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Department of Electrical and Computer
Engineering

Kinetic equations are used to model many physical phenomena, including gas
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lenges in the use of numerical optimization then propose an isotropic regularization
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manufactured solutions to test our algorithm and also present its performance on

two standard test problems.
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Chapter 1

Introduction

Kinetic equations are used in the modeling of many physical phenomena in-

cluding gas dynamics, semiconductors, quantum fluids, radiative transport, and

phonon transport in solids. The linear kinetic equation for unit-speed particles is

a simplified model which has applications in neutron transport [1]. The numeri-

cal simulation of kinetic systems can be difficult for many reasons, not the least of

which is the high dimensionality of the domain of definition. A kinetic description

for the unit-speed particles depends on position, angle, and time, where in many

real problems position is three-dimensional and the angle lies on the unit sphere.

The construction of a grid in these six total dimensions is generally not tractable,

and so researchers often look for a reduction in the dimension of the domain.

Currently popular numerical methods for simulating linear kinetic equations

include the PN models, discrete-ordinate methods, and Monte Carlo simulations.

Solutions using PN methods, which are truncated spherical harmonic expansions in

the angle variable, can have undesirable non-physical artifacts such as distributions

with negative values [1,2]. Discrete-ordinate methods, defined using a quadrature in

the angle variable and commonly known as SN , suffer from ‘ray effects’ because they

lack rotational symmetry [1, 3]. Implicit Monte Carlo methods [4] remain popular

but are, without great computational effort, fundamentally vulnerable to the effects
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of statistical noise.

The end-user scientists or engineers are often only interested in a few macro-

scopic quantities obtained from the full kinetic descriptions [5]. Moments, such as

energy or particle density and radiative fluxes and pressures, are examples of such

quantities. However, according to the kinetic equation the exact evolution of a fi-

nite set of moments does not form a closed system: the evolution of moments up to

order N depends on the moments up to order N + 1. The closure problem is that of

approximating the moment of order N + 1 from the known moments, those of order

up to N .

One way to close the moment system is to estimate the full kinetic descrip-

tion from the known N moments. This estimated distribution is called an ansatz,

but because a finite set of moments generally does not uniquely determine a full

distribution, criteria must be given for which distribution to select.

From an information theoretic perspective, the known moments are partial

knowledge of an underlying distribution, and the most likely (and, respectful of the

limited knowledge, least committal) distribution is the one of minimum1 entropy [6].

From this idea Levermore [7] developed a hierarchy of entropy-based moment models

(commonly referred to as the MN models) which reconstruct the kinetic description

by solving the constrained, convex optimization problem which minimizes entropy

while matching the moments. Levermore showed that these models enjoy attractive

theoretical properties including positivity of the solution, entropy dissipation, and

1This corresponds to the maximum physical entropy due to the sign convention we choose in
this work to define the entropy measure.
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hyperbolicity of the moment system.

One serious obstacle to the implementation of entropy-based moment closures

is that, for some moments, the defining optimization problem may not have a so-

lution even though the moments are realizable (that is, they are associated with

some nonnegative distribution). This problem was first exposed in [8], and recent

work [9] has more generally characterized this set of problems. Indeed in [9] the

set of such ‘degenerate’ moments is shown to be ‘small in both a topological and a

measure-theoretic sense.’

Some work has considered computing the entropy-based solution while by-

passing the optimization. Eddington factors [5, 10, 11] can be used to calculate the

entropy-based closure without determining the ansatz. But beyond the first-order

M1 model, an explicit expression for the Eddington factor is difficult to derive.

In [11], to simulate the second-order M2 model the authors construct a look-up ta-

ble directly mapping low-order moments to the third-order moment needed to close

the model. Unfortunately, the extension of such a method to higher-order mod-

els is impractical, and higher-order models are needed to mitigate the non-physical

artifacts associated with the moment solution [12].

The burden of solving the optimization problem at every point on the space-

time mesh makes the MN model generally impractical for serial computer implemen-

tation, but this cost is mitigated significantly in the emerging paradigm of massively

parallel computing where data communication is much more of a bottleneck than

floating-point operations. In a moment model, the optimization problems in each

spatial cell are independent and thus ideal for parallelization. Furthermore, the
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compactness of the entropy-based description means that only a small amount of

data needs to be communicated between computational cells in the solution of the

moment system. Thus, the timing is right to reassess the expense and feasibility of

using a numerical optimization algorithm in the PDE solver.

The numerical solution of single, moment-constrained minimum-entropy op-

timization problems has received much attention in the literature. The ‘iterative

scaling’ algorithm first proposed in [13] and later improved in [14,15] has been use-

ful in areas as diverse as computational linguistics [16] and ecology [17]. It is a

coordinate-descent method which, while appropriate for single large problems, is

much too slow to solve the massive number of problems in the MN model even

in a parallel implementation. A promising algorithm was proposed by Abramov

in [18, 19] which uses an adaptive polynomial basis to work around inherent poor

conditioning of the problem. The adaptive-basis method was successfully used to

solve single two-dimensional problems over an unbounded integration domain. The

applicability of this method in MN models is unclear.

We begin by introducing the linear transport equation in slab geometry, its

entropy-based moment model, and a numerical solver for this moment model in

Chapter 2. Next we narrow our focus in Chapter 3 to the optimization and discuss

why its numerical solution can be challenging. Once these difficulties are exposed, we

explain and test some ways to address them in Chapter 4, including fixed quadrature,

adaptive-basis methods inspired by Abramov’s method, and isotropic regularization.

We test our resulting algorithm numerically on manufactured solutions and two

standard test problems extensively in Chapter 5. Finally, we draw conclusions and
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propose directions for future work in Chapter 6.
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Chapter 2

The Linear Kinetic Equation and the Entropy-Based Moment

Closure

In this chapter we review the linear one-dimensional kinetic equation we use

for our experiments and introduce the entropy-based moment closure for this model.

We also introduce the key concept of realizability and describe the numerical PDE

solver we implement.

2.1 The linear kinetic equation

Following [12], we consider a simplified one-dimensional model of imaginary

unit-speed particles (somewhat similar to neutrons) in slab geometry. This model

avoids degenerate problems [8,9] (in e.g. gas dynamics models) because the velocity

variable lies in a compact space and thus the optimization problem always has a

solution.

The kinetic model tracks a non-negative density F = F (x, µ, t) whose in-

dependent variables here are the scalar spatial coordinate x ∈ (xL, xR) along the

direction perpendicular to the slab, the angle variable µ ∈ [−1, 1] corresponding

to the cosine of the angle between the x-axis and the direction of particle travel,

and time t ≥ 0. The particles are absorbed by or scattered isotropically off of the

background medium, and these interactions are modeled by non-negative scattering
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and absorption interaction coefficients, σs(x), and σa(x) respectively. We define the

total interaction coefficient σt(x) := σs(x)+σa(x). This leads to the kinetic equation

of the form

∂tF + µ∂xF + σtF =
σs

2
〈F 〉+ S . (2.1)

where S = S(x, µ, t) is an external source. For the rest of this work, except in

Section 5.1, we assume S ≡ 0. The angle brackets denote integration over µ: for

any integrable function g = g(µ),

〈g〉 :=

∫ 1

−1

g(µ) dµ . (2.2)

Equation (2.1) is supplemented by boundary and initial conditions

F (xL, µ, t) = FL(µ, t) , µ > 0 , t > 0 , (2.3a)

F (xR, µ, t) = FR(µ, t) , µ < 0 , t > 0 , (2.3b)

F (x, µ, 0) = F0(x, µ) , µ ∈ [−1, 1] , x ∈ [xL, xR] , (2.3c)

where F0, FL, and FR are given.

2.2 Entropy-based moment closures

Moments u = u(x, t) are defined by angular averages with respect to basis

polynomials m = m(µ). We follow the common convention [1] by choosing m to be

the first N + 1 Legendre polynomials, which are orthogonal on [−1, 1] with respect
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to L2(dµ). Exact equations for the moments

u(x, t) = [u0, . . . , uN ]T := 〈mF (x, ·, t)〉 (2.4)

are found by multiplying the kinetic equation (2.1) by m and integrating over all

angles. This gives the system

∂tu + ∂x〈µmF 〉+ σtu = σsQu , (2.5)

where the (N + 1)× (N + 1) matrix Q is given by

Qlm = δlmδl0 , (2.6)

δlm being the Kronecker δ, so that Qu = [u0, . . . , 0]T .

The flux term 〈µmF 〉 cannot be computed from u, so (2.5) is not closed. We

close this system by choosing an ansatz to approximate F and substituting it into

(2.5). Entropy-based methods specify the ansatz for a given (x, t) as the solution to

the constrained, strictly convex optimization problem

minimize
g

〈η(g)〉 subject to 〈mg〉 = u . (2.7)

Here the minimization is with respect to g : [−1, 1] → R, and the entropy function
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η : R→ R is strictly convex. If a minimizer exists, it takes the form [7]

Gα(µ) := η′∗
(
αTm(µ)

)
, (2.8)

where η∗ : R → R is the Legendre dual of η, η′∗ is its derivative, and the vector

of Lagrange multipliers α̂(u) ∈ RN+1 (also called dual variables) solve the dual

problem:

α̂(u) = argmin
α∈RN+1

{〈
η∗(α

Tm)
〉
−αTu

}
. (2.9)

We focus on the Maxwell-Boltzmann entropy η(z) = z log(z) − z. Thus η∗(y) =

η′∗(y) = ey and

Gα = exp(αTm). (2.10)

Then we define f as the flux associated with the entropy-based ansatz:

f(u) :=
〈
µmGα̂(u)

〉
, (2.11)

so that the entropy-based closure of (2.5) is

∂tu + ∂xf(u) + σtu = σsQu . (2.12)

Correct boundary conditions for the moment system (which represents inte-

grals of (2.3) over the entire µ space) are not obviously determined because kinetic

data is only given for values of µ which correspond to incoming data. The issue

of proper boundary conditions remains an open question, although some progress
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has been made for linear systems [20–23]. We use ghost cells to implement the

boundaries; see Appendix A.1.

The numerical scheme we use to solve (2.12) is introduced in Section 2.4.

2.3 Realizability

The feasible set of the primal (2.7) is nonempty only if the moments u are

realizable.

Definition 1. Let the vector-valued function m be given and let L1
+(dµ) be the set

of all non-negative Lebesgue integrable functions g such that 〈g〉 > 0. A vector v

is said to be realizable (with respect to m) if there exists a g ∈ L1
+(dµ), such that

〈mg〉 = v. The set of all realizable vectors is denoted by R.

The following theorem characterizes the set R when the components of m are mono-

mials. It is a classical result in the theory of reduced moments ; see, for example, [24]

and references therein.

Theorem 1. Let p = [1, µ, . . . , µN ]T . A necessary and sufficient condition for a

vector v to be realizable with respect to p is that

1. in the case that N is odd, the (N + 1)/2 × (N + 1)/2 Hankel matrices B±,

defined by

B±kl := vk+l ± vk+l+1 , k, l ∈ {0, . . . , (N − 1)/2} , (2.13)
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are positive definite;

2. in the case that N is even, the (N + 2)/2× (N + 2)/2 Hankel matrix B0 and

the N/2×N/2 Hankel matrix B1, defined by

B0
kl := vk+l , k, l ∈ {0, . . . , N/2} ,

B1
kl := vk+l − vk+l+2 , k, l ∈ {0, . . . , (N − 2)/2} ,

are positive definite.

The realizability of moments with respect to any vector-valued function m

whose components form a basis for PN can be determined by simply applying a

change of basis from m to p and then invoking Theorem 1.

We can use the Hankel matrices of Theorem 1 to define a number describing

how close a vector of moments is to the boundary of realizability:

ρ∂R(u) :=


min(λmin(B+), λmin(B−)) if N is odd

min(λmin(B0), λmin(B1)) if N is even

(2.14)

where B+ and B− or B0 and B1 are the Hankel matrices formed from the monomial

moments associated with u.

The next theorem characterizes the geometry of R.

Theorem 2. The set R is a convex cone, i.e., for any moments v1,v2 ∈ R and

nonnegative constants c1 and c2, with c1 + c2 > 0, c1v1 + c2v2 ∈ R. Furthermore, it

is open.
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Proof. The fact that R is a convex cone follows from the fact that L1
+(dµ) is also a

convex cone. Openness is a corollary of Theorem 3 below.

The issue of realizability raises many questions. Two are:

1. Does a solution to (2.7) exist for all u ∈ R?

2. Can we enforce invariance of R in a numerical solution of (2.12)?

In general the answer to the first question is ‘no.’ The lack of existence is re-

lated to the fact that the constraints in (2.7) are not always continuous in the L1

norm [8, 9, 25, 26]. However, for the case under consideration, the domain of inte-

gration is bounded and the components of m are bounded on that domain. These

properties ensure that L1 continuity holds and a solution exists, leading to the fol-

lowing theorem.

Theorem 3 ( [25]). The function α̂ which maps moments u to dual variables α

via the solution of (2.9) is a smooth bijection from R onto RN+1. Its inverse is the

moment map v̂ given by

v̂(α) = 〈mGα〉 . (2.15)

Proof. See [25] and also [8, 27, 28] for similar results.

Notwithstanding Theorem 3, realizability presents significant numerical chal-

lenges. Indeed, near the boundary of R, the Hessian of the dual objective (2.9) is

ill-conditioned at the solution. This is a consequence of the fact that, on the bound-

ary itself, the constraint equations are uniquely solved by atomic measure—that is,
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an ansatz made up of delta functions [29]. These challenges are discussed in detail

in Chapter 3.

2.4 An R–invariant numerical solver

We implement a numerical solution to (2.12) using a kinetic scheme which is

second-order in both space and time [30]. In the context of entropy-based closures,

the main benefit of this scheme is that it preserves realizability. In addition, it

avoids the direct computation of eigenvalues and (approximate) Riemann solvers [31]

which, for most entropy-based moment systems, is expensive due to the complicated

relationship between u and f in (2.11).

