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Matrix reductionby eliminating some terms in the expansion of a matas been
applied to a variety of numerical problems in many differ@mas. Since matrix reduction
has different purposes for particular problems, the redunatrices also have different
meanings. In regression problems in statistics, the retipeets of the matrix are con-
sideredto benoise or observation error, so the given raw data are putiiyeithe matrix
reduction. In factor analysis and principal componentysial(PCA), the reduced parts
are regarded as idiosyncratic (unsystematic) factors¢hwhre not shared by multiple
variables in common. Isolvingconstrained convex optimizatiggroblems the reduced
terms correspond to unnecessary (inactive) constraimish do not help in the search for
an optimal solution.

In usingmatrix reduction, it i9othcritical anddifficult to determine how and how
muchwe will reduce the matrix. This decision is very importanmtca it determines the
quality of the reduced matrix and the firsdlution. If we reduce too muchundamental

properties will be lost. On the other hand, if we reduce too little, we cannot expect



enough benefit from the reduction. It is also a difficult deridbecause the criteri@r
the reduction must be based thre particulartype of problem.

In this study, wenvestigatenatrix reductiorfor three numerical optimization prob-
lems. First,the total least squargegoblem uses matrix reduction to remoneisein
observed data which follow an underlying linear model. Wepase a new method to
make thanatrixreduction successfuinder relaxed noisassumptions. Second, we apply
matrix reduction tdhe problem ofestimating a covariance matrix of stock returns, used
in financial portfolio optimization problem. We summariZéthe previously proposed
estimation methods in a common framewankd present a new and effective Tikhonov
method.Third, we present a new algorithm to solve semidefinite @ogning problems,
adaptively reducing inactive constraints. In the constreeduction.the Schur comple-
ment matrixfor the Newton equations is the object of the matrix reduction. Hathaee
problems, we propose appropriate criteria to determinéntieasity of the matrix reduc-
tion. In addition, we verify the correctness of our critelia experimental results and

mathematical proof.
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Chapter 1

Introduction

This dissertation develops the use of matrix reductionrtegles to simplify and stabilize

the solutions to various optimization problems.

1.1 Matrix Reduction

Matrix reductionapproximates matrix by removing som&rms in its decomposition.

Suppose that a matrid can beexpressed as aummation of matricell; as

k
M:ZMi:M1+---+Mk.
=1

This kind of expansionis common in matrix computationFor instance, any matrix

A € R™*™ hasasingular value decomposition (SVD) [31, Chapter 2.5]

A = USVT,



whereU € R™™ andV € R"*" are orthogonal matrices, ai®&l€ R™*" is a diagonal

matrix. We can writéhis decomposition as summation of rank one matrices
min(m,n)
A= Z S; UiVZT,
=1
whereu, andy; are thei-th columns ofU andV, ands; is thei-th diagonal element 8.

If a matrix B € R™*™ is symmetric and positive definite, Cholesky decomposition

[31, Chapter 4.2] also generates such an expansion as

B=LLT :ili 17,
i=1

wherelL is a lower triangular matrix, ant] is thei-th column ofL. This expansion
is particularly important whe is updated by a low-rank correction since this can be
accomplished by adding a small number of terms to the exprega7].

Broadly speaking, there are two differaagproaches tanatrix reduction. First, if
we know that only the first matricesM; are important to us, we can construct a reduced
matrix M as

A~

k
—

7

This reduction method is calleduncation Alternatively, we can apply a filterinfactor

¢; € [0, 1] to each matridM; fori =1, ..., k. Then, the reduced matri¥ becomes

k
M= oM =M+ + My
=1

This filtering-based reduction can be regarded as a gepedalersion ofruncationsince
truncationis a special caseith ¢, € {0, 1}. Both reduction methods are used in many
applicationssuch asegularizatiorof ill-posed problemsnd factor analysis.
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We can also classify the matrix reductiapproachessbuild-downandbuild-up,
depending on whether we remove some terms in a given maareskoror we construct
the reduced matrix by addirtgrmsuntil a certain goal is achieved. For example, while
a complete matri® is given to us in the problems of regression and factor arslye
constructvi by adding matriceM; in constrained convex optimization.

The purposes of the matrix reduction are very different ddpe on particular
problems. First, in regression problems in statistibs, truncated or filtered terms are
considered to be noise or observation error, so matrix temupurifies the given raw
data. This can be useful in solving least squares probfemen over-determined linear
systemor regularizing the solution tan ill-posed problem. Second, in factor analysis
and principal component analysis (PCA), the reduced pagtseggarded as idiosyncratic
(unsystematic) factors, which are not shared by multipleasées in common. Third,
in constrained convex optimizatioproblems the reduced termmight correspond to
unnecessary (inactive) constraints, which do not makeifgignt contributions tahe
searchfor an optimal solution. So, we expect a benefiletreasedomputational cost
by usingmatrix reduction.

Whenevematrix reduction is applied, itis a very critical but diffitissueto decide
how much to reduce the matrix. Thimportantdecision determinelsoththe quality of
the reduced matrix anthat of the final result. If we reduce too muctve may failto
solve the problem. On the other hand, if we reduce too litte,cannot expect enough
benefitfrom the reduction. It is a difficult decision because crééor the reduction must

betailored to the problem and the circumstanceésr example,in regularization of ill-



OTmax (X) The largest singular value of

Omin (X) The smallest singular value &f

oi(X) Thei-th largest singular value of

IX|| = VXT'x 2-norm for a vectok

1X]l2 = Omax(X) 2-norm for a matrixxX

IX|| 7 = \/ZL >.i—1 xj; Frobenius norm for a matriX € R™*"
tr(X)=>" xy Trace of matrixX € R™*"

I, An identity matrix of dimensiomp

Table 1.1: Notation.

posed problemsthe criteria may change based on which distribution the elake noise
follows, or how the noise idifferentvariablesis correlated.Because othis difficulty,
the criteria for constraint reduction has been studied iargety of applications.

In this dissertation we discuss matrix reduction in three numerical optimaati
problems. Our study focuses on how we can determine apptegeduction intensity
for successfuimatrix reduction in these problems. Weroducethe problems in the next
section.

Throughout thiglissertationwe use the notation defined in Table 1ld addition,

a few basic statistical definitions are frequently used. iMneontinuous random variable

x has a probability density functign,. (z), the expected valu&(z) is defined as

B@) = [ opo)

o0

Then, the variance véar) and the standard deviation &id are defined as

variz) = E((z —E(2))?) = E(=?) — (E(x))?,
stdz) = Nara).

For two random variables andy, the covariance cdy;, y) and the correlation coft, y)

4



are defined as

cov(z,y) = E((z—E(x))(y—E(y))) = E(zy) - E(z)E(y),

cov(z, y)

stdz)std(y)’

corr(z,y) =

1.2 Overview of Numerical Optimization Problems

1.2.1 Total Least Square$’roblems

Suppose that we have an underlying linear model,
(A—Es )X =(B—-Ep),

whereE 4, andE 3 are unknown; they result from noise in the observed matAcesR™*"

andB € R™*4, To estimate th@arameter¥, we construct a minimization problem

Join [|[AA, ABJ|lr,

subject to

(A= AAX = (B — AB),

rank([(A — AA), (B — AB)]) = 7,

wherer is theknownrank of the noise-free daté — E ).
The minimization problem above can be solved by matrix redoonthe SVD of
[A, B]. If there were no noise iA andB, the concatenated matrj&, B] would also have

5



rankr since RangéB) C RanggA). If the rankr of the noise-free datéA — E,) is
given to us, we can truncagdl butther largest singular valuesf [A, B]. By the Eckart-
Young-Mirsky Theoremthe resulting(X, AA, AB) is the solutionto the minimization
problem. In addition, if the noismatricesE 4 andE g are mutually uncorrelated and have
zero mean andlentical standard deviations, it is known that the miniatian problem
above gives us a consistent estimétr the underlying linear model.

Our study starts fronthe question ohow we can estimat¥ if we do not know
the rankr or if the embedded noismatriceskE 4 andEz do not have identical standard
deviationsand the standard deviations are unknowfrthe rankr is not given to usye
need to decidéhow many singular value® truncate. If the standard deviations of the
noise are different and we do not know their values, we alsalhe find an appropriate
weight o so that weighted dataA and (1 — «)B contain noise with identical standard
deviations.

In Chapter 2, we propose a method to estintlégank - andtheweighta. We also

present experimental resultsévaluatehe proposed method.

1.2.2 Covariance Matrix Estimation

In financial portfolio theory, Markowitz [59] proposele Mean-Variance (MV) portfolio
problem to find an optimal portfolio oV stocks satisfying given constraint¥he MV

portfolio problem requiresn estimatedovariance matrix ¢ RV*" for the NV stock
returns. It iswell known that the performance of the portfolio is very sensiti@ the

guality of the covariance matrestimatebut a conventional sample covariance matrix is



far from a good estimate.

The maindifficulty is that the observed stock retudata contairtoo muchnoise
Matrix reduction can besed to reduce the error in the covariance matrix estingip-
pose that we have stock return d&Rac RY*7 of N stocks forT" time periods. For
appropriate principal component analysis (PCA), we noizeaach stock return, so that
large return valuetor a few stockslo notoverwhelm the other return values. L&te-
note the normalized data with zero-means and identicablatandeviations. Frorthe

singular value decomposition df we have
T
Z=UsV' =UF =) uf’,
i=1

whereF = SV7, u; is thei-th column ofU, andf? is thei-th row of F. In PCA, the
vectorf , is called thei-th principal componerdffectingthe stock returns, and the vector
u; is called a load which determines how much each stock resuaffected by the-th
component. Previously, many people proposadcatinga few smallest singular values,
expecting that the principal components correspondingdginallest singular values are
more significantlycontaminated by noise. However, no dras givera clear answeas
to how many principal componenstiouldbe truncated. This ia very difficult decision
because we fundamentally do not know how many faajorsernthe stock returns.

In Chapter 3, wapplya Tikhonov filtering function to the principal components,
a monotonically increasing function tie singular value. With this smooth filtering, we
expect thathe influence ofmportant principal components amplifiedwhile potential

information in lessmportantprincipal components is still preserved. Furthermore, we



propose a method to determine filtering intensExperimentsusing stock return data
in NYSE, AMEX, and NASDAQ from 1958 to 2007, show that the MVrfolio using

Tikhonov filtered covariance matrix performgaite well.

1.2.3 Interior Point Method for Semidefinite Programming

Theconstrained convex optimization problé&mown assemidefinite programming (SDP)

has the following primal and dual problems:

Primal SDP: mxinCoX st. AjeX=0pbfori=1,....m, X>0,

Dual SDP: maxb"y st Y yA; +Z=C, Z=0,
y

i=1
whereC, A;, X, andZ aren x n symmetric matricesC e X = tr (CX) is the trace of the
matrix, andZ > 0 means thak is positive semidefinite.
In an interior point method (IPM) for solving the SDP, we usaaton’s methodo find a
direction(AX, Ay, AZ) leadingtoward an optimal solutioandfollowing a central path
defined by the primal and dual constraints and compleméyequation. To make the
computation of the direction efficient, the Newton equati@ne reduced tthe linear
system,

MAy = g,

wherethe Schur complement matrii is determined by the constraint matrioksand
the current pointX, Z), andg is defined by current residualShe|PM repeatedlysolves
this reduced equation until the iterate satisfies a gomvergencéolerance.

It takesO(mn® + m*n?) operations to computkl, which is most expensive part

8



for each iteration, so we can expect benefit by reducing mspeaational cost. In many
applications of SDRuch as the binary code problem, the quadratic assignmeipligon,
and the traveling salesman probleime matrice\; andC have identical diagonal block

structure.Usingthe block structurel can be expanded to

M= i M,
j=1

wherep is the number of diagonal blocks and matki is associated with thgth con-
straint block. If some constraint blocks maikeignificant or detrimentatontributions
to finding the searchdirection, we may be able to ignotiee correspondinyl; when we
computeM. We call such blockénactive Similar to the previous problems, it is criti-
cal to determinavhich constraint blocks can be ignored while still guaraimgthat the
iteration converges tthe optimal solution.

In Chapter 4, we explain how constraint reduction can beiegppb IPM for SDP
problems and propose a basic predictor-corrector algontith constraint reduction. We
demonstrate its performance by experiments with test probl In Chapter 5, we develop
a new predictor-corrector algorithm with adaptive criido determinénactiveconstraint
blocks. We verify the correctness of the criteria by prouing global convergence of the
proposed algorithm. Its polynomial complexity is also fied to beO(n In(¢y/€)), where

€o IS an initial residual and is a required tolerance.



1.2.4 Summary

The work in this dissertation proposes matrix reductionhods for solving three impor-
tant problems: total least squares problems, covariantexneatimation, and semidefi-
nite programming problems. We now consider each of thedagmes in turn, and present

conclusions in Chapter 6.
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Chapter 2

Implicitly-Weighted Total Least

Squares

In a total least squares (TLS) problem, we estimate an optetaf model parameteps,
so that(A — AA)X = B — AB, whereA is the model matrixB is the observed data, and
AA andAB are corresponding corrections. Throughout the matrixegdu, we remove
the noise term# theconcatenated matripd, B, andestimate the paramet¥rfrom the
remaining termsFor consistent estimatiott,is necessaryo adjust the scales & and
B to satisfy a noise assumptiqmior to applying matrix reductionln addition, we also
need to estimatthe column rank othe noise-freemode| which determines the number
of reduced terms.

WhenB is a single vectoiRao [72] and Paige and Strakos [&ljggested formulat-
ing standard least squares problems, for whii¢h= 0, and data least squares problems,

for which AB = 0, as weighted and scaled TLS problems. In this work we define an

11



implicitly-weighted TLS formulation (ITLS) that reparateeizes these formulations to
make computation easier. We derive asymptotic properfiéiseoestimates as the num-
ber of rows in the problem approaches infinity, handling #rekrdeficient case as well.
We discuss the role of the ratio between the variances ofsemd andB in choosing
an appropriate parameter in ITLS. We also propose methadsofoputing the family
of solutions efficiently and for choosing the appropriatiigon if the ratio of variances
is unknown. We provide experimental results on the usefdrad the ITLS family of

solutions. This presentation closely follows that in [65].

2.1 Introduction

In formulating a linear modeAX =~ B, there can be errors in the dda errors in the
model matrixA, or errors in bothB and A. This has led to the formulation of three
distinct problems: givel ¢ R™*" andB ¢ R™*¢, where usuallyn > n, find X and

small correction matriceAA, andAB satisfying

(A— AAX =B — AB, (2.1.1)

where

e AA = 0 for theleast square$LS) problem.

e AB = 0 for thedata least square@LS) problem.

e bothAA andAB are allowed to be nonzero for thetal least square§TLS) prob-
lem.

12



In least squares formulations, the valueXpfAA, andAB are found by minimizing

I[AA, AB]| r. (2.1.2)

Minimizing (2.1.2) makes sense, for example, if the errorg\iand B are zero-mean,
mutually uncorrelated, and drawn from the same distriloutié, on the other hand, the
standard deviation of the errors Ais ~ times the standard deviation of the error8in

then we should weight the terms in (2.1.2) as

I[AA, Y AB]|| .

For a single right-handi(= 1), Rao [72] formulated a weighted TLS, and Paige
and Strakos [64] formulated a scaled TLS problem, whicls asgcale factoy to relateA
andB. The solution to their scaled problem is the TLS solution whe= 1, approaches
the solution to the LS problem gs— 0, and approaches the solution to the DLS problem
asy — oo. The underlying statistical assumption behind these nusti®that the true
error matrices forA and B are column-wise uncorrelated, and the column#\diave
variance not necessarily identical to that of the columri8.dh order to correctly obtain
an estimate foiX, the covariance matrices must be known except for the ssadéng
constanty that relates the two variances. However, neither [72] nd} fliscusses how to
determine the scaling factor.

The main results of our work are as follows. We define in Seci@ an implicitly-
weighted TLS formulation (ITLS) that reparameterizes ésmulations to make com-
putation easier. In particular, we use a scaling constantrémges betwedhand1 rather
than the less convenieftandco. We propose in Section 2.3 an efficient method for
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computing the family of solutions. We prove asymptotic mdgs of the solution (as
m — oo) in Section 2.4, holding even for rank-deficient problemsthwhis guidance,
we propose algorithms for parameter choice in Section 2.8. pvédvide experimental
results on the usefulness of ITLS in Section 2.6.

A simple notational convention will be helpful: A matrk. always denotes the
true error in the matrxC, and a matrixAC always denotes our correction matrix 10r
We denote by~( the true parameters for our model, Kyan estimated set of parameters,

and byX a TLS estimate.

2.2 Implicitly Weighted Total Least Squares

In this section, we define the ITLS problem and show its refato previous problem
formulations. Perhaps most importantly, we discuss thar @ssumption that makes the

ITLS formulation reasonable.

2.2.1 ITLS and Other Estimation Methods

Our underlying data model for ITLS is the following:

(A—(1—a)Es, )X = (B—aEg,), (2.2.1)

where matriced € R™" andB € R™*? are given is a given weighting parameter
satisfyinga € [0,1], andE,, andEp, are the scaled errors ifh andB. We want to

estimate the matriX, the true values of the model’s parameters.
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Given that model, we define the ITLS problem as follows:

opin - [[AA, ABy]llr (2.2.2)
subject to
(A= (1—a)AA)X = (B — aAB,). (2.2.3)

The matrices\A,, andAB,, are corrections correspondingig,, andEp, . The follow-

ing lemma explains how the ITLS formulation unifies DLS, L8dALS.

Lemma 2.2.1.The ITLS defined by (2.2.2) and (2.2.3) is equivalent to DL&wh= 0,

LS whemy = 1, and TLS whe = 1/2.

Proof. If a = 0, then the matrixAB,, does not contribute to (2.2.3), so its optimal value
isAB,, = 0, and ITLS reduces to the data least squares problem DLSl&8lynif o = 1,
then the optimal value ahA,, is 0 and ITLS reduces to the least squares problem LS. If
a = 1/2, then we see by definingA = AA, /2 andAB = AB,, /2 that the problem is
equivalent to TLS, and the value of our objective functior2(2) is two times the norm

of the correction termlAA, ABJ in (2.1.2). O

In the case of a single right-hand sidé £ 1), Paige and Strakos [64] devised a
scaled TLS (STLS) formulation. We can easily extend theimfaation to the case of

multiple right-hand-side data: For a givere (0, co),

o Ain I[AA;, ABl||r s.t. (A — AA,)Xy = (By — ABy) (2.2.4)

Paige and Strakos proved that STLS becomes L as 0, DLS asy — oo, and TLS
when~ = 1. The equivalence between ITLS and STLS for these three ¢asesn-
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marized in Table 2.1. The following lemma establishes eajaivce for other values of

v € (0, 00).

Lemma 2.2.2(Relation between and~). ITLS in (2.2.2) and STLS in (2.2.4) are equiv-

alent to each other when the parameterand~ satisfy

11—«

7= €(0,). (2.2.5)

Proof. Dividing the constraint equation in (2.2.4) bywe obtain

ABjq
v

(A—AAX = (B — =22,

By definingAA, andAB,, by
AA; = (1 —a)AA, and AB;=(1- «a)AB,, (2.2.6)

we can rewrite the equation above as

1 —a)AB,

(A—(1—a)AA)X = (B -\ ).

By using (2.2.5) in the equation above, we obtain the commtegjuation (2.2.3). More-

over, by substituting (2.2.6) in the minimization equatior2.2.4), we obtain

min _ ||[(1 — @)AA,, (1 — a)AB,]||F,

X,AAu,ABy,

which is equivalent to (2.2.2) sin¢é — «) is a fixed constant. O

Even though ITLS and STLS are mathematically equivalerttcaahat the param-
etera in (2.2.3) ranges ovdf), 1] while v in (2.2.4) ranges oveD, oo). A main theme in
thiswork is the optimal choice of parameter value. Many robust algors (e.g., golden
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Estimation method ITLS STLS

Data Least Squares a =0 v — o

Total Least Squaresa=0.5 ~v=1

LeastSquares | a=1 ~v—0

Table 2.1: Relations between ITLS and STLS.

section search) can be applied only to optimization problem bounded domains, so
changing the parameterization frono « gives a key computational advantage. For this

reason, the ITLS formulation is preferable to STLS.

2.2.2 ITLS and the Error Assumption

Now we develop an error assumption consistent with the ITar&tilation and explain
the statistical meaning of the weigtt This will clarify when and how ITLS can be used.

Suppose we have a mod€X ~ Y, with errors in both the model matrik and the
observation¥. As before, we want to estimate the varialdesnd the correction matrices
AK andAY satisfying

(K — AK)Z = (Y — AY). (2.2.7)

We want to formulate this as arrors-in-variable(EIV) problem [90, Sec. 8.4]. Such
a formulation, from the statistical literature, is closedated to TLS but makes some
extra assumptions on the errors. In particular, the rows@fetrror matrices should be

independent, uncorrelated, and identically distributétth finite variance. Under these
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assumptions, if the noise-free problem has a solution, tinesolution to the ITLS prob-
lem converges to the true solution with probability 1ras— oo, as we will show in
Section 2.4.

The independence of the error rows can be imposed by prephyuig (2.2.7) by
an appropriate matrio € R”™*™. We assume that this pre-multiplication has already
been done, so that currently = I,,,.

To make the columns of the error uncorrelated with constanamce, we need an
estimate of the covariance matrix for the errfifg, Ey|. We consider the case in which
the errors inK are uncorrelated with the errors ¥j so the covariance matrix is block

diagonal:

COV[EK, Ey] = (228)

Uuq“
o @
>~<

0
We assume that we have good estimates of the nonsingulaice&ﬁrK e R™ and
Cy € R but that one or both of the scalatg, ando% may be unknown(Often, Cx
andC, are estimated as identity matrices.)

LetCyx = LxLZ andCy = Ly L7, whereL x andLy are Cholesky factors. Define

A = KL, (2.2.9)
B = YL;7, (2.2.10)
Ex = ExlLy", (2.2.11)
Ez = EyLy7, (2.2.12)
X = LLzL,". (2.2.13)
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Under these definitions, it is easy to verify that the comstr@.2.7) is equivalent to the
constraint (2.1.1) studied above. By the constructio o&ndE 3z, the covariance matrix
for the transformed errors becomes
COVE4, Ep] =
0 o3ly
To satisfy the assumptions in [28] for EIV convergence, wedhenly scale so that the

variances are identical. To do this, we define

O = 04+ 08, (2.2.14)

a = O'B/O'E. (2215)
Then0 < a < 1 (as long as both? ando? are positive), and — a = 04 /0r. Now let

A, = aA, (2.2.16)

B, = (1—a)B. (2.2.17)

Then the corresponding (true) errés, = aE, andEp, = (1 — «)Ep are uncorrelated
and have identical varianceg,c%/0%. Finally, we obtain a linear model containing

uncorrelated errors with identical variances:
(Ay —Ea, )Xo = (Bo —Epg,), (2.2.18)

where

Ea. = CEa Ep, = 2Ep and X, = ("—A) X. (2.2.19)
OR OR op

The matriceA andB can be determined from the observed data matri€esr() and the
Cholesky factorsl(x, Ly), butA, andB,, contain the parametets, ando?.

19



Using the linear model (2.2.18), we can formulate a TLS mohlwhich includes

the ratioo? /o%:

min_ [[AA, ABo[r St (Aw — AA)X, = (B, — AB,). (2.2.20)

Xa,AAy. AB

We have thus proven the following lemma.

Lemma 2.2.3(ITLS and equivalent TLS)If 04 > 0 ando% > 0, then the TLS problem

(2.2.20) is equivalent to ITLS (2.2.2)-(2.2.3) wher (0, 1) satisfies

1 _
ga_ 7@ (2.2.21)

op (6]

Paige and Strakos [64] also made user$f o in defining~ for their STLS for-
mulation.

We see that if we know the ratio of} to 0%, then we can estimate the desired
solution by solving the ITLS problem with = o3 /0g. If 04 = 0%, thena = 1/2 and
we have the standard TLS problem. For small values of the,ratr~ 1 and we solve a
problem close to LS. For large valuesz 0 and we solve a problem close to DLS.

If the ratioo? /0% is not known, then it is not clear what value®@&hould be used.
We propose an answer to this dilemma in Section 2.5, usingthadehat variesy. In
order to make this practical, we need an efficient algoritonsblving ITLS for multiple

values ofa. We develop such an algorithm in the next section.
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2.3 Computing ITLS Solutions

In this section, we show that after an initial computationief SVD of them x (n + d)
matrix [A,, B, ], we can compute the solution to the ITLS problem for any otfaéue of
a by working with a smaller upper-triangular matrix of dim@ns(n + d) x (n+ d) when

m > n + d.

2.3.1 Reduction of the Problem

Following well-known results for the standard TLS probleas,described in [90, Chap.

2-3], we begin with some notation. Define the SVD of
[AOM Ba] = [OUA\7 (]_ — OZ)B] c Rmx(n—f—d)

by

3, 0 VT
[A.,B.] = USVT = [U, U] : (2.3.1)

0 X Vv?
whereU, X, andV are partitioned byJ;, € R™*, U, € R™, ¥, € R, X, €
R4V, € ROFDXt andV, € RO+D* andU = [uy,..., U, € R™ "9 and
V = [Vi, ..., Vg € ROFDX(Hd) have orthonormal columnX; = diag(() o1, ..., 0 ta),
01> 09>+ > 0,44 > 0, andt is an integer irf0, n + d] such that + ¢ = n + d.

Let RX and@a denote the corrected matrices
A,=A, - AA, and B, =B, - AB,, (2.3.2)
for some correction matrice8A, and AB,. Define)A(a to be the TLS solution (if it
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exists) associated with the corrected matri@gsand B., satisfying

AX, =B, or [A.,B,] =0.

_Id

By the Eckart-Young-Mirsky Theorem, the solution to thelgem

min I[AAL, AB,] |7
rank (A, B.])=t

o~ o~

[Aaa Ba] = U121V?7

and the value of the minimization function is
n+d
> o

i=t+41

The corresponding correction matfiXA,,, AB,] is
[AA., AB,] = Uy 3,V

Because of this, the solutiof, of (2.3.3) must satisfy

Xa
Range C Null(VT) = Rang€gV,),

_Id

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)

(2.3.7)

by orthogonality of the right singular matriX. In order to determine an appropriate

partition sizet, we need to consider (i) the existenceXof and (ii) the noise level. We

partitionV, as

(2.3.8)



whereV,, € R"*? andV,, € R%*4. Further, let denote our choice afandq denote the
corresponding, so thatt + § = n + d.
First, for a givent, such a>A<a may not exist unless the block mati, of the last

d rows in the corresponding matni%, has column rankl. Therefore we want
1 <t, where t, = max{t : rank(Va,) = d}. (2.3.9)

Second, we would like the magnitude of the correction tertoetdess than a given noise
tolerance: :
n+d

1AAL, AB|[7 = ) 07 < (2.3.10)

i=t+1

Letr be the minimal value of satisfying the inequality above, which is called themer-
ical rank. Then we choose

t = min(ty, 7). (2.3.11)

Note that, if suchi is less than, there exist infinitely many solutionX,, satisfying
(2.3.3) or (2.3.7). In this case, we can single out a mininsahmsolution among these
candidates.

