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ABSTRACT

Quantization and fusion schemes are derived for multi-sensor correlation in distributed
K -sensor systems that are used for the detection of weak signals or general signal discrimina-
tion from dependent observations. The dependence in the observations across time and sensors
is modeled via stationary m-dependent, ¢-mixing, or p-mixing processes. The observation
sequences of the various sensors have identical individual statistics and identical pairwise
statistics (symmetric conditions). Each sensor observation is passed through a memoryless non-
linearity or quantizer (the same one for all sensors) to form the sensor test statistic; the deci-
sion statistics of the various sensors are then passed to the fusion center in an unquantized or
binary quantized manner to form the final decision statistic of the fusion center. Based on a
common large sample size for each sensor that is necessary for achieving high-quality perfor-
mance, an asymptotic analysis is applied for the error probabilities of the fusion center. This
provides design criteria for the optimal memoryless nonlinearity and quantizer. Optimization of
these design criteria yields the optimal nonlinearity or quantizer as solutions to linear integral
eqautions involving the first- and second-order pdfs of the sensor observations describing the
individual and pairwise dependence. The analytical results obtained are valid for any number
of sensors K. Numerical results based on the simulation of the performance of our schemes
with different number of sensors are presented. The performance of the optimal nonlinearities
and quantizers is shown to outperform that of nonlinearities or quantizers obtained by ignoring
the dependence in sensor observations and to improve as the number of sensors increases.

This research was supported in part by the Office of Naval Research under contract N00014-89-J-1375 and in part by the
Systems Research Center at the University of Maryland, College Park, through the National Science Foundation’s Engineering
Research Centers Program: NSF CDR 8803012,






I. INTRODUCTION

In most practical multi-sensor detection systems with or without a fusion center, the obser:
vations are dependent. For each sensor, the dependence in observation across time is usually
due to increased sampling rates or the observed phenomenon itself, whereas the dependence in
observations across sensors is due to the geographic proximity of the locations of the sensors.
Yet, in the earlier works on distributed detection and data fusion (see [1]-[5]), the sensor obser-
vations were assumed to be independent across time and sensors, primarily for the purpose of
making the analysis tractable.

In our recent work of [6] and [7], we formulated and solved multi-sensor detection and
fusion problems with correlated observations across time and/or sensors of general stationary
m-dependent or mixing type. In particular, in [6] we designed and analyzed quantization and
fusion schemes based on memoryless nonlinearities for the detection of weak signals in additive
stationary m-dependent, ¢-mixing, or p-mixing noise; whereas in [7] we introduced and evaluated
the performance of similar schemes for general signal discrimination (not of the signal plus noise
type) from stationary m-dependent or mixing observations.

However, although the formulation and techniques of [6] and [7] are quite general and in
principle applicable to multi-sensor systems, the specific designs presented and evaluated there
were for detection systems consisting of two sensors and a fusion center. In particular, the case
of dependence across both time and sensors was analytically s_olved in [6] and [7] only for two
sensors with a fusion center.

In this paper, we extend the results of [6] and [7] to detection systems with K sensors
(K > 2) and a fusion center. We consider symmetric conditions, under which the sensors have

identical individual statistics and identical pairwise joint statistics. Asymptotically optimal



memoryless quantization and fusion schemes are derived for weak-signal detection and general
signal discrimination problems with dependence in the observations across-time and sensors.
The results obtained are valid for an arbitrary number of sensors and allow us to compare the
performance of multi-sensor systems, as the number of sensors increases and the correlation
in the sensor observations across time and sensors varies. In deriving these new schemes, this
paper extends the useful and popular methodologies of memoryless locally-optimal detection
of weak-signals and memoryless nonlocal detection from the single-sensor case to the case of
multiple sensors with a fusion center, and also advances earlier work in the area dealing with
i.i.d. sensor observations.

The observations sequence of each sensor consists of (i) a weak signal in additive dependent
stationary noise or (ii) arbitrary stationary dependent processes, under the two hypotheses. To
model the dependence in the observations of each individual sensor and between observations
of different sensors we use stationary mixing processes, such as stationary m-dependent,
$-mixing, or p-mixing processes. The definitions of these mixing processes and the associated
central limit theorems are detailed in [8] and [9]. These models of dependence have been suc-
cessfully used in single-sensor weak-signal detection and discrimination problems (see [10]-[13]).

The sensors collect n observations each (with n denoting the common sample size) and
form test statistics, which, after (possible) quantization, are transmitted to the fusion center, or
directly transmit to the fusion center a quantized version of their observations. At the fusion
center, the information sent by the sensors is processed further and a decision is reached as to
which of two hypotheses, Hy or Hy, is true.

As a rule, the optimal detection schemes under the above models of dependence, for ei-

ther single-sensor or multi-sensor/fusion-center configurations, involve high-order (larger than



two) probability densities of the observations, which are not only difficult to characterize, but
also impose prohibitive requirements on processor memory and complexity for the storage and
processing of the dependent data. To avoid these complications in our analysis, design, and
implementation, we employ suboptimal sensor decision statistics and sensor quantiza-
tion schemes based on memoryless nonlinearities; the fusion rules employed at the fusion
center are basically likelihood ratio tests based on these suboptimal sensor decision statistics or
quantization schemes. These are easier to implement and their derivation requires knowledge
of only the univariate and bivariate probability densities of the observation sequences. Large
sample sizes are necessary for the validity of the analysis and the usefulness of the resulting
detectors; but these are well justified, because they are necessary for achieving high-quality
performance in hypothesis testing problems involving the detection of a very weak signal or
the discrimination between observation sequences with (nearly) identical first- and second-order
moments.

We now describe the three schemes (termed Schemes 1 to 3) for quantization and fusion
in K-sensor detection systems with dependent observations, whose analysis, optimal design,
and performance evaluation (via simulation) constitute the subject of this paper. The same
memoryless nonlinearity ¢(-) is employed by all sensors. This is justified by the symmetric
conditions that we assumed characterize our problem and the simplicity of the implementation.
In general, the argument of g(-) is a continuous-amplitude (real) variable and g can take all real
values. (In reality, g is implemented through a discretized form with a large but finite number
of amplitude levels) When quantization is employed, g(-) takes the form of a quantizer and is
characterized by a finite number of quantization levels and breakpoints.

For Scheme 1 (illustrated in Fig. C.1), the k-th sensor employs the aforementioned g, forms



the test statistic Ty x given by

1 n
Tpy = ;Zg(Xl(k)); k=12, K (1)
I=1

where n is the common (large) sample size and {X ,(k)}?zl a stationary observation sequence
characterized by m-dependent or mixing type dependence, and transmits it directly to the
fusion center, where a likelihood ratio test is performed based on Ty 4, for k = 1,2,.--, K. If
one could reliably transmit a real number through a bandlimited channel (as are the channels
between the sensors and the fusion center), this fusion scheme, which is optimal within the
class of schemes employing memoryless nonlinearities in the sensor test statistics, would also
be practical. However, in reality we can only transmit a finite number of bits of information
through the aforementioned channels. Therefore, quantization of the test statistics or of the
sensor observations themselves is of interest and this is considered in the following two schemes.

In Scheme 2 (illustrated in Fig. C.2), the observation Xl(k) of sensor k at time [ is first
quantized by a quantizer @ (common to all sensors), which is obtained from minimizing an

appropriate design criterion, and then transmitted to the fusion center, where the test statistic

Tor==3 QX" 2)
n =1

is formed. Finally, the fusion center performs a likelihood ratio test based on T, for k =
1,2,---, K. The optimal quantizer is relatively simple to implement. Even simpler implemen-
tations, in which the breakpoints are uniformly spaced over the interval defining the support of
the sensor observations are possible at the expense of of some degradation in the performance.
For a large number of quantization levels these schemes approximate Scheme 1.