Details of the numerical solver are in Appendix A, but we describe it briefly

here. It is a second-order finite-volume scheme of the form

∂tuj +
fj+1/2 − fj−1/2

∆x
+ σtuj = σsQuj for j ∈ {1, . . . , Nx} . (2.16)

Here uj approximates the cell average of u(x, t) over the interval Ij := (xj−1/2, xj+1/2),

where xj±1/2 := xj±∆x/2. With an exact solution to the dual optimization problem,

the numerical flux is given by

fj+1/2 =
〈
µmĜj+1/2

〉
, (2.17)

where Ĝj+1/2 is an approximation of the entropy ansatz at the cell edge xj+1/2

based on a linear reconstruction of the cell averages Ĝj′ := Gα̂(uj′ )
on the stencil
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j′ ∈ {j − 1, j, j + 1, j + 2} and a standard minmod-type limiter. The boundary

conditions are implemented using ghost cells indexed by j ∈ {−1, 0, Nx+1, Nx+2}.

Time integration is performed using the second-order strong-stability-preserving

Runge-Kutta (SSP-RK2) method [32], also known as Heun’s method or the improved

Euler method. We let unj denote the numerical solution at time step n in cell j.

This kinetic scheme invokes a numerical solution of the dual problem (2.9), so

we use ᾱ(u) to denote the approximate solution returned by the optimizer. The use

of these approximate multipliers to compute the flux means we replace (2.17) by

fj+1/2 :=
〈
µmḠj+1/2

〉
. (2.18)

The fact that the dual problem can only be solved approximately must be taken

into consideration when attempting to maintain realizability of the moments in the

numerical solution. It turns out that the ratios between the ansätze Gᾱ and Gα̂ at

each stage of the Runge-Kutta scheme play a key role. Therefore, for the n-th time

step we define

γj,(m) :=

(
Ḡ

(m)
j

Ĝ
(m)
j

)
, m ∈ {0, 1} , and γmax := max

m∈{0,1}
j∈{−1,...,Nx+2}

µ∈[−1,1]

{γj,(m)(µ)} , (2.19)

where the index m distinguishes the two stages of the Runge-Kutta method, Ĝ
(m)
j :=

G
α̂(u

(m)
j )

, and Ḡ
(m)
j := G

ᾱ(u
(m)
j )

.1

The following theorem shows that with an appropriate time-step restriction

1Here the dependence on n is suppressed for clarity.
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and appropriate boundary conditions, the kinetic scheme preserves realizable mo-

ments.

Theorem 4. Suppose that unj ∈ R for j ∈ {−1, . . . , Nx + 2}. If un+1 is defined via

the kinetic scheme (A.2), the SSP-RK2 numerical integrator in time, and time-step

restriction

γmax
∆t

∆x

2 + θ

2
+ σt∆t < 1 (2.20)

and if the moments in the ghost cells are realizable at each stage of the Runge-Kutta

scheme, then un+1
j ∈ R for j ∈ {1, . . . , Nx}.

The proof is in Appendix A.2.
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Chapter 3

Challenges in the Optimization Problem

This chapter considers the numerical solution of the optimization and exposes

what makes certain problems difficult. We expose why the problem is hard near the

realizable boundary in M1 and higher-order models, and present how these problems

are manifested numerically in computation of the Newton direction and the stopping

criterion. Much of the work in this chapter was published in [30].

3.1 Basics of the optimization

We denote the objective function in (2.9) and its gradient and Hessian, respec-

tively, by

f(α) := 〈Gα〉 −αTu , (3.1)

g(α) := 〈mGα〉 − u = v̂(α)− u , (3.2)

H(α) :=
〈
mmTGα

〉
. (3.3)

Note that f is smooth and strictly convex and H is positive definite for all α.

We approach α̂(u) using Newton’s method with an Armijo backtracking line

search [33] to guarantee global convergence and fast (quadratic) local convergence.
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Given an initial guess α0, the iterates α1, α2, . . . are constructed by

αk+1 = αk + χid(αk), k ∈ {0, 1, 2, . . .} , (3.4)

where d(αk) := −H−1(αk)g(αk) is the Newton direction at αk, χ ∈ (0, 1) is the

step-size parameter, i is the smallest non-negative integer such that

f(αk + χid(αk)) ≤ f(αk) + χiξg(αk)
Td(αk) , (3.5)

and ξ ∈ (0, 1/2).

There are two conditions in the stopping criterion. Given parameters τ > 0

and εγ > 0, we terminate the optimization process at the first iterate where αk

satisfies

‖g(αk)‖ ≤ τ, and (3.6a)

exp (5ζ‖d(αk)‖1) ≤ 1 + εγ (3.6b)

where

ζ := max
µ∈[−1,1]

‖m(µ)‖∞. (3.7)

For the Legendre polynomials, ζ = 1.

The first condition (3.6a) measures how close the primal constraints (2.7) are

to being satisfied (see (3.2)) and bounds the flux error f(u)− f(v̂(αk)) [34].

The second condition is related to realizability of the moments generated by
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the kinetic scheme. Due to (2.20) in Theorem 4, an upper bound on γmax is needed

to ensure realizability with a reasonable time step ∆t = O(∆x). We conservatively

bound γk := Gαk
/Gα̂ using the inequality

γk(µ) = exp((αk − α̂)Tm(µ)) ≤ exp (ζ‖αk − α̂‖1) . (3.8)

Since α̂ is unknown, we make the approximation ‖αk− α̂‖1 ≈ ‖d(αk)‖1, which is a

good asymptotic estimate because Newton’s method locally converges quadratically.

For our implementation, we further insert a factor of five inside the exponential in

the right-hand side of (3.8) to increase confidence that we are bounding γk from

above. This gives the second condition in (3.6b). With this conservative estimate of

γk, we are typically able to use time steps of at least 90% of the maximum theoretical

value for ∆t—that is the value of ∆t which corresponds to an exact solution of the

dual problem and is computed from (2.20) with γmax = 1.

As mentioned above, we let ᾱ(u) denote the approximate solution returned

by the optimizer, namely the first iterate which satisfies (3.6).

The optimization routine is always applied to moments which are normalized

by dividing by the zeroth-order moment u0 (the local particle concentration) since

u

u0

≡ 1

u0

〈mGα̂(u)〉 ≡
〈
m exp

(
− log(u0) + α̂(u)Tm

)〉
. (3.9)

Since m0 ≡ 1, the constant log(u0) can be absorbed into the zeroth-order multiplier
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so that

α̂(u) = α̂(u/u0) + (log(u0), 0, . . . , 0)T . (3.10)

This normalization makes it simpler to specify tolerances and analyze performance.

The PDE provides a natural warm start for the optimization algorithm: for

t > 0, we can use the optimal multipliers from the last time step as initial conditions.

At t = 0, we choose α0 := (log(u0/2), 0, . . . , 0)T , the multipliers of the isotropic

distribution. Generally, we use the term ‘isotropic multipliers’ to refer to multipliers

α where α1 = α2 = . . . = αN = 0. We also use eps to denote the machine precision

which, in double precision, is 2−52 ≈ 2.22× 10−16.

3.2 Optimization near the realizable boundary

For most realizable moments, the dual problem (2.9) is easy to solve in only

a few iterations with the warm start. The problem becomes difficult when the

moments u lie near ∂R, the boundary of the set of realizable moments. These

moments are associated with highly anisotropic distributions (or the vacuum state

G ≡ 0), and often occur in the presence of strong sources or when particles enter a

void. Refining the spatial mesh in the PDE solver tends to exacerbate the problem

since then the sharp dynamics are more fully resolved.1

Moments exactly on ∂R are uniquely generated by a linear combination of no

more than (N + 1)/2 delta functions when N is odd, and no more than N/2 deltas

when N is even [29]. As a consequence, the matrix of moments which make up the

1On the other hand, reducing the time step ∆t makes the optimization easier because the warm
start is closer to the solution.
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Hessian H(α̂(u)) when u ∈ R is singular: Let

G(µ) :=
d∑
i=1

ciδ(µ− νi) (3.11)

be a linear combination of deltas at νi with strengths ci > 0 and d ≤ (N + 1)/2.

Notice that (3.11) is not of the form (2.8). The (N + 1)× (N + 1) matrix

H =
〈
mmTG

〉
=

d∑
i=1

cim(νi)m(νi)
TG(νi) (3.12)

is a sum of d ≤ (N + 1)/2 rank-one matrices, so it is singular.

We have defined R as open, and this G 6∈ L1(dµ) is not an entropy-ansatz,

but the ansätze of moments near ∂R approach the extreme anisotropy of the atomic

densities on the boundary, and the condition number of the Hessian κ(H(α̂(u)))

approaches infinity as u approaches ∂R. The condition number can be roughly

understood using the following bounds:

λmin(H(α)) ≥ λmin(
〈
mmT

〉
) min
µ∈[−1,1]

(Gα) =
2

2N + 1
min

µ∈[−1,1]
(Gα), (3.13)

λmax(H(α)) ≤ λmax(
〈
mmT

〉
) max
µ∈[−1,1]

(Gα) = 2 max
µ∈[−1,1]

(Gα), (3.14)

where the constants in the far right terms come from the orthogonality of the Leg-

endre polynomials: 〈mkml〉 = 2δkl/(2k + 1). Equations (3.13) and (3.14) yield an
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upper bound on the condition number of the Hessian,

κ(H(α)) =
λmax(H(α))

λmin(H(α))
≤ (2N + 1)

maxµ(Gα)

minµ(Gα)
. (3.15)

When the ratio maxµGα/minµGα is moderate, then the problem is well-conditioned.

However, if minµGα � maxµGα—as in the case that Gα̂(u) is approaching a lin-

ear combination of deltas—then the problem may be poorly conditioned. Indeed,

maxµGα/minµGα was at least O(1010) in the difficult problems we encountered in

numerical experimentation.

We now present several examples to illustrate this second point.

3.2.1 The M1 model

The M1 model is the simplest example of an entropy-based moment system

and uses only the first two Legendre polynomials: m = (m0,m1)T = (1, µ)T . The

model was first introduced in [35] in the context of photon radiation and later

analyzed in much greater detail in [36]. Unlike the case for most entropy-based

models, the relationship between the moments and the multipliers in M1 can be

expressed without the use of integral formulas. This makes M1 a useful tool for

understanding the challenges of solving the dual problem (2.9).

First consider the first-order necessary condition for optimality of the M1 dual

problem. Let u = (u0, u1)T and α̂(u) = (α̂0(u), α̂1(u))T . Here

R = {(u0, u1) : |u1| < u0} , (3.16)

21



which simply follows from the fact that µ ∈ [−1, 1]. By solving g(α̂(u)) = 0, one

can show that the optimal multipliers satisfy (see [36])

u0 =
2 exp(α̂0(u))

α̂1(u)
sinh(α̂1(u)) , (3.17)

u1

u0

= coth(α̂1(u))− 1

α̂1(u)
. (3.18)

A plot of the right-hand side of (3.18) is given in Figure 3.1(a). Appropriately in

light of (3.16), the range of coth(α1) − 1/α1 is (−1, 1). From (3.18), one can show

that, if u0 is held constant, as |u1|/u0 → 1

α̂0(u)→ −∞ and
α̂1(u)

α̂0(u)
→ sign(u1) . (3.19)

The unbounded growth in the components of α quickly causes numerical overflow

and underflow when evaluating the exponential involving α in the objective function

and its derivatives.2

We can also see directly in the M1 case that as u approaches ∂R the Hessian

of the dual problem at α̂(u) becomes singular: Let v2 := 〈µ2Gα̂(u)〉 be the second-

order monomial moment. Then a standard calculation shows that the eigenvalues

of H are

λ± =
1

2
(u0 + v2)± |u1|

√
1 +

(
u0 − v2

2u1

)2

(3.20)

2In double-precision arithmetic, exp(−750) = 0, and exp(710) = Inf.
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Figure 3.1: Illustrating difficulties in the optimization in M1.

and that the bound

|u0 − v2| = |
〈
(1− µ2)Gα̂(u)

〉
| ≤ 2|〈(1± µ)Gα̂(u)〉| = 2|u0 ± u1| (3.21)

holds, so that v2 → u0 as u1 → ±u0. Thus the ratio λ+/λ− tends to∞ as u1 → ±u0.

The numerical difficulties above are compounded by the fact that, in gen-

eral, the integrals in f , g, and H must be approximated by quadrature. Given a

quadrature Q, the approximation fQ has the form

fQ(α) =
∑
µi∈Q

wiGα(µi)−αTu, (3.22)

where wi > 0 and µi ∈ Q are the quadrature weights and nodes, respectively. For

M1, the first-order necessary conditions for fQ yield an analog to the second equation

of (3.18):

u1

u0

=

∑
wiµi exp(α̂Q,1µi)∑
wi exp(α̂Q,1µi)

, (3.23)
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where α̂Q = (α̂Q,0, α̂Q,1)T denotes the minimizer of fQ. Assuming the quadrature

contains at least one node µi < 0 and at least one node µi > 0, consideration of

the range of the right-hand side of (3.23) (with respect to α̂Q,1) shows that (3.23)

is solvable if and only if

min
µi∈Q
{µi} <

u1

u0

< max
µi∈Q
{µi}. (3.24)

Thus fQ does not have a minimizer for all u ∈ R.3

The Hessian of the approximate objective function, used in calculating the

Newton direction, is given by the following sum of rank-one matrices:

HQ(α) =
∑
µi∈Q

wiGα(µi)m(µi)m
T (µi). (3.25)

Suppose that u is near ∂R and α→ α̂(u). Then as a consequence of (3.19), Gα̂(u)

can vary by arbitrarily many orders of magnitude over the interval of integration

as it attempts to approximate something closer and closer to a delta function at

µ = ±1. In such cases, the limits of finite precision arithmetic mean that many of

the terms in (3.25) underflow to exactly zero; this makes it harder for HQ(α) to

build rank. Equation 3.25 suggests that adding quadrature points would make it

easier for HQ to build rank and thereby improve its condition number.

