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CHAPTER 1

INTRODUCTION

The simple chemical formula and ubiquity of water belie the challenges in-

volved in understanding its behavior. Although water plays a critical role in our

understanding of such phenomena as weather, sound propagation for communi-

cation, and geo- and bio-evolution, current science does not fully explain water�s

observable behavior.1 One of the most signi�cant challenges is describing the be-

havior of supercooled liquid water. Upon supercooling, water exhibits anomalous

behavior with sharply increasing heat capacity, isothermal compressibility, and the

magnitude of negative thermal expansivity.1 However, exhaustive experimental ex-

ploration of the behavior of supercooled liquid water is hampered by thermodynamic

and kinetic limits of stability.2 While experimental data for liquid water behavior

at stable temperatures and pressures are readily available,3 the limited experimental

data on supercooled water highlight the need for a thermodynamically consistent

equation of state to describe the behavior of water into the supercooled region. Fig-

ure 1 shows the phase diagram for water as well as the limits for empirical equations

of state3, 4 and experimental measurements in the supercooled region.

Several competing theories, consistent with the limited data available, ex-

plain the anomalies in supercooled liquid water.1 One of the leading theories, the

second-critical-point scenario, proposes a liquid-liquid critical point in supercooled

water.5 This scenario suggests the existence of two liquid waters, characterized by

high density and low density, and proposes that their coexistence curve terminates
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in a critical point. According to the second-critical-point scenario, liquid water

at ambient temperature and pressure is a supercritical �uid, as the di¤erence be-

tween two �uid phases disappears beyond the critical point and the �uid becomes

homogenous.

The thermodynamic behavior of a �uid in the vicinity of a critical point is

described by a �eld of physics called critical phenomena. The modern theory of

critical phenomena describes the behavior near the critical point with a universal

equation of state based on theoretical variables. These theoretical variables can

be mapped into real physical variables through so-called "complete scaling," an

approach that allows for accurate application of the theory of critical phenomena

to real �uids.6 We are going to apply this theory to the theorized second-critical-

point and use this new perspective on the observed behavior of supercooled water

to draw new conclusions about the validity of the scenario and the possible location

of this second critical point. Although this scenario has been explored with some

limited experiments and with simulations of water-like models, a thermodynamically

consistent equation of state based on critical phenomena has not yet been developed.

Unlike other approaches, an equation of state developed with the application of

complete scaling would depend on only three adjustable parameters, the critical

pressure, the system dependent amplitude k=a, and the non-critical background,

and provide a way of predicting behavior in the supercooled region.

This thesis examines the problem of thermodynamic consistency of the second-

critical-point scenario using the physics of critical phenomena. We present a scaled

parametric equation of state based on the principle of critical-point universality in
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order to describe and predict thermodynamic properties of supercooled water. In

the course of developing the equation of state we also answer the following questions:

1. If the critical point in supercooled liquid water exists, where is it located?

2. What is the nature of the criticality at the critical point, mean-�eld or

�uctuation dominated?

3. If the critical point is �uctuation dominated, what is its universality

class?

Our equation of state is built on the assumption that the critical point of

liquid-liquid separation in supercooled water does exist, and that the critical anom-

alies are associated with the critical �uctuations of the appropriate order parameter

and exist wherever the correlation length exceeds the range of molecular interac-

tions. This equation of state is universal in terms of theoretical variables and

belongs to the three-dimensional Ising-model class of universality. The theoretical

scaling �elds are postulated to be analytical combinations of physical �elds (pressure

and temperature). The equation of state enables us to accurately locate the "Widom

line"7 (the locus of stability minima and maxima of order-parameter �uctuations)

and the position of the critical point, as well as to predict thermodynamic properties

in the regions that may not be accessible to experiments. The liquid-liquid critical

point is also predicted for heavy water. In particular, we conclude that the theory

of critical phenomena does not invalidate the possibility of a second critical point

in supercooled liquid water and that the critical pressure for the second critical

point must be considerably lower than the critical pressure obtained from computer

simulations. In the future, other alternative scenarios, such as the singularity-free
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scenario and the possibility of multiple liquid-liquid critical points in supercooled

water will also be analyzed and compared with experimental data. Moreover, pos-

sible e¤ects of the existence of the second critical point in supercooled water on the

anomalous behavior observed in some aqueous solutions at ambient conditions as

well as liquid-phase polymorphism in other substances, will be considered in future

research.

This thesis is organized into six chapters, beginning with the introduction.

Chapter II covers supercooled liquid water as it is currently understood, including

the challenges in experimentally exploring the supercooled region, existing experi-

mental data and its accuracy, and the leading theories for the anomalous behavior.

Chapter III introduces the thermodynamics of critical phenomena through discus-

sion on the nature of the critical point, the universality of critical phenomena and the

scaled equation of state, classes of universality, and the translation of the theoreti-

cal equation of state to physical variables. Chapter IV describes the development

of the parametric scaled equation of state for supercooled liquid water, based on

the choice of the three-dimensional Ising-model class of universality, the particular

form of the analytic relationship between physical and scaling �elds, and the sim-

pli�cation of the equation of state through a particular choice of critical entropy.

Chapter V presents our results, describes the limitations of the mean-�eld approx-

imation, and shows comparisons between the thermodynamic properties predicted

by the scaled equation of state and existing experimental data. Implications of

the scaled parametric equation of state for the second-critical-point scenario are

discussed. Chapter VI summarizes the conclusions and suggests future work.
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The principle results of this study have been announced in a Physical Review

Letter.8
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CHAPTER 2

SUPERCOOLED LIQUID WATER:

WHAT IS KNOWN AND WHAT IS THEORIZED

2.1 Supercooled Liquids in General

Supercooled liquids are metastable with respect to a solid phase and remain

liquid only because they lack the activation energy to transition to the lower global

free energy of the solid phase. Kinetic e¤ects such as vibrations, suspended impuri-

ties, or even contact with the surface of a container can provide the activation energy

required for the new phase to appear before the thermodynamic stability limit is

approached. These experiment-dependent properties a¤ect the limit of kinetic sta-

bility. The deeper the supercooling, the larger the energy di¤erence between the

two states, and the more likely the energy barrier prohibiting phase change will be

overcome either through spontaneous thermal �uctuations or with the help of an

activator. The point at which inherent thermal �uctuations of the material over-

come the energy barrier to a phase change represents the kinetic limit of stability

for a supercooled liquid.

In any experimental observation of supercooled liquid water, both kinetic and

thermodynamic e¤ects in�uence the degree of supercooling which can be achieved.

A schematic of the thermodynamic and kinetic limits on supercooling is shown in

Fig. 2.

Kinetic Limits on Supercooling. The characteristic rates and mechanisms de�ne the

kinetic limits of stability for particular systems. In order to study the supercooled
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�uid, its lifetime must be longer than the observation time. There must be an

experimentally accessible time scale intermediate to the systems lifetime and any

measured properties internal relaxation time in order to characterize the �uid. In

other words, the system must be in equilibrium for the duration of the observation

time. When these conditions are met, the system can be examined thermodynam-

ically.2

Suspended impurities, vibrations and imperfect boundaries provide higher

energy surfaces for the formation of a new phase. A phase change in the presence

of these imperfections is known as heterogeneous nucleation. If no imperfections

are present, the new phase can still form within the bulk of the metastable �uid in

a process known as homogeneous nucleation. In homogeneous nucleation, a new

phase is formed when thermal �uctuations overcome the free energy barrier and

form a crystal of a critical size.2

With a short enough time scale for cooling, even the homogeneous nucleation

limit for supercooling can be avoided. Liquids that have been cooled on a time

scale shorter than the time required for phase change are kinetically arrested in a

metastable amorphous structure and become "glassy." The temperature upon cool-

ing at which they become glassy is referred to as the glass transition temperature.

Upon warming, the temperature when the glass has enough energy to complete the

phase change to a stable crystal structure does not typically occur at the same tem-

perature as the glass transition and is referred to as the spontaneous crystallization

temperature.
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Thermodynamic Limits. The thermodynamics of supercooled liquid water include

both phenomenological or traditional thermodynamics and mesoscopic thermody-

namics. Traditional thermodynamics determines bulk properties from a macro-

scopic perspective. Stability criteria, given by thermodynamic inequalities and equi-

librium conditions, imply a sharp, absolute boundary between phases. Mesoscopic

thermodynamics recognizes that thermal �uctuations within the bulk substance im-

ply that stability criteria be treated statistically.9

For the equilibrium state to be stable, the energy of the equilibrium state, U ,

must be at a minimum for all variations subject to constant entropy (S), volume (V ),

and number of molecules (N). Phenomenologically, the general stability criteria of

a pure �uid are:

@2U

�
@�2
@X2

�
�1X3

� 0 (2.1)

whereX represents the canonical independent variable for the energy (S; V;N) and �

represents the conjugate intensive variables (temperature, minus pressure, chemical

potential). The conjugate intensive variables are obtained by partial di¤erentiation:

�j = (@U=@Xj)X1; X2;:::;Xj�1; Xj+1;:::;Xn+2.

Expressing the criteria in measurable quantities, we �nd that positive val-

ues of the isochoric heat capacity, CV , or the isothermal compressibility, �T , are

necessary and su¢ cient for stability:

�
@T

@S

�
V;N

=
T

CV
� 0; (2.2)�

�@P
@V

�
T;N

=
1

V �T
� 0: (2.3)

8



In other words, the temperature of stable �uids, T , must increase with the addition

of heat or the pressure must increase if the body is compressed. The thermodynamic

limit of stability is not accessible experimentally, since the kinetic limit will always

be reached �rst.

The stability equations describe the stability of a �uid with respect to an-

other amorphous phase. They arise from considering �uctuations that appear to

exhibit di¤erent intensive properties than the bulk �uid but are locally in equilib-

rium. However, supercooled liquids are metastable with respect to an ordered,

translationally modulated or solid phase. The limits of stability of a �uid phase

with respect to a solid phase have not yet been developed.2

Although the location of the thermodynamic limit on supercooling is more

uniformly applicable to various experimental setups then the kinetic limits, which

depend on experimental conditions, the thermodynamic limit still requires an accu-

rate equation of state. Until a thermodynamically consistent equation of state for

liquid water exists, the location of the thermodynamic limit on supercooling remains

uncertain.

2.2 Supercooled Liquid Water

Most liquids show no signi�cant change in properties when driven into a

metastable state and show no evidence of approaching a condition of impending

loss of stability. In particular, the heat capacity and isothermal compressibility of

most liquids do not increase anomalously below freezing temperatures. In fact, the

9



response functions of most liquids decrease upon supercooling until freezing or vitri-

�cation occurs. The anomalous behavior of supercooled liquid water, therefore, can

not be fully explained in terms of typical liquid behavior and our current depiction

of the phase diagram (Fig. 1).

In 1971, Alexander Voronel speculated that the liquid phase could be de�ned

as a state between two singular points.10 Investigating this hypothesis, Anisimov

et al. used an adiabatic calorimeter to measure the isobaric heat capacity, CP , of

water in the supercooled region (Fig. 3). Although the degree of supercooling

was modest (reaching �-8oC), measurements showed a noticeable increase in the

isobaric heat capacity of metastable water upon supercooling.11 In that work, the

authors interpreted the observed anomaly as associated with a singularity in the

supercooled state and even estimated the temperature at which CP would diverge

(255 K). It was not known at that time that the observed anomaly is associated

with the unique phase behavior of water in the supercooled state, a major scienti�c

challenge in the subsequent three decades.1 Two years later, Angell, Shuppert,

and Tucker performed accurate heat-capacity measurements of 1 �m droplets of

supercooled water emulsi�ed in n-heptane12 using a procedure �rst developed by

Rasmussen and MacKenzie.13 Reaching temperatures as low as -39oC, Angell and

co-workers observed a sharp increase in the isobaric heat capacity that resembled a

critical-point-like singularity (Fig. 4).

In addition to anomalies in heat capacity, subsequent experiments found that

the isothermal compressibility and the thermal-expansion coe¢ cient also exhibit

critical-like anomalies with the isothermal compressibility14 increasing and the ther-

10



mal expansivity15 sharply decreasing upon supercooling. Anomalies also appear in

most transport properties and dynamic properties.1

Since the anomalies in the thermodynamic properties of supercooled liquid

water increase with supercooling, accurate, reliable experimental data for deeply

supercooled water are important. There are two possible approaches to exper-

imentally examining deeply supercooled liquid water and avoiding heterogeneous

nucleation: carefully cool very pure samples of water below the freezing point or

slowly heat glassy water above the glass transition temperature.