In Scheme 3 (illustrated in Fig. C.3), the test statistic Ty for each sensor is first formed

as in Scheme 1 by the continuous-amplitude nonlinearity g and then quantized by a two-bit



quantizer or equivalently compared to a threshold, in order to decide which hypothesis is true.
The single bit (0 or 1) of the sensor’s decision (also termed a hard decision) is transmitted to the
fusion center. The fusion center performs a likelihood ratio test based on the binary decisions
of the K sensors.

As described above, the function of the fusion center is to collect (as in Schemes 1 and 3) or
form (as in Schemes 2) the test statistics from the information transmitted by the sensors. In
the design of optimal nonlinearities or quantizers for Schemes 1 and 2, we employ the Neyman-
Pearson criterion on the error probabilities of the fusion center, whereas for Scheme 3 we employ
the asymptotic rates of the error probabilities of the fusion center. It turns out that the final
design criterion for each nonlinearity or quantizer has the form of deflection for weak-signal
detection problems and of the generalized signal-to-noise ratio for discrimination problems;
these are among the most popular second-order measures of quality for signal classification (see
the tutorial in [14]).

The course of obtaining the optimal nonlinearities or quantizers involves solving linear
coupled integral equations, which depend on the univariate and bivariate probability
density functions (pdfs) of the sensor noise sequence. The optimal threshold of each sensor
7k is determined by the optimization of the individual design criterion for each case; it depends
only on the means and the variances of the test statistics T, &, under the two hypotheses, and
thus on the aforementioned univariate and bivariate pdfs.

The remainder of this paper is organized as follows. In Sections II, some preliminaries
pertaining to the detection of weak signals, to general discrimination, and to all the quanti-
zation/fusion schemes considered in this paper are provided. In Section III, the three quanti-

zation/fusion schemes are analyzed and optimally designed for the case of weak-signal detec-



ion and dependence across time and sensors under symmetric conditions. The same quantiza-
tion/fusion schemes are analyzed and optimally designed in Section IV for the case of general
signal discrimination and similar models of dependence across time and sensors. In Section V,
numerical results based on simulation are presented for the detection of weak signals in Cauchy
p-mixing noise. Finally, in Section VI, conclusions are drawn.

IT. PRELIMINARIES

I1.1 Models of Dependent Observations

As mentioned in Section I, the model of dependence is one of stationary m-dependent, ¢-
mixing, or p-mixing sequences. These models are described in detail in the tutorial of [9]. Here
we review briefly two of these models of dependence, which are the most pertinent for the
purposes of this paper.

The simplest model of dependence assumes that, under both hypotheses, the observations
are stationary and m-dependent, meaning that the stationary data X and X; are dependent
with known joint pdf, for |k — I| < m;, and independent, for |k — I| > m;, under hypothesis H;
(see [8]).

For each positive integer n, let A be an event from XF (which is the o-algebra generated
by the random variables {X1, X5, -, X%}) and B an event from AP (which is the o-algebra

generated by the random variables {Xktn, Xitn+1,---}). Then, if
covi{X,Y} < pin : (3)

for all real random variables which are measurable with respect to A and B, respectively, where

pin is a sequence of real numbers with p; , — 0, as n — oo, then the sequence of observations



{X1,Xy,- -} is termed p-mixing. Notice that (3) implies the weaker but more intuitive result

covi{ Xk, Xetn} < Pin. (4)

This represents a good model for a time series of data that are asymptotically uncorrelated;
since this model requires only asymptotic uncorrelatedness of the data, it is the most general
one for our purposes and the numerical results of Section V will be dedicated exclusively to
this model. The tutorial of [8] has detailed definitions of the ¢-mixing and a-mixing (also
termed strong mixing) models of dependence, which characterize sequences that are respectively
asymptotically conditionally independent and asymptotically independent.
I1.2 Asymptotic Distribution of Test Statistics

In general, the true distribution of the sensor decision statistics 75,  and Tn,k (k=1,2,---,K)
of (1) and (2) is difficult to obtain. However, for large n, one can employ the central limit theo-
rem for the aforementioned mixing processes (see [9]). Specifically, assuming that the statistics
of the sensor observations are identical and that the pairwise joint statistics of any two sensors

are identical (symmetric conditions), we define, under hypothesis H. i(k) (:=0,1),

#z(g) = Ei[Tn,k]; k= L,2,---,K (5)
o(g) = varilg (X)) + 23 confg(x (), g (X)) (6)
i=1

where var;[-] and cov;[-] are the variance and the covariance operators, respectively, and

Ei{(Toe — i) - (Tng = i) (7)
(zoioi)

pi(g) =

where the numerator of (7) is equal to ;ll-[cov;{g(Xl(k)),g(Xl(l))} +2 Z;-;f__"l covi{g(Xl(k)),g(XJ(-Ql)}]
(k,1=1,2,-,K); m; is the range of dependence under H (k), for the m-dependent observations of

1

the k-th sensor; and 7i; the corresponding parameter for the cross-dependence of the observation



sequences between any pair (k,!) of sensors. For mixing-type observations, we take m; — oo
and m; — oo. Clearly, because of the stationarity, under hypothesis Hi(k), pi(g) depends on
the univariate pdf of the observation sequence {X,(k)};‘=1 (same for all £k = 1,2,-.-, K') denoted
by fi(-); o%(g) depends on f; and the bivariate pdfs of (Xl(k),X](i)l), for 7 = 1,2,---, denoted
by f,-(j)(-, -); and p;(g) depends on f; and the bivariate pdfs of (Xl(k),XJ(Ql), for 7 =0,1,2,--+,
denoted by f:-(j)(-, -) [same for all pairs (k,1)].

According to the central limit theorem for mixing processes, under Ht-(k) (¢ = 0,1) and
suitable conditions (see [8]-[9]), if o7 converges (which is trivially satisfied for m-dependent
processes but needs to be assumed for mixing-type processes) and ¢ > 0, (T x — “‘i)/(VIE"i)
is asymptotically Gaussian distributed with the standard A(0,1) pdf. The conditions for the
validity of the central limit theorem for each individual type of mixing processes are described
in [9] and are assumed to be satisfied in this paper. For example, for p-mixing processes (for
which the numerical results in this paper are generated), besides the convergence of the infinite
series above and the strict positivity of the variance, it is also required that the series 3 52, p;an
and 375 fign converge, where p;, denotes the sequence of p-mixing parameters [involved in

(%)

(4)] for the observation sequence of sensor k (for any k = 1,2,---, K), under hypothesis H;",
and p; , denotes the p-mixing parameter for the jointly mixing observation sequences {X J(k)}ﬁ';l
and {X,(,:)_J 52, of any pair of sensors (k,[).

. Henceforth we suppose that, under hypothesis H i(k) (¢ = 0,1), T, of sensor k is asymp-
totically Gaussian distributed with mean p;(g) and variance 0?(g)/n; moreover, that any pair
(T k, Tny) of sensor decision statistics is asymptotically jointly Gaussian distributed with the

correlation coefficient p;(g). In general —1 < p;(g) < 1; however, in Sections III-V below and

in the analysis and simulation for the third scheme displayed by Fig. C.3, we assume that



1 > p; > 0 (2 model for many practical situations) to derive useful design criteria. We also

assume that pg < p1. Moreover, for the scheme of Fig. C.3 we assume that the threshold of the
sensors 75 satisfies the consistency condition pug < 1, < p1, under which every error probability

of each sensors approaches to zero, as the sample size increases, according to the mean ergodic
theorem (see [12]).

Define the vector of the decision statistics of the K sensors as
€n,K = [Tn,l Tn,2 e 'Tn,K]T- (8)

Then the mean vector of {, i under hypothesis H; (i =0,1) is

bi = Eil&, k] = [ pivoopi]” (9)

and the corresponding (K by K') covariance matrix

1
E(&nx —b:) (€ — b)) = ;L’Zi (10)
where i i
1 pi pi  pi
pi 1 .- pi pi
Zi=ol |t i o ioi o, (11)

pi pi - 1 pi

pi pi -+ opi 1

2
1?

