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Radon transforms, wavelets, and applications

Carlos Berenstein

We present here the informal notes of four lectures! given at C4 Dolfin,
Venice, under the auspices of CIME. They reflect the research of the author,
his collaborators, and many other people in different applications of integral
geometry. This is a vast and very active area of mathematics, and we try to
show it has many diverse and sometimes unexpected applications, for that
reason it would impossible to be complete in the references. Nevertheless, we
hope that every work relevant to these lectures, however indirectly, will either
be explicitly found in the bibliography at the end or at least in the reference
lists of the referenced items. I apologize in advance for any shortcomings in
this respect.

The audience of the lectures was composed predominantly of graduate
students of universities across Italy and elsewhere in Europe, for that reason,
the emphasis is not so much in rigor but in creating an understanding of
the subject, good enough to be aware of its manifold applications. There
are several very good general references, the most accesible to students is,
in my view, [Hel]. For deeper analysis of the Radon transform the reader
is suggested to look in [He2] and [He3]. For a very clear explanation of the
numerical algorithms of the (codimension one) Radon transform in R? and
R?3, see [Na] and [KS]. There have also been many recent conferences on the
subject of these lectures, for a glimpse into them we suggest [GG] and [GM].

Finally, I would like to thank the organizers, Enrico Casadio Tarabusi,
Massimo Picardello, and Giuseppe Zampieri, for their kindness in inviting
me and for the effort they exerted on the organization of this CIME session.
I am also grateful to David Walnut for suggestions that improved noticeably
these notes.

1. Tomographic imaging of space plasma

!These lectures reflect research of the author partially supported by the National Sci-
ence Foundation.



Space plasma, is composed of electrically charged particles that are not
uniformly distributed in space and are influenced by celestial bodies. The
problem consists in determining the distribution function of the energy of
these particles (or of their velocities) in a region of space. A typical mea-
suring device will take discrete measurements (for instance, sample temper-
atures at different points in space) and then the astrophysicist will try to
fit a “physically meaningful” function passing through these points. The
procedure proposed in [ZCMB] is based on the idea that the measurements
should directly determine the distribution function. We do it by exploiting
the charged nature of the particles and using the Radon transform. (The
recently launched Wind satellite carries a measuring device based on similar
interaction principles and requires tomographic ideas for the processing of
the data.)

The advantage of the tomographic principles that we shall describe
presently is that each measurement carries global information and seems
to have certain noise reduction advantages over the pointwise measurements
of temperatures, which is the usual technology. We will describe everything
in a two-dimensional setting, but the more realistic three-dimensional case
can be handled similarly.

The instrument we proposed in [ZCMB] is schematically the following. An
electron enters into the instrument (a rectangular box in the figure below)
through an opening located at the origin and is deflected by a constant
magnetic field B perpendicular to the plane of the paper (see Figure 1).
Under the Lorentz force, the electrons follow circular orbits and strike detec-
tors located on the front-inside surface of the box (along the y axis). Those
that strike a detector located at the point y have the property that

y = (2m/eB)v,

where m is the mass of the electron, e its charge, and B the magnitude of
the magnetic field B. In other words, all the electrons with the same first
component v, of their velocities strike the same detector located at the height
y. The range of velocities over a segment of width a (width of the detector)
is

Av, = (eB/2m)d

(In terms of the length of the detector plate D in Figure 1 and the maximum
velocity vma, we have Av, = (d/D) - Umay). If f(vg,v,) represents the electron
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Figure 1: Schematic detector.

velocity distribution, then the number dV of electrons counted by a detector
in time dt is given by

dN = AnvzAvy / f vz, vy)duy, - dt,
—00

ne is electron density and A is the area of the entrance aperture. In other
words,

¥ 1 dN
_Zo f vz, vy)dvy = An.Av, dt

so that the count of hits provides the integral of f along a line v; = constant
in the velocity plane. By rotating the detector or changing the orientation
of the magnetic field we obtain the Radon transform of f.

As a realistic example, consider a plasma of nominal electron density
ne = 10 em™3, velocity in the range vy t0 Unmax of 1.2%x108 t0 3.0%10°% cm 571,
average velocity 7 = 6.5 x 108 ¢ s™1, and we assume a Gaussian distribution

function



vz, vy) = <72—1;r—2_)>2 exp <_('”m - "7)227;2(% 3 17)2>

so that

a _ const. e _ia%_
at P T

with individual detector area and aperture of 0.04 cm? for a small instrument
one gets that the distribution function f varies from 1 to 10~ while dN/dt
varies from 102 to 10%s~!. The standard measurement methods make the a
priori assumption that f is the sum of a Gaussian centered at ¥ and perturbed
by adding a finite collection of Gaussians, often located in the region where
f varies from 10~ to 10~%, but the previously described instrument does not
require any such assumption, on the other hand, experimentally one sees that
such large variations, like from 1 to 10~ as in the example, are realistic. We
shall see in Section 2 that this is an embodiment of the Radon transform in
R2. The more realistic case of 3-d is handled by an instrument where there is
a plane which contains the entrance aperture and a 2-d array of detectors in
the plane (z,y). One shows that at each detector location (z,y) one obtains
an integral over a planar curve and that the addition of overall elements with
the same = component leads to a 2-d plane integral of the density distribution
so that we have the Radon transform in R3. (This is an observation we made
jointly with M. Shahshahani.)

Before concluding this section, let us remark that the large variations ex-
pected from the velocity density function f make the inversion of the Radon
transform very ill-conditioned, even if f is assumed to be a smooth function.
This is due to the continuity properties of the Radon transform and its in-
verse as seen in the next section. The remarkable point is that in medical
applications, like CAT scans, the unknown density is naturally discontinuous
along some curves but otherwise it has small local variations, and it is this
reason the inversion problem is ultimately easier for medical applications.



2. The Radon Transform in R2

Let w € S',w = (cosh,sind), and take p € R. The equation z-w = D
represents the line [ which has (signed) distance p from origin and is perpen-
dicular to the direction w.

For any reasonable function f (e.g., continuous of compact support), we
can compute the line integral, with respect to Euclidean arc length ds,

Rf(w,p) := / flz)ds = / (@0 + twb)dt (1)

where z, is a fixed point in [, i.e., satisfying the equation zy - w = p, and
wt = (—siné,cos¥) is the rotate of w by /2.