In numerical experimentation we encountered the moments

(u0, u1)T = (1.19788813813286,−1.15179519716325)T × 10−5 (3.26)

3Generalizations of (3.24) are discussed in Section 4.1 below.
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which occurred as particles entered the vacuum surrounding an initial impulse. Here

|u1|/u0 ≈ 0.962. Figure 3.1(b) shows contours of the objective function for this prob-

lem and the effect of the quadrature approximation on the Newton direction. The

minimizer of the true objective function, which is marked with a star in the upper

right of the figure, is α̂(u) ≈ (−34.1,−26.0)T . A particular iterate αk is marked

with a dot in the lower left corner of the figure along with the approximate Newton

direction computed with an eight-point Gauss-Legendre quadrature. For this par-

ticular quadrature mini{µi} ≈ −0.9603, and thus according to (3.24), (3.23) is not

solvable, i.e., fQ does not have a minimizer. The figure shows that consequently the

Newton direction points in the wrong direction. However, as seen in Figure 3.1(b),

increasing nQ by only one suffices to orient the approximation Newton direction

correctly. For the nine-point Gauss-Legendre quadrature mini{µi} ≈ −0.9682 so

that (3.23) is then solvable.
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3.2.2 Challenges in higher-order models

Numerical difficulties also arise in higher-order models. Consider the following

M15 example with the (normalized) moments and multipliers

u = [ 1.0, 0.83787256, 0.57281969, 0.29407137,

0.07951925, -0.03489476, -0.06042812, -0.03707798,

-0.00614557, 0.00933745, 0.00792086, 0.00007545,

-0.00435021, -0.00283280, 0.00107465, 0.00302283]T ,

(3.27a)

α = [ -196.592892, 230.276988, 139.825688, -201.869970,

-183.792885, 351.679176, -10.219892, -278.491308,

58.767548, 304.081955, -258.762434, -112.854768,

341.813503, -269.754579, 104.308274, -17.093335]T .

(3.27b)

We encountered these moments in the course of solving the two-beam instability

problem discussed in Section 5.2.2, and the multipliers α were an iterate of the

optimization algorithm.

For u in (3.27a), ρ∂R(u) ≈ 2.1 × 10−10, and for the multipliers in (3.27b),

ρ∂R(v̂(α)) ≈ 1.3 × 10−10. As a reference, for the normalized isotropic moment

uiso = (1, 0, . . . , 0)T , ρ∂R(uiso) ≈ 1.3× 10−5.

From Figure 3.2(a), it is clear that all the structure in the polynomial αTm

is on the left-hand side of the interval. However, because the pointwise values of

αTm are large and negative there, this structure is essentially destroyed when the

exponential is applied (Figure 3.2(b)). Even though the function Gα appears rela-
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tively benign—nothing close to the delta functions which generate the moments on

∂R—the condition number of the numerical Hessian HQ(α) is quite large. Even

using a very fine 800-point Gauss-Legendre quadrature on each of the subinter-

vals [−1, 0] and [0, 1] to compute HQ, we find that λmin(HQ) ≈ 4.98 × 10−12 and

λmax(HQ) ≈ 2.21, so that the condition number of HQ is approximately 4.44× 1011.

We denote the unit-length eigenvector associated with λmin(HQ) by cQ, so

HQcQ = λmin(HQ)cQ. Let

U(c,α) := cTH(α)c = 〈|cTm|2Gα〉 (3.28)

denote the quadratic form weighted by the Hessian for multipliers α evaluated at

c = cQ. (Note that U(cQ,α) = λmin(HQ(α)) when quadrature Q is used to evaluate

the integral.) The results, given in Figure 3.2(c), show a combination of two effects.

First, on the right-hand side of the interval, the polynomial |cTQm|2 is very small, but

due to the orthogonality of the Legendre polynomials, this cannot hold everywhere

on the interval; indeed, on the left-hand side |cTQm|2 becomes O(1). However, on

the left-hand side, Gα is so small that any contribution to the integral in (3.28) is

strongly damped.

Over the entire interval, the most significant contribution to the integral comes

from the three peaks in Gα on the left-hand hand side. (One of these is at the bound-

ary µ = −1.) It is interesting to note that the value of |cTQm|2 dips significantly

at these peaks so that the product |cTQm|2Gα is O(10−10). When Q is coarsened,

the number of quadrature points contained in the support of these peaks decreases,

27



eventually causing the computed value of the integral (3.28) to decrease and the

condition number of HQ to increase. This effect is displayed in Figure 3.2(d), where

we plot the condition number versus the number of quadrature points. In each case,

the points are evenly divided into two Gauss-Legendre quadrature sets on the right

and left sides. This result illustrates the need for a highly accurate quadrature set

when u is close to ∂R.
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Figure 3.2: Examining the multipliers given in (3.27b).
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A small perturbation4 of the multipliers from the example in (3.27b) gives:

α = [-1.9930449, 2.357373, 1.369548, -2.042432,

-1.787705, 3.489758, -0.116955, -2.764542,

0.617561, 2.948295, -2.491223, -1.139953,

3.304448, -2.511948, 0.897775, -0.148746]T × 102.

(3.29)

For these multipliers, ρ∂R(v̂(α)) ≈ 3.3 × 10−15. By this measure, the v̂(α) is

significantly closer to the ∂R than is the moment generated by the multiplier in

(3.27b).

Figure 3.3 contains the same results as Figure 3.2, except that multipliers in

(3.27b) are replaced by those in (3.29). It is interesting to note that the profile of

Gα in Figure 3.3(b) is apparently beginning to form deltas, although it is still fairly

smooth.

We again compute HQ using a very fine 800-point Gauss-Legendre quadrature

on each half interval, which is accurate enough to resolve the structure in Gα, and

find that λmin(HQ) ≈ −1.30 × 10−16 and λmax(HQ) ≈ 2.89. (The fact that the

computed value of λmin(HQ) is negative is a result of roundoff error from double

precision arithmetic.) Thus the condition number of HQ is at least O(1016). It may

in fact be larger, but no further conclusions can be drawn without increasing the

working precision. The large condition number means that the relative error in the

computed Newton step may be O(1) or greater. Figure 3.3(d) shows that, unlike

4The relative difference between the multipliers in (3.27b) and (3.29) is roughly 5.3% when
measured in the `∞ norm. The multipliers in (3.29) were generated by fitting a polynomial to the
one shown in Figure 3.2(a) but reducing the height of the maxima in µ ∈ [−1, 0].
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the multipliers in (3.27b), refining the quadrature over two orders of magnitude

has little effect on the calculated condition number. Because Gα is still relatively

smooth, we again conclude that the limitations in the optimization algorithm are

not due to the quadrature in the case, but rather to the conditioning of the true

Hessian H.
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Figure 3.3: Examining the multipliers given in (3.29).
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3.2.3 Difficulties satisfying the γ tolerance

The behavior of the optimization algorithm for the moments and initial mul-

tipliers given by

u = [ 1.0, 0.94719513, 0.84831958, 0.71563896,

0.56480997, 0.41224747, 0.27254228, 0.15643088,

0.06966859, 0.01293677, -0.01731948, -0.02741629,

-0.02471554, -0.01606500, -0.00669578, 0.00027475]T ,

(3.30a)

α0 = [ -16.650320, -1.088112, 6.202177, 14.182838,

13.819944, 3.712406, -8.787535, -13.304092,

-7.246537, 3.095360, 8.571096, 6.142392,

-0.581505, -5.124053, -2.724318, 2.598485]T ,

(3.30b)

illustrates another difficulty in solving the optimization. Here, ρ∂R(u) = 7.6×10−11,

and in this section we use twenty-point Curtis-Clenshaw quadratures over both

µ ∈ [−1, 0] and µ ∈ [0, 1]. In this problem, as seen in Figure 3.4, the norm of the

gradient satisfies the stopping criterion long before the Newton direction is small

enough to satisfy (3.6b). It takes ten iterations to move the gradient below the

tolerance and then ten additional iterations for the Newton direction to become

small enough to satisfy the tolerance. In the figure, dashed green lines represent

the stopping tolerance. (For the Newton direction, according to (3.6b), this is

log(1 + εγ)/(5ζ).)

Figure 3.4(a) shows typical behavior for this situation: the gradient has two
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Figure 3.4: The stopping criterion quantities for the optimization algorithm for
(3.30)

stages of quick decrease. The first moves it below the gradient tolerance, and the

second happens after a few iterations of at best small improvements. This second

stage then quickly moves the gradient down to O(10−14) in a few iterations, and

further improvement is difficult to achieve in double precision. In more pathological

examples that we have observed, the optimization may take several more steps with

‖g(αk)‖ = O(10−14) while it searches for a point where the Newton direction will

satisfy the tolerance.

A large Newton step in these situations may be partially explained by the fact

that large changes to the multipliers become increasingly necessary even to make the

slight but significant changes to the ansatz needed near the solution. We must keep

in mind that near the ∂R, all of RN is squeezed into the bounded set R|u0=1, and

that the ansatz Gα = exp(αTm) is insensitive to large changes to the polynomial

αTm when that polynomial is large and negative.
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3.2.4 When the optimization breaks down

The problems in Sections 3.2.2 and 3.2.3 are challenging but ultimately solv-

able. The moments

u = [ 1.0, -0.98713923, 0.96593546, -0.93438151,

0.89296807, -0.84241937, 0.78360175, -0.71746459,

0.64504944, -0.56750364, 0.48605581, -0.40197628,

0.31656192, -0.23113041, 0.14699352, -0.06541041]T ,

(3.31)

however, give an example of where the optimization breaks down. Here, we start

from the isotropic multipliers, which are generally the safest initial-condition choice,

and we use twenty-point Curtis-Clenshaw quadratures over both µ ∈ [−1, 0] and

µ ∈ [0, 1]. The distance to the boundary is only ρ∂R(u) = 1.7 × 10−8, which is

surprisingly higher than the previous examples.

In Figure 3.5, we see that over the first seven iterations the norm of the gradient

is high and not decreasing, and the condition number of the Hessian is increasing

quickly. At the seventh iteration, the Cholesky factorization fails. Not surprisingly,

κ(H(α7)) is O(1017), which is above 1/eps.

Figure 3.6 illustrates what happens to the ansatz and the polynomial αT
km

in the final three iterations. The single peak seen in the ansatz at k = 5 in Figure

3.6(a) forms in the first iteration and remains the only peak until the sixth iteration.

Then a few small peaks form at k = 6, including one near µ = 0 which blows up at

k = 7 to O(104) (off-scale in Figure 3.6(c)).
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Figure 3.5: The norm of the gradient and the condition number of the Hessian when
the optimization algorithm is applied to the moments in (3.31).

The polynomials maintain their shape from the fifth to the seventh iteration

but grow by an order of magnitude in each step. Because log(eps) ≈ −36, most

of these terms make no contribution to quadrature approximations of g(αk) and

H(αk). Crucially, none of the peaks in the ansatz—including the one near µ = 0—

are ever noticeable in the plots of the polynomials, Figures 3.6(d) to 3.6(f).

In this chapter we reviewed the troubles numerical optimization faces in solving

the defining optimization problem for entropy-based moment closures. When the

moments are near the realizable boundary, support of the ansatz shrinks and causes

the Hessian of the dual objective function to be poorly conditioned in low- and high-

order problems. We showed how these difficulties are manifested in the calculation

of the stopping criterion and illustrated what happens to the ansatz when Newton’s

method fails.
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Figure 3.6: The ansätze and polynomials for the last three iterations when the
optimization algorithm is applied to the moments in (3.31).
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Chapter 4

Optimization Techniques

In this chapter, we discuss practical numerical techniques to address the diffi-

culties exposed in Chapter 3. We explain the advantages of using fixed quadrature,

modify and test an adaptive-basis algorithm, and introduce an isotropic regulariza-

tion for modifying problems we cannot solve in finite precision. Most of this work

will also be reported in [37].

4.1 Fixed quadrature

After making the observations in Chapter 3, we first experimented with adap-

tive quadrature to add quadrature points when the approximation of the objective

function needed refinement [30]. But not only does an adaptive quadrature create

complications for the optimizer (smartly predicted by [38]), it is important to realize

that the full realizable set R is only approximated using quadrature. Further, this

approximation changes with the quadrature.

Given a quadrature Q made up of nodes {µi}nQi=1 ⊂ [−1, 1] and weights {wi}nQi=1,

we define the set of moments that are realizable with respect to a quadrature Q as1

RQ := {u |u =
∑

wim(µi)gi, gi > 0} . (4.1)

1The strict inequalities in the definition RQ are chosen so that Slater’s condition is satisfied by
the discretized primal. Slater’s condition guarantees that the duality gap is zero [39].
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It is easily shown to be a subset of R, and the following result shows that only in

special cases does RQ reach the boundary of R.

Theorem 5. For any quadrature Q with positive weights wi,

RQ|u0=1 = int co{m(µi)}µi∈Q , (4.2)

where co indicates the convex hull, and int indicates interior.

Proof. If u ∈ RQ|u0=1, then λi := wigi > 0 and
∑
λi = 1 (using u0 = 1, m0 ≡ 1,

and assuming wi > 0) show that u is a convex combination of {m(µi)} with positive

coefficients λ. Therefore RQ|u0=1 ⊆ int co{m(µi)}.

For the other direction, assume u ∈ int co{m(µi)}, that is u =
∑
λim(µi).

Choosing gi := λi/wi > 0 shows that u ∈ RQ|u0=1, and so we have int co{m(µi)} ⊆

RQ|u0=1.

