Implications 

 As consumers’ demand for veracity increases, websites will have to adapt how, 

and what, information is provided to consumers. In doing so, the information websites 

provide will have the ability to significantly influence how consumers perceive brands, 

but also how consumers perceive the websites themselves. Regarding brand attitudes, 

websites must carefully monitor the reviews listed so as to provide consumers accurate 

information about the brand. Fake reviews have the ability to yield expectation 

disconfirmation which may long-term consequences for brand loyalty, but also website 

loyalty if consumers find the information to be inaccurate. Thus, websites should be 

focused on providing consumers accurate information rather than guiding perceptions of 
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expected accuracy, because once consumers actually use a product they will be able to 

contrast their experience with the expectation derived from the information the website 

provided. 

Limitations and Future Research 

 This paper provided both empirical data from web-scraped reviews and 

experiments to provide a robust account of the effects of fake review alerts on consumers. 

However, as with any non-controlled data source, it is impossible to control for 

consumers’ previous exposures to the brands in the web-scraped data. Thus, the persons 

visiting the brands and writing the reviews self-select into these decisions and we cannot 

account for that aspect. Future research would benefit from a field experiment that is able 

to exogenously determine when the alerts are active, and for whom. Furthermore, 

because fake review alerts are a relatively new phenomena, their long-term effects on 

businesses are not apparent. It would be interesting to study brand-side responses to these 

alerts to determine if brands attempt to improve product quality, or use other marketing 

variables, to overcome the publicity from an alert. 

 From an experimental viewpoint, while these studies allude to competitive 

environments, they do not provide additional information about competitors. In the real 

world, consumers have access to reviews from several brands to shape their decisions. It 

would thus be interesting to understand the effects of one brand’s fake review alerts on 

the evaluations of competing brands. Would consumers discount the ratings of all other 

brands when the focal brand has received a fake negative review alert, and would they 

elevate the ratings of all other brands when the focal brand has received a fake positive 
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review alert? This is perhaps an empirical question that could be tested in conjunction 

with future research of how brands should respond to fake review alerts. 

 Another interesting finding that arose from this research is that the participants 

consistently assigned brand ratings beneath that of the average rating in the control 

conditions. In unpublished work from one of the authors, they examine a review 

sequence bias on expected brand ratings, and the authors believe that this provides further 

evidence. For example, even if a product has an average rating of 4.0, if the first review a 

consumer encounters is a 1.0, their brand rating will likely be lower than that of the 

average. Thus, exploring the weighting of this effect relative to fake review alerts could 

be interesting.  

 More broadly, reviews are used by consumers as sources of information to help 

them form decisions. How would alerts impact the effectiveness of other information 

sources (e.g., news articles or social media posts)? Consumers’ pre-held beliefs to both 

news sources and social media creators may have interesting interactions with fake 

information alerts. Furthermore, given the topical importance of fake news claims, this 

avenue provides an important future direction for this research. 
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APPENDIX A – Essay I Stimuli 

Study 1 Low Volume Stimuli (other volumes listed in Table 1) 
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Study 2 – Low Volume Stimuli (other volumes listed in table 1) 
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Study 3 – Low Volume Stimuli (other ratings and volumes listed in Table 1) 

 

[measure same as Study 1] 

  



100 
 

Study 4 – Low Volume Stimuli (other ratings, volumes and differences listed in Table 1) 

 

  



101 
 

Study 5 – Low Volume Stimuli (other valences, volumes listed in Table 1) 
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Study 6 – Low Volume Stimuli (other volumes listed in Table 1) 
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Study 7 – Low Volumes Stimuli (other volumes listed in Table 1) 
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APPENDIX B – ESSAY I SUPPLEMENTAL STUDIES 

Appendix B1 

Amazon Choice Set Data 

 To understand just how often consumers are faced with a possible tradeoff 

between average product ratings and review volumes in choice sets, we analyzed a 

publicly-available data set from McAuley et al. (2015) which included over 142 million 

reviews and 2.5 million products, and respective consideration sets, for Amazon products 

across 24 different categories from May 1996 – July 2014. The data was split into two 

files, one which featured all reviews for the products, and one which featured the 

metadata, including the “related and also viewed” choice set options. By parsing these 

lists together, we were able to reconstruct the consideration sets consumers encountered. 

We then computed two measures from this data. First, we coded for whether any 

alternative choice option created a tradeoff scenario (i.e., a flip) with the focal product in 

which one option had a higher average product rating and fewer reviews relative to the 

other. We also coded for the frequency of this occurrence in each choice set. Thus, we 

have a measure of whether a tradeoff occurred in each set (i.e., share of choice sets 

flipped at least once), and how many options forced a tradeoff in that choice set (i.e., 

flipped share of the choice sets). 

 Our analysis revealed that 2,050,549 of the 2,503,422 (79%) choice sets 

demonstrated at least one tradeoff in the choice set between the focal product and its 

alternatives. Furthermore, on average, nearly half of the choice set, 8 out of 18 options 

(47%), had a lower rating but more reviews than the focal product.  
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Thus, the tradeoffs consumers face seem to be rather common in the online 

market. In fact, given that this information was based on Amazon data, which generally 

has more reviews than other online retailers, these findings are a conservative estimate of 

the state of the market, given the increased variance around product ratings when fewer 

reviews are available. Thus, for most retailers, the frequency of tradeoffs occurring is 

likely much greater. 

