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Chapter 1 Introduction

The testlet is a popular type of item format that has been applied by a variety
of tests and assessments. Different names have been used to describe the format.
Some of the examples summarized by Haladyna (2004) include “interpretive
exercises”, “scenarios”, “vignettes”, “item bundles”, “problem sets” and “super-
items”. They all refer to the item format in which a stimulus is presented, followed by
two or more questions that are related to the presented stimulus. Wainer & Kiely
(1987) named this particular item format “testlet” and defined it as an aggregation of
items on a single theme. In recent years, with advances in cognitive psychology and
increasing emphasis on the improvement in the efficiency and validity of assessments,
there is “a movement away from what is viewed as the atomistic nature of discrete

multiple choice items toward the use of testlets that provides context.” (X. Wang,

Bradlow, & Wainer, 2002, p. 125)

Researchers face special challenges when they try to link the scales of test
forms that are composed of testlets. The unidimensional dichotomous IRT models
such as the Rasch model, two-Parameter Logistic IRT (2-PL) model or three-
Parameter Logistic IRT (3-PL) model may not work well with testlet-based tests. This
is caused by a distinct characteristic of the testlet format: the items within a testlet

usually demonstrate some degree of inter-dependence among themselves. This inter-



dependence may occur because all the items within a testlet share a common stimulus
such as a passage, a graph, a table or a diagram, etc. Another scenario that inter-
dependence among items may occur within a testlet is that the items have to be solved
in a step-wise fashion: one item has to be solved before enough information can be
gathered to solve the next item. These types of inter-dependence of items within a
testlet are often considered a form of Local Item Dependence (LID) and are referred
to as “testlet effect” in this study. Traditionally, researchers often ignore the testlet
effect and treat the items as discrete and locally independent items. This may lead to
biased model parameter estimates, underestimated standard error of measurement and
inflated reliabilities. Such an approach to dealing with the testlet-based test forms

may also cause inaccurate scaling and equating results.

In recent years, Testlet Response Theory (TRT) models (Bradlow, Wainer, &
Wang, 1999; Wainer, Bradlow, & Du, 2000; Wainer, Bradlow, & Wang, 2007,
Wainer & Wang, 2000) were developed to model the testlet effect. The models have
generated a lot of interest among researchers and there have already been quite a few
studies on the theories and applications of TRT models. However, few studies have
been conducted on scale linking and test equating under the TRT framework. This
limits more extensive applications of the TRT models. Most large scale testing
programs need to perform some form of scale linking and equating procedures to put
the item parameter estimates and test scores across test forms onto common scales.
For some state assessment programs for basic skills, scale linking and equating are an
integral part of test development and measurement so that horizontal and vertical

comparisons of test scores over different test forms are possible. Without an



applicable scale linking procedure that can be applied with the TRT models, it may
not be justifiable to adopt such models in these testing programs.

The purpose of this dissertation is to develop a scale linking method for the
TRT model parameter estimates when such models are used to calibrate testlet-based
test forms. The dissertation follows this structure:

Chapter 2: Literature Review. The testlet format and the testlet effect are
explained, followed by an introduction of the TRT theories and models. The scale
linking is defined and several scale linking procedures such as Stocking & Lord
method and Haebara method are described. It ends with a brief account of an
extension of the Stocking & Lord method to the two parameter normal ogive TRT
model proposed by Li, Bolt and Fu (2005) .

Chapter 3: Methodology and Simulation Study. The research questions are
raised and the proposed TRT model scale linking method is explained in detail. A
simulation study is performed to compare the performance of the proposed scale
linking method with that of the 3-PL IRT model scale linking method and the graded
response model scale linking method under different levels of the testlet effect. The
results are presented and summarized.

Chapter 4: Real Data Analysis. The proposed TRT model scaling method is
applied to link the scales of two test forms taken from the 2004-2005 ACCESS for
ELLs® assessment to illustrate its application with operational data. The whole
procedure, from testlet effect detection using the Q3 index to the derivation of the

scale linking parameter estimates, is explained.



Chapter 5: Conclusion and Discussion. This chapter summarizes the findings
in the study and discusses their practical implications. Some caveats of the study are
also presented and future research topics regarding this new scale linking method are

proposed to address these issues.



Chapter 2 Background and Literature Review

Testlet

Testlet format

Testlets are usually discussed as a special case of the use of multiple choice
(MC) questions, and this will be the case addressed here. The MC items are
considered “objective” items (Mehrens & Lehmann, 1984; Millman & Greene, 1989)
since there is no raters’ bias involved when grading MC questions. Moreover, more
MC questions can usually be administered than the constructed response (CR)
questions given the same span of testing time. The objective scoring and greater
numbers of test items usually lead to better reliabilities. Wainer and Thissen (1993)
indicated that it is typically found that the reliability of the CR section is considerably
less than that of a comparably timed MC section. Since more items can usually be
covered using the MC items than using the CR items, the MC format sometimes
enhances the validity of a test if the test targets a large content domain. One drawback
of the MC format is that many researchers believe that MC is more suited for
measuring recall level learning outcomes and is not optimal to elicit evidence about
complex cognition (Bowman & Peng, 1972; Frederiksen, 1984; Morgenstern &
Renner, 1984; Warren, 1979).

In 1989, Nickerson claimed that one of the new directions of assessments is
that tests should assess thinking. He asserted that higher-order cognitive functioning

should be a major goal in education and “the lack of adequate tools for assessing such



functioning means that we are at a loss to judge the education enterprise as a whole”
(Nickerson, 1989, p. 3). In recent years, cognitive psychology principles is
increasingly prevalent in test design and item generation to improve construct validity
(Embretson & Gorin, 2001) and studies have been conducted to incorporate cognitive
information into test development (e.g. Mislevy, 1994; Mislevy, Steinberg, &
Almond, 1999). These efforts greatly facilitate the assessment of higher order
cognitive functioning. One example of such assessments is the classroom instruction
and diagnostics assessment, by which higher cognitive activities such as test takers’
problem solving schemes and their misconceptions are identified. The demand for
assessing thinking has become so popular that the No Child Left Behind Act
stipulates in (3)(C)(vi) that state assessments shall “involve multiple up-to-date
measures of student academic achievement, including measures that assess higher-
order thinking skills and understanding”(Congress, 2001). Since MC items are
deemed to be more suitable for assessing low level cognitive activities, using stand
alone MC items for such assessments sometimes may cause validity issues.

The testlet format can be considered as a bridge between the conventional MC
format and the CR format. On the one hand, the testlet items retain the advantages of
the MC format and can be efficiently administered and objectively scored. On the
other hand, since a testlet incorporates several questions with the same stimulus, it
reduces concerns about the atomistic nature of single independent small items
(Wainer et al., 2000). Item writers have much more flexibility to test different aspects

and stages of the cognitive activities using interrelated sets of items.



A sample testlet from the WIDA ACCESS® English language Assessment
(WIDA, 2008) is presented in Figure 1. A paragraph describing “the planning of
cultural festival” and a picture of several students standing in front of the bulletin
board with national flags around it are presented in the stem of the testlet. The first
item within the testlet asks the test takers to select a geometric measurement to decide
on the number of flags that can be placed around the bulletin board. This targets 1)
test takers’ basic comprehension of the passage and the question with the help of the
picture (with bulletin board and national flags on it) and 2) their recollection of the
definitions and properties of the three geometric measurements. These are
comparatively lower levels of cognition functioning. The second item is about finding
the appropriate number of speakers. There is no graph to help test takers understand
the question. Instead some irrelevant information is given (600 students and 30
rooms). To be able to answer the question, the test takers must 1) select information
that is relevant to solve the problem, and 2) know how to apply the correct
mathematics equation. The third question asks the test takers to decide on the number
of snacks that need to be prepared based on the number of people attending the event.
There is no mathematic equation in the response alternatives to visually aid test
takers’ comprehension of the question. To be able to answer this question, the test
taker need to have a good understanding about how the number of attendees is
decided and what equation is need to derive the number of snacks. This is a multiple
step process that involves addition and multiplication. The three testlet items taps
different levels and aspects of cognitive functioning, since the testlet format can carry

with it more extensive and intensive context than the single-item MC format.
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Figure 1. A sample testlet of Grade 6-8 Tier B Reading test from “ACCESS for ELLs
Listening, Reading, Writing and Speaking Sample Items” (WIDA, 2008)



In the example, the third item also utilizes some of the information (about the
“speakers”) in the second item. This is another feature that can be frequently observed
among testlet items: the items not only share the common stimulus from the stem of
the testlet, but they may also share information amongst themselves. Sometimes the
shared information at the item level may be trivial like the one shown in the example,
while in other occasions it may be crucial, and to answer an item correctly depends on
drawing information from the previous item(s). Zenisky, Hambleton & Sireci (2001)
pointed out that many real world tasks require solving related problems in stepwise
fashion, thus including context-dependent testlet items in a test may improve

construct validity.

Local Item Dependence (LID)

The responses to the items within a testlet usually exhibit higher degree of
correlations among each other than the conventional MC items. Yen (1993)
summarized two situations where the items within a testlet may be related:

“Passage dependence. If several items are attached to the same passage or

setting, then LID can occur. This LID can be produced by a student's unusual

level of interest or background knowledge about the passage or by the fact

that information used to answer different items is interrelated in the passage.

Item chaining. If items are organized in steps, then knowing the answer to one
item increases the chances of a student's knowing the answer to the next one.

While item chaining has long been an anathema to multiple-choice tests, it is

9



often seen as desirable in performance assessments because it models real life

situations.” (Yen, 1993, p. 189)

In both situations, testlet items violate the local item independence assumption
of the IRT models (Rosenbaum, 1988). IRT models assume that holding a person’s
latent trait constant, the probability function of the examinee’s response pattern to a
set of items is the product of the probabilities of his/her particular response to each of
the items (Embretson & Yang, 2006). For example, for two items i and j in a test,
the probability of answering both items correctly given the ability level 8 is calculated

as:

P(X; =1, X, =110)= P(X, =1 O)P(X,; =1[6) (2.1)

The estimation of IRT model parameters usually involves searching for constants that
maximize the probability function of the joint response pattern. If the assumption of
local item independence is violated, the constants derived through maximizing the
product of the probabilities of each particular response to each item will generally not
be the unbiased estimates that maximize the true probability function of the response
pattern. As a result, when LID is present, the item and person parameter estimates
using the IRT model may be inaccurate and biased. (Ackerman, 1987; Kingston &
Dorans, 1984; Thissen, Steinberg, & Mooney, 1989; Wainer & Wang, 2000; Yen,
1980, 1993).

Items within a testlet may display stronger relationships among themselves
and consequently these items may have higher correlations with the total score.
Within the classical test theory framework, this is manifested as the stronger biserial

correlations between the item scores and the total scores. Within the IRT framework,

10



the testlet effect can produce higher item discriminations for the items that display
LID (Masters, 1988).

The statistical dependence caused by the testlet format can also lead to the
overestimation of test reliabilities if item-based methods are used to perform the
estimation over tests composed of testlet. When estimating reliabilities of test scores
using internal consistency indices such as Cronbach’s a (Cronbach, 1951), the inter-
correlations of the items within a testlet cause the score variances within testlets to be
smaller than score variance between testlets, thus resulting in lower overall variance
for the total scores. With the lower total score variance, the reliability statistics of the
test scores are erroneously inflated. The positively biased estimates of reliability
caused by the testlet format have been well studied by researchers. (Allen &
Sudweeks, 2001; Feldt, 2002; Frisbie & Druva, 1986; Reese, 1999); Sireci, Thissen &
Wainer (1991) examined the concept of the inflation of reliabilities within the IRT
framework. Since the measurement precision is a function of the person parameter 6
in IRT, there is no single overall reliability index for different test scores. Sireci et al.
obtained the marginal reliability by integrating the measurement error variances of
different proficiency levels over their distribution. Their study shows that failure to
account for LID leads to overestimating the reliability of the test scores by as high as
10-15%. Crehan (1993) and Thissen et al. (1989) also detected inflated reliability
estimates when context-dependent item sets are treated as stand-alone items by
comparing results obtained using the 3-PL IRT models to those using the polytomous

models. Lee (1999) found that the item-based estimation methods for the conditional
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standard error of measurement (SEM) would provide underestimates for tests
composed of testlet.

Test information function (TIF) is a frequently used reliability statistics within
the IRT framework. For item i given the trait parameter 6, the item information

function /; is defined as

1

1,(0) = 56 (0) (2.2)

where Sei2 (@) stands for the SEM squared for item i given 6. TIF(6) is defined as the

sum of the item information functions given 6:

TIF(0) = _Z":Ji(e) 2.3)

When the items within a testlet display LID, the summed value would be a biased and
inflated estimate of TIF because the SEMs are underestimated (Yen, 1993).

Since LID caused by the testlet format impacts the estimation of the model
parameters and test reliabilities/TIFs, various methods have been proposed to detect,
mitigate or model the LID. The methods within the IRT framework can be
categorized into three groups:

1) Identifying LID through comparing the observed response patterns and
model-predicted response probabilities and observing the residual correlations or the
Chi-Square statistics. This category includes the Q, index proposed by van den
Wollenberg (1982); the Qs index proposed by Yen (1984) and the X*and G*index

proposed by Chen & Thissen (1997).
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A description of Yen’s Qs index is provided here since it is applied in the real
data analysis later in this study. Qs is a model based descriptive statistic which
assesses the local item independence assumption of the unidimensional IRT models.

First, for item 7, a person k’s residual score dj; is defined:
d; =u,—P,8,) (2.4)

where u; is the raw item score of person & on item i and P i(ék)is the probability of

person k answering item i correctly, which is derived using a specific unidimensional
IRT model and its item and person parameter estimates. The correlation of the

residual scores of item 7 and item j taken over examinees is the Q3 statistic:

Oy, = Via,

J

2.5)

According to Yen(1984), when the tested IRT model is true, djx and dj; should be
distributed approximately as bivariate normal variables with a zero correlation since
they are random error scores. Yen also noted that the Qs statistics may suffer from the

half-whole contamination issue (Kingston & Dorans, 1982) since the observed item

score is used to calculated the expected item score 0. As a result the Q; statistics tend
to be slightly negative. The expected value of Q3 when there is no LID is -1/(n-1),
where 7 is the total number of items. The Q; statistics have been tested and applied by
Yen (1993), Fennessy(1995), Chen & Thissen(1997) and Zenisky et al. (2001).

The Q3 and G?indices can be used to detect the magnitude of the testlet effect
when analyzing item properties. It is desirable to eliminate or replace items that

display strong LID if the construct validity is not affected by such changes. However
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when the testlet format is used, the interrelated items within a testlet are often
construct relevant and cannot simply be removed from the test. Consequently, test
developers and psychometricians have to use models and methods to account for the
testlet effect in such circumstances.

2) Mitigating the effect of LID using polytomous models instead of
unidimensional dichotomous models for tests composed of testlets. This has been a
frequently used approach (Bishop & Omar, 2002; Cook, Dodd, & Fitzpatrick, 1999;
Lee, Kolen, Frisbie, & Ankenmann, 1998; Thissen et al., 1989) based on the notion
that testlet is “a subset of items in a test form that is treated as a measurement unit in
test construction, administration, and/or scoring.” (Lee, Brennan, & Frisbie, 2000,
p.10). By treating testlets instead of items as the primary scoring unit, the local item
independence assumption of the IRT can be upheld, as claimed by Rosenbaum (1988)
“that given the loss of local independence within testlets, local independence can still
prevail between testlets.” However, using testlet-based scoring method requires
summing the individual item scores within each testlet. Information regarding the
response patterns to items within a testlet is lost in the process. This can lead to the
loss of measurement information about items as compared to discrete-item scoring
(Zenisky et al., 2001). Moreover, the estimation of the latent traits can also be
affected by collapsing item scores into testlet scores.

3) The third approach is to model the testlet effects. Several models
accounting for LID effect caused by the testlet format have been proposed. Wang,
Cheng & Wilson (2005) used a multidimensional item response model to detect

specific forms of LID for items across tests connected by common stimuli. Andrich
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(1985) proposed a “dispersion location model” which is a specialized form of the
rating scales model and used the dispersion parameter to quantify the magnitude of
the LID effect. Demars (2006) applied the bi-factor model to testlets by treating the
testlet traits as the secondary trait. Among these proposed models, the testlet models
based on the Test Response Theory emerged to be the most promising ones in treating

LID caused by the testlet format.

Testlet Response Theory (TRT)

Steinberg and Thissen (1996, p82) asserted that “IRT is not a theory; It should
be called a collection of statistical models and methods for making sense out of data
arising in the context of psychological measurement”. The same can be said about
TRT: it is not a theory, but a family of statistical models that are used to analyze
testlet-based tests data. TRT is explicitly described in “Testlet Theory and its
Applications” (Wainer et al., 2007), where the authors presented various testlet
models that they have developed over the years including the testlet models analog to
the 2-PL IRT model (Bradlow et al., 1999), the 3-PL IRT model (Wainer et al., 2000);
and the general model that can be fit to a mixture of 2-PL, 3-PL and polytomously
scored items(X. Wang et al., 2002).

The TRT models differ from the IRT models in that they include the testlet
parameters which capture LID within testlets. Taking the 3-PL IRT model for

example:

p(y, =) =c, +(1-c)logit™(t,) (2.6)
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where p(y;=1) is the probability of person i answering item j correctly and c; is the
guessing parameter (lower asymptote) for Item j. #; is the latent linear score predictor,

which can be extended to the following formula according to IRT:

t,=a,(6,-b,) 2.7)

where g; is the discrimination parameter for Item j; b; is the difficulty parameter for

Item j and 6; is the latent trait parameter for Person i.

According to TRT, a new parameter that accounts for the testlet effect is

added to the 3-PL model:

1;=a;(0-b;-7,) (2.8)

with y,

o Deing the testlet effect of person i with item ; that is nested within the

testlet g. y,,;, is independent of the item parameters, the ability parameter 6, and the

testlet parameters y from other testlets (Bradlow et al., 1999). For a particular person,

7.0(;) Parameter is specified to be the same for all the items that are nested within the

same testlet. This would result in higher inter-item correlations for the expected item
scores within testlets than the expected item scores between testlets. Therefore the
testlet effect can be accounted for. The mean of the testlet parameters for a particular

testlet across all examinees is usually set to 0 so that the scale of the parameters can
be identified. The set of testlet parameters work their effect through the variance 02( -
g

The degree of dependence among the items within a testlet depends on the value of

the variance. The larger the variance, the larger the testlet effect is. If the variance is 0,
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the items are locally independent. By introducing the dependence effect parameter
into IRT models, testlet models produce item and person parameter estimates without

bias caused by the testlet effect.

The TRT model accounts for LID by including an additive term that affects
the item difficulty. This is reasonable from a substantive perspective since the testlet
effect is usually caused by examinees’ background knowledge and understanding
about the stimulus. Different levels of the knowledge may affect how difficult items
within a testlet are for the examinees, so that for a given examinee, the items in a
given testlet may tend to be a little easier or a little harder than other items, in relation
to their relative difficulties for other examinees (Yen, 1980). From a technical
perspective, this approach to modeling dependence by adding what amounts to
another factor for just a small group of items is in fact identical to Spearman’s two
factor model of intelligence that he developed back in early 1900s (Spearman, 1904)

and Holtzinger’s bi-factor model (Holzinger & Swineford, 1937).

The testlet model can be embedded within a Bayesian framework that allows
sharing of information across persons, items, and testlets (Wainer et al., 2000). Under
the Bayesian hierarchical structure, 4;;, the parameters of the likelihood function
p(ijlAy) are governed by a set of parameters / through a set of prior distributions

m(A;| 4). The marginal posterior distribution can be given as (Wainer et al., 2007):

p(A[Y) e IP(Y | Dp(A[A)dA (2.9)
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Markov Chain Monte Carlo (MCMC) (Geman & Geman, 1984) is often used to
perform this integration through sampling from the posterior distributions. To obtain
the posterior distributions, the MCMC algorithm goes through the following steps, as

described by Wainer et al. (2007):

1. In the initial stage where the iteration number =0, the starting values are
given to the parameters A and 4, denoted as 4y and 4.

2. In the next iteration t=t+/, sample from the conditional distribution p(4,|4,
Y). Since p(4,|4y, Y) is proportional to the product of the likelihood function
p(Y|21,44) and the prior p(4,|4), and the prior and the posterior distributions
are not conjugate, special methods such as the Metropolis-Hastings (Chib &
Greenberg, 1995) algorithm can be used to implement sampling from the
conditional distribution. According to this algorithm, a sample value 6* is first
obtained from a distribution that allows straightforward sampling such as a
normal distribution g(6), then the value g(6*) is compared with the height of
the target density f(0*): if f(0*) is larger than g(6*), the new sampled value 6*
is accepted; if f(6*) is smaller than g(8*), the value 6* is accepted with the
probability f(0*)/g(6%).

3. Given the newly sampled value of 4;, draw a sample from the conditional
distribution p(4;|4,,7Y).

4. Repeat the previous steps. Multiple iterations are needed for the two stages of
MCMC: 1) In the burn in stage, convergences need to be reached so that the

sampling distributions become stationary; 2) In the sampling stage, values are
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sampled from multiple draws to reach stable estimation of posterior

distributions of the model parameters.

Scaling and Equating

Test equating is “the process of deriving a function mapping score on an
alternate form of a test onto the scale of the anchor form, such that after equating, any
given scale score has the same meaning regardless of which test form was
administered.” (Haertel, 2004, p.1). Test equating is often performed for security
reasons. It is common that test programs administer different test forms on different
dates to minimize item exposure. While test developers strive to construct test forms
that are similar in content and statistical characteristics using the test specifications as
the guidelines, these test forms usually differ in their difficulties. It is necessary to
equate these test forms so that the difference in the test difficulties can be accounted
for.

When tests are developed and scored using IRT methods, test equating is
usually performed within the IRT framework. Equating with IRT usually requires that
the scales of the parameter estimates from different test forms be on the same IRT
scale. This is due to the fact that the latent variable in many IRT models is
unidentified up to a linear transformation, i,e.: if the latent trait parameters are
linearly transformed, then a complementary linear transformation can be made to the
item parameters so that the model produces exactly the same fitted probabilities

(Hanson & Beguin, 2002). To solve this issue, constraints are generally imposed for
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model estimation. The prevalent practice is to set the scale of the latent trait/ability on
the standard normal distribution ~N(0, /). When model parameters are estimated for
two test forms X and Y taken by two different groups of examinees, the trait
parameters s are scaled to have a mean of 0 and a standard deviation of 1 for both
groups in the separate estimation processes, even though the two groups may be non-
equivalent. Consequently, the two sets of parameter estimates for form X and form Y
may be on different scales and it is necessary to transform them onto the same scale
before equating can be performed. To accomplish this, the test forms need to 1) share
a set of common items, or be taken 2) by a single group or 3) by random and
equivalent groups of examinees. These three data collection designs are called
common-item nonequivalent groups (CINEG) design, single group design and
random groups design (Kolen & Brennan, 2004). This research focuses on the first
option: CINEG. Under this design the parameters of the common items are estimated
on different IRT scales due to the group difference in latent traits. A linear equation
can be used to transform the two set of parameter estimates onto the same scale. For

example, suppose Scale / and Scale J are linearly related for a 3-PL IRT model in that:

6,=46,+B (2.10)

where A4 and B are the linear transformation coefficients, and 6;; and @j; are person i’s
latent trait  on Scale J and Scale /. The transformation relations of the item j’s item

parameters a, b and ¢ between the two scales are:

a,=a;/ A (2.11)

20



b, =Ab,+B (2.12)

CJ]-:

; (2.13)

Characteristic curve scaling methods

Several methods have been developed to estimate 4 and B scale linking
constants. Marco (1977) presented the Mean/Sigma method, which makes use of the
means and standard deviations of the h-parameter estimates from the common items.
Loyd and Hoover (1980) proposed the Mean/Mean method, which computes 4 and B
linking constants using the means of a and b parameter estimates of the common
items. Mislevy and Bock (1990) suggested using the means of the b parameters and
the geometric means of the a parameters. Kolen and Brennan (2004) pointed out that
one potential issue with these moment methods is that different combinations of the a,
b and c item parameters can produce almost identical item characteristics curves over
the latent trait range and the two methods can be overly influenced by the difference
between one of the item parameter estimates, even though the item characteristic
curves for the items on the two estimations are very similar. To solve this issue,
Haebara (1980) and Stocking and Lord (1983) developed two scale transformation
methods which search for 4 and B constants that minimize the differences between
the estimated item characteristic curves or test characteristic curves over the common

items. The characteristic curve methods take into account all item parameter estimates.
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The Haebara function is defined as the sum of the squared difference of the
estimated probability functions for all common items for an ability level. For the 3-PL

model parameter estimates, the function is:

Hdiff (6,) = Z[pi,(HJi;aJ,,bJ,,cJ,)—pg,(éb,-;j’,b,, +B,¢,)IF  (2.14)
v
where 5 j and ¢ are the estimated values of the a, b and ¢ parameters. j:V are the set

of common items. The function Hcrit is then defined by either summing up Hdiff(6,)

over all examinees using a point estimate for each examinee as shown below:

Herit =) Hdiff (6,) (2.15)

or integrating over € with respect to a known or estimated density. The scale
transformation constants can be estimated by finding 4 and B values that minimize

the criterion Hcerit.

The Stocking & Lord method is similar to the Haebara method except that it
aims to search for the scale linking constants that minimize the difference between
the estimated test characteristic curves of the base test form and the new test form
after the scale transformation. First, given 6;, the estimated number-correct test scores,
1.€., true scores on the base form r and the rescaled true scores on the new form t* can

be estimated:

£0) = p;(0,3d,.b;,¢,) (2.16)
JV
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Ak & ~ A
7 (@):Zpy(eﬁ;jﬂbﬁB,cﬁ) (2.17)
JjV

The Stocking & Lord function is defined as the squared differences of the estimated

true scores, for a given 6;:

SLAiff (6) = (2(6) - (0))’ (2.18)

The function SLcrit is then defined by summing up SLdiff(6;) over examinees and the
scale transformation constants 4 and B can be estimated by finding the values that

minimize the criterion SLcrit.

Past studies have shown that the characteristic curve methods perform better
than the Mean/Mean and Mean/Sigma methods (Baker & Al-Karni, 1991; Hanson &
Beguin, 2002; Way & Tang, 1991). The characteristic curve methods can also be used
with polytomous IRT models. Baker (1992) extended the two methods to Samejima’s
(1969) graded response model and Hatorri (1998) applied them in Muraki’s (1992)

generalized partial credit model.

Li et al.’s scale linking method for a testlet model

Li, Bolt and Fu (2005) proposed a method of computing the linking
coefficients for the two parameter normal ogive (2PNO) testlet model using an
extension of the Stocking & Lord Method. The model specifies that the probability

that an examinee j answers item i correctly as:
yan Zq)(ai(gj -b, _]/jd)) (2.19)
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where @ is the standard normal cumulative distribution function and pj, is the random
testlet effect parameter for person j on testlet d. To perform scale linking, Li et al.
adopted the reparameterization proposed by Glas, Wainer, & Bradlow (2000) and
changed the probit a;(0)-b;-y;q) to ai(S-b;) where {= 0-y;.. The probability of
answering item i correctly conditional on @ can be obtained by integrating the testlet

parameters out:

P(y, =110;6.) = [ Py, =11 E)h(E, | 6;0, ), (2.20)

where o, is the standard deviation of {4, which is equal to the standard deviation of

y4. This parameter is assumed to be a known value, using the estimate obtained in the
model estimation step. Given the above probability function, the true score for all the
common items of the base test 7 and of the transformed new test * can be derived
and the Stocking & Lord linking method can be implemented by minimizing the

SLcrit function.

It should be noted that the method proposed by Li et al. allow that when
“examinees from two populations respond to the same testlet, it may be that not only
their 6 distributions differ but also their y;4 distributions.” (Li et al. 2005, p.343)
Based on this proposition, the authors believe that the means of y;; of the testlet effect
parameters of the new test form need not be 0 after scale transformation. Their

method accommodates this shift in the means by adding another constant z , in their

calculation. By including the shifted means of the testlet effect parameters in scale
linking, Li et al. in effect modifies the testlet model by adding a set of dimension

parameters to it. This parameter accounts for Li et al.’s assumption that testlets can
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affect different populations differently: that the true score of examinees is

systematically altered by a set of testlet related dimensions.

However, according to TRT, The interdependence of the testlet items results
in the random interaction between the testlets and the examinees and the variances of
the testlet effect parameters over the examinees are used to quantify the magnitude of
this interaction. The researchers are generally not concerned with the means of the
testlet parameters, which are customarily set to 0 to make the scale of the model
identifiable in the estimation process. If a testlet affects different populations
differently due to the inter-dependence of the items, it should be demonstrated in the
difference in the variances of the testlet parameter distribution. Li et al.’s testlet
related dimensions can be regarded as nuisance dimensions that originate from the
content of each testlet. This is different from the LID effect caused by items sharing
the same stimulus. Note that this extension is beyond the scope of this research, as
much remains to be learned about the standard situation in which scaling shifts are

assumed common across testlets.

The characteristic curve method employed by Li et al. is an extension of the
Stocking & Lord scale linking method. There have been few studies that compare the
performances of the Stocking & Lord method and the Haebara method. Way and
Tang (1991) found that methods based on the two criteria Hcrit and SLcrit produced
similar results for dichotomous IRT models. Li and Yin(2008) compared several
procedures for polytomous IRT model equating and found that using the Stocking &

Lord method or the Haebara method doesn’t have a significant impact on the final
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equating results. However, Kolen and Brennan (2004) suggested that the Haebara
method may be theoretically superior to the Stocking & Lord method because Hdiff(0;)
can be 0 only if the item characteristic curves are identical at §; whereas SLdiff(6;) can
be 0 even if the item characteristic curves differ. Thus, the Haebara method can be
viewed as being more stringent than the Stocking & Lord method (Kolen & Brennan,

2004).

Another caveat of Li et al.’s study is that they applied the characteristic curve
scale linking method to the 2PNO testlet model. While this model has similar
statistical characteristics as the 2-PL testlet model, it is not as popularly used as the

logistic function- based testlet models.

To sum up, it would be of interest to devise such a scale linking procedure that
1) takes into account of the testlet effect using the logistic function-based testlet
model and 2) is an extension of the Haebara item characteristic curve scale linking

method.
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Chapter 3 Methodology and Simulation Study

Research Questions
The objective of this dissertation is to propose a new scale linking method
within the TRT framework: specifically, the Haebara item characteristic curve scale
linking method is extended to the 3-PL testlet model. The study attempts to answer

the following research questions:

1. How well does the proposed scale linking method recover the true
linking relations for test forms composed of testlets?

2. Does the proposed 3-PL testlet model scale linking method perform
better than the scale linking methods using the traditional
dichotomous and polytomous IRT models when they are applied to

testlet-based tests?