The rest of RQ (i.e. the unnormalized moments) is simply the cone generated

by RQ|u0=1:

RQ = {u |u = cv , c > 0 ,v ∈ RQ|u0=1} . (4.3)

Figure 4.1 demonstrates the M2 case for two low-order quadratures. R|u0=1 is

flat on the top, but curved at the bottom, as shown in Figure. If µ = ±1 are nodes

in Q (as in Figure 4.1(b)), the entire flat portion at the top is in RQ|u0=1. But on

the bottom (where moments are generated by a single delta located in (−1, 1)), no

moment on ∂R|u0=1 is also on ∂RQ|u0=1 unless the locations of the delta functions

are nodes in Q. In fact, every quadrature node adds a vertex of RQ which is on ∂R.
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Figure 4.1: Illustrating RQ|u0=1 for M2. The green indicates RQ|u0=1, and the blue
indicates R|u0=1\RQ|u0=1.

We settled on two important features for the quadrature. First, because the

angular integral takes different forms for positive and negative angles in the numer-

ical scheme,2 we apply separate quadratures for µ ∈ [−1, 0] and µ ∈ [0, 1]. Second,

we use Curtis-Clenshaw quadrature on each half interval because, as we can see

from Figure 4.1(a), the fact that Gauss-Legendre quadrature does not include the

endpoints µ = ±1 cuts out a large region of RQ. Furthermore, moments where

|u1| approaches 1 are essential for solving problems where particles are concentrated

near µ± 1, as we have in the plane source problem below.

A fixed quadrature Q also allows us to keep the numerical solution within the

Q-realizable set RQ:

Theorem 6. Let γmax be the maximum value of (2.19) over all quadrature nodes,

spatial cells and stages of the Runge-Kutta method. Suppose that unj ∈ RQ for

j ∈ {−1, . . . , Nx + 2}. If un+1 is defined via the kinetic scheme described in Section

2See, for example, (A.3)–(A.6) in the Appendix
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2.4 and with time-step restriction

γmax
∆t

∆x

θ + 2

2
+ σt∆t < 1 (4.4)

and if the moments in the ghost cells are in RQ at each stage of the Runge-Kutta

scheme, then un+1
j ∈ RQ for j ∈ {1, . . . , Nx}.

The proof of Theorem 6 is a trivial modification of the proof of Theorem 4

(see Appendix A.2).

4.2 Adaptive polynomial basis

We have seen that when v̂(α) is near ∂R, poor conditioning of the numerical

Hessian is unavoidable. Using a large number of quadrature points is sometimes one

way to improve the condition number of the Hessian in many problems (see Figures

3.2(d) and 3.3(d)), but it often requires an unreasonable number of quadrature

points. The work of [18] provides another approach: to switch to a polynomial basis

for which the Hessian is well-conditioned.

We consider basis polynomials of a particular form:

Definition 2. A vector of polynomials p = p(µ) = (p0(µ), . . . , pN(µ))T is said to

be triangular if deg(pi) = i for i ∈ {0, . . . , N}.

Let an invertible matrix T define a new basis p = T−1m and define fT :
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RN+1 → R by

fT (β) := f(T−Tβ) = 〈exp(βTT−1m)〉 − βTT−1u, (4.5)

so that f(α) ≡ fT (T Tα). If T is lower-triangular, then p is a triangular basis

because m is.

The transformed objective function fT is of course also strictly convex with

gradient

gT (β) = T−1〈m exp(βTT−1m)〉 − T−1u = T−1g(T−Tβ) (4.6)

and positive definite Hessian

HT (β) = T−1〈mmT exp(βTT−1m)〉T−T = T−1H(T−Tβ)T−T . (4.7)

The sequence generated by Newton’s method is invariant under affine trans-

formations of the domain of the function being minimized, so in exact arithmetic

a Newton iteration for f is equivalent to one for fT in the following sense: given

initial iterates, respectively αk and βk, related by βk = T Tαk, the respective next

iterates αk+1 and βk+1 satisfy βk+1 = T Tαk+1. (This still holds true when line

search is used, of the type used below.) As noted and exploited in [18] though, this

is no longer true in finite precision, where appropriate sequential changes of basis

can dramatically improve conditioning.

We switch to a new basis at every iteration where we calculate the Newton

direction for the minimization of f , in such a way that the Hessian at the current
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iterate expressed in the new basis is the identity. However we depart from [18] (for

reasons discussed in Section 4.2.3 below) in that we compute the change of basis

using the Cholesky decomposition rather than the Gram-Schmidt orthogonalization.

In exact arithmetic and when applied to the same original triangular basis, both

yield the same new basis except possibly for a reversal of some of the axes.3

The algorithm proceeds as follows. Let βk indicate the multipliers at the start

of iteration k, when the polynomial basis4 is pk−1 = T−1
k−1m, so that the ansatz

at this point is exp(βTkpk−1). A Cholesky factorization of the Hessian HTk−1
(βk)

uncovers the new basis where the Hessian is identity, since

HTk−1
(βk) =

〈
pk−1p

T
k−1 exp(βTkpk−1)

〉
= Lk

〈
pkp

T
k exp(βTkpk−1)

〉︸ ︷︷ ︸
=I

LTk , (4.8)

where Lk is the lower-triangular Cholesky factor of HTk−1
(βk)

HTk−1
(βk) = LkL

T
k . (4.9)

Hence the new basis is pk := L−1
k pk−1. Note that pk = L−1

k T−1
k−1m, so

Tk := Tk−1Lk. (4.10)

Since T−1 and Lk are lower-triangular, Tk also is for all k.

We denote the multipliers at iterate k in the new pk basis by β′k. The obser-

3This is due to the easily shown fact that the triangular basis p which is orthonormal with
respect to Gαdµ is unique up to the signs of the component polynomials.

4The polynomial basis is initialized to p−1 = T−1−1m, where T−1 is lower-triangular.
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vation that

βTkpk−1 = β′Tk Lkpk, (4.11)

shows that β′k = LTkβk. To check that HTk(β′k) is identity, simply apply (4.7)

and (4.9):

HTk(β′k) = T−1
k

〈
mmT exp(β′Tk T

−1
k m)

〉
T−Tk

= L−1
k T−1

k−1

〈
mmT exp(β′Tk L

−1
k T−1

k−1m)
〉
T−Tk−1L

−T
k

= L−1
k HTk−1

(L−Tk β′k)L
−T
k = I. (4.12)

The Newton direction dTk for fTk from this iterate is simply the steepest descent

direction

dTk(β′k) = −gTk(β′k) = uk −
〈
pk exp(β′Tk pk)

〉
, (4.13)

where uk := L−1
k uk−1 = T−1

k u is the vector of moments in the pk basis. In im-

plementation, the use of −gTk(β′k) as the search direction is a robust choice: even

though round-off errors cause the Hessian in the new basis not to be exactly identity,

this search direction is at least a descent direction.

In fact, the gradient in the new basis is given by

gTk(β′k) = (p0,k

〈
exp(β′Tk pk)

〉
, 0, . . . , 0)T − uk. (4.14)

Since Tk is lower triangular, the first component of pk is a constant, and so by the

orthogonality of the polynomials pk with respect to exp(β′Tk pk)dµ, only the first
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component of 〈pk exp(β′Tk pk)〉 (the integral term on the right in (4.13)) is nonzero.

The overall process is described in Algorithm 1.

Algorithm 1 The optimization algorithm using the adaptive-basis method.

Input: u ∈ R ⊂ RN+1, β0 ∈ RN+1, T−1 ∈ R(N+1)×(N+1), P−1 ∈ R(N+1)×nQ

{u is assumed to be in the Legendre basis m; P−1 holds the evaluations of the
initial basis p−1 = T−1

−1 m at the quadrature nodes.}
Parameters: τ > 0, εγ > 0

u−1 ← T−1
−1 u

for k ∈ {0, 1, 2, . . .} do
H ←

〈
pk−1p

T
k−1 exp(βTkpk−1)

〉
.

L← chol(H)
Tk ← Tk−1L
Pk ← L−1Pk−1

uk ← L−1uk−1

gTk(β′k)← (p0,out 〈G〉 , 0, . . . , 0)T − uk
β′k ← LTβk
dTk(β′k)← −gTk(β′k)
if ‖g(αk)‖ < τ and exp(5 maxµ |d(β′k)

Tpk|) < 1 + εγ then
ᾱ← T−Tk β′k {The optimal multipliers in the Legendre basis}
return ᾱ, β′k, Tk

else
Choose stepsize ξk using a line search
βk+1 ← β′k + ξkdTk(β′k)

end if
end for

Before moving on, we should make one note about how Algorithm 1 works in

practice. When the stepsize ξk becomes practically zero in the working precision

(possibly indicating a miscalculated search direction), the Hessian—for the same

ansatz—is recalculated and refactorized at iteration k + 1. Thus the basis pk+1

becomes a reorthogonalization of the basis pk and should result in a more accurate

search direction.
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4.2.1 Implementation details

In a computer implementation of Algorithm 1, basis polynomials p are stored

as a (N + 1) × nQ matrix, here denoted P , which holds their evaluation at the

quadrature nodes, i.e. Pij := pi(µj), where pi is the i-th component of p.

Solving an optimization problem in a changing basis requires careful book-

keeping. As written here, our algorithms update both the matrix Tk, defining the

relationship between the variable basis and the Legendre basis, and the matrix Pk

containing the evaluation of the basis polynomials pk at the quadrature points. The

matrix Pk is used repeatedly in quadratures, and it is be updated incrementally

(Pk ← L−1
k Pk−1).5

There are two ways we can use Tk to convert the gradient in the Tk basis

back to the Legendre basis for use in the stopping criterion. The first is simply

to compute TkgTk(β′k), using only (N + 1)2 multiplications. A second way is to

compute g(T−Tk β′k); here we first convert the multipliers back to the Legendre basis

and then compute the gradient by quadrature there. At a cost of (N + 1)2 +

nQ(N + 1) multiplications, this computation is more expensive, but it is a way to

test exactly how the multipliers will be used in the flux. This gives us confidence

that the conversion back to the Legendre basis via Tk—a matrix which becomes

ill-conditioned in hard problems—does not introduce new errors.

The estimated upper bound on γ in the stopping criterion, which boils down

to estimated the maximum of the polynomial β′Tk pk = αT
km, can be computed in

5In fact, strictly speaking it is not necessary to iteratively update Tk (which costs (N + 1)3

multiplications per iteration). At the final iteration, the multipliers in the Legendre basis (see
Remark 1 below) can be recovered from Pk and M .
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either basis. The Newton direction dTk(β′k) can be converted back to the Legendre

basis using Tk to use (3.6b) directly, or we can recompute ζ in (3.7) for the basis

polynomials pk on the quadrature nodes by finding maxij |pi(µj)| (this maximum

only needs to be computed over the quadrature nodes; see Theorem 4) and use the

one-norm of dTk(β′k). We chose the former approach because we found it to be

slightly cheaper and less conservative while still reliably maintaining realizability in

the PDE solver.

Remark 1. The edge values for the flux calculations (see Section 2.4, particularly

(2.17), and Appendix A) around spatial cell j are calculated using the ansätze at

cells j − 2, j − 1, j, j + 1, j + 2. Therefore, each ansatz needs to be communicated to

neighboring cells. Since in a parallel implementation data communication is a bot-

tleneck, we want to use the most compact representation of the ansatz we can. The

multipliers in a known, spatially consistent basis give the most compact representa-

tion because this requires N + 1 numbers to be communicated. The Legendre basis,

the basis used by the PDE, is the natural choice for this basis. If the multipliers βk

are not converted back to a consistent basis, then in order to be interpreted they must

be passed along either with the (N + 1)× (N + 1) matrix defining the basis or with

the (N + 1) × nQ matrix storing the evaluation of the basis polynomials pk at the

quadrature nodes. Alternatively, we could communicate the ansatz itself evaluated

at the quadrature points, but the quadratures we typically use have nQ ≈ 2N nodes

(and the quadrature must have at least N + 1 nodes to form a nonsingular estimate

of the Hessian), so this also requires more communication.
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(a) Using a fixed Legendre basis.
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(b) Using the adaptive-basis method.

Figure 4.2: Comparing the fixed-basis method to the adaptive-basis method on the
moments given in (3.27a). (Even at the bright pixel in the adaptive-basis figure, the
adaptive-basis method converged in seventy-seven iterations.)

The initial bases specified by T−1 and P−1 are the Legendre basis at t = 0.

For t > 0, the initial basis is the final basis from the previous time step in the same

spatial cell.

4.2.2 Static results

Revisiting the example moments

Consider again the M15 moments from (3.27a). In Figure 4.2, we compare what

happens when you try the fixed Legendre basis versus the adaptive-basis method

of Algorithm 1. For each pixel in Figure 4.2, we fix a number of Curtis-Clenshaw

quadrature points for [−1, 0] and a number of quadrature points for [0, 1]. When the

optimizer converges (τ = 10−8 and εγ = 0.01, with isotropic multipliers as initial

conditions), it takes roughly thirty-five to eighty iterations, and we indicate the

number of iterations by the shadings of the pixels in the figure. When the algorithm

does not converge in fewer than 200 iterations, the pixel is white.

The figure gives striking evidence that the convergence of the fixed-basis algo-

rithm is highly unpredictable. However, when using the adaptive-basis method, the
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algorithm converges for all quadratures presented.