 

Table B1 – Amazon Tradeoff Data 

Categor
y ID Category 

Number 

of 

Product
s 

Product

s 
Flipped

* at 

Least 
Once 

Share of 

Product

s 
flipped 

at least 

once 
(%) 

Smalles

t CS** 
size 

Larges

t CS 
size 

Averag

e CS 
size 

Smalles

t 
number 

of items 

"flipped
" in CS 

Largest 
number 

of items 

"flipped
" in CS 

Averag

e 
number 

of items 

"flipped
" in CS 

Ave

rage 

"flip
ped" 

shar

e**
* 

1 

Amazon 
Instant 

Video 110 83 75% 0 57 12 0 52 7 59% 

2 
Apps for 
Android 6,707 4,258 63% 0 60 17 0 58 7 39% 

3 Automotive 213,414 174,078 82% 0 60 19 0 59 9 45% 

4 Baby 44,517 40,179 90% 0 60 29 0 59 14 47% 

5 Beauty 175,633 150,671 86% 0 60 20 0 58 10 49% 

6 Books 261,207 180,081 69% 0 60 6 0 57 3 45% 

7 
CDs and 

Vinyl 87,410 60,081 69% 0 59 6 0 54 2 41% 

8 

Cell Phones 

and 
Accessories 72,863 57,815 79% 0 60 16 0 56 7 47% 

10 
Digital 
Music 5,832 3,325 57% 0 56 5 0 55 1 33% 

11 Electronics 177,264 145,417 82% 0 60 19 0 58 9 47% 

12 

Grocery 

and 

Gourmet 
Food 109,956 93,351 85% 0 60 19 0 55 10 49% 

13 

Health and 
Personal 

Care 180,015 156,215 87% 0 60 24 0 57 12 49% 

14 
Home and 
Kitchen 251,964 218,096 87% 0 60 25 0 59 12 47% 
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15 
Kindle 
Store 43,037 29,954 70% 0 60 11 0 52 5 41% 

16 
Movies and 

TV 34,569 24,131 70% 0 60 7 0 52 3 44% 

17 
Musical 

Instruments 32,306 25,762 80% 0 60 18 0 55 8 45% 

18 
Office 

Products 74,213 63,361 85% 0 60 24 0 59 12 47% 

20 
Pet 

Supplies 69,424 60,128 87% 0 60 24 0 57 12 48% 

21 
Sports and 

Outdoors 285,373 241,576 85% 0 60 19 0 58 9 45% 

22 

Tools and 

Home 

Improveme
nt 129,065 104,454 81% 0 60 19 0 56 9 45% 

23 
Toys and 

Games 234,300 206,437 88% 0 60 31 0 60 14 46% 

24 
Video 

Games 14,243 11,096 78% 0 60 15 0 59 7 45% 

 
* Two products are being "flipped" if one product has higher average but lower number of ratings compared to another product. 

** In this context the term "Consideration Set" denotes the products identified by Amazon.com as "related and also viewed" with respect to the focal product 

*** Share of the products in CS flipped with respect to the focal product 
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APPENDIX B2 

Relative versus Absolute Differences in Review Volumes 

The purpose of this study was to compare the influence of an increase in the 

relative difference between choice options on the review volume attribute (the goal of the 

main paper) to an increase in the absolute difference between choice options on the 

review volume attribute as demonstrated by prior work (numerosity effect; Pandelaere, 

Briers, and Lembregts 2011; Bagchi and Li 2010). To this end, we created the low review 

volumes and high review volumes conditions, where the absolute difference is held 

constant while relative difference changes, similar to previous studies, while also adding 

a high review volumes condition in which the relative difference is held constant with the 

low review volumes conditions, while the absolute difference changes. This last 

condition, therefore, provides a test of numerosity effect observed in prior work but in the 

context of multiple numerical attributes. 

Method 

 Participants and design. We recruited 153 participants (Mage = 36.07; 55% 

female) from Amazon mTurk in exchange for a $0.50 payment. The sample size was 

determined based on a 50-subject rule-of-thumb for online samples at the time the study 

was conducted. Participants were randomly assigned to a condition in a 3 (review volume 

levels: low, high relative, high absolute) between-subjects x 3 (product replicates: BBQ 

grills, patio furniture, patio umbrella) within-subject mixed design. 

 Procedure. We used the same procedure as in Study 1. For each product replicate, 

participants would indicate their relative preference between two choice options that 

required a tradeoff between a higher-rated, fewer reviews option and a lower-rated, more 
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reviews option. In addition to the low (e.g., 12 vs. 45) and high (e.g., 212 vs. 245) review 

volume conditions used in past studies (manipulating relative difference), we also 

included a high review volume (e.g., 212 vs. 795) condition (manipulating absolute 

difference). Following this, we also measured the need for additional information. 