In (11) we have suppressed the dependence of u;, o?, and p; on the common (for all sen-
sors) nonlinearity g. In the sequel, since we are interested in a large common sample size n,
(Tn1Th,2 - - - Tn k] is assumed to be a Gaussian random vector with mean vector b; and covariance

matrix %»Z’;, under hypothesis H; (i = 0,1).



I1.3 Asymptotic Rates for Gaussian Statistics
To characterize the asymptotic rates of decrease of the error probabilities for Gaussian statis-

tics as the sample size n increases, we apply the large deviations principle given in [15]. We

consider the d-dimensional Gaussian random vector Y =[¥; Yy --- Yd]T where each of the
Y1, Y5, .- is generated as in (1) for large n via a Central Limit Theorem, and define the vectors
sT =[sy sy - sd)and z = [z1 2z --- 2zg]T. Under H; (¢ = 0,1), the scalar functions

relevant to the application of the large deviations principle to this case are (see [15])
1 1
ci(s) = nlirrgo ;ln E{exp(nsTY)} = sTE{[Y] + -Q—ST'c'cﬁi[Y]s (12)
and
Ii(z) = sup {sTz —ci(s)} = %(Z - B[Y]) {eou,[Y]}7!(= - Ei[Y]), i=0,1  (13)
seRd

where 1207;[Y] is the covariance matrix of Y, ¢;(s) are closed convex functions, and I; are termed
the Legendre-Fenchel transforms of ¢;(s) (see [15]). Next, we define the entropy functions on
any set G € RY as

L(G)=inf{L;(z): z € G} (14)

and the induced probabilities

P(G)=Pri{Y:Y €G) (15)

under H;, for ¢ = 0,1. Then, according to Hypothesis II.1 and Theorem II.2 of [15] and for any

set G € Rd, the exponential rates of the probabilities P;(G) are characterized by the formula
%m P(G) — I(G), i=0,1. (16)

as m — co. In Sections III and IV, (16) is applied to derive closed-forms of the exponential rates

of the error probabilities of the fusion center.

10



III. DETECTION OF WEAK SIGNALS
We consider the following binary hypotheses testing model for the detection of a weak signal

in additive stationary dependent noise

7P . x®=nN®

g . x® =g+ N®, i=1,2,-,nk=1,2,---,K (17)

where § — 0 with § > 0 is the nonrandom weak signal and {Ni(k)}?zl are stationary noise
sequences of the m-dependent, ¢-mixing, or p-mixing type. Under the symmetric conditions
discussed in Section I, the univariate and bivariate densities of NV, i(k) are identical for different
sensors and are denoted by f(-) and fU)(-,-) (j = 1,2,---,m) for the observations Ni(k) and
(Ni(k) , Ni(_*lf}), respectively; the cross-bivariate densities are also identical for any pairs of sensors
(k,1) and are denoted by f(j)(.’ (7 =0,1,---,7m) for the observations (Nl-(k), N,i(_?j).

In this weak signal detection problem, we adopt the notation ug = u1, 03 = 0%, and pg = p1
to express the functional dependence on 8 and assume the following regularity conditions:
() 1S 9(2)f(z — 8)da] = [ Zlg(x)f(z - )ldz

(b) selelgeeldd — 2g9llp o > 0

(c) o3(9) — 03(9)
(d) po(g) — pol9)
as § — 0. We use og(g) and po(g) to represent the (normalized) variance and correlation
coefficient of the sensor decision statistics under either hypothesis in this section.
I11.1 Fusion of Unquantized Test Statistics
We here consider the scheme described by Fig. C.1. For jointly Gaussian distributed Ty &

(k=1,2,--.,K), the (normalized) log-likelihood ratio function for the above weak signal detec-

11



tion problem becomes

l ln fG(Tn,h Tn,2a ) Tn,[\’)
' fo(Tni,Tn2y oK)

1
—InL,
n

= %(Sn,K - bO)TEal(gn,K — bO) - %(é-n,l\’ _ bg)Tzal(En,K _ be)

1 1 _
= (bg— bo)T):’glgn,K + §boTz:51b0 — 51;{520‘1;9

where the inverse of the (normalized) covariance matrix has the form

10 --- 00 1
0 1 0 0 1
2_1 == ————];—— : N : : — Po
° og(l=po) | = © a6(1 ~ po)(1 + (K — 1)po)
00 10 1
00 ... 1 1

L O po 1
o) o)+ (K~ Tpo)

(18)
(19)
1 1”
11
11
1..
(20)

in which I is the K by K identity matrix and 1 denotes the K’ by K matrix having all its

elements equal to 1. We notice that the above %ln L, is Gaussian distributed, since it is a linear

function of the Gaussian statistics &, k-

The asymptotic means of In L, under the two hypotheses take the forms
1 1 T -1
Yo = Eo —ﬁln Ln = -—5(1)9 - bo) 20 (bo - bo)

and

1 1 _
o= E [; In Ln] = 5(bo - bo)T X5 (bg — bo)

and its asymptotic variance under either hypothesis is

1

varg [l In Ln] = l70"57"0 [— In Ln] = }'(bg — bo)TZ'al(bg — bo).
n n n n

12
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(22)

(23)



For the threshold of the fusion center n, we impose the consistency condition g < 77 < 1
so that the error probability of the fusion center Pk, converges to zero, as the sensor sample
size increases to infinity, which results from an application of the ergodic mean theorem. The

error probability of the fusion center is
P = pPo(ln L > n1) + (1 - p)Py(In Ln < n) = pFo(1) + (1 = p)P5(0) (24)

where we used the notation Py(1) = Po(In L, > n7) and Py(0) = Ps(In L, < nn). Let Pros =
max{Fo(ln L, > nn), Ps(ln L, < nn)}. Applying the result of large deviations principle given

by (16) to the one-dimensional case (d = 1) we obtain

il

1
—;hl PKyT)
— ——1-1n Par = min {——hlPo <lln L, > n) ,—llnPg (—l-lnLn < n)}
n n n n n
= min{lo({z > n}), l({z < n})} (25)

where, from (13), (14) and (21)-(23) and under the consistency condition ¢g < 7 < ¢y, we

obtain
I = inf2(z- Bolime )2{— [11L]}_1
o{z>n}) = 1121>1n§<z— o|~InLn varo | —In Ly
(7 = o)?
= 26
2(bg — bo)T X5 (bg — bo) (26)
and

L({z<n)) = inf % (z _ B, E In L"D2 {Wo [% In Ln] }—1

z<n

_ (s —n)°
2(bp — bo)T X5 (by — bo)” (27)

Then the optimal threshold is determined as

{-7in o
= arg max {-——InPg,
Tlopt g<P0<77<<P1 n K

13



= arg max mln{Io({z > n}), Ig({z <nh}

wo<n<p1

- poter 4 (28)

Therefore

—=In Py, — min{lo({z>0}),T({z < 0})}

2
%o
Q(be - bo)TS_l(bg - bo)

= =.(by—bo)T Z71(by — bo)

Kps(g) — po(g))?
1+ (K = 1)polg)]od(9)
2 Kup(9)?
T (E - Drol@)]o30) (29)

Y oolr—l ool)—t

|

where we used (20) for Z’al and the regularity condition (b) to obtain that pg(g)—po(g) = po(g)8
for the derivative uj(g) at 8 = 0 and small 8 (8 — 0).