Approaching the boundary

The adaptive-basis method also allows us to solve optimization problems closer

to the realizable boundary ∂R, where moments are uniquely described by densities

made of linear combinations of no more than (N + 1)/2 delta functions [29]: For

2m ≤ N , moments given by

u =

〈
m

m∑
i=1

ciδ(µ− νi)
〉

=
m∑
i=1

cim(µi), (4.15)

(where ci ≥ 0 and νi ∈ [−1, 1] ) lie on ∂R [29]. We can then define a sequence {u(k)
` }

which approaches ∂R as ` → ∞ by considering a convex combination between a

u(k) of the form (4.15) and the moments of the isotropic distribution. We use the

isotropic moments Qu so that the local particle concentration remains constant for

all `. The moments in the sequence are therefore given by

u
(k)
` = (1− 2−`)u(k) + 2−`Qu, for ` ∈ {0, 1, 2, . . .}. (4.16)

We performed experiments with N = 12 and m = 6 delta functions and Curtis-

Clenshaw quadrature. Table 4.1 gives the strengths ci and locations νi of the delta

functions generating example moments u(1), . . . ,u(6), each of which lies on ∂R. Then

for k = 1, . . . , 6 and for several values of nQ (the number of quadrature points over

each half interval [−1, 0] and [0, 1]), Table 4.2 shows the value of `∗ for which ᾱ(u
(k)
` )

can be computed satisfying the tolerances τ = 10−8 and εγ = 0.01 for all ` ≤ `∗.
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Table 4.1: Boundary moments used for tests in Table 4.2 below. The deltas in
u(5) are at the 4-th, 7-th, 10-th, 13-th, 14-th, and 15-th nodes of the twenty-point
Curtis-Clenshaw quadrature over the interval [−1, 0]. In u(6), ν1, ν3, . . . , ν6 are at
the 4-th, 9-th, 12-th, 15-th, and 17-th nodes of the same quadrature, while ν2 is the
54-th node of the 153-point Curtis-Clenshaw quadrature over the interval [−1, 0].

i 1 2 3 4 5 6

u(1) νi 0.2 0.3 0.4 0.5 0.6 0.7
ci 0.167 0.167 0.167 0.167 0.167 0.167

u(2) νi 0.2 0.3 0.4 0.5 0.6 0.7
ci 0.0833 0.0833 0.0833 0.333 0.0833 0.333

u(3) νi 0.2 0.4 0.6 0.88 0.89 0.9
ci 0.0833 0.0833 0.0833 0.333 0.0833 0.333

u(4) νi -0.8 -0.5 -0.1 0.59999 0.6 0.8
ci 0.167 0.167 0.167 0.167 0.167 0.167

u(5) νi -0.94 -0.773 -0.541 -0.299 -0.227 -0.161
ci 0.417 0.0417 0.0417 0.0417 0.417 0.0417

u(6) νi -0.94 -0.729 -0.623 -0.377 -0.161 -0.0603
ci 0.167 0.167 0.167 0.167 0.167 0.167

The values of nQ are chosen so that the quadratures with higher nQ include the

nodes from those with fewer quadrature points. (The nodes of the Curtis-Clenshaw

quadrature of order 2nQ − 1 include all nodes of the quadrature of order nQ.)

The moments u(1), . . . ,u(4) are chosen to show the effects of changing the

strengths ci and the distance between locations of the deltas. u(5) and u(6) are

chosen to illustrate the case when quadrature nodes are co-located with the deltas

generating the moments on the boundary.

Table 4.2 shows that the adaptive-basis method never performs worse than the

fixed-basis method, and usually outperforms it in all but the hardest problems. The

hardest problems here are when two of the deltas generating the boundary moments
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Table 4.2: For each u(k) in Table 4.1 above, this table shows the largest value of `
for which the optimization algorithm (with either adaptive basis (A) or fixed basis

(F)) can find approximately optimal multipliers ᾱ(u
(k)
` ) with tolerances τ = 10−8

and εγ = 0.01. N = 12.

u(1) u(2) u(3) u(4) u(5) u(6)

nQ A F A F A F A F A F A F

20 16 13 13 13 5 5 3 3 41 18 29 22
39 25 21 25 16 17 17 6 6 38 18 28 17
77 27 14 35 19 22 18 8 8 33 18 29 15
153 26 16 20 16 25 20 10 8 21 18 28 19
305 25 15 32 20 26 14 12 12 27 15 28 16

are close together.

Figure 4.3 shows the final ansatz for ᾱ(u
(1)
25 ), the moment closest to ∂R that

we could solve with the highest-resolution quadrature. Interestingly, the peaks of

the ansatz do not always line up with the deltas generating u(1), and the polynomial

includes a spurious peak near µ = −0.9.
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(a) The ansatz at the solution.
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(b) The polynomial at the solution. The lower-
limit of the vertical axis corresponds to log(eps).

Figure 4.3: The solution for u
(1)
27 . The vertical red dashed lines indicate the locations

of the deltas generating u(1).
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4.2.3 Alternative orthogonalizations

There are of course many different orthogonal polynomial bases with respect

to Gαdµ. As mentioned above, in [18], the author also introduces a adaptive-basis

method to transform the Hessian to identity but with slightly different motivations

from ours: There the integration domain is unbounded, and the author noticed

that as a consequence the objective function was much more sensitive to changes in

multipliers associated with higher-order polynomials. The author orthogonalized the

polynomial basis before every Newton iteration using the modified Gram-Schmidt

process initialized with a random basis p where each polynomial in the basis was of

the same order: deg pi = N for i ∈ {0, . . . , N}.

If the Gram-Schmidt process is instead initialized to a triangular basis such as

the monomials or the Legendre polynomials, then the bases defined by the Gram-

Schmidt process and the Cholesky factorization are exactly the same (up to round-off

errors). Since our integration domain is bounded, a triangular basis does not cause

poor conditioning of the Hessian, and we prefer to use triangular bases, as they lead

to simpler matrix operations. It is particularly helpful to include a zeroth order

polynomial in the basis so that scaling the problem is easy.

The Cholesky method is also less computationally expensive. Considering

only the highest-order terms, the Cholesky method uses nQN
2/2 multiplications

to form the Hessian, N3/6 multiplications to factorize the Hessian, and nQN
2/2

multiplications to update the array Pk storing the evaluation of the basis polynomials

at the quadrature nodes. Typically, we choose nQ ≈ 2N .
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Table 4.3: Same as Table 4.2 above, but here we compare the use of Cholesky
factorization (C) to that of modified Gram-Schmidt (GS) in for the adaptive-basis
method.

u(1) u(2) u(3) u(4) u(5) u(6)

nQ C GS C GS C GS C GS C GS C GS

20 16 17 13 13 5 5 3 3 46 49 29 29
39 25 25 25 25 17 17 6 6 50 52 32 32
77 28 30 36 35 22 22 8 8 33 33 29 34
153 26 26 33 33 19 25 10 10 23 22 28 28
305 24 25 32 32 26 27 12 12 27 27 53 28

On the other hand, the modified Gram-Schmidt method does not need to

form the Hessian but instead requires nQN
2 multiplications to evaluate the necessary

inner products and also performs nQN
2/2 multiplications to update the array storing

the evaluation of the basis polynomials at the quadrature nodes.

The extra cost of the modified Gram-Schmidt is well-known to lead to better

stability properties, so we repeated the boundary-moment tests of Table 4.2 in Table

4.3. The results show that the Cholesky method generally performs just as well as

the modified Gram-Schmidt method. This may be explained by the automatic

reorthogonalization feature of Algorithm 1 mentioned above, and we have observed

this working as expected in practice.

The singular value decomposition of the Hessian H = UΛUT , where U is

unitary and Λ is diagonal, can also define an orthogonal basis m = UΛ1/2p. We

experimented with this way of defining the new basis, but found it to perform

comparably to the change-of-basis defined by the Cholesky factorization. Since the

singular value decomposition gives a non-triangular basis, is more expensive, and is
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also harder to parallelize, we again conclude that the Cholesky factorization makes

more sense for our problem.

4.3 Isotropic regularization

Even with Theorem 6 and the adaptive-basis algorithm increasing the number

of numerically tractable problems, for any quadrature Q some realizable moments

are so close to the boundary of RQ that the support of the ansatz Gα̂(u) is too small

for the numerically approximated Hessian near α̂(u) to well-conditioned enough to

use Newton’s method.

Equation (3.15) tells us that when minGα is small, even small increases to it

can dramatically improve κ(H(α)). Since

κ(
〈
mmT (Gα + ε)

〉
) ≤ maxGα + ε

ε
, (4.17)

choosing ε even as small as, say, O(10−8) can yield a numerically usable Hessian.6

UnfortunatelyGα+ε is not an entropy ansatz, but of course the isotropic distribution

is. Since we think of ε as much smaller than maxGα, Gα + ε can be though of as a

slightly more isotropic version of Gα, and so we hypothesize that moving closer to

the isotropic distribution should improve κ(H(α)).

Thus to find an easier optimization problem, we further hypothesize that mov-

6Of course we also need maxGα to be not too large, and typically it is not. For example,
in Figure 3.2(b), maxGα is O(1), and even for difficult problems faced below in Section 5.2.1,
maxGα is no worse than O(103). To approximate a delta of strength c near a quadrature node
µi, the ansatz need only be as large as c/wi. Thus, the poor conditioning of the Hessian we have
observed is caused by minGα going to zero and not maxGα exploding.
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ing the moments u closer to the isotropic moments Qu7 should decrease κ(H(α̂(u))).

The isotropic problem is the only trivially solvable problem8 and κ(H(α̂(Qu))) is

only O(N). Therefore, keeping in mind the convexity of R and RQ, we define the

isotropically regularized moment

v(r) := (1− r)u + rQu, (4.18)

where we think of r ∈ (0, 1) as a regularization factor that should be chosen as small

as possible (see below). The form of v(r) is also chosen so that the local particle

concentration is unchanged:
〈
Gα̂(u)

〉
≡
〈
Gα̂(v(r))

〉
Analysis of κ̂(r) := κ(H(α̂(v(r)))) is challenging due to the complexity of the

function κ, but there is strong numerical evidence that κ̂ is a decreasing function of

r if u is near ∂RQ. Figure 4.5(a) shows that, for M1, κ(H(α̂(u))) is reasonable in

the interior of RQ but rapidly blows up only when u is very close to ∂RQ.

To illustrate this in M2, we first define three moments of the form (4.18):

v(1)(r) :=


1

1− r

1− r

 , v(2)(r) :=


1

1−r√
3

0

 , v(3)(r) :=


1

0

1− r

 . (4.19)

The first set of moments approach the those of a single delta at µ = 1; the second

approach those of a pair of equal deltas at µ = ±1; and the third approach those of

a single delta at µ = 1/
√

3. The curves parametrized by r in R are in Figure 4.4.

7Recall that Q is defined in (2.6).
8α̂(Qu) = (log(u0/2), 0, . . . , 0)T
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Figure 4.5(b) shows that the M2 case behaves similar to the M1 case in 4.5(b):

κ(H(α̂(u))) increases rapidly as u → ∂RQ. Thus even a small value of r—which

gives a small move towards the interior of RQ—can drastically improve the condi-

tioning of the optimization problem.

u1

u
2

−1 −0.5 0 0.5 1

−0.5

0

0.5

1

Figure 4.4: The set of normalized realizable moments R|u0=1 in M2 and the paths
we take to the boundary in the moments defined in (4.19).
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(a) The condition number of H(α̂(u)) in M1 as
u1/u0 → 1 for four different quadratures.
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Figure 4.5: The condition number of the Hessian near the boundary in M1 and M2.

In order to maintain realizability in the PDE algorithm (i.e, to apply Theorem
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6), we must also replace each subvector of u(m), m ∈ {0, 1}, by its regularized version

at each Runge-Kutta stage (cf. (A.9)) of the kinetic scheme for (2.12).

This regularization technique can be compared to the use of ‘numerical’ scat-

tering for moment problems in [40, 41]. The regularization acts as barrier that

prevents the entropy-ansatz from getting too close to the delta-type distributions

which characterize the boundary ∂R. In this sense, it can be viewed as numerical

dissipation in µ-space.

Remark 2. In some cases, the regularization can be used to solve the dual problem

for a non-regularized moment u when direct application of Newton’s method fails.

This is done as follows. Define a decreasing sequence r` ↘ 0 and successively

solve the dual problem to find α̂(v(r`)), using α̂(v(r`−1)) as an initial condition.

This defines a new path in α-space to the minimizer α̂(u) of the original problem.

In practice, we were indeed able to solve some M15 problems for which Newton’s

method either failed or needed thousands of quadrature points. However, the fraction

of moments for which this method worked when the Newton method did not was

relatively small, and hence we did not include it in our implementation.

4.4 The final optimization algorithm

A scheme to select the regularization parameter r is the final component for

our algorithm. First we pick an increasing sequence {r`}`f`=0, starting with r0 = 0, so

that the optimizer first attempts to solve the original problem. Then if that problem

cannot be solved quickly enough or if the Cholesky factorization fails, we increase
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the regularization parameter r by incrementing `.

We say that the optimization is not converging quickly enough if after an initial

k0 iterations the norm of the gradient in the Legendre basis is not decreasing by at

least a factor of λ ∈ [0, 1) at each iteration, namely if

‖g(αk)‖ > λ‖g(αk−1)‖ (4.20)

for some k > k0. When λ = 0, this simply means we increment ` anytime the

algorithm has not converged after k0 iterations.

We let rmax := max`{r`} = r`f and assume that rmax is chosen large enough

that ᾱ(v(rmax)) can be computed for any u. Therefore, if r = rmax, then we do

not check condition (4.20) and simply continue until a solution is found. In fact, to

ensure a completely robust scheme the value of rmax should be set to 1, but from

experiments such as those in Table 4.2, we can see that 10−4 is a reasonable choice.

The resulting algorithm is given in Algorithm 2.

In this chapter we discussed some methods for numerically handling the trou-

bles discussed in Chapter 3. We presented advantages of using a fixed quadrature,

modified and tested an adaptive-basis method for our context, and introduced an

isotropic regularization method to find nearby tractable problems when the original

problem is too poorly conditioned to solve in a given finite precision.
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Algorithm 2 The optimization algorithm using the adaptive-basis method and a
regularization scheme.