LetV, e R4 denote a matrix containing an orthonormal basis for RaXgg

and partitionV/, as
~ \712
V2 - P
V22

whereV,, € R"*¢ andV,, € R**?, For a chosen partition sizeandj, we can compute
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a minimal norm solution)A(a and the correction teri\A,,, AB,,| as

X, = —ViVi, (2.3.12)

[AA,, AB.] = [A, Bu]VaV, . (2.3.13)

Thus, we can compute the minimal norm TLS solufignand the corresponding correc-
tion matrix [AA,, AB,] solely fromV,, a matrix whose column space is the partial right

singular subspace, without necessarily computing the sgigular matrixvs.

2.3.2 Economical Computation o/,

We now consider how the basis mathf can be computed. Clearly we could use the
standard Golub-Kahan algorithm [30] to compute the SVI[D*f B, |, obtaining the basis
\72 = V,, but there are more economical alternatives when multiplees ofa are of
interest. For example, the rank-revealing ULV algorithri][8an accurately compute this
basis without producing the SVD, and it was used in [25] tostihe TLS problem. Other
alternatives include the partial SVD method (PSVD) [90,.Sé@] and the implicitly-
restarted Arnoldi algorithm [57].

If m > n + d, itis desirable to apply one of these algorithms to a smatiatrix.
For example, we could first compute thre+ d) x (n+d) upper-triangular factar,, from
the QR decomposition dA,,, B,]. According to [11], using QR before SVD reduces the
computational cost whem > 2(n + d).

While searching for an appropriate valuecofor ITLS, we need to compute the

SVD of [A,, B,] for different values ofv. For a new parameter valué, the new upper-
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triangular factor is

(<), 0
R, =R, . (2.3.14)
0 (£9)1

The cost of this scaling is onl§((n + d)?), rather than the& (m(n + d)?) cost needed
to compute the QR decomposition[&, , B..]. Thus, we will compute the right singular
subspace oR/, instead of A, B, for different weights.

In Section 2.5 we propose a method for choosing an optimalevaf o, and this
requires computiny, for many candidate values of In such an algorithm, it is espe-
cially important to economize by using (2.3.14) in conjuoctwith an algorithm such as

the PSVD.

2.4 Asymptotic Behavior

In this section we keep fixed but letn, the number of observations, vary, so our notation

will change to reflect this. We study the behavior of the ITu8Skpem asn — oo. Our

development follows that of Glesg28] except thatve also treat the rank-deficient case
Let [,Z\m, B,.| denote the true but unknown matrix, and suppose it hasrankn.

(Since the columns @,, are in the range oA, the rank cannot be greater than Let

X denote the unique true solutionsif= n, or the unique minimum norm true solution

otherwise, so that

A, X = B,,. (2.4.1)

1Glesersx”, U, and BT correspond to oufA, B], [A, B], andX respectively, and we set histo

zero.
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Then the observed data satisfies

[Ama Bm] = ['&ma gm] + [EA,my EB,m]

- Am[lna SZ] + [EA,mu EB,m]'

Now the matrixA,,[l.,, X] also has rank, so[A,,, B,.] should haven + d — r) small
singular values, resulting from the perturbatidfs ... Es ). We need some insight into
the behavior of these singular values.

We impose two assumptions.

Assumption 2.1. Each row of[E4 .., Eg.] is independent and identically distributed,

with zero means and covariance matsiA ,, , 4.

Assumption 2.2. The matriceg1/m) f&iﬂm converge to a finite limif\:

lim A A, — A (2.4.2)
m—oo M,
We define
W, = [Am,Bm]T[Am,Bm], (2.4.3)
. JUN JU [ -
W, = [Am,Bm]T[Am,Bm]: ALALL, X], (2.4.4)
~T
X

and study the convergence of these matrices.

Lemma 2.4.1.Under Assumptions 2.1 and 2.2, béth'm)W,, and(1/m)W,, converge
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to limits:2

1~ I, o~
lim —W,, = Al X] = 0, (2.4.5)
m—oo 1M ~T
. ]- 2 ~
pim —W,, = o¢2l,4+06 =0. (2.4.6)
m—oo T

Proof. The first result follows from using (2.4.2) in (2.4.5). FoetBecond, see [28,

Lemma 3.1]. O

Next, we need an eigendecompositior&band its relation to that ai(l,, +>?)?T).

Lemma 2.4.2.Denote the eigenvalues &f(1,, + XX ) byA; > Ay > --- > A, > 0, and
let the columns o be the corresponding eigenvectors. Then we have an eigemdec

position of® as

0'€2|n + D>\ 0
@[V@17V@2] = [V@17V@2] s
0 O'Sld
whereD,, = diag(() A1, ..., A,) and the columns of
I _)? T, 1
Vg, = . U Vg, = (Ig+X X)~z2 (2.4.7)
X l,

are mutually orthogonal and have norm 1.

Proof. See [28, page 35]. The symmetric posim';mnidefiniternatrix(ln+>~<>~<T)%A(I nt
)?)N(T)% has eigenvalues that are real and non-negative and has emveagor matrix,

denoted by(l,, + XX )3, that is orthonormal:

W1, + XX )W =1, (2.4.8)

2We denote “convergence with probability one” using the tiota‘plim”.
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The matrixA(l,, + >~(>~(T) is similar to this matrix and has eigenvectdrs
The eigendecomposition @ and the orthonormality of its eigenbasis are verified

by direct computation. O

Using this eigendecomposition, we can understand the cgemnee of the singular

valuess; from (2.3.1).

Lemma 2.4.3.Letoy,, > 03, > -+ > Opiam > 0 denote the singular values of

[A,., B,,]. Under Assumptions 2.1 and 2.2,

o2 i=n+l,...,n+d.

Proof. This is a direct consequence of the definitioVgj, in (2.4.3), the convergence of

(1/m)W,, to ® (Lemma 2.4.1), and Lemma 2.4.2. O

Gleser [28, Assumption C] assumes thais positive definite, but we are able to
omit that assumption. We denote the rank of the symmetritipesemidefinitenatrix

Abyr <n.Then\;=0fori=r+1,...,n,so by Lemma 2.4.3,

2

pim —o;, =o fori=r+1,... n+d. (2.4.9)

m—oo 1M,

This gives us a way to estimaté, as shown in the following lemma.

Lemma 2.4.4.Let

1 n+d
Gl =——— > i (2.4.10)
7 ntd-—r o1
Under Assumptions 2.1 and 2.2,
1
phm _a?,m = 062



Proof. This is a direct result of Lemma 2.4.3 and the fact that= 0 for ¢ = » +

1, ..., n. (|

In order to us&?,, in an algorithm, we need to know that we can reliably estimate

the rankr asm — oo.

Lemma 2.4.5.Under Assumptions 2.1 and 2.2,

1 A
lim Pr{—(o?,, — o> <=} =0.
ml_rgo 1"{ m (Ur,m Jr+1,m) 9 }

Proof. The result follows sincel/m)(o7,, — 07, ,,) converges with probability one to

m

A > 0. O

With this result and (2.4.10), we see that, with appropradeice ofe in (2.3.10),
our rank estimation algorithm in (2.3.11) gives the cormesult (with probability one)
asm — oo, and from this we can establish convergence of the solustmates, just as

Gleser did in the full-rank case [28, Lemma 3.3].

Lemma 2.4.6.Under Assumptions 2.1 and 2.2,

whereX is the minimal norm true solution satisfying (2.4.1) aath (2.3.10) satisfies

Ar
m(n+d—7“)a€2§e§m<(n+d—r+1)03+7). (2.4.11)

Proof. With this choice ofe, by Lemma 2.4.5, our estimated rank converges to the true

rank r with probability one. Sincél/m)W,, converges with probability one #©®, and

29



since there is, by Lemma 2.4.2, a gap in the spectruf@,dhe invariant subspace corre-
sponding to the smallest+ d — r eigenvalues of1/m)W,, converges with probability
one to the span of the last+- d — r columns ofV,. Since our estimat¥,, is independent
of the choice of basis for this invariant subspace, it alsstneonverge with probabil-
ity one toX, which, by (2.4.7), and the formula (2.3.12), is the desimedimum norm

solution. O

We have now laid the groundwork for algorithms for choosimg3 parameters.
From Lemma 2.4.1, we know that the sequenc@/ahatrices converges with probability
one to®, and from (2.4.7) we know thate, is full rank. Therefore, our parametgrin
(2.3.9) converges with probability oneigsot in (2.3.11) converges ta From now on,
we assume, based on Lemma 2.4.4 and Lemma 2.4.5, that wer@awgheobservations

so that in (2.3.11) we have= r, whene in (2.3.10) satisfies (2.4.11).

2.5 Choice of Parameters

In this section, we propose two heuristic methods to detegrtiie ITLS parameters based
on the asymptotic convergence properties establishee jpr#vious section. We consider
two cases: (1) either? or 0% is known, or (2) neither is known, in which case we require

n+d—r>1.
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2.5.1 Prior Information on ¢ or 0%

If the weight parameter perfectly adjusts the variance Bf; andEg, thenE 4, andEp,

have identical variances, so that
a’0? = (1 — )0 = o2 (2.5.1)

By Lemma 2.4.452 is a consistent estimate fof. Therefore, if we knowr?, for ex-

ample, then it is reasonable to find thehat minimizes a relative gap betweefv? and

~9.
oc.

=2

1 . 2.5.2
og 27 ( )

min
Similarly, if we knowo?%, we could choose the value afthat solves the problem

2
O¢

Tt (2.5.3)

min
(e}

log

Figure 2.1 illustrates how the estimated error variaticehanges withv. The red
and blue dashed lines represent the changé®} and(1 —«)?0%, and their intersection
gives the truex and the truer?, by (2.5.1). We can see that the estimateapproaches
the true error variance? as«a approaches the true value, illustrating the usefulness of a
choice ofa based on the minimization problem (2.5.2) or (2.5.3).

In order to comput&?, the rankr of A is required. If the rank is given to us, we
can immediately apply the optimization methods above. tf we also need to estimate
the rank. We examine ho@? and the resulting objective function values are influenced
by the estimate of the rank. First, whef'is overestimated, we expect that the minimum

value of (2.5.2) is still close t6. This is becausg? is still a consistent estimator of o%
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Figure 2.1: The estimated error varianc& as a function ofy, for ay,.. = 0.25, 0.5, and
0.75. The true value ofc, o2) is the intersection of tha?s% curve (red dashed) and the
(1 — a)?¢% curve (blue dashed), marked with a star. The behavior of thallssingular
values as a function af is traced by the grayish curves. The test problem is spedified

Section 2.6, withn = 200, n =8, r = 6,d = 10, oy = 0.01.

whena is well estimated, as shown in (2.4.9). Second,i#underestimated, the resulting
o2 is overwhelmed by incorrectly adding largg for i < r. From these observations, we
can determiné by solving (2.5.2), decreasingfrom n to 1. We recognize the correct
rank by looking for a jump and then a plateau in the optimagotiye function value. A
similar argument holds for (2.5.3). In contrast to (2.5tBpugh, the denominator will

force the minimizery to be lower than its true value, so looking for a jump in theopt
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« asr is changed is an alternative way to recognize an underestthrank. We will

exhibit these phenomena with sample problems in Sectian 2.6

2.5.2 No Prior Information on ¢ or 0%

If we do not have any prior information about error variang&sor 0%, we cannot use
(2.5.2) or (2.5.3). Instead, we use the convergence piy|21.9) to evaluate a given
a. Since all(n + d — r) smallest singular values converge to a single constane\asu
the number of observations increases, we cheote minimize their dispersion. Note
that this convergence property holds only when Assumpti@repplies to our problem,
which will be satisfied by the correct value af As an example, the grayish curves in
Figure 2.1 show how the smallest singular values changevasies. We can see that the
singular values get closer to each other neay..

We measure the dispersion using the coefficient of variatipdefined as

_stdly)
co(y) = mearty)’

where meafy) and stdy) denote the mean and standard deviation of the data vector

Thus, we choose as the solution to

min ¢, (o7 1 (@), ... o0 q4(a)]) . (2.5.4)

There are other dispersion measures, such as standartiaeeiavariance. However, as
the estimatedv decreases t0, the smallest singular values approach zero regardless of
the truex, so these dispersion measures can be misleading. The mogfo€variation is
dimensionless and therefore not subject to this limitation
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As in the optimization methods of Section 2.5.1, estimating (2.5.4) requires
knowledge of the rank. If the rank is not available, we can apply a similar rank-
estimation strategy. For the trug whenr is an overestimate;, remains acceptably
small by (2.4.9). On the other hand, whers an underestimate, grows significantly.
Therefore, if we repeatedly solve (2.5.4) decreasifrgm n, we can find an appropriate
7 by recognizing a jump in the corresponding value-of In contrast to the rank and
estimation method of Section 2.5.1, this method requiresi — » > 1, since we need at
least two singular values to compute the coefficient of wanma Thus, we cannot use this

method for a full-rank, single right-hand side TLS problem= 1 andr = n).

2.6 Experiments

We now present the results of some simple experiments erglarhether ITLS can be
useful in data fitting problems. Since the “correct” choidenodepends on the error

distributions forE , andE g, our questions are these:
e How sensitive is the solutioX to the ITLS problem as& varies?

e Can the “correct” value of be determined computationally?
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Figure 2.2: Relative errors inX as a function ofn for ay,... = 0.001, 0.5, and 0.999
with different noise levelsg: 0.01 (blue solid),0.005 (red dashed), and.001 (black

dash-dotted). The star on each curve maiks..

For given weight parameter, rankr, and noise levetz, we generate a sample

problem in the following way:
1. Generaté\ andX using Matlab’srandn()
2. Modify A to have rank:.
3. Generat® asB = AX.

4. Compute a minimal norm solutiofiof AX = B.
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5. Generate noisé, ~ N(0,0%(1 — a)?l,,) andEg ~ N(0,0%a°ly). 3
6. Add the noise té\ andB to formA = A + E, andB = B + Ep.

Now, givenA andB, our goal is to estimate the hidden parameters (o z) as well
as the true TLS solutioX. Note that the noise levely; is related to the noise variance of
o? in Assumption 2.1 by

o =a(l —a)og.

In our first experiment, we set. = 200, n = 8, d = 4, r = 6, and varied the noise
level o as0.01, 0.005, and0.001. We obtained similar results for other choices of the
problem, including non-random matrices.

First, we examine the sensitivity of the TLS solution to thmice ofa. Figure
2.2 plots the relative error iX as a function oty, for three different true values;,.,. =
0.001, 0.5, and0.999 (which are marked by a star on the curve) with varying noigelle
We can see that the sensitivity increases as the noise lerelases, so the more noise,
the more important it is to determimecorrectly.

Next, we evaluate the performance of our methods for detengi. We apply the
methods described in Section 2.5 to find a minimizdor (2.5.2), (2.5.3), and (2.5.4),
using Matlab’sfminbnd [8], performing function evaluations using the partial SVD
The results are shown in Figures 2.3(a) - 2.5(b).

Figure 2.3(a) shows the results of estimatingvheno 4 is known, using the min-

imizer of (2.5.2) for different values of with 0 = 0.01. The estimatedv approaches

3Even though we generate normally-distributed erBssandE  for the experiments, our methods are

not restricted to a particular distribution as long as thersrare uncorrelated with identical variances.
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Figure 2.3: Results whemn 4 is known:m = 200, n = 8,d = 4, r = 6.
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Figure 2.4: Results when g is known:m = 200, n =8,d =4, r = 6.
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Figure 2.6: Estimatedx vs. a4, using the coefficient of variation fon = 200, n = 8,

andr =7, og = 0.01, varying the number of right-hand sidégrom 1 to 5.

e QST decreases to the true rank= 6. Once the rank is underestimated, the estimated
« diverges from the true.. Figure 2.3(b) shows the optimal function values for (2.5.2
The values remain close towhile 7 > r, but vary greatly when < r. This phenomenon
becomes more pronounced as the noise leyalecreases. Thus, this could be one clue
to choosing an appropriate rankvhen the noise level is low.

Figure 2.4(a) shows the corresponding results for (2.5[8w 5 is known. The
« estimation is even more stable than in the previous case wigenverestimated. In-
terestingly, when' is underestimated, so is (red dotted line). Figure 2.4(b) represents
the ratio of the estimated(7) to the estimated.(r + 1). The ratio stays close towhile

¥ > r, but is much smaller when < r. Even when the noise level is relatively high
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Figure 2.7: Known rank:a-ratio forn = 8, r = 6, andd = 4, o = 0.01, varying the

number of observations.

(o = 0.01), this decrease is distinguishable, but it is larger as tigenlevel decreases.
Therefore, this ratio of the minimizerscould be an alternative criterion to determine the
rankr.

Figure 2.5(a) shows the estimatedbased on (2.5.4), used when neitlgr nor
op is known. Similar to the previous cases, the estimategpproaches the true asr
approaches the true ramkfrom above, but the estimation of fails whenr < r. Fig-
ure 2.5(b) shows the minimized coefficient of variation, ddferent noise levels. While
the minimized dispersion remains close to zero when r, the dispersion jumps to a

large value (greater thah5) when7 < r. The jump becomes more prominent as the
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noise level decreases. Hence, this is another criterioreterchine the rank. Exten-
sive experiments revealed that rank-determination usimgmore reliable than the other
methods. Since it requires no prior information abeytandoz, we recommend using
this rank-determining strategy to confirm the rank deteadiby other methods, when-
evern +d—r > 1.

Next we examine the effect of sample size+ d — ) in the (2.5.4) method. We
may suspect that the dispersion measure may not be relfable ii — r is too small, so
we setm = 200, n = 8, r = 7, and varyd from 1 to 5. Figure 2.6 shows the estimated
for different values ofl. As d increases, the estimate tends to improve, but it is gewerall
good (for moderately large values @f even for smalh + d — r.

Finally, we test how the number of observatiengffects the estimation ef. Since
all of our methods are based on an asymptotic property ofrtralsst singular values,
we expect that increasing should improve the quality of the estimatecaf Figure 2.7
shows the relative error in theestimates as: varies betwee5 and400. The estimation
does improve with largem for all proposed methods, and estimation by (2.5.3) (with a

knowno?%) shows the most reliable performance even with small

2.7 Discussion and Conclusions

We have defined an implicitly-weighted TLS formulation (I$)that includes LS, TLS,
and DLS as special cases as a parameter varies betngehl. We have discussed the

role of the ratio between the variances of error&\iandB in choosing an appropriate
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parameter in ITLS. We derived asymptotic properties of thineate as the number of
observationsn — oo, even when the model is rank deficient. We also proposed mgtho
for computing the family of solutions efficiently. We devpé algorithms for choosing
the appropriate solution when ondy, or 0% is known, or neither is known, in which case
we requiren+d—r > 1. We provided experimental results on the usefulness offth§ |
(or, equivalently the STLS) family of solutions, and on olgaithms for estimatingy
andr.

It would be easy to add a regularization term to the ITLS peobhlin order to handle
discrete ill-posed problems.

This work leaves two important open questions. First, thecept of acore prob-
lem[39, 64, 70] so useful for a single right-hand side, does not completeplain the
character of TLS problems wheh> 1, and more work is needed. This is related to the
choice oft. Second, our parameter choice algorithm requires an estiof@ithero 4 or
op Whenn + d — r = 1, a single right-hand-side problem with full rank, so morerkvo

on that case is needed.
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Chapter 3

Portfolio Selection Using Tikhonov
Filtering to Estimate the Covariance

Matrix

Markowitz’s portfolio selection problem chooses weighis $tocks in a portfolio based
on an estimated covariance matfx stock returns. Since the performance of the result-
ing portfolio is very sensitive to the quality of the covar@a matrix, its estimation is very
critical for the portfolio selection to be successful. A gentional sample covariance ma-
trix is not a good estimate since it takes all transient imfation and observatiamoiseas
important factors. Matrix reduction on the covariance magmoves the unsystematic
factors generated by the noise.

Our study proposes to reduce noise in the estimation usingreiov filter func-

tion. In addition, we prevent rank deficiency of the estirdatevariance matrix and
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propose a method for effectively choosing the Tikhonov peater, which determines
the filtering intensity. We put previous estimators into aocoon framework and com-
pare their filtering functions for eigenvalues of the cateln matrix. We demonstrate
the effectiveness of our estimator using stock return data 1958 through 2007This

presentation closely follows that in [66].

3.1 Introduction

A stock investor might want to construct a portfolio of steckhose return has a small
variance, because large variance implies high risk. Givearget portfolio returny, a
mean-variance problem (MV) [59] finds a stock weight veetdo determine a portfolio
that minimizes the variance of the return. LLebe a vector of expected returns for each
of N stocks, and lek be anN x N covariance matrix for the returns. The problem can
be written as

minw! ¥w subjecttow’ 1 =1, w! pu =g, (3.1.1)
W

wherel is a vector of N ones. On the other hand, a global minimum variance problem
(GMV) finds a portfolio that minimizes the variances of thetfaio returns without the
return constraint:

minw’ Xw subjectto w1 = 1. (3.1.2)
w

Even though these optimization problems play a centralincddenodern portfolio theory,
it has been observed that the solutions are very sensititieeio input parameters [6,

10, 12, 13]. Thus, in order to construct a good portfolio gdimese formulations, the
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covariance matrixx must be well-estimatedWe let  denote an estimate &, and
imethod denote a resulting estimate by a particular method.

LetR=[r(1),---,r(7")] be anN x T" matrix containing observations dv stocks’
returns for each of" times. A conventional estimator — a sample covariance matri

3 sample — €CaN be computed from the stock return maRias

= 1 1
Esample = TR(IT - ?11T>RT (313)

From classical statisticév,)sample is a consistent estimate for fixéd; in our case, since
T is fixed and of the same order &§, this result is not so useful. Moreover, since
the stock return matriR contains noise, the sample covariance mai?jzgmple might not
estimate the true covariance matrix wéle useprincipal component analysis anetduce
the noise in the covariance matrix estimate by using a Tikkioegularization method.
We demonstrate experimentally that this improves the plotiveightw obtained from
(3.1.2).

Our study is closely related to factor analysis and priricgenponent analysis,
which were previously applied to explain interdependenfcgtock returns and classify
the securities into appropriate subgroups. Sharpe [79pfioposed a single-factor model
in this context using market returns. King [49] analyzedcktbehaviors with both mul-
tiple factors and multiple principal components. Thesédiamodels established a basis
for the asset pricing models CAPM [58, 62, 80, 87] and APT [/43,

There have been previous efforighich we discuss in detail later in this chapter,

to improve the estimate d€. Sharpe [79] proposed a market-index covariance matrix
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Yarker derived from a single-factor model of market returns. Lé@oial. [55] intro-
duced a shrinkage method that averades, .. and ... They [56] also applied
the shrinkage method with a different target, an identityriraLater, it was shown by
DeMiguel et al. [19] that their shrinkage methods have theesaffect as adding the
constraint|w||a < ¢ to the GMV problem (3.1.2), wher is the shrinkage target matrix
(f)mwket or I y) andé is a given threshold. Elton and Gruber [24] estima¥dsing a
few principal components from a correlation matrix. Moreamwtly, Plerou et al. [69],
Laloux et al. [53], Conlon et al. [14], and Kwapieh [52] ajgal random matrix theory
[60] to this problem. They found that most eigenvalues ofeation matrices from stock
return data lie within the bound for a random correlationnwrand hypothesized that
eigercomponents (principal components) outside this intergalta&in true information.
Bengtsson and Holst [5] generalized the approach of Ledait.e[55] by damping all
but thek largest eigenvalues by a single rate. In summary, the estiroé Sharpe [79]
usesf)mwket, the estimator of Ledoit et al. [55, 56] takes the weighteslrage oﬁ]mmple
and different target matrices, the estimator of Elton andb®@r [24] truncates the small-
est eigenvalues, the estimators of Plerou et al. [69], baktual. [53], Conlon et al.
[14], and Kwapieh [52] adjust principal components in sdnterval, and the estimator
of Bengtsson and Holst [5] attenuates the smallest eigeesdly a single rate.
Jagannathan and Ma [44] showed that a short-sale congtraint0) is equivalent
to shrinking the input covariance matxby subtractingA1” +17X\), whereX is a vec-
tor of Lagrange multipliers for the constraints. DeMigueak [19] showed that adding

the short-sale constraint to GMV is equivalent to addirigreorm constraint|w||; < 1,
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and generalized this constraint|ta/||; < ¢ for a certain threshold which determines a
short-sale budget.

Our study focuses on estimating a good covariance matrixphgose to decrease
the contribution of the smaller eigenvalues of a corretatiwatrix gradually by using a
Tikhonov filtering functionTo derive the Tikhonov filtering, we construct a linear miode
based on principal component analysis and formulate amaggztion problem that finds
appropriately noise-filtered factors. Using the filterectda data, we estimate a Tikhonov
covariance matrix.

In Section 3.2, we introduce Tikhonov regularization toueel noise in the stock
return data. In Section 3.3, we show that applying Tikhoneyutarization results in
filtering the eigenvalues of the correlation matrix for theck returns. In Section 3.4,
we discuss how we can choose a Tikhonov parameter that detsrihe intensity of
Tikhonov filtering. In Section 3.5, we put all of the factaad®d estimators into a common
framework, and compare the characteristics of their filgefunctions for the eigenvalues
of the correlation matrix. In Section 3.6, we show the resaftnumerical experiments
comparing the covariance estimators for portfolio corettam using monthly return data
of 100 randomly chosen stocks from the CRSP. In Section 3/highlight the differ-

ences between Tikhonov filtering and the other methods.

3.2 Tikhonov Filtering

To estimate the covariance matrix, we apply a principal coment analysis to find an
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orthogonal basis that maximizes the variance of the prefedata into the basis. Based
on the analysis, we use the Tikhonov regularization metbdittér out the noise from the
data. Next, we explain the feature of gradual down-weightivhich is the key difference

between Tikhonov filtering and other methods.