The optimal nonlinearity gz of a K-sensor system is obtained as

[1o(9)]?
[L+ (K = 1po(9)lod(g)’ (30)

gx = arg max

The maximization in (30) is similar to those performed in [6] and the optimal nonlinearity

satisfies the linear integral equation

- @) - [ K@, )0k @)y = gic@) (@) (31)

where the integration kernel is
Ki(z,y) = 23 [f9(,9)- f(2)f(3)] - £(2)f(¥)

7=1

+(f<—1){[f<°><x,y) f@)f(w)] +2 i[fm(xy f(x)f(y)]} (32)

14



The above linear integral equation is a necessary condition for the optimality of g}, to this we

should add the sufficient condition

pol9) > - (33)

for all functions g satisfying conditions (a)-(d) for which o(g) and po(g) converge and o3(g) > 0.
We can actually show that if g} and and g} _; are the optimal nonlinearities for K'-sensor

and (K — 1)-sensor systems, respectively, then

Kpo(g7))? S Klpo(gi_1))
[1+ (K = Dpogi)lod(9) ~ [+ (K —1)po(95%_1)lod(g5_1)

(K= DlkleieP
T O+ (K- 2)P0(9;\"_1)]U(2>(g;\’—1)

(34)

where the first inequality results from the optimality of g} and the second inequality is due to
the fact that K/{1+ (K —1)p] > (K —1)/[14 (K —2)p] for 1 > p. The inequality in (34) implies
that increasing the number of sensors increases the asymptotic rate of the error probabilities
of the fusion center, i.e., lim,_ [-—;1;111 Py 1, pt] > lim, o [—-};ln PK__L,,OP,} , and thus, since
Pk nope < PK_1,,, for large n, it improves the performance of the multi-sensor system.
I11.2 Fusion of Quantized Observations

Considering quantizers as special (discontinuous) forms of nonlinearities we may modify the
formulation of the previous section to derive the design criterion for the optimal quantizer uéed
in the scheme given by Fig. C.2.

Let Q(Xi(k)) (i = 1,2,---,n) be the output of the quantizer with M quantization levels
common for all sensors. Denote by ¢ = [tg, 1, - - -, tas] its breakpoints and by u = [uy, u2, - - -, uns]

its quantization levels. Then, from (6) and (7),

M t m M M tr t .
53(Q) = Z(u;)2./t f(z)dx+2222u,u1/ / f(J)(z,y)d:I:dy

—1 j=1r=1I=1 tpm1 Sl



and

po(Q)55(Q)

M " 2
—(2m + 1) [E / m)dm] . (35)

EolQX)QX]+2 3" @ )Q(X )] - (20 + D(EQUX))

Il

Define the vector

j=1
M M tr m M M
= Upll Oz, y)dzdy+2 Uplh fJ)(a: y)dzdy
e I A
—(2m + 1)[2 u /t' f(z)dz]?. (36)
=1 i1
Moreover, the partial derivative of the mean takes the form
o M
(@) = 2Dy = — [ Qa)r()de = 3 wlitus) - f(a) (37)
=1
Af: [_Afh—Af%'"’“AfM] (38)

where Af; =

f(t) = f(ti1) and F = diag{fy} f(z)dz,---, [} | f(z)dz}, P =[P, P = [P],

R =[R,]}, and R = [R, ], where

and

forr,l=1,2,---,

m tr 19] .
Pu=2) [ ) e isty (3)
~ tr 1
o= [ [ %, y)dxdy+22 A AR (40)
1}
Rey=(2m+1)- /t f(z)dz - /t f()de (41)
Rep=(2m+1)- /tt' f(z)dz - /t " H2)de (42)

M. Then from (30), the design criterion for the optimal quantizer (levels and

breakpoints) is

[ (Q))? - (uAfT)? (43)
1+ (K -1)po(@)1AQ) ~ w(F+P+P-R~RuT’
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If we assume that t;, for [ = 0,1,---, M, are chosen such that the matrix F+ P+ P~ R—- R

is positive definite, then for fixed breakpoints we can obtain the optimal quantization levels as
WT=(F+P+P-R-R)'AfT (44)

Substituting for these optimal quantization levels we obtain the design criterion as a function

of the breakpoints ¢ in the form
Af(F+P+P-R-R)'AfT (45)

This expression can be optimized with respect to £ to obtain the optimal breakpoints by means
of numerical optimization techniques such as the gradient method.

Similar arguments to those used in deriving (34) establish that the performance of this
scheme can be improved by increasing the number of sensors.
IT1.3 Fusion of Binary Sensor Decisions

Consider the scheme given by Fig. C.3, in which the k sensor (k = 1,2,-.-, K) performs
a threshold test based on the test statistic £, with the same nonlinearity g and threshold
ns and transmits its binary decision (0 or 1) to the fusion center, where a likelihood ratio
test is carried out on the basis of the sensor decisions. Let d,; be the decision of sensor
k based on its n observations. Then the log-likelihood ratio function of the fusion center is
InLn, =1nPy(dn1,dn2,- -, dnk)/Po(dn1,dn2, -, ds x) and the asymptotic log-likelihood ratio
function under a large sample size is characterized by

1 1 1

7—7:11an = —;lnPO(dn,ladn,%'"1dn,K)" _;hlPl(dn,l,dn,?a"'adn,I\’)] (46)
. >H1 . .

The fusion center executes the test In L, <g, nn. In this scheme, the threshold of the fusion

center 7 is selected to be zero since the case of interest involves equiprobable a priori probabilities

for the two hypotheses.
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In Appendix A, we derive by means of the large deviations principle the asymptotic rate of
the joint error probability of the K sensors, when there are 7 Os transmitted from them. To
compute the likelihood ratio test of the fusion center, we give here a proposition, which is proved
in Appendix B.

Proposition 1: Under the above framework, and for the problem of weak signal detection, the
likelihood ratio test of the fusion center is equivalent to a majority fusion rule if and only if the

threshold 7} used by all sensors is

N g+
= TR : al (47)

where pg and po are functionals of the nonlinearity gx. In this case, the asymptotic rate of the

error probability of the fusion center becomes

_ %ln Prps — [K/2][uo(g) = po()® 8% [K/2][po(9))? (48)

8[1+ ([K/2] — 1)po(g)lod(g) 8 [L+([K/2] —1)po(g)lod(g)’

where [K/2] is equal to (K + 1)/2if K is odd and to K/2 if K is even.

The above asymptotic rate is used as the design criterion for deriving the optimal nonlinearity

gk for this scheme. In particular the optimal nonlinearity is obtained as

E0EF it s
g = | P IRl TS 0 (49)
Klug(9)]?

man [2+(K—-2)po(g)]cr§(g)’ 1f I( iS even

By means of the calculus of variations method described in [10] (see also [6]-[7]), we obtain the
following integral equations as the necessary condition for the optimization problem character-
ized by {49)

- 1'(@) - [ Hxla,9)okw)dy = g(@)(z) (50)

with the integration kernel

m

Hik(z,9) = 2 [f9(z,9) - F(@) ()] - f(2)f(w)

i=1

18



+7 I{U“’)(w f@)f(w)] +2 ‘Zj[ (w)-—f(z)f(y)]} (51)

if K is odd, or

H(e,) = 23 [f9(e9) - F2)fW)] - F)FW)

_7"_'

—

Jj=

I’ F
+ { (7O, 9) - F(2)f ()] +2 Z [F9(2,9) - £(2)£(3)] } (52)
if K is even. The sufficient condition for achieving the maximum in (49) is

polg) > (53)

1
C[K/2] -1
for all functions g satisfying conditions (a)-(d) for which 03(g) and po(g) converge and o(g) > 0.

Suppose that g% _; and g} denote the optimal nonlinearities of (K — 1)-sensor and K -sensor

systems employing the scheme of Fig. C.3, respectively. Using arguments similar to those used

in the proof of (34) we can show that for odd KX (and thus even K — 1)

1 C(E )P

i, [~ P = BF (K = Dpolai)lodae)
(K + Dlth(o_o)?