Results. A repeated measures ANOVA of review volume levels and product 

replicates on preference yielded main effects of both product replicates (F(1, 150) = 

17.74; p < .001) and review volume levels (F(1, 150) = 8.40; p < .001), qualified by a 

significant quadratic interaction (F(2, 150) = 4.06; p = .019). To explain this interaction, 

we first compare the low and high relative difference review volumes conditions, which 

are most similar to our prior studies. 

Consistent with prior results, the repeated measures ANOVA of product replicates 

and review volume levels yielded significant main effects of product replicates (F(1, 98) 

= 25.09; p < .001), and review volume levels (F(1, 98) = 11.94; partial eta2 = .11; p = 

.001), while the interaction was not significant (p > .65). Consistent with our previous 

studies, preference for the higher-rated options was greater when review volumes were 

high (Mrelative = 3.22) relative to low (Mlow = 4.03). The main effect of product replicates 

merely demonstrates that consumer preference for the higher-rated, fewer reviews option 

is weaker for patio furniture (Mfurniture = 4.43) relative to the BBQ grills (Mgrills = 3.11; p 

< .001) and the patio umbrellas (Mumbrellas = 3.33; p < .001). There was no significant 

difference in preference between BBQ grills and patio umbrellas (p > .30).  

By contrast, when examining low and high absolute difference review volumes 

levels conditions, a repeated measures ANOVA yielded a significant main effect of 

product replicates (F(1, 102) = 8.63; p = .004), qualified by an interaction with product 
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replicates and review volume levels (F(1, 102) = 6.85; partial eta2 = .06; p = .01). 

Importantly, the main effect of review volumes was not significant (p > .50). Planned 

contrasts demonstrate that while BBQ grills (Mlow = 3.31; Mabsolute = 4.02; F(1, 102) = 

4.04; partial eta2 = .04; p = .047) exhibit a pattern consistent with a numerosity effect, 

patio furniture exhibits a reverse pattern (Mlow = 4.90; Mabsolute = 4.23; F(1, 102) = 2.87; 

partial eta2 = .03; p = .093), and preference for patio umbrellas was directionally 

consistent with a numerosity effect (Mlow = 3.86; Mabsolute = 4.28; F(1, 102) = 4.04; partial 

eta2 = .01; p > .25). 

 Discussion. The results of this study suggest that both relative and absolute 

differences in review volumes can affect consumer preferences in the context of 

integration of multiple numerical attributes, and gives initial evidence that our proposed 

effect (effect of relative differences) is stronger under conditions where consumers have 

to tradeoff two numeric attributes. 

Sample Stimuli 
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APPENDIX B3 

Ratings Skew  

The primary purpose of this study was to test the role of ratings’ skew in 

moderating the joint effect of review volumes and average product ratings. The skew of 

ratings provides additional information about the expected quality of a product by 

informing consumers how different proportions of the consumers felt about a product. 

Khare et al. (2011) demonstrated that ratings’ skew affected consumers’ judgments only 

when review volumes were high. However, since Khare et al. investigated single option 

choices, effect of skew of product ratings was not tested in a setting where consumers 

have to tradeoff between review volumes and product ratings, the context of this paper. 

Furthermore, Fisher, Newman, and Dhar (2018) demonstrate a binary bias where 

consumers neglect differences between more extreme (1- and 5-star) and less extreme (2- 

and 4-star) valences, so while we only examine three distributions, the exhibited effects 

would appear to be representative of a vast majority of distributions. 

Method 

 Participants and design. We recruited 167 undergraduate students in exchange for 

course credit. Participants were randomly assigned to a condition in a 2 (review volume 

levels: low, high) x 3 (option A ratings’ skew: absent, negative, positive) between-

subjects factorial. The sample size was a convenience sample based on the undergraduate 

participants for a one-week time period. 

 Procedure. We manipulated review volumes across two product options in the 

same manner as in prior studies. In addition, the skew of average product ratings was 

manipulated by reporting the percentage of reviews for each possible rating for Option A 
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(higher-rated, fewer reviews option). In the positive condition, the percentage of reviews 

was 0%, 22%, 33%, 44%, 0% for 1-5 stars respectively, demonstrating that they had 

twice as many 4-star reviews as 2-star reviews. In the negative condition, the pattern was 

reversed (0%, 44%, 33%, 22%, 0%). For all conditions where skew was present, Option 

B always had an even dispersion of 0%, 33%, 33%, 33%, 0% for 1-5 stars respectively. 

Next, participants indicated relative preference between two choice options. 

Results. A 2 (review volumes) by 3 (skew) ANOVA on relative preference 

yielded significant main effects of volume (F(1, 161) = 16.64; p < .001) and skew (F(2, 

161) = 26.82; p < .001). The interaction was not significant (p > .30). Consistent with 

prior studies, preference for the higher-rated, fewer reviews option was greater in the 

presence of high review volumes (Mhigh = 3.30) relative to when the consideration set 

featured low review volumes (Mlow = 4.25). Planned contrasts demonstrated that 

preference for the higher-rated, fewer reviews option was weaker in the presence of a 

negative skew (Mnegative = 4.91) relative to when a skew was absent (Mabsent = 3.62; t(164) 

= -4.30; p < .001). Furthermore, a positive skew increased preference for the higher-

rated, fewer reviews option relative to when a skew was absent (Mpositive = 2.86; t(164) = 

-2.53; p = .012).  

