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Mass and heat transfer enhancement by the addition of a class of surfactant 

additives is in common use in absorption machines based on aqueous lithium-bromide 

(LiBr). It is observed that the addition of on the order of 100 ppm of a surfactant such as 

2-ethyl-hexanol (2EH) introduces Marangoni convection on the liquid surface and 

thereby enhances absorption and condensation rates. The Vapor Surfactant Theory 

(Kulankara and Herold, 2000) proposed that such Marangoni convection is driven by the 

surface tension gradient caused by surfactant that circulates through the machine and 

arrives at the liquid surfaces as a vapor by bulk flow along with water vapor. 

The objective of this work was to fully understand the vapor surfactant induced 

enhancement mechanism and to quantify the relationship between the enhancement and 

the key variables. This goal was achieved by conducting experimental and numerical 



analyses including the measurement of surface tension with surfactant 2EH in the vapor, 

determination of 2EH surface concentrations in aqueous LiBr and water, experimental 

study of Marangoni convection in an absorption and condensation pool with surfactant 

2EH in the vapor and modeling of Marangoni convection in the presence of surfactant 

vapor.  

The surface tensions were measured with controlled 2EH concentration in the 

vapor by using the drop volume method. The results show that for both aqueous LiBr and 

water the surface tensions are reduced with increased 2EH concentration in the vapor. 

The 2EH concentration in the vapor is a primary variable in determining the surface 

tension of aqueous LiBr. Calculated surface concentrations show that the presence of 

LiBr results in a reduction in 2EH solubility, and that the surface concentration of 2EH is 

more sensitive to surfactant in the vapor than to surfactant in the liquid. Furthermore, the 

experimental and numerical analyses show that surfactant in the vapor alone can initiate 

the Marangoni convection; the strength of Marangoni convection is primarily dependent 

on the 2EH concentration in the vapor. The current studies show that surfactant in the 

vapor is a necessary condition for significant absorption and condensation enhancement. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Background and Motivation 

Enhancements of both absorption and condensation show significant potential for 

application in absorption refrigeration systems. The enhancement of absorption and 

condensation by the addition of a class of surfactant additives is common in absorption 

machines based on aqueous Lithium-Bromide (LiBr).  

An absorption chiller based on aqueous LiBr as the working fluid consists of the 

major components shown in Figure 1.1. The cycle uses water vapor as the refrigerant and 

a thermal compressor which utilizes aqueous LiBr as a liquid absorbent for the 

refrigerant. The cycle can be understood by starting at the evaporator where liquid 

refrigerant (water) evaporates at a low temperature due to heat transfer from the chilled 

water (i.e. the cooling load). The pressure in the evaporator is held at a low value by the 

thermal compressor which consists of the absorber and the desorber. The vapor coming 

from the evaporator is absorbed into aqueous LiBr in the absorber while rejecting heat at 

temperatures close to ambient (typically via a cooing tower). The combined refrigerant 

and absorbent is pumped to the desorber where the refrigerant is boiled off by heat 

transfer from a high temperature heat source (e.g. a natural gas flame or a waste heat 

source). The desorber operates at a higher pressure than the absorber. The refrigerant 

vapor leaving the desorber flows to the condenser where it changes to liquid phase 

accompanied by heat rejection at temperatures close to ambient (cooling tower). The 
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liquid refrigerant then flows back to the evaporator by the pressure difference caused by 

the thermal compressor. 

 

 

 

Figure 1.1 Schematic of absorption refrigeration cycle 

(1: High temperature desorber; 2: Low temperature desorber; 3: Condenser; 

 4: Evaporator; 5: Absorber; 6: Absorber spray pump; 7: Heat exchanger) 

 

The performance of such an absorption machine and thus the economics are 

largely dependent on the absorption process where large surface areas are needed. The 

transfer processes occurring in the absorber are strongly coupled heat and mass transfer 

where the mass transfer normally is very slow owing to the small driving force (the 

difference between vapor pressure and equilibrium pressure of aqueous LiBr), and the 

slow mass transport in the liquid.  

(7) 
(6) (5) 

(4)

(3)(2)

(1) 
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The role of the surfactant is to enhance the heat/mass transfer rate in the absorber. 

It also enhances the rate in the condenser, although this is less significant for the 

economics since the condenser is controlled, in most designs, by the water side 

characteristics. The surfactant flows around the chiller in a surfactant cycle along with the 

refrigerant. The surfactant is soluble in the liquids, although the solubility in aqueous 

lithium bromide is quite low (on the order of 25 ppm). It is observed that the addition of 

surfactant additive, even on the order of 100 ppm, introduces a surface flow, which 

dramatically disrupts the absorption boundary layer and, thereby, enhances the absorption 

rate. A similar phenomenon is observed in condensation.  Thus, the use of a surfactant 

reduces the size of absorber significantly and reduces the cost of the entire machine. 

The enhancement role of the surfactant is well-known but the details of the 

mechanism have been obscured by many studies. Several published theories attribute the 

enhancement to interfacial convection (Marangoni convection) due to surface tension 

gradients. However, the cause of the surfactant surface concentration gradients was not 

well explained. Many studies focused on the presence of the surfactant in the liquid and 

largely ignored the presence of the surfactant in the vapor until a recent theory, called the 

vapor surfactant theory (Kulankara and Herold, 1999), proposed that the heat and mass 

transfer enhancement is due to Marangoni convection caused by surfactant which arrives 

at the surface primarily from the vapor along with the water being absorbed. 

 

1.2 Objectives of This Study 

The primary objective of the present study was designed to clarify enhancement 

mechanism of surfactant-induced augmentation of absorption and condensation and to 
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quantify the relationship between the enhancement and the key variables by experiment, 

with emphasis on flow visualization, and via simulation. A clear understanding of the 

way the surfactant reaches the surface, and how it induces Marangoni convection, was 

sought. 

In order to achieve the objectives, four tasks were planned. These tasks are the 

measurement of surface tension with surfactant 2-ethyl-hexanol (2EH), determination of 

2EH surface concentration, experimental study of Marangoni convection in a pool with 

absorption/condensation in the presence of surfactant 2EH, and modeling of Marangoni 

convection in the presence of surfactant vapor.  

Surface tension plays a key role in the enhancement mechanism. A literature 

survey revealed considerable scatter in the data on the surface tension of aqueous LiBr 

with surfactants. According to the vapor surfactant theory, the surfactants in an 

absorption chiller are delivered to the surface from the vapor where they change the 

surfactant surface concentration and the surface tension. Therefore, in this study, the 

surface tension was measured with well-controlled surfactant concentration in the vapor. 

The drop volume method was applied with 2EH as the surfactant. Two series of surface 

tension measurements were conducted. The first was to quantify the effect of drop 

frequency on the measured surface tension. The second was to quantify the relation 

between surface tension and surfactant vapor concentration. Measurements of surface 

tension for both aqueous LiBr and water were conducted.  

It is known that the presence of surfactant on the surface changes the surface 

tension and the surface tension is a function of the equilibrium surface excess 

concentration of surfactant (Rosen, 1989). A more complete understanding of Marangoni 
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convection and the enhancement mechanism in absorption/condensation requires 

knowledge of the surface concentration. Thus, the surface concentration for both aqueous 

LiBr and water were derived from equilibrium surface tension data based on a Gibbs 

adsorption analysis, and the relationship of surface concentration to the vapor 

concentration and surface tension was determined. 

The Marangoni convection in a typical absorption system is a complicated surface 

flow on a falling film outside tubes cooled internally by cooling water. In order to study 

the effect of surfactant in the vapor on the Marangoni convection while avoiding the 

complexity of surfactant-driven unstructured flow seen in a falling film configuration, 

experiments were conducted in a simpler absorption/condensation pool with controlled 

surfactant vapor concentration and water vapor concentration. This simpler configuration 

provided a very effective geometry for understanding the enhancement mechanism. The 

transfer rates were quantified by recording pressure data for both absorption and 

condensation, and the flow patterns with different 2EH concentrations in the vapor for 

both absorption and condensation were observed and recorded on video. A numerical 

simulation of the surface motion in a similar configuration as the experiments was carried 

out. The simulation is based on a two-dimensional pool and the surfactant surface 

concentration was modeled using a one-dimensional surfactant mass balance at the 

interface. The simulation results are compared with the experimental results.  

 

1.3 Dissertation Outline 

The previous research, both experimental and theoretical, on the effect of 

surfactant on mass transfer enhancement is first reviewed in Chapter 2. The main 
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experimental and theoretical aspects of the current work are described in Chapters 3 to 6, 

which include the surface tension measurements, determination of the surface 

concentrations, experimental study of Marangoni convection in absorption/condensation 

and numerical study of condensation. In Chapter 7, a discussion of the results and 

observations from the experiments and numerical simulations is presented; the results are 

interpreted in the context of the vapor surfactant theory. Finally, conclusions and some 

proposals for future work are given in Chapter 8. In addition, a simulation code used in 

the current study and some related early stage work (i.e. a property routine for aqueous 

LiBr and water was developed) are included in appendices. 

 



 

7 

 
 
 

CHAPTER 2 

SURVEY OF LITERATURE 

 

 

In this chapter the most relevant previous work on the effect of surfactants on 

absorption and condensation enhancement are reviewed. The review of previous work is 

divided into four sections: 1) surface tension of aqueous lithium bromide (LiBr) with 

surfactants, 2) Marangoni convection in the presence of surfactants, 3) theories of 

surfactant enhancement, and 4) experimental and computational work in absorption and 

condensation enhancement in the presence of surfactants.  

 

2.1 Surface Tension of Aqueous LiBr with Surfactants  

Studies on enhancement of absorption of water vapor into aqueous LiBr in the 

presence of surfactants require information about the surface tension, since surface 

tension gradients at the liquid surface induce Marangoni convection which is the 

mechanism of enhancement.  

Yao et al. (1991) measured surface tension of aqueous LiBr with surfactant 

2-ethyl-hexanol (2EH) using a drop-volume apparatus. In their experiments, the 2EH was 

added to the solution by a micropipet, and the samples were homogenized in an 

ultrasonic bath. The authors found considerable difference as compared to previous data 

by Grosman and Naumov (1984), Kashiwagi et al. (1985), Hozawa et al. (1989) without 

clear explanations. None of these papers emphasized the effect of a key factor, the vapor 

side conditions, on the measurement results. 
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Hihara and Saito (1991) measured surface tension of LiBr solution with surfactant 

2EH using a ring method. In the preparation of the samples, the surfactant 2EH was 

mixed with a certain amount of LiBr solution to obtain the required concentration of the 

surfactant. They found that on increasing the concentration of the surfactant, the surface 

tension decreased and reached a plateau value at a certain concentration which was 

interpreted as the solubility limit. The solubility limit of 2EH in 55% aqueous LiBr (by 

mass) was determined to be about 100 ppm. Based on these experiments, they concluded 

that the 2EH concentration in the LiBr solution is a main factor in determining the 

surface tension. However, in their experiments, the effect of vapor side conditions was 

not mentioned.   

Kim et al. (1994) employed the Du Nouy ring method (a ring method using Du 

Nouy apparatus) to determine the surface tension of aqueous LiBr with surfactant 2EH. 

The 2EH was added into the solutions, which were then mixed by a magnetic stirrer and 

then left at room temperature for at least 48 hours. All preparations and measurements 

were at normal atmospheric pressure with surface exposed to air. The measurement 

results show that the surface tension in the presence of 2EH decreases as surfactant 

concentration increases, and increases as solution temperature increases. This is in 

contrast to the case without 2EH where the surface tension decreases with increasing 

solution temperature. The measured surface tension was found to be higher than the data 

from the drop volume method (Yao et al., 1991). The authors speculated that the 

measurement error could be traced to the Du Nouy ring method due to an additional 

volume detachment from the ring. The authors noticed that the values of surface tension 

varied with time, and proposed that a long time is required (48 hours in these 
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experiments) to allow the solution to reach equilibrium with the 2EH. But in the context 

of the Vapor Surfactant theory, this procedure would be expected to cause the 2EH 

concentration in the vapor to vary with time due to evaporation of 2EH, which would also 

explain the high values of surface tension found since after 48 hours, most of the 

surfactant had evaporated from the system.  

Kim and Janule (1994) measured surface tension of aqueous LiBr with 2EH using 

the maximum bubble pressure method. 2EH was added to aqueous LiBr solutions and 

then solutions were mixed by a magnetic stirrer. The surface tension of aqueous LiBr at 

the different time was measured in order to obtain the dynamic surface tension (i.e., 

surface tension before the solution reaches its equilibrium condition). Their results 

showed that the surface tension decreased versus time and was proportional to 1/t0.5 

(where t is time), and the time required for the solution to reach its equilibrium values are 

dependent on the mass diffusivity of surfactant in the aqueous LiBr.  

Gustafsson et al. (1996) measured the surface tension of aqueous LiBr with 

fluorinated alcohols as surfactants. The drop-volume method was employed and the 

effect of solution temperature and measuring time were tested. They found that for a 

given concentration of surfactant the solubility of the surfactant increases as the 

temperature increases, resulting in a lower surface excess and hence a higher surface 

tension. The authors also pointed out that because the equilibrium surface is not 

established as fast in highly concentrated electrolytes as compared to pure water, due to 

the lower diffusivity at the high salt concentration, measured surface tension values may 

depend on time. 
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Ishida and Mori (1996) measured the surface tension of aqueous LiBr with 

surfactant 1-octanol using a surface tensiometer utilizing laser-beam reflection, and they 

speculated that the disagreement with previous measured data might be due to 

inappropriate use of non-static measuring techniques.  

Kulankara and Herold (2002) measured the surface tension of both aqueous LiBr 

and water with surfactant 2EH using a drop volume method. In order to achieve better 

accuracy in the surface tension measurement by this method, a correction factor 

recommended by Harkins (1952), which is a function of the drop tip and the volume of 

drop, was included in the calculation of surface tension. They realized that during the 

measurements the surface tension of aqueous LiBr was strongly affected by the presence 

of surfactant vapor around the liquid drop interface. They attributed the scatter in surface 

tension data in the literature to the sensitivity to the 2EH vapor environment but were not 

equipped to measure the 2EH vapor concentration in their surface tension measurements. 

In summary, Figure 2.1 shows the surface tension data of aqueous LiBr with 2EH 

from the authors mentioned above and selected data from Grosman and Naumov (1981) 

and Ziukanov et al. (1984). The data in Figure 2.1 show considerable disagreement. One 

of the main motivations of the current work was to better explain this disagreement and 

to describe the steps needed to obtain meaningful surface tension data on such systems. 

 

 2.2 Marangoni Convection in the Presence of Surfactants 

It has been known since 1960-70’s (Bourne and Eisberg, 1966; Albertson et al., 

1971, Chi et al., 1971 and Zawacki et al., 1973) that the addition of a trace amount of 

alcohol additives, such as 2EH, in an absorption refrigeration machine based on aqueous 
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Figure 2.1 Surface tension of LiBr solution versus concentration of 2EH 
 

 

LiBr produces a substantial increase in the heat and mass transfer rates. It is widely 

accepted that the improved absorption rates are due to the surfactant properties of the 

alcohol that causes Marangoni convection, a hydrodynamic instability at the liquid-vapor 

interface, arising from surface tension gradients. This instability enhances the mixing of 

the solution on the surface of heat transfer tubes and thereby improves the heat and mass 

transfer rates. This section summarizes prior experimental and theoretical studies on 

Marangoni convection in the presence of surfactants. 
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During the 1950-60’s Marangoni convection was studied as a problem of 

hydrodynamic stability with diffusion and interfacial movement. The methods of linear 

stability theory were applied to determine the conditions for the onset of instability. 

Sternling and Scriven (1959) were apparently the first to analyze the stability of a 

disturbance caused by a concentration gradient of solution in addition to thermal 

instability. A conclusion for vapor-liquid systems was that an increase in surface tension 

due to mass transfer (i.e. causing a concentration gradient) might lead to instability.  

Extensive studies on the basic mechanism of Marangoni convection in aqueous 

LiBr systems started in the mid-1980’s. Kashiwagi (1988) did pioneering work on 

Marangoni convection including a number of experiments that implied the importance of 

vapor side effects. However, this work did not get much attention. 

Ji et al. (1993, 1993b) performed a linear stability analysis for Marangoni 

convection during absorption of water vapor into LiBr solution with surfactant 1-octanol. 

In their model, it was assumed that the bulk concentration of a surfactant in the gas phase 

is initially zero and that surfactant is desorbed from the solution to the gas. Their 

numerical analysis predicted that Marangoni convection is triggered mainly by the 

absorption of water vapor when the surfactant causes a surface tension increase with 

increasing solution temperature. Their analysis also demonstrated that the absorption 

system is destabilized by desorption of the surfactant and stabilized by the adsorption of 

surfactant.  

To identify the dominant factors in inducing Marangoni convection, Suzuki et al. 

(1996) carried out an experiment by using an ethanol-water binary mixture in an enclosed 

cell with an applied temperature difference across the cell. They concluded that the 
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combined concentration and temperature gradients at the surface gave rise to surface 

tension gradients, but concentration induced Marangoni convection dominates the surface 

motion, resulting in a surface flow in the opposite direction to the buoyancy-induced 

flow. This viewpoint, although very valid for ethanol-water, is not very useful for 2EH 

induced Marangoni convection due to the unique properties of this system. 

Fujita and Hihara (1999) conducted an experiment in a thin liquid film of aqueous 

LiBr in the presence of surfactant n-octanol. In the experiment, temperature fluctuations 

on the vapor-liquid interface were measured using an infrared thermometer, and flow 

direction on the vapor-liquid interface was recorded. Contrary to Suzuki’s prediction, 

their tests showed that the surface flow induced by the surface tension gradient took place 

from the area of low temperature toward that of high temperature. Therefore, they 

concluded that the Marangoni convection is mainly dominated by the temperature effect 

rather than the LiBr concentration effect because the surface tension increases with 

increasing solution temperature in the presence of surfactant (Kim et al, 1994). It should 

be pointed that the surfactant concentration gradients on the interface and vapor 

surfactant concentration were not considered in these studies. Since these factors are 

understood now (proposed by Kulankara and Herold (2000) and highlighted by Koenig 

and Grossman’s study (2003)) to be the most important factors, a reinterpretation of the 

experiments in terms of these variables is needed. 

Kim et al. (1996) conducted an experiment on water absorption into aqueous LiBr 

with surfactants and reported that Marangoni convection is initiated by the surface 

tension gradient caused by surfactant concentration and solution temperature as well as 
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LiBr concentration. Again, several of the main variables (surfactant vapor concentration) 

are not reported or described. 

Koenig and Grossman (1999) numerically studied the Marangoni instability and 

found that in addition to the effect of solution temperature and solution concentration, for 

surfactants with high diffusion coefficient in the absorbent solution, surfactant 

concentration is highly variable along the interface, and its gradients affect surface 

tension in a way that reinforces the surface mixing, resulting in relatively significant 

absorption rate enhancement. 

Kang et al. (1999) investigated Marangoni convection experimentally in aqueous 

LiBr with various surfactants including 2EH. The effects of LiBr concentration, the 

surfactant concentration and the solution temperature on the surface tension gradients 

were studied. They concluded that the temperature gradient of the surface tension (∂σ/∂T) 

could not be the initial cause for inducement of Marangoni convection. They further 

concluded that the magnitude of the surface tension played an important role for 

inducement of Marangoni convection. The negative solution concentration gradient of the 

surface tension (∂σ/∂xLiBr (with surfactant) <0) was found to be a trigger for inducement 

of Marangoni convection at surfactant concentration below the surfactant solubility limit, 

while the imbalance of the surface tension of aqueous LiBr solution and the interfacial 

tension between aqueous LiBr solution and surfactant is a trigger above the solubility 

limit.  Vapor concentration of the surfactants was not considered an important variable in 

this work. 

Kim and Lee (1999) carried out absorption experiments of water vapor into LiBr 

solution with eight-carbon alcohol surfactants using a simple static pool absorber. Sample 
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solutions containing surfactant was prepared prior to each experiment and was placed in 

an absorption chamber. Four surfactants (n-octanol, 2-octanol, 3-octanol and 2EH) and 

four different solution concentrations were investigated. They found that the surfactant 

concentration required for onset of mass transfer enhancement is dependent on the 

surfactants, and most are in the range of 5 to 8 ppm. There was no mention of vapor 

concentration of surfactant in this work.  

Gustafsson (2000) presented a stability analysis for a vertical falling film system 

with aqueous LiBr solution and surfactant. The analysis showed that the rate of the 

surface tension decrease is more important than the surface tension value itself. The 

surfactant diffusivity appeared to be an important value for surface tension relaxation 

time and subsequently for the absorption rate. However, this analysis assumes that the 

surfactant arrives at the surface from the liquid side. The physics implied by the Vapor 

Surfactant theory implies that the stability considerations are much different from those 

included in this analysis. 

Koening et al. (2003) numerically analyzed the role of surfactant adsorption rate 

in inducing Marangoni convection in LiBr-H2O solution with surfactant 2EH. They 

reported that in order to achieve Marangoni convection and absorption enhancement, an 

effective surfactant should reduce the surface tension of the solution quickly enough to 

cause Marangoni instability within a short absorption process period. Beutler et al., 

(1996) carried out experimental studies on a column of horizontal tubes, the strong 

solution of LiBr was sprayed onto the top tube and trickled down. The surfactants were 

added to the solution. Their heat transfer coefficient results have also shown that the 

lowering of static surface tension of absorbent solution itself is not a sufficient condition 
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for the occurrence of the Marangoni convection. The surface tension must be lowered, 

but the time required for lowering surface tension is critical in determining the ultimate 

success of a surfactant in enhancing absorption rates. However, these studies did not 

clearly address the vapor surfactant issues. 

Kim et al. (1993) and Kulankara and Herold (2000) both conducted falling film 

absorption experiments on a single vertical tube. The surfactant 2EH with water vapor 

entered from the top of the absorber resulting in parallel flow with aqueous LiBr. Their 

observations confirmed that the intensity of the Marangoni convection decreased from 

the top to the bottom of the tube, possibly because the concentration of 2EH in the falling 

film increased along the tube and approached saturation near the bottom of the tube. 

These studies demonstrated vapor effects very clearly since the Marangoni convection 

was observed to start immediately upon introduction of the surfactant at a location remote 

to the absorbing surface where the only communication was via the vapor. 

Kim et al. (2004a, 2004b) theoretically studied the effects of surfactant on the 

onset of Marangoni convection using the propagation theory. In their model, surfactant 

2EH was assumed to pre-exist in the solution, and surfactant on the surface was assumed 

to be neither soluble in absorbent liquid nor volatile to gas phase when the absorbate 

transfers from the gas phase to the liquid phase, and surface tension is positively related 

to the concentration of solute (i.e., ∂σ/∂xLiBr>0) and negatively related to the surface 

excess concentration of surfactant (i.e., ∂σ/∂Γ<0). They found that it is not always 

advantageous to increase the mass transfer coefficient in the gas phase to enhance the 

absorption rate and that there is an optimum mass transfer condition in the gas phase to 

affect Marangoni instability at the surface and produce the maximum absorption rate. The 
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surface properties of the surfactant (surfactant surface excess concentration and 

adsorption) were thought to be more significant than that of the solute (i.e., diffusivity) to 

analyze Marangoni instability. A higher surface excess concentration of surfactant acts as 

a stabilizer while a higher diffusivity of surfactant from the surface acts as a destabilizer 

for the onset of Marangoni convection. This work did not address the vapor concentration 

of surfactant. 

Studies of Marangoni convection have also been reported by several investigators 

in the case of condensation and in systems other than water and aqueous LiBr. Hijikata 

et al. (1994) theoretically and experimentally studied the droplet growth mechanism in 

condensation in a water-ethanol binary mixture. In their theoretical work, instability 

analysis was used to determine a transition from the film wise condensation to pseudo-

dropwise condensation. Both surface tension itself and the surface tension change due to 

the change in temperature and concentration were considered. Their results show that the 

Marangoni effect plays a more important role than the absolute value of the surface 

tension. The change of condensation type from film wise to pseudo-drop wise is only 

realized when the temperature dependency of the surface tension becomes positive. 

Morrison and Deans (1997) reported enhancements in the condensation of steam 

in the presence of a low ammonia concentration due to significant disturbance in the 

condensate film that authors attributed to Marangoni convection. Further studies by 

Morrison et al. (1998) on the condensation of steam in the presence of methylamine also 

showed enhanced non-film wise condensation. 

Kang et al. (1999b) observed Marangoni convection inducement in NH3-H2O 

system and concluded that the concentration and temperature gradients of the surface 
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tension should not be a criterion for Marangoni convection inducement in NH3-H2O 

system. The magnitude of the surface tension did not affect the occurrence of Marangoni 

convection. They proposed that because of stronger hydration force between water 

molecules and electrolyte ions NH4
+ and OH-, surfactant is segregated from the bulk 

solution (authors called it “salting-out”) leading to a significant reduction of the surface 

tension. This was viewed as a key criterion for Marangoni convection inducement at the 

concentration below solubility limit in NH3-H2O system.  

Kang and Kashiwagi (2002) conducted an experiment in an ammonia-water 

absorption pool to visualize Marangoni convection in the presence of surfactant, 

n-octanol, in the pool. They reported that Marangoni convection was observed near the 

interface only in the cases with surfactant, and that the Marangoni convection was very 

strong just after absorption started and weakened as time elapsed.  

 

2.3 Published Surfactant Enhancement Theories  

As mentioned in the Introduction, a small amount of certain surfactants causes 

interfacial convection (Marangoni convection) leading to higher heat and mass transfer 

performance in both condensation and absorption in absorption chillers. The basic 

mechanism of Marangoni convection in aqueous LiBr has been extensively investigated 

for decades. This section summarizes the published surfactant enhancement theories. 

Regarding enhancement theories by surfactants, most papers attribute the 

enhancement to Marangoni convection due to surface tension gradients, which result 

from surfactant concentration gradients on the surface. However, the explanations for 

what causes the surfactant concentration gradients are divergent. 
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Kashiwagi et al. (1985, 1988) suggested that Marangoni convection is induced by 

the unbalance of surface tension around droplets of the surfactant floating on the solution 

surface. They proposed that the existence of surfactant droplets at the surface of the 

absorbent solution is necessary to obtain a drastic absorption enhancement. According to 

this theory, the onset of interfacial turbulence requires excess surfactant beyond the 

solubility limit. However, Elkassabgi and Perez-Blanco (1991), Perez-Blanco and 

Sheehan’s (1995) as well as work in our group show that the enhancement does not 

require surfactant droplets. Thus, other theories were sought to explain a wider range of 

the observed phenomena. 

Hozawa et al. (1991) and Kim et al. (1993, 1996) reported that the presence of an 

island of surfactant is not a necessary condition to initiate Marangoni convection, but it 

can provide and maintain more violent convection for a longer time by acting as a 

reservoir of surfactant on the surface. Hozawa et al. (1991), Pearson (1958) and Daiguji 

et al. (1997) proposed the so-called “salting-out” theory. This theory holds that an 

increase in the concentration of aqueous LiBr causes a rejection of surfactant molecules 

from the liquid bulk, because the hydration force between water molecules and 

electrolyte ions, Li+ and Br-, is larger than the bonding force between water molecules 

and surfactants molecules. As a result, the surfactant molecules are segregated from the 

bulk solution and move to the surface and cause a decrease of surface tension. This 

theory proposed that the salting-out effect is the initial cause of Marangoni convection. 

The data from Saito (1991), Hoffmann et al. (1996) and Beutler et al. (1996) were 

interpreted to support this theory. However, Daiguji et al. (1997) also pointed out that it 

was difficult to explain the Marangoni instability only by the salting-out effect in the 
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cases where the departure from equilibrium is large or the concentration of surfactant 

exceeds the solubility limit. 

Kang et al. (1999) compared the Kashiwagi model (1985, 1988) with the salting-

out model (Hozawa et al., 1991) and concluded that the salting-out effect is a trigger for 

the inducement of Marangoni convection at the concentration below the surfactant 

solubility while the imbalance of the surface tension of the solution and interfacial 

tension between the solution and surfactant is a trigger inducing Marangoni convection 

above the solubility limit. 

The mechanism of enhancement by surfactants was also the subject of intense 

study in our group where a new theory was introduced to explain surfactant enhancement. 

This new theory, called the Vapor Surfactant theory, was proposed by Kulankara and 

Herold (2000, 2002). This theory maintains that the surfactant circulates through the 

machine and arrives at the liquid surfaces by bulk flow along with water vapor. Previous 

theories emphasized the presence of the surfactant in the liquid phase. The major 

departure provided by the Vapor Surfactant theory is the emphasis on the presence of the 

surfactant in the vapor phase. The surfactant arrives at the liquid surface along with the 

absorbing vapor by bulk flow, not by diffusion. The action of the surfactant occurs on the 

surface of the liquid in the form of Marangoni convection that continuously renews the 

surface layer, sweeping away the dilute layer and exposing the high-affinity concentrated 

liquid. For aqueous LiBr at high concentration, once the surfactant reaches the surface, it 

tends to stay on the surface due to its strong affinity for the surface. The presence of the 

surfactant on the surface disrupts the bonding between water molecules and thus reduces 

the surface tension. Based on this theory, an effective surfactant should have several 
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properties that enable a surfactant cycle. These include solubility in water that enables 

transport from condenser to evaporator and sufficient vapor pressure in addition to the 

surfactant properties. The authors have verified this theory in their absorption, 

condensation, static pool and surface tension measurements. Further experimental and 

numerical studies from our group on surface tension measurements (Yuan and Herold, 

2001), enhancement of absorption by 2EH in an absorption machine (Ghosh and Herold, 

2002), surface tension driven flow due to condensation with a vapor surfactant (Qiao et 

al., 2000) and study of phase distribution of surfactant (Zhou and Herold, 2002) strongly 

support this theory. 

Regarding other theories, one called the steric hindrance or catalytic effect theory 

holds that the surfactant provides a lower energy path for the absorption of water by 

lithium ions. Since branched surfactants have a weaker bond than straight chain 

surfactants in combining with lithium ions, the branched surfactants should be more 

effective and faster in forming Li-H2O bonds. Therefore, it is also not necessary for the 

surfactant to exist in a separate liquid phase for the enhancement to occur. Indeed, 

Chandler’s experiment (1993) found an enhancement at small surfactant concentrations 

that are below the solubility limit. However, Perez-Blanco and Sheehan’s data (1995) 

conflict with this theory. A constant enhancement in their experiments was not expected 

from steric hindrance theory, since as the hydration limit is approached, the surfactant 

effectiveness should decrease. Based on their experiment, both branched and straight 

chain surfactants provide effective enhancement, and relatively constant enhancement 

was observed with brine concentration.  
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Hihara and Saito (1993) proposed an instability theory that relates the surface 

tension change to the properties of solution with surfactants. They concluded that surface 

tension changes with temperature and LiBr mass fraction are the key variables to predict 

enhancement. The data from Jao et al. (1991) and Kim et al. (1994) showed that the 

enhancement was related to the property of ∂σ/∂T>0 for LiBr solution with surfactants 

and this seemed to support their theory. 

