
  

 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Dissertation: EXAMINATION OF TROPOSPHERIC 

OZONE AND ITS PRECURSORS WITHIN 
AN AIR QUALITY MODEL AND 
IMPLICATIONS FOR AIR QUALITY AND 
CLIMATE 

  
 Linda Hembeck, Doctor of Philosophy, 

2021 
  
Dissertation directed by: Professor Ross J. Salawitch and Professor 

Timothy P. Canty, Department of Atmospheric 
and Oceanic Science 

 
 

Elevated levels of tropospheric ozone (O3) caused by emissions of NOx and 

VOCs negatively impact human health, crops, and ecosystems. Even if precursor 

emissions are reduced below current levels, predicted higher temperatures due to 

increased greenhouse gas emissions could impede resulting air quality benefits. Air 

quality models simulate the complex relationships that form O3 and are used to guide 

policy decisions directed at improving O3. The body of this work encompasses three 

projects related to improvements in the representation of O3 and precursors in air 

quality models. First, I examine the role of O3 and its precursors in air quality and 

climate change by evaluating ozone production efficiency (OPE) and O3 precursors 

within models. I modified a chemical mechanism and the emissions of NOx to 

accurately represent NOx, the reactivity of NOx with peroxy radicals, HCHO, isoprene, 

as well as organic and inorganic NOy reservoir species. Implementation of these 

modifications increased confidence in model simulations. Results indicate accepted 

inventories overestimated NOx emissions but underestimate total VOC reactivity and 

OPE.  



  

Second, I examined the dependence of surface O3 on temperature (climate 

penalty factor (CPF)) throughout a period of 11 years within an air quality model and 

measurements. Future increases in temperature could offset benefits from future 

reductions in the emission of O3 precursors. Determining and understanding the CPF 

is critical to formulating effective strategies to reduce future exceedances. I have 

demonstrated that the model can reproduce O3 sensitivity to temperature reasonably 

well. By controlling emissions specifically of NOx mankind has reduced its 

vulnerability.  

Third, I compare satellite-observed and modeled ammonia (NH3) under varying 

chemical environments over East Asia. Regulation of O3 precursor concentrations in 

the atmosphere has an indirect effect on NH3 concentrations. Air quality policy to 

reduce NOx and through that also nitric acid (HNO3) in the atmosphere can result in an 

increase in the concentration of NH3 because of its neutralizing ability. Therefore, a 

less acidic atmosphere sequesters less NH3. This preliminary work exposes different 

areas that need to be addressed to gain greater insight into NH3 emissions and 

chemistry. 
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Chapter 1: Introduction 
 

Air pollution due to high concentrations of tropospheric ozone (O3) in the 

Eastern United States is a recurring problem during summer months. Between May and 

September in the Northern Hemisphere, high-pressure stagnation episodes are common 

and can persist for days causing tropospheric O3 production to flourish and 

concentrations to build up over time [He et al., 2013; He et al., 2014; Kleinman et al., 

1994; Mickley et al., 2004]. High levels of tropospheric O3 have detrimental effects on 

human health and hinder the growth of vegetation due to its oxidizing properties 

[Avnery et al., 2011; Bell et al., 2005; Fishman et al., 2010]. Tropospheric O3 plays a 

key role in tropospheric chemistry as a precursor for hydroxyl radicals (OH). In turn, 

OH initiates photochemistry through a series of reactions with the two main precursors 

of O3, nitrogen oxides (NOx=NO+NO2) and volatile organic compounds (VOCs). In 

addition, O3 is a greenhouse gas, absorbing outgoing longwave radiation and thus 

warming the troposphere. The total radiative forcing of tropospheric O3 is estimated to 

be 0.4±0.2 W/m2 (AR5; [IPCC, 2013]). Therefore, a decrease of O3 concentrations in 

the troposphere benefits air quality as well as climate change. In this dissertation, I 

investigate the role of O3 and O3 precursors in air quality and climate change by: 

• Evaluating ozone production efficiency (OPE) and O3 precursors within 

an air quality model (chapter 2); 

• Examining ozone’s dependence on temperature (climate penalty factor 

(CPF)) throughout a period of 11 years within an air quality model and 

measurements (chapter 3); 

• Comparing satellite-observed and modeled ammonia (NH3) under 

varying chemical environments over East Asia (chapter 4). 

This investigation addresses the following science questions: 
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• How well does an air quality model simulate precursors of tropospheric 

O3? What do we learn from simulations with corrected precursor 

emissions and reaction rates for key steps in the formation of O3? 

• Can an air quality model be used to assess how the concentration of O3 

responds to a changing climate? What are the implications for air quality 

policy? 

• What are potential implications of increased ammonia in the atmosphere 

caused by air quality policy that reduce SO2 and NO2? 

In the following sub-sections of Chapter 1, I discuss the chemistry of 

tropospheric O3, the policies and regulations concerning O3 as well as give more detail 

about O3 precursors such as NOx, HOx (OH+HO2+RO2), peroxyacetyl nitrate (PAN), 

isoprene (C5H8), and formaldehyde (HCHO). Subsequently, I give a brief description 

of the regional air quality model used in my analysis.  

1.1 Background 

1.1.1 Tropospheric Ozone 
 

Tropospheric ozone (O3) is often referred to as “bad ozone” due to its role as a 

greenhouse gas and its detrimental effects on human health [Bell et al., 2005; Farhat 

et al., 2013; Silva et al., 2016] and vegetation [Avnery et al., 2011; Emberson et al., 

2018]. Ozone is produced following the oxidation of volatile organic compounds 

(VOCs) in the presence of nitrogen oxides (NOx ≡ NO + NO2) and sunlight. The 

photolysis of NO2 to NO and O(3P) is of central importance [Finlayson-Pitts and Pitts, 

2000] because this process produces ground state oxygen atoms that lead to the 

production of O3: 

 

NO2 + hυ (λ ≤ 410 nm)  
    jNO2     �⎯⎯⎯⎯� NO + O(3P)                                               (R1) 

𝑂𝑂(3𝑃𝑃) + 𝑂𝑂2  
     𝑀𝑀     
�⎯⎯⎯�  𝑂𝑂3                                                                   (R2) 
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Simultaneously, NO can react with O3 and peroxy radicals (HO2, and/or RO2; R = 

organic group): 

𝑁𝑁𝑁𝑁 + 𝑂𝑂3  → 𝑁𝑁𝑁𝑁2 +  𝑂𝑂2                                                           (R3) 

𝑁𝑁𝑁𝑁 + 𝐻𝐻𝐻𝐻2  → 𝑁𝑁𝑁𝑁2 +  𝑂𝑂2                                                         (R4a) 

𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅2  → 𝑁𝑁𝑁𝑁2 +  𝑂𝑂2                                                         (R4b)  

Hence, the net production of O3 occurs only if NO2 had been produced with a reaction 

of species other than O3 with NO. In photostationary state of reactions R1, R2, and R3, 

NOx is not consumed but cycles between NO and NO2, as such it acts like a catalyst. 

During the day and in urban regions NO2 is mostly formed from reactions (R4a) and 

(R4b). These two reactions are the rate-limiting steps in the radical chain propagation 

that leads to formation of O3. The sequence to produce O3 is initiated by the reaction 

of carbon monoxide (CO) or a VOC with OH to make peroxy radicals: 

𝐶𝐶𝐶𝐶 + 𝑂𝑂𝑂𝑂 
      |𝑂𝑂2|      
�⎯⎯⎯⎯⎯�  𝐻𝐻𝐻𝐻2 +  𝐻𝐻2𝑂𝑂                                          (R5a) 

𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑂𝑂𝑂𝑂 
      |𝑂𝑂2|      
�⎯⎯⎯⎯⎯�  𝑅𝑅𝑅𝑅2 +  𝐻𝐻2𝑂𝑂                                          (R5b) 

The addition of OH to alkenes (to the C=C double bond) forms an intermediate that 

can decompose back to its reactants or be stabilized. Compared to H abstraction 

reaction rates, the strong molecular orbital interactions between the OH radical and the 

C=C double bonds afford very fast reaction rates and are pressure dependent 

[Finlayson-Pitts and Pitts, 2000]. Hence, at low pressures decomposition of the 

intermediate back to its reactants can be significant and needs to be considered when 

using the laboratory measured reaction rates for air quality modeling. This 

circumstance adds to the uncertainty in air quality model results [Ridley et al., 2017]. 

In the United States a number of observational networks are in place to monitor 

surface O3. In this work we use data from the Environmental Protection Agency (EPA) 

Air Quality System (AQS) and Clean Air Status and Trends Network (CASTNET) (see 

details Section 2.2.1 and 3.2.1). The measured O3 is a product of primary precursor 

emissions from a range of global, regional, and local sources. For the U.S. that means 

emissions from Asia represent the global contribution [Fiore et al., 2015; Jacob, 1999]. 

Regional contributions are associated with emissions from upwind power plants which 

are a significant source for O3 precursors in the Eastern U.S. (see section 1.2.1). 
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Emissions from cars, trucks and small industrial processes as well as local power plants 

generally represent local contributions.  

1.1.2 Ozone Policy 
 

The Federal Government controls air quality through the Clean Air Act (CAA) 

enacted in 1963. The CAA allows for regulations on federal and state levels. The CAA 

from 1970 allows for regulatory programs such as the National Ambient Air Quality 

Standards (NAAQS) to protect public health and State Implementation Plans (SIPs) to 

be implemented. These and other federal government programs aimed at reducing 

pollution are regulated by the EPA, which was founded via executive order in 1970 by 

President Richard Nixon. 

The CAA identifies six common air pollutants in outdoor air, called criteria 

pollutants. They are surface O3, oxides of nitrogen and sulfur (NOx and SOx), 

particulate matter (PM2.5 and PM10), CO, and lead, all of which can be harmful to 

human health and the environment. The NAAQS for O3 has been revised and 

reevaluated multiple times (Table 1-1e). The current NAAQS for O3, in place since 

October 2015, is 70 parts per billion (ppb). However, portions of this dissertation 

research took place prior to 2015 when the NAAQS for O3 was 75 ppb. Hence, O3 will 

be evaluated based on the 75 ppb NAAQS from this point forward. 

In order to test whether a monitoring site is in compliance with the surface O3 

NAAQS, a design value (DV) has to be calculated. The DV is determined from data 

collected in three consecutive years from a monitor at one site. For that site the DV is 

then the 3-year average of the annual 4th highest daily maximum 8-hour O3 (in ppb) 

with insignificant digits to the right truncated after the third decimal. The monitored 

location is said to be in compliance if the DV is less than or equal to 70 ppb (after 2015) 

or 75 ppb (after 2008 but before 2015) [EPA, 2006; 2017] areas that do not meet air 

quality standards are referred to as regions of nonattainment. 

Each state that has a region of nonattainment is required to submit a SIP to the 

EPA in which abatement measures are proposed to reduce the emissions of the criteria 

pollutant that is in nonattainment. For example, measures to reduce NOx and VOC from 

anthropogenic sources ultimately reducing O3 formation might include: limiting the 
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usage of solvents in factories, using cleaner burning gasoline in addition to use vapor 

recovery nozzles at gasoline pumps, and tighter vehicle inspection programs. 

Table 1-1: Summary of primary (to protect public health) and secondary (to protect 
public welfare) NAAQS for O3 announced from 1971 to 2015 (updated from 
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100KCZ5.txt) 
Final Rule Indicator Averaging 

Time 

Level 

(ppm) 

Form 

1971 (36 FR 8186) Total 
photochemical  
oxidants 

1 hour 0.08 Not to be exceeded 
more than one hour 
per year  

1979 (44 FR 8202) O3 1 hour 0.12 Attainment is 
defined when the 
expected number of 
days per calendar 
year, with maximum 
hourly average 
concentration 
greater than 0.12 
ppm, is equal to or 
less than 1 

1993 (58 FR 13008)  
 

The EPA decided that revisions to the standards were not 

warranted at the time. 

1997 (62 FR 38856) O3 8 hours 0.08 Annual fourth-
highest daily 
maximum 8-hour 
concentration, 
averaged over 3 
years 

2008 (73 FR 16483) O3 
 

8 hours 0.075 Form of the 
standards  
remained unchanged 
relative to the 1997 
standard 

2015 (80 FR 65291) O3 
 

8 hours 0.070 Form of the 
standards  
remained unchanged 
relative to the 1997 
standard 

The SIP demonstrates that, with these measures in place, a region can achieve 

attainment for surface O3. However, precursors of O3 as well as O3 are transported 

across state boundaries by ambient winds; therefore one state is also affected by 

https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100KCZ5.txt
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pollutants from upwind states complicating compliance to the O3 standard [Godowitch 

et al., 2008].  

1.2 Ozone Precursors 
 

As previously described, NOx is of central importance to O3 production. The 

photolysis of NO2 produces O(3P) radicals, and the reaction of NO with peroxy radicals 

(HO2 and RO2) regenerates NO2, starting the cycle again. The HO2 and RO2 radicals 

are produced through the reaction of OH with CO or VOC necessary for O3 production 

(section 1.2.2). Important VOC discussed in this study are isoprene and formaldehyde 

(section 1.2.4). 

1.2.1 NOx Chemistry and Emissions 
 

The principal reactions governing the formation of NO from molecular nitrogen 

(R6, R7 and R8) occur at high temperatures during lightning discharges or combustion 

processes. The three equations together are called the Zeldovich mechanism.  

𝑁𝑁2 +  𝑂𝑂 ↔ 𝑁𝑁 +  𝑁𝑁𝑁𝑁                                                           (R6) 

𝑂𝑂2 +  𝑁𝑁 ↔ 𝑂𝑂 +  𝑁𝑁𝑁𝑁                                                           (R7) 

𝑂𝑂𝑂𝑂 +  𝑁𝑁 ↔ 𝐻𝐻 +  𝑁𝑁𝑁𝑁                                                           (R8) 

 High temperatures are necessary to break the N2 triple bond. Therefore, R6 

determines the rate at which NO is formed. Another natural NO source is soil, which 

emits NO and NH3 (ammonia) though the process of microbial nitrification and 

denitrification [Parton et al., 2001]. Once NO is emitted, NO2 is formed by the reaction 

of NO with O3, HO2, or RO2 (R3, R4a, or R4b). The cycling of NO and NO2 occurs 

rapidly (within a minute) in the atmosphere via reactions R1, R2 and R3 (null cycle; 

O3 is neither produced nor destroyed) which makes it suitable to consider the budget 

of NOx (NO + NO2) all together. 

Sources of anthropogenic NOx emissions are cars, power plants, and industrial 

activity. These emissions are from combustion processes. The greatest NOx emission 

source in the US is the combustion of fossil fuel. Figure 1-1 shows NOx emissions by 

sector as estimated in the 2014 National Emission Inventory (NEI) from the US (a) and 
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Maryland (b). The most dominant fossil fuel NOx source is from mobile emissions that 

rely on internal combustion engines, accounting for 60% nationally and 72% in 

Maryland. However, studies have shown that there is a factor of 2 overestimate of 

mobile NOx emissions within the NEI [Anderson et al., 2014; Travis et al., 2016, 

McDonald et al., 2018]. The next largest source is stationary fuel combustion, which 

includes point sources such as power plants, industrial boilers, residential (e.g. wood), 

etc. This group produces 23% National and 20% of NOx emissions in Maryland.  

Figure 1-1: National a) and Maryland b) NOx emissions by sector according to the 
2014 NEI.  

1.2.1.1 NOx Policy 
Regulations are in place to monitor and control emissions of NOx from mobile 

sources and power plants. The first federal legislation concerning air pollution was the 

Air Pollution Control Act of 1955 that enabled funds for federal research on air 

pollution. The CAA of 1963 enabled federal legislation to actually put controls on air 

pollution. Since then, new CAAs had been released or amended. In 1975, catalytic 

converters in automobiles became federally mandated. This measure helps to convert 

the reactive species NOx, CO, and VOCs into unreactive species such as N2 and CO2, 

but also harmful NH3 [Fenn et al., 2018]. Through the Clean Air Act Amendments of 

1990 (CAAA 1990) the Photochemical Assessment Monitoring Station (PAMS) 

network was constructed to measure O3, NOx, VOC, and surface meteorology in areas 

that are in O3 nonattainment (the area exceeds the ozone standard on a regular basis; 

see details in section 1.1.2). 
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In 1995, the use of reformulated gasoline and the implementation of low NOx 

burners at the boilers of certain power plants became law. That same year, all fossil 

fuel fired power plants (with a few exceptions) in the continental US were required to 

have a continuous emissions monitoring system (CEMS) installed on their 

smokestacks. The CAA of 2003 additionally mandated the use of selective catalytic 

reduction (SCR) scrubbing of NOx from exhaust at many power plants [Frost et al., 

2006; Goldberg et al., 2015; Kim et al., 2006]. Figure 1-2 shows a measurement time 

series from AQS sites from Maryland, Virginia and Washington D.C. of NO2
* (top 

panel; the * indicates that the measurement is not of true NO2 because of interference 

from oxidation products of NOx such as alkyl nitrates, peroxy nitrates, and nitric acid 

[Brent et al., 2015; Dunlea et al., 2007; Winer et al., 1974]), the number of O3 

exceedances in Maryland (middle), and the number of days above 90°F (measured at 

Baltimore-Washington International Airport) (bottom) between 1972 and 2020. 

Throughout the record, summers with higher numbers of days above 90°F tend to have 

more O3 exceedances than other years within approximately the same decade. There is 

no trend in the number of days above 90°F but there is a declining trend in NO2
* mixing 

ratios as well as the number of O3 exceedances. Before 1988, the Baltimore-

Washington region exceeded the 75 ppb threshold for >60 days per year. This situation 

equated to dangerous O3 concentrations for nearly the entirety of a summer season. In 

recent years, the total number of O3 exceedance days is less than 20 per year – 

approximately 1 day out of each week during summer. It is apparent from Figure 1-2 

that after the implementation of the aforementioned regulations the NO2
* mixing ratio 

decreased. This observation suggests that air pollution improved (between 1972 to 

2017) due to these regulations, which in turn contributed to the overall decrease of O3. 
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Figure 1-2: Data was compiled by Sandra Roberts from AQS sites showing (top) NO2* 
mixing ratio, (middle) the number of days per year when 8-hr maximum O3 exceeded 
75 ppb (red) and 70 ppb (orange) threshold, and (bottom) the number of days per year 
when temperature at BWI airport is above 90°F. 

1.2.2 HOx Chemistry 
 

Urban sources of HOx (OH+HO2+RO2) radicals include VOCs (e.g. 

formaldehyde) and O3. The hydroxyl radical (OH) is predominantly formed though the 

photolysis of O3 followed by the reaction of O(1D) with water: 

O3 + hυ (λ ≤ 320 nm) → O(1D) + 𝑂𝑂2                                                    (R9) 

                         𝑂𝑂(1𝐷𝐷) + 𝐻𝐻2𝑂𝑂 
     𝑀𝑀     
�⎯⎯⎯�  2 𝑂𝑂𝑂𝑂                                                        (R10) 

OH is well known for its oxidizing properties and often termed the detergent of the 

atmosphere because this highly reactive radical removes atmospheric pollutants (e.g. 

CO) and greenhouse gases (e.g. CH4) via reaction R5a and R5b [Finlayson-Pitts and 

Pitts, 2000; Jacob, 1999; Spivakovsky et al., 2000]. This removal process initiates the 

production of O3. However, OH can also limit O3 production by either reacting with 

NO2 to form HNO3 which is then removed from the atmosphere via dry or wet 

deposition [Horii et al., 2006] or by self-reaction with HO2 (R11) forming water and 

oxygen. 
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HOx chemistry cannot be treated in isolation since it is closely coupled to the 

NOx cycle and the chemistry of O3. Below, HOx chemistry in low and high NOx 

environments are described. At very low NOx and high HO2+RO2 mixing ratios (NOx-

limited; reductions in NOx lead to reductions in O3 production), the following reactions 

become important: 

 

𝑂𝑂𝑂𝑂 + 𝐻𝐻𝐻𝐻2  → 𝐻𝐻2𝑂𝑂 +  𝑂𝑂2                                                           (R11) 

𝐻𝐻𝐻𝐻2 +  𝐻𝐻𝐻𝐻2  
   𝑀𝑀    
�⎯⎯� 𝐻𝐻2𝑂𝑂2  +  𝑂𝑂2                                                    (R 12) 

𝐻𝐻𝐻𝐻2 +  𝑅𝑅𝑅𝑅2  → 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑂𝑂2                                                    (R 13) 

These reactions (R11 to R13) terminate the HOx cycle (HOx sink). Generally, ROOH 

is stable under atmospheric conditions. Therefore, ROOH constitutes an efficient 

reservoir that can eventually be photo-dissociated into RO+OH, thus regenerating 

radical species at a later time (downwind).  

In a high NOx environment (VOC-limited) other sinks for HOx become more 

important such as the reaction of OH with NO2 forming nitric acid (HNO3). Minor sinks 

of HOx are deposition, heterogeneous chemistry in cloud droplets and on aerosols as 

well as the production of pernitric acid [Martinez et al., 2003]. During daytime, if 

enough NO is available, the self-reactions of HO2 and RO2 do not take place but instead 

HO2 and RO2 react with NO (R4a and R4b), which ultimately produces O3. Under 

photostationary state conditions, HO2 decreases as NO increases. During nighttime 

NO3 takes the role of NO removing HO2 from the atmosphere [Finlayson-Pitts and 

Pitts, 2000]: 

                         𝑁𝑁𝑂𝑂3 + 𝐻𝐻𝑂𝑂2  →  𝑂𝑂𝑂𝑂 + 𝑁𝑁𝑂𝑂2 + 𝑂𝑂2                                             (R14) 

1.2.3 Nitrogen reservoir Species  

The oxidation products of reactive nitrogen species, abbreviated NOz, such as 

nitric acid (HNO3), alkyl nitrates (ANs) and peroxy nitrates (PNs) are longer lived 

compared to NOx. They can be formed though reactions of VOCs with NOx. As a result, 

farther downwind, ANs and PNs can dissociate to reform NOx allowing long range 

transport of reactive nitrogen. Therefore, this mechanism enables formation of O3 far 
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from NOx sources [Derwent and Jenkin, 1991]. Peroxyacetyl nitrate (PAN or more 

accurately peroxyacetic nitric anhydride) is another reservoir for reactive nitrogen. As 

such, a full accounting of NOx transport and O3 production requires an understanding 

of PAN chemistry. 

The majority of the following section appeared previously as Hembeck et al. 

[2019] in the supplements. Where appropriate, data, figures, and citations have been 

updated with information released after publication and the numbering has been 

changed to reflect incorporation into the dissertation.  

PAN forms through reaction of acetaldehyde with OH and subsequent reaction 

with O2 and NO2 resulting in CH3C(O)OONO2. The removal of PAN occurs through 

reaction with OH, photolysis, thermal deposition, or deposition [Roberts and Bertman, 

1992]. While in the upper troposphere photolysis is the dominant removal process of 

PAN, in the lower troposphere thermal deposition is dominant. The reaction of PAN 

with OH is not a significant removal process anywhere in the troposphere [Finlayson-

Pitts and Pitts, 2000]. 

The following section provides detail about the PAN thermal decomposition 

rates. The results from this analysis have been used to modify the PAN thermal 

decomposition rate within an air quality model (Chapter 2). The IUPAC preferred 

values of the thermal decomposition rate for PAN at low and high pressure are slower 

in the 2006 recommendation compared to the updated rate constants in the 2014 

recommendation. Figure 1-3 shows an Arrhenius plot of the thermal decomposition 

rate of PAN (kPAN) from recommendations and laboratory results plotted as a function 

of inverse temperature. Recommended values from IUPAC06 (green line), JPL11 

(black line) and IUPAC14 (red line) are shown for a pressure of 1 bar (750 Torr). The 

rate based on JPL11 is 22% faster than the IUPAC06 rate, at 298K and 1 bar. 

Laboratory measurements of kPAN shown in Figure 1-3 were performed at different 

temperatures and pressures. The IUPAC expert panel recommends when evaluating 

kPAN to use a pressure of 1 bar. 



 

 

12 
 

 
Figure 1-3: Arrhenius plot of the thermal decomposition rate of PAN (kPAN) versus 
inverse temperature. IUPAC (2009; green), JPL (2011; black), and IUPAC (2014; red) 
are recommended values of PAN thermal decomposition rates shown with the IUPAC 
(2014) 1-σ uncertainty (dashed red line) at 1 bar. Laboratory measurements (symbols) 
with their respective uncertainties. The different symbols denote the pressure at which 
the measurement was taken (square = 600 Torr, filled triangle = 700 Torr, circle = 740 
Torr, diamond = 760 Torr, open triangle = 750 Torr). 

However, measurements of previous work was done at 600 Torr by Bridier et al. (1991, 

black squares), 700 Torr by Tuazon et al. (1991, blue circles), 760 Torr by Roberts and 

Bertram (1992, cyan diamonds), 760 Torr by Roumelis and Glavas (1992, yellow 

diamond), 700 Torr by Sehested et al. (1998, light orange filled triangles), and 750 Torr 

by Kabir et al. (2014, dark orange open trianles). IUPAC06 bases their preferred value 

on the Bridier et al. (1991, black squares) laboratory measurements at low pressure and 

on Bridier et al. (1991), Tuazon et al. (1991), Roberts and Bertram (1992), and 

Roumelis and Glavas (1992) at high pressure. The expert panel for the IUPAC06 

recommendation state that their high pressure rate constant is in good agreement with 

Sehested et al. (1998) at 298K.  
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The rate constants from IUPAC are calculated using the analytical expression 

of Troe based of the Rice–Ramsperger–Kassel–Marcus (RRKM) method: 

   𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑘𝑘0 ∙ 𝑀𝑀/(1 + 𝑘𝑘0∙𝑀𝑀
𝑘𝑘∞

) ∙ 𝐹𝐹𝑐𝑐
1/(1+

𝑙𝑙𝑙𝑙𝑙𝑙10�
𝑘𝑘0∙𝑀𝑀
𝑘𝑘∞

�

𝑁𝑁 ))2                    (E1)        

where, k0 and k∞ are the low- and high-pressure limit rate constants respectively. Fc is 

a coefficient that characterizes the broadening of the falloff curve and N = 0.75-1.27 

log10 (Fc) ≈ 1.4141. Using Equation (E1) to calculate kPAN shows that IUPAC06 under-

estimates the rate constant of PAN compared to most measurements (Figure 1-3; green 

line). The updated preferred rate constant from IUPAC14 (red solid line) agrees much 

better with the measurements. The result of this detailed examination of kPAN is being 

used for analysis of an air quality model in Chapter 2.  