The map f — Rf is called the Radon transform and Rf is called the
Radon transform of f. Clearly Rf is a function defined on S* x R (that is,
the family of all lines in R2) with the obvious compatibility condition:

(Rf)(_w’ _p) = Rf(w’p)° (2)

There are several reasonable domains of definition for R such as L'(R?), S(R?),
etc., but in many applications it is enough to consider functions which are of
compact support, with singularities which are only jumps along reasonable
curves, and otherwise smooth. This is obviously the transformation appear-
ing in Section 1. The full 3-d instrument there corresponds to integration
over planes in R3, perpendicular to a unit vector w. A big source of interest
of this transform lies in CAT (Computerized Axial Tomography) as a radio-
logical tool where each planar section of a patient is scanned by X-rays as in
Figure 2.

In this particular case it can be seen that

I,
log;—j_(l ~ /luds (3)

where [ is the radiation intensity at the source and I is the intensity mea-
sured at the detector. The attenuation is a consequence of traversing a tissue
of density u. So the data collected from this X-ray scanning appears in the
form of the Radon transform Ry of the density u, computed for a finite
collection of directions wy,ws,...,wy (usually equally spaced) and a finite
collection of lines, i.e., values py,ps, ..., pa for each direction. This is called
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Figure 2: Schematic CAT scanner.

a “parallel beam” CT scanner. The configuration that it is now most used
but we shall not discuss here is the “fan beam” CT scanner, we refer to [Naj,
[KS] for a discussion of the differences of these two cases, they really only
appear at the implementation level of the inversion algorithms because only
a limited amount of data can be obtained in the real world.

Some easy properties of the Radon transform are obtained by observing
that Rf can be written using distributions. In fact, if we introduce the unit
density d(p — z - w) which is supported by the line z-w = p, then

Rf(w,p) = [ f(@)8(p—z-w)dz (1)
R2

with the usual abuse of language.
It is also convenient to write

R,f(p) = Rf(w,p). (4)

Formula (1’) can be used to extend Rf to (R?\{0}) x R, using the fact that
d(p — = - w) is homogeneous of degree —1; indeed, one defines



& s
Ri6,9) = R/ (m |§|) )

One can therefore take derivatives of (1’) with respect to the variables £;(£ =
(&1,&2)) and obtain

%Rf £,s) /f 8_§J63—x £dz (1 =1,2), - (6)
but
D 35— &) = ~2;8/
853 §TIS) =T s—x-f)
and
0 5 _ 5
—i(s=z6)=d(s=3-6)
so that
-55-1-Rf(€, =— [f(@)ad(s~z-E)da
= - gg/f(x)xﬂ(s—x'f)dx
s,

== 5-(B(z;f)(& 9))-

On the other hand the Radon transform of the derivative of f is:

of
Re(35) () = [ g @its -z
@/f )6'(s — z - €)dax
= Ep(Re)o) )

In particular, for



o &

A= e
one obtains
32
Re(Af)(s) = (&1 + f%)gss(Ref)(S)- (7)

When € is restricted to be an element w € S?, we get,

2

(RA)(w,5) = o RF(w;s); ®

In other words, R intertwines A and ;;% when the arguments are restricted

to S x R. Another useful property is the following:

Rw(f * g) = wa &® nga (9)

where the symbol * on the left side of (9) denotes the convolution in R? and
® denotes the convolution product in R. The easiest way to verify (9) is via
the Fourier Slice Theorem, which we recall here: X

Let F; denote the Fourier transform of a function in R and f or F; the
Fourier transform of a function f in R2. Then

Fi(Ruf)(r) = f(rw). (10)

The proof is as follows,

o0

Fi(R.F)(T) = / e~ R F(1)dt

—00
e ¢]

— / e-—2mt‘r

-0

= / e £ (tw + swt)dsdt,
R2

/ ftw + swl)ds} dt

Letting now z = tw + sw', one has t = r - w and dtds = dz, the Lebesgue
measure in R?, in the previous equation we obtain

8



FRuf)(r) = [ fla)d
R

= f(Tw).

Recalling that in R?

Fa(f = 9)(€) = F(£)3(6),

we can easily prove (9). Indeed, from (10) we have

Fu(R(f*g))(r) = Fo(f x 9)(rw) = f(rw)g(rw)
= Fu(Ruf)(T)F1(Rug)(7) = Fi(Ruf ® Rug)(7)
and therefore, by the injectivity of F1, we get R,(f *g) = R, f ® R,g.

Let us also note that if 7, denotes the translation by a, i.e., 7,f(z) =
f(z — a), then

R(7af)(w,p) = E[f(z — a)](w,p) = Ruf(p — w - a) = 7w Rf(p).
We now proceed to state some inversion formulas, which give different ways
to recover f from Rf.

Fourier Inversion Formula:

o0

fla) = [rar [ ™= F (R f)(r)dw (11)
0 s1

The proof is clear, we begin with the Inversion Theorem for the Fourier

transform. We have

fla) = [ et fle),

R?

let ¢ = 7w and integrate in polar coordinates, to obtain



flz) = /Td‘T / 2 f (1) duw.
0 weS?
We now apply the Fourier Slice Theorem to get

o
flz) = / Tdr / T F (R F)(7) dw.
0 wes!