3.2.1 Principal Component Analysis

First, we establish some notation. For a random prog¢ss let E[x(t)] € RN*1,
varx(t)] € RV*1, covx(t)] € RV*¥ and corfx(t)] € R¥*Y denote a mean, a vari-
ance, a covariance matrix, and a correlation matrix. Fovargtollection of observations
X = [x(1),...,x(T)] for N objects duringl’ times, letE,[x(t)] € R¥*!, var,[x(t)] €
RY*1) cov,[x(t)] € RY*N, and cort[x(t)] € RY*Y denote the corresponding sample
statistics, defined, for example, in [37, Section 3.3].

Now we apply principal component analysis (PE#) the stock return dafa. Let
Z = [z(1),...,Z(T)] be anN x T matrix of normalized stock returnderived fromR,
defined so that

E,[z(t)] = 0, varz(t)] =1, (3.2.1)
where0 is a vector of/V zeros. We can compuieas

_1 1
Z=D,*(R- =R 117), (3.2.2)

whereDy = diag(var,[r(t)]) € R¥*Y is a diagonal matrix containing th& sample

variances for theV stock returns. By using the normalized stock return matrnather

L In this chapter the term PCA always refers to applying PCA to the maRiaf sample stock returns.

For convergence properties of the sample PCA toward itslptipn PCA, refer to [43, Chapter 4].
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thanR, we can make the PCA independent of the different varianeach stock return
[43, pp.64-66].

PCA finds an orthogonal badis= [uy, . .., u;] € RV** for Z wherek = rank(Z).
Each basis vectar; maximizes the variance of the projected data, while maintaining
orthogonality to all the preceding basis vectoyg;j < 7). By PCA, we can represent the

givendataZ = [z(1),...,ZT)] as
Z=uy,...,u] F =UF, (3.2.3)
2(t) = Uf(t) = [uy,...,ug F(t) = Z fi(t)u;, (3.2.4)

wheref (t) = [fi(t),..., fr(t)]¥, a column ofF, is the projected data at tinme and
var,[fi(t)] > var[f2(t)] > --- > var[fx(t)]. The projected datd;(¢) is called thei-th
principal component in PCA or theth factor in the factor analysis. Larger vgf(t)]
implies that the correspondirfg(¢) plays a more important role in representiig The
orthogonal basit) and the projected datacan be obtained by the singular value decom-
position (SVD) ofZ,

Z=U,S, VL, (3.2.5)

wherek is the rank ofZ,
Up = [uy, ..., U] € RV*F is a matrix of leftorthogonakingular vectors,
S; = diag(sy, . .., sx) € R¥**is a diagonal matrix of singular valueg

andVy = vy, ..., v] € RT** is a matrix of rightorthogonakingular vectors.

In PCA, the orthogonal basis matiikcorresponds ttJ,,, and the projected data
corresponds t¢S,V; ) [43, p.193]. Moreover, thearianceof the projected datg;(¢) is
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proportional to the square of singular valifeas we now showE,[z(¢)] = 0 means that

Z1 = 0. Therefore, since(t) = Uf (t),
E[f (t)] = UTZ1 =0, (3.2.6)

sof (¢) also has zero-mean. Therefore,

RS 1 <
2 _ 2
var [fi(t)] = 7= D (filt) = Blfi(0)])" = 7 > J2(0).
t:l t=1
SinceF is equal toS, VI,
fi(t) = sivi(t), (3.2.7)
wherev;(t) is the(¢,7) element ofV,. Thus,
1 a 52
var,[f;(t) Z (sivs(t s2(VIy;) = = (3.2.8)

t=1

by the orthonormality of;. Thus, the singular value; determines the magnitude of

var[f;(t)], so it measures the contribution of the projected dggtg to z(¢).

3.2.2 Tikhonov Regularization

U andf (¢) in (3.2.4) form a linear model with &~dimensional orthogonal basis for the
normalized stock retur@, wherek = rank(Z). As mentioned in the previous section,
the singular value; determines how much the principal componéiit) contributes to

z(t). However, since noise is included u(t), the k—dimensional model is overfitted,
containing unimportant principal components possiblyresponding to the noise. We
use a Tikhonov regularization method [67, 83, 89], somedinadled ridge regression [40,
41], to reduce the contribution of unimportant principahmgmonents to the normalized
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stock returnZ. Eventually, we construct a filtered principal comporfe(m} and a filtered
market returrz.

Originally, regularization methods were developed to cedilne influence of noise
when solving a discrete ill-posed probldm= Ax, where thelM/ x N matrix A has some

singular values close to 0 [34, pp.71-86]. If we write the SMTA as

S1 V{

A =USVT =[u,...,uy . o

SN V%

then the minimum norm least square solutigR to b ~ Af is

ranka)
Xps =Alb=VSiU"b= "

i=1

u’b

7

Vi, (3.2.9)

If A has some small singular values, ther is dominated by the corresponding singular
vectorsy;. Two popular methods are used for regularization to redhedrtfluence of
components; corresponding to small singular values: a truncated SVOhote{TSVD)
[30, 36] and a Tikhonov method [83]. Briefly speaking, the TSMmply truncates terms
in (3.2.9) corresponding to singular values close to 0. tast, Tikhonov regularization

solves the least squares problem
ngum—AAF+aﬂwmﬁ (3.2.10)

wherea andP are predetermined. The penalty telffex||? restricts the magnitude of the
solutionx so that the effects of small singular values are reduced.

Returning to our original problem, we use regularizatiomider to filter out the
noise from the principal componehtt). We formulate the linear problem to find a fil-
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tered principal componerﬁ(t) as

Zt) = Ut (), (3.2.11)

2(t) = 2(t) +e.(t) = UT () + e.(t), (3.2.12)

wherez(t) is the resulting filtered data ard(¢) is the extracted noisén (3.2.4), f () is

the exact solution of (3.2.12) when(t¢) = 0. By (3.2.7), we can expres$s$t) as

fi(t) s101(1)

fk(t) skvk(t)
wheree; is thei-th column of the identity matrix. Since we expect that themportant
principal componentg;(¢) are more contaminated by the noise, we reduce the contribu-

tion of these principal components. We apply a filtering imadr = diag(¢1, ..., ¢x) to

f (¢t) with eachg, € [0, 1] so that

f(t)=®f(t).
The element; should be small wheg; is small. The resulting filtered data are
Z(t) = U ®f (1), (3.2.13)

Z = U &F. (3.2.14)

We introduce two different filtering matrice@,tmn@) and®,;;,(«), which corre-
spond to truncated SVD and Tikhonov regularization. Fingt,can simply truncate all

butk most important components as Elton and Gruber [24] did byguaifiltering matrix
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of (I)tmn(E) =diag| 1,...,1,0,...,0 |, so the truncated principal compon@%n(t)
S— ——

k—k

)

ftrun(t) - q)trun(/k\)f (t)

By (3.2.13) and (3.2.14), the resulting filtered data &g, (t) = U®,,...(k)f (t) and

Zirun = U @4, (k)F. SinceF = S,V7, we can rewriteZ,, ., as

k
zt7‘un - U (I)trun(/k?)(skvz) = Z Siuz‘V;'r~ (3215)

=1
From (3.2.15), we can see that this truncation method qooreds to the truncated SVD
regularization (TSVD) [30, 36].
Second, we can apply the Tikhonov method, and this is ouroagprto estimat-
ing the covariance matrix. We formulate the regularizedtisguares problem to solve
(3.2.10) as

min M (f (t)) (3.2.16)
fo)

with

M(E(1)) = [lz(t) = UF (1) + o®||PF ()],
wherea? is a penalty parameter aids a penalty matrix. The first terifz(t) — Uf (¢)|[2
forcesf~(t) to be close to the exact solutidit). The second terrﬁP’fv(t)H2 controls the

size off (). We can choose, for example,
P= diag(sfl, ce s,;l) .

Let f;(t) denote the-th element of (¢). The matrixP scales eacl;(t) by s; !, so the
unimportant principal components corresponding to smalle penalized more than the
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more important principal components, since we expect thatunimportant principal
componentsf;(¢) are more contaminated by the noise. Thus, the penalty tesrepts
F(t) from containing large amounts of unimportant principal pements. As we showed

before,s? is proportional to the variance of theh principal component;(¢). Therefore,

this penalty matriXP is statistically meaningful considering that the vaIuegE(:zf) /si in

Pf (t) are in proportion to the normalized principal componefts) //var,[f;(1)].

The penalty parameter balances the minimization between the error té€aft) —
Uf(t)||2 and the penalty terriPf (¢)||2. Therefore, as increases, the regularized so-
lution F(t) moves away from the exact solutié(¢) but should discard more df(t) as
noise. We can quantify this property by determining the sotuto (3.2.16). At the
minimizer of (3.2.16), the gradient 6f/(f (¢)) with respect to eaclfi(¢) becomes zero,
SO

VM(F (1)) = 20TUT () — 2U7 z(t) + 20*PTPT (t) = 0,

and thus

(UTU + o®PTP) f (1) = U Z(t).
SinceU”U = I, P =diag(s;',....s; '), andz(t) = Uf (¢), this becomes

(Ix + a?diag(si2,. .., ;%)) f(1) = UT (U (1)).

Therefore,
2 2 2 2\
diag(slia ,...,S’“J;a )f(t) =f(1),
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Figure 3.1: Tikhonov filtering as a function af for various values oft.

So, our Tikhonov estimate is

Frinn (t) = Prarn (@) T (1),

where®,;;,(«), called the Tikhonov filtering matrix, denotéS; + o?l;)~' S3. Thus,
we can see that the regularized principal compotient(t) is the result after filtering

the original principal componeni{t) with the diagonal matrix®,;;.,(«), whose diagonal

2

ﬁ lie in [0, 1]. By (3.2.13) and (3.2.14), the resulting filtered

elements)!™™" (o)) =
data becom@,i;, (t) = U, () f (1) andZye, = U @i (a) F.

Let us see how!*"(«) changes as ands; vary. First, asy increasesg!*"(«)
decreases, as illustrated in Figure 3.1. This is reasormsaide« balances the error term
and the penalty termLater in Section 3.4, we will propose how we can determine an
appropriate parameter. Second¢!*" () monotonically increases asincreases, so the
Tikhonov filter matrix reduces the less important principainponents more intensely.
The main difference between the Tikhonov method and TSVBasTikhonov preserves

56



some information from the least important principal comgrais while TSVD discards

all of it.

3.2.3 The Relation Between Filtered PCA and a Factor Model

Some asset pricing models (e.g., [74, 80]) model assetn®tmith a factor model:

r(t) = E[r(t)] + Bep(t) + €(t). (3.2.17)

The assumptions are that
E[p(t)] = E[e(t)] = 0, (3.2.18)
E(ei(t)e; (1)) = E(ei(t) () = Elgi(t)p;(t)) = 0 foralli # j, (3.2.19)

wherep(t) = [p1(t), ..., o(t)]F ande(t) = [e1(t), ..., ex(t)]T. The common factorg; ()
are referred to as systematic factors, ay{d) is called an unsystematic (idiosyncratic)
factor. The matrixB8 = (3;) is called a factor-loading matrix, ang, represents the
sensitivity of thei-th asset to thé-th factor.

We can interpret our linear model (3.2.12) as a factor mod#&y. (3.2.2) and

(3.2.12), we have a linear equation fgt) as

((t) = Eir(t)] + D2 (U () + et)) (3.2.20)
— E.Jr(t)] + Bf (1) + €.(t), (3.2.21)

where
B=DZU and e (/) = Die.(1). (3.2.22)
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Comparing (3.2.17) and (3.2.21), if we assume fma) represents the systematic factors

o(t) well, we can interpreB ande,.(t) as estimates of the loading mat#k and the

unsystematic factog(t) in (3.2.17). Since. (t) = z(t) — Uf (1), €, () becomes
e.(t) = DZe.(t) = D2(2(t) — UF (1)), (3.2.23)

Because(t) = Uf (t) andf (¢) = ®f (¢), the factor models result in the estimate

—B(l, — ®)f(t). (3.2.24)

(UF () — UBF (1)) = (DEU) (1), — B)f (1)

<\wl=

€-(t)=D

3.3 Estimate of the Covariance MatrixX:

In this section we study how filtering changes the covariaaroe correlation estimates

and the estimate of risk exposure, and how to ensure thastimeaged covariance matrix
has full rank.

3.3.1 A Covariance Estimate

Now we derive a covariance matrix estimaidrom (3.2.21), respecting the structure of

the factor model (3.2.17). By (3.2.19), the covariance mairis
3 = Beovip(t)|B” + covle(t)] = X, + D, (3.3.1)

whereX, denotes the systematic componBabv|p()]B7 andD, denotes the unsystem-
atic component cde(¢)]. We estimate the systematic pait by 3, = Bcov,[f (¢)]B”
Becausd (¢) has zero-meari~,(t) = ®f (¢) also has zero-mean, so

cov,[f (1)) = %(@F)(@F)T = %(q)?sg). (3.3.2)

58



Therefore, the estimate &, becomes

3, = Beoy,[f (1)|B” = %B((I)QSi)BT. (3.3.3)

The unsystematic paB. in (3.3.1) is diagonal since the unsystematic factofs) are
mutually uncorrelated. Thus, we estimate [ed%)| by the diagonal part of the difference
D. between

1
Esample - COVs[r(t>] - TBSzBT7 (334)

andf]s. Hence,

~ = . (1
D. = diag(Esample - 28) — dlag(f(B(Ik - <1>2)s§BT)) . (3.3.5)
Finally, the filtered covariance matr® will be
¥ =3,+D,, (3.3.6)

whereX; andD, are defined by (3.3.3) and (3.3.5). By the definitiorDof the diagonal
of = equals vaylr(t)].
Now we analyze how the filtering functioh affects the sample correlation matrix

corr[r()]. By (3.3.6), the filtered correlation matrX can be calculated as

Q=D,

~ _1 1 1. _1
¥D,” = TuqﬂsiuT +D,’D.D;?, (3.3.7)

N

where the second term makes the diagonal elemerﬁlseﬂjual one. On the other hand,

the sample correlation matrix copr(¢)] can be calculated as

1~ _1

corry[r(t)] = Dy 2 Xgampie Dy 2 -
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. . 1
Step 1. Estimate the systematic component of the covarl?rB(QQSﬁ)BT
where® is the diagonal matrix of filter factors.

Step 2. Change the main diagonal to be the sample variances.

Table 3.1: The algorithm to compute the covariance estinEteror Tikhonov, the filter

factors are®,;;;, :diag( S )

51 k
s24a2? ’ 3%4-042
By (3.2.22) and (3.3.4), this becomes

I IR
corr,[r(1)] = Dy,? <TBSiBT) D,? = ~USiUT. (3.3.8)

Comparingﬁ in (3.3.7) and couyfr(¢)] in (3.3.8), we can see thé is the result of
applying the filtering matrix®? to S? in corr,[r(¢)] and replacing the diagonal elements
with one. Since each diagonal elemenSgdfcorresponds to an eigenvalue of ¢anft)],
the filtering matrix®? attenuates the eigenvalues of ¢g(t)]. In the previous section,

we introduced two filtering matrices :

~

&,..(k) = diag| 1,...,1,0,...,0 | , (3.3.9)
—— ——
% k—k
and &, (a) = dia 4 ut (3.3.10)
tikh - g S%—FOZQ’.”’Si—FC(z : i

Therefore ®? (E) truncates theigercomponents corresponding to thie— E) smallest

trun

7
2+a2

. . . 52 2
eigenvalues, an®?,, (o) down-weights all the eigenvalues at a re{te—) =
SZ

XY _ .
()\ +’ 2) where ); is thei-th largest eigenvalue of cgjz(t)]. Hence, the truncated
i (0}
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SVD filtering functionsy?,,..()\;) for eigenvalues\; become

) 1, ifi <k,
¢t7‘un(Ai) -
0, otherwise

and the Tikhonov filtering functiong?,, , (\;) are

a0 = (15 )

/\i+a2

We Ietf]mm andf]tikh denote the estimates resulting from applyﬁn@un@) and®?,, (o)
to (3.3.6).Finally, we can summarize the process of estimating ther@wee matrix as

Table 3.1.

3.3.2 Risk Exposure to Factors

By (3.3.1), the variance of a portfolio return can be expedsss
w'Esw=w! (Z, +D,)w=w Z,w+w'Dw. (3.3.11)
The systematic risk is
w'Sw=w" (Beovip(t)|B") w=w" (Bdiag(vare(t)]) B") w, (3.3.12)
becausey;(t) are mutually uncorrelated by (3.2.19). This can be expaaded
k
w'Sw =" varig; (1) (W' 8;)°, (3.3.13)
i=1

whereg; is thei-th column of3. Thei-th term in (3.3.13) represents the risk exposure of

the portfolio to the-th factor.
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On the other hand, the estimated mafixin (3.3.3) can be rewritten as

1

~ S2
3, = L
T

B®*S:B” = BP? <?) B” = B®diag(var,[f (¢)]) B, (3.3.14)

because vaff (t)] = diag(S3/T) by (3.2.8). Hence, we can calculate the estimated
systematic risk as

k
w'Sw = "7 (var[f, (1) (w'b;)?) (3.3.15)

whereb; is thei-th column ofB. Therefore, we can see that our estimate of the risk
exposure to the-th factor is reduced by?. This equation explains how the estimated
covariance matrix affects the estimated risk measure of a portfolio, downhing

risk factors corresponding to small valuesofa).

3.3.3 Rank Deficiency of the Covariance Matrix

Since the covariance matrix is positive semidefinite, the ptfgblem (3.1.1) and the
GMV problem (3.1.2) always have a minimiasr However, when the covariance matrix
is rank deficient, the minimizevis not unique, which might not be desirable for investors
who want to choose one portfolio. The sample covarianceimﬁ%mple from (3.1.3) has
rank (7" — 1) at most. Therefore, whenever the number of observafidissless than or
equal to the number of stock$, f]sample is rank deficient. To insurafull rank and high
quality estimate, we must have at le@at + 1) recent observations of returns, derived
from at leas{ NV + 1) recent trades, and this is not always possible.

Recall that the covariance matrix estimates the sum of the systematic pzﬁi’rS

and the unsystematic p@t. By (3.3.3), we can see tha, has non-negative eigenvalues.
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On the other hand, by (3.3.5),

(Thei-th diagonal element db,) = €’ (%B(Ik — <I>2)SiBT> g (3.3.16)

It is reasonable to assume tlgaB is not zero for any since it becomes zero only when
the i-th stock has zero variance of returns by (3.2.22). Thusdiagonal matrixD, is
positive definite whenever all; < 1. In the case of Tikhonov filtering, whenever> 0,

2

tikh i
: = <1
¢’L (CO 312 062 )

soD. is positive definite. Therefore, sin, is positive semidefinite, adding a positive
definite matrix ensures that that Tikhonov covariance mzfmkh is positive definite and
therefore full-rank.

Sharpe [79], Ledoit et al. [55], Bengtsson and Holst [5], &hetou et al. [69] also
overcome the rank-deficiency problem by replacing the diatpof their estimate with
the sample variances like Step 2 in Table 3.1. However, sdntleeg filtering values
¢; could have a value of as we will see in Section 3.5. This implies that the resulting
estimateX could be rank-deficient or very ill-conditioned even aftddig D., because
D. is positive semidefinite. In the case that the estimatehst#la large condition number

even after the Step 2, we can fix the problem by a small moddicats follows:

whered; is a small positive number.
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Theorem 3.3.1(Condition number modification)Replacing the main diagonal ofhe

covariance estimat® as specified in (3.3.17) guarantees that

Amax (2) + max (6;)
min (6;) ’

condX) <
where,,..«(+) is the maximum eigenvalue of the matrix.

Proof. This is a direct consequencetbe eigenvalue interlacing theorem [82, p.288%

the positive semidefiniteness Bf O

This modification is useful especially for the sample ccvace matrixflsample
whenT < N, and for the truncation-based estimators whose filteriotpfa¢; equall

for some;.

3.4 Choice of Tikhonov Parameterx

So far, we have seen how to filter noise from the covarianceixnaging regularization
and how to fix the rank deficiency of the resulting covarian@rix. In order to use
Tikhonov regularization, we need to determine the Tikhopakametery. In regulariza-
tion methods for discrete ill-posed problems, there arnisive studies about choosing
using methods such as Generalized Cross Validation [28{rizes [33, 35], and residual
periodograms [75, 76].

In factor analysis and principal component analysis, tlaeeeanalogous studies to
determine the number of factors such as Batrtlett’s testdBJREE test [9], average root

[32], partial correlation procedure [91], and cross-vaiidn [94]. More recently, Plerou
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Figure 3.2: The differencg|corr;[e,(t)] — I v||r as a function of log-scaled where

h = max (s;).

et al. [68, 69] applied random matrix theory, which will besdebed in Section 3.5.6.
In the context of arbitrage pricing theory, some differeppaches were proposed to
determine the number of factors: Trzcinka [88] studied thkdvior of eigenvalues as
the number of assets increases, and Connor and Korajczyktlidied the probabilistic
behavior of noise factors.

The use of these methods requires various statistical pgiepéore,. () in the linear
model (3.2.21). We note that sinBgl[f ()] = 0 by (3.2.6), the noise,(¢) in (3.2.21) has

zero-mean: By (3.2.24),

For our Tikhonov estimation, we propose a new method adgg@timutually un-

correlated noise assumption in a factor model (3.2.19)ps[€e, ()] ~ | y. Henceasa
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criterion to determine an appropriate parametewe formulate an optimization problem

minimizing the correlations among the noise,

min || cortle, (t)] — Iy ||r, (3.4.2)

a€[sg,s1]
wheres; ands; are the largest and the smallest singular valuesas defined in (3.2.5).
This is similar to Velicer's partial correlation procedy&l] to determine the number
of principal components. Figure 3.2 illustrates an exanoplegcorr,[e.(t)] — I v||r as a
function of« in the rangdsy, s;]. The parameter might alternatively be determined by an
asymptotic analysis proposed by Ledoit and Wolf [55, 56] arass validation used by

DeMiguel et al. [19].

3.5 Comparison to Other Estimators

In this section, we comparathercovariance estimators to our Tikhonov estimator and
put them all in a common framework. We summarize how theyrfilie eigenvalues of
the sample correlation matrix with filtering function§ ;). Most of these methods use a
two step procedure as shown in Table 3.1: filter the eigepgaland then adjust the main

diagonal. We note any exceptions in our descriptions.

351 f]sample : Sample Covariance Matrix

A sample covariance matrix is the filtering target of mostas@nce estimators including
our Tikhonov estimator. Thus, the sample covariance mafy,,.. can be thought
of as an unfiltered covariance matrix, so the filtering fumety?()\;) for eigenvalues of
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cov,[z(t)] is

S

P (\) =1 fori=1,..., rank(flsampze>-

3.5.2 f]market from the Single Market Index Model [79]

Sharpe [79] proposed a single index market model
r(t) =E[rt)] +br.,(t)+ €(t), (3.5.1)

wherer (t) € RV*! is stock return at time,
rm(t) is market return at time,
€(t) is zero-mean uncorrelated error at time

andb € RVx1,

Unlike the factor model (3.2.17), this model assumes thatstiock returns(¢) have
only one common factor, the market returp(¢). Interestingly, Plerou et al. [69, p.8]
observed that the principal component corresponding ttatigest eigenvalue of the cor-
relation matrix cory[r(t)](= covs[z(¢)]) is proportional to the entire market returns. This
observation is natural in that most stocks are highly adéfgédty the market situation.
Based on their observation, we expect that the most imptgptancipal component; (t)

in (3.2.4) represents the market returr(t). Thus, we can represent the relation between

f(t) =[fi(t),..., fr(t)]in (3.2.21) and-,(t) as

Crn(t), wheni=1,
filt) ~ (3.5.2)
0, otherwise.
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for some constanf’. Hence, the corresponding filtering functiag, ()\;) for S narket

becomes

1, ifi=1,
G2 (\;) ~ (3.5.3)

0, otherwise.

Therefore, the filter function implicitly truncatesl but the largeseigercomponent of

corr[r(t)].

3.5.3 .., Shrinkage toward 3, c: [55]

Ledoit et al. propose a shrinkage method frBI,, e t0 =,arket @S

Es%m =7 imarket + (1 - 7)Esamplea (354)

where( < ~ < 1. Thus, the shrinkage estimator is the weighed avera@smple and
imarket- In order to find an optimal weight, they minimize the distance betwefinﬁm

and the true covariance matix
: 'S 2
m’ym |[ZBssm — X[ 7.

Since the true covariance matdxis unknown, they use an asymptotic variance to deter-
mine an optimaly. (Refer to [55, Section 2.5-6] for a detailed descriptiddonsidering
thatf]market is the result of the implicit truncation method, we can thofkhis shrink-
age method as implicitly down-weighting all eigenvaluestbe largest at a ratd — ).

Therefore, we can represent the filtering functign, . (\;) as
1, ifi=1,

O Ni) = (3.5.5)
1 —~, where0 <~ <1 otherwise.
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3.5.4 Truncated Covariance Matrix ;.. [24]

As mentioned in Section 3.3.1, the truncated covarianceixna, ., has the filtering

function¢? . ()\;) for the eigenvalues; of cov,[z(t)], where

) 1, ifi=1,....k,
Diyun (i) = (3.5.6)
0, otherwise.

Thus, the model of Elton and Gruber [24] truncates all buﬂ?ﬂmfgesteigercomponents

of cov,[z(t)].

3.5.5 iHmm . Shrinkage toward imm [5]

Bengtsson and Holst propose a shrinkage estimator ﬁigmple to f}tmn as

ES—)trun =7 ijtrun + (]- - V)Esamplea (357)

where0 < v < 1. They determine the parametgin a way similar to [55]. (Refer to [5,
Section 4.1-4.2] for detailed description.) Therefcﬁgﬁtmn is a variant of the shrinkage
method towarcf}tmn. Becausef]mm is the truncated covariance matrix containing the
% most significanteigercomponents of cayz(¢)], we can regar&sﬁtmn as damping
the smallest eigenvalues ¥ — ~). Thus, the filtering function corresponding to this

approach is

, 1, ifi=1,... k%,
1 —~, where0 <~ <1, otherwise.