1.2.3.1 Ammonia (NH3) 
 

Another major component of reactive nitrogen is ammonia (NH3). This reduced 

form of nitrogen is alkaline and plays an important role in the global nitrogen cycle as 

a key nutrient for many ecosystems [Reis et al., 2009; Zhu et al., 2015]. In the 

atmosphere NH3 neutralizes acidic species such as sulfuric or nitric acids (H2SO4 or 

HNO3). Gaseous NH3 has a lifetime in the atmosphere of ~1 day or less. However, 

upon reaction with H2SO4 or HNO3, NH3 forms ammonium aerosol salts ((NH4)2SO4 

or NH4NO3; fine particulate matter) with lifetimes ranging from days up to several 

weeks [Park et al., 2004]. This condensation process allows for long range transport of 

reactive nitrogen [Galperin and Sofiev, 1998]. The gaseous to particle conversion 

occurs through direct nucleation from gaseous precursor or by accretion onto a pre-

existing aerosol facilitated through water vapor. 

The main source for NH3 emission globally is agriculture (livestock, synthetic 

fertilizer, and crops). Natural emission sources stem from oceans, undisturbed soils, 

and wild animals (and their waste). Other emissions sources are biomass burning, 

humans, pets, industrial processes, and fossil fuels. An overabundance of reactive 

nitrogen reduces biodiversity, and in bodies of water with the right combination of 

sunlight and temperature toxic algae blooms occur [Yang et al., 2008]. 
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Nitrogen fixation is the natural process to create ammonia from molecular N2 

gas. Since most of the nitrogen on earth is in the form of molecular N2, nitrogen fixation 

is the essential process to form reactive nitrogen making it the limited factor for primary 

production. 

1.2.4 Isoprene and Formaldehyde 
 

Isoprene (C5H8) is directly emitted to the atmosphere. Vegetation is the main 

emitter of isoprene and accounts for about a third of the global source of non-methane 

VOCs (NMVOCs; [Guenther et al., 2012]).  

Oxidation of VOCs produces formaldehyde (HCHO) in varying yields, 

depending on the parent hydrocarbon and ambient concentration of NOx. Thus, 

biogenic VOCs drive most of the continental HCHO production in the lower 

troposphere [Palmer et al., 2006]. Once emitted, isoprene is quickly oxidized with OH 

resulting in a lifetime of <1 to 3 hours. Isoprene affects air quality and climate because 

reactions involving decomposition products of this compound can produce O3 [Trainer 

et al., 1987]. In addition, isoprene can form secondary organic aerosols (SOA) [Jacob, 

1999; Worton et al., 2013]. As a source of RO2, isoprene impacts HOx and NOx 

concentrations [Coates et al., 2016; Mao et al., 2013; Stavrakou et al., 2010].    

Isoprene produces organic nitrates in the presence of NOx. In the Eastern United 

States, about 15-19% of emitted NOx is consumed by isoprene and about 10% of the 

isoprene nitrates is transported away from the NOx emission source [Horowitz et al., 

1998]. As a result, transported isoprene nitrate concentration can be higher than locally 

formed [Beaver et al., 2012] bringing NOx to remote locations. Eventually isoprene 

oxidizes to formaldehyde (HCHO). 

HCHO is either produced due to VOC oxidation (high yields are generated via 

isoprene oxidation where biogenic emissions dominate) or is directly emitted into the 

atmosphere (e.g. coal combustion and animals). It is an eye irritant and carcinogen. 

HCHO is photochemically very active, resulting in an atmospheric lifetime of a few 

hours [Zhu et al., 2014]. HCHO also affects the oxidative capacity of the atmosphere 

by two mechanisms. In the lower troposphere, HCHO is major source for HO2 
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[Mahajan et al., 2010; Volkamer et al., 2010], while HCHO is a precursor of OH in the 

upper troposphere [Jaegle et al., 1998]. 

1.3 Model Details 

The Community Multiscale Air Quality (CMAQ) modeling system (Schere, 

2006) is used as a regulatory tool and a platform to understand the complex interactions 

of atmospheric chemistry. Figure 1-4 shows a flowchart that outlines the various 

components of the CMAQ modelling system. In the following I give brief summaries 

of the components. 

 
Figure 1-4 A flowchart that outlines the various components of the CMAQ modeling 
system. 

1.3.1 Meteorological Model 
 

The CMAQ simulations in this work use the Weather, Research and Forecasting 

(WRF) Model as the meteorological driver (Skamarock, 2014). The model is run at 36 

km and 12 km horizontal resolution. Meteorological parameters in WRF are initialized 

with the North American Model (NAM) provided by the National Climatic Data Center 

(NCDC). Boundary conditions also use the information from NAM. Within the CMAQ 

model, surface fluxes of heat and moisture are found using the Pleim-Xiu surface layer 

scheme [J E Pleim, 2006] and Pleim-Xiu land surface model [Xiu and Pleim, 2001], 

respectively. The Asymmetric Convective Model 2 (ACM2;[J E Pleim, 2007]) 

computes convective mixing. 
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Table 1-2: WRF model specifications 

Water vapor, rain, cloud water, cloud ice, snow, and graupel [Lim and Hong, 2005] are 

calculated using the WRF Single-Moment 6-class microphysics scheme (WSM-6). 

Sub-grid clouds are simulated with the Kain-Fritsch convective parameterization 

[Kain, 2004]. Gravity waves and vertical velocity damping at the top of the model 

domain are used as described in [Klemp et al., 2008; Loughner et al., 2011; Skamarock 

and Klemp, 2008]. 

1.3.2 Emissions Inventories and Model  
 

WRF Model Options 

Time Period May 24 through August 31, 2011 

Re-initialize Every 3 days except for soil temperature and soil 
moisture 

Length of each run 3.5 days (first 12 hours of each run are discarded) 

Initial and Boundary 
Conditions 

NAM 

SSTs Multi-scale Ultra-high Resolution (MUR) sea 
surface temperature analysis 

Radiation LW: RRTM 
SW: Goddard 

Surface Layer Pleim-Xiu 

Land Surface Model Pleim-Xiu 

Boundary Layer ACM2 

Cumulus Kain-Fritsch 

Microphysics WSM-6 

Nudging Observational and analysis nudging 

Damping Vertical velocity and gravity waves damped at top 
of modeling domain 
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Air quality models rely upon emission inventories, which are built up from 

observations of sources, laboratory-based smog chamber studies as well as kinetic and 

mechanistic studies or from top-down inventories that observe concentrations in the 

atmosphere and back calculate what emissions must have been to arrive at those 

concentrations. Emission inventories are commonly evaluated by in-situ measurements 

from continuous atmospheric monitoring stations and field campaigns. Uncertainties 

in model inputs such as emission rates and meteorology, and because of the 

parameterization and simplification of the chemical mechanism, limits the ability of 

such models to determine O3 sensitivities. 

1.3.2.1 Sparse Matrix Operator Kernel Emissions (SMOKE) 
 

Emission inventories are often provided at a spatial resolution that is 

incompatible with an air quality model (AQM). The Sparse Matrix Operator Kernel 

Emissions (SMOKE) modeling system is used to convert the different resolutions of 

the data into the resolution needed for a specific application. In addition, emission 

inventories typically have different temporal scales such as annual-total emissions or 

daily average emissions values for each emissions source. Therefore, SMOKE 

transforms inventory data into a gridded product by temporal allocation, chemical 

speciation, spatial allocation, and layer assignment. AQMs require input files in a 

distinct file format, therefore, SMOKE creates the Input/Output Applications 

Programming Interface (I/O API) Network Common Data Form (NetCDF) output 

format needed by CMAQ. SMOKE can process any number or types of pollutants 

making it a useful tool to create different sets of emissions compatible with different 

chemical mechanisms. 

While SMOKE is used to generate anthropogenic emissions, biogenic emissions 

are generated using the biogenic emissions model Biogenic Emission Inventory System 

(BEIS) or the Model of Emissions of Gases and Aerosols from Nature (MEGAN). 

Lightning emissions are calculated online using lightning flash count data from the 

National Lightning Detection Network (NCDC) and convective precipitation 

information from WRF [Allen et al., 2012].  
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1.3.2.2 Biogenic Emission Inventory System (BEIS) 
 

BEIS version 3.6 (BEIS3) is an in-line module in CMAQ version 5.0.2. 

Previous versions of CMAQ had the BEIS module in SMOKE. In BEIS VOC 

emissions from vegetation as well as nitric oxide (NO) and carbon monoxide (CO) 

emissions from soil are estimated. The estimation is based on a land use database that 

is input to BEIS. Different land use types, such as agricultural and non-agricultural, are 

distinguished by the soil NO algorithm. Adjustments in areas of agriculture as specified 

in the Biogenic Emissions Landuse Database (BELD3) are made based on temperature, 

precipitation, fertilizer application, and crop canopy coverage during the growing 

season (April 1-October 31). 

 

1.3.2.3 Model of Emissions of Gases and Aerosols from Nature 
(MEGAN) 

 
MEGAN version 2.10 is an off-line algorithm for biogenic emissions [Guenther 

et al., 2012] that can be input into CMAQ instead of BEIS. MEGANv2.10 also uses 

information on vegetation type and canopy characteristics as well as the temperature 

and solar radiation fields from WRF. Biogenic volatile organic compound (BVOC) 

emissions for BEIS and MEGAN use the same empirical algorithm, based on work of 

Guenther et al. [2006]. Differences between BEISv3.61 and MEGANv2.10 occur in 

the calculation of emission factors, type of canopy model, and the number of vegetation 

species. MEGANv2.10 uses 16 different global plant functional types as emission 

factors [Bash et al., 2016]. In Chapter 2 CMAQ utilizes BEIS and MEGAN while in 

Chapter 3 only BEIS and in Chapter 4 only MEGAN is being used. 

1.3.3 CMAQ Model 
 

The CMAQ modeling system is programmed in Fortran 90 to calculate chemical 

compounds throughout the troposphere. The five main Fortran programs are the initial 

conditions processor (ICON), the boundary conditions processor (BCON), the clear-

sky photolysis rate calculator (JPROC), the Meteorology-Chemistry Interface 
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Processor (MCIP), and the CMAQ Chemistry-Transport Model (CCTM). CMAQ is an 

Eulerian model that calculates a mass balance within each grid cell during a given time 

period by solving the transport across each cell boundary and chemical reactions within 

each grid cell. CMAQ has different chemical mechanisms options available, which will 

be discussed in the next section.  

1.3.3.1 Chemical Mechanism (CM) 
 

CMs describe the gas phase and heterogeneous chemistry in the atmosphere. In 

general, a CM fully describing all processes known to play a role in atmospheric 

chemistry would contain several thousand species and more than 20 thousand reactions 

[Dodge, 2000], making the CM computationally inefficient. Consequently, procedures 

have been developed to limit this size. Two approaches are being used to condense 

mechanisms: 

• lumped structure (LS) approach: organics are divided into smaller reaction 

elements based on the types of carbon bonds in each species 

• lumped molecule (LM) approach: a particular organic compound or a 

generalized species is used to represent similar organics. 

Most mechanisms have very similar inorganic chemistry since it is fairly well 

understood. All use the same inorganic species: NO, NO2, NO3, N2O5, O3, O(1D), 

O(3P), OH, HO2, HONO, HNO3, HNO4, H2O2, and CO (here, inorganic halogens have 

been neglected). The rate constants and corresponding reaction products are reasonably 

well understood. However, the few reactions that are not well understood have an 

impact on the ability to quantify the formation, cycling and losses of O3 and NOx in the 

lower atmosphere [Jimenez et al., 2003]. All mechanisms use high parameterization of 

aromatic and biogenic VOCs due to their large uncertainties. 

Readily available CMs for CMAQv5.02 are CB05CL, CB05-TUCL, 

CB05TUMP SAPRC-99, SAPRC07TB, and SAPRC07TC (SAPRC; Statewide Air 

Pollution Research Center). Newer versions of some of these mechanisms are available, 

but implementation for these models does not exist for the version of CMAQ used in 

this dissertation. 
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The CB mechanism is a lumped structure mechanism and can be used for urban- 

and regional-scale modeling. Organics are grouped together by their bond type which 

means, for example, most single bond carbon atoms, regardless of the molecule in 

which they occur, are represented by a one carbon atom alkane surrogate called PAR 

(after paraffin). Most carbon double bonds (alkene) are represented by a two-carbon 

atom surrogate called OLE (after olefin). This means Propene will be represented as 1 

PAR and 1 OLE since it contains one alkyl group and one carbon-carbon double bond 

group [Dodge, 2000]. In chapter 2 and 3 a version of the CB mechanism is used. 

 In chapter 4 the SAPRC mechanism is used, which relies on the lumped 

molecule scheme for condensing organic chemistry. As a result, SAPRC has a more 

detailed organic chemistry than the carbon bond mechanisms, though the inorganic 

chemistry is almost the same (updated based on the results of the most recent 

evaluations). The SAPRC-99 mechanism includes representations of chemical 

reactions of almost 780 types of VOCs for reactivity assessment. Since SAPRC-99 are 

represented by a generalized reaction, look-up tables are included with the mechanism 

that list product yield parameters and reaction rate constants for many different alkanes. 

Therefore, the user can specify what species are to be lumped together and the 

parameters for the generalized reaction are then derived from the look-up table, 

depending on the system being modeled [Dodge, 2000]. The SAPRC mechanism is 

supposed to be more suitable for prediction of secondary particulate matter (PM) 

[Carter, 2010] compared to CB mechanisms. 

1.3.3.2 Initial Conditions Processor (ICON) 
 

ICON generates the first hour of a simulation from an ASCII file of vertically 

resolved concentration profiles. These concentrations are commonly taken from an 

existing CCTM output file. When performing nested simulations, a CCTM output file 

from a coarser grid simulation can be used. Within ICON one can select any of the 

readily available CMs (in CMAQv5.0.2) and define the horizontal and vertical grids. 

The format of the output is a binary netCDF file. 
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1.3.3.3 Boundary Conditions Processor (BCON) 
 

The purpose of BCON is to create initial boundary conditions to be used by CMAQ. 

BCON can generate a netCDF file similar to the ICON output file and must be set to 

the same options (e.g., spatial resolution and CM) as were specified in ICON. In 

addition to these selections BCON can also have time-varying boundary conditions. 

ICON and BCON interpolate the data from an ASCII restart file to vertical resolutions 

that are consistent with the CCTM configuration. 

1.3.3.4 Clear-Sky Photolysis Rate Calculator (JPROC) 
 

CMAQv5.0.2 includes an in-line photolysis module that can be used to 

calculate photolysis rates as an alternative to JPROC. However, in my research I used 

JPROC to generate look-up tables of clear-sky photodissociation reaction rates. JPROC 

requires temperature profiles, profiles of aerosol extinction coefficient, data on cross 

sections and quantum yields of each species, top of the atmosphere solar radiance as 

well as standard seasonal profiles of ozone. Optionally, JPROC uses ozone total 

columns from the NASA Ozone Monitoring Instrument (OMI). A radiative transfer 

model calculates the actinic flux from these inputs. The look-up tables are clear-sky 

only. Hence, adjustment of photolysis rates to account for attenuation due to clouds is 

performed in-line within the CCTM. 

1.3.3.5 Meteorology-Chemistry Interface Processor (MCIP) 
 

The WRF meteorological fields are read in by MCIP [Otte and Pleim, 2010], 

which then generates netCDF output files that are ingested by SMOKE and CCTM. 

MCIP calculates the time-varying, species-dependent dry deposition velocities for the 

CCTM. This processor can uniformly trim cells off as well as create a subset of a 

domain. Vertically, layers can be collapsed, though this feature produces results that 

are highly sensitive to the settings used within MCIP. Similarly to JPROC, MCIP has 

the capability to constrain to satellite observations of clouds. Thus far MCIP can only 

read WRF output though theoretically it could be modified to process other 

meteorological models. 
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1.3.3.6 CMAQ Chemistry-Transport Model (CCTM) 
 

The output files from the preprocessors (ICON, BCON, JPROC, MCIP) are 

ingested in the CCTM as well as the SMOKE output. Configuration options used in my 

research are listed in Table 1-3 below for the base case scenario. Within my preliminary 

work modification to the base case scenario are described (Section 2.4).  

Table 1-3: CMAQ Settings for 2011 Simulation in Chapter 2 

 

CMAQ Model Options 

Time Period June 24 through July 31, 2011 

Chemical mechanism CB05-TUCL 

Aerosols AERO5 

Dry deposition M3DRY 

Vertical diffusion ACM2 

Chemical initial and boundary 

conditions 
GEOS-CHEM v8-03-02 

Anthropogenic emissions 2011: NEI, CEMS, MOVES 

Biogenic emissions Calculated within CMAQ with BEISv3.61 

Biomass burning emissions FINNv1 

Lightning emissions Calculated within CMAQ 
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Chapter 2: Measured and Modelled Ozone Photo-
chemical Production in the Baltimore-Washington 
Airshed 
This chapter was previously published under the same title, as an article in the 

scientific journal Atmospheric Environment X [Hembeck et al., 2019]. I am the lead 

author of this work, and I acknowledge collaboration with 8 co-authors. The article was 

published online on 19 February 2019. Here, the numbering of sections, figures, and 

tables reflects incorporation into the greater dissertation. The supplemental material 

from the article is distributed throughout this dissertation. 

2.1 Introduction 
 

High levels of tropospheric ozone (O3) have detrimental effects on human 

health [Bell et al., 2005; EPA, 2014a; West et al., 2006] and vegetation [Avnery et al., 

2011]. Poor air quality episodes due to high surface O3 typically occur in the Eastern 

United States during summer months when high-pressure stagnation events are 

common, allowing surface O3 to accumulate in the region [He et al., 2013; He et al., 

2014; Kleinman et al., 1994; Mickley et al., 2004]. Surface O3 exceeded the prior 

National Ambient Air Quality Standard (2008 NAAQS) of 75 ppb (8 hour O3 average) 

[EPA, 2013] in the state of Maryland for 29 days during summer 2011, the time period 

of this study. Maryland achieved attainment of the 75 ppb standard for the ozone season 

(1 May through 30 September) in 2015. On 1 October 2015, the Environmental 

Protection Agency (EPA) finalized a new standard for surface O3 of 70 ppb. Currently, 

Maryland is in the process of formulating a “good neighbor” State Implementation Plan 

(SIP) to show how the 2015 NAAQS for surface O3 will be attained in future years. 

Tropospheric O3 is a secondary pollutant, produced by chemical reactions 

involving carbon monoxide (CO), volatile organic compounds (VOCs) and nitrogen 

oxides (NOx ≡ NO + NO2) [Crutzen, 1973; Jacob, 1999; Lin et al., 1988]. In addition, 

surface O3 is influenced by a variety of meteorological conditions. Stagnation events 

that cause local emissions to accumulate are one phenomenon associated with bad air 

quality. Another meteorological condition conducive for bad air quality in the mid-

Atlantic region of the United States is when O3 precursors (CO, VOCs, and NOx) are 
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advected from upwind municipalities in the Ohio River Valley by the Bermuda high 

pressure system, a persistent weather pattern during summer [Vukovich and Sherwell, 

2003]. On a smaller spatial scale, vertical mixing in the morning upon break-up of the 

nocturnal boundary layer transports O3 and precursors from the residual layer down to 

the surface, such that local air quality depends on both nearby and distant emissions 

[Hu et al., 2013; Mazzuca et al., 2017; Mazzuca et al., 2016; Zhang and Rao, 1999]. 

Our study is focused on evaluating the chemical mechanism within the 

Community Multi-scale Air Quality (CMAQ) model, using aircraft data collected in 

Maryland during the summer 2011 phase of the NASA Deriving Information on 

Surface Conditions from Column and Vertically Resolved Observations Relevant to 

Air Quality (DISCOVER-AQ, hereafter D-AQ) campaign [Flynn et al., 2014; 

Schroeder et al., 2016]. Evaluation of CMAQ is a priority because this model is used 

as regulatory tool to design strategies to achieve surface O3 standards by the U.S. EPA 

as well as various States; CMAQ is also used to quantify surface O3 in other countries 

[San Jose et al., 2006; Wang et al., 2015; Xing et al., 2015]. To develop effective policy 

strategies such as the SIPs that states in violation of the federal standards are required 

to submit to the U.S. EPA, it is important that CMAQ accurately reflect the relation 

between photochemical production of O3 and ambient levels of CO, NOx, and VOCs. 

The photochemical production of O3 with respect to these precursors follows a 

complex, non-linear relation [Chameides and Walker, 1974; Lin et al., 1988; Mazzuca 

et al., 2016; Schroeder et al., 2016; Schroeder et al., 2017; Sillman, 2000].  

Air quality models (AQMs) such as CMAQ rely on proper parameterization of 

tropospheric photochemistry, within a segment of code called the “chemical 

mechanism”. The chemical mechanism uses inputs of reaction rate constants and 

absorption cross sections provided by expert panels such as the NASA Jet Propulsion 

Laboratory [JPL; Burkholder et al., 2015] and the International Union of Pure and 

Applied Chemistry [IUPAC; Atkinson et al., 2006], which are based on their analysis 

of many published laboratory studies. Most importantly, the chemical mechanism 

within any air quality model reflects a gross simplification of a complex set of reactions 

known to govern processes such as the decomposition of isoprene [e.g., Marvin et al., 

2017], due to the computational burden of running AQMs at high spatial and temporal 
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resolution. The JPL and IUPAC panels also provide uncertainty estimates for the 

reaction rate constants and absorption cross sections. The chemical mechanism within 

CMAQ does not explicitly account for uncertainties in kinetic parameters. Ridley et al. 

[2017] used a Lagrangian chemical transport model in conjunction with the Monte 

Carlo method to show that kinetic uncertainties can account for up to 10-12 ppb 

variation in the mixing ratio of O3.  

It has been shown that CMAQ tends to over-estimate surface O3 at urban 

locations in the Mid-Atlantic [Nolte et al., 2008; Ring et al., 2018; Trail et al., 2014, 

Travis et al. 2016]. Accurate simulation of measured O3 is a necessary but not sufficient 

condition for establishing the proper behavior of the chemical mechanism within an air 

quality model, due to the aforementioned non-linear relation of O3 production as a 

function of NOx and VOCs. In the 1980s and early 1990s, much of the focus on 

achieving the surface O3 standards had been on reducing the emission of VOCs, which 

led to considerable declines of surface O3 in Los Angeles and New York City as well 

as more modest improvement in other regions of the U.S., including the state of 

Maryland [Jacob, 1999]. Significant reductions in the emission of NOx also occurred 

due to federal regulations starting in various years (as indicated in parentheses) that 

required mandatory catalytic converters in automobiles (1976), the use of reformulated 

gasoline (1995), the implementation of low NOx burners at the boilers of certain power 

plants (1995), and selective catalytic reduction scrubbing of NOx from exhaust at many 

power plants (2003) [Frost et al., 2006; Goldberg et al., 2015; Kim et al., 2006]. 

Liu et al. [1987] introduced the term ozone production efficiency (OPE), which 

they defined as a dimensionless quantity that tracks the number of molecules of O3 

produced per molecule of NOx, before NOx is converted to HNO3 or some other 

reservoir species. Their analysis, which focused on surface data collected at Niwot 

Ridge, Colorado and a number of other rural stations, demonstrated the importance of 

non-methane carbons (i.e., VOCs) for the photochemical production of O3 as well as 

generally good agreement between modeled and measured OPE. Trainer et al. [1993] 

devised a method to deduce OPE from the slope of observed O3 versus NOx oxidation 

products, which they defined as NOy (total reactive nitrogen) minus NOx. They 

reiterated the importance of biogenic hydrocarbons based on their analysis of OPE 
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inferred from data acquired at four surface sites in the rural, Eastern U.S. 

Kleinman et al. [2002] revised the definition of OPE by considering the slope 

of Ox (defined as the sum of O3 plus NO2) versus NOy minus NOx, which they termed 

NOz. They used Ox rather than O3 in the definition of OPE because O3 is affected by 

the reaction of NO with O3, whereas Ox is conserved by this reaction. Kleinman et al. 

[2002] showed, based on the analysis of aircraft data acquired over Phoenix, Arizona, 

that OPE displays a classic non-linear dependence as a function of the maximum value 

of NOx in various plumes. Their observations revealed large values of OPE (between 

5 to 7) for the low range of NOx (near 5 ppb) and smaller values of OPE (about 2) at 

the high range of NOx (40 to 50 ppb). The decline in OPE at elevated NOx is likely due 

to two factors: radical termination via reaction OH+NO2+M forming HNO3 (which is 

a sink for NOx as well as HOx (OH+HO2)) and a decline in the HO2/OH ratio driven by 

higher NO [Sillman, 2000]. In other words, NOx is recycled without loss more 

efficiently at low ambient mixing ratios. For the low range of NOx shown in Figure 8 

of Kleinman et al. [2002], production efficiency of tropospheric O3 is controlled by 

NOx (i.e., reductions in the emissions of NOx lead to less O3), whereas for the high 

range of NOx, O3 is controlled by VOCs. A recent paper by Henneman et al. [2017] 

showed that OPE has been increasing over time in the Eastern U.S. due to the decline 

in ambient NOx.  