 Discussion. This study demonstrated that ratings skew plays a significant role in 

consumer preferences, but does not interact with the other review attributes. We argue 

that this occurs because skew is less diagnostic (i.e., more difficult to interpret) relative to 

average product ratings and review volumes, and thus, consumers are less likely to use it 

in their judgments relative to the other attributes. Thus, in the presence of other 
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diagnostic attributes, ratings skew influences consumers but not as a function of review 

volume levels. 

Sample Stimuli 
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APPENDIX B4 

Aesthetic Products 

 This study was designed to demonstrate that review volume effects are attenuated 

for products which are high in aesthetic value and low in functional value. For such 

products (e.g., artwork), preference is decided largely on personal tastes rather than the 

opinions of anonymous others. As such, we expected the effect of review volumes to be 

null when participants considered artwork. 

Participants and design. One-hundred and forty-seven participants (Mage = 20.91; 

50% female; undergraduate sample; course credit) were randomly assigned to one of 

three review volume levels conditions (low, high, control) in a between-subjects design. 

The sample size was a convenience sample based on the undergraduate participants for a 

one-week time period. 

Choice set. Participants viewed a choice set of four pieces of art, where options 

were nearly identical with the exception of their average product ratings and review 

volumes. While one choice option had the highest rating with the fewest reviews (e.g., 

3.9, 3 reviews), another choice option had the lowest rating with the most reviews (e.g., 

3.1, 55 reviews), and two other choice options in the middle were compromise choice 

options which were neither the highest, nor lowest on either attribute but were superior 

on one relative to the other compromise choice option (e.g., 3.7, 17 reviews and 3.3, 41 

reviews). Review volume levels were manipulated by either withholding the review 

volumes in the control condition or adding 200 reviews to the volumes reported above in 

the high review volume level condition. 
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Measures. To capture preference among the four choice options, we used a 

discrete choice measure of the highest-rated, fewest reviews choice option, rather than the 

relative preference measure used in the previous study. To assess the likelihood of choice 

deferral, we asked participants “Are you more likely to purchase one of the available 

options or defer purchase, and look elsewhere?” and analyzed this as a binary measure. 

Lastly, to assess the need for more information, participants were asked “How would you 

classify the amount of information provided?” on a 7-point scale (1 = not enough 

information, 7 = too much information). A more difficult tradeoff would require more 

information to help participants make a decision, thus participants in the low review 

volume levels condition would be expected to require more information relative to those 

in the other conditions. 

Results 

Choice of the highest-rated, fewest reviews choice option. A binary logistic 

regression in which we dummy coded our review volume levels yielded no omnibus 

effect of review volume levels (χ2(2) = 1.67; p > .40). As expected, review volume levels 

did not influence participants’ choice in artwork. 

Rate of choice deferral. A binary logistic regression in which we dummy coded 

review volume levels yielded no omnibus effect of review volume levels (χ2(2) = 1.36; p 

> .50). As expected, review volume levels did not influence participants’ choice in 

artwork. 

Need for additional information. A one-way ANOVA of review volume levels on 

need for additional information yielded a main effect of review volumes (F(2, 144) = 

4.49; p = .013). Participants felt they had more information when review volumes were 
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high (Mhigh = 4.20) relative to absent (Mabsent = 3.57; t(144) = 3.00; p = .003). However, 

the low review volumes led to no significant difference from the other conditions (Mlow = 

3.88; both p’s > .10). Although this finding was unexpected, the need for information 

appeared to have no effect on choice. 

Discussion 

 This study provided evidence for the role of review volumes when products were 

largely a matter of personal taste. When consumers are choosing products whose value is 

largely aesthetic, they rely on their personal preference to inform their decisions rather 

than the average product ratings and review volumes. Thus, review volume effects are 

attenuated when consumers can rely less on the opinion of others and more on their own 

opinion to shape their decisions. This finding is consistent with a large body of work 

which has suggested that word-of-mouth is valuable because it helps to reduce 

uncertainty in consumers’ decisions (Brown and Reingen 1987), so when consumers are 

able to form certain evaluations, they do not need reviews to help aid their decision 

process. 
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APPENDIX B5 

Single versus Joint Evaluation of Choice Options 

The purpose of this study was to demonstrate the robustness of the interactive 

effect of review volumes and product ratings on consumer preference under different 

presentation modes: sequential (i.e., single) versus simultaneous (i.e., joint). Prior 

research has demonstrated that presentation mode can influence how consumers process 

attributes, specifically, attenuating numerosity effect (Schley, Lembregts, and Peters 

2017). 