Rather than removing all the least important principal comgnts as Elton and Gruber
did, Bengtsson and Holst try to preserve the potential médron of unimportant princi-
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pal components by this single-rate attenuation. BengtasdnHolst conclude that their
shrinkage matriiﬁtmn performed best in the Swedish stock market when the shrenkag
targetflmn takes only the most significant principal compon&m:( 1). They also men-
tion that the result is consistent with RMT because only #rgdst eigenvalue deviates

far from the range ofAin, Amax]-

3.5.6 iRMT:mm Truncation by Random Matrix Theory [69]

Plerou et al. [69] apply random matrix theory (RMT) [60] whishows that the eigenval-
ues of a random correlation matrix have a distribution within interval determined by

the ratio of N andT'. Let cort.,,,4.,,» D€ @ random correlation matrix
1 T
COIT undom = TAA , (3.5.9

whereA € RY*T contains mutually independent random elementswith zero-mean
and unit variance. Whe® = 7T'/N > 1 is fixed, the eigenvaluek of cort, 4., have a

limiting distribution (asN — oo)
( Q \/()\max - )\)(Amin - )\)
2mo? A ’

fA) = (3.5.10)

)\min g )\ g )\max’

0, otherwise,
\

wheres? is the variance of the elementsAf \,i, < A < Aax, and

1 1
Amax 52 <1+—iz,/—>.
Q Q

By comparing the eigenvalue distribution of cgrft)] with f(\), Plerou et al. show that
most eigenvalues are within,;,, Amax]. They conclude that only a few large eigenvalues
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deviating from[\..in, Amax] COrrespond to eigenvalues of the real correlation matoixhe
othereigercomponents should be removed from ¢it)]. Thus, the filtering function

&% v rr-un(Ai) fOr the eigenvalue,; of corr,[r(¢)] is

9 N 17 If )\z 2 )\max ’
gbRMT:trun()‘z) - (3511)
0, otherwise.

3.5.7 Xruraen Replacing the RMT Eigenvalues [53]

Laloux et al. apply RMT to this problem in a way somewhat d#fg from Plerou et

al. First, they find the best fitting? in (3.5.10) to the eigenvalue distribution of the
observed correlation matrix rather than assumingdfiat 1. Second, they replace each
eigenvalue in the RMT interval with a constant valtiechosen so that the trace of the

matrix is unchanged. Thus, the filtering functiof,..,,(\:) for eigenvalues is

9 17 If )\z 2 )\max ’
gbRMT:repl(Ai) = (3512)
<, otherwise.
This approach does not require the application of Step 2 ImeTa.1 , since it replaces

the smallest eigenvalues with a positive constant. Thdthieglcovariance matrix does

not preserve the original variances.
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Estimator Filtering functiom?(\;)

X sample s(\) =1
3 arket | 79) m(Ai) = { é gt:];v%/i’se.
3, m[55) m(Ai) > { 17_ 5, ic]:tée:rv%/i’se.
Sirun[24 Brun (M) :{ (1): ‘;’;;;Vigs;é;’@’
is%trun[S] s strun( M) = { 1’_ v, gt;};v%n’se jﬂ\,
Srarraran[69  Oharretran (A ={ éj Lﬁtﬁeai;;
f3RMT:7~epl [53] ¢?~?J\4T:repl(/\i) = { %7 gt;\ér%vérgax ’

A

9
tikh Drn(Ni) = ()\‘ ;&2)

Table 3.2: Definition of the filter functiony?()\;) for each covariance estimator where
i=1,..., rank(ftmmple>.

3.5.8 3, : Shrinkage toward | [56]

Ledoit et al. also introduced a shrinkage method fl’ﬁggmple to the identity matrix y

as

Seor =7 (mln) + (1 —9)Zsampie, (3.5.13)

tr <isample>
N
~. (Refer to [56, Section 3] for a detailed description.) TEhex no simple expression

wherem = and0 < v < 1. They provide a method to estimate an optimal

for the filter factors.In addition, this method does not use Step 2 in Table 3.1 stace

shrinkage targdty has full rank.
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3.5.9 Tikhonov Covariance Matrix flmh

As mentioned at Section 3.3.1, the Tikhonov covariance ima;;;, has the filtering

function¢?,, (\;) for the eigenvalues; of cov,[z(¢)], where

52 (/\.):( Ai )2 (3.5.14)
tikh\ "\ )\i"_@z ; fRo B

where the parameteris determined as described in Section 3.4.

3.5.10 Comparison

The derivations in Section 3.5 provide the proof of the fwilog theorem.

Theorem 3.5.1(Filtering functions) The eight covariance estimators are characterized

by the choice of filtering functions specified in Table 3.2.

Tikhonov filtering preserves potential information frdess importantrincipal
components corresponding to small eigenvalues, rathetthacating them all Iikémarket,
S run, ANAE garram. 1N CONtrast to the single-rate attenuatiordhf.,,,, and:,_,., and
the constant value replacementingT:Tepl, Tikhonov filtering reduces the effect of the
smallest eigenvalues more intensely. This gradual dowigitieg with respect to the
magnitude of eigenvalues is the key difference between ikieomov method and other
estimators.

In addition, all the estimators exceﬁlﬁf and f)RMT:repl overcome the rank-
deficiency of the covariance matrix by replacing the diag@@ments with the corre-

sponding variances after filtering. This is what we did byspreing D, in Step 2 in
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Table 3.1. However, most estimators havg);) = 1 for the largest eigenvalues as
Table 3.2 shows, so the resulting covariance matrix canibbeastk-deficientas we dis-
cussed in Section 3.3.3During experiments in Section 3.6, we actually observed th
rank-deficiency for some estimators even after preserviagoshal parts. This implies

that an extra modification like (3.3.17) is necessary to awere rank deficiency.

3.6 Experiments

In this section, we evaluate the covariance estimatorgusiturn data from the NYSE,
AMEX, and NASDAQ. We collected the monthly datam January 1958 to December
2007 from the CRSP database (the Center for Research in Secudgsl There aré00
months over 50 years, and we randomly chid¥estocks among those traded throughout
this period.

Chopra and Ziemba [13] have noted that the MV problem is muctersensitive
to errors inu than to errors ir¥2, and our experience confirms this observation. In fact,
uncertainty in the estimates pfmade the true return quite different from the target return.
In addition, recently DeMiguel et al. [20] showed that sommenmon portfolio strategies
do not yield consistently better Sharpe ratios, certaggyivalent returns, or turnovers,
compared to a naive/ N portfolio. The instability of the MV portfolio tends to increase
turnover costs, so recent studies strengthen the stalwlityrmulating new optimization
problems [21]. However, since our study focuses on estirgdtie covariance matrix,

we evaluated the estimators based on how well they mininmeeisk variances in the
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MV and GMV portfolios.

First, in Section 3.6.1, we evaluate the risk of GMV poribalising the covariance
estimators of Table 3.2 with various-sampleperiods. We then compare the stability and
performance of the Tikhonov estimator to that of the shrgﬂ(astimatefls_)m. Next,
in Section 3.6.2, we perform similar experiments for the MMtfolio, varying thein-
sampleand out-of-sampleperiods as well as the required portfolio returns. We bypass
the difficulties of estimating. by assuming that it is known so that we can focus just on
the effects of the different covariance estimators. Fnal Section 3.6.3 we compare
the GMV and MV portfolio returns, and in Section 3.6.4 we camgotheir predictions of

risk.

3.6.1 GMV Portfolio

We simulate portfolio construction under the following sago. We solve the GMV
problem to construct a portfolio to hold fdrmonth, theout-of-sampleeriodT,. We
repeat this process for every month until we reBgtember 2007Finally, we evaluate
the variance of theut-of-samplaeturns from the GMV portfolio for each covariance
estimator.

When performing this experiment, the choiceimfsamplewindow sizeT, is im-
portant. IfT,, is too long, the data may include out-of-date informatiom t®e other
hand, ifT;, is too short, the resulting covariance estimate could sdiften lack of in-
formation. We varyl,, from 1 year to10 years.Later in Section 3.6.2, we will consider

the change of theut-of-sampleperiod7, as well. We start each experiment Zanuary
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1968 giving 480 rebalancing steps for all values ©f,. For each covariance estimator,

we perform the simulation fdz0 different choices oL00stocks.

Covariance Estimators in Experiments

We perform the experiment above for all the covariaesgématordrom Section 3.5.1 to
Section 3.5.9 plus two diagonal matricd%; andy,, for a total of11 estimators X has
diagonal elements equal to vart)], and any correlations between stocks are neglected.
S isanN x N identity matrix, which would yield an evenly distributedrffolio as the
solution for the GMV problem (3.1.2); thus it is a good benelkifor a well-distributed
portfolio. Sincef)sample is rank deficient, we modify it by adding small positive cargs
0; to its diagonal elements, as in (3.3.17). To compﬁtgwket and f]s_m, we need
the monthly market return data,(¢) in (3.5.1). In this experiment, we adopt equally-
weighted market portfolio returns including distributsfiom CRSP database as(t).
According to Ledoit et al. [55, p.607], an equally-weightedrket portfolio is better than
a value-weighted market portfolio for explaining stock Redrvariances.

The paramete?E for f)mm and isﬁtmn is static,constant over all time period$n
our experiment, we perform the experiments With- 1,5,9 for f]mm andk = 1,2,3
for £, ,iun. In contrast, the parameters offor X, _,,, and =, sun, k 108 & ras7-trun
and f)RMT:Tepl, anda for f]tikh have their own parameter choice methods as described
in Section 3.5, so we dynamically determine these parasieserh time the portfolio is

re-balanced.
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Figure 3.3: GMV portfolios: The singular values from each estimanrenT, = 4

years.

Figure 3.3 shows singular value plots from each estimatbichvillustrates the
filtering characteristics for the firgt-sampleperiod of T, = 4 years with a particular set

of 100 stocks.

Effect of in-sample Period T,

For each randomly chosen data set 1, .. ., 20), we calculatg(o;)s;, the annualized
standard deviation of the sample portfolio return, by nplying the monthly standard
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Figure 3.4: GMV portfolios: The mean db;)5, over different choice df,.

deviation byy/12. The subscripﬁl denotes the specific choice of covariance estimator.
Figure 3.4(a) and Figure 3.4(b) show the mean&ofy; for the static estimators and the
dynamic estimators. The standard deviations of(thes; from each estimator were at

most0.56 for all time periods, except for the occurrence of valuesap 18 for isample
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and up t06.50 for )y so the results did not seem sensitive to the particular

s—otrun(k=3)1
choice of 100 stocks.

For most estimators, the; )5, decrease until a particuldi, and increase after that
point, showing the advantage of using a sufficient amountisibty but not too much
out-of-date information. This is particularly evident fﬁ}sample, since it assumes that
all of its data are reliable. At the opposite extrer(‘rg,)immet from f)mwket increases
with T,,, which implies that the correlation among stocks cannotlg &xplained by a
single market index. For small valuesqufttmn behaves Iikeflmarket, but performance
can be improved by taking ~ 5, making the estimator less sensitive to out-of-date
information. The diagonafv shows a better tolerance to out-of-date information than
isample, which may imply that the sample variance estimation is Esssitive to the
choice ofT,, thanthe samplecovariance estimation. The estimators that dynamically

determine the filtering parameterE (i, Ssm, Sssrr 3 > M Tirept, AN

s—otrun(k=1)1
> ruTrun) @ISO Show good toleranc@hereforemodestly filtered factor structures are
better at filtering the out-of-date information than a sanfgictor or full factor structure,
but all estimators benefit from an appropriate choice of wwndize.

Compared to the truncation-based estimatorsfﬂlﬁgJT:trun and f)tmn, Tikhonov
generally performs better when thresampleperiod is shorter than its own optimal size,
which isT,, = 4. This result can be explained by the characteristics of tiilearing
functions. Whileg?,, ()\;) preserves the relative magnitudes of eigenvalues by gradua

attenuationg?,;7..un (Ai) OF 2. ();) discard them all. Thus, when the smallest eigen-

values are still important, the Tikhonov filtempirically shows superiority. However, as
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Figure 3.5: GMV portfolios: The performance of static and dynamic chata and~

in 20 experiments.

noise level increases with longéy,, the performance reverses.
Compared to the other shrinkage-based estimators, Tikhdtesing ¢2,, (\;) pre-
serves the smallest but still informative factors bettemtla single rate reduction by
2 (\) andg? (\:) or a replacement with a constant valuedy, ..., (A:;) when

s—m s—trun

T, is relatively short{,, < 4). On the other hand, fdf,, > 7, it becomesvident that

Yo, 2 ) andeRMT:repl show better performance thévhikh. This is because

s—>t7‘un(/15:1

itikh has relatively weaker tolerance to the contamination byofutate information.

Stability of Tikhonov Parameter Choice

In this section, we evaluate the stability of our parameteicemethodgrom Section 3.4.
For a particular choice af00 stocks, we observe the change of the dynamic parameters

for itikh and-~ for f)s_m. In this experiment, we set the window siz€lgs= 48 because
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both estimators have the smallest mean valuggg; for that window size.

Figure 3.5(a) illustrates the change of the ratio of the dyigally chosen Tikhonov
parametery, to the largest singular valug of corr,[r(¢)], and the change of,, for
f]s_m. The results for 20 choices of the 100 stocks are shown, staptvat both param-
eter choice methods far, and~p are quite stable during the whole experiment. The
resulting annualized standard deviationgafs, range from10.16% to 10.30% for f]tikh
andX,_,,., for both the static and dynamically-determined paranseter

We repeated this numerical experiment keeping the ratiq and the parameter
~ constant over all time periods. (We use the notatigrand~s for this statically de-
termined parameter.) This static parameter choice may egiractical in real market
trading, since we cannot access the future return infoonathen we construct a portfo-
lio. However, we can find a statically optimal ratio from teigperiment for a comparison
to ap/s; andvp. Figure 3.5(b) shows how the standard deviation of podfoditurns
changes asg/s; and~g increase. The optimal ratief /s, was0.27 with resulting stan-
dard deviation of portfolio return$0.16%, and the optimaty{ was0.59 with resulting
standard deviation0.27%. These statically optimal values are represented by dashed
lines in Figure 3.5(a). Therefore, we can see that bagtlhs, and~, remain near their
statically optimal values?; /s, andv%. Moreover, the static and varyingvalues produce

similar risk variance.

3.6.2 MV Portfolio

Now, we observe the behavior of the MV portfolio resultingrfr each covariance esti-
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Figure 3.6: MV portfolios: The average annualized standard deviatiengs, —of port-

folio returns asin-sampleperiod 7, and out-of-samplegeriod 7, changes with different

settings of required portfolio returaq.

mator. In this experiment, we vary tloat-of-samplgeriod7, and the required portfolio

returng as well as thén-sampleperiodT,,. We changd’, from 2 months to 6 months,

2We omit the case df}, = 1 month, since it gives us a trivial result that the portfokdurns are equal

to the required portfolio returpmaking(c; )5, zero for any covarianck and any window siz&,. This is

becausg: equals the realized stock retunr{$) in the out-of-sampleeriod.
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T,, from 1 year to 10 years, angdfrom 0 % to 20%. As we mentioned before, the per-
formance of the MV portfolio is quite sensitive to the estiioa of stock returnge. In
order to evaluate covariance estimation with no influencaedn estimation, we assume
a perfect prediction of stock returpg which means we estimage by the average(t)

during theout-of-sampleeriod.

Effect of out-of-sample Period T,

Theout-of-sampleeriodT, determines how fast we react to the changes in the market.
Figure 3.6 shows how the avera@g)gtikh changes a$%, andT,, vary, forq = 0%, 10%,
and20%. We can see thdb;)5 ~has atendency to increase as we hold the portfolio

for longerT,. Similar results were obtained for all other covarianceestors.

Effect of in-sample Period T,

Similar to Figure 3.4 for the GMV experiment, we comparedrttean of(o; ), for differ-
ent covariance estimators, varyifig andq in Figure 3.7. Based on the result of Section
3.6.2, we fixedl,, as 2 months in order to compare the smallest standard d@wsdtiom
the estimators. The behaviors of MV portfolios with resgedhe change of’, are very
similar to the GMV portfolio for most covariance estimatofSor example, as we ob-
served for the previous GMV experiments, the MV portfoliog-igure 3.7 also suffered
from lack of information wherl’, was too short and suffered from out-of-date infor-
mation when’’,, was too long. This implies that the choice of window siZgis very

important for the MV portfolio as well as the GMV portfolio. ddeover, each estimator
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Figure 3.8: MV portfolios: The average annualizéd;)s versus required returr for

each estimator wheh, = 2 months and’,, = 3 years.

shows very similar shapes of curves for the GMV and the MV [gois, except that the
curves for the MV problems tend to shift upwardeg@screases.

However, in contrast to the GMV problem where most of contpetiestimators
have optimall’,, around4 years, the optimal’,, for most estimators was arouldyears
for the MV problem (Gray-colored vertical dot-dash linedicateT,, = 3 years in Figure
3.7). This may be because they have differauitof-sampleeriods:7, = 1 month for

the GMV problem in Figure 3.4 arifl, = 2 months for the MV problem in Figure 3.7.

Effect of Required Portfolio Return ¢

Figure 3.6(d) summarizes the results from Figure 3.6(a)iguré 3.6(c). As we can
expect, the surfaces c()tri)gﬁkh move upward ag increases. For all the estimatdrs
with particular choices off, = 2 months andl;, = 3 years, Figure 3.8 also shows

that(0;)5 gradually increase agincreases frond% to 20%, which explains a trade-off
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Figure 3.9: MV portfolios: The average annualizég;)s, versus average annualized

(0i)5-

between risk and return from the MV portfolio.

Efficiency of Portfolio

The mean-variance plot shows the efficiency of the MV potfol Let (1;)s denote
the annualizedmean of the realized portfolio returns in thxh random choice of 100
stocks { = 1,...,20). In order to evaluate the portfolio efficiency by each estion,
we compare the change of averdge)s, versus the change of avera@e)s;, varying the

required returry from 0% to 20%. Figure 3.9 presents the average of realized means and
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standard deviations of all the estimators for the casds ef 2 months and’,, = 1 year
or 3 years. Curves to the left of and above the others correspoiftetmore efficient
portfolios.

WhenT,, = 1 year, where we have insufficient historical daiv};,;kh generates the
most efficient portfolios (See Figure 3.9(b)). The shrirkagtimators with a target af
single factorlike f)s_m and fJHtmn(k:l) are also efficientompared to other dynamic
estimators. Wherl,, = 3 years, where we have near optimal historical ditakh,,

Y f)RMT:Tepl, andf)Hm generate relatively efficient portfolios (See Figure 3)R(d

3.6.3 Comparison of GMV and MV Portfolio

Now we observe how the covariance estimators affect thezeshportfolio returns at
every re-balancing point for the GMV and the MV problems. Fmtance, Figure 3.10
shows the fluctuations of the portfolio returns BY,,,,,;.. and Xy, at the first100 re-
balancing points whefh,, = 3 years and, = 2 months. While the annualized returns of
the GMV portfolios fluctuate arountl %, and the annualized returns of the MV portfolio
fluctuate around their required retuyn Note that the GMV mean return is greater than
that for the MV portfolio withg = 0%. Similarly, the standard deviations in Figure 3.4
are greater than the corresponding ones in Figure 3.7(affignde 3.7(b).

On the other hand, for both GMV and MV, trfe“kh portfolios have greater mean
return and smaller variance than those frﬁggmple, which implies more efficient portfo-
lios. This result is consistent with the plots of means vestandard deviations in Figure

3.9.
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Figure 3.10: GMV and MV portfolios: The annualized portfolio returns &etre-

balancing points for the GMV and the MV problem with différeguired returns;.

3.6.4 Risk Prediction

Laloux et al. [54] showed empirically that their estimaﬁ)ﬁMT:Tepl predicts the risk

more accurately thaﬁ]smple. They simply divided the dataset into two equal time peri-

ods forin-sampleandout-of-samplgeriods, and compared the estimated standard devia-

1

tion (W' $w)z from (3.1.1) to the realized standard deviat{on) 5, for the out-of-sample

period. They assumed perfect prediction for means of steitkms as we did in Section

3.6.2.

We evaluate the accuracy of the risk prediction of each ¢anee estimator in a
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Figure 3.11: MV portfolios: The relative differences between averageeded risks and

average realized risks by each covariance mawratyingdifferent required returng.

similar way. However, rather than following their equalidien of in-sampleand out-
of-sampleperiods, we varied’, with T, = 2 months, and we simulated the re-balancing
scenario as in Section 3.6.2. Finally, we compute the r&alifference between the
average estimated standard deviations from (3.1.1) anavitiage realized standard de-
viations for the most competitive estimators.

Figure 3.11 shows the relative difference for the casé,of 1 and 3 years which
correspond to the case of insufficient historical data aedrimimizer of averagés;)s;.
The realized standard deviations were greater than theasti standard deviations for
all estimators. However, it turns out thﬁ;ikh has the smallest difference for both cases,

giving us the best risk prediction.
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3.7 Conclusion

In this study, we applied Tikhonov regularization to impedte covariance matrix esti-
mate used in the Markowitz portfolio selection problem. Wi §he previous covariance
estimators in a common framework based on the filtering fanet?()\;) for the eigen-
values of cory[r(¢)]. The Tikhonov estimatofltikh attenuates smaller eigenvalues more
intensely, which is a key difference between it and the diilter functions.

In order to choose an appropriate Tikhonov parameténat determines the in-
tensity of attenuation, we formulated an optimization peabminimizing the difference
between corfe.(t)] andly based on the assumption that the unsystematic factors are
uncorrelated.

We performed empirical experiments to evaluate covariastenators. For the
GMV portfolio selection problem, the Tikhonov choice gate smallest average stan-
dard deviation of the return when the-sampleperiod was 3 or 4 years, and was not
much worse than competitors for other periods. The choigeacdmeter was relatively
stable. For the MV portfolio selection problem, the Tikhendhoice was among the
most efficient portfolios and the best estimates of risk. &boer, the Tikhonov estimator
performs relatively well in the circumstance of insuffididnstorical data. We believe
that this parameter selection method is quite promisingtive to previously proposed

methods.

90



Chapter 4

Constraint Reduction in Semidefinite

Programming

In this chapter, we study matrix reduction in semidefinitggpamming (SDP)In interior
point methoddor constrained convex optimization, vean use the&schur complement
matrix to solve a reduced linear system for each iteration.

Matrix reduction is applied to the Schur complement matrix. In@sito the prob-
lems introduced in the previous chapters, the reduced phitie matrix are neither error
nor noise, but unnecessary constraiifiseseunnecessary constraints are inacaveldo
not makeanimportant contribution tdollowing the path towardhe optimal solution, but
still increase theomputational load.

We present an infeasible primal-dyakdictor-correctorinterior point method for
SDP with constraint reductiormhroughexperiments, weseethe effect ofmatrix reduc-

tion and make important observationsed in the next chaptéo construct an algorithm
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with global convergence.

4.1 Introduction

Constraint reduction in interior point methods (IPMs) hasideeply studied especially
for linear programming (LP) problems. That is because [P&dgiiremany computations
periteration comparetb the simplexnethod but tend to require fewer iterations.

Prior work onconstraint reduction in LBeginswith Dantzig and Ye [16]. They
developed duild-upvariant of a duahffine-scalingalgorithm. In their method, starting
with a small working set, they add more constraints to thekwmgr setuntil the current
step becomes feasible with respect to the full set of comsstaTone [86] proposed an
active setversion ofthe dual potential-reduction algorithm by Ye [95]. This algbm
also starts witta small working set and adds constraiiftthe current working set does
not sufficiently decrease the potential function. Kaligkil&/e [48] modified Tone’s algo-
rithm to exploit the structure of large-scal@¢ransportation problems. Lateten Hertog,
Roos, and Terlaky [22)roposed duild-up-and-dowrpath following method with a log-
arithmic barrier function, which follows a central path defilby a smallworking set as
long as itis feasible with respect to the full set of constigi Once it becomes infeasible,
the working set is updated appropriately, and it restadisifthe previousterate.

Tits, Absil, and Woessner [84] developadnew constraint reduced versioh a
primal-dual affine-scalingnethod (rPDAS) and Mehrotrajsredictor-correctormethod

(rMPC). While previousconstraintreduction schemes test the feasibilitytbé current
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working set with respect to the full set obnstraintstheir method adaptively updates the
working set without any acceptability test. They provedglcconvergence and quadratic
local convergence of rPDAS undamondegeneracy assumption, but polynomial com-
plexity wasnot proved. Later, Winternitz et al. [93] proved the globaheergence of a
new version of rIMPC relaxing th@ssumptionsf [84].

Adaptive constraint reductiomas beerapplied to a series of optimization prob-
lems. Jung, O’Leary, and Tits [46] proposed a constrainddaton for training support
vectormachinegSVM), and Williams [92] applied preconditioning to SVM ining to
improve its efficiency. Later, Jung, O’Leary, and Tits [4€éeloped a constraint-reduced
affine-scalingmethod forconvexquadratic programming (QP), and verified its global
convergence and quadratic local convergence.

In this study, we extend constraint reduction tpradictor-correctormethod for
diagonal block-structured SDP problems. The most comjoutaity intensive stepn
anIPM for SDP is the construction dhe Schur complement matrix. By ignoring un-
necessary constraints, we can reduce the computatiorchffétoaomputing theSchur
complement matrix, so that each iteration can finish with tsst.

We summarize the organization of this chapter: In Secti@nwe present an IPM
for SDP and discuss the main computational step. In Secti®nwle see how block
diagonal structure simplifies the computation, and preseonnstraint-reducegredictor-
corrector algorithm. In Section 4.4, we demonstrate how well the pseploalgorithm
solves SDP problems. In Section 4.5, we summarize impodbaservations from the

experiments to guide a new algorithm introduced in ChaptelBé&fore proceeding, we
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S” the set ofn x n symmetric matrices

S” the set ofn x n skew-symmetric matrices

St the set ofn x n symmetric positive semidefinite matrices
Sty the set of» x n symmetric positive definite matrices

X >0 a positive definite matrix

X=0 a positive semidefinite matrix

AeB =tr (AB") the dot-product of matrices

w=(XeZ)/n the duality gap

vec(X) the vectorization of a given matrix

mat(x) the inverse of veX)

symm(X) = (X + X") the symmetric part oK
7 = Zlztl) symmetric square
7Y symmetric square root: an inverseiof x>

xr- =

Table 4.1: Notation for the SDP.

highlight some special cases of SDP.

4.1.1 Special cases of SDP

We brieflyexplain the relation betweesDPandother optimization problem's We make

use of the definitions in Table 4.1. The primal and dual SDPleras are as follows:

Primal SDP: m)}nCo X st AeX=pfori=1,...,m, X=0, (4.1.1)

Dual SDP: maxb"y st » yA; +Z=C, Z =0, (4.1.2)

y =1
whereC € §", A, € S, X € 8", andZ € §".
To explain some special cases, the following property of GuScomplement matrix is

useful.