= [24 (K - 1D)polgl_1)lod(g5_1)

(K- Dihlop )P |

n—r0Q

= lim
2+ (K - 3)/’0(9;\’_1)]0(2)(9;{—1) o

1
—=1n Prqp» 54
n R LK l,n,] (54)

and for even K (and thus odd K — 1)

, 1 Kluo(g5))?
lim [——-lnP' ~] = " *
n—00 n K3 (2 + (A - 2)P0(g;{))03(gK)

K911 i
T Bt ey = A [ ] 69)

v

Thus, under a large sample size and for any number of sensors K (odd or even), the error

probability of the fusion center decreases as the number of sensors increases.
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IV. DISCRIMINATION

We consider the problem of distributed discrimination from general (not necessarily sig-
nal in additive noise) sensor observations characterized by stationary m-dependent, @-mixing,
or p-mixing processes. This discrimination problem can be modeled by the following binary

hypotheses testing problem

H((,k) : Xl(k) ~ [fo(-),féj)(-,-)]

Hl(k) : (k) {fl()f(J)( ] l=1,-~-,n;k=1,2,---,K (56)

where f; (i = 0,1) are the univariate pdfs of the sensor observation processes under H; (identical
for all sensors), f(]) are the bivariate pdfs of (X l(k) xk It ) (also identical for all k), and f
(¢ = 0,1) are the joint pdfs of (X,(T),X,ﬂ) (also identical for for all pairs (7, k) of sensors with
r # k). Clearly, the above multi-sensor testing hypothesis problem describes several situations
that are not characterized by signals in additive noise and thus is a suitable model for target
discrimination problems.

For a large common sample size n, the statistics (Tn1,Tn 2, -+, Tn,k) Obtained via (1) and
(2) are jointly asymptotic Gaussian distributed when conditioned on H; (i = 0,1), as in the
previous section.

IV.1 Fusion of Unquantized Test Statistics
For the scheme depicted in Fig. C.1, and for jointly Gaussian distributed T, (kK =

1,2,---, K), the log-likelihood ratio function of the fusion center takes the form

1 1 fl(Tnlan%"'aTnK)

—InL, = —=In : : :

n n fo(Tnl, Tn2yy Tnx)
l111’2‘” b)) X1 b ! - b)) x:t —b
A + (5nA 0)" Zo (€nx = bo) = 5(€n i = 01)" Z7 (€ — b1)

(57)
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where 1 X; denotes the covariance matrix of £, i and was defined in (10)-(11) for i = 0,1. Its

inverse is given by

-1 _ 1 Pi
= ses b= ey g Y 9

where I and 1 were defined in (20).

The mean of %ln L, under Hy is

X 1 -
Bo [ 110 L] = 210 S50+ Bl =00 55 (e =) = 5 EolEn e ~b1) 7 =0

(59)
where

S Bul(Enic — b0)7 55" Gk~ b0)] = 5- (60)

and

1 v
5 Eol(nx = b1)T B (€ — 1)~

1 1
= 3Eol(&nk - bo)” Z7 (€ i — bo)] + (b1 = bo)T E7" (b1 — bo)
- L [ o3 K (1 + (K ~2)py) pop1od K(K ~ 1)

1
+ E(bl — bo)T Z71(by — bo)

(61)

2n {203(1 — p)(L + (K = L)p1)  202(1— p)(1 + (K — L)1)
Thus the asymptotic mean of %ln L, under Hy as n — co becomes
. 1 1 K(p1(g) - mo(g)l?
=1 E[—l Ln]z—-—b—b Ty-Up, —by) = — 2 62
oo = Jim Bo [oInLn| = 5001 = 0o) B0~ bo) = 5 e Dl Y
Similarly, we can obtain the asymptotic mean of %ln L, under H; as
: 1 1 T -1 K(pm(g) ~ po(9)]
= lim Fy|=InL,| = =(by —bo)" X5 (b1 — by) = — . 63
i By [ ] = 500 - 807550~ b = g I Oy

Again we assume the consistency condition g < 77 < ¢; for the threshold of the fusion center.

21



In the discrimination case the asymptotic rate of the error probabilities of the fusion center
can not be obtained in closed form in the way done for the detection of weak signals (Section
IIT). Instead, we use the lower bounds on the asymptotic rate obtained in Section II of [7] (see

Lemma 1, Theorem 2, and Appendix A), where the large deviations principle was applied to

yield
. 1 1 .
Jim_ {—;lﬂ P (‘T; InL,> 77)} > (1~ #o)3 (64)
and
. 1 1 -
LAm {—;111 Py ('7;111 L, < 77)} > (p1—1)3 (65)

for a small constant § > 0. Therefore, we use min{(n — ¢o)$, (¢1 — )3} as a lower bound on
the asymptotic rate. We require that the threshold of the fusion center 7 maximizes the above
lower bound; this leads to an optimal threshold n* = (¢g + ¢1)/2 and a maximum value of the
lower bound to the asymptotic rate §(¢; — ¢o)/2. Therefore, a suitable design criterion for the

discrimination case is

_p—wo _ Km(g) = po(9)]? Klui(g) — po(9)]?
Hpore) = =5 = I (R~ Do()lo¥9) T 405 (K - Do)l )

The optimal nonlinearity gx which maximizes this design criterion satisfies a nonlinear integral
equation (a necessary condition) but we can not derive sufficient conditions that guarantee that
the solutions to this equation achieve the maximum. Instead of pursuing this path, we consider

the following design criterion

Kl (g) - Mo(g)]2
[1+ (K = Dpo(g)]og(g) + [1 + (K = 1)p1(g)]oi(g

= Jr(g) £ J(o, ¢1)- (67)

which is lower bound on (66) as attested by the inequality (for all z,y > 0)

1 1 z+y z+y 1
= > =
4z 4y dzy “(z+y)? z+y
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This lower bound becomes tight as pg — p1 and 03 — o? (e.g., in the case of detection of a

weak signal). Thus the optimal nonlinearity is determined as

s Telan) = max [11(9K) = po(gx )]’
gic = max Jie(gK) = max gy o S T (K = Dot

The above maximization leads to the necessary condition characterized by the linear integral

equation
[fi(z) = fo(@))/fa(=) + fo(2)] - /I?K(x,y)g}‘c(y)dy = gk (2) (69)
where the integration kernel takes the form

Ex(z,9) = {2% 190 - A@AW)] + 2K DY [P,0) - AEA)

1252 [19(e,0) - fo(@)folw)] + 2K = 'Y |7 9) = fo(@) o)
J=1 =1

+(K = 1) [[Oe,9) - A@H)] + (& = 1) [77(@9) — fola)fo(y)]

- f1(2) fi(y) = fol) fo(y)} [{fi(2) + fo(2)}- (70)

Sufficient conditions for the maximization of J by the nonlinearity g3 are

i=0,1 (71)

pil9) > 3

for all functions ¢ for which ¢?(g) and p;(g) converge and o?(g) > 0 (i = 0,1).

Following arguments similar to the ones used for the proof of (54)-(55) we can show that

Ik (9%) 2 Jr-1(gk-1) (72)

which implies that on the basis of the lower bound on the asymptotic rate for the error prob-
abilities of the fusion center, the performance of the multi-sensor system improves (the error

probability decreases) as as the number of sensors increases.
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IV.2 Fusion of Quantized Observations
We consider the scheme displayed by Fig. C.2 for the general signal discrimination problem.
Let Q(Xl(k)) (1=1,2,---,n),t=[to ty --- tyjand w=[u1 up --- ups] be defined as in

Subsection I1L.2. Under H; (i = 0,1), we have equations similar to the ones given by (35)-(37)

namely
, M ) # m; M M tr t ()
5H(Q) = Z(U!)/ f@)de +23 > Y urw / (=, y)dzdy
=1 b1 j=1r=11=1 tr—1 Sl

M 4 2
__(Qm + 1) [Z ul/ f,(m)d:v} , (73)
=1

tia

Q@) = EOXM)Qx+23 BQXMQxE)] - @ + DEIQX))?

i=1
M M bt ) e M M b
= > wu [ [ O@pdedr2 Y Y v [ [T [P )dedy
r=1l=1 tr—1 Jti j=1r=1l=1 tr—1 Y1