=
This inversion formula can be implemented numerically using the Fast
Fourier Transform (FFT) (see [Na]). Quite often the points Tw where the
data F1 (R, f)(7) is known do not have a lattice structure. This causes prob-
lems for the FFT but we can use rebinning algorithms like [ST] to obviate

this problem.
To obtain another kind of inversion formula we observe the following:

(o]

7wa(s)g(s)ds = / 70 f(sw + twh)g(s)dtds,

Let z = sw + tw' so that s = z - w, dz = dtds, and therefore
xR
| Ruf()9(s)ds = [ f(@)g(a - w)dz
—00 R2

i.e., the adjoint of R, is the operator R¥ defined by

RFg(z) = g(z - w). (12)
We now consider for an arbitrary function g(w,s), having the symmetry
9(—w, —s) = g(w, s),

/ Rf(w, s)g(w, s)dwds = /S1 dw 7wa(s)g(w,s)ds

SIxR
=/dw / f(sw + tw)g(w, s)dsdt
St —_

10



(with the usual substitution, z = sw + tw', etc., we get)

=/dw/f g(w,w - z)doz
S

= /f(x) /g(w,w':r)dw} dox

2
= /f(x) /R# Jdgw
- / flz R# ). (13)

The operator R¥ defined by (13) is known by the name of “backprojection
operator”. Note, in this regard, that g(w, s) is a function of “lines” and that
R#g(x) is its integral over all lines passing through z. It is easy to prove the
following useful property of the backprojection operator

(R*g) * f = R*(g ® Rf), (14)
where the convolution ® in the second member clearly takes place in the sec-
ond variable. This identity plays an important role in the numerical inversion
of the Radon transform.

Finally, we get to the following important result:

R*Rf = lf:_l x f. (15)

Indeed,
R¥*Rf(z) = /Rf(w,w-x)dw
= /dw 7f((w-x)w + swt)ds
1 oo
- /dw 7f(x+swl)ds
s

11



= 2/dw7f(x+swl)ds
S

0

By setting y = swt, s = |y|, dy = sdwds we get

R*Rf(z) = 2/|—?1}-|f(x+y)dy
R2

1
= 2R/2 |m_ylf(z,/)dy,

which is exactly (15). Since one has fzﬁ = é—| (see e.g. [He2, page 134]),
one deduces that

2 .
Fo(R*RS)(€) = 0] (&)-
One can therefore conclude that the inversion operator A is such that
Ao = K
so that
1 ) .
fl@) =5 [ =€\ (R#*R)(§)d€ = AR* R (a), (16)
R2

which is sometimes called the backprojection inversion formula.
Reorganizing the terms in the last formula one can rewrite it to obtain a
more standard form, where the filtering is one dimensional.

Filtered backprojection inversion formula:

]‘ /
f==R*H(RS) (17)

where
(R)(,5) = (o Ruf)(s)
? - as W
and H is the Hilbert transform defined by

12



™ §—t
-0

where the last integral is understood in the sense of principal value. In other
words,

~ 9 — BN 1y, (18)

Sl

No introduction to the Radon inversion formula can be complete without
at least mentioning the inversion formula due to Radon, which among other
things, is akin to the inversion formula for the hyperbolic Radon transform
due to Helgason, which will be mentioned below. Consider for a fixed z € R?,
the average of Rf over all lines at a distance ¢ > 0 from z, namely, let

F.(q) := %/Rf(w,ww—}-q)dw.
Sl

Radon found that

2) = 71r [ dFs(a) (19)

0
We refer to [GM] for the original 1917 paper and commentaries.

An approximate implementation of (17) can be given by using the Fourier
inversion formula

~ / Qulz - w)do (20)

where, as above, w = (cosé,sin§) and
b
Q) = [ Irle™ Fi(Rf)(r)dr
Zb
~ /!T|62Witrf1(Rf)(T)dT.

13



This last approximation constitutes a band limiting process, and it can also
be obtained from (14) as follows: Let w; be a “band-limiter”, i.e, supp(w;) C
[—b,b] and W, = R*w;,. Then (by letting g = w;, in (14)), we obtain

W,  f = R*(w, ® Rf)
that is, we want W, to be an approximate d-function (cf. [Na, Ch. 5]). To
begin with, choose Wj radial, e.g.,
: 1 s [l
=
Wh() = 5-(5)

where 0 < $(0) < 1,® = 0 for ¢ > 1; this implies that w, = const. {al@(l%l)
The previous example is given by the ideal lowpass filter defined by

(i) _ 1 if0<ox<1
10 ifo>1
and so
1 5 Ji(b]z])
= —b?
Wb(x> ot (beEI) y

where J; is the Bessel function of the first kind and order one.

We shall see below that one of the wavelet-based inversion formulas is
inspired by (20).

The formulas (15), (16), (17) allow for rather precise estimates of the
degree in which the Radon transform and its inverse preserve the smoothness
of the function f and data Rf. One way to measure this is to do it using
Sobolev norms defined in an obvious way in the space of functions in the
space of all lines. For instance, if f € C§°(B), where B is the unit disk in
R?, then one can find in [Na, Theorem 3.1], that for any real ¢, there are
constants ¢, C > 0 such that

cdlfllage < [|Bf|goriz < ClIf|ag(m) (21)

In the particular case of @« = 0, we see that for f € L2(R?) and

supp(f) CC B one cannot expect better than control of one-half derivatives
of Rf.

Useful variations of the estimates (21) for other kinds of Radon transform

can be found using that R*R is a Fourier integral operator of elliptic type

[GS].
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3. Localization of the Radon transform

Returning to the problem of plasma physics that started these lectures,
besides the fact that the functions we are trying to detect seem to have a
very large variation, that is, a large H! norm, we have the added difficulty
that the amount of data one can process or send down to Earth is fairly
limited. One knows experimentally that, on a first approximation, all the
variations from being Gaussian occur in the region where the values of f
have gone down by 4-5 orders of magnitude. That is, if f has a value 1 for
the bulk velocity, then we are interested in the region where the values of f
lie between 10~ to 107%. The way this problem was traditionally solved (for
conventional measuring devices) was to assume f had the form of a linear
combination of a small number of Gaussians, and one just tries to estimate
the variances and coefficients of these perturbation terms. If one does not
want to impose these a priori restrictions on f, and we have only limited
amount of data to use, a natural idea is to just use those lines that cross
only the annular region where the main Gaussian varies between 10 and
1075, (In the case of dimension 3 we would be dealing with a shell instead
of an annulus.) This requires a localization of the Radon Transform. There
are two ways to proceed. One, the most obvious (or naive) way is to try to
localize the Radon transform as follows:

Reconstruct a function f in a disk B(a,r) from the data Rf (), using only
lines £ passing through B(a,T).