Methodology

With the CINEG design, the scale transformation is based on the theory that if
a model fits the data, a simultaneous linear transformation of the model parameters
will result in the same probability function. Within the TRT framework, the model

parameters that need to be rescaled include the testlet parameters as well as the item
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and person parameters. Suppose Scales / and Scale J are linearly related for a 3-PL

testlet model, the scale transformation relations for the parameters are:

0,=A40,+B (3.1)
a,=a,l A (3.2)
b, = Ab, +B (3.3)
C;=¢y 3.4
Vagcyy = AV gy (3.5)

To prove such linear transformation is valid, when the parameters are on Scale

J, the 3-PL testlet model can be written as:

eXp[an 0, _bJj B 7Jig(j))]

py;=D=c;+(1-c;) 3.6
/ ’ 71+ eXp[ajj @, - bjj ~ Vg )] 3.6)

Replace 0, aji, by, cjiand y,;, with the expressions from (3.1) to (3.5)

a.,.

eXp[jlj [(Aeli +B)- (Ablj +B)- Aylig(/))]

=c; +(1—c;) ; (3.7
.
1+ exp[j[(AH,l. +B)—(Ab; + B)— Ay ,;,)]
ex 6,.-b, -y, .

=cy +(1—CI p[alj( 1i I yltg(j))] (38)

e explay (0 = by =¥y )]
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where (3.8) is the same as formula (3.6) except that the parameters are on Scale / now.
This shows that the linear scale transformation of the parameters using constants A4

and B results in the same probability functions.

The scale linking method based on the Haebara approach is proposed to
search for 4 and B constants. First, a function called Hdiff{9;) is defined which
computes the sum of the squared difference between the estimated true scores for

each item for the ability level 6;:

A

A ~ ~ a j ~ A
HAiff (0) = 2 [y O38.y5bysCy37009) = PyOus— by + Boys Ay )T (3.9)
JV

Now the issue is how to calculate the probability function p;; for each item given 6; in
formula (3.9) This is straightforward in the case of the 3-PL IRT model by using the
estimated item parameter values. Note however that (3.9) includes, in addition to the
standard 3-PL item parameter estimates, values of the testlet parameters y. These
values are not known in practice, so a practical procedure will need to find an
approximation that deals with the testlet parameters as well. In the testlet model,

?ep @nd 7., are a vector of values that are normally (and independently) distributed
with the mean of 0 and standard deviation of o(y,,;) and o(y,,;) respectively.

Consequently, the person parameters are vectors instead of single values. This greatly

complicates the process of computing the Hdiff(0;) function.

Since the testlet parameter distribution is considered to be continuous, the

probability of answering item j within testlet g correctly given 6; can be obtained by:
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£, “J; 52 C3 Y sep)

o 3.10
eXp[an( Ji 7]1g(/))] }W(}/Jig(j))d(yjig(j)) ( )
1+exp[an( Ji Jj _ylfg(j))]

= [{e,+1-¢))

where y(y,,)1s the estimated distribution of y . It is appropriate to obtain the
expected item score by taking the integral over the y,, distribution because the testlet
model assumes that the y,, parameter is independent of the ability parameter 0;.

Otherwise, the expected item score would have to be obtained by integrating the

logistic function over the y ,, distribution conditional on the ¢ distribution.

Since y,, is specified to be drawn from a normal distribution with a mean of
0 and a standard deviation of o(y,,), and o(y,,) can be estimated, we can

approximate the continuous distribution with a discrete distribution on a finite

number of equally spaced quadrature points to compute the integral so that:

(er aJ/ éJj ’7Jg(i))
p[ajj (e.h pk(}/Jg)) ) ) (311)
k(745)
1+expla, (0, —by = py,,)] ’

EZ((@J/.+(1—@Jl)

where p, .,  is the kth quadrature point and ¥, ,is the corresponding weight.

Similarly,
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PU(Q A by +B,éys AV )

a, .
eXP[j’ (0, —(4b, +B) - 4p,, )] (3.12)
=26+ -t — g Wi, )
i
p 1 + exp[j (0, —(4b; + B) = Apy,, )]

Hdiff(6,) as shown in formula (3.9) is a summation function performed over all the
common items. The function Hcrit is then defined by adding up Hdiff(6) for all
examinees that have taken the base test form, again using point estimates of & for

each examinee in the summation.

Herit =) Hdiff (6,) (3.13)

The scale transformation constants 4 and B can be estimated by finding the values

that minimize the criterion Hcerit.

Simulation Design and Analysis

The simulation study was performed to evaluate the effectiveness of the
proposed linking method under the testlet model. It is compared against the scaling
methods using the simpler 3-PL IRT model and the graded response model (GRM)
(Samejima, 1969) to study if it performs better in recovering the true linking

relationship between the two sets of parameters estimated on different scales.
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Data simulation

Two test forms with common items were created for each dataset. Binary
scores (0, 1) for two 30-item test forms (the base form and the new form) were
simulated. There were 6 testlets in each test form and each testlet consisted of 5 items.
1000 subjects were simulated for each test form. The 3-PL testlet model was used to
generate datasets with testlet characteristics. The generating distributions for the

model parameters are presented in Table 1:

Table 1

Simulation Specifications: Parameter Generating Distributions and Simulation
Conditions

Parameters Distributions
Base Form New Form*
a ~LN(-0.3, 0.35%) ~LN(-0.3, 0.35%)
b ~N(0,1?) ~N(0,1?)
c ~N(0.2, 0.05°%) ~N(0.2, 0.05°%)
0 ~N(0,1%) ~N(0.5,1.5%)
Yo Condition 1: =0 Condition 1: =0
Condition 2: ~N(0,1?) Condition 2: ~N(0,1?)
Condition 3: ~ N(0, v2°) Condition 3: ~ N(0,+/2")

Note * The parameter distributions only apply to the first 3 testlets (15 items)
for the new form. The last 15 items are the common items and have the same
parameter values as those of the base form.

1. Item parameters: For the base form, the difficulty parameter 5’s were
created using the standard normal distribution N(0,1); the discrimination parameter

a’s were created using the lognormal distribution LN(-0.3, 0.35°) and the guessing
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parameter ¢’s were created using the normal distribution N(0.2, 0.05°) with the lower
limit set at 0. 30 sets of item parameters were generated. For the new form, the item
parameters of the first 15 items were generated from the same distributions as those
for the base form. The last 15 items were specified to be the common items and they
had exactly the same item parameter values as the last 15 items of the base form.

2. Person parameters: The 6 parameters were specified to follow the
normal distribution N(0, 1) for the base form and N(0.5, 1.5°) for the new form. This
reflected the non-equivalent nature of the examinee groups.

3. Testlet parameters: The testlet effect parameters were generated using
normal distributions N(0, var,q)). The degree of the testlet effect was determined by
the variances of the testlet parameter values: var,). In this study, three conditions of
different degrees of testlet effects were simulated: 1-no testlet effect (var,g=0); 2-
moderate testlet effect (var,=1) and 3-strong testlet effect (var,g=2). These testlet
effect conditions were similar to those simulation conditions specified in Bradlow et

al (1999), which specified var,) to be 0, 0.5, 1 and 2.

With the parameter values ready, the probability of getting each item right
was calculated using the 3-PL testlet model. The item scores in the form (0, /) were
simulated using the Bernoulli distribution function which was dependent on this

calculated probability. For each of the three conditions, 50 samples were generated.

Model calibration
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After the datasets were simulated, the 3-PL IRT model, GRM and the 3-PL
testlet model were fitted respectively to the data.

The 3-PL IRT model was used because its only difference from the 3-PL
testlet model is that it doesn’t account for the testlet effect. By including the results of
scale linking procedure based on the 3-PL IRT model as a benchmark in the study,
the improvement (if only) in the scale linking performance due to using the testlet

model can be studied. The 3-PL IRT model is of the form:

exp[aj(ei _bj)]
M expla,(0,-b,)]

py=c;+(-c (3.14)

where Pj; is the probability of correctly answering item j for person i;; g; is the item
slope parameter, b; is the item difficulty parameter and c; is the lower asymptote
guessing parameter. The computer program BILOG-MG (Zimowski, Muraki,
Mislevy, & Bock, 2005) was used to estimate the model parameters.

As discussed in the previous chapter, some researchers have employed
polytomous IRT models in treating the testlet based test forms to account for the
testlet effect. Therefore, it makes sense to include polytomous IRT model-based scale
linking procedure in this study so that its performance can be compared with that of
the proposed scale linking procedure based on the testlet model. Two polytomous
models that are popularly used for such purposes are Samejima’s (1969) GRM and
Muraki’s (1992) generalized partial credit model (GPCM). Past research has shown
that the two models provide highly similar results when used to analyze items with
multiple-category responses (Maydeu-Olivares, Drasgow, & Mead, 1994; Tang &

Eignor, 1997; Thissen, Billeaud, McLeod, & Nelson, 1997). The GRM was used in
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this study. The GRM is a form of difference model (Thissen & Steinberg, 1986). It
first models the “cumulative response functions,” which refers to the cumulated
probability of scoring at or above a certain category. Note that this is different from
the cumulative distribution function in its commonly used definition: the probability
of receiving a certain outcome or a lower one. Next, the category response functions,
or the probability of scoring at a specific category, are derived through calculating the
differences between the cumulative functions of successive responses. The

cumulative response category function is of the following form:

L A I
1+expla,(6,—b,)]’ ’ (3.15)

p;jk (61) =

where P*;;(0,) is the cumulative probability of scoring at or above category k for
person i; category k=1, 2,..., K; a; s the item slope or step parameter and bj; is the
item location (difficulty) parameter. For a specific item, the higher the category, the
larger the difficulty parameter value for that category. Once the cumulative
probability function is estimated, the category response function then can be

calculated via:

Pi(0) =Py (0) = pj,n(6), if 1<=k<K;

= }(6) if k=K (10

PARSCALE (Muraki & Bock, 1997) was used to perform the GRM estimation.
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The WinBUGS program (Spiegelhalter, Thomas, Best, & Lunn, 2003) was
used to implement the MCMC method for the 3-PL testlet model estimation. The
following prior distributions were specified for the item parameters: the normal
distribution N(0, 2°) for the difficulty parameter b; the lognormal distribution LN(0,
0.5) for the discrimination parameter @ and the beta distribution Beta(5, 17) for the
guessing parameter c¢. As Patz and Junker (1999) pointed out in their study on
applying MCMC to IRT models, it is common to use these types of prior distributions
for the item parameters in the Bayesian estimation of the 3-PL IRT model. They used
the same prior distributions for the a and b parameters and a quite similar beta prior
distribution for the ¢ parameter in their estimation of the 3-PL IRT model. Many
simulation studies have been carried out to study the sensitivity of 3-PL item
parameters to prior specifications (e.g., Harwell & Janosky, 1991), leading to the
conclusion that the specifications noted above are sufficient to provide finite and
stable estimates in the kinds of data normally seen in educational testing, without
overwhelming response data. Since the 3-PL testlet model is an extension of the 3-
PL IRT model, these prior distributions for the item parameters are adopted for the 3-

PL testlet model estimation in this study.

All six prior distributions for the precision (the reciprocal function of the
variance) of the testlets were set to be gamma distribution Gamma(0.5, 1), based on
previous research by Bradlow, Wainer, and Wang (1999). The prior distribution of 6
was specified to be standard normal distribution N(0, 1) to set the scales of the person

and item parameters.
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Sinharay (2003) indicated that the number of iterations required to ensure
convergence may be quite large for testlet models. In order to obtain the stable
posterior distributions of the model parameters, it is necessary to ascertain the number
of iterations that are needed before convergence can be achieved. Two chains of
iterations were run first on a sample dataset generated using the above simulation
specifications to check convergence. While the initial values for the other parameters
were randomly generated by WinBUGS, the starting values of the b parameters of the
30 items were all specified to be -1 for the first chain and 1 for the second chain so
that the MCMC processes start from different spaces for the two chains. 25000
iterations were run in the test and the results were observed.

Since the Metropolis sampling method was used, WinBUGS required an
adaptive phase of 4000 iterations before model estimation could be performed. The
traces of all a, b and ¢ item parameters, the first 10 6 parameters and the variances of
the testlet parameters estimates for the 6 testlets were monitored. The traces of some
randomly selected item parameter estimates are presented in Figure 2. They are: a
parameters for Items 1 and 6, b parameters for Items 3 and 13 and ¢ parameters for
Items 11 and 20. As we can see, the two chains of the item parameter estimates
converge very well after the initial 4000 iterations. Figure 3 presents the traces for the
variances of the testlet parameter estimates of the 6 testlets. The two chains also

converge well after 4000 iterations.
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Figure 2. WinBUGS history output for some item parameters: a,, a,, b;, b, ¢, ¢y
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Figure 3. WinBUGS history output for variances of the testlet parameters
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The WinBUGS also calculates the Gelman-Rubin (1992) index. According to

the WinBUGS manual (Spiegelhalter et al., 2003, p.27), for the Gelman-Rubin plots,

“the width of the central 80% interval of the pooled runs is green, the average width

of the 80% intervals within the individual runs is blue, and their ratio R (= pooled /

within) is red”. Since the variances of the testlet parameters may take more iterations

to converge, the Gelman-Rubin plots for the variances of the testlet parameters are

presented in Figure 4. The plots show that the blue and green curves overlap and the

red curve hovers around 1 after about 6000 iterations for the variances of the testlet

parameters. Judging from the history plots and the Gelman-Rubin plots, the

convergence is reached after 6000 iterations.
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Figure 4. WinBUGS Gelman-Rubin plots for variances of the testlet parameters
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Another convergence study was conducted specifically for the data simulated

under Condition 1 since there may be a convergence issue for the testlet effect

parameters when there is no testlet effect. The two chains with the same initial values

as specified in the previous convergence study for the b parameters were run. The

Gelman-Rubin plots are shown in Figure 5 and the history plots for the six variances

of testlet effect parameters are shown in Figure 6. The two figures indicate that the

two chains converge quite well after 6000 iterations.
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Figure 5. WinBUGS Gelman-Rubin plots for variances of the testlet parameters when

there is no testlet effect
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In the actual model estimation, WinBUGS was programmed to run 12000
iterations and discarded the first 6000 iterations. Therefore a total of 6000 samples
were used to estimate the model parameters. This is more conservative than several
other TRT model estimation studies. For example, Bradlow et al. (1999) ran only

2000 iterations and used the last 1000 iterations for the 2-PL testlet model estimation.

Scale linking

To allow consistent comparisons, the Haebara item characteristic curve
methods were used to perform the scale transformations for the 3-PL model and the
GRM. The programs ST (Hanson & Zeng, 2004) and POLYST (Kim & Kolen, 2003)
were used to perform scale linking for the 3-PL model-estimated parameters and

GRM-estimated parameters respectively.

In the simulation study, each test form was taken by 1000 examinees and each
test form had 15 common items embedded in 3 testlets. 20 evenly distributed
quadrature points in the range of [-3, 3] were used to estimate the probability
functions given 6,. The quadrature weights were calculated using the SAS
PROBNORM function, a practice that has been applied by Xiao (1999). The criterion

Hcrit in formula (3.13) was expanded:

Herit ="y Hdiff (6)

a. .
A o (0, =(db; +B)=Ap,, )
{(Z((CI] +(1_C[j) P R )Wc(ng)) (3.17)
3
20 1+ exp(j (0 —(4b; +B)=Ap,,, )]

1000 15

N=l j=1

> (¢, +1-¢))

exp(d, (0 —by = Piy,))

" W)}
l+eXP(an(9ﬁ —bjj _pk(z,g))] )
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Since this is a nonlinear minimization problem, the Newton Raphson method
can be used to search for the constants 4 and B. There is no off-the-shelf program
available to implement the method for scaling the 3-PL testlet model. The PROC
NLP procedure of SAS was used to perform the computation, with Hcrit specified to
be the objective function. Appendix A provides the kernel of the SAS NLP procedure

code used in this study.

One issue with non linear programming is that multiple local optima may exist
in the optimization process. To check if the global optima can be reached using the
proposed method, multiple runs using different starting values were performed on a
randomly generated dataset under each of the three conditions. For 4 parameter, the
starting values were selected by taking four equally spaced values within the range
[0.2, 5]: 0.20, 1.80, 3.40 and 5.00. For B parameter, the starting values were selected
by taking four equally spaced values within the range [-5, 5]: -5.00, -1.67, 1.67 and
5.00. These two selected ranges were rather conservative and it was improbable for
the true parameter values to be outside the ranges. The paired combinations of the
two sets of values were adopted as the starting values. Altogether 16 (4 by 4) pairs of
starting values were used under each of the three simulation conditions. As
demonstrated in Table 2, under each of the three conditions, the same optimum
results are reached using different starting values. This provides strong empirical
support for the claim that there are no multiple local optima within the space where

the true parameter values are likely to exist using the proposed scale linking method.
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Table 2

Estimation of the Scale Linking Parameters Using Multiple Starting Values
For a Randomly Generated Dataset under Each of the Three Conditions

) Condition 1: Var(testlet)=0 Condition 2: Var(testlet)=1 Condition 3: Var(testlet)=2
S\igzlelsg Optimum Value of Optimum Value of Optimum Value of
Trial Values the Objective Function Values the Objective Function Values the Objective Function

A B A B Start Final A B Start Final A B Start Final
1 020 -500 147 0.50 3849.95 11.02 1.58 0.62 2569.85 12.29 1.61 0.64 2573.18 14.10
2 020 -1.67 147 050 3156.26 11.02 1.58 0.62 2408.54 12.29 1.61 0.64 2430.99 14.10
3020 1.67 1.47 0.50 1529.51 11.02 1.58 0.62 2466.58 12.29 1.61 0.64 2542.39 14.10
4 020 5.00 1.47 0.50 1839.36 11.02 1.58 0.62 2763.63 12.29 1.61 0.64 2803.34 14.10
5 1.80 -500 1.47 0.50 2473.33 11.02 1.58 0.62 2020.94 12.29 1.61 0.64 1988.60 14.10
6 1.80 -1.67 147 0.50 717.82 11.02 1.58 0.62 711.37 12.29 1.61 0.64 630.96 14.10
7 180 1.67 1.47 0.50 165.77 11.02 1.58 0.62 162.07 12.29 1.61 0.64 126.51 14.10
8 1.80 5.00 1.47 0.50 1196.69 11.02 1.58 0.62 1834.90 12.29 1.61 0.64 1527.27 14.10
9 340 -500 147 0.50 1343.48 11.02 1.58 0.62 1229.71 12.29 1.61 0.64 1129.42 14.10
10 340 -1.67 147 0.50 389.45 11.02 1.58 0.62 413.76 12.29 1.61 0.64 341.20 14.10
11 340 1.67 1.47 0.50 66.96 11.02 1.58 0.62 47.20 12.29 1.61 0.64 38.31 14.10
12 340 5.00 1.47 0.50 540.35 11.02 1.58 0.62 627.36 12.29 1.61 0.64 469.35 14.10
13 500 -5.00 147 0.50 880.99 11.02 1.58 0.62 848.67 12.29 1.61 0.64 742.24 14.10
14 500 -1.67 1.47 0.50 302.80 11.02 1.58 0.62 326.70 12.29 1.61 0.64 260.33 14.10
15 500 1.67 1.47 0.50 77.21 11.02 1.58 0.62 66.30 12.29 1.61 0.64 49.54 14.10
16 5.00 5.00 1.47 0.50 282.13 11.02 1.58 0.62 257.75 12.29 1.61 0.64 195.57 14.10
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Evaluation criteria

1. Scale linking parameters

In this study, the two test forms were specified to have the same levels of
difficulties. The person parameters were drawn from different normal distributions
N(0,1) and N(0.5, 1.5%). Therefore the true linking parameters were 4=1.5 and B=0.5.
The estimated linking parameters using the item characteristic curve methods based
on the three models can be compared to see which one better recovers the true linking
parameters. The loss function Mean Squared Error (MSE) was used to indicate the

discrepancy between the estimated values and the true values. The MSE for the

linking parameter estimate 4 using the testlet model was defined as MSE (zzlmﬂe,) :

N ~
. Z (An(testlel) - A)2 (3 . 1 8)
MSE(A(testlet)) ==

N

where A4 is the estimated linking parameter based on the testlet model for

n(testlet)

sample n and N is the total number of the samples, which is 50 in this simulation

study. MSE(A4

1) can be further dissected into two parts: the variance of 4

parameter estimates Var(zzl

testlet

) and the bias of the 4 parameter estimates squared

Bias® (21

testlet ) :

MSE(A"’”IEI) = Var(Alestlet) + Biasz (Atesllet)
N pe—
Z (An(textlet) - Atestlet )2 _ (3 . 1 9)
n= 5
= N + (Atestlet - A)
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The MSE and its components were also computed for B estimates. The MSE and the
bias for the linking parameter estimates using the scale transformation methods based
on the three models can be compared. The smaller the MSE and the bias, the better

the method is in recovering the true linking parameters.

2. Item and person parameters

After the linking parameters were obtained, the estimated parameter values of
the new form were rescaled so that they were on the same scale as the estimated
parameter values of the base form. The effectiveness of the scale linking methods
using the three models can be evaluated by observing how well these methods
recover the true parameter values using the loss functions Root Mean Squared
Deviation (RMSD) and Mean Absolute Difference (MAD). So for a specific sample,

the RMSD and MAD of the rescaled 6 estimators using the testlet model is:

1

RMS Zl (test[et) [ (3 20)
B(testlLt) I
4
Zl tesllet) i (3 2 1 )
MAD@ (testlet ) B 1

where 6. is the true 6 value for person i and / is the total number of the examines,

which is 1000 in the simulation study. The two loss functions can also be computed

for the rescaled 3-PL model and GRM 6 estimates.
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Similar formulas can be used to compute RMSD and MAD for the rescaled
item parameter estimates using the testlet model and the 3-PL model. In this case,
instead of summing over the examinees, the squared or absolute differences are

summed over the items. Note that only the rescaled item parameter estimates-
4, b, ¢ - of the 3-PL model and the testlet model were compared in this study because

the GRM has a different set of item parameters that cannot be compared easily with

item parameters of the other two models.

As discussed in Chapter 2, one benefit of treating testlet-based tests with TRT
models instead of the traditional unidimensional dichotomous IRT models is that the
reliability statistics produced by TRT models appropriately account for the testlet
effect. Therefore, besides comparing the point estimates for the item and person
parameters in evaluating the performance of the three scale linking procedures, it is
also useful to compare the TIFs of the person parameters generated by the three
procedures. It is expected that the 3-PL model scale linking procedure should produce
TIFs that are larger than those produced by the GRM and the testlet model based
scale linking procedures. These values are positively biased because unidimensional
IRT models ignore the testlet effect in its model specification. The TIF inflation ratios
can be calculated for the GRM-estimated TIFs vs.the 3-PL model estimated-TIFs; and

for the testlet model estimated-TIFs vs. the 3-PL model-estimated TIFs.
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Results

Scale linking parameters

In the simulation design, the true linking parameters were set to be A=17.5 and
B=0.5 for all three simulated conditions. For each condition, 50 samples were
simulated and the linking parameters 4 and B were estimated using the three scale
linking procedures. Appendix B presents the scale linking parameters estimated under

the three conditions. The means of the linking parameter A4 estimates are presented in
Table 3. The estimators were denoted as 4 3p. and B 3p. for 3-PL model procedure-
estimated values, A GrMm and B crMm for GRM procedure-estimated values, and A Testlet
and B Testlet fOT testlet model procedure-estimated values. When the variances of the
testlet parameters are 0, the mean of A spr. 1S 1.4321. This is closer to 1.5 than the

mean A GrM: 1.4058, and the mean of A Testlet: 1.4231. However, the ANOVA
analysis shows that the three values are not significantly different from each other
since the p value is 0.2871, well above a=0.05. The three values are still not
significantly different from each when the variances of the testlet parameters are 1 (p

value=0.2823). However, it can be observed that as the variances of the testlet
parameters get larger, A Grm and A Testlet DECOmME closer to the true parameter value 1.5
as compared to A 3pL. When the variances of the testlet parameters are 2, the mean of

A Grum 1.4543 and the mean of A Testlet 1S 1.4305, as opposed to the mean of the A 3pL:

1.3702. The differences are statistically significant according to the ANOVA analysis.
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Table 3

Linking Parameter A Estimates using 3-PL, GRM and Testlet Model Scale Linking Procedures

Level of Estimators ANOVA p of the Tukey Test
'I"Eeffstlett 1"1 3PL 1:1 3PL A GRM
ecC ~ ~ A A A A
Statistic A spL A ru A Testiet F P vS. A gru VS. A Testiet VS. A Testet
Var=0 Mean 1.4321 1.4058 1.4231 12587 0.2871 0.2656 0.8530 0.5629
SE 0.0118  0.0122  0.0119
Var=1 Mean 14122 14425 1.4293 12758  0.2823 0.2518 0.6422 0.7670
SE 0.0143  0.0133  0.0127
Var=2 Mean — 1.3702 14543  1.4305 55700*  0.0047 0.0042* 0.0559 0.6312
SE 0.0175  0.0183  0.0192

Note:  The true parameter value A=1.5.

*Difference is significant at a=0.05 threshold.
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Table 4 presents the summary statistics for the linking parameter estimates B
computed using the three scale linking procedures. The B estimates exhibit similar
trend as A estimates: when there is no variance for the testlet parameters, the
B produced by the three procedures are similar, with the means being 0.4898 for

B 3pL, 0.4843 for B Grm, and 0.5092 for B Testlet- All of these values are very close to
the true parameter value 0.5 and the ANOVA analysis shows that the differences of

these values are not significantly different at a=0.05. When the variances of the
testlet parameters are 1, the mean of B orMm 0.5269 and the mean of the B Testlet 0.5256

are similar. The two values are significantly different from the mean of B 3p1 0.4812.
However, all three values are similarly close to the true parameter value 0.5. When
the variances of the testlet parameters are 2, the GRM and the testlet model

procedures produce better B parameter estimates than the 3-PL model: the mean of
B Grum 18 0.5038 and the mean of B Testlet 18 0.4994, as opposed to the mean of B 3pL:
0.4355. The post hoc Tukey multiple comparison test shows that both the mean of

B orum and the mean of B Testlet are significantly different from the mean of B 3pL.

Tables 3 and 4 results demonstrate that the three procedures produce scale
linking parameter estimates that are similarly close to the true parameter values when
there is no or mild testlet effect. However, when strong testlet effects exist, the testlet
model and the GRM procedures produce linking parameter estimates that are closer to

the true parameter values than the 3-PL IRT model scale linking procedure.
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Table 4

Linking Parameter B Estimates using 3-PL, GRM and Testlet Model Scale Linking

Procedures

Level of Estimators ANOVA p of the Tukey Test

Testlet é 3PL é 3PL é GRM

Effect o A A A A S ~

Statistic Bap B cru B testiet F p VS Borm _ VS. B testiet VS. B testiet

Var=0 Mean 0.4898 0.4843 0.5092 0.9419  0.3922 0.9550 0.5671 0.3938
SE 0.0121 0.0155  0.0126

Var=1 Mean 04812 0.5269  0.5256 6.2849*  0.0024 0.0062* 0.0082* 0.9954
SE 0.0102  0.0107  0.0102

var=2 Mean 04355  0.5038 04994 44037 00000 0.0002*  0.0005* 0.9602
SE 0.0108  0.0122  0.0118

Note:  The true parameter value B=0.5.

*Difference is significant at a=0.05 threshold.
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Table 5 presents the Mean Squared Error (MSE), the error variance and the
bias of the linking parameter 4 estimates. The MSE is the sum of the error variance

and the bias squared, and smaller MSE values indicate better estimation performance.
When variances of the testlet parameters are 0, A spr has the smallest MSE: 0.0114,
followed by MSE of A Testlet: 0.0128. A crym has the largest MSE 0.0162. As the
variances of the testlet parameters get larger, A GrM and A Testlet display smaller MSEs
as compared to the A spL. When variances of the testlet parameters are 1, A 3pL. has
the largest MSE: 0.0177 and the MSEs of A gru and A rese are 0.0120 and 0.0129
respectively. When variances of the testlet parameters are 2, App has the largest

MSE: 0.0319 and the MSEs of A GrM and A Testlet are 0.0185 and 0.0229 respectively.

Table 5

MSE, Error Variance and Bias of Linking Parameter A Estimates using 3-PL, GRM
and Testlet Model Scale Linking Procedures

Bias Error
Condition Estimator Bias Squared Variance MSE*
121 3PL -0.0679 0.0046 0.0068 0.0114
Var=0 121 GRM -0.0942 0.0089 0.0073 0.0162
121 Testlet -0.0769 0.0059 0.0069 0.0128
Aspr -0.0878 0.0077 0.0100 0.0177
Var=1 121 GRM -0.0575 0.0033 0.0086 0.0120
1:1 Testlet -0.0707 0.0050 0.0079 0.0129
1213PL -0.1298 0.0168 0.0150 0.0319
Var=2 AGru -0.0457 0.0021 0.0164 0.0185
121 Testlet -0.0695 0.0048 0.0181 0.0229

* MSE=Bias Squared + Error Variance
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Table 6 shows the Mean Squared Error (MSE), the error variance and the bias

of the linking parameter B estimates. When there is no variance in the testlet
parameters, the MSE of B 3pL. 0.0073 and that of B Testlet 0.0079 are similar. Both are
smaller than the MSE of B grm: 0.0120. When variances of the testlet parameters are
1, B 3pL and B Testlet Still have similar MSEs: 0.0055 and 0.0057 respectively and the
MSE of B crM 18 0.0063. As the variances of the testlet parameters get even larger,
B GrM and B Testlet display smaller MSEs as compared to the B 3pL. When the
variances of the testlet parameters are 2, the MSE of B Testlet 1S 0.0069, followed by

that of B gru: 0.0073 and B 3pr: 0.0098.

Table 6

MSE, Error Variance and Bias of Linking Parameter B Estimates using
3-PL, GRM and Testlet Model Scale Linking Procedures

Bias Error
Condition Estimator Bias Squared Variance MSE*
B 3PL -0.0102 0.0001 0.0072 0.0073
Var=0 B GRM -0.0157 0.0002 0.0118 0.0120
B Testlet 0.0092 0.0001 0.0078 0.0079
B 3PL -0.0188 0.0004 0.0051 0.0055
Var=1 B aru 0.0269 0.0007 0.0056 0.0063
B Testlet 0.0256 0.0007 0.0051 0.0057
B 3PL -0.0645 0.0042 0.0057 0.0098
Var=2 B GRM 0.0038 0.0000 0.0073 0.0073
B Testlet -0.0006 0.0000 0.0069 0.0069

* MSE=Bias Squared + Error Variance
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The error variances in Table 5 and Table 6 indicate how efficient the three

procedures are in estimating the scale linking parameters. Under Condition 1 when
the variances of the testlet effects are 0, the error variance is for 0.0068 for A 3pL, for
0.0073 A4 orMm and for 0.0069 for A Testlet. Lhe error variance is for 0.0072 for B 3pL, for

0.0118 B orum and for 0.0078 for B Testlet. 1he 3-PL model procedure is the most
efficient method in estimating the scale linking parameters. However, the testlet
model procedure has very similar error variance values as the 3-PL model procedure,
indicating that it is almost as efficient as the 3-PL model in estimating the scale
linking parameters. The 3-PL model is the correct and the most parsimonious model
when there is no testlet effect in the test forms. Using a scale linking method based on
more complex model usually leads to less efficient estimation of the scale linking
parameters. In this case, the loss in efficiency by using the more complex testlet
model is very small—about 2-percent for the 4 parameter and 8-percent for the B
parameter. Therefore, while a penalty is paid for using the testlet model which is
larger than the 3-PL model, the cost of inefficiency of using the testlet model when

the 3-PL model is correct is minimal.