._.(2771,,' + 1)[2 u,/ f,(:c)dz]2 (74)
=1 b1

and
M t
Q) = —/Q(x)f,-(x)dx - Zu,/t fi(z)da. (75)
=1 -1
Forr,l=1,2,---, M and under Hi(k) (i = 0,1), define the vector f; = [fi1; foi -+~ fai], where
fii = fttl'_l fi(z)dz, and the matrices F; = diag{ftto1 fi(z)dx,---,ff;[”__l fi(z)dz}, Pi = [Pryil,

P; = [P.13], Ri = [Rr1;), and R; = [R, ;] where

M ty t R
Pii=2Y. / / 9z, y)dzdy (76)
j=1Ytr—1 Vi1
te t
Reg; = (2m; +1) / fi(z)de - / file)dz (77)
fr—1 ti.1
; v o) Ei ot )
P,,I,,-z'/ / £ (x,y)da:dy—{-QZ/ £ (z,y)dzdy (78)
tp—1 Y1 j=1 tra1 Yit-1
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and

Ropi= (2 +1)- /tt' fi(e)dz - /t" fi(z)de. (79)

r

For the quantizer @, the objective function Jx(g) given by (67) becomes

7 _ [u(fy, - fo)T]2
T L F o+ P Pi- R R 0

Assuming that ¢ are such that the matrix Y1_o(F; + P; + P; — R; — R;) is positive definite,

we again fix the breakpoints first and derive the optimal quantization levels for any sensor as

ul = [i(FH—PH—Pi—Ri—Ri)} (f1 - Ffo)" (81)

=0
Then, upon substitution for the above optimal levels into Jz, we obtain the performance measure

as a function of the breakpoints ¢ as follows

1 -1
Jk(Q) = (f1 - fo) [Z(Fi +Pi+P;i— R; — Ri)] (fi—fo)t. (82)

i=0
The maximization of this expression with respect to the breakpoints can be accomplished via
numerical optimization techniques.

It not difficult to show that, if Q% denotes the optimal quantizer (breakpoints and quanti-
zation levels) for the K-sensor system, then jK(Q}{) > Jik_1(Q%_,) and thus as the number of
sensors increases the performance of the multi-sensor system improves.

IV.3 Fusion of Binary Sensor Decisions

In this case of general signal discrimination via the scheme ill_ustrated in Fig. C.3, the
majority vote fusion rule discussed in Subsection II1.3 is employed. Following arguments similar
to the ones in Subsection III.3 we can derive the asymptotic rate of the error probability of the

fusion center as [cf. to (A.21) of Appendix B]
1 . 1 . .
~—InPg,, — min {—-—-ln Po{ (K —1) “0”s are transmatted },
n n
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*lln Pi{ i “0”s are transmitted }; for i = [K/2],[K/2]+1,---,
n

— min { [K/2](n, = po)? [K/2)(p1 = m,)* }
[1+(TK/2] = Dpolog’ [1 + ([K/2] - 1)p1]o?

where the optimal threshold employed by all sensors is determined as

1
N, = max {——ﬁln PK,,,,}

no<ns<ue
[K/2](ns — po)? [K/2](p1 = 15)* }

= max min
poSnsLie

[1+ ([K/2] = 1)polal’ [1 + ([K/2] — 1)p1lo}
po/T+ (TK/2T = Dpoor + p1/T+ ([K/2] = Dp1oo
VI+(TE/2T = Dpooo + T+ (K2 - D)pror

for any K. Upon substituting of this threshold into (83) we obtain the asymptotic rate of the

(84)

error probability of the fusion center as

P o [11(g) = po(g)]?
n " VIF(TET2T = Dpolg)oo(g) + VI + ([K/2T = Dpalg)or(y)

(85)

Maximizing the above asymptotic rate directly (via calculus of variations techniques) results in
a nonlinear integral equation that the optimal nonlinearity must satisfy and in very complex
sufficient conditions. Therefore, in order to avoid these complications we consider the following

lower bound on the asymptotic rate of (85)

2 1+ (TE/2] - Dpol9)]od(e) + [1 + (K /2] = Dpal9)oi(g)’

[obtained from an application of the inequality -(-2—:5)7 > 7;71;;7)-] This lower bound becomes
tight as 02 — 0% and po — py; this corresponds to the weak-signal detection case. Finally, the

optimal nonlinearity is obtained as

{p1(9)—po ()1 o
g = maxg 2+(E-1)po(9)loz(g)+[2+(K-1)p1(9)l0o3 if K is odd (57
[11(g)~po(9)]?

max, [2+(K'—2)Po(g)]”g(y)""[?-f-(K—?)pl(g)]a‘? ) if K is even.

The above maximization leads to the linear integral equation
[A(@) = fol@/ (=) + fo(@)] - [ Hrcl9)aic(v)dy = gic(2) (88)
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where

Hi(z,y) = {22[ (z,y) - ful2) filw)] + A—l)z[ (@,9) - A=) )]
1=1
+2Z[fé’)(r y)—fo(l‘)fo(y)]+(1& }nf[ )~ Jo@)fow)]
I(

2 [0 ) - @A) + T [0 9) — o) fo(w)]

- h(@) fi(y) = fo(@) fo(y)} /{f1(z) + fo(=)}. (89)

if K is odd, and

Hg(z,y) = {22[fl(’)(w,y)~f1(w)f1(y)] + (K - 2)2[fl(j)(w,y)—fl(w)ﬁ(y)]

Jj=1

+22[fé”<x,y) fo(z>fo<y]+<1f 2mz[féj)(z,w-fo(x)fo«ty)]

+I‘2 79, 9) - A@AW)] + 2

~2 [10,9) - fol@) o)

—fi(z) fily) — fo(z) fo(¥)} /{ fr(z) + fo()}. (90)

if K is even. The sufficient conditions for the maximization in question are

pi(g) > ——[?(/2—11_—1- sfor 1 =0,1 (91)

for all functions g for which 02(g) and p;(g) converge and o7(g) > 0 (i = 0,1).
Finally, following arguments similar to those used for the proof of (54)-(55) we can show

that

. 1 4 ) 1.
lim {_—PK,n;} __>_ lim {——PK—I,n;} (92)
n—00 n n—0o n

for any K (odd or even), where P denotes the upper bound on the error probability (lower bound
on the asymptotic rate) of the fusion center obtained in this section. Thus, under a large sample

size, the upper bound on the error probability of the fusion center decreases as the number of

Sensors Increases.
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V. PERFORMANCE EVALUATION

To establish the usefulness of the data fusion schemes derived in the previous sections for
signal detection problems, we evaluate the performance of the three schemes via computer
simulation and compare it to that of the corresponding schemes which neglect dependence in
sensor observations.

The simulation results presented in this section pertain to the detection of a weak signal in
additive Cauchy p-mixing noise.

The two hypotheses are assumed to have equal a priori probabilities, which results in select-
ing p = 0.5. The two types of error probabilities, the probabilities of missing (P;(0)) and of false
alarm (Py(1)) for the fusion center, are used as the performance measure. In all examples, 1000
simulations are run for generating all results in this section and receiver operating characteristics
(ROCs) are provided for comparison. To obtain good performance (10~ order of error probabil-
ities), 5000 samples are collected for weak signal detection (with SNR=-72.5 dB, as seen in the
following). In our simulations, the magnitude of noise (in the weak-signal detection formulation)
is forced to be between Xpmin and Xmaz. In this way, very small or very large samples (in the
tails of the distributions) caused by deficiencies in the random-number generators are discarded
and good quality simulated data are fed into our schemes. The appropriate values of X, and
X maz are derived for the specific noise or observation pdfs by requiring that P ;{X < Xmin} < €
and Py {X > Xpmaz} < ¢, fori=0,1and k=1,2,---, K, where ¢ = 107°.

Without loss of generality, the magnitude of the weak signal 6 is taken to be 0.2, which

implies a signal power of —20dB. The univariate density of the Cauchy noise is given by

1
PNy e = E=1.2.... K
fk(x ) 71_(1 + (z(k))g)? 11 ; ’

Although the second-order joint density of Cauchy mnoise is difficult to derive directly, it
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can be evaluated from the second-order joint density of a Gaussian process by a nonlinear

transformation. Let

exp [—(y)?/2]

fa(y) = \/57?

be the univariate density of the underlying Gaussian process, Then the aforementioned nonlinear

transformation has the form (see [11])
A(y) = tanlr - er f(y/V2)/2).