Input: u ∈ R ⊂ RN+1, β0 ∈ RN+1, T−1 ∈ R(N+1)×(N+1), P−1 ∈ R(N+1)×nQ

{u is assumed to be in the Legendre basis m; P−1 holds the evaluations of the
initial basis p−1 = T−1

−1 m at the quadrature nodes.}
Parameters: τ > 0, εγ > 0, {r`} ⊂ [0, 1]

for ` ∈ {0, 1, . . . , `f} do
v−1 ← T−1

−1 ((1− r`)u + r`Qu)
for k ∈ {0, 1, 2, . . .} do

H ←
〈
pk−1p

T
k−1 exp(βTkpk−1)

〉
.

L← chol(H)
if chol fails or (k > k0 and ‖g(αk)‖/‖g(αk−1)‖ > λ and r < rmax) then
{Exit the inner for loop, so that we subsequently increase r}
break for

else
Tk ← Tk−1L
Pk ← L−1Pk−1

vk ← L−1vk−1

gTk(β′k)← (p0,out 〈G〉 , 0, . . . , 0)T − vk
β′k ← LTβk
dTk(β′k)← −gTk(β′k)
if ‖g(αk)‖ < τ and exp(5 maxµ |d(β′k)

Tpk|) < 1 + εγ then
{Convert the optimal multipliers to the Legendre basis}
ᾱ← T−Tk β′k
return ᾱ, β′k, Tk

else
Choose stepsize ξk using a line search
βk+1 ← β′k + ξkdTk(β′k)

end if
end if

end for
end for
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Chapter 5

Numerical Results

Unless otherwise noted, we use the following parameter values:

τ = 10−8 , upper bound for ‖g(αk)‖ in the stopping

criterion,

εγ = 0.01 , upper bound on γmax − 1 to maintain

realizability,

k0 = 40 , number of iterations before testing the

decrease in the norm of the gradient

λ = 0 , expected factor of decrease in the norm of

the gradient

{r`} = {0, 10−8, 10−6} the sequence of values of the regularization

parameter considered

θ = 2.0 , slope limiting parameter, see (A.6).

We always choose

∆t =
0.95

1 + εγ

2

θ + 2
∆x , (5.1)

in accordance with Theorem 6.
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5.1 Manufactured solutions

The accuracy of a numerical solution to the moment system is difficult to

compute because, generally speaking, the true solution is unknown. Even high-

resolution solutions we are able to compute contain errors due to regularization, the

effects of which we have not yet been able to quantify precisely. The method of

manufactured solutions provides an approach where the true solution is known from

the start. For this method, we numerically solve

∂tu + ∂xf(u) = s , (5.2)

where the source s = s(x, t) is calculated from the given ‘manufactured solution’

v(x, t) so that s = ∂tv + ∂xf(v). Applying a numerical method to (5.2) gives an

approximation of v.

We must choose v carefully. It is crucial that the moments of the numerical

solution remain in R, but Theorem 6 does not apply when a source term is present.

Thus errors in the numerical solution (particularly when s calls for a removal of

particles from a cell) can cause the numerical solution to leave R. We attempt to

avoid these difficulties with two choices: First, we choose ansätze which move most

particles in one direction (here we choose the positive direction). Second, we choose

v such that v0 only increases along this direction.

We choose v by specifying multipliers α(x, t),

v(x, t) =
〈
m exp(α(x, t)Tm)

〉
, (5.3)
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so that its flux is

f(v(x, t)) =
〈
µm exp(α(x, t)Tm)

〉
. (5.4)

We set

α2(x, t) ≡ α3(x, t) ≡, . . . ,≡ αN(x, t) ≡ 0 (5.5)

so that integrals of the form
〈
µk exp(αTm)

〉
can be explicitly computed.

One choice we tested for the remaining two multipliers is

α0(x, t) = log

(
(0.1 + tx)α1(x, t)

2 sinh(α1(x, t))

)
, (5.6a)

α1(x, t) = 0.1 +Ktx . (5.6b)

The zeroth multiplier α0 is chosen so that v0(x, t) = 0.1 + tx. The additional 0.1

term is added to avoid the case α1 = 0, where the exact evaluation of integrals

of the form
〈
µk exp(α1µ)

〉
is numerically unstable. For this choice of multipliers,

(xL, xR) := (0, 1) and t ∈ [0, 1]. The boundary conditions are chosen to match the

manufactured solution v on the boundaries. At the right and left boundaries, we

use the exact multipliers for v in the ghost cells.

Another choice we experimented with is

α0(x, t) = δ + tK(cos(πx) + 1) + 0.1 , (5.7a)

α1(x, t) = tK(cos(πx) + 1) + 0.1 , (5.7b)
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where

δ = log

(
exp(2K + 0.1)(2K + 0.1)

2 sinh(2K + 0.1)

)
(5.8)

is chosen so that the largest value of v0 (which occurs at (x, t) = (0, 1)) is one. Here

we let (xL, xR) := (−1, 1) and use periodic boundary conditions. These multipliers

specify a manufactured solution whose ansatz is always nondecreasing in space, time,

and angle for (x, t) ∈ (−1, 0) × (0, 1). Consequently, we only simulate the system

for x ∈ (−1, 0) and t ∈ [0, 1]. At the boundary edges x = −1 and x = 0, we specify

the flux exactly.

For either choice of multipliers, v approaches ∂R as the parameter K increases.

The ansatz Gα̂(v) looks more and more like a single delta function at µ = 1 as K

increases. Below, we use K = 53 for the multipliers given in (5.6) and K = 25 for

those in (5.7). These are the largest values of K we could use without numerical

errors in the source term causing the solution to leave the realizable set.

To find the cell averages of the source term sj(t) =
∫
Ij

s(x, t)dx used in the

finite volume scheme, we must integrate the time derivative term of the manufac-

tured solution, ∂tv, over each cell Ij. For the v we choose, this integral does not

have an analytical form, so we approximate it with quadrature. As with the angular

quadratures, we use twenty Curtis-Clenshaw points each over the half intervals of

Ij, (xj−1/2, xj) and (xj, xj+1/2).

The particle density u0(x, t) for 400-cell numerical simulations of these two

systems are shown in Figure 5.1. Right away, we see one problem with using multi-

pliers (5.7): here, the solution varies by many orders of magnitude over the spatial
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Figure 5.1: The local particle concentrations for the two manufactured solutions for
400-cell simulations.

domain. This is a consequence of the fact that the multipliers, which grow linearly

in time, are exponentiated. We still report on results using this solution because it

has an advantage which we discuss below.

Our knowledge of the true solution is v(x, t) allows us to calculate errors for

every numerical simulation. We first interpolate the cell averages using second-order

affine reconstructions in each spatial cell:

u∆x(x) = uj + (x− xj)
uj+1 − uj−1

2∆x
, x ∈ Ij, j ∈ {1, . . . , Nx}, (5.9)

where the moments are all taken at the final time tf = 1. Then the L1 and L∞

errors are given by

e1
∆x :=

∫ 1

−1

|v(x, tf)− u∆x(x)|dx, and (5.10a)

e∞∆x := max
x∈[−1,1]

|v(x, tf)− u∆x(x)| , (5.10b)

respectively. To approximate the integral in e1
∆x, we split each cell Ij into 100 equally

sized subintervals, and then apply a twenty-point Gaussian quadrature on each
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subinterval. e∞∆x is then approximated as the maximum value over those quadrature

points. Below, we only report errors in the particle density u0, i.e. the zeroth

component of e1
∆x and e∞∆x.

In this section, we use the M5 model and choose {r`} = {0, 10−8, 10−6, 10−4}.

5.1.1 Comparing adaptive-basis and fixed-basis methods

The results of Section 4.2.2 suggest that we should have to regularize less often

with the adaptive-basis method. Since regularization is an artificial change made for

numerical convenience, we then expect the resulting solution to be more accurate.

In this section, we include two regularization schemes. The first, where k0 = 5

and λ = 1/3, is a more aggressive scheme chosen to keep the number of iterations

down. The second, where k0 = 40 and λ = 0, is chosen to favor accuracy over extra

computational effort.

First, we examine the difference in computational effort for the two methods

in Tables 5.1 to 5.4. The CPU time is generally larger for the adaptive basis. It

can be as much as 33% higher, with that percentage decreasing as the number of

cells increases. We attribute this difference largely to the more computationally

expensive stopping criterion and extra matrix computations (such as updating the

basis polynomials) in the adaptive-basis method. Table 5.4 shows one exceptional

case where the adaptive-basis method needs fewer iterations and consequently uses

less computational effort.

Tables 5.5 to 5.8 display the three statistics measuring how much regulariza-
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Table 5.1: Statistics on the manufactured solution problem for adaptive-basis (A)
and fixed-basis (F) optimization methods for multipliers (5.6) with k0 = 5 and
λ = 1/3.

CPU time (s) mean iterations

Nx A F A F

400 8.31e+02 6.19e+02 1.62 1.57
800 2.81e+03 2.12e+03 1.52 1.53
1200 6.22e+03 4.67e+03 1.54 1.55
1600 1.03e+04 7.93e+03 1.57 1.56

Table 5.2: Statistics on the manufactured solution problem for adaptive-basis (A)
and fixed-basis (F) optimization methods for multipliers (5.6) with k0 = 40 and
λ = 0.

CPU time (s) mean iterations

Nx A F A F

400 8.88e+02 6.56e+02 1.70 1.62
800 3.12e+03 2.34e+03 1.51 1.53
1200 6.41e+03 4.80e+03 1.54 1.54
1600 1.07e+04 8.26e+03 1.57 1.56

Table 5.3: Statistics on the manufactured solution problem for adaptive-basis (A)
and fixed-basis (F) optimization methods for multipliers (5.7) with k0 = 5 and
λ = 1/3.

CPU time (s) mean iterations

Nx A F A F

400 3.06e+02 2.29e+02 1.52 1.58
800 1.12e+03 8.59e+02 1.39 1.43
1200 2.34e+03 1.85e+03 1.28 1.30
1600 3.97e+03 3.18e+03 1.19 1.22
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Table 5.4: Statistics on the manufactured solution problem for adaptive-basis (A)
and fixed-basis (F) optimization methods for multipliers (5.7) with k0 = 40 and
λ = 0.

CPU time (s) mean iterations

Nx A F A F

400 3.22e+02 3.18e+02 1.52 1.77
800 1.14e+03 1.34e+03 1.38 1.57
1200 2.71e+03 2.29e+03 1.28 1.42
1600 4.01e+03 4.14e+03 1.20 1.32

tion was performed in each simulation. The first column, ‘% regularized’ gives the

percentage of nontrivial problems (those where the number of optimization itera-

tions was at least one) for which the regularization parameter r was not zero. The

second column is the mean value of r over the whole space-time mesh. As opposed

to the percentage, this number takes into account the value of r chosen from {r`}.

Finally, the statistic labeled
∑

j,n rj,nu
n
j,0 is a rough estimate of the error in-

troduced by regularization to the moment system. In one cell, the L1-norm of the

error introduced by regularization is bounded by

‖u− v(r)‖1 = r‖Qu− u‖1 = r‖[0,−u1, . . . ,−uN ]‖1 ≤ rNu0 , (5.11)

where, since ‖mi‖∞ = 1, we have used |ui| ≤ u0 for i ∈ {1, . . . , N}.

Thus in
∑

j,n rj,nu
n
j,0, j ∈ {1, . . . , Nx} corresponds to the spatial index and

n ∈ {0, . . . , Nt− 1}1 corresponds to the time index. Then rj,n indicates the value of

r used in by the optimization algorithm in cell j at time-step n, and unj,0 indicates

1The optimization problem is not solved at the final time step n = Nt. We include both
Runge-Kutta stages, but omit this from the notation for clarity of exposition.
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Table 5.5: Statistics on regularization in the manufactured solution problem for
adaptive-basis (A) and fixed-basis (F) optimization methods for multipliers (5.6)
with k0 = 5 and λ = 1/3.

% regularized mean r
∑

j,n rj,nu
n
j,0

Nx A F A F A F

400 2.68e-02 1.46e-01 1.79e-08 1.02e-08 2.99e-02 1.89e-02
800 7.43e-03 4.75e-02 2.99e-09 1.15e-09 3.02e-02 7.21e-03
1200 3.78e-03 7.51e-02 9.17e-10 8.38e-10 1.45e-02 1.45e-02
1600 2.23e-03 7.33e-02 9.65e-10 5.16e-10 2.78e-02 1.72e-02

Table 5.6: Statistics on regularization in the manufactured solution problem for
adaptive-basis (A) and fixed-basis (F) optimization methods for multipliers (5.6)
with k0 = 40 and λ = 0.

% regularized mean r
∑

j,n rj,nu
n
j,0

Nx A F A F A F

400 3.44e-01 3.54e-01 3.70e-11 1.64e-09 6.68e-05 2.15e-03
800 1.50e-03 1.02e-01 1.47e-13 6.85e-11 1.21e-06 6.52e-04
1200 1.46e-03 1.06e-01 1.32e-13 5.05e-11 2.40e-06 1.10e-03
1600 1.36e-03 1.31e-01 2.06e-13 3.76e-11 7.12e-06 1.44e-03

the particle density u0 at the same space-time grid point. Therefore this sum over

the space-time grid gives us an estimate of the error introduced by regularization,

and as an improvement over the mean statistic, it is weighted by the magnitude of

the moments where the regularization is applied.

The results in the tables show that usually the adaptive-basis method indeed

regularizes far less often. However, the adaptive-basis method does tend to select

higher values of r on the problems it does regularize, particularly when the more

aggressive regularization scheme is used (Tables 5.5 and 5.7).

Finally, Tables 5.9 and 5.10 compute L1 and L∞ errors for the manufactured
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Table 5.7: Statistics on regularization in the manufactured solution problem for
adaptive-basis (A) and fixed-basis (F) optimization methods for multipliers (5.7)
with k0 = 5 and λ = 1/3.