This cannot be true in dimension 2, as observed already by F. John. The
reason is the well-known fact that waves cannot be localized in 2-dimensions,
namely, if we drop a pebble in the water, the ripples propagate along ever-
expanding disks with time. In other words, an arbitrary perturbation con-
fined to a disk at time ¢ = 0 does not necessarily remain confined to the
same disk (or any concentric disk, for that matter) at all future times. On
the other hand, as F. John pointed out [J], if u is a solution of the wave
equation Au — ug = 0, then its Radon transform v = Ru is a solution of
the one dimensional wave equation vs; — vy = 0, as it is seen immediately
from the relation (8). For the one-dimensional wave equation with initial
conditions at time ¢ = 0,v(s,0) = vo(s) and 2v(s,0) = v1(s), we have

1 s+t
v(s,t) = =(vo(s — t) + vo(s + 1)) 5/

ol
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If we think the pebble as being given by u(z,0) = ue(s) = 0 for |z| > ¢,0 <
€ << 1, and u4(z,0) = uy(z) =0, then for a fixed w € S* and any later time
t > 0 we would have with v(s,t) = R(u(-,t))(w, s) that vy(s) = v(s,0) = 0
for |s| > € while v (s) = v4(s,0) = 0. Thus, at any later time ¢ > ¢ we have
that v(s,t) is only different from 0 for ¢ — € < |s| < ¢t + €. Thus, the strict
localization of the Radon transform would impose that the support of u(z, t)
be in the annulus ¢t — ¢ < |z] < t + ¢, which contradicts our observations.
(Nevertheless, we shall see that some sort of localization takes place.)

The other alternative, which fits the plasma problem, is to try to see
whether we could reconstruct the values of f outside of a disk from the values
of Rf(¢), with £ never crossing that disk. This turns out to be possible! It
is the exterior problem for the Radon transform. We follow here the work of
Quinto [Q1], [Q2] (and references therein.)

The starting point, as recognized in the pioneering work of A. M. Cor-
mack, is to expand both the function f and its Radon transform ¢ = Rf in
a Fourier series. (For R™,n > 2, one uses spherical harmonics [Na, p. 25 ff.])
That is,

flz) = i fe(r)e®®  z = (rcos@,rsin),
f=-00

g(w,s) = i ge(s)e®®  w = (cos,sin¥).
==

Then, the Fourier coefficients f, and g, are related by the two formulas

a(s) =2 [ Ta(3)(1 = 5)7 fuiryar, (22)
fulr) = —= [ Tu(2)(s* — ) 2gy(s)ds, (23)

where Ty is the Chebyshev polynomial of the first kind. One of the conse-
quences of the Fourier Slice Theorem is that g cannot be an arbitrary function
in the space of lines, it must satisfy certain compatibility conditions, usually
called the moment conditions,

16



o
/ s™1g(w,s)ds € span{e* |k| <m}, w =e?.
-0

This allows for a modification of (23) that makes it far more practical for
numerical purposes [Na, p. 29-30]. This pair of equations show that the
values of Rf(¢) over all lines exterior to the disk B(0,r) are thought to
determine f in the exterior of B(0, 7). In particular, if one has

supp f € B(0, po),

then the values of f in the annulus p; < |z| < py are entirely determined by
the measurements of the Rf(¢), only for lines £ that intersect this annulus.
(The uniqueness of the exterior problem and its variants is usually called the
support theorem. It was first proved by Helgason in 1965, we refer to [Hel],
[He2] for details and generalizations.)

Quinto [Q1], [Q2] has successfully used this kind of ideas to obtain a very
effective tomographic algorithm to determine cracks in the exterior shell of
(usually large) circular objects, for instance, rocket nozzles. The method of
Quinto is based on two things. First, the known characterization of the kernel
of the exterior Radon transform in L? spaces with convenient radial weights
(this is due to Perry for n = 2 and Quinto for n > 3). For the case of interest
at hand, n = 2, we consider the kernel of the exterior Radon transform in
L%(B§, rdx), then the Fourier coefficients f,(r) must be given by the rule

fe(r) = linear combination of 7*7%,0 < k < |¢|,|¢| — k even. (24)
For instance,

fo=0,f=0,fo= cr"z, fz= cr'3, fi= ar™? + czr'4, .

The second observation is the fact that the Radon transform maps H; :=
L2(B¢, (1 —r)Y/%dz) into Hy = L*(S* x (1, 00), #2%) and one has an explicit
diagonalization procedure for R, so that there are orthonormal bases ¢; and

1;, respectively of H; © ker R and of ImR C Hs, so that

R(,Dj = K:jwj with Kj > 0

17



and k; explicitly computable. Thus, for a given f of L2(Bf,dz) (ie., of
compact support), we have

o -~ ~
f=3ajp;+f with f € ker RN L%(B§, dz)
j=1

so that
00
Rf = Z ajlﬁjlﬁj
j=1
thus
1
a; = — < Rf,'i,bj >H,
Ky

This determines exactly § = f — f. One expands now f in a Fourier series
¥ fe(r)e®, with f, of the form (22) as mentioned earlier. Now for r >> 1
we know that f = 0, so that f = —g, thus, for 7 >> 1 we have f,(r) =

- }r e~ G(re?)dd, but the coefficients f;(r) are polynomials in 1/r, so they
-

are completely determined everywhere (up to r = 1) by their values for
r >> 1. It is here that one uses a sort of analytic continuation, so it is fairly
unstable, but Quinto has modified further this algorithm if one assumes f
to be known in the small annulus 1 < |z| < 1+ ¢, to give it further stability
Q2.

In the context of the plasma problem, we compared numerically the use
of the same number of data measurements Rf(¢), either spread throughout
the whole disk versus the measurements taken only (and thus more densely)
in the annulus of interest. We found the surprising result (to us) that the
standard algorithm, with more thinly spread measurements did better. It
was this numerical observation that led to the search of a different way to
localize the Radon transform using wavelets.

Let us first review briefly two other localization methods that had ap-
peared earlier in the literature.