Method 

 Participants and design. We recruited 165 participants (Mage = 41.09; 55% 

female) from Amazon mTurk in exchange for a $0.50 payment. Participants were 

randomly assigned to a condition in a 2 (review volume levels: low, high) by 2 

(presentation mode: sequential, simultaneous) between-subjects by 2 (product replicates: 

digital camera, tower fan) within-subject mixed design. The sample size was determined 

based on balancing a 50-subject rule-of-thumb for online samples at the time the study 

was conducted with cost considerations. The goal was 40 subjects per cell a priori. 

 Procedure. We manipulated review volumes across two product options in the 

same manner as prior studies. In addition, presentation mode was manipulated by 

presenting the options either simultaneously (as in prior studies) or one at a time. After 

viewing both options, participants indicated preference between options and relative 

importance of the attributes, measured as in Study 6. 

Results 
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Option preference. A repeated measures 2 (review volumes) by 2 (presentation 

mode) by 2 (product replicates) ANOVA on relative preference yielded significant main 

effects of volume (F(1, 161) = 30.78; p < .001) and product replicates (F(1, 161) = 14.93; 

p < .001). No other effects were significant (p > .10). Preference for the higher-rated, 

fewer reviews option was greater for the tower fan (Mfan = 3.46) relative to the digital 

camera (Mcamera = 4.16). Consistent with prior studies, preference for the higher-rated, 

fewer reviews option was greater in the presence of high review volumes (Mhigh = 3.24) 

relative to when the choice set featured low review volumes (Mlow = 4.40).  

Mediation via attribute diagnosticity. As expected, no significant differences 

existed across image, brand, and price as a function of presentation mode or review 

volumes (p > .25). As before, we calculated the difference in the perceived diagnosticity 

of average product ratings and review volumes to create a difference measure, averaging 

across product replicates. A one-way ANOVA on the difference measure yielded a 

significant effect of review volumes (F(1, 161) = 8.29; p = .005). Neither the effects of 

presentation mode nor their interaction were significant (p > .50). Consistent with prior 

studies, the difference in perceived diagnosticity between the attributes was smaller when 

review volumes were low relative to high (Mlow = .30, Mhigh = .92). Once again, we find 

support for mediation (PROCESS Model 4; Preacher, Rucker and Hayes 2007) of the 

effect of review volumes on preference via the difference in perceived diagnosticity of 

average product ratings and review volumes (B = -1.46; 95% confidence interval [-.37, -

.03]). 
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 Discussion. This study provided further support for the robustness of our effect. 

Whether consumers evaluate choice options simultaneously or sequentially, the review 

volumes of considered options play a significant role in the preference between options. 

Sample Stimuli 
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APPENDIX B6 

Popularity Cue  

The purpose of this study was to rule out product popularity as an explanation for 

the influence of review volumes on consumer preference. If review volumes were solely 

cues of popularity, we would expect that another popularity cue (e.g., “Best seller”) 

would attenuate the influence of review volumes on preference.  

Method  

Participants and design. We recruited 402 undergraduate students in exchange for 

course credit. Participants were randomly assigned to a condition in a 2 (review volume 

levels: low, high) by 2 (popularity cue: absent, present) between-subjects design. The 

sample size was a convenience sample based on the undergraduate participants for a two-

week time period. 

 Procedure. We manipulated review volumes across two product options in the 

same manner as prior studies. In addition, in the popularity cue condition, the higher-

rated, fewer reviews option had a “Best Seller” badge. Thus, consumers could choose 

between an option with fewer reviews but a “Best Seller” badge or an option with more 

reviews without a badge. Next, participants indicated relative preference between two 

choice options. 

Results. A 2 (review volumes) by 2 (popularity cue) ANOVA on relative 

preference yielded significant main effects of volume (F(1,398) = 124.43; p < .001) and 

popularity cue (F(1,398) = 14.90; p < .001). The interaction was not significant (p > .20). 

Consistent with prior studies, preference for the higher-rated, fewer reviews option was 

lower in the presence of low versus high review volumes (Mlow = 4.63 vs. Mhigh = 2.74). 
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Furthermore, preference for the higher-rated, fewer reviews option was also greater when 

that option was labeled as a “Best Seller” (Mpresent = 3.34 vs. Mabsent = 4.01).  

Discussion. This study ruled out popularity as an alternative explanation. It 

demonstrated that when consumers are choosing from “Best Sellers”, review volumes 

still play a critical role in the decision process when those best sellers also have low 

review volumes. It also did demonstrate a main effect of the presence of the badge such 

that the mere presence of best-selling options increased preference for the higher-rated 

one, suggesting that the badge acts as an additional discriminating cue in judgment 

processes. 

Sample Stimuli 
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APPENDIX B7 

Product Versions 

The purpose of this study was to demonstrate the persistent effect of review 

volumes in light of possible justification for low review volumes. In this case, we used 

product versions (e.g., 2015 vs. 2013 models). Because newer versions have been on the 

market for less time, their lower review volumes should be justified. Yet, even in this 

case, we argue that the product version will not attenuate the effect of review volumes, 

demonstrating that even with proper justification, low review volumes still significantly 

influence consumer preference. 