1The book by Boyd and Vandenberghe [7] is a good referencediaildd explanation.
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Lemma 4.1.1(Schur Complement)When

Hll H12
H= :
HY, Ha
whereH;; = 0 andHy; is symmetric, themd is positive (semi)definite if and only if

(Ha — HI,H'H 1) is positive (semi)definite.
Proof. See Theorem A.9in [17, p.239]. O

First, LP and QP have a linear inequality constraint,
ATy <c,

whereA hasm columns. It is easy to see the linear inequality constraiatspecial case
of (4.1.2) in which all theA; andC are diagonal matrices.

Second, quadratically constrained quadratic programig@@QP) has quadratic inequal-
ity constraints,

Y'Qy+qly+e; <0 forj=1,....p,

whereQ; € S". By Lemma 4.1.1, this is equivalent to

! M,y
= 0,
Y'Mj —¢; —djy
whereQ; = M7M;. We can rewrite this as
2 tZ;= ., Z; =0,
=1 —mﬁ qji 0 —Cj
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wherem;; is thei-th column ofM;, andg;; is thei-th entry ofq;. We can see that the
guadratic constraint is the special case of (4.1.2) in whicbontains the diagonal block
whose elements in the last row and the last column are n@szer

Third, second order cone programming (SOCP) has inequalitgtraints,
IMjy+df| <aly+e;, forj=1,....p,

which is equivalent to

@y +c)l Myy+d;
(Myy+d)" qfy+g¢;

by Lemma 4.1.1. We can rewrite the inequality above as

i=1 —ml —qgji d’ ¢
Hence, the second order inequality constraint is the spease of (4.1.2) in whicld;
contains the diagonal block whose elements in the diagdinallast row, and the last
column are non-zeros (arrow-shaped).

Therefore, diagonal block-structured SDP includes LP, QBQP, and SOCP as

special cases. From this point of view, this study is a gdizechversion of [47, 84, 93].

4.2 Interior Point Methods for SDP

We discuss how standard IPMs find an optimal solution of SDét. nkore details, see,

for example, [17, 45].

96



4.2.1 Interior Point Methods for SDP with symmetrization

We assume that all the constraint matridesfor : = 1,..., m are independent. This
assumption guarantees a unique direction which will b@duced now. In additionye
assume that the primal and dual SDP problems (4.1.1) an@®)ave finite optimal so-
lutions with equal optimal values. Under this assumpti{®fy, Z) is an optimal solution

of (4.1.1) and (4.1.2) if and only if it satisfies

A;eX=0b fori=1,...,m, (4.2.1)
(i yA) +Z=C, (4.2.2)

i=1
XeZ=0, (4.2.3)
X=0, Z>0. (4.2.4)

A duality gap is the difference between the primal and dug@dailve values for a given

point (X,y, Z). For simplicity of notation, we measure the duality gapbgefined as
1= (CeX —Dbly)/n.

For a feasible solution satisfying (4.2.1) and (4.2.2),dbality gapu can be computed

as

_ 1 = L (S A b7
po= —(CeX by)—ﬂ((ZyzAﬁZ)-X by)

=1

— (iyi(Ai.tz.X—bTy)

= - (ZyibﬂrZoX—bTy) :%(bTerZoX—bTy) = 1(x.Z).
=1

—_

n
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So, (4.2.3) implies that the optimal values for the primal doal problems are equal, as
we assumed.
Primal-dual IPMs for SDPs make use of the following systemqfations to define

the Newton step and to measure closeness to optimality:

A e AX=r, fori=1,...,m, (4.2.5)
O AyiAi) + AZ =Ry, (4.2.6)

i=1
XAZ + AXZ =R, (4.2.7)

where the primal residual, dual residual, and complemgyntasidualare defined by

Ty =b; —A;eX fori=1,....,m, (4.2.8)
Ri=C—Z-) AyA, (4.2.9)

i=1
R. =zl — XZ, (4.2.10)

andy defines the current targduality gapon the central pathThe equation (4.2.7) is

motivated by the goal of computingX andAZ such that
(X+ AX)(Z+ AZ) =7l
When this equation is satisfieithe duality gap becomes
1 1 1, _
—(X+ AX) e (Z+ AZ) = —tr (X+ AX)(Z+ AZ)) = —tr (ul) = L.
n n n

That is why we caliz the target duality gap. Note that the telfXAZ is ignored by

linearization.
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By solving (4.2.5)-(4.2.7) setting = 0, we can find a directiotAX, Ay, AZ)
for an updated pointX + AX,y + Ay, Z + AZ) to satisfy (4.2.1)-(4.2.3) ignoring the
linearization errodXAZ. However, we may not be able take a full steghis direction
due to the semidefinite inequality constraikts- 0 andZ > 0in (4.2.4). So, we findhe
longest step length € [0, 1] for whichthe inequality constraints are still satisfied, so that

the point is updated as
Xt =X+0AX, yr =y+0Ay, Zt =Z+0AZ

We repeat this process until a given tolerance is satisfiés dlgorithm is called as an
affine-scalingmethod. Alternatively, we can solve (4.2.5)-(4.2.7), éasing the target
duality gapp. This methods a path-followingmethod since théerates followa central
path, defined as the setpdintssatisfyingXZ = 1 |. Practically, most effectivenethods
are predictor-corrector methodsn which a predictor step solves (4.2.5)-(4.2.7) setting
7 = 0 to estimate a target duality gap and a corrector step solves the equations again
using the estimated duality gap. All of these methods aregcaized as IPMs. In this
work, we apply constraint reduction tgpaedictor-correctormethod.

Specially in SDP, IPMs require a symmetrization proceSsice the solution of

(4.2.7) is not necessarily symmetric, we repldoé with its symmetric part
1 T
AX + Q(AX + AX)

after solving (4.2.5)-(4.2.7). The solution with this symmzation is called the HKM

direction, named afteiHelmberg, Kojima, and Monteiro [38, 51, 61Note thatAZ is
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always symmetric by (4.2.6). Thus, we effectively solvedigeations

Ao AX =71, fori=1,...,m, (4.2.11)
(Em: AyA;) + AZ = Ry, (4.2.12)
i=1
XAZ 4+ AXZ = R,, (4.2.13)
AX = AX + W, (4.2.14)

whereAX € 8" andW € S" . By (4.2.14),AX is the symmetric part oAX, so
AX = symm(AX).

SinceA; € 8" andW € S, A; ¢ W = 0. By this property, the symmetrized direction
AX from (4.2.11)-(4.2.14) also satisfies (4.2.5), so the priesidual is the same with or

without symmetrization.

4.2.2 Predictor-Corrector Algorithm

To solve (4.2.11)-(4.2.14), we vectorize the equations r@ulice the equations to an
equation involving the Schur complement matrix. For furtbiscussion, let us briefly
introduce a vectorization operation and Kronecker prodactectorization, ve¢X) €

R™ for a matrixX € X"*" is defined as

vec(X)= | & |

Xn

wherex; is thei-th columnof X. The vectorized variables will be denoted by lower-case

letters: for examplex = vec(X).
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ForG € RP*? andH e R**!, the Kronecker producty) is defined as

911H gqu

gH ... gy H

whereg;; is the(s, j) entry of G. Along with the vectorization, we will frequently use the

following properties of the Kronecker product. For apprafe size of matrices,

(E@F)(GaH) = (EG)® (FH),
(ExF)™ = E'oF
ExF)" = ET®F",

(E®F)vec(X) = vec(EXF").

Using the vectorizationye defined € R™*"*, containing all vedA,), as

vec(A;)”

T

vec(A,,)

With the matrix.A, by using the vectorization and the Kronecker product, wetoreze

the equations (4.2.11)-(4.2.13) as

AAX =1, (4.2.15)
ATAYy+ Az =1y, (4.2.16)
X®)AzZ+ (I ® Z)Ax =r,, (4.2.17)
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where

r, =b—Ax, (4.2.18)

rq=c—z— Aly, (4.2.19)

r. = vec(ul — XZ), (4.2.20)
wherer,, € R™ contains primal residuals, for: = 1,...,m.

Using Gauss elimination, we can reduce the equations,, Riestewrite (4.2.16) as
Az=ry— AT Ay (4.2.21)
By substitutingAz from (4.2.21) into (4.2.17), we have

(X&) (rg — ATAy) + (1 ® Z)Ax =,

I®2)A%x = (X D(ATAy —r1g) + 1.
By multiplying (I ® Z 1) to the left of both sides, we have
AX=(X@Z HATAY —1) + (1 ®Z Yr.. (4.2.22)
Finally, by substituting\x from the equation above to (4.2.15), we have

AAX = A1 @ Z7Nr — AX©Z7Y)(ra — ATAY) =1,

AX@ZHATAYy =1, + AXRZ g — Al @ Z H)r..
Thus, with Schur complement matiit, we have a reduced linear equation,

MAy = g, (4.2.23)
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1. Input : (X% y°, Z% (initial value)
2. Repeat until convergence criteria are satisfleakt = 0,1, .. .,

(@) (X,y,2) « (X", y",Z")
(b) Settingzz = 0, compute(AX, Ay, AZ) by (4.2.21)-(4.2.23).

(c) Find the longest step lengftsuch thaiX - 0 andZ - 0 where
X=X+0AX, Z=Z7Z+0AZ.

(d) Compute a target duality gap« (X e Z)/n.

(e) Usingthe updated target duality gap compute(AX, Ay, AZ) by (4.2.21)-
(4.2.23).

(f) Find the longest step lengthsuch thatX™ = 0 andZ™ = 0 where
Xt =X+0AX, y" =y+0Ay, Zt =Z+ 0AZ.

(9) (X(k+1)7y(k+1)7z(k+1)) o (XY, ZY).
(h) Updater, andr, by (4.2.18) - (4.2.19).

Table 4.2: Constraint-reduced Predictor-corrector method.

where

M=AXeZ")AT,

g=r,+AX®Z Hry— Al @ Z Yr..

We can then comput&x andAz by (4.2.22) and (4.2.21).
Using equations (4.2.21)-(4.2.23), we establishghelictor-correctoralgorithm

for SDP as Table 4.2 similar to [17, Section 7.6h the predictor step, we solve the
equations setting = 0. With the predictor directiofAX, Ay, AZ), we determine the
longest step length which makesX + §AX > 0 andZ + §AZ > 0. Then, we compute
the duality gap fofX 4+ 0AX) and(Z +6AZ), and we use this estimate as a target duality
gapy for the corrector stepln the corrector step, with the estimated target duality gap,
we solve the system again atake the longest stepin the resulting correction direction
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which makesX + 0AX = 0 andZ + 0AZ > 0.
Note that we computihe Schur complement matriM only once for each iteration,
and use it twice for the predictor step and the corrector. Stéys is because wase the

predictor step only testimate the target duality gapwithout updating X, y, Z).

4.3 Constraint-Reduced Predictor-Corrector Method for
Block-Diagonal-Structured SDP

4.3.1 Block Structure

In this work, we focus on problems in which the matriéesandC are block diagonal:

whereA;;,C; € S™ fori = 1,...,mandj = 1,...,p. Then, we define a matrix

A; € R™" containing all vecA,;) as

vec(A;;)"

T

vec(A,,;)
For such problems, there is a block diagonal optimal satuiXibandZ*. This is because
any nonzero elements outside of the diagonal block ahmediately violate the dual

constraint of (4.1.2), and nonzero elements outside of thgotal blocks inX do not
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make any contribution to minimize the primal objective \&allie X. So we will require

our iterates to have the form

Using this block structureéhe Schur complement matriM in (4.2.23) can be com-

puted as

where

M; = A;(X; @ Z71)AT.

Hence, each eleme(M;),, of M; can be computed as
(M) = (X; A Z;1) @ Ay (4.3.1)

wherel <l <m, [ <h<m,1<j<p.
Suppose thad,; is densé. Then the cost of computirtge entire Schur complement

matrix M, including Cholesky factorization &f;, is
p «
> (4m+1/3)n3 + 2m’n; operations. (4.3.2)
j=1
The computation othe Schur complement matrix is the most expengaet of IPMs for

SDP and is0(mn® + m?n?). It is our goal to drop thenatricesM; which do not play

important roles irthe Schur complement matrid, so that we reduce the computational

2Refer to Fujisawa, Kojima, and Nakata [26] to see how to exfhe sparsity ofA;;
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cost. In the nexsection we classify the blocks into active and inactive blocks, disduss

why the lattercan be dropped.

4.3.2 Active and Inactive Blocks

From the optimality condition (4.2.3), we can see that
T:I) + TZ S n?

wherer, andr, are the ranksof an optimal solutiorX* andZ*. This implies that there
may exist blocks<; andZ; such thai} = 0 andZ; has full rank, s&; > 0 andZ; is in
the interior of the semidefinite coneWe will say that such sub-blocks aireactiveand
the other blocks aractive

For an inactive block(X} ® Z;~") = 0. We use this fact to guide our algorithm:
we try to find blockgX; ® Z;l) having norms small enough to igndareforming M.

Let us assume that we have a criterion to identify inactive active blocks in a
givenX andZ. Without loss of generality, we assume that the firbtocks are activand

the remaining of blocks are inactive\We Ietﬂi andA, denote the active and inactive

3According to Alizadeh, Haeberly, and Overton [1, Theorenm §i9], for a nondegenerate optimal

solution,
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blocks ofA;, so

>
I

>
I

whereA, € R, A; € R™7, andn = 7 + 1. Furthermore, let denote; andr; denote

the size of active and inactive blocks, so that

nj, n =

1 J

3)

Il
.Mm
"Mm

1

J

In a similar way, block matrice§X, X), (Z,Z), (R4, Ry), and(R., R.) are also defined.

We also defined € R™* and A € R™*" as

vec <3\1>T vec <5\1>T

=)
Il
=~
I

i vec(ﬂm)T | ] vec(ﬂmf |

Thenwe can expani¥l into active and inactive parts as

M=M+ M,

where

If |[(X®Z )| is small, we exped¥l is also negligible andve canomit it when we solve

the linear system.
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4.3.3 Constraint-Reduced Predictor-Corrector Method

Now, we consider the constraint-reduced linear system
MAy = g, (4.3.3)

where we replac# in (4.2.23) withM. So, we solve

(2()? ® 2’1),?) Ay=r1,+AX®Z Yy — Al @ Z7Vr..

In addition,Ax and Az are computed by

Ax=(X®Z ATAYy - (X@Z g+ (1 @Z M), (4.3.4)

Az=r,— AT Ay. (4.3.5)
After solving these equations, we can obtain the HKM dimthy computingAX as
AX = symm(AX). (4.3.6)

Using the equations (4.3.3)-(4.3.6), we can develgpeaglictor-correctormethod.
Our new algorithm takes an additional input parameter, ihesholdx, by which active
and inactive constraint blocks are classified:|X; ® Zj‘1|| > k, then we assume the
block is active. Otherwise, it is assumed inactive.
Thus, we modify step 2.(b) and 2.(e) of the algorithm in Tabhlz
2.(b)" Initially, M <« 0. For thej-th block wherej =1, ..., p,

M M+ A;(X; @ Z7 AT i [[X @ Z7Y| > .
Setting = 0, compute AX, Ay, AZ) using (4.3.3) - (4.3.6) WitV in place ofM.

2.(e)’ Using the updated target duality gap compute(AX, Ay, AZ) using (4.3.3) -
(4.3.6) withM in place ofM.
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Problem| Data file | m | n | #ofblocks| max block size

Schrijver A(19, 6) 156 | 632 432 20

Schrijver A(26, 10) 227 | 999 635 27

Schrijver A(28, 8) 466 | 1746 1326 29

Binary Schrijver A(37, 15) 468 | 2049 1327 38
Code Schrijver A(40, 15) 720 | 2900 2060 41
Schrijver A(48, 15) 1728 | 6198 4998 49

Schrijver A(50, 15) 2056 | 7278 5978 51

TSP TSPbay29 6090 | 13862 15 29
TSPeil51 33150 71502 26 51

Kissing | kissing3.5.5 (K (3)) 297 220 15 56
Number| kissing4_7.7 (K(4)) | 695 | 488 17 120
kissing.6_10_10 (K (6)) | 1792 | 1210 20 286

QAP QAP_Esc64ared 517 | 976 8 65
QAP_Escl6ered 90 179 6 17

Table 4.3: Structure of SDP problems.

In this algorithm, we assume that the resulting Schur compie matrixM has full rank,
so the equation (4.3.3) has a unique soluilgn This assumption will be dealt with below
in Chapter 5.

Next we discuss some problems for which this algorithm igeypate and results

of some numerical experiments.

4.4 Problems and Experiments

In this section, we demonstrate how wiké constraint-reduced versiontbie algorithm

in Table4.2 solvedlock diagonakemidefinite programming problems.
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(a) Binary code when = 3 andd = 2. (b) Example of TSP.

Figure 4.1: Example of Binary code and TSP.

4.4.1 Applications

We introduce problem® whichthe constraint-reduced SDP algorithm can be applied.
All of these problems havdiagonal block structuresind we summarize their structures
in Table 4.3.All of these examples result from relaxing a problem witleger variables

to one involving continuous variables.

Maximum Size of Binary Code

For a given word length, we want to know the maximumumberA(n, d) of words in
abinary code wittHamming distance at leagtbetween each pair of words. For= 3
andd = 2, A(3,2) = 4 achieved by the binary codg0, 0,0), (1,1,0),(0,1,1)(0,1,0)}
(See Figure 4.1(a))ln 1979, Schrijver [77] relaxed the maximum binary code peob

to SDP.
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(a) Case of = 2. (b) Case ofv = 3.

Figure 4.2: Example of kissing numbers.

Traveling Salesman’s Problem

The traveling salesman’s problem (TSPaigery well-known NP-complete probleriVe
are given a weighted grapgh(V, E') which has a set of verticds and a set of edges
with pairwise weights (distances);;. For a given starting point;, the TSP finds a path
visiting all vertices inV with minimum sum of distances. (See Figure 4.1(I))2008,

de Klerk, Pasechnik, and Sotirov [18] relaxed TSP to SDP.

Kissing Number

The kissing numbeK (n) is the maximum number aflenticalhyperspheres in dimen-
sions which touch a hyperspheséthe same radiugith no intersection. It is obvious
that K'(1) = 2 since two identical balls can be placed on the left and rigl of a given

ball. In the two dimensional case, a circle can be surrourye@ identical circles, so
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Locationl: A Location2: B

Location2

Locationl

fAcl fAD BC tBD d24 [

Location3

Locationd

Location3: D Location4: C

Figure 4.3: Example of QAP when = 4.

K(2) = 6. (See Figure 4.2(a))Newtonbelievedthat K'(3) = 12, but it was firstproved
in 1874 by Bender [4{See Figure 4.2(8). In 2007, Bachoc and Vallentin [2] relaxed the

kissing problem to SDP.

Quadratic Assignment Problem

Suppose that, for given facilities andn locations, we know pairwise flowg(i, j) be-
tweenfacilities and pairwise distance$:, j) betweerocations.We want to assign each
facility to one of the available locations in order to minzmithe total flow load, defined
to be the sum of flows times distances. lydbe a one-to-one correspondence function
which specifies the location for each facility.df1) = 2, then the first facility is assigned

to the second location. Using this assignment funciigi, we can express the total flow

4This image is obtained fromhttp:/en.wikipedia.org/wiki/Kissing_number_

problem
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load L as

L(g) =Y > fi,5)d(g(i), 9())-

i=1 j=i+1

Thus, the quadratic assignment problem (QAP) determinassignment functionp min-
imizing L(g). Figure 4.3 is an example with = 4. In 1998, Zhao et al. [96] relaxed the

QAP to SDP.

4.4.2 Implementation

We performed the experiments usiagnodified version oBDPT3 version 4 0imple-
mented by Toh, Todd, and Tutuncu [85]. Before startamyteration, SDPT3detects
dependent rows itd to be removed. The iteration starts wah infeasible point on an

i _ 0 __ 0 _
exact central path by setting = 0 andX; = p,| andZ; = p.l where

= max | 1,./n;, max LW
Pa i=Lop \ V7 i=hom \ 1+ || Al F ,

po= g (1vm, mox (14 IAgle), max (14 1Cyle) )

)’
..... m i=1,...,m

We modified SDPT3as described in Section 4.318, ignore the termsA;(X; ®
Z:")A” in the Schur complement matrid for a HKM direction when|X; ® Z;!|| <
for a givenk. Then, the directior\y is computed by solving (4.3.3), and the directions
AX andAZ are computed by (4.3.4) and (4.3.8)e varythe threshold: from 0 to 107 so
that we can see how constraint reduction affectdfi. Note that constraint reduction

does not occur wher = 0.

5The MATLAB package is available inhttp://www.math.nus.edu.sg/ ~mattohkc/

sdpt3.html
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The original SDPT3 usdabhe SYMQMR Symmetric Quasi-Minimal Residual algo-
rithm) to solve the linear equation (4.2.23), usthg Cholesky factor oM as a precon-
ditioner. SYMQMRminimizesa quasi-residual norm from Lanczos biorthogonalization.
We replaced8YMQMRwith SYMMLQ(Symmetric LQ) [63] which used feweiterations
to solve the lineasystems.

We performedhe experiment with the following SDP problerhs:

1. Binary code problem: Schrijve%(19,6), SchrijverA(26,10), SchrijverA(28,8),

SchrijverA(37,15), SchrijverA(40,15),
2. Kissing number problem: kissir§ 5.5, kissing4._7_7,

3. Quadratic assignment problem: QARcl6ered.

4.4.3 Results of Experiments

In Table 4.4, all the results @xperimentsaare summarized. In addition, in Figure 4.4,
Figure 4.5, and Figure 4.6, weacethe changdn infeasibility and dualitygaps the
changen HXJ@Z;1 || for each block, and the change of step length, for SchrifM&i0,15)
whenx = 10*, 105, and107 .

We can observe that primal infeasibilithe dual infeasibility, andhe duality gap
gradually increase abethresholdx increases. Agxpectedthe computatiorsavedby

constraint reduction also tends to increasdahe threshold increases

5The data files are obtained from the webpalggep:/lyrawww.uvt.nl/ ~ sotirovr/

library/ of E. de Klerk and R. Sotirov .
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Figure 4.4. Convergence measures, dropping criteria, and step lendtrs

SchrijverA(40,15)whenx = 10%.
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1) (2) (3) (4) ) (6) (7)
problem K primal dual relative # of | # of red. saved
residual residual duality gap | iter. | blksliter. FLOPs/iter.

Schrijver *0.0 531 x 10719 [ 3.32x 10713 | 540 x 1077 | 29 0 0 (0.0%)
A(19,6) | *1.0x10% | 998 x 1077 | 4.95x 10719 | 4.73 x 1076 | 29 98.00 6711 (6.6%)
1.0x10% | 210 x 107% | 4.63 x 1078 | 270 x 10~* | 24 63.00 4732 (4.7%)

1.0 x 10* | 1.05x 1071 | 1.38 x 10710 | 1.69 x 10~ | 29 5.50 25916 (25 6%)

Schrijver *0.0 2.89x 1077 [ 145 x 1071 [ 7.07 x 1078 | 52 0 0 (0.0%)
A(26,10) | *1.0 x 10?2 | 3.35x107% | 1.19x 10~ | 413 x 107 | 51 9.71 2620 (8.3%)
*1.0 x 103 | 2.60 x 1078 | 1.57 x 1071 | 2.55 x 107 | 51 11.50 26778 (8.5%)

1.0 x 10* | 4.85x 1077 | 1.54x107% | 1.74x 1072 | 30 9.94 35342 (11 2%)

Schrijver *0.0 112 x 1077 [ 3.99x 10713 [ 9.67x 1077 | 34 0 0 (0.0%)
A(28,8) | *1.0x10% | 839x 1078 | 3.67x 10713 | 7.52x 1077 | 34 11.88 96 (0.0%)
*1.0x 103 | 8.36 x 1078 | 3.46 x 10713 | 3.79x 1078 | 34 22.16 195 (0.0%)

*1.0 x 10* | 8.45x 107 | 6.65 x 10713 | 248 x 1076 | 34 49.15 3237 (0.8%)

Schrijver *0.0 1.78 x 107 [ 935 x 107 | 241 x10~7 | 57 0 0 (0.0%)
AB7,15) | *1.0 x 10° | 2.28 x 107% | 9.48 x 10715 | 2.41 x 1077 | 57 1.00 3.00 (0.0%)
1.0 x 101 | 590 x 1075 | 2.04 x 1071 | 3.00 x 1072 | 57 7.70 57029 (4.8%)

1.0x10% | 1.44x107* | 1.77x 1079 | 1.60 x 107! | 57 10.80 91999 (7.8%)

Schrijver *0.0 218 x 1074 [ 3.25 x 1071 [ 1.53x 10°* | 53 0 0 (0.0%)
_A(40,15) | * 1.0 x 10* | 3.73x107* | 3.53 x 10~ | 2.80 x 10~* | 53 5.66 77940.38(4.9%)
*1.0x 105 | 1.72x 107% | 341 x 1071* | 1.81 x 1074 | 53 15.29 | 209428 (13.2%)

1.0 x 106 1.98x 10° | 9.94x 1071 | 1.20 x 10° | 43 13.23 | 296751 (18.7%)

1.0x 107 | 3.63x1073 | 1.22x 10713 | 1.23x10° | 53 12.27 | 350146 (22 1%)

kissing *0.0 4.20x 1071 [ 3.22x 10712 | 3.24 x 1077 | 22 0 0 (0.0%)
355 *1.0 x 10° | 3.25 x 1071 | 1.39 x 10710 | 275 x 1072 | 22 3.17 11 (0.0%)
*1.0x 101 | 523 %1076 | 1.42x 1077 | 1.23x 1076 | 22 3.58 21 (0.0%)

1.0x10% | 252x 1075 | 1.19x 1074 | 275 x 10~ | 16 6.67 84 (0.0%)

kissing *0.0 841 x 1077 [ 1.63x 10710 | 417 x 1078 | 27 0 0 (0.0%)
477 *1.0x 101 | 243 x107% | 541 x 1071 | 1.59 x 1078 | 27 6.94 46 (0.0%)
1.0 x 102 8.86 x 100 | 3.37x107% | 4.14x 1072 | 27 8.59 99 (0.0%)

1.0 x 103 7.97x10° | 3.05x 1077 | 8.34x 1072 | 27 10.82 264 (0.0%)

QAP *0.0 4.03x107% | 292x107° [ 5.14x 1078 | 18 0 0 (0.0%)
_Escl6ered | *1.0 x 10 | 2.98 x 1078 | 1.05x 107% | 8.00x 10°7 | 18 31.80 95 (0.2%)
*1.0x 10* | 1.37x 1077 | 2.85x 1079 | 546 x 107 | 18 42.86 129 (0.3%)

*1.0x 10% | 1.70x 1076 | 3.61x107® | 7.80 x 106 | 18 45.12 135 (0.3%)

Table 4.4: Result of constraint reduction. Starred entries (*) copend to convergent it-
erations. Columns (6) and (7) display the number of redudeckis and saved operations

per iteration, averaged over iterations where constragduction is applied.