The experimental data collected to date suggest that the kinetic limits on

supercooling liquid water exist around -42oC (�231 K).16, 17, 18 In order to obtain

data at these low temperatures and avoid crystallization, much of the experimental

evidence for the anomalous behavior of supercooled liquid water was obtained from

small volumes of water in capillary tubes or micro emulsions. Although small

samples are easier to supercool than bulk water, the e¤ects of surface energy would

have a magnifying e¤ect on perceived anomalies. Several studies have looked at

the relevance of this data to bulk water behavior.19, 15, 20 Although the e¤ect of

surface energy cannot be completely discounted, these studies have shown that the

same anomalous behavior exhibited in the small samples also exists in bulk water.

Roughly calculated, 0.6% of the molecules in a 1 �m droplet are present in the outer

10 Å of the droplet. Tombari et al.20 and Angell and co-workers, using adiabatic

calorimetry, con�rmed the emulsion data for bulk water (10 cm3) that remained

uncrystallized to -30oC.

There are also kinetic limits imposed when approaching the metastable liquid
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region by slowly heating glassy water. Below the homogeneous nucleation limit of

around -42oC (231 K) and above the kinetic limit of spontaneous crystallization of

glass, around -123oC (150 K),21, 22 there is a region of "no man�s land," in which the

time scale of the system stability precludes experimental measurements (Fig. 5).

Although the region directly above the spontaneous crystallization to ice Ic,

is unavailable to experiments, the form of glassy water, or amorphous ice, directly

below this limit o¤ers insight to the possible behavior of supercooled liquid water in

no man�s land. Glassy water is formed by cooling liquid water below the stable range

faster than it crystallizes, kinetically arresting its structure. Water, unlike most

substances, forms at least two distinct forms of glass: low density amorphous water

(LDA)23 and high density amorphous water (HDA).24, 25, 26 Although LDA and

HDA amorphous ice are very solid (Fig. 6), their structure is disordered and they

transform into highly viscous liquids above the glass transition temperature of 136

K.21, 27, 28, 29 Experimental measurements of the transition between LDA and HDA

support an apparent �rst-order transition (Fig. 7).30 However the experimental

di¢ culties in working close to the kinetic limits leave some room for debate as to

whether the observed di¤erences are due experimental methods or distinct phases of

amorphous water.31 Any theory explaining the anomalous behavior of supercooled

liquid water must also explain glassy water.

2.3 Three Scenarios for Supercooled Liquid Water

The existence of these two types of amorphous ice and the anomalous be-

havior of liquid water do not yet �t into any widely accepted thermodynamically
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consistent theory. The di¢ culty in exploring the phase behavior of liquid water

at low temperatures has limited the availability of experimental data and left an

incomplete picture of physical cause behind these anomalies. There are currently

three competing interpretations: the stability limit conjecture, the singularity-free

scenario, and the critical point scenario.

The Stability Limit Conjecture. The stability limit conjecture, introduced by Speedy

in 1982,32 proposes that the liquid-vapor spinodal turns toward positive pressures

in the supercooled region of liquid water, connecting superheated and supercooled

states, at the intersection with the locus of density maxima (Fig. 8). The presence

of the spinodal, a locus of diverging density and entropy �uctuations,2 predicts

power-law behavior of properties,

X = A

�
T

Ts
� 1
��x

+Xb, (2.4)

where X is a property that diverges at the spinodal, A is a constant, TS is the

spinodal (singular) temperature, x is an empirical exponent, and Xb is the regu-

lar background. This behavior empirically accounts for the observed increase in

water�s compressibility,33, 14 isobaric heat capacity,34 and other properties.33, 35, 36

The water-like lattice model of Sastry et al.37 and the lattice-gas implementation

of a random graph model of water�s hydrogen-bonded network of Sasai,38 provide

microscopic validation with possible physical mechanisms accounting for a retracing

of the spinodal toward positive pressures. Although the presence of the spinodal
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curve, representing instability with respect to the �uid phase, o¤ers a thermody-

namically consistent explanation for the increase in response functions, the theory

did not originally account for metastability with respect to an anisotropic crystalline

phase. The microscopic models or computer simulations account for the instability

of supercooled water with respect to the solid phase, predicting that the response

functions increase sharply but do not diverge upon supercooling.2

Although the properties of supercooled water can be empirically �t to the

power law predicted by the stability limit conjecture, there is a major conceptual

problem with this scenario. In order for the liquid-vapor spinodal to maintain

a negative slope in the (P; T ) plane in the measurable regions of the liquid-vapor

coexistence region before curving up toward positive pressures, the spinodal must

cross the extension of the liquid-vapor equilibrium curve into the metastable region.

Therefore, in order for the liquid-vapor spinodal to curve back to positive pressures,

the metastable extension of the liquid-vapor equilibrium curve must terminate in a

lower liquid-vapor critical point (Fig. 9). Although there are microscopic models

showing a spinodal curve toward positive pressures when crossing the line of tem-

peratures of maximum density (TMD) for any given pressure,37, 38, 39 there is not

currently any evidence supporting the predicted lower liquid-vapor critical point.

The Singularity-Free Scenario. The behavior of the density is probably the most

widely known anomaly of liquid water. At atmospheric pressure, the density of

liquid water reaches a maximum around 4oC and then decreases upon cooling (Fig.

10). This behavior can be attributed to the cohesive nature of the hydrogen bond
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network and the entropy associated with the expanded and collapsed network struc-

tures.40, 41 According to the singularity-free scenario, the experimentally observed

increases in the response functions of liquid water upon supercooling can be ac-

counted for through the density anomalies and, ultimately, the hydrogen bond net-

work which provides water its unique density properties.42, 43, 44 Isobaric heat ca-

pacity, CP , isothermal compressibility, �T , and thermal expansivity, �P , all depend

on density, �, through the relevant thermodynamic relations,

�
@CP
@P

�
T

=
T

�2

�
@2�

@T 2

�
P

, (2.5)

�T =
1

�

�
@�

@P

�
T

, (2.6)

�P = �1
�

�
@�

@T

�
P

, (2.7)

while the TMD is negatively sloped in the (P; T ) plane. Therefore, with the den-

sity anomaly, the isothermal compressibility of liquid water increases upon isobaric

cooling, the thermal expansion coe¢ cient increases upon isothermal compression

and becomes negative upon isothermal decompression, and the isobaric heat ca-

pacity decreases upon isothermal compression.1 The anomalous negatively sloped

TMD locus therefore predicts increases in the response functions, which may remain

�nite,45 without suggesting any singularities.44

The singularity-free scenario is supported by several models which show

anomalous increases in response function without a corresponding singularity. Stan-

ley et al.46, 47, 48 proposed a microscopic model based on bond formation between

neighboring molecules, which predicted density �uctuations and �nite anomalies in
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thermodynamic properties. Sastry et al.42, 44, 49 introduced a lattice model with

nearest-neighbor attraction and directional attractions that also predicted �nite in-

creases in the response functions. The lattice model of Borick et al.39 shows a re-

tracing density maxima locus but no evidence of singularities or a retracing spinodal.

In addition to these models, small angle X-ray scattering experiments conducted by

Xie et al. show no anomalous growth the correlation length to suggest the presence

of a singularity.45

However, other models are more ambiguous. A �eld-theory model of water�s

hydrogen bond network by Sasai does not predict any singularities above the liquid-

ice spinodal, but it does shown the response functions diverging along the liquid-ice

spinodal.50 The model of Truskett et al. generates either a singularity-free scenario

or a liquid-liquid critical point in supercooled water depending on the choice of

parameters.51 Even X-ray scattering experiments are not conclusive due to the weak

scattering in supercooled water. The long accumulation times, separation of critical

behavior and non-critical background, and speci�c cell geometry cause signi�cant

experimental errors,45 while some studies show an increase in the correlation length52

that does not support the singularity-free scenario.

The Second Critical Point Scenario. In 1992, Poole et al. proposed that the ob-

served anomalies in supercooled liquid water are associated with density and entropy

�uctuations diverging at a critical point of liquid-liquid coexistence.5 This critical

point terminates a line of �rst order phase transitions between two liquid phases:

low-density liquid (LDL) and high-density liquid (HDL). The experimentally ob-
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served LDA and HDA are interpreted as structurally arrested glassy forms of these

two liquid phases.53, 54, 55 Linking the anomalies of supercooled liquid water to

the phase transition between LDA and HDA, the "second-critical-point" scenario

presents as thermodynamically consistent view on the global phase behavior of su-

percooled water.

According to this view, the liquid-liquid coexistence curve in supercooled

water has a negative slope in the (P; T ) plane, di¤ering from the more common

positive slope seen with the liquid-vapor coexistence curve (Fig. 11). As a result,

water at ambient temperatures and pressures is a supercritical �uid and "above"

the liquid-liquid critical point where the metastable �uids LDL and HDL become

indistinguishable. Below the critical point, at lower temperatures and higher pres-

sures, LDA and HDA separate (Fig. 12). As both �uids are metastable with

respect to the solid crystal, transient domains of long-range tetrahedral symmetry

form spontaneously due to thermal �uctuations.46, 56 The lower surface interaction

energy between like structures favors larger domains of these lower density, ordered

tetrahedral structures. The transition from the lower density, ordered LDL to the

higher density disordered HDL corresponds to a change from an energy driven to

an entropy driven structure of the hydrogen bond network. The negative slope in

the (P; T ) plane of the phase transition locus is due to the higher entropy of the

high density phase. The liquid-liquid transition is also di¤erent from the liquid-

vapor curve with a large slope in the (P; T ) plane at the critical point (about 30

times larger than the liquid-vapor transition), which indicates the signi�cance of the

entropy change with respect to the density change, and, correspondingly, a greater
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importance of the entropy �uctuations.

The hypothesis of a second-critical-point scenario is supported by extensive

Monte Carlo and molecular dynamic simulations of various water and water-like

models,37, 57, 58, 59 and by a modi�ed van der Waals model that includes hydrogen-

bond contributions.60, 51 Limited but impressive experimental evidence for the

existence of the liquid-liquid critical point in supercooled water was obtained by

Mishima and Stanley.61, 62 They observed that the melting curve of metastable

ice IV undergoes a sharp change of slope in the region where it would intersect

the expected liquid-liquid transition. Moreover, similar measurements performed

for several forms of D2O ice showed a decrease in the slope change with decreasing

pressure upon approaching the hypothesized critical point.63 Based on their exper-

iments, Mishima and Stanley61 constructed a Gibbs-energy surface for supercooled

water and estimated the location of the critical point at approximately 1 kbar and

220 K. The equation of state obtained by di¤erentiation of the constructed Gibbs-

energy surface is very inaccurate. Therefore, it is not surprising that the exact

location of the liquid-liquid critical point, especially the value of the critical pres-

sure, is uncertain. The simulation data of various water-like models yields a variety

of the critical-pressure values, from negative pressures to 3.4 kbar1 (Fig. 13). On

the other hand, according to Fig. 7 by Mishima, the critical pressure in D2O is most

likely located below or around 0.5 kbar.63

In general, the second-critical point scenario appears more plausible than

either the stability limit conjecture or the singularity-free scenario, especially in
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view of the experimental evidence of a �rst-order phase transition between two

amorphous-water glasses, LDA and HDA. However, conclusive evidence of the

second-critical-point scenario requires further experimental studies such as quench-

ing on droplets small enough to avoid crystallization and accurate measurements of

the heat capacity in supercooled water at high pressures.1
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CHAPTER 3

CRITICAL PHENOMENA

3.1 Phase Transitions and the Critical Point

Critical phenomena is the �eld of physics describing the behavior of sub-

stances near second-order phase transitions, also known as critical points. Critical

points terminate a line of �rst-order phase transitions, also known as a coexistence

curve. First-order phase transitions can be de�ned by the continuous change in ther-

modynamic potential and the discontinuity in the �rst derivative of the thermody-

namic potentials such as entropy and volume through the phase change. Rephrased,

intensive properties remain continuous but extensive properties become discontinu-

ous. In �rst-order phase transitions, the possibility of metastable states exists as

the stability limit is located beyond the equilibrium coexistence curve. Second-

order phase transitions, however, exhibit discontinuity in intensive properties. The

thermodynamic potentials and their �rst derivatives, such as molar volume, molar

entropy, molar enthalpy, or concentration, are continuous but the second derivative

of the thermodynamic potentials, such as molar heat capacity, isothermal compress-

ibility, and thermal expansivity, are discontinuous.64 The point where the binodal,

or phase coexistence curve, and the spinodal, the limit of stability, coincide is a crit-

ical point since there is no metastable state beyond the phase transition in which

the thermodynamic quantities can exist (Fig. 14).