Sheehan and Perez-Blanco (1996) proposed an explanation of enhancement, 

called the diffusion theory where the time taken for the diffusion of the surfactant to the 

liquid-vapor interface is considered as a key factor. According to this theory, the ability 

of a surfactant to enhance mass transfer may be related not so much to its activity at the 

interface, but to its ability to diffuse and adsorb at the interface. This theory seemed to be 

supported by the fact that surfactants are more effective when presented in the vapor 

phase, rather than in the liquid (Bennett, 1995; Kulankara and Herold, 1999). Although 

vapor effects are mentioned in this paper, the main focus of the paper is on liquid side 

effects. Koenig and Grossman (2003) also proposed a similar mechanism of enhancement 

by surfactant and stated that an effective surfactant must not only reduce the surface 

tension of the solution; it must do so quickly enough to cause the Marangoni instability 

within the short absorption process time. The effect of the absorption process on the 

surface tension relaxation rate is mainly influenced by initial solution concentration and 

temperature, cooling side heat flux and vapor phase pressure. A key difference between 

these theories and the Vapor Surfactant theory is that the Vapor Surfactant theory holds 

that the surfactant arrives at the surface primarily by bulk flow and not by diffusion. 
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2.4 Absorption and Condensation Enhancement by Surfactants 

 The Vapor Surfactant theory leads to the realization of the importance of two 

variables that are seldom reported in studies on enhancement. These are the concentration 

of the surfactant in the vapor and the absorption flux, which can be reported as either 

mass or heat flux. In the current literature review, there was mention of vapor 

concentration in only a few studies but many studies reported flux values and these are 

emphasized in the review. 

 
A substantial body of work exists on absorption enhancement with surfactants in 

LiBr/water systems (both in falling film and static pool absorption). In contrast, the work 

on condensation enhancement using surfactants is limited to a few papers. In this section, 

previous work on absorption and condensation enhancement with surfactants is surveyed. 

Vliet and Cosenza (1990, 1991) investigated the effects of surfactants on water 

vapor absorption into aqueous LiBr flowing over a smooth horizontal tubular surface 

using surfactant 2EH at 500 ppm. In their tests, they struggled with air leakage (a 

common problem in such systems) and carefully documented the presence of less than 

0.1% air in their system. The results showed that heat flux was augmented to about 45 

kW/m2 which has a nominal three-fold improvement in absorption rate compared to the 

case without the surfactant. The authors related this enhancement to the presence of 

totally de-structured film flows described as “ropey” with “rivulets” moving back and 

forth laterally along the tubes.  

Hihara and Saito (1991) conducted falling film absorption experiments on an 

inclined plate with surfactant 2EH (60 ppm) added into the LiBr solution. The results 
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show that the absorption heat flux is about 120 kW/m2, an increase about 5 times as 

compared the case without surfactant. They observed that this enhancement was 

accompanied by active surface-disturbances and an improvement in wetting of the heat 

transfer area. In comparison, when the surfactant was not added, the surface of the liquid 

solution was smooth, and free of waves. 

Kim et al. (1996) conducted a vertical falling film experiment on absorption into 

aqueous LiBr with 2EH.  A turbulent coolant flow rate was selected to greatly reduce the 

heat-transfer resistance on the cooling water side. Their results showed that the 

absorption heat flux in the presence of 2EH (50 ppm in the liquid) is about 7.8 kW/m2, an 

increase of 72% in the absorption heat flux as compared to the case without 2EH. A 

“vigorous mixing” was observed in their experiments. They also reported that the heat 

transfer coefficient appeared to reach a plateau after the surfactant concentration reached 

50 ppm. 

Hoffmann et al. (1996) studied the combined effect of surfactants (1-octanol and 

2EH) and an enhanced tube surface on the absorption of water vapor into aqueous LiBr in 

a horizontal-tube falling film absorber. They found that the rivulet flows were most 

distinct in the region with strongest absorption, and surfactants provided more 

enhancement than the enhanced tube surface and an increase of 60-140% in heat transfer 

coefficient was achieved in the case with surfactant as compared to the case without 

surfactant. For this study, the mass and heat flux cannot be estimated due to a lack of data 

about the heat transfer area.  

Park et al. (2004) conducted experiments on an absorber consisting of 24 

horizontal tubes in a column to investigate the effect of surfactant on the absorption 
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performance. The working fluid is H2O/LiBr solution with various inlet concentrations of 

LiBr. Surfactant 1-octanol is used with the concentration of 400 ppm in the liquid. It was 

found that the absorption heat flux with surfactant is about 12.7 kW/ m2 representing an 

enhancement of 3.8 times that without surfactant. 

Jung et al. (1994) conducted their experiments in a falling film mini-absorber to 

study the effect of four different surfactants (1-heptanol, 1-octanol, 3-octanol and 2EH) 

on the absorption of water in aqueous LiBr (58.5% by mass). Based on their experiments, 

1-heptanol gave the highest absorption enhancement of 24%. The absorption heat flux 

was about 1.6 kW/ m2. 2EH was second with an enhancement of 20%.  The low 

enhancement values reported here are consistent with the low heat flux values.  

Kashiwagi et al. (1993) conducted experiments on absorption with 1-octanol. In 

their experiments, surfactant 1-octanol was boiled into the vapor space. Surfactant vapor 

concentration was set at 100 ppm by boiling a certain amount of water and surfactant in a 

flask-type boiler. The enhancement effects caused by vapor 1-octanol surfactant were 

studied. Based on their results, the mass flux for the case with 100 ppm 1-octanol in the 

liquid is almost the same as the one for the case with 100 ppm 1-octanol in the vapor. The 

maximum mass flux occurred when 1-octanol was added to both liquid and vapor. For 

this case, the absorbed mass flux was about 1.8 g/m2·s, corresponding to heat flux of 4.4 

kW/m2, 26% higher than without 1-octanol. The authors attributed this enhancement to 

the formation of 1-octanol droplets on the surface of the solution. The flow with both 1-

octanol in liquid and vapor phases showed complicated interference fringes compared 

with the case without 1-octanol.    



 

26 

 
 
 

Kulankara and Herold (1999) conducted absorption experiments of water vapor 

into aqueous LiBr on a vertical falling film facility using 2EH. The results showed an 

increase of 29% in the heat transfer coefficient when the concentration of surfactant 

increased from 15 to 85 ppm in the liquid. The heat transfer coefficient also increased 

about 30% with increases in heat flux from 10.5 to 20.5 kW/m2. Vigorous and 

unstructured motions were observed in their experiments. These experiments clearly 

show the importance of heat flux and were the basis of the Vapor Surfactant theory of 

absorption enhancement. 

Ghosh and Herold (2002) investigated the enhancement by surfactant 2EH in an 

absorption machine. Based on their experiments, they deduced that enhancement by 2EH 

occurred in both the absorber and condenser. Furthermore, it was concluded that the 

surfactant flowed around the machine in a cycle.  

Glebov and Setterwall (2002) investigated the influence of surfactant 2-methyl-1-

pentanol (2MP) on the performance of an absorption chiller experimentally in their two 

experimental series. In one experimental series, the surfactant was injected into LiBr 

liquid; in the second experiments, the surfactant was injected into the refrigerant sump 

located in the evaporator. They found that the enhancement ratio was up to 20% for the 

first experiment and 32% for the second experiment. They concluded that the presence of 

the surfactant in the vapor phase, even in very small amounts, favors the enhancement 

more than the surfactant in the liquid solution. 

An absorption enhancement experiment was also performed by Setterwall et al. 

(1991) in a static pool. The absorption rates were increased from 6% to 30% depending 

on the surfactants, the concentration of surfactants and the solution temperature. 
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Kim et al. (1999) conducted experiments on absorption of water into LiBr 

solution with surfactant 2EH using a simple stagnant pool apparatus. Sample solution 

containing a desired amount of surfactant was prepared prior to each experiment. A 

vigorous interfacial turbulence was observed during absorption with surfactants. The 

water vapor absorption rate increased with increasing surfactant concentration up to 

about 200 ppm in the liquid in their experiments. The maximum absorption heat flux was 

about 2.4 kW/m2 (absorption mass flux was about 1 g/m2·s), in which mass transfer rate 

with 2EH was found to be about four times higher than that without the surfactant. The 

surfactant concentration for onset of mass transfer enhancement was in the range 5 to 

8 ppm. 

Tests of heat transfer coefficients in an actual LiBr absorption chiller were 

performed by Grosman and Naumov (1991). In their tests, 2EH was used and the increase 

of the overall heat transfer coefficients for absorber, condenser, generator and evaporator 

were found to be 90.2%, 32.2%, 0% and 0%, respectively.   

Very little work was found that relates directly to condensation enhancement with 

surfactants. The physics of binary condensation bears some resemblance although the use 

of surfactants typically involves only trace amounts of the second species. The literature 

related to condensation enhancement is discussed next. 

An early work conducted by Mirkovich and Missen (1961) observed streak and 

dropwise condensation of binary vapors. The nature of the condensation was found to be 

related to the type of binary vapors, the concentration of components and the sub-cooling 

temperature. Goto and Fujii (1982) presented a comparison of heat transfer coefficients 

between experiment and theory using an R114-R11 mixture. Their theoretical analysis 
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was based on the two-phase boundary layer equation. Their experimental data with a 

smooth film was consistent with the theoretical analysis. However, the experimental data 

with ringwise or turbulent ringwise films showed the heat flux of 10 kW/m2 and 

condensation rates 50% higher than the value from the analysis. The authors attributed 

the increase to the turbulent motion due to interfacial convection.  

Morrison and Deans (1996) conducted water condensation experiments with 

small amounts of ammonia. They found that heat flux increased from 132 to 179 kW/m2 

and heat transfer coefficient was enhanced about 13% with an ammonia concentration in 

the vapor from 0.23 to 0.88% by mass. They also found that no further enhancement 

happened with continued increase in ammonia concentration. Morrison et al. (1997) also 

carried out steam condensation experiments with methylamine as surfactant. Based on 

their experimental results, when the vapor mass fraction of methylamine is 0.03%, the 

heat flux was about 192 kW/m2 and the heat transfer coefficients were enhanced 20-50% 

over the heat transfer coefficient of pure steam at the same conditions. The highest heat 

transfer coefficient was found at a mass fraction of methylamine of 0.2%, and at larger 

mass fraction values the heat transfer coefficient decreased, apparently due to vapor 

diffusion resistance. “Pseudo-dropwise” and “rippled band” condensation patterns were 

observed. 

Utaka and Terachi (1995) conducted experiments on the condensation of steam 

with small amounts of ethanol on horizontal tubes. They investigated the relation 

between heat transfer coefficient and the surface sub-cooling temperature difference ΔT 

(=Tsat – Twall) with 0.17-0.74% ethanol by mass. They found that the heat transfer 

coefficient at ΔT = 20-25 K is five times as much as the heat transfer coefficient for pure 
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steam. In a more recent work, Utaka (1998) used a high-speed digital camera to observe 

the relation between the heat transfer coefficient and the flow characteristics. He found 

that with an increase of ethanol concentration and sub-cooling ΔT, the size of condensing 

drops and the distance between drops reduced and the film between drops became 

thinner, with a corresponding increase in heat transfer coefficient.  
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CHAPTER 3 

SURFACE TENSION MEASUREMENT WITH 

SURFACTANT 2-ETHYL-HEXANOL 

 

3.1 Introduction 

Heat and mass transfer enhancement in a lithium bromide (LiBr) based absorption 

chiller can be achieved by adding trace amounts of a surfactant like 2-ethyl-hexanol 

(2EH). In order to fully understand this enhancement mechanism, accurate surface 

tension data are needed. 

Surface tension data are available for pure water  (Haar et al. 1984) and pure LiBr 

solution (Foote Mineral Co. 1995). Surface tension data for aqueous LiBr with 2EH have 

also been reported but the inconsistency and scatter of the data is significant (Yao et al, 

1991; Hihara and Saito, 1991; Kim and Berman, 1994; Kulankara and Herold, 1999). The 

poor agreement is believed to be due to the fact that some key variables were not 

controlled during the measurements. 

A new explanation of the surfactant physics called the Vapor Surfactant theory 

(Kulankara and Herold, 1999) was recently published, which explains how the surfactant 

reaches the interface in an absorption machine. According to this theory, surfactant 

molecules are delivered to the liquid surface mainly from the vapor by bulk flow along 

with the absorbing water vapor. A non-uniform surface concentration of surfactant results 

from non-uniform absorption flux. Based on this theory, the surfactant concentration in 
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the vapor has a strong influence on surface tension and any measurement method that 

does not control this variable is not expected to yield reproducible data.   

The work presented in this chapter is focused on surface tension measurements 

with well-controlled surfactant concentration in the vapor. The drop volume method is 

applied with 2EH as the surfactant. The main experiment is arranged such that air mixes 

with 2EH vapor and flows over the sample drops in the test chamber and delivers 2EH to 

the surface of the drops in a controlled manner. The 2EH adsorbs on the surface of the 

drops causing significant reduction of the surface tension. Two primary series of surface 

tension measurements were conducted. One was to observe the effect of drop frequency 

on the measured surface tension with the objective of establishing an appropriate drop 

frequency to obtain accurate surface tension data. The other was to measure the effect of 

surfactant vapor concentration on surface tension. Measurements of surface tension for 

both aqueous LiBr solution (60% by mass) and pure water were conducted. In addition, a 

series was run to find the difference between cases with 2EH in the vapor versus 2EH in 

the liquid.  

 

3.2 Description of the Measurement Method 

The drop volume method (also called the drop weight method) was used to 

measure surface tension (Becher, 1965). This method is based on a force balance on 

drops as they separate from a small diameter tube as shown in Figure 3.1. The weight of 

the drop is assumed to be balanced by the surface tension as  

σπ rmg 2=             3.1 

where m is the mass of one drop, g is the gravitational acceleration, r is the



 

32 

 
 

 
 
Figure 3.1 Schematic of force balance for a drop on the tip of the surface tension 

measurement apparatus 
 

outside radius of the tip and σ is the surface tension of the liquid. However, it has been 

found that a small portion of the drop remains on the tip and causes an error in the 

calculated surface tension. Therefore, a modification factor f(r/V1/3), introduced by 

Harkins (1952), is used to correct for this effect to achieve better accuracy. This 

modification factor is a function of the outside radius of the tip, r, and the volume of a 

drop, V. With the modification factor, the surface tension can be expressed as 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

3
12

V

rfr

mg

π

σ            3.2 

3.2.1 Measurement Apparatus 

A facility was built to measure surface tension with well-controlled surfactant 

concentration in the vapor. A schematic and photograph of this facility are shown in 

Figures 3.2 and 3.3, respectively. The facility consists of a test chamber, drop creator, 

collection flask, balance, surfactant flask, heating mantle and rotameter.  
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The test chamber is made of transparent plastic pipe with an inside diameter of 

0.1 m. The drop creator is made from a stainless tube whose outside diameter is 1.59 mm, 

a valve, a connecting tube and a large cross-section reservoir. The valve was modified to 

include a large handle to allow fine control of the flow. The major factors that affect drop 

frequency were found to be surfactant vapor concentration and liquid level. Due to the 

large surface area of the reservoir, the level in the reservoir does not change significantly 

during a test run so that the drop frequency is constant if the surfactant concentration in 

air remains constant. During the measurements, the solution is poured into the reservoir 

and then it flows by gravity to form the drops at the tip. The drops fall into a collection 

vessel that is positioned below the tip. To determine the average weight of a drop, 10 

drops are collected in the collection vessel for each operating condition and the collection 

vessel is weighed using a high accuracy balance before and after collecting the drops.  

Surfactant (2EH) vapor in the chamber is supplied by boiling the surfactant in a 

flask equipped with a heating mantle. The flow rate of surfactant vapor is controlled by 

varying the heat input to the surfactant boiler. The facility is connected to an air supply 

such that the surfactant vapor is mixed with a known flow rate of air flowing into the test 

chamber. The system was operated under steady state conditions with constant heat input 

to the surfactant boiler implying a constant surfactant vapor concentration flowing 

through the test chamber.  

Turbulent flow upstream of the test section effectively mixes the air and 2EH 

vapor. The turbulent time scale for mixing in the channel was calculated (Tennekes and 

Lumley, 1982) to be 0.2 s while the time required for the air to flow from the 2EH 

injection port to the test section is 2.5 s. Therefore, it is concluded that the 2EH is 
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Figure 3.2 Schematic of the surface tension facility 
 
 
 
 

 
 
 
Figure 3.3 The surface tension facility 
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uniformly mixed with air before reaching the test section. It was also observed that under 

certain conditions the 2EH produced fog and the jet entering the test section was 

observed to expand and fill the test section, apparently due to residual turbulent eddies. 

Based on these observations, it is concluded that the vapor velocity in the test section is 

well characterized by the average velocity. The average velocity of the air in the test 

section was 0.06 m/s. This low value was chosen so that it would have negligible effect 

on the drop creation process while dependably establishing the vapor environment around 

the forming drops. Tests were done with and without air flow and it was found that the air 

flow did not have any detectable influence on drop frequency. 

 

3.2.2 Preparation of the Liquid Samples 

Surface tension measurements were made on both water and 60% aqueous LiBr. 

In the measurements on pure water, distilled water was used. In the measurements on 

aqueous LiBr solution, 53% stock solution was first concentrated to above the target by 

boiling and then 60% LiBr solution was made by dilution with distilled water.  

In order to find the mass fraction of aqueous LiBr, the temperature and density of 

the sample solution were measured and then a LiBr property routine (Yuan and Herold, 

1998) was used to infer the mass fraction. Besides giving the mass fraction of aqueous 

LiBr, this routine is also used to calculate other thermodynamic and transport properties 

of aqueous LiBr and water used during the data processing. This routine was written by 

the author and is described in Appendices D and E. 

To measure the surface tension with 2EH in the liquid, the sample liquid was 

made by mixing the liquid and 2EH in a clean mixing vessel. Then this vessel was shaken 
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vigorously until the liquid appeared uniformly milky before transferring the sample liquid 

to the reservoir which feeds the drop creator.  

 

3.2.3 Experimental Procedure    

After transferring the sample liquid to the reservoir, the air flow rate was adjusted 

to the proper value and the power to the surfactant flask was turned on and variac was 

adjusted. The drop frequency was adjusted and the drops of liquid sample were collected 

in a collection vessel. The weight of a certain number of drops is the primary 

measurement. 

Before conducting each test series, the surface tension of the surfactant free liquid 

(either distilled water or LiBr solution) was measured with only air flowing through the 

facility. The results were compared with literature data to establish a baseline. Such tests 

yield a probable error of ±1.43 mN/m as discussed later in Section 3.2.6. For the cases 

with surfactant in the liquid sample, the drop creator was disassembled and cleaned 

thoroughly using warm water and detergent between runs. Vapor concentration of 2EH 

for a series of runs was varied from low to high values. 

 

3.2.4 The Effect of Air Velocity 

The facility was designed to provide a slow flow (the Reynolds number based on 

the drop diameter is on the range of 10 to 100) sweeping past the drops with known 

surfactant concentration in the air. One possible source of error in this design is 

evaporation of water from the droplet that would be expected to cause a decrease in 
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temperature. The rate of evaporation would depend on the humidity in the air and in this 

study the humidity was not measured. A comparison between the present surface tension 

data and the literature data for the pure liquids seems to show that this effect was minor. 

The effect of air velocity was checked for pure water, with and without 2EH in the air 

and the results are shown in Figure 3.4. The drop frequency was held constant at 0.033 

Hz and the mean temperature of the system was 22°C. For the case without 2EH in the 

air, the surface tension increased by less than 1% when the air velocity increased from 0 

to 0.18 m/s.  For the case with 2EH in the air (37 ppm), the surface tension decreased by 

8.3% as the air velocity increased from 0.06 to 0.18 m/s.  The small reduction in surface 

tension is apparently due to the presence of 2EH and is thought to be due to enhanced 

convective transport of 2EH to the droplet surface at higher velocity. For subsequent 

measurements, the velocity was fixed at 0.06 m/s as the minimum controllable velocity in 

our facility. 

  

3.2.5 Determination of the Vapor Concentration 

The concentration of 2EH in the air is determined by the ratio of the mass flow 

rates of the 2EH and the air injected into the chamber. The air flow rate is measured by a 

rotameter with a full scale reading of 2.36×10-3 m3/s and an estimated accuracy of 

±4.72×10-5 m3/s. The density of air is calculated from temperature and pressure using the 

ideal gas law. The flow rate of 2EH is determined by weighing the surfactant flask before 

and after a measurement run and assuming steady state conditions during the interval. Air 
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Figure 3.4 The effect of air velocity on surface tension 
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enters the surfactant flask as it cools down from boiling temperature of 2EH  (184°C) to 

room temperature during the weighing process. To minimize errors from this, the time 

taken in weighing the surfactant flask was kept as short as possible. In addition, the 

lowest reading from the balance was taken (the reading increases as the temperature of 

the flask decreases). Several measurements at a single operating condition were checked 

and the probable error of the vapor concentration measurement was estimated to be 

±5.4%. 

 

3.2.6 Examination of Measurement Accuracy 

Typical results for both distilled water and 60% LiBr solution are listed in Table 

3.1 along with literature data. The drop frequency used for the tests from the current 

study listed in this table was 0.033 Hz. Based on comparison with literature data, the 

probable error for surface tension is ±0.18 mN/m for water and ±0.28 mN/m for 60% 

aqueous LiBr. In addition, the effect of the change of temperature was also examined. 

During the series of measurements, room temperature varied between 21.6 and 28.5 °C. 

Based on the water data by Haar et al. (1984) and the aqueous LiBr data from Foote 

Mineral Co. (1995), this temperature variation would cause a maximum change in surface 

tension of approximately 1.1 mN/m for pure water and 1.4 mN/m for 60% aqueous LiBr. 

Based on all of these effects, it is estimated that the probable error for the surface tension 

measurement is ±1.4 mN/m.  
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Table 3.1 Examination of measurement accuracy  

Sample 
Tempera-

ture 
(°C) 

Number 
of 

measure-
ments 

Surface tension 
(Range of 

values, mN/m) 
(Current study) 

Surface Tension 
(Average) 
(mN/m) 

(Current study) 

Surface 
Tension 
(mN/m) 

(Literature) 
Water 23.5±1.9 5 72.3 ~ 72.9 72.5 72.2 (1) 

60% LiBr 
solution 25.4±0.2 6 93.8 ~ 94.8 94.5 96.0 (2) 

91.2 (3) 
(1) Haar et al. (1984)  
(2) Kulankara (1999) 
(3) Foote Mineral Company technical data, Bulletin 145 (1995) 

 

3.3 Surface Tension Measurement Results 

3.3.1 Surface Tension Results for Water 

3.3.1.1 Surface tension of water with 2-ethyl-hexanol in air   

In this series of measurements, the liquid water charged into the drop creator was 

free of 2EH. Figure 3.5 shows the surface tension of water versus drop frequency and 

2EH concentration in air. It can be seen that the surface tension decreases significantly as 

drop frequency decreases. Because of the limitations on our ability to control the drop 

frequency, the lowest drop frequency used in our measurement is around 0.03 Hz. 

Surface tension measurements at low frequency yield accurate results using the 

Harkin correction factor (Harkin, 1952) to account for the portion of drop remaining on 

the tip. At higher frequency, a dynamic error has been identified which is apparently due 

to the additional liquid flowing out of the drop creator during the process of drop off 

(necking) (Scheele and Meister, 1968). Based on their model, this necking effect at a 

drop frequency of 1 Hz causes an increase of 5.8 mN/m over the surface tension at very 

low frequency which is consistent with our experimental results (5.3 mN/m increase from 

0.03 to 1 Hz as shown in Figure 3.5), and at drop frequency of 0.1 Hz, the increase of 
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surface tension is about 1 mN/m. Therefore, at low drop frequency the necking effect 

diminishes. Further surface tension measurements were conducted with drop frequencies 

between 0.05 and 0.033 Hz to minimize such dynamic errors. 

Figure 3.6 is a plot of surface tension versus 2EH concentration in air at a drop 

frequency of 0.04 Hz. The solid curve was computed by the least squares method and the 

resulting function is shown on the plot. The surface tension decreases with an increase in 

2EH concentration in air until it reaches a plateau. 

The plateau surface tension is 39 mN/m which is approached within 1% by 1000 

ppm. This minimum value of surface tension is in good agreement with the data given by 

Kulankara and Herold (1999) who measured equilibrium surface tension as low as 38 

mN/m using a different experimental configuration. 

 

3.3.1.2 Surface tension of water with 2-ethyl-hexanol in the liquid sample 

Surface tension measurements with 2EH in the liquid sample were also 

conducted. The surfactant was well mixed with water in a mixing vessel prior to transfer 

to the reservoir for the drop creator. For this series of tests there was no 2EH in the air 

flowing past the droplets. 

Figure 3.7 is a plot of surface tension versus drop frequency with 2EH 

concentration in the liquid as a parameter. The data are plotted versus the system 

concentration. It should be pointed out that because of the tendency of 2EH to adsorb on 

surfaces, the 2EH concentration in the liquid passing through the drop creator is expected 

to be lower than the 2EH concentration charged in the reservoir. Because the 
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Figure 3.5 Surface tension of water versus drop frequency and 2EH concentration in air 
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Figure 3.6 Surface tension of water versus concentration of 2EH in air
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actual 2EH concentration in the droplets is not known, the 2EH concentration charged in 

the reservoir is used in this plot and is referred to as the system concentration. Figure 3.7 

shows that the surface tension significantly decreases with an increase of 2EH 

concentration in the sample. The shape of the surface tension versus 2EH concentration is 

somewhat different from the case with 2EH in air as in Figure 3.5. In Figure 3.7 the 

surface tension is seen to be essentially independent of the drop frequency below 0.1 Hz. 

This phenomenon was also observed by Kulankara (1999). Apparently, the surfactant 

molecules diffuse to the free surface from the liquid bulk on a time scale shorter than the 

period between drops, with the result that the equilibrium state on the surface is achieved 

relatively quickly for the water case.  

Figure 3.8 is a plot of surface tension versus 2EH concentration in the sample. 

The data in Figure 3.8 were taken at a drop frequency of 0.04 Hz. As can be seen, the 

surface tension decreases with an increase in 2EH concentration (in the liquid) until it 

reaches a plateau. The plateau value of surface tension is found to be 41 mN/m which is 

approached within 1% at 850±50 ppm.  

 

3.3.2 Surface Tension Results for Aqueous LiBr 

3.3.2.1 Surface tension of aqueous LiBr with 2-ethyl-hexanol in air 

A series of surface tension measurements were conducted for 60% aqueous LiBr 

with 2EH vapor in air and the results are shown in Figure 3.9. The surface tension is seen 

to significantly decrease with an increase of 2EH concentration in air. It is interesting to 

note the difference in shape observed here as compared to the water data in Figure
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Figure 3.7 Surface tension of water versus drop frequency and 2EH concentration in the water 
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Figure 3.8 Surface tension of water versus 2EH concentration in sample 
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3.5. When the drop frequency is smaller than approximately 0.2 Hz, the surface tension is 

essentially independent of drop frequency. It is also noticed that at high drop frequency 

the surface tension curves with and without 2EH in air show a different shape.  

Figure 3.10 presents surface tension data for 60% aqueous LiBr solution as a 

function of 2EH concentration in air. For comparison, water data obtained under the same 

measurement conditions are also shown along with the curve fit results. As can be seen, 

the surface tension for 60% LiBr solution decreases with increasing 2EH concentration 

and reaches a plateau surface tension value of 37 mN/m. By comparison, the minimum 

surface tension for 60% aqueous LiBr from Kulankara and Herold (1999) was found to 

be 42 mN/m under somewhat different conditions.  

Figure 3.10 also shows that the surface tension of aqueous LiBr is higher than that 

of water for the case with no 2EH. But when 2EH is present, the curves cross such that 

the plateau value is higher for water. One possible explanation of this crossover 

phenomenon may be attributed to the difference in 2EH solubility between aqueous LiBr 

and water. The addition of LiBr to water creates an electrolyte structure where water 

molecules group with the salt ions. This reduction in the number of free water molecules 

is thought to be a key factor in the decrease in both diffusivity and solubility of 2EH in 

this system. Although the presence of the electrolyte repels the hydrophobic part of 2EH, 

the data seems to indicate that the presence of the LiBr actually increases the surface 

concentration possibly due to the fact that the hydrophilic part of the 2EH has a stronger 

affinity for the electrolyte surface than it does for the pure water surface. The result of 

this is that for the same 2EH concentration in air, more 2EH is adsorbed on the surface 

for the aqueous LiBr and hence the surface tension is lower. 
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Figure 3.9 Surface tension of 60% aqueous LiBr versus drop frequency with 2EH concentration in air 
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Figure 3.10 Surface tension of pure water and 60% aqueous LiBr with 2EH concentration in air 
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3.3.2.2 Surface tension of aqueous LiBr with 2-ethyl-hexanol in aqueous LiBr  

The surface tension of 60% aqueous LiBr with 2EH only in the liquid was 

measured over a range of drop frequency as shown in Figure 3.11. The upper curve was 

generated in a procedure closely similar to that used to generate Figure 3.8. It shows a 

small but measurable reduction in surface tension. For comparison, an additional series of 

experiments were performed with a different procedure that was first developed by 

Kulankara (1999). 

In this case, the drop measurements were done with the tip of the drop creator 

placed inside the collection flask such that the vapor conditions around the drop are 

defined by the collected liquid. The collected liquid was the liquid left in the collection 

vessel from the previous test. The lower curve measurement was finished right after the 

upper curve measurement for each point. For the lower curve, there was no air flow. As 

shown in the lower curve in Figure 3.11, the surface tension in this configuration is 

significantly lower than the value measured with no vapor side effects (top curve). This 

indicates that the effect of the 2EH vapor is more efficient in reducing the surface tension 

for 60% aqueous LiBr as compared to water.  

 

3.4 Solubility Limit of 2EH in 60% Aqueous LiBr and Water 
 
The solubility limit is an important property affecting surface tension 

characteristics. In order to understand these effects, the determination of the solubility of 

2EH is discussed here.  
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Figure 3.11 Surface tension of 60% aqueous LiBr versus 2EH concentration in the liquid 
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 Due to the difficulty in direct determination of solubility, the usual method is to 

infer the solubility limit from the shape of the surface tension versus surfactant system 

concentration characteristics. The solubility limits of 2EH in 60% aqueous LiBr and 

water were determined here by a new method which we call the SLVSA method 

(solubility limit of vapor surfactant with adsorption). This method consists of two steps: 

conducting a calibration test series and then running the actual sample. 