The first one is the following. Let us assume that the unknown function
f has support in the disk By of center 0 and radius 1, but that we are only
interested on the values of f in B;,0 < b < 1, while we collect data on
B;,0 < b < a < 1. (Note that all the disks are centered at 0). This is

18



the situation considered for the interior Radon transform [Na, VI.4]. The
basic idea is to make Rf(¢) = O when £ doesn’t intersect B, and apply
the standard reconstruction algorithm. In other words, we want to obtain
(even approximately) the values f(z),|z| < b, from R(fx,), where X, stands
for the characteristic function of the disk B,. The first problem is that
there are many non-zero functions f that have R(fx,) = 0. Luckily, these
functions do not vary much on B, [Nal, so one could just try to find f up
to an additive constant (and try to find that constant by other means). One
can see from the table or the formula (4.4) in [Na, p. 170], that one needs
a = 4b to obtain a maximum L* error of 1.6% of the L? norm of f in B;. In
particular, this procedure could not be applied if we are interested in f(z),
for z € B(xg,a) C B; with x4 close to B;. A typical such example is that
of spinal chord studies. Usually, one study involves 40-60 CAT scans, that
is, 40-60 scans along body sections perpendicular to the spine at different
heights. The spinal chord area is about 15% of any such cross section of the
body, and there would be a substantial reduction of radiation received by the
patient if one localizes the CAT scan to only those lines passing through or
near the spinal chord area.

Another alternative that has been proposed is that of A-tomography
[FRK], where one only attempts to reconstruct to discontinuities of the func-
tion f, i.e., perform edge detection in the image. The principle is based on
the formula (15) namely, consider the “approximate” inversion

f = AR*RY,

so that f = 4rAf. This formula preserves the “edges” (= discontinuities
of f) but not the actual values of f. A variation of this formula has been
implemented in the Mayo Clinic to study angiograms [FRK].

Another interesting consequence of this kind of approximate formula is
that it can also be applied to the attenuated Radon transform,

R, f(w,s) = / flsw + twh)u(sw + twh, w)dt

—00

where p(z, w) is assumed to be real analytic in R%x S! and nonnegative. This
appears in SPECT tomography and, usually, both f and p are unknonwn.
As observed by Kuchment and collaborators [KLM] the function AR#*R,, f
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will have the same singularities as f. The point is that R*R, is still an
elliptic Fourier integral operator. This fact had already been used effectively
by many people, most notably Boman and Quinto [BQ)J, and it is the key
observation in the work of Quinto [Q3], Ramm and Zaslavsky [RZ], and
others.

The method of localization we want to discuss here with a bit more de-
tail is that of using wavelets to invert and localize the Radon transform in
dimension 2. This general principle, which is joint work with David Walnut,
was presented first in a 1990 NATO conference (W], and independently in
[Ho]. Since then, similar ideas have appeared elsewhere in the literature (see,
for instance, the recent volume [AU], the papers [BW1], [BW2], [DB], [DO],
[O], and references therein.) True localization using discrete wavelets and
filter banks is clearly developed in [FLBW]. (See also [FLB] for the fan beam
case.)

There are many excellent books on the subject of wavelets, at all levels of
sophistication and different points of view, the following is a very partial list
(M], [D], [Ka]. There are actually two different, albeit related concepts, the
continuous wavelet transform (CWT) (easier to understand) and the discrete
wavelet transform (DWT) (easier to work with).

The idea of CWT originates from the standard properties of the Fourier
transform representation of nice functions. For f € L%(R) or f € S(R), we
have both

for = [ f@e st
@) = [ feemata

and

£l = 11112 = ( [ 1£(z) dz) 2

If we translate f by b € R, 7.f(z) := f(z —b), then (7, f)(£) = 2™ f(£), and
for dilations we have Do f(z) := J=f(z/a)(a > 0), so that ||f|lz = || Daf]|2
and



(Daf)(€) = Dy £ (€).

In other words, the group £ — az + b (@ > 0,b € R) operates via unitary
operators in L?(R), and has a corresponding representation on the space of
Fourier transforms (which happens to coincide with L?(R)). The “problem”
of the Fourier transform representation is that the behavior of f at a point &
depends on the values of f everywhere, for that reason, the idea of a “win-
dowed” Fourier transform has been introduced long ago, namely, introduce
a cut-off function g (say, a “smooth” approximation of x(-1,)) and consider

e}

F(n))©) = [ g(e - b)f(x)e > =au,

-0

Note that Fi((1y9)f)(€) is % * f(€), where o is the wavelet y(z) =
g(z)e*™ ) (x) = 1p(—z). If we want to consider also the behavior at f at
different scales we are led naturally to the CWT: Given a wavelet 1 € L%(R),
and f € L%(R) we define

Wy f(a,b) := / f(t)zﬁ(%—b)—% =< f,Damyyp >= (f * Do) (b)  (25)

for 0 < a < o0,b € R, denotes the complex conjugate of ¥, and <,>
denotes the L2-scalar product. We assume the wavelet is “oscillatory”, that
is, it is an arbitrary function in LZ(R) which satisfies the condition

2 1A e))2
Cy :=_<o/° -Iip%l)l-df < 0.

oo} -~
This condition implies that [ v(z)dz = 0. (For instance, when 1) is contin-
-0

uous at & = 0, which occurs if ¥ € L'Y(R) N L3(R).) In fact, later on we will
be interested in wavelets with many vanishing moments

/ *p(z)dz =0, 0<k<N.

—QQ
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A typical wavelet is the Haar wavelet

Y = Xo,1/2) — X[1/2,1]
so that
D1/21/} = \/§(X[o,1/4] - X[1/4,1/2])

which shows that for £ — oo, Do+t “analyzes” smaller and smaller details
of the “signal” f.

Moreover, Wy, f determines f as seen from the following relation valid for
any pair f,g € L}(R)

xX o0 b
/ / Wy f(a, b)Wyg(a, b)dz2d =cy < f,9 > |93,

usually called Calderon’s identity. If [|¢|l2 = 1 one also has the L2-
approximation property

dadb
a2

||f—ci / Wy f(a, b) Doyt

Aj<lal€4,
pi<B

| =0 (26)

as Ay — 0%, Ay = +00, B — +00.
The generalization to R™ is easy. A function ¢ € L?(R") is a wavelet if

Y2
.
Rr
For a radial wavelet v € L2(R") and f € L*(R") we define the CWT by

Wyf(a,b) = f+ Dayp¥V(h) forae R\ {0},b€ R",

where this time, D,%(z) = |a| ™2y (z/a).
The interest of the CWT for tomograpy lies in the following two propo-
sitions from [BW2].