Method 

Participants and design. We recruited 152 participants (Mage = 36.43; 52% 

female; Amazon mTurk; $0.50 payment). Participants were randomly assigned to a 

condition in a 2 (review volumes: low, high) by 2 (product age information: absent, 

present) between-subjects by 2 (product replicates: DVD player, phone) within-subject 

mixed design. The sample size was determined based on a 40-subject rule-of-thumb for 

online samples at the time the study was conducted, however not all participants 

completed the study. 

 Procedure. We manipulated review volumes across two product options in the 

same manner as prior studies. In addition, product age information was manipulated 

slightly differently for each of the product replicated. For the DVD player, we labeled 

each option with a release year: Option A was a 2015 version while Option B was a 2013 

version. For the cell phone, we labeled each option with a version number: Option A was 

a Galaxy S7 while Option B was a Galaxy S6. Thus, each choice set included a higher-
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rated, fewer reviews, newer version option and its inverse. For each product replicate, 

participants indicated relative preference between choice options. 

Results. A repeated measures 2 (review volumes) by 2 (product age information) 

by 2 (product replicate) ANOVA on relative preference yielded significant main effects 

of review volume (F(1, 148) = 22.59; p < .001) and product age (F(1, 148) = 8.91; p = 

.003). Neither the effect of product replicate nor the interactions were significant (p > 

.15). Consistent with prior studies, preference for the higher-rated, fewer reviews option 

was lower in the presence of low vs. high review volumes (Mlow = 3.28 vs. Mhigh = 2.29). 

Furthermore, preference for the higher-rated, fewer reviews option was also greater when 

it was a newer product (Mnew product = 2.45 vs. Mno product age information = 3.09).  

Discussion. This study demonstrated the persistent influence of low review 

volumes even when a low number of reviews is justified by being a newer product. While 

a main effect existed such that preference for the higher-rated, fewer reviews option was 

greater when the product’s newer version was disclosed versus when it was not, this 

disclosure of version did not attenuate the influence of review volumes. As such, this 

study demonstrated that consumers can be led to prefer older products simply because 

they also have more reviews. Given the rapid advances in technology, this study provides 

some evidence that consumers may make suboptimal decisions as a function of review 

volumes. 

Sample Stimuli 
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APPENDIX B8 

New Product Arrival  

One reason that a choice may have a higher average product rating and fewer 

reviews is because it is a newer choice option relative to the competition. As such, it has 

fewer reviews but better quality (for example, newer technology) leading to a higher 

average product rating. Next, we test whether introducing new arrival cue will moderate 

the influence of review volumes on preferences. 

Method 

 Participants and design. We recruited 202 participants from mTurk (Mage = 

36.37; 43% female) in exchange for a $0.50 payment. Participants were randomly 

assigned to a condition in a 2 (review volume levels: low, high) x 2 (new arrival cue: 

absent, present) between-subjects design by 3 (product replicates: tower fan, cookie 

sheets, knife sets) within-subject, mixed design. The sample size was determined based 

on a 50-subject rule-of-thumb for online samples at the time the study was conducted. 

 Procedure. We manipulated review volumes across two product options in the 

same manner as prior studies. In the new arrival cue present condition, Option A also had 

a badge which denoted that the product was “new”. We used slightly different badges 

(e.g., “new”, “new arrival”, and “new product”) across the three product categories to 

improve generalizability. For each product replicate, participants indicated relative 

preference between the two choice options. 

Results. A 2 (review volumes) by 2 (new arrival cue) by 3 (product replicates) 

repeated-measures ANOVA on relative preference yielded only significant main effect of 

volume (F(1, 198) = 20.83; p < .001). No other effects were significant (p > .15). 
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Consistent with prior studies, preference for the higher-rated, fewer reviews option was 

greater in the presence of high review volumes (Mhigh = 2.87) relative to when the 

consideration set featured low review volumes (Mlow = 3.72). 

 Discussion. This study demonstrated the robustness of our effect in light of a clear 

explanation for the low review volume: products being labeled as “new”. Thus, 

consumers are still likely to demonstrate weakened preference for higher-rated options 

merely because they have fewer reviews, even when they are newer, a justification for 

why they would have fewer reviews. 

Sample Stimuli 

 

 

  



127 
 

APPENDIX B9 

Reviewer Credibility 

The purpose of this study was to demonstrate the effect of review credibility on 

how consumers incorporate average product ratings and review volumes into their 

decisions. 

Method 

 Participants and design. We recruited 226 undergraduate participants in exchange 

for course credit. Participants were randomly assigned to one of two review volume 

levels condition (low, high)  crossed with one of two credibility conditions (absent, 

present) between-subjects. The sample size was a convenience sample based on the 

undergraduate participants for a one-week time period. 

 Procedure. We manipulated review volumes in the same manner as prior studies. 

Credibility was manipulated by the presence of a “Consumer Reports Verified” badge for 

option A, (higher rated, fewer reviews option). After viewing both options, participants 

were given the choice between Option A, Option B, or to Defer Purchase. Then 

participants were asked the importance of each attribute. 