The solubility of 2EH in aqueous LiBr is low, often quoted as 100 ppm based on 

surface tension measurements. However, there is considerable doubt about this figure 

based on the present surface tension measurements that imply that the system 

concentration of 2EH is largely irrelevant in determining the surface tension unless the 

entire system is in equilibrium. Thus, conclusions based on surface tension versus system 

concentration are dubious for studies that do not even mention equilibrium. Furthermore, 

it is found that 2EH adsorbs strongly and adheres to solid surfaces to the extent that very 

careful procedures are necessary to eliminate 2EH from vessels between experiments. In 

a series of initial experiments on 60% aqueous LiBr, it was found that the amount of 2EH 

adsorbed on the walls of a beaker is sufficient to cause the surface tension of a 2EH-free 

sample to reach the lowest measured value when the drop creator is positioned inside the 

collection vessel such that the vapor around the drops is saturated by 2EH evaporating 

from the walls. Based on the above described experiments, it was concluded that extra 

effort is required to assure an equilibrium condition. 

The SLVSA method was designed to account for these effects. In particular, the 

amount of 2EH that adheres to the vessel wall is taken into account. The SLVSA 

calibration involves measuring the surface tension of 2EH-free aqueous LiBr with the 



 

53 

 
 

drop creator positioned within the collection vessel. The collection vessel is prepared by 

charging with a known quantity of aqueous LiBr (50 g) and 2EH such that the system 

concentration of 2EH is known. The vessel is shaken vigorously to distribute the 2EH 

throughout the system. The measured surface tension is found to vary with the amount of 

2EH charged in the collection vessel as shown in Figure 3.12. 

To run an actual sample with saturated 2EH in aqueous LiBr, excess 2EH (17.7 

mg) was mixed with 79 g of 60% aqueous LiBr (the 2EH system concentration is 225 

ppm). This solution was mixed in a vessel with a free surface. Numerous surfactant 

droplets were observed on the free surface, supporting the idea that the 2EH liquid 

concentration was at the solubility limit. 50 g of this solution was extracted from the 

bottom of the mixing vessel in such a way as to avoid entraining 2EH from the surface. 

The resulting sample was free of excess 2EH, containing only the dissolved fraction. 

A surface tension measurement was then done on the sample to determine the 2EH liquid 

concentration. The flask used in the calibration tests was employed and the tip of the drop 

creator was positioned identically as in the calibration tests. The surface tension was 

found to be 41.4 mN/m. By interpolation from the calibration curve, the amount of 

surfactant in this 50 g sample was determined to be 1.349 mg. The solubility limit was 

then calculated as 1.349 mg / 50 g = 27.0 ppm.   

To verify the repeatability of this method, two additional tests were conducted 

with higher amounts of 2EH charged in the mixing vessel (25.2 mg 2EH in 86.7 g LiBr 

solution (the 2EH system concentration is 290 ppm) and 33.0 mg 2EH in 83.2 g LiBr 

solution (the 2EH system concentration is 400 ppm)). Although the 2EH amount in these 

cases is larger than the amount in the first case, the solution sample taken from 
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Figure 3.12 Determination of solubility limit of 2EH in 60% aqueous LiBr 
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the bottom of the mixing vessel is still expected to be at the solubility limit. The 

measured surface tension values for these two cases were 41.57 and 41.26 mN/m which 

are quite close to the first value. All three data points are plotted on Figure 3.12. The 

scatter of the surface tension is approximately ±0.1 mN/m based on these three data and 

thus the corresponding probable error of solubility in this surface tension range is 

estimated as ±0.6 ppm. Thus, based on the above measurements, the solubility limit of 

2EH in 60% aqueous LiBr at temperature of 29 °C is determined to be 27.1±0.6 ppm.  

The SLVSA method was also used to determine the solubility limit of 2EH in 

water. The results are shown in Figure 3.13. Two samples were 202.4 mg 2EH in 100 g 

water (the 2EH system concentration is 2000 ppm) and 326 mg 2EH in 100 g water (the 

2EH system concentration is 3260 ppm). 75 mg of these samples were acquired and 

tested and the surface tension was found to be 45.75±0.38 mN/m. By interpolation from 

the calibration curve, the amount of 2EH was determined to be 62.5±3.5 mg and the 

solubility limit at temperature of 27.3 °C was calculated to be 835±45 ppm. 

 

3.5 Comparison with Literature Data  

Limited literature data on the surface tension of aqueous LiBr with 2EH were 

found as shown in Figure 3.14. For comparison, our data from the lower curve in Figure 

3.11 are included in Figure 3.14. As can be seen, the data show considerable 

disagreement and scatter. However, if we discard Ziukanov’s data, the tendencies of the 

surface tension with 2EH concentration are consistent. Based on the measurement 

methods described in the original papers, all the data were obtained without controlling 
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Figure 3.13 Determination of solubility limit of 2EH in water 
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the vapor side conditions, which is shown in this study to be critical. Another factor is 

inaccuracy in the liquid concentration of 2EH. Because of the adsorption characteristics, 

some of the 2EH is found on the free surface and the walls, especially when the 

surfactant concentration is greater than the solubility limit. Therefore, the actual 

surfactant concentration in solution may be significantly different from the system 

concentration of a prepared sample. The 2EH concentrations for all data in Figure 3.14 

(including our data) are not true liquid concentrations. The difference is estimated in 

Section 4.3. In the literature, some authors (Kim and Janule, 1994; Sheehan et al., 1996; 

Gustafsson et al., 1996; Ishida and Mori, 1996) attribute the surface tension measurement 

error to dynamic effects in the liquid, i.e. the effect of time on surface tension. Our results 

show conclusively that the surfactant vapor concentration at the vapor/liquid interface 

around the drops must be controlled to obtain repeatable surface tension data. Complete 

equilibrium of the system is a time consuming process due to the very low mass 

diffusivity of 2EH in aqueous LiBr. However, the kinetics of equilibrium between the 

vapor and the liquid surface are quite fast in comparison. Since the 2EH is supplied to the 

liquid surface from the vapor in the absorption chiller application, the kinetics of 

diffusion in the liquid is not particularly important in understanding surfactant 

enhancement of absorption. 

It should be noted that our data in Figure 3.14 were obtained under different 

conditions as compared with other sources. As described in the discussion of Figure 3.11, 

the solution in the collection flask is from the drop tip and therefore, the 2EH vapor 

concentration in the collection vessel is limited by the solubility limit. For this 
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Figure 3.14 Surface tension of LiBr solution versus concentration of 2-ethyl-hexanol 
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measurement condition, the surface tension plateau is somewhat higher than the literature 

data.  

 

3.6 Discussion 

The shape of the curves of surface tension versus drop frequency shown in Figure 

3.5 for water and Figure 3.9 for 60% aqueous LiBr are different. It is believed that the 

surface tension is mainly determined by 2EH surface concentration. A discussion of this 

is deferred to the end of Chapter 4 which focuses on a quantitative discussion of surface 

concentration. 

The surface tension values for both water and 60% LiBr solution with 2EH in air, 

shown in Figure 3.10, display similar tendencies but the sensitivity of surface tension to 

2EH concentration for 60% LiBr solution is larger than that for water, especially in the 

lower 2EH concentration range. 

The surface tension results with 2EH only in the liquid are shown in the upper 

curve in Figure 3.11 for 60% aqueous LiBr. In these experiments, no 2EH was delivered 

from the vapor and the air continuously swept over the drops. In another words, the 

measurements were taken under a non-equilibrium 2EH vapor concentration condition. 

These measurement results show only a slight reduction of surface tension (as 2EH liquid 

concentration increases) from 96 mN/m with no 2EH to 86 mN/m with 200 ppm 2EH. 

Slow diffusion of 2EH from the liquid to the surface, and evaporation of 2EH molecules 

that reach the surface, result in a low 2EH surface concentration.  The diffusion rate of 

2EH molecules from the bulk to the surface is believed to be enhanced by free water 

molecules (Kim and Berman, 1996). Because there is no free water in 60% LiBr solution, 
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the diffusion of 2EH molecules from the bulk to the surface is restricted. Thus the 2EH in 

the liquid bulk slowly diffuses to the surface such that the surface concentration stays low 

and the surface tension stays high. In contrast, the diffusivity of 2EH molecules in water 

is apparently much higher than for LiBr solution, thus resulting in a higher 2EH surface 

concentration and a significant change in surface tension as shown in Figure 3.8.   

Based on Figure 3.11, it is observed that for aqueous LiBr, diffusion of 2EH from 

the liquid does not result in reduction in surface tension on the time scales of interest in 

absorption. But if the 2EH is present in vapor form, it results in a significant reduction in 

surface tension even on very short time scales.  

At first glance, it seems that the surface tension data from the lower curve in 

Figures 3.11 and 3.12 are not in agreement, because the surface tension plateau is 46 

mN/m in Figure 3.11 and 41.5 mN/m in Figure 3.12. However, this difference is due to 

different 2EH vapor concentrations. The 2EH vapor concentration in Figure 3.11 is 

limited by the 2EH solubility in the flask but the 2EH vapor concentration in Figure 3.12 

can go to a much higher value because the 2EH system concentration in the flask is very 

high. 
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CHAPTER 4  

DETERMINATION OF THE SURFACE CONCENTRATION 

 

 

4.1 Introduction 

Marangoni convection is flow caused by surface tension gradients. Surface 

tension gradients can be caused by non-uniform surface concentration of surfactant. The 

Vapor Surfactant theory (Kulankara and Herold, 1999) holds that the non-uniformities in 

surfactant surface concentration result from delivery of surfactant to the surface with the 

absorbing vapor in a spatially non-uniform manner. Based on surface tension data 

presented in Chapter 3, surface tension decreases with an increase of 2EH concentration, 

in either the vapor or liquid, for both water and aqueous LiBr. According to surfactant 

theory (Rosen, 1989) the reduction of the surface tension mainly depends on the number 

of adsorbed 2EH molecules on the surface, i.e. on the 2EH surface concentration. Thus, a 

more complete understanding of the mechanism of Marangoni convection in the system 

of interest requires knowledge of the surface concentration. 

 

4.2 Data Reduction and Gibbs Adsorption Theory 

Aqueous surfactants characteristically have a molecular structure consisting of 

both hydrophilic and hydrophobic groups. The hydrophilic group promotes solubility in 

water and the hydrophobic group is basically insoluble. As a result, surfactants 

concentrate on free surfaces with the hydrophilic group in the water and the hydrophobic 
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group oriented away from the water. The presence of surfactant on the surface changes 

the surface tension by disrupting the tightly bonded symmetry with a weaker link. Based 

on Gibbs adsorption theory, the equilibrium surface excess concentration of surfactant is 

functionally related to the surface tension and the chemical potential of each species in 

the liquid (Rosen, 1989). For a binary system where the solvent has a surface excess 

concentration of zero, the surface excess concentration of the surfactant, Γ, can be written 

as  

4.1 

  

where μ is the chemical potential of the surfactant in the liquid. For ideal solutions, the 

variation in chemical potential can be expressed in terms of the variation in mole fraction, 

x, as 

xlnRTdd −=μ  4.2 

resulting in 
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In the present study, the solute is 2EH and the solvent is either water or aqueous 

lithium bromide. In order to deduce the 2EH surface concentration from the surface 

tension data in Chapter 3, Equation 4.3 can be rewritten in terms of the mass fraction, 
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where the second form is accurate when x2EH is close to zero as in the current 

considerations (0 < x2EH <0.001). 

The Gibbs adsorption analysis is based on an equilibrium state, which implies that 

the vapor, surface and liquid are all in equilibrium. That explains why only the 2EH 

liquid concentration appears in the formulation. However, it should be noted that 

equilibration in this system is slow due to the low mass diffusivity of 2EH in the liquid. 

In addition, the Gibbs adsorption analysis cannot be applied to concentrations above the 

CMC (critical micelle concentration, a concentration in which micelles first form), 

Micelles form a separate phase in which the hydrophobic ends of surfactant molecules 

are oriented toward the micelle and the hydrophilic ends are in aqueous contact. As a 

result, when the overall concentration rises above CMC, only the size and number of the 

micelles increase, but the dissolved surfactant stays constant (Tsujii, 1997; Bikerman, 

1970). 

 

4.3 Surface Concentration Results 

4.3.1 Surface Concentration of 2-Ethyl-Hexanol in Water 

The surface tension data displayed in Figure 3.8 for water with 2EH are used to 

calculate the surface concentration. The surfactant liquid mass fraction in Equation 4.4 is 

replaced by the system mass fraction to accomplish the calculation. It is believed that this 

replacement is a good approximation due to the high solubility of 2EH in water (835 

ppm). In Figure 3.13, when the system reaches the saturation point where the surface 

tension reaches a plateau value, the amount of 2EH is approximately 78 mg in 75 g water. 
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From this figure, it can also be observed that the solubility limit of 2EH in the liquid is 62 

mg in 75 g water. Therefore, the difference between the 2EH system concentration and 

2EH liquid concentration is estimated to be about 20% ((78-62)/78) for water in this 

particular system. These surface tension data were taken with 2EH free air flowing past 

the drops. Although the vapor is far from equilibrium, the data still show a significant 

reduction in surface tension that indicates that the diffusion of 2EH from the liquid to the 

surface is relatively fast for pure water. Thus, the data are interpreted as equilibrium data.  

Figure 4.1 is a plot of surface concentration for 2EH in water, calculated from the 

surface tension data in Figure 3.8 using Equation 4.4. The surface tension data from 

Figure 3.8 is reproduced in Figure 4.1 along with a curve fit. The surface concentration 

results are computed from the curve fit. The curve fit was based on the Szyszkowski 

equation (Reid et al., 1988)  

)1ln( 2EHcxba +−=σ                   4.5 

All the data at system concentration below the saturation point (where the surface 

tension reaches a plateau) were included in the curve fit. This type of saturation point has 

been interpreted as the CMC (critical micelle concentration) by Bikerman (1970) and the 

solubility limit (Kim and Berman, 1996). In the present work, it is interpreted as the 

solubility limit. The point is determined from the data by the following steps. First, the 

plateau surface tension was calculated by averaging the surface tension data at the largest 

system concentrations. For this case, data at concentrations of 1000, 1100, 1300 and 1500 

ppm were identified as part of the plateau region by inspection of the plot. The data with 

system concentration less than 1000 ppm was then fit with a curve as in Equation 4.5.
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Figure 4.1 Surface tension and 2EH surface concentration versus 2EH system concentration (where system is water in a 
glass flask) 



 

66 

 
 

The solubility limit was determined from the intersection of the curve fit and the 

horizontal line representing the plateau.  

The 2EH surface concentration was calculated from Equation 4.4 using Equation 

4.5 resulting in 

)xcRT(1
bcx
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2EH
2EH +

=Γ  4.6 

or  
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2EH

RT-b
RT

ba
 

 
1lnσ  4.7 

The value of the surface concentration at the solubility limit (835 ppm) is 0.59 mg/m2 and 

is interpreted as the saturated surface concentration in this system. 

Figure 4.1 can be divided into several 2EH system concentration ranges. In the 

low 2EH system concentration range (for example, below 100 ppm in Figure 4.1), a 

slight reduction in surface tension is accompanied by a significant increase in the 2EH 

surface concentration. In contrast, in the high 2EH system concentration range, relatively 

small changes in 2EH surface concentration result. The increase of the surface 

concentration in the low system concentration range is attributed to population of the 

surface with 2EH molecules; while changes in the surface concentration in the high 

system concentration range are attributed to the direct influence of 2EH liquid 

concentration on surface tension (Rosen, 1989).  

Figure 4.2 presents an alternative view of the relationship between surface tension 

and 2EH surface concentration (Equation 4.7). As can be seen in Figure 4.2, the surface 

tension decreases gradually as surface concentration increases starting from a clean 

surface. However, as the surface concentration approaches the saturated value, the
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Figure 4.2 Surface tension versus 2EH surface concentration for water (Equation 4.7) 
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surface tension drops quickly. Selected surface concentration values from Equations 4.5 

and 4.6 are also provided in Table 4.1 for reference.  

 

Table 4.1 2EH surface concentration and surface tension for water with 2EH 
2EH system 

concentration  
(ppm) 

0 5 10 20 30 40 50 100 150 200 250 

Surface 
tension 
(mN/m) 

72.8 72.0 71.1 69.7 68.4 67.2 66.1 61.8 58.7 56.2 54.1 

2EH surface 
concentration 

(mg/m2) 
0.0 0.043 0.081 0.144 0.194 0.235 0.269 0.377 0.436 0.473 0.498 

2EH system 
concentration 

(ppm) 
300 350 400 450 500 550 600 650 700 800 858 

Surface 
tension 
(mN/m) 

52.3 50.8 49.4 48.2 47.1 46.0 45.1 44.2 43.4 41.9 41.1 

2EH surface 
concentration 

(mg/m2) 
0.516 0.530 0.541 0.550 0.558 0.564 0.569 0.573 0.577 0.584 0.587 

 

 

4.3.2 Surface Concentration of 2-Ethyl-Hexanol in Aqueous LiBr 

In order to find the surface concentration of 2EH in aqueous LiBr, the surface 

tension was measured for a range of LiBr mass fraction. These data were collected by 

another student with continuous consultation by the author (Zhou et al., 2001). Figure 4.3 

is a plot of 2EH surface tension versus 2EH system concentration based on those data 

along with their curve fits.  

These data were measured by the drop weight method. A series of experiments 

were done which showed that very representative results could be obtained by feeding 
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2EH free aqueous LiBr through the drop creation system while allowing the drops to 

form in a vapor environment where the 2EH vapor concentration is defined by the 

prepared sample. This method works because the surface tension of this system is much 

more sensitive to the 2EH vapor concentration than it is to the liquid concentration. The 

advantage of this approach is that it avoided the need to clean the drop creator between 

each data point. The data are presented as a function of the 2EH system concentration of 

the sample prepared in the drop collection vessel which was allowed to equilibrate in a 

sealed vessel for 24 hours after mixing.  

The system concentration of 2EH is used in place of the liquid concentration in 

the Gibbs adsorption analysis for the calculation of surface concentrations. The curve fits 

were constructed in a manner similar to that described in Section 4.3.1. In particular, the 

solubility limit was determined first by inspection of the data and then only data below 

the solubility limit concentration were used in the fit. 

Based on the curve fits for surface tension shown in Figure 4.3, the 2EH surface 

concentration was calculated (Equation 4.6) and the results are plotted in Figures 4.4 and 

4.5. Figure 4.4 is a plot of surface concentration versus 2EH system concentration and 

Figure 4.5 is a cross plot of surface tension versus 2EH surface concentration. The 

saturated 2EH surface concentration was determined for each LiBr mass fraction as 

represented by the maximum values in Figure 4.4. These saturated values are listed in 

Table 4.2 along with the solubility limits and surface tension plateau values. As can be 

seen from Table 4.2, the 2EH saturated surface concentration increases from 0.474 to 

0.904 mg/m2 as mass fraction of LiBr increases from 0 to 57%. The results listed for 60% 

aqueous LiBr are extrapolated as discussed later in Section 4.4. 
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Figure 4.3 Surface tension versus 2EH system concentration for aqueous LiBr 
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Figure 4.4 2EH surface concentration versus 2EH system concentration for aqueous LiBr 
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Figure 4.5 Surface tension versus 2EH surface concentration for aqueous LiBr 
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Table 4.2 2EH saturated surface concentration and solubility limit    
 Water 20% 

LiBr 
40% 
LiBr 

50% 
LiBr 

57% 
LiBr 

60% 
LiBr (1) 

Surface tension 
plateau (mN/m) 49.3 45.1 40.4 38.1 38.0 36.8 

Solubility limit 
(ppm) 1030 486 194 77 45 37 

Γsat (mg/m2) 0.474 0.510 0.657 0.782 0.904 0.993 
a 75.407 79.649 87.733 91.115 96.474 97.815 
b 9.4729 9.7742 12.560 15.077 17.825 19.420 

Coefficients 
in Equation 
4.5 c 0.01431 0.06849 0.21792 0.42461 0.56345 0.59719 

(1) Extrapolated results 
 

 

The increase in saturated 2EH surface concentration with increase in mass 

fraction of LiBr solution has been observed elsewhere for electrolyte solutions (Rosen, 

1989; Schick, 1962). From the point of view of molecular arrangements, this increase in 

saturated 2EH surface concentration represents a more compressed and tightly packed 

structure of 2EH molecules on the surface. For non-ionic surfactants like 2EH, the 

solubility limit can be explained by the extent of hydration of the hydrophilic heads of the 

surfactant molecules through the formation of hydrogen bonds between the water and the 

surfactant (Schick, 1962). With the reduction of free water molecules on addition of 

electrolyte, more surfactant molecules are rejected from the liquid to the surface. The 

solubility limit of 2EH in aqueous LiBr decreases with the increase of mass fraction of 

aqueous LiBr. The present results show that the presence of LiBr increases the 2EH 

surface concentration and this seems to indicate that the hydrophilic part of 2EH has a 

stronger affinity for the electrolyte surface than it does for the pure water surface. The 

result of this is that for the same 2EH system concentration, more 2EH is adsorbed on the 

surface for the aqueous LiBr and hence the surface tension is lower. 
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4.4 Discussion 

In the surface tension measurements shown in Figure 4.3, the concentration of 

2EH is the system concentration of the sample. The fact that 2EH adsorbs on the walls of 

the flask makes it difficult to accurately determine the 2EH liquid concentration in this 

low concentration range. A simple rinsing experiment was done to illustrate this point. 

The results are plotted in Figure 4.6. After mixing and equilibration of a sample, the 

surface tension of the sample was measured and then the sample was discarded and a 

fresh charge of aqueous LiBr was added to the sample flask without cleaning. The sample 

was then mixed and allowed to equilibrate, and surface tension measurements were run as 

before. This rinsing sequence was repeated and the surface tension results were examined 

as a function of the rinsing stage. The results show that after the first rinse, the measured 

surface tension is close to that found for the original sample. However, after the second 

rinse, the surface tension rises steadily toward the 2EH free value. This implies that the 

amount of 2EH clinging to the vessel walls was comparable to the amount of 2EH 

required to reduce the surface tension to the lowest level ever observed in the system. 

Thus, when a sample is made at a particular system concentration, the amount of 2EH 

dissolved in the aqueous LiBr may be as low as half of the system concentration. 

However, because the actual liquid concentrations are not known, the data in this effort is 

analyzed as if the system concentration is equal to the liquid concentration (in the range 

below the solubility limit). 

 The 2EH surface concentrations in water were calculated based on surface 

tension data obtained using two different procedures as shown in Figures 4.1 and 4.3. A 

comparison between the results is shown in Figure 4.7. The results show that the 
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Figure 4.6 Surface tension versus dilution time of sample 
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saturated surface concentrations are 0.47 mg/m2 from Zhou et al. (2001) and 0.59 mg/m2 

from my experimental data. The differences are believed to be associated with the 

approach to equilibrium in the surface tension measurements. The present surface tension 

data were taken with 2EH in the liquid sample used to form the droplets and 2EH free air 

flowing past the drops. In this mode, 2EH diffuses from the liquid to the drop surface 

where it adsorbs on the surface and lowers the surface tension. Although the vapor is 

clearly not in equilibrium, the values of surface tension obtained seem to indicate that the 

delivery of 2EH to the surface by diffusion from the liquid is rapid enough so that the 

surface is relatively close to equilibrium with the liquid. In contrast, the data of Zhou et 

al. (2001) were taken in a mode that was found useful for aqueous LiBr but extended to 

water for consistency. This method emphasizes equilibrium between the vapor and the 

liquid surface and it works well for aqueous LiBr where diffusion in the liquid is very 

slow but it may not be appropriate for water. The calculated surface concentrations from 

these two data sets, shown in Figure 4.7, show similar trends. The fact that the surface 

tension plateau value is lower for the data set with air flowing seems to indicate that this 

data set is closer to equilibrium. 

In order to measure the effect of surfactant system concentration on the surfactant 

surface concentration, a parameter, symbolized by x20, is introduced (Rosen, 1989). x20 is 

a concentration required to produce a 20 mN/m reduction in surface tension. Based on 

theoretical analysis by Rosen (1989), for most surfactants 20 mN/m reduction in surface 

tension due to the adsorption of surfactant results in a surfactant surface concentration 

close to its saturated value (0.84-0.99 Γsat). Using this parameter, the strength of 

adsorption and micellization processes can be further indicated by the ratio of xsol  
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Figure 4.7 2EH surface concentrations for water computed from different surface tension data sources 
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Table 4.3 2EH system concentration producing a 20 mN/m reduction in surface 
tension, x20, and the ratio of xsol/x20 along with saturated surface concentration and 
solubility limit 
 Water 

(1) 
Water 

(2) 
20% 
LiBr 

40% 
LiBr 

50% 
LiBr 

57% 
LiBr 

Γsat (mg/m2) 0.587 0.474 0.510 0.657 0.782 0.904 
xsat (ppm) 858 1030 486 194 77 45 
x20 (ppm) 286 507 99 18 6.5 3.7 
xsol/x20 3.0 2.0 4.9 10.8 11.8 12.2 

(1) From Figure 4.1 
(2) From Figure 4.3 (Zhou et al. 2001) 

 

(solubility limit)/x20. A large ratio of xsol/x20 indicates that after the system concentration 

reaches x20, surfactant can still be dissolved in the solvent. Therefore, the micellization is 

inhibited and adsorption is facilitated. A relatively small ratio of xsol/x20 indicates that the 

formation of micelles is facilitated more than adsorption. In the current study, the x20 and 

the ratio of xsol/x20 are calculated for all cases.  The results are listed in Table 4.3. 

The xsol/x20 ratio increases with the mass fraction of aqueous LiBr, which 

indicates that the adsorption of 2EH is more favorable than the formation of micelles. 

Therefore, 2EH molecules are adsorbed on the surface more readily at higher values of 

mass fraction of LiBr. In addition, x20 is about one-third of the solubility limit or less. 

This indicates that a small increase in 2EH system concentration results in a large 

reduction in surface tension and a rapid increase in surface concentration. In other words, 

the reduction in surface tension is mainly caused by the 2EH surface concentration at low 

values of system concentration.  

Values for 2EH surface concentration versus surface tension for water and 

aqueous LiBr are shown in Figures 4.2 and 4.5. The results of the surface tension versus 

2EH vapor concentration are shown in Figure 3.10. By combining both results, the value 
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of the 2EH surface concentration corresponding to a certain 2EH vapor concentration in 

air can be estimated.  

Figure 4.8 shows the 2EH surface concentration versus 2EH vapor concentration 

in air for both water and 60% aqueous LiBr. The curves terminate at the saturated surface 

concentration. It can be seen from Figure 4.8 that when the 2EH surface concentration 

reaches the saturation value (the end points of the curves), the 2EH vapor concentrations 

are 1180 and 615 ppm for water and 60% aqueous LiBr, respectively. Because the mixed 

air and 2EH vapor density is quite low (≈ 1.2 kg/m3), only a small amount of 2EH is 

required to achieve a certain vapor concentration and the results in Section 3.3.2 show 

that adding such a small amount of 2EH to the vapor has a dramatic effect on surface 

tension. This demonstrates the sensitivity of this system to vapor borne surfactant.  
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Figure 4.8 2EH surface concentration versus 2EH vapor concentration in air 
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CHAPTER 5 

EXPERIMENTAL STUDY OF MARANGONI CONVECTION IN 

ABSORPTION/CONDENSATION IN THE PRESENCE OF 

SURFACTANT VAPOR 

 
 

5.1 Introduction 
 
 

The effect of 2-ethyl-hexanol (2EH) vapor on the surface tension was discussed in 

Chapter 3. It was concluded that the surface tension decreased significantly with an 

increase in 2EH vapor concentration. Based on surfactant theory, the reduction of surface 

tension is mainly due to the adsorption of 2EH on the surface. Non-uniform surface 

concentration implies surface tension gradients that drive Marangoni convection. One of 

the key aspects of this chapter is the demonstration that non-uniform absorption or 

condensation results in significant Marangoni flows when 2EH is present in the vapor. 

The importance of surfactant vapor can be easily demonstrated in a bench top test. 

In this test, a 2EH drop was held above the surface of a quiescent pool of aqueous lithium 

bromide (LiBr) at atmospheric pressure. When the surfactant drop was positioned near 

the surface, the surface was observed to move away from the point right below 2EH drop. 

This movement is apparently caused by lower surface tension at the point below the 2EH 

drop due to adsorption of 2EH vapor from the drop. Similar results were obtained for 

water although the induced surface motion was found to be weaker than that for aqueous 

LiBr. 
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In this chapter, a series of absorption/condensation tests are discussed. These tests 

were designed to observe Marangoni convection with controlled 2EH vapor 

concentration in a configuration amenable to modeling. The absorption rates are 

quantified by recording the pressure history.  

 

5.2 Experimental Apparatus and Procedure 

5.2.1 Description of the Measurement Apparatus 

The absorption/condensation pool apparatus consists of a test chamber, cooling 

system, sample flask, mixing flask, pipe and vacuum system, pressure and temperature 

transducers and a lighting and video recording system. A schematic of this apparatus and 

a photograph are shown in Figures 5.1 and 5.2, respectively.  

The test chamber, a vacuum vessel that houses the absorption/condensation pool, 

is made of transparent plastic with diameter (I.D.) by height of 10 × 11 cm. The cover of 

the vessel is sealed by a rubber O-ring between the cover and the chamber. A glass petri 

dish (diameter (O.D.) by height = 9 × 5.0 cm) is placed inside this vessel to hold the 

sample solution. The purpose of using the petri dish was to simplify the cleaning 

procedure and avoid contact between the LiBr sample and the plastic to prevent chemical 

attack.  

The cooling system consists of a thermoelectric cooler (the cooling capacity 

varied with liquid pool temperature from 0.6 to 1.1 W), heat sink and a fan. The 

thermoelectric cooler is installed on the underside of the bottom of the chamber. Thermal 

grease was applied on both sides of the cooler and thermal grease with a thermal pad 

were applied between the chamber and the petri dish, to ensure good thermal contact.  
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Figure 5.1 Schematic of absorption/condensation pool apparatus 
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Figure 5.2 A photograph of the absorption/condensation pool apparatus 
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A sample flask was connected to the chamber to provide controlled amounts of 

both 2EH and water vapor. The weights of both 2EH and water in the sample flask were 

measured by a balance with a resolution of 0.1 mg. A heater was used to warm the 

sample flask to ensure that the sample vaporized totally. The mixing flask provides 

sufficient volume such that the pressure remains below the saturation pressure at room 

temperature (this avoids condensation of the sample). The mixing flask is used to store 

the vapor sample before introduction to the test chamber. 