Here, we briefly review numerical values of OPE reported by many papers. The 

studies conducted prior to 2002 tended to use O3 for the quantification of OPE, whereas 

latter studies used Ox. The OPE value and its interpretation does change, depending on 

whether O3 or Ox is used to determine OPE [Sillman, 2000]. Prior observations of OPE 

show a wide range of values, extending from 1 to 65 molecules of O3 produced per 

molecule of NOx oxidized, depending on location as well as ambient levels of VOCs. 

Highest values of OPE have been found in clean oceanic air masses, such as over the 

Atlantic close to the United Kingdom, where OPE was reported to be as high as 65 

[Rickard et al., 2002]. Moderate values of OPE are found at rural sites, such as: Scotia, 

Pennsylvania, which exhibited OPE of 8.5 [Trainer et al., 1993]; Metter, Georgia with 

OPE of 11.4 [Kleinman et al., 1994]; and, Giles County, Tennessee with OPE of 12.3 

[Olszyna et al., 1994]. Low values of OPE are commonly found in urban regions, such 
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as Birmingham, Alabama with OPE of 7 [Trainer et al., 1995], Nashville, Tennessee 

with OPE of 2.5 to 4.7 [Nunnermacker et al., 1998], and the Baltimore-Washington 

metropolitan region with OPE of 8.3 [He et al., 2013]. Ge et al. [2013] reported an OPE 

of 1.0 to 6.8 for Beijing, China. Very low values of OPE are found close to Electric 

Generating Units (EGUs) that rely on the combustion of coal, such as near the Paradise 

power plant in Nashville, Tennessee, for which an OPE of 2 has been reported 

[Nunnermacker et al., 2000]. In general, the closer a sampled air mass lies to large 

sources of NOx, the lower the OPE becomes, due to the reasons outlined at the end of 

the prior paragraph. It is likely that low mixing ratios of ambient VOC over oceanic 

regions, such as that sampled by Rickard et al. [2002], contribute to the high value of 

OPE reported in their study. 

Next, we review a few studies that have calculated OPE within the CMAQ 

model and compared to observed OPE. Godowitch et al. [2011] used model output 

from CMAQ version 4.7, which utilized the Carbon Bond version 2005 (CB05) 

chemical mechanism [Yarwood et al., 2005]. Their empirical determination of OPE 

was based on analysis of airborne measurements of O3, NO, NO2, and NOy obtained 

within the planetary boundary layer by instruments on board the U.S. Department of 

Energy’s Gulfstream BNL-G1 research aircraft. Their flights were conducted during 

afternoons in July 2002 in southern New England and the northern part of the Mid-

Atlantic States. They found that OPE within CMAQ was slightly lower (OPE = 6.7) 

than that inferred from data (OPE = 7.6) (uncertainties for OPE were not provided in 

their study). Observations and model simulations both demonstrated highest values of 

OPE for the lowest levels of NOx, and a decline in OPE with rising levels of NOx.  

Sarwar et al. [2013] used CMAQ version 5.0 with two chemical mechanisms: 

CB05 updated with toluene reactions (CB05-TUCL) [Whitten et al., 2010] and 

RACM2 [Goliff et al., 2013]. They compared results from CMAQ to OPE inferred 

from ground-based measurements of O3, NOx, and NOy at three locations in the 

Southeast U.S.: Yorkville, Georgia; Centerville, Alabama; and Oak Grove, Mississippi. 

The average observed OPE for all three sites was 13.7, larger than they reported for 

their CMAQ simulations using either mechanism. Values of OPE from CMAQ were 

6.5 using CB05-TUCL and 9.0 using RACM2. The two chemical mechanisms differ in 
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how they lump organic species and the number of chemical reactions [Goliff et al., 

2013; Whitten et al., 2010]. Their value of OPE found using CB05-TUCL (which is the 

same mechanism used in our study) was about 34% lower than inferred from 

observations. The RACM2 mechanism resulted in a higher value of OPE, bridging 

about half of the gap between measured and modeled OPE found using CB05-TUCL. 

The RACM2 mechanism includes a more explicit representation of alkyl nitrates (ANs) 

and peroxy alkyl nitrates (PNs) than CB05-TUCL, resulting in lower calculated values 

of ANs as well as PNs and consequently higher values of NOx/NOy. The NOx/NOy ratio 

is directly related to OPE. A mechanism with a higher ratio will simulate more 

recycling of NOx prior to conversion to reservoir species compared to a mechanism 

with a lower ratio, provided the same values for NO2 photodissociation frequency and 

the rate constant for NO and O3 are used in both mechanisms. 

Our paper is focused on evaluation of OPE within CMAQ utilizing data collected 

during the D-AQ flights in July 2011 [Flynn et al., 2014; Schroeder et al., 2016] as 

well as satellite measurements of tropospheric column formaldehyde (HCHO) and 

nitrogen dioxide (NO2) obtained by the Ozone Monitoring Instrument (OMI) aboard 

the NASA Aura satellite [Duncan et al., 2010; Schroeder et al., 2016]. In addition to 

examination of modeled and measured OPE, we also compare CMAQ values of 

radicals and reservoir profiles to aircraft measurements within the convectively mixed 

layer, acquired during a series of profiles over six air quality monitoring stations. The 

CMAQ representation of surface O3 is also compared to ground-based measurements 

acquired at these six sites. Our baseline simulations make use of the CB05-TUCL 

mechanism within CMAQ version 5.0.2 [Whitten et al., 2010]. We use various 

representations of biogenic emissions, as described below, and also show results for a 

change to the CB05-TUCL mechanism [Canty et al., 2015] designed to approximate 

the improvement in the treatment of alkyl nitrates and peroxy alkyl nitrates that has 

been implemented in RACM2 [Sarwar et al., 2013]. 

2.2 Measurements and Methods 
 

During the NASA DISCOVER-AQ (D-AQ) campaign in 2011, many 

measurements from ground, aircraft, and satellite-based instruments were collected 
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[Flynn et al., 2014; Schroeder et al., 2016]. A complete description of DISCOVER-

AQ is available at http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.dc-2011. 

A brief description of the observations used in our study is given below. 

2.2.1 Ground Based Measurements 
 

The U.S. EPA Air Quality System (AQS) ground-based sites typically provide 

in-situ measurements of O3, NO2, and PM2.5. Here, we use data collected from six AQS 

sites located in Maryland (Beltsville, Padonia, Aldino, Fairhill, Edgewood, and Essex) 

that were an integral part of the 2011 D-AQ campaign. Figure 2-1 displays the location 

of these sites (black ×) relative to two major, nearby cities as well as the nearest CMAQ 

grid box (red rectangles) and central grid point (red circles). In this study, we use 

ground-based measurements of O3 to compare to output from various CMAQ 

simulations of surface O3. The mixing ratio of O3 at all six sites is measured via 

ultraviolet absorption photometry, with a precision of 0.1 ppb and uncertainty of 5% 

[EPA, 2006]. 

2.2.2 P-3B Aircraft Measurements 
 

The NASA P-3B aircraft used during D-AQ provides in-situ measurements of 

many trace gases. Table 2-3 shows a subset of species measured with instruments 

onboard of the P-3B aircraft used in this study, along with the precision and accuracy 

of the various measurements. The P-3B aircraft flew on 14 days in July 2011. The flight 

paths were coordinated such that the P-3B spiraled over the six EPA AQS sites shown 

in Figure 2-1, either down from cruise altitude (3 to 5 km altitude) to within the 

convectively mixed layer (about 300 m altitude) or up from the mixed layer back to 

cruise altitude.  

http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.dc-2011
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Figure 2-1 Map of the Baltimore-Washington region showing six ground sites (black ×) and 
closest CMAQ grid point (red circle) as well as the CMAQ grid box surrounding the ground 
site (red box). 

Flight legs between the various sites were flown either at cruise altitude or else 

at about 300 m altitude, within the mixed layer. In this study we only use data collected 

for spirals within the convectively mixed layer (CML, defined as pressure > 820 hPa), 

because Ox and NOz tend to exhibit a compact, near linear relationship in the lower 

troposphere. The top of the CML, ~820 hPa, is based on visual inspection of profiles 

of potential temperature, CO, and H2O. Since each spiral occurs within a small 

geographic footprint, it is reasonable to assume that the biogenic release of isoprene, 

which controls the level of HCHO during summer in the Mid-Atlantic, is homogenous 

over the extent of an individual spiral (i.e., horizontal distance of ~5 km). Throughout, 

we use 1 minute averaged data provided in merge files distributed by the D-AQ project 

https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.dc-2011?Merge=1.  

The abundance of NO2 was measured by two instruments on the NASA P-3B aircraft. 

The thermal dissociation-laser induced fluorescence instrument (TD-LIF) operated by 

the University of California at Berkeley [Day et al., 2002; Farmer et al., 2006] acquires  

https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.dc-2011?Merge=1
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alternating measurements of NO2, HNO3, ANs and PNs (each quantity is measured for 

a ~12 sec duration). The TD-LIF measurement of NO2 has a 1σ accuracy of 5% and a 

precision of 10 ppt at sampling frequency of 10 sec. The 4-channel chemiluminescence 

instrument (P-CL) from the National Center for Atmospheric Research (NCAR) 

[Ridley and Grahek, 1990] 

simultaneously measures NO, NO2, 

NOy and O3 with a sampling 

frequency of 1 sec, with a 1σ 

accuracy of 15% and a precision of 

20 ppt for NO2. A scatter plot of 

TD-LIF NO2 versus P-CL NO2 for 

1 minute averaged data in the 

mixed layer reveals a mean 

difference of 7% (Figure 2-2), with 

NO2 from the P-CL instrument 

generally being higher than from 

TD-LIF. 

2.3 Satellite 
Measurements 

We use retrievals of total column HCHO [Abad et al., 2015] and tropospheric 

column NO2 [Krotkov et al., 2017] from the Ozone Monitoring Instrument (OMI) on 

the NASA Aura satellite. The OMI instrument is a UV/VIS solar backscatter 

spectrometer in a polar sun-synchronous orbit, with a ~1:40 pm local overpass time 

during daylight [Abad et al., 2015]. Spectra are recorded using a two-dimensional 

charged-coupled device (CCD). The spatial resolution of each OMI pixel is 13 km × 

24 km for the center of each swath and 26 km × 135 km at swath edge, both at nadir. 

Here we use total vertical columns of HCHO from the Version 3.0 (Collection 

3) Smithsonian Astronomical Observatory (SAO) retrievals based on the use of 

measured radiances in the 325 to 357 nm spectral region. The reference sector 

correction described by Gonzalez et al. [2015] is applied to this data product. The 

HCHO data were obtained from https://urs.earthdata.nasa.gov/, last accessed late 

 

Figure 2-2. Scatterplot of NO2 aircraft 
measurements from the TD-LIF instrument 
versus the P-CL instrument within the mixed 
layer. The 1:1-line is also shown. 

https://urs.earthdata.nasa.gov/
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August 2017. The satellite observations provided by OMI do not occur on a regular 

grid [Bucsela et al., 2013]. For comparison to CMAQ, we have averaged the OMI 

HCHO product onto a 0.25° × 0.25° (latitude, longitude) grid. For this averaging 

process, column HCHO is weighted based on satellite viewing angle and screened for 

an effective cloud fraction less than 0.3, as described by Acarreta et al. [2004] and 

Stammes et al. [2008]. Retrievals are only considered valid if the flag 

“MainDataQualityFlag” equals zero (which provides assurance that at least 50% of the 

tropospheric column captures observed information) and if the flag 

“XTrackQualityFlag” equals zero (which indicates the influence of the row anomaly 

on the measurements is minimized). Since the stratosphere makes a negligible 

contribution to total column HCHO, we treat the OMI column HCHO product as being 

representative of the tropospheric column [Millet et al., 2006]. The precision of column 

HCHO for one pixel is 1016 molecules cm−2 and improves with multi-pixel averaging 

[Boeke et al., 2011; Zhu et al., 2017]. The accuracy of column HCHO varies between 

25% and 31% with a cloud fraction of less than 0.2 [Millet et al., 2006].  

We use Version 3.0 retrievals of tropospheric vertical column NO2 from OMI 

[Krotkov et al., 2017]. These data are also available at https://urs.earthdata.nasa.gov/, 

last accessed late August 2017. The retrieval of vertical column NO2 is based on the 

use of measured radiances in 405 to 465 nm spectral region. A similar screening and 

averaging process as for column HCHO was used, with the appropriate quality flags, 

to grid the vertical NO2 columns. In detail, the “XTrackQualityFlag” to account for the 

row anomaly equals zero and the “VcdQualityFlags” which is a summary flag to 

account for errors during processing equals zero. The precision of tropospheric column 

NO2 is ~0.5 × 1016 molecules cm−2 and the accuracy is about 30% for clear sky to 60% 

for partly cloudy conditions [Krotkov et al., 2017]. 

2.3.1 Method to Infer Peroxy Radical Concentrations 
Though the D-AQ campaign provided an extensive data set, hydroperoxyl 

radical (HO2) and organic peroxy radicals (RO2) were not measured. These compounds 

are essential to our understanding of the chemical mechanism within CMAQ because 

the production of surface O3 is limited by the speed of the reaction of NO with radicals 

https://urs.earthdata.nasa.gov/
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such as HO2 and RO2 (e.g., CH3O2, C2H5O2, and CH2C(CH3)C(O)O2, the isoprene 

oxidation product peroxy methacrolein). The resulting products can form NO2 either 

directly (e.g., HO2 + NO → OH + NO2) or after thermal decomposition (e.g., of PAN 

(CH3C(O)OONO2; peroxyacetyl nitrate), PPN (CH3CH2C(O)OONO2; peroxy 

propionyl nitrate), and MPAN (CH2C(CH3)C(O)OONO2; methacryloylperoxynitrate)). 

Therefore, the production rate of O3 is limited by:  

  Prod O3 = 𝑘𝑘HO2+NO ∙ [HO2][NO] +  ∑ [𝑘𝑘RO2+NO]𝑖𝑖 ∙ [RO2]𝑖𝑖𝑖𝑖 ∙ [NO ]               (1) 

where i represents various RO2 radicals. Assuming NO2 is in local photochemical 

steady state, the sum of hydroperoxyl and organic peroxy radicals (multiplied by the 

appropriate rate constants) can be inferred from the measured NO2/NO ratio. 

Measurements of NO, NO2, O3, JNO2, and a value for kO3+NO of 3.0×10−12 exp(−1500/T) 

cm3 s −1 [JPL03; Sander et al. 2003] are used to infer the sum of peroxy radicals 

multiplied by the respective rate constants for reaction with NO:  

 𝑘𝑘HO2+NO ∙ HO2 + ∑ [𝑘𝑘RO2+NO]𝑖𝑖 ∙ [RO2]𝑖𝑖𝑖𝑖  = [NO2]
[NO]

∙ 𝐽𝐽NO2 − 𝑘𝑘O3+NO ∙ O3.       (2) 

This expression assumes production and loss of NO2 are equal; both sides of 

the equation have units of s−1. Equation (2) is valid in CMAQ during daytime hours 

(10 am to 4 pm local solar time; note, the sun is highest in the sky at ~1 pm in the region 

sampled by D-AQ during summer), as shown in Figure 2-3. The figure shows a 

comparison of simulated ∑RO2 (left hand side of Equation (2)) versus inROx (right 

hand side of Equation (2)) from the SCI-PAN simulation during day time hours (10 am 

to 4 pm local solar time). Day time hours were chosen, since NO2 is nearly in 

instantaneous photochemical steady state, i.e. Equation (2) is valid. 

 In the following, we will refer to the right hand side of equation (2) as the inferred 

value (inROx) and the left hand side as the real value (ΣRO2) of the rate at which HO2 
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and RO2 radicals react with NO. Our analysis assumes that the chemistry described 

above is complete. This 

calculation cannot distinguish 

HO2 from RO2, but provides a 

good estimate of the frequency at 

which all peroxy radicals react 

with NO. Finally, the value for 

kO3+NO used in Equation (2) is the 

same as used in the CB05-TUCL 

chemical mechanism, which is 

from JPL03 [Sander et al., 2003]; 

the same value for this rate 

constant is given in the latest JPL 

compendium [Burkholder et al., 

2015], hereafter JPL15). The 

computed value of inROx 

depends on the accuracy of kO3+NO and JNO2, as discussed below.  

 The accuracy of inROx depends on the numerous factors that appear on the right 

hand side (RHS) of Equation (2). For the first term on the RHS, the accuracy of NO 

and NO2 are 5% and 15%, respectively. The accuracy of the photolysis frequency of 

JNO2, given by ∫𝐹𝐹(𝜆𝜆)𝜎𝜎𝑁𝑁𝑁𝑁2(𝜆𝜆)𝛷𝛷𝑁𝑁𝑁𝑁2(𝜆𝜆)  𝑑𝑑𝑑𝑑, is 20% based on the JPL03 uncertainties 

for 𝜎𝜎𝑁𝑁𝑁𝑁2 and 𝛷𝛷𝑁𝑁𝑁𝑁2 (these estimates are independent of temperature). Even though JNO2 

is reported with a precision of 8%, we used the accuracy uncertainty below. Combining 

these three accuracy uncertainties in a root sum of squares (RSS) fashion leads to a 

26% uncertainty for the first term of the RHS of Equation (2). The 1σ uncertainty of 

the kNO+O3 rate constant given by JPL03 is 14% and the 1σ accuracy of O3 is 5%. 

Combining these two values in an RSS fashion leads to a 15% uncertainty for the 

second term. Therefore, the overall 1σ uncertainty of the RHS of Equation (2) is 

estimated to be 30%. 

Figure 2-3 Scatterplot of simulated ∑RO2 versus 
inROx from the SCI-PAN simulation. The inROx 
values shown here are used to compare mean inROx 
from the model to mean inROx values from 
measurements (see Figure 2.13). The 1:1-line is 
also shown. 
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2.4 Model Description 
 

This study uses the U.S. Environmental Protection Agency (EPA) Community 

Multiscale Air Quality (CMAQ) model, version 5.0.2 [CMAS-Center, 2013] with 

Carbon Bond version 2005 [Yarwood et al., 2005] updated with toluene reactions 

[Whitten et al., 2010] including the chlorine chemistry extension (CB05-TUCL; 

 https://www.airqualitymodeling.org/index.php/CMAQv5.0_Chemistry_Notes, 

accessed September 2017). The Weather Research and Forecasting (WRF) Model, 

version 3.4 [Skamarock and Klemp, 2008] was run offline by the EPA to generate 

meteorological fields [EPA, 2014b] (temperature, boundary layer height, humidity, 

three dimensional winds, etc.) processed with the Meteorological Chemistry Interface 

Processor (MCIP) version 4.2 [Otte and Pleim, 2010] before being ingested into 

CMAQ. WRF is initialized with the North American Model (12NAM) provided by the 

National Climatic Data Center (NCDC), also taken as meteorological boundary 

conditions. The generated meterological fields are also used as input to the Sparse 

Matrix Operator Kernel Emissions (SMOKE) model, version 3.5.1, which generates 

gridded anthropogenic emission fields (Section 1.3.2.1). Both WRF and CMAQ were 

run at 12 km × 12 km horizontal resolution, for a model domain covering the eastern 

United States (Figure 2-4). The figure depicts average maximum 8-hr ozone at the 

surface for July 2011, from the baseline CMAQ simulation (BSE). This figure shows 

the extent of the CMAQ domain in the Eastern United States. Both WRF and CMAQ 

have 34 vertical layers (σ coordinate) from the surface to about 20 km, with ~20 layers 

in the lowest 2 km. Convective conditions are simulated with the asymmetric 

convective model (ACM2) [Pleim, 2007] in WRF, allowing for rapid upward transport 

in buoyant air parcels and turbulent diffusion induced by vertical shear. 

https://www.airqualitymodeling.org/index.php/CMAQv5.0_Chemistry_Notes
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Emissions from 

electrical generation units 

(EGUs) are created from 

the Continuous Emission 

Monitoring System 

(CEMS) database, using the 

Eastern Regional Technical 

Advisory Committee 

(ERTAC; 

https://www.epa.gov/air-

emissions-

inventories/eastern-

regional-technical-

advisory-committee-ertac-

electricity-generating) software for temporalization. The Motor Vehicle Emission 

Simulator 2014 (MOVES2014) was used to provide estimates of emissions from cars, 

trucks, and motorcycles [EPA, 2014], for the summer of 2011. Initial and boundary 

conditions for CMAQ are obtained from the GEOS-CHEM v8-03-02 global chemistry 

model, run at a horizontal resolution of 2.0° × 2.5° (latitude, longitude) [Bey et al., 

2001]. 

 Isoprene (C5H8), present in large amounts in the Eastern United States, and 

other biogenic emissions were simulated using either the Biogenic Emissions Inventory 

System, version 3.6.1 (BEISv3.61) [Bash et al., 2016] or Model of Emissions of Gases 

and Aerosols from Nature, version 2.10 (MEGANv2.10) [Guenther et al., 2012]. Most 

of the simulations shown below are based on BEISv3.61, which leads to better 

agreement between measured and modeled HCHO and C5H8 than found upon our use 

of MEGANv2.10 [see also Kaiser et al., 2018]. A detailed comparison of BEISv3.61 

and MEGANv2.10 is given by Bash et al. [2016]. The following section provides more 

detail about MEGANv2.10 and BEISv3.61 and was published as supplements to this 

paper.  

 
Figure 2-4 Spatial distribution of average maximum 8-
hr ozone for July 2011 at the surface from the BSE 
simulation. Colored areas depict the CMAQ domain 
for simulations used in this study. 

https://www.epa.gov/air-emissions-inventories/eastern-regional-technical-advisory-committee-ertac-electricity-generating
https://www.epa.gov/air-emissions-inventories/eastern-regional-technical-advisory-committee-ertac-electricity-generating
https://www.epa.gov/air-emissions-inventories/eastern-regional-technical-advisory-committee-ertac-electricity-generating
https://www.epa.gov/air-emissions-inventories/eastern-regional-technical-advisory-committee-ertac-electricity-generating
https://www.epa.gov/air-emissions-inventories/eastern-regional-technical-advisory-committee-ertac-electricity-generating
https://www.epa.gov/air-emissions-inventories/eastern-regional-technical-advisory-committee-ertac-electricity-generating


 

 

37 
 

In this body of work either BEISv3.61 or MEGANv2.10 are utilized for 

biogenic emissions. Both algorithms use information on vegetation type and canopy 

characteristics as well as the temperature and solar radiation fields from WRF. Biogenic 

volatile organic compound (BVOC) emissions for BEIS and MEGAN use the same 

empirical algorithm, based on work of Guenther et al. [2006]. Differences between 

BEISv3.61 and MEGANv2.10 occur in the calculation of emission factors, type of 

canopy model, and the number of vegetation species. For example, BEISv3.61 uses 

species- or species-group-specific emission factors from the Biogenic Emission 

Landuse Database (BELD 4). The new version of BELD 4 integrates Moderate 

Resolution Imaging Spectroradiometer (MODIS) plant function types and the 2006 

National Land Cover Database (NLCD), whereas MEGANv2.10 uses 16 different 

global plant functional types as emission factors [Bash et al., 2016]. 

Table 2-1 Configuration of different CMAQ simulations 

 BSE SCI SCI-PAN SCI-MGN 

CMAQ version 5.0.2 5.0.2 5.0.2 5.0.2 

Chemical Mechanism CB05-

TUCL 

CB05-

TUCL 

CB05-

TUCL 

CB05-TUCL 

Biogenic Emissions BEIS v3.61 BEIS v3.61 BEIS v3.61 MEGAN 

v2.10 

50% mobile NOx No Yes Yes Yes 

Photolysis 

rate(NTR)×10 

No Yes Yes Yes 

Changes in PAN 

chemistry 

No No Yes No 

  

We present results of four CMAQ simulations, detailed below as well as in Table 2-1. 

The first simulation was conducted using the CB05-TUCL mechanism, anthropogenic 

emissions based on the 2011 NEI, and biogenic emissions from BEISv3.61. This model 

run is our baseline simulation (BSE) and reflects the CMAQ modeling system 
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distributed by the U.S EPA at time of paper submission. Next, we describe three other 

configurations of CMAQ as well as the motivation for these runs. 

It has been shown that simulations of NOy using the 2011 NEI overestimate 

observed NOy by 33% or more in the Baltimore-Washington airshed, which has been 

attributed to a factor of 2 overestimate of mobile NOx emissions within the NEI 

[Anderson et al., 2014; Travis et al., 2016, McDonald et al., 2018]. Prior analysis of 

the urban to rural ratio of NOx simulated by CMAQ in baseline configuration reveals 

that NOx is either converted too quickly to a reservoir species or the meteorology within 

CMAQ causes NOx to remain too close to urban source regions, possibly due to 

inefficient venting of the boundary layer [Castellanos et al., 2011; Canty et al., 2015]. 