Critical phenomena apply to many di¤erent types of transitions including

phase transitions between some crystal structures, the transitions characterized by

20



the emergence of magnetism or super�uidity, and the phase transitions in all kinds of

�uids. For pure �uids, the critical point terminates the coexistence curve between

two �uid phases, usually vapor and liquid. Beyond the critical point the di¤er-

ences between �uid phases disappear and the �uid becomes homogeneous. For

one-component �uids, the critical point is speci�ed by the critical temperature Tc,

critical density �c; and critical pressure Pc. For convenience, the dimensionless

thermodynamic properties are de�ned di¤erently than the typical de�nitions for a

liquid-vapor critical point (see Section 3.3). The thermodynamic properties reduced

by the critical parameters are de�ned as follows:

T̂ =
T

Tc
; �̂ =

�

�c
; P̂ =

P

�ckBTc
;

�̂ =
�

kBTc
; Â =

A

kBTc
; Ŝ =

S

kB
; ĈP =

CP
kB

ĈV =
CV
kB
; �̂T = �ckBTc�T ;

�̂P = Tc�P ; �̂ =

 
@2P̂

@�̂2

!
T̂

=

�
@�̂

@�̂

�
T̂

= �̂2�̂T ; (3.1)

where � is the chemical potential (Gibbs energy per molecule), P is the pressure,

S is the entropy per molecule, CV is the isochoric heat capacity per molecule, A

is the Helmholtz energy per molecule, and �̂ is the isothermal susceptibility. In

the (P; T ) plane the critical point manifests as the point terminating the coexis-

tence curve. In the (T; V ) plane the critical point manifests as the point where

the speci�c volumes of the equilibrium phases coincide (Fig. 10). According to
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the critical-point-scenario for supercooled water, above Pc and below Tc water sep-

arates into two metastable �uids, LDL and HDL. Water at ambient pressure and

temperature exists beyond the critical point and is a supercritical �uid where LDL

and HDL become indistinguishable.

The Role of the Order Parameter. Critical points can exist only when the di¤erence

between two phases is a matter of degree and a continuous change from one phase to

another may occur. In fact, the particular phase of a �uid, liquid or gas, in which

coexistence terminates in a critical point, cannot be assigned except in comparison,

when both �uids exist simultaneously. A liquid and a gas di¤er by the degree of

interaction between the molecules. A liquid and a solid, on the other hand, di¤er in

their structure, or what Landau and Lifshitz refer to as their �internal symmetry.�64

When two substances have di¤erent internal symmetry, a de�ning element, such as

a unit cell in a crystal, will exist in one phase but not in the other. This element

will not appear gradually during the phase change as it can with substances with

the same internal symmetry. There can be no critical point between the two phases

of di¤erent internal symmetry and the coexistence curve either continues to in�nity

or intersects with the coexistence curve of another phase.

In addition to the density change between a liquid and gas, critical points

can occur between phases where the symmetry element is the displacement of atoms

in a crystal resulting in a rearrangement of the crystal lattice or the ordering of the

crystal structure changing the probability of �nding one type of atom in a particular

lattice site. In addition to these symmetry elements, critical points can occur with
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a change of symmetry in the elementary magnetic moments of a substance (Curie

points of ferromagnetic or antiferromagnetic substances). Another example is the

transition of a metal to a state of superconductivity or of liquid helium to a state of

super�uidity. In each example, the body changes continuously but acquires a new

property at the transition point.64

In the 1930�s, in order to describe the change in the structure of the body

when it goes through a phase transition, Landau introduced the concept of the order

parameter, �, which breaks the symmetry of a system at the transition point.65 The

order parameter is de�ned as a certain property that is larger in the less symmetrical

or disordered phase and smaller or even zero in the disordered phase. If the order

parameter is speci�ed as zero in the disordered phase, it becomes �nite in the ordered

phase. If the order parameter changes at the transition point without discontinuity,

the transition is of second order. If the order parameter is discontinuous and exhibits

a "jump," the transition is of �rst order. This de�nition for the order parameter

corresponds to a �rst derivative of an appropriate thermodynamic potential with

respect to the corresponding ordering �eld, according to the Ehrenfest classi�cation

of phase transitions.64

For liquid water, an appropriate choice of order parameter is necessary to de-

scribe critical phenomena in terms of the general theory of phase transitions.66, 67, 68, 69

In principle, any property, like the surface tension, di¤erence in speci�c or molar

volumes, the latent heat - all vanishing at the critical point - can be candidates

for the order parameter. However, the correct choice would result in a universal,

simpli�ed picture for critical phenomena in physically di¤erent systems.
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3.2 Universal Critical Phenomena and Scaling Theory

One of the most important results of the study of critical phenomena was

the concept of critical-point universality: the discovery that the thermodynamic

behavior in the vicinity of a critical point does not depend on the microscopic

structure.70, 71, 66, 72 Instead, long-range �uctuations of the order parameter, the

e¤ect of random deviations from average, dominate over the speci�c e¤ects of near-

neighbor interactions in the critical region. The correlation length, the length scale

for the critical �uctuations, diverges at the critical point. Due to this divergence,

the thermodynamic properties, functions of the correlation length, become singular

at the critical point. Mathematically, the asymptotic critical behavior near critical

points is characterized by scaling laws with universal critical exponents and system-

dependent amplitudes that are universally interrelated.

The universality of critical phenomena means that critical, or �uctuation in-

duced, behavior can be universally described using theoretical variables, such as

the order parameter or the conjugate ordering �eld, that can be mapped to speci�c

physical variables for di¤erent systems. For real �uids and �uid mixtures, it is

commonly accepted that the non-analytic critical behavior can be asymptotically

described by scaling theory in terms of two independent, theoretical scaling �elds,

namely, h1 ("ordering" �eld) and h2 ("thermal" �eld) and two conjugate, theoret-

ical scaling densities, namely, the order parameter �1(strongly �uctuating) and �2

(weakly �uctuating). A third �eld, h3 = f (h1; h2), is the critical part of the �eld-

dependent theoretical thermodynamic potential, which exhibits a minimum with
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respect to a variation of the of the order parameter such that

dh3 = �1dh1 + �2dh2: (3.2)

Scaling theory is based on the assumption that the critical part of the ther-

modynamic potential h3 has the form of a non-analytical homogeneous function of

the theoretical scaling �elds, h1 and h2. Asymptotically:

h3 � jh2j2�� f�
 

h1

jh2j2����

!
; (3.3)

where f� is a scaling function and the superscript � refers to h2 > 0 and h2 < 0,

respectively. The form of the scaling function is universal for any system; however,

it contains two thermodynamically independent (but system-dependent) amplitudes

and critical exponents speci�c to a particular class of systems. All other asymptotic

amplitudes are related to the selected ones by universal relations. A salient feature

of scaling theory is that the asymptotic behavior of the system near the critical

point can be described through a small number of variables, the critical exponents

� and �, universal within a class of critical-point universality. All �uids and �uid

mixtures belong to the Ising-model class of universality (in which the order parame-

ter is either a scalar or a one-component vector).66 The Ising values for � and �;

namely � ' 0:109 and � ' 0:326, are well established theoretically and con�rmed

experimentally.66, 67, 68, 69, 73, 74 The two Ising amplitudes, Â0 and B̂0 can be de-
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termined by the asymptotic power-law behavior of the two scaling densities in zero

ordering �eld (h1 = 0),

�1 =

�
@h3
@h1

�
h2

� �B̂0 jh2j� ; (3.4)

�2 =

�
@h3
@h2

�
h1

� Â�0
1� �h2 jh2j

�� ; (3.5)

and of the three scaling susceptibilities, "strong" �1, "weak" �2, and "cross" �12 in

zero ordering �eld ,

�1 =

�
@�1
@h1

�
h2

� �̂�0 jh2j
� ; (3.6)

�2 =

�
@�2
@h2

�
h1

� Â�0 jh2j
�� ; (3.7)

�12 =

�
@�1
@h2

�
h1

� �B̂0
jh2j�

h2
(h2 < 0) ; (3.8)

where the critical exponent  = 2� �� 2� ' 1:23973, 74 and the other Ising critical

amplitude �̂�0 is related to B̂0 and Â
�
0 through universal ratios, ��̂

+
0 Â

+
0 =B̂

2
0 ' 0:0581;

�̂+0 =�̂
�
0 ' 4:8, and Â+0 =Â�0 ' 0:523.74 While the superscript � refers to the states

at h2 > 0 and h2 < 0; the prefactor � in Eq. (3.4) refers to the branches of the

order parameter at h1 > 0 and h1 < 0 sides, respectively.

3.3 Classical versus Nonclassical (Scaling) Theory of Phase Transitions

Mean-Field Theory. Traditional thermodynamics, which considers only the bulk

properties of a homogeneous �uid, is commonly based on mean-�eld theory. Mean-
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�eld theory neglects thermal �uctuations, simplifying the system until each molecule

in the �uid has the �uid�s average properties. The complex picture of interactions

between particles is replaced by a mean �eld (or a mean force) that acts equally on

all particles. This approximation assumes that the Helmholtz energy is everywhere

an analytic function of volume and temperature. The van der Waals theory and

other approximate statistical mechanical models are mean-�eld theories. Mean-�eld

is also known as the simplest solution or zero-order approximation of any statistical

mechanical model when a local order is either neglected or considered as a small

correction (Ornstein-Zernike approximation). Mean-�eld theory is a particular case

of the more universally applicable scaling theory.

A phenomenological representation of all mean-�eld theories and models is

the Landau theory of phase transitions. The major assumption of the Landau

theory is that the thermodynamic potential is an analytical function of an ordering

�eld, h1, and a thermal �eld, h2, at the transition point. If so, the critical part of

the appropriate thermodynamic potential, h3, can be expanded in a power series of

the order parameter:

h3 =
1

2
a0h2�

2
1 +

1

4!
u0�

4
1 � h1�1. (3.9)

Above the critical point there is only one solution, � = 0. Below the critical tem-

perature, there are two solutions with either a positive or negative order parameter.

Mean-Field and Scaling Universal Critical Exponents. Experimentally, it has been

well established that asymptotically close the critical point, all physical properties

obey simple power laws known as "scaling laws." The universal powers in these

27



laws are called critical exponents. Both mean-�eld and scaling theories all result in

the divergence of some thermodynamic quantities at the critical point,

X � A jh2j�k , (3.10)

where k is the critical exponent for a given thermodynamic property X. The

exponents that describe this divergence for all mean-�eld theories are called classical

critical exponents. The exponents that describe this divergence and obey the scaling

laws are called non-classical critical exponents.

As the simplest solution, mean-�eld is often used as the �rst approximation

of near-critical behavior. However, the behavior of most �uids near a critical point

is dominated by thermal �uctuations and non-classical or macroscopic behavior. As

a result, the mean-�eld approximation breaks down near the �uctuation dependent

critical point. Experimentally, real �uid behavior is much more closely described

by scaling theory with the nonclassical critical exponents. However, the mean-

�eld approximation becomes exact in systems with long-range interactions such as

superconductors. Therefore, when new kinds of critical points are discovered, it is

not clear a priori whether the critical point is mean-�eld or �uctuation-dominated.

Renormalization group theory75 provides a theoretical method to calculate

the critical exponents. According to the renormalization group theory, which is

the modern theory of critical phenomena,72 the critical exponents of a system de-

pend only on two parameters: the same spatial dimensionality d and the number of

components of the order parameter (order-parameter dimensionality) n. Systems
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that have the same order-parameter dimensionality belong to the same universal-

ity class and can be described by the same set of critical exponents. The order

parameter, �1, a theoretical variable corresponding to a system-dependent physical

quantity, vanishes at the critical point, is nonzero on one side of the transition, and

whose �uctuations diverge at the critical point. For pure �uids, the order parame-

ter is mostly associated with the density minus the critical density, � � �c. The

order parameter for pure �uids is zero along the critical isochore, above the critical

temperature, and nonzero below the critical temperature, where saturated densities

di¤er from the critical density. Since this order parameter for all �uids is a scalar,

its dimensionality n is 1. Fluids, anisotropic magnetic or electric materials, �uid

mixtures, binary alloys, and some other systems all belong to the three dimensional

Ising-model class universality where n = 1, and d = 3, and can all be described by

the same scaled equation of state asymptotically close to the critical point.

As mentioned earlier, real �uid behavior is inconsistent with the popular

mean-�eld approximation. Therefore, a scaled equation of state, based on the

principle of critical-point universality, should be considered for the second critical

point in water.