Results 

Option preference. A 2 (review volume levels: low, high) x 2 (credibility cue: 

present, absent) binary logit yielded a main effect of review volume levels (B = -2.90; 

Wald χ2 = 7.88; p = .005) on option choice. Neither the effect of credibility nor the 

interaction were significant (p > .70). Consistent with prior studies, preference for the 

higher-rated, fewer reviews option was greater in the presence of high review volumes 

(Phigh = 93%) relative to when the choice set featured low review volumes (Plow = 52%). 
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Choice Deferral. A 2 (review volume levels: low, high) x 2 (credibility: present, 

absent) binary logit yielded no significant effects on deferral rates (p > .20), though it was 

directionally consistent with prior studies where the rate of deferral was greater when 

review volumes were low (Plow = .13) relative to high (Phigh = .05). 

Mediation via attribute diagnosticity. As expected, no significant differences 

existed across image, brand, and price as a function of presentation mode or review 

volumes (p > .15). As before, we calculated the difference in the perceived diagnosticity 

of average product ratings and review volumes to create a difference measure. A one-way 

ANOVA on the difference measure yielded a significant effect of review volumes (F(1, 

213) = 11.26; p = .001). Consistent with prior studies, the difference in perceived 

diagnosticity between the attributes was smaller when review volumes were low relative 

to high (Mlow = .50, Mhigh = 1.01). Once again, we find support for mediation (PROCESS 

Model 4; Preacher, Rucker and Hayes 2007) of the effect of review volumes on 

preference via the difference in perceived diagnosticity of average product ratings and 

review volumes (B = -.41; 95% confidence interval [-.86, -.14]). 

 Discussion. This study provided further evidence of previous findings while also 

ruling out review credibility as a potential moderator. Whether the reviews are 

aggregated from the general population or verified by Consumer Reports, the influence of 

low review volumes persists. This study did not demonstrate an effect of review volume 

levels on the rates of deferral. We posit that this could be an effect of the badge as it 

mitigates the risk from fewer reviews, but not enough to completely shift preference to 

that option. 

Sample Stimuli 
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APPENDIX C – ESSAY II STIMULI 

 

Appendix C1 - Study 2 Stimuli 

[Round 1] 
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[Round 2] 
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[same measures as Round 1] 
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[Round 3] 

 

[same reviews and measures as Round 1] 
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Appendix C2 – Study 3 Stimuli 
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Appendix C3 – Study 4 Stimuli 
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[reviews and measures follow Study 2 Round 1] 
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TABLES 

 

Table 1 – Essay I Summary of Designs and Measures 

 

 
Note: For Study 4, all pairwise comparisons were used for average product ratings where A was greater than B, resulting in 10 

different comparisons. For Study 5, numbers in parentheses were paired together in their respective negative and 

positive conditions. 

  

Study Product Option

(1._) (2._) (3._) (4._) (5._) Low
Moderately 

Low

Moderately 

High
High Absent

Relative 

Preference

Absolute 

Choice

Choice 

Deferral

Process 

Measures

A - - .5 - - 8 72 201 456 Absent

B - - .3 - - 64 128 257 512 Absent

A - - .4 - - 6 64 180 412 Absent

B - - .0 - - 58 116 232 464 Absent

A - - .5 - - 9 71 195 443 Absent

B - - .2 - - 62 124 248 496 Absent

A - - .4 - - 12 86 234 530 Absent

B - - .1 - - 74 148 296 592 Absent

A - - .7 - - 5 103 299 691 Absent

B - - .4 - - 98 196 392 784 Absent

A - - .2 - - 61 - - 361 Absent

B - - .6 - - 22 - - 322 Absent

C - - .8 - - 5 - - 305 Absent 

D - - .4 - - 43 - - 343 Absent

A - .4 .4 .4 - 8 - - 408 -

B - .1 .1 .1 - 64 - - 464 -

A - - .8, .6, .4, .2 .8, .6, .4, .2 - 9 - - 409 -

B - - .6, .4, .2, .0 .6, .4, .2, .0 - 57 - - 457 -

A .3 (.4) - - (.9) .0 13 - - 313 -

B .0 (.1) - - .7, (.6) - 34 - - 334 -

A - - .4 - - 8 - - 408 -

B - - .1 - - 64 - - 464 -

A - - .5 - - 9 - - 443 -

B - - .2 - - 62 - - 496 -

5 Hand Mixers

Review Volumes Reported Measures

1

Over-the-Ear 

Headphones
x - - -

Coffee 

Makers
- - -

Microwaves x - - -

x -

Speaker 

Systems
x - - -

Lounge Chairs x - - -

- -

3 Blenders X - - -

- x

x - - -

- x x x

Average Product Ratings

7 Microwaves x -

6 Blenders

4
Earbud 

Headphones
x -

2
Camping 

Lamps
- x

x
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Table 2 – Essay I Means Summary across Studies 