With an excessively large, iterations fail toconverge. For example, in Figure

4.6(a), we can sebatthe infeasibility and the duality gap do not decreatentoo many

constraints blockare reducedin Figure 4.6(c), the step lengffbecomes very short after

the 40-th iteration. This is because the directiqdsX, Ay, AZ) try to move away from
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the semidefinite cone since the corresponding constramakblare not included ithe
Schur complement matrix even though the current point ig gkrse to its boundary.

On the other hand, with a moderatalueof x, the IPM converges with the same
number of iterations as the case of no constraint reductioaddition, infeasibility and
duality gaparenot so much sacrificed. (For instance, see the cases of Bah#i{26,10)
whenx = 102, SchrijverA(37,15) whenx = 102, SchrijverA(40,15) whens = 10°,
kissing3_.5.5 whenx = 10°, and kissingd_7_7 whenx = 10°.) In Figure 4.4(b), which
is the case of successful constraint reduction, the inacinstraint blocks start to be
droppedonly after the active blocks and the inactive blocks are cleadtirjuishable.
These results imply that we need to find an appropriate tbtéshby which the active
and inactive blocks are classified correctly.

In this experiment, we kept the threshaldtaticduring the algorithmFigure 4.5(b)
indicates that this static threshold may cause incorresisdication. In this example, the
thresholdx = 10° was a correct criterion at the 30-th iteration, but it turns © be
too high around the 40-th iteration. This implies that thesholdx should be adjusted
adaptively considering current values|of; @ Z;'|.

Constraint reduction shows its merit for problems in whitddtive constraint blocks
of moderate sizesccursuch as SchrijveA(26,10) and SchrijveA(40,15).In particular,
SchrijverA(26,10) contains 9 inactive constraint blocks whose sizeare 1, 3, 5, 7, 9,
11, 13, 15, and 17. SchrijveX(40,15) contains 15 inactive constraint blocks whosessize
n;jarel,3,5,7,9,11, 13, 15, 17, 19, 21, 23, 25, 27, and 29. Wel saves.3% of the

computational cost fothe Schur complement matrix when= 102 in case of A(26,10)
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and13.2% (whenx = 10°) in case of A(40,15).

In contrast, the effect of constraireductionare not visible in SchrijveA(28,8),
kissing3_5_5 and kissing3.5.5. This is because those problems congither few or
no inactive constrainlocks SchrijverA(28,8) contains 77 inactive constraints of size
n; = 1 and only one inactive constraint block of size= 3. kissing3_5_5 contains only
4 inactive constraints of size; = 1. However, our constraint reductios effective for

SDP problems that havelarge numbepf large inactive dual constraints.

4.5 Conclusion

In this chapter, we showed how we can apply constraint remtutd block diagonal SDP
using apredictor-correctormethod.

In addition, we demonstrated howarying the threshold influences the iterations
of the interior point method. From the experiments, we make thmggortant observa-

tions.

1. For successful constraint reduction, the threshataust be able to distinguish the

inactive constraint blocks from the active blocks.

2. The threshold: needs to be adaptively adjusted becap$e® Zj‘1|| changes dy-

namically for each iteration.

3. Constraintreduction becomes effectiweghenthe SDP has largenumberof inac-

tive constraint blocks.
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In the next chapter, we will resolve the iss@esingfrom the first two observations
by presenting adaptive criteria for constraint reductind aerifying validity by proving

global convergence.
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Chapter 5

Constraint-Reduced
Predictor-Corrector Algorithm for
Semidefinite Programming with

Polynomial Complexity

The previous chapter introduced how constraint reducteonbe applied to thpredictor-
correctormethod for SDP. The experiments with test problems raisesvassues about
the criteria to adaptively reduce constraint blocks.

In this chapter, we propose a new infeasipledictor-correctoralgorithm with
adaptive criteria for constraint reduction. We verifyvedidity by proving global conver-
gence. We also prove its polynomial complexin In(ey/¢)), for a given convergence

tolerance: and an initial residuad,.
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The algorithm is a modification of one with no constraint retttan, due to Potra
and Sheng [71], and can be applied when the data matriceslaule diagonal. The
constraint reduction generates an extra texX, in the primal direction which is not
reflected in updating, but perturbs the complementarity equation. Due to this Ay,

a series of lemmas for global convergence by Potra and Sifapg¢ed to be modified.
The proposed adaptive criteria restrain the magnitud&Xf so that we can guarantee

the step lengthd is long enough for iterations to converge.

5.1 Constraint-Reduced Predictor-Corrector Method for

SDP

We use the notation defined in Chaptevith minor changes. We say that a poiit y, Z)
is feasible if it satisfies the primal and dual constraintglii.1) and (4.1.2)Throughout

this chapter, we assume tfalowing.

Assumption 5.1(Slater condition) There exista primal and dual feasible poir(iX, y, Z)

such thatX = 0 andZ = 0.

Under Assumption 5.1 the primal and dual SDP problems hatienapsolutions

with equal optimal valués

5.1.1 HKM Direction for Symmetrization

1Seefor examplede Klerk [17, Theorem 2.6 in p.33]
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In this section, we briefly review the equations introducedChapter 4 and introduce
new equations having a symmetric solutidX and AZ with no extra symmetrization
step. The equations introduced in this section are veryulgédfen we prove the global
convergence of a nepredictor-correctoralgorithm in Section 5.2.

Under Assumption 5.1(X,y, Z) is an optimal solution if and only if

A;eX=Db fori=1,...,m, (5.1.1)
(Xm: yiAi) +2Z=C, (5.1.2)

=1
XeZ=0, (5.1.3)
X>=0, Z>0. (5.1.4)

So, we solve the following Newton equations to feadirection towardhe optimal solu-

tion.

Ao AX =71, fori=1,...,m, (5.1.5)
O AyiAi) + AZ =Ry, (5.1.6)

=1
XAZ + AXZ = R,, (5.1.7)

where the primal residual, dual residual, and complemiptasiduals are defined by

Tp’i = bl_AZ.X fOrizl,...,m, (518)

Ri = C-Z-) uA, (5.1.9)
i=1

R. = 7l —XZ, (5.1.10)

wherep defines the current target point on the central pathSDP, IPMs require sym-
metrization sincé\X from (5.1.7) is not necessarily symmetric (See Sectiorld.Zhus,
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we effectively solve the equations

Ao AX =71, fori=1,...,m, (5.1.11)
(i AyAi) + AZ =Ry, (5.1.12)
=1
XAZ 4+ AXZ = R,, (5.1.13)
AX = AX + W, (5.1.14)

whereAX € 8" andW € S . By (5.1.14),AX is the symmetric part oA X,
AX = symm(AX).

The direction(AX, Ay, AZ) is called the HKM direction; named after Helmberg, Ko-
jima, and Monteiro [38, 51, 61]. Sinck; € S" andW € 8", A, ¢« W = 0. By this
property, the symmetrized directiahX from (5.1.11)-(5.1.14) also satisfies (5.1.5), so
the primal residual is the same with or without symmetrizati

For a fixed weighting parametére [0, 1], Kojima, Shindoh, and Hara [51, Theo-

rem 4.2 on p.100] showed that the equations (5.1.11) andl@.With
X(AZ + dW) + (AX + (1 —d)W)Z = R, (5.1.15)

have a unique solutiofAX, Ay, AZ, W) € 8" x R™ x 8" x S". From this point of
view, (5.1.13) with (5.1.14) is the case &f= 0 in (5.1.15), and the equations (5.1.11)-

(5.1.14) have a unique solution. Later, Monteiro [61] shdwet we can obtain the same
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direction without the extra symmetrization step by solving

Aie AX =r, fori=1,...,m, (5.1.16)
O AyiAi) + AZ =Ry, (5.1.17)
=1
symm(Z'/2(XAZ + AXZ)Z7'/?) =l — ZV/2XZ!/2. (5.1.18)

Specifically, Monteiro [61, Lemma 2.1 and following disciasg proved that the solution
of (5.1.11)-(5.1.14) is the unique solution of (5.1.16)34(%8). So, we will frequently

refer to (5.1.18) for convergence analysis later.

5.1.2 Constraint-Reduced Linear System
As discussed in Section 4.212g equations (5.1.11)-(5.1.14) can be reduced to
MAy =g,

whereM = AX®Z AT andg=r1,+ AX®Z rg— Al @ Z )r..
In Section 4.2.2, we discussed how we can apply constradncten to the linear equa-

tion, so we have the constraint-reduced equation,
MAy = g, (5.1.19)
by replacingVl with M. So, we solve
(ﬁ(f( ® Z‘I)Xf) Ay=r,+ AX®Z Yy — Al ® Z7Vr.. (5.1.20)

For uniquenes®f the solutionAy of (5.1.20), we assume independent rows/bhs
follows.
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Assumption 5.2. For any re-ordering of the blocks of th&’s and anyp such that

P

U_ 72 > m, the matricedh;, i = 1,...,m are linearly independent.

If X = 0,Z > 0,andy."_ 72 > m wherez? = z(z + 1)/2, the reduced Schur
complement matriM has full rank by Assumption 5.2, so the equations (5.1.19) an
(5.1.20) have a unique solutiaxy.

So far, we follow the equations in Chapter 4. However, in @sitto Section 4.2.2,

we now compute\x andAz by

AX 0
AX = vec . , (5.1.21)
0 AX
Az=r,— AT Ay, (5.1.22)
where
S S 51 = -1
AX = mat((X@Z JATAY — (X@Z Ya+ (102 )rc>, (5.1.23)
L ~ 1 ~—1__
AX = mat(—(X@Z i+ (eZ )rc>. (5.1.24)

The residualgf,,,) and (f.,T.) are vectorizations ofR,, R,) and (R., R.) defined in
Section 4.3.2.Note that while (4.2.22) containX @ Z ') AT Ay as its first term,A)?
in (5.1.24) does not have the corresponding té¥m Z ' ).A” Ay, which will cause a
perturbationAX, in theprimal direction as welerive next

In the constraint-reduced linear system, we replaced tharSmmplement matrix
M with M. How does this influence the solution? In the following lemnmva showthat

AXx, Az, and Ay from equations (5.1.19), (5.1.21) , and (5.1.22), are atwwlwf the
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following perturbed equations

AAX =1,
ATAy + Az=r,,

(X®1)AZ+ (I ® Z)(AX + AX,) =T,

where

, 0 0
AX, =

0 mat<(>~( ® Zil)ﬂTAy>

Note the new vectoAx, in the second term of (5.1.27).

(5.1.25)
(5.1.26)

(5.1.27)

(5.1.28)

Lemma 5.1.1 (Perturbed Newton equationsjhe solution(Ax, Ay, Az) of (5.1.19),

(5.1.21), and (5.1.22) satisfies equations (5.1.25)-2F]1.
Proof. First, we show the primal equation (5.1.25) is satisfied. B%.@1),

AAX = AAX + ANX

AX©Z HATAY -~ AX©Z Yut+ Al @Z .
_AX©Z Y+ Al @ Z . (by (5.1.23) and (5.1.24))
— AX@Z YATAYy — AX® Z Mg+ Al @ Z7Vyr,
=(r,+AX®Z g — Al ®Z Mr..)

—AX®@Z Hrg+ A(l @ Z7Hr.. (by (5.1.20))

= rp7

so (5.1.25) is satisfied.

In addition, (5.1.26) is immediately satisfied by (5.1.22).
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To see (5.1.27) is satisfied, we first calculatex + Ax.). By (5.1.21), (5.1.23),

(5.1.24), and (5.1.28),

o AX 0
AX 4 AX, = |
0 AX+ mat((>~( ® 2_1)/TTAy)

= mat(X®Z HATAYy - (X®@Z g+ (1 ®Z2)r.),

SO
AX+ A% = (X@Z HATAYy - (X@Z g+ (1@ Z 7 Yr..
Thus,
1 @Z2)(Ax+A%) = (10Z2)(X@Z HATAY- (10 Z)(X®Z Yy,
+(1®2)1®Z Hr,

= X@DATAYy — (X@Drg+ (1@ Dr,
= X )(ATAYy —r14) + 1,
= —(X®1)Az+r, (by (5.1.22))

Therefore,

(X @ )AZ+ (I ® Z)(AX + AX) =T,

0

From the equations (5.1.25)-(5.1.28) and Lemma 5.1.1, \wesea that constraint
reductiondoes not affecthe primal and dual equations (5.1.5) and (5.1.6), but golel

the complementarity equation (5.1.7Furthermore, considering the relations between
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(5.1.11)-(5.1.14) and (5.1.16)-(5.1.18), the solufiax, Ay, Az) of (5.1.25)-(5.1.27) also

satisfies the following equations by the symmetrizatioddf= symm(AX).

AAX =T, (5.1.29)
ATAYy + Az=ry, (5.1.30)
Z'2(X + AX)ZY? + symm(Z'2(XAZ + AXZ)Z7'?) =7l (5.1.31)
where
0 0
AX, = symm . (5.1.32)

0 mat(()?@Z_l)ﬂTAy>
5.1.3 Algorithm

In this section, we introduce an interior point method, tamio that of Potra and Sheng
[71], but including constraint reduction. It is@edictor-correctoralgorithm, but, like
Potra and Sheng'’s algorithm, it is somewhat unusual in tliktas not reuse the predictor
matrix in the corrector step.

We define a seF of feasible solutions and a sét' of optimal solutions as

F = {(X,y,Z) € S} xR™ x St : (X,y, Z) satisfies (5.1.1) and (5.1.2),

F* = {(X\,y,Z) € F: XeZ=0}.
We also define the neighborhodd(v, 7) of the central path as
N(y,m) = {(X,2) € Sty x Sty 1 |IZ2X2Y2 = 71| p < 473

In the predictor step, given the current iter@¥y, Z) and“inactive blocks” (X, Z) of
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(X, Z), we find a solutiofAX, Ay, AZ) of (5.1.29)-(5.1.32), setting = 0, S0

AAX =T, (5.1.33)

ATAy + Az =y, (5.1.34)

Z'2(X 4+ AX)ZY? + symm(ZV*(XAZ + AXZ)Z7?) =0, (5.1.35)
0 0

AX. = symm . (5.1.36)

0 mat<(>~( ® Zil)JZ(TAy>
We then compute an updated poii®,y,Z) by taking a step of lengtd < 1 in this
direction.
In the corrector step, we set the target duality gap (1—6)7, where the parameter
7 decreases atach iteration. Then, with inactive blockX,Z) of (X,Z), we find a

solution(AX, Ay, AZ) of (5.1.29)-(5.1.32ith r, = 0 andr; = 0, SO

AAX = 0, (5.1.37)

ATAy+ Az=0, (5.1.38)

Z° (X + AX)Z" + symm(Z” *(XAZ + AXZ)Z7Y 2)) —(1-8)rl, (5.1.39)
0 0

AX, = symm . (5.1.40)
0 mat<(>~< ® ”Z*l)JéTTAy_/)
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We define a few variables to denote the magnitude of direstasn

5= %HZWAXAZZWHF, (5.1.41)
6z = |22 AXZY?| g, (5.1.42)
b = %HZV?AXEZWHF, (5.1.43)
5. = %HZ”ZAKZWHF. (5.1.44)

We use two fixed positive parameterand with the property

2(%25>2<a<ﬁ§%<1_ (5.1.45)

This inequality restrains the rangesfndg aslO < a < # < 0.5. For example, we can
choos€a, ) = (0.17,0.3). Based on these parameters, we definadd (which change

at each iteration) as

(= B—=08)+(a—B—08)2+46(8 — )
20

_ 2(8 — o) (5.1.46)

\/(ﬁ—a+(5€)2+45(ﬂ—a)—(ﬁ—oﬁ—ée)’

max{f € [0,1] :(X + 0AX,y + Ay, Z + 0AZ) € N (B, (1 — 0)7), V0 € [0,6]}.

=

0

(5.1.47)

The following two conditions are used in tipeedictor-correctoralgorithm. The

first one applies to the predictor step, and the second orleeapp the corrector step.

Condition 5.1..

5o, (5.1.48)

REES

or equivalently
1ZV2AX ZY2 |5 < q||ZYV2PAXZY2| 5, (5.1.49)
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wheretheinput parameter; of the algorithm has a range

0<g<1l—oa. (5.1.50)
Condition 5.2.
de < (1—=0)(Vs2+t—s), (5.1.51)
where
s=pB"—B+1, t=2a(1—pB)>*—p% (5.1.52)

Condition 5.1 ensures that the ratio of the perturbatiomtAix, to the primal di-
rection AX is bounded by the given ratip Condition 5.2 plays a role for the corrector
step to move the iterate intd(a, (1 — §)7), the neighborhood of the central patbon-
dition 5.1 and Condition 5.2 can be checked at low cost coatptr the cost of solving
the full (unreduced) system.

Based on these parametarsd conditionswe now define oupredictor-corrector
algorithm in Table 5.1In step 3.(d), the choice of step length in the predictor Eeplid
only whend < 4, which will be proved in Lemma 5.2.3. Sinéeis a theoretical upper
bound ford, it may be not practical to compuf)e For practical implementatiof,can be
chosen to be defined by (5.1.46). In step 3.(e), the algorigmminates sincéX,y, Z) is
an optimal solution, which will be shown in Lemma 5.2.3.

Before starting analysis, the following overview is useful

1. Sincer, = 0 andr, = 0 in the corrector step, the corrector step makes no contri-
bution to reducing primal and dual residuals. Its only psss to move the point
toward the central path.
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1. Input: A, b, C; a and satisfying (5.1.45); convergence tolerance p such that
p > max(||X*[], ||Z*||) for (X*,y*,Z*) € F*; andq, the perturbatiotound forthe
primal direction in the predictor step, satisfying (5.7.50

2. Set(X°,y°,Z% = (pl, 0, pl). Setr =75 = g = (X° 0 Z°) /n= p°.
3. Repeatuntit < 7*: Fork =0,1,...,

(@) Set(X,y,Z) = (X* y* Z") andr = 7.

(b) Sort the constraint blocks in decreasing ordefXf © Zj‘1||.

(c) Initially, I\7Ip =0. Forj =1,...,p, until ZLl n? > m and Condition 5.1
(above) is satisfied, repladé, by M,, + A;(X; © Z; ') AT. Setp = j.

(d) By solving (5.1.20with M = M, andr, = vec(—XZ) find (AX, Ay, AZ)
satisfying (5.1.33) - (5.1.36). Choose a step lengtk [5, d] defined by
(5.1.46) and (5.1.47),

X =X+0AX, y=y+0Ay, Z=2Z+0AZ.

(e) If § = 1, terminate the iteration with optimal soluti¢X, y, Z).
(f) Sort the constraint blocks in decreasing ordefXf Z;1||.

(g) Initially, M. = 0. Forj = 1,...,p, until 37_, 47 > m and Condition 5.2
. . g 5 e 7 5—1 ~ .
(above) is satisfied, repladé. by M. + A;(X; ® Z; ") AT. Setp = j.

(h) By solving (5.1.20)with M = M, r, = 0,1, = 0, andr, =
vec((1—6)71 — X Z), find (AX, Ay, AZ) satisfying (5.1.37) - (5.1.40).
Take a full step as
XEFD = X+ =X+ AX, yEt) =yt =y+ Ay, z-H) =7+ =Z + AZ.

(i) Setry = (1—0)r.
() Updater, =b— Axandr, =c—z— A”y.

Table 5.1: Predictor-corrector algorithm.

2. By the definition off in (5.1.46),§is a decreasing function of. Thus, there is a
trade-off between the allowance for the constraint reduacéind the step length in

the predictor step.

3. (X®Z ') = 0 when we use the full Schur complement matrixpyo(5.1.36) and

(5.1.40),Condition 5.1 and Condition 5.2 can always be satisfied bynta&nough
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“active blocks”.

4. We will prove that the predictor step moves the point fodftw, 7) into NV (3, (1 —

)7), and the corrector step moves the point intoo, (1 — 6)7).

5. Condition 5.1 and Condition 5.2 restrict the magnituda¥f andAX., which are
the perturbations caused by constraint reduction. Corisglthat the matrices con-
tain mat(()~< ® Z_l)ﬁTAy) and mat((>~( ® 2_1)KTA7> before symmetrization,
these conditions judge the activeness of ttie constraint block by the magnitude
of |X;®Z; |, justas the algorithm in Chapter 4 uses the thresholdowever, the
thresholds are updated dynamically for every iteratiorthey are adaptive criteria

in contrast to the statie.

In order to check that the conditions are satisfied,o&n solve for Ay and Ay
and calculateAX, and AX,, which may requirehe Cholesky factor oM to compute
Ay = |\7|_lg. For practical implementation, we can use ranlptlatingof the Cholesky
factor? depending on the size @f andn;. We now discuss this updating.

Let Ry, andRyz, be Cholesky factors oK; andZ;. Note that the factoRy, is
required to computi; by (4.3.1), regardless of constraint reduction, unE;s]sis com-

puted explicitly. Then, the partial Schur complemghtcan be written as

M; = A;(X; ©Z; AT = A ((Rﬁj Rx,) ® (R, sz)_1> Aj

= A; ((Rij ®Ry)(Rx, ® sz)) AT = H;HT, (5.1.53)

2Rank-1 modification of Cholesky factor is implemented“bghud.f” and“dchud.f” in LINPACK.

See Gill et al. [27] and LINPACK documentation [23].
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where
H,; = A;(RY, @ Ry!) € R™™5.
Thus,h/, thel-th row ofH;, can be computed as
h, = vec(RXj A Rg]_l) .
Furthermore, we can rewrité/l;);, in (4.3.1) as
(M) = (XA, Z; ) o Ay = ((R§j RXj)Alj(RZREjT)) A
= (Rfcj(RXjAljRZ)REjT ) ® Anj
- (R’;Qj mat(h,) joT) oAy

ThereforeH; can be obtained as a byproduct of computiigwith additionalcomputa-
tion for the factoiRx, of X; .

From (5.1.53), we can write thgth update ofM in step 3.(c) and 3.(f) in the
algorithm as

I\A/I(j) _ I\A/l(jfl) M, = m(j—l) I HjH;‘F.

If we already havehe Cholesky factoRY " of MY, theCholesky factoRY of MY
can be computed by]2 the rank-1 Choleskypdates According to Gill et al. [27], the
rank-1 update of Cholesky factor requirda? + O(m) flops. Using the updated factor
of M, we can computély = M g = R.!(R."g) in 2m” flops. Since we do not need
a very accuraté\y for determiningconstraint reduction, iterative refinement may not be
necessary. Once we finish updatilﬁlg the factorRy can be reused as a preconditioner
for aniterative method lik&SYMMLQto computeAy to a high accuracy. In summary, for

each update dfl, it takes extra cost for
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1. Cholesky factorization oX; : nj’.’/s flops,
2. Update of Cholesky factor o : n(2m* + O(m)) flops,
3. Computedy = Mg : 2m? flops,

S0, in total,

1
gnf +2m*(nf + 1) + O(mn?).

This isareasonable cost fahe constraint reduction decision, considering that it takes
(4m + 1/3)n? + 2m*n? to computeM; by (4.3.1) and (4.3.2).

If m?/3 < (n3/3 + 2m?n3), then we can computihe Cholesky factoRy; of M
explicitly with no Cholesky factorization o; and no updatingf the factorRy;. In that
case, it costs

1

3 2
— 2m-.
3m—|—m

5.2 Global Convergence of the Constraint-Reduced SDP

Algorithm

5.2.1 Primal and Dual Residuals

The primal and dual residual norms decrease at each iteydimging us closer to fea-
sibility.

Lemma 5.2.1.In the Constraint-Reduced SDP Algorithn}, = (1 — 6)r, andr, =
(1—=0)r,.
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Proof. First, let us see how the dual residual changes. By (5.118#j%1.38),
Az=r,— ATAy, Az=—ATAy.
So,
ri=c—z" - ATy"
= C— (24 0Az+ AZ) — AT(y + OAy + AY)
= (c—z— A"y) - 0(Az+ AT Ay) — (Az+ AT Ay)

=rg—0rg=(1-0)r,
Next, we consider the primal residual. By (5.1.33) and &}.
AAX =r1,, AAX=0.
So,
rm=b—A(x")
=b— A(X + 0AX + AX)
=1, — 0AAX — AAX =T, — 0r,,

=(1—-0)r,.

5.2.2 Closeness taCentral Path

We analyze how the iterate moves, relative to the centrdl, gatring the predictor and
corrector steps.
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Assume that the current poi(X, Z) € N (a, 7). The initial point(X°,y°, Z%) in the
algorithm is perfectly placed on the central path, so thésiagption is satisfied. With this

assumption, we show in Lemma 5.2.3 that
(X,Z) e N (B, (1 —0)7), (5.2.1)
after the predictor step, and in Lemma 5.2.6 that
(X*t,Z%) € N(a, (1 - 0)7), (5.2.2)

after the corrector stedn the proofs, we frequently use the relation between Frinisen

norm and the eigenvalues of symmetric matrix. For a mérix R"*",

IEIl = oF(E),
i=1

whereo; (E) is thei-th singular value oE. For a matrixe € ™,

IM(E)] < omax(E) = Vora (E)<, Z(U?(E)) = [IEllr,

—[[Ellr < X(E) < [|E]r- (5.2.3)

SO

In addition, the following lemma gives us a bound for a synrimetl matrix.

Lemma 5.2.2. Suppose thaM < RP*? is nonsingular ande € RP*P has only real

eigenvalues. Then,

Amax(E) < Amax ( SYmm(MEM 7)) (5.2.4)
Amin(E) > Ain (SYymm(MEM 7)) . (5.2.5)
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If E € SP, then

IE| 7 < || symm(MEM ) || . (5.2.6)
Proof. See [61, Lemma 3.3 in pp.668-668}d [71, Lemma 2.2 in pp.1011-1012]. [J

By the definition off in (5.1.47),we can prove (5.2.1), by proving th@at< 0. The

following lemma is a modification of Potra and Sheng [71, Learffrb in pp.1012-1013].
Lemma 5.2.3.1f (X,Z) € N(a,7) then
0<4.
In particular,
1. if6 <1, then(X,Z) € N(3,(1 —0)7), soX = 0andZ ~ 0.
2. if6 =1, thenXZ = 0.
Proof. Let X(0) = X + 0AX andZ(0) = Z + 0AZ, then
X(0)Z(@) — (1 = 0)1l = (X+0AX)(Z+ 0AZ) — (1 - 6)7l
= (1= 0)(XZ — 71) + O(XZ + XAZ + AXZ) + 0*AXAZ.
Define
PH) = ZYV2X(0)Z() — (1 —6)7r1)Z7/?
= ZV2(X+0AX)(Z 4+ 0AZ) — (1 —0)71)Z71/?
= ZY2(XZ + 0(AXZ + XAZ) + > AXAZ — (1 — 6)71)Z71/?
= (1-0)(Z'?XZ'? —71) + 62 AXAZZ™/?