Scaling theory associates all critical anomalies with the divergence of the

correlation length. The correlation length plays the role of a "screening length" for

the correlation function: when � is small, the correlation function is exponentially

short-ranged. However, at the critical point, the correlation length diverges and

the correlation function becomes long ranged - it decays proportionally with the

distance. The amplitude of the order-parameter �uctuations in the correlation
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volume is the same as the thermodynamic value of the order parameter in the

ordered phase at the same distance to the critical point.

The nonclassical critical values given in Table 1 are the best theoretical es-

timates of the critical exponents of �uids.76, 77 These nonclassical values represent

treatment of the system through the correlation function, G (r), a function describ-

ing spatial behavior of �uctuations of the order parameter. The correlation function

measures how the order parameter at one point correlates to its value at another

point at a distance r. If the correlation function decreases quickly with increasing

distance between points, then far away points are uncorrelated and the system is

dominated by microscopic, short range forces.

The Landau theory satis�es the scaling formulation as far as thermodynamic

quantities are concerned and provides us with the nonclassical critical exponents,

shown in Table 1. Understanding that all critical anomalies depend on the diver-

gence of the correlation length, the introduced six scaling critical exponents are not

independent. The universal relations between the critical exponents for thermody-

namic quantities and the correlation length are:

3� =  + 2� (3.11)

� = 2� d� (3.12)

�+ 2� +  = 2 (3.13)

 = � (2� �) (3.14)

where d is a space of dimensionality. The equation � = 2� d� does not satisfy the
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classical Landau (mean-�eld) theory for dimensions less than four. In scaling theory

only two components and two amplitudes are independent; all other exponents and

amplitudes can be calculated through the given two universal relations.

3.4 Translating Theoretical Variables into Physical Variables with "Complete Scaling"

Ising/Lattice Gas Model. The Ising model represents a system of an incompressible

lattice where its con�guration space (set of possible positions) is the assignment of

a +1 or -1 to the otherwise identical vertices on the graph (Fig. 15). In greater

than 1 dimension, the Ising model undergoes a phase transition between an ordered

and a disordered phase. First proposed by Ernest Ising to represent ferromag-

netism,78 the Ising model assigned dipoles or "spins" directed either upward (+1)

or downward (-1) to the vertices in order to describe the magnetic moments. At

high temperatures, entropy overcomes the interaction between these dipoles and the

average magnetization (summation of all spin-vectors) is zero. As the temperature

drops, the system reaches a critical point called the "Curie point" where the order

parameter, � = @h3=@h1, (magnetization) emerges, and increases in value from zero.

At low temperatures, the energy drives the interaction between the dipoles resulting

in a spontaneous magnetization even in zero magnetic �eld. For ferromagnets, the

ordering �eld, h1, is the magnetic �eld.

Adapted for �uids, this model becomes the lattice gas model describing con-

densation. In the lattice gas model, each site is either occupied by a particle (+1)

or empty (-1) and particle density minus critical density, (�� �c) =�c, becomes the
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order parameter, �1. At the critical point, half of all sites are occupied and half

are empty and �c = 1=2. In �uids, "zero �eld" corresponds to the appearance of

the di¤erence between the densities of liquid and gas, analogous to the appearance

of spontaneous magnetization in the Ising model.

Mathematically, the Ising, or lattice gas, model is a powerful tool to a uni�ed

theory of phase transitions, describing di¤erent systems using one set of theoretical

variables. Table 2 shows the universal theoretical variables associated with scaling

theory and their physical meaning for ferromagnets and for liquid-gas systems.

Given the �elds, the relevant thermodynamic potential for the lattice gas is

the grand thermodynamic potential divided by volume, 
=V = �P , or negative

pressure.

Real Fluids and the Lattice Gas Model. The lattice gas has perfect symmetry

with respect to the sign of the order parameter, whereas real �uids approach such

symmetry only asymptotically. This symmetry, not be confused with the "internal

symmetry" discussed in Section 3.1, describes the liquid-vapor coexistence curve

in the (�; T ) plane and the correlation between the arithmetic mean of the liquid

and vapor densities and the critical isochore. To incorporate �uid asymmetry into

the scaling theory, in 1970�s Mermin and Rehr79 and Patashinskii and Pokrovskii80

introduced the concept of mixing the independent physical �elds into the theoretical

scaling �elds (see also refs. Wilding et al.,81 Anisimov et al.,82 and Anisimov et

al.83). According to their approach, which we will call "incomplete scaling," the

independent scaling �elds in �uids are linear combinations of chemical potential
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and temperature:

h1 = a1��̂+ a2�T̂ ; h2 = b1�T̂ + b2��̂; (3.15)

while the dependent �eld h3 = c1�P̂ + c2�T̂ . Since any two independent crit-

ical amplitudes can be incorporated into the scaling function f�, it is convenient

to adopt a1 = 1 and b1 = 1; then c1 = 1 while c2 becomes �
�
@P̂ =@T̂

�
h1=0

taken

at the critical point. Therefore, the critical part of the �eld-dependent thermody-

namic potential remains the same as in the lattice gas, since in linear approximation

(P � Pcxc) =�ckBTc = �P̂ �
�
@P̂ =@T̂

�
h1=0;c

�T̂ . Furthermore, as shown by Anisi-

mov et al.,82, 83 since in classical thermodynamics the absolute value of entropy is

arbitrary, the critical value of entropy can be chosen upon practical convenience. It

is seen clearly from the basic thermodynamic relation

dP = �d�+ �SdT; (3.16)

that, if the critical entropy is adopted as Sc = ��1c (@P=@T )h1=0;c, the coe¢ cient a2

in Eq. (3.15) vanishes and in linear approximation the chemical potential along the

vapor-liquid coexistence does not depend on temperature. However, the curvature

of this dependence, determined by the second derivative, is well de�ned. With this

choice of the critical entropy, the mixing term b2��̂ in "incomplete scaling" becomes

also well de�ned, being in lowest approximation the sole contribution to the vapor-

liquid asymmetry in real �uids. In particular, since ��̂ = �1+b2�2 = �1+b2�(�̂Ŝ);
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this term explains the non-analytic deviation from the law of rectilinear diameter,

the
����T̂ ���1�� singularity in the "diameter" of vapor-liquid coexistence curve given by

�̂d = (�
0+ �00)=2�c+ ::: = 1+D1

����T̂ ���1��+D0

����T̂ ���+ :::. Mapping the asymmetric
�uid criticality into the symmetric lattice model is achieved in "incomplete scaling"

by a rede�nition of the order parameter as �1 = ��̂ � b2�(�̂Ŝ): In "incomplete

scaling" the chemical potential � (up to the third derivative69) is an analytic function

of temperature along the vapor-liquid coexistence boundary and along the critical

isochore above the critical point (h1 = 0). Like in the lattice gas, the second

derivative (@2�=@T 2)h1=0 = (d
2�=dT 2)cxc remains �nite at the critical temperature

Tc, while (@2P=@T 2)h1=0 = (d2P=dT 2)cxc diverges proportionally to the isochoric

heat capacity ĈV .

At this point we encounter a major conceptual problem with mapping real

�uids into the lattice-gas even at the mean-�eld level. In the mean-�eld approxima-

tion the critical part h3 of the thermodynamic potential, is represented by Landau

expansion (3.9). When h1 = ��̂; h2 = �T̂ +b2��̂; and �1 = ��̂ � b2�(�̂Ŝ); this

expansion generates asymmetric terms _ b2�T̂ (��̂)3 and _ b2(��̂)5: However, in

the simplest equation of state that realistically describes �uid phase behavior, the

van der Waals equation, the term _ �T̂ (��̂)3 is absent, while the term _ (��̂)5

exists. Furthermore, in most classical equations of state, d�̂2=dT̂ 2 along the liquid-

vapor coexistence exhibits a discontinuity directly related to the existence of the

independent 5th-order term in Landau expansion. The existence of the indepen-

dent 5th-order term makes exact mapping of �uids into the lattice-gas model by the

conventional mixing of physical �elds impossible. This problem was recognized a
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long time ago67 but was not clearly articulated. On the other hand, a theoretical

renormalization-group treatment of the 5th-order term84, 85, 86, 87, 88 resulted in the

emergence of an independent critical exponent �5 ' 1:3.89 The exponent �5 does

not exist in symmetric models and is expected to belong exclusively to �uids.

More recently, "incomplete scaling" was challenged by Fisher and his cowork-

ers90, 91 who developed a new approach, known as "complete scaling for �uids."

They proposed that both (@2�=@T 2)h1=0 and (@
2P=@T 2)h1=0 diverge at the critical

point like the isochoric heat capacity. A principle possibility of this e¤ect has been

known as the "Yang-Yang anomaly"92 and has been a subject of prolong discussions

for decades.93 The major conceptual result of "complete scaling" is that asymmetric

�uids can be consistently mapped into the symmetric Ising criticality by appropri-

ate mixing of the physical �elds into the scaling �elds. A rede�nition of the order

parameter, suggested by "complete scaling," makes a special renormalization-group

treatment of the 5th-order term in the e¤ective Hamiltonian for �uids irrelevant, at

least, in practice.

Complete Scaling. "Complete scaling" suggests that all three physical �elds ��̂;

�T̂ ; and �P̂ are equally mixed into three scaling �elds h1; h2; and h3. In linear

approximation:

h1 = a1��̂+ a2�T̂ + a3�P̂ ; (3.17)

h2 = b1�T̂ + b2��̂+ b3�P̂ ; (3.18)

h3 = c1�P̂ + c2��̂+ c3�T̂ : (3.19)
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The dependent �eld h3 is a homogeneous function of h1 and h2 as asymptotically

given by Eq. (3.3). Far away from the asymptotic region, or if the phase-coexistence

locus h1 = 0 exhibits a strong curvature in terms of the physical �elds, the linear

approximation might be insu¢ cient and appropriate nonlinear terms should be in-

cluded.

Physical density-like properties, the molecular density and entropy per unit

volume, are given by the thermodynamic relations

�̂ =

 
@P̂

@�̂

!
T̂

; �̂Ŝ =

 
@P̂

@T̂

!
�̂

: (3.20)

Since the coe¢ cients c1 and c2 can be absorbed by making the thermodynamic

potential h3 dimensional, as given by Eq. (3.1), while the coe¢ cient c3 = Ŝc; one

can obtain by applying Eq. (3.20) to Eqs. (3.17-3.19),

�̂ =
1 + a1�1 + b2�2
1� a3�1 � b3�2

; (3.21)

�̂Ŝ =
Ŝc + a2�1 + b1�2
1� a3�1 � b3�2

: (3.22)

One can see that while the scaling �eld are expressed as linear combinations of

the physical �elds, the physical densities are non-linear combinations of the scaling

densities.