It is of interest to investigate the bias of the linking parameter estimates using
the three models and study which of the models produce less biased, more accurate

estimators when the testlet effects differ. Figure 7 shows the absolute values of biases
of 4 3PL, A GRM, and A Testlet- When the variances of the testlet parameters are 0, A 3PL
has the smallest bias. When the variances get larger, the biases of A GrM, and A Testlet

get smaller while the bias of A spL gets larger. As the variances of the testlet
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parameters reach 2, A spL displays much larger bias than A GrRM, and A Testlet- Figure 8

shows the absolute values of bias of B 3PL, B GrM, and B Testier. The three estimates

have similar levels of bias when variances of the testlet parameters are 0 and 1, but

when the variances are 2, B sp has much larger bias than that of B GrM and B Testlet-
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Figure 7. Absolute values of bias of the linking parameter A estimates using

3-PL, GRM and Testlet model scale linking procedures
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Figure 8. Absolute values of bias of the linking parameter B estimates using

3-PL, GRM and Testlet model scale linking procedures

The results indicate that when the variances of the testlet parameters are 0 and
there is no testlet effect, the scale linking parameter estimates produced by the three
procedures are similar. The linking parameter estimates of the 3-PL model procedure
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has similar MSE and bias as those of the GRM and the testlet model, the differences
of the means of the estimated linking parameter values using the three procedures are
not significantly different. When the variances of the testlet parameters are 1 and
there is some degree of testlet effect, the linking parameter 4 estimated using the
GRM and the testlet model procedures is a little better than that of the 3-PL model

procedure, with lower MSE and smaller bias, however, the differences of the means
of A 3PL, A GRM, and A Testlet ar€ Not statistically significant. The means of B 3PL,

B GrRM, and B Testlet ar€ also similarly close to the true parameter value 0.5 and these
estimates share similar MSEs and biases. When the variances of the testlet parameters
are 2 and the testlet effects are large, the GRM procedure and the testlet model
procedure-estimated linking parameters perform much better than those estimated
using the 3-PL model procedure: the means of linking parameters estimated using the
GRM and the testlet model procedures are much closer to the true parameter values
than those estimated using the 3-PL model procedure. The GRM procedure and the
testlet model procedure-estimated linking parameters also have much smaller MSEs
and biases than the 3-PL model procedure estimated values. It is evident that as the
variances of the testlet parameters get larger, the testlet model procedure and the
GRM model procedure perform better in estimating the scale linking parameters than

the 3-PL model procedure.

It should also be noted that under each of the three simulation conditions, the
GRM procedure and the testlet model procedure perform quite similarly in estimating
the scale linking parameters. The differences of the means of the linking parameter

estimates are not significantly different and they have similar biases and MSEs.
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Person parameters

After scale linking parameters were estimated, the 8 parameter estimates of
the examinees taking the new forms were transformed onto the scale of the 6
parameter estimates of the examinees taking the base form using Formula (3.1).
Appendix C provides detailed information about the computed evaluation criteria for
person parameter § estimates. Specifically, correlations between 6 estimates and true
0 values, the RMSD and MAD loss functions of 8 estimates and mean TIF estimates

for each sample under each of the three conditions are included in the appendix.

Table 7 presents the correlations between the estimated 6 values using the
three models and the true 0 values for examinees taking the new form. Higher
correlation indicates better estimation performance for the model. The three models
produce very similar correlations under each of the three testlet effect conditions. For

example, when the variances of the testlet parameters are 0, the mean correlation of

the 3-PL model-estimated person parameter and the true person parameter 7( 0 3pL,

6)=0.9039, the mean correlation of the GRM-estimated person parameter and the
true person parameter 7( 0 ori, 0)=08934, and the mean correlation of the testlet

model-estimated person parameter and the true person parameter 7( 0 Testlet

60)=0.9037. However, A Post Hoc Tukey multiple comparison shows that while
there is no significant difference for r( 0 spL, 0) vs. r( 0 Testie, @), the differences for
r( 031, O ) vs. r( 0 Grus, 0 ), and r( 0 crus, 0 ) vs. r( O resten 0 ) are statistically significant

at a=0.05 threshold under all three simulation conditions.
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Table 7

Correlations between the True Person Parameters and the Estimated Person Parameters of Examinees Taking the New

Form
Correlation ANOVA p of the Tukey Test
Level of ~ ~ ~
Testlet (@3, 8) r(Bsp, 0) (6 crm 0)
Effect VS. VS.. VS.
Statistic (@ 3p, ) (6 crm, 0) 1(O restier, 0) F p (O cri, @) (0 1estier, @) 1O 1estier, 0)
Var=0 Mean 0.9039 0.8934 0.9037 27.3572* 0.0000 0.0000* 0.9895 0.0000*
SE 0.0011  0.0012  0.0012
Var=1 Mean 08693 08617  0.8699 13.6275* 0.0000 0.0000* 0.9445 0.0000*
SE 0.0012  0.0013  0.0012
Var=2 Mean 08366 08305 08385 44953 0017 0.0217*  0.7002 0.0018*
SE 0.0016  0.0017  0.0016

*Difference is statistically significant at a=0.05
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Table 8 shows mean RMSD and MAD of the rescaled 0 estimates for the three
procedures. Smaller mean RMSD and MAD indicate better performance in parameter
estimation and scaling. Figure 9 and Figure 10 present mean MAD and RMSD of the
rescaled @ estimates in graphic form. These figures show that the MAD and RMSD of
the rescaled person parameter estimates of the 3-PL model procedure and the testlet
model procedure are similar as the two curves almost overlap each other and they are
both smaller than MAD and RMSD of the person parameter estimates of the GRM

procedure under all three simulation conditions.

Table 8

MAD and RMSD of the Rescaled Person 6 Parameter Estimators for the
Examinees Taking the New Form

Level of MAD RMSD
Testlet N A N n A
Effect O:p1 Ocrn Testlet O:p1 0 Testlet
GRM

Var=0 Mean 0.5062 0.5332 0.5068 0.6457 0.6793 0.6463
SE  0.0034 0.0033 0.0033 0.0044 0.0044 0.0043

Var=1 Mean 0.5932 0.6083 0.5911 0.7502 0.7700 0.7480
SE  0.0024 0.0024 0.0024 0.0030 0.0032 0.0031

Var=2 Mean 0.6604 0.6701 0.6567 0.8307 0.8433 0.8266
SE  0.0032 0.0033 0.0031 0.0037 0.0038 0.0036

Table 7 and Table 8 indicate that the 3-PL model procedure and the testlet
model procedure produce comparable rescaled person estimates and both perform

better than the GRM procedure. This is reasonable since the testlet model is based on
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the 3-PL model and the only difference between the two is that the testlet model
contains a set of testlet parameters. On the other hand, the GRM model is a different
model and less information is utilized in its estimation of the person parameters.
Therefore the person parameter estimates can be different from those of the 3-PL
model and the testlet model. However, Table 7 and Table 8 also indicate that while
MAD and RMSD of the 6 estimates for the GRM procedure are different from those
of the 0 estimates for the other two models, the differences are not very large. The

three procedures perform similarly in person parameter estimation and scaling.
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Figure 9. Mean MAD of the rescaled person parameters estimates for examinees

taking the new form
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Figure 10. Mean RMSD of the rescaled person parameters estimates for examinees

taking the new form
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Each sample contained 1000 simulated subjects and the test information
function (TIF) was estimated for each examinee during the model estimation process.
Three TIFs were computed for each person as three models were fit to the data. Since
the 3-PL model doesn’t take into account LID caused by the testlet format, the TIF
estimated by the 3-PL model is usually inflated as compared to the TIF estimated
using the GRM and the testlet model. Table 9 presents the mean TIF values and the
mean TIF ratios under each simulation condition and Figure 11 is the graphic
representation of the mean TIF information. From the information, the following can

be learned:

Table 9

Mean TIF and Mean TIF Ratio of the Examinees Taking the New Form

Mean TIF Mean TIF Ratio
TIF,, TIFp,

T IF;PL T IF GRM T IF Testlet TIF, GRM TIF Testlet

Var=0 Mean 5.8497 52898 4.9762 1.1162 1.1692
SD 0.4943 0.4386 0.3798 0.0678 0.0103

Var=1 Mean 52984 4.0046 3.9150 1.3347 1.3463
SD 0.3553 0.2361 0.2145 0.0389 0.0434

Var=2 Mean 4.9471 3.2689 3.2035 1.5266 1.5378

ar=

SD 0.3238 0.1871 0.1531 0.0431 0.0553

1) The TIF values estimated by the 3-PL model are consistently higher than

those estimated by the GRM and the testlet model. The differences are small when
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the testlet effect is nonexistent and gets increasingly large as the testlet effect
becomes stronger. When the variances of the testlet parameters are 0, the average of
the mean TIFs for each sample is 5.8497 for the 3-PL model, 5.2898 for the GRM
and 4.9762 for the testlet model. The 3-PL model produces has higher mean TIF
values than the GRM and the testlet model, but the differences are not very large as

the mean 777, is 1.1162 and the mean 775 is 1.1692. As the variances of the
TIF, TIF,

GRM Testlet

testlet parameters get larger, the gaps between the mean TIF values produced by the
3-PL model vs. the GRM and the testlet model get larger: when the variances of the

testlet parameters are 1, the mean 777, is 1.3347 and the mean T/f5p is 1.3463 and
TIF, TIF,

GRM Testlet

when the variances of the testlet parameters are 2, the mean 777, is 1.5266 and the
TIF,

GRM

mean 17F, is 1.5378.

TIF,

Testlet
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Figure 11. Mean TIF of the examinees taking the new form
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2) All of the estimated mean TIF curves of the three models display a
downward trend as the variances of the testlet parameters increase. When the testlet
effects are large and the items within a testlet are locally dependent, the information
that a particular item provides about the person’s ability # may not be unique.
Holding other factors constant, this information redundancy may lead to less accurate
and stable person parameter estimation. Since the TIF is negatively related to the
standard error of measurement for the person parameter estimates, larger testlet
effects eventually result in smaller TIF. This is true regardless which model is used to

perform parameter estimation and scale linking.

3) The TIFs estimated by the GRM and those by the testlet model are very
close, especially when the testlet effects are large. When the variances of the testlet
parameters are 1, the average of the mean TIFs of the GRM is 4.0046 and the average
of the mean TIF of the testlet model is 3.9150. When the variances of the testlet
parameters are 2, the average of the mean TIFs of the GRM is 3.2689 and the average
of the mean TIF of the testlet model is 3.2035. The testlet model performs quite
similarly as the GRM in capturing the loss of the test information due to the testlet

effect in this simulation study.

As a result, while the TIFs estimated by the GRM and the testlet model are
very similar, they are smaller than those estimated by the 3-PL model. In this
simulation study, the 3-PL model is the most parsimonious model to measure TIFs
when there is no testlet effect (the true testlet parameter variances are 0). The GRM

and the testlet model would still attempt to measure and account for the testlet effects,
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which may be present in some samples due to sampling errors. Thus the GRM and the
testlet model would sometimes slightly underestimate the TIF in the population under
such situations. However, when the testlet effects exist and especially when they are
strong, the testlet model and the GRM are superior to the 3-PL model in accurately
estimating TIFs due to their abilities to account for the loss of information caused by

LID.

As far as the person parameter estimation is concerned, researchers are often
interested in two pieces of information: the point estimator 8 and the TIF. The
simulation study shows that the testlet model procedure produces similar  estimates
as the 3-PL model procedure. This is reasonable considering the similarities between
the 3-PL IRT model and the 3-PL testlet model. The two models produce slightly
better # estimates than the GRM under the three simulated conditions in this
simulation study because the GRM utilizes less information from the data than the 3-
PL model and the testlet model. However, the testlet model procedure performs
similarly as the GRM procedure in estimating TIF in the simulation study. Both
perform better than the 3-PL model procedure which overestimates TIF when the

testlet effects are evident in a test.

Item parameters

After scale linking parameters were estimated, the item parameter estimates of
the new forms were transformed onto the scale of the base forms using Formulae (3.2)
and (3.3). The performance of the testlet model scale linking procedure can also be

evaluated by examining how well it recovers the true item parameters as compared to
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the 3-PL model scale linking procedure. The comparison was done on the rescaled

discrimination parameter estimates @ , difficulty parameter estimates b,and guessing
parameter estimates ¢ for the 3-PL model procedure and the testlet model procedure
in the study. The GRM procedure was excluded from the item parameter estimation
and scaling comparison since it has category related step and difficulty parameters
instead of item paramters. Appendix D provides detailed information about the
computed evaluation criteria for item parameter estimates on the base forms and the
new forms. Specifically, correlations between item parameter estimates and true item
parameter values and the RMSD and MAD loss functions of the item parameter

estimates are included in this appendix.

For each sample, correlations between the estimated item parameters and the
true item parameters can be computed. Table 9 presents the summary statistics of the
correlations for the new test forms. According to the table, the mean correlation for
the item parameters estimated using the testlet model procedure and the 3-PL model
procedure are very similar under the condition when the variances of the testlet
parameters are 0. However, when the testlet effects get larger, the mean correlation
for the item parameters estimated using the testlet model procedure becomes
increasingly larger than those for the item parameters estimated using the 3-PL model
procedure. This is especially true for a discrimination parameter estimates. When the

variances of the testlet parameter are 0, mean r(a,,, ,a) is 0.9075, and mean r(a,,,,, , a)
is 0.9078. They are very close. When the variances of the testlet parameter are 1,

mean r(d,,, ,a)is 0.8585, and mean r(a a ) is 0.8822. When the variances of the

testlet ’
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testlet parameter are 2, mean r(d,,, ,a ) is 0.8117 and mean r(a a)is 0.8599.

testlet 7
When the testlet effects get larger, the testlet model scale linking procedure produces
discrimination parameter estimates that are better correlated with the true
discrimination parameter values than the discrimination parameter estimates of the 3-
PL model procedure. Table 10 also shows that both models are best at estimating b
parameters, with the mean correlations ranging from 0.9387 to 0.9583 between these
two models, followed by a parameter estimation, with mean correlations ranging
from 0.8117 to 0.9075. Both models are not good at estimating ¢ parameters, with
correlations ranging from 0.3228 to 0.3491 for the 3-PL model and 0.3305 to 0.4105
for the testlet model.

Table 10

Correlations between the Estimated Item Parameters and the True Item Parameters
for the New Form

3PL Testlet
r(dSPL ’ a) r’(b3PL ’b) r(é3PL ,C) r( &test[et 4 a) r(btestlet ’b) r(étestlet ,C)
var=0 Mean 0.9075 0.9525 0.3228 0.9078 0.9583  0.3305
SD 0.0492 0.0183 0.1479 0.0501 0.0150  0.1420
var=1 Mean 0.8585 0.9512 0.3371 0.8822 0.9591 0.3673
SD 0.0577 0.0187 0.1676 0.0495 0.0172  0.1519
var=2 Mean 0.8117 0.9387 0.3491 0.8599 0.9480 0.4105
SD 0.0756 0.0324 0.1796 0.0766 0.0236 0.1922

Table 11 presents summary statistics of MAD and RMSD for the rescaled
item parameter estimates of the new test form. Figure 12 and Figure 13 are the
graphic representation of the mean MAD and mean RMSD respectively. These
statistics confirm the finding in Table 10 that the tesltet model procedure performs

consistently better than the 3-PL model procedure in estimating the item parameters a,
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b and c. Figures 12 and 13 also show that as the testlet effect increases, the MAD and
the RMSD statistics of the item parameter estimates increase for both the 3-PL model
and the testlet model. The testlet effect has an impact on the accuracy of the item

parameter estimation and scale linking for both procedures.
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Figure 12. Mean MAD of item parameter estimates (from top to bottom: a, b,é )
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Table 11

MAD and RMSD of the Rescaled Item Parameter Estimates of the New Form

Var=0

Var=1

Var=2

Mean
SD

Mean
SD

Mean
SD

MAD RMSD
3PL Testlet 3PL Testlet
a b ¢ a b ¢ a b ¢ a b ¢
0.1162 0.2639 0.0517 0.1057 0.2355 0.0424 0.1467 0.3449 0.0649 0.1393 0.3067 0.0531
0.0304 0.0435 0.0077 0.0222 0.0373 0.0056 0.0360 0.0554 0.0083 0.0293 0.0512 0.0065
0.1148 0.2886 0.0533 0.1118 0.2425 0.0413 0.1501 0.3689 0.0672 0.1482 0.3156 0.0519
0.0219 0.0530 0.0072 0.0217 0.0385 0.0049 0.0293 0.0713 0.0087 0.0321 0.0591 0.0062
0.1318 0.3117 0.0562 0.1288 0.2554 0.0417 0.1732 0.3978 0.0697 0.1688 0.3329 0.0518
0.0268 0.0455 0.0070 0.0308 0.0405 0.0060 0.0413 0.0644 0.0084 0.0422 0.0616 0.0074
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Chapter 4 Real Data Analysis

To illustrate the application of the proposed testlet model scale linking
procedure with real data, the operational data from 2004-2005 ACCESS for ELLs®
assessment developed by the Center for Applied Linguistics and World-Class

Instructional Design and Assessment (WIDA) Consortium was used.

ACCESS for ELLs® Assessment

ACCESS for ELLs® stands for Assessing Comprehension and
Communication in English State-to-State for English Language Learners (ELLSs). It is
an English language proficiency assessment given annually to students in
kindergarten through Grade 12 who have been identified as ELLs. “The results of this
test are used to monitor student progress in acquiring English for the academic
environment, to plan support for continuing English language development, and to
satisfy legal requirements for assessment and accountability.” (WIDA, 2008, p.5).
The assessment is aligned with the WIDA English Language Proficiency (ELP)
standards for ELLs, which state expectations for student performance at six levels (1-
entering; 2-beginning; 3-developing; 4-expanding; 5-bridging and 6-reaching) of the
language development continuum. A set of model performance indicators (MPI) are
used to illustrate the ELP standards in different content areas. The standards are
further divided into five grade clusters: PreK-K, 1-2, 3-5, 6-8 and 9-12 and four

domains: Reading, Listening, Writing and Speaking. Moreover, to make the tests
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scores reliable and appropriate for as many individuals as possible, the test items are
presented in three tiers-A, B and C- for each grade level cluster. The student’s teacher
makes the decision as to which tier to place the student based on the information they
have about his/her English proficiency level. Figure 14 shows how the different tiers
map to the English proficiency levels. Part of the adjacent tiers overlap which allows
each tier to measure a common proficiency scale. “You can think of ACCESS for
ELLs® as one enormous test divided into multiple parts, each designed for students
within a particular grade level cluster and range of proficiency levels.” (WIDA, 2008,
p. 8) This design allows the delivery of test results that can be linked to a common

scale across grades and tiers.

o 6 o6 o o

ENTERING = BEGINNING DEVELOPING EXPANDING
—_—

Tier A

Tier B

Tier C

Figure 14. The proficiency levels of WIDA ELP standards: figure taken from “WIDA
Annual Technical Report for ACCESS for ELLs English Language Proficiency Test,
Series 102, 2006-2007 Administration” (MacGreger, Louguit, Ryu, Li, & Kenyon,

2008)
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The test design makes ACCESS for ELLs a good candidate for the
application of the testlet model scale linking method. Test takers of different groups
and tier levels are put onto the same scale using the common items in the overlapping
part of the adjacent tiers. This is consistent with the CINEG design under which the
characteristic curve scale linking method can be applied. Furthermore, items on the
ACCESS ELLs are all multiple choice questions arranged in “thematic folders”,
which are collections of “test items at consecutive proficiency levels organized along
a common content topic” (WIDA, 2008). These folders are de facto testlets. Readers
can refer to Figure 1 in Chapter 2, which is one sample folder taken from the Tier B
form of the grade cluster 6-8 Reading test, for an example of the testlet. Each
folder/testlet is assigned to a tiered test form for a certain grade level. For instance, a
folder for tier C typically contains items with difficulty levels that correspond to
Level 3, 4, 5 and 6 Model Performance Indicators. With the testlet format being used
for all items on ACCESS for ELLSs, the testlet model can be an option to calibrate the
tests.

The ACCESS for ELLs® contains a comprehensive set of test forms that
target different grade clusters, English proficiency levels and content domains.
300,000 ELL students over 15 states took the test in 2004-2005. Two Reading test
forms that are adjacent to each other in tier levels: the Tier B form and the Tier C
form of grade cluster 3-5 were selected for the real data analysis. Student data
collected from one state' was used. 1663 ELL students took the Tier B form and 1418

ELL students took the Tier C form. Each of these two forms contains 30 items

! The name of the state is not disclosed in this study due to the agreement with WIDA consortium for
using the data.
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embedded in 8 folders. Altogether the two forms share five common folders, which
contain 19 items. The common folders are positioned differently in the two test forms.
(Appendix E shows the item structure and the common folders of the two test forms.)
The items on the two test forms were rearranged so that the common folders were
identically positioned in the two test forms. The new item structures for the two forms
are shown in Table 12. After the adjustment, the last five folders, Folders 4 to 8 of the

two forms are the common folders. They are highlighted in Table 12.

Yen’s Q; Analysis of Testlet Effects and Factor Analysis

While it is possible to use the proposed testlet model scale linking method for
this test because the test design and the item format allow such an application, the
testlet model may not be the most parsimonious model for this particular set of tests.
As demonstrated in the simulation study, the scale linking method based on
unidimensional dichotomous IRT model such as the 3-PL model might be a better
choice for testlet-based test forms that exhibit no or minor local item dependence
effects. With real data, since we have no knowledge about the extent of the testlet
effect beforehand as we do with simulated data, it is a good practice to perform some
form of LID tests to check how strong the testlet effects are for the items within each

test before we proceed with model calibration.
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Table 12

Rearranged Item and Folder Numbers for Tier B Form and Tier C Form

Tier B Form Tier C Form
New Original Original Original Original
Folder Nﬁt\:vrr:fer? Fo?der Itgm Foslgder Itgem
Number Number Number Number Number
1 1 1
Folder 1 2 Folder 1 2 Folder 1 2
3 3 3
4 9 4
5 10 5
Folder 2 6 Folder 3 11 Folder 2 6
7 12 7
8 13 8
9 28 21
Folder 3 10 Folder 8 29 Folder 6 22
11 30 23
12 4 9
13 5 10
Folder 4 14 Folder 2 6 Folder 3 11
15 7 12
16 8 13
17 14 14
Folder 5 18 Folder 4 15 Folder 4 15
19 16 16
20 17 24
Folder 6 21 Folder 5 18 Folder 7 25
22 19 26
23 20 17
24 21 18
Folder 7 o5 Folder 6 29 Folder 5 19
26 23 20
27 24 27
Folder 8 28 Folder 7 25 Folder 8 28
29 26 29
30 27 30
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Chen & Thissen(1997) found that while both Q; and G“detect LID with some
power, Q; outperforms G” for the most part. Therefore, Yen’s Q; analysis was
adopted in the study. The Qs statistics were computed for each pair of items within
each folder for both forms. The mean and standard deviation of the Q; statistics for

each folder are displayed in Table 13.

Table 13

Qs for each Folder in the Two Forms

Folder 1 Folder 2 Folder 3 Folder 4 Folder 5 Folder 6 Folder 7 Folder 8

TierB Mean 0.0412 -0.0060 -0.0121 -0.0194 0.0089 0.0059 -0.0028 0.0621
Form  SD 0.0441 0.0493 0.0600 0.0346 0.0381 0.0332 0.0364 0.0369

Tierc Mean 0.0439 -0.0094 0.0124 0.0183 -0.0077 0.0248 0.0270 0.0524
Form  SD 0.0596 0.0408 0.0548 0.0634 0.0410 0.0269 0.0391 0.0735

*The expected value of Qs is -1/(30-1)=-0.035

As demonstrated in the table, the mean Qs statistics are very small for all
folders in both forms. The local item independence assumption of the 3-PL model
doesn’t appear to be violated, through the lens of the Qs statistic.

The factor analysis was also performed to study the unidimensionality
assumption of the IRT models. The testlet model can still be considered as a special
form of unidimensional IRT model since the LID effects it accounts for are limited
within the testlet level. A factor analysis may reveal if any nuisance factors
systematically affect examinees’ performance on the tests. Table 14 shows the
eigenvalues of the 10 largest components according to the principle component
analysis. The analysis yielded 7 components with eigenvalues larger than 1 for the
Tier B form and 8 components for the Tier C form. For both forms, the first

component accounts for over 15% of the variance; and the eigenvalue of the first
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component is about three times as large as the eigenvalue of the second component
while the differences of the remaining successive eigenvalues are very small. This
indicates that there is one dominant dimension in the two test forms. Figure 15 shows
the scree plots of the factor analysis for the two test forms. The plots show a clear “L”
shape with the turning point located at the second dimension. The unidimensional

model can be applied in this case.

Table 14

Eigenvalues of the Components in the Two Forms

Component Eigenvalues (Tier B Form) Eigenvalues (Tier C Form)
Total VaO/r(i)a?wfce Cumulative %  Total V;fi)acl)’lfce Cumulative %

1 4561 15.203 15.203 4748 15.827 15.827
2 1.542 5.14 20.343 1.557 5.192 21.018
3 1.293  4.311 24.654 1.269  4.231 25.249
4 1.146 3.819 28.473 1.151 3.836 29.085
5 1.122 3.739 32.212 1.089 3.628 32.713
6 1.061 3.536 35.748 1.049 3.497 36.21
7 1.026 3.421 39.169 1.03 3.433 39.644
8 0.998 3.328 42.497 1.012 3.373 43.017
9 0.961 3.204 45.701 0.987 3.292 46.309
10 0.959 3.195 48.896 0.966 3.219 49.528
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Scree Plot of Tier B Form
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Figure 15. Scree plots produced by the principle component analysis

Model Estimation

BILOG-MG, PARSCALE and WinBUGS were used to fit the 3-PL model,
the GRM and the testlet model respectively. The prior distributions specified in the
simulation study were employed here for the estimation of the testlet model
parameters. 12000 iterations were run and iterations 6001 to 12000 were used to
estimate the model parameters. Table 15 and Table 16 present the 3-PL model and the
testlet model-estimated item parameters for the Tier B form and the Tier C form

respectively.
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Table 15

Tier B Form Item Parameter Estimates

3-PL Model Testlet Model
a 5 ¢ a h ¢

Item 1 0.655 -2.865 0.270 0.591 -3.425 0.254
ltem 2 1.054 -1.358 0.159 1.222 -1.495 0.147
Iltem 3 0.633 -0.320 0.174 0.639 -0.457 0.148
ltem 4 1.269 -2.484 0.254 1.267 -2.690 0.228
ltem 5 1.742 1.699 0.200 1.570 2.028 0.203
Item 6 2.661 1.200 0.333 2.491 1.323 0.325
ltem 7 2.861 0.881 0.247 2.842 0.884 0.223
Iltem 8 1.784 0.885 0.150 1.704 0.926 0.137
Iltem 9 1.559 -1.105 0.219 1.747 -1.251 0.178
Item 10 1.157 1.526 0.143 1.273 1.665 0.152
Item 11 2.568 1.641 0.281 2.563 1.780 0.262
Item 12 1.950 0.946 0.149 1.894 1.014 0.132
Iltem 13 2.197 1.024 0.442 2.586 1.081 0.432
Item 14 2.436 0.173 0.178 2.388 0.074 0.129
Item 15 2.203 0.593 0.194 2.140 0.637 0.180
Item 16 1.635 0.363 0.178 1.259 0.337 0.144
Item 17 2.290 -2.785 0.247 2.703 -3.248 0.224
Item 18 1.162 -0.203 0.149 1.325 -0.227 0.146
Item 19 1.585 1.326 0.188 1.967 1.399 0.181
Item 20 1.209 0.511 0.154 1.231 0.486 0.137
Item 21 1.094 2.134 0.271 0.909 2.313 0.237
Item 22 2.239 1.198 0.246 2.696 1.308 0.241
Item 23 1.679 -1.268 0.153 1.728 -1.406 0.147
Item 24 1.514 -0.135 0.192 1.580 -0.162 0.189
Item 25 1.048 1.436 0.149 1.121 1.494 0.149
Item 26 1.605 0.658 0.218 1.980 0.731 0.233
Item 27 1.334 -0.573 0.241 1.453 -0.716 0.206
Item 28 1.858 0.589 0.234 2.413 0.596 0.224
Item 29 1.866 0.797 0.204 2.500 0.829 0.196
Iltem 30 1.208 2.097 0.192 1.099 2.393 0.177
Mean 1.669 0.286 0.214 1.763 0.274 0.199

SD 0.579 1.366 0.065 0.650 1.540 0.065
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Table 16

Tier C Form ltem Parameter Estimates

3-PL Model Testlet Model
a h ¢ a 5 ¢

Iltem 1 0.995 -2.219 0.220 0.984 -2.509 0.210
ltem 2 1.140 -2.351 0.226 1.220 -2.579 0.209
ltem 3 1.202 -0.757 0.178 1.390 -0.790 0.188
ltem 4 1.745 0.053 0.175 1.610 -0.001 0.153
ltem 5 2.015 -0.046 0.193 2.318 -0.073 0.184
ltem 6 1.682 0.384 0.293 1.684 0.353 0.272
ltem 7 0.793 1.169 0.185 0.740 1.275 0.179
ltem 8 1.693 -2.220 0.232 1.690 -2.461 0.203
ltem 9 0.711 2.487 0.163 0.740 2.762 0.158
ltem 10 1.087 2.179 0.195 1.238 2.425 0.184
Item 11 1.402 2.904 0.202 1.524 3.572 0.200
ltem 12 1.637 0.474 0.156 1.758 0.510 0.153
ltem 13  2.298 0.177 0.445 2.480 0.086 0.412
ltem 14 1.747 -0.523 0.253 1.711 -0.730 0.193
ltem15  2.510 -0.108 0.267 2.353 -0.270 0.208
ltem 16 1.203 -0.378 0.230 0.954 -0.591 0.195
ltem17  2.130 -3.761 0.301 2.920 -3.890 0.226
ltem 18  0.954 -1.160 0.222 0.925 -1.337 0.195
ltem 19 1.184 0.574 0.229 1.287 0.605 0.229
Iltem 20 1.028 -0.104 0.314 0.926 -0.416 0.233
Iltem 21 1.179 1.545 0.343 0.972 1.507 0.284
ltem 22 1.588 0.278 0.212 1.754 0.172 0.168
Iltem 23 1.919 -2.342 0.217 1.972 -2.654 0.211
ltem 24 1.521 -1.292 0.198 1.620 -1.419 0.194
ltem25  0.913 0.726 0.216 0.963 0.701 0.203
Iltem 26 1.261 -0.748 0.148 1.379 -0.753 0.168
ltem 27 1.452 -1.616 0.276 1.487 -1.924 0.241
Iltem 28 1.587 -0.702 0.197 1.846 -0.800 0.194
Iltem 29 1.938 -0.309 0.134 3.354 -0.341 0.135
Iltem 30 1.518 1.066 0.204 1.863 1.262 0.217
Mean 1.468 -0.221 0.227 1.589 -0.277 0.206

SD 0.450 1.519 0.064 0.629 1.687 0.051
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The two tables show that the item parameter estimates of the two models are quite
comparable. This is consistent with the findings from the simulation study. Figure 16
presents the scatter plots for the 3-PL model-estimated item parameters vs. the testlet
model-estimated item parameters for the Tier B form and Figure 17 presents the
scatter plots for the 3-PL model estimated item parameters vs. the testlet model
estimated item parameters for the Tier C form. As we can see, the two sets of item

parameters estimates are highly correlated, the correlations for Tier B form

Faspy >, 0) = 0931, r(by,, b, ,..)=0.999,and (¢, ,¢,.,, ) =0.975. The

correlations for Tier C form r(a,,,,d,,,,) = 0.885, r(53PL,5t€S[,e[) =0.997,and

testlet

7(C3p; > Croner ) = 0.926 . The high correlations between the 3-PL model estimated item

parameters and the testlet model estimated item parameters have also been observed
in the simulation study. They arise from the common properties of the two models
with regard to the marginal relationship between item response and proficiency, as
the testlet model only differs from the 3-PL model through its inclusion of the testlet
parameters. Moreover, the weak testlet effects for the two test forms as indicated by

the Q3 analysis result in less impact on the estimation of @, b, and ¢ item parameters.
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Figure 16. Tier B form item parameter estimates (3-PL model vs. testlet model)
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Figure 17. Tier C form item parameter estimates (3-PL model vs. testlet model)
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Table 17 presents the variances of the testlet model estimated testlet
parameters for the two test forms. With the exception of Folder 1 of tier B test form
with a testlet parameter variance of 1.0200 and Folder 3 of Tier C test form with a
variance of 1.0720, the folders in the two forms have small testlet parameter
variances ranging from 0.2450 to 0.6861. This confirms the findings in the Qs test
that the testlet effects in the two test forms are not very strong, in terms of this

statistic.