Proposition 1. Let p € L?(R) be real valued, even, and satisfying
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/ |'6(7;)|2dr < o0 (27)

Define a radial function 9 in R? by Fo1(€) = 25(|¢|)/|€], then o is a wavelet
and

W, f(a,b) = a~1/? / (W,Ro f)(a,b - w)duw (28)
Sl

Proof. Using the Fourier Slice Theorem we have for v € R

D7 () = WiEme)ow) = sw). (29)

It is then easy to verify that (27) implies that 1 is a wavelet in R2.

Recall that the Riesz transform of order o, I%p, of a function ¢ € S(R)
is defined by (I*¢)(y) = |7|=%¢(7), thus the identity (29) can be rewritten
as

plt) = 5T (RW) (1)

Extend p to a function in the space of lines by making it independent of the
slope of the line, p(w, ) = p(t) for every w € S*, then we have

R p(z) = %R#I‘lRwlﬁ(x) = $(z)

since the last formula is a rewritting of formula (16) in terms of the Riesz
transform. More generally, for any a > 0 and every w € S, we have

(R*Dapu)(z) = a2 Do(a),
so that, using identity (14) and the fact that p is real valued, we obtain

Wyfla,z) = (f*Dap)(z)
= a "*(f x R*D,p.)(z)
o YV R*(R,f ® Dupu)(x)

= g /2 /(W,,wa)(a,a:-w)dw
Sl
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This concludes the proof of the proposition. |

A similar relation between the Radon transform and the CWT can be
found using “separable” wavelets in R2.

Proposition 2. Given a separable 2-dimensional wavelet of the form
P(z) = P! (z1)9? (22)

where each 1i(t) satisfies |i(y)| < Ci(1 + |7])~ for all v € R, define the
family of one-dimensional functions {p, },est by

. 1, - -
pu(7) = Pt (wr)d?(ywe)
where w = (wy,ws) € S'. Then, for every f € L}(R?) N L?(R?),

(Waf)a,2) = a2 [(W,, Ruf)(a, 2 w)do.

Sl

The point of Proposition 2 is the observation that the wavelet transform
of a function f(z) with any mother wavelet and at any scale and location can
be obtained by backprojecting the wavelet transform of the Radon transform
of f using wavelets that vary with each angle, but which are admissible for
each angle.

So far we have not yet shown that the inversion formulas of the Radon
transform based on wavelets do a good localization job. Using Proposition
1 the problem is clear, find a function p such that p has small support and
simultaneously 1 has small support. From the relation (29) we see that we
have overcome the Reisz operator of order —1, its symbol is |y| = (sgnv)7y,
so it is the composition of the differentiation and the Hilbert transform.
(This is exactly the content of the inversion formula (18).) The problem,
of course, is the Hilbert transform, but if we choose p with many vanishing
moments, then we can overcome the difficulty. For the sake of comparison we
show in Figure 3 the Hilbert transform of a Gaussian, its effective support
is about four times the effective support of the Gaussian (defined by making
zero those points below 1% of maximum value), which tails exactly with the
result about the interior Radon transform mentioned earlier in this section.

24



Gaussian and its Hilbert transform
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Figure 3: Gaussian and its Hilbert transform.
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The key to explain the success of the wavelet method of localization is
the following proposition [BW1], which in spirit is similar to the general
principles about Calderon-Zygmund operators stated in [BCR).

Proposition 3. Suppose that n is an even integer and the compactly sup-
ported function h € L*(R) is such that for some integer m > 0 we have that
h is n + m — 1 times differentiable and satisfies

(a) 7h®(y) e LR)NLXR) for0<j<mO0<k<m+n-—1

(b) Cf th(t)dt =0 for0<j<m

Then
I'"h(t) = o(Jt|™™ ™) as |¢t| = o0
and

tn+m—1]'1—nh € L2 (R)

The proof is rather elementary, it depends on the fact that if h is a
function of compact support with m + 1 vanishing moments then |y|*~'h(vy)
has n +m — 1 continuous derivatives.

For ease of application it is better to work with the discrete wavelet trans-
form (DWT). This is basically obtained by discretizing the CWT or appealing
to the multiresolution analysis of Mallat and Meyer [D], [M]. We have done
this in detail in [FLBW] using coiflets [D] in order to be able to implement
the inversion process using filter banks. One can show that to obtain a rel-
ative error of 0.5% one only needs a margin of security of 12 pixels around
the region of interest (ROI). For instance, to recover within this error bound
an image occupying a disk of radius 20 pixels in a 256 x 256 image, one only
needs about 25% of exposure, as shown in Figure 4.

Figure 5 below is the Shepp-Logan phantom and its reconstruction from
global fan beam data using the standard algorithm, in Figure 6 we use local
data and our wavelets algorithm.

The following figures are the reconstruction of a heart from real CAT
scanner data using our wavelet method, and the reconstruction of the central
part from local data and our wavelet method is found below.
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Relative exposure in a 256x256 pixels image
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Figure 4: Exposure versus the radius of the ROI.

(a) (b)

Figure 5: (a) The Shepp-Logan head phantom; (b) the standard filtered
backprojection in fan beam geometry (4).
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Figure 6: Reconstruction from wavelet coefficients.

Figure 7: Reconstruction of heart from wavelet coefficients.
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Figure 8: The local reconstruction of of central portion of heart.

We leave to the discussion and references in [FLBW] and [BW2] the
comparison with other methods of inversion of the Radon transform using
wavelets. One should add to the references in those two papers, the very
recent work of Rubin [R], which is based on a systematic use of the Calderon
reproducing formula and it is thus a development of the original ideas in [Ho].
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4. The hyperbolic Radon transform and Electrical Impedance To-
mography

In this section we discuss the role tomography plays in a classical prob-
lem of Applied Mathematics, the inverse conductivity problem. Several of
the earlier attempts to solve this problem involve generalizing the Radon
transform to other geometries, that is, integrating functions over other fam-
ilies of curves beyond straight lines in the Euclidean plane. There are many
examples of such transforms, in fact, the integration over great circles in
S? was a transform considered by Minkowski and which inspired Radon in
his work. The two we shall introduce presently are the generalized Radon
transform of Beylkin [By] and the Radon transform on the hyperbolic plane
[Hel].