Five valves are used to support different functions during the experiments. The 

system pressure and temperature are monitored using a pressure transducer with a 

resolution of 0.1 mmHg and three thermocouples with a resolution of 0.1°C. The 

thermocouples were positioned at the center, the edge in the solution and the vapor, 

respectively.  

In order to prevent leakage around the thermocouples, the feedthroughs for the 

thermocouples were cast in a plastic plate (see Figure 5.3) that then was glued on the wall 

of the chamber, and the thermocouple wires were soldered on the feedthroughs on each 

end. Because the feedthroughs were copper cylinders, they are expected to be close to 

isothermal at both ends and thus do not cause errors in the thermocouple circuit. 

Flow visualization was achieved by illumination of particles on the liquid surface. 

The particles are chemically inert silver coated micro-spheres (PQ Corporation, 2001). 

The particles were initially mixed with the sample solution. After a series of tests, it was 

found that the best observation effect was achieved with 0.015 g of particles in 30 g of 

60% aqueous LiBr or 17.5 g of water. A non-reflecting black paper was placed beneath 

the petri dish to improve contrast. The camera was positioned over the chamber looking 
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Figure 5.3 Schematic of the connection between the thermocouples and the 
feedthroughs on the wall of the chamber  

 
 
down normal to the liquid surface. The images were recorded in VHS video format and 

transferred to a computer for further processing. 

 

5.2.2 Experimental Procedure 

The main steps of the experimental procedure are as follows: 

1. The system was cleaned by compressed air and detergent water. The piping 

system was flushed with compressed air for one hour and the sample flask, the mixing 

flask and the test chamber were rinsed by detergent water to eliminate any 2EH 

remaining in the system from previous runs.  

2. The thermal pad and thermal grease on the upper surface of the plastic plate were 

checked or replaced if necessary to ensure good thermal contact. 

3. The absorption/condensation pool was set up. The petri dish with sample solution 

was first positioned in the chamber. In order to create a pool with a 3 mm depth in the 

Thermocouple 

Plastic plate 

The wall of the chamber 

The feedthroughs 
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petri dish, the sample solution for each run was either 29.2 g of 60% aqueous LiBr 

(density of 60% aqueous LiBr = 1.717 kg/m3) or 17.0 g of water. Then the thermocouples 

were positioned in the solution; one was in the center, one was in the edge of the pool, 

and another one was in the vapor space, respectively. These thermocouples were fixed by 

adhesive on the side wall of the petri dish. The liquid sensors were positioned at the mid-

height of the liquid layer and the readings are interpreted as the average liquid 

temperature. 

4. 0.015 g of silver coated micro-sphere particles (diameter = 50 μm) were 

introduced to the pool and the apparatus was shaken to distribute the particles on the 

surface and in the liquid uniformly. The cover of the chamber was sealed.  

5. A metered amount of 2EH and water were introduced to the sample flask, which 

was then connected to the system with all valves in the system closed. 

6. The camera was mounted above the chamber and connected to the VCR, and two 

fluorescent lights were placed around the chamber. Clear visualization was achieved by 

adjusting the lighting angle. 

7. The chamber, and the mixing flask and the sample flask were evacuated with a 

vacuum pump. The chamber and the mixing flask were first evacuated with Valves 5 and 

3 closed and then the sample flask was evacuated with Valves 2 and 3 closed. The test 

section was pumped on until air bubbles stopped rising from the liquid. The evacuation of 

the sample flask was stopped when the pressure reached 50 mmHg. This pressure was a 

compromise between limiting the effect of air and avoiding removal of 2EH and water 

(the saturation pressure of water ranges from 23.8 to 31.8 mmHg when the temperature 

changes from 25 to 30°C). Because of the small size of the sample flask (5 ml), the air 
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mass fraction in the sample flask at the end of the evacuation process calculated on the 

basis of 1 g of water was 0.04%. Based on the analysis by Dai and Zheng (1980), 0.1% 

air mass fraction causes 1% degradation of the performance in actual machines. 

Therefore, the effect of this 0.04% of air on the absorption/condensation in the current 

study is considered negligible (further discussion of this is given in Section 5.3.3).   

Because of the significant effect of air in this type of system (Dai and Zhang, 

1980; Suzuki, 1996), the system leakage rate was checked before each run. The 

maximum leakage rate tolerated was 1.2 mmHg/hr (the time needed for one run was 

about a half hour). 

8. The sample flask was warmed by the sample flask heater, with Valve 5 opened 

and Valve 2 closed, and the sample vapor was delivered to the mixing flask. Thus, unlike 

the studies by Elkassabgi and Perez-Blanco (1991) and Fujita and Hihara, (1999), the 

present study introduced 2EH into the absorption/condensation pool from the vapor not 

from liquid. 

9. After Valve 2 was opened, the pressure and temperature readings were recorded 

and the surface motion was captured on video. During each run, three phases were 

observed. The first phase was adiabatic absorption/condensation, where no cooling or 

heating power was applied. This phase started with an initial surface motion when the 

2EH vapor was delivered and ended with no surface motion. In the second phase, the 

thermoelectric cooler was turned on. This phase led to a steady state surface motion with 

the particles circulating back and forth between the center and the edge of the circulation 

region. In the final phase, the power to the cooler was reversed to supply heat to the test 
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section. This phase ended with a motionless surface. A sample data sheet showing details 

of the procedure is included as Appendix B. 

 

5.3 Main Issues in the Experiments 

5.3.1 Preparation of a Vapor Sample  

Preparation of a vapor sample required weighing small quantities of both water 

and 2EH. In order to obtain the desired pressure, the amount of water was 1 g. The 

smallest 2EH drop from a syringe needle was about 2.5 mg, which resulted in a 2EH 

concentration (in 1 g water) of 2500 ppm, which was too high as a starting point. It was 

found that a smaller drop of about 0.2 mg could be captured on a fine wire (0.02 mm 

diameter). This allowed preparation of a sample with 200 ppm 2EH. 

By vaporizing all of the sample in the sample flask, the 2EH vapor concentration 

was determined by the liquid sample charged in the flask. To ensure all liquid in the 

sample flask was vaporized, the liquid was warmed by the sample flask heater. It was 

determined by weighing the sample flask before and after a run, that the amount of 

sample left in the sample flask was too small to be measured.  

 

5.3.2 The Effect of Evacuation on the 2EH Concentration 

Two approaches were tried in introducing 2EH to the sample flask. One approach 

was to evacuate the system first and then introduce 2EH to the sample flask using a 

syringe. The other approach was to deliver a known amount of water and 2EH to the 

sample flask first at atmospheric pressure and then connect this flask to the vacuum 
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system. It was found that the first approach did not work because all of the 2EH in the 

syringe was sucked into the sample flask under the low pressure condition and thus the 

amount of 2EH introduced to the flask could not be controlled and determined. 

Therefore, this approach was not pursued.  

In order to use the second approach, the effect of evacuation of the sample flask 

on the 2EH concentration needed to be quantified.  Table 5.1 shows the change of the 

amount of sample in the sample flask before and after evacuation. During this test of the 

evacuation procedure, the sample flask was weighed initially, and then the sample flask 

was pumped down to 50 mmHg (the actual pressure used in the experiments) and 

weighed again after air was reintroduced into the sample flask such that the pressure in 

the flask was back to ambient pressure. The difference in weight was a loss of sample 

during the evacuation process. It was found that the amount of sample evaporated during 

the evacuation was on the order of 0.005 g. Due to intermolecular forces in the liquid, the 

2EH concentration in the vapor would be expected to be lower than that in the liquid. 

Even if it is assumed that the 2EH vapor concentration is the same as that in the liquid, 

the evacuation process only resulted in a 0.044% (0.005 g/ 1.14 g) change in the 2EH 

concentration, which is considered negligible. 

 

Table 5.1 The change of the amount of sample in the sample flask before and after 
evacuation 

 Weight of sample in the sample flask 

 Before evacuation (g) After evacuation (g) 
Weight change (g)

Run 1 1.150 1.146 0.004 

Run 2 1.144 1.142 0.002 

Run 3 1.124 1.117 0.007 
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5.3.3 The Particles for Visualization  

The particles used in current study were silver coated micro-sphere particles (PQ 

Corporation, 2001). The diameter and density of these particles are 50 μm and 0.7 g/cm3, 

respectively. Because the size of particles is small and the density is close to that of 

water, the particles tend to suspend in the liquid bulk or float on the surface. Therefore, 

the surface movement can be easily visualized when these particles are added to the 

system.  

 

5.3.4 The Cooling System 

The cooling was supplied by a thermoelectric cooler (i.e. cooling chip) (Melcor, 

2000). During operation, DC current flows through the cooler causing heat to be 

transferred from one side to the other and creating a cold side and a hot side. The cooling 

capacity depends on the configuration of the chip, the electrical input and the temperature 

on both sides of the chip as follows (Melcor, 2000): 
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where the coefficients a, p, k are known for a particular chip and the voltage, V, is 12 V. 

For a particular cooling chip, the configuration parameters N and G can be found from 

the manufacturer. Thus, by substituting Equation 5.2 for the current into Equation 5.1, the 

cooling is directly related to the temperatures on both sides of the chip. For the present 

study, the solution temperature and the temperature on the heat sink were measured. 
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Equations 5.1 and 5.2 were solved for the cooling rate by combining with a heat 

conduction model of the wall of the vessel and the heat sink plate. It was found that the 

cooling rate varied from 0.6 to 1.1 W for the tests reported here.     

 

5.3.5 Examination of Measurement Accuracy 

The system pressure and temperature were measured by a pressure transducer 

system with a resolution of 0.1 mmHg and a thermocouples system with a resolution of 

0.1 °C. The mass of the sample solution was measured using a balance with resolution of 

0.1 mg. The estimated uncertainty for the internal energy of the sample solution for a 

typical run with 30 g of 60% aqueous LiBr is: 
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5.4 Absorption of Water + 2EH Vapor in Aqueous LiBr 

5.4.1 Adiabatic Absorption  

At the beginning of each run, the liquid in the solution pool was stationary and the 

particles were uniformly distributed on the surface. During test preparation Valve 2 (in 

the line between the absorption/condensation pool chamber and the mixing flask) was 

closed. Then the valve was abruptly opened and the mixed sample vapor was allowed to 

flow into the chamber. No cooling was applied during this initial phase of the experiment. 

The purpose of this phase was to observe the surface movement resulting from adiabatic 



 

93 

 
 

absorption in an aqueous LiBr pool. It was found that the observed Marangoni flow 

depended on the vapor concentration of 2EH and so the observations are keyed to that 

variable. 

 

5.4.1.1 Adiabatic Absorption with ≥ 2500 ppm 2EH 

Figure 5.4 shows a typical example of the surface movement for high 2EH vapor 

concentration. The experiment was conducted with 2EH vapor concentration of 2500 

ppm. The series of images show the evolution of the surface with time. At time = -2 sec 

the pool was static. At time = 0 sec (the moment when Valve 2 was opened), the entire 

surface began to move. Cellular motion could be observed immediately although it took 

some time before the surface particles made the cells unmistakable. At time = 40 sec, the 

cells became very clear. Although not visible in Figure 5.4, in each cell there was a 

circulation with particles in the liquid bulk moving from the center to the edge of the cell 

on the surface and back from the edge to the center of the cell under the surface. With 

time, these cells grew and merged and the surface movement died out. The adiabatic 

absorption process took about 3 minutes from sample vapor introduction until the surface 

movement stopped. 

As a part of the observations of the surface movement, the pressure histories for 

several high 2EH vapor concentrations were recorded to quantify the effects of 2EH 

vapor concentration on the surface movement. Figure 5.5 shows a pressure history at 

2EH vapor concentration of 5600 ppm. It should be mentioned that during the 

measurements,  one concern   was  water  condensation  in  the pipes  and the  wall  of the  
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Figure 5.4 Evolution of surface during adiabatic absorption (2EH vapor concentration 

= 2500 ppm, sample solution = 60% aqueous LiBr) 
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mixing flask. Therefore, a test was run with no 2EH in the system and no aqueous LiBr in 

the petri dish, the results of this run are included as the top curve in Figure 5.5. In 

addition, as a baseline, the pressure with no 2EH in the vapor was measured and the 

results are plotted. The initial pressure was taken while Valve 2 was closed. In order to 

reach the same initial pressure in the mixing flask for these runs, the amount of water 

introduced to the sample flask was close to the same for each (about 1 g).   

As can be seen, without absorption the pressure decreased from 26.5 to 

25.9 mmHg in 500 sec which is small compared to the pressure changes of interest (~ 15 

mmHg). The test with no 2EH shows a relatively steady decrease with time with a total 

pressure change of about 11 mmHg in 500 sec. No surface movement was observed in 

this case, but it is assumed that there was weak natural convection in the pool. In contrast, 

in the case with 2EH vapor concentration of 5600 ppm, the pressure decreased more 

quickly. The multi-cell flow pattern was observed in this case. 

The multi-cell pattern is believed to be caused by weak Marangoni convection 

coupled with natural convection. The Marangoni convection was caused by adsorption of 

surfactant (2EH) on the liquid surface as 2EH molecules arrived with the water vapor (it 

is noted that the liquid was 2EH free initially). When the sample vapor entered the vessel, 

absorption of water vapor began accompanied by adsorption of 2EH on the liquid 

surface. Marangoni convection driven by adsorbed 2EH amplifies spatial non-

uniformities by bringing fresh solution to the surface at locations of high absorption. 

Under low-flux absorption conditions such as adiabatic absorption, this leads to a cellular 

convection. The boundary of each cell was constrained by adjacent cells. As seen in 

Figure 5.4, the particles collected between the cells where the surface flows  
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Figure 5.5 The pressure history during adiabatic absorption for high 2EH vapor concentrations 
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collided. When the 2EH concentration is higher than 1500 ppm, relatively low absorption 

rates were observed and this is attributed to increased vapor side mass transfer resistance. 

When the 2EH vapor concentration is very high (>15000 ppm), only weak Marangoni 

flow was observed. 

 

5.4.1.2 Adiabatic absorption with 400-1500 ppm 2EH 

The surface flow in adiabatic absorption with a vapor concentration of 400 ppm 

2EH is illustrated in Figure 5.6. The pressure histories for 2EH vapor concentrations of 

400 and 1500 ppm are shown in Figure 5.7. For comparison, the pressure histories for the 

cases shown in Figure 5.5 are also included in this figure. In Figure 5.6 it can be seen that 

the flow features before 20 sec are similar to the high 2EH vapor concentration case 

shown in Figure 5.4. When the vapor sample was introduced to the vessel (the moment 

defined as time = 0 sec), the multi-cell surface movement started. For 2EH concentration 

in the range 400 – 1500 ppm, the multi-cell pattern organized faster because the surface 

velocities were higher. For these cases, the velocity continued to increase and ultimately 

the multi-cell pattern broke down into a much less organized flow involving the entire 

surface of the pool (from time = 40 sec). Particles suspended in the liquid were observed 

to move rapidly (~ 2 cm/sec) and apparently randomly.  

In addition, a rapid decrease in the pressure was also observed beginning around 

40 to 50 sec as seen in Figure 5.7. This corresponded to the time when the multi-cell flow 

broke up and vigorous surface motion was observed. The pressure drops observed in the 

cases with 2EH concentration of 400 to 1500 ppm were much faster than for the case 

with high 2EH concentration (5600 ppm).  
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The breakdown of the multi-cell flow is apparently due to strong Marangoni flow. 

Initially the absorption flux is relatively low and the multi-cell pattern appears. As time 

goes on, the absorption rate increases due to stronger Marangoni flow. This process 

finally stops because the pressure drop implies a lower absorption driving potential. 

When the 2EH vapor concentration is lower than 200 ppm, no Marangoni flow was seen. 

For those cases, absorption was slow and steady and assumed to be accompanied by 

weak natural convection in the liquid.  

An estimate was done to determine the amount of 2EH delivered to the surface, 

and the resulting surface concentration was compared with the saturated surface 

concentration. In this calculation, it was known that for 60% LiBr solution the solubility 

of 2EH in the liquid is 27 ppm (Section 3.4) and the 2EH saturated surface concentration 

is 1 mg/m2 (Section 4.3.2). Therefore, the amount of 2EH needed to reach the solubility 

limit and the saturated surface concentration is known (the mass of LiBr solution = 30 g, 

the surface area of the pool = 54 cm2) are 0.81 mg (30 g 60% LiBr solution × 27 ppm = 

0.81 mg) and 5.4 × 10-3 mg, respectively.  

mgppmgxmm solssol 81.02730 =⋅==   
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For the high 2EH vapor concentration case (2EH vapor concentration = 2500 

ppm), the solution temperatures before delivering the sample vapor and when the multi-

cell flow died out were 21.5 and 33.5°C, respectively. Thus it was calculated that the 

increase of internal energy of the solution during this phase was 670 J. Based on an 

energy balance, this energy implies that the amount of water vapor absorbed in the pool
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Figure 5.6 Evolution of surface during adiabatic absorption (2EH vapor concentration 
= 400 ppm, sample solution = 60% aqueous LiBr)  

 



 

100 

 
 

Time (s)

0 50 100 150 200 250 300 350 400 450 500

P
re

ss
ur

e 
(m

m
H

g)

0

5

10

15

20

25

30

No 2EH, no solution 
No 2EH
2EH vapor concentration = 400 ppm
2EH vapor concentration = 1500 ppm
2EH vapor concentration = 5600 ppm

Initial 2EH mass fraction in liquid: 0 ppm
Initial temperature in the pool: 21.5 + 2.0°C
Initial mass fraction of solution: 60% aqueous LiBr
Temperature at the end of process: 33.4 + 1.9°C

 

Figure 5.7 The pressure history during adiabatic absorption including low 2EH vapor concentrations 
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was about 0.28 g. If the 2EH vapor was mixed with water vapor uniformly and if it 

changed phase like a zeotrope without leaving an excess of one constituent behind in the 

vapor, then the amount of 2EH vapor absorbed in the pool along with water vapor was 

0.7 mg.  This amount is very close to the amount of 2EH needed to reach the solubility 

limit and the saturated surface concentration (0.81 mg). For comparison, a similar 

calculation was done for the low 2EH vapor concentration case (2EH vapor concentration 

= 400 ppm) and it was found that the amount of 2EH transferred to the pool during the 

time period from the start of the test to the time when the multi-cell flow broke up was 

0.3 mg, which was much smaller than the amount of 2EH needed to reach the saturation 

point (0.81 mg).  

Therefore, it is concluded that the break-up of the multi-cell flow can be 

explained as follows. If the 2EH vapor concentration is in the range of 400 to 1500 ppm, 

the 2EH concentration in the liquid does not reach the solubility limit and 2EH surface 

concentration does not reach the saturated surface concentration after the multi-cells flow 

breaks up. Thus, as the absorption flux increases the Marangoni forces increase until they 

pass the critical value that allows the multi-cell structure to exist. The absorption rate was 

significantly enhanced by the vigorous Marangoni flow, as shown by the pressure 

decrease and this point is discussed further in Section 5.6. 

In addition, the time period during which multi-cell motion was observed was 

much different between high and low 2EH vapor concentration cases. It was found that 

the multi-cell motion in the high 2EH vapor concentration case (180 sec at 2500 ppm in 

Section 5.4.1.1) lasted much longer as compared to the low 2EH vapor concentration case 

(40 sec at 400 ppm in Section 5.4.1.2). This is attributed to the effect of 2EH saturation 
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surface concentration. At high 2EH vapor concentration, the 2EH surface concentration 

reached the saturation surface concentration quickly and therefore, the absorption of 

water was slow after the surface was saturated and the duration of the multi-cell pattern 

was longer. By comparison, in the low 2EH vapor concentration case, the surface 

concentration remained below the saturated condition until the surface motion 

destabilized under the influence of larger surface concentration gradients.  

Suzuki et al. (1996), Morrison and Deans (1997) and Morrison et al. (1998) also 

found a decrease of absorption and condensation rates with too high vapor concentration. 

They attributed this reduction to the vapor side mass transfer. Based on the measurements 

of the pressure history and the observations of the surface movement in the present study, 

it is believed that the absorption rate during the multi-cell flow is smaller than that 

accompanying the vigorous surface motion. Because no surface movement was observed 

both with no 2EH and very high 2EH vapor concentration (7800 ppm), it is expected that 

there is an optimal 2EH vapor concentration that maximizes Marangoni convection and 

absorption rate. Near the optimal 2EH concentration, large surface tension gradients form 

during absorption and the 2EH vapor mass transfer resistance is small. If the 2EH vapor 

concentration is above this optimal concentration, the 2EH mass transfer resistance limits 

the absorption rate.  

 

5.4.2 Absorption with Cooling  

After the surface movement associated with adiabatic absorption stopped 

(~500 sec) for the case with 2500 ppm 2EH, the apparatus was shaken to redistribute the 

particles uniformly on the surface of the pool, and then cooling was applied (the cooling 
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power varied with the solution temperature from 0.6 to 1.1 W). The purpose of this 

experiment was to observe surface movement due to spatially non-uniform cooling.  

Figure 5.8 is a typical series of images from one of the cooling experiments. This 

experiment was conducted with a 2EH vapor concentration of 2500 ppm. It was found 

that at time = -2 sec, the particles are uniformly distributed and motionless. At time = 0 

sec (defined as the beginning of the surface movement, which happened 65 sec after the 

cooling was turned on), a surface movement was observed near the edge of the cooling 

chip. At time = 1 sec, a particle free circular region formed near the center of the pool. 

The average surface speed from 0 to 1 sec was estimated to be 1 cm/s (note: the diameter 

of the thermal pad is 1.5 cm). From 2 to 60 sec, the surface changed continuously with 

the diameter of the particle free circle increasing until reaching a steady state diameter of 

4 cm. This surface movement appeared as a single cell, in contrast to the multi-cell case 

described in Section 5.4.1. After the particles floating on the surface stopped moving at 

60 sec, the flow below the surface was still in motion as particles could be seen moving. 

They moved from the center toward the edge near the surface with a speed of 

approximately 0.5 cm/s and then moved back from the edge to the center underneath the 

surface with a speed of approximately 0.25 cm/s.  

For these cases with cooling, the surface movements observed over the range of 

2EH vapor concentrations from 600 to 4600 ppm showed similar features. Figure 5.9 

shows another example, also at 2500 ppm, which shows a small variation in the flow 

pattern. The surface movement began 36 sec after the cooling was turned on in this case. 

It is seen that two cells formed around the edge of the cooling chip, visible at 1 sec, and 

then the cells appeared to merge starting at 2 sec. The other features were similar to that 
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in the example shown in Figure 5.8. Figure 5.10 shows another variation. The surface 

movement began about 30 sec after the cooling was turned on. At time = 0 sec (defined 

as the beginning of the surface movement), a surface movement was observed near the 

edge of the thermal pad, which began to move away from the center. At the same time, 

the particles located near the circumference of the petri dish detached and moved toward 

the center. After some time, the particles accumulated in an annulus visible from 

approximately 5 sec on. This movement from the circumference toward the center was 

apparently caused by condensed water and 2EH on the petri dish wall, which reduced the 

surface tension near the wall causing a surface tension force toward the center. 

A cooling test was conducted without 2EH in the vapor. Before cooling was 

applied, the solution temperature was 30.2°C due to adiabatic absorption done first. At 30 

min after the cooling was applied, the temperature was 20.3°C at the center and 25.0°C at 

the edge of the pool. During this 30 min period, the pressure decreased from 25.5 to 22.9 

mmHg and no surface movement was observed. Natural convection would be expected to 

cause surface movement from the edge to the center of the pool since it was cooled in the 

center at the bottom, but such flow was not observed. Therefore, it is concluded that 

natural convection is not very strong in this system.   

For the case with 2EH in the vapor, the explanation for the single cell surface 

movement observed with cooling is proposed as follows. When the solution was cooled 

in the center of the pool, the localized cooling caused more water vapor absorption and 

this brought 2EH to the surface locally. The 2EH surface concentration increased causing 

the surface tension to be lower in this center range compared with near the edge of the 

pool. The surface tension gradient exerts a surface force which drives the particles toward 
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Figure 5.8 Evolution of surface with cooling from the center underneath the pool (2EH 
vapor concentration = 2500 ppm, sample solution = 60% aqueous LiBr) 
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Figure 5.9 Evolution of the surface with cooling from the center underneath the pool 

showing two cells at 1 sec (2EH vapor concentration = 2500 ppm, sample 
solution = 60% aqueous LiBr) 
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Figure 5.10 Evolution of the surface with cooling from the center underneath the pool 

showing an annulus ring at 60 sec (2EH vapor concentration = 2500 ppm, 
sample solution = 60% aqueous LiBr) 
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the pool edges. As sketched in Figure 5.11, it was observed that after the surface particles 

stopped expanding, submerged particles continued to circulate in an annular ring whose 

I.D. is the cooling chip and whose O.D. is the surface particle perimeter. In the center 

area above the cooling chip, the flow was very weak like a dead zone.  

The detachment of particles located near the circumference of the petri dish is 

believed to be due to condensation of vapor on the wall of the petri dish. When the 

condensate flows into the pool, it lowers the surface tension at the edge of the Petri dish 

resulting in the flow from the edge toward the center for cases with cooling. 

 

5.4.3 Evaporation with Heating 

Surface movement was also observed when the solution was heated (instead of 

cooled) in the center after the multi-cell motion died out. In this kind of experiment, the  

 

 

Figure 5.11 Cross sectional schematic of the pool showing recirculating flow to explain 
surface clearing seen in Figures 5.8 to 5.10 
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heating  was  achieved  by  the  same  thermoelectric  chip by reversing the polarity of the 

power connection to the chip. The purpose in conducting this experiment was to observe 

the differences in the surface movements over a range of conditions.  

Figure 5.12 shows an example of this surface movement. The 2EH vapor 

concentration was 2500 ppm. The heat applied by the thermoelectric chip can be 

calculated based on the solution temperature. The minimum and maximum heat applied 

in the duration of observation (5 min) were 1.5 and 5.2 W and corresponding average 

heat in this duration was 2.9 W.  

Before the heat was applied, the particles were distributed on the surface 

uniformly. At time = 0 the heat was applied. The surface remained stationary until time = 

2 min 30 sec, when a very slow movement from the edge of the pool toward the center 

was observed. From 2 min 30 sec to 3 min, the particle distribution caused by surface 

motion was different from that seen with cooling. The speed of the particles was about 

0.1 mm/s, which was very slow compared with the cooling cases described in Section 

5.4.2 (10 mm/s). At time = 3 min, the temperatures in the center and the edge of the pool 

were 31.6 and 26.5°C, respectively. Around time = 3 min 30 sec, a distinct second 

surface movement was observed. Although this movement was also from the edge toward 

the center of the pool, a clear difference was that the particles detached from the wall of 

the petri dish in this second movement. The speed of the particles in this second 

movement was 0.5 mm/s. The particles in the second movement did not mix with the 

particles in the first movement and instead surrounded the particles from the first 

movement and formed an annular ring. After 5 min the surface movement stopped.
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Figure 5.12 Evolution of the surface when heating was applied from the center 
underneath the pool (2EH vapor concentration = 2500 ppm, sample solution 
= 60% aqueous LiBr) 
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The first surface movement is believed to have been caused by evaporation of 

2EH on the surface. When the solution was heated in the center of the pool, 2EH 

evaporated in the area where the solution temperature was relatively high. When the 

surface tension was high enough in the center due to the low 2EH surface concentration 

caused by evaporation of 2EH, surface tension caused a flow from the edge toward the 

center of the pool. The second surface movement is believed to have been caused by 

condensation of vapor on the walls of the petri dish similar to that explained in the 

Section 5.4.2. When sample vapor condensed on the wall of the petri dish, it caused a 

lower surface tension of the solution near the wall. Thus, particles along the wall flowed 

toward the center. 

 

5.5 Condensation of Water + 2EH Vapor 

A similar series of tests were run with pure water in the pool and the results of 

these tests are reported on this section. 

5.5.1 Adiabatic Condensation  

Before introducing the vapor sample to the test vessel, the system was evacuated 

and the particles were uniformly distributed on the water surface. The water pool 

appeared stationary. Then Valve 2 (in the line between the test vessel and the mixing 

flask) was abruptly opened to allow the vapor sample to flow to the test vessel. The 

purpose of this experiment was to observe the surface movement in a water pool 

accompanying condensation of water + 2EH vapor. 
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Figure 5.13 shows a typical example of the results. The experiment was 

conducted with a 2EH concentration of 10300 ppm in the vapor  (note that only in such 

high 2EH vapor concentration a clear flow pattern was seen). The temperature in the pool 

before delivering the vapor sample was 20.1°C (corresponding to a saturation pressure of 

17.7 mmHg). The pressure in the test vessel immediately after Valve 2 was opened was 

25.8 mmHg.  

At time = -2 sec, no surface movement was observed. At time = 0 sec, (the 

moment when Valve 2 was opened), the surface began to move. However, all the 

particles moved as a united group. Compared with the surface movement in a LiBr 

solution pool, the speed was very slow (the average speed from 0 to 90 sec was 0.17 

mm/s). The multi-cell flow pattern movement seen in absorption was not observed with 

condensation. At time = 120 sec, the motion slowed further and the pool became almost 

stationary with an average speed of particles from 120 to 180 sec of only about 0.01 

mm/s. At the end of the run, the pressure and average liquid temperature were 24.5 

mmHg and 21.4°C.  

 

5.5.2 Condensation with Cooling  

Following the adiabatic condensation described in Section 5.5.1, in which the 

pool became static approximately 2 to 3 minutes after the vapor sample was introduced, 

the petri dish was shaken to redistribute the particles uniformly on the surface, and then 

cooling was applied. 

The surface motion observed during these condensation tests was very weak 

compared with that in the absorption tests. No surface movement was found with 2EH 
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vapor concentration of 1500 ppm, a very weak surface movement was observed with 

2EH concentration of 3500 to 5000 ppm, and a distinct pattern was clear to see when the 

2EH vapor concentration was above 10000 ppm. 

Figure 5.14 shows a typical sample of the results. This experiment was conducted 

with a 2EH vapor concentration of 10300 ppm. The time elapsed from applying the 

cooling to the appearance of the surface movement was 30 sec. At time = 0 sec (defined 

as the moment when the surface movement began), the surface movement began near the 

edge of the cooling chip, and moved toward the edge of the pool with an average speed of 

the expanding circle of 0.5 mm/s from 0 to 60 sec. At time = 20 sec, a particle free circle 

was clearly visible centered roughly on the cooling chip. This surface movement stopped 

at time = 60 sec. The diameter of the particle free circle after motion stopped was about 4 

cm. During the whole test period (420 sec), the pressure dropped from 24.2 to 22.8 

mmHg, and the liquid temperature reduced from 21.6 to 20.4°C.   