Table 17

The Testlet Model-Estimated Variances of the Testlet Parameters

Folder 1 Folder 2 Folder 3 Folder 4 Folder 5 Folder 6 Folder 7 Folder 8

Tier B Estimate 1.0200 0.2450 0.4118 0.4070 0.5877 0.4023 0.3496 0.5603
Form SE 0.3177 0.0495 0.1129 0.0663 0.1568 0.1177 0.0747 0.1038

Tierc Estimate 0.6861 0.2662 1.0720 0.4372 0.3753 0.4689 0.4400 0.6820
Form  SE  0.1707 0.0445 0.3584 0.0707 0.1297 0.1030 0.1090 0.1077

For 0 parameters, the three models produced highly correlated parameter

estimates. For Tier B form: r(6,,,,0,.,.,)=0.996and r(8,,,,.0,.,.,) = 0.966. For Tier

C form: r(ém, éemet) =0.996 and r(éGRM , éesﬂet) =0.983. However the testlet model
and the GRM estimated 0 parameters have lower TIFs than the 3-PL model since the
latter model ignores the bias caused by the testlet effect. As shown in Table 18, on
average, the 3-PL model estimated TIFs are over 30% higher than those estimated by
the GRM and the testlet model. The TIF inflation ratio is substantial considering the

mild testlet effects displayed in the test forms as determined by the Qs statistics.
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Table 18

TIF and TIF Ratios Estimated by the Three Models

TIF TIF Ratio
T[F;PL T[FGRM T[FTestlet TIF, GRM T IF Testlet
Tier B Mean 6.114 4.463 4.447 1.384 1.341
Form SD 2.184 0.503 1.008 0.514 0.217
Tier C Mean 6.077 4.551 4.354 1.346 1.387
Form SD 1.276 0.645 0.655 0.277 0.153
Scale Linking

Since the separate model estimation was performed on the two test forms, the
two forms were estimated on different scales. The scale linking procedures were
performed to put the scale of the parameter estimates of the Tier C form onto that of
the Tier B form.

Before scale linking was performed, the two sets of item parameter estimates
for the common items using the 3-PL model were compared and plotted in Figure
18.The two sets of item parameter estimates for the common items using the 3-PL
testlet model were compared and plotted in Figure 19. The purpose of these
comparisons is to see if the points indicating the two sets of item parameter estimates
are well behaved and do not deviate greatly from the line that best fit the scattered
plot. If outliers exist, it may pose a threat to the stable estimation of the scale linking

parameter.
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Figure 18. 3-PL model item parameter estimates (Tier B form vs. Tier C form)

86



4
t o
S
e 3 .
u
3 «
L L 2
g * o . e o
g
£
5 1 * e
w
3]
0
0 0.5 1 1.5 2 2.5 3
a Estimates (Tier B Form)
3
T
E 1.5 ‘
" 0"’
= 0
E o R
& 15 -
© +
E .
a 3
= .
-4.5
-4 -3 -2 -1 0 1 2 3
b Estimates (Tier B Form)
0.5
E .
._E._ 0.4
¥]
o 0.3
£ o aen
@ *
2 02 Y N4
[ »
E * .
=
L 0.1
o
0
0 0.1 0.2 0.3 0.4 0.5
c Estimates (Tier B Form)

Figure 19. Testlet model item parameter estimates (Tier B form vs. Tier C form)
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As Figure 18 shows, the points formed by the two sets of b parameter values
estimated by the 3-PL model are very well aligned and almost form a straight line.
The points on the scatter plots of the a parameter and ¢ parameter estimates are more
spread-out than the b parameter estimates. This is expected since the estimation of a
and ¢ parameters are usually less stable than that of b parameters. There are no off-
diagonal outliers indicating discordance in the estimated item parameter values using
the two forms for all the common items. The same conclusion can also be drawn for
the testlet model-estimated item parameter values, as demonstrated in Figure 19. All

common items can be included in the scale linking process.

For comparison’s purpose, the Haebara item characteristic curve linking were
applied for the 3-PL model and the GRM model parameter estimates using ST and
POLYST respectively, and the proposed scale linking procedure was performed for
the testlet model parameter estimates using the PROC NLP procedure of the SAS
program. Table 19 presents the estimated linking parameters for the procedures based
on the three models. The linking parameter estimates of the 3-PL model and the GRM
do not differ very much, with the GRM procedure producing slope and intercept
parameters that are just slightly higher than those of the 3-PL procedure. This may be
due to the fact that the two test forms do not display strong testlet effects that would
impact the 3-PL model estimation. The testlet model scale linking procedure produces
results that fall somewhere between the results of the 3-PL model procedure and the

GRM model procedure: its slope estimate is similar as that of the 3-PL model and its
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intercept estimate is similar as that of the GRM. The linking parameters affect the
shape of the distribution of the rescaled & parameters of the Tier C test form. The
mean of the rescaled # parameter distribution of the testlet model procedure is 0.995.
It shows that the student group taking the Tier C form has substantially higher
English reading ability than the student group taking the Tier B form: the mean
difference is almost 1 logit point. The rescaled @ distribution of the students taking
the new form using the testlet model procedure has a standard deviation of 0.847,
which is less than 1. This shows that the distribution of the reading abilities of the
students taking the Tier C form is a little tighter than that of the students taking the

Tier B form.

Table 19

Scale Linking Parameter Estimates

Slope Intercept

Method
(A) (B)
3-PL 0.849 0.887
GRM 0.958 0.990
Testlet 0.847 0.995

After scale linking parameters were estimated, the item parameter estimates of
the new forms were transformed onto the scale of the base forms using Formulae (3.2)
and (3.3). The rescaled item parameter estimates using the 3-PL model procedure

and the testlet model procedure are presented in Table 20.
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Table 20

Tier C Form Item Parameter Estimates after Scale Linking

ltem 1

Item 2

ltem 3
ltem 4
Item 5
Item 6
ltem 7
Item 8
Item 9
Iltem 10
Item 11
Iltem 12
Iltem 13
Iltem 14
Iltem 15
Iltem 16
ltem 17
Iltem 18
Item 19
Item 20
Item 21
Item 22
Item 23
ltem 24
Item 25
Item 26
ltem 27
Item 28
Item 29
Item 30

Mean
SD

3-PL
Model
a 5 ¢
1.171 -0.998 0.220
1.342 -1.110 0.226
1.415 0.244 0.178
2.055 0.932 0.175
2.372 0.848 0.193
1.981 1.213 0.293
0.934 1.880 0.185
1.994 -0.998 0.232
0.837 3.000 0.163
1.279 2.738 0.195
1.650 3.353 0.202
1.928 1.289 0.156
2.706 1.037 0.445
2.056 0.443 0.253
2.956 0.795 0.267
1.416 0.566 0.230
2.508 -2.307 0.301
1.123 -0.098 0.222
1.395 1.375 0.229
1.210 0.799 0.314
1.388 2.199 0.343
1.870 1.123 0.212
2.259 -1.102 0.217
1.791 -0.210 0.198
1.075 1.504 0.216
1.485 0.252 0.148
1.710 -0.485 0.276
1.869 0.291 0.197
2.281 0.624 0.134
1.787 1.792 0.204
1.728 0.700 0.227
0.530 1.290 0.064

A

a
1.162
1.441
1.642
1.902
2.738
1.989
0.874
1.996
0.874
1.462
1.800
2.077
2.929
2.021
2779
1.127
3.449
1.092
1.520
1.094
1.148
2.072
2.329
1.914
1.137
1.629
1.756
2.181
3.962
2.201

1.877
0.743

Testlet Model

b
-1.129

-1.188
0.327
0.994
0.933
1.294
2.074
-1.088
3.333
3.048
4.019
1.427
1.068
0.377
0.767
0.494
-2.298
-0.137
1.508
0.643
2.271
1.141
-1.252
-0.206
1.588
0.357
-0.634
0.318
0.707
2.063

0.761
1.428

0.210
0.209
0.188
0.153
0.184
0.272
0.179
0.203
0.158
0.184
0.200
0.153
0.412
0.193
0.208
0.195
0.226
0.195
0.229
0.233
0.284
0.168
0.211
0.194
0.203
0.168
0.241
0.194
0.135
0.217

0.206
0.051
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Chapter 5 Conclusion and Discussion

The TRT models are a comparatively new family of IRT models that have
been employed by researchers to tackle the issue of LID effect caused by the testlet
format. By including a set of person-testlet interaction parameters in addition to the
usual item and person parameters, the TRT models are able to account for the testlet
effects which have been ignored by the traditional unidimensional IRT models.

The inclusion of the testlet parameters in the TRT models complicates the
scale linking process, especially when characteristic curve scale linking methods are
used. This is due to the fact that the probability of answering an item correctly as
computed using a TRT model must be calculated with a vector of person parameter
values instead of a single value. One of these person parameters, 8, is analogous to
the ability parameter in a standard unidimensional IRT model. The testlet effect
parameters for students, however, can be considered nuisance parameters in this
situation and must be marginalized over in the course of estimating linking
parameters. There have been very few studies on scale linking for TRT model
parameter estimates. Li et al. (2005) extended Stocking & Lord’s test characteristic
curve scale linking method to the TRT models. In their scale linking procedure, they
included a set of testlet related dimension parameters that shift when the scale is

transformed. While this practice complicates the computation even further, the effect
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of adding nuisance dimension parameters on the performance of the scale linking
procedure remains to be studied.

This study extended Haebara’s item characteristic curve scale to TRT models.
Quadature points and weights were used to approximate the estimated distribution of
the testlet effect parameters so that the expected score of each item given 6 can be
computed. The Newton Raphson method was used to obtain 4 and B scale linking
parameters that minimize the item characteristic curve differences. Nonlinear
programming procedure NLP of the SAS program was applied to implement the
method. The proposed procedure was performed for the 3-PL testlet model in this
study. The 3-PL testlet model was selected because Rasch/1-PL and 2-PL testlet
models can be treated as the nested model of the 3-PL testlet model. If the proposed
scale linking procedure works for the 3-PL testlet model, it should also work for the

1-PL and 2-PL testlet models.

Summary of Findings

A simulation study and a real data study were conducted to compare the
performance of the proposed 3-PL testlet model scale linking procedure with that of
the 3-PL IRT procedure and the GRM procedure. The findings are summarized:

1) When there is no testlet effect in the test forms, the testlet model scale
linking procedure still performs well. The 3-PL IRT model is the true model under
this condition. Therefore the 3-PL model-based scale linking procedure should

perform better than the testlet model-based scale linking procedure. This was
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confirmed in this study: under the condition that the variances of the testlet effect
parameters are 0, the 3-PL model scale linking procedure produced linking parameter
estimates that had the lowest MSE among the three procedures. Its person parameter
estimates had the largest correlation with the true person parameter values and the
lowest loss functions MAD and RMSD on average. However, the testlet model
procedure-produced scale linking parameter estimates were not significantly different
from those of the 3-PL model procedure. The bias and the MSE of the testlet model
procedure-produced linking constant estimates are similar to those of the 3-PL model
procedure. The testlet model procedure even produced item parameter estimates that
were better correlated with the true parameter values and had smaller mean MAD and
RMSD than those of the 3-PL model procedure, although the differences were very
minimal. This “better performance” of the testlet model procedure was caused by
sampling error. It is understandable that the 3-PL testlet model scale linking method
produced comparable results as the 3-PL IRT model scale linking method, since the
3-PL IRT model can be regarded as a restricted model nested within the 3-PL testlet
model with its testlet parameters being 0Os.

The 3-PL IRT model is the most parsimonious model when dealing with the
test forms that do not display testlet effects, since it is the true model and it has less
model parameters to estimate. Therefore, the 3-PL IRT model scale linking procedure
should be the preferred scale linking procedure. However, the testlet model procedure
also proved to be working well under such situations. Moreover, while the 3-PL
testlet model is a less parsimonious model, the simulation study showed that the error

variances of scale linking parameter estimates produced by the 3-PL testlet model
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scale linking procedure are not much larger than those produced by 3-PL IRT model
scale linking procedure. The loss of efficiency in scale linking parameter estimation
by using the 3-PL testlet model scale linking procedure when there is no testlet effect
is trivial according to the simulation study.

However, it is also observed that when there are no testlet effects in the test
forms, the testlet model procedure tends to underestimate the reliability statistics. In
the simulation study, the testlet model procedure underestimated TIF by about 15%
under Condition 1. While the simulation design specified that there was no variance
in the testlet model parameters, some sampled test forms might still display minor
testlet effects which were captured by the testlet model. This was reflected in the
estimation of TIF. Although the underestimation of TIF might not be serious in this
case, we should be aware of this downside of using the testlet model scale linking
procedure when there is no testlet effect in the test forms.

2) When there are testlet effects and particularly when the testlet effects are
strong, the testlet model scale linking procedure usually performs better than the 3-PL
IRT model procedure. The testlet model procedure in such situations (when the
variances of the testlet effect are 1 or 2 in the simulation study) produced scale
linking estimates that were generally closest to the true parameter values. Its item
parameter estimates and 6 parameter estimates had the highest correlations with the
true parameter values and the lowest mean MAD and RMSD. The superiority of the
testlet model scale linking procedure over the 3-PL model scale linking procedure
becomes more evident as the testlet effects become larger. In the simulation study,

when the variances of the testlet effect were 1, the testlet model procedure performed
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better than the 3-PL model procedure in almost all categories. However, the mean of

the scale linking parameter estimate B of the 3-PL model was closer to the true B

value than that of the testlet model procedure. Granted the scale linking parameter

estimates 4 and B should be evaluated jointly than in isolation, but it still showed
that the testlet model procedure may not always produce the best model or scale
linking parameters when the testlet effects are not very strong. When the variances of
the testlet parameters were 2, the simulation study showed that the testlet model
procedure produced better results than the 3-PL model procedure in all categories of
the evaluation criteria.

The testlet model procedure dominated the 3-PL model procedure in the scale
linking performance when there were strong testlet effects in the simulation study. A
practical implication is involved in this finding: when testlet effects are strong, the
difference in the scale parameter estimates produced by the 3-PL model procedure
and the testlet model procedure may impact examinees’ rescaled 0 values. In the
simulation study, the mean value of the scale linking parameter B estimates is 0.44 for
the 3-PL model procedure and 0.50 for the testlet model procedure. It is apparent that
the latter procedure produced better B parameter estimates since the true value of B
parameter is 0.5. When scale linking is performed, holding other factors constant,
using B parameter estimates of the testlet model procedure would lead to an
improvement of 0.06 logit point (0.50-0.44) over the 3-PL model procedure for the 6
estimates. This difference would probably be considered trivial by test practitioners in

most testing programs.
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The mean value of the scale linking parameter A estimates is 1.43 for the
testlet model procedure and 1.37 for the 3-PL model procedure under condition 3.
This means that if the 3-PL model scale linking method is used, the standard
deviation of the rescaled @ distribution would be underestimated by 4.20% as
compared to the testlet model procedure for the examinees taking the new form due to
the two models’ differences in B parameter estimation. This may still seem to be a
small number that doesn’t warrant attention. However, in vertical scaling situations,
when the common scale is obtained by separate calibration and chained linking
design for test forms from multiple grade levels, the effect of underestimating the
standard deviations of the rescaled # parameters by using the 3-PL model procedure
can multiply and become a serious issue. The scale shrinkage issue in vertical scaling
has been discussed and debated by scholars (Camilli, Yamamoto, & Wang, 1993;
Yen, 1985, 1986). The use of the traditional unidimensional dichotomous IRT models
for test forms that display LID effects may be a possible cause of scale shrinkage
according to this study.

3) The testlet model procedure produces better reliability statistics. One major
criticism of using the unidimensional IRT models for tests that exhibit testlet effects
is that they produce positively biased reliabilities because they do not consider LID
among the items within the testlets. The testlet model corrects this issue since it
accounts for the testlet effects. In the simulation study, the testlet model procedure
produced TIFs that were smaller than those produced by the 3-PL model procedures.
The discrepancies got larger as the testlet effects increased. The mean TIF inflation

ratio rose from 1.12 (when variances of the testlet parameter=0) to 1.33 (when
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variances of the testlet parameter=1) and finally to 1.53 (when variances of the testlet
parameter=2) as the magnitude of the testlet effects get larger. The TIFs produces by
the testlet model procedure are quite similar as the TIFs produced by the GRM
procedure. The GRM, along with other polytomous IRT models have been employed
by researchers to deal with the inflated reliability issue caused by the testlet effects.
The study shows that the testlet model procedure performs quite similarly as the
GRM procedure in this aspect.

An important practical implication is associated with the finding. When testlet
effects are strong, the 3-PL model may substantially overestimate TIF. The TIF
values indicate how stable the examinees’ # estimates are and overestimated TIF
values would lead to unjustified confidence about the estimation of 8 values. The
large inflation of TIF by using the wrong model may have an especially negative
effect in computerized adaptive tests (CAT) that often use the estimated TIF values to
determine whether stable and reliable ability estimates have been reached and the test
can be stopped.

4) The testlet model scale linking procedure has several advantages over the
GRM scale linking procedure. While both the testlet model and the polytomous
model do a good job estimating test reliabilities without bias caused by the testlet
effects, the testlet model procedure is superior to the GRM procedure in two aspects
as demonstrated in the simulation study:

First, the testlet model utilizes more information in its model estimation than
the GRM. The GRM uses the testlet scores for the model estimation and these scores

are obtained by summing over the item scores within each testlet. The specific
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response patterns to the items within the testlet are lost during the process. This
results in less accurate parameter estimates for the GRM. For example in the
simulation study, under each of the three simulation conditions, the € estimates of the
GRM had the lowest correlations with the true 8 values and largest mean RMSD and
MAD loss functions. The testlet procedure produced € estimates that had the highest
correlations with the true 6 values and lowest RMSD and MAD statistics under
Conditions 2 and 3 when there were testlet effects; and they were only marginally
inferior to the @ estimates of the 3-PL model procedure under condition 1 when there
was no testlet effect, but still better than those produced by the GRM procedure.
Secondly, The testlet model procedure can produce item parameter estimates
that are consistent with the item parameter estimates of the traditional unidimensional
IRT models. The testlet models are based on the unidimensional IRT models and they
are identical to the corresponding IRT models except that they include the testlet
effect parameters. The simulation study and the real data study demonstrated that the
item parameters estimated by the testlet model were quite comparable with the item
parameter estimates produced by the 3-PL model and the inclusion of the testlet
parameters only made the estimation of the item parameters even more accurate. On
the contrary, the polytomous models have a different set of model parameters. For
example, the GRM has step parameters and difficulty parameters that are concerned
with the response categories instead of individual items. Therefore, the polytomous
model procedures cannot be used in situations where the estimation and scaling of

item parameters are required. In the simulation study and the real data study, only the
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3-PL model procedure and the testlet model procedure were included when
comparing the procedures’ performance in item parameter estimation and scaling.

5) It is a good practice to check for the magnitude of the testlet effect before
proceeding with model fitting and scale linking. When working with testlet based test
data, the magnitude of the testlet effects is unknown to researchers. By conducting a
LID test using such indices as Yen’s Q3, researchers can make an informed decision
about which model and scale linking procedure they should employ. If the Q3 and
other LID indices turn out to be large, a testlet model can be fitted to the data so that
the variances of the testlet effect parameters can be estimated. Large variance values
usually confirm the previous finding that the testlet effects are large and warrant
attention. The application of the testlet model scale linking procedure can be justified
in such cases.

However, the study also shows that the Q3 analysis is not sensitive to testlet
effects that are not very strong. As a result, readers should be aware that when the Q3
values are low, it doesn’t necessarily mean that there is no testlet effect. Mild to
medium testlet effects may still exist in such cases, and, as the real-data study

demonstrated, substantial effects on the test information function can result.

Caveats

The simulation study demonstrated that the proposed procedure performs well

in linking scales for testlet model parameter estimates. However, there are several
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caveats in the scale linking method and the simulation study that readers should be
aware of.

1) The 3-PL testlet model used in the scale linking procedure assumes that
testlet parameters for each testlet follow a normal distribution N(0, var,,). The
magnitude of the testlet effects are determined by the variances of the testlet
parameters. In the simulation study, the true testlet parameters were specified to be
normally distributed and the normal distribution was also used to estimate the testlet
parameters. The practice of assuming normal distributions for testlet parameters has
almost been exclusively applied by researchers in their specification and estimation of
TRT models (Bradlow, Wainer, & Wang, 1999; Wainer, Bradlow, & Du, 2000;
Wainer, Bradlow, & Wang, 2007; Wainer & Wang, 2000). Readers should be aware
that while this is a generally accepted practice, there is no guarantee that the true
testlet parameters are normally distributed universally for different tests that target
different content domains and examinees in real life. The discrepancy between the
assumed testlet parameter distribution and the true testlet parameter distribution can
lead to inaccuracies in model and scale linking parameter estimation. Therefore it is
recommended to study the behavior of the testlet effects parameters and investigate
the fitness of TRT models that employ different testlet parameter distributions. The
proposed scale linking method can be adapted to accommodate different distributions
for the testlet parameters through assigning quadrature points and weights that
approximate the specific distributions.

2) The proposed testlet model scale linking method makes the assumption that

all persons share the same testlet effect parameter distribution within a specific testlet.
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For example, if the distribution of the testlet effect parameters over all examinees for
a testlet is estimated to be normally distributed with a variance of 1.5, all persons are
assigned the same set of quadratic points and weights to approximate the N(0, 1.5)
distribution when computing the expected item score given 6 in the proposed scale
linking procedure. This assumption is made based on the belief that the testlet
parameter bears no relationship with the person’s latent trait 6. If such correlations do
exist, the proposed linking procedure can also be adapted to accommodate such
situation using the following approach: after the testlet parameters are estimated,
persons with similar fs can be grouped together and the variances of their testlet
effect parameter distribution can be estimated. A specific set of quadrature points and
weights that approximate that testlet parameter distribution can be assigned to the
examinee group with the specific level of latent trait.

3) When calculating the cumulative differences between characteristic curves
for Haebara and Stocking & Lord scale linking methods, there are different
approaches in specifying the examinees used in the summations. As indicated in
Formula (3.13), the Hcrit in the proposed scale linking procedure is derived by
summing over the estimated traits of all the examinees who have taken the base test
form. This summation approach was used by Stocking and Lord (1983). There are
also other summation methods. For example, the summation can be made over
equally spaced trait values (Baker & Al-Karni, 1991), or over the estimated traits of
all examinees (Haebara, 1980). The integration function over the trait distribution can
also be used instead of the summation function if the distribution can be estimated

(Zeng & Kolen, 1994). As long as there are a large number of examinees who are
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administered the base test form and they are well distributed and representative of the
population, the summation approach used in this study should work fine. However,
readers should be aware of the other options when the sample size is small.

4) The proposed method extends Haebara’s scale linking method to the testlet
model. The simulation study compared the scale linking procedure with the 3-PL
model and GRM model based procedures. The biggest difference in these procedures
is that they use different models. It can be inferred that as the testlet effects get
stronger, it is natural that the testlet model scale linking procedure performs better
since the testlet model is a better fit model under the situation. Another way of
evaluating the performance of the proposed scale linking method is to compare it with
other testlet model based scale linking method. For example, we can compare the
proposed testlet model scale linking procedure with Li et al.’s (2005) procedure,
which extends the Stocking & Lord test characteristic curve scale linking method to
the testlet model, or we can compare the proposed procedure with the testlet model
based concurrent calibration scale linking method. Since these scale linking methods
are based on the same testlet model, such comparisons can reveal the differences in
the procedures’ performances that are due to the scale linking approaches instead of
the models employed.

5) According the proposed scale linking method, in the process of estimating
the scale linking parameters by finding the values that minimize the Hcrit function,
the expected item scores are obtained using the estimated item parameters, which are
the means of the posterior distributions of the item parameters since the estimation is

performed using the Bayesian method. However this may not be the optimal practice
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from a Bayesian perspective; it would be preferable to integrate the criterion over the
distributions of the item parameters as well as the distribution of the testlet effect
parameters. In the context of MCMC estimation, for example, the optimization to find
linking parameters could be performed at every iteration using the current draws from
every item parameter’s and every examinee € parameter’s full conditional distribution.
The full posterior distribution of the 4 and B parameters can thus be obtained across
iterations and the posterior means would be scale linking parameter estimates using
this approach. The posterior means may not necessarily be the same as the
optimization results executed on the posterior mean of the parameter estimates.

At the time Haebara method was developed in the early 80s, most IRT models
were estimated using the frequentist approach. Finding the linking functions by using
the point estimates of the item parameters was consistent with best practices. The
testlet model could not even be estimated at the time. The advances in Bayesian
inferences and computer technology in recent years allow us to explore more complex
models and improve upon the current practices in educational measurement. What
this study has done is taking a step in the direction: generalize the Haebara method to
the testlet models and integrate over the testlet effect parameters. Future research
could address the possibility of integrating over all the item parameters, not just the
testlet effect parameters.

6) The focus of the dissertation is to propose a new scale linking method
under CINEG design for the testlet model. While its effectiveness in linking scales for
test forms composed of testlets has been demonstrated via the comparison of the

proposed method with the 3-PL model and GRM scale linking approaches, this

103



dissertation doesn’t intend to be a comprehensive comparison study on the merits of
using different model-based scale linking methods under different conditions. The
range of simulation conditions in the study is limited. Further studies can be
conducted on the effectiveness of the proposed method under different conditions.
For example, Bradlow et al. (1999) asserted that with short testlet that have only 4-6
items, fitting each testlet item as if it was independent and ignoring the
overestimation of the precision of the error of measurement can be deemed acceptable.
In the simulation study, each testlet only had 5 items and the testlet model and the
linking method based on it seemed to be working well. But it would also be of
interest to see if the proposed method would work better with testlets that have more
items. Other conditions, such as sample sizes, numbers of common testlets/items, and
non-uniform levels of testlet effect for different testlets can also be simulated and

analyzed.

Application of the Proposed Scale Linking Method

As discussed in Chapter 2, the testlet format is better at eliciting evidence
about high-order cognitive functioning than the stand alone MC format and there is a
growing interest of applying the testlet format in performance assessments. Moreover,
with the increasingly wide application of computer adaptive tests (CAT), using
testlets instead of individual items in the adaptation process presents several benefits.
Wainer et al. (2007) argued that it is advantageous to bundle items into testlets in

CAT to allow the test structure to more closely match the construct. Hendrickson
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(2007) also recommended using testlets as adaptation points within multistage
adaptive testing since item-level adaptation can cause context effects, unbalanced
content and test security and item exposure problems. Therefore we expect to see

more applications of the testlet format in performance assessments and CAT.

Another trend in educational measurement is the increasing demand for
growth measures that can be used to evaluate students’ achievement. The No Child
Left Behind Act states that “high-quality academic assessments” should be “aligned
with challenging state academic standards so that students, teachers, parents, and
administrators can measure progress against common expectations for student
academic achievement” and that student cohorts are expected to show “adequate
yearly progress”(Congress, 2001). Items and test scores on different test forms within
and across grade levels often need to be on the same scale so that horizontal equating
and vertical scaling are possible. As a result, scale linking and test equating have
become a routine procedure with many testing programs.