Let Q be an open subset of R? and ¢ € C®(Q x (R?\ {0})) be such that

(a) ¢(z,AE) = Ag(z, ) for A >0
(b) Vad(z,€) # 0 for all (z,£) € @ x (R*\ {0})

Then, for any s € R and w € S! we can define the smooth curve
H,, ={z € Q: ¢(z,w) = s},

that is, the level curves of ¢. We let do denote the Euclidean arc length in
such a curve. For u € C§°(Q2) define the “Radon transform”

Ryu(w, s) = / u(z)| Ve ¢(z,§)|do(x)

Hsw

Let h(z,£) be the Hessian determinant of ¢ with respect to the second vari-
2

ables, h(z,&) = det[?a—g(g—é?], then the “backprojection” operator ij is de-

fined by

hz,
Rpv(e) = [ o), b))

weS?!

Introducing K as the operator of convolution by 1/|z|, Beylkin proved
the following approximate inversion formula for the Radon transform as an
operator
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R¢ : Lg(Q) - Ll20c(Q)>
namely,

RfKRy=I1+T (30)

where, I is the identity map and
T: L3(Q) — Li(Q)

is a compact operator. In fact, Beylkin gives a recipe for a family of back-
projection operators and generalized convolution operators K so that a de-
composition of the type (30) holds. This gives his transform great flexibility
and applicability to many problems, especially inverse acoustic problems,
of course, the reader can easily verify that for convenient choices of ¢, the
transform R, yields the Euclidean Radon transform studied earlier and the
hyperbolic one, which we now introduce. (The reader should consult [Hel],
[He3] for more details on this subject.)

Let D, the unit disk of the complex plane C, be endowed with the hy-
perbolic metric of arc-length element ds given by

4|dz|?

ds® = H—:—W)—z, (31)

where |dz| denotes the Euclidean arc-length element.

This metric is clearly conformal to the Euclidean metric but has constant
curvature —1. The geodesics of this metric are the diameters of D and the
segments lying in D of the Euclidean circles intersecting the unit circle 8D
perpendicularly. One can introduce geodesic polar coordinates z + (w,7),
where w = z/|z|,r = d(2,0). Note that |z| = tanh(r/2). In these coordinates
the metric (31) can be rewritten as

ds? = dr? + sinh® r dw?
where dw? indicates the usual metric on 8D. The hyperbolic distance be-

tween two points is given by
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IZ — w| )
A~ )70 -~ P

d(z,w) = arcsinh (

The Laplace-Beltrami operator Ag on D can be written in terms of the
Euclidean Laplacian A as

(1= [21)?
4
2

0 . -9
= w+cothra+smh rm.

Ag A

(32)

The classical Moebius group of complex analysis is the group of orientation
preserving isometries of the hyperbolic plane D.
One can define the hyperbolic Radon transform Ry by

Rf(y) = Ruf(y) = / f(2)ds(2), 7 geodesic in D (33)

which is well defined for, say, continuous functions of compact support, or
functions decaying sufficiently fast. Observe that to be integrable on the
hyperbolic ray [0, oo (which is just the straight line segment from 0 to 1 in
the complex plane C), f has to decay a bit faster than e™”. We denote by I'
the space of all geodesics in D, then the dual transform R# (or backprojection
operator) is given by

RF§(z) = [ o()dua), (34)

where T, is the collection of geodesics through the point z and dy, is the
normalized measure of I',. Since a geodesic through z is determined by its
starting direction w € S!, then T', &~ S* and du, is naturally associated to
#dw when we use this particular parameterization of T',.

In order to invert Ry one can proceed in the spirit of Radon’s inversion
formula (19). This was done by Helgason [He2, p. 155]. Or one can try to
find a filtered backprojection type formula like (16). For that purpose we
need to define convolution operators with respect to a radial kernel k. For
k € L ([0,00)) and f € Cy(D) we define
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kx f(2) =k *m f(2) = /D F(w)k(d(z, w))dm(w) (35)

where dm(w) stands for the hyperbolic area measure, which in polar coordi-
nates is given by

dm = sinhr drdw.

Corresponding to the Euclidean formula (15) we have

1
# _ _

R%LRyf =k= f, where k(t) = ppr (36)

One can prove [BC1] that if
S(t) = cotht -1 (37)

then

L AuSsy RERg =1 38
L AyS ey RERy = (33)

which is the exact analogue of (16).

It is convenient to recall here that in the hyperbolic disk D we have a
Fourier transform [He2]. It is easier to work it out for “radial” functions as
we interpret our kernel k, then the Fourier transform is defined with the help
of the Legendre functions P,(r) by means of the following formula

[ o]
E() = 2r / k(t)Pis-1/2(cosht)sinhtdt (A € R)
0

For radial functions k, m, we have
(k*m)(3) = E(A)m(})

So that, if lAc()\) # 0 for all A € R, in principle, that is, for a convenient class
of functions f, the convolution operator f —— k xg f is invertible.

We refer to [He2], [BC1], [BC2], [Ku] for corresponding inversion formu-
las in the higher dimensional hyperbolic spaces, and the characterization of
the range of the Radon transform. In particular, [Ku], [BC2] exploit the
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“intertwining” between Ry and the Euclidean Radon transform as well as
the Minkowski-Radon transform on spheres.

Let us explain now what the above hyperbolic Radon transform has to
do with Electrical Impedance Tomography (EIT) and what EIT is.