 Average Product 

Rating 
Review Volumes 

Valence Difference Low Moderately 

Low 
Moderately 

High 
High Absent 

Study 1 (n = 250) Neutral - 3.96 2.93 2.83 2.63 2.81 

Study 2 (n = 144) Neutral - 49 - - 78 76 

Study 3 (n = 433) Negative  - 4.15 - - 3.32 - 

 Neutral  - 4.38 - - 3.38 - 

 Positive  - 3.04 - - 2.97 - 

Study 4 (n = 410) Negative - 3.58 - - 3.67 - 

 Negative 

(extreme) 
- 3.84 - - 3.44 - 

 Positive - 4.08 - - 2.71 - 

 Positive 

(extreme) 
- 3.48 - - 2.96 - 

Study 5 (n = 705) Neutral  - 3.98 - - 2.77 - 

 Positive - 3.32 - - 2.66 - 

 - Small  3.62 - - 2.98 - 

 - Large  3.68 - - 2.45 - 

Study 6 (n = 143) Neutral - 36 - - 61 61 

Study 7 (n = 92) Neutral - 4.09 - - 3.68 - 

Notes: Studies 1, 3, 4, 5, 7 use a relative preference measure (1 = Strongly prefer higher-rated, fewer reviews Option, 7 = 

Strongly prefer lower-rated, more reviews option). Studies 2 and 6 use an absolute choice measure where the number reported 

is the percentage choosing the higher-rated, fewer reviews choice option.  
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Table 3 – Essay I Study 7: Eye-tracking Attribute Transition Matrices by Review Volume 

Level 

LOW REVIEW 

VOLUMES To Image 
To Brand & 

Price To Rating 
To 

Volume 
To Add'l 

Info 
To 

End 

From Image 68.23% 14.47% 4.51% 2.26% 6.02% 4.51% 

From Brand & Price 8.94% 72.81% 12.23% 2.37% 2.92% 0.73% 

From Rating 3.50% 10.07% 62.58% 19.69% 3.72% 0.44% 

From Volume 2.65% 3.41% 24.24% 49.62% 18.94% 1.14% 

From Add'l Info 9.66% 1.87% 1.71% 2.80% 82.09% 1.87% 

       

HIGH REVIEW 

VOLUMES To Image 
To Brand & 

Price To Rating 
To 

Volume 
To Add'l 

Info 
To 

End 

From Image 71.74% 12.89% 3.64% 2.15% 6.12% 3.47% 

From Brand & Price 9.35% 73.28% 12.02% 1.53% 2.48% 1.34% 

From Rating 4.26% 9.31% 64.10% 14.63% 6.12% 1.60% 

From Volume 4.69% 2.17% 13.36% 60.65% 17.33% 1.81% 

From Add'l Info 8.20% 1.64% 1.37% 4.37% 83.47% 0.96% 
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Table 4 – Essay II Summary of Hypotheses Tested in Each Study 

 

 Hypotheses Tested Results 

Study 1 H1 (partial) Demonstrated the effect of a positive fake 

review alert on brand ratings 

Study 2 H1 – H3, H5  Demonstrated the effect of positive and 

negative fake review alerts on brand ratings, 

average valence of reviews read, and the 

desire for justice 

Study 3 H1 – H5 Replicated prior findings while demonstrating 

the mediating role of desire for justice in the 

effect of fake review alerts on brand ratings 

Study 4 H1 – H6 Replicated prior findings while also 

demonstrating the moderating role of salient 

aggregate information 
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FIGURES 

Figure 1 – Essay I Conceptual Model 
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Figure 2 – Essay I Example of the Standard Study Stimuli 
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Figure 3 – Essay I Study 1 Preference Results 
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Figure 4 – Essay I Study 3 Preference Results 
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Figure 5 – Essay I Study 4 Preference Results: Volume by Valence Interaction 
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Figure 6 – Essay I Study 4 Preference Results: Volume by Difference Size Interaction 
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Figure 7 – Essay I Study 5 Preference Results 
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Figures 8A-D – Essay I Implications Simulations for Proactive and Reactive Strategies 

A)  B)

C)  D)  
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Figure 9 – Essay II Study 1: Average Brand Ratings Before, During, and After a Fake 

Positive Review Alert 
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Figure 10 – Essay II Study 2: Brand Ratings
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Figure 11 – Essay II Study 2: Perception of Average Rating Accuracy
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Figure 12 – Essay II Study 2: Desire for Justice
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Figure 13 – Essay II Study 2: Average Valence of Reviews Read

 

  

1

2

3

4

5

Before the Alert During the Alert After the Alert

Average Valence of Reviews Read

Fake Negative Review Alert Fake Positive Review Alert



187 
 

Figure 14 – Essay II Study 3: Brand Ratings 

  

  

1

2

3

4

5

Alert Absent Fake Negative Review
Alert

Fake Positive Review Alert

Brand Ratings



188 
 

Figure 15 – Essay II Study 3: Perception of Average Rating Accuracy 
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Figure 16 – Essay II Study 3: Desire for Justice 
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Figure 17 – Essay II Study 3: Average Valence of Reviews Read 
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Figure 18 – Essay II Study 4: Brand Ratings 
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Figure 19 – Essay II Study 4: Perception of Average Rating Accuracy 
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Figure 20 – Essay II Study 4: Desire for Justice
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