+0 [Z'PXZ'? + ZV2(XAZ + AXZ)Z7/?].
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Then, by (5.1.35),
symm(P(0)) = (1 — 0)(Z'/*XZ"? — 71) + 6> symm(Z'/?AXAZZ~'/?)
+0[Z'°XZ'? + symm(Z'/2(XAZ + AXZ)Z7/?)]
=(1—0)(Z'/2XZ"? — 71) + 6> symm(Z'/2AXAZZ7V?) — 0(Z'*AX, Z'/?).

Thus, sinceX,Z) € N (a, 1), and using (5.1.41), (5.1.43), and (5.2.6), we have

| symm(P(6)) ||

< (1= 0)|Z'VPXZ? = 71| p + 6°(|Z VP AXAZZ V|| p + 6)| 22 AXZY? |

= at(1—0) + 6°67 + 06,7 (5.2.7)
Furthermoreadding and subtracting(1 — ¢), then

ar(l—0) +0°07 + 06,7 = 7 (06° + (6. — e+ B)0 + (a — B)) + B(1 — O)T
=67(0 — 01)(0 — 6y) + B(1 — O)T,

where

g _(a=B-0)+(a—-PB-0)+4(8-q)
1 - 25 )

((X—ﬁ—ée)—\/(04—5—(56)2+45(ﬁ—a)
20 '

92 =

Sinced = 6, by definition (5.1.46) of andd, < 6;, the first term in the equation above

becomes negative wheén< 6 < 9, sowriting (5.2.7),
| symm(P(9)) || < B(1 — )7, W0 € [0,0]
By (5.2.6), withM = Z'/2 andE = X(0)Z(#) — (1 — )1,
IX(0)Z(6) — (1 — 0)7l||r < B(1— O)r, VO € [0,0]. (5.2.8)
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Note that this implies that(1)Z(1) = 0 whend = 1. From this result, if Z(6))~/2 exists

-~

forvé € [0, 6], then, since the Frobenius norm is invariant under sintyléransformation,

(5.2.8) implies
1Z(0)2X(0)Z(0)V2 — (1 — 6)71||» < B(1 — O)r, V6 € [0,4]. (5.2.9)

To concludewe showX () = 0 andZ(0) > 0 for V6 € [0, 4] whend < 1; (Claim (5.2.9)
holds by continuity ford = 1 as well.) Otherwise, there must exiét [0,5] such that

X(0")Z(0") is singular, which implies that
Amin(X(0)Z(0") — (1 = 0)71) < —(1 — 0T (5.2.10)

However, by (5.2.5) withM = Z'/2 andE = X(§")Z(#') — (1 — ¢')71, and by the relation

of Frobenius norm and eigenvalues of symmetric matrix i@.@,

Amin(X(0)Z(6') — (1 — 0')71) > A (SYymm(P(6) ) )
> =l symm(P(¢)) || »
> _B(l - 0/>T7
which contradicts (5.2.10) singgé € (0,1). Hence,X(#) = 0 andZ(#) > 0 for V0 €

0,4].

0

Next, we prove that condition (5.2.2) is satisfied after theactor step. To prepare
for this, we need a preliminary lemma, a modification of Manat¢61, Lemma 4.4 in

p.671].
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Lemma 5.2.4.For (X',Z") € N'(v,7') and(AX', Ay, AZ") such that

A;e AX' =0 fori = 1,....m, (5.2.11)
> AyA +AZ = 0, (5.2.12)
=1
define
H = symm(Z"V*(X'AZ' + AX'Z")Z'71/?), (5.2.13)
o = ||ZV2PAX'ZV? |, (5.2.14)
o = 7|Z27V2AZ' 27V (5.2.15)
Then
1 [HII7
88 < (024467 < 5.2.16
H
5 < WHle (5.2.17)
=7
H
5 < alliy (5.2.18)
=7

Proof. Adding and subtractingr’'z’~'/2Az'z'~/?), we compute

H= %le/Q(X/Azl + Axlzl)zl—l/Z + %Z/—I/Q(Azlxl + Z,AX/)Z/1/2
_ Z/l/QAX/Z/1/2 + 7_/Z/—1/2AZ/Z/—1/2 + Symm((zll/QX/Z/1/2 . TII)Z/—l/QAZ/Z/—l/Q) :
so,by using the factX’, Z') € N(v,7),
HHHF > ||Z,1/2AX/Z/1/2 + 7_/Z/—l/QAZ/Z/—1/2HF . H(Z/1/2X/Z/1/2 . 7'/|)||F||Z/_1/2AZ/Z/_1/2HF
> ||le/2Axlzll/2 + T/Z/—l/QAZ/Z/—1/2HF . (’VT,)((S;/T,)
_ ||Z/1/2AX/Z/1/2 + 7_/Z/—1/2AZ/Z/—1/2HF . 75;'
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Now, the square of the first term in the equation above is
1Z'PAXZV? 4 727 PAZ R

= [|ZVPAXZVR| + 7P 2 PAZZ VR + 27 (2P AXIZ ) 0 (2P AZIZ )

=87+ 0.7 421 (AZ e AX') = 8% 4 6.7,
since

AZ e AX' = i AyiA;)) @ AX = i AyiA; e AX')) =0,
i=1 i=1
by (5.2.11)-(5.2.12). Hence,
Hllr = /052 + 02 = 70, = (1 —7)\/6,% + 0.2,

and the rest of the proof is straightforward. O

One other technical lemma prepares us to prove that condfi@.2) is satisfied

after the corrector step.
Lemma 5.2.5.Under Condition 5.2,
de < (1—-0)(1—2p).
Proof. Recall that
s=F-f+1, t=2a(1- ) - &,
by their definitions in Condition 5.2. By Condition 5.2 , itfBoes to show
Vsl +t—s<1-—283,
or equivalently, sincé < § < 1/2 ands > 0,

(s+(1-28))2— (Vs2+1)* > 0.
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By (5.1.45) and (5.1.52), we have

(s+(1—28))* — (Vs2+ ¢ )2= (1 — 2B)* + 2s(1 — 28) — ¢
= (1-28)* +2(8* = B+ 1)(1 — 2B) — 2a(1 — B)* + §*
> (1-28)"+2(8" = B+ 1)(1 - 28) — 28(1 - B)* + *
= —68° +158% — 123 + 3

=3(1-28)(B—1)?*>0, VB€(0,1/2).

So,

3. < (1-0)(1—28).

O

Now, we are ready to show (5.2.2), which says thét, Zt) € N(a, (1 — 0)7).
The following lemma is a modification of Potra and Sheng [fedrem 2.6 in pp.1013-

1015].

Lemma 5.2.6.Suppose thaiX, Z) € N (3, (1-0)7) in thepredictor-correctoalgorithm.

Then, after the corrector step,
(XT,Z%) € N(a, (1 = 0)7).

Proof.

XYZt — (1= 0)11 = (X+ AX)(Z+ AZ) — (1 — O)7l

=XZ~—(1-0)71 + XAZ + AXZ + AXAZ.
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Sinced < 1 due to step 3.(e) in Table 5.tve know thatX = 0 andZ = 0 by Lemma

5.2.3 Thus, we can define

P = Zxtzt —(1-8)r) 207
= ZPH(X+ AX)Z + AZ) — (1 - 0)r1)y Z7?

=1/2

:[Z

XZ"? — (1 -0)r1] + 2'*(XazZ + aX 227 + 27 axaz 2

By (5.1.39), we have

symm(P) = [Z*

XZ"? (1 -8)rl] + symm(ZW(YAZ +AX z>z<‘1/2>)
+ symm(z” 2AXAZZ7Y 2>)

_ symm(z” 2AXAZ ZY 2>) _Z'PAx 7 (5.2.19)

Since the corrector step satisfies (5.1.37) - (5.1.38) @d&) € N (B, (1 — 6)7), we
can apply Lemma 5.2.4 t§, Z, AX, andAZ. So, with~y = /3 and replacing~’ with
(1 —0)r and(X',Z', AX', AZ') with (X, Z, AX, AZ), the inequality (5.2.16) divided by

7' becomes

=1/2

12

< — (5.2.20)
2(1 - B)2(1—0)r

where

H= symm(zl/2<mz +AX Z)ZH/?’) .
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In addition, by (5.1.39),

Hie = | symm<zl/2(m2+AXZ)ZH/”) e

=1/2

= ZVX + AX)Z — (1 - )7l ||

=1/2

1/2— =1/2
1Z'°XZ? — (1= O)rl | p + |22 X2 5

IN

< B(1—=0)T 461 (since(X,Z) e N(B,(1—6)7))

By (5.2.20) and (5.2.21),

1/2 =1/2

122 AX Z 2| 2P AZ 2P|
< ! (B0 —B)r +3.7)°
= 21— B -0)r e
B _ 8 - 3.7
“spe T T T s spa o)

By Lemma 5.2.4 again, using (5.2.18) divided By

. H
%z DAz 7 = IHll»
T (1=p=0)r

(by (5.2.21))

- B(1— )7 + o7
T (-0 -0)r
B (1-6)(1-25)

< 1_5+ 1= 51-0) =1, (byLemmab5.2.5)

so, by (5.2.3)
Auin 2P AZZ0VP S .

-1

Thisimplies that(l + PARAN VA 1/2)) >~ 0, so

Zt =7+ AZ =771 +Z2"PazZ" 7

> 0.
Therefore,(Z*)~'/2 exists.By defining
E=(ZH2XH 22— (1-0)71, M=Z"*z")12
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we can see th@® = MEM !,

Recall that

s=p—-pB+1, t=2a(l-p)>*- 75 (5.2.23)

By applying (5.2.6) with thes andM, sinceE € §”, we have

IZH)2XHZ )2 = (1= O)rl || p < || symm(P) ||

=1/2

:Hsymm(zl/%mzz(‘””) Z'°AXZ"?||» (by (5.2.19))

< ||ZV*AXAZZV | + 12 AXZ | 5

=1/2 =1/2 (-1/2) =1/2

AXZV? 125 Az Z

5 _ 8 . oo
2<1_6>2(1—¢9)T+ ((1—5)2+1) 567+2(1—ﬁ)2(1—§)

(by (5.2.22) and (5.1.51) in Condition 5.2)

< |z e +1Z2AX 2"

<

T o(1- 6)72(1 —7) [B2(1=0)% + (1= B)(28+2(1 - B)*)3, +7,

(by definition ofs in (5.2.23))

T

21— pP(-0)
T 0Vt 5)2} (by Condition 5.2)

(B2 (1= 0)* +2(1 = 0)*(8” = B+ 1)(Vs2 +t —s)

T 2(1-B)2(1-0) (B2 (1 = 0)” +2(1 —0)*s(Vs? +t —s)
+(1 — 0)*(s* +t+52—23\/32+t)}
= <(1 ‘95)) [52+23(m—5)—23(m—5)+t]
(1= 0 9 (1—-0)r 52 — .
= 21— P S(B°+1) = 2(1_@2(2(1 B)%«a)  (by definition oft in (5.2.23))
=a(l —0)r.
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In addition, this implies that

Amin(Z5)PXHZH)? = (1= O)71) = —a(1l - O)7,
by (5.2.3), so
Amin(Z)Y2XHZHY))> —a(1 - 074+ (1 —0)7 = (1 —a)(1 —6)7 >0,
S0 (ZT)Y/2XH(ZT)Y/? - 0, andX™ = 0 as well. O
Now, we quantify the bound on the duality gap= (XeZ)/n. For the analysis, the

following properties of Frobenius norm and the trace of arimatre useful. For a matrix

E cS™,

m

> ai(E)

i=1

tr(B)| = <

)

>_N(E)

where)\,;(E) is thei-th eigenvalue and;(E) is thei-th singular value oE.

By the Cauchy-Schwarz inequality, fere S”,

n

n||E[lF = nZU?(E) > <Z Ui(E)> > (tr (E))?,

=1

SO

n|[E[f% > (tr (E))* (5.2.24)

Lemma5.2.7.1f (X,Z) € N(a,7), then

(1—%)TSM:%(X.Z)§(1+%)T

Proof. Since(Z'/2XZ'/? — 1) is symmetric, by (5.2.24),
nl|ZV2XZ2 — rl|% > (tr (2V/2X2Y? - 7'|))2
= (r(2'°X2?) —nr)”
= (tr(XZ) —n7)’> = (XeZ—n1)°.
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Thus, sincgX,Z) € N(a, 1),

(X 8 Z —n7)? < n||ZV/?XZY2 — 712 < na’7?,

2
(l(X o7Z) — T> < l(szz,

n

S

and the rest of the proof is straightforward.

5.2.3 Summary ofthe Progress of the Iteration

We have shown that

For thek-iteration, let us defing,, as
k p—
Y= J(1=0)).

i=1

Then,7;, by the algorithm in Table 5.1 becomes

Tr = Ui To.
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With these variablesve have the following results.

M = gyl (5.2.26)
ro=verg  (RG = ¥RY), (5.2.27)
(X*,Z") € N(a,m), (5.2.28)
1
(1- %)Tk <= —(XFeZh) < (1+ %)Tk. (5.2.29)

In order to prove the convergence r@f rk, andyy, to zero, all that remains is to show

that thed; are bounded away from zero.

5.2.4 Lower Bound on Step Length

In this section, we omit thé in ¢, r, andr’ whenever it is evident in the context, and

let (X,y, Z) denote thé:-th iterates of our algorithm.
Lemma 5.2.8.For any (X*,y*,Z*) € F*, we have
P(XeZ' + X' eZ)=XeoZ +*X" e Z°

+ (1 — )X 0 Z* + (1 — )X* 0 Z°

—(1—Y)XeZ"—(1—-¢)X e Z, (5.2.30)
Proof. Let us define

X=X —pX? — (1 — )X,
y=y-4y —(1-9)y,

Z =7Z—yZ° - (1—)Z".
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By (5.1.8), (5.2.26) and the primal feasibility &¥f,
Ao X = b —rp,
YA o X0 = (b — 1)) = b — i,
(I=v)Aie X" = (1-v)b,
fori=1,...,m,and by (5.1.9), (5.2.27), and the dual feasibility(gf, Z*)
iyiAi‘f‘Z = C-Ry

ZyOA +2% = ¢(C-R) =¢C—Ry

Thus,(X',y,Z") satisfies

AeX' =0fori=1,...,m,

i=1

ThereforeX' e Z' =Z' e X' = — 3" y/(A; e X) =0, S0
X = 9X° = (1= ¢)X*] @ [Z = 9Z° — (1 =¢)Z"] = 0.
By expanding this equation using e Z* = 0, we can obtain (5.2.30). O

For an initial point(X°,y°, Z%) and an optimal solutiofX*, y*, Z*) € F*, we define

¢ as

X' eZ* + X*0Z°
(= X0 e 70 . (5.2.31)
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Lemma 5.2.9.(Similar to [71, Lemma 3.2 in p.1016].) For arfX*, y*, Z*) € F*,

XeZ’+X"eZ < nm <2+C+%>,
where( is defined in (5.2.31).
Proof. By Lemma 5.2.8sinceX € S},Z € 8, X* € §},Z* € St andy € [0, 1],
P(XeZ' + X" eZ) < XoZ+9*X" 0Z° +-9h(1 — )X @ Z* + 1h(1 — ) X* @ Z°.

SinceX” e 2’ = nr, XeZ < (1+a/y/n)nr by (5.2.29), 4% < v andi(1 — ) < v,

Y(XeZ' + XY @ Z) < (14 a//n)nry + Ynty + Y(nm

<ynm [(1+a/yvn)+1+ (] =¢nm (24 (+a/Vn).
O

For the proof of the following corollary and lemmas, we freqtly use the follow-

ing inequality (See Horn and Johnson [42, Exercise 20 in@eét6]),
IMiM; || < min([[M1][2[[M2]| £, [M1[|#[[M2][2), YMi, My € R™". (5.2.32)

In addition, note that the Frobenius nofif|| - for E € R"*" can be alternatively defined

as

|E||l» = \/tr (E"E). (5.2.33)
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Corollary 5.2.10. (Similar to [71, Corollary 3.3 in p.1016].)

1/2
(0%
HX1/2(ZO)1/2||F < (m’o)l/2 <2+C+ ﬁ) 7 (5.2.34)
1/2
(0%
"21/2()(0)1/2“F < (nTo)1/2 (2 +C+ ﬁ) ’ (5.2.35)
o 1/2
IXY2[[e < 1Z°) 2|2 (n70) /2 (2 +C+ ﬁ) ; (5.2.36)
o 1/2
20 < IO ) (2464 5) L 623D
IX1/2Z12)12 = |IZV2XZ2 V2|, < (1 + o), (5.2.38)
IX12Z712)12 = |27 12X 12712, < 1 (5.2.39)
(1—a)r
Proof. First, we prove (5.2.34). By (5.2.33),
X2 =\t (@)PXE)) = i (x2')
< (X2%) +1r(X°Z) (sinceX’ € 87.Z € 57 )
— VXeZ' 1 XeZ
1/2
< (nm)'? (2 + ¢+ %) . (by Lemma 5.2.9)
In a similar way, (5.2.35) can be proved.
Next, we prove (5.2.36).
IX2)e = XV A2 2 e < IXVHZ0) 2| R(1(Z20) 2o (by (5.2.32))

1/2
< 1(ZY7Y2||5 (nr) Y2 (2 + ¢+ %) . (by (5.2.34) proven above)

In a similar way, we can also prove (5.2.37).

Next, we prove (5.2.38). The equality is satisfied singg, (E) = omax(ETE) for any
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matrix E. Becaus€X, Z) € N'(a, 1),

IZV2XZH 2 =y < ||ZVPXZY2 = 1l||p <
1Z2XZ2 )y =7 < o,

1Z2V2XZ2" 2|, < T74+ar=(1+a)r
In a similar way, (5.2.39) can be proved. O
For a predictor directioldX andAZ, we define), andé, as

6. = |Z2AXZV?|p, (5.2.40)

5. = 7||Z27Y2AZZ72||p. (5.2.41)
Then,é defined in (5.1.41) is bounded by

1
§ = =||ZV2PAXAZZV? ||k
T

1

T

72

5.6.. (5.2.42)
Lemma5.2.11.(Similarto [71, Lemma 3.4 in pp.1016-1018].) Fo¢t,V, Z) € F, denote

T =4 [21/2(x0 ~X)ZV2 symm(zWX(z0 - 2)2—1/2)] — ZV2(X + AX)ZV2,
T, =yZ'2(X° - X)Z'/?,

T. =z V32" -2)27'

Then,
T
0y = y|zl/2szl/2HF§||Tx||F+! HF, (5.2.43)
—
_ —1/2 ~1/2 T #
6, = T||Z27/"AZZ IIFSTHTZ!|F+1 . (5.2.44)
—
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Proof. We will use Lemma 5.2.4 withX')y, Z') = (X,y,Z), (AX', Ay, AZ') = (AX +
Y(XO=X), Ay+p(y’ —Y), AZ+1(2°—2)), v = a, andr’ = 7. For a predictor direction
(AX, Ay, AZ), by (5.1.5) and (5.1.8),

Ai e AX = T'pis

w(Ai L XO) = w(bi - Tgi) = Yb; — Tpis

and sinceX is feasible,

v

¢(Ai o X) = by,

fori=1,...,m. HenceA; e (AX + (X" — X)) = 0.

Also, by (5.1.6) and (5.1.9)
(i AyiAZ) +AZ = Ry,
=1
J(Em)-2] - vem-ven
1=1 J
0 [(iw) +2_ = yC.
1=1 J

Thus,(Ay + (Y — ¥), AZ + (2° — 2)) satisfies (5.2.12).

In addition, since(X,Z) € N(«, ), we can use Lemma 5.2.4 by replacingvith «,
' with 7, (X',y, Z") with (X,y,Z), and (AX', Ay, AZ') with (AX 4+ (X° — X), Ay +
V(Y — V), AZ 4+ 1(Z° — Z)). Then,using (5.1.35)H in Lemma 5.2.4 becomé&

Therefore, from Lemma 5.2.4sing (5.2.17) and (5.2.18)e have the following inequal-
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ities,

’ T
122 (AX + (X = X))ZV? < —|1’ I,
-«

S T
T|IZ7(AZ +9(2° = 2) 27| r < ﬂﬁ
-«

Hence,

T v
2axz e < THE 4 yzp0 - 3024
—

BuE
11—«

+ el

T .
rlizazz e < T 4 220 - 22
—

[Tl
T.||F.
4Tl

Lemma 5.2.12.For given any(X,V,Z) € F, we have

5§( l1—a )2l(?)—a)(2+§+oz/\/ﬁ)nd0+\/ﬁ<1+a)r’ (5.2.45)

l—a—gq (1 —a)? l—a

where
do = max (]|(X°) 720 = X)(X0) 2|, [(2°) (20 = 2)(2°) 2 )

Proof. First, we calculate bounds d| .||, || T.||, and||T|| in Lemma 5.2.11.

By Corollary 5.2.10, we have
ITelle = 91Z2(X° = X)Z'2
= GZA X)X X X) (X)X
< BIZO R X)X = X)X
< Ynmo(2+ (+ a/vn)dy = n7(2 + C + a/v/n)dy,
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and

Tl = lIZ72(2° = 2)Z71 2|

< YIIZ AR XA PR (202 - 22

@A CHalV), (24 G a/VR)
(1—a)T (1-a)

Similarly,

ITllr < @IZV2(X° = X)Z2 || p + 0 Z2X(Z° = 2)Z712 5 + |22 (X + AX)ZH2 |
_ 77Z)H21/2()(0)1/2()(0)—1/2()(0 o X)(XO)—1/2(XO)1/QZI/2HF
+ ¢||Zl/2X1/2X1/2(ZO)1/2(ZO)_1/2(20 o 2)(20)_1/2(20)1/2X1/2X_1/2Z_1/2HF
+ 122X+ AX)Z2 |
<Y Z X E X)X = X) (X)) T2 g
+OIZ X LX) NZ0) T2 - 2)(Z0) T plIX P2

+V/n||Z2XZY?|y + |22 AX 2|

< nmo(2 + C + af/v/m)do + Pnmo(2 + C + afvn)dy 1 i X
+V/a(l+a)r+ . (by definition ofs, in (5.1.43))
<n7do(2+ ¢+ a/y/n) + nrdo(2 + ¢ + a//n) (i—i) +vn(l+a)T + 0.7
<7 Fnd‘)@ J{EZ a/vn) Vn(l+ a)} + 67
<r {Q”d()@ TEZ oI L Ja+ a)} +5,q. (by Condition 5.1)
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For simple notation, let’,, C., andC, denote

Cp = n(2+(+a/vn)dy,
C, = n(2+C+a/\/ﬁ)doa

1l -«

2ndo(2 + ¢ + a/\/n) -V

l—«

Cy = 1+ a),
then we can rewrite thieounds on|T.||#, || T.||, and||T|| as

HTQ?HF S CJ:T7 HTZHF S 027 HTHF S C107— + 6$Q7

By Lemma 5.2.11 and the bounds || T, ||» and||T| » above, we have

T Cot + 0,
5, < Tl + e < oy CoT+0aa
11—« 1 —«
1—a— C
(#)Mcﬁ
11—« 1—

0, < (1_70[) (Cm+ Co )7. (sincel — o — ¢ > 0 by (5.1.50))
l—a—gq 1l —a

In addition, by Lemma 5.2.11 and theunds on|T. || and||T|| » above, we have

5. < OZT+7C°T+5”§(OZ+ o )T+ 15,
11—« l—« l—«
< <cz+ Co )wL(Cﬁﬂ) 7. (by the bound of, above)

l—a l—a—gq l—a

Finally, by (5.2.42),

0 < iéxéz

— 7_2

1l -« C() C() q C10
< [
- (1—a—q) <Cx+1—a) (CZ+1—a+1—a—q(Cx+l—a))

11—« CO CO q<1—C¥> CO 2
< ([————— IS _Co )
- (1—a—Q) (Cw+1—@) (Cz+1—@)+(1—a—q)2 R s




By definitions ofC,,, C,, andCy, sincel < o < 1/2,

Co Co
(erite) <(eri)

so we have
11—« q(1 — ) Co \?
0= (1—a+q 1—@-@1)2) (Cﬁl—a)

B ((1—a 1_a—q)+q(1—a)) (0+ Co )2

B (1—a+q)? -«

. 11—« CO 2

N (1—a+q> ( +1—a>

B l—a \’[(B=a)@2+C+a/yn) 1+a\]’

- () [P e (0)]
and we obtain (5.2.45). O

Sinced is boundedf defined by (5.1.46) is bounded away from 0. Thus, the step

lengthd < [6, 4] is also bounded away from 0.

5.2.5 Polynomial Complexity

We prove that our algorithm converges(in In (¢y/¢)) iterations the same as the (unre-

duced) algorithm of [71]where
_ 0 0
€0 = max (Xo @ Zo, |1, ][, [[rall)
ande is therequired tolerancen
max (X* o Z°,[[r¥ [|r]))-

Again, we omit the index for simplicity of notation.

160



Lemma 5.2.13.Suppose thaX” = Z° = pl wherep > 0 is a constant such thgt* ||, <
pand |z, < pfor (X*,y*,Z*) € F*. Then the predictor step length < [§k,5k]

satisfies

where

andh = 13/(0.5 — q).

Proof. By Lemma 5.2.9, we have

p(tr (X) +1r(2)) < (2+ ¢+ a/Vn)nry = (2+ ¢+ a/Vn)np®,

SO

n

> (N(X) +Xi(2)) < 2+ C+a/Vnp.