Let us consider the following tomographic problem: using a collection
of electrodes of the type used in electrocardiograms (EKG) uniformly dis-
tributed around the breast of a patient and all lying in the same plane,
introduce successively (weak) currents at each one of the electrodes (as done
in EKG) and measure the induced potential at the remaining ones. The
objective is to obtain an image of a cross section of the lungs to determine
whether there is a collapsed lung or not. This was what Barber and Brown
set up to do in 1984 [BB1], [BB2]. The point being that this equipment is
cheap, transportable and provides a non-intrusive test (that is, no punctures
have to be done to the chest cavity). Similarly, one can try to determine the
rate of pumping of the heart using this kind of equipment. Note that the
pulse only determines the rate of contracting and expanding of the heart but
not how much blood is being pumped by it. Another completely different
problem arises in the determination of the existence and lengths of internal
cracks in a plate, by using electrostatic measurements on the boundary [FV],
[BCW], [W]. These three are examples of the following inverse problem. (The
best reference for the general facts about this problem is the supply [SU]. See
also the nice explanation for the general public [C], [S]):

Assume f3 is a strictly positive (nice) function in the closed unit disk D.
If we were to introduce a current at the boundary 8D, represented by a
function v satisfying [, ¥ds = 0, then the Neumann problem

{ div (6 grad u) =0in D (39)

BL =4 ondD

has a solution u which is unique up to an additive constant. If 1 is a nice

function then $% (that is, the tangential derivative of u) is well defined on
0D, so we have the input-output map

Aﬂ:1/}r—+a—8

which is a linear continuous map from the Sobolev space H*(dD) into itself.

(This statement holds for any domain D with nice boundary, not just the
disk.)
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Consider now the (very non-linear) map

Br—r g (40)

is it injective? Can one find the inverse to this map? This problem was origi-
nally posed by A. Calderén, who proved that (40) was locally invertible near
B = constant, more recently Nachman [N1], [N2] proved global invertibility.
Since 3 is usually called the conductivity and 1/6 the impedance, this is the
reason for the name EIT of this inverse problem. In the biological appli-
cations we know the value § for the different constituents like blood, lung
tissue, etc., so one only looks for a profile of the areas occupied by them. In
the determination of cracks, one can assume 8 “known”, except for curves
where § = 0, and one wants to determine this curve, or whether any exists.
One can find in [SU] many important inverse problems that are equivalent
to EIT: in acoustics, radiation scattering, etc. Note that in the problem of
the rate of pumping of the heart, we can think that all we want to determine
is just a single number, this rate. Isaacson, Newell and collaborators have
in fact patented [C], [I] a device that measures this rate with the help of
EIT. We also know that this problem, being an inverse elliptic problem is
very ill-conditioned, so in any case one is willing to restrict oneself to find
the deviation of # from an assumedly known conductivity f;. In the sim-
plest case we assume 3; = 1, so that 3 =1+ 60, |08] << 1, and we further
assume 63 = 0 on 3D (One can always reduce matters to this case). Thus
u = U + §U, where U is the solution of (39) for the same boundary value,
and 8 = 1. In other words

AU =0 inD
{ W _y  ondD (41)
Here A is the Euclidean Laplacian. The perturbation éU then satisifes
A(U) = —<grad (683), grad U > in D (42)
WU = —(s8)y on 8D

We have at our disposal the choice of inputs 9. Their only restriction is
that [;p¥ds = 0. For that reason, they can be well approximated by linear
combinations of dipoles. A dipole at a point w € 0D is given by —7ra%-5w.

It turns out that the solution U, of
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{ AU, =0 in D (43)

on 0D

has level curves which are arcs of circles passing through w and perpendicular
to dD. That is, the level curves of U, are exactly the geodesics of the
hyperbolic metric. This fact passd unnoticed to Barber and Brown but they
definitely realized that the value

o(oU)
=8

at a point a’€ 9D must be some sort of integral of J3 over the level curve
of U, that ends at a, precisely the geodesic starting at w and ending at a.
In other words, u is a function in the space of geodesics in D considered as
the hyperbolic plane, all the geodesics are obtained this way by changing
w and a. Without expressly stating this, Barber and Brown introduced a
“backprojection” operator that turned out to be exactly Rﬁ and gave the
approximation to 3 as Rﬁ u. Santosa and Vogelius recognized explicitly that
some sort of Radon transform was involved and used the generalized Byelkin
transform and a convenient choice of K in (30) to stabilize numerically the
inversion of EIT. Casadio and I, prodded by a question of Santosa and Vo-
gelius, saw that Ry was involved and developed the inversion formula (38)
for this purpose. As it turns out, all of these approaches are just approzima-
tions to the linearized problem. Only in [BC3], [BC4|, we realized the fact
that the eract formulation of the linearized problem in terms of hyperbolic
geometry requires also a convolution operator! Namely, let

(44)

cosh™2(t) — 3 cosh™(¢)

s(t) = = (45)
and u the boundary data (44) considered as a function on the space of
geodesics in D, then one has that the exact relation between J3 and p is
given by

Ry(k*g 0B8) = p (46)

Using the backprojection operator we also obtain

R¥%u = RERy(k +g 68) (47)

36



so that

1

4dr
which requires to invert the convolution operator of symbol k. One can
compute its hyperbolic Fourier transform & exactly and find out that &(A\) # 0
for every A € R, so that the operator s« is, in principle, invertible, but
the numerical implementation of this inversion has proven difficult so far.
(Although Kuchment and his students have made in [FMLKMLPP] some
progress towards implementing a numerical Fourier transform in D, which
we hope will prove useful to compute 63.) One can recognize in (47) and (48)
the same principle that lead to the numerical approach in [BB1], [SV] and
others. Due to the importance of this problem there have been many other
interesting approximate inversion formulas, under special assumptions on the
conductivity 3, for instance, 8 is “blocky”, that is the linear combination
with positive coefficients of a finite number of disjoint squares [DS]. Their
approach is variational, and one may wonder whether one could not use
some version of the Mumford-Shah edge detection algorithms [MS] to obtain
a rather sharp solution of the inverse conductivity problem (40).

Ap(S *m (RGp)) = K xg 68 (48)

5. Final remark

The objective of these short notes (and the corresponding CIME course)
was only to indicate how, beyond the well-known applications of tomography
to Medicine, there are many other possible ones. Moreover, even to solve
them approximately, they require deep mathematical tools, showing once
more that the applicability of “pure” and “abstract” mathematics is not a
fairy-tale but a concrete reality. It also indicates that it pays to “invest” one’s
time trying to communicate with those, be they physicists, or physicians,
etc., that have the ready made applications. A lesson often lost by graduate
students in Mathematics.
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