 

5.6 Discussion 

The series of absorption and condensation experiments described in this Chapter 

(Sections 5.4 and 5.5) demonstrate Marangoni flow due to 2EH delivered from vapor to 

the liquid surface. Previous studies have emphasized the temperature gradient on the 

surface as the primary factor driving Marangoni flow in this system. The effects of 

temperature gradient on the surface tension are estimated here to put the problem in the 

literature context. 

The effect of surface temperature gradient on Marangoni convection is analyzed 

here for multi-cell adiabatic absorption. Because higher absorption occurred at the center 



 

114 

 
 

 
 
Figure 5.13 Evolution of surface in a water pool for adiabatic condensation (2EH vapor 

concentration = 10300 ppm) 
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Figure 5.14 Evolution of surface in a water pool for condensation with cooling (2EH 

vapor concentration = 10300 ppm) 
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of each cell, the temperature was higher there than at the edge of the cell. This higher 

temperature at the center is expected to result in a higher surface tension when 2EH is 

present in the LiBr solution (Kim and Berman, 1994), and therefore, the temperature 

gradient can only cause a movement from the edge toward the center in each cell, which 

was opposite to the surface motion observed. 

 Fujita and Hihara (1999) also observed similar multi-cell pattern surface 

movement. However, they attributed the multi-cell flow to the existence of air because 

they only observed it when air was present in the system. For each run in the current 

study, the multi-cell flow was observed at the beginning and then a single cell pattern was 

observed when the cooling was applied. Thus it seems likely that Fujita and Hihara’s 

result can be explained better in terms of the absorption rate. One possible explanation is 

that when air was present in their experiment, the absorption rate was sufficiently low to 

cause the multi-cell pattern. 

The surface movements observed during absorption and condensation were much 

different. In the case of absorption, when the vapor sample was introduced to the vessel, 

if the 2EH vapor concentration was high (2EH vapor concentration ≥ 2500 ppm), the 

multi-cell flow was observed. If the 2EH vapor concentration was in the range of 400 to 

1500 ppm, the multi-cell flow was followed by a vigorous surface movement. When the 

cooling was applied, a single cell flow with fast surface movement (10 mm/s) was 

observed. By comparison, for the condensation case, when the vapor sample was 

introduced to the vessel, the surface movement was very weak. A clear pattern was seen 

when the 2EH vapor concentration was above 10000 ppm. Instead of the multi-cell 

movement  seen  in  absorption,  the  particles  on  the surface flowed as an island and the  
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Table 5.2 Comparison of the experimental conditions and results for representative 
adiabatic absorption and condensation 

 Adiabatic absorption Adiabatic 
condensation 

Sample solution 60% LiBr solution Water 
2EH vapor concentration 
(ppm) 400 10300 

Time (sec) 0 420 0 420 
Solution temperature (°C) 21.5 39.8 20.1 21.4 
Pressure (mmHg) 23.9 11.5 25.8 24.5 
Saturation pressure (mmHg) 1.6 5.1 17.7 19.1 
Condensed water (g) 0.52 0.05 
Condensation heat from water 
vapor (J)  1256 122 

Change of internal energy of  
sample solution (J) 1037 92 

The error of energy balance 
(%) 17.4 24.6 

 

 

distribution of the particles changed with time. When the cooling was applied, the single 

cell flow was observed only in very high vapor sample concentration condition (>10000 

ppm), this single cell expended at a very low speed (about 0.5 mm/s).  

A comparison of the experimental conditions and results for representative 

adiabatic absorption and condensation cases are shown in Table 5.2. The reasons for the 

weak surface motion for adiabatic condensation can be explained as follows. 

For condensation, the mass transfer driving potential is low (pressure – saturation 

pressure = 7.1 ~ 5.4 mmHg) compared with the absorption case (pressure – saturation 

pressure = 19.9 ~6.4 mmHg) and the 2EH vapor side mass transfer resistance is high. 

Therefore, based on the pressure data, the amount of water condensed on the surface was 

calculated to be only 0.05 g which was only 10% of that for the absorption case. If the 

amount of 2EH adsorbed on the surface is assumed to be proportional to the condensed 
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water, the amount of 2EH adsorbed on the surface for the condensation case is only twice 

that of the absorption case. However, because of the high solubility and diffusivity of 

2EH in water, only a small portion of the 2EH is expected to stay on the surface 

compared with the absorption case. The largest portion of the 2EH is expected to dissolve 

in the liquid. Thus, the effective 2EH surface concentration gradient and the surface 

tension gradient cannot be formed to cause a strong surface movement.  
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CHAPTER 6 

NUMERICAL STUDY OF CONDENSATION IN THE PRESENCE OF 

SURFACTANT VAPOR 

 

6.1 Introduction 

Significant absorption and condensation enhancement in absorption chillers can 

be achieved by adding trace amounts of surfactant to the system. Much effort has been 

expended to understand the mechanism of surfactant enhancement as described in 

Sections 2.2 to 2.4. Of several theories, Marangoni convection is widely accepted as a 

key aspect of the enhancement physics (Ziegler and Grossman, 1996).  

The recently proposed Vapor Surfactant theory states that the surfactant reaches 

the surface mainly from the vapor (Kulankara and Herold, 2000). In this theory, the bulk 

flow of water vapor from the vapor phase to the surface is identified as the primary 

source of surfactant on the surface, and the non-uniform flux of surfactant arriving at the 

surface causes a non-uniform surfactant surface concentration. Since the surface tension 

is largely determined by the surface concentration, the non-uniform surface concentration 

causes Marangoni convection. 

An experimental study guided by this theory is described in Chapter 5. Marangoni 

convection was observed when 2EH vapor along with water vapor was condensed on the 

surface of a pool. The results support the conclusion that the surface motion is directly 

related to non-uniform 2EH surface concentration delivered from the vapor side. 

However, due to limitations of the experiment set up, some parameters of interest were 

not measured (e.g. the 2EH surface concentration). For the purpose of the data 
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interpretation, a numerical study was carried out with the purpose to better understand the 

mechanism of Marangoni convection in the presence of 2EH in the vapor.  

A two-dimensional numerical simulation based on the geometry in Figure 6.1 was 

conducted (Qiao and Yuan et al., 2000). The geometry is a thin film of liquid water with 

a small patch of cooling centered on the bottom side. The upper surface is exposed to 

steam and surfactant vapor so that condensation will occur. The model computes the 

surface concentration of surfactant and relates that to the surface tension. Calculations 

show that the condensation rate is much higher when Marangoni convection is occurring, 

even if the surfactant concentration in the vapor is very small (120 ppm).  

 

6.2 Physical Model 

The configuration analyzed here is designed to avoid the surfactant-driven 

unstructured flow (to keep the calculation tractable) seen in falling films while 

maintaining the most important aspects of the physical phenomena. Thus, the two-

dimensional calculation is done on a rectangular geometry that is filled with liquid water 

(3 mm thick and 10 cm wide). 

 

 

 

 

 

 

Figure 6.1 Schematic of the condensation pool 
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Non-uniform cooling is provided to create a non-uniform condensation flux. The 

upper surface is exposed to water vapor containing surfactant. Initially the liquid is at the 

saturation temperature corresponding to the partial pressure of the water vapor and the 

liquid is surfactant free. At time = 0 sec, a cooling flux is imposed on a section at the 

center of the pool bottom (-1 cm < x <1 cm), and this eventually causes a non-uniform 

condensation flux on the upper surface. 

The cooling induced condensation acts as a surfactant source at the surface. 

Because the cooling is localized, the flux of surfactant arriving at the surface is spatially 

non-uniform. This leads to non-uniform surface tension, which is the driving force for the 

flow.  

 

6.3 Governing Equations, Initial and Boundary Conditions 

In the calculation the flow is assumed to be two-dimensional, laminar and 

incompressible. Since the velocity in the pool is relatively low, the dissipation term in the 

energy balance is neglected.  

In this condensation process, flow and heat transfer are strongly coupled. Also, 

the surfactant distribution along the upper surface determines the boundary condition for 

the flow equation. The mass balance of surfactant on the surface, momentum and energy 

balances all need to be solved simultaneously to model the condensation process.  

The simulation was completed using Fluent, a commercial fluid flow software, 

combined with a UDF (user defined function). The equations solved are listed as follows:  
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Continuity equation: 0=⋅∇ ur          6.1 
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The relationship between surface tension and surface concentration (discussed further in 

Section 6.5.3) is:  
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Since the condensation rate is small, it is assumed that the height of the surface does 

not change during the process. Based on the case with the largest condensation rate 

during the simulation period (70 sec) the change in height would be only 0.003 mm so 

this assumption is reasonable. The free surface of the pool was assumed to be flat. The 

appropriateness of this assumption can be judged (Chanson, 1999) by examining the 

Froude number defined as  

gL
VFr

2

=           6.15 

where g is gravitational acceleration and V and L are characteristic velocity and length, 

respectively. Taking L = 0.003 m as the pool depth and V = 0.5 mm/s as the maximum 

computed vertical velocity results in Fr = 8×10-6. This indicates that the gravitational 

force is much larger than the inertia force in this system. This calculation supports the 

assumption of a flat interface.  

Initial calculations showed that although the flow driven by natural convection 

alone is small, when natural convection is coupled with the surface tension driven flow 

caused by the 2EH surface concentration gradient, the effect of natural convection cannot 

be neglected. Therefore, the majority of the study focuses on flow induced by surface 

tension coupled with the effect of natural convection. 

On the upper surface (i.e. the free surface), the balance of shear and surface 

tension forces is given as Equation 6.6, where σ is the surface tension calculated by a 
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piecewise linear function given as Equation 6.14. The upper surface is assumed to be in 

equilibrium with the saturated steam in the vapor phase, and the temperature at the upper 

surface is fixed at the saturation temperature (Equation 6.8). No-slip conditions are 

applied at the bottom and side walls (Equation 6.7). All walls are perfectly insulated 

except a small section of the bottom where the cooling is applied (Equation 6.9). 

The surfactant mass balance on the upper surface can be expressed as Equation 

6.4. It is assumed in this study that the surfactant stays on the surface after it condenses. 

Therefore, the mass balance is a one-dimensional equation. This assumption follows from 

the low solubility (25 ppm, Section 3.4) and low diffusivity (<10-9 m2/sec, Kim and 

Janule, 1994) of the surfactant in the liquid and high affinity of the surface to adsorb the 

surfactant. In terms of observations made in chapters 3 to 5, this assumption would be 

more accurate for LiBr solution but it was used here as a starting point for such 

simulations. Of course, this model is only an approximation but it provides a better model 

than the liquid based models often discussed previously.  

It is assumed that the flux of surfactant arriving at the surface is proportional to 

the steam condensation flux. This assumption is equivalent to assuming that there are no 

concentration gradients in the vapor. In Equation 6.4, uh and S(x,t) are the liquid velocity 

and steam condensation flux at the upper surface of the pool respectively and vaporX  is 

the surfactant concentration in the vapor, which is assumed to be constant in both space 

and time. The energy release from steam condensation on the surface of the pool is 

balanced by heat conduction in the liquid (Equation 6.5). The boundary conditions for the 

1-D surfactant mass balance (Equation 6.4) are zero flux at both ends of the upper surface 

as expressed in Equation 6.10.  
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Initially, the pool is isothermal (Equation 6.12), there is no surfactant on the pool 

surface (Equation 6.13) and the pool is static (Equation 6.11). The shear stress boundary 

condition on the pool surface, represented by Equation 6.6, is coupled to the surfactant 

surface concentration by the properties of the system (Equation 6.14). As a result, these 

equations must be solved simultaneously. As the surfactant arrives at the surface, it 

lowers the surface tension locally and the resulting surface flow tends to smooth out the 

surface tension gradients. The source of surfactant on the surface is the condensation 

process that is driven by temperature differences in the system. Thus, the mass flow is 

coupled to the energy flow in the system. 

 

6.4 Numerical Formulation 

A commercial code (FLUENT Inc, 2000) was used to solve the above equations. 

Since the code does not directly offer the solution of a 1-D surfactant mass balance in a 

2-D problem, the surfactant mass balance equation (Equation 6.4) was solved by a 

separate program written as a linked function. The source code for the linked function is 

included as Appendix A. A first-order power law scheme is used for discretization of the 

convection term in Equation 6.4, and an implicit scheme is used for the computation of 

the surfactant distribution along the upper surface at each time step. The diffusion 

coefficient, D, is an important parameter that affects the flow and heat transfer in the pool 

through its control of the surfactant distribution on the surface. For the current study two 

values of diffusivity (D=10-3 and 10-7 m2/sec) were used for the parametric study.  

A discrete approximation to Equation 6.4 was derived using the finite volume 

method (Patankar, 1980). Only the final equation and its coefficients are given here. A  
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Figure 6.2 Schematic of grid and control volume for the internal and boundary points 
For the internal grid points 

 

schematic of the control volumes for the internal and boundary points are shown in 

Figure 6.2. A uniform grid is used for the simulations.     
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For the left boundary point 
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For the right boundary point 

   6.18 

 

 

where:  

 

 

where subscripts P, W and E denote internal grid points and I, J and B denote the grid 

points on the boundary (B) and its neighbors (I,J). The dashed lines show the faces of the 

control volume and the letters e and w stand for the east and west faces.  

The mass transfer Peclet number, Pe, is defined as 

    
D
ULPe ρ

≡               6.19 

representing a ratio of the relative strengths of convective and diffusive mass transfer. 

The function A(|P|) depends on the particular numerical scheme for the advection term, 

which is discussed further in Section 6.5.6. The term [ ]0,ue−  denotes the greater of 

eu− and 0. The source term S is independent of the 2EH surface concentration Xs (only a 

function of time and position) and was treated as a constant in the discretization equation. 

The resulting set of equations is tri-diagonal and can be efficiently solved by the 

Thomas (TDMA) algorithm (Patankar, 1980). The TDMA algorithm is fast and memory 

efficient. 
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6.5 Simulation Study 

6.5.1 Simulation Algorithm 

A flow chart for the simulation algorithm is shown in Figure 6.3. The approach is 

to solve the momentum and energy equations in Fluent with the 1-D surfactant mass 

balance equation solved as a user defined function. At the first time step, because the 

surface is 2EH free, the momentum and energy equations are solved with zero shear 

stress on the surface. The computed velocity and temperature profiles are then used as 

inputs to the UDF. The surfactant source strength is calculated based on the condensation 

flux on the free surface and then the surfactant mass balance equation (Equation 6.4) is 

solved. The surface tension is calculated by Equation 6.14 and then the shear stress is 

calculated. This shear stress is used as the boundary condition for the next iteration of the 

momentum and energy equations. This process continues until the convergence criteria 

are satisfied (the relative velocities and temperature errors from the i to the i+1 iteration 

must be smaller than 10-5 and 10-7, respectively). Once convergence is obtained the 

simulation goes to the next time step to repeat the above procedures. 

 

6.5.2 Grid Study 

Considering the symmetry of the geometry and boundary conditions, only half of 

the pool (shaded part in Figure 6.1) is considered in the calculation. A uniform grid of 

100 × 30 (x direction × y direction) was tested and the results were compared with a grid 

of 200 × 60. The time step size was chosen to be 0.001 sec for both cases. Results for the 

total condensation rate and average velocity at the free surface are shown in Table 6.1 for 
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Figure 6.3 Flow chart for the Fluent based simulation of Marangoni convection during 
condensation in the presence of surfactant in the vapor 
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a representative case (time = 5 sec). The flow features at time = 5 sec are dominated by 

the effect of surfactant surface concentration (discussed further in Section 6.6) and thus 

the results in Table 6.1 represent the effect of the grid density on calculation accuracy for 

this problem. Because the differences between the simulation values for the two cases is 

small, in order to save computing time, the 100 × 30 grid was used for the subsequent 

simulations.  

 

Table 6.1 Grid study results showing total condensation rate and average velocity at 
the free surface (time = 5 sec) for two grid choices. 
 Grid = 100 × 30 Grid = 200 × 60 Relative error 

Total condensation rate 
(mg/s) 1.300 1.256 3.4% 

Average velocity at 
free surface (mm/s) 1.581 1.488 5.9% 

 

 

6.5.3 Relationship Between Surface Tension and Surface Concentration 

Figure 6.4 shows the relationship between the surface tension and the 2EH 

surface concentration for water used in this simulation. For comparison, the data obtained 

from the Gibbs analysis (Equation 4.7 and Figure 4.2) is included in Figure 6.4. The 

results based on the Gibbs analysis indicate a steep reduction in surface tension with 

surface concentration when the surface concentration approaches the saturation value of 

Γ = 0.59 mg/m2. It was found that this caused difficulty in the simulation because surface 

tension is very sensitive to 2EH surface concentration and therefore it required a very 

small time step for convergence. As a compromise to allow completion of the simulation  
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Figure 6.4 Relationship between surface tension and surfactant surface concentration used in simulation 
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in an acceptable time period (two weeks for a run on a Sun workstation with a clock 

speed of 286 MHz), a linear relationship was used which approximately matches the 

experimental surface concentration data from 0 to 0.5 mg/m2. A comparison of the results 

from this linear relationship and the relationship based on Gibbs analysis was conducted. 

In the most interesting surface concentration range (surface concentration below 0.5 

mg/m2), the heat flux value only deviated within 1% as two different relationships were 

used. 

 

6.5.4 Mass Diffusivity of 2EH in Water and Aqueous LiBr 

Mass diffusivity is one of the fluid properties necessary for the simulation study. 

However, only limited diffusivity information for 2EH in water was found in the 

literature. One predictive equation is from the correlation by Wilke and Chang (1955) as 

follows  

( )
6.0

1

5.0
2

2

12
2,1 104.7

V
CMTD

μ
−×=             6.20 

where: D1,2 diffusion coefficient of solute 1 in solvent 2, m2/s 

T temperature, K 

2μ  dynamic viscosity of solvent 2, mPa⋅s 

M2 molecular weight of solvent 2, kg/kmol 

V1 molar volume of solute 1 at its boiling temperature at 1.013 bar, cm3/mol 

C association factor of solvent 2, C = 2.6 for water; C =1.5 for ethyl alcohol 
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The diffusion coefficient of the solute (1) in the solvent (2), D1,2,  can be 

determined from the dynamic viscosity, 2μ  and the molecular weight, M2, of the solvent. 

The association factor of the solvent, C, is 2.6 for water. Based on this correlation, the 

diffusion coefficients of all liquids and gases in liquids fall in the range of 5×10-10 to 

5×10-9 m2/sec. The other source is from Kim and Janule (1994), who report diffusion 

coefficients of 2EH in water as 4.1×10-10 m2/sec. Based on these results, the diffusivity of 

2EH in the solution is believed to be in the range of 10-9 to 10-10 m2/sec.  

In early simulations, divergence occurred for such low values of diffusivity and 

an artificially high value (D = 10-3 m2/sec) was run. A series of cases with diffusivity D 

=10-7 m2/sec are discussed and compared with the high diffusivity case (D = 10-3 m2/sec). 

The runs for D = 10-7 m2/sec cases took approximately 500 CPU hrs because a very small 

time step, on the order of 10-4 sec was used. However, because the results for the two 

values of diffusivity did not exhibit large differences, the case with D = 10-7 m2/sec is 

expected to give realistic features.  

 

6.5.5 Time Step Size 

Although an implicit scheme is used in the UDF (user defined function) for the 1-

 D surfactant mass balance equation and an implicit scheme is chosen in FLUENT for 

solving the momentum and energy equations, the calculation was found to diverge unless 

very small time steps, on the order of 10-4 sec, were used for the cases with diffusivity of 

D = 10-7 m2/sec. The small time steps meant that a single run takes between 2-3 weeks of 

CPU time on a Sun workstation with a clock speed of 286 MHz. In practice, the 

surfactant source values, the velocity profile and the shear stress profile on the free 
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surface are transferred between Fluent and the UDF at each time step. Therefore, the 

equations are solved sequentially and the entire scheme is not fully implicit. As a result, 

the stability of the calculation is dependent on the time step size implying small time 

steps and long run times. 

 

6.5.6 Numerical Approximation of the Advection Term 

Several tests were run to find an appropriate scheme for the advection term in the 

1-D surfactant mass balance with high accuracy for both high and low diffusivity values. 

Another potential benefit from this is to find which scheme can postpone divergence with 

the same time step size. Three schemes (upwind scheme, power law scheme and hybrid 

scheme) were examined. The coefficients ( )PeA  for the discretization equation are as 

follows:  

 ( ) ( )[ ]
[ ]⎪

⎩

⎪
⎨

⎧

−

−=

 schemeHybrid             Pe

 schemelaw Power      Pe

 schemeUpwind                                    

PeA

5.01,0

1.01,0

1
5.0

         6.21 

where [a,b] denotes the greater of a and b. Based on the results, little difference was 

found among the three schemes for the condensation rate, but the power law scheme was 

found to postpone divergence slightly. Therefore, the power law scheme was used for 

further simulations.  
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6.6 Results and Discussion 

In the simulation results discussed in this section, the diffusivity of the surfactant 

along the surface is set as D = 10-7 m2/sec unless otherwise noted, and the surfactant 

concentration in the vapor is set as Xvapor = 120 ppm. Natural convection is turned on. The 

water properties are taken as constant and evaluated at 20°C.  

Figure 6.5 shows the condensation flux and surfactant surface concentration along 

the free surface near the beginning of the condensation process (time = 5 sec). The 

condensation flux is localized in the region above the cooling section of the base due to 

conduction and natural convection in the slow moving pool. The flux of condensate 

brings surfactant from the vapor phase to the surface. Due to slow diffusion and 

advection of surfactant, the surface concentration is non-uniform with the maximum 

surface concentration gradient appearing in the region 1 ≤ x ≤ 2 cm. This is also the 

location of the maximum surface tension gradient that drives the surface convection. The 

surface convection brings cool liquid up to the surface locally (around x = 1 cm) and thus 

the condensation flux peak is found at that location. This localized condensation flux 

peak delivers a large flux of 2EH to the surface locally which tends to increase the 

gradient in surface concentration. 

Figures 6.6 and 6.7 show the shear stress distribution and surfactant surface 

concentration distribution as a function of position and time on the free surface (note that 

the average surfactant surface concentration at a particular time, Xs,aver, has been 

subtracted from the surface concentration in Figure 6.7 to emphasize the surface 

concentration gradient). These plots are discussed together since the plotted variables are 
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Figure 6.5 Surfactant surface concentration and steam condensation flux 

 

 

directly linked by Equation 6.6. It can be seen that the shear stress first increases to a 

maximum close to time = 7.5 sec where it begins to decrease. The shear stress eventually 

goes to zero when the surfactant surface concentration reaches saturation, which is 

approached by approximately time = 70 sec. The surfactant surface concentration 

gradient is seen to peak around time = 7.5 sec as expected. 

During the initial stage of the process (0 < time < 2.5 sec), the major heat transfer mode 

in the pool is conduction and thus the condensation flux is small as shown in Figure 6.8. 

As a result, the surfactant source from the vapor phase is small as shown by the relatively 

uniform surface concentration (Figure 6.7). Due to the low surface velocity during this 

initial stage, the distribution of surfactant is governed mainly by diffusion and 
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condensation. As the surfactant concentration gradient increases, the velocity of the 

surface increases rapidly as shown in Figure 6.9, and then advection becomes prominent. 

However, at the same time, advection moves the surfactant towards the right boundary (x 

= 5 cm), and this tends to smooth the surfactant distribution along the upper surface. 

These two factors compete resulting in a maximum shear stress around time = 7.5 sec 

(Figure 6.6). As the process proceeds further, the shear stress decreases resulting in a 

lower velocity. When the velocity becomes small, diffusion again dominates both the 

heat transfer and surfactant distribution resulting in a small shear stress and relatively 

uniform surfactant distribution as experienced in the initial stage of the process. 

The condensation flux data in Figure 6.8 for time = 5 sec is identical to that in 

Figure 6.5. A condensation flux peak is observed at the edge of the cooling section at 

time = 5 sec and it reaches a local maximum value at time = 7.5 sec. As time goes on, 

more cooled water is driven to the surface in the center range, causing an increase in 

condensation flux in the center range with a maximum value at the center around time = 

15 sec. 

Figure 6.8 shows that the condensation flux reaches a maximum and then begins 

to decline. This can be seen more clearly in Figure 6.10 where the total condensation rate 

at the upper surface is shown for five cases as a function of time. The conduction and 

natural convection cases were calculated to establish a baseline, and the results for the 

high diffusivity cases (D = 10-3 m2/sec) in the presence of surfactant, with and without 

natural convection, are included for comparison. For the conduction case, fluid motion is 

not permitted and conduction is the only energy transport mode. The condensation rate 

rises toward the steady state value (referred to as the condensation rate corresponding to  
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Figure 6.6 Shear stress distribution at upper surface as a function of position and time 
 

 

Figure 6.7 Surfactant surface concentration distribution as a function of position 
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Figure 6.8 Condensation flux distribution along surface as a function of position 
 

 
 
Figure 6.9 Velocity distribution along surface as a function of position and time 
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the cooling rate in Figure 6.10) as the two-dimensional temperature field is established. 

The conduction case was computed as a limiting case to assist in understanding the 

results from the convection cases. It was initially expected that natural convection would 

augment the condensation process over that seen for pure conduction. However, the 

somewhat non-intuitive result is that natural convection causes the average temperature 

of the liquid to fall slightly faster than for pure conduction. To enable the energy balance 

for the constant cooling rate at the bottom, the effect of that drop in internal energy on 

condensation is a slight reduction in the condensation rate. As expected, both cases rise 

toward the same steady state value for large time. 

The result for diffusivity D = 10-3 m2/sec without natural convection shows the 

highest peak in Figure 6.10. It is observed that the surfactant-induced flow enhances 

condensation significantly as compared to the conduction and natural convection cases. 

This enhancement can be attributed to the important role of advection in bringing the cold 

fluid to the upper surface. The results show that the condensation rate reaches a 

maximum around time = 16.1 sec.  After this, the flow in the pool slows down resulting 

in a decreasing condensation rate. An interesting observation for this run is that the 

condensation rate exceeds the rate corresponding to the cooling rate from time 16.0 to 

18.0 sec. This overshoot is induced by advection. During the initial stage, the water at the 

bottom of the pool is cooled by conduction, but since the velocity in the pool at that time 

is small, the subcooled water stays near the bottom. As the surface tension gradients 

increase, the water velocity increases gradually, until most of the water is involved in the 

circulation in the pool. The circulation brings the subcooled water to the surface, and the 

condensation rate at the surface becomes large. However, as the process continues, the 
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water flowing past the cooling area becomes warmer. This occurs because the water now 

passes by the cooling area more quickly. As a result, the condensation rate declines.  

The result for diffusivity D = 10-3 m2/sec with natural convection is also shown in 

Figure 6.10. It can be seen that the condensation rate reaches a maximum around time = 

15.0 sec. After 15.0 sec the flow in the pool slows down, resulting in a decreasing 

condensation rate, until the flow settles into the natural convection pattern. For this case, 

the overshoot feature is eliminated by natural convection because natural convection and 

Marangoni convection drive the flow in opposite directions in the region close to the 

cooling section. By comparing the condensation rate between the cases for D = 10-3 

m2/sec with and without natural convection, the maximum condensation rate is decreased 

by about 25% by natural convection, which means that the effect of natural convection on 

enhancement is significant. Even so, the surfactant-induced flow still dominates and 

enhances condensation significantly as compared to both conduction and natural 

convection (without Marangoni convection).  

The results for diffusivity D = 10-7 m2/sec with natural convection show a similar 

peak to the case for D = 10-3 m2/sec. It can be seen that the condensation rate increases 

slowly from 0 to 5 sec and then increases rapidly from 5 to 8 sec. At time = 8 to 9 sec, a 

flat step is seen before it rises again. A discussion of this step is provided at the end of 

this section after introduction of all the simulation data. The maximum condensation rate 

is achieved around time = 16 sec, after which, the condensation rate decreases and finally 

follows the natural convection curve after 25 sec. 

The condensation rate is enhanced from 5 to 25 sec. After 25 sec, it follows the 

natural convection curve. The enhancement caused by the surfactant is time dependent. 
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Figure 6.10 Condensation rate versus time for surfactant enhanced condensation 
simulation 

 

 

This can be explained by reference to the surfactant concentration gradient shown in 

Figure 6.7. Because of the small surface concentration gradients before 2.5 sec and after 

25 sec, the Marangoni convection is weak during these time periods. As can be seen in 

Figure 6.7, the maximum 2EH surface concentration gradient was achieved around 7.5 

sec. However, the maximum average velocity in the region from 0 to 1 cm is achieved at 

time = 15 sec. The maximum condensation rate correlates closely with the maximum 

average velocity in the vicinity of the cooling chip.       

Figure 6.11 is a plot of surfactant surface concentration versus time at two surface 

locations along with the average value for the entire surface. As can be seen, the surface 
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concentration rises continuously all along the surface. The maximum surfactant surface 

concentration difference between 1 and 2 cm is achieved at around 7.5 sec. This result is 

consistent with the results shown in Figure 6.7. 

In addition, Figure 6.11 shows that the maximum surface concentration is about 

0.5 mg/m2 at 25 sec. Therefore, the linear relationship between the surface tension and 

surface concentration which was introduced in Section 6.3 (see Equation 6.14 and Figure 

6.4) avoids the convergence problem and also gives good accuracy for this case.  

In order to better understand the flow regimes, Figure 6.12 shows a series of 

streamline contours at different times (notice that the y axis in each of these plots is 

expanded by a factor of 2 to enhance readability). In each plot, eight contours equally 

 

 

Figure 6.11 Surfactant surface concentration versus time at different locations 
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Figure 6.12 Streamline contours (D = 10-7 m2/sec) 
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divide the stream function value from 0 to the maximum value (notice that the maximum 

values are different for each plot) with the highest stream function value at the center of 

the cell represented by the concentric contours. At 2.5 sec, the pool is largely stationary, 

but a small cell on the surface, induced by the surface tension gradient, is seen. The lower 

cell is due to natural convection induced by the cooling localized in the center region. 

During the time period from 5 to 7.5 sec, the cell expands rapidly until the entire pool is 

in motion except the center range. After 7.5 sec the cell evolves slowly as the velocity 

declines. 

In Figure 6.10, a flat step appears for the case of diffusivity D = 10-7 m2/sec at 

about 10 sec. This feature is not observed in the case of diffusivity D = 10-3 m2/sec. This 

step feature is attributed to two effects: 1) the low mass diffusivity of 2EH, and 2) the 

circulation of cold water from the bottom of the pool to the free surface in the center 

region. 