Making "Complete Scaling" Simple. Before we apply complete scaling to describe

asymmetry in �uids, we note that the relations between scaling and physical �elds
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can be further simpli�ed. The coe¢ cients a1 and b1 can be absorbed by the two

amplitudes in the scaling function f�; such that a1 = 1 and b1 = 1: The coe¢ cient

c3 = Ŝc is determined by the choice of the critical value of entropy. By adopting

Ŝc = (kB�c)
�1 (@P=@T )h1=0;c =

�
dP̂ =dT̂

�
cxc;c

, the slope of the saturation-pressure

curve at the critical point, one obtains a2 = �a3
�
dP̂ =dT̂

�
cxc;c

. Indeed, along the

path h1 = 0, asymptotically close to the critical point,

�
@�̂

@T̂

�
h1=0;c

+ a2 + a3

 
@P̂

@T̂

!
h1=0;c

= 0: (3.23)

On the other hand, it follows from the thermodynamic relation (3.16) that

d�̂

dT̂
+ Ŝc �

@P̂

@T̂
= 0: (3.24)

Thus, with adopting Ŝc =
�
@P̂ =@T̂

�
h1=0;c

; we obtain
�
@�̂=@T̂

�
h1=0;c

= 0 and

a2 + a3

 
@P̂

@T̂

!
h1=0;c

= 0: (3.25)

Furthermore, with such a choice of Ŝc, along the path h1 = 0

h2 = �T̂

�
1� b3

a2
a3

�
; (3.26)

and the density of entropy becomes proportional to the weakly-�uctuating scaling

density, �(�̂Ŝ) � (1 + b3)�2 _ jh2j1�� : With exception for a trivial renormalization

of the amplitudes in h2 and �(�̂Ŝ); the coe¢ cient b3 plays no signi�cant role in

37



asymmetry of �uid criticality. Indeed, as follows from Eqs. (3.21) and (3.22), this

coe¢ cient can be independently obtained only from the contributions to the density

behavior of order b3�1�2 _ jh2j1��+� : With 1� � + � ' 1:417; this contribution is

of higher order than a3�
2
1 _ jh2j2� and b2�2 _ jh2j1�� ; and even signi�cantly weaker

than the linear term. Therefore, for the sake of simplicity, we assume b3 = 0:

Hence, there are only two independent coe¢ cients that in the �rst approximation

control the asymmetry in �uid criticality, namely a3 and b2. In this approximation,

the scaling �elds read

h1 = ��̂+ a3

�
�P̂ �

�
dP̂ =dT̂

�
cxc;c

�T̂

�
; (3.27)

h2 = �T̂ + b2��̂; (3.28)

h3 = �P̂ ���̂+
�
dP̂ =dT̂

�
cxc;c

�T̂ : (3.29)

Furthermore, by expanding Eqs. (3.21) and (3.22) and neglecting all terms of higher-

order than linear of �T̂ ; we obtain

��̂ ' (1 + a3)�1 + a3 (1 + a3)�
2
1 + b2�2 (3.30)

�
�
�̂Ŝ
�
' b2�2 (3.31)

As a result, while the order parameter in �uids is, in general, a nonlinear

combination of density and entropy, the weakly �uctuating scaling density �2 in

�rst approximation is associated with the density of entropy only.
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The relations between the theoretical �elds and the physical �elds given by

Eqs. (3.27-3.29) are to be built into a theoretical equation of state based on the

scaling formulation given by Eq. (3.3).
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CHAPTER 4

APPLYING CRITICAL POINT UNIVERSALITY TO

SUPERCOOLED LIQUID WATER

The application of the principle of critical point universality to supercooled

liquid water provides an opportunity to explore the second critical point scenario

from a new direction. Since conclusive experimental evidence supporting one of the

three proposed interpretations of existing data is not available, the role of theoretical

models in supporting these theories has grown. Yet Monte Carlo and molecular dy-

namic simulations are still only approximate models of water�s complex molecular

bonding interactions and they depend heavily on the accuracy of many underly-

ing assumptions.1 An equation of state, developed under the assumption of the

existence of the second critical point and based on the principle of critical point

universality, o¤ers a thermodynamically consistent approach to explore the behav-

ior of supercooled liquid water. Using only two adjustable critical parameters, a

system-dependent critical amplitude and the critical pressure, and an adjustable

non-critical background, we can locate the second critical point in liquid water and

predict thermodynamic properties. The comparison between existing experimental

data and the predicted behavior of the thermodynamic properties will o¤er a new

tool to evaluate the validity of the second critical point scenario.

4.1 Relations Between Theoretical and Physical Fields

The �rst step in the development of the equation of state is to map the the-

oretical scaling �elds to physical variables. Representation of scaling �elds through
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linear mixing of physical �elds is used to incorporate asymmetric �uid criticality

into the symmetric Ising model.94, 95 We begin with the "complete scaling" rela-

tions, Eqs. (3.17-3.19). The degree of freedom of the system requires only two

independent variables. Therefore, all but two coe¢ cients in the scaling �elds may

be absorbed in the two system-dependent amplitudes of the scaling function f . In

this model, we adopt the mixing coe¢ cients, a2 = 1, b2 = �1, c1 = �1, c2 = 1,

c3 = Ŝc, and simplify the equations:

h1 = a1��̂+�T̂ + a3�P̂ ; (4.1)

h2 = b1�T̂ ���̂+ b3�P̂ ; (4.2)

h3 = ��P̂ +��̂+ Ŝc�T̂ : (4.3)

Such a choice anticipates the fact that the coe¢ cients a1, b1, a3, and b3 can be

very small, since the supercooled water is weakly compressible. The negative sign

of b2 = �1 indicates that the liquid-liquid phase separation in supercooled water

occurs with an increase of pressure (Fig. 1), in contrast to the vapor-liquid phase

separation. Moreover, since the compressibility of supercooled water is very small,

we assume a3 and b3 are small enough so that they can be neglected for the purposes

of our model. The value of a1 and b1 can be determined from the shape of the liquid-
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liquid �rst-order transition curve. Finally,

h1 = a1��+�T; (4.4)

h2 = b1�T ���; (4.5)

h3 = ��P +��. (4.6)

In order to further simplify the �elds, we must adopt a critical value of Ŝc. For

the vapor-liquid critical point, the convenient choice for Ŝc was (kB�c)
�1 (@P=@T )h1=0;c.

However, the liquid-liquid coexistence curve in supercooled water has a very di¤erent

slope than the liquid-gas coexistence curve (Fig. 12) and in the case of liquid-liquid

coexistence it becomes convenient to rotate the theoretical coordinates h1 and h2

through a di¤erent choice for critical entropy. Adopting a critical entropy of Ŝc = 0

with a3 � 0 and b3 � 0 , results in

�
@�̂

@T̂

�
h1=0;c

=
1

�̂

 
@P̂

@T̂

!
h1=0;c

= �a2
a1
; (4.7)

�
@�̂

@T̂

�
h2=0;c

=
1

�̂

 
@P̂

@T̂

!
h2=0;c

= �b1
b2

(4.8)

along the paths h1 = 0 or h2 = 0, asymptotically close to the critical point. In this

approximation, the scaling �elds h1 and h2 read

h1 ' a1��̂+ a2�T̂ = a1��̂�
a1
�̂

�
@P̂ =@T̂

�
h1=0;c

�T̂ ; (4.9)

h2 ' b1�T̂ + b2��̂ = b1�T̂ +
b1
�̂

�
@P̂ =@T̂

�
h1=0;c

��̂: (4.10)
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Solving these equations for the scaling densities yields

�1 = �
�
@�h3
@h1

�
h2

=
�
�
�̂Ŝ
�
+ b1��̂

1 + a1b1
� B̂0 jh2j� ; (4.11)

�2 = �
�
@�h3
@h2

�
h1

=
��̂+ a1�

�
�̂Ŝ
�

1 + a1b1
� Â0
1� � jh2j

1�� : (4.12)

If b1 is small, the predominant contribution to the order parameter, �1, comes from

the entropy. If a1 is small, the second scaling density becomes mostly molecular

density.

In addition to the di¤erence in direction of the slope of the liquid-liquid

transition line, de�ned as h1 = 0, the liquid-liquid transition also curves strongly

above the critical point. To account for this curvature, we added the non-linear

pressure term, a3��̂
2, in the ordering �eld, h1, and our scaling �elds become:

h1 = a1��̂+ a2�T̂ + a3��̂
2 = a1��̂� a1

�
@P̂ =@T̂

�
h1=0;c

�T̂ + a3��̂
2;(4.13)

h2 = b1�T̂ + b2��̂ = b1�T̂ + b1

�
@P̂ =@T̂

�
h1=0;c

��̂: (4.14)

Finally, the scaling �elds, "ordering" and "thermal," for the liquid-liquid

critical point in supercooled water become

h1 ' �T̂ �
�
@T̂ =@P̂

�
h1=0;c

�̂�1�P̂ � 2
�
@2T̂ =@P̂ 2

�
h1=0;c

�̂�2
�
�P̂
�2
; (4.15)

h2 ' ��̂�1�P̂ �
�
@T̂ =@P̂

�
h1=0;c

�T̂ : (4.16)
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The scaling �densities�become

�1 '
�
�
�̂Ŝ
�
+ b1��̂

1 + (a1)e� b1
; (4.17)

�2 '
��̂+ (a1)e� �

�
�̂Ŝ
�

1 + (a1)e� b1
: (4.18)

where�Ŝ � (S�Sc)=R, with R being the gas constant, and (a1)e� =
�
@h1=@P̂

�
T̂
=

a1 + 2a3�P̂ . The "strong," "weak," and "cross" susceptibilities remain de�ned as

�1 =

�
@�1
@h1

�
h2

; (4.19)

�2 =

�
@�2
@h2

�
h1

; (4.20)

�12 = �21 =

�
@�1
@h2

�
h1

=

�
@�2
@h1

�
h2

; (4.21)

As far as the physical �elds are mixed into the scaling �elds, the physical

properties, such as the isobaric heat capacity CP , the isothermal compressibility �T ,

and the thermal expansivity �P , will not exhibit universal power laws when measured

along isotherms or isobars; instead, their apparent behavior will be determined by

a thermodynamic path and by the values of the mixing coe¢ cients in Eqs. (2) and

(3). As follows from Eqs. (4.15) and (4.16), the critical (�uctuation induced) parts

of the dimensionless isobaric heat capacity, isothermal compressibility, and thermal
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expansivity are expressed through the scaling susceptibilities as

�
ĈP

�
cr
= T̂

 
@Ŝ

@T̂

!
P̂

�
�
ĈP

�
b

(4.22)

= T̂
�
a22�1 + 2a2b1�12 + b

2
1�2
�
;

(�̂T )cr = � 1
V̂

 
@V̂

@P̂

!
T̂

� (�̂T )b (4.23)

=
1

V̂

�
(a1)

2
e� �1 + 2 (a1)e� b2�12 + b

2
2�2
�
;

(�̂P )cr =
1

V̂

 
@V̂

@T̂

!
P̂

� (�̂P )b (4.24)

= � 1
V̂
((a1)e� a2�1 + ((a1)e� b1 + a2b2)�12 + b1b2�2) .

where T̂ = T=Tc, P̂ = P=�cRTc, and the subscript "b" indicates the property

backgrounds, behavior not attributable to proximity of the critical point. Given

the small slope of the liquid-liquid coexistence curve in the (P; T ) plane, the mixing

coe¢ cients a1 and b1 are small (Fig. 16). We can see that the thermodynamic

properties depend on susceptibilities such that ĈP is strongly divergent, �̂T is mostly

weakly divergent, and �̂P is mostly modestly divergent. In practical ranges of

temperatures and pressures, roughly,

ĈP / �1; (4.25)

�̂T / �1; (4.26)

�̂P / �12: (4.27)

The application of scaling theory to the liquid-liquid critical point in super-
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cooled water is not a unique result, but it does di¤er from the liquid-vapor or even

binary system liquid-liquid translations of the theoretical variables to physical vari-

ables. Liquid crystals such as Blue Phase III have a critical point of the transition

between a molecular-�uid phase and a structural phase that translates into scaling

theory in a similar manner to the liquid-liquid critical point in supercooled water.95

For the blue phase liquid crystal the phase BPI, the defect lies (disclinations) of a

helix structure form simple cubic lattice. For the phase BPII, the defects form a

body centered cubic lattice. In BPIII, defects form an amorphous structure with a

translation between a "liquid" of defects (BPIII) and a "gas" of defects ("molecular

�uid"). Like in supercooled water, the transition temperature is almost indepen-

dent of the second-physical �eld. A cartoon analogy between the liquid-vapor and

liquid-liquid critical points is given in Table 3.

4.2 Scaled Parametric Equation of State

The universal scaling function and renormalization group theory allow cal-

culation of the singular parts of all thermodynamic properties of a �uid in the as-

ymptotic vicinity of the critical point given the critical parameters, any two system-

dependent scaling critical amplitudes, and the proportional slope of the coexistence

curve at the critical point. However, the expressions for the scaling function are

implicit and inconvenient for practical engineering use. The phenomenological

parametric representations of a scaled equation of state provide more convenient

coordinates using the parametric variables r and �, where r measures the distance

from the critical point and � provides a location along a contour of constant r.
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We use the simplest form of a scaled parametric equation of state, the so-

called "linear model," which represents the scaling �elds and scaling susceptibilities

as functions of the �polar" variables r and �95, 69:

h1 = ar�+�
�
1� �2

�
; (4.28)

h2 = r
�
1� b2�2

�
; (4.29)

�1 =
k

a
r�c1(�),

�12 = kr��1c12(�), (4.30)

�2 = akr��c2(�)�Bcr (4.31)

where the coe¢ cient b2 = ( � 2�) = (1� �) ' 1:36 is a universal constant, while

a and k are system-dependent amplitudes, and Bcr is the so-called "critical back-

ground" of order ak.95 The critical background was studied by Bagnuls and Bervil-

lier in a three-dimensional �eld theory96 and by Anisimov et al. in a crossover

theory based on a renormalized Landau expansion.97 According to the theory, the

critical background can be found through an explicit equation proportional to the

cuto¤ wave number of the critical �uctuations. Unfortunately, the available data

are accurate enough to estimate Bcr through this theory for only a few �uids such

as methane98and ethane99 in the two-phase region. Although critical background is

a di¢ cult parameter to obtain accurately, it can be estimated to an order of mag-

nitude as Bcr � ak. The analytical functions c1(�), c2(�), and c12(�) are calculated

in ref..95 The remarkable feature of the "linear model" is that the singularities in
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the thermodynamic functions are only related to the variable r, while the properties

are analytical with respect to �. The parameter � is chosen to range from -1 to +1

so that � = 0 corresponds with the critical isochore and � = �1 corresponds to the

coexistence curve. Along the critical isotherm, h2 = 0, the value of theta becomes

� = �1=b. Figure 16 shows the representation of the thermal �eld h2 and the order

parameter �1 through the variables of the parametric linear model.