TRT models have been gaining popularity within the academic community
because they can account for LID that is often observed in testlet items while
retaining the usual item and person parameters of the unidimensional IRT models.
However, there have been very few studies on scale linking for testlet models. This
can affect the broader application of TRT models in testing programs. The study
extended Haebara’s item characteristic curve linking method to the testlet model and
demonstrated to be effective through the simulated data and the real data studies.
Moreover, the algorithm of the proposed method can be implemented using the

popular SAS statistical package. This allows the method to be readily applied by

105



testing programs. The effectiveness and efficiency of the proposed testlet model scale
linking method would promote the application of the TRT models for testlet-based

tests.
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Appendix A Part of the SAS NLP procedure to compute the testlet model scale
linking parameter estimates

proc nlp data=par_est vardef=n covariance=h pcov phes;
profile a b / alpha=0.05;
min diff;
parms a=1, b=0;
bounds a>-1000;
diff=(
(
(old_col3+(1-old col3)/(1+exp(-old coll*(old col4-old col2-
old col5))))*old col25
+(old_col3+(1-old_col3)/(1+exp(-old _coll*(old col4-old col2-
old_col6))))*old col26
+(old_col3+(1-old_col3)/(1+exp(-old_coll*(old col4-old col2-
old col24))))*old_col44
)-
(
(new_col3+(1-new_col3)/(1+exp(-(new_coll/A)*(old_col4-(A*new_col2+B)-
A*new_col5))))*new_col25
+(new_col3+(1-new_col3)/(1+exp(-(new_coll/A)*(old col4-(A*new_ col2+B)-
A*new_col6))))*new col26
+(new_col3+(1-new_col3)/(1+exp(-(new_coll/A)*(old_col4-(A*new_col2+B)-
A*new_col24))))*new_col44
)
)* *2
ods output ParameterEstimates(match_all=datasetnames)=testlet coef;
run;
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Appendix B Scale Linking Parameter Estimates

Scale linking parameter estimates using the three procedures (Var(testlet)=0)

3-PL GRM Testlet
A B A B A B

Samplel 1.456 0.442 1.378 0.430 1.410 0.450
Sample2 1.451 0.500 1.369 0.525 1.373 0.532
Sample3 1.418 0.554 1.419 0.583 1.387 0.570
Sampled 1.606 0.549 1.591 0.504 1.586 0.527
Sample5 1.457 0.406 1.341 0.374 1.435 0.413
Sample6 1421 0.520 1.422 0.492 1.403 0.528
Sample?7 1.440 0.539 1.514 0.596 1.439 0.558
Sample8 1.442 0.562 1.473 0.562 1.491 0.564
Sample9 1.444 0.434 1.638 0.104 1.502 0.460
Samplel0 1.419 0.528 1.465 0.499 1.398 0.484
Samplell 1.350 0.294 1.311 0.328 1.406 0.351
Samplel2 1.203 0.296 1.179 0.281 1.196 0.322
Samplel3 1.421 0.444 1.345 0.452 1.445 0.482
Samplel4 1.418 0.502 1.367 0.493 1.404 0.508
Samplel5 1.291 0.563 1.379 0.589 1.307 0.579
Samplel6 1.577 0.612 1.455 0.583 1.496 0.589
Samplel7 1.368 0.536 1.292 0.548 1.338 0.567
Samplel8 1.465 0.632 1.406 0.659 1.438 0.698
Samplel9 1.369 0.598 1.342 0.689 1.341 0.656
Sample20 1.439 0.318 1.308 0.252 1.431 0.348
Sample21 1.283 0.469 1.306 0.441 1.242 0.457
Sample22 1.561 0.418 1.550 0.422 1.566 0.434
Sample23 1.525 0.506 1.443 0.451 1.459 0.477
Sample24 1.524 0.587 1.512 0.563 1.512 0.586
Sample25 1.605 0.488 1.463 0.496 1.532 0.489
Sample26 1.443 0.494 1.410 0.479 1.406 0.501
Sample27 1.488 0.398 1.424 0.416 1.436 0.417
Sample28 1.418 0.435 1.446 0.478 1.467 0.483
Sample29 1.309 0.372 1.272 0.383 1.321 0.412
Sample30 1.435 0.465 1.415 0.549 1.457 0.543
Sample31 1.493 0.470 1.391 0.423 1.416 0.475
Sample32 1.482 0.503 1.374 0.527 1.472 0.531
Sample33 1.464 0.497 1.401 0.516 1.444 0.528
Sample34 1.407 0.488 1.384 0.497 1.425 0.541
Sample35 1.285 0.526 1.411 0.572 1.328 0.567
Sample36 1.447 0.403 1.465 0.375 1.488 0.428
Sample37 1.263 0.444 1.295 0.462 1.254 0.466
Sample38 1.360 0.560 1.312 0.525 1.367 0.582
Sample39 1.416 0.569 1.407 0.611 1.375 0.608
Sample40 1.357 0.354 1.305 0.344 1.340 0.348
Sample4l 1.376 0.375 1.418 0.375 1.413 0.366
Sample42 1.441 0.523 1.293 0.478 1.384 0.506
Sample43 1.424 0.514 1.481 0.509 1.350 0.522
Sample44 1.456 0.577 1.409 0.547 1.452 0.606
Sample45 1.434 0.691 1.383 0.634 1.402 0.673
Sample46 1.493 0.504 1.546 0.539 1.582 0.565
Sample47 1.475 0.468 1.468 0.412 1.530 0.456
Sample48 1.520 0.512 1.477 0.609 1.533 0.621
Sample49 1.487 0.427 1.454 0.423 1.434 0.403
Sample50 1.481 0.618 1.378 0.613 1.537 0.680
Mean 1.432 0.490 1.406 0.484 1.423 0.509
SD 0.083 0.086 0.086 0.110 0.084 0.089
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Scale linking parameter estimates using the three procedures (Var(testlet)=1)

3-PL GRM Testlet
A B A B A B

Samplel 1.353 0.500 1.394 0.542 1.354 0.521
Sample2 1.516 0.549 1.394 0.495 1.471 0.514
Sample3 1.319 0.291 1.318 0.383 1.313 0.370
Sampled 1.511 0.542 1.567 0.585 1.472 0.618
Sample5 1.327 0.394 1.300 0.423 1.381 0.445
Sample6 1.365 0.535 1.531 0.577 1.438 0.559
Sample7 1.385 0.427 1.384 0.464 1.361 0.461
Sample8 1.307 0.386 1.334 0.410 1.376 0.440
Sample9 1.398 0.445 1.416 0.487 1.443 0.483
Samplel0 1.575 0.416 1.545 0.446 1.581 0.489
Samplell 1.389 0.429 1.398 0.465 1.377 0.472
Samplel2 1.272 0.500 1.328 0.566 1.358 0.608
Samplel3 1.349 0.497 1.376 0.579 1.321 0.553
Samplel4 1.554 0.445 1.564 0.513 1.577 0.502
Samplel5 1.520 0.499 1.492 0.628 1.544 0.587
Samplel6 1.393 0.490 1.524 0.624 1.403 0.594
Samplel7 1.519 0.525 1.488 0.483 1.479 0.516
Samplel8 1.418 0.568 1.496 0.543 1.446 0.600
Samplel9 1.361 0.509 1.439 0.514 1.408 0.552
Sample20 1.489 0.473 1.490 0.521 1.495 0.518
Sample21 1.473 0.381 1.457 0.407 1.506 0.433
Sample22 1.308 0.538 1.387 0.557 1.323 0.545
Sample23 1.471 0.475 1.576 0.579 1.477 0.529
Sample24 1.400 0.492 1.431 0.538 1.443 0.505
Sample25 1.536 0.511 1.522 0.549 1.423 0.489
Sample26 1.501 0.464 1.483 0.524 1.508 0.527
Sample27 1.300 0.481 1.397 0.497 1.340 0.528
Sample28 1.473 0.488 1.585 0.576 1.482 0.541
Sample29 1.334 0.457 1.361 0.539 1.362 0.505
Sample30 1.324 0.403 1.449 0.532 1.356 0.475
Sample31 1.426 0.495 1.418 0.536 1.441 0.540
Sample32 1.250 0.611 1.307 0.667 1.307 0.680
Sample33 1.382 0.472 1.495 0.569 1.424 0.566
Sample34 1.352 0.481 1.343 0.489 1.337 0.501
Sample35 1.427 0.538 1.398 0.541 1.408 0.557
Sample36 1.365 0.370 1.286 0.361 1.280 0.369
Sample37 1.407 0.435 1.507 0.442 1.483 0.461
Sample38 1.538 0.489 1.535 0.512 1.523 0.501
Sample39 1.743 0.632 1.729 0.702 1.728 0.648
Sample40 1.391 0.592 1.469 0.645 1.388 0.584
Sample4l 1.409 0.518 1.501 0.587 1.438 0.567
Sample42 1.343 0.466 1.425 0.576 1.479 0.568
Sample43 1.430 0.563 1.404 0.545 1.428 0.589
Sample44 1.393 0.357 1.477 0.484 1.474 0.447
Sample45 1.371 0.546 1.460 0.597 1.427 0.607
Sample46 1.289 0.320 1.326 0.362 1.340 0.357
Sample47 1.554 0.627 1.484 0.663 1.606 0.707
Sample48 1.281 0.452 1.392 0.500 1.361 0.523
Sample49 1.574 0.468 1.524 0.495 1.503 0.479
Sample50 1.250 0.517 1.223 0.527 1.269 0.552
Mean 1.412 0.481 1.442 0.527 1.429 0.526
SD 0.101 0.072 0.094 0.076 0.090 0.072
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Scale linking parameter estimates using the three procedures (Var(testlet)=2)

3-PL GRM Testlet
A B A B A B

Samplel 1.380 0.416 1.398 0.441 1.433 0.481
Sample2 1.379 0.417 1.415 0.430 1.501 0.470
Sample3 1.379 0.419 1.332 0.471 1.304 0.481
Sample4 1.368 0.370 1.409 0.413 1.416 0.453
Sample5 1.190 0.492 1.253 0.599 1.283 0.577
Sample6 1.291 0.440 1.348 0.512 1.255 0.484
Sample7 1.411 0.429 1.446 0.528 1.424 0.489
Sample8 1.271 0.227 1.358 0.324 1.363 0.285
Sample9 1.563 0.434 1.804 0.552 1.734 0.512
Samplel0 1.474 0.424 1.538 0.528 1.513 0.502
Samplell 1.153 0.378 1.205 0.437 1.191 0.454
Samplel2 1.289 0.380 1.394 0.455 1.311 0.427
Samplel3 1.537 0.584 1.493 0.633 1.536 0.650
Samplel4 1.203 0.373 1.309 0.449 1.249 0.432
Samplel5 1.583 0.482 1.710 0.587 1.664 0.585
Samplel6 1.290 0.449 1.305 0.498 1.278 0.502
Samplel7 1.393 0.407 1.461 0.454 1.417 0.451
Samplel8 1.356 0.451 1.415 0.457 1.481 0.525
Samplel9 1.452 0.390 1.437 0.477 1.404 0.450
Sample20 1.467 0.334 1.611 0.367 1.742 0.416
Sample21 1.309 0.472 1.335 0.506 1.272 0.462
Sample22 1.390 0.359 1.491 0.392 1.473 0.373
Sample23 1.228 0.362 1.340 0.397 1.393 0.435
Sample24 1.373 0.392 1.440 0.502 1.352 0.462
Sample25 1.379 0.432 1.510 0.513 1.549 0.494
Sample26 1.523 0.567 1.649 0.626 1.563 0.631
Sample27 1.429 0.585 1.693 0.724 1.730 0.734
Sample28 1.194 0.479 1.345 0.619 1.291 0.605
Sample29 1.587 0.502 1.640 0.467 1.698 0.547
Sample30 1.536 0.601 1.603 0.649 1.562 0.632
Sample31 1.386 0.333 1.564 0.431 1.485 0.394
Sample32 1.437 0.462 1.539 0.537 1.472 0.549
Sample33 1.301 0.427 1.339 0.518 1.367 0.533
Sample34 1.308 0.384 1.393 0.459 1.366 0.453
Sample35 1.274 0.481 1.348 0.505 1.328 0.521
Sample36 1.186 0.441 1.289 0.476 1.227 0.503
Sample37 1.392 0.348 1.508 0.441 1.406 0.408
Sample38 1.469 0.549 1.520 0.597 1.411 0.551
Sample39 1.283 0.370 1.411 0.447 1.381 0.444
Sample40 1.304 0.450 1.421 0.489 1.392 0.506
Sample41 1.319 0.473 1.504 0.670 1.388 0.612
Sample42 1.114 0.432 1.243 0.507 1.211 0.497
Sample43 1.425 0.545 1.419 0.617 1.451 0.632
Sample44 1.488 0.492 1.481 0.610 1.490 0.563
Sample45 1.183 0.348 1.338 0.458 1.317 0.443
Sample46 1.383 0.425 1.463 0.473 1.439 0.477
Sample47 1.297 0.352 1.445 0.393 1.442 0.401
Sample48 1.525 0.558 1.583 0.637 1.500 0.608
Sample49 1.669 0.499 1.610 0.523 1.583 0.496
Sample50 1.390 0.359 1.606 0.399 1.488 0.376
Mean 1.370 0.436 1.454 0.504 1.431 0.499
SD 0.124 0.076 0.130 0.086 0.136 0.084
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Appendix C Evaluation criteria for 8 Parameter Estimates

Correlations of the 0 estimates with the true 0 values for each sample (base form)

Condition 1: Var(testlet)=0 Condition 2: Var(testlet)=1 Condition 3: Var(testlet)=2

r( 9 3PL, r( 9 GRM; r( 0 Testlets r 0 3PLs r( 9 GRM» n 0 Testlets r 0 3PLs I (9 GRM: r 0 Testlets
) ) ) ) ) ) ) ) )
Samplel 0.820 0.808 0.819 0.775 0.764 0.773 0.726 0.728 0.731
Sample2 0.837 0.821 0.837 0.774 0.753 0.776 0.738 0.737 0.742
Sample3 0.851 0.839 0.851 0.769 0.760 0.770 0.752 0.755 0.759
Sampled 0.846 0.833 0.844 0.784 0.774 0.788 0.747 0.741 0.759
Sample5 0.803 0.776 0.801 0.775 0.763 0.775 0.727 0.725 0.725
Sample6 0.849 0.834 0.849 0.766 0.756 0.764 0.695 0.694 0.699
Sample7 0.821 0.803 0.820 0.796 0.780 0.793 0.741 0.738 0.749
Sample8 0.827 0.809 0.827 0.792 0.785 0.791 0.696 0.689 0.699
Sample9 0.840 0.833 0.839 0.767 0.754 0.766 0.679 0.674 0.687
Sample10 0.811 0.804 0.811 0.770 0.759 0.774 0.720 0.718 0.728
Samplell 0.867 0.837 0.867 0.771 0.762 0.769 0.737 0.730 0.732
Sample12 0.865 0.841 0.865 0.786 0.769 0.790 0.698 0.699 0.699
Sample13 0.854 0.838 0.855 0.798 0.785 0.798 0.713 0.693 0.702
Samplel4 0.848 0.837 0.848 0.755 0.752 0.754 0.740 0.745 0.751
Samplel5 0.844 0.839 0.842 0.786 0.772 0.785 0.729 0.724 0.730
Samplel6 0.864 0.849 0.864 0.754 0.745 0.755 0.753 0.739 0.762
Samplel7 0.841 0.828 0.841 0.766 0.756 0.770 0.701 0.694 0.699
Sample18 0.817 0.791 0.819 0.787 0.769 0.785 0.734 0.732 0.739
Samplel9 0.816 0.805 0.815 0.783 0.775 0.783 0.732 0.729 0.742
Sample20 0.815 0.785 0.814 0.773 0.763 0.772 0.721 0.710 0.724
Sample21 0.871 0.854 0.871 0.775 0.759 0.774 0.718 0.709 0.722
Sample22 0.812 0.805 0.812 0.749 0.747 0.750 0.732 0.729 0.729
Sample23 0.839 0.821 0.840 0.769 0.749 0.766 0.742 0.731 0.743
Sample24 0.826 0.816 0.826 0.783 0.789 0.789 0.726 0.722 0.735
Sample25 0.833 0.821 0.833 0.766 0.759 0.765 0.698 0.693 0.698
Sample26 0.846 0.836 0.846 0.786 0.773 0.791 0.707 0.700 0.712
Sample27 0.832 0.810 0.831 0.787 0.778 0.788 0.712 0.708 0.718
Sample28 0.853 0.841 0.852 0.785 0.773 0.788 0.709 0.703 0.715
Sample29 0.828 0.813 0.829 0.780 0.771 0.781 0.716 0.711 0.716
Sample30 0.849 0.838 0.849 0.762 0.751 0.764 0.708 0.700 0.714
Sample31 0.842 0.824 0.843 0.779 0.767 0.778 0.729 0.710 0.728
Sample32 0.850 0.826 0.850 0.772 0.764 0.771 0.714 0.721 0.726
Sample33 0.825 0.809 0.824 0.759 0.752 0.765 0.724 0.708 0.717
Sample34 0.870 0.855 0.869 0.790 0.783 0.793 0.711 0.702 0.708
Sample35 0.818 0.804 0.819 0.768 0.761 0.764 0.709 0.689 0.707
Sample36 0.837 0.818 0.837 0.814 0.801 0.812 0.735 0.729 0.744
Sample37 0.827 0.801 0.826 0.760 0.757 0.762 0.724 0.716 0.729
Sample38 0.849 0.830 0.849 0.776 0.766 0.776 0.716 0.706 0.720
Sample39 0.830 0.818 0.830 0.774 0.761 0.773 0.715 0.706 0.715
Sample40 0.825 0.811 0.824 0.760 0.752 0.766 0.715 0.713 0.720
Sample41 0.839 0.829 0.838 0.764 0.758 0.769 0.680 0.674 0.687
Sample42 0.828 0.812 0.827 0.762 0.752 0.761 0.746 0.744 0.749
Sample43 0.805 0.796 0.805 0.773 0.763 0.778 0.754 0.747 0.755
Sample44 0.859 0.851 0.858 0.768 0.740 0.769 0.720 0.713 0.719
Sample45 0.825 0.805 0.825 0.755 0.752 0.755 0.708 0.703 0.709
Sampled6 0.837 0.812 0.838 0.778 0.763 0.777 0.712 0.714 0.719
Sampled7 0.839 0.827 0.839 0.778 0.761 0.776 0.721 0.724 0.730
Sample48 0.833 0.819 0.833 0.739 0.729 0.738 0.739 0.735 0.746
Sample49 0.839 0.822 0.838 0.773 0.756 0.775 0.744 0.735 0.743
Sample50 0.811 0.796 0.811 0.779 0.773 0.782 0.711 0.701 0.713
Mean 0.836 0.821 0.836 0.774 0.763 0.775 0.722 0.716 0.725
SD 0.017 0.018 0.017 0.013 0.013 0.013 0.018 0.019 0.019
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Correlations of the 0 estimates with the true 0 values for each sample (new form)

Condition 1: Var(testlet)=0

Condition 2: Var(testlet)=1

Condition 3: Var(testlet)=2

r( 0 3PLy r( 9 erms | 1 0 Testlet; r( 0 3PL, r( 9 GRM, I (9 Testlet r( 0 3PL, r( 9 erm | 1 0 Testlet;
) ) ) ) ) 0) ) ) )
Samplel 0.907 0.899 0.906 0.875 0.871 0.878 0.841 0.837 0.843
Sample2 0.910 0.904 0.911 0.880 0.869 0.882 0.849 0.844 0.851
Sample3 0.911 0.901 0.910 0.869 0.862 0.869 0.818 0.813 0.821
Sample4 0.910 0.902 0.910 0.869 0.860 0.869 0.847 0.836 0.852
Sample5 0.887 0.872 0.886 0.865 0.856 0.864 0.829 0.824 0.833
Sample6 0.899 0.887 0.898 0.874 0.860 0.874 0.834 0.834 0.839
Sample7 0.911 0.901 0.912 0.886 0.879 0.886 0.854 0.848 0.855
Sample8 0.902 0.890 0.902 0.868 0.861 0.869 0.838 0.838 0.843
Sample9 0.908 0.899 0.908 0.876 0.867 0.875 0.826 0.818 0.828
Samplel0| 0.894 0.887 0.894 0.873 0.869 0.874 0.851 0.845 0.853
Samplell] 0.891 0.885 0.890 0.873 0.863 0.874 0.826 0.818 0.828
Samplel2| 0.895 0.883 0.895 0.859 0.845 0.859 0.820 0.816 0.818
Samplel3 0.909 0.899 0.909 0.868 0.861 0.869 0.825 0.816 0.826
Samplel4] 0.908 0.897 0.908 0.882 0.877 0.883 0.832 0.830 0.832
Samplel5 0.888 0.877 0.888 0.870 0.863 0.871 0.841 0.832 0.838
Samplel6) 0.909 0.900 0.909 0.877 0.870 0.879 0.834 0.831 0.835
Samplel7 0.906 0.891 0.906 0.881 0.874 0.883 0.843 0.840 0.843
Sample18 0.902 0.889 0.902 0.866 0.855 0.866 0.847 0.842 0.851
Sample19 0.895 0.885 0.895 0.860 0.854 0.860 0.850 0.834 0.849
Sample20 0.900 0.885 0.900 0.877 0.869 0.876 0.847 0.839 0.847
Sample21] 0.903 0.887 0.903 0.865 0.856 0.866 0.854 0.842 0.853
Sample22 0.898 0.893 0.897 0.875 0.870 0.877 0.842 0.840 0.843
Sample23 0.908 0.898 0.908 0.859 0.849 0.858 0.840 0.835 0.841
Sample24] 0.904 0.897 0.904 0.871 0.860 0.871 0.838 0.830 0.842
Sample25 0.916 0.901 0.916 0.864 0.851 0.864 0.847 0.838 0.850
Sample26) 0.902 0.894 0.901 0.852 0.846 0.853 0.841 0.834 0.842
Sample27| 0.915 0.904 0.915 0.862 0.859 0.863 0.846 0.841 0.848
Sample28| 0.907 0.895 0.906 0.876 0.868 0.875 0.841 0.836 0.844
Sample29 0.905 0.895 0.906 0.859 0.852 0.860 0.851 0.843 0.851
Sample30 0.907 0.899 0.907 0.877 0.866 0.877 0.847 0.846 0.848
Sample31 0.909 0.899 0.909 0.875 0.869 0.875 0.845 0.841 0.849
Sample32 0.916 0.902 0.916 0.854 0.853 0.855 0.846 0.842 0.845
Sample33 0.905 0.894 0.905 0.875 0.860 0.876 0.818 0.812 0.822
Sample34 0.902 0.891 0.902 0.861 0.851 0.861 0.830 0.824 0.833
Sample35 0.891 0.876 0.891 0.861 0.852 0.862 0.818 0.808 0.819
Sample36) 0.914 0.902 0.914 0.863 0.858 0.862 0.814 0.807 0.813
Sample37| 0.907 0.896 0.907 0.866 0.862 0.868 0.824 0.814 0.827
Sample38| 0.902 0.892 0.902 0.880 0.875 0.880 0.828 0.819 0.828
Sample39| 0.915 0.903 0.915 0.877 0.872 0.877 0.830 0.821 0.833
Sample40| 0.895 0.890 0.894 0.869 0.860 0.869 0.833 0.826 0.834
Sampledl] 0.915 0.910 0.916 0.849 0.847 0.854 0.820 0.813 0.825
Sample42 0.891 0.882 0.891 0.877 0.874 0.878 0.841 0.837 0.847
Sample43 0.888 0.880 0.888 0.866 0.855 0.865 0.856 0.849 0.856
Sampled4 0.912 0.897 0.911 0.873 0.869 0.873 0.831 0.821 0.832
Sample45 0.901 0.889 0.901 0.867 0.860 0.866 0.822 0.827 0.827
Sampled6 0.909 0.897 0.909 0.867 0.861 0.868 0.833 0.828 0.835
Sample47 0.906 0.894 0.905 0.874 0.867 0.874 0.849 0.842 0.851
Sample48 0.908 0.900 0.908 0.850 0.840 0.852 0.844 0.843 0.847
Sample49 0.911 0.897 0.910 0.881 0.875 0.882 0.826 0.817 0.827
Sample50| 0.892 0.882 0.892 0.873 0.863 0.872 0.826 0.820 0.830
Mean 0.904 0.893 0.904 0.869 0.862 0.870 0.837 0.831 0.838
SD 0.008 0.008 0.008 0.009 0.009 0.009 0.011 0.012 0.011
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MAD of 0 estimates for each sample (base form)

Condition 1: Var(testlet)=0 Condition 2: Var(testlet)=1 Condition 3: Var(testlet)=2
3-PL GRM Testlet 3-PL GRM Testlet 3-PL GRM Testlet

Samplel 0.149 0.286 0.129 0.184 0.249 0.245 1.161 1.497 1.500
Sample2 0.158 0.391 0.191 0.831 0.866 0.758 0.057 0.269 0.313
Sample3 0.258 0.268 0.271 0.342 0.576 0.484 0.561 0.674 0.568
Sample4 0.665 0.859 0.700 0.248 0.364 0.315 0.372 0.264 0.394
Sample5 0.006 0.104 0.003 0.915 0.988 0.892 1.246 1.382 1.230
Sample6 0.689 0.655 0.708 0.026 0.022 0.069 0.202 0.111 0.160
Sample?7 0.402 0.368 0.435 1.371 1.347 1.401 0.926 0.741 0.781
Sample8 1.170 0.849 1.117 0.720 0.958 0.737 0.360 0.313 0.247
Sample9 0.099 0.134 0.131 0.462 0.420 0.406 0.546 0.527 0.544
Samplel0 0.951 0.867 0.951 0.955 0.706 0.893 1.124 1.082 1.048
Samplell 0.311 0.442 0.295 0.888 0.823 0.869 0.162 0.019 0.151
Samplel12 0.011 0.135 0.018 0.587 0.666 0.560 0.747 0.624 0.629
Samplel3 1.149 1.052 1.143 0.282 0.158 0.368 0.412 0.483 0.645
Samplel14 0.107 0.063 0.116 1.089 1.176 1.093 0.716 0.817 0.892
Samplel5 0.347 0.143 0.358 0.918 0.930 0.956 0.876 0.568 0.567
Samplel6 0.840 0.680 0.793 0.661 0.289 0.463 0.153 0.120 0.082
Samplel7 0.230 0.120 0.240 0.063 0.115 0.190 0.909 0.851 0.735
Samplel8 0.115 0.035 0.145 0.595 0.539 0.469 1.378 1.059 1.183
Sample19 0.044 0.036 0.050 1.159 0.898 1.196 1.423 1.370 1.269
Sample20 0.671 0.379 0.687 0.235 0.215 0.077 0.848 1.062 1.086
Sample21 0.037 0.210 0.041 0.872 1.069 0.986 0.535 0.524 0.539
Sample22 0.129 0.094 0.149 0.428 0.147 0.352 0.868 0.782 0.853
Sample23 0.104 0.069 0.141 0.767 0.659 0.754 0.847 1.150 0.945
Sample24 0.293 0.410 0.258 0.009 0.068 0.041 0.428 0.138 0.250
Sample25 0.485 0.267 0.480 0.068 0.396 0.097 0.190 0.217 0.340
Sample26 0.252 0.439 0.244 0.260 0.324 0.202 0.903 0.980 0.986
Sample27 1.264 0.705 1.274 1.002 1.058 0.748 0.063 0.064 0.086
Sample28 0.609 0.598 0.602 0.008 0.171 0.095 0.409 0.164 0.257
Sample29 0.324 0.389 0.337 0.145 0.405 0.148 0.033 0.036 0.086
Sample30 0.192 0.215 0.142 0.077 0.189 0.117 0.381 0.339 0.286
Sample31 0.759 0.876 0.746 0.903 0.801 0.711 1.282 1.142 1.210
Sample32 0.153 0.021 0.173 0.234 0.418 0.445 1.073 0.875 0.927
Sample33 0.369 0.391 0.371 0.148 0.408 0.160 0.260 0.243 0.319
Sample34 0.049 0.129 0.051 0.617 0.474 0.575 0.019 0.163 0.092
Sample35 0.755 0.848 0.725 0.733 0.716 0.730 0.156 0.170 0.156
Sample36 0.263 0.322 0.282 0.313 0.282 0.412 0.530 0.132 0.293
Sample37 0.775 0.680 0.745 1.439 1.468 1.537 0.970 0.806 1.072
Sample38 0.108 0.264 0.071 0.938 0.987 1.085 0.196 0.100 0.245
Sample39 0.308 0.481 0.316 0.680 0.858 0.712 0.067 0.316 0.210
Sample40 0.062 0.131 0.040 0.773 0.570 0.766 0.084 0.151 0.084
Sample41 0.389 0.294 0.398 0.313 0.350 0.343 1.244 0.948 0.910
Sample4?2 0.019 0.114 0.096 0.425 0.053 0.380 0.161 0.258 0.220
Sample43 0.465 0.278 0.489 0.378 0.293 0.202 0.254 0.290 0.428
Sample44 0.565 0.794 0.646 0.069 0.066 0.033 0.232 0.203 0.411
Sample45 0.484 0.394 0.475 1.013 0.924 1.167 0.586 0.656 0.355
Sample46 0.726 1.025 0.740 0.305 0.286 0.315 0.239 0.294 0.354
Sample47 0.762 1.000 0.742 0.084 0.234 0.056 0.567 0.317 0.396
Sample48 0.741 0.920 0.741 0.485 0.155 0.289 1.286 1.237 1.084
Sample49 0.716 0.985 0.749 0.653 0.722 0.657 0.856 0.685 0.719
Sample50 0.526 0.433 0.562 0.965 1.047 1.122 0.791 0.979 0.782
Mean 0.421 0.433 0.426 0.553 0.558 0.554 0.594 0.564 0.578
SD 0.331 0.313 0.326 0.381 0.372 0.388 0.418 0.416 0.388
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MAD of rescaled 0 estimates for each sample (new form)

Condition 1: Var(testlet)=0

Condition 2: Var(testlet)=1

Condition 3: Var(testlet)=2

3-PL GRM Testlet 3-PL GRM Testlet 3-PL GRM Testlet

Samplel 0.499 0.523 0.500 0.580 0.587 0.575 0.621 0.630 0.619
Sample2 0.465 0.478 0.463 0.563 0.601 0.560 0.639 0.655 0.636
Sample3 0.484 0.512 0.484 0.584 0.593 0.578 0.683 0.689 0.675
Sampled 0.535 0.552 0.532 0.582 0.607 0.588 0.664 0.686 0.645
Sample5 0.525 0.556 0.528 0.597 0.618 0.585 0.669 0.679 0.661
Sample6 0.504 0.530 0.506 0.589 0.621 0.587 0.678 0.677 0.679
Sample7 0.497 0.532 0.497 0.568 0.591 0.569 0.658 0.657 0.650
Sample8 0.511 0.539 0.514 0.579 0.594 0.574 0.707 0.686 0.682
Sample9 0.495 0.515 0.495 0.596 0.619 0.591 0.693 0.739 0.706
Samplel10 0.537 0.556 0.539 0.602 0.608 0.597 0.642 0.645 0.635
Samplell 0.551 0.568 0.538 0.592 0.617 0.592 0.694 0.707 0.693
Samplel12 0.570 0.599 0.566 0.587 0.611 0.586 0.677 0.672 0.676
Samplel3 0.486 0.519 0.483 0.606 0.617 0.609 0.670 0.684 0.671
Samplel4 0.477 0.507 0.476 0.575 0.587 0.569 0.632 0.629 0.630
Samplel5 0.554 0.572 0.552 0.609 0.626 0.611 0.676 0.705 0.688
Samplel6 0.490 0.509 0.486 0.576 0.593 0.574 0.650 0.658 0.654
Samplel7 0.489 0.527 0.488 0.565 0.583 0.561 0.646 0.653 0.647
Samplel8 0.522 0.559 0.539 0.600 0.614 0.604 0.620 0.628 0.611
Samplel19 0.508 0.543 0.513 0.621 0.630 0.620 0.650 0.669 0.646
Sample20 0.514 0.569 0.509 0.562 0.575 0.562 0.637 0.652 0.667
Sample21 0.503 0.539 0.508 0.586 0.599 0.582 0.654 0.681 0.670
Sample22 0.540 0.548 0.544 0.586 0.594 0.588 0.653 0.653 0.650
Sample23 0.492 0.514 0.492 0.600 0.627 0.603 0.651 0.657 0.636
Sample24 0.512 0.528 0.514 0.574 0.598 0.577 0.637 0.650 0.631
Sample25 0.490 0.526 0.487 0.605 0.622 0.603 0.617 0.645 0.621
Sample26 0.505 0.532 0.507 0.617 0.625 0.615 0.654 0.680 0.655
Sample27 0.474 0.504 0.472 0.605 0.607 0.602 0.650 0.692 0.701
Sample28 0.479 0.511 0.482 0.588 0.606 0.589 0.639 0.647 0.637
Sample29 0.538 0.567 0.526 0.597 0.606 0.591 0.669 0.685 0.667
Sample30 0.508 0.523 0.505 0.590 0.597 0.584 0.659 0.662 0.655
Sample31 0.482 0.499 0.479 0.577 0.589 0.577 0.675 0.674 0.657
Sample32 0.455 0.489 0.460 0.608 0.612 0.611 0.638 0.644 0.635
Sample33 0.507 0.536 0.509 0.595 0.631 0.594 0.672 0.692 0.668
Sample34 0.495 0.524 0.499 0.594 0.613 0.596 0.678 0.680 0.666
Sample35 0.541 0.569 0.538 0.615 0.635 0.612 0.677 0.693 0.678
Sample36 0.487 0.519 0.487 0.619 0.638 0.625 0.634 0.644 0.639
Sample37 0.507 0.527 0.503 0.578 0.586 0.576 0.684 0.694 0.680
Sample38 0.522 0.550 0.523 0.581 0.590 0.574 0.656 0.673 0.653
Sample39 0.480 0.518 0.485 0.620 0.623 0.614 0.674 0.677 0.659
Sample40 0.511 0.524 0.513 0.573 0.598 0.572 0.649 0.663 0.645
Sample41 0.477 0.494 0.474 0.612 0.616 0.605 0.683 0.691 0.669
Sample42 0.504 0.524 0.503 0.580 0.581 0.575 0.672 0.661 0.651
Sample43 0.523 0.543 0.524 0.590 0.609 0.591 0.629 0.648 0.633
Sample44 0.487 0.531 0.486 0.588 0.589 0.576 0.696 0.709 0.692
Sample45 0.511 0.537 0.509 0.583 0.600 0.586 0.692 0.668 0.668
Sample46 0.499 0.536 0.507 0.629 0.633 0.615 0.677 0.685 0.669
Sample47 0.510 0.540 0.512 0.603 0.620 0.612 0.637 0.641 0.624
Sample48 0.523 0.542 0.523 0.629 0.638 0.616 0.634 0.639 0.625
Sample49 0.520 0.557 0.524 0.598 0.606 0.596 0.693 0.684 0.662
Sample50 0.519 0.548 0.532 0.606 0.637 0.607 0.678 0.697 0.669
Mean 0.506 0.533 0.507 0.593 0.608 0.591 0.660 0.670 0.657
SD 0.024 0.024 0.024 0.017 0.017 0.017 0.023 0.024 0.022