Due to the low diffusivity (D = 10-7 m2/sec), surfactant diffusion is slow. Because 

the condensation is localized near the cooling section (x = 1 cm), the largest surfactant 

surface concentration gradient appears at that location. The concentration gradient drives 

the surface flow away from the cooling section and brings cold water to the surface from 

the bottom of the pool. This cold water further enhances condensation in the center 

region. Figure 6.8 shows this feature and the heat flux peak is found at 7.5 sec. However, 

as the process proceeds, more water is involved in the circulation and non-uniformity of 

the surface concentration declines which results in a decrease in the peak value after 7.5 

sec. On the other hand, the cold water brought to the surface causes an increase of heat 

flux in the center region (Figure 6.8). Therefore, the reduction of heat flux at x = 1 cm 
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and the increase of heat flux at center region results in an almost constant average heat 

flux from 7.5 to 10 sec resulting in a flat step in the condensation rate curve. 
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CHAPTER 7 

DISCUSSION 

 

 
This chapter presents a discussion of the main results from the thesis including 

1) the surface tension measurements, 2) surface concentration analysis, and 3) the 

Marangoni convection experiments. Simulation results are also compared with 

experimental results in this chapter. The objective of this chapter is to explain the effect 

of the surfactant 2-ethyl-hexanol (2EH) on surface tension, surface concentration and 

Marangoni convection, with emphasis on the differences seen as 2EH is delivered from 

either the vapor or liquid sides.  

 

7.1 Effect of Surfactant 2-ethyl-hexanol on Surface Tension  

The surface concentration calculations, discussed in Section 4.3, show that the 

saturated 2EH surface concentration is approximately the same order for both water and 

60% aqueous LiBr (0.59 mg/m2 for water and 0.99 mg/m2 for 60% aqueous LiBr). 

However, the surface tension data show that the time needed to reach the saturated 

surface concentration is different for these two systems. This is due to differences in both 

the diffusivity and solubility of 2EH in the liquid phase. Because of the low solubility (27 

ppm) and low diffusivity (2.81×10-7 cm2/sec (Kim, 1994)) of 2EH in 60% aqueous LiBr, 

the 2EH delivered to the surface from the vapor stays largely on the surface for the time 

scales of interest in this work. Therefore, for 60% aqueous LiBr experiencing a certain 

surface flux of surfactant, the surface concentration can reach the equilibrium surface 



 

148 

 
 

concentration in a short time and the surface tension measured by the drop weight method 

is found to be independent of the drop frequency if the drop frequency is smaller than 

0.1 Hz. In contrast, because of the higher solubility (835 ppm) and the higher diffusivity 

(4.07×10-6 cm2/sec, (Kim, 1994)) of 2EH in water, a large fraction of the 2EH delivered 

to the surface dissolves into the liquid bulk, and therefore, the amount of 2EH remaining 

on the surface is less in the same time interval. The surface tension data for water show 

frequency dependence even at the lowest tested frequency of 0.03 Hz. 

Extensive measurements of surface tension with surfactant 2EH in air and in 

liquid, for both water and 60% aqueous LiBr, were conducted. The results show that for 

aqueous LiBr, the effect of 2EH from the vapor side is dominant in determining surface 

tension and the effect of 2EH from the liquid side is negligible at a nominal drop 

frequency of 0.03 Hz. Therefore, the 2EH vapor concentration is a primary variable in 

understanding the surface tension of such systems. One conclusion is that, in order to 

obtain repeatable and accurate equilibrium surface tension data, the 2EH vapor 

concentration must be allowed to reach equilibrium and this process is time consuming, 

often providing a bottleneck to the experimental process.  

The results for water show that 2EH in the vapor also exhibits significant effects. 

However, due to the higher diffusivity of 2EH in water, when the 2EH was delivered 

from the vapor side a fraction of 2EH dissolves in water and only part of the 2EH stays 

on the surface. As a result, the surface concentration slowly reaches equilibrium and the 

surface tension is more dependent on drop frequency. On the other hand, when the 2EH 

was delivered from the liquid side, the 2EH was found to diffuse to the surface rapidly 

causing a very low surface tension even at the highest frequency tested (0.3 Hz). 
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The measurements and calculations included in Section 4.3 show that the 

solubility limit of 2EH decreases from 858 to 37 ppm with increases of mass fraction of 

LiBr from 0 to 60%. For the same change, the surface concentration of 2EH increases 

from 0.587 to 0.993 mg/m2 and the surface tension plateau decreases from 41.1 to 

36.8 mN/m (Tables 4.1 and 4.2). These results indicate that for the same 2EH system 

concentration, more 2EH molecules are expelled from LiBr liquid bulk to the surface 

with increases of mass fraction of LiBr and hence surface concentration of 2EH increases 

and the surface tension is lower. 

Surface tension data were also taken for water in the presence of 2EH in the vapor 

by Zhou et al. (2001) using a different procedure. The large surface tension plateau value 

observed by Zhou (49 mN/m) seems to indicate that the 2EH surface concentration did 

not reach an equilibrium value. After checking the experimental procedure used by Zhou 

et al. (2001), it was found that the drop frequency used was 0.04-0.056 Hz. Although this 

drop frequency is small enough for the 2EH surface concentration to reach equilibrium 

for the case with 2EH in the liquid only (Figure 3.7 shows that the surface tension is 

independent of drop frequency with drop frequency lower than 0.1 Hz), it is not small 

enough for the case with 2EH in the vapor (Figure 3.5 shows that the surface tension is 

dependent on the drop frequency even when the drop frequency is smaller than 0.04 Hz). 

This explains why Zhou et al. (2001) found the surface tension plateau to be larger and 

the 2EH surface concentration to be smaller as compared with the results found in the 

present study. However, it should be repeated that the relationship between the surface 

tension and the drop frequency is much different for water and aqueous LiBr. Figure 3.9 
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shows that for 60% aqueous LiBr the surface tension was totally independent of the drop 

frequency when the drop frequency is smaller than 0.1 Hz. 

In addition to the effect of 2EH surface concentration, the effects of solution 

temperature and LiBr mass fraction on the surface tension were considered. The change 

of the surface tension can be written in general as:  

LiBr
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EH

X
X

T
T

Δ
∂
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where  EH2Γ∂∂σ  was calculated based on surface tension results shown in Figure 4.5, 

which is about -64 (mN/m)/(mg/m2).  The terms T∂∂σ  and LiBrX∂∂σ were found from 

the literature which are about 0.38 (mN/m)/K (Kim and Berman, 1994) and 

33 (mN/m)/(kg/kg) (Foote Mineral Co., 1995). 

In the current study, we are interested in the change of surface tension along the 

free surface so we interpret Equation 7.1 as  
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where x is the spatial coordinate along the surface. For the case of condensation, the 

surface temperature would be expected to be closely isothermal due to the nature of water 

condensation and the large energy transport that occurs during the phase change. Thus for 

condensation, only the first term on the right hand side of Equation 7.2 remains. For 

absorption, the surface will also approach saturation but the mixture properties 

complicate the situation such that neither the temperature nor the LiBr concentration will 

be uniform along the surface. However, for absorption in the absence of surfactant, no 

Marangoni convection was observed. Thus, it is concluded that the influence of 
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temperature and LiBr mass fraction on surface tension are relatively small effects 

compared to the dominant influence of surfactant surface concentration.  

 

7.2 Effect of Surfactant Vapor on Marangoni Convection 

The effect of 2EH vapor on Marangoni convection was observed in a bench top 

test (Section 5.1) in which a liquid drop of 2EH was positioned close to, but not touching, 

the aqueous LiBr surface. The presence of the drop causes a surface flow radially away 

from the drop position. Further experiments to ascertain the effect of 2EH vapor on 

Marangoni convection were conducted in an absorption/condensation pool apparatus. In 

the experiments, 2EH was introduced into the absorption/condensation pool with steam 

from the vapor side as described in Section 5.2.2. The results show that the presence of 

2EH in the vapor causes Marangoni convection, and the strength of the convection and 

the flow patterns that develop are dependent on the 2EH concentration in the vapor.  

In the case of adiabatic absorption, if the 2EH vapor concentration is lower than 

200 ppm, Marangoni flow was not observed. This is attributed to the relatively low flux 

of 2EH arriving at the surface that is insufficient to create the surface tension gradients 

needed to cause a flow. 

When the 2EH vapor concentration was in the range 400 to 1500 ppm, a slow-

moving multi-cell flow was formed initially followed by a vigorous sweeping flow. In 

each cell of multi-cell flow there was a circulation from the center to the edge of the cell 

on the surface and back from the edge to the center of the cell underneath the surface. 

The vigorous surface motion that followed involved the entire surface of the pool and 

was faster than that in the multi-cell flow. As time went on, the Marangoni convection 
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finally stopped. The circulation in each cell of the multi-cell flow is caused by higher 

2EH surface concentration and thereby lower surface tension at the center of each cell 

due to non-uniform absorption of 2EH vapor. The breakup of the cells is apparently due 

to a sudden increase in absorption at one of the cells that causes it to erupt and distabilize 

the cellular flow pattern. After the vigorous surface motion occurs, the surface motion 

gradually dies out and stops. This is apparently due to the surface becoming saturated 

with surfactant. 

For the case where the 2EH vapor concentration was 2500 ppm, only the multi-

cell flow was observed but the circulation in each cell was much weaker as compared 

with the case of 2EH vapor concentration in the range of 400 to 1500 ppm. No vigorous 

surface motion was observed for this case. When the 2EH vapor concentration was 7800 

ppm or higher, Marangoni flow was not observed. It is believed that the large 

concentration of 2EH vapor presents vapor side mass transfer resistance that limits the 

absorption rate when the 2EH vapor concentration is above 1500 ppm. 

Based on the observations of the surface movement and the measurements of the 

pressure in the present study, it is found that there is an optimal 2EH vapor concentration 

(i.e. 400 to 1500 ppm in the present study) that results in vigorous Marangoni convection 

and maximum absorption. Near this optimal 2EH vapor concentration, large surface 

tension gradients are formed during absorption resulting in vigorous surface motion and 

high absorption rate. 
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7.3 Absorption and Condensation in the Presence of 2-ethyl-hexanol 
Vapor 

 
Based on the present study, the features of Marangoni flow during absorption in 

an aqueous LiBr pool and condensation in a water pool in the presence of 2EH in the 

vapor have some similarities but also have clear differences. As mentioned in Section 7.2, 

in the case of absorption, a much less organized vigorous surface movement with a speed 

of about 20 mm/sec was observed at 2EH vapor concentration in the range 400 to 1500 

ppm, and both multi-cell flow and vigorous flow presented depending on the 2EH 

concentration in the vapor. By comparison, in the case of condensation as discussed in 

Section 5.5.2, no surface movement was found at 2EH vapor concentration of 1500 ppm 

and surface movement was very weak at 2EH concentration in the range 3500 to 5000 

ppm, and a clear surface movement was seen when 2EH vapor concentration was above 

10000 ppm. Instead of the multi-cell flow or vigorous surface movement observed in 

absorption case, the particles on the surface move as a united group.  

Measurements of the pressure in the absorption/condensation chamber show that 

the change of pressure during absorption was at a rate of about 1.8 mmHg/min, while the 

change of pressure during the condensation test was at a rate of about 0.18 mmHg/min. 

Based on the pressure data, the flux of water plus surfactant condensed on the surface in 

absorption is a factor of 10 higher that in condensation. 

The reasons for the differences in Marangoni flow in absorption and condensation 

can be explained as follows. For condensation, the driving force (pressure in system – 

saturation pressure) was low (25.8 – 17.7 = 8.1 mmHg in Table 5.3), and the 2EH vapor 

side mass transfer resistance is high because of high 2EH vapor concentration (10000 

ppm). Therefore, the condensate flux was low.  If the amount of 2EH adsorbed on the 
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surface is assumed to be proportional to the product of the condensate flux and the 2EH 

concentration in the vapor, the amount of 2EH adsorbed on the surface for the 

condensation case with 2EH concentration 10000 ppm is on the same order as that for the 

absorption case. However, because of the high solubility (835 ppm) and diffusivity of 

2EH in water (4.07×10-6 cm2/sec, (Kim, 1994)), the largest portion of the 2EH dissolves 

in the liquid and only a small portion of the 2EH is expected to stay on the surface. A 

larger condensation flux would be expected to produce a vigorous Marangoni convection 

in this configuration. 

In comparison, for absorption, because of the high driving force (23.9 – 1.6 = 22.3 

mmHg in Table 5.3), and low 2EH vapor side mass transfer resistance due to low 2EH 

vapor concentration (400 ppm), the absorption flux is calculated to be 0.7 kW/m2  (based 

on measured data for the case of adiabatic absorption with 2500 ppm 2EH discussed in 

Sections 5.4.1.1 and 5.4.1.2, absorption flux is 670 J/(3 min × 54 cm2) = 0.7 kW/m2), 

which is much higher as compared with that for condensation (0.14 kW/m2, based on 

measured data for the case of adiabatic condensation with 10300 ppm 2EH discussed in 

Section 5.5.1, condensation flux is calculated to be (89.69 – 84.25) kJ/kg ×17 g /(2 min 

×54 cm2)). Furthermore, because of the low solubility (27 ppm) and low diffusivity 

(2.81×10-7 cm2/sec (Kim, 1994)) of 2EH in 60% aqueous LiBr, the 2EH delivered to the 

surface stays largely on the surface. Spatial non-uniformities in absorption flux cause 

local gradients in 2EH surface concentration which then drive Marangoni convection. 

The Marangoni convection supports and enhances spatial non-uniformities in absorption 

flux completing a positive feedback mechanism of enhancement. 
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7.4 Comparison of Numerical and Experimental Results 

This section provides a comparison of the experimental and numerical results for 

the absorption case with applied cooling. 

 

7.4.1 Comparison of Geometries and Assumptions in Simulations and 
Experiments 

 

For both the computational and experimental models, the configuration of the 

pool is 3 mm in depth. The pool is 10 cm in diameter in the experiments and 10 cm in the 

2-D simulations. The upper surface is exposed to water vapor containing surfactant, and 

the cooling chip (2 cm in diameter for experiment and 2 cm in width in the simulations) 

is positioned in the center under the bottom of the pool. 

The computational work was based on the properties of water (density and 

specific heat) for simplicity; however, the application to lithium bromide solutions is a 

direct extension. It is assumed in the computational work that the surfactant stays on the 

surface after it condenses. Compared to water, both the solubility and the mass diffusivity 

of the surfactant are much less in a brine. Therefore, the assumption that the surfactant 

stays on the surface in the model is more accurate for the absorption problem with a LiBr 

solution. Thus, the simulation results represent a mixed case that is not directly 

comparable to the experiments.  

The surface movements were observed in the experimental study under several 

operating modes. The mode where the cooling was turned on at the start is the case that 

was simulated. The pool was static before the cooling was applied and the surface 

movement was induced by the cooling. 



 

156 

 
 

The 2EH diffusion coefficient used in the simulations was 1×10-7 m2/sec, which is 

different from the value in the literature (1×10-9 to 1×10-10 m2/sec in Kim and Janule 

(1994)). Based on the fact that the simulation results for the two values of diffusivity 

(1×10-3 m2/sec and 1×10-7 m2/sec) did not exhibit large differences, it is expected that the 

simulation results are generally representative of the physics of interest. 

 

7.4.2 Discussion of Major Results 

Based on results from both the simulations and experiments, the surface 

movement started at the edge of the cooing chip. This location corresponds to the point of 

highest heat flux (as shown in Figure 6.8), which has a high local value of surfactant 

surface concentration and high gradient in surface concentration. After the surface 

movement was initiated, the liquid on the surface moved from the center toward the edge 

of the pool eventually reaching a steady state circulation. The surface liquid moved 

radially outward from the edge of the cooling chip and then radially inward below the 

surface. The surface moves at a maximum speed of about 1 cm/s in the experiments and 

0.8 cm/s in the simulations (Figure 6.9), and the surface involved in the liquid circulation 

extends to a maximum diameter of about 4 cm for both the experiments (Figure 5.7) and 

the simulations (Figure 6.12). 

Although the applied cooling power and 2EH vapor concentration were much 

higher in the experiments as compared to the simulations, the time from applying the 

cooling to reaching the maximum liquid speed in the pool was much shorter for the 

simulation. One explanation for this difference is that the solution can still dissolve a 

portion of the 2EH although the solubility is low and the diffusivity is small. Therefore, 
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compared with the amount of 2EH dissolved in the liquid bulk, the amount of 2EH 

adsorbed on the surface is small. This dissolving of 2EH in the liquid results in a longer 

time needed to form a sufficient surface concentration gradient and surface tension 

gradient in the experiments. 

The experiments show a dead zone in the center of the system (Figures 5.8 and 

5.9), which was also present in the simulations (Figure 6.12). Relatively uniform 2EH 

surface concentration in the region above the cooling chip (Figure 6.7) is believed to be a 

main reason. Furthermore, it was observed in experiments that the surface velocity from 

the center toward the edge of the pool was about 0.5 cm/s (when a steady state circulation 

with a diameter of 4 cm was formed) whereas the return velocity (under the surface) was 

about 0.25 cm/s. Based on a mass balance, the depth involved in the flow from the center 

to the edge of the pool is about one-third of the depth of the pool. The simulation results 

shown in Figure 6.12  is consistent with this experimental observation.  

Thus, the simulation confirmed that the surface movement after the cooling turned 

on discussed in Section 5.4.2 was induced by non-uniform 2EH surface concentration 

from the vapor side delivered to the surface by bulk flow of the condensing vapor. 

 

7.5 Interpretation of Results in Terms of the Vapor Surfactant Theory 

The recently proposed Vapor Surfactant theory of absorption enhancement in 

absorption chillers holds that the surfactant reaches the surface of the solution mainly 

from the vapor phase (Kulankara and Herold, 2000). In this theory, the bulk flow of water 

vapor from the vapor phase to the surface is identified as the primary source of surfactant 

on the surface, and the non-uniformity of surfactant arriving at the surface causes a non-
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uniform surfactant surface concentration. Since the surface tension is largely determined 

by the surface concentration, the non-uniform surface concentration causes Marangoni 

convection, the ultimate mechanism of enhancement of heat and mass transfer, by 

providing mixing of the surface film. Based on the present study, a deeper understanding 

of the Vapor Surfactant theory was obtained as discussed next. 

 In the context of the Vapor Surfactant theory, the most important variables that 

influence the delivery of surfactant to the surface of the liquid are the surfactant vapor 

concentration and the mass flux of water vapor being absorbed. The flux of surfactant 

arriving at the surface is the product of these two variables. Once the surfactant arrives at 

the surface, a portion of it dissolves in the liquid. For this solvation process, two 

properties that govern the process are the solubility of the surfactant in the liquid and the 

mass diffusivity of the surfactant in the liquid. Two systems were studied which differ 

greatly in these properties. Aqueous lithium bromide has low values for both of these 

variables and, as a result, surfactant delivered to the liquid surface from the vapor tends 

to stay on the surface whereas water has much larger values and the experiments show 

that a significant amount of the surfactant delivered to the surface dissolves rapidly in the 

liquid. 

The strength of Marangoni convection and absorption/condensation enhancement 

was observed to be dependent on the 2EH concentration in the vapor. In the present 

study, if 2EH vapor concentration was in the range of 400 to 1500 ppm, the strongest 

absorption occurred with a vigorous surface motion. If 2EH vapor concentration was 

outside this range, the Marangoni convection was much weaker. Therefore, it is 

concluded that there is an optimal 2EH vapor concentration, at which surface tension 
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gradients are maximized resulting in strong Marangoni convection and effective 

absorption/condensation enhancement. 

Based on the measurements of surface tension for 60% LiBr solution (Section 

3.3.2), surface tension is very sensitive to 2EH in the vapor, and relatively insensitive to 

2EH in the liquid. Therefore, the 2EH vapor concentration is a dominant variable in 

absorption enhancement. In contrast, for the case of the measurements of surface tension 

of water, the surface tension was found to be sensitive to 2EH in both the vapor and the 

liquid. This difference is apparently due to the fact that in water, dissolved 2EH can 

diffuse to the surface rapidly. These differences in the way 2EH is transported in the 

liquid have a strong influence on the vapor conditions for optimum enhancement with 

condensation requiring a higher vapor concentration of surfactant for optimum 

enhancement. 

Similar observations were made based on the absorption/condensation 

experiments. The optimum surfactant flux for absorption was identified and when a 

similar flux was tried for condensation, no Marangoni convection was observed. Only 

when a much larger flux of surfactant was imposed did the surface move during 

condensation. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

FOR FUTURE WORK 

 
 

This chapter presents a summary of the work, conclusions regarding the effect of 

surfactants on surface tension, surface concentration and Marangoni convection in 

aqueous lithium bromide (LiBr) and water systems, and recommendations for future 

work. 

 

8.1 Summary 

The novel surface tension measurement facility used in this work maintains a 

constant vapor concentration of 2-ethyl-hexanol (2EH) flowing past a drop weight 

surface tension setup. This facility was used for surface tension measurements on water 

and aqueous LiBr with controlled surfactant 2EH concentration in air. These 

measurements yield a probable error of ±1.43 mN/m in surface tension, which is well 

below the deviations seen in the literature between different investigations. The ability to 

control the concentration of the surfactant in the vapor allowed a new understanding of 

dominant role that surfactant vapor plays in this system.  

The absorption/condensation pool apparatus used in this work delivers steam, 

along with surfactant vapor, to the test chamber. This facility was used for 

absorption/condensation studies to understand the effect of vapor phase surfactants. 

Absorption and condensation, with and without cooling, were investigated and the 
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influence of key variables, such as the concentration of the surfactant in the vapor and 

vapor mass flux, was quantified. Although similar pool absorption/condensation 

experiments have been done previously, this is the first study where such experiments 

were done with controlled concentration of the surfactant in the vapor.  

Based on the experimental and numerical analysis in the current study, it was 

found that the presence of surfactant (2EH) vapor alone is sufficient to cause a large 

reduction of surface tension due to a large increase of surfactant surface concentration. 

The Marangoni convection that results in significant heat and mass enhancement (up to 

300%) in absorption chillers is found to be caused largely by surfactant delivered to the 

surface via bulk flow (along with water vapor).  

The interaction of the surfactant with aqueous lithium bromide is strongly 

dependent on the concentration of the LiBr. In particular, the surfactant solubility is 

higher when the LiBr content is lower. Also, the diffusivity of surfactant in the liquid is 

retarded by the presence of the LiBr. Thus, although the basic mechanisms of 

enhancement are identical in condensation and absorption, the conditions under which 

maximum enhancement is obtained are different for pure water versus 60% LiBr. These 

effects are quantified throughout the thesis.  

The importance of the surfactant vapor in absorption technology is highlighted in 

this work. The fact that the surface tension of aqueous lithium bromide can be reduced to 

the lowest values ever measured for this system by simply blowing air with 400 ppm of 

surfactant past the surface is a very important realization. On the other hand, if air with 

no surfactant is blown past the surface, the presence of surfactant in the liquid does not 

reduce the surface tension. Combined, these observations show that although the liquid in 



 

162 

 
 

the absorber does carry a small dissolved fraction of surfactant, which dissolved fraction 

plays only a minor role in enhancement. The dominant role is played by the surfactant 

vapor that passes through the absorption machine in a surfactant cycle and which returns 

to the absorber surface with the vapor coming from the evaporator. The work done in this 

thesis has quantified several aspects of this process and provided basic data that will 

allow others to pursue these ideas further. 

 

8.2 Conclusions 

• The equilibrium surface tension measurement results show that for both water and 

aqueous LiBr the surface tension is reduced with increased 2EH concentration in the 

system, and the plateau (i.e. minimum) surface tension values are experimentally 

determined to be 41 mN/m for water and 37 mN/m for 60% aqueous LiBr. 

• An important property, solubility, is determined by a new method, called Solubility 

Limit of Vapor Surfactant with Adsorption (SLVSA), which accounts for the effect of 

2EH adsorbed on the wall and 2EH in the vapor. The solubility of 2EH in aqueous 

LiBr decreases with mass fraction of aqueous LiBr. The solubility limits of 2EH in 

water and 60% aqueous LiBr were measured to be 835 ±45 ppm and 27.1 ±0.56 ppm, 

respectively, which are significantly different than previously reported values. 

• The results of surface tension measurements show that surface tension decreases at a 

rate of 0.25 mN/m/ppm for 60% aqueous LiBr and in a rate of 0.075 mN/m/ppm for 

water with increases of 2EH concentration in vapor from 0 to 200 ppm. The results of 

2EH surface concentration show that 2EH surface concentration increases with 2EH 

system concentration at a rate of 0.009 mg/m2/ppm for 60% aqueous LiBr and at a 
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rate of 0.003 mg/m2/ppm for water with increases of 2EH system concentration from 

0 to 100 ppm. The higher sensitivity of surface tension and surface concentration to 

vapor side delivery of surfactant exhibited by 60% aqueous LiBr as compared to 

water is mainly due to the differences in the mass diffusivity of 2EH and the 

solubility of 2EH in the two systems. 

• The results of surface tension measurements show that for aqueous LiBr, the presence 

of 2EH in the liquid, even at its solubility limit, is not sufficient to cause a large 

reduction in surface tension (i.e. surface tension reduces from 96 mN/m with no 2EH 

to 87 mN/m with 100 ppm of 2EH in the liquid). By comparison surfactant levels of 

100 ppm in the air flow, with no surfactant in the liquid, are sufficient to cause a 

significant reduction in the surface tension (i.e. the surface tension reduces from 96 

mN/m with no 2EH to 56 mN/m with 100 ppm of 2EH in the air flow). Therefore, 

2EH concentration in the vapor is concluded to be a primary variable in determining 

the surface tension of aqueous LiBr. Therefore, surfactant vapor concentration is 

understood to be a primary variable in the stimulation of Marangoni enhancement of 

absorption. 

• The surface tension measurements for water show a much stronger dependence on 

drop frequency as compared to aqueous LiBr (60% aqueous LiBr was found to be 

essentially independent of drop frequency below 0.2 Hz while water showed 

sensitivity even at the lowest frequencies tested as shown in Figure 3.5). These results 

are apparently due to higher diffusivity and solubility of 2EH in water as compared to 

aqueous LiBr. For water, a large fraction of the 2EH delivered to the surface dissolves 

into the liquid bulk instead of staying on the surface. 
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• Surfactant in the vapor was observed to have a significant effect on the surface 

tension measurements and a lack of control of surfactant vapor conditions is thought 

to explain the large deviations in reported surface tension values for aqueous LiBr. 

Equilibrium surface tension results require that the vapor, liquid and surface all be in 

equilibrium but the slow diffusion rate of 2EH in the liquid implies that long times 

are required for the vapor to reach equilibrium if the 2EH is supplied solely by 

mixing in the liquid. 

• The surface concentration values of 2EH are calculated from the new equilibrium 

surface tension data using a Gibbs analysis for both water and LiBr solutions. The 

presence of LiBr causes a reduction in 2EH solubility in the liquid and the surface 

concentration of 2EH increases as the concentration of LiBr is increased. The 

saturated surface concentrations are 0.59 mg/m2 for water and 0.99 mg/m2 for 60% 

LiBr solution.  

• To achieve saturated surface concentration values of 2EH, it required on the order of 

1000 ppm of 2EH vapor in air for water and on the order of 600 ppm for 60% 

aqueous LiBr. Since 2EH vapor concentration is based on the mass of air, this 

demonstrates the sensitivity of surface concentration of 2EH to vapor borne 

surfactant. In other words, addition of 2EH to the vapor side is a very efficient 

method to cause an increase of surface concentration of 2EH and thereby a reduction 

of surface tension. 

• The strength of Marangoni convection and absorption enhancement is dependent on 

the 2EH concentration in the vapor. There is an optimal surfactant concentration to 

achieve maximum enhancement. In the current study, in a 60% aqueous LiBr 
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absorption pool with no 2EH in the solution, the maximum enhancement is achieved 

at a level of 1500 ppm of 2EH in vapor, accompanied by a vigorous surface motion. 

Based on pressure history data, the absorption flux is calculated to be about 

0.2 g/m2.s, corresponding to heat flux of 0.5 kW/m2. If the 2EH vapor concentration 

is lower than 200 ppm, relatively low flux of 2EH arriving at the surface is 

insufficient to cause a Marangoni flow. If the 2EH vapor concentration is higher than 

2500 ppm, the large concentration of 2EH in the vapor presents a mass transfer 

resistance that limits the absorption and thus limits the Marangoni flow. 

• Based on the numerical analysis (described in Chapter 6) on surfactant-induced 

condensation enhancement, the maximum condensation enhancement is achieved in 

the time range from 5 to 25 sec, when the corresponding surfactant surface 

concentration is in the range of 0 to 0.5 mg/m2, which is below the saturation surface 

concentration in this case. Unfortunately, the experiments done in this work do not 

match the conditions of the simulation. Thus, the predictions made by the simulation 

will have to wait for further data for verification.  

• The numerical analysis shows that the flow field is controlled by different factors at 

different times. In the current study, it is first controlled by natural convection (from 0 

to 2.5 sec), and then dominated by Marangoni convection (from 2.5 to 25 sec). After 

25 sec, the effect from natural convection is seen again. 

 

8.3 Recommendations for Future Work 

Recommendations for future work based on the current study are: 
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• The novel surface tension measurements reported in Section 3.2.1 use air as a carrier 

fluid. Similar surface tension measurements should be run using steam as the carrier 

fluid to isolate any effects caused by air. This would more closely mimic the 

conditions in an absorption chiller. 

• To better understand the absorption and condensation enhancement due to Marangoni 

convection by surfactant, the experimental studies on absorption and condensation in 

a falling film absorber and condenser should be carried out with controlled vapor 

concentrations of surfactants and report the heat flux or mass flux as a key 

experimental variable. 

• Expand the numerical analysis of absorption/condensation pool to include the 

evaporation, adsorption and diffusion of surfactant to replace the simple model used 

here which assumes that the surfactant stays on the liquid surface 

• Expand theoretical analyses to configurations other than the pool. 

• Expand theoretical analysis to include a stability analysis on the vapor surfactant 

absorption process. 

• The non-linearity in the relationship between surface concentration and surface 

tension provides considerable complexity and slows down numerical simulations. 

However, this is one of the most important aspects of surfactant physics and should 

be included in numerical analysis of the basic fluid equations. 