Our second configuration of CMAQ assumes two changes relative to baseline: a 50% 

reduction in the mobile emission of NOx [Anderson et al., 2014] and a factor of 10 

increase in the photolysis rate of alkyl nitrates (JNTR; ANs are lumped to one species in 

CB05-TUCL called NTR) [Canty et al., 2015]. We term this simulation the Science 

Framework (SCI) because these specific modifications to the model are motivated by 

analysis of observations to determine the appropriate changes to the CB05-TUCL 

mechanism and emissions needed to achieve good agreement between modeled and 

measured NOx, NO2, NOy, and ANs [Anderson et al., 2014; Canty et al., 2015; 

Goldberg et al., 2016]. In the baseline simulation the lifetime of NTR due to photolysis 

during summer is ~10 days, with JNTR being calculated using the cross section of 

isopropyl nitrate that produces NO2 and HO2. However, the most abundant species in 

the family of alkyl nitrates are hydroxynitrates of biogenic origin, with lifetimes on 

order of ~1 day [Horowitz et al., 2007; Perring et al., 2009; Beaver et al., 2012]. To 

account for the more abundant shorter-lived alkyl nitrate species, a factor of 10 increase 

has been applied to JNTR. These changes bring CB05-TUCL into better agreement with 

the representation of alkyl nitrates within mechanisms such as RACM2. 

We now turn to oxidized VOCs, specifically peroxyacetyl nitrate (PAN) and its 

homologues. Within CB05-TUCL, the peroxy nitrate family is represented by three 

terms: PAN, PANX, and OPAN. Here, PAN refers to CH3C(O)OONO2, PANX 

represents higher order oxidized peroxyacyl nitrates such as MPAN and PPN, OPAN 

considers organic peroxyacyl nitrates such as p-methylbenzyl nitrate 
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(CH3C6H4CH2ONO2) [Bethel et al., 2000], produced by decomposition of unsaturated 

dicarbonyl compounds. During D-AQ, total peroxy nitrates were measured via laser 

induced fluorescence (Table 2-3). Below, we show that the sum of 

PAN+PANX+OPAN (termed PANs) from the baseline (BSE) and science (SCI) 

simulations are more than a factor of 2 larger than observed PANs. Consequently, we 

consider a third run of CMAQ, termed Science-PAN (SCI-PAN) designed to improve 

the model representation of oxidized peroxyacyl nitrates. 

Here we describe the chemical kinetics of the SCI-PAN run. Peroxyacetyl 

nitrate is the most studied and usually most abundant of all peroxy nitrate compounds 

(e.g., Singh et al. [1992], LaFranchi et al. [2010], Phillips et al. [2013]). The thermal 

decomposition rate of PAN has been determined by several laboratory studies, over a 

wide temperature range (e.g., Bridier et al. [1991]; Kabir et al. [2014]), but not at 

temperatures below 280 K. The decomposition rates of other peroxy nitrate compounds 

are less well quantified. Within CB05-TUCL, the same numerical values are used for 

the thermal decomposition of PAN and PANX: i.e., low and high pressure limits of 4.9 

× 10−3 exp (−12100/T) s−1 and 5.4 × 1016 exp (−13830/T) s−1, respectively. These 

numerical values originate from Atkinson et al. [2006] (here after IUPAC06), which 

also recommends the use of N=1.4141 (broadening factor) for the pressure dependence 

in the fall-off region for this rate constant. However, the CB05-TUCL mechanism 

within the CMAQ code distributed by EPA uses a value of N=1 for the thermal 

decomposition of PAN and PANX, which appears to be an inadvertent mistake in the 

RXDT.f file distributed by the EPA. To be consistent with the code distributed by EPA, 

we also use N=1 for our BSE and SCI simulations. The use of N=1 (CB05-TUCL code) 

rather than the correct value of N=1.4141 (IUPAC06 table) results in a 12% increase 

in the thermal decomposition of PAN at 298 K and 1 bar (Table 2-2). 

The IUPAC recommendation for the thermal decomposition of PAN was 

updated in February 2014 (http://iupac.pole-

ether.fr/htdocs/datasheets/pdf/ROO_15_CH3C(O)O2NO2_M.pdf). This update, 

which we refer to as IUPAC14, was based on reanalysis of older laboratory studies. 

Specifically, IUPAC14 recommends low and high pressure limits of 1.1 × 10−5 exp 

(−10100/T) s−1 and 1.9 × 1017 exp (−14100/T) s−1, respectively, as well as N=1.4141. 

http://iupac.pole-ether.fr/htdocs/datasheets/pdf/ROO_15_CH3C(O)O2NO2_M.pdf)
http://iupac.pole-ether.fr/htdocs/datasheets/pdf/ROO_15_CH3C(O)O2NO2_M.pdf)
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The new recommendation for kPAN (thermal decomposition rate of PAN, units s˗1) is in 

good agreement with the recent laboratory study by Kabir et al. [2014] (Figure 1-3). 

The IUPAC14 value of kPAN is 44% larger than the IUPAC06 recommendation at 298 

K and 1 bar (Table 2-2). We use IUPAC14 for the SCI-PAN simulation for PAN and 

PANX. The value of kPAN for the IUPAC14 simulation is 29% higher than the value 

used in our BSE, SCI, and SCI-MGN runs of CMAQ (Table 2-3 and Figure 2-5). More 

recent versions of the chemical mechanism, such as CB05e51 and CB6r3, have 

implemented a broadening factor of N=1.41 in the distributed code at the time of paper 

submission. However, both of these two new mechanisms use the IUPAC06 

recommendation for the low and high pressure limits of the kPAN. As a result, kPAN in 

the CB05e51 and CB6r3 chemical mechanisms is underestimated (Figure 1-3; green 

line) compared to most laboratory measurements. This has also been noted by Appel et 

al. [2017] who used CMAQv5.1 and implemented IUPAC14 and N=1.41 into CB5e51. 

Finally, the JPL15 recommendation for kPAN (not used in any recent CMAQ 

mechanism) results in a value that is 11% slower than IUPAC14. 

Within CMAQ, higher order oxidized peroxyacyl nitrates (PANX) are assumed 

to be lost by reaction with OH. The CB05-TUCL mechanism uses a value of 3.0 × 10−13 

cm3 molecule−1s−1 for the temperature independent rate constant for the reaction of OH 

with PANX. The origin of this particular constant is, according to Yarwood et al. 

[2005], the “average based on NASA/JPL [2003] CH3/C2H5 nitrate ratio and IUPAC 

[2005] PAN+OH” (here IUPAC [2005] refers to the Atkinson et al. [2006] publication). 

Orlando et al. [2002] reported a value of 3.2 ± 0.8 × 10−11 cm3 molecule−1 s−1 for the 

reaction of OH with MPAN, a factor of 100 faster than used within CB05-TUCL (note: 

MPAN is a main component of PANX when isoprene emissions are high). Since the 

CB05e51 update to CB05 released November 2015 at 

https://www.airqualitymodeling.org/index.php/Cb05e51_ae6_v5.1_mech.def 

specifies a rate constant of 2.9 × 10−11 cm3 molecule−1 s−1 for OH+MPAN, we make 

use of this value in the SCI-PAN simulation. This rate constant lies well within the 

experimental uncertainty of the laboratory determination [Orlando et al., 2002]. 

In summary, our third simulation termed SCI-PAN assumes a significant increase in 

loss rate of PAN and PANX via both thermal decomposition and reaction with OH. 

https://www.airqualitymodeling.org/index.php/Cb05e51_ae6_v5.1_mech.def


 

 

41 
 

Specifically, SCI-PAN uses: a) the IUPAC14 recommendation of the low and high 

pressure limit for the thermal decomposition of PAN, for both PAN and PANX 

including N=1.4141 for the pressure dependence; b) 2.9 × 10−11 cm3 molecule−1 s−1 

(same as in CB05e51) for the temperature independent rate constant of the reaction of 

PANX with OH. Most of the modeled differences of PAN and PANX between SCI and 

SCI-PAN shown in section 3 are due to changes in the thermal decomposition rather 

than the increase in the rate constant for PANX+OH. The comparison of observed and 

simulated PANs shown in the next section suggests that in the actual atmosphere, the 

loss rate (i.e., thermal decomposition and/or reaction with OH) of PAN and PANX 

occurs about a factor of 2 more quickly than represented in the CB05-TUCL 

mechanism. The faster thermal decomposition rate of IUPAC14 improves the 

agreement between modelled and measured PAN species. 

In this section I am detailing the calculation of kPAN. This section has been 

added from the supplements of this published work. The following analysis represents 

the basis on how kPAN was changed within CMAQ. Three different recommended 

values of kPAN are considered: IUPAC06, IUPAC14, and JPL15. Thus far, the carbon 

bond chemical mechanisms in CMAQ use the preferred values from IUPAC06 to 

calculate kPAN within the model (i.e.CB05-TUCL, CB05e1, CB6r3, etc.). Figure 2-5 

shows the Arrhenius plot of (kPAN) from recommendations (IUPAC06 in green; JPL15 

in black; IUPAC14 in red) and CMAQ (based on how this reaction is coded in the 

subroutine); in light blue (using IUPAC06) and dark blue (using IUPAC14) versus 

inverse temperature. CMAQ values of kPAN tend to be higher than the respective 

recommended values (i.e., IUPAC06 compared to CMAQ (IUPAC06) and IUPAC14 

compared the CMAQ (IUPAC14)) because, as explained in the main paper, the CMAQ 

mechanism was distributed with N set to 1 rather than the recommended value of 

1.4141. 
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Table 2-2 provides the 

rate constants from the various 

sources, all 298 K and 1 bar, as 

found using E1 (see Chapter 1) 

and the value of N given in the 

table. The consequence of using 

N = 1 in the CB05-TUCL 

mechanism, rather than the 

recommended value, is a ~10% 

increase in the thermal 

decomposition rate relative to 

the reaction rate compared to 

the IUPAC recommendation. 

The JPL15 rate evaluated at 298 

K and 1 bar is also given, for 

completeness. We are not using 

Equation (1) to determine kPAN 

for JPL15 but instead make use of the forward reaction rate and equilibrium rate 

constant to calculate kPAN. 

Table 2-2 Rate constants for kPAN evaluated at 298K and 1 bar for various 
recommendations and values of N that enter into the IUPAC expression. 

As shown in Figure 2-3, the IUPAC14 recommendation for kPAN is in very good 

agreement with numerous laboratory measurements. Therefore, rate constant for the 

thermal decomposition in chemical mechanisms used in air quality models should be 

updated to the IUPAC14 recommendation. Presently, the latest CMAQ mechanism, 

 

Figure 2-5 Arrhenius plot of the thermal decomposition 
rate of PAN (kPAN) versus inverse temperature. IUPAC 
(2006; green), JPL (2015; black), and IUPAC (2014; 
red) are recommended values of PAN thermal 
decomposition rates. CMAQ (IUPAC06; light blue) 
and CMAQ (IUPAC14; dark blue) represent kPAN with 
the recommended values of IUPAC (2006) and IUPAC 
(2014) respectively using the calculation as 
implemented in CMAQ. Insert shows zoomed plot at 
298K.  

Source N Rate s-1 CMAQ Run 
IUPAC06 1.4141 2.98×10-4  
CMAQ CB05-TUCL 
based on IUPAC06 

1.0 3.33×10-4 BSE, SCI, SCI-MGN 

IUPAC14 1.4141 4.30×10-4 SCI-PAN 
IUPAC14 altered to examine 
sensitivity of kPAN to N 

1.0 4.75×10-4  

JPL15 n.a. 3.81×10-4  
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CB6r3, still uses the IUPAC06 recommendation, with the correct value of 1.41 for N.  

As shown in Table 2-2, this results in a value of kPAN that is nearly 40% slower than 

the IUPAC14 value. Fortuitously, the incorrect designation of N = 1 in CMAQ code 

caused kPAN to lie closer to IUPAC14, and hence laboratory data, than is found upon 

correcting the error in N. CMAQ simulations will likely continue to overestimate PAN 

until the IUPAC14 value of kPAN is correctly implemented. 

The fourth simulation uses biogenic emissions of VOCs from MEGANv2.10 

[Guenther et al., 2012]. For the Baltimore-Washington airshed (at the six surface sites) 

and during meteorological conditions on D-AQ flight days, the emission of isoprene 

found using MEGANv2.10 is about a factor of 1.5 larger (a factor of 2 for the whole 

CMAQ domain) than found using BEISv3.61. A major focus of our paper is the 

comparison of k[HO2]+Σk[RO2] from CMAQ to the value of this quantity (inROx) 

calculated from D-AQ data. We have coupled the use of MEGANv2.10 with the 

assumptions for chemical kinetics of the SCI run (i.e., default kinetics for PAN and 

PANX in CB05-TUCL) of CMAQ because this combination yields the largest 

reasonable value of k[HO2]+Σki[RO2]i given the available choices. We term this final 

simulation SCI-MGN (Table 2-1). 

2.5 Results and Discussion 
 

A map of the Baltimore-Washington airshed is depicted in Figure 2-1. The six 

ground sites: Beltsville, Padonia, Aldino, Fairhill, Edgewood, and Essex are labeled 

black and the closest CMAQ grid points and boxes are depicted in red. We have aligned 

CMAQ output for the four simulations to surface and aircraft measurements both in 

space (vertically as well as horizontally for aircraft data) and time, by using CMAQ 

output at the nearest grid point for the closest time.  

 

2.5.1 Ozone and Its Precursors 
 
Here, we compare three of the four CMAQ simulations of surface O3 to observations 

obtained at six D-AQ ground stations (Figure 2-6). Figure 2-6a to Figure 2-6c show 8-
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hr averaged surface O3 for July 2011 between 10 am and 7 pm versus CMAQ output 

(also 8-hr average, i.e. 8-hr O3 for 10 am, 8-hr O3 for 11 am, etc.).  

 

Figure 2-6 Panels a)-c) show 8-hr averaged O3 from D-AQ surface data vs. CMAQ output for 
the BSE (a), SCI (b), and SCI-PAN (c) simulations. The black line depicts the 1:1-line and the 
green lines depict the old O3 standard of 75 ppb. Average ratio is the ratio of CMAQ output 
over D-AQ data. The four numbers in each quadrant reflect the number of points in each 
section. Panel d) shows probability of 8-hr averaged O3 from six Maryland ground sites 
(Beltsville, Padonia, Aldino, Fairhill, Edgewood, and Essex) in 5 ppb O3 bins for measurements 
(black) and three CMAQ simulations (colored) for the month of July 2011. The dashed green 
line depicts the new O3 standard of 70 ppb (since 2015) and the solid line the old O3 standard 
of 75 ppb. 

The green lines depict the 75 ppb NAAQS O3 standard, in effect at the time of 

measurements, dividing each panel into four sections. 

Figure 2-6a to Figure 2-6c show that the baseline model simulation and the modified 

simulations all capture measured 8-hr averaged surface O3 quite well, as reflected by 

the mean ratio of CMAQ output over D-AQ data (given in each panel) being close to 

1. The number of data points in each quadrant is about the same in Figure 2-6a and 

Figure 2-6b, which show measurements versus the BSE and SCI CMAQ simulations, 
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respectively. The lower left and upper right quadrants of Figure 2-6a and 2-6b 

constitute 1534 (=1441+93; BSE) and 1529 (=1442+87; SCI) data points. Therefore, 

~1534 (~87%) of the BSE model results correctly predict the times when O3 was above 

(93) or below (1441) the federal standard. However, 234 (~13%) of the simulations lie 

either in the upper left (CMAQ predicts O3 to exceed the standard, but this did not 

occur) or lower right (observed O3 exceeded the standard but was not captured by 

CMAQ) for BSE. For the SCI simulation, 239 points lie either in the upper left or lower 

right quadrants, which is very similar to the BSE simulation. The total number of data 

points in these two quadrants in Figure 2-6c, the SCI-PAN CMAQ simulation, is 

slightly larger compared to the other simulations. The number of SCI-PAN points 

giving an incorrect prediction of 8-hr averaged O3 has grown by 18 points compared to 

BSE, a ~1% increase relative to the total number of data points shown on any of the 

three panels. It is important to note that we are analyzing 8-hr averaged O3 in 

measurements and simulations, over the course of an entire month. Therefore, the over-

estimation of surface O3 by the CMAQ simulations as shown in previously publications 

using a different metric, averaged daily maximum 8-hr O3 [Nolte et al., 2008; Ring et 

al., 2018; Trail et al., 2014, Travis et al. 2016], is not apparent Figure 2-6. 

Figure 2-6d shows the probability distribution (PD) of 8-hr averaged O3 for the month 

of July 2011. The data points (black) and the three CMAQ simulations (colored) using 

BEISv3.61 are grouped into 5 ppb O3 bins. Best agreement between measurements and 

simulation of the PD of 8-hr averaged O3 is achieved by the SCI-PAN simulation, 

where the mean of the absolute difference between the black PD curve (observation) 

and red curve (model) is 0.005. The mean of the absolute differences for the BSE and 

SCI simulations relative to observation are 0.008 and 0.009, respectively. While the 

analysis of the PD of 8-hr averaged O3 identifies the SCI-PAN simulation to be closest 

to observations, such is not the case when comparing scatter plots of 8-hr averaged O3 

(Figure 2-6a to Figure 2-6c). Modifications to the baseline run reflected in the SCI and 

SCI-PAN simulations increase 8-hr O3 (i.e., ratio relative to all observations is larger 

than for BSE), resulting in slightly worse agreement with observed O3 for much of the 

domain but better agreement (particularly for SCI-PAN) with the PD of the data for 
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values of O3 between 45 and 55 ppb as well as between 70 to 80 ppb. The SCI and SCI-

PAN simulations also provide better representation of O3 precursors, as shown below. 

Next, we compare D-AQ aircraft measurements to the three CMAQ simulations of five 

dominant NOy species (NO, NO2, HNO3, PANs, NTR). Figure 2-7 shows the NOy 

species averaged throughout the convectively mixed layer (CML) from simulations and 

measurements of all 248 P-3B aircraft spirals collected at the six locations during the 

14 flight days. Numerical values along with measurement uncertainties of the quantities 

shown in Figure 2-7 are given in Table 2-3. The table provides numerical values of the 

five major nitrogen species (NO, NO2, HNO3, NTR, and PANs) measured during D-

AQ. These values represent the average over all spirals within the mixed layer, and are 

depicted in Figure 2-7.  

Table 2-3 Measured (D-AQ) and 3 modeled (CMAQ) NOy species mixing ratios 
averaged over all P3-B spirals within the mixed layer. NTR and PANs are acronyms 
used in CMAQ encompassing all alkyl nitrates and peroxy nitrates, respectively 

 NO (ppb) NO2 (ppb) NOx (ppb) HNO3 (ppb) NTR (ppb) PANs (ppb) NOy (ppb) 

D-AQ 0.269 ±0.013 1.194 ±0.239 1.463 ±0.239 1.456±0.218 0.434±0.065 0.925±0.093 4.278±0.343 

BSE 0.192 1.217 1.409 1.586 1.175 1.821 5.991 

SCI 0.140 0.927 1.067 1.295 0.701 1.698 4.761 

SCI-PAN 0.162 1.060 1.222 1.432 0.722 1.306 4.682 

SCI-MGN 0.125 0.899 1.024 1.146 0.913 2.107 5.190 

The single species NTR in CB05-TUCL represents alkyl nitrates such as isopropyl 

nitrate, n-propyl nitrate, isobutyl nitrate, and isoprene nitrates. Simulations 

overestimate, on average, NTR by 171% (BSE), 62% (SCI), and 66% (SCI-PAN). All 

of these discrepancies are much larger than the 15% 1σ accuracy uncertainty for the 

measurement of NTR (Table 2-3), which suggests further improvement to the 

representation of NTR in CB05-TUCL may be needed. 

We now turn our attention to the peroxy nitrates, which serve as important 

reservoirs within the NOy family. Observed ‘PANs’ is actually the sum of total peroxy 

nitrates, including peroxyacetyl nitrate (actual PAN), peroxy propionyl nitrate (PPN), 

methacryloylperoxynitrate (MPAN) and related species. The chemical mechanism 

CB05-TUCL lumps these species into PAN, PANX, OPAN; the sum is shown as PANs 

in Figure 2-8. The breakdown of PANs within CMAQ (i.e., PAN, PANX, and OPAN) 
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is shown in Figure 2-6, along with the D-AQ measurement of peroxy nitrates. Our 

CMAQ simulations overestimate, on average, PANs by 97% (BSE), 84% (SCI), and 

30% (SCI-PAN) (Figure 2-8, Table 2-3, and Figure 2-6). These discrepancies are also 

much larger than the 10% 1σ measurement accuracy of PAN (Table 2-3), indicating 

that CMAQ overestimates the peroxy nitrate component of NOy through the PBL. This 

accumulation of peroxy nitrates within the PBL in CMAQ could be related to a 

tendency of anthropogenic NOx to be located more closely to large urban areas than is 

apparent from satellite observations of column NO2 [Canty et al., 2015].  

This section is added from the supplements and discusses the 1σ uncertainty of 

the IUPAC14 preferred values for kPAN. As mentioned before, in 2014 the preferred 

values from IUPAC for low and high pressure rate coefficients were revised. Rate 

coefficients from Bridier et al. [1991], Tuazon et al. [1991], Roberts and Bertram 

[1992], and Sehested et al. [1998] were fit, using a falloff a curvature parameter (Fc) of 

0.3. Figure also 2-5 shows the 1σ value of IUPAC14 (IUPAC14±1σ; red dashed lines) 

representing an increased/decreased thermal decomposition rate. The 1σ-uncertainty 

was calculated using the following equation: 

∆ log 𝑘𝑘(𝑇𝑇) = ( ∆ log 𝑘𝑘(298𝐾𝐾) + 0.4343 �∆𝐸𝐸
𝑅𝑅

(1
𝑇𝑇
− 1

298
)�)/2            (E2) 

where ∆ log 𝑘𝑘(298𝐾𝐾) and ∆𝐸𝐸
𝑅𝑅

 are provided on the IUPAC14 data sheet for the low and 

high pressure limit. There is no overlap between the measurements and the 

IUPAC14+1σ line (Figure 1-3; upper red dashed line), even when considering the 

uncertainties from the laboratory measurements.  

Though the IUPAC14+1σ value of kPAN is an overestimation compared to the 

laboratory data, we have implemented it into CMAQ as a sensitivity study. This new 

simulation, denoted SCI-PAN+1σ, is identical to the SCI-PAN simulation described in 

main except for the use of a faster rate for the thermal decomposition of PAN (and 

PANX). There are no laboratory studies of PANX since PANX represents many 

different peroxy nitrates such as MPAN and PPN. Newer versions of the chemical 

mechanism such as CB05e51 have a more explicit handling of peroxy nitrates i.e. 

MPAN is its own species. As mentioned before, in our simulations which uses CB05-

TUCL we use the thermal decomposition rate of PAN for PANX. Values of PANs from 
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the SCI-PAN+1σ simulation are in better agreement with measured PANs (Figure 2-

7).  Also, the SCI-PAN+1σ simulation results in an OPE of 7.31 ± 3.33, which is larger 

than OPE of 6.18 ± 2.99 from the SCI-PAN simulation. The OPE value from the SCI-

PAN+1σ simulation is in better agreement with measurements (OPE = 8.44 ± 4.11). 

Therefore, the kinetics of major members of the PAN family may be an appropriate 

target for future laboratory study. Conversely, the change of thermal decomposition 

rate from IUPAC06 to IUPAC14 or IUPAC14+1σ does not affect calculated values for 

inROx; all three simulations yield values of 0.0012 ± 0.0005 s-1. The shortfall of CMAQ 

values of inROx compared to inROx inferred from D-AQ data, for all of these 

simulations, suggests one or more VOC compounds degrades more efficiently into HO2 

and/or RO2 in the actual atmosphere than represented by CMAQ. 

 
Figure 2-7 Comparison of measured (D-AQ) and 3 modeled (CMAQ) averaged PAN 
species from all P3-B spirals within the mixed layer. 

Very good agreement of measured and modelled peroxy nitrates can be achieved upon 

using a value of kPAN increased by the 1σ uncertainty for the low and high pressure 

limits given by IUPAC14 (Figure 2-7). However, this 1σ increase in the rate of PAN 

thermal decomposition results in a value of kPAN that is noticeably larger than six 

laboratory determinations (Figure 1-3). While it is tempting to adjust kPAN by the 1σ 

uncertainty that leads to good agreement with the D-AQ observations of PANs, we 

have chosen to use the actual IUPAC14 recommendation for kPAN in our CMAQ 
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simulations shown in the main body of this paper, because this value of kPAN is 

consistent with the suite of laboratory measurements.  

We now describe measured and modelled HNO3, NO, NO2, and total NOy. Nitric acid 

is an important reservoir within the NOy family, as the formation of HNO3 represents 

the termination of radical chemistry. All three CMAQ simulations shown in Figure 2-

8 capture the observed concentration of HNO3 rather well (see also Table 2-3). The 

SCI-PAN simulation lies closest to observed HNO3, with a percent difference of 1.6%. 

All of the simulations lie within the 1σ measurement accuracy uncertainty of 15%. Here 

we will focus on NOx, rather than NO and NO2, since the proper simulation of the 

measured NO to NO2 ratio depends on accurate representation of the photolysis 

frequency of NO2. The BSE simulation of NOx is only 4% lower than observed. 

However, this simulation leads to a 40% overestimate of NOy.  

 

Figure 2-8 Comparison of measured (D-AQ) and modeled (BSE, SCI, and SCI-PAN) mixing 
ratio of various NOy compounds (NO, NO2, and HNO3) or groups (NTR and PANs), averaged 
over all P3-B spirals within the mixed layer. Only the five main components of the NOy family 
are shown. NTR and PANs are acronyms used in CMAQ encompassing all alkyl nitrates and 
peroxy nitrates, respectively. 

Analysis of the slope of CO anomalies versus NOy anomalies within the CML 

for the D-AQ dataset resulted in the determination that mobile emissions of NOx had 
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been overestimated within the NEI, by a factor of 2 for the Baltimore-Washington 

region during summer 2011 [Anderson et al., 2014]. The SCI (and SCI-PAN) 

simulations both include a 50% reduction in mobile NOx emissions as well as a few 

other adjustments (Table 2-1), resulting in a 27% (and 16%) underestimate of observed 

NOx and an 11% (and a 9%) overestimate of total NOy, respectively (Figure 2-8 and 

Table 2-3). For NOy, both science simulations lie within the 1σ measurement accuracy 

uncertainty (12%).  