114




RMSD of 0 estimates for each sample (base form)

Condition 1: Var(testlet)=0 Condition 2: Var(testlet)=1 Condition 3: Var(testlet)=2
3-PL GRM Testlet 3-PL GRM Testlet 3-PL GRM Testlet

Samplel 0.559 0.576 0.559 0.627 0.638 0.627 0.724 0.720 0.717
Sample2 0.527 0.549 0.526 0.639 0.662 0.633 0.713 0.713 0.706
Sample3 0.545 0.562 0.544 0.637 0.644 0.632 0.687 0.684 0.680
Sampled 0.514 0.532 0.515 0.611 0.619 0.602 0.699 0.706 0.686
Sample5 0.591 0.626 0.594 0.657 0.672 0.657 0.720 0.719 0.719
Sample6 0.521 0.545 0.522 0.626 0.633 0.625 0.721 0.715 0.711
Sample?7 0.569 0.594 0.570 0.620 0.638 0.620 0.687 0.683 0.672
Sample8 0.559 0.584 0.559 0.619 0.627 0.619 0.719 0.717 0.707
Sample9 0.541 0.551 0.541 0.642 0.652 0.638 0.731 0.724 0.712
Samplel0 0.584 0.593 0.584 0.607 0.614 0.597 0.700 0.695 0.684
Samplell 0.496 0.545 0.497 0.647 0.657 0.648 0.698 0.699 0.698
Samplel12 0.539 0.579 0.540 0.619 0.637 0.612 0.723 0.714 0.714
Samplel3 0.549 0.576 0.549 0.625 0.642 0.625 0.694 0.705 0.696
Samplel4 0.556 0.573 0.557 0.656 0.656 0.654 0.668 0.652 0.646
Samplel5 0.538 0.546 0.541 0.619 0.635 0.619 0.691 0.687 0.680
Samplel6 0.501 0.525 0.502 0.664 0.672 0.660 0.674 0.685 0.659
Samplel7 0.541 0.559 0.540 0.652 0.663 0.646 0.722 0.721 0.716
Samplel8 0.592 0.628 0.589 0.618 0.639 0.619 0.658 0.649 0.642
Sample19 0.579 0.594 0.580 0.632 0.641 0.631 0.687 0.683 0.669
Sample20 0.579 0.619 0.580 0.636 0.645 0.635 0.691 0.694 0.680
Sample21 0.495 0.524 0.495 0.640 0.658 0.641 0.697 0.699 0.685
Sample22 0.575 0.585 0.574 0.663 0.662 0.657 0.705 0.703 0.702
Sample23 0.532 0.558 0.530 0.636 0.657 0.638 0.678 0.683 0.671
Sample24 0.557 0.571 0.557 0.607 0.596 0.596 0.705 0.703 0.689
Sample25 0.538 0.555 0.538 0.646 0.651 0.644 0.709 0.707 0.703
Sample26 0.526 0.541 0.526 0.619 0.632 0.609 0.709 0.709 0.697
Sample27 0.532 0.561 0.532 0.639 0.651 0.638 0.694 0.686 0.676
Sample28 0.512 0.531 0.514 0.640 0.655 0.636 0.716 0.711 0.699
Sample29 0.572 0.595 0.572 0.656 0.669 0.656 0.687 0.684 0.678
Sample30 0.522 0.540 0.523 0.651 0.663 0.647 0.715 0.715 0.701
Sample31 0.531 0.558 0.529 0.644 0.659 0.645 0.692 0.709 0.690
Sample32 0.525 0.563 0.525 0.623 0.627 0.618 0.700 0.682 0.677
Sample33 0.556 0.577 0.556 0.647 0.653 0.638 0.695 0.704 0.695
Sample34 0.511 0.537 0.513 0.607 0.614 0.601 0.704 0.702 0.697
Sample35 0.577 0.596 0.575 0.653 0.661 0.657 0.704 0.715 0.697
Sample36 0.558 0.587 0.558 0.601 0.620 0.605 0.678 0.678 0.662
Sample37 0.579 0.616 0.581 0.649 0.649 0.643 0.690 0.694 0.681
Sample38 0.529 0.557 0.529 0.631 0.640 0.628 0.717 0.721 0.707
Sample39 0.560 0.577 0.560 0.634 0.648 0.633 0.698 0.697 0.688
Sample40 0.570 0.590 0.571 0.638 0.642 0.626 0.711 0.705 0.697
Sample41 0.555 0.569 0.556 0.661 0.668 0.657 0.727 0.723 0.711
Sample4?2 0.553 0.577 0.554 0.659 0.667 0.656 0.688 0.689 0.683
Sample43 0.594 0.606 0.595 0.631 0.640 0.622 0.672 0.675 0.666
Sample44 0.509 0.522 0.510 0.635 0.665 0.632 0.685 0.683 0.676
Sample45 0.594 0.622 0.595 0.640 0.638 0.635 0.716 0.716 0.710
Sample46 0.550 0.587 0.549 0.666 0.685 0.668 0.694 0.681 0.676
Sample47 0.529 0.546 0.528 0.626 0.643 0.626 0.668 0.651 0.646
Sample48 0.565 0.586 0.567 0.677 0.687 0.676 0.671 0.669 0.657
Sample49 0.557 0.583 0.558 0.642 0.662 0.639 0.684 0.691 0.682
Sample50 0.573 0.593 0.572 0.635 0.641 0.630 0.701 0.705 0.694
Mean 0.548 0.571 0.549 0.637 0.648 0.634 0.698 0.697 0.688
SD 0.027 0.027 0.027 0.017 0.018 0.018 0.017 0.019 0.019
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RMSD of rescaled 0 estimates for each sample (new form)

Condition 1: Var(testlet)=0

Condition 2: Var(testlet)=1

Condition 3: Var(testlet)=2

3-PL GRM Testlet 3-PL GRM Testlet 3-PL GRM Testlet

Samplel 0.629 0.661 0.633 0.727 0.739 0.721 0.798 0.806 0.793
Sample2 0.602 0.624 0.603 0.728 0.769 0.723 0.807 0.821 0.797
Sample3 0.622 0.654 0.623 0.751 0.766 0.744 0.854 0.865 0.851
Sampled 0.682 0.700 0.678 0.731 0.760 0.739 0.820 0.846 0.804
Sample5 0.670 0.716 0.675 0.760 0.784 0.749 0.850 0.861 0.835
Sample6 0.642 0.677 0.644 0.742 0.772 0.736 0.854 0.857 0.860
Sample?7 0.634 0.673 0.634 0.720 0.743 0.723 0.813 0.821 0.806
Sample8 0.650 0.684 0.651 0.739 0.756 0.726 0.889 0.870 0.861
Sample9 0.624 0.659 0.627 0.760 0.783 0.755 0.863 0.915 0.875
Samplel10 0.688 0.707 0.692 0.755 0.760 0.750 0.817 0.824 0.805
Samplell 0.704 0.721 0.686 0.752 0.782 0.752 0.869 0.889 0.871
Samplel12 0.729 0.768 0.724 0.748 0.780 0.749 0.856 0.856 0.858
Samplel3 0.619 0.659 0.616 0.766 0.780 0.766 0.836 0.846 0.833
Samplel4 0.612 0.647 0.611 0.716 0.726 0.710 0.790 0.787 0.788
Samplel5 0.710 0.728 0.708 0.764 0.790 0.770 0.843 0.879 0.860
Samplel6 0.627 0.647 0.620 0.721 0.741 0.715 0.825 0.840 0.834
Samplel7 0.624 0.675 0.625 0.727 0.749 0.722 0.822 0.829 0.823
Samplel8 0.666 0.714 0.685 0.767 0.792 0.771 0.791 0.804 0.777
Sample19 0.655 0.693 0.659 0.787 0.799 0.786 0.809 0.836 0.808
Sample20 0.655 0.730 0.651 0.717 0.733 0.717 0.790 0.815 0.824
Sample21 0.645 0.687 0.652 0.737 0.757 0.734 0.819 0.853 0.841
Sample22 0.678 0.694 0.680 0.726 0.737 0.726 0.829 0.831 0.827
Sample23 0.629 0.661 0.629 0.762 0.796 0.764 0.826 0.829 0.805
Sample24 0.643 0.661 0.644 0.725 0.758 0.729 0.808 0.825 0.804
Sample25 0.624 0.673 0.621 0.756 0.783 0.753 0.780 0.804 0.779
Sample26 0.634 0.660 0.637 0.790 0.799 0.785 0.822 0.846 0.822
Sample27 0.597 0.630 0.596 0.764 0.765 0.760 0.820 0.867 0.870
Sample28 0.612 0.647 0.615 0.737 0.761 0.739 0.806 0.815 0.800
Sample29 0.706 0.743 0.690 0.767 0.783 0.761 0.843 0.865 0.845
Sample30 0.645 0.666 0.639 0.746 0.759 0.737 0.832 0.837 0.831
Sample31 0.613 0.640 0.611 0.738 0.759 0.740 0.854 0.852 0.837
Sample32 0.581 0.628 0.586 0.771 0.778 0.777 0.799 0.808 0.799
Sample33 0.645 0.683 0.648 0.753 0.794 0.752 0.849 0.866 0.841
Sample34 0.640 0.675 0.643 0.746 0.774 0.749 0.854 0.861 0.842
Sample35 0.693 0.721 0.688 0.777 0.802 0.775 0.851 0.872 0.849
Sample36 0.615 0.656 0.613 0.784 0.818 0.804 0.818 0.828 0.821
Sample37 0.662 0.681 0.659 0.725 0.737 0.721 0.855 0.871 0.846
Sample38 0.656 0.690 0.656 0.721 0.733 0.717 0.829 0.853 0.827
Sample39 0.610 0.652 0.616 0.783 0.796 0.776 0.851 0.860 0.835
Sample40 0.642 0.663 0.645 0.728 0.756 0.729 0.824 0.837 0.820
Sample41 0.607 0.622 0.601 0.780 0.787 0.768 0.857 0.867 0.840
Sample42 0.651 0.683 0.651 0.734 0.736 0.722 0.839 0.829 0.813
Sample43 0.666 0.692 0.669 0.734 0.763 0.737 0.790 0.817 0.801
Sample44 0.637 0.692 0.636 0.748 0.746 0.733 0.858 0.881 0.853
Sample45 0.655 0.685 0.653 0.744 0.761 0.747 0.874 0.845 0.845
Sample46 0.632 0.675 0.644 0.784 0.793 0.771 0.843 0.853 0.836
Sample47 0.640 0.673 0.643 0.762 0.788 0.774 0.798 0.802 0.781
Sample48 0.657 0.687 0.655 0.786 0.799 0.772 0.791 0.800 0.782
Sample49 0.656 0.702 0.661 0.755 0.776 0.754 0.867 0.856 0.831
Sample50 0.672 0.704 0.691 0.766 0.807 0.769 0.855 0.870 0.844
Mean 0.646 0.679 0.646 0.750 0.770 0.748 0.831 0.843 0.827
SD 0.031 0.031 0.030 0.021 0.023 0.022 0.026 0.027 0.026
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Mean TIF of 0 estimates for each sample (base form)

Condition 1: Var(testlet)=0 Condition 2: Var(testlet)=1 Condition 3: Var(testlet)=2

3-PL GRM Testlet 3-PL GRM Testlet 3-PL GRM Testlet
Samplel 3.319 2.985 3.016 3.256 2.395 2.408 3.395 2.102 2.173
Sample2 3.638 3.201 3.271 3.681 2.651 2.762 3.440 2.227 2.181
Sample3 3.653 3.391 3.256 3.447 2.479 2.564 3.297 2.166 2.185
Sampled 3.748 3.434 3.306 3.883 2.780 2.898 3.426 2.218 2.241
Sample5 2.797 2.551 2.532 3.538 2.600 2.636 3.307 2.191 2.215
Sample6 3.628 3.293 3.253 3.168 2.221 2.412 2.845 1.963 2.119
Sample7 3.309 2.990 2.985 3.916 2.867 2.844 3.634 2.149 2.232
Sample8 3.293 2.966 2.932 3.430 2.496 2.499 3.038 2.132 2.189
Sample9 3.431 3.151 3.058 3.399 2.395 2.389 2.968 1.866 1.921
Samplel10 3.219 2.901 2.888 3.196 2.296 2.424 3.228 2.147 2.141
Samplell 3.931 3.457 3.505 3.429 2.441 2.545 3.756 2.448 2.458
Samplel12 4.237 3.551 3.754 3.376 2.458 2.445 3.103 2.082 2.135
Samplel3 3.985 3.684 3.514 3.720 2.795 2.781 2.984 1.882 2.001
Samplel4 3.627 3.342 3.217 3.155 2.302 2.367 3.627 2.284 2.302
Samplel5 3.706 3.504 3.273 3.365 2.510 2.543 3.715 2.327 2.328
Samplel6 3.992 3.435 3.537 3.192 2.299 2.419 3.641 2.172 2.267
Samplel7 3.650 3.387 3.218 3.176 2.418 2.464 2.982 1.972 1.988
Samplel8 3.391 3.000 2.998 3.256 2.267 2.491 3.230 2.072 2.050
Samplel19 3.334 3.005 2.979 3.331 2.445 2.552 3.336 2.128 2.139
Sample20 3.153 2.768 2.877 3.071 2.252 2.349 3.139 1.947 2.038
Sample21 4.238 3.771 3.759 3.151 2.287 2.392 3.168 2.088 2.240
Sample22 3.104 2.810 2.739 3.139 2.387 2.392 3.553 2.309 2.280
Sample23 3.777 3.279 3.374 2.995 2.170 2.396 3.405 2.215 2.244
Sample24 3.433 3.103 3.043 3.440 2.503 2.538 3.403 2.160 2.211
Sample25 3.385 3.105 3.021 3.205 2.352 2.491 2.771 1.850 1.967
Sample26 3.746 3.279 3.355 3.680 2.548 2.606 2.951 1.896 1.976
Sample27 3.512 2.967 3.164 3.523 2.478 2.577 3.325 2.024 2.046
Sample28 3.724 3.322 3.270 3.492 2.529 2.666 3.504 2.133 2.220
Sample29 3.371 3.168 3.012 3.297 2.404 2.450 3.014 1.944 2.064
Sample30 3.696 3.432 3.310 3.087 2.387 2.382 3.221 2.033 2.151
Sample31 3.810 3.548 3.332 3.445 2.597 2.685 3.104 2.017 2.090
Sample32 3.890 3.463 3.425 3.643 2.659 2.631 3.360 2.155 2.153
Sample33 3.615 3.204 3.233 3.167 2.418 2.459 3.351 2.207 2.272
Sample34 4.297 3.794 3.759 3.524 2.533 2.697 3.317 2.164 2.221
Sample35 3.321 3.071 2.936 3.100 2.333 2.439 2.994 1.935 2.049
Sample36 3.780 3.361 3.354 3.760 2.664 2.695 3.237 2.078 2.210
Sample37 3.400 2.973 3.014 3.355 2.505 2.521 3.047 2.070 2.200
Sample38 3.564 3.176 3.172 3.405 2.400 2.496 3.257 2.003 2.173
Sample39 3.760 3.391 3.280 3.135 2.340 2.479 3.178 2.028 2.060
Sample40 3.411 3.179 3.040 3.265 2.369 2.479 3.551 2.278 2.231
Sample41 3.614 3.280 3.153 2.989 2.261 2.324 2.814 1.822 1.930
Sample42 3.382 3.028 3.082 3.476 2.576 2.653 3.353 2.167 2.281
Sample43 3.015 2.760 2.725 3.441 2.558 2.661 3.583 2.306 2.299
Sample44 4.036 3.424 3.566 3.077 2.196 2.369 3.143 2.066 2.149
Sample45 3.061 2.668 2.762 3.273 2.442 2.470 2.891 1.927 2.039
Sample46 3.730 3.219 3.310 3.621 2.634 2.754 3.250 2.119 2.186
Sample47 3.578 3.340 3.218 3.335 2.403 2.507 3.230 1.988 2.062
Sample48 3.179 3.010 2.862 2.919 2.200 2.365 3.308 2.144 2.165
Sample49 3.661 3.167 3.277 3.310 2.398 2.497 3.407 2.130 2.112
Sample50 3.080 2.780 2.769 3.484 2.586 2.604 2.876 1.925 2.093
Mean 3.564 3.201 3.174 3.354 2.450 2.529 3.253 2.093 2.154
SD 0.326 0.277 0.272 0.230 0.158 0.137 0.245 0.137 0.111
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Mean TIF of 0 estimates for each sample (new form)

Condition 1: Var(testlet)=0 Condition 2: Var(testlet)=1 Condition 3: Var(testlet)=2

3-PL GRM Testlet 3-PL GRM Testlet 3-PL GRM Testlet
Samplel 5.733 5.243 4.929 5.559 4.148 3.938 4.991 3.328 3.252
Sample2 6.225 5.848 5.309 5.781 4.051 4.058 5.557 3.614 3.413
Sample3 6.339 5.867 5.313 5.644 4.223 3.985 4.335 2.994 3.015
Sampled 6.219 5.945 5.271 5.647 4.054 3.982 4.822 3.190 3.196
Sample5 5.360 5.043 4.600 5.179 3.809 3.658 5.038 3.365 3.291
Sample6 5.720 5.084 4.912 5.279 4.179 3.988 4.736 3.149 3.177
Sample7 5.764 5.263 4.911 5.796 4.274 4.027 5.554 3.504 3.400
Sample8 5.912 5.195 5.041 5.186 3.848 3.646 4.987 3.235 3.196
Sample9 6.337 4.170 5.358 5.558 4.103 3.981 4.607 3.168 3.226
Samplel10 5.167 4.822 4.439 5.525 4.195 4.024 5.268 3.450 3.316
Samplell 5.123 4.453 4.410 5.319 3.901 3.855 4.418 2.875 2.874
Sample12 5.151 4.635 4.446 4.653 3.613 3.521 4.690 3.129 3.050
Samplel3 6.289 5.411 5.356 5.353 3.881 3.784 4.666 3.215 3.236
Samplel4 5.932 5.528 5.055 5.036 3.793 3.732 5.017 3.243 3.083
Samplel5 5.025 4.756 4.289 6.060 4.535 4.301 5.125 3.476 3.321
Samplel6 5.992 5.575 5.061 5.684 4.296 4.033 4.937 3.147 3.065
Samplel7 5.929 5.396 5.031 5.709 4.277 4.100 4.690 3.182 3.148
Samplel8 5.693 4.963 4.868 5.352 3.996 3.844 5.280 3.540 3.332
Samplel19 5.365 4.864 4.572 5.094 4.008 3.861 4.758 3.167 3.122
Sample20 5.294 4.769 4.593 5.524 4.171 4.123 5.258 3.556 3.460
Sample21 5.694 5.381 4.872 4.849 3.912 3.812 5.000 3.267 3.248
Sample22 5.432 5.114 4.672 5.509 4.031 3.926 5.456 3.572 3.470
Sample23 6.752 6.010 5.675 4.650 3.678 3.590 5.204 3.466 3.327
Sample24 6.320 5.970 5.326 5.577 4.036 4.106 4.901 3.223 3.135
Sample25 7.117 5.798 5.821 5.047 3.931 3.872 5.202 3.299 3.217
Sample26 5.507 5.140 4.689 5.155 3.902 3.941 5.125 3.432 3.336
Sample27 5.900 5.551 4.990 5.033 3.754 3.654 5.583 3.584 3.522
Sample28 5.902 5.298 4.993 5.306 4.167 4.008 5.352 3.216 3.158
Sample29 5.955 5.394 5.060 4.974 3.640 3.787 5.075 3.445 3.331
Sample30 6.101 5.627 5.152 5.565 4.148 4.115 5.039 3.432 3.403
Sample31 5.816 5.241 4.929 5.250 4.010 4.009 4.951 3.388 3.191
Sample32 6.346 5.704 5.374 4.485 3.607 3.497 5.232 3.310 3.173
Sample33 6.155 5.547 5.256 5.534 4.116 4.086 4.720 3.073 3.189
Sample34 5.879 5.500 5.020 4.828 3.567 3.544 5.056 3.421 3.290
Sample35 5.024 4.640 4.314 5.335 4.079 4.054 4.475 2.929 2.977
Sample36 6.791 6.088 5.750 4.864 3.655 3.534 4.371 2.899 2.886
Sample37 5.348 5.050 4.628 5.340 4.072 3.943 4.530 3.076 2.948
Sample38 5.749 5.106 4.883 5.645 4.348 4.247 4.428 2.967 2.996
Sample39 5.948 5.414 5.073 5.461 4.204 4.183 4.830 3.215 3.206
Sample40 5.192 4.785 4.446 5.285 4.068 3.901 4.694 3.038 2.971
Sample41 6.699 6.111 5.629 5.120 3.916 3.819 4.623 3.118 3.052
Sample42 5.219 4.756 4.475 5.817 4.424 4.374 5.220 3.372 3.277
Sample43 5.387 5.006 4.619 4.934 3.632 3.672 5.323 3.490 3.346
Sample44 6.587 5.680 5.536 4.962 3.865 3.785 4.768 3.245 3.244
Sample45 5.703 4.994 4.909 5.323 4.182 4.019 4.999 3.231 3.130
Sample46 6.076 5.518 5.116 5.149 3.966 3.852 5.022 3.373 3.368
Sample47 5.644 5.240 4.868 4.881 3.707 3.741 5.319 3.363 3.325
Sample48 5.987 5.322 5.044 4.788 3.766 3.813 4.774 3.206 3.110
Sample49 6.242 5.544 5.283 5.933 4.453 4.411 4.527 3.115 3.037
Sample50 5.443 5.131 4.648 5.385 4.036 4.015 4.819 3.159 3.136
Mean 5.850 5.290 4.976 5.298 4.005 3.915 4.947 3.269 3.203
SD 0.494 0.439 0.380 0.355 0.236 0.214 0.324 0.187 0.153
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Appendix D Evaluation Criteria for Item Parameter Estimates

Correlations of the 3-PL and testlet model estimated item parameters
with the true parameter values (base form, Var(testlet)=0)

3-PL Testlet
r(aspy A |N( By py D) 1(C3pp 1 €) ([N Gragtter » A )| MDrger sO) | Cpogiies +€)

Samplel 0.868 0.928 0.176 0.858 0.941 0.184
Sample2 0.865 0.954 0.402 0.891 0.963 0.413
Sample3 0.902 0.959 0.121 0.917 0.968 0.138
Sample4 0.855 0.930 0.189 0.887 0.940 0.166
Samples 0.837 0.934 -0.052 0.848 0.931 -0.069
Sample6 0.899 0.928 0.221 0.911 0.935 0.204
Sample7 0.872 0.905 0.114 0.883 0.917 0.091
Sample8 0.886 0.961 0.173 0.907 0.970 0.271
Sample9 0.678 0.920 0.347 0.686 0.928 0.362
Samplel0 0.843 0.947 0.453 0.804 0.948 0.483
Samplell 0.948 0.926 0.294 0.943 0.932 0.223
Samplel2 0.918 0.960 0.588 0.907 0.967 0.621
Samplel3 0.874 0.954 0.149 0.889 0.956 0.135
Samplel4 0.806 0.969 0.226 0.827 0.974 0.233
Samplel5 0.866 0.966 0.568 0.875 0.963 0.529
Samplel6 0.906 0.979 0.455 0.899 0.982 0.435
Samplel7 0.833 0.938 0.411 0.871 0.937 0.421
Sample18 0.832 0.976 0.430 0.848 0.976 0.344
Sample19 0.876 0.975 0.525 0.898 0.973 0.496
Sample20 0.824 0.969 -0.063 0.856 0.971 -0.058
Sample21 0.910 0.945 0.250 0.905 0.958 0.296
Sample22 0.620 0.881 0.212 0.697 0.882 0.212
Sample23 0.858 0.960 0.282 0.866 0.961 0.280
Sample24 0.882 0.972 0.278 0.860 0.977 0.270
Sample25 0.873 0.969 0.296 0.892 0.973 0.353
Sample26 0.811 0.928 0.261 0.793 0.933 0.237
Sample27 0.873 0.965 0.425 0.890 0.964 0.435
Sample28 0.812 0.959 0.186 0.815 0.956 0.165
Sample29 0.762 0.977 0.408 0.764 0.979 0.425
Sample30 0.827 0.960 0.492 0.830 0.968 0.579
Sample31 0.642 0.961 0.340 0.710 0.968 0.376
Sample32 0.916 0.959 0.268 0.915 0.969 0.253
Sample33 0.841 0.949 0.175 0.875 0.955 0.130
Sample34 0.849 0.966 0.358 0.843 0.969 0.348
Sample35 0.787 0.927 0.162 0.802 0.942 0.126
Sample36 0.862 0.972 0.538 0.864 0.978 0.535
Sample37 0.878 0.938 0.298 0.873 0.930 0.271
Sample38 0.896 0.927 0.014 0.916 0.944 0.017
Sample39 0.851 0.941 0.369 0.856 0.953 0.337
Sample40 0.778 0.953 0.438 0.800 0.955 0.385
Sample41 0.918 0.946 0.368 0.922 0.959 0.399
Sample4?2 0.852 0.916 0.104 0.875 0.926 0.060
Sample43 0.489 0.950 0.419 0.553 0.954 0.391
Sample44 0.941 0.968 0.532 0.942 0.969 0.498
Sample45 0.932 0.960 0.373 0.901 0.966 0.366
Sample46 0.836 0.956 0.505 0.850 0.962 0.526
Sample47 0.880 0.967 0.139 0.864 0.969 0.158
Sample48 0.743 0.941 -0.053 0.777 0.943 -0.097
Sample49 0.903 0.969 0.550 0.888 0.973 0.564
Sample50 0.852 0.949 0.449 0.849 0.961 0.473
Mean 0.841 0.950 0.303 0.852 0.955 0.300
SD 0.085 0.021 0.168 0.072 0.020 0.175
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Correlations of the 3-PL and testlet model estimated item parameters
with the true parameter values (base form, Var(testlet)=1)

3-PL Testlet
r( a3PL ’ a) r’(b3PL ’b) r( c3PL ’C) r( atestlet ’ a) r(btestlet ’b) r( ctestlet ’C)

Samplel 0.834 0.973 0.542 0.861 0.967 0.479
Sample2 0.809 0.958 0.367 0.900 0.965 0.257
Sample3 0.829 0.955 0.284 0.886 0.970 0.423
Sampled 0.872 0.924 -0.015 0.927 0.950 0.173
Sample5 0.708 0.975 0.075 0.834 0.977 0.238
Sample6 0.825 0.908 0.261 0.882 0.921 0.134
Sample7 0.801 0.927 0.235 0.862 0.933 0.215
Sample8 0.717 0.957 0.232 0.742 0.953 0.186
Sample9 0.827 0.948 0.217 0.848 0.953 0.323
Samplel0 0.724 0.958 0.224 0.744 0.967 0.234
Samplell 0.860 0.961 0.460 0.901 0.956 0.429
Sample12 0.666 0.948 0.477 0.749 0.960 0.382
Samplel3 0.738 0.972 0.270 0.755 0.977 0.285
Samplel4 0.755 0.927 0.050 0.807 0.948 0.258
Samplel5 0.812 0.966 0.426 0.844 0.963 0.337
Samplel6 0.816 0.958 0.453 0.874 0.957 0.442
Samplel7 0.580 0.937 0.096 0.828 0.953 0.102
Samplel8 0.898 0.975 0.285 0.918 0.979 0.337
Samplel9 0.780 0.934 0.349 0.834 0.948 0.392
Sample20 0.637 0.967 0.055 0.623 0.966 0.053
Sample21 0.885 0.929 0.382 0.936 0.941 0.456
Sample22 0.792 0.942 0.468 0.749 0.939 0.280
Sample23 0.797 0.921 -0.284 0.858 0.939 -0.009
Sample24 0.761 0.936 0.261 0.826 0.944 0.245
Sample25 0.700 0.977 0.535 0.712 0.973 0.508
Sample26 0.877 0.975 0.412 0.879 0.982 0.549
Sample27 0.688 0.956 0.024 0.856 0.966 0.057
Sample28 0.715 0.962 0.283 0.729 0.971 0.178
Sample29 0.755 0.960 0.341 0.837 0.971 0.534
Sample30 0.735 0.937 0.304 0.802 0.945 0.262
Sample31 0.799 0.969 0.516 0.820 0.961 0.490
Sample32 0.687 0.969 0.226 0.755 0.975 0.284
Sample33 0.777 0.919 0.529 0.840 0.940 0.477
Sample34 0.714 0.957 -0.002 0.792 0.952 -0.041
Sample35 0.747 0.903 0.283 0.769 0.903 0.230
Sample36 0.831 0.945 -0.023 0.893 0.963 0.289
Sample37 0.841 0.951 0.627 0.837 0.950 0.640
Sample38 0.732 0.968 0.335 0.901 0.973 0.583
Sample39 0.453 0.935 -0.090 0.665 0.949 -0.048
Sample40 0.818 0.918 0.267 0.883 0.931 0.271
Sample4l 0.704 0.960 0.290 0.778 0.964 0.244
Sample42 0.800 0.922 0.083 0.835 0.929 0.157
Sample43 0.674 0.972 0.501 0.852 0.976 0.634
Sampled4 0.840 0.936 0.469 0.810 0.940 0.439
Sample45 0.825 0.951 0.411 0.822 0.955 0.417
Sample46 0.753 0.962 0.160 0.821 0.966 0.054
Sampled7 0.875 0.967 0.472 0.917 0.962 0.477
Sample48 0.673 0.926 0.005 0.777 0.927 0.086
Sample49 0.848 0.932 0.495 0.850 0.949 0.558
Sample50 0.693 0.970 0.251 0.776 0.975 0.377
Mean 0.766 0.949 0.278 0.824 0.955 0.307
SD 0.084 0.020 0.195 0.067 0.017 0.176
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Correlations of the 3-PL and testlet model estimated item parameters
with the true parameter values (base form, Var(testlet)=2)