• To obtain high accuracy theoretical predictions, accurate values of surfactant 

diffusivity are needed. 
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APPENDIX A 

SOURCE CODE FOR 1-D SURFACTANT MASS TRANSFER 

EQUATION 

 

 

In the simulation of Marangoni convection during condensation in the presence of 

surfactant in the vapor (Chapter 6), Fluent, a commercial fluid flow code, was used with 

the 1-D surfactant mass transfer equation (Equation 6.4 in Section 6.3) solved as a user 

defined function (UDF) to find surfactant surface concentration. The surface tension and 

shear stress are also calculated in this UDF and are used as the boundary conditions for 

solving the momentum and energy equations in the main body of Fluent for the next 

iteration. This iteration process continues until the convergence criterion is satisfied and 

the simulation goes to the next step. The UDF is written in C language and the detailed 

source code is provided in this Appendix.   
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/*============================================================== 
 
This is a UDF (User Defined Function) code, which is used for  
1) Simulate the surfactant surface concentration.  
2) Find the surface tension based on surfactant surface concentration. 
3) Supply the boundary conditions for the main body of Fluent.  
4) Get the velocity profile and source term from main body for surfactant surface concentration simulation.  
 
==============================================================*/ 
 
#include "udf.h"     /*Required by Fluent */       
#include "sg.h"     /*Required by Fluent */ 
#include "math.h"    /*Load math library */  
#define  ND 101     /*Number of nodes */ 
#define  NC (ND-1)    /*Number of control volume */ 
#define  vapor_ppm  120.0   /*Surfactant concentration in the vapor */ 
#define  controlPad 1e-7     /*Diffusion coefficient, unit: m2/s */ 
#define  latent_heat 2437000.0    /*Latent heat of steam at 1atm */ 
#define  length 0.05    /*The length of the pool, unit: m */  
#define  max(a, b)  (((a) > (b)) ? (a) : (b))   /*Self defined function, to get the greater from a and 

b */ 
#define  WALL_ID 3    /*3 is a ID number corresponding to the top surface, 

which is decided during building the grid by Gambit, 
you need check this ID if you plan to make your own 
grid */  

enum 
{ 
conc, /* the variables used to store the concentration and 

flowing time info.*/  
conc_old,      
timeold       
}; 
 
/* UDS definition */ 
 
/*1. Delete the output of S_C[] 
   2. Delete the output of gSur[]  */ 
 
/* The UDF is comprised of two parts: 
   1. Calculation of surfactant source from vapor phase. 

Approach: correlate surfactant flux to steam absorption, then to heat flux; 
   2. Define the B.Cs for top surface. 

Approach: shear stress is controlled by surface tension that is related to the surfactant surface 
concentration */ 

 
/* Global variables definition */ 
static  double  Q[NC];     /* surfactant source from vapor */ 
 
DEFINE_PROFILE(shearstress_profile, thread, position) 
{ 
/* variable declarations */ 
double time;     /* time of current calculation */ 
double dt;          /* length of time step (s) */ 
double gSur[ND];    /* grid surfactant conc. for time step t */ 
double time_old;     /* time of last iteration */ 
double gSur_old[ND];    /* grid surfactant conc. for time step t */ 
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double velocity[NC];    /* note that only cell values are used  */ 
double r[ND_ND]; 
double x; 
face_t f; /* defined function in Fluent, to get temperature on 

the face of the cell*/ 
cell_t c; /* defined function in Fluent, to get average 

temperature on the cell*/ 
int i; 
float x1,x2;                 /* these variables are used to stored the gSur and 

gSur_old of [ND-1] */ 
float dx=length/(NC); 
int jj;                      /* where stored in time_old[8] and time_old[18] */ 
/* FILE   *gsurfile; */ 
double outputshst; 
double shearStress[NC];    /* shear stress on surface, CELL value */ 
double old_time; 
FILE *mass;                     /* file for storage of Q */ 
 
/* Function forward declarations */ 
    double functionA(double P, int choice); 
    void TDMA(double a[ND-1],double b[ND],double c[ND],double d[ND]); 
    int gridConcentration(double *,int,double *,double *,double,double,double,double,double,double); 
    int SMBE(double *,double *, int,double,double,double *,double *); 
    double interpolate( double x, double dx, double shearstress[NC]); 
    
/* Function body */ 
time=RP_Get_Real("flow-time"); 
dt=RP_Get_Real("physical-time-step"); 
old_time=0.0; 
 
/* 1. Read in time, time step size, velocity profile, concentration profile */ 
/* data needed: time, dt, gSur, gSur_old and velocity. Find the definitions of data in the variable section */ 
 
/* If this is the first iteration, the initial condition is specified here */ 
if (time<dt*(1+1e-6)) 
{ 
begin_c_loop(c,thread) 
{ 
C_UDSI(c,thread,conc_old)=0.0; 
C_UDSI(c,thread,timeold)=0.0; 
} 
end_c_loop(c,thread) 
} 
/* read in the time_old of last time iteration */ 
i=NC-1; 
begin_c_loop(c,thread) 
{ 
        if(i==3) 
            time_old=C_UDSI(c,thread,timeold); 
 i--; 
        if (i==8) 
 x1=C_UDSI(c,thread,timeold);   /* timeold[5..10] store gSur_old[ND-1] */ 
        if (i==18) 
     x2=C_UDSI(c,thread,timeold);    /* timeold[10..] store the gSur[ND-1] */ 
} 
end_c_loop(c,thread) 
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/* input of velocity profile */ 
i=NC-1; 
begin_c_loop(c,thread) 

{ 
        velocity[i]=C_U(c,thread); 
        i--; 
        } 
end_c_loop(c,thread)  
 
/* Update the time_old and gSur_old based on wether or not the last iteration lead to a new time step, these 

values are stored in the arrays in this function for calculation */ 
 
    if(fabs(time-dt)<1e-6)  
      { 
       time_old=0; 
       for(jj=0;jj<ND;jj++) 

gSur_old[jj]=0; 
      } 
    else if( (time-time_old-dt)>-1e-6)  /* This means that the last time iteration leads to a 

time step forward */ 
       { 
 
/* update the additive concentration of last time step with value get in lastest successful try */ 
        i=NC-1;     /* fprintf(gsurfile,"%f\n",time_old+222); */ 
        begin_c_loop(c,thread) 
         { 
          gSur_old[i]=C_UDSI(c,thread,conc); 
     i--; 
         } 
        end_c_loop(c,thread) 
        gSur_old[ND-1]=x2;           
  
/* update the time_old, tell FLUENT calculation has marched to the time now, but not simplely another 
iteration */ 
        time_old=time;     
       } 

     else   /* This means that the last iteration fails to march 
into a new time step */ 

      { 
        /* use the time_old and gSur_old of last iteration */ 
         i=NC-1; 
         begin_c_loop(c,thread) 
         { 
          gSur_old[i]=C_UDSI(c,thread,conc_old); 
          i--; 
         } 
         end_c_loop(c,thread) 
         gSur_old[ND-1]=x1; 
      } 
 
/* update the UDS items about the time_old and gSur_old, this is done with the above operation */ 
    i=NC-1; 
    begin_c_loop(c,thread) 
     { 
       C_UDSI(c,thread,conc_old)=gSur_old[i]; 
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       i--; 
     }  
    end_c_loop(c,thread) 
  
    i=NC-1; 
    begin_c_loop(c,thread) 
      { 
 if (i<=5) 
           C_UDSI(c,thread,timeold)=time_old; 
        if ((i>5) && (i<10)) 
           C_UDSI(c,thread,timeold)=gSur_old[ND-1]; 
 i--; 
      } 
    end_c_loop(c,thread) 
 
/* 2. Calculate the proper shear stress and new surfactant concentration */ 
 SMBE(shearStress,gSur,1999,time,dt,gSur_old,velocity); 
 
/* 3. Tell FLUENT the shear stress at surface and time of this iteration (later  
      used for judging of convergence, as well as surfactant concentration update)*/ 
 
  begin_f_loop(f,thread) 
  { 
    F_CENTROID(r,f,thread); 
    x=r[0]; 
    F_PROFILE(f,thread,position)=interpolate(x,dx,shearStress); 
  } 
  end_f_loop(f,thread) 
 
/* update the gSur_old in UDS, this has been done in the lines above */ 
/* update the gSur stored in UDS, this value will be used for a new gSur_old if this iteration converges */ 
  i=NC-1; 
  begin_c_loop(c,thread) 
   { 
    C_UDSI(c,thread,conc)=gSur[i]; 
    i--; 
   }  
   end_c_loop(c,thread) 
 
/* update time_old in UDS and gSur_old[ND-1] and gSur[ND-1]  */ 
   i=NC-1; 
   begin_c_loop(c,thread) 
     { 
       if(i<=5) 
          C_UDSI(c,thread,timeold)=time_old; 
       if ((i>15) && (i<20)) 
           C_UDSI(c,thread,timeold)=gSur[ND-1]; 
       i--; 
     } 
   end_c_loop(c,thread) 
 
     /*   fclose(gsurfile);  */ 
 }       /* end of the DEFINE_PROFILE */ 
 
/* This function calculate the grid value of additive concentration for one time step*/ 
int gridConcentration(double gSur[ND],int DIV, 
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double gSur_old[ND],double velocity[ND],double gama,double dx,double omg,double time, 
double qLeft,double qRight) 
{ 
int i; 
double position;        /* position of the cell center along surface, left most 

is zero. */ 
double a[ND-1], b[ND], c[ND-1], d[ND];  /* coefficient of mass balance equation*/ 
 
/* set the coefficient for the discreted mass balance equation of additive */ 
double D=gama/dx;    /* cell diffusion coefficient */ 
double Ve, Vw; /* cell velocity at east and west of the present point*/ 
double Fe, Fw; /* cell convection coefficient at west & east point to 

present */ 
double Pe, Pw; /* ratio of convection intensity to diffusion intensity 

*/ 
double S_c[ND], Sp=0;    /* the source from vapor phrase is Sc[]+Sp*C */ 
int ch; /* discretion scheme 0 for upwind, 1 for power law, 

and 2 for hybrid  */ 
 
double functionA(double P, int choice); 
void TDMA(double a[ND-1],double b[ND],double c[ND],double d[ND]); 
int gridConcentration(double *,int,double *,double *,double,double,double,double,double,double); 
int SMBE(double *,double *, int,double,double,double *,double *); 
double interpolate( double x, double dx,double shearstress[NC]); 
 
/* Upwind scheme is used in this calculation */ 
ch=1; 
 
/* 1. Calculation of surfactant absorption strength along nodes points */ 
/*  in unit of mg/m */ 
for(i=0;i<ND;i++) 
{ 
 
  if(i==0) 
  S_c[i]=Q[i]; 
else if(i==ND-1) 
  S_c[i]=Q[i-1]; 
else 
  S_c[i]=(Q[i]+Q[i-1])/2; 
if(S_c[i]<0)        /* to avoid initial trivial problem */ 
  S_c[i]=0; 
} 
 
/* 2. Set up the discretization equation of mass balance of surfactant over surface */ 
for(i=0;i<ND;i++) 
{ 
 if(i==0) 
 { 
  position=0.5*dx; 
  Ve=velocity[i]; 
  Fe=Ve; 
  Pe=Fe/D; 
 
  /* coefficient for ApXp=AeXe+AwXw+S */ 
  b[i]=omg/2+Fe+D*(functionA(Pe,ch)+max(-1*Pe,0));  
  c[i]=D*(functionA(Pe,ch)+max(-1*Pe,0));  
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  d[i]=qLeft+gSur_old[i]*omg/2; 
 
  /* for the source term from vapor phrase */ 
  b[i]-=Sp*dx*0.5; 
  d[i]+=S_c[i]*dx*0.5; 
 
  /* coefficient for TDMA */ 
  c[i]*=-1; 
 } 
 else if(i==ND-1) 
 { 
   
  position=(i+0.5)*dx; 
  Vw=velocity[i-1]; 
  Fw=Vw; 
  Pw=Fw/D;   
 
  /* coefficient for ApXp=AeXe+AwXw+S */ 
  a[i-1]=Fw+D*(functionA(Pw,ch)+max(-1*Pw,0)); 
  b[i]=omg/2+D*(functionA(Pw,ch)+max(-1*Pw,0)); 
  d[i]=omg/2*gSur_old[i]-qRight; 
 
  /* for the source term from vapor phrase */ 
  b[i]-=Sp*dx*0.5;   /* half cell !   */ 
  d[i]+=S_c[i]*dx*0.5; 
   
  a[i-1]*=-1;    /* coefficient for TDMA */ 
 } 
 else 
 { 
  position=(i-0.5)*dx; 
  Vw=velocity[i-1]; 
  Ve=velocity[i]; 
  Fe=Ve; 
  Fw=Vw; 
  Pe=Fe/D; 
  Pw=Fw/D; 
 
  /* coefficient for ApXp=AeXe+AwXw+S */ 
  a[i-1]=D*functionA(Pw,ch)+max(Fw,0); 
  c[i]=D*functionA(Pe,ch)+max(-1*Fe,0); 
  b[i]=omg+a[i-1]+c[i]+Fe-Fw; 
  d[i]=gSur_old[i]*omg; 
 
  /* for the source term from vapor phrase */ 
  b[i]-=Sp*dx; 
  d[i]+=S_c[i]*dx; 
 
  /* coefficient for TDMA */ 
  a[i-1]*=-1; 
  c[i]*=-1; 
 } 
} 
/* 3. solve the equation to get grid values of this time step */ 
TDMA(a,b,c,d); 
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/* 4. store the result of grid surfactant concentration into gSur[] */ 
for(i=0;i<ND;i++) 
      gSur[i]=d[i]; 
return DIV; 
} 
 
double functionA(double P, int choice) 
{ 
 double coeff; 
 P=fabs(P); 
 switch (choice) 
 { 
 case 0: 
  coeff=1; 
  break; 
 case 1: 
  coeff=max(0,pow(1-0.1*P, 5)); 
  break; 
 case 2: 
  coeff=max(0,1-0.5*P); 
  break; 
 } 
 return coeff; 
} 
 
/* Following is a part to get the coefficients by Tri-diagonal Matrix Algorithm */ 
void TDMA(double a[ND-1],double b[ND],double c[ND],double d[ND]) 
{ 
    int  ii; 
    for(ii=1;ii<ND;ii++) 
    { 
     a[ii-1]=a[ii-1]/b[ii-1]; 
     b[ii]-=a[ii-1]*c[ii-1];    
     d[ii]-=a[ii-1]*d[ii-1]; 
    }A 
    d[ND-1]=d[ND-1]/b[ND-1]; 
    for (ii=ND-2;ii>-1;ii--) 
        d[ii]=(d[ii]-c[ii]*d[ii+1])/b[ii] ; 
   return; 
} 
 
double interpolate( double x, double dx, double shearStress[NC]) 
{ 
  int cellno,next; 
  double x1,x2; 
  double result; 
  double temp; 
 
  x=x-dx/2;     /* from the center of first cell */ 
  temp=x/dx;  
   
  cellno=temp;     /* cell before it */ 
  x1=cellno*dx;   
   
  next=cellno+1;    /* cell after it */ 
  x2=next*dx; 
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  if(x<0)           /* before the center of first CV */ 
 result=shearStress[0]; 
  else if(x>dx*(NC-1))      /* after the center of last CV */ 
 result=shearStress[NC-1]; 
  else 
 result=shearStress[cellno]+(shearStress[next]-shearStress[cellno])/(x2-x1)*(x-x1); 
 
  return result; 
} 
 
double C_F(double concen) 
{ 
double tension; 
 
/* the input of the formulation is in unit of mg/m^2, and the output is in unit of mN/m  */ 
/* Note: Used after 7/7/00. One linear correlation from 0 to 1.2mg/m^2   */ 
 
if(concen<=1.2) 
    tension=69.72852604-24.29566932*(concen-0.1); 
else   
  tension=43.00328979; 
 
return tension/1000;  /* convert into N/m which is used in all UDF */ 
} 
 
int shearStressCalculation(double shearStress[NC],double gSur[ND],double dx) 
{ 
int i; 
for(i=0;i<NC;i++) 
     shearStress[i]=(C_F(gSur[i+1])-C_F(gSur[i]))/dx; 
return 0; 
} 
 
int SMBE(double shearStress[NC],double gSur[ND], 
  int DIV, 
  double time,double dt,double gSur_old[ND],double velocity[NC]) 
{ 
/* Section I. Variable Define */ 
/* Specify the domain of calculation and grid specification  */ 
double width=length;    /* length of the free surface,   (m) */ 
double dx=width/NC; 
double omg=dx/dt; 
double qLeft=0; 
double qRight=0;          /* additive output from right side  (g/s) */ 
 
/* Specify the additive property */ 
double gama=controlPad; /* diffusion coefficient of surfactant  (m^2/s) */  
int i; 
 
/* Section II. Calculation surfactant concentration on surface */ 
gridConcentration(gSur,1999,gSur_old,velocity,gama,dx,omg,time,qLeft,qRight); 
 
/* Section III. Calculate the shear stress on surface */ 
shearStressCalculation(shearStress,gSur,dx);             
 
return DIV; 
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} 
 
/* Part II. Solve for surfactant absorption 
   Approach: Use DEFINE_ADJUST() to calculate surfactant before each iteration */ 
 
DEFINE_ADJUST(gradient, domain) 
{ 
face_t f; 
cell_t c0; 
 
real F_coord[ND_ND]; 
real C_coord[ND_ND]; 
real x, y, z; 
real s0[ND_ND]; 
real A[ND_ND]; 
real At; 
real alpha0; 
real p0[ND_ND]; 
real beta0; 
real dT_dn; 
 
int i=NC-1; 
 
Thread * wall_thread = Lookup_Thread(domain, WALL_ID); 
Thread *fluid_thread = THREAD_T0(wall_thread);        /* for cells next to WALL_ID */ 
 
Alloc_Storage_Vars(domain, SV_T_RG, SV_T_G, SV_NULL); 
T_derivatives(domain); 
Free_Storage_Vars(domain, SV_T_RG, SV_NULL); 
 
/* find the surfactant flux at each cell */ 
begin_f_loop(f, wall_thread) 
{ 
/* get index of cells next to WALL_ID */ 
    c0 = F_C0(f, wall_thread); 
 
    /* get cell and face centroids */ 
    C_CENTROID(C_coord, c0, fluid_thread); 
    F_CENTROID(F_coord, f, wall_thread); 
 
    x = F_coord[0]; 
    y = F_coord[1]; 
 
    NV_VV(s0, =, F_coord, -, C_coord); 
    F_AREA(A, f, wall_thread); 
    At = NV_MAG(A); 
 
    alpha0 = NV_DOT(A, A)/NV_DOT(A, s0); 
    NV_VS_VS(p0, =, A, /, alpha0, -, s0, *, 1); 
    beta0 = NV_DOT(p0, C_T_G(c0, fluid_thread)); 
 
    /* temperature gradient along top surface */ 
    dT_dn = (F_T(f, wall_thread) - C_T(c0, fluid_thread) + beta0)*alpha0/At; 
    /* heat absorbed though surface in unit of W   */ 
    Q[i]=dT_dn*C_K_L(c0,fluid_thread); 
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    /* steam condensation in uit of kg/(s.m)*/ 
    Q[i]=Q[i]/latent_heat;  
 
    /* surfactant flux in unit of kg/(s.m) */ 
    Q[i]=Q[i]*vapor_ppm*1e-6; 
 
    /* surfactant flux in unit of mg/(s.m) */ 
    Q[i]=Q[i]*1e6; 
     
    i--; 
} 
end_f_loop(f, wall_thread) 
} 
 
/* This part specifies the cooling power along bottom surface */ 
DEFINE_PROFILE(coolingLine, thread, position) 
{ 
  float time; 
  float heatFlux; 
  float x,r[ND_ND]; 
  face_t f; 
  int i=0; 
  time=RP_Get_Real("flow-time"); 
   
  begin_f_loop(f,thread) 
  { 
    F_CENTROID(r,f,thread); 
    x=r[0]; 
   if(time<2) 
     { 
       if(x<0.01)  /* cooling is confined in the left corner at the bottom 

*/ 
          heatFlux=-5000; 
       else  
          heatFlux=0; 
     } 
   else 
     { 
      if(x<0.01) 
         heatFlux=-5000; 
      else  
 heatFlux=0; 
     } 
    F_PROFILE(f,thread,position)=heatFlux; 
  } 
  end_f_loop(f,thread)    
}       /* end of the DEFINE_PROFILE */ 
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APPENDIX B 

EXPERIMENTAL PROCEDURE FOR POOL 

ABSORPTION/CONDENSATION MEASUREMENTS 

  

 

Included here is a data sheet used in the experimental study of Marangoni 

convection in absorption/condensation in the presence of surfactant vapor. This data sheet 

summarizes the experimental procedure that was followed in order to observe the 

Marangoni convection and to obtain the quantitative data. The experimental procedure 

consists of eight main steps: 

1) Clean the system with compressed air. 

2) Set up the absorption/condensation pool, including loading the sample solution 

into the petri dish and positioning the thermocouples in the solution. 

3) Introduce micro-sphere particles (for flow visualization) to the sample solution. 

4) Introduce a measured amount of 2EH and water to the sample flask with all 

valves in the system closed. 

5) Evacuate the chamber, the mixing flask and sample flask, respectively. The final 

pressure should be same as the vapor pressure of the liquid, zero and about 50 

mmHg, respectively. 

6) Warm the sample flask with the sample flask heater and then deliver sample 

vapor to the mixing flask with Valve 5 opened and Valves 1,2 and 3 closed (see 

Figure 5.1). 
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7) Open the valve 2 between the mixing flask and the static pool chamber (see 

Figure 5.1) and record the Marangoni convection on video tape and record 

temperature and pressure history from the transducers. 

8) Repeat the data collection with cooling or heating applied in the center of the petri 

dish. 
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1 
2 
3 

4

5

ABSORPTION/CONDENSATION POOL MEASUREMENTS 
 
 
Date and time: ______________ 
Room temperature: __________; Ambient pressure: __________ 
 
The procedure for the experiments (Check the box next to each item) 

(    ) a. Clean the system by compressed air about 30mins (No water and 2EH?) 
(    ) b. Set up the thermal pad and thermal grease   
(    ) c. Introduce sample solution to the petri dish 

W. of petri dish: _______(g);  W. of aqueous LiBr : _______(g);    Total: ________ (g) 
Density and depth of the solution: _____g/cm3; _____ (mm); (Note: Dia. of petri dish = 8.3cm) 
Micro particles w: ______ (g)   (0.015 is recommended) 

(    ) d. Set up the thermocouples in the liquid and vapor (Don’t block the view) 
(    ) e. Close the cover (don’t too tight the bolts) 
(    ) f. 2EH vapor concentration:  

    W2EH = _____ (g); Wwater = _____ (g; 1.0g 
recommended);  

    2EH conc. in water  = ______ (ppm) 
(    ) g. Set the camera 
(    ) h. Close all valves  
(    ) i. Set up the pressure for the system including absorption/condensation pool 

• The system pressure and temperature before evaculation:  
 p=_______(mmHg);  t=_______(°C) 

• Open valves V2 and V4 
• Turn on the vacuum pump and then open valve V1 very slowly to evacuate the system to 

50mmHg.  Actual pressure:________ (mmHg)  
• Close valve V1 and then V2  
• Open valve V5 slowly (p=_____mmHg) 
• Close V5 and reopen V1 to evacuate the pressure to 50mmHg again (p=_______mmHg) 
• Close valve V1 and open valve V5 again. The pressure of sample flask: _________ (mmHg) 

(Final p ≤50mmHg) 
• Close valve V5 
• Open valve V1 and then V2 to evacuate the absorption/condensation pool until the pressure 

reaches the lowest value. The pressure of absorption/condensation pool: _______(mmHg) 
• Maintain this status for 10 mins to check the leakage condition. (p from ___ to ____ (mmHg) 
• Air bubbles still in solution? ______ 
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(   ) j. Close valve V1 and then switch off vacuum pump 
(    ) k. Heat sample in the sample flask by a heater (see the condensation on the wall) 
(    ) l. Start the recording the videotape 
(    ) m. Switch off the heater and open the valve 5. Record the pressure and temperature  
(    ) n. Power on the cooling chip after initial movement stops and turn on the fan for the    
cooling chip 
(    ) o. After finishing the test, introduce the air to the system very slowly to protect the 

sealing      (15mins at least) 
(    ) p. Weigh the petri dish: W = ________ (g),  absorption amount: ________ (g) 
 

The history of pressure and temperature after delivering 2EH  
Time (s) -0.1 0 10 20 30 40 50 60 70 80 90 120 
Pressure (mmHg)             
Temp (center)             
Temp (edge)             
Temp (vapor)             
Time 150 180 210 240 270 300 330 360 390 420 450 480 
Pressure (mmHg)             
Temp (center)             
Temp (edge)             
Temp (vapor)             
             

 
 

Observation of the surface movement during the period of 2EH delivering, cooling and heat 
modes 
Time       
Status Before 

evacuation 
After 
evacuation 

Right after  
V5 opened 

   

Pressure       
Temp (center)       
Temp (edge)       
Temp (vapor)       
Observation       
Time       
Status       
Pressure       
Temp (center)       
Temp (edge)       
Temp (vapor)       
Movement       
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APPENDIX C 

REGRESSION OF THE PROPERTIES OFAQUEOUS LITHIUM 

BROMIDEBY GIBBS FREE ENERGY METHOD 

 

 

C.1 Introduction 

An accurate expression for the thermodynamic properties of aqueous lithium-

bromide is important for the current study and furthermore for design and testing of LiBr 

based absorption machines. Therefore, a significant effort was spent in finding such an 

accurate expression based on available data (Yuan and Herold, 2005a). This appendix 

presents a summary of the work in obtaining an analytical expression for the properties of 

aqueous LiBr.  

The traditional method in obtaining such an expression is based on a single 

property correlation. The single property correlation is usually available only for limited 

temperature and mass fraction ranges and usually leads to inconsistency in 

thermodynamic properties. To overcome these weaknesses, a multi-property correlation 

method based on the Gibbs free energy function is used for this study. 

The multi-property correlation method combines and correlates all 

thermodynamic property data in a single expression. To do so, a functional form for the 

Gibbs free energy is first created; all available thermodynamic property data over the full 

temperature and mass fraction range are used to calculate the coefficients of Gibbs free 

energy. The resulting function is used to calculate particular thermodynamic properties 
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by thermodynamic theory resulting in complete thermodynamic consistency between 

properties so obtained. 

However, thermodynamic consistency does not necessarily imply accuracy. To 

obtain an accurate expression, special attention was paid to obtain accurate experimental 

data over a wide range and to find an appropriate functional form for the Gibbs free 

energy. 

 

C.2 Multi-property Gibbs Free Energy Correlation Method  

The multi-property correlation method combines and correlates all 

thermodynamic property data in a single expression based on a functional form for the 

Gibbs free energy. The steps to create this function and to use it for finding other 

thermodynamic properties are:  

1. A functional form for the Gibbs free energy which is a function of solution 

temperature, mass fraction and vapor pressure is first formed.  

2. And then, verified high-quality literature data for vapor pressure, specific heat 

data (mainly from our measurements) and density (volume) are combined together and 

regressed to obtain the coefficients of the Gibbs free energy.  

3. The resulting function is then used to derive particular thermodynamic 

properties by differentiation and/or combination of terms of the Gibbs free energy by 

thermodynamic theory.  

In order to find an appropriate functional form for the Gibbs free energy and to 

get good accuracy for the results, an arbitrary function was first postulated guided by 

experience obtained in earlier work (Herold, 1985). Each term of this functional form 
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was then tested individually against the data by knocking the term out and judging its 

contribution to the overall quality of the fit. Some terms were modified and additional 

terms were then added based on observations about the data and the fit. The final result is 

the empirical best fit based on a large number of attempts. The final function/coefficient 

set is called SSC-4 (the fourth major variation coming out of the Sorption Systems 

Consortium effort). 

 

C.3 SSC-4 Correlation 

C.3.1 Database Used to Generate the SSC-4 Correlation 

A summary of the entire data set used for this correlation is given in Table C.1. 

The sources of experimental data used in SSC-4 are given in Table C.2. The data set 

consists of a mix of vapor pressure values from 13 authors, each of which covers a 

different range of temperature and concentration. The specific heat data in the literature 

was found to be inconsistent and an effort was initiated to measure the specific heat of 

aqueous lithium bromide over the complete range of temperature and concentration of 

interest. This new data set (see Figure C.5) was measured and then used in the correlation 

(see Appendix E for details). Density (volume) data were taken from 5 authors (it is noted 

that the density data for this system is very regular and the data from different authors is 

largely consistent).  
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Table C.1 Summary of the property data set used to generate SSC-4 
The range of data 

Data Property No. of 
data points T(°C)         x(%)        p(kPa) 

Weight 
factor 

No. of 
authors 

Vapor pressure 641 T=1~350,   x=4~76, p=0.7~15696 1 13 
Vapor pressure 
(H2O) 12 T=0~220,   x=0,       p=0.26~2318 3 1 

Specific heat 450 T=5~260,   x=5~74.76, 150 1 

Specific heat (H2O) 53 T=0~260,   x=0 450 1 

Volume   556 T=-60~220,x=1~65 1000000 5 

Volume (H2O) 50 T=0~220,   x=0 1000000 1 
Enthalpy (Ref. 
point) 1 T=0,           x=50,     p=0.153 200  

Entropy (Ref. point) 1 T=0,           x=50,     p=0.153 200  

Total 1764   22 

 

Table C.2 The sources of experimental vapor pressure and density data used in SSC-
4 

The sources of experimental vapor pressure data used in SSC-4 
Boryta, D.A., Maas, A.J., Giant, C. B., 1975,   "Vapor Pressure-Temperature-

Concentration Relationship for System Lithium Bromide and Water (40-70% Lithium 
Bromide)",  J. Chem. Eng. Data, Vol. 20, pp. 316- 319. 

Fedorov, M.K., Antonov, N.A., Lvov, S.N., 1975,  "Vapor Pressure of Saturated 
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C.3.2 Functional Form of Gibbs Free Energy and Other Thermodynamic 
Properties 
 

After considerable effort in testing and analyzing numerous terms, the final 

functional form for the SSC-4 Gibbs free energy expression is given here, which involved 

42 terms and coefficients.  
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Gibbs free energy (kJ/kg): 
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Based on the thermodynamic property expression, the coefficients A1 and B1 

cannot be decided from the selected data set. However, A1 and B1 can be decided if the 

reference points for enthalpy and entropy are given. The coefficients A1 and B1 were 

selected to obtain enthalpy and entropy zero at x = 50% and T = 0°C. 

The form of the terms for pure water, given next, are similar to those used in the 

NBS Steam Tables (Haar et al., 1984); 

))(ln(

))(ln(

)(   

1.1
4

3
3

2
210

1.1
4

3
3

2
210

1.1
4

3
3

2
210

xMxMxMxMMTT

xLxLxLxLLT

xBxBxBxBBT

+++++

+++++

++++

 

These terms improve the fitting of cp data in the middle temperature range.  

In order to improve the correlation in the low temperature range, (F0+F1x)/(T-T0) 

is included. It significantly changes the chemical potential of water in the low 

temperature range and improves the accuracy for the regression of vapor pressure.    