Reducing mobile NOx emissions within the model framework leads to a 

decrease in the concentration of NOx for the SCI and SCI-PAN simulations, resulting 

in slightly worse agreement with observed NOx. However, both simulations exhibit 

better agreement with observed NOy: much of this improvement is due to the changes 

to the thermal decomposition and OH reactivity of PAN assumed for these model runs. 

The simulation of NOx is better in the SCI-PAN framework compared to the SCI 

simulation due to the introduction of a more realistic treatment of peroxy nitrates. The 

SCI-PAN run also provides good agreement with observed NTR and PAN, although 

both quantities are still overestimated within the model (Table 2-3). These comparisons 

highlight the highly coupled nature of the species that constitute the NOy family. 

Next, we compare the sum of measured alkyl nitrates (ANs; denoted as NTR to 

be consistent with the CMAQ specification) to simulated alkyl nitrates as well as 

modelled and measured PANs for the flight on 29 July 2011. Figure 2-9a and Figure 

2-9c show measured NTR (colored circles) and simulated NTR (colored contours) for 

the BSE (Figure 2-9a) and SCI-PAN (Figure 2-9c) simulations. Figure 2-9b and Figure 

2-9d show scatter plots of measured and simulated NTR for the BSE and SCI-PAN 

simulations. The BSE run of CMAQ overestimates NTR by a factor of 3.8 (Figure 2-

9b). A large overestimate of alkyl nitrates by CMAQ has been shown for 29 July 2011 

previously by Canty et al. [2015] using CB05 and v4.7.1 of the model. 

Although the factor of 10 increase in photolysis rate of NTR suggested by Canty 

et al. improves the representation of NTR in the model, the observed values are still 

overestimated by a factor of 2.2 (Figure 2-9d). As noted above, further improvement 

in the CB05 representation of alkyl nitrates is needed. A reduction of the NTR lifetime 

is achieved in the CB6r2 chemical mechanism [Goldberg et al., 2016] and newer 
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versions of the carbon bond mechanism, such as CB05e51 for CMAQv5.1 and CB6r3 

included in CMAQv5.2, due to a more detailed representation of various alkyl nitrates 

as well as the implementation of an aerosol uptake pathway of alkyl nitrates through 

hydrolysis. Aerosol uptake accounts for about 60% of the loss of alkyl nitrates in the 

boundary layer of the southeast U.S. [Fisher et al., 2016].  

 

Figure 2-9 Comparison of measured and simulated alkyl nitrates (NTR) for 29 July 2011: (a) 
the background colored contours show baseline CMAQ (BSE) output calculated for time and 
location of the P-3B aircraft. Colored points show the alkyl nitrate data from the P-3B aircraft. 
(b) Scatterplot of aircraft measurements of NTR versus CMAQ output for the BSE simulation, 
where the model has been sampled at the time and place of the aircraft observations. (c) Same 
as (a) for the SCI-PAN simulation: i.e., CB05-TU chemical mechanism modified such that the 
lifetime of NTR is reduced by a factor of 10, increased rates for the thermal dissociation rate 
of PAN and PANX and the reaction of PANX+OH, as well as a 50% reduction in the mobile 
emissions of NOx emissions. (d) Same as (b) but for the SCI-PAN simulation. The scatter plots 
show a 1:1-line in black; each panel also provides the mean value of modeled divided by 
measured NTR. 
Aerosol uptake of alkyl nitrates is not included within the CB05-TUCL mechanism 

used here. The inclusion of aerosol uptake of alkyl nitrates in CB6r3 represents a 
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significant step forward in the simulation of this chemical family. These newest 

versions of CMAQ became available midway through our study, and our use of CMAQ 

v5.0.2 follows many other papers in the past few years. The D-AQ dataset provides an 

important future opportunity to assess the representation of alkyl nitrates within the 

latest versions of CMAQ, especially as chemical mechanisms are improved to provide 

more realistic speciation within this family. 

 

Figure 2-10 Comparison of measured and simulate peroxy nitrates (PANs) for 29 July 2011: 
(a) the background colored contours show baseline CMAQ (BSE) output calculated for time 
and location of the P-3B aircraft. Colored points show the total peroxy nitrate data (PNs) from 
the P-3B aircraft. Panel (b) shows a scatterplot of measurements PANs from the aircraft versus 
BSE output. (c) and (d) Same as (a) and (b), but for the SCI-PAN simulation. The scatter plots 
show a 1:1-line in black; each panel also provides the mean value of modeled divided by 
measured PANs. 

 Next we compare measured and simulated peroxy nitrates. Figure 2-10a and 

Figure 2-10c show measurements (colored circles) and simulations (colored contours) 

of peroxy nitrates (PANs) for the BSE (Figure 2-10a) and SCI-PAN (Figure 2-10c) 

simulations for the flight on 29 July 2011. When the color of the data points is the same 
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as the background (i.e., when the colors merge) the model output and measurements 

are in good agreement. The BSE run of CMAQ overestimates measured PANs on this 

day by about a factor of 2.2. The representation of PANs is improved in the SCI-PAN 

simulation for this flight; however, PANs are still overestimated by a factor of 1.7. 

These comparisons show that increasing the thermal decomposition rate of PAN and 

PANX improves the representation of PANs in CMAQ (Figure 2-8 and Figure 2-10). 

Nonetheless, on some days (i.e., 29 July 2011) modelled PANs are much larger than 

measured, even for the SCI-PAN simulations. When this situation occurs the model is 

sequestering NOx in a form that is unavailable for photochemical production of O3 in 

the Baltimore-Washington airshed. This reactive nitrogen could be released downwind 

of the region, but only if air parcels experience significant warming. 

2.5.2 Ozone Production Efficiency 
 
Here, we compare OPE from CMAQ to values of OPE inferred from aircraft spirals in 

the mixed layer conducted during D-AQ. For each spiral, OPE is derived from the slope 

of Ox (≡ O3 + NO2) versus NOz (≡ NOy – NOx) for data collected within the 

convectively mixed layer (pressure > 820 hPa; solid circles in Figure 2-11), as 

explained in Section 1. A value for OPE is only computed if the relation between Ox 

and NOz for a specific spiral exhibits a value of r2 (squared correlation coefficient of 

Ox versus NOz) greater than 0.65. This criteria is applied independently to both the D-

AQ data and the CMAQ output. A recently published paper by Ninneman et al. [2017] 

suggests using r2 greater than either 0.4 or 0.5 to assure the sampling of homogeneous 

conditions characterized by high temperatures and low or no cloud cover. We use a 

conservative threshold of r2 ≥ 0.65, resulting in a subset of 86 spirals out of the 158 for 

which data are available for all relevant species needed to compute Ox and NOz (and 

hence OPE). Allowing a smaller threshold of r2 ≥ 0.4 or restricting the analysis to the 

same spirals for both the measurements and CMAQ output does not change any of our 

scientific conclusions (Figure 2-13). However, the use of r2 ≥ 0.4 results in larger 

uncertainty in OPE inferred from D-AQ data because the presence of scatter in the 

relation of Ox versus NOz suggests the sampled air masses may not be chemically 

coherent. Influences other than production of O3 by the cycling of NOx combined with 
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conversion of NOx to reservoirs can cause scatter in the relation. Such complicating 

factors include air masses with various initial abundances of O3 and NOx that are 

combined by mixing, the influence of fresh emissions on only a segment of the sampled 

spiral, or removal of HNO3 by deposition [Trainer et al., 1993].   

 

Figure 2-11 Determinations of the OPE from the relation between Ox and NOz on three days 
(left panel: low O3; middle panel: high O3; right panel: medium O3) and locations (Aldino, 
Essex, and Edgewood) in July 2011. Observations from the D-AQ aircraft with error bars (1σ 
total measurement uncertainty) for every second data point are in black, output from a baseline 
CMAQ model run (BSE) is in dark blue, output from a CMAQ model run for biogenic 
emissions from BEISv3.61, increased photolysis rate of NTR, and reduced mobile emissions 
of NOx (SCI) is in light blue, and output using the CMAQ SCI framework along with increases 
to the thermal dissociation rate of PANX and reaction rate of PANX+OH (SCI-PAN) is in red. 
Solid circles depict values within the mixed layer and open circles depict values above mixed 
layer. The various lines show linear least squares fits to Ox versus NOz data collected in the 
mixed layer (solid circles); OPE is the slope of the linear least squares fit lines. 

Figure 2-11 shows representative Ox versus NOz on three days and locations for 

measurements (black) and simulations (colored). Closed circles depict samples 

collected at pressures greater than 820 hPa, in the CML. Open circles depict samples 

collected at pressures less than 820 hPa, above the CML. The leftmost panel is 

representative of a low O3 day (surface max. 8-hr O3: 56 ppb), the middle panel is 

representative of a high O3 day (surface max. 8-hr O3: 92 ppb), and the right panel is 

representative of a medium O3 day (surface max. 8-hr O3: 78 ppb); panels are arranged 

chronologically. Other days with low, medium, or high maximum O3 show results for 

OPE similar to that presented in Figure 2-11. Within the CML (solid circles), Ox shows 
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a linear dependence on NOz in both the measurements and the model. OPE is 

determined from the slope of a linear fit of Ox versus NOz of data acquired in the CML; 

numerical values are given on each panel of Figure 2-11. The values of OPE inferred 

from the D-AQ observations on these three days tends to be more than a factor of two 

larger than OPE computed using CMAQ output. While OPE on days with low and high 

O3 in CMAQ are about a factor of 2 underestimated, the medium O3 day shows the 

greatest discrepancy for OPE between measurements (D-AQ: 13.2) and simulations 

(BSE: 4.1, SCI: 4.0, SCI-PAN: 4.4). For these selected days and locations the SCI-

PAN simulation shows best agreement with the actual atmosphere. In the following 

sections we will further explore the strength and weakness of the various CMAQ 

simulations with respect to OPE. 

 
Figure 2-12. Comparison of OPE versus maximum NOx. Circles depict mean OPE values and 
error bars are the 1σ standard deviation. The D-AQ aircraft data are black (solid circles), output 
from a baseline CMAQ model run (BSE) is dark blue, output from a CMAQ model run with 
increased photolysis rate of NTR and reduced mobile emissions of NOx (SCI) is shown using 
light blue, and output from the CMAQ SCI framework along with increases to the thermal 
dissociation rate of PANX and reaction rate of PANX+OH (SCI-PAN) is in red. The mean and 
standard deviation denotes the average of all spirals in each data set for which r2 between Ox 
and NOz is greater than 0.65, with the spirals grouped according to the maximum value of NOx 
encountered in either the modeled or measured spirals. The first bin includes all data for which 
the maximum mixing ratio NOx ≤ 1.0 ppb; the second bin includes data for which maximum 
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NOx lies between 1 and 2.0 ppb; the third bin is for maximum NOx between 2 and 3 ppb; and 
the last bin contains all spirals with maximum NOx > 3 ppb. The highest maximum NOx during 
D-AQ spirals was 6.98 ppb. Numbers next to the D-AQ data represent the number of spirals 
included in each NOx bin. The numerical notation on the figure shows the mean and standard 
deviation of all spirals with r2 ≥ 0.65, for the D-AQ data as well as the CMAQ output. 

To further investigate photochemical smog production, we sort the OPE values into 1 

ppb maximum NOx bins. Maximum NOx is determined individually for each linear 

regression (i.e., the maximum value of NOx in each spiral). Furthermore, we exclude 

OPE values that do not fall within two standard deviations (2σ) of the mean of other 

values in each bin. The total number of measured spirals using the 2σ-criterion is 

reduced to 80 (previously 86; 6 OPE values lie more than 2σ from the mean). We apply 

the same sampling criteria used to select the spirals from the measurements (r2 ≥ 0.65 

and 2σ-criterion) to output from the CMAQ simulations resulting in a sample size of 

100+ spirals (Table 2-4). Figure 2-12 shows the comparison of measured (black) and 

simulated (BSE: dark blue, SCI: light blue, and SCI-PAN: red) OPE as a function of 

maximum NOx. The last bin includes OPE values that have a maximum NOx of 4 ppb 

and larger in order to have a roughly similar number of spirals in each bin. On average 

the OPE from the various models simulations is lower than observation by 34±20% 

(BSE), 27±16% (SCI), and 21±13% (SCI-PAN) (i.e., for BSE the model resulted in 

OPE of 5.55; the data yielded 8.44; therefore we report the model was (8.44 − 5.55) / 

(8.44) ×100% = 34% low relative to observation). The CMAQ simulation with reduced 

mobile NOx emissions and increased dissociation rates of NTR and PANX in the 

chemical mechanism shows best agreement with measured OPE. We have compared 

OPE from a fourth simulation (SCI-MGN) that uses biogenic emissions from 

MEGANv2.10 instead of BEISv3.61 (Table 1) but exclude showing results in Figure 

2-12, since the OPE from this simulation did not show a significant improvement in 

OPE values compared to the SCI simulation.  

Table 2-4 summarizes the statistics for OPE values for 80 spirals in the measurements 

and 100+ spirals for each of the model simulations. The first numerical column in Table 

2-4 shows the mean of all 80 spirals (mean all), whereas the second column represents 

the mean of the five OPE values computed from sorting the data into 1 ppb NOx bins 

(mean binned). The measurements show a greater range of OPE values (Std. dev: 4.11) 



 

 

57 
 

compared to model simulations (Std. dev.: ~3). The value of OPE based on the BSE 

simulation is lower than OPE inferred from D-AQ data across all of the statistical 

measures (i.e., mean, median, 5th and 95th percentiles) by 36% (range of 32 to 39%). 

The percentage underestimate of OPE is 29% (range 24 to 32% across statistical 

measures) for the SCI simulation. The best simulation of OPE is attained for the SCI-

PAN run, which results in an estimate that is 22% (range 17 to 27%) below observed 

OPE, due to a better representation of nitrogen precursor species that are involved in 

the formation of surface O3. The OPE results for the SCI-MGN simulation lie between 

the values from the SCI and SCI-PAN simulation. Across nearly all the statistical 

categories in Table 2-4, the SCI-PAN simulations yield values of OPE that are closest 

to the observations. 
Table 2-4: Values of mean, median, 5th-percentile, and 95th-percentile of OPE from 80 spirals 
in the measurements and >100 for all model simulations. 

 Mean (all) 
/ Std. dev. 

Mean (binned) / 
Std. dev. Median 5th percentile 95th percentile # of 

Spirals 
D-AQ 8.44 / 4.11 8.17 / 1.24 8.20 2.73 16.35 80 

BSE 5.55 / 2.75 5.02 / 0.58 5.04 1.85 10.66 111 

SCI 6.18 / 2.99 5.58 / 0.40 5.55 2.03 12.45 102 

SCI-PAN 6.63 / 3.16 5.94 / 0.13 6.08 2.25 13.58 101 

SCI-MGN 6.49 / 2.93 6.50 / 1.59 5.94 2.62 12.36 105 

 
Finally, we comment on the magnitude and shape of the OPE versus maximum 

NOx relation. The domain sampled during D-AQ contained modest mixing ratios of 

NOx, resulting in relatively high values of OPE. High mixing ratios of NOx were 

sampled infrequently during the spirals. Therefore, we cannot determine with 

confidence whether OPE decreases with increasing NOx, which is the expected 

behavior, even though the last two D-AQ points in Figure 2-7 (as well as Figure 2-13) 

display this tendency. 
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Figure 2-13 Left: Same as Figure 2-12, except that the simulations were sampled with the 
same 80 spirals selected for the aircraft measurements. Right: Same as Figure 2-12, except 
that an r2 ≥ 0.4 between Ox versus NOz had been used to filter the data, prior to the 
determination of OPE. 

 Kleinman et al. [2002] shows OPE for a much larger range of maximum NOx 

(0 to 43 ppb) than sampled during D-AQ; when NOx is greater than 4 ppb in their study, 

OPE decreases with increasing NOx. The OPE is a measure of how effectively NO2 can 

be recycled and form O3 before it is converted to a photochemically inactive species 

such as HNO3. However, O3 production or destruction is also dependent on peroxy 

radical concentrations that control the removal of NOx and VOCs. Therefore, we next 

examine the peroxy radical concentrations within measurements and model 

simulations. 

2.5.3 Inferred Peroxy Radicals 
Figure 2-14 shows inROx versus maximum NOx, for the same 80 spirals 

(measurements) and 100+ spirals (model simulations) used in Figure 2-12. Again, 

measurements are depicted in black and simulations are color-coded (BSE: dark blue, 

SCI: light blue, and SCI-PAN: red, SCI-MGN: green). Error bars in Figure 2-13 depict 

the standard deviation of values within each bin, where again the measurements and 

model output are binned with respect to maximum NOx within each profile. Generally, 

the size of the error bars is larger than the calculated uncertainty of 30% for inROx. The 

observations display a decreasing trend with increasing maximum NOx that is also 

evident in the simulations. The decrease of peroxy radical abundance as a function of 

increasing NOx is consistent with near-surface O3 being in the NOx-limited regime 

during this phase of D-AQ, as shown by Schroeder et al. [2017]. Under this condition, 

radical termination occurs mainly by reactions that involve NOx. 
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Figure 2-14. Comparison of inROx versus binned maximum NOx. Results are shown for the 
same CMAQ simulations (i.e., BSE, SCI, and SCI-PAN) used in Figs. 6 and 7, plus one 
additional simulation. The SCI-MGN (green) simulation uses the science framework, with 
biogenic emissions from MEGANv2.10 rather than BEISv3.61. The symbols with error bars 
show the mean and standard deviation for all spirals in each data set for which r2 between Ox 
and NOz is greater than 0.65, where the measurements and CMAQ output are again binned 
using maximum NOx. The numerical notation on the figure shows the mean and standard 
deviation of all spirals with r2 ≥ 0.65, for the D-AQ data as well as the CMAQ output. 

The average observed inROx from all the individual spirals (0.017 s−1) is higher than 

the average of any model simulation (ranging from 0.011 to 0.015 s−1) by 35±19% 

(BSE), 30±19% (SCI and SCI-PAN), and 12±7% (SCI-MGN). Thus, the changes 

implemented to anthropogenic emissions and the chemical mechanism in CMAQ 

increase inROx, but not enough to match observations. Using a different spiral sampling 

method, such as restricting the simulations to the same 80 spirals identified in the 

measurements or using spirals where Ox versus NOz has a correlation coefficient 

threshold of r2 ≥ 0.4, does not change any of our conclusions about inROx (Figure 2-

15). 
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Figure 2-15 Left: Same as Figure 2-14, except that the simulations were sampled with the 
same 80 spirals selected for the aircraft measurements. Right: Same as Figure 2-14, except 
that an r2 ≥ 0.4 between Ox versus NOz had been used to filter the data, prior to the 
determination of OPE. 

 We now examine whether the underestimate of inROx in the simulations results 

from shortcomings in the simulated abundance of certain VOCs and oxidation 

products. Results are shown for baseline simulation, the SCI-PAN simulation that used 

BEISv3.61 (hereafter BEIS) emissions, and the SCI-MGN simulation that relied on 

MEGANv2.10 (hereafter MEGAN) emissions. Simulations using MEGAN produce 

higher values of inROx (0.015 s−1) than simulations using BEIS (~0.012 s−1, Figure 2-

13). However, as shown in Figure 2-15, SCI-MGN generates about a factor of 3.7 more 

isoprene and a factor of 1.5 more HCHO than was measured in the CML during D-AQ. 

Therefore, the mixing ratios of these organic compounds in SCI-MGN are substantially 

higher than observed. In contrast, output from the SCI-PAN simulation compares rather 

well with observed mixing ratios of isoprene and HCHO in the CML. The SCI-PAN 

simulation overestimates isoprene by a factor of 1.23 and underestimates HCHO by a 

factor of 0.86.  
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Figure 2-16. Comparison of isoprene (left) and HCHO (right) from CMAQ simulations to 
binned D-AQ aircraft observations. Each bin contains 30 data points; the mean is depicted by 
a circle, and the 1σ standard deviation by error bars. Results for the baseline simulation are 
shown in blue; the SCI-PAN simulation using biogenic emissions from BEISv3.61 is in red 
and the SCI-MGN simulation using biogenic emissions from MEGANv2.10 is shown using 
green. The notation on the two panels shows the mean and 1σ standard deviation of modeled 
divided by measured isoprene (left) and HCHO (right), for all data. 

 Even though the SCI-MGN simulation increases the value of inROx in the model, the 

increase in isoprene emissions driven by MEGAN is not supported by measurements 

of isoprene and HCHO. This suggests either an underestimate of some VOC species 

other than isoprene within our model framework, or greater net production of HO2 and 

RO2 than in the chemical mechanism. The CB05-TUCL mechanism does not include 

explicit recycling pathways for HOx radicals upon loss of isoprene and other VOCs, 

other than production of HO2 at the end of the VOC chain. Wolfe et al. [2012] showed 

that the photolysis isoprene decomposition products can increase the concentration of 

OH by 5-16%, with the high range occurring over the rainforest regions of South 

America and Africa. The computed enhancement was on the low end of the range in 

the Mid-Atlantic of the United States. The photolysis of isoprene hydroperoxyenals has 

been implemented in CB6r2, via the new quantity HPLD. If the box model results of 

Wolfe et al. [2012] are representative of the magnitude of the increase in HOx radicals 

upon implementation of this recycling pathway, the implementation of this process will 

account for a portion of the discrepancy shown in Figure 2-14. 
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2.5.4 Comparisons to Satellite Data  
 

Here, we compare CMAQ output to retrievals of total column HCHO [Abad et 

al., 2015] and tropospheric column NO2 [Krotkov et al., 2017] from the Ozone 

Monitoring Instrument (OMI) on the NASA Aura satellite (see Section 2.3) obtained 

over the Eastern U.S. The use of satellite data allows us to evaluate the performance of 

CMAQ over various metropolitan areas, including the Baltimore-Washington region 

(BW) sampled by the NASA aircraft and a few other similar urban regions (Chicago 

and Detroit) that have not been subject to intense aircraft measurements utilizing a 

payload comparable to that deployed during DISCOVER-AQ. The urban areas of 

Chicago and Detroit are expected to be less affected by biogenic emissions of isoprene 

than the BW region. The satellite data record allows us to extend the evaluation of the 

representation of urban chemistry within CMAQ to these other highly populated urban 

regions. 

Figure 2-17 shows column HCHO for the month of July 2011 from observations 

(2-18a: OMI) and CMAQ simulations (2-18b: SCI-PAN; 2-18c: SCI-MGN). Profiles 

of HCHO output from CMAQ are convolved with the averaging kernel used in the 

satellite retrieval specific to the time and place of each observation [Bucsela et al., 

2008]. The resulting columns are retained for comparison only if the effective cloud 

fraction reported by OMI, for the same time and location, was less than 0.3 (see Section 

2.3). The retained columns are then weighted based on satellite viewing angle in the 

same manner as the OMI product and averaged onto the same 0.25°×0.25° (latitude, 

longitude) grid used for the aggregation of OMI data. Generally, the CMAQ simulation 

using MEGANv2.10 has higher column HCHO throughout the domain, particularly in 

heavily vegetated regions (southeastern US) compared to CMAQ simulations using 

BEIS. Kaiser et al. [2018] recently showed that MEGANv2.10 overestimates HCHO 

in the southeastern US based on comparison of output from the GEOS-CHEM model 

to in-situ observations obtained during the 2013 NASA SEAC4RS campaign. They 

describe (their section 4) various reasons why the emission of isoprene in 

MEGANv2.10 should be decreased by 46%, 48%, and more than a factor of 3 in the 

Ozarks (OZ), South Central Plains (SPC), and Edwards Plateau (EP) ecoregions, 
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respectively. Our comparisons of the SCI-MGN simulation to version 3.0 OMI HCHO 

over the yields similar results (Figure 2-17).  

Next, we focus on three urban areas: Chicago, Detroit, and BW (white boxes in 

Figure 2-17). We evaluate OMI data and CMAQ output for these three regions due to 

their high values of column NO2 (Figure 2-18) and especially the BW region, since we 

can compare to the conclusions drawn from our analysis of in-situ observations of 

HCHO from D-AQ described above. Figure 2-17d to 2-17f show column HCHO from 

CMAQ versus OMI for these three geographical regions. For column HCHO, the 

CMAQ run using BEIS (SCI-PAN) leads to column HCHO that is 16%, 21%, and 12% 

lower than observed from OMI over Chicago, Detroit, and BW, respectively. The 

CMAQ run using MEGAN results in column HCHO that is only ~5% lower than 

observed over Chicago and Detroit, and 23% larger than observed in the BW region. 

Chicago and Detroit’s proximity to biogenically active regions is very different than 

BW, which is close to forests that release large amounts of isoprene emission during 

summer. Table 2-4 summarizes the square of the correlation coefficient (r2) and root 

mean square deviations (RMS) for isoprene (aircraft data) and HCHO (aircraft and 

satellite data) relative to CMAQ output for the BW region. These numerical values 

show that the SCI-PAN simulation using BEIS compares better, overall, to 

observations of isoprene and HCHO than the SCI-MGN simulation using MEGAN. 

However, the fact that column HCHO as measured by OMI during July 2011 is 

simulated better using BEIS over the BW region, whereas column HCHO over Chicago 

and Detroit is more closely matched by the CMAQ simulation using MEGAN (Figure 

2-18d and 2-18e), complicates choosing one biogenic VOC emission algorithm over 

the other. 

The accuracy of the retrieval of column HCHO is an area of active research. 