The range of the Gaussian random variable z is taken to be [—5, 5] and the pair X, and Xpag
mentioned above is obtained from 2(—5) and z(5). We can compute the noise power for the
purpose of our simulations by limiting the noise in the range [Xmin, Xmaz] as [ )){{"’Z‘;’ 22 fi(2)dz =
[3.[2(2))? fa(z)dz, where 2(z) was defined above. From this noise power calculation, we obtain
a SNR of —72.5dB.

We generate the underlying Gaussian process for the Cauchy noise process of each sensor

by the following autoregressive model with correlation coefficients —1 < pgix < 1, for k =

1,2,.--, K,
N1(k) — V1(k)
~i(k) = pG,kN,-(f)l + \/1——-7}‘:-1/,-(’“); > 1.
In the above recursion formula, V;-(k), for i =1,2,---,n, are sequences of i.i.d. random variables

with standard Gaussian (V'(0,1)) densities and are generated in the manner described by

VO = pVD i aw®

ve® = Pe_ y/(1) + Pe_y/(2) n V1+2p. - p% — ng(3)

' 1+pc? 1+p* 1+ pc '

GO O SR ORI S O L CS BRI

k3

29



where

a(k) — Pc
* 1+(k—2)pc

1 (k—1)(k —2)
p®) = ______[ k= 2)pe + (k2 = 5k 4+ 5)p? — o "~ 2 34

W is another ii.d. standard Gaussian (NV(0,1)) process, for each k (k = 2,3,--.,K), and

i

-1 < pg,c < 1is the correlation coefficient characterizing the dependence across sensors; Vi(l)
and W,-(k) are mutually independent. Under the nonlinear transformation Ni(k) = Z(Ni(k)),
{Ni(k) n_1, for each, k is a p-mixing Cauchy noise sequence.

In Example 2, we employ the 16-level quantizers that are symmetric with respect to zero
for symmetric Cauchy noise. Therefore, in the following tables for quantization levels and
breakpoints, only the half of positive breakpoints is given.

Example 1: This example pertains to Scheme 1. Fig. 1.1 gives the optimal nonlinearities
gopt for different K and the one obtained by ignoring dependence across time and sensors, g;;q4-
Figs. 1.2 and 1.3 present the comparison of ROCs for K = 6 and K = 3, where Pp; and Pyg
are the probabilities of false alarm and miss, respectively, and g;,s is the optimal nonlinearity
obtained by ignoring the dependence across sensors. Then in Fig. 1.4, the comparison of ROCs
for K = 1,2,3,6 by using the optimal nonlinearity is given.

Example 2: This example pertains to Scheme 2. Tables 1 and 2 give the optimal 16-level
quantization levels and breakpoints for optimal quantizers gop; and K = 1,2,3,6. Table 3 gives
the ones for the optimal nonlinearity obtained under ii.d. observations. In Figs. 2.1 and 2.2,
the comparisons of ROCs for K = 6 and K = 3 are presented for schemes using ¢op:, giqs (the
optimal nonlinearity obtained by ignoring the dependence across sensors) and ¢;q. Fig. 2.3
presents the comparison of ROCs for K = 1,2, 3, 6 by using corresponding gopt.

Example 3: This example pertains to Scheme 3. Fig. 3.1 gives the optimal nonlinearities gopt
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for K = 1,2,3,6 and g;;4. Figs. 3.2 and 3.3 present the comparison of ROCs for K = 6 and
K = 3 by using gopt, gias and g;;q, respectively. Then, Fig. 3.4 gives the .comparison of ROCs
for K =1,2,3,6 by using corresponding g,p:-

Finally, in Figs. 4.1 and 4.2, the comparisons of ROCs for K = 6 and K = 3 are given for
the three different schemes.
VI. CONCLUSIONS

We have designed and analyzed the performance of multi-sensor fusion and quantization
schemes with K identical sensors for the detection of weak signals in dependent stationary
noise and signal discrimination under symmetric conditions. These schemes employ memoryless
nonlinearities and take advantage of dependence in the observations across time and/or sensors
for a better performance.

The dependence of the sensor observations is characterized by stationary m-dependent, ¢-
mixing, or p-mixing sequences. The performance is measured by the two types of error probabil-
ities of the fusion center. The optimal nonlinearities and/or quantizers are obtained by solving
uncoupled or coupled linear integral equations that involve the univariate and bivariate pdfs of
sensor observations.

As seen from Figs. 1.4, 2.3 and 3.4, performance improves as the number of sensors K in-
creases. As expected, Figs 4.1 and 4.2 show that fusing the unquantized test statistics is superior
to all schemes. Another interesting result from Figs. 4.1 and 4.2 is that Scheme 3 outperforms
Scheme 2 in the context of ROCs. Furthermore, schemes which consider dependence across
time and sensors outperform those that ignore dependence across sensors and also significantly

outperform those that ignore dependence across time and sensors.
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Appendix A: Asymptotic Rates of Joint Error Probabilities for Scheme 3

In the following, we use the large deviations principle cited in Subsection II.2 to characterize
the asymptotic rate of the error probabilities of the fusion center for the scheme displayed by
Fig. C.3.

Since £ is multi-dimensional Gaussian distributed, the corresponding Iy(z) given by (13)

with dimension d = K is

fo() = (=~ BoléTeomole]™ (= - Eolé])

- l(z — bo)T X5 (= — bo)

-2 <1+(A—1>po>2 R M
2| Tho)(1+ (K - 57 T =T
= <1+(K—1>po)2u Ce3 S wm| = hw)

j=11=1,l#]

where we denote the normalized z; by u; = (z; — po)/{ooV/(1 — po)[l + (K — 1)po]}, for j =
1,2,---, K.
If there are ¢ 0 s (or K — ¢ 1 s) in the sensor decision vector (dn1,dn 2, -, dn k) Which is

transmitted to the fusion center, then the asymptotic rate in (40) is

1 1 .
—;ln Po(dnydna, -+ dnk) = - In Po{i Os are transmitted}

1
= —7—7:111 PO(Tn,l < Ms,y Tn,2 < Ny ',Tn,i < nsyTn,i+1 > MNsy ot ‘aTn,K > 773) (AQ)

where Ty, x; for k = 1,2,---, K, are Gaussian distributed with identical individual means, vari-

ances, and pair-wise correlation coefficients. Let

A

{Z € RK:zl S Nsy 22 _<_ Nsy**y 2 S Nss Zi+l 2 Nsy** 5 2K > ns}

{ue RE tuy < ny0,u2 < 05050+ o5 Ui < Moy i1 > Tsy05 0+ +5 UK > Ts0)  (A.3)

Il
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where 750 = (195 — o)/ {0/ (1 — po)[1 + (K — 1)po]} is the normalized threshold. Then, from

the large deviations principle given by (10), we have

1
——;hl PO(Tn,l < n.s‘aTn,Z < Nsy - '7Tn,z' < nsaTn,i+1 > Nsy e ',Tn,K > 775) =

= -%m Po(§ € A) = inf Io(z) = inf io(u)

K
= —l-mf {(1-{—(1(—1)/)0)2% —POZ Z u]ul}

J=11=1,l#5
1 1+ (K —i—1)po ¢ £
: il -1 pO /00 A
= = inf 1 K-1
2 wed (1+ (K o) 1+ (K -i)po ; {u] 1+ (K -7-1)po I—; 1 uzjl