Input Parameters for the Scaled Parametric Equation of State. The choice of a co-

ordinate system, reference entropy, and morphology of the liquid-liquid coexistence

curve correlated the universal scaling theory to the physical variables speci�c to the

scaled parametric equation of state for a liquid-liquid critical point in supercooled

water. Until this point, the equation of state remains applicable for both ordinary

and heavy water and the translation from theoretical variables to physical variables

did not introduce any sources of error. However, this scaled equation of state de-

pends on input parameters: density of water at various pressures, the path of the

coexistence curve and its extension into the one-phase region, the location of the

critical point along that curve, and the system-dependent amplitudes a and k. Each

of these parameters introduces error into the equation of state.

Density. The International Association for the Properties of Water and Steam

(IAPWS) provides accepted formulations for the properties of water for scienti�c

and industrial applications. In 1995, IAPWS approved a new formulation of the

properties for water for general and scienti�c use based on existing experimental
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data. This formulation, serving as the international standard for water�s thermo-

dynamic properties, provides the density of water at various pressures and temper-

atures. In the stable liquid region at ambient pressure, IAPWS-95 is accurate to

� �0:0001% and represents the most accurate data within the experimental uncer-

tainty available. However, the formulation covers a validity range from 251.2K at

209.9 MPa to 1273 K and 1000MPa, while our equation of state suggests a criti-

cal point in supercooled liquid water below 250K and 50MPa. Nevertheless, the

IAPWS formulation represents the most accurate, available data on the density of

liquid water and the scaled parametric equation of state depends on the IAPWS-95

predicted density values at various temperatures and pressures. Fig. 17 shows plots

of the IAPWS density for various pressures and temperatures.

The formulation used for ordinary water is presented in ref.3 The formulation

used for heavy water is a dimensionless version of the formulation provided by Hill et

al.100, 101 IAPWS released a Revised Release on the IAPWS formulation for heavy

water in July 2005.

Coexistence Curve and �Widom line." The �Widom line" in the one-phase region,

h1 = 0, is an analytical continuation of the liquid-liquid transition curve from C0

to lower pressures and higher temperatures. Based on the most recent estimate of

the liquid-liquid phase transition curve given by Mishima,62 we have obtained the

coe¢ cients a1 = b1 = 0:039 and a3 = 0:062 for ordinary water and a1 = b1 = 0:03

and a3 = 0:05 for heavy water. This work shows the location of the liquid-liquid

transition line close to the homogeneous ice nucleation locus. Fitting a curve to
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the estimates of Mishima allows us to specify the location of the critical point with

only one variable, Pc, reducing the number of variables, and inherent error, in our

equation. Figure 18 shows a plot of the liquid-liquid coexistence curve based on

Mishima data for ordinary and heavy water.

System-Dependent Amplitudes. In order to reduce the number of adjustable para-

meters, we assume that the ratio k=a = 1, as obtained for the three dimensional

Ising model with short-range interactions.102 Hence, only two adjustable parame-

ters, namely, Pc and a = k, have been used to describe the anomalous parts of the

thermodynamic properties.

Adjustable Parameters a = k, and Pc. Using high-resolution experimental heat-

capacity data12 shown in Fig. 4, we optimized the location of the critical point

and the system dependent amplitudes. The resulting �t for the experimental heat

capacity data is shown in Figure 19. The non-critical background of the heat

capacity was approximated as a linear function of temperature. We obtained a =

k = 0:47 and Pc = 27 MPa with the critical temperature corresponding to this

pressure Tc = 232 K for ordinary water. For heavy water, we �xed a = k = 0:7 and

Pc = 20 MPa with the critical temperature corresponding to this pressure Tc = 238

K. The critical point, obtained from our equation of state, is located at a much

lower pressure than previously predicted from computer simulations (see Fig. 13).

Figure 20 shows the parametric equation of state predicted by scaling theory.
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Non-critical Background. The scaled parametric equation of state predicts the e¤ect

of the critical point on the behavior of thermodynamic properties, which dominates

in the immediate vicinity of the critical point. However, the available experimental

data are usually taken far away from the critical point where classical thermody-

namic behavior becomes predominate. There are several approaches to dealing with

the crossover to classical thermodynamic behavior and for this work we use a simple

polynomial, which grows with distance from the critical point. The backgrounds

for the parameters are given in Table 4.
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CHAPTER 5

PREDICTING THERMODYNAMIC PROPERTIES OF

SUPERCOOLED LIQUID WATER

With the given amplitudes and location of the critical point, obtained from

the heat capacity data as shown in Chapter 4, we predict the behavior of the com-

pressibility and expansivity, shown in Figs. 21 and 22, by adjusting only their non-

critical backgrounds. Similar predictions were performed for heavy water, shown in

Figs. 23 and 24. The predictions appear to have excellent agreement with the ex-

perimental data.14, 15 While it is di¢ cult to establish the error bars for the obtained

Pc value, the parametric equation of state certainly excludes the critical pressure

above 50 MPa or below 10 MPa for ordinary water and values of above 40MPa and

below 5MPa for heavy water.

A Lower Pressure for the Second Critical Point. The location of the critical point,

far lower than previously predicted, has some additional experimental support.

Mishima melted various heavy water ice and measured the onset of the change

in sample temperature during the decompression-induced melting experiment. In

heavy water ice V, IV and XIII there appeared to be a sharp change in slope that

suggests the possibility of the HDL to LDL transition line. However, in heavy

water ice III, the line curved smoothly. Figure 25 shows experimental results and

a schematic representation with the second-critical point. These data suggest a

critical point for heavy water below 60 MPa and above 10 MPa, consistent with the

predictions in this thesis.
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Scaling versus Mean-Field Predictions. We also conclude that the mean-�eld sce-

nario is unlikely. The mean-�eld scenario cannot predict the anomalous behavior

of isothermal compressibility within our model. While the major contribution in

the heat-capacity anomaly is strong susceptibility, �1, (b1 is small) diverging both in

mean-�eld and in scaling theory, the major contribution in the isothermal compress-

ibility anomaly is the weak susceptibility �2, (a1 is small) which shows no anomaly

in mean-�eld approximation. The major contribution in the critical part of the

expansivity comes from the cross susceptibility �12 as both a1 and b1 are small.

These features make the second critical point in water essentially di¤erent from the

liquid-vapor critical point where CP , �T , and �P all diverge strongly, as �1, and from

the liquid-liquid critical points in binary �uids where CP , �T , and �P all diverge

weakly, as �2.

Limitations to the Scaled Equation of State. There are obvious limitations of our

equation of state. First, the model used in this work is accurate only asymptotically

close to the critical point (r << 1) while all measurements in supercooled water have

been taken far beyond the asymptotic region. The experimental range of r, the

parametric distance to the critical point, at worst may be as large as 0.5. However,

this is the �rst estimate of the critical parameters for the second critical point in

water based on experimental data, and not on computer simulations of "water like"

models. Including non-asymptotic corrections to the parametric equation of state

would change the adjustable backgrounds while not signi�cantly a¤ecting the critical

parameters. To more accurately describe and predict the properties in a broader
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range of pressures and densities in supercooled water, a �global" crossover equation

of state,69 based on a reliable mean-�eld equation of state, such as a modi�ed van der

Waals model,60 is required. Moreover, we did not address an intriguing possibility

of the existence of multiple critical points in supercooled water, as predicted by

some simulated water models.103, 104

In this work, the order parameter is phenomenologically expressed through

molar volume and entropy, with entropy being the major contribution. A clar-

i�cation of the relation between this phenomenology and the microscopic nature

of the order parameter51 would help in better understanding the physics of phase

transitions in supercooled water.

Nature of the Order Parameter. In supercooled liquid water, the nature of the

order parameter is not associated mostly with density, as is the case of the liquid-

vapor critical point. Studies by Poole et al.60 and Truskett et al.51 have looked

at the connection between the theoretical, microscopically de�ned order parameter,

(�1)theoretical = (B0)theoretical jh2j
�, and the physical �elds, while the phenomenologi-

cally de�ned order parameter is:

�1 =
�
�
�̂Ŝ
�
+ b1��̂

1 + a1b1
� B0 jh2j� : (5.1)

Poole�s and Truskett�s scalar order parameter is related to an optimal orientation of

hydrogen bonds. The microscopically de�ned order parameter belongs to the Ising

universality class and linearly couples with entropy and density, unlike in �uids,
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while dynamically, it may belong to a dynamic universality class of non-conserved

order parameter.

Hajime Tanaka also explored the nature of the order parameter, suggesting

the possibility of a two-order-parameter description and introduced a bond order

parameter de�ned as the local fraction of locally favored structures.106

Other Equations of State. Kiselev and Ely107, 108 were the �rst to apply �uctuation

theory to supercooled water and calculate the physical properties of ordinary and

heavy water. Their work encompassed predictions of the thermodynamic properties

of ordinary water, heavy water and ordinary and heavy water mixtures, as well as the

development of a crossover equation of state. However, in order to predict properties

in both the supercooled and the stable regions and provide reasonable values for

heavy water, ordinary water and mixtures, Kiselev and Ely incorporated over a

dozen system-dependent parameters into their equation of state. The resulting

predictions were more empirical than fundamental. Moreover, the predicted phase

diagram looks unrealistic with the (P; T ) slope positive instead of negative, as well

established. The scaled parametric equation of state developed in this thesis is

more limited in scope, but relies on only three adjustable parameters, the critical

pressure Pc, the system dependent amplitude k=a, and the non-critical backgrounds.

Multiple Critical Points. The predictions of the scaled, parametric equation of state

support the hypothesis of a second critical point in supercooled water. However,

this result does not preclude the possibility of multiple critical points. Molecu-

lar dynamic models and monte carlo simulations, such as those of Brovchenko et
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al. show four possible phases of supercooled liquid water, corresponding with ob-

served densities in amorphous ice.109 The debate regarding the number of phases

of amorphous ice experimentally observed and the level of uncertainty built into

the equation of state support further exploration of the multiple critical points in

supercooled liquid water.

56



CHAPTER 6

SUMMARY

The scaled equation of state for supercooled liquid water o¤ers a consis-

tent scaling description of the available experimental data in supercooled water.

Although this work is not absolutely de�nitive in its support of the second-critical-

point scenario, it lends weight to a growing body of evidence and provides another

tool for future evaluations as additional experimental data become available.

This work represents one piece of a much larger puzzle in the development

of a thermodynamically consistent equation of state for liquid water in general.