Zhu et al. [2016] suggested, based upon comparison of OMI column HCHO to output 

from the GEOS-CHEM model, that the OMI retrievals of column HCHO might be 

“biased low in the mean by 20 to 51%”. This conclusion was based on prior extensive 

comparison of HCHO from GEOS-CHEM to in situ observations of HCHO. If OMI 

column HCHO is indeed biased low by 20 to 50%, and all else is equal (i.e., same 

averaging kernels), then values of the ratios shown in Figure 2-17 would decline by 
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between 0.66 (1/1.50) to 0.83 (1/1.2). In this case, nearly all the simulations conducted 

would exhibit poorer agreement with observed column HCHO than shown in Figure 2-

17. The exception is the SCI-MGN simulation for the BW region, which would have a 

ratio of either 1.03 (20% bias) or 0.82 (50% bias). One of the factors that affects the 

retrieval of column HCHO is the background correction (Ω0), defined as the “HCHO 

vertical column simulated by CTM for the remote Pacific at corresponding latitude and 

observing time” [Zhu et al., 2106]. Anderson et al. [2017] showed that column HCHO 

in the remote Pacific during winter 2014 was about 5.1± 0.76 × 1015 cm−2, considerably 

larger than found using global models.  

 
Figure 2-17. Spatial distribution of column HCHO during July 2011 from (a) OMI-SAO. The 
level 2 swath data for the OMI retrieval has been screened for quality flags (see text), weighted 
based on viewing angle, and gridded onto a 0.25°× 0.25° lat/lon grid. Only observations where 
the cloud fraction is less than 30% are used (b) Column HCHO from a CMAQ model run (SCI-
PAN) using biogenic emissions from BEISv3.61, near Aura overpass time. Model output has 
been convolved with the satellite averaging kernel and screened, weighted, and gridded in the 
same manner as the satellite data. (c) Output from a CMAQ model run using biogenic emissions 
from MEGANv2.10 (SCI-MGN), processed in the same manner as sued for panel (b). The 
white boxes on the top three panels highlight the geographical regions of Chicago, Detroit, and 
BW. Panels (d), (e), and (f) show CMAQ modeled column HCHO (SCI-PAN; red and SCI-
MGN; green) versus OMI column HCHO for the three geographical regions. The mean and 
standard deviation of the ratio of CMAQ column HCHO divided by OMI column HCHO are 
indicated for both CMAQ simulations.  
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They attributed the model deficiency to neglect of an oceanic source acetaldehyde. Zhu 

et al. [2016] used values of 3.0 to 3.8 × 1015 cm−2 for Ω0 based on results from GEOS-

CHEM. The use of a larger value of Ω0 (based on actual observations in the remote 

Pacific) in the retrieval of HCHO would result in a decline of the reported column 

abundance of HCHO. Given the present uncertainties regarding the accuracy of satellite 

retrievals of column HCHO, we rely on the Version 3.0 (Collection 3) retrievals as 

provided by the SAO group. 
Table 2-5. RMS and r2 for isoprene and HCHO from the CMAQ model versus observations. 

 Isoprene (D-AQ) 
RMS (ppb) / r2 

HCHO (D-
AQ) 

RMS (ppb) / r2 

HCHO (OMI-SAO; whole 
domain) 

RMS (1015 molec./cm2) / r2 
SCI-PAN 0.26 / 0.77 1.06 / 0.94 1.22 / 0.97 
SCI-MGN 1.38 / 0.67 2.61 / 0.92 5.19 / 0.97 

 
Next, we compare column NO2 from OMI to CMAQ over the same geographical 

region. The CMAQ profiles of NO2 have been processed in the same manner (i.e., 

convolution, screening, weighting, and gridding) as described above for HCHO. Figure 

2-18 shows column NO2 from OMI [Krotkov et al., 2017] (Figure 2-18a) and CMAQ 

output from the SCI-PAN (Figure 2-18b) and SCI-MGN (Figure 2-18c) simulations. 

Both CMAQ simulations use the science framework (SCI), i.e. a 50% reduction in 

mobile emissions of NOx as well as reduction of the photolytic lifetime of NTR by a 

factor of 10. The CMAQ simulations using these modifications overestimate column 

NO2 by more than a factor of 2 for Chicago and Detroit, and by 50% (using BEIS) or 

15% (using MEGAN) for the BW region. The assumption of faster thermal 

decomposition rate of PAN and PANX in the SCI-PAN simulation results in more 

column NO2 compared to the SCI-MGN and SCI simulations (not shown). The larger 

abundance of NO2 due to faster dissociation of PAN and PANX in the SCI-PAN 

simulation is apparent in Figure 2-3. However, the baseline simulation of CMAQ 

results in even poorer agreement with measured NO2 for these three urban areas 

(bottom panel of Figure 2-11) compared to the SCI-PAN simulation. The baseline 

CMAQ simulation overestimates column NO2 by a factor of 3 for Chicago and Detroit 

and by 50% for the BW region. The CMAQ model has a tendency to keep 

anthropogenic emission of NOx too close to urban source regions, based on a literal 
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interpretation of the satellite data, as first shown by Canty et al. [2015]. This model 

tendency can perhaps be improved by a better representation of boundary layer venting 

(here, we have used the ACM2 scheme of Pleim [2007], as described in Section 2.5). 

Our comparisons of measured and modeled column NO2 show that further 

improvements in the simulation of NOx by CMAQ are needed.  

 
Figure 2-18 Same as Figure 2-18 except that the figures depict column NO2 from (a) OMI-
GSFC (b) output from a CMAQ model run (SCI-PAN) using biogenic emissions from 
BEISv3.61, and (c) output from a CMAQ model run using biogenic emissions from 
MEGANv2.10 (SCI-MGN). Depict blue in figures (d), (e), and (f) is the baseline (BSE) 
simulation from CMAQ versus OMI-GSFC data. 
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Figure 2-19 Same as figure 2-18 except that OMI NO2 column is compared to the baseline 
(BSE) CMAQ simulation instead of the SCI-MGN simulation. 

In the context of effective air quality implementation strategies, the ratio of HCHO 

to NO2 can indicate whether the rate of O3 production is more sensitive to policy-driven 

reductions in either VOCs or NOx. Duncan et al. [2010] defines the transitional regime 

as locations where HCHO/NO2 ratios are between 1 and 2. Values of the HCHO/NO2 

ratio greater than 2 indicate that a region is in a NOx-limited regime, whereas values of 

this ratio less than 1 indicate the region is in the VOC-limited regime. Schroeder et al. 

[2017] showed that the BW region lies within the NOx-limited regime, based on their 

analysis of column HCHO/NO2 computed from July 2011 D-AQ data. This property 

of the BW region is also reflected in Figure 2-20, which shows the ratio of column 

HCHO/NO2 from OMI. Using the Duncan et al. [2010] classification, the entire BW 

region lies in the NOx-limited regime during July 2011. 
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Figure 2-20 Same as Figure 2-18, except the ratio of column HCHO divided by 
column NO2 is shown. 

Next, we examine the photochemical regime for other areas. The HCHO/NO2 

column ratio from OMI over Chicago and Detroit, and indeed most of the domain 

shown in Figure 2-20a, indicates these areas lie within the NOx-limited regime. 

However, the HCHO/NO2 column ratio from the SCI-PAN (Figure 2-20b) and SCI-

MGN (Figure 2-20c) runs of CMAQ are quite lower than values measured by OMI. 

Both model runs suggest Chicago and Detroit are in the VOC-to-NOx transitional 

regime, as shown in blue on Figure 2-20b and 2-20c. In general, HCHO/NO2 column 

ratios for the SCI-MGN simulation are greater than those for the SCI-PAN simulation, 

leading to a smaller geographic area within the transitional regime. The very large 

difference between modeled and satellite HCHO/NO2 column ratios (Figure 2-20d and 

e) for Chicago and Detroit suggests surface O3 may respond more effectively to future 

reductions in NOx than would be indicated by CMAQ simulations. The ratio of column 

HCHO divided by column NO2 from a baseline run of CMAQ yields values that are 

slightly lower than the SCI-PAN simulation shown in Figure 2-20. Therefore, surface 

O3 may exhibit stronger declines to further reductions of NOx than is indicated by 

baseline runs of CMAQ. 
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One possible cause for the underestimation of the HCHO/NO2 column ratio in 

CMAQ relative to OMI could be the assumption that marine emissions near shorelines 

only occur at the surface within the 2011 EPA emissions inventory that is used in this 

study. Ring et al. [2018] showed that when marine emissions near a shoreline are 

vertically distributed to account for stack-height and plume rise, then areas denoted as 

VOC-limited (e.g., Detroit and Chicago) become smaller compared to a baseline 

simulation, bringing observations and model in better agreement. Another possible 

reason CMAQ might underestimate the HCHO/NO2 ratio is the tendency of the model 

to have excess NOx in urban areas, due to inadequacies in the boundary layer venting 

and recycling of NOx from reservoir species. Even though the CMAQ simulations 

shown in Figure 2-19 have included a 50% reduction in mobile NOx emissions, urban 

regions still show high column NO2 (red) relative to OMI satellite observations. 

Finally, if the Version 3.0 OMI satellite retrieval of HCHO is indeed biased low as 

suggested by Zhu et al. [2016], then the discrepancy between the measured and 

modeled HCHO/NO2 ratio shown in Figure 2-20 would rise for all cases, except for 

SCI-MGN over the BW region (Figure 2-20f).  

2.6 Conclusions 
 

The extensive observational dataset from the July 2011 NASA DISCOVER-

AQ campaign provides an opportunity to investigate the ability of CMAQ to simulate 

O3 and its precursors in the Baltimore-Washington airshed. The CMAQ baseline 

simulation using 2011 NEI estimates shows the mixing ratio of surface O3 is in 

reasonably good agreement with observations: i.e., for the month of July 2011 87% of 

8-hr averaged O3 simulations correctly identify whether or not surface O3 exceeded the 

75 ppb standard. However, the BSE simulation of CMAQ consistently overestimates 

mixing ratios of NOy, NTR, and PANs compared to D-AQ observations. As a result, 

the BSE simulation underestimates both the ozone production efficiency by 34±20% 

and reactivity of HO2 and RO2 radicals (and thus their effective abundances) by 

35±19%, respectively. 

Based on observations, we modified the BSE simulation (CB05-TUCL in 

CMAQ) as follows: a 50% reduction of NOx emissions from all mobile sources, a factor 
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of 10 reduction in the photolytic lifetime of NTR, and the use of the IUPAC (2014) rate 

for the thermal dissociation of PAN for both PAN and PANX. A simulation using all 

these changes, SCI-PAN, results in significantly better agreement between modelled 

and measured NOy, NTR, and PANs. Runs with the thermal dissociation of PANs set 

at +1σ of the recommended IUPAC value result in even better agreement with 

observations. The computed value of OPE for SCI-PAN lies closer to observed OPE 

than found for the BSE simulation, but nonetheless is about 21±13% lower than 

observed. The simulated reactivity of HO2 + RO2 radicals for SCI-PAN is slightly 

larger than found for BSE, lying 30±19% below the observed value.  

The SCI-PAN simulation used biogenic emissions of VOCs from BEISv3.61. 

Although, the use of MEGANv2.10 improves OPE relative to the use of BEIS, 

computed abundances of isoprene and formaldehyde are substantially overestimated 

compared to D-AQ data. Our study suggests either the formation of HCHO upon the 

decomposition of isoprene requires improvement within the CB05-TUCL mechanism 

or some VOC species other than isoprene is responsible for the underestimation of HO2 

+ RO2 reactivity within CMAQ. In the future, we will analyze the modifications to 

isoprene oxidation within air quality model mechanisms that Marvin et al. [2017] 

demonstrated lead to more accurate representation of the HCHO to isoprene ratio. Also, 

the availability of measurements of a suite of VOCs from Photochemical Assessment 

Monitoring Stations (PAMS) at sites such as Essex, Maryland [EPA, 2018; e.g., 

Vinciguerra et al., 2015] will provide a means to assess whether VOCs other than 

isoprene are responsible for the shortfall in modelled HO2 + RO2 reactivity. 

We also compared modelled tropospheric column HCHO and NO2 (convolved 

with the averaging kernels) to measurements (and their ratio) obtained by the OMI 

instrument onboard the NASA Aura satellite. We focused on three urban areas, 

Chicago, Detroit, and the Baltimore-Washington (BW) region. The CMAQ run using 

BEIS results in reasonable agreement with column HCHO measured by OMI, with 

modeled values being 16%, 21%, and 9% lower than observed over Chicago, Detroit, 

and BW. The CMAQ run using MEGAN results in column HCHO that is ~5% lower 

than observed over Chicago and Detroit, but 28% larger than observed in the BW 

region. These comparisons reflect the complexity of choosing the appropriate biogenic 
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VOC emission algorithm for a given ecoregion. Finally, the reduction in mobile NOx 

emissions and the modifications to the chemical mechanism (i.e., our SCI-PAN and 

SCI-MGN simulations) also reduce model overestimates of column NO2 for the 

Chicago and Detroit urban regions. 

 To evaluate any air quality model that simulates O3, it is useful to examine 

model representation of the factors that govern the photochemical production term: i.e., 

the rates of NO+HO2 and NO+RO2 [Frost et al., 2016; Lewis et al., 2000; Monks et al., 

2015; Ren et al., 2003]. The modifications to the CB05-TUCL mechanism and the 

emission of NOx were designed to provide more accurate representation of NOx, the 

reactivity of NOx with peroxy radicals, HCHO, isoprene, as well as organic and 

inorganic NOy reservoir species. Improvement in simulating the underlying processes 

controlling the formation of O3 will lead to higher confidence in the prediction of 

surface O3 events and as well as more effective mitigation strategies. The regulatory 

model CMAQ with CB05-TUCL and the NEI emissions overestimates reactive 

nitrogen species, and underestimates OPE and the reactivity of HO2+RO2 with NO. We 

have shown that the CMAQ model performs better, compared to a wide variety of 

observations, with a 50% reduction in mobile source NOx emissions and faster loss of 

peroxy nitrate and alkyl nitrate species. However, significant differences persist, 

indicating further improvements are needed. Our comparisons suggest future work 

should examine the possibilities of underestimated emissions of VOCs, greater 

production of HO2 and RO2 from VOCs, and even faster thermal dissociation of peroxy 

nitrates than assumed in our SCI-PAN simulation.   
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Chapter 3: Investigation of the Community 
Multiscale Air Quality (CMAQ) model using the 
Climate Penalty Factor (CPF) 

 

This chapter was previously submitted for publication under the same title, as an article 

in the scientific journal Atmospheric Environment. I am the lead author of this work, 

and I acknowledge collaboration with 4 co-authors. The article was submitted on 13 

October 2021. Here, the numbering of sections, figures, and tables reflects 

incorporation into the greater dissertation.  

3.1 Introduction 
The globally averaged land and ocean surface temperature has increased by 

1±0.2°C since pre-industrial time, and the global mean temperature will likely increase 

by 0.2°C every decade in the near future [IPCC, 2018]. If emission reductions do not 

occur, modeling studies forecast ozone (O3) near the Earth’s surface to rise by 1-10 ppb 

by the end of this century due to climate change [Fiore et al., 2012; Jacob and Winner, 

2009; Liao et al., 2006; Murazaki and Hess, 2006]. In highly polluted regions, O3 is 

expected to increase as much as 14 ppb during summer due to global warming [Doherty 

et al., 2013]. Further studies suggest that the worsening of air pollution due to projected 

rising temperature leads to subsequent increases in mortality, morbidity [Bell et al., 

2005; Jacob and Winner, 2009; Lelieveld et al., 2015; Peng et al., 2013], and damage 

to crops [Avnery et al., 2011; Mauzerall and Wang, 2001], even as emissions of O3 

precursors decline. Future reductions in the emission of these O3 precursors will need 

to be stricter to attain prescribed air quality standards for surface ozone.   

Formation of surface O3 depends on emissions of volatile organic compounds 

(VOCs), reactive nitrogen oxides NOx (NOx=NO+NO2), and carbon monoxide (CO) 

[Crutzen, 1973; Finlayson-Pitts and Pitts, 2000]. Production of O3 exhibits a complex, 

non-linear dependence on the concentrations of these gases [Sillman, 1999; Sillman et 

al., 1997]. Surface ozone is also highly sensitive to various weather systems, such as 

frontal passages [Mickley et al., 2004] and persistent high pressure weather systems 

such as the Bermuda high frequently located over the western North Atlantic in the 

summer [Zhu and Liang, 2013]. Exceedances of the U.S. Environmental Protection 
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Agency (EPA) National Ambient Air Quality Standard (NAAQS) for surface O3 

typically occur on hot summer days [Brent et al., 2015; Lin et al., 2001]. 

There are many reasons elevated levels of surface O3 tend to be associated with 

hot conditions. High ambient temperatures are often concurrent with stagnation and 

increased incident solar radiation. With rising temperatures, water vapor increases, 

resulting in greater production of O3 in high NOx regions due to increased abundances 

of odd hydrogen (HOx=OH+HO2) radicals, formed by the reaction of O(1D) with H2O 

[Steiner et al., 2006]. Rate constants of many reactions critical to the formation of O3 

increase with temperature [Stockwell et al., 2012]. An increase in temperature enhances 

the thermal decomposition of compounds such as peroxyacetyl nitrate (PAN), a 

reservoir species for NOx; this frees up odd hydrogen (HOx=OH+HO2), ultimately 

forming O3 [Sillman et al., 1990; Sillman and Samson, 1995]. Biogenic emissions of 

VOCs, particularly isoprene (C5H8), increase with rising temperature [Liao et al., 2006; 

Wiedinmyer et al., 2011]. Also, anthropogenic emissions of NOx increase with rising 

temperature, particularly during summer due to greater demand for electricity [He et 

al., 2013]. Conversely, NOx emissions from diesel vehicles decrease with increasing 

temperature [Hall et al., 2020a]. 

The climate penalty factor (CPF) quantifies the dependence of surface ozone 

on temperature [Bloomer et al., 2009; Jacob and Winner, 2009; Wu et al., 2008]. 

Combining the CPF with forecasts of the future rise in temperature can be used to 

provide an estimate of the possible impact of warming on surface ozone. Several 

definitions for the calculation of the ozone climate penalty exist [Rasmussen et al., 

2013]. Here, we use the Bloomer et al. (2009) definition: i.e., the CPF is based on the 

slope of various components of the probability distribution function of long-term 

measurements of O3 as a function of temperature, following the aggregation of ozone 

data into various temperature bins. For the eastern U.S., Bloomer et al. quantified the 

CPF as ~3.2 ppbv/°C (range: 3.0 to 3.6 ppbv/°C) prior to 2002 and ~2.2 ppbv/°C (range: 

2.0 to 2.5 ppbv/°C) after 2002, based on analysis of surface O3 and temperature 

measurements at predominantly rural sites. They showed that the lower CPF after 2002 

was due to reductions in the emission of NOx from power plants following the EPA 

NOx State Implementation Plan (SIP) in 2002 under the Clean Air Act (CAA). As a 
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result of the reduction in power plant emissions of NOx as well as reduced vehicular 

emissions of NOx, surface O3 levels in the Midwest and Eastern U.S. have steadily 

declined after 2002 [Cooper et al., 2020; Jing et al., 2017]. Nonetheless, surface O3 

exceedances in the Eastern U.S. and Midwest still occur, particularly on hot summer 

days [He et al., 2014].  

Between 2000 and 2010, surface O3 decreased nationwide by 10%, based on 

the long-term trend measurements (750 AQS sites) (https://www.epa.gov/air-

trends/ozone-trends). The eastern U.S. shows a greater decrease in surface O3 than the 

western U.S. Similar results were found for summertime O3 trends by Cooper et al. 

[2012]. They investigated O3 trends from measurements at rural U.S. locations between 

1990 and 2010 and found a trend of surface O3 of −0.45 ppb/yr in the eastern U.S. and 

an increasing trend of 0.10 ppb/yr in the western U.S. This difference in the sign of 

surface O3 trends is attributed to the stronger impact of domestic emission controls in 

the eastern U.S., while the western U.S. trend is less clear due to variations in transport 

from Asia, wildfires, temperature, and domestic emissions [Lin et al., 2017]. 

As noted above, future increases in temperature could offset benefits from 

future reductions in the emission of O3 precursors. Determining and understanding the 

CPF is critical to formulating effective strategies to minimize the occurrence of future 

exceedances. The focus of this paper is the use of measurements to evaluate the 

representation of the temperature dependence of surface O3 within the Community 

Multi-scale Air Quality (CMAQ) model, for the contiguous U.S (CONUS). CMAQ is 

an active open-source air quality model developed by the EPA Atmospheric Modeling 

and Analysis Division and distributed by the Community Modeling and Analysis 

System (CMAS) center [CMAS-Center, 2013]. For our evaluation of CMAQ, we 

compare surface O3 measurements from the EPA Air Quality System (AQS) and Clean 

Air Status and Trends Network (CASTNET) measurement locations to values of ozone 

output by CMAQ. Observations from CASTNET tend to be in rural locations, whereas 

AQS measurements are acquired predominantly in urban sites, although occasionally 

also in rural locations. Here, we use multiyear model output from May 1 – September 

30 for 11 years (2002 – 2012). The CPF from both observations and CMAQ output are 

calculated as described in Bloomer et al. [2009]. Davis et al. [2011] suggested CMAQ 

https://www.epa.gov/air-trends/ozone-trends
https://www.epa.gov/air-trends/ozone-trends
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underestimates the sensitivity of O3 to daily maximum temperature, based on an 

analysis of the four year period 2002 to 2005 for 74 cities of the Eastern U.S. during 

the O3 season (1 May to 30 September for each year). This finding suggests CMAQ 

might underestimate increases in surface ozone caused by a warmer climate.  

In our study, we provide a longer and more spatially-resolved view of CPF 

between various climate regions within the CONUS. We use output from CMAQ found 

with the chemical mechanism CB05TU-CL for the O3 season, spanning May 1 to 

September 30, for years 2002 to 2012. These years span the availability of CMAQ 

output. We investigate the sensitivity of O3 production in CMAQ to temperature and 

compare it to observations. 

3.2 Methodology 

3.2.1 Surface Ozone and Temperature Observations 

We use surface O3 and temperature data from the Clean Air Status and Trends 

Network (CASTNET; http://www.epa.gov/castnet. These measurement sites are 

located predominantly in rural areas. Ultraviolet absorbance is used to measure O3 

using the verification procedure described in Table 3 of 

https://www3.epa.gov/castnet/docs/QA_Quarterly_2019_Q4.pdf. Temperature is 

measured at 2 m with ± 0.5ºC accuracy and ± 1ºC precision using platinum resistance 

temperature devices. We also use O3 data from the Air Quality System (AQS; 

http://www.epa.gov/aqs) with a precision of 0.1 ppb for hourly averages and 

uncertainty of 5% [EPA, 2006] and temperature data from either the co-located 

temperature sensors or from a nearby (within 12 km of the O3 measurement location) 

meteorological station (Integrated Surface Data (ISD) archived at the National Climatic 

Data Center (NCDC); https://gis.ncdc.noaa.gov). We use AQS measurement sites that 

are predominantly located in urban or semi-urban regions. 
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Figure 3-1 

shows a map denoting 

the locations of 

CASTNET (red) and 

AQS (blue) sites used 

for comparison to 

CMAQ output. Spatial 

and temporal (some 

sites discontinued while 

others do not have data 

in the earlier years) 

differences occur throughout the CONUS. A greater concentration of AQS sites is 

visible on the east coast as well as on the coast of California.  

 We aggregate measurement stations into 7 regions (Figure 3-2). The grouping 

of sites into different regions is motivated by geography and past statistical analyses 

[Chan, 2009; Eder et al., 1993; Lehman et al., 2004]. Here we use the same climatic 

regions as in the 4th U.S. National Assessment Climate Report (Northeast, NE; 

Midwest, MW; Northern Great Plains, NGP; Northwest, NW; Southwest, SW; 

Southern Great Plains, SGP; and Southeast, SE), for which various climate metrics 

were discussed [USGCRP, 2018]. Table 1 lists the number of CASTNET and AQS 

stations within each of these regions. All ozone measurements have been checked using 

EPA guidance on quality flags (https://www.epa.gov/aqs/aqs-code-list), and admitted 

into the analysis only if the O3 and temperature flags were not B, C, D, F, I, M, or P. 

Between 2002 and 2012, the location of some of the AQS sites has changed and the 

overall number of AQS sites has increased. These variations in AQS locations are due 

to a desire to improve the coverage of regions undergoing poor air quality as well as 

logistical considerations [Pope and Wu, 2014]. The use of AQS sites over the temporal 

range of our study, even if the data are not continuous at specific locations, allows for 

better statistical representation of each region [Yan et al., 2018]. Here the analyzed 

hourly data span from May 1 to September 30 for the years 2002 to 2012.  

Figure 3-1: Locations of CASTNET (red) and AQS (blue) 
sites during 2002-2012 used for comparison to CMAQ 
output. 

https://www.epa.gov/aqs/aqs-code-list
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3.2.2 Modeling Details and Inputs 
 

All simulations were conducted using CMAQ version 5.0.2 and provided to us from 

the EPA. Simulations are described in Zhan et al. [2019] and are briefly summarized 

here. The modeling domain covers the entire CONUS using a 12 km grid size with 35 

vertical layers (the top of the lowest layer is at ~19 m). Options used for the CMAQ 

simulations include the carbon bond chemical mechanism with updated toluene 

chemistry CB05-TU [Sarwar et al., 2011; Whitten et al., 2010] and the AERO6 aerosol 

module. Meteorological fields are simulated for each year using the Weather Research 

Forecast model, version 3.4 (WRF v3.4) with 4-dimensional data assimilation and no 

nudging in the planetary boundary layer. WRF input is driven by reanalysis data 

obtained by blended 3-hourly reanalysis fields (combination of 6-hour data from the 

Meteorological Assimilation Data Ingest System and 3-hour forecast of the 

intermediate North American Mesoscale (NAM) Model) that are organized into 12 km 

NAM Data Assimilation System fields. WRF output is post-processed to create CMAQ 

ready input files using the Meteorology-Chemistry Input Processor (MCIP) v.4.1.3.  