3-PL Testlet
r( a3PL ’ a) r/(bSPL ’b) r(c3PL ’C) r( atestlet ’ a) r(btest[et ’b) r(ctestlet ’C)

Samplel 0.812 0.961 0.573 0.895 0.963 0.539
Sample2 0.686 0.956 0.463 0.717 0.973 0.299
Sample3 0.509 0.958 0.140 0.625 0.972 0.304
Sampled 0.480 0.928 0.415 0.809 0.940 0.449
Sample5 0.658 0.963 0.234 0.755 0.968 0.285
Sample6 0.635 0.911 0.265 0.730 0.909 0.137
Sample7 0.819 0.953 0.458 0.886 0.962 0.394
Sample8 0.742 0.959 0.156 0.655 0.964 0.105
Sample9 0.697 0.972 0.391 0.897 0.974 0.300
Samplel0 0.717 0.972 0.716 0.796 0.976 0.614
Samplell 0.633 0.963 0.324 0.683 0.972 0.433
Sample12 0.798 0.936 0.140 0.735 0.937 0.164
Samplel3 0.803 0.946 0.258 0.858 0.920 0.115
Samplel4 0.660 0.928 0.325 0.807 0.942 0.420
Samplel5 0.838 0.943 0.430 0.834 0.953 0.361
Samplel6 0.666 0.945 0.410 0.845 0.957 0.405
Samplel7 0.218 0.934 0.482 0.426 0.951 0.363
Samplel8 0.752 0.911 0.330 0.899 0.921 0.285
Sample19 0.636 0.945 0.154 0.811 0.942 0.351
Sample20 0.348 0.928 0.349 0.714 0.962 0.511
Sample21 0.814 0.971 0.371 0.840 0.971 0.462
Sample22 0.819 0.935 0.265 0.810 0.937 0.418
Sample23 0.726 0.971 0.269 0.825 0.982 0.376
Sample24 0.850 0.897 0.233 0.943 0.918 0.295
Sample25 0.489 0.965 0.285 0.597 0.966 0.370
Sample26 0.835 0.966 0.410 0.802 0.964 0.170
Sample27 0.533 0.922 0.206 0.699 0.946 0.510
Sample28 0.719 0.934 0.490 0.822 0.933 0.350
Sample29 0.684 0.950 0.090 0.716 0.958 0.376
Sample30 0.787 0.894 0.195 0.876 0.891 0.223
Sample31 0.794 0.952 0.466 0.820 0.962 0.557
Sample32 0.678 0.923 0.062 0.885 0.918 0.075
Sample33 0.781 0.954 0.361 0.888 0.968 0.401
Sample34 0.828 0.910 0.090 0.872 0.937 0.254
Sample35 0.726 0.967 0.284 0.857 0.967 0.065
Sample36 0.688 0.948 0.313 0.786 0.955 0.261
Sample37 0.679 0.915 0.131 0.813 0.927 0.037
Sample38 0.743 0.963 0.532 0.886 0.951 0.545
Sample39 0.775 0.967 0.464 0.693 0.973 0.336
Sample40 0.790 0.931 0.057 0.756 0.939 0.297
Sample4l 0.797 0.920 0.140 0.788 0.934 0.112
Sample42 0.629 0.951 0.164 0.710 0.956 0.451
Sample43 0.329 0.959 0.449 0.826 0.959 0.674
Sampled4 0.640 0.950 0.548 0.737 0.941 0.485
Sample45 0.624 0.955 0.330 0.710 0.952 0.365
Sample46 0.673 0.904 0.184 0.879 0.936 0.308
Sample4d7 0.734 0.957 0.269 0.842 0.974 0.607
Sample48 0.846 0.912 0.313 0.881 0.922 0.297
Sample49 0.733 0.939 0.427 0.858 0.962 0.600
Sample50 0.777 0.907 0.306 0.864 0.921 0.334
Mean 0.693 0.942 0.314 0.793 0.949 0.349
SD 0.137 0.022 0.147 0.095 0.021 0.153
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Correlations of the 3-PL and testlet model estimated item parameters
with the true parameter values (new Form, var(testlet)=0)

3-PL Testlet
r( a3PL ’ a) r’(bSPL ’b) r(c3PL ’C) r( atestlet ’ a) r(btest[et ’b) r(ctestlet ’C)

Samplel 0.932 0.975 0.225 0.930 0.980 0.237
Sample2 0.898 0.939 0.491 0.901 0.946 0.463
Sample3 0.925 0.965 0.250 0.917 0.971 0.236
Sampled 0.856 0.972 0.613 0.856 0.970 0.581
Sample5 0.901 0.951 0.306 0.902 0.963 0.306
Sample6 0.920 0.953 0.352 0.918 0.951 0.317
Sample7 0.943 0.941 0.397 0.948 0.954 0.453
Sample8 0.906 0.962 0.096 0.921 0.967 0.193
Sample9 0.900 0.957 0.243 0.908 0.963 0.245
Samplel0 0.763 0.921 0.391 0.740 0.937 0.430
Samplell 0.917 0.944 0.269 0.911 0.947 0.372
Sample12 0.910 0.962 0.580 0.913 0.970 0.547
Samplel3 0.956 0.931 -0.013 0.953 0.945 -0.067
Samplel4 0.925 0.965 0.225 0.921 0.972 0.272
Samplel5 0.761 0.969 0.309 0.754 0.969 0.293
Samplel6 0.944 0.967 0.090 0.948 0.972 0.148
Samplel7 0.906 0.965 0.439 0.913 0.970 0.431
Samplel8 0.961 0.924 0.575 0.959 0.929 0.554
Sample19 0.885 0.940 0.174 0.896 0.946 0.253
Sample20 0.922 0.938 0.343 0.926 0.945 0.365
Sample21 0.946 0.954 0.292 0.948 0.962 0.311
Sample22 0.749 0.946 0.357 0.759 0.952 0.368
Sample23 0.874 0.955 0.260 0.875 0.959 0.177
Sample24 0.893 0.960 0.350 0.894 0.965 0.305
Sample25 0.952 0.954 0.358 0.933 0.959 0.426
Sample26 0.922 0.955 0.090 0.925 0.960 0.118
Sample27 0.939 0.918 0.287 0.952 0.940 0.328
Sample28 0.929 0.954 0.426 0.929 0.963 0.495
Sample29 0.902 0.966 0.499 0.910 0.971 0.497
Sample30 0.926 0.947 0.367 0.922 0.953 0.346
Sample31 0.903 0.968 0.265 0.902 0.969 0.297
Sample32 0.941 0.967 0.259 0.943 0.969 0.298
Sample33 0.953 0.913 0.500 0.951 0.926 0.521
Sample34 0.905 0.956 0.269 0.914 0.962 0.303
Sample35 0.801 0.966 0.270 0.805 0.968 0.186
Sample36 0.951 0.976 0.578 0.945 0.967 0.538
Sample37 0.916 0.907 0.283 0.929 0.927 0.354
Sample38 0.918 0.920 0.266 0.917 0.921 0.258
Sample39 0.932 0.939 0.356 0.929 0.956 0.351
Sample40 0.928 0.975 0.552 0.923 0.974 0.512
Sample41 0.869 0.981 0.463 0.875 0.984 0.464
Sample42 0.943 0.915 0.150 0.938 0.924 0.158
Sample43 0.959 0.953 0.168 0.963 0.957 0.219
Sampled4 0.956 0.955 0.272 0.963 0.956 0.275
Sample45 0.957 0.965 0.294 0.958 0.967 0.344
Sample46 0.919 0.971 0.474 0.903 0.974 0.400
Sample4d7 0.871 0.965 0.018 0.864 0.967 0.041
Sample48 0.924 0.973 0.362 0.919 0.978 0.335
Sample49 0.899 0.959 0.522 0.898 0.962 0.555
Sample50 0.870 0.947 0.178 0.870 0.958 0.113
Mean 0.908 0.953 0.323 0.908 0.958 0.330
SD 0.049 0.018 0.148 0.050 0.015 0.142
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Correlations of the 3-PL and testlet model estimated item parameters
with the true parameter values (new form, Var(testlet)=1)

3-PL Testlet
r( a3 PL’ a) rl(b3PL 4 b) r(c3PL ’C) r(atesllet ’ Cl) r(btestlet ’b) r(ctestlet ’C)

Samplel 0.905 0.969 0.442 0.912 0.963 0.486
Sample2 0.892 0.950 0.098 0.920 0.960 0.150
Sample3 0.898 0.942 0.404 0.918 0.961 0.465
Sampled 0.896 0.940 0.418 0.913 0.947 0.509
Sample5 0.839 0.968 0.515 0.846 0.965 0.473
Sample6 0.862 0.972 0.378 0.871 0.967 0.256
Sample7 0.930 0.918 0.292 0.926 0.940 0.349
Sample8 0.886 0.958 0.391 0.891 0.967 0.525
Sample9 0.831 0.937 0.432 0.878 0.940 0.466
Samplel0 0.940 0.945 0.434 0.942 0.945 0.385
Samplell 0.905 0.886 0.185 0.930 0.887 0.125
Sample12 0.870 0.964 0.439 0.900 0.965 0.406
Samplel3 0.877 0.946 0.184 0.899 0.963 0.321
Samplel4 0.883 0.948 0.164 0.907 0.957 0.241
Samplel5 0.894 0.964 0.254 0.896 0.972 0.261
Samplel6 0.862 0.955 0.337 0.911 0.974 0.454
Samplel7 0.908 0.951 0.404 0.904 0.960 0.365
Samplel8 0.808 0.980 0.296 0.860 0.986 0.465
Samplel19 0.885 0.963 0.263 0.909 0.975 0.348
Sample20 0.884 0.934 0.230 0.870 0.943 0.373
Sample21 0.742 0.939 0.367 0.794 0.952 0.504
Sample22 0.873 0.984 0.553 0.904 0.985 0.478
Sample23 0.781 0.942 0.024 0.795 0.945 0.042
Sample24 0.950 0.939 0.121 0.961 0.951 0.106
Sample25 0.854 0.955 0.153 0.799 0.960 0.219
Sample26 0.657 0.921 0.575 0.780 0.939 0.587
Sample27 0.843 0.938 0.484 0.911 0.954 0.475
Sample28 0.854 0.979 0.639 0.868 0.981 0.566
Sample29 0.931 0.939 0.010 0.939 0.945 0.260
Sample30 0.897 0.917 0.511 0.925 0.932 0.542
Sample31 0.860 0.961 0.415 0.878 0.966 0.313
Sample32 0.831 0.966 0.416 0.865 0.978 0.549
Sample33 0.896 0.951 0.513 0.910 0.958 0.460
Sample34 0.876 0.934 -0.016 0.899 0.944 -0.024
Sample35 0.855 0.985 0.625 0.900 0.983 0.594
Sample36 0.673 0.952 0.045 0.677 0.959 0.079
Sample37 0.801 0.977 0.318 0.856 0.979 0.357
Sample38 0.868 0.972 0.578 0.854 0.973 0.523
Sample39 0.876 0.962 0.474 0.916 0.970 0.506
Sample40 0.898 0.936 0.389 0.927 0.944 0.385
Sample41 0.835 0.951 0.276 0.832 0.957 0.223
Sample42 0.802 0.951 0.504 0.887 0.956 0.529
Sample43 0.885 0.950 0.315 0.929 0.958 0.403
Sample44 0.843 0.946 0.419 0.879 0.963 0.456
Sample45 0.843 0.953 0.455 0.844 0.960 0.385
Sample46 0.778 0.954 0.071 0.884 0.980 0.226
Sample47 0.895 0.943 0.318 0.885 0.947 0.262
Sample48 0.890 0.942 0.384 0.899 0.947 0.442
Sample49 0.835 0.971 0.192 0.845 0.974 0.185
Sample50 0.850 0.966 0.166 0.865 0.978 0.309
Mean 0.859 0.951 0.337 0.882 0.959 0.367
SD 0.058 0.019 0.168 0.049 0.017 0.152
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Correlations of the 3-PL and testlet model estimated item parameters
with the true parameter values (new form, Var(testlet)=2)

3-PL Testlet
r( a3PL ’ a) r/(bSPL ’b) r(c3PL ’C) r( atestlet ’ a) r(btest[et ’b) r(ctestlet ’C)

Samplel 0.879 0.942 0.329 0.858 0.960 0.455
Sample2 0.740 0.947 0.415 0.805 0.953 0.384
Sample3 0.821 0.958 -0.045 0.830 0.951 -0.167
Sampled 0.875 0.945 0.309 0.930 0.947 0.398
Sample5 0.769 0.979 0.447 0.883 0.985 0.493
Sample6 0.859 0.926 0.295 0.900 0.940 0.295
Sample7 0.788 0.969 0.261 0.894 0.968 0.489
Sample8 0.883 0.920 0.268 0.913 0.935 0.362
Sample9 0.909 0.923 0.404 0.942 0.916 0.505
Samplel0 0.790 0.962 0.508 0.751 0.962 0.635
Samplell 0.958 0.898 0.111 0.954 0.912 0.208
Sample12 0.799 0.951 0.467 0.712 0.952 0.372
Samplel3 0.861 0.898 0.233 0.912 0.913 0.264
Samplel4 0.864 0.917 0.462 0.915 0.933 0.475
Samplel5 0.849 0.927 0.535 0.910 0.936 0.671
Samplel6 0.660 0.914 0.411 0.767 0.933 0.423
Samplel7 0.519 0.929 0.075 0.558 0.944 0.064
Samplel8 0.758 0.933 0.314 0.925 0.920 0.305
Sample19 0.753 0.949 0.357 0.913 0.965 0.491
Sample20 0.860 0.914 0.161 0.801 0.913 0.140
Sample21 0.813 0.946 0.418 0.871 0.962 0.551
Sample22 0.797 0.920 0.217 0.831 0.926 0.132
Sample23 0.714 0.974 0.672 0.888 0.987 0.618
Sample24 0.841 0.922 0.141 0.937 0.934 0.198
Sample25 0.746 0.955 0.607 0.882 0.964 0.725
Sample26 0.741 0.948 0.295 0.870 0.948 0.381
Sample27 0.746 0.972 0.594 0.798 0.974 0.585
Sample28 0.859 0.947 0.282 0.850 0.953 0.402
Sample29 0.909 0.925 0.159 0.917 0.932 0.338
Sample30 0.892 0.976 0.555 0.909 0.983 0.696
Sample31 0.780 0.975 0.518 0.853 0.982 0.557
Sample32 0.838 0.914 0.157 0.922 0.928 0.242
Sample33 0.754 0.976 0.667 0.825 0.985 0.762
Sample34 0.873 0.968 0.607 0.914 0.957 0.473
Sample35 0.830 0.953 0.452 0.902 0.958 0.455
Sample36 0.896 0.954 0.322 0.872 0.952 0.427
Sample37 0.798 0.949 0.165 0.842 0.969 0.369
Sample38 0.773 0.937 0.250 0.781 0.956 0.333
Sample39 0.836 0.954 0.421 0.897 0.953 0.418
Sample40 0.806 0.972 0.340 0.834 0.975 0.451
Sample4l 0.886 0.954 0.435 0.889 0.960 0.554
Sample42 0.749 0.951 0.521 0.899 0.960 0.612
Sample43 0.831 0.927 0.371 0.844 0.935 0.593
Sampled4 0.868 0.943 0.548 0.950 0.957 0.521
Sample45 0.786 0.905 -0.059 0.645 0.895 -0.053
Sample46 0.799 0.933 0.181 0.832 0.939 0.280
Sample4d7 0.920 0.953 0.488 0.897 0.963 0.579
Sample48 0.846 0.950 0.312 0.886 0.969 0.462
Sample49 0.709 0.907 0.506 0.780 0.923 0.466
Sample50 0.759 0.774 -0.004 0.907 0.880 0.136
Mean 0.812 0.939 0.349 0.860 0.948 0.410
SD 0.076 0.032 0.180 0.077 0.024 0.192
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MAD of the item parameter estimates (base form, Var(testlet)=0)

3-PL Testlet
a 3 ¢ a b ¢
Samplel 0.147 0.345 0.075 0.139 0.288 0.059
Sample2 0.145 0.353 0.059 0.132 0.327 0.049
Sample3 0.153 0.261 0.064 0.137 0.217 0.051
Sample4 0.116 0.280 0.056 0.101 0.261 0.050
Sample5 0.112 0.317 0.059 0.107 0.330 0.050
Sample6 0.125 0.361 0.070 0.115 0.305 0.051
Sample7 0.161 0.403 0.075 0.149 0.341 0.060
Sample8 0.142 0.316 0.070 0.133 0.246 0.053
Sample9 0.162 0.314 0.068 0.152 0.289 0.054
Samplel0 0.142 0.345 0.068 0.146 0.295 0.052
Samplell 0.107 0.293 0.070 0.100 0.243 0.055
Sample12 0.203 0.284 0.062 0.198 0.234 0.047
Samplel3 0.159 0.245 0.051 0.139 0.239 0.045
Samplel4 0.136 0.271 0.063 0.120 0.201 0.053
Samplel5 0.133 0.267 0.058 0.121 0.237 0.045
Samplel6 0.134 0.225 0.062 0.132 0.192 0.049
Samplel7 0.133 0.222 0.047 0.116 0.219 0.037
Samplel8 0.194 0.286 0.065 0.184 0.254 0.053
Samplel19 0.144 0.309 0.062 0.126 0.281 0.047
Sample20 0.131 0.265 0.056 0.127 0.279 0.049
Sample21 0.161 0.259 0.060 0.159 0.236 0.046
Sample22 0.154 0.313 0.070 0.136 0.288 0.056
Sample23 0.132 0.258 0.058 0.135 0.254 0.048
Sample24 0.121 0.285 0.067 0.116 0.241 0.053
Sample25 0.120 0.215 0.053 0.106 0.186 0.037
Sample26 0.170 0.284 0.063 0.164 0.247 0.046
Sample27 0.133 0.255 0.061 0.127 0.229 0.049
Sample28 0.151 0.273 0.068 0.147 0.251 0.055
Sample29 0.154 0.205 0.050 0.141 0.179 0.038
Sample30 0.128 0.250 0.056 0.125 0.222 0.041
Sample31 0.209 0.328 0.077 0.181 0.299 0.059
Sample32 0.150 0.326 0.069 0.146 0.262 0.053
Sample33 0.163 0.306 0.066 0.147 0.274 0.054
Sample34 0.190 0.232 0.052 0.188 0.224 0.045
Sample35 0.140 0.339 0.057 0.127 0.310 0.047
Sample36 0.150 0.242 0.053 0.142 0.193 0.041
Sample37 0.156 0.366 0.078 0.155 0.338 0.067
Sample38 0.141 0.309 0.075 0.117 0.241 0.054
Sample39 0.155 0.258 0.046 0.152 0.236 0.040
Sample40 0.152 0.286 0.063 0.133 0.230 0.048
Sample4l 0.129 0.277 0.066 0.110 0.227 0.046
Sample42 0.130 0.433 0.085 0.120 0.368 0.070
Sample43 0.158 0.356 0.071 0.137 0.316 0.054
Sample44 0.141 0.242 0.054 0.136 0.187 0.043
Sample45 0.124 0.372 0.062 0.119 0.321 0.045
Sample46 0.177 0.297 0.068 0.176 0.239 0.052
Sample47 0.105 0.267 0.064 0.109 0.211 0.048
Sample48 0.148 0.340 0.059 0.139 0.313 0.050
Sample49 0.151 0.305 0.063 0.139 0.258 0.048
Sample50 0.117 0.312 0.053 0.115 0.266 0.038
Mean 0.146 0.295 0.063 0.136 0.258 0.050
SD 0.023 0.049 0.008 0.022 0.045 0.007
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MAD of the item parameter estimates (base form, Var(testlet)=1)

3-PL Testlet
a b ¢ a b ¢
Samplel 0.118 0.284 0.060 0.109 0.225 0.046
Sample2 0.200 0.261 0.054 0.154 0.216 0.038
Sample3 0.126 0.220 0.063 0.113 0.177 0.048
Sample4 0.113 0.272 0.056 0.102 0.204 0.040
Sample5 0.145 0.253 0.061 0.162 0.216 0.049
Sample6 0.131 0.433 0.079 0.135 0.406 0.061
Sample7 0.194 0.356 0.074 0.168 0.305 0.055
Sample8 0.130 0.299 0.067 0.135 0.257 0.053
Sample9 0.151 0.286 0.067 0.145 0.270 0.053
Samplel0 0.158 0.263 0.058 0.152 0.247 0.046
Samplell 0.101 0.276 0.050 0.097 0.258 0.044
Sample12 0.182 0.273 0.063 0.173 0.257 0.054
Samplel3 0.185 0.226 0.053 0.194 0.180 0.046
Samplel4 0.126 0.262 0.057 0.132 0.230 0.049
Samplel5 0.148 0.387 0.073 0.159 0.323 0.054
Samplel6 0.144 0.317 0.069 0.163 0.259 0.051
Samplel7 0.170 0.361 0.073 0.137 0.272 0.051
Sample18 0.144 0.263 0.062 0.159 0.241 0.048
Sample19 0.138 0.372 0.070 0.152 0.291 0.052
Sample20 0.135 0.250 0.058 0.151 0.250 0.050
Sample21 0.117 0.313 0.062 0.120 0.276 0.048
Sample22 0.136 0.376 0.061 0.144 0.338 0.040
Sample23 0.148 0.436 0.078 0.149 0.376 0.065
Sample24 0.127 0.307 0.064 0.120 0.235 0.048
Sample25 0.157 0.247 0.058 0.177 0.251 0.047
Sample26 0.123 0.222 0.055 0.147 0.172 0.042
Sample27 0.205 0.307 0.068 0.199 0.223 0.050
Sample28 0.200 0.319 0.073 0.225 0.263 0.059
Sample29 0.171 0.236 0.061 0.164 0.196 0.038
Sample30 0.143 0.232 0.050 0.146 0.206 0.042
Sample31 0.141 0.289 0.062 0.152 0.253 0.047
Sample32 0.138 0.354 0.060 0.142 0.266 0.044
Sample33 0.160 0.253 0.054 0.175 0.236 0.046
Sample34 0.140 0.353 0.081 0.149 0.316 0.067
Sample35 0.146 0.358 0.061 0.167 0.354 0.056
Sample36 0.149 0.275 0.066 0.150 0.198 0.041
Sample37 0.091 0.239 0.047 0.101 0.216 0.036
Sample38 0.170 0.241 0.066 0.129 0.225 0.048
Sample39 0.208 0.374 0.072 0.179 0.318 0.057
Sample40 0.142 0.281 0.061 0.131 0.239 0.044
Sample41 0.137 0.328 0.067 0.124 0.307 0.055
Sample42 0.143 0.280 0.054 0.145 0.232 0.041
Sample43 0.170 0.235 0.052 0.132 0.199 0.034
Sampled4 0.129 0.297 0.068 0.150 0.286 0.052
Sample45 0.138 0.325 0.065 0.142 0.308 0.052
Sample46 0.193 0.299 0.061 0.181 0.244 0.049
Sample47 0.121 0.293 0.059 0.121 0.241 0.047
Sample48 0.151 0.287 0.059 0.134 0.274 0.049
Sample49 0.117 0.265 0.052 0.134 0.243 0.041
Sample50 0.168 0.263 0.062 0.168 0.204 0.044
Mean 0.148 0.296 0.063 0.148 0.256 0.048
SD 0.027 0.053 0.008 0.025 0.050 0.007
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MAD of the item parameter estimates (base form, Var(testlet)=2)

3-PL Testlet
a 3 ¢ a b ¢
Samplel 0.135 0.310 0.051 0.176 0.243 0.035
Sample2 0.138 0.254 0.067 0.173 0.229 0.054
Sample3 0.176 0.295 0.055 0.196 0.209 0.040
Sample4 0.225 0.327 0.055 0.183 0.266 0.042
Sample5 0.185 0.412 0.077 0.173 0.336 0.057
Sample6 0.158 0.397 0.056 0.180 0.374 0.052
Sample7 0.134 0.293 0.063 0.151 0.239 0.045
Sample8 0.125 0.269 0.057 0.170 0.252 0.052
Sample9 0.134 0.316 0.074 0.138 0.314 0.058
Samplel0 0.134 0.244 0.050 0.127 0.178 0.033
Samplell 0.161 0.302 0.051 0.188 0.208 0.041
Sample12 0.105 0.283 0.062 0.146 0.251 0.055
Samplel3 0.121 0.308 0.057 0.122 0.328 0.043
Samplel4 0.164 0.295 0.063 0.199 0.231 0.047
Samplel5 0.158 0.314 0.070 0.178 0.226 0.049
Samplel6 0.220 0.285 0.058 0.204 0.214 0.043
Samplel7 0.155 0.447 0.073 0.189 0.380 0.060
Samplel8 0.141 0.367 0.067 0.129 0.314 0.050
Sample19 0.240 0.277 0.053 0.175 0.240 0.038
Sample20 0.230 0.352 0.079 0.182 0.255 0.054
Sample21 0.146 0.335 0.068 0.199 0.290 0.052
Sample22 0.121 0.319 0.065 0.176 0.275 0.048
Sample23 0.154 0.307 0.058 0.140 0.185 0.042
Sample24 0.135 0.310 0.060 0.125 0.267 0.047
Sample25 0.176 0.454 0.080 0.201 0.379 0.060
Sample26 0.119 0.390 0.077 0.142 0.303 0.059
Sample27 0.254 0.338 0.072 0.211 0.295 0.045
Sample28 0.143 0.362 0.070 0.145 0.288 0.055
Sample29 0.149 0.323 0.072 0.162 0.261 0.048
Sample30 0.142 0.336 0.056 0.150 0.299 0.046
Sample31 0.122 0.287 0.053 0.185 0.218 0.040
Sample32 0.192 0.416 0.080 0.128 0.315 0.055
Sample33 0.143 0.398 0.074 0.134 0.279 0.047
Sample34 0.159 0.351 0.080 0.163 0.264 0.057
Sample35 0.163 0.316 0.072 0.143 0.270 0.057
Sample36 0.148 0.359 0.073 0.184 0.285 0.055
Sample37 0.150 0.306 0.064 0.134 0.271 0.046
Sample38 0.191 0.314 0.045 0.152 0.289 0.035
Sample39 0.112 0.314 0.061 0.155 0.244 0.054
Sample40 0.150 0.359 0.079 0.168 0.269 0.059
Sample4l 0.128 0.341 0.070 0.151 0.310 0.060
Sample42 0.202 0.252 0.067 0.226 0.233 0.049
Sample43 0.227 0.307 0.065 0.176 0.271 0.040
Sample44 0.164 0.309 0.065 0.166 0.281 0.047
Sample45 0.128 0.279 0.061 0.142 0.309 0.049
Sample46 0.163 0.411 0.071 0.134 0.344 0.054
Sample47 0.139 0.286 0.077 0.153 0.232 0.057
Sample48 0.123 0.384 0.067 0.123 0.342 0.046
Sample49 0.186 0.257 0.070 0.181 0.230 0.056
Sample50 0.140 0.322 0.074 0.135 0.288 0.056
Mean 0.158 0.328 0.066 0.163 0.273 0.049
SD 0.035 0.050 0.009 0.026 0.047 0.007
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MAD of the rescaled item parameter estimates (new form, Var(testlet)=0)

3-pL Testlet
a b ¢ a b ¢

Samplel 0.101 0.251 0.057 0.108 0.207 0.046
Sample2 0.104 0.270 0.053 0.106 0.252 0.044
Sample3 0.123 0.301 0.057 0.114 0.231 0.046
Sample4 0.093 0.199 0.038 0.094 0.198 0.035
Sample5 0.101 0.221 0.055 0.103 0.205 0.046
Sample6 0.109 0.255 0.055 0.104 0.256 0.043
Sample7 0.118 0.359 0.050 0.092 0.316 0.037
Sample8 0.128 0.271 0.053 0.105 0.248 0.041
Sample9 0.134 0.214 0.053 0.104 0.227 0.044
Samplel0 0.135 0.259 0.050 0.134 0.226 0.041
Samplell 0.144 0.268 0.076 0.114 0.242 0.055
Sample12 0.209 0.292 0.054 0.178 0.250 0.044
Samplel3 0.125 0.265 0.056 0.111 0.218 0.046
Samplel4 0.081 0.223 0.056 0.068 0.192 0.051
Samplel5 0.198 0.341 0.059 0.161 0.288 0.047
Samplel6 0.083 0.221 0.053 0.090 0.225 0.046
Samplel7 0.119 0.232 0.038 0.105 0.212 0.035
Samplel8 0.084 0.327 0.047 0.084 0.284 0.039
Samplel9 0.159 0.376 0.074 0.146 0.358 0.058
Sample20 0.116 0.326 0.057 0.111 0.313 0.049
Sample21 0.116 0.234 0.051 0.118 0.191 0.039
Sample22 0.095 0.274 0.053 0.091 0.244 0.041
Sample23 0.133 0.201 0.033 0.137 0.205 0.036
Sample24 0.111 0.268 0.056 0.110 0.278 0.050
Sample25 0.096 0.224 0.043 0.103 0.203 0.036
Sample26 0.080 0.251 0.055 0.082 0.210 0.044
Sample27 0.074 0.215 0.050 0.066 0.185 0.036
Sample28 0.113 0.260 0.045 0.091 0.231 0.032
Sample29 0.157 0.224 0.040 0.122 0.195 0.031
Sample30 0.103 0.211 0.046 0.081 0.217 0.037
Sample31 0.089 0.270 0.053 0.091 0.225 0.046
Sample32 0.108 0.294 0.053 0.101 0.268 0.041
Sample33 0.091 0.265 0.043 0.088 0.229 0.037
Sample34 0.134 0.257 0.053 0.105 0.225 0.041
Sample35 0.172 0.293 0.054 0.131 0.239 0.048
Sample36 0.105 0.172 0.041 0.085 0.201 0.041
Sample37 0.175 0.309 0.062 0.143 0.258 0.050
Sample38 0.125 0.301 0.055 0.100 0.259 0.045
Sample39 0.101 0.253 0.052 0.101 0.197 0.039
Sample40 0.102 0.288 0.050 0.098 0.237 0.043
Sample4l 0.168 0.215 0.057 0.129 0.165 0.045
Sample42 0.074 0.299 0.057 0.076 0.257 0.048
Sample43 0.076 0.256 0.051 0.093 0.233 0.047
Sample44 0.115 0.229 0.049 0.102 0.194 0.043
Sample45 0.107 0.314 0.052 0.109 0.234 0.042
Sample46 0.103 0.261 0.044 0.089 0.288 0.037
Sampled7 0.101 0.255 0.047 0.112 0.223 0.042
Sample48 0.111 0.251 0.053 0.088 0.238 0.040
Sample49 0.111 0.242 0.044 0.124 0.219 0.034
Sample50 0.099 0.339 0.052 0.086 0.277 0.040
Mean 0.116 0.264 0.052 0.106 0.236 0.042
SD 0.030 0.043 0.008 0.022 0.037 0.006
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MAD of the rescaled item parameter estimates (new form, Var(testlet)=1)