When complete, the implications for this work are widespread. Supercooled liquid

water occurs naturally in the atmosphere, playing a role in weather and global

warming by absorbing solar and terrestrial energy changes. The high pressures and

low temperatures necessary for supercooled liquid water also occur naturally on

some of our neighboring planets. Storms on Mars and photos of Europa, Jupiter�s

moon, suggest the presence of supercooled liquid water. Aqueous solutions also

represent the importance of supercooled liquid water. The phase behavior of pure

liquid water shifts when put in solution, potentially either shifting the phenomena

previously only seen in deep supercooled regions into an area of the phase diagram

more accessible at ambient temperatures and pressures or making the states of

the solution stable at temperatures below 0oC. Aqueous solutions below 0oC have

implications for deep ocean science, underwater communication and navigation as

well as biological systems. In addition, an understanding of the behavior of liquid
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water might provide insight into polyamorphism in phosphorous,110, 111 and other

substances, such as SiO2, and GeO2, which exhibit similar anomalous behavior upon

cooling.112, 113
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APPENDIX I: TABLES 
  

 

 

Thermodynamic 

Property 

Formula Path Classical 

Critical 

Exponent 

Non-classical 

Critical 

Exponent 

Isothermal 

Compressibility 0
± T̂( )  

= c  1 1.239 ± 0.002  

Isochoric Heat 

Capacity 
CV A0

± T̂( )  
= c  0 0.110 ± 0.003  

Density 
c ±B0 T̂( )

 

Coexistence 

μ1 = μ2  

 0.326 ± 0.002  

Pressure P Pc ˆ( )  T = Tc  3 4.8 ± 0.02  

Correlation 

Function, G r( )  
G r( ) r 1( )  Critical 

point;  

large r 

0 0.031± 0.004  

Correlation 

Length,  
0
± T̂( )  

= c  1/2 0.063 ± 0.001  

 

 

Table 1.  Classical and Non-classical Critical Exponents.  A0
± , B0

± , 0
± , 0

± are critical 

amplitudes above and below the critical temperature.
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Universal Variables Ising (ferromagnets) Lattice Gas (liquid-gas) 

h1  Magnetic Field μ̂ = μ μc( ) / RTc  

h2  T̂  T̂  

1  Magnetization ˆ  

2  Ŝ = S / kB  ˆŜ( ) = S cSc( ) / rc kB  

 

 

Table 2.  Scaling theory universal theoretical variables for ferromagnets and liquid-gas 

systems. 
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Symbol Variable Liquid-Vapor Liquid-Liquid 

(dT/dm) 

Liquid-Liquid 

   (water, BPIII) (binary liquid) 

1  Order parameter  S  x  

h1  Ordering field μ  T  μ21  

h2  “Thermal” scaling 

field 
T  μ  T  

2   S( )   S  

1  Strong susceptibility T   P   CP  CP  x / μ21  

2  Weak susceptibility CV  T  T   P   CP  

12  Cross susceptibility / T( )h1 =0  P  x / T( )h1 =0  

 

 

Table 3.  Cartoon analogy between liquid-vapor and liquid-liquid critical points.   
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Thermodynamic 

Property 

Non-critical Background 

CP  (0.1 MPa)  7.8 * T + 2.1 

T  (0.1 MPa)  0.000456  

T  (10 MPa)  0.000456  

T  (50 MPa)  0.00005* T+0.00039  

T  (100 MPa)  -0.00034* T+0.000436  

T  (150 MPa)  -0.000326* T+0.000396  

T  (190 MPa)  -0.00024* T+0.00034  

T  (0.1 MPa)  0.00125*ln(1.77297* T^1.05498)+0.002-0.0122* T+0.017* T^2

-(0.00085*ln(0.18418* T^0.33789)
 

CP  (0.1 MPa)  2.3* T+8.5  

T  (10 MPa)  0.178 0.00974 *T + 5.5E 5 *T ^ 2

1.364E 7 *T ^ 3+1.257E 10 *T ^ 4
 

T  (50 MPa)  0.00035* T+0.00033  

T  (100 MPa)  -0.0006* T+0.00053  

T  (150 MPa)  -0.00042* T+0.00047  

T  (190 MPa)  -0.00024* T+0.00039  

T  (0.1 MPa)  0.000000000000014* T^4-0.0000043* T+0.0023  

 

Table 4.  Non-critical background polynomials for ordinary water (aqua blue) and heavy 

water (sky blue). 
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APPENDIX II: FIGURES 
 

 

 
 

 

Figure 1.  Phase diagram of water showing stable regions of vapor, liquid, and various 

forms of ice.  The region inside the purple curve shows the range of validity for the 

IAPWS-95 empirical equation of state. IAPWS-95 is recommended by the International 

Association for the Properties of Water and Steam (IAPWS) for general and scientific 

use.  Developed to accurately reproduce thermodynamic properties in the stable range, 

the IAPWS-95 formulation for liquid water is valid for temperatures ranging from 240K 

in the metastable region to 1273 K, and for positive pressures up to 1000MPa.
3,4

  The 

IAPWS-95 region of validity is shown as a shaded box, .  Kanno et al. 
16

 cooled liquid 

water down to -38
o
C at 0.1 MPa and down to -92

o
C at 200 MPa.  The limits of 

experiments from Kanno et al. are shown as green circles, .  Figure adapted from 

London South Bank University webpage http://www.lsbu.ac.uk/water/phase.html, and  

reprinted with permission from Dr. Martin Chaplin.
114
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Figure 2.  Thermodynamic and kinetic limits for liquid water at atmospheric pressure.  

The thermodynamic limits for water, the binodal or melting temperature (TM), and the 

spinodal or limit of stability (TS), are system dependent and do not depend on 

experimental conditions.  Although the melting temperature is well known to be 273.15 

K, the spinodal is much less well defined as experiments probing the metastable region 

will first encounter kinetic limits to supercooling.  Determining the actual spinodal 

temperature requires a valid equation of state.  Kinetic limits for heterogeneous 

nucleation (Th) and homogeneous nucleation (TH  231 K) 
16,17,18

 depend on experiment 

parameters such as sample size, purity, emulsion fluid, etc.  Other kinetic limits apply 

when rapidly cooling liquid water and kinetically arresting its structure.  The resulting 

fluid, glassy water, is defined by the glass transition temperature (Tg  136 K) 
21,27,28,29

, 

and the spontaneous crystallization line TX. 
21,22
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Figure 3. Temperature dependence of the heat capacity of mildly supercooled water at 

ambient pressure (reproduced from Anisimov, 1972).
11

 Dashed blue line separates stable 

and supercooled liquid water regions.  Solid circles are the isobaric molar heat capacities 

CP at the saturation-vapor pressure; open circles are the isochoric molar heat capacities 

CV. In the range 273-285 K the isochoric heat capacities of water have almost the same 

values as the isobaric heat capacities because the thermal expansion coefficient is close to 

zero. 
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Figure 4. Temperature dependence of the isobaric heat  capacity of  supercooled ordinary 

water at ambient  pressure (reproduced from Debenedetti, 2003).
1
  Solid circles are the 

measurements of Anismov et al. in 1972.
11

  Open  circles  are  the 1973 measurements of 

Angell et al.
12
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Figure 5.  Schematic illustration indicating the various phases of liquid water found at 

atmospheric pressure, including the region of “No man’s land,” inaccessible to 

experimentation.  Figure courtesy of Dr. O. Mishima. 
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Figure 6.  Structure of LDA and HDA.  (a) Snapshots of the molecular dynamic 

configuration of LDA and HDA.  (b) Pictures of LDA and HDA samples. 
Figures courtesy of O. Mishima.

115
  

  
Figure 7. Reversible LDA - HDA phase transition (reproduced from Mishima, 1994).

30
  

The data shows the compression of LDA to HDA (a), the decompression (b) from HDA 

to LDA and recompression (c) during warming from 130 to 140 K.  Curve (d) shows the 

compression of ice Ic at 145 K. 
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Figure 8.  Representation of the stability limit conjecture hypothesis and the retracing 

liquid spinodal adapted from Figure 2.16, Metastable Liquids, P.G. Debenedetti, 

Princeton, (1996)
2
 and from Angell, (1988).

116
  Dotted line is 0.1 MPa (1 atm).  Dashed 

line is liquid thermodynamic spinodal.  Dash-dotted line is the liquid-solid 

thermodynamic spinodal.  TRP is triple point. 

 

273 373 473 573 173 

0 

-100 

200 

100 

-200 

300 



 71

 

Figure 9. Stability limit conjecture with the thermodynamically consistent lower critical 

point adapted from Figure 2.16, Metastable Liquids, P.G. Debenedetti, Princeton, (1996)
2
 

and from Angell, (1988).
116

  Dotted line is 0.1 MPa (1 atm).  Dashed line is liquid 

thermodynamic spinodal.  Dash-dotted line is the liquid-solid thermodynamic spinodal.  

TRP is triple point. 
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Figure 10.  Density of ordinary liquid water at atmospheric pressure (adapted from 

Zheleznyi, 1969). 
117
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Figure 11.  Generalizing Fig. 5 to incorporate pressure and illustrate the second-critical-

point scenario.  Courtesy of Dr. O. Mishima. 
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Figure 12.  Phase diagram for non-crystalline forms of water, illustrating the second-

critical point interpretation (reproduced from Mishima, 1998).
61

  C and C' are the vapor-

liquid and liquid-liquid critical points respectively.  F is the low- and high-density liquid 

(HDL and LDL) coexistence line and H and L are their limits of stability. At low 

temperatures, LDL and HDL transition to their respective kinetically arrested amorphous 

or glassy phases, LDA and HDA. 

300 

400 
C 
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Figure 13.  Second-critical-point scenario with computer simulation (CS) values, Kiselev 

and Ely EOS 
108

 and our estimate for the second critical point.   
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Figure 14.  Temperature-density phase diagram illustrating the second-critical-point 

scenario with spinodal and binodal, generated from an extended van der Waals model 

(reproduced from Poole et al., 1994). 
60

  C and C' are the vapor-liquid and liquid-liquid 

critical points respectively.  The solid curves are coexistence curves, the dashed and dot-

dashed lines curves are their corresponding spinodals.  The thin dotted line is the TMD 

locus.   
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Figure 15.  Two dimensional representation of Ising model.  The spin direction, or (+) 

and (-) are influenced by the nearest neighbors, as illustrated by the red vertice and the 

orange positions that influence it.   
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Figure 16.  Parametric representation of scaling coordinates h1=0 and h2=0, where r is 

the distance from the critical point and theta is the angle along a curve of constant r.   
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Figure 17.  The IAPWS-95 formulation for density at various pressures and 

temperatures.  Figure reproduced from Wagner and Pru , 2002.
3
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Figure 18.  Coexistence curve and “Widom line” for ordinary and heavy water.  (a) 

shows the liquid-liquid coexistence curve courtesy of Mishima 
62

 and the fitted curves for 

the parametric EOS.  Figure (b) shows the liquid-liquid coexistence for ordinary water 

and the predicted curve in the (P,T) plane.  
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Figure 19.  Isobaric heat capacity for ordinary water at atmospheric pressure.  

Experimental data, from Angell, 1982
118

 is shown in open circles.  Solid green line is the 

scaled, parametric equation of state, fitted to the data adjusting the location of the critical 

point PC = 27 MPa, the system-dependent parameter k/a = 0.45, and the non-critical 

background (dashed blue line).  Solid vertical lines denote melting temperature and 

critical temperature. 
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Figure 20.  Scaling fields and parametric variables for the scaled parametric equation of 

state for supercooled liquid water. 
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Figure 21.  Isothermal compressibility, experimental
14,15

 and predicted for various 

temperature and pressures.  Non-critical background values can be found in Table 4.  
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Figure 22.  Thermal expansivity at atmospheric pressure, experimental and predicted.
15
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Figure 23.  Isobaric heat capacity for heavy water at atmospheric pressure.  Experimental 

data, from Angell, 1982
119

 is shown in open circles.  Solid green line is the scaled, 

parametric equation of state, fitted to the data adjusting the location of the critical point 

PC = 20 MPa, the system-dependent parameter k/a = 0.7, and the non-critical background 

(dashed blue line).  Dotted vertical line separates stable and metastable liquid water. 
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Figure 24.  Isothermal compressibility for heavy water at various temperatures and 

pressures.  Experimental data, from Kanno et al., 1982
14

 is shown in open data points. 

Solid lines are predicted from the equation of state.  Non-critical background values can 

be found in Table 4.  Vertical dotted line is the melting temperature for heavy water. 
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Figure 25.  Thermal expansivity for heavy water at atmospheric pressure.  Experimental 

data, from Hare et al., 1986
15

 is shown in open circles.  Solid lines, P without non-

critical background in black and P with background in red, are predicted from the 

equation of state.  Non-critical background values can be found in Table 4.  Vertical 

dotted line is the melting temperature for heavy water. 
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Figure 26.  Melting curves of D2O ices (III, V, IV, XIII) (reproduced from Mishima, 

2000).
63

  (a) Experimental results (b) Schematic showing hypothesized liquid-liquid 

transition between high-and low-density liquid (HDL, LDL).  C.P. denotes the 

hypothesized critical point.  
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APPENDIX III: DERIVATIONS 
 

I.   Calculating mixing coefficients from liquid-liquid coexistence curve and the 

“Widom line” 
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Figure 1. Phase Diagram for non-crystalline forms of water showing second-critical 

point interpretation.  C and C’ are vapour-liquid and liquid-liquid critical points, 

respectively.  C’, the critical point for high and low density liquid water (HDL and LDL) 

occurs at 100MPa and 220K. 

 

The dashed perpendicular lines in the phase diagram above represent the case of h1 = 0 

and h2 = 0.  The almost vertical axis of h1 = 0 corresponds with the phase transition 

between HDL and LDL supercooled liquid water.   
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Data points representing a best guess for the homogeneous nucleation limit, believed by 

O. Mishima to be very close to the liquid-liquid coexistence curve (h1=0), were originally 

obtained from Mishima et al.
1
  and then through personal communications between M.A. 