=1

From (5.1.45), we have
a/yvn <a<1/2

SinceX*e Z* =0,

(= (Z"e X"+ X*0Z" /(X 2

— (tr (X*) +1r (Z%))/(np) < 1,

which implies

n

HX1/2H2F 4 ”Zl/szF _ Z()\Z(x) +Xi(2)) < (34 a/yv/n)pn < 3.5pn. (5.2.46)

i=1
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In addition, we can see
X0 = X2 < p, 1120~ 27|z < p. (5.2.47)
By (5.2.46), (5.2.47) and Corollary 5.2.10,

1ZV2(X7 = X)ZH2 ||y < 1223 X0 = X2 < 350N, (5.2.48)

HZl/QX(ZO . Z*>Zfl/2”2 < ”(21/2)(1/2))(1/2(20 . Z*)X1/2<X71/2271/2)”2
< @R || (X2Z72) [ IX2 3120 = 29

1
< < 1—1—_04) 3.5p’n < 6.1p%n. (5.2.49)
-«

By (5.2.48), (5.2.49), and Corollary 5.2.10, in Lemma 512adth (X, y, Z) = (X*,y*, Z*),

1T V||ZH2(X0 — XZV3||p < 3.5¢p°n = 3.5nT, (5.2.50)

IN

A\

T”TZHF TwH (Zfl/2xfl/2)xl/2<zo . Z*>X1/2(X71/2zfl/2> HF

IN

T RBIXIENZ ~ 2] e

IN

3.57Yp*n/(0.57) = TnT. (5.2.51)
Similarly, by (5.2.48), (5.2.49), (5.2.38), and (5.1.43)

ITlr < IZV2X0 = X)Z2|p + $lIZ2X(Z° = 222
+Hzl/2le/2HF + ”Zl/2Axezl/2”F
< (3.50p°n + 6.1¢p*n + 1.5n7) + 6.7

< 11.1n7 + d,q. (by Condition 5.1)
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By the bound of, in Lemma 5.2.11,
T
ITr < 11l.1nT+ (HTz”F"‘ %) "

l1—oa-—
(T2 T < s gl Tl

l-«
Ml < (122 ) (Lt + gl Tale).
Furthermore, by the bound @T .|| » above, we have

l—«o 11—«

Trp< | ——
T < (2

By Lemma 5.2.11 with (5.2.50) and (5.2.52),

11.1 3.5 =
)( nt + 3.5qnT) (1—&—(1

T 11.1+3.5
5, < |Tullp+ e <55, (IL1F350)nT
11—« l—a—gq
11.1+ 3.5 .
< 3.5nT+ ( +350)n7 (sincea < 0.5)
0.5—gq
<

11.1 . )
3.5+ ot o0g 354 nT = 1285 nr,
0.5—gq 0.5 —q

so, by the definition of,

0, < hnr.
Similarly, by Lemma 5.2.11 with (5.2.51) and (5.2.52),

T 11.1+ 3.5
Tle _ o, (11+350n
l—a l—a—q
(11.1 4+ 3.5¢q)nT
0.5—gq

11.1 + 3.5¢ 12.85
T+ —— = (35
( + 05— ¢ )m’ ( +0.5—q) nr,

IN

d- T”TZHF +

< Tnt+ (sincea < 0.5)

A

so, by the definition of,

d, < (h+3.5)nT.
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(5.2.53)

(5.2.54)



Therefore, by (5.2.42), (5.2.53), and (5.2.54),
1 1 )
5 < ﬁ&,éz < ﬁ(hm') ((h+3.5)n7) < h(h+ 3.5)n".
By Condition 5.1 and (5.2.53),

5. < s, <
T

REES

(hnt) = gnh.

By the definition off in (5.1.46),

2(8 — )

VB—a+6)24+45(8—a)— (6 —a+d.)
2

PP R U U
f-a f-a f-a

é\:

v

v

(sincey/z + \/y > Vx +y)

1 1

Finally, by the bound of andJ, in (5.2.55) and (5.2.56), we have

—_

0 >

gnh h(h + 3.5)n?

(n+ﬂ—a)+ —5—04
1 1
> - —.
hq h(h + 3.5) wn

1 - 7

n( +ﬁ—a+ 3—a )
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Note that ifg = 0, then constraint reduction is nperformed. In thatcase,

w=14 /(26 x29.5)/(6 —a) <1+ (29//F — ),
andd has the lower bound same as the unreduced algorithm by [Zbr&m 3.8].

Lemma 5.2.14.Definec, = max(X*eZ* [[rk||, ||Ir%|). The algorithm in Section 5.2 con-

verges inD(n In(y /¢)) iterationsfor a given tolerance wheree, = max(no, [[ry |, [Ir9]]).-

Proof. By (5.2.26)-(5.2.29), we know

< ¢p max((1+ a/v/n)no, Ir)ll, [Iral)
< (1 + a/vn)ne.

On the other hand, by the definition of and Lemma 5.2.13,

k

bo=[a-0) < (1— —)

wn

So,

Thus, if

(1 _ L)KQ +a/VR)ne<e (5.2.57)

wn

after K iterations, ther, < e. So, wecomputethe minimumkK to satisfy (5.2.57). By

takingIn on both sides,

Kln (1 — %) +In [(1+ o/v/n)ne) < Ine
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if and only if

Kln (1 — i) <Ine—In[(1+ a/vn)ne)

wn

= In(e/eo) — In [(1 + a/v/n)n] < 1In(e/eo)

Henceex < eif

©> In(eg/e)

u— 1 .
“hn(1- o)
wn

— wn, asn increases

By the fact

K = O(nln(e/e)). O

5.3 Conclusion

We proposed an infeasibfgedictor-correctorinterior point method with adaptive con-
straint reduction for diagonal block structured SDP protdeBy proving its global con-
vergence and polynomial complexi€y(n In(ey/€)), we verify that our adaptive criteria
guarantee correct selection of inactive constraint blocks

We finish this chapter with a comment about the super-lineeallconvergence.
Kojima, Shida and Shindoh [50] showed thhé predictor-correctoralgorithm hashe
super-linear local convergence if the generated sequenmmeergegangentially to the
central path.As noted in [50] the tangential convergence can be achieved by repeating
the corrector step of the algorithm by Potra and Sheng {inti] (X*,Z") moves into
N (g(m), 7) for a giveng(rx) such thaty(r,) — 0 ask — oo. Since our algorithm is
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based on the one by Potra and Sheng, we expecatiatilar modification can be easily

adopted for super-linear local convergence.
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Chapter 6

Conclusion

In this dissertationwe applied the matrix reduction method to three differgutiroiza-
tion problems: total least squares, covariance matrixnegion, andsolvingsemidefinite
programmingproblems.The matrix reduction has different purposes for these probl

In total least squares, we want to eliminate the noise coethin raw datan order to
betterestimatehe parameters ia linear model. In covariance matrix estimation, matrix
reduction removes undesirable transient or noisy factonmprove the quality of the es-
timate. In semidefinite programming, inactive constraares removed from a working
constraint set by matrix reduction when we compusearchdirection.

For each problem, we proposed a method to determine thetreduttensity, con-
sideringthe distinct purpos@and assumptions of the particular problem. In total least
squares, wstudiedthe asymptotic behavior of the smallest singular valuesesponding
to the noiseThis led us to determinte point of truncation by observing the dispersion

of the smallest singular values, measured by the coeffioievdriation.From this study,
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we achieved the following results:

1. We proved convergence properties for the singular vatoegsponding to error

terms asn — oo.

2. We developed an algorithm for determining the weight fog two terms in the

minimization function.
3. We developed an algorithm for determining the rank of the tnodel matrix.

4. We developed an algorithm to find consistent estimatehf®Etrors-in-Variables

problem with weaker assumptions than in previous work.

In covariance matrix estimation, we found an optimal intgnahich minimizes
the difference between the correlation matrix of the norse @n identity matrix.n this

study, we made the following contributions:
1. We developed an algorithm for Tikhonov filtered covarentatrix estimation.
2. We put all previous factor-based covariance estimatiosa common framework.
3. We performed empirical experiments using the stock nediata from 1958 to 2006.

(@) Interms of minimizing risks, Tikhonov estimate perf@ras well as the most

competitive estimates so far.

(b) For not enough historical data, Tikhonov estimate adigpms all the other

estimates.
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(c) In terms of risk prediction, the risk predicted by Tiklmenestimate is the

closest to the realized risk.

In semidefinite programming, we chose the reduced consbhaioks to ensure that
iterates remaim the designated neighborhood of a central phtlthis study, we obtained

the following results:

1. We developed an adaptive constraint-redysredictor-correctoralgorithm for SDP.

2. We proved the global convergence of the algorithm.

3. We proved polynomial complexity of the algorithm, whistthe first result for such

primal-dualconstraint reduced interior-point-methods.

4. These results also hold when applying the algorithm tdQf,QCQP, and SOCP.

Before finishing thidissertationwe suggest the following future studies for the
discussed problems. First, the proposed matrix reductiethoa in total least squares
problems is effective only when the numberradise termss greater than 1, since we
cannot measure the dispersion with a single singular vdloes, an alternative approach
is required forproblems with a single right hand side and a full rank datarimatec-
ond, we evaluated thealue of using oucovariance matrix estimate the MV portfolio
problem. Even though the experiments were performed in ndédfgrent settings, the
evaluationwas still restricted to the portfolio problem. In order to extethe applica-
tions ofour covariance matrix estimatere could investigatéts effectiveness using data

sets froma variety of applications. Third, in semidefinite programgithe predictor-
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correctoralgorithm proposed in Chapterc®@mputeghe Schur complement matrix twice
for each iteration. Since most of the practical implemeaotet reusehe Schur comple-
ment matrix in the corrector step, the current algorithmasso practical in this aspect.
To make the algorithm more practical, we need to prove thbajloonvergence adn
algorithmthat reuses th&chur complement matrixar demonstrate experimental effec-
tiveness of an algorithm that solves the corrector problemgithe predictor matrix as a
preconditioner. We might also generalize our results t@gmogramming, perhaps using

the work of Schurr et al. [78].

171



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Farid Alizadeh, Jean-Pierre A. Haeberly, and MichaeDwerton. Complementar-
ity and nondegeneracy in semidefinite programmilgithematical Programming
77(1):111-128, 1997.

Christine Bachoc and Frank Vallentin. New upper boundis Kissing number
from semidefinite programmingJournal of The American Mathematical Socjety
21(3):909-924, 2007.

M. S. Bartlett. Tests of significance in factor analy®sitish Journal of Psychology
3(2):77-85, 1950.

C. Bender. Bestimmung der grossten Anzahl gleich Kngelelche sich auf eine
Kugel von demselben Radius, wie die Ubrigen, auflegen masddath. Physik
56:302-306, 1974.

Christoffer Bengtsson and Jan Holst. On portfolio setet Improved covariance
matrix estimation for Swedish asset returns3list Meeting, Euro Working Group
on Financial ModelingHermes Center, Nov 2002.

Michael J. Best and Robert R. Grauer. On the sensitiitpean-variance-efficient
portfolios to changes in asset means : Some analytical amgputational results.
Review of Financial Studie4(2):315-342, 1991.

Stephen Boyd and Lieven VandenbergBenvex OptimizationCambridge Univer-
sity Press, 2004.

Richard P. Brent.Algorithms for minimization without derivative$rentice-Hall,
1973.

R. B. Cattell. The scree test for the number of factoMultivariate Behavioral
Researchl(2):245-276, 1966.

Louis K.C. Chan, Jason Karceski, and Josef Lakonis@ukportfolio optimization:
Forecasting covariances and choosing the risk mdeeliew of Financial Studies
12(5):937—974, 1999.

T. F. Chan. An improved algorithm for computing the sitay value decomposition.
ACM Transactions on Mathematical Softwa8®:72—78, 1982.

172



[12] Vijay K. Chopra, Chris R. Hensel, and Andrew L. Turneragséaging mean-variance
inputs: Returns from alternative global investment sgig®in the 1980sManage-
ment Scienge89(7):845-855, 1993.

[13] Vijay K. Chopra and William T. Ziemba. The effect of ersoin means, variances,
and covariances on optimal portfolio choicdournal of Portfolio Management
19(2):6-11, 1993.

[14] T. Conlon, H. J. Ruskin, and M. Crane. Random matrix tiieand fund
of funds portfolio optimisation. Physica A 382(2):565-576, August 2007.
DOI:10.1016/j.physa.2007.04.039.

[15] Gregory Connor and Robert A. Korajczyk. A test for themher of factors in an
approximate factor modellournal of Finance48(4):1263-1291, Sep 1993.

[16] G. Dantzig and Y. Ye. A build-up interior-point methodrflinear programming:
Affine scaling form. Technical report, Stanford Universit991.

[17] Etienne de Klerk Aspects of Semidefinite Programming: Interior Point Algams
and Selected Application&luwer Academic Publisers, 2002.

[18] Etienne de Klerk, Dmitrii V. Pasechnik, and Renata @oti On semidefinite pro-
gramming relaxations of the traveling salesman probl&tAM Journal on Opti-
mization 19(4):1559-1573, 2008.

[19] Victor DeMiguel, Lorenzo Garlappi, Francisco J. Noggland Raman Uppal. A
generalized approach to portfolio optimization: Imprayiperformance by con-
straining portfolio normsManagement Sciencg5(5):798-812, 2009.

[20] Victor DeMiguel, Lorenzo Garlappi, and Raman Uppal. tidyl versus naive di-
versification: How inefficient is thé /N portfolio strategy. Review of Financial
Studies22(5):1915-1953, 2009.

[21] Victor DeMiguel and Francisco J. Nogales. Portfolitestion with robust estima-
tion. Operations Resear¢h7(3):560-577, 2009.

[22] D. den Hertog, C. Roos, and T. Terlaky. Adding and dabptionstraints in the path-
following method for Ip. Advances in Optimization and Approximation (D. Z. Du
and J. Sun, eds.), Kluwer Academic Publishpegges 166—-185, 1994.

[23] J.J.Dongarra, C. B. Moler, J. R. Bunch, and G.W. StewdNPACK Users’ Guide
SIAM, Philadelphia, PA, 1979.

[24] Edwin J. Elton and Martin J. Gruber. Estimating the degence structure of share
prices — implications for portfolio selectiodournal of Finance28(5):1203-1232,
1973.

173



[25] R.D. Fierro, L. Vanhamme, and S. Van Huffel. Total lesgtiares algorithms based
on rank-revealing complete orthogonal decompositionRdoent Advances in Total
Least Squares Techniques and Errors-in-Variables Modgpages 99-116. Society
for Industrial and Applied Mathematics, Philadelphia, RA97.

[26] Katsuki Fujisawa, Masakazu Kojima, and Kazuhide NakaExploiting sparsity
in primal-dual interior-point methods for semidefinite gramming.Mathematical
Programming 79(1):235-253, 1997.

[27] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunder. Metls for modifying
matrix factorizationsMathematics of Computatio28(126):505-535, 1974.

[28] Leon Jay Gleser. Estimation in a multivariate "errarsariables” regression model:
Large sample result3he Annals of Statistic9(1):24—44, 1981.

[29] Gene H. Golub, Michael Heath, and Grace Wahba. Genegilcross-validation
as a method for choosing a good ridge parametechnometricgs21(2):215-223,
1979.

[30] Gene H. Golub and William Kahan. Calculating the sirsgutalues and pseudo-
inverse of a matrixSIAM J., Series B, Numerical Analys2):205-224, 1965.

[31] Gene H. Golub and Charles F. Van Loaklatrix Computations Johns Hopkins,
1996.

[32] Louis Guttman. Some necessary conditions for comnaaitef analysisPsychome-
trika, 19(2):149-161, 1954.

[33] Per Christian Hansen. Analysis of discrete ill-posedlems by means of the L-
curve.SIAM Review34(4):561-580, 1992.

[34] Per Christian Hansen, James G. Nagy, and Dianne P. @/LBa&blurring Images:
Matrices, Spectra, and FilteringSIAM, 2006.

[35] Per Christian Hansen and Dianne P. O’Leary. The use@®i.tcurve in the reg-
ularization of discrete ill-posed problemSIAM Journal on Scientific Computing
14(6):1487-1503, 1993. DOI:10.1137/0914086.

[36] Richard J. Hanson. A numerical method for solving Fi@dhintegral equations of
the first kind using singular valueSIAM Journal on Numerical Analysi8(3):616—
622, 1971.

[37] Wolfgang Hardle and Léopold SimarApplied Multivariate Statistical Analysis
Springer, 2003.

[38] Christoph Helmberg, Franz Rendl, Robert J. Vandewoail, Henry Wolkowicz. An
interior-point method for semidefinite programmin§lAM Journal on Optimiza-
tion, 6(2):342-361, 1996.

174



[39] Iveta Hnétynkova, Martin PleSinger, Diana Mariam@i, Zdenék Strako$S, and
Sabine Van Huffel. The total least squares problemiiX ~ B. A new classi-
fication with the relationship to the classical works. Tachhreport, Institute of
Computer Science, Academy of Sciences of the Czech Repabi®.

[40] A. E. Hoerl and R. W. Kennard. Ridge regression: Apgdlmas to nonorthogonal
problems.Technometrics12(1):69-82, 1970.

[41] A. E. Hoerland R. W. Kennard. Ridge regression: Biassah@ation for nonorthog-
onal problemsTechnometricsl2(1):55-67, 1970.

[42] R. A. Horn and C. R. Johnsomatrix Analysis Cambridge University Press, New
York, 1985.

[43] J. Edward JacksomA User’s Guide to Principal Componentg/iley-IEEE, 2003.

[44] Ravi Jagannathan and Tongshu Ma. Risk reduction irelpagytfolios: Why impos-
ing the wrong constraints help3ournal of Finance58(4):1651-1684, 2003.

[45] Benjamin Jansenlnterior Point Techniques in OptimizationKluwer Academic
Publisers, 1997.

[46] Jin Hyuk Jung, Dianne P. O’Leary, and André L. Tits. Atlae constraint reduc-
tion for training support vector machineglectronic Transactions on Numerical
Analysis 31:156-177, 2008.

[47] Jin Hyuk Jung, Dianne P. O’Leary, and André L. Tits. ftlae constraint reduction
for convex quadratic programmin@.omputational Optimization and Applicatigns
2010. DOI:10.1007/s10589-010-9324-8.

[48] J. A. Kaliskiand Y. Ye. A decomposition variant of thetpnotial reduction algorithm
for linear programmingManagement Scienc89:757-776, 1993.

[49] Benjamin F. King. Market and industry factors in stoakcp behavior.Journal of
Business39(1):139-190, Jan 1966. Part 2: Supplement on Secuiig$r

[50] Masakazu Kojima, Masayuki Shida, and Susumu Shindolocal convergence
of predictor-corrector infeasible-interior-point algams for SDPs and SDLCPs.
Mathematical Programming0(2):129-160, 1998.

[51] Masakazu Kojima, Susumu Shindoh, and Shinji Hara. riotgpoint methods for
the monotone semidefinite linear complementarity problesymmetric matrices.
SIAM Journal on Optimizatiqrvy(1):86-125, 1997.

[52] J. Kwapien, S. Drozdz, and P. OSwiecimka. The boikthe stock market cor-
relation matrix is not pure noise.Physica A 359(1):589-606, January 2006.
DOI:10.1016/}.physa.2005.05.090.

175



[53] Laurent Laloux, Pierre Cizeau, Jean-Philippe Bouchaund Marc Potters. Noise
dressing of financial correlation matrice®hysical Review Letters83(7):1467—
1470, Aug 1999. DOI:10.1103/PhysRevLett.83.1467.

[54] Laurent Laloux, Pierre Cizeau, Marc Potters, and Jeaitippe Bouchaud. Random
matrix theory and financial correlationgnternational Journal of Theoretical and
Applied Finance3(3):391-397, 2000. DOI:10.1142/S0219024900000255.

[55] Olivier Ledoit and Michael Wolf. Improved estimatiori the covariance matrix
of stock returns with an application to portfolio selectiodournal of Empirical
Finance 10(5):603—-621, 2003.

[56] Olivier Ledoit and Michael Wolf. A well-conditioned @mator for large-
dimensional covariance matrice®urnal of Multivariate Analysis88(2):365-411,
2004.

[57] R. B. Lehoucq, D. C. Sorensen, and C. YangRPACK Users Guide: Solution
of Large-Scale Eigenvalue Problems with Implicitly RestdrArnoldi Methods
SIAM, Philadelphia, 1998.

[58] John Lintner. The valuation of risk assets and the siele®f risky investments in
stock portfolios and capital budgefReview of Economics and Statistid3(1):13—
37, Feb 1965.

[59] H. Markowitz. Portfolio selectionJournal of Finance7(1):77-91, 1952.

[60] Madan Lal Mehta. Random Matrices Academic Press, New York, 3rd edition,
2004. Cited by [69].

[61] Renato D.C. Monteiro. Primal-dual path-following alghms for semidefinite pro-
gramming.SIAM Journal on Optimizatiqrv(3):663—678, 1996.

[62] Jan Mossin. Equilibrium in a capital asset markEétonometrica34(4):768-783,
Oct 1966.

[63] Christopher C. Paige and M. A. Saunders. Solution ofspadefinite systems of
linear equationsSIAM Journal on Numerical Analysi$2(4):617-629, 1975.

[64] Christopher C. Paige and Zdenék StrakoS. Scaledlleztst squares fundamentals.
Numerische Mathemati®1:117-146, 2002.

[65] Sungwoo Park and Dianne P. O’Leary. Implicitly-weigtitotal least squarekin-
ear Algebra and its Application2010. DOI:10.1016/j.1aa.2010.06.020.

[66] Sungwoo Park and Dianne P. O’Leary. Portfolio selettiging Tikhonov filtering
to estimate the covariance matr&lAM Journal on Financial Mathematic$:932—
961, 2010.

176



[67] David L. Phillips. A technique for the numerical soli of certain integral equa-
tions of the first kindJournal of the Association for Computing Maching®d{1):84—
97, 1962.

[68] Vasiliki Plerou, Parameswaran Gopikrishnan, Luis Munes Amaral, Martin
Meyer, and H. Eugene Stanley. Scaling of the distributionpo€e fluctua-
tions of individual companies.Physical Review E60(6):6519—-6529, Dec 1999.
DOI:10.1103/PhysRevE.60.6519.

[69] Vasiliki Plerou, Parameswaran Gopikrishnan, Bernd&mw, Luis A. Nunes Ama-
ral, Thomas Guhr, and H. Eugene Stanley. Random matrix appr cross corre-
lations in financial dataPhysical Review F65(6):066126.1-066126.18, June 2002.
DOI:10.1103/PhysReVE.65.066126.

[70] Martin PleSingerThe Total Least Squares Problem and Reduction of Datan~
B. PhD thesis, Technical University of Liberec, Liberec, €z&epublic, March
2008.

[71] Florian A. Potra and Ronggin Sheng. A superlinearlyvavgent primal-dual
infeasible-interior-point algorithm for semidefinite gramming.SIAM Journal on
Optimization 8(4):1007-1028, 2006.

[72] Bhaskar D. Rao. Unified treatment of LS, TLS and trund&¥ D methods using a
weighted TLS framework. In Sabine Van Huffel, editBecent Advances in Total
Least Squares Techniques and Errors-in-Variables Modepages 11 — 20. SIAM,
1997.

[73] Richard Roll and Stephen A. Ross. An empirical investiign of the arbitrage pric-
ing theory.Journal of Finance35(5):1073-1103, Dec 1980.

[74] Stephen A. Ross. The arbitrage theory of capital agsaghg. Journal of Economic
Theory 13(3):341-360, 1976.

[75] Bert W. Rust. Parameter selection for constrainedtsmig to ill-posed problems.
In Modeling the Earth’s Systems: Physical to Infrastructuradlume 32, pages
333-347. 32nd Symposium on the Interface, Computing Seiand Statistics, Apr
2000.

[76] Bert W. Rust and Dianne P. O’Leary. Residual periodoggdor choosing regular-
ization parameters for ill-posed problentisverse Problems24:034005 (30 pages),
2008. DOI:10.1088/0266-5611/24/3/034005.

[77] Alexander Schrijver. A comparison of the Delsarte araviesz bounds.|IEEE
Transactions on Information Theqrif-25(4):425-429, 1979.

[78] Simon P. Schurr, Dianne P. O’Leary, and André L. Titspédlynomial-time interior
point method for conic optimization, with inexact barrieaiations. SIAM Journal
on Optimization20(1):548-571, 2009.

177



[79] William F. Sharpe. A simplified model for portfolio analis. Management Science
9(2):277-293, 1963.

[80] William F. Sharpe. Capital asset prices: A theory of kedrequilibrium under con-
ditions of risk. Journal of Finance19(3):425-442, Sep 1964.

[81] G. W. Stewart. Updating a rank-revealing ULV decomgosi SIAM Journal on
Matrix Analysis and Applicationd4:494-499, 1993.

[82] G. W. Stewart and Ji guang SurMatrix Perturbation Theory Academic Press,
1990.

[83] A. N. Tikhonov and V. Y. Arsenin.Solution of lll-posed ProblemslJohn Wiley &
Sons, 1977.

[84] A. L. Tits, P. A. Absil, and W. Woessner. Constraint retian for linear programs
with many constraintsSIAM Journal on Optimizatiqri7(1):119-146, 2006.

[85] K. C. Toh, M. J. Todd, and R. H. Tutinct. On the implenaion and usage of
sdpt3 - a MATLAB software package for semidefinite-quadriiiear program-
ming. Technical report, Carnegie Mellon University, 2010.

[86] K. Tone. An active-set strategy in an interior point hned for linear programming.
Mathematical Programming9(3):345-360, 1993.

[87] Jack L. Treynor. Toward a theory of the market value ekyiassets. Technical
report, 1961. Unpublished manuscript, Subsequently pbtl as?, Chapter 2].

[88] Charles Trzcinka. On the number of factors in the aalgiér pricing modelJournal
of Finance 41(2):347-368, June 1986.

[89] S. Twomey. On the numerical solution of Fredholm in&grquations of the first
kind by inversion of the linear system produced by quadeatiournal of the Asso-
ciation for Computing Machineryi0(1):97-101, 1963.

[90] Sabine Van Huffel and Joos Vandewall€he Total Least Squares Problem: Com-
putational Aspects and AnalysiSIAM, Philadelphia, 1991.

[91] W. F. Velicer. Determining the number of componentsrirthe matrix of partial
correlations.Psychometrika41(3):321-327, 1976.

[92] Jhacova Ashira Williams. The use of preconditioning ti@ining support vector
machines. Master’s thesis, University of Maryland, 2008.

[93] Luke B. Winternitz, Stacey O. Nicholls, André L. Titand Dianne P. O’Leary. A
constraint-reduced variant of Mehrotra’s predictor-eotor algorithm. Computa-
tional Optimization and Application2011.

178



[94] S. Wold. Cross validatory estimation of the number ofnponents in factor and
principal component analysiSechnometrics20:397-405, 1978.

[95] Y. Ye. An O(n3L) potential reduction algorithm for linear programminiglathe-
matical Programming50(2):239-258, 1991.

[96] Qing Zhao, Stefan E. Karisch, Franz Rendl, and HenryRéwicz. Semidefinite
programming relaxations for the quadratic assignmentlprobJournal of Combi-
natorial Optimization2(1):71-109, 1998.

179