Anthropogenic emissions input is based on the 2002, 2005, 2008, and 2011 

National Emissions Inventories (NEI) using the Sparse Matrix Operator Kernel 

 Table 3-1: The table lists the number 
of stations used within each region. 

Region CASTNET AQS 

(2002) 

AQS 

(2012) 

NE 22 52 59 

MW 14 77 59 

NGP 13 3 12 

NW 0 5 6 

SW 15 100 108 

SGP 6 38 44 

SE 23 80 85 

CONUS 93 355 373 

 

Figure 3-2: Map of the 7 regions used in 
this analysis (modified from 
https://nca2018.globalchange.gov/chapter 
/front-matter-guide/) 

https://nca2018.globalchange.gov/
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Emissions processing system version 3.1 [Houyoux et al., 2000], with year-specific 

mobile emissions derived from the U.S. Environmental Protection Agency (EPA) 

Motor Vehicle Emission Simulator (MOVES). Biogenic emissions are from the 

Biogenic Inventory System (BEISv3.14) [Bash et al., 2016; Kinnee et al., 1997]. Year-

specific lightning strike data from the National Lightning Detection Network are used, 

in order to include the production of NOx from lightning [Allen et al., 2012]. Hourly 

boundary conditions for CMAQ were created for each year using output from GEOS-

Chem v 8-03-02 (v9-01-02 (2002-2004)) (GEOS: Goddard Earth Observing System) 

driven by meteorological fields from GEOS-5 [Bey et al., 2001]. In our analysis, we 

select CMAQ output for the grid points closest in time and space to the surface 

observations. 

3.3 Calculating the Climate Penalty Factor (CPF) 
 

We use the Bloomer et al. (2009) method for calculation of the climate penalty 

factor (CPF) of O3 in our analysis. Previous research has shown that the relationship 

between O3 and temperature over a temperature range of 16°C to 37°C is roughly linear 

[Bloomer et al., 2009; Camalier et al., 2007; Mahmud et al., 2008; Sillman and Samson, 

1995]. We calculate the CPF for each O3 season, for every year from 2002 to 2012. We 

use the same temperature range of 19°C-37°C as Bloomer et al. for the southern climate 

regions (SE, SGP, and SW) and a lower temperature range of 16°C-34°C for the 

northern climate regions (NE, MW, NGP, and NW). The shift to a lower temperature 

range for northern climate regions ensures a statistically significant number of data 

points in each temperature bin. 

Figure 3-3 provides a graphical explanation of our calculation of CPF. This figure 

shows 24hr hourly O3 vs hourly temperature for various portions of the probability 

distribution of O3 , for the SE region for CMAQ and data (CASTNET) in 2002 (May-

September). Observations are shown in black and CMAQ output in gray. 
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 First, hourly observations and model results are placed into 3°C wide temperature bins. 

Next, the 5th, 25th, 50th, 75th, and 95th percentiles of the distribution of O3 are found for 

all the ozone values within each temperature bin, either for all observations (black 

squares) or modelled points (gray squares). The slope for each regression line through 

the five resulting percentiles is then calculated, and the mean of all five slopes 

represents the CPF (Table 3-2). Hence for the SE region, the mean CPF values are 1.99 

ppb/°C from CASTNET and 2.59 ppb/°C from CMAQ. 

Table 3-2: Southeastern climate region regression slope values and mean of slopes 
(CPF) for 2002 for CASTNET data and CMAQ output. 

 5th 

slope (ppb/°C) 

25th 

slope (ppb/°C) 

50th 

slope (ppb/°C) 

75th 

slope (ppb/°C) 

95th 

slope (ppb/°C) 

Mean CPF 

(ppb/°C) 

Observation 2.17 2.02 2.07 2.03 1.66 1.99 

CMAQ 2.59 2.88 2.64 2.41 2.42 2.59 

 
Figure 3-3: Ozone vs. temperature plotted in 3°C temperature bins across the range 19 to 
37°C for the 5th, 25th, 50th, 75th, and 95th percentiles (black and gray regression lines) of the 
ozone distributions (from bottom to top) for the Southeastern climate region in 2002. Points 
and lines shown in black represent measurements obtained from surface sites (CASTNET); 
gray indicates CMAQ model results. The dashed lines are the results from CMAQ using the 
grid points nearest to the measurement sites. Values are plotted at the mid-point of the 3°C 
temperature bin. 
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3.4 Results and Discussion 

3.4.1 Ozone and temperature 
In our analysis we use mean seasonal (May-September) temperature data averaged 

for each climate region. This averaging results in 66 temperature data points for 

CASTNET sites and 77 temperature data points for AQS sites. In CMAQ, the 

temperature of one grid point is representative for a whole 12x12 km grid cell. Hence, 

the simulated temperature of one grid point to one measurement within a grid cell can 

be biased. Figure 3-4a shows a scatterplot of measured and simulated seasonal mean 

temperature for each region and year. The asterisks depict data collected at CASTNET 

locations while the squares depict data collected at AQS locations. The colors used in 

Figure 3-4 refer to the seven different climatic regions. The legend within Figure 3-4a 

shows the root mean square error (RMSE) of the seasonal mean temperature of each 

region for CASTNET on the left and AQS on the right. The black line depicts the 1:1-

line. 

Table 3-3 summarizes the statistics for seasonal mean temperature of each region and 

data set. The statistics used here are mean, standard deviation, mean difference, percent 

mean bias error (PMBE), and RMSE: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚:    𝑥𝑥� =
1
𝑁𝑁
�𝑥𝑥𝑖𝑖
𝑖𝑖

 ;    𝑦𝑦� =
1
𝑁𝑁
�𝑦𝑦𝑖𝑖
𝑖𝑖

     

 
Figure 3-4: Comparison of measured and modelled seasonal (May-September) mean 
T (a) and seasonal daily 8-hr max O3 (b) for CASTNET (asterisks) and AQS 
(squares) locations between 2002-2012 (generally 11 points for each region). 
Different regions are color coded (see Figure 3-2) and the 1:1-line is denoted in black. 



 

 

81 
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑:    𝜎𝜎𝑥𝑥 = �
1
𝑁𝑁

 �( 𝑥𝑥� − 𝑥𝑥𝑖𝑖
𝑖𝑖

)2;    𝜎𝜎𝑦𝑦 = �
1
𝑁𝑁

 �( 𝑦𝑦� − 𝑦𝑦𝑖𝑖
𝑖𝑖

)2    

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑:   𝑥𝑥�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝑥𝑥�(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈) −   𝑥𝑥�(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) ;   𝑦𝑦�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝑦𝑦�(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈) −   𝑦𝑦�(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  �(𝑦𝑦𝑖𝑖 −  𝑥𝑥𝑖𝑖
𝑖𝑖

) ∗
100
∑ 𝑥𝑥𝑖𝑖𝑖𝑖

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑖𝑖

𝑁𝑁
 

 

where xi represents the ith data point from the measurements, yi the ith output from the 

simulations, and N is the sample size. Generally, throughout the CONUS temperatures 

are higher by about 2.12°C in urban regions (AQS sites; squares) than rural regions 

(CASTNET sites; asterisk).  

Table 3-3: Comparison of observed (𝑥̅𝑥) 𝑎𝑎nd simulated (𝑦𝑦�) seasonal mean temperature 
with (in parentheses) σ for various regions of the U.S. The observed (𝑥̅𝑥diff) and 
simulated (𝑦𝑦�diff ) differences in temperature between mostly rural CASTNET sites and 
mostly urban AQS sites and the RMSE are also shown 

 

The higher surface temperature in urban compared to rural regions averaged over the 

CONUS is also apparent in the output from the simulations, with a mean temperature 

Region Dataset 𝑥̅𝑥(𝜎𝜎𝑥𝑥) (°C) 𝑥̅𝑥diff (°C) 𝑦𝑦�(𝜎𝜎𝑦𝑦) (°C) 𝑦𝑦�diff (°C) RMSE (°C) 

NE CASTNET 18.15(0.57) 1.93 18.76(0.57) 2.23 0.62 
AQS 20.08(0.64) 20.99(0.68) 0.93 

MW CASTNET 20.78(0.42) 
−0.31 21.49(0.41) 

−1.08 0.72 
AQS 20.47(0.59) 20.41(0.69) 0.34 

NGP CASTNET 16.84(0.30) 3.31 17.16(0.36) 3.57 0.36 
AQS 20.15(0.28) 20.73(0.44) 0.62 

NW CASTNET      
AQS 22.15(0.20)  22.04(0.39)  0.26 

SW CASTNET 19.89(0.28) 3.15 20.49(0.30) 3.83 0.63 
AQS 23.04(0.74) 24.32(0.76) 1.40 

SGP CASTNET 22.33(0.28) 1.3 22.95(0.28) 2.37 0.62 
AQS 23.62(0.56) 25.32(0.66) 1.70 

SE CASTNET 22.10(0.55) 3.28 23.21(0.58) 0.79 1.14 
AQS 25.38(0.65) 24.00(0.57) 1.42 

CONU
S 

CASTNET 20.01(0.40) 2.12 20.68(0.42) 1.87 0.56 
AQS 22.13(0.52) 22.55(0.60) 0.95 
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difference of 2.00°C (Table 3-3). We attribute this temperature difference to the urban 

heat island effect [Pleim et al., 2013; Santamouris et al., 2015; Zhang et al., 2009]. The 

only region that does not show a significant difference of seasonal mean temperature 

between urban and rural locations is the MW region. Overall, CMAQ captures the 

CONUS seasonal mean temperature well, with a small positive RMSE of 0.56°C (rural) 

and 0.95°C (urban). In the SE region, CMAQ exhibits the highest positive seasonal 

mean temperature difference of 1.38°C with respect to AQS data whereas the SW 

region displays the highest negative seasonal mean temperature of difference of –

1.28°C. For the results that follow, we assume that the small differences between 

simulated and measured temperature do not bias the CPF. 

We calculate the mean of seasonal daily maximum 8-hr averaged O3 from the 

hourly O3 observations and compare to output from simulations. Figure 3-4b shows a 

scatterplot of measurements versus simulations of seasonal 8-hr max O3 (see also Table 

4). The seasonal 8-hr max O3 is biased high in CMAQ, with a positive PMBE of 5.47% 

in urban locations (average of all the PMBE values for AQS sites given in Table 4). 

Conversely, rural locations exhibit a small negative PMBE of −0.83% (average of all 

PMBE values for CASTNET) for O3. The urban/rural PMBE discrepancy is present for 

all regions except the MW, which displays a strong negative PMBE for urban and rural 

regions. We attribute the urban/rural discrepancy within CMAQ to its tendency to keep 

anthropogenic emission of NOx too close to urban source regions, a model deficiency 

first described by Canty et al. [2015]. A portion of this discrepancy could be due to the 

dependency of CMAQ to use too long of a lifetime for alkyl nitrates [Canty et al., 2015; 

Goldberg et al., 2016; Hembeck et al., 2019]. In addition, the biogenic emission model 

(BEIS) within CMAQ has the tendency to under predict soil NOx emission [Li et al., 

2019]. As a result, less soil NOx is available to form surface O3 in upwind regions 

within the simulation. 

Simulations using CMAQ capture seasonal 8-hr max O3 from all measurement sites 

within the CONUS well, although the RMSE is sometimes greater than the observed 

standard deviation; see also Figure 3-4. The CONUS RMSE of the seasonal 8-hr max 

O3 is 5.38 ppb (average of all sites). However, the model tends to overestimate observed 
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surface O3 in urban regions (PMBE = 5.47%) and underestimate surface O3 in rural 

regions (PMBE = −0.83%), despite the good overall statistical agreement. 

The agreement between modeled and observed of O3 varies greatly by climate 

region. CMAQ overestimates observed seasonal 8-hr max O3 for most climatic regions. 

The highest PMBE of 16% (~9 ppb) is found for urban regions of the SE. We attribute 

the model’s high PMBE for O3 (see Figure 3-4b) to the overestimation of NOx 

emissions [Anderson et al., 2014; McDonald et al., 2013; Toro et al., 2021; Travis et 

al., 2016]. Travis et al. and Anderson et al. show in their papers that in the time of this 

study (2002-2012), the NEI overestimated surface NOx emissions from mobile and 

possibly other sources.  

Table 3-4: Comparison of observed (𝑥̅𝑥) 𝑎𝑎nd simulated (𝑦𝑦�) seasonal mean surface O3 
with (in parentheses) σ for various regions of the U.S. The table also gives the observed 
(𝑥̅𝑥diff) and simulated (𝑦𝑦�diff) differences in O3 between mostly rural CASTNET sites and 
mostly urban AQS sites, the PMBE, and the RMSE. 

Both papers suggest a reduction of surface NOx emissions, ranging between 30-70%, 

is needed to agree with their empirical determinations of NOx emissions. Toro et al. 

evaluate oxidized nitrogen compounds using the same multi-year CMAQ simulations 

as in our study, and also find that CMAQ5.0.2 has a high NOx mean bias for NOx 

compared to AQS data, particularly during summer in the SE region, although they 

attribute the bias to errors in mixing. Additional studies comparing modeled and 

Region Dataset 𝑥̅𝑥(𝜎𝜎𝑥𝑥)(ppb) 𝑥̅𝑥diff (ppb) 𝑦𝑦�(𝜎𝜎𝑦𝑦) (ppb) 𝑦𝑦�diff (ppb) PMBE (%) RMSE (ppb) 

NE 
CASTNET 49.41(4.17) 

−1.62 47.28(2.99) 4.00 −4.32 3.18 
AQS 47.79(3.08) 51.28(2.32) 7.31 3.98 

MW 
CASTNET 52.81(3.63) 

−4.67 45.62(1.76) 
−3.18 −13.61 9.51 

AQS 48.14(3.60) 42.44(2.14) −11.85 9.97 

NGP 
CASTNET 47.53(3.78) 

−1.26 48.37(1.91) 
−3.40 1.77 2.38 

AQS 46.27(3.03) 44.97(2.03) −2.80 6.19 

NW 
CASTNET NA NA NA NA NA NA 

AQS 40.12(2.44) 46.08(3.29) 14.86 5.78 

SW 
CASTNET 46.89(2.77) 5.64 52.15(3.95) 2.77 11.22 6.61 

AQS 52.53(1.50) 54.92(2.39) 4.57 3.07 

SGP 
CASTNET 44.55(1.80) 2.12 43.77(2.75) 7.66 −1.74 3.54 

AQS 46.67(3.79) 51.43(2.21) 10.19 5.23 

SE 
CASTNET 49.01(3.11) 

−2.52 48.15(2.55) 5.78 −1.75 4.24 
AQS 46.49(3.03) 53.93(2.32) 16.00 9.15 

CONUS 
CASTNET 48.25(3.39) 

−1.39 47.67(2.59) 1.62 −0.83 4.55 
AQS 46.86(2.14) 49.29(4.44) 5.47 6.20 
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measured column NO2 [Canty et al., 2015; Goldberg et al., 2016; Hembeck et al., 2019] 

support the contention that high NOx is a likely driver of model high bias in seasonal 

8-hr max O3 in the SE. Other factors such as improper representation of biogenic 

emissions of VOCs [Hembeck et al., 2019] as well as marine emissions of NOx [Ring 

et al., 2018] may also play a role in the high O3 bias within CMAQ. The MW region 

however displays a different relationship, with CMAQ underestimating seasonal 8-hr 

max O3 on average by up to 10 ppb (Figure 3-4).  

A scatter plot of the CPF from measurements and simulations (Figure 3-5) 

shows an overall good representation of the empirical CPF inferred from the many 

thousands of surface O3 and temperature measurements.  

 
Figure 3-5: Comparison of seasonal (May-September) CPF between measurements and 
simulations from CASTNET (asterisks) and AQS (squares) locations. Different regions 
are color coded and the 1:1-line is denoted in black. The table within the figure shows 
the root mean square error (RMSE) of the CPF of each region for CASTNET on the 
left and AQS on the right. Symbols as in Figure 3-4. 
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For the entirety of all of the ground-based sites the average observed CPF value is 1.97 

± 0.48 ppb/°C and the averaged simulated value is 2.23 ± 0.58 ppb/°C. The CMAQ 

simulations of the CPF within the CONUS are generally higher than the value of CPF 

computed from the observations by 6.55% ± 31% for rural regions (CASTNET 

locations) and by 20% ± 41% for urban regions (AQS locations). Particularly good 

agreement between measurements and the CMAQ simulation is found for the SW 

region, with a small RMSE of 0.27 ppb/ºC in rural locations and 0.15 ppb/ºC in urban 

locations. A large discrepancy between measurements and simulations exists in the SE 

region, with an RMSE of 0.57 ppb/ºC in rural locations and 0.95 ppb/ºC in urban 

locations. The SE region shows the greatest overestimate in modelled O3 

concentrations with a PMBE of +16%, but this high bias does not appear to result from 

overestimated temperatures. In this region modelled temperatures on average are 1oC 

lower than measurements.  

Table 3-5: Comparison of observed (𝑥̅𝑥) 𝑎𝑎nd simulated (𝑦𝑦�) seasonal CPF with (in 
parentheses) σ for various regions of the U.S. The observed (𝑥̅𝑥diff) and simulated (𝑦𝑦�diff) 
differences in CPF between mostly rural CASTNET sites and mostly urban AQS sites, 
the PMBE, and the RMSE are also given. 

Region Dataset 𝑥̅𝑥(𝜎𝜎𝑥𝑥) 
(ppb/°C) 

𝑥̅𝑥diff  
(ppb/°C) 

𝑦𝑦�(𝜎𝜎𝑦𝑦) 
(ppb/°C) 

𝑦𝑦�diff  
(ppb/°C) 

PMBE  
(%) 

RMSE 
(ppb/°C) 

NE CASTNET 2.84(0.35) -0.01 2.60(0.20) 0.4 -7.88 0.34 
AQS 2.83(0.25) 3.00(0.23) 6.16 0.24 

MW CASTNET 2.27(0.38) 0.05 2.55(0.25) 0.2 12.35 0.35 
AQS 2.32(0.24) 2.75(0.26) 18.59 0.5 

NGP CASTNET 2.05(0.27) 0.38 1.95(0.12) 0.73 -4.53 0.19 
AQS 2.43(0.09) 2.68(0.12) 10.35 0.26 

NW CASTNET       
AQS 1.77(0.05)  1.80(0.10)  1.57 0.08 

SW CASTNET 1.43(0.16) 0.04 1.59(0.13) -0.2 11.12 0.27 
AQS 1.47(0.11) 1.39(0.21) -5.46 0.15 

SGP CASTNET 1.83(0.07) -0.4 2.07(0.07) 0.32 12.94 0.24 
AQS 1.43(0.30) 2.39(0.32) 67.14 0.97 

SE CASTNET 1.55(0.35) 0.6 2.06(0.22) 1.02 32.90 0.57 
AQS 2.15(0.38) 3.08(0.29) 43.46 0.95 

CONU
S 

CASTNET 1.94 (0.47) 0.06 2.11 (0.35) 0.33 6.55 0.31 
AQS 2.00 (0.48) 2.36 (0.58) 20.26 0.45 

Hence, the overestimate of NOx emissions [Anderson et al., 2014; Travis et al., 2016] 

is likely the driving factor for the large discrepancy between measurements and 

simulations.  
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Hall et al. [2020b] showed that vehicular NOx emissions (especially diesel) 

increase with decreasing ambient temperature at a rate of ~2%/°C and may account for 

a substantial fraction of the NOx emissions high bias in the SE. This dependency is not 

presently implemented in the emissions drivers of CMAQ, and this effect will be 

examined in future studies. 

 Figure 3-6 depicts the average CPF for each region for the two datasets (black, 

gray) and simulations (blue, light blue). The black and blue bars correspond to 

CASTNET locations, and the grey and light blue columns correspond to AQS 

locations. The high bias of the CPF in CMAQ in the SE region is particularly evident 

in Figure 3-6.  

     Figure 3-7 depicts the timeseries of the CPF for each climatic region over 

the 11-year period for rural regions (except the NW where no rural stations existed). 

Figure 3-6: Bar plots showing mean CPF (2002-2012) for six different regions from 
CASTNET (black bars) and 7 different regions from AQS (gray bars). Simulations for 
comparable times and locations to observations are shown as blue bars. 
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The black points represent CASTNET data and the red points CMAQ output (evaluated 

at the CASTNET locations). 

Slope (m) and p-value (p indicates the probability that an observed difference could 

have occurred by random chance) are also indicated. There is an overall decreasing 

trend of the CPF during the 11-year period of –0.02 ± 0.03 ppb/°C/yr from CASTNET 

measurements and of –0.03 ± 0.02 ppb/°C/yr from CMAQ; the NE region displays the 

most significant decreasing trend (smallest p-value) in the data (m = –0.08 ppb/°C/yr) 

as well as in simulation (m = –0.05 ppb/°C/yr).  

 

 
Figure 3-7: Timeseries of the CPF from 2002 to 2012 for 6 climatic regions within the 
CONUS. CASTNET data are in black and the results of CMAQ simulations are in red. The 
slope (m; ppb/°C/yr) and p-values are denoted for each region. Error bars represent the 
standard deviation for each year. 

Figure 3-8 depicts the timeseries of the CPF for each climatic region over the 

11-year period for urban regions. On an annual basis there is good agreement of the 

CPF between measurements and simulations in the NGP, NE, NW, and SW regions. In 

the SE, MW, and SGP, the simulations overestimate the CPF although slopes based on 

measurements and simulations are similar. The overall decreasing trend (average of all 

seven regions) of the CPF during the 11-year period is –0.04 ± 0.03 ppb/°C/yr from 

AQS measurements and –0.04 ± 0.02 ppb/°C/yr from simulations; the greatest decrease 

in CPF can be found in the SGP region. The slopes of the timeseries are more 

statistically significant (smaller p-values) in urban regions and greater in magnitude 

(Figure 3-8) compared to those in rural regions (Figure 3-7). We attribute the 

urban/rural difference in the slope of CPF to higher concentrations of surface NOx and 
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O3 in urban regions than in rural regions. The urban/rural difference is evident in 

measurements as well as in simulations, but a greater urban/rural variation exists in the 

simulations (see Figure 3-6) due to NOx being high and/or kept too close to the source 

[Canty et al., 2015; Hembeck et al., 2019]. Simulations generally capture the trend of 

the CPF during the 11-year period i.e., the model roughly matches the sign and 

magnitude of the trends seen in the observations. 

3.5 Conclusions 
Using hourly surface observations of O3 and T from CASTNET, AQS, and NCDC 

from March to September 2002 to 2012 for each year and the whole 11-year period for 

seven individual climate regions within the CONUS we find that on average seasonal 

temperature and daily maximum O3 measurements are represented well within CMAQ. 

For the CONUS, temperature is slightly overestimated by ~0.6°C and O3 on average 

by ~5 ppb (the bias is greater for urban regions compared to rural regions). We 

calculated CPF values for data and simulations similarly and find that CMAQ produces 

CPF values close to measured data. The average observed value of CPF for the CONUS 

over 2002 to 2012 is 1.97 ± 0.48 ppb/°C and the average simulated value of all sites is 

2.23 ± 0.58 ppb/°C; the RMSE for all years and locations is 0.38 ppb/°C or about 

13%. The modelled CPF has a 14% (0.33 ppb/°C) higher bias in urban (AQS) than in 

 
Figure 3-8: Timeseries of the CPF from 2002 to 2012 for 7 climate regions within the 
CONUS. AQS data are in black and CMAQ output is in red. 
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rural (CASTNET) regions compared to CPF inferred from surface observations, 

possibly because of overestimated total (especially vehicular) NOx emissions and 

underestimated soil NOx emissions (less transport of NOx to upwind regions) for the 

modelled period. In addition, CMAQ using the chemical mechanism CB05TU-CL 

keeps some O3 precursors too close to urban sources [Canty et al., 2015; Hembeck et 

al., 2019], resulting in higher O3 bias in urban regions compared to rural regions. 

The SE region exhibits the greatest overestimate in the modelled concentration of 

O3 in urban regions (16%) as well as CPF (~43%) compared to empirical values. 

Temperature within the CMAQ simulation was underestimated, suggestive that 

temperature is not causing the CPF values to be high. Ozone, however, was 

significantly overestimated, likely because of overestimated precursor emissions in 

CMAQ, which is consistent with many studies of NOx inventories for the period 2002-

2012. Since the value of CPF declines with falling concentrations of NOx, the SE may 

experience slightly lower sensitivity of ozone to climate change than suggested by the 

CMAQ runs considered here. Most other regions within the CONUS have a decreasing 

trend in CPF over the 11-year period in both measurements and simulations. For the 

CONUS, values of CPF decreased in rural regions by −0.02 ± 0.03 ppb/°C/yr in 

observations and −0.03 ± 0.02 ppb/°C/yr in simulations and in urban regions by −0.04 

± 0.04 ppb/°C/yr in observations and simulations. These decreasing values of CPF 

indicate that emissions controls have reduced the impact of climate change (warming) 

on surface ozone. Our study indicates that the CPF within CMAQ is captured well in 

most climate regions and (all other factors being held constant) a 2°C increase in 

temperature could increase ozone by ~4 ppb. This finding suggests that CMAQ is 

capturing the impact of changing meteorology on ozone and could a useful tool to 

assess the climate penalty of surface O3 due to global warming. Next steps might 

include studies with CMAQ driven by meteorology in a warmer future climate based 

on output of climate model simulations – this type of simulation should give a 

reasonable indication of the additional pollution controls needed to overcome the 

impact of higher temperatures. 