The terms (E0+E1x)T4 were added to improve the characteristics of the fit in the 

high temperature range from 260 to 300°C,  which is beyond the available data range. 
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Furthermore, the terms with power 1.1 improved the deviation between our enthalpy data 

and McNeely's results for mass fractions from 10 to 40%. 

By using thermodynamic relations between the Gibbs free energy and other 

thermodynamic properties (Bejan, 1997), other thermodynamic properties are derived as 

follows. 
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Specific heat (kJ/kg.K): 
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Entropy (kJ/kg.K): 
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Enthalpy (kJ/kg): 
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Vapor pressure (kPa): 

 Vapor pressure cannot be calculated directly like the other thermodynamic 

properties. It is derived from the Gibbs free energy expression by the following steps. 

 Given:  Solution temperature T and mass fraction x 

 Guess:  Vapor pressure p 

Compute: Chemical potential µw(x,T,p) of water in aqueous LiBr 

 Compute: Gibbs free energy g of steam at T, p 

 If g ≠µw, guess a new pressure value by iteration until g = µw.  

 

C.3.3 SSC-4 Regression Results 

The coefficients for the SSC-4 correlation are given in Table C.3. The standard 

error and R. squared are 3.914 and 0.99993, respectively. 
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Table C.3 Coefficients for SSC-4 
A
0
= 5.506219979E+3 

A
1
= 5.213228937E+2 

A
2
= 7.774930356 

A
3
=-4.575233382E-2 

A
4
=-5.792935726E+2 

B
0
= 1.452749674E+2 

B
1
=-4.984840771E-1 

B
2
= 8.836919180E-2 

B
3
=-4.870995781E-4 

B
4
=-2.905161205 

C
0
= 2.648364473E-2 

C
1
=-2.311041091E-3 

C
2
= 7.559736620E-6 

C
3
=-3.763934193E-8 

C
4
= 1.176240649E-3 

D
0
=-8.526516950E-6 

D
1
= 1.320154794E-6 

D
2
= 2.791995438E-11 

D
4
=-8.511514931E-7 

E
0
=-3.840447174E-11 

E
1
= 2.625469387E-11 

F
0
=-5.159906276E+1 

F
1
= 1.114573398 

V
0
= 1.176741611E-3 

V
1
=-1.002511661E-5 

V
2
=-1.695735875E-8 

V
3
=-1.497186905E-6 

V
4
= 2.538176345E-8 

V
5
= 5.815811591E-11 

V
6
= 3.057997846E-9 

V
7
=-5.129589007E-11 

L
0
=-2.183429482E+3 

L
1
=-1.266985094E+2 

L
2
=-2.364551372 

L
3
= 1.389414858E-2 

L
4
= 1.583405426E+2 

M
0
=-2.267095847E+1 

M
1
= 2.983764494E-1 

M
2
=-1.259393234E-2 

M
3
= 6.849632068E-5 

M
4
= 2.767986853E-1 

 
T
0
=220K 

Units:   Temperature (K)        Gibbs free energy (J/g)  
             Mass fraction (%)      Enthalpy (J/g) 
             Pressure (kPa)         Entropy (J/g-K) 
             Volume (m3/kg)           
 
 
 

C.4 Verification and Discussion 

Error plots are given for vapor pressure, specific heat and volume in Figures C.1 

to C.3. These plots show the results of the SSC-4 correlation compared against the input 

data. The average error for vapor pressure, specific heat and volume data are 2.99%, 

0.754% and 0.172%, respectively. Where the average error is defined as:  

∑ ×
−

=
−

− %1001
,4

,4,exp
,exp

iSSC

iSSCit
avet Y

YY
n

Y  

As can be seen from Figure C.1, a large deviation for one line of data was found 

in the vapor pressure error plot, which is from Lower's (1960) pressure data. Because of 

limited data in this region, these data were retained. By comparison, the average errors 

for specific heat and volume are much smaller. The small error indicates that our 

experimental data has good consistency.  
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Furthermore, comparisons of vapor pressure, specific heat and volume between 

the SSC-4 correlation and some selected experimental data from the literature were made. 

Figure C.4 shows a comparison of specific heat between the SSC-4 correlation and our 

experimental data. As can be seen, the SSC-4 correlation matches both our experimental 

data and the pure water data very well over the entire data range. 

A comparison between the SSC-4 correlation and McNeely's [1979] data for 

vapor pressure is given in Figure C.5. It should be noted that these data were not used in 

the Gibbs free energy regression and so this comparison represents an independent check. 

Good consistency is obtained over most of the domain. However, some deviation is 

observed at mass fraction 70%. This deviation helps to explain the deviation in the 

enthalpy data discussed in the next paragraph. A comparison of volume between the 

SSC-4 correlation and the data of Lee et al. (1990) and I.C.T. (1928) is shown in Figure 

C.6 and the agreement is very good as well.      

For further verification, a comparison of enthalpy between calculated values from 

the SSC-4 correlation and the McNeely correlation (1979) was made. The enthalpy 

comparison is shown in Figure C.7 and the enthalpy difference is also given in Table C.4. 

The largest deviation was found at 70% LiBr and is attributed to insufficient 

experimental data. In the range above 130°C, the deviation is due to the different vapor 

pressure data from the SSC-4 correlation and McNeely's data, which can be seen in 

Figure C.5. The method for calculating the enthalpy in McNeely (1979) is based on the 

slope of the vapor pressure at constant mass fraction. Thus, different vapor pressure 

values cause a deviation in enthalpy value. It should be noted that no enthalpy data were 

used in the SSC-4 correlation. This makes the agreement shown here more impressive 
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both as an indication of the usefulness of the formulation and as an indication of the level 

of consistency among all the properties. 

 

 

Table C.4 Enthalpy difference between the SSC-4 correlation and McNeely's data 
       (Unit for enthalpy difference: kJ/kg) 
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Figure C.1 Vapor pressure error plot 
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Figure C.2 Specific heat error plot 
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Figure C.3 Volume error plot 
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Figure C.4 Comparison of specific heat between SSC-4 correlation and experimental 

data 
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Figure C.5 Comparison of vapor pressure between SSC-4 correlation and McNeely’s 

data 
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Figure C.6 Comparison of volume between SSC-4 correlation and experimental data 
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Figure C.7 Comparison of enthalpy between SSC-4 correlation and McNeely’s data 
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C.5 Thermodynamic Property Plots 

Besides the thermodynamic properties mentioned in Section C.4, other 

thermodynamic properties including Gibbs free energy, chemical potential of water in 

solution and entropy are shown in Figures C.8 to C.10, with a full range of temperature 

from 0 to 300°C and mass fraction from 0 to 70% LiBr. Based on these plots, it can be 

said that the SSC-4 correlation exhibits smooth behavior even near the edges of the input 

data range. This, again, is an indication of the usefulness of formulation and the 

consistency among the thermodynamic properties.   
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Figure C.8 Gibbs free energy property plot 
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Figure C.9 Chemical potential of water property plot 
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Figure C.10 Entropy property plot 
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C.6 Conclusion 

A multi-property correlation method using a Gibbs free energy functional form 

was used to regress the thermodynamic properties of aqueous LiBr. The final version, 

SSC-4, was obtained after careful examination of each term of the correlation and 

verification with literature data. This SSC-4 correlation can be used in the range of 

temperature from 0 to 260°C and the mass fraction of aqueous LiBr from 0 to 75%. The 

main advantage of using this form is that the thermodynamic properties are consistent, 

and it also gives good accuracy for most properties of interest in the full temperature and 

mass fraction range for the current study and for the ranges of interest for design and 

application of absorption machines.  
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APPENDIX D 

PROPERTY ROUTINE: FOR AQUEOUS LIBR AND WATER IN 

VISUAL BASIC  
 

 

D.1 Introduction  

 
The work described in this appendix is a programming effort in Visual Basic. The 

purpose of this work was to create a user-friendly computer program that allows 

properties of aqueous LiBr and water to be utilized easily during the data processing in 

the current study. In this Visual Basic routine, the SSC-4 correlation (Yuan and Herold, 

2005a) is used for aqueous LiBr properties and NBS/NRC Steam Tables data (Harr et al., 

1984) is used for water properties. This routine includes most variables of interest and is 

applicable over the range of temperature from 0 to 260°C and mass fraction of aqueous 

LiBr from 0 to 75%.  

 

D.2 Visual Basic Routine and Its Main Features 

Figure D.1 is an About window from the property software. As described in 

Appendix C, the correlation for aqueous LiBr properties is based on a Gibbs free energy 

function. The correlation for water properties is from NBS/NRC Steam Tables (Haar, 

1984) and is based on a Helmholtz energy function. Both thermodynamic and transport 

properties are included in this routine.  
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Figure D.1 About window in Visual Basic routine 
 

Figure D.2 is a screen shot of the main window for calculating the properties of 

aqueous LiBr and water. The main features and functions of this window are listed as 

follows:  

a. SSC and McNeely's correlations for aqueous LiBr are included. For single phase 

states the available input variable pairs for the SSC correlation are temperature 

and pressure (T,p), temperature and mass fraction (T,x), pressure and mass 

fraction (p,x), enthalpy and mass fraction (h,x) and temperature and 

volume/density/specific gravity (T, v/d/sg); and for two phase states, available 

input triples for SSC correlation are temperature, mass fraction and enthalpy (T, 

x, h) or pressure, mass fraction and enthalpy (p, x, h). Twelve thermodynamic and 

transport properties are calculated. The applicable ranges for SSC-4 correlation 

are: 0 < T < 260°C, 0 < x < 75%, 0.26 < p <15000 kPa.  and for McNeely’s 

correlation are: 5 < T < 175°C, 45 < x < 75%. 
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Figure D.2 Main window in Visual Basic routine 

 

b. The Steam-NBS correlation for water properties is from the NBS/NRC Steam 

Tables (Haar et al.,1984). For water calculations, mass fraction is replaced by 

quality. Other input and output variables are similar to those for aqueous LiBr. 

For both single and two phase states, the available input variable pairs include 

temperature and density/volume/specific gravity (T,d/v/sg), enthalpy and pressure 

(h,p). For single phase states, an additional input variable pair is temperature and 

pressure (T,p). For two phase states, two additional input variable pairs are 

temperature and quality (T,q) and pressure and quality (p,q).    
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The applicable ranges are: 0 < T < 800°C, 0 < q < 1, 0.26 < p < 1000 bar. If the 

calculated quality is 1.01, the state is superheated. If the calculated quality is -

0.01, the state is a sub cooled state. 

c. Solubility of aqueous LiBr is provided and the correlation is based on the data 

from Boryta (1970). Either temperature or mass fraction is an input variable. The 

applicable range are: -49.3 < T < 120°C and 48.47 < x < 71.9% 

d. SI and English units are available. The units can also be mixed as desired by 

users. The unit choice is saved for future ease of use. 

e.  The check boxes are used to designate chosen input variables. 

f. Controls can be selected by mouse, Tab key and access key (underlined letter). 

g. A message window shows important information during the calculation. 

Figure D.3 is a window for calculating aqueous LiBr properties in the two-phase 

range. It provides the properties of both liquid and vapor states. The properties in the 

two-phase range are useful for many cases like a flashing calculation at an absorber inlet. 

When temperature, mass fraction and enthalpy (T, x, h) or pressure, mass fraction 

and enthalpy (p, x, h) are chosen as input variables in main window, the code will first 

determine the state. If the state is in the liquid phase, the main window is maintained. If 

the state is in the two phase region, the two-phase window is automatically displayed and 

the quality, LiBr mass fraction in liquid and the enthalpy, specific heat, entropy, density, 

viscosity and thermal conductivity for both the liquid and vapor phases are calculated.  
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Figure D.3 Two phase window for aqueous lithium bromide 
 
 
 

For the two-phase calculation, the vapor properties from the NBS Steam Tables 

(Haar et al., 1984) are used in conjunction with the SSC correlation to determine the 

state. The “Back” button in the two-phase window is designed for toggling to the main 

window. All control, command keys and units in main window also work for the two 

phase window.  

 

D.3 Verification 

The property routines for aqueous LiBr and pure water have been thoroughly 

checked for values and different unit systems. 
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For the SSC-4 correlation, the check was implemented over the range of 

temperature from 0 to 260°C and mass fraction from 0 to 70%. The values from different 

input pairs show good consistency, and the values are consistent with the available 

experimental data.  

The values for water properties from Steam-NBS correlation also give good 

consistency from different input pairs. The results from this routine were compared with 

NBS water data (Haar, 1984) over the range of 0.01 < T < 800°C, 0.0061 < p < 1000 bar 

in superheat, compressed liquid and two phase ranges. The results show at least five 

digits are same, which is a very high accuracy.  

 

D.4 Summary 

A user-friendly routine for the calculation of the properties of aqueous LiBr and 

water is developed in Visual Basic with a user-friendly interface. This routine is very 

easily utilized and gives most variables of interest in the design and application of 

absorption refrigeration, and the present study benefited from this routine. This software 

has been used widely in several key refrigeration companies in the U.S and can be free 

downloaded from Dr. Herold’s website. 
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APPENDIX E 

SPECIFIC HEAT MEASUREMENTSON AQUEOUS LITHIUM 

BROMIDE 

 

 

In the design and application of lithium bromide (LiBr) based absorption 

machines, McNeely’s correlation for enthalpy is widely used. This correlation is derived 

from vapor pressure and specific heat data. The McNeely correlation applies in the range 

of mass fraction of aqueous LiBr from 45 to 75% and temperature from 5 to 175°C. 

Therefore, high temperature applications require a new correlation. In addition, after a 

literature survey on aqueous LiBr specific heat data, it was found that the data are limited 

and inconsistent. The need for consistent data, including high temperature data, motivated 

us to measure specific heat in the full range of mass fraction of liquid aqueous LiBr and 

the temperature range from 5 to 260°C (Yuan and Herold, 2005b). The new data were 

then used to create an updated correlation as discussed in Appendix C. The measurements 

of specific heat discussed here were performed using a Setaram C80 calorimeter. The 

accuracy of the measurement method is estimated to be ±2% based on comparisons with 

high accuracy data for pure water and estimates of uncertainty in the other variables. 

Comparison of our specific heat data with other data sources indicates that reasonable 

agreement is obtained over the central range of the independent variables. However, 

certain systematic deviations in the low temperature range and a different tendency in the 

high temperature range are observed. A main contribution of this study is the extended 

temperature and mass fraction range of this new specific heat data set. 
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E.1 Introduction 

The motivation for the present work comes from design and analysis of 

absorption refrigeration systems based on aqueous lithium bromide as the working fluid.  

A key working fluid property in the analysis of such systems is the specific heat. Various 

correlations and data sources exist in the literature including the widely used McNeely 

correlation (1978) which is restricted to temperatures below 175°C due primarily to the 

lack of specific heat data. Recent high temperature concepts for advanced cycles 

represent a significant motivation to obtain more data. The data obtained in this study 

cover the range of temperature from 5-260°C and the full range of liquid concentration 

from pure water to crystallization. 

 

E.2 Measurement Method 

The specific heat measurements were conducted using a Setaram C80 dual-cell, 

heat flux calorimeter for which a layout is shown in Figure E.1. The aqueous LiBr 

solution is loaded in a sample vessel that is placed in one of the two cells in the 

calorimeter. The other cell holds an empty vessel as a reference. Two symmetrical heat 

flux detectors composed of conductive thermocouples, connected in series, surround both 

cells and connect them thermally to the calorimetric block. A difference in heat flowing 

into the two cells, as is expected during temperature changes when the cells have 

different thermal capacitance, results in an electrical signal that represents the magnitude 

of that difference. 

During the measurement, the calorimeter block is heated at a steady rate so that 

the temperatures of the cells increase linearly with time. The calorimeter measures the 
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differential heat flow between the sample and reference cells. The symbol P represents 

the signal obtained during a data run with the sample loaded, and P0 represents the signal 

from a separate run with both cells empty. A small differences in mass between the two 

metal vessels results in a non-zero P0. Data from the heat flux sensors (P), temperature of 

the calorimeter block (T) and time (t) are recorded every minute during the run. The 

specific heat is related to the measured parameters as 

 

dt
dTmS

PP
c p

0−
=  (E.1) 

 

Figure E.1 Layout of Setaram C80 heat flux calorimeter 
 
 
where m is the mass of the sample and S is a sensitivity function supplied by the 

calorimeter manufacturer.  

Aqueous LiBr solution was obtained from FMC Corp and adjusted to the desired 

concentration by adding or removing (by boiling) water. Concentration was inferred from 
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density measurements made using a 50 ml volumetric flask, with a volume measurement 

accuracy of ±0.1 ml, and a balance, with an accuracy of ±0.01 g, based on well-

established density data (SSC-4 correlation in Appendix C). The sample vessel was 

loaded with the desired aqueous LiBr sample at atmospheric pressure and then sealed. 

The sample vessel was weighed before and after each run to make sure no leakage 

occurred. An analysis showed that the mass of the air sealed in the sample vessel at 

atmospheric conditions is negligible. The sample vessel (nominal 12.5 cc sample volume) 

was loaded with sufficient liquid such that the vessel was at least 80% full of liquid by 

volume resulting in sample mass of 10-17 g depending on the LiBr concentration. It was 

necessary to provide sufficient vapor space so as to avoid the very high pressures that can 

result from thermal expansion of a liquid filled system and which might damage the 

calorimeter. 

For the measurements at mass fractions above 65%, the high crystallization 

temperature required a different loading procedure. Powdered LiBr from Fisher Co. (99% 

LiBr) was directly loaded into the sample vessel and a measured quantity of distilled 

water was added to the sample vessel to achieve the desired LiBr mass fraction. The 

sample was held at a temperature above the crystallization temperature overnight so that 

all crystals dissolved before taking the data.  

The calorimeter was programmed to ramp the temperature at a fixed rate 

(~0.18°C/min) that was kept identical for all runs. The ramp rate was chosen based on a 

series of preliminary runs which showed that the results are independent of ramp rate for 

rates below 0.5°C/min. Plots showing data for a typical run over the temperature range 

from 27 to 266°C are shown in Figure E.2. The slope of the temperature was obtained by 
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a linear fit to the data over the temperature range of interest and was found to be constant 

between runs within ±0.1%. The power signals were first smoothed by averaging over 

1°C increments and linearly interpolated to rounded values of temperature. P0 was then 

subtracted from P at the same temperature. Finally, the specific heat at each temperature 

was calculated using Eq. E.1. Although both P and P0 are plotted on the same time axis in 

Figure E.2, it is noted that these two traces were obtained in separate runs. 

The measurement method involves charging the sample vessel partially full of the 

liquid being investigated and then sealing the vessel at atmospheric pressure. The 

cylindrical sample vessel is made from stainless steel with a wall thickness of 2 mm and, 

thus, is essentially rigid as long as the pressure does not exceed the vapor pressure of the 

liquids of interest. The conditions of the experiment are essentially constant volume 

heating of a two-phase system. Because the majority of the mass in the two-phase system 

is liquid, the heat input required to change the temperature of this system is closely 

related to the amount of heat required to change the temperature of the liquid at constant 

pressure (i.e. the specific heat cp). 

Once the sample is charged in the sample vessel, the system is heated at a 

constant ramp rate and the differential heat between the two cells is recorded. At any 

given temperature, the majority of the sample mass is liquid while a small fraction is 

vapor. The amount of mass in each phase depends on the initial charge and the specific 

volume of each of the phases. As the temperature increases, the pressure rises 

exponentially causing the specific volume of the vapor to decrease. For the purposes of 

the specific heat measurement, it is of interest to know whether mass is evaporating or 

condensing during the temperature changes since both processes occur, depending on the 
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Figure E.2 C80 output for a run with distilled water 
 

 

conditions, and both contribute errors. Simulations were run which show that the errors 

introduced by phase change are small as long as the size of the initial vapor space is 

small. 

Simulations were done over the full operating condition range to determine the 

maximum error due to the various effects discussed and it was found that the most 

important factor is that the error is larger when the initial vapor space is larger. When the 

initial vapor space is less than 15% of the total volume, the largest error was found to be 

less than ±1% but it is noted that the properties of pure water do not allow such a starting 

condition because it leads to a liquid filled system at high temperature. Thus, for the very 
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low salt concentration cases, the errors at high temperature were estimated to be more 

like -1.5%. 

 

E.3 Specific Heat Results 

The results of our measurements of specific heat of aqueous LiBr are shown in 

Figure E.3.  These measurements were accomplished in three parts. First, measurements 

were taken over the range of temperature from 35 to 260°C with a 10% mass fraction 

interval from 0 to 60%, 5% and 65%. Then a similar set of measurements were taken 

over the range of temperature from 5 to 40°C by placing the calorimeter in a freezer 

maintained at -25°C. Finally, measurements were made at high mass fraction (70 to 

75%).  The overlapping data in the temperature range from 35 to 40°C are averaged. The 

major operational issues in this test series included: 1) great care was taken to measure 

concentration accurately through an optimized technique arrived at after long experience 

with the method, and 2) concern about condensation on the calorimeter during testing in 

the freezer led to a procedure that minimized door openings of the freezer and a 

shutdown procedure that allowed the system to warm to room temperature while 

remaining in the low humidity environment of the freezer box. 

The data are plotted in Figure E.3 at 1°C increments. A low-amplitude wiggle in 

the data is observed, which represents the stability of the temperature controller. It is seen 

that the specific heat is less sensitive to temperature at higher LiBr mass fraction. 

However, at lower mass fractions, the solution data reflects the temperature dependence 

of pure water. The scatter in the data is on the order of ±0.05 J/g-K but appears to be 

randomly distributed about a mean trend line. To eliminate the scatter, the data were 
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averaged over neighboring-temperature data points at the same concentration (11 points 

used in average) and the averages, at 5°C intervals, are used in all subsequent 

discussions. The averaged data are given in Table E.1 and are plotted in Figure E.4 along 

with a correlation obtained through a multiproperty curve fit of specific heat, vapor 

pressure and volume data as discussed in Appendix C. The form of the specific heat 

correlation is 
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The coefficients in Eq. E.2 are given in Table E.2 and an error plot showing the 

difference between the data and the correlation is shown in Figure E.5. The error falls 

within the band ±2% with an average error of 0.398%. 

 

E.4 Comparison With Selected Literature Data 

The specific heat results are compared with selected literature data and plotted in 

Figures E.6 and E.7. As shown in Figure E.6, comparison between our results for pure 

water and the NBS water data shows very good consistency over the full temperature 

range with a maximum deviation of 0.76%. Lower's data (1960) and the data from 

Murakami's correlation (1995) are also shown in Figure E.6. The comparison indicates 

that the literature data agrees closely with our results and shows identical trends as our 
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new data in the range of mass fraction of usual interest to absorption technologists. 

However, at the extremes, significant differences are observed. In the low temperature 

range, Lower's data shows much more curvature as temperature decreases. In addition, 

significant deviations are observed at lower mass fraction as temperature increases. The 

Murakami correlation results are shown (as data points) because no other high 

temperature data are available for comparison. The comparison shows significant 

systematic differences in trend between our results and those of Murakami, particularly at 

high mass fraction. 

A more recent data set, in a volume translated from Russian, is the work of 

Zaytsev and Ayesev (1992) which references the early German sources (1928, 1951). A 

comparison between our results and these data is shown in Figure E.7 where it is seen 

that they show good agreement in the central range and again show deviation at the 

extremes. Unlike the data from Lower, the data from Zaytsev and Ayesev shows 

essentially no temperature dependence at low temperature. At the high temperature end, 

both Lower and Zaytsev and Ayesev show a steeper slope with temperature than our 

results.  

 

E.5 Verification of Measurement Method Accuracy 

Verification of the sensitivity function was performed using our data set for pure 

water and high accuracy data for the specific heat of pure water (Haar et al., 1984).  

Eq. E.1 was used to compute the sensitivity function from our power readings and the 

literature value for specific heat. The results of this calculation are shown in Figure E.8 

along with the sensitivity function provided by the calorimeter manufacturer. Good 
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consistency is observed over the whole range except for several wiggles which are traced 

to the stability of the temperature controller. The maximum relative deviation between 

the two sources is 0.76%. 

Measurements were also performed using anhydrous ethanol, a well-characterized 

system with a lower value of specific heat, and the results are shown in Figure E.9. A 

small systematic error is observed between the two data sets with the slope of our data set 

being somewhat higher. However, the maximum relative error between the two data sets 

is smaller than 2% which is remarkable considering the difficulty in avoiding 

contamination by water when working with ethanol.  

 

E.6 Uncertainty Analysis 

Uncertainty analysis provides information defining the accuracy of the measured 

data and also gives insight as to what is the main error source. The uncertainty analysis 

discussed here follows Moffat (1985). Because the mass fraction x can be expressed as a 

function of mass m, volume V and temperature T, the uncertainties for density ρ and 

mass fraction x can be written as 
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Where ∂x/∂ρ and ∂x/∂T are calculated using the SSC-4 correlation. The total 

probable error of mass fraction is calculated as ±0.235% LiBr. 
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The uncertainty of the specific heat data consists of two parts. One is from the 

measurement using the calorimeter and the other is from the uncertainty in mass fraction 

discussed above. For the uncertainty introduced by the calorimeter, an analysis based on 

pure water as a standard reference fluid was performed. The probable error in specific 

heat was calculated as ±0.242%. Over the same temperature range, pure water has 

approximately twice the specific heat of a typical LiBr solution (e.g. 4.2/2.2 = 1.9).  

Consequently, for a typical LiBr sample, the calorimeter probable error is estimated to be 

±0.46%. 

The uncertainty in the mass fraction of the LiBr solution is another possible 

source of error in specific heat. The error in specific heat due to error in mass fraction can 

be calculated as ±0.705% LiBr. Thus the combined probable error of specific heat is 

calculated as ±0.84%. 

 

E.7 Conclusion 

Measurement of specific heat of aqueous LiBr solution was accomplished using a 

heat flux calorimeter. Measurements are reported here over the range of temperature from 

5 to 260°C at mass fractions from 0 to 75% LiBr. These data significantly increase the 

available data at high temperature and high mass fraction. The verification of the 

measurement method and uncertainty analysis shows that this measurement method 

provides a specific heat accuracy (probable error) of ±0.84%. 
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Table E.1 Experimental specific heat data for aqueous Lithium Bromide 
T (°C) Mass fraction LiBr (%) 

 0 5 9.99 19.99 30.01 40 50.02 60.02 64.99 70.01 74.76 
10 4.189 3.942 3.670 3.241 2.816 2.466 2.107 1.854    
20 4.183 3.942 3.682 3.261 2.837 2.474 2.130 1.868    
30 4.183 3.942 3.692 3.272 2.851 2.478 2.148 1.887    
40 4.183 3.931 3.694 3.262 2.851 2.484 2.157 1.895 1.815   
50 4.182 3.924 3.697 3.260 2.854 2.496 2.171 1.910 1.820   
60 4.183 3.925 3.706 3.267 2.865 2.507 2.187 1.927 1.823   
70 4.187 3.929 3.718 3.275 2.873 2.518 2.203 1.942 1.830   
80 4.194 3.928 3.717 3.273 2.870 2.522 2.212 1.952 1.834   
90 4.204 3.920 3.712 3.265 2.865 2.520 2.217 1.960 1.837   
100 4.216 3.919 3.710 3.262 2.872 2.528 2.224 1.971 1.840   
110 4.231 3.923 3.710 3.259 2.883 2.540 2.232 1.978 1.838   
120 4.248 3.923 3.705 3.254 2.880 2.540 2.235 1.980 1.835   
130 4.266 3.933 3.708 3.260 2.884 2.546 2.243 1.986 1.839 1.657  
140 4.287 3.936 3.704 3.264 2.879 2.546 2.244 1.987 1.841 1.653  
150 4.311 3.955 3.712 3.274 2.884 2.551 2.252 1.993 1.847 1.654  
160 4.337 3.976 3.721 3.279 2.885 2.557 2.259 1.998 1.850 1.654  
170 4.367 3.998 3.738 3.282 2.886 2.561 2.264 2.000 1.851 1.663 1.558 
180 4.401 4.024 3.758 3.285 2.889 2.564 2.268 2.001 1.853 1.669 1.551 
190 4.441 4.059 3.776 3.295 2.897 2.571 2.276 2.003 1.859 1.675 1.549 
200 4.486 4.100 3.800 3.304 2.906 2.579 2.286 2.008 1.863 1.682 1.549 
210 4.539 4.131 3.814 3.306 2.909 2.583 2.289 2.008 1.855 1.682 1.547 
220 4.600 4.174 3.833 3.320 2.919 2.593 2.299 2.013 1.857 1.689 1.556 
230 4.671 4.215 3.856 3.331 2.925 2.601 2.306 2.015 1.862 1.690 1.559 
240 4.753 4.263 3.881 3.346 2.938 2.614 2.316 2.021 1.866 1.699 1.566 
250 4.850 4.315 3.911 3.369 2.958 2.629 2.326 2.028 1.876 1.715 1.573 
260 4.965 4.367 3.927 3.381 2.966 2.637 2.330 2.031 1.885 1.725 1.575 
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Table E.2 Coefficients for the specific heat correlation for aqueous lithium bromide (Eq. E.2) 

 0 1 2 3 4 

C i , i = 0..4 2.648364473E-2 -2.311041091E-3 7.559736620E-6 -3.763934193E-8 1.176240649E-3 

D i , i = 0..2, 4 -8.526516950E-6 1.320154794E-6 2.791995438E-11 NA -8.511514931E-7 

E i , i = 0..1 -3.840447174E-11 2.625469387E-11 NA NA NA 

F i , i = 0..1 -5.159906276E+1 1.114573398 NA NA NA 

L i , i = 0..4 -2.183429482E+3 -1.266985094E+2 -2.364551372 1.389414858E-2 1.583405426E+2 

M i , i = 0..4 -2.267095847E+1 2.983764494E-1 -1.259393234E-2 6.849632068E-5 2.767986853E-1 

V i , i = 6..7 3.057997846E-9 -5.129589007E-1 NA NA NA 

Average error:  Specific heat = 0.398 % 

Additional notes: 

1. T0 = 220 K 

2. Units in Equation 8 are: T (K), X(LiBr mass fraction expressed in %), p (kPa) 

3. NA indicates that there is no coefficient for that position 
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Figure E.3 Specific heat data of aqueous LiBr solution 
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Figure E.4 Specific heat data compared with SSC-4 correlation 
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Figure E.5 Error plot of differences between our experimental data and the SSC-4 
correlation. 
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Figure E.6 Comparison of specific heat between our correlation and other data sources
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Figure E.7 Comparison of specific heat between our correlation and the data of 
Zaytsev and Aseyev (1992) 
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Figure E.8 Calorimeter sensitivity function verification using pure water literature data 
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Figure E.9 Verification of the specific heat measurement system for a sample (ethanol) 

with lower specific heat 
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