3-pPL Testlet
a b ¢ a b ¢
Samplel 0.091 0.259 0.055 0.117 0.221 0.042
Sample2 0.114 0.284 0.052 0.112 0.251 0.039
Sample3 0.110 0.238 0.059 0.118 0.185 0.047
Sample4 0.114 0.326 0.057 0.119 0.265 0.036
Sample5 0.117 0.220 0.046 0.124 0.232 0.037
Sample6 0.129 0.274 0.056 0.111 0.228 0.045
Sample7 0.096 0.291 0.053 0.108 0.240 0.041
Sample8 0.124 0.249 0.048 0.122 0.217 0.040
Sample9 0.115 0.273 0.056 0.110 0.254 0.043
Samplel0 0.069 0.255 0.050 0.073 0.229 0.044
Samplell 0.109 0.315 0.063 0.120 0.263 0.039
Sample12 0.105 0.283 0.052 0.087 0.288 0.041
Samplel3 0.124 0.267 0.050 0.157 0.211 0.039
Samplel4 0.091 0.301 0.054 0.092 0.268 0.042
Samplel5 0.104 0.325 0.062 0.122 0.266 0.052
Samplel6 0.107 0.319 0.064 0.108 0.243 0.041
Samplel7 0.122 0.272 0.044 0.095 0.245 0.037
Samplel8 0.152 0.227 0.037 0.138 0.208 0.028
Samplel9 0.109 0.356 0.052 0.098 0.249 0.039
Sample20 0.085 0.288 0.054 0.120 0.252 0.043
Sample21 0.111 0.292 0.058 0.109 0.270 0.044
Sample22 0.143 0.287 0.033 0.118 0.208 0.031
Sample23 0.097 0.381 0.060 0.105 0.349 0.048
Sample24 0.101 0.346 0.057 0.083 0.267 0.045
Sample25 0.119 0.259 0.048 0.124 0.224 0.039
Sample26 0.114 0.351 0.062 0.110 0.291 0.044
Sample27 0.115 0.318 0.053 0.093 0.243 0.041
Sample28 0.108 0.226 0.038 0.112 0.195 0.033
Sample29 0.096 0.320 0.056 0.133 0.263 0.038
Sample30 0.136 0.275 0.058 0.125 0.246 0.046
Sample31 0.128 0.291 0.052 0.120 0.226 0.042
Sample32 0.155 0.391 0.058 0.118 0.292 0.035
Sample33 0.129 0.286 0.055 0.119 0.282 0.045
Sample34 0.100 0.391 0.077 0.106 0.292 0.057
Sample35 0.101 0.171 0.046 0.096 0.182 0.040
Sample36 0.128 0.237 0.052 0.168 0.219 0.046
Sample37 0.086 0.181 0.047 0.085 0.166 0.043
Sample38 0.087 0.223 0.045 0.085 0.195 0.043
Sample39 0.132 0.405 0.051 0.103 0.327 0.036
Sample40 0.099 0.268 0.051 0.083 0.228 0.040
Sample4l 0.123 0.299 0.061 0.122 0.253 0.047
Sample42 0.147 0.271 0.053 0.104 0.223 0.036
Sample43 0.109 0.301 0.052 0.080 0.239 0.038
Sample44 0.107 0.227 0.049 0.086 0.231 0.039
Sample45 0.119 0.391 0.058 0.129 0.289 0.040
Sample46 0.177 0.274 0.056 0.138 0.192 0.042
Sampled7 0.078 0.328 0.054 0.082 0.291 0.040
Sample48 0.139 0.316 0.053 0.112 0.263 0.044
Sample49 0.100 0.212 0.053 0.109 0.169 0.045
Sample50 0.167 0.293 0.054 0.183 0.199 0.039
Mean 0.115 0.289 0.053 0.112 0.243 0.041
SD 0.022 0.053 0.007 0.022 0.039 0.005
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MAD of the rescaled item parameter estimates (new form, Var(testlet)=2)

3-PL Testlet
a 3 ¢ a b ¢

Samplel 0.088 0.274 0.054 0.122 0.203 0.036
Sample2 0.176 0.252 0.054 0.163 0.260 0.044
Sample3 0.102 0.294 0.055 0.163 0.279 0.049
Sample4 0.105 0.289 0.054 0.099 0.228 0.036
Sample5 0.187 0.399 0.063 0.155 0.237 0.043
Sample6 0.135 0.383 0.049 0.164 0.319 0.042
Sample7 0.135 0.277 0.069 0.133 0.215 0.039
Sample8 0.131 0.293 0.059 0.122 0.292 0.054
Sample9 0.086 0.312 0.054 0.086 0.294 0.039
Samplel0 0.108 0.244 0.048 0.133 0.243 0.035
Samplell 0.124 0.373 0.059 0.163 0.283 0.041
Sample12 0.115 0.257 0.051 0.157 0.230 0.044
Samplel3 0.101 0.424 0.052 0.082 0.351 0.041
Samplel4 0.156 0.264 0.055 0.161 0.230 0.048
Samplel5 0.105 0.291 0.049 0.091 0.259 0.034
Samplel6 0.150 0.335 0.051 0.189 0.269 0.044
Samplel7 0.141 0.382 0.060 0.142 0.308 0.052
Samplel8 0.164 0.279 0.050 0.106 0.260 0.045
Sample19 0.149 0.252 0.053 0.128 0.186 0.035
Sample20 0.135 0.278 0.056 0.165 0.248 0.049
Sample21 0.117 0.313 0.049 0.185 0.224 0.038
Sample22 0.127 0.251 0.057 0.130 0.217 0.045
Sample23 0.166 0.299 0.050 0.094 0.159 0.033
Sample24 0.136 0.273 0.060 0.111 0.257 0.045
Sample25 0.126 0.373 0.068 0.105 0.278 0.045
Sample26 0.138 0.329 0.052 0.098 0.282 0.039
Sample27 0.151 0.323 0.054 0.148 0.296 0.038
Sample28 0.129 0.296 0.056 0.187 0.259 0.040
Sample29 0.097 0.358 0.067 0.089 0.304 0.045
Sample30 0.096 0.305 0.045 0.084 0.202 0.032
Sample31 0.126 0.263 0.049 0.114 0.182 0.039
Sample32 0.111 0.299 0.062 0.087 0.221 0.041
Sample33 0.157 0.375 0.076 0.126 0.238 0.042
Sample34 0.126 0.282 0.054 0.123 0.238 0.046
Sample35 0.164 0.371 0.061 0.138 0.267 0.042
Sample36 0.125 0.352 0.062 0.174 0.303 0.049
Sample37 0.101 0.253 0.051 0.104 0.231 0.036
Sample38 0.150 0.366 0.045 0.140 0.271 0.036
Sample39 0.129 0.285 0.047 0.120 0.263 0.040
Sample40 0.118 0.285 0.060 0.117 0.221 0.039
Sample4l 0.130 0.275 0.059 0.111 0.256 0.040
Sample4?2 0.226 0.291 0.055 0.196 0.215 0.032
Sample43 0.117 0.373 0.060 0.127 0.324 0.042
Sampled4 0.104 0.347 0.065 0.103 0.256 0.038
Sample45 0.158 0.327 0.070 0.149 0.329 0.063
Sample46 0.115 0.360 0.062 0.117 0.284 0.046
Sample47 0.134 0.309 0.060 0.127 0.251 0.039
Sample48 0.128 0.282 0.049 0.090 0.198 0.036
Sample49 0.160 0.287 0.047 0.123 0.268 0.039
Sample50 0.137 0.332 0.063 0.101 0.280 0.050
Mean 0.132 0.312 0.056 0.129 0.255 0.042
SD 0.027 0.046 0.007 0.031 0.040 0.006
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RMSD of the item parameter estimates (base form, Var(testlet)=0)

3-PL Testlet
a 3 ¢ a b ¢
Samplel 0.170 0.459 0.093 0.167 0.394 0.074
Sample2 0.173 0.430 0.077 0.158 0.387 0.062
Sample3 0.192 0.355 0.085 0.166 0.288 0.068
Sample4 0.155 0.393 0.068 0.128 0.353 0.058
Sample5 0.132 0.366 0.072 0.125 0.375 0.061
Sample6 0.159 0.494 0.085 0.147 0.444 0.066
Sample7 0.206 0.521 0.093 0.189 0.468 0.074
Sample8 0.193 0.408 0.088 0.182 0.324 0.069
Sample9 0.203 0.421 0.085 0.195 0.385 0.068
Samplel0 0.194 0.416 0.082 0.229 0.391 0.064
Samplell 0.135 0.374 0.081 0.142 0.320 0.066
Sample12 0.233 0.348 0.073 0.238 0.287 0.056
Samplel3 0.205 0.346 0.071 0.181 0.328 0.060
Samplel4 0.179 0.319 0.077 0.154 0.261 0.063
Samplel5 0.178 0.325 0.071 0.163 0.300 0.058
Samplel6 0.181 0.283 0.078 0.195 0.242 0.062
Samplel7 0.189 0.306 0.061 0.155 0.289 0.047
Samplel8 0.246 0.348 0.078 0.231 0.313 0.064
Sample19 0.174 0.368 0.077 0.153 0.328 0.063
Sample20 0.175 0.351 0.076 0.165 0.353 0.067
Sample21 0.209 0.363 0.074 0.225 0.318 0.057
Sample22 0.233 0.383 0.084 0.196 0.358 0.067
Sample23 0.198 0.331 0.071 0.199 0.327 0.058
Sample24 0.153 0.356 0.082 0.161 0.326 0.067
Sample25 0.149 0.296 0.069 0.129 0.248 0.050
Sample26 0.205 0.369 0.077 0.200 0.319 0.058
Sample27 0.166 0.336 0.072 0.156 0.315 0.060
Sample28 0.213 0.334 0.083 0.201 0.326 0.069
Sample29 0.184 0.246 0.059 0.171 0.223 0.047
Sample30 0.167 0.298 0.064 0.171 0.263 0.047
Sample31 0.279 0.406 0.096 0.231 0.384 0.074
Sample32 0.189 0.377 0.079 0.183 0.313 0.060
Sample33 0.205 0.387 0.084 0.178 0.360 0.067
Sample34 0.243 0.307 0.063 0.247 0.303 0.054
Sample35 0.182 0.450 0.073 0.167 0.400 0.059
Sample36 0.185 0.301 0.067 0.179 0.239 0.052
Sample37 0.200 0.467 0.092 0.200 0.440 0.080
Sample38 0.182 0.440 0.096 0.154 0.353 0.075
Sample39 0.233 0.363 0.068 0.238 0.343 0.056
Sample40 0.177 0.393 0.072 0.161 0.349 0.056
Sample4l 0.185 0.400 0.085 0.159 0.333 0.063
Sample42 0.171 0.536 0.102 0.154 0.465 0.085
Sample43 0.231 0.440 0.086 0.196 0.375 0.065
Sample44 0.173 0.307 0.068 0.175 0.252 0.054
Sample45 0.139 0.493 0.073 0.154 0.429 0.057
Sample46 0.223 0.375 0.083 0.227 0.319 0.063
Sample47 0.157 0.333 0.076 0.179 0.275 0.058
Sample48 0.179 0.409 0.073 0.162 0.388 0.062
Sample49 0.184 0.366 0.073 0.170 0.312 0.055
Sample50 0.145 0.400 0.064 0.148 0.335 0.048
Mean 0.188 0.378 0.078 0.179 0.336 0.062
SD 0.030 0.062 0.010 0.030 0.058 0.008
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RMSD of the item parameter estimates (base form, Var(testlet)=1)

3-PL Testlet
a 3 ¢ a b ¢
Samplel 0.148 0.330 0.068 0.137 0.277 0.055
Sample2 0.247 0.351 0.068 0.200 0.282 0.051
Sample3 0.173 0.313 0.080 0.153 0.253 0.060
Sample4 0.179 0.365 0.072 0.148 0.280 0.051
Sample5 0.213 0.307 0.075 0.215 0.248 0.058
Sample6 0.175 0.552 0.092 0.175 0.513 0.074
Sample7 0.243 0.486 0.089 0.218 0.429 0.069
Sample8 0.175 0.375 0.080 0.174 0.329 0.066
Sample9 0.177 0.387 0.080 0.178 0.376 0.065
Samplel0 0.245 0.346 0.073 0.231 0.301 0.058
Samplell 0.135 0.374 0.061 0.126 0.362 0.055
Sample12 0.234 0.340 0.075 0.234 0.316 0.064
Samplel3 0.229 0.300 0.068 0.258 0.242 0.055
Samplel4 0.166 0.391 0.077 0.161 0.324 0.062
Samplel5 0.181 0.446 0.085 0.210 0.411 0.068
Samplel6 0.191 0.389 0.079 0.209 0.345 0.063
Samplel7 0.274 0.482 0.097 0.193 0.380 0.068
Samplel8 0.207 0.323 0.075 0.182 0.289 0.057
Sample19 0.172 0.454 0.086 0.198 0.360 0.063
Sample20 0.193 0.335 0.071 0.206 0.329 0.063
Sample21 0.148 0.366 0.071 0.142 0.337 0.059
Sample22 0.163 0.465 0.073 0.193 0.451 0.053
Sample23 0.182 0.556 0.095 0.181 0.465 0.076
Sample24 0.165 0.372 0.076 0.158 0.291 0.058
Sample25 0.188 0.293 0.068 0.231 0.298 0.056
Sample26 0.174 0.280 0.068 0.209 0.223 0.051
Sample27 0.275 0.382 0.090 0.278 0.303 0.063
Sample28 0.265 0.411 0.089 0.301 0.345 0.071
Sample29 0.222 0.313 0.074 0.213 0.253 0.049
Sample30 0.192 0.343 0.069 0.201 0.304 0.057
Sample31 0.171 0.344 0.074 0.192 0.334 0.058
Sample32 0.178 0.416 0.072 0.183 0.316 0.052
Sample33 0.234 0.330 0.066 0.226 0.320 0.057
Sample34 0.207 0.409 0.100 0.212 0.365 0.081
Sample35 0.176 0.451 0.078 0.192 0.433 0.068
Sample36 0.205 0.358 0.078 0.201 0.275 0.051
Sample37 0.113 0.316 0.060 0.127 0.299 0.049
Sample38 0.220 0.320 0.086 0.157 0.287 0.062
Sample39 0.314 0.478 0.097 0.248 0.387 0.070
Sample40 0.183 0.404 0.074 0.158 0.358 0.057
Sample4l 0.159 0.427 0.077 0.163 0.385 0.064
Sample4?2 0.183 0.377 0.072 0.182 0.328 0.057
Sample43 0.208 0.301 0.064 0.166 0.266 0.045
Sample44 0.162 0.395 0.082 0.205 0.374 0.067
Sample45 0.171 0.456 0.081 0.192 0.412 0.063
Sample46 0.242 0.366 0.075 0.248 0.316 0.062
Sample47 0.177 0.332 0.067 0.166 0.287 0.052
Sample48 0.187 0.374 0.078 0.168 0.348 0.061
Sample49 0.146 0.340 0.065 0.176 0.306 0.052
Sample50 0.223 0.345 0.075 0.232 0.278 0.055
Mean 0.196 0.379 0.077 0.194 0.332 0.060
SD 0.040 0.064 0.010 0.037 0.061 0.008
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RMSD of the item parameter estimates (base form, Var(testlet)=2)

3-PL Testlet
a R ¢ a 5 ¢

Samplel 0.167 0.358 0.060 0.203 0.304 0.044
Sample2 0.177 0.338 0.079 0.249 0.275 0.068
Sample3 0.232 0.377 0.076 0.246 0.273 0.054
Sample4 0.285 0.415 0.072 0.227 0.358 0.055
Sample5 0.239 0.531 0.092 0.236 0.406 0.069
Sample6 0.201 0.517 0.075 0.258 0.506 0.070
Sample7 0.168 0.385 0.073 0.204 0.309 0.055
Sample8 0.165 0.351 0.075 0.225 0.325 0.068
Sample9 0.192 0.367 0.084 0.162 0.368 0.070
Samplel0 0.177 0.316 0.060 0.167 0.221 0.040
Samplell 0.194 0.372 0.066 0.224 0.262 0.050
Sample12 0.136 0.389 0.082 0.182 0.333 0.071
Samplel3 0.141 0.421 0.068 0.159 0.488 0.061
Samplel4 0.221 0.371 0.083 0.270 0.290 0.062
Samplel5 0.194 0.399 0.087 0.218 0.320 0.066
Samplel6 0.294 0.353 0.071 0.277 0.297 0.053
Samplel7 0.223 0.538 0.082 0.249 0.470 0.071
Sample18 0.191 0.466 0.083 0.155 0.395 0.069
Sample19 0.315 0.336 0.065 0.238 0.351 0.047
Sample20 0.369 0.442 0.100 0.262 0.321 0.065
Sample21 0.172 0.390 0.079 0.243 0.363 0.062
Sample22 0.150 0.374 0.081 0.219 0.328 0.061
Sample23 0.190 0.394 0.073 0.200 0.249 0.052
Sample24 0.192 0.408 0.081 0.142 0.355 0.065
Sample25 0.220 0.517 0.093 0.248 0.461 0.075
Sample26 0.149 0.458 0.090 0.193 0.367 0.070
Sample27 0.388 0.440 0.100 0.268 0.377 0.057
Sample28 0.213 0.443 0.080 0.214 0.407 0.065
Sample29 0.218 0.401 0.085 0.231 0.325 0.058
Sample30 0.181 0.475 0.074 0.179 0.464 0.063
Sample31 0.156 0.356 0.067 0.245 0.315 0.048
Sample32 0.243 0.472 0.095 0.162 0.401 0.066
Sample33 0.176 0.451 0.084 0.173 0.345 0.060
Sample34 0.209 0.412 0.093 0.214 0.337 0.071
Sample35 0.233 0.403 0.085 0.197 0.365 0.074
Sample36 0.197 0.400 0.087 0.255 0.348 0.069
Sample37 0.183 0.400 0.076 0.163 0.356 0.057
Sample38 0.272 0.411 0.058 0.200 0.381 0.044
Sample39 0.140 0.398 0.076 0.207 0.304 0.068
Sample40 0.186 0.434 0.096 0.215 0.371 0.071
Sample41 0.156 0.418 0.083 0.177 0.386 0.069
Sample42 0.267 0.334 0.083 0.295 0.303 0.063
Sample43 0.304 0.358 0.079 0.223 0.343 0.049
Sampled4 0.215 0.388 0.078 0.204 0.366 0.062
Sample45 0.175 0.363 0.072 0.191 0.380 0.062
Sampled6 0.219 0.553 0.086 0.172 0.441 0.066
Sample47 0.185 0.365 0.090 0.217 0.285 0.066
Sample48 0.150 0.488 0.085 0.181 0.444 0.064
Sample49 0.241 0.325 0.082 0.230 0.292 0.066
Sample50 0.173 0.418 0.087 0.161 0.372 0.066
Mean 0.209 0.410 0.080 0.213 0.354 0.062
SD 0.056 0.057 0.010 0.037 0.062 0.008
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RMSD of the rescaled item parameter estimates (new form, Var(testlet)=0)

3-PL Testlet
a 5 ¢ a 5 :

Samplel 0.135 0.307 0.074 0.147 0.248 0.058
Sample2 0.124 0.338 0.064 0.127 0.304 0.054
Sample3 0.164 0.379 0.069 0.171 0.304 0.056
Sampled 0.121 0.275 0.047 0.124 0.250 0.046
Sample5 0.139 0.280 0.071 0.135 0.241 0.060
Sample6 0.132 0.346 0.064 0.132 0.349 0.053
Sample7 0.143 0.486 0.066 0.114 0.416 0.050
Sample8 0.159 0.371 0.068 0.129 0.323 0.053
Sample9 0.156 0.320 0.067 0.126 0.300 0.055
Samplel0 0.166 0.374 0.066 0.169 0.304 0.052
Samplell 0.181 0.334 0.090 0.153 0.325 0.069
Sample12 0.244 0.358 0.065 0.215 0.305 0.054
Samplel3 0.173 0.375 0.071 0.195 0.319 0.059
Samplel4 0.103 0.291 0.069 0.097 0.235 0.058
Samplel5 0.255 0.424 0.077 0.217 0.364 0.063
Samplel6 0.104 0.298 0.066 0.114 0.286 0.056
Samplel7 0.154 0.315 0.054 0.143 0.274 0.044
Samplel8 0.105 0.431 0.060 0.105 0.393 0.049
Samplel19 0.196 0.449 0.087 0.182 0.413 0.072
Sample20 0.131 0.424 0.068 0.129 0.418 0.058
Sample21 0.149 0.294 0.064 0.147 0.241 0.050
Sample22 0.125 0.328 0.064 0.121 0.335 0.052
Sample23 0.169 0.255 0.049 0.170 0.234 0.043
Sample24 0.140 0.354 0.069 0.138 0.329 0.060
Sample25 0.131 0.308 0.058 0.164 0.273 0.049
Sample26 0.107 0.302 0.066 0.107 0.251 0.052
Sample27 0.086 0.299 0.061 0.078 0.245 0.044
Sample28 0.137 0.362 0.059 0.127 0.330 0.041
Sample29 0.194 0.268 0.048 0.154 0.240 0.039
Sample30 0.131 0.337 0.062 0.100 0.319 0.048
Sample31 0.102 0.331 0.064 0.107 0.286 0.055
Sample32 0.129 0.357 0.066 0.122 0.335 0.051
Sample33 0.118 0.419 0.063 0.110 0.381 0.052
Sample34 0.157 0.335 0.066 0.131 0.298 0.053
Sample35 0.213 0.363 0.067 0.169 0.308 0.056
Sample36 0.145 0.224 0.054 0.127 0.268 0.051
Sample37 0.198 0.402 0.074 0.166 0.336 0.058
Sample38 0.160 0.406 0.067 0.137 0.360 0.056
Sample39 0.134 0.310 0.061 0.135 0.242 0.047
Sample40 0.136 0.347 0.058 0.137 0.286 0.050
Sample4l 0.204 0.263 0.072 0.164 0.212 0.058
Sample4?2 0.091 0.418 0.072 0.095 0.342 0.058
Sample43 0.091 0.355 0.069 0.110 0.324 0.059
Sample44 0.152 0.272 0.061 0.145 0.249 0.053
Sample45 0.146 0.394 0.068 0.169 0.313 0.055
Sample46 0.129 0.348 0.055 0.129 0.363 0.047
Sample47 0.140 0.337 0.060 0.151 0.310 0.052
Sample48 0.155 0.372 0.073 0.139 0.333 0.055
Sample49 0.148 0.301 0.051 0.164 0.271 0.041
Sample50 0.136 0.410 0.061 0.130 0.349 0.048
Mean 0.147 0.345 0.065 0.139 0.307 0.053
SD 0.036 0.055 0.008 0.029 0.051 0.007
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RMSD of the rescaled item parameter estimates (new form, Var(testlet)=1)

3-PL Testlet
a b ¢ a b ¢

Samplel 0.123 0.314 0.067 0.158 0.277 0.052
Sample2 0.154 0.362 0.070 0.159 0.297 0.054
Sample3 0.154 0.309 0.070 0.148 0.240 0.053
Sample4 0.151 0.395 0.065 0.169 0.343 0.045
Sample5 0.151 0.275 0.057 0.165 0.303 0.045
Sample6 0.173 0.360 0.067 0.166 0.307 0.057
Sample7 0.128 0.407 0.069 0.139 0.338 0.051
Sample8 0.153 0.315 0.070 0.169 0.277 0.055
Sample9 0.159 0.349 0.073 0.140 0.329 0.056
Samplel0 0.088 0.315 0.064 0.094 0.284 0.052
Samplell 0.141 0.513 0.077 0.154 0.452 0.054
Sample12 0.141 0.333 0.061 0.117 0.337 0.051
Samplel3 0.170 0.337 0.067 0.225 0.265 0.051
Samplel4 0.119 0.392 0.069 0.108 0.358 0.052
Samplel5 0.129 0.413 0.080 0.154 0.339 0.065
Samplel6 0.138 0.399 0.081 0.124 0.295 0.053
Samplel7 0.165 0.378 0.058 0.141 0.311 0.045
Samplel8 0.250 0.278 0.048 0.210 0.256 0.037
Samplel9 0.129 0.398 0.064 0.124 0.291 0.050
Sample20 0.113 0.390 0.071 0.173 0.339 0.054
Sample21 0.148 0.349 0.072 0.144 0.328 0.055
Sample22 0.171 0.346 0.045 0.160 0.263 0.038
Sample23 0.115 0.477 0.078 0.125 0.444 0.064
Sample24 0.158 0.419 0.069 0.124 0.340 0.056
Sample25 0.155 0.332 0.062 0.167 0.291 0.051
Sample26 0.163 0.519 0.080 0.143 0.457 0.056
Sample27 0.134 0.398 0.065 0.119 0.308 0.049
Sample28 0.152 0.275 0.047 0.137 0.231 0.040
Sample29 0.130 0.378 0.071 0.166 0.327 0.049
Sample30 0.163 0.358 0.070 0.162 0.312 0.054
Sample31 0.156 0.380 0.068 0.149 0.317 0.057
Sample32 0.180 0.482 0.071 0.144 0.382 0.044
Sample33 0.164 0.351 0.072 0.167 0.342 0.057
Sample34 0.127 0.506 0.094 0.128 0.393 0.070
Sample35 0.123 0.221 0.058 0.124 0.218 0.049
Sample36 0.164 0.309 0.061 0.204 0.292 0.056
Sample37 0.128 0.225 0.060 0.116 0.217 0.053
Sample38 0.123 0.254 0.057 0.116 0.240 0.052
Sample39 0.181 0.494 0.066 0.142 0.443 0.043
Sample40 0.143 0.385 0.060 0.112 0.325 0.050
Sample4l 0.156 0.393 0.076 0.158 0.334 0.060
Sample42 0.189 0.344 0.067 0.121 0.296 0.047
Sample43 0.129 0.402 0.066 0.103 0.327 0.050
Sample44 0.134 0.327 0.061 0.116 0.303 0.047
Sample45 0.153 0.488 0.070 0.168 0.374 0.053
Sample46 0.233 0.369 0.076 0.175 0.237 0.052
Sample47 0.102 0.430 0.067 0.112 0.392 0.051
Sample48 0.166 0.378 0.073 0.142 0.336 0.058
Sample49 0.136 0.266 0.062 0.162 0.225 0.054
Sample50 0.203 0.359 0.069 0.267 0.247 0.049
Mean 0.150 0.369 0.067 0.148 0.316 0.052
SD 0.029 0.071 0.009 0.032 0.059 0.006
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RMSD of the rescaled item parameter estimates (new form, Var(testlet)=2)

3-pPL Testlet
a b ¢ a b ¢

Samplel 0.103 0.337 0.064 0.151 0.251 0.045
Sample2 0.333 0.305 0.072 0.281 0.313 0.055
Sample3 0.124 0.390 0.070 0.207 0.394 0.065
Sample4 0.133 0.370 0.066 0.126 0.313 0.048
Sample5 0.218 0.466 0.076 0.199 0.286 0.053
Sample6 0.167 0.491 0.064 0.195 0.414 0.055
Sample7 0.170 0.363 0.077 0.161 0.288 0.048
Sample8 0.167 0.377 0.079 0.153 0.354 0.062
Sample9 0.123 0.398 0.069 0.109 0.449 0.050
Samplel0 0.149 0.311 0.062 0.174 0.307 0.041
Samplell 0.138 0.516 0.073 0.201 0.431 0.054
Sample12 0.139 0.353 0.063 0.199 0.305 0.057
Samplel3 0.160 0.513 0.065 0.118 0.426 0.050
Samplel4 0.183 0.372 0.070 0.196 0.291 0.057
Samplel5 0.171 0.367 0.061 0.128 0.323 0.041
Samplel6 0.189 0.440 0.065 0.229 0.364 0.054
Samplel7 0.171 0.493 0.078 0.177 0.424 0.065
Samplel8 0.224 0.357 0.062 0.137 0.345 0.057
Samplel9 0.233 0.326 0.065 0.151 0.242 0.044
Sample20 0.211 0.335 0.070 0.249 0.340 0.062
Sample21 0.148 0.412 0.061 0.223 0.304 0.045
Sample22 0.182 0.309 0.073 0.182 0.269 0.059
Sample23 0.206 0.378 0.062 0.124 0.204 0.043
Sample24 0.177 0.363 0.074 0.145 0.315 0.059
Sample25 0.177 0.452 0.083 0.127 0.381 0.051
Sample26 0.165 0.408 0.063 0.119 0.346 0.048
Sample27 0.208 0.410 0.063 0.197 0.409 0.044
Sample28 0.156 0.403 0.070 0.235 0.327 0.051
Sample29 0.122 0.456 0.083 0.107 0.433 0.056
Sample30 0.138 0.376 0.056 0.121 0.251 0.040
Sample31 0.150 0.333 0.061 0.139 0.229 0.048
Sample32 0.140 0.395 0.072 0.107 0.324 0.051
Sample33 0.201 0.428 0.086 0.175 0.301 0.047
Sample34 0.152 0.335 0.062 0.167 0.283 0.053
Sample35 0.220 0.446 0.072 0.171 0.336 0.051
Sample36 0.148 0.455 0.077 0.206 0.397 0.062
Sample37 0.140 0.313 0.065 0.126 0.280 0.046
Sample38 0.218 0.461 0.060 0.207 0.354 0.046
Sample39 0.152 0.364 0.057 0.160 0.312 0.047
Sample40 0.166 0.342 0.074 0.171 0.271 0.049
Sample41 0.160 0.355 0.070 0.149 0.322 0.048
Sample42 0.274 0.366 0.068 0.244 0.271 0.043
Sample43 0.133 0.449 0.073 0.169 0.401 0.050
Sample44 0.144 0.447 0.079 0.129 0.338 0.046
Sample45 0.212 0.394 0.087 0.234 0.400 0.077
Sample46 0.142 0.435 0.077 0.176 0.366 0.057
Sample47 0.157 0.378 0.079 0.187 0.299 0.051
Sample48 0.169 0.355 0.058 0.117 0.255 0.046
Sample49 0.200 0.361 0.057 0.149 0.341 0.052
Sample50 0.193 0.633 0.091 0.133 0.462 0.063
Mean 0.173 0.398 0.070 0.169 0.333 0.052
SD 0.041 0.064 0.008 0.042 0.062 0.007
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Appendix E The Original Item Structure of Tier B Form and Tier C Form of
Grade Cluster 3-5 Reading Tests of 2004-2005 ACCESS for ELLs®

Tier B Form
Folder Item
1
Folder 1 2
3

Folder 3 11
12
13
14
Folder 4 15

Folder 7

26
27

28
Folder 8 29
30

Tier C Form

Folder Item
1

Folder 1 2
3
4
5

Folder 2 6
7
8

Folder 4

Folder 6

28
29
30

Folder 8

Note: The two headed arrows point to the common folders that are shared by the two test

forms. For example, Folder 2 in the Tier B form is Folder 3 in the Tier C form.
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