 

 



 

 

90 
 

Chapter 4: Comparison of satellite-observed and 
modeled ammonia (NH3) under varying chemical 
environments across East Asia   
 

This chapter describes preliminary work utilizing CMAQ output of ammonia 

(NH3) and comparing it to satellite data. The simulations were conducted by Hyun 

Cheol Kim at the NOAA Air Resources Laboratory for the purposes of investigating 

NH3 abundances within CMAQ under varying chemical environments. 

4.1 Introduction 
Ammonia (NH3) plays an important role in the global nitrogen cycle as a key 

nutrient for every ecosystem [Fowler et al., 2013a; Fowler et al., 2013b; Reis et al., 

2009; Zhu et al., 2015]. Globally NH3 emissions are rising due to an increase in 

agricultural livestock in conjunction with growing use of nitrogen fertilization [Paulot 

et al., 2014; Warner et al., 2017]. While agricultural processes are the major source of 

NH3 emissions globally, several other sources contribute to local or regional 

enhancements in atmospheric NH3. Motor vehicles equipped with catalytic converters 

can reduce NO to NH3, contributing significantly to local emission of NH3. In urban 

areas that lack agricultural practices, vehicles can be the dominant source of NH3 

[Farren et al., 2021; Fenn et al., 2018; Perrino et al., 2002; Sun et al., 2017]. Therefore, 

the rapid industrialization and energy consumption in recent years in China causes 

serious concern to air quality in East Asia due to the increase in emissions of 

anthropogenic pollutants (indirectly from increase in livestock and directly from an 

increase in vehicle emissions of NH3). NH3 degrades air quality because of its role in 

the formation and composition of particulate matter, which also affects the radiative 

forcing of climate [Reiss et al., 2007]. Light reflecting white aerosols (organic carbon) 

can turn brown (brown carbon) in the presence of NH3 that then absorb light causing a 

warming the of the atmosphere [Updyke et al., 2012; Wang et al., 2020a]. Water quality 

is affected due to high NH3 deposition making surface water toxic; in addition, a change 

in pH can cause fish to die from pH shock [Yang et al., 2008].  

Even though NH3 is important in the global nitrogen cycle it has not been 

measured with high accuracy as well as good spatial and/or temporal coverage [Nair 
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and Yu, 2020]. There is a lack of in-situ measured NH3 due to the difficult process of 

measuring it because of its chemical properties [Li et al., 2006]. Great care must be 

taken to sample NH3 due to its high reactivity and stickiness [Schilt et al., 2004]. It is 

absorbent and desorbent on most surfaces and could react with the sensor. In addition, 

NH3 rapidly changes phases (gas/liquid/particulate) [Alexa and Mikuska, 2020; 

Yamada et al., 2012].  

Measuring NH3 through remote sensing has its own challenges. NH3 has a short 

lifetime (~ 1 day in the boundary layer), resulting in high spatiotemporal differences 

within individual pixels. In addition, most of the NH3 is located in the boundary layer 

and total NH3 mixing ratios are low (parts per trillion by volume to parts per billion by 

volume). Thus, satellite measurements require high sensitivity to the lowermost 

troposphere [Wang et al., 2020b; Warner et al., 2016]. Satellites retrieving NH3 

emissions use infrared radiance differences (Beer’s Law). The first satellite used to 

retrieve NH3 was the Tropospheric Emission Spectrometer (TES) onboard the EOS 

Aura satellite [Alvarado et al., 2011; Sun et al., 2015]. However, TES provides limited 

global coverage on a daily basis. In this study we use remote sensed NH3 from the 

Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. AIRS provides 

global coverage and daily NH3 retrievals. We compare NH3 concentrations from the 

AIRS satellite to simulations from the Community Multiscale Air Quality (CMAQ).  

CMAQ is a chemical transport model that requires accurate emissions inventories 

to assess air quality policies (see section 1.3.2). The main issue in developing an 

accurate emissions inventory for NH3 is the shear breadth of emission sources including 

all the uncertainties in measuring and validating them (historically few measurements). 

In this study we use three emissions inventories for the East Asia region to investigate 

CMAQ under various chemical environments and compare them to satellite 

measurements. 

4.2 Satellite Measurements 

The Atmospheric Infrared Sounder (AIRS) instrument on board NASA’s Earth 

Observing System (EOS) Aqua satellite measures NH3 from space. The satellite was 

launched 4 May 2002 and covers nearly the whole globe twice daily with local overpass 
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time of 1.30pm (ascending node). The AIRS instrument’s spectral region is between 

650 and 2670 cm-1 containing 2387 discrete channels. For the retrieval of NH3, 12 

channels are being used from the following spectral windows: 860–875, 928–932, and 

965–967 cm−1. AIRS clear sky coverage is only 10-15% at 13.5 km2 single-view pixel 

size (Warner et al., 2013). However, Susskind et al. (2003) described a method that 

increases data coverage to 50–70 %. AIRS has good sensitivity to lower tropospheric 

NH3 due to its averaging kernel (AK) peaking at about 918 hPa and the planetary 

boundary layer generally extending above this altitude in the early afternoon. In this 

study we use monthly NH3 level 3 data with 1°×1° grid resolution [Warner et al., 2017] 

obtained from https://disc.gsfc.nasa.gov/datacollection/AIRSAC3MNH3_3.html, last 

accessed late August 2021. AIRS reports ammonia concentrations in units of ppb. 

4.3 CMAQ 
This study uses the U.S. Environmental Protection Agency (EPA) Community 

Multiscale Air Quality (CMAQ) model, version 4.7.1 with the chemical mechanism 

Statewide Air Pollution Research Center version 99 (SAPRC99) and aerosol module 

AERO5. The Weather Research and Forecasting (WRF) Model, version 3.3 

[Skamarock and Klemp, 2008] was run offline to generate meteorological fields [EPA, 

2014b] (temperature, boundary layer height, humidity, three dimensional winds, etc.) 

processed with the Meteorological Chemistry Interface Processor (MCIP) version 3.6 

[Otte and Pleim, 2010] before being ingested into CMAQ. WRF is initialized with the 

National Centers for Environmental Protection (NCEP) Global Forecast System (GFS) 

0.5°×0.5° global product which are also taken as meteorological boundary conditions. 

The generated meterological fields are also used as input to the Sparse Matrix Operator 

Kernel Emissions (SMOKE v3.1) model, which generates gridded anthropogenic 

emission fields. Both WRF and CMAQ were run at 27 km × 27 km horizontal 

resolution, for a model domain covering East Asia (Figure 4-1) for 2011 and 2016. 

Both WRF and CMAQ have 22 vertical layers (σ coordinate) with the top of the first 

layer being at 32 m.  

https://disc.gsfc.nasa.gov/datacollection/AIRSAC3MNH3_3.html


 

 

93 
 

 
Figure 4-1: Map of CMAQ modelling domain covering East Asia 

4.4 Emissions Inventories  
We process three different anthropogenic emissions inventories in SMOKE to 

obtain a compatible spatial resolution product for CMAQ, i.e. the Intercontinental 

Chemical Transport Experiment-Phase B (INTEX-B) 2006 emissions inventory, the 

Model Inter-Comparison Study for Asia (MISC-ASIA) emissions inventory (MIX 

inventory for the year 2010; in the following called MIXED-ASIA), and the 

Comprehensive Regional emission inventory for Atmospheric Transport Experiment 

(CREATE version 2.3) for the year 2015 [Jang et al., 2020]. The CREATE inventory 

is used as baseline input for a 2016 CMAQ simulation. We produced two additional 

simulations other than the baseline, one with adjusted SO2 and one with SO2 and NO2 

adjusted. The adjustments were made in part because the CREATE emissions inventory 

reflects emissions during 2015 but the CMAQ simulation is for 2016. 

Table 4-1 Species included in the included in the emissions inventory 

Emissions Inventory Species Emissions 
INTEX-B SO2, NOx, CO, 

NMVOCs, PM10, 
PM2.5, black carbon, 
organic carbon 

8 species in 2006 as follows: 47.1 Tg   SO2, 36.7 
Tg   NOx, 298.2 Tg   CO, 54.6 Tg NMVOC, 
29.2 Tg PM10, 22.2 Tg PM2.5, 2.97 Tg BC,and 
6.57 Tg OC 

NH3 [ppb] 
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MIXED-ASIA SO2, NOx, CO, 
NMVOCs, NH3, PM10, 
PM2.5, black carbon, 
organic carbon, CO2 

10 species in 2010 as follows: 51.3 Tg SO2, 
52.1 Tg NOx, 336.6 Tg CO, 67.0 Tg NMVOC 
(non-methane volatile organic compounds), 
28.8 Tg NH3, 31.7 Tg PM10, 22.7 Tg PM2.5, 
3.5 Tg BC, 8.3 Tg OC, and 17.3 Pg CO2 

CREATE SO2, NOx, CO, non-
methane volatile 
organic compounds 
(NMVOC), NH3, OC, 
BC, PM10, PM2.5, 
CO2, CH4, N2O, and Hg 

Information only available for SO2 with 3.5 Tg  

   
 

The emissions adjustment procedure for SO2 and NO2 emissions is a top-down 

adjustment and described in detail in [Bae et al., 2020]. In brief, the adjustment to the 

modelled emissions is calculated as follows: 
𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

=
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

                                                     (E3) 

where Eadj are the adjusted emissions, Emod are the modelled emissions (baseline), Cobs 

and Cmod are the observed and modelled concentrations, respectively. For this study 

surface observations of SO2 and NO2 are used to adjust emission inventories. 

We use biogenic emissions from Model of Emissions of Gases and Aerosols from 

Nature (MEGAN vs. 2.04) [Guenther et al., 2006]. Emissions from MEGAN are 

widely used outside the U.S. [Carlton and Baker, 2011; Jiang et al., 2019; Wang et al., 

2020b]. Biogenic emissions greatly depend on meteorology. We use year specific 

meteorology; therefore, the simulations using the INTEX-B and MIXED-ASIA 

emissions inventory have the same 2011 meteorology while the simulations using the 

CREATE emissions inventory has the 2016 meteorology. Hence, comparisons of 2011 

simulations with 2016 simulations need to be done with a lot of care. 
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4.5 Preliminary Findings 
We look at 2011 satellite data and compare to CMAQ output using either the 

INTEX-B or the MIXED-ASIA emissions inventory. Figure 4-2 shows a timeseries of 

mean (solid lines) and maximum (dotted lines) NH3 concentrations from the satellite 

(black) with 1σ uncertainty and simulations (red and purple) for 2011. Overall, using 

the MIXED-ASIA inventory in CMAQ provides better representation of observed 

NH3. The poorer performance of the absolute NH3 concentrations in CMAQ found 

using the INTEX-B emissions is likely due to the creation year of 2006 for this 

inventory. The INTEX-B inventory did not capture the emissions peak in the summer 

but rather placed it in the spring. This result indicates that this inventory might feature 

more fertilizer application during spring, or the source strength is overestimated. Using 

AIRS satellite data Warner et al. [2017] showed that over a 13-year period that NH3 

concentrations over China are greatest in June and July, with a secondary spring 

maximum. The summer maximum of NH3 in 2011 from measurements is clearly visible 

 
Figure 4-2 Timeseries plot of mean (solid lines) and maximum (dotted lines) NH3 
concentrations from the satellite (black) with 1σ uncertainty and simulations (red and 
purple) for 2011 for the domain shown in Figure 4.1. 
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while a secondary maximum in the spring is not evident in 2011. Our analysis shows 

that CMAQ underestimates NH3 concentrations in the summer, a result also found by 

Shepard et al. 2015 analyzing NH3 column density over the US from the Infrared 

Atmospheric Sounding Interferometer IASI instrument (Metop-A satellite) compared 

to CMAQ.  

In addition, a likely reason for NH3 in the simulation using the MIXED-ASIA 

emissions inventory to be generally lower than the simulation using the INTEX-B 

emissions inventory could be because SO2 and NO2 emissions are both lower in the 

INTEX-B emissions inventory (see table 4-1). Less SO2 and NO2 in the atomphere 

result in less H2SO4 or HNO3 acids and in turn less NH3 is needed to neutralize such 

acids. Hence, higher NH3 concentrations are expected in simulations using the INTEX-

B emissions inventory compared to using the MIXED-ASIA emissions inventory. 

Figure 4-3 shows a timeseries of mean (solid lines) and maximum (dotted lines) 

NH3 concentrations from the satellite (black) and simulations (red, purple, and pink) 

for 2016.  

 

Figure 4-3: Timeseries of mean (solid lines) and maximum (dotted lines) NH3 
concentrations from the satellite (black) with 1σ uncertainty and simulations (red, 
purple, and pink) for 2016. 
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Here, the CMAQ simulations use the CREATE emissions inventory. Overall, the 

satellite data and CMAQ output for NH3 compare better than using the INTEX-B or 

MIXED-ASIA emissions inventory. The mean concentrations of NH3 in the spring 

from measurements compares best to the simulation that uses the CREATESO2 

emissions inventory. However, in the summer the measurements show a greater 

increase during June and July compared to all simulations.  

SO2 is adjusted using equation E3 in CREATESO2. That means depending on the 

ratio of measured to baseline SO2 concentrations the SO2 emissions are either increased 

or reduced. Figure 3 in Bea et al. [2020] shows this ratio with values of less than 1 in 

most regions. Therefore, throughout the domain SO2 emissions are reduced using the 

CREATESO2 which results in an increase in NH3 in the domain. NH3 is a neutralizing 

agent in the atmosphere; therefore, we expected more NH3 in the atmosphere since less 

NH3 is needed to neutralize acids such as H2SO4 or HNO3. The simulation using the 

CREATESO2&NO2 emissions inventory shows overall higher NH3 concentrations 

compared to the baseline simulation and the simulation using CREATESO2 emission 

inventory.  

Comparing AIRS data from 2011 and 2016, an increase in NH3 concentrations 

can be observed in China. The measured mean increase of NH3 concentrations between 

June (2011-2016) is 2.08 ppb. This increasing trend was also found by Warner et al. 

[2017] who showed that multiple factors favored the increase in NH3 concentrations 

between September 2002 to August 2016. One factor is the increase in application of 

fertilizer during this period and another the decrease of sulfur emissions which 

scavenges NH3 from the atmosphere. SO2 and NH3 emissions are roughly anti-

correlated [Warner et al., 2017].  

Spatial figures for each month of 2011 and January – August of 2016 are shown 

below (Figures 4-4, 4-5, and 4-6). Results show that absolute values of NH3 

concentrations vary greatly between month in measurements and simulations. During 

spring (March, April, May), the poorest agreement between AIRS measurements and 

the simulation using the INTEX-B emissions inventory is found, with average 

concentrations of 3.67 ± 0.39 ppb and 6.19 ± 2.71 ppb, respectively. This difference is 

most likely due to the previous stated reason that this emissions inventory is outdated. 
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However, CMAQ simulations do locate the NH3 concentrations in the same proximity 

as the satellite product for most months. The comparison of AIRS measurements to 

simulations using the MIXED-ASIA and CREATE emissions inventories have NH3 

concentrations in the right location but seem to have emissions sources differ in 

strength and/or in timing of the release of NH3 compared to the real world. 

For example, mean NH3 concentrations in the measurements have a maximum 

in the summer (Figure 4-3). The maximum NH3 value (~17 ppb) is captured in June by 

all simulations but not for July. Now when investigating the spatial figures for June and 

July of 2016 (Figure 4-6) the spatial extend of NH3 concentrations compares well to 

measurements however there are more red pixels (high NH3 concentrations) in the 

measurements for June compared to simulations. In July the simulations do not display 

any red pixels hence the maximum and mean NH3 concentrations are much lower 

compared to measurements. To investigate these differences between measurements 

and simulations further analysis is needed. Such as analyzing the emissions inventories 

used in this study directly in order to pinpoint if the underestimate of NH3 in CMAQ is 

related to the source strength/type. This analysis would benefit from a comparison to 

ground baseed measurements of NH3, SO2, and NO2.  
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Figure 4-4 Map showing NH3 concentrations in Northeast Asia from measurements 
(AIRS) and simulations using INTEX-B and MIXED-ASIA emissions inventories 
from January – June 2011. 
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Figure 4-5 Map showing NH3 concentrations in Northeast Asia from measurements 
and simulations using INTEX-B and MIXED-ASIA emissions from July – December 
2011. 



 

 

101 
 

 
Figure 4-6 Map showing NH3 concentrations in Northeast Asia from measurements 
and simulations using INTEX-B and MIXED-ASIA emissions from January – August 
2016.  
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Chapter 5: Conclusions and Implications 
 
The body of this work comprises the utilization, modification, and analysis of the air 

quality model CMAQ by comparing simulations to measurements at the surface, from 

aircraft campaigns and tropospheric observations from satellite retrievals. Science 

questions addressed in this work focus on the desire to improve CMAQ and makes 

future predictions of O3, precursors to O3, and ammonia concentrations more accurate 

such that policy decisions can be made with greater certainty. 

In Chapter 2, data collected during the July 2011 NASA DISCOVER-AQ 

campaign in the Baltimore-Washington region were used to quantify ozone production 

efficiency (OPE) from measurements and were compared to output from the 

Community Multiscale Air Quality (CMAQ) model. The baseline model run of CMAQ 

underestimates observed OPE by 34 ± 20%. The payload of D-AQ lacked direct 

observations of HO2 and RO2, so we infer the rate at which these peroxy radicals react 

with NO (termed inROx) from observations of NO, NO2, O3, and j(NO2). The baseline 

run of CMAQ underestimates inROx by 35 ± 19%. A modified run of CMAQ with; 

• a factor of 10 reduction in the lifetime of organic nitrates, 

• a factor of 2 reduction in mobile NOx emissions,  

• an updated thermal dissociation rate of PAN and PANX (IUPAC 2014),   

• a correction for the rate constant for OH + PANX  

results in better overall model performance based on data that include column NO2 

measured by the Ozone Monitoring Instrument, a value of  

• OPE that is improved from 34 to 21% less than observed, and 

• inROx that is improved from 35 to 30% low.  

Sensitivity analysis indicates that the peroxy radical discrepancy involves either 

emission of VOCs other than isoprene or HCHO, or a problem with the model 

production of HO2 and RO2. Our analysis suggests surface O3 may exhibit stronger 

declines to further reductions of NOx than is indicated by baseline runs of CMAQ. I 

was the lead author on this chapter, published on 19 February 2019 in Atmospheric 

Environment X. 
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In Chapter 3, the Climate Penalty Factor (CPF) was investigated to quantify the 

adverse impact of increasing temperatures on surface O3 because elevated levels of 

tropospheric ozone caused by anthropogenic emissions of NOx and VOCs have a 

negative impact on human health, crops, and ecosystems. Even if precursor emissions 

are reduced from current levels, predicted higher temperatures due to increased 

greenhouse gas emissions could impede air quality benefits. We computed the CPF 

from surface observations at CASTNET (mostly rural) and AQS (mostly urban) sites 

and compare these values to CMAQ output for the contiguous U.S. and seven sub-

regions for the ozone season (May 1 through September 30) for each year from 2002 

through 2012. CMAQ can in general reproduce with reasonable accuracy the CPF for 

the CONUS. This finding suggests that CMAQ is capturing the impact of changing 

meteorology on ozone and is a useful tool to assess the climate penalty of surface O3 

due to global warming. In predominantly rural regions (CASTNET) observed CPFs 

average 2.00 ppb/°C while simulated CPFs average 2.11 ppb/°C. Higher CPFs are 

found in predominantly urban regions (AQS) where observed CPFs are 2.06 ppb/°C 

and simulated CPFs are 2.39 ppb/°C. CMAQ reproduces CPFs at rural sites reasonably 

well but tends to overestimate CPFs at urban sites. Upon examination of each sub-

region, the CMAQ simulation for the Southeast shows a substantial overestimate (43%) 

of CPF for urban (AQS) sites. Conversely, the CMAQ simulations for the Northeast 

show a slight underestimate (8%) of the CPF at rural (CASTNET) sites. Both results 

for CPF (overestimated for urban sites and either underestimated or close to observed 

for rural sites) could be related to the tendency of this version of CMAQ (with a long 

lifetime for alkyl nitrates) to overestimate NOx or keep it too close to the urban source 

locations. Our analysis suggests that CMAQ may attribute a somewhat greater fraction 

of O3 production to an increase in temperature than observed. Finally, there is a ~2% 

decrease in CPF throughout the CONUS during the 11-year period in both 

measurements and the CMAQ simulations, suggesting that reductions in NOx 

emissions can mitigate the impact of climate change on surface ozone. I am the lead 

author on this chapter, which was submitted for publication on 13 October 2021 to 

Atmospheric Environment. 
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In Chapter 4, preliminary work utilizing CMAQ output of ammonia (NH3) and 

comparing it to satellite data is described. The simulations were conducted by Hyun 

Cheol Kim for the purposes of investigating NH3 abundances with in CMAQ under 

varying chemical environments. Three different emissions inventories (INTEX-B, 

MIXED-ASIA, CREATE) were utilized plus 2 sensitivity simulations (CREATESO2 

and CREATESO2&NO2). While Chapter 4 highlights preliminary results it lacks a 

comprehensive investigation of the chemistry of NH3. However, a few conclusions can 

be drawn from this analysis: 

• The INTEX-B emissions inventory is outdated and should not be used to 

simulate present day NH3 emissions over East Asia.  

• Concentrations of NH3 within CMAQ are underestimated using the 

MIXED-ASIA or CREATE emissions inventory.  

• More realistic representation of SO2 and NO2 emissions in the emissions 

inventory bring NH3 concentration in simulations closer to measured 

values from AIRS. 

5.1 Recommendations for Future Work 
Chapters 2 and 3 heavily focus on the representation of nitrogen species within 

CMAQ. Nitrogen species are important precursors to O3; however, VOCs are also quite 

important. Errors in the model representation of VOCs can potentially impact organic 

N reservoirs. In Chapter 2, I utilized a calculation to estimate the total production rate 

of HO2 and RO2 within CMAQ. This calculation could not distinguish HO2 from RO2, 

but provided a good estimate of the frequency at which all peroxy radicals react with 

NO. These results suggest that future work should examine the possibility of 

underestimated VOC emissions in the EPA emissions inventory. In addition, a greater 

HO2 and/or RO2 production, and faster thermal dissociation of organic peroxy nitrates 

within CMAQ could improve simulations of O3 concentrations. In situ observations of 

HOx radicals, although rare due to the difficulty of measuring such species, would 

provide the necessary information. Field campaigns conducted to examine air quality 

need to integrate HOx measurements into their field campaigns. 
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Further investigation is also recommended to quantify contributions to 

uncertainties in kinetic parameters within the chemical mechanism in CMAQ to 

improve simulations for O3. Simulations do not explicitly account for these 

uncertainties. Ridley et al. [2017] used a Lagrangian chemical transport model in 

conjunction with the Monte Carlo method to show that kinetic uncertainties can 

account for up to 10-12 ppb variation in the mixing ratio of O3. I have shown in Chapter 

2 that updating the thermal dissociation rate of PAN to rates reflecting the state of the 

science not only improves model performance, showing the importance of updated 

reaction rates within a chemical mechanism but also showed that investigating the 

uncertainties is very insightful.  

In Chapter 2, OPE was determined within the CML defined as pressure > 820 hPa. 

Future work could benefit from a detailed comparison of CML depth for the 

Baltimore/Washington region. The CML can be determined based on temperature and 

humidity (thermodynamic approach), a chemical that changes significantly across the 

lower troposphere such as CO2 and O3 (chemical approach), and/or from aerosols 

(aerosol backscatter approach). Depending on which of these approaches are used the 

CML depths can deviate from each other and would need to be assessed [Hennemuth 

and Lammert, 2006]. During DISCOVER-AQ lidar measurements are available that 

use aerosol backscatter to determine the CML. Hegarty et al. [2018] discuss, in 

conjunction of high resolution WRF modelling, two lidar instruments and a satellite 

retrieval to find the best estimate for the CML. 

In Chapters 2 and 3, OPE, inROx, and the CPF were all evaluated using version 

5.0.2 of CMAQ. Also, the CMAQ simulations in Chapter 3 span years 2002 to 2012. 

Our understanding of tropospheric O3 photochemistry would benefit from re-

examination of OPE, inROx, and CPF using newer versions of CMAQ, as well as runs 

of CMAQ that cover the gap between 2012 and present time. 

Chapter 4 exposes caveats that require further investigation of NH3. In turn, that 

includes measurements with better temporal and spatial coverage. The investigation 

should include determining all NH3 emission sources as well as their strength. The 

analysis in Chapter 4 can be expanded to include comparison of other gaseous species 

such as SO2, NOx, and PM. New findings from Kong et al. [2021] make matters even 
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more complex. They found that after aerosol formation, due the reaction of SO2 with 

NH3, the ammonium sulfate salts entertain surface reactions that form elemental sulfur 

and nitrogen gas depending on the amount of water vapor in the air. Hence, 

investigation of ammonium sulfate salt as a major source of nitrogen species downwind 

of NH3 sources is instrumental for our understanding of NH3 emissions/chemistry. 

Another recent paper by Kickman et al. [2021] using NH3 retrieval from IASI shows 

the great benefit of using satellite data to discern the complex dependencies of NH3 

emissions in selected African regions. However, their results still suggest that the 

evaluation of retrieval products would benefit from high-quality surface observations. 

I suggest, due to the inter dependencies of surface measurements, remote sensed 

retrievals, and simulations of NH3 a comprehensive investigation is needed considering 

these interdependences. This future effort will contribute towards a better 

understanding of ammonia in the atmosphere. 
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