% regularized mean r
∑

j,n rj,nu
n
j,0

Nx A F A F A F

400 0 0.226 0 7.79e-09 0 8.84e-06
800 0.028 0.225 8.88e-09 2.80e-09 8.99e-06 6.75e-05
1200 0.025 0.164 6.47e-09 1.85e-09 7.11e-03 2.78e-04
1600 0.021 0.156 5.75e-09 1.31e-09 2.57e-03 1.78e-04

Table 5.8: Statistics on regularization in the manufactured solution problem for
adaptive-basis (A) and fixed-basis (F) optimization methods for multipliers (5.7)
with k0 = 40 and λ = 0.

% regularized mean r
∑

j,n rj,nu
n
j,0

Nx A F A F A F

400 0 0.454 0 5.94e-11 0 2.47e-06
800 5.82e-04 0.368 2.20e-14 3.86e-11 3.01e-11 4.95e-06
1200 6.54e-04 0.292 2.28e-14 2.76e-11 1.67e-08 9.12e-06
1600 1.13e-04 0.258 3.67e-15 1.91e-11 1.51e-11 1.86e-05
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Table 5.9: L1 and L∞ errors for adaptive-basis (A) and fixed-basis (F) methods for
multipliers (5.6) with k0 = 40 and λ = 0.

L1 L∞

Nx A F A F

400 2.3943e-04 3.3546e-05 1.9773e-03 8.3711e-04
800 3.1521e-06 1.1869e-05 4.5740e-04 6.6927e-04
1200 2.0612e-06 1.0938e-05 3.4598e-04 3.8160e-04
1600 2.1411e-06 6.2723e-06 2.6841e-04 2.9112e-04

solutions according to (5.10). We only include the less aggressive regularization

scheme here because the errors with the more aggressive regularization scheme are

very similar. Indeed, for the first multipliers, the adaptive-basis method is nearly one

digit more accurate than the fixed-basis method here. However, the errors are almost

exactly the same when the second multipliers are used, which also corresponds to

the case when the difference in regularization was greatest. This may be evidence

that the errors introduced by regularization are small compared to those due to

space-time discretization.

Unfortunately, careful inspection of Table 5.9 shows that the solutions are not

showing second-order convergence. At the present time, we are not sure what the

reason for this is. The solution using the second multipliers does show second-order

convergence, and this is the advantage mentioned earlier.
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Table 5.10: L1 and L∞ errors for adaptive-basis (A) and fixed-basis (F) methods
for multipliers (5.7) with k0 = 40 and λ = 0.

L1 L∞

Nx A F A F

400 3.9073e-04 3.9073e-04 1.6779e-02 1.6779e-02
800 9.8737e-05 9.8875e-05 8.0776e-03 8.1133e-03
1200 4.4805e-05 4.4789e-05 5.3932e-03 5.3869e-03
1600 2.5755e-05 2.5776e-05 4.0963e-03 4.1080e-03

5.1.2 Choosing εγ according to the accuracy and computational effort

trade-off

The parameter εγ does not have an immediately obvious effect on the accuracy

and computation time of a numerical solution. Smaller values of εγ force a more

accurate solution to the optimization problem, but require extra iterations to find

that solution. On the other hand, larger values of εγ reduce the allowable time

step ∆t (see (5.1) and recall (2.20)), which leads more time steps (which means the

optimization problem must be solved more times) to reach a given final time, but

also improves the accuracy of the final solution.

We use the multipliers in (5.6) and set the tolerance on the norm of the

gradient τ to 10−4, a higher value so that (3.6b) is effectively the only stopping

criterion. Then we ran several experiments changing εγ and Nx, the number of

spatial cells. For each value of εγ, we then construct a curve parametrized by the

the number of cells Nx. The vertical coordinate of the curve corresponds to the

L1 error between the numerical solution and the true solution, and the horizon-
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Figure 5.2: L1 errors and two computation time estimates (in seconds) for several
values of εγ. Here k0 = 5 and λ = 1/3.

tal coordinate of the curve corresponds to the CPU time needed to reach the final

time tf = 1. The results are in Figure 5.2. For both figures we choose Nx ∈

{200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000}, and the computation time es-

timates do not include time spent calculating the source term for the manufactured

solution.

Figure 5.2(a) uses the total CPU time of our current serial implementation.

The results indicate that when high accuracy is desired or when lots of computation

time is available, the largest choice εγ = 2.5 is best.

We are only able to consider values of εγ up to 2.5 for practical reasons: For

larger values of εγ, it becomes difficult to maintain realizability of the numerical

solution. This indicates that the assumption we make that ‖ᾱ − α̂‖1 ≤ 5‖d(ᾱ)‖1

(see (3.8)) no longer holds, a result which is not surprising since we only expect this

inequality to hold when ᾱ is near α̂.

In the future, the parallelizability of the moment system will be exploited, so

the total CPU time is not the best measure of the wall time we expect to need. We

make a rough guess of a lower bound on the time that a fully parallel implementation
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would need as follows. First, let tCPU indicate the total CPU time not including

(again, not including the time spent calculating the source for the manufactured

solution). Then we subtract the time spent in the optimization. This difference

we divide by n, the number of spatial cells, indicating the assumption that the

calculation is fully parallelized over space. Then, let topt
jk be the CPU time needed

to perform the optimization at cell j at time step k. Next, we assume that the

numerical PDE solver must wait for the last optimization problem to finish before

proceeding. Therefore, our parallel estimate is given by

tpar :=
tCPU −∑j,k t

opt
jk

Nx

+
∑
k

max
1≤j≤Nx

topt
jk (5.12)

This estimate does not attempt to include data communication costs. Figure 5.2(b)

again shows the highest γ tolerance, εγ = 2.5, to be the best choice.

5.1.3 The effect of quadrature on accuracy

Finally, we performed a few experiments varying the fixed number of quadra-

ture points nQ per half-interval µ ∈ [−1, 0] and µ ∈ [0, 1] to see their effect on the

accuracy of the final solution. We performed these tests for three different spatial

resolutions and present the results in Table 5.11. The results show that increasing

the nQ does not improve accuracy.
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Table 5.11: L1 errors for nQ tests.

nQ

Nx 20 60 100

400 3.313e-06 4.075e-06 3.937e-06
800 1.931e-06 1.442e-06 1.307e-06
1200 8.794e-07 8.798e-07 8.874e-07

5.2 Standard Test problems

Now we use our algorithm on the two standard test problems used in [12].

Most of our tests here simulate the M15 model. We chose N = 15 for our tests

because we want to test our algorithm on problems slightly harder than those likely

to be faced by an end-user. Indeed, an end-user is likely to choose a smaller order

to see substantial benefits of reducing the size of the velocity-space discretization.

While we present other results in [37], here we present what may be our most

accurate results by using more conservative regularization parameters. We let {r`} =

{0, 10−8, 10−6} and only increase r after k0 = 40 iterations. (In the aforementioned

work, we include higher values of r and increase r more aggressively in order to

decrease the total number of iterations taken.)

In this section, we use the smallest tolerance on γ that we can, εγ = 0.01. We

found that smaller values of this tolerance are often prohibitively difficult to satisfy

in double precision. While the results of Section 5.1.2 indicate that higher values of

εγ are more efficient, this lower value of εγ makes the problem a more challenging

test for our optimization algorithm.

72



5.2.1 Plane source

In this problem, we model an infinite domain with a purely scattering medium

σt = σs = 1 and an impulse initial condition

u(x, 0) = δ(x) + Ffloor 〈1〉 , (5.13)

where Ffloor = 0.5×10−8 is used to keep moments away from the realizable boundary

(at u = 0). Although the problem is posed on an infinite domain, a finite domain is

required for practical computation and boundary conditions must be specified. As

in [12], we approximate the infinite domain by the interval [xL, xR] = [−D/2, D/2],

where D := 2tf + 0.2 is chosen so that the boundary has negligible effects on the

solution. At the right and left ends of the boundary, we enforce the boundary

conditions

u(xL, t) = u(xR, t) = Ffloor 〈1〉 (5.14)

for t ≥ 0.

5.2.1.1 M15 simulation

Figure 5.3 presents a high-resolution (Nx = 3000) simulation of the M15 model

of the plane source problem. The local particle concentration shown in Figure 5.3(a)

shows several waves as observed in [12, 30], and Figures 5.3(b) and 5.3(d) confirm

that the hardest problems occur around the characteristics x = ±t where particles

enter a (near) vacuum. The maximum number of optimization iterations needed in
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a single time step in one cell (off-scale in Figure 5.3(b)) was 218, though 98.76%

of all problems were solved in three or fewer iterations, and the mean number of

iterations is 1.88.

While we are unable to solve this problem without regularization, we only need

to regularize about 0.008715% of the nontrivial optimization problems. Further, the

histogram in Figure 5.3(f) shows that we we regularize, we use the smallest value of

r, which here is 10−8.

Figure 5.4 shows how the solution becomes closer to the realizable bound-

ary as the spatial mesh is resolved. Here, Nx ∈ {200, 400, 600, . . . , 3000}. The de-

crease is consistent with our expectations, although min ρ∂R(u(x, t)) is quite small—

(O(10−11))—even for the coarsest mesh.

5.2.1.2 Convergence in N

The robustness of our optimization algorithm allows us to compute solutions

even for extremely high N . The highest N we have simulated is M199 with 600 cells.

In this section, we display how the MN model converges in N . We use Nx = 600 cells

throughout, and choose nQ = max(20, N + 5) quadrature points per half interval so

that the Hessian always has full rank.

Figure 5.5 shows that while the number of waves increases with N , their

amplitude decreases. However, a small peak at x = 0 remains even in M199.
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5.2.1.3 Effects of excessive regularization

The results with the manufactured solution in Section 5.1 suggest that regular-

ization errors are quite small when regularization is not performed too frequently.

In order to illustrate how the regularization affects the solution when it is per-

formed too frequently, we decreased k0 to 2 and augmented the sequence {r`} to

{0, 10−8, 10−6, 10−4, 10−2}.

The results for the plane source problem are in Figure 5.6. Comparing Figure

5.6(a) to Figure 5.3(a), we can see that the regularization heavily slows down the

movement of particles and smooths out the profile of the solution.
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Figure 5.3: A simulation of the M15 model of the plane source problem with Nx =
3000 cells.
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(b) t = 3.

Figure 5.5: The convergence of the plane-source simulation as N →∞.
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Figure 5.6: The simulation with excessive regularization on the plane source prob-
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5.2.2 Two-beam instability

In this problem, particles constantly stream into the domain from the left at

xL = −0.5 and the right at xR = 0.5 into the initially (almost) vacuous interior.

There is no scattering: σs = 0, while σt = 2. To model ‘forward-peaked’ boundary

conditions of the kinetic equations,

FL(µ, t) = exp(−10(µ− 1)2) , µ > 0 , t ≥ 0 , (5.15a)

FR(µ, t) = exp(−10(µ− 1)2) , µ < 0 , t ≥ 0 , (5.15b)

F0(x, µ) ≡ Ffloor , µ ∈ [−1, 1] , x ∈ [xL, xR] , (5.15c)

we use the following boundary conditions for the moment system:

u(xL, t) =
〈
m exp(−10(µ− 1)2)

〉
, (5.16a)

u(xR, t) =
〈
m exp(−10(µ+ 1)2)

〉
. (5.16b)

On the interior, the initial condition is isotropic with u0(x, 0) ≡ Ffloor 〈1〉.

With the boundary conditions (5.15), the kinetic equation tends toward a

steady state given by

Fss =


exp(−σa(x− xL)/µ− 10(µ− 1)2) if µ > 0,

exp(−σa(x− xR)/µ− 10(µ+ 1)2) if µ < 0.

(5.17)
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5.2.2.1 M15 simulation

Figure 5.7 demonstrates the results of a Nx = 1000 cell simulation. Small

waves in the transient solutions shown in Figure 5.7(a) are noticeable, and Figures

5.7(b) and 5.7(d) indicate that these small oscillations lead to optimization problems

which are nearly as difficult as those on the characteristics x = 0.5 ∓ t where the

particles enter the initial (near) vacuum. The maximum number of optimization

iterations needed in a single time step in one cell (off-scale in Figure 5.7(b)) was

306. Again, however, the mean number of iterations is quite small (1.53), and

97.22% of the optimization problems are solved in three iterations or fewer.

We are again unable to solve this problem without regularization. In this

simulation we regularized 0.1158% of the nontrivial problems, slightly more regular-

ization than the plane source problem. Again the histogram in Figure 5.3(f) shows

that when we regularize, we use the smallest value of r, which here is 10−8.

Figure 5.7(a) includes a green curve indicating the local particle concentration

of the steady-state kinetic solution (5.17). It is indistinguishable from the moment

solution, but (as hinted to by the iterations never quite going to zero in Figure

5.7(b)) the numerical moment solution never converges. In Figure 5.8, we plot an

L1 difference between time steps given by

en = ∆x
Nx∑
j=1

|unj − un−1
j |, n ≥ 1, (5.18)

where the absolute value is taken component-wise. In Figure 5.8, we plot the first

five components of e. The zeroth-component remains the largest, at just below 10−8,
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and the following components are slightly smaller. This generally trend continues

for the components up the fifteenth, though those components tend to have more

variance.

5.2.2.2 Convergence in N

In this section as in Section 5.2.1.2, we again considerNx = 600 cell simulations

and let nQ = max(20, N + 5).

Figure 5.9 shows how transient solutions converge as N increases. At t = 0.4,

the solutions are qualitatively difficult to distinguish for N ≥ 7, though they do

have distinct shapes which do become less pronounced as N increases. At t = 0.7 in

Figure 5.9(b) after particles from the boundaries have crosses in the middle x = 0,

we see the beginnings of the well-known nonphysical shock in the M1 model. The

solutions for higher N have oscillations in the middle which decrease as N increases.

Figure 5.2.2.2 compares steady-state solutions as N increases. These results

differ from those presented in [12], though there the author used isotropic boundary

conditions. Here we see that the moment solution agrees with the steady-state

kinetic solution quite well for N ≥ 5.