+ L+ (K — Lo 14+ (K-1-2) )iu2 i i u;u
T (K =iz gy | LT E =20 7P Eh

j=i+1 J=idl =it 1, I5
(A4)
Define the vector u( = [wig1 Uipo -- uK] , which belongs to RE=) and the set 4; =
{(vigr, vipe, -, ug) € RED tuiny > noo,uiga > M50, 5 Uk > 50} Apparently,
e T : @),
&%&IO(U') > ul.%f éIO (us) (A.5)
where
(i 14 (K - 1)po : X B &
1) = C—i—9 2_ ur| . (A6
0 (’U, ) 2(1 + (I( i 1)/)0) (1 + (Ik t )Po) Z Uu; — Po Z Z uj;uy ( )

j=i+l j=itl l=idl,I£]
We notice that the set A; is symmetric with respect to u;, for j =1+ 1,1+2,.--, K. Thus it is

easy to verify that

uf = [uiy wiyy ui]” = arg jnf, I (w) (A7)
satisfies u},; = uf, o = -+ = u}. Therefore,
#(5) . 14+ (K - 1)P0 ¢
i, o (w) = of {2(1 (K —i-1)po) {(1 P2 _Z,; . pOJE:l 1=i+21,1;éj

1 {(K — (1 — po)(1 + (K — L)po) - }
2 uig1>7.0 14+ (K —1i—1)pg H
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L(K = i)(1L= po)(1+ (K = Dpo)

-3 1+ (K —i-1)po 5,0
. ~ 2
1(H —4)(1 - po)(1 + (i — 1)po) Ms = Ho
2 1+ (K —i— Dpo oo/ (L= po)(L £ (K = Dpo)

where we assumed that pg > _Tx”—llT such that (K — ¢)(1 — po)(1 + (K — 1)po)/[1 4 (K —7—1)po)

is positive for all t = 1,2,---, K.

From (A.8), we obtain
Wi=n0 for j=itli+2,,K, (A.9)

with which we can easily check that if we define

. Po (K ~1)po , :
u; = - ul = - for 7=1,2,---,1, A.10
T 14+ (K —j—-1)po lg_-:n ! 1+(K—z—1)pon5'0 J ( )

(where for the second equality the computation is performed in reverse index order, that is, for
j=1,i—1,--- 1), then

To(u*) = I (ud). (A.11)
Moreover, since u} < 7,0 for j = 1,2,---,4, the vector u* with u} given by (A.9) and (A.10)

belongs to the set A defined in (A.3). Consequently,

K —)(1=po)(1+ (K =1)po) ,

s . (
= *) = ] A.12
&Ig;; Ip(u) = Ip(u™) S+ (K —i< Upg) 75,0 ( )
We therefore conclude that as n — oo
1 . .
—=1In Po{i 0s are transmitted}
n
1
= “; In PO(Tn,l _<.. nsyTn,2 < U SRR Tn,i < nsyTn,H-l > Myt TH,K > ns)
(K =)L po)(1+ (K = Do)
=l To(u) = M+ (K —i-1Dpo] 7P
— (I( - 'L) . (773 - ﬂO)2 . (A_13)

1+ (K —7-1)po 203
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Following similar arguments to the above ones we can verify that as n — oo

1 ) —n,)? .
— EPl{i 0 s are transmitted} — T (il_ Tpr (“12(7;7 ) . (A.14)
Appendix B: Proof of Proposition 1

If the optimal threshold is given by (47), then from (A.13) and (A.14) in Appendix A,

: 1 : : (K —7) (o = po)?
n]_}—{%o [—;l—ln Po{i 0s are transmztted}] =17 K —i-Dp 407 (A.15)

and

) 1. ) i (o — po)?
- = . . A.16
Jim [ nPl{z 0s transmztted}] T G- pps: ( )

Therefore, when there are 7 0 s transmitted by the sensors, we have

1 1 .
—-T-L-ln L, = [—%ln Po{i 0s are transmitted}] - [—;Pl{i 0s transmitted}

(K === po) (110 — po)?
A+ (K —i-Dpo)I+(i—1)po) 403 ' (A.17)

>Ho .
thus the asymptotic likelihood test of the fusion center %ln Ly, <, 01is equivalent to the test

cSHe .
K — 1 <y, 1, which is the majority rule

H
no. of 1s 2;}0 no. of 0s (A.18)

On the other hand, if the likelihood ratio test is equivalent to a majority rule of the fusion

center, the error probability of the fusion center is

K K
Pgn, = p Z Py{(K —1) Os are transmitted} + (1 — p) Z Pi{i 0s are transmitted}
i=[K/2] i=f1{/21
(A.19)
for odd K, where [K/2] = (K + 1)/2, and
K K
Prn, = D z Po{(K —1) 0s are transmitted} + (1 — p) Z Pi{i 0s are transmitted}
i=K/241 i=K/2+1
+§-P0{K/2 0s are transmitted} + 1;pP1{K/2 0s are transmitted} (A.20)
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for even K, where we adopt the fusion rule of flipping a fair coin (and thus incurring an error
probability of 1/2) when the number of 1s and the number of Os are equal.

From (A.13) and (A.14) and for the special case of weak-signal detection, for which u; = pg,
01 = 0g, and pg = p1, We can obtain the asymptotic rates for each of the terms in the sums in
the error probability expressions in (A.19) and (A.20). Since j/(1+(j—1)po) < k/{(1+(k—1)po)
for all j < k, the overall asymptotic rate of the total error probability of the fusion center is

given by

1
lim [_Zh‘ PK,ns] — min{-—;];-ln Po{(K ~ i) 0s are transmitted},

—--1—ln Pi{i 0s are transmitted};for 1 = [K/2],[K/2]+1,-- -,K}
n

min [K/2](ns — #0)2 [K/2](pe — 775)2 }
{[1 + ([K/2] = Dpolod’ [1+ ([K/2] — L)polad |’ (A.21)

for any K. Consequently, the optimal threshold n?¥ is obtained as

77: - Ho Lr;?}éue {—%I: In PK'"’}
_ | [K/21(ns = po)? [K/2) (16 = ms)? }
T woSmse { [T+ ([%/2] = Dpolog’ [1+ (1E/2] - Dpolog
_ Mo ';' Ko (A.22)

for any K.
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Qopt for K =2 Gopt for K =1

breakpoints levels breckpoints levels
0. 0.1955 x10! 0. | 0.1867 x107!

0.1261 | 0.5956 x10~! | 0.9373 x 10~ | 0.5676 x10~!
0.2894 | 0.9205 x10~? 0.2013 | 0.9461 x10™?
0.4953 | 0.9395 x107! 0.3340 0.1298
0.9514 | 0.5378 x107! 0.6054 0.1196
1.3044 | 0.1191 x107! 1.1727 | 0.4398 x10~!
1.7963 | -0.2918 x10-! 1.9575 | -0.4021 x107!
22.0413 | 0.2369 x107? 34.0785 | -0.4920 x10~2

Table 1: 16-level Optimal Quantizers for K =1, 2 in Example 2




Gopt for K =6 Gopt for K =3

breakpoints levels breakpoints levels

0. 0.7710 x10-2 0.] 0.1155 x10°!

0.8027 x107' | 0.2354 x10~! | 0.8679 x10~! | 0.3446 x107!

0.1732 | 0.3852 x10! 0.1807 | 0.5635 x10~!
0.2741 | 0.5062 x10~! 0.2913 | 0.7463 x10~1
0.9123 | 0.1701 x10! 1.0027 | 0.2490 x10°!
1.3859 | -0.1740 x10~! 1.5836 | -0.2624 x10~1
5.8829 | -0.2725 x10~2 4.9459 | -0.2325 x10~!
30.0644 | -0.1529 x10-3 10.3475 | -0.2286 x10~2

Table 2: 16-level Optimal Quantizers for K = 3, 6 in Example 2



giid
breakpoints -~ levels
0. 0.1227
0.1240 0.3523
0.2421 0.5680
0.3862 0.7722
0.5703 0.9393
2.0513 0.6281
4.2297 0.2594
31.2372 | 3.1992 x1072

Table 3: 16-level Quantizer under the i.i.d. Assumption in Example 2
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