5.2.2.3 Effects of excessive regularization

We repeat the parameter changes made in Section 5.2.1.3 in order to examine

the effects of an overly aggressive regularization scheme. Figure 5.11 displays the

results. Again, comparing Figure 5.11(a) to Figure 5.7(a), we see here that the

81



regularization significantly dampens the movement of particles across the domain,

more strikingly than in the plane source problem. At t = 3, the system is not close

to steady-state, and possibly is converging to an incorrect steady-state solution.

The results in this chapter show that the our final optimization algorithm,

Algorithm 2, is robust. The experiments with manufactured solutions are not com-

plete but promisingly indicate that the errors introduced by isotropic regularization

are small. This method also allowed us to test a few of the many parameters in the

overall solver. We showed with the test problems that the optimization works even

for high spatial resolution or very high N with only small amounts of regularization.

The low mean iteration counts for these test problems showed that MN models may

indeed become practical.
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Figure 5.7: A simulation of the M15 model of the two-beam instability with Nx =
1000 cells.
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Figure 5.9: The convergence of transient profiles of the two-beam instability simu-
lation as N →∞.
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Figure 5.10: Steady-state MN beams solutions.
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Figure 5.11: The simulation with excessive regularization on the two-beam instabil-
ity. Here k0 = 2, and λ = 0, and {r`} = {0, 10−8, 10−6, 10−4, 10−2}.
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Chapter 6

Conclusions and Directions for Future Work

In this work, we directly used numerical optimization in simulations of entropy-

based moment closures for a one-dimensional linear kinetic equation. Each optimiza-

tion problem is often simple to solve with Newton’s method, but strongly anisotropic

moments which occur near the boundary of the set of realizable moments present

difficulties for optimizer because the Hessian of the objective function near the so-

lution approaches singularity. We exposed in detail how these anisotropies cause

problems for the optimization.

We showed that when the angular integral is replaced by quadrature in the

objective function, the set of moments for which the optimization has a solution is

reduced since the quadrature cannot resolve moments generated by atomic distri-

butions off the set of quadrature nodes. We characterized this reduced realizable

set and observed that it is invariant in the numerical kinetic scheme when a fixed

quadrature is used. A further conclusion here is that using an adaptive quadrature

in the optimization and the kinetic scheme can, somewhat counter-intuitively, make

the problem harder to solve.

We tested the adaptive-basis method proposed by Abramov in [18, 19] for

problems on unbounded integration domains and modified it for our problem. We

found that it can solve problems closer to the realizable boundary but cannot get
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close enough to solve all the problems that show up in moment PDE.

Since the conditioning of some commonly occurring problems can be arbitrar-

ily poor, for any given finite precision there are problems which cannot be solved.

Therefore, any robust numerical method for this problem must make approxima-

tions near the realizable boundary. We proposed an isotropic regularization for these

problems to introduce a small artificial numerical scattering to replace difficult prob-

lems with similar tractable ones. Our experiments have given strong evidence that

this regularization quickly finds tractable problems, and the error introduced by the

method is small.

Due to the lack of benchmark solutions to difficult test problems (particularly

those with strong anisotropies), we experimented with the method of manufactured

solutions. We outlined a way to use the method on this problem, namely by specify-

ing the solution through the multipliers and using first-order models. Two attempts

with this method were presented, but neither is sufficiently satisfactory yet. The

solution specified by the first attempt varies by many orders of magnitude over

the spatial domain. The solutions calculated according to the second attempt do

not show second-order convergence. We remain confident, however, that an O(1)

solution that converges appropriately can be found soon.

The success we have had here, particularly in displaying that the mean number

of optimization iterations is quite low (and consequently the percentage of compu-

tational effort spent on the optimization is reasonable), indicates that the obvious

but important future directions are worth pursuing. These include nonlinear ki-

netic equations, higher-spatial dimensions, different entropy choices (for example

87



Bose-Einstein, Fermi-Dirac, and positive PN), and parallel implementations.

But there is still room for improvement. While the numerical results with

the isotropic regularization are promising, the technique needs to be analyzed. In

particular, we would like theoretical assurance that the regularization indeed makes

the optimization problem easier, at least when the moments u are near the realizable

boundary. Showing that the κ(H(α̂(v(r)))) decreases with r would be a helpful

result. Additionally, the error introduced into the solution u(x, t) by regularization

should be further understood.

The problems with bringing γ down discussed in Section 3.2.3 indicate that

some regularization errors could be avoided if we had a different method for main-

taining realizability of the numerical solution. The current method gives a strong

sufficient condition for maintaining realizability, so it could be useful to investigate

how far this condition is from necessity or to consider alternative numerical schemes

that don’t require the optimization to be solved with such high precision. However,

it is certainly possible that such schemes would, in the process of accepting less

accurate and less anisotropic solutions from the optimization, end up making the

same errors as those introduced by the isotropic regularization.
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Appendix A

Details and Properties of the Numerical Scheme

A.1 The numerical scheme

Let ∆x = (xR − xL)/Nx and ∆t > 0 be given mesh parameters, and let

{xj}Nx+2
j=−1 ×{tn}Nt

n=0 be a uniform space-time mesh defined by xj := xL + (j−0.5)∆x

and tn := n∆t. The values xj define the centers of contiguous spatial cells Ij :=

(xj−1/2, xj+1/2), where xj±1/2 := xj ±∆x/2. The cells with indices j ∈ {−1, 0, Nx +

1, Nx + 2} are ‘ghost cells’, which are not part of the physical domain but are used

to implement boundary conditions.

We approximate u numerically via its cell averages, letting

uj(t) '
1

∆x

∫
Ij

u(x, t) dx , j ∈ {−1, . . . , Nx + 2} . (A.1)

The semi-discrete, numerical scheme for (2.12) which defines uj on the interior of

the domain is

∂tuj +
fj+1/2 − fj−1/2

∆x
+ σtuj = σsQuj , j ∈ {1, . . . , Nx} , (A.2)

the numerical flux fj+1/2 being given by

fj+1/2 := 〈µmĜj+1/2〉 , j ∈ {0, . . . , Nx} , (A.3)

89



and Ĝj+1/2 is an approximation of the entropy ansatz at the cell edge. These edge

values are defined based on the sign of µ, via up-winding:

Ĝj+1/2(µ, t) :=


Ĝj(µ, t) + ∆x

2
ŝj(µ, t) , µ > 0

Ĝj+1(µ, t)− ∆x
2
ŝj+1(µ, t) , µ < 0

, j ∈ {0, . . . , Nx} , (A.4)

where Ĝj is the entropy ansatz associated to uj via (2.8):

Ĝj(µ, t) := Gα̂(uj(t))(µ) , j ∈ {−1, . . . , Nx + 2} . (A.5)

For j ∈ {0, . . . , Nx+1}, the quantity ŝj is an approximation of the spatial derivative

of Ĝ in cell Ij:

ŝj = minmod

{
θ
Ĝj − Ĝj−1

∆x
,
Ĝj+1 − Ĝj−1

2∆x
, θ
Ĝj+1 − Ĝj

∆x

}
, (A.6)

where 1 ≤ θ ≤ 2 [42, 43].(1) The minmod function selects the real number with

smallest absolute value in the convex hull of its arguments. (Note that, in (A.6), Ĝj

is needed for j ∈ {−1, 0, . . . , Nx + 2}, which shows the need for four ghost cells, two

on each side of (xL, xR).)

As mentioned in Section 2.2, boundary conditions for moment systems remain

an open question. In our implementation, we prescribe boundary conditions by

specifying moments on the four ghost cells. For periodic boundaries used in some

1Any value of θ ∈ [1, 2] will yield a second-order scheme and, roughly speaking, larger values of
θ decrease numerical diffusion in the scheme. When θ = 1, monotonic cell averages yield monotonic
reconstructions Gj(µ, t) + sj(µ, t)(x− xj). When θ = 2, edge values are bounded by neighboring
cell averages.
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test problems, we simply set

u−1(t) = uNx−1(t) , u0(t) = uNx(t) , uNx+1(t) = u1(t) , uNx+2(t) = u2(t) .

(A.7)

For physical boundary conditions, moments in ghost cells are defined by extending

the definitions of FL(µ, t) and FR(µ, t) to all µ and then taking moments:

u−1(t) = u0(t) = 〈mFL(µ, t)〉 , uNx+1(t) = uNx+2(t) = 〈mFR(µ, t)〉 . (A.8)

While reasonable, this is clearly not the only option. Further discussion of this issue

is given in [12,44].

To integrate (A.2) in time, we use the optimal, second-order strong-stability-

preserving Runge-Kutta (SSP-RK2) method [32], also known as Heun’s method or

the improved Euler method. We approximate uj(t
n) ' unj and let un denote the

array containing {unj }Nx+1
j=−1 . For (A.2) with (A.7) or (A.8) in the abstract form

∂tu = L(u), the SSP-RK2 method with initial stage u(0) := un is given by

u(1) := u(0) + ∆tL(un) , u(2) := u(1) + ∆tL(u(1)) , un+1 :=
1

2

(
u(0) + u(2)

)
(A.9)

for all n ∈ {0, . . . , Nt − 1}.

As discussed in [12], kinetic scheme (A.2)–(A.9) is very inefficient in diffusive

regimes, where σt is large. In such regimes, accuracy requirements dictate that the

spatial and temporal mesh depends inversely on σt, even though the solution profile
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varies on an O(1) scale. However, for the test cases considered later in this paper,

σt is an O(1) quantity.

A.2 Proof of R–invariance of the numerical scheme

Theorem 7. Suppose that unj ∈ R for j ∈ {−1, . . . , Nx + 2}. If un+1 is defined via

the kinetic scheme (A.2),(2.18),(A.4) –(A.9) with bars replacing hats in (23)-(25)

and with time-step restriction

γmax
∆t

∆x

2 + θ

2
+ σt∆t < 1 (A.10)

and if the moments in the ghost cells are realizable at each stage of the Runge-Kutta

scheme (A.9), then un+1
j ∈ R for j ∈ {1, . . . , Nx}.

Proof. We show for m ∈ {1, 2} that u
(m−1)
j ∈ R for j ∈ {−1, . . . , Nx + 2} implies

u
(m)
j ∈ R for j ∈ {1, . . . , Nx}. Realizability for the subvectors of un+1 then follows

from (A.9) and Theorem 2 (convexity of R). The key point is to observe that

u
(m)
j = 〈mΦ

(m)
j 〉 , j ∈ {1, . . . Nx} , m ∈ {1, 2} , (A.11)

where

Φ
(m)
j := Ĝ

(m−1)
j − µ∆t

∆x

(
Ḡ

(m−1)
j+1/2 − Ḡ

(m−1)
j−1/2

)
+ ∆t

(
−σtĜ

(m−1)
j +

σs

2

〈
Ĝ

(m−1)
j

〉)
.

(A.12)

Thus one need only show that Φ
(m)
j ≥ 0. Stripping away positive terms on the
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right-hand side of (A.12) gives

Φ
(m)
j ≥ Ĝ

(m−1)
j − µ∆t

∆x
Ḡ

(m−1)
j+1/2 −∆tσtĜ

(m−1)
j . (A.13)

Assume µ ≥ 0. (The case µ < 0 follows from an analogous argument.) If s̄j > 0 (so

all arguments of the minmod in (A.6) are non-negative), we have (with bars instead

of hats)

s̄
(m−1)
j ≤ θ

Ḡ
(m−1)
j − Ḡ(m−1)

j−1

∆x
(A.14)

so that, using (A.4),

Ḡ
(m−1)
j+1/2 ≤

(
1 +

θ

2

)
Ḡ

(m−1)
j − θ

2
Ḡ

(m−1)
j−1 ≤ 2 + θ

2
Ḡ

(m−1)
j . (A.15)

Substituting (A.15) into (A.13) and invoking the definition of γj,(m−1) from (2.19)

gives

Φ
(m)
j ≥

(
1− µγj,(m−1) ∆t

∆x

2 + θ

2
−∆tσt

)
Ĝ

(m−1)
j . (A.16)

From (A.16), it is clear that (A.10) implies non-negativity of Φ
(m)
j . On the other

hand, if s̄j ≤ 0, we obtain

Φ
(m)
j ≥

(
1− µγj,(m−1) ∆t

∆x
−∆tσt

)
Ĝ

(m−1)
j . (A.17)

The positivity of the left-hand side of (A.17) is guaranteed by the condition

µγj,(m−1) ∆t

∆x
+ ∆tσt < 1 , (A.18)

93



which is weaker than (A.10). This concludes the proof.

Remark 3. The reader should note the following:

1. The proof of Theorem 4 does not depend on the specific form of Ĝj or Ḡj, only

on the fact that they are positive. Thus the theorem applies to different types

of closures and different types of numerical error, so long as positivity of the

two approximations is maintained.

2. Setting γmax = 1 recovers the time-step restriction for the case when there is no

error in approximating the ansatz. If further σt = 0, then the corresponding

time step restriction is exactly what is required to maintain positivity for a

single Euler step applied to a semi-discrete MUSCL scheme [45] for a linear

advection equation with speed one (the maximum value of |µ|). This is not

by accident; in this case, the kinetic scheme (A.2)–(A.9) is equivalent to the

moments of a semi-discrete MUSCL scheme for the transport equation (2.1)

with initial condition Ĝ.

3. The quantity γmax depends on the solution values at the intermediate Runge-

Kutta stage u(1). This leaves a user with two options: either (i) set an upper

bound for γmax to determine a suitable ∆t and then require that the optimiza-

tion error for every cell and every stage is below that bound or (ii) check the

error at the intermediate stage and, if it is too high, exit the Runge-Kutta al-

gorithm, go back to the previous time step, and choose a smaller value for ∆t.

In our implementation, we take the former approach.
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4. Equation (A.16) shows that the less conservative definition of γmax given by

γ′max := maxm,j,µ{µγj,(m)(µ)} is sufficient to guarantee nonnegativity. This

definition was not used in our implementation.
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