                                                
1
 O. Mishima and H.E. Stanley, Nature 396, 329 (1998). 
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Anisimov and O. Mishima in 2005 and 2007.  The points were fitted with a parabolic 

polynomial, see Fig. 2, to obtain an equation for the “Widom line.” The fit with O. 

Mishima’s data for the liquid-liquid coexistence curve in ordinary water produced the 

result of: 

 

T = A + BP + CP2 = 234.12983428512246 0.06175940215384P 0.000952783743374272P2

 

 
 

Figure 2.  Estimation for the homogeneous nucleation temperature, TH, at various 

pressures in supercooled liquid water.  Red circles represent data points extrapolated 

from a figure in the 1998 Nature publication of Mishima et al.
1
  The sensitivity of the 

equation of state to the location of the coexistence curve and its extension beyond the 

critical point, the “Widom line”, resulted in further communication with O. Mishima.  

The black squares represent a more accurate estimate of TH at various pressures, provided 

by O. Mishima through personal communication with M.A. Anisimov.  

 

 

Adjusting the equation to fit 
 
h1 = 0 = a1 P + a2 T + a3 P2 : 

T Tc( ) + Tc = A + B P Pc( ) + BPc + C P Pc( )
2
+ 2CPPc CPc

2  

where  
A = 233.129834 ,  

H2O 
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B = 0.0167594 ,  

C = 0.0012528  

T = A Tc + BPc CPc
2
+ 2CPc

2
+ B + 2CPc[ ] P + C P2  

 

Rearranging, we find: 

0 = A Tc + BPc CPc
2
+ 2CPc

2
+ B + 2CPc[ ] P T + C P2  

The variables can be made dimensionless by dividing the equation by cRTc( )
2
.   

Multiplying by c
2R2Tc  gives our T term a coefficient of 1. 

 

0 =
A Tc + BPc CPc

2
+ 2CPc

2

Tc
cR B + 2CPc[ ] P + T c

2R2TcC P2  

Comparing to h1 = 0 = a1 P
~

+ a2 T
~

+ a3 P
~ 2

and collecting terms with like powers of 

pressure and temperature yields values for the coefficients: 

 

0 =
A Tc + BPc CPc

2
+ 2CPc

2

Tc
 

a1 = cR 2CPc + B[ ]  

 

 

a3 = c
2R2TcC  

 

We obtain values for our coefficients by using literature estimates of the critical pressure.  

The actual position of the critical point along the ‘Widom line’ will be estimated later 

through trial and error comparisons between experimental data and calculated values for 

heat capacity. 

Using R = 8.314Jmol
-1

K
-1

, Pc = 100MPa, and c =
1gcm 3

18gmol 1
1003cm3

m3
= 55555.6molm 3

 , 

we find Tc = 218K, 

and our equation 

h1 = a1 P
~

+ a2 T
~

+ a3 P
~ 2

 

 

Where a1 = 0.039, a2 = 1, and a3 = 0.062. 

 

This analysis also shows b1 = 0.039 and b2 = -1, given that the respective slopes are 

perpendicular to each other, 

  

a
2

a
1

=
1

b
1

/ b
2

=
b

2

b
1

. 

 

 

a2 = 1
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A similar calculation for heavy water was performed.  O. Mishima provided a best guess 

for the location of the liquid-liquid line.  A polynomial fit for the data resulted in: 

 
A = 239.62382 ,  

B = 0.045217 ,  

C = 0.0008772  
 

Solving the algebra results in mixing coefficients of 

h1 = a1 P
~

+ a2 T
~

+ a3 P
~ 2

 

 

Where a1 = 0.042, a2 = 1, and a3 = 0.042. 

 

 

 

II. Derivations for Thermodynamic Properties based on Universal Equations and 

Theoretical Variables  

 

 

   
h

1
= a

1
P + a

2
T + a

3
P

2  

   
h

2
= b

1
T + b

2
P  

where 
  

P

~

= P P
c

( )
c
RT

c
( )  and 

  
T

~

= T T
c

( ) T
c

 

 

Inverting the equations for h1 and h2, we can express T and P in terms of h1 and h2. 

 

T
~

=
a1

a1b1 a2b2
h2

b2
a1b1 a2b2

h1**    

P
~

=
b1

a1b1 a2b2
h1

a2
a1b1 a2b2

h2 ** 

** Only if discounting a3 and b3 or defining the first term to include the third term. 

 

The field-dependent dimensionless density of a relevant thermodynamic potential relates 

to scaling “densities” conjugate to h1 and h2, and strongly and weakly divergent 

susceptibilities associated with the densities.   

 

  

G

~

(h
1
,h

2
) =

G

V
c
RT

c
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1
=

G

~

h
1

h
2

, 

  

2
=

G

~

h
2

h
1

, 

  

1
=

1

h
1 h

2

, 

  

2
=

2

h
2 h

1

, 

  

12
=

21
=

1

h
2 h

1

=
2

h
1 h2

 

 

 

Using Jacobians to change variables: 

 

  

S

T
V

=
S ,V( )
T ,V( )

=
S ,V( ) / T , P( )
T ,V( ) / T , P( )

=

S

T( )
P

V

P( )
T

V

T( )
P

S

P( )
T

T

T( )
P

V

P( )
T

V

T( )
P

T

P( )
T

 

 

S

T
V

=

S

T( )
P

V

P( )
T

V

T( )
P

S

P( )
T

V

P( )
T

 

 

 

  

1
=

G

~

h
1

h
2

=

G

~

,h
2

/ T

~

, P

~

h
1
,h

2( ) / T

~

, P

~

=

G

~

T

~

P

~

h
2

P

~

T

~

h
2

T

~

P

~

G

~

P

~

T

~

h
1

T

~

P

~

h
2

P

~

T

~

h
2

T

~

P

~

h
1

P

~

T

~

 

  

2
=

G

~

h
2

h
1

=

G

~

,h
1

/ T

~

, P

~

h
2
,h

1( ) / T

~

, P

~

=

G

~

T

~

P

~

h
1

P

~

T

~

h
1

T

~

P

~

G

~

P

~

T

~

h
2

T

~

P

~

h
1

P

~

T

~

h
1

T

~

P

~

h
2

P

~

T

~

 

a1eff = a1 + 2a3 P , b1eff = b1 + 2b3 T  

1 0 
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h
1

P

~

T

~

= a
1eff

, 

  

h
1

T

~

P

~

= a
2
,  

  

h
2

T

~

P

~

= b
1eff

, 

  

h
2

P

~

T

~

= b
2
 

Using Jacobians,  

P
~

h1
h2

=
b1eff

a1eff b1eff a2b2
, 

P
~

h2
h1

=
a2

a1eff b1eff a2b2
 

T
~

h1
h2

=
b2

a1eff b1eff a2b2
, 

T
~

h2
h1

=
a1eff

a1eff b1eff a2b2
 

 

 

  

1

R

G

T
P

= S

~

, from  dG =VdP SdT  

  

P
c

RT
c

G

P
T

= V

~

, from  dG =VdP SdT  

  

1
=

b
2

S

~

b
1eff

V

~

a
2
b

2
a

1eff
b

1eff

=

b
1eff

V

~

b
2

S

~

a
1eff

b
1eff

a
2
b

2

 

  

2
=

a
1eff

S

~

a
2

V

~

a
1eff

b
1eff

a
2
b

2

=

a
1eff

S

~

+ a
2

V

~

a
1eff

b
1eff

a
2
b

2

 

 

These densities conjugate to the scaling fields are linear combinations of the physical 

densities 
 

V =V V
c
 and

 
S = S S

c
. 

 

Rearranging, we can solve for V and S in terms of  1 and  2. 

  

V

~

=
1

a
1eff

b
1eff

a
2
b

2( ) + b
2

S

~

b
1eff

, 

  

S

~

=
1

a
1eff

b
1eff

a
2
b

2( ) + b
1eff

V

~

b
2

 

  

V

~

=
2

a
1eff

b
1eff

a
2
b

2( ) a
1eff

S

~

a
2

, 

  

S

~

=
2

a
1eff

b
1eff

a
2
b

2( ) a
2

V

~

a
1eff
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V

~

=
G

~

P

~

T

~

= a
1eff 1

+ b
2 2( )  

 

  

S

~

=
G

~

T

~

P

~

= a
2 1

+ b
1eff 2( )  

 

 

 

using Maxwell Relations, 

 

S

P
T

= V
V

T
P

, and 

 

S

T
P

=
Cp

T
 

 

  

S

~

T

~

P

~

= a
2

1

T

~

P

~

+ b
1

2

T

~

P

~

 

 

  

1

T

~

P

~

=

1
, P

~

/ h
1
,h

2( )

T

~

, P

~

/ h
1
,h

2( )
=

1

h
1 h

2

P

~

h
2

h
1

P

~

h
1

h
2

1

h
2 h

1

T

~

h
1

h
2

P

~

h
2

h
1

P

~

h
1

h
2

T

~

h
2

h
1

 

  

1

T

~

P

~

= a
2 1

+ b
1eff 12( )  

  

2

T

~

P

~

=

2
, P

~

/ h
1
,h

2( )

T

~

, P

~

/ h
1
,h

2( )
=

2

h
1 h

2

P

~

h
2

h
1

P

~

h
1

h
2

2

h
2 h

1

T

~

h
1

h
2

P

~

h
2

h
1

P

~

h
1

h
2

T

~

h
2

h
1

 

  

2

T

~

P

~

= a
2 12

+ b
1eff 2

 

 

and 
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S

~

T

~

P

~

= a
2

2

1
+ 2a

2
b

1eff 12
+ b

1eff

2

2( ) =
C

p
C

p

r

T
 

 

The universal form of the heat capacity is: 

 

  
C

p
= T a

2

2

1
+ 2a

2
b

1eff 12
+ b

1eff

2

2( ) + C
p

r  

where r designates the residual, or background, heat capacity. 

 

Heat capacity at constant volume can also be calculated.   

Cv

T
=

S

T V

=
S,V( ) / T ,P( )

T ,V( ) / T ,P( )
=

S
T( )

P

V
P( )

T

S
P( )

T

V
T( )

P

T
T( )

P

V
P( )

T

T
P( )

T

V
T( )

P

=  

 Using Maxwell’s 
S

P T

=
V

T P

and 
S

T P

=
CP

T
 

CV

T
=

CP

T

V

P T

+
V

T P

2
V

P T

 so that 

CP CV = T
V

T P

2
V

P T

= TV P
2

T  

 

Isothermal compressibility is defined as 

 

 

  
T

1

V

V

P
T

 

Compressibility in fluids does not contain any background, and the definition of the terms 

in the compressibility equation is based on  

 

  

~

T

V
c

V

P
c

V
c

V

P
T

=
1

V

~

V

~

P

~

T

~

??? 

  

V

~

P

~

T

~

= a
1eff

1

P

~

T

~

+ b
2

2

P

~

T

~
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1

P

~

T

~

=

1
,T

~

/ h
1
,h

2( )

P

~

,T
~

/ h
1
,h

2( )
=

1

h
1 h

2

T

~

h
2

h
1

T

~

h
1

h
2

1

h
2 h

1

P

~

h
1

h
2

T

~

h
2

h
1

T

~

h
1

h
2

P

~

h
2

h
1

 

  

1

P

~

T

~

= a
1eff 1

+ b
2 12

 

  

2

P

~

T

~

=

2
,T

~

/ h
1
,h

2( )

P

~

,T
~

/ h
1
,h

2( )
=

2

h
1 h

2

T

~

h
2

h
1

T

~

h
1

h
2

2

h
2 h

1

P

~

h
1

h
2

T

~

h
2

h
1

T

~

h
1

h
2

P

~

h
2

h
1

 

  

2

P

~

T

~

= a
2 12

+ b
2 2

 

 

and 

 

  

V

~

P

~

T

~

= a
1eff

2

1
+ 2a

1eff
b

2 12
+ b

2

2

2( ) = V

~ ~

 

  

~

=
1

V

~
a

1eff

2

1
+ 2a

1eff
b

2 12
+ b

2

2

2( )  

 

The coefficient of thermal expansion is defined as  

  
P

1

V

V

T
P

 

  

V

~

=
G

~

P

~

T

~

= a
1eff 1

+ b
2 2( )  

  

V

~

T

~

P

~

= a
1eff

1

T

~

P

~

+ b
2

2

T

~

P

~

 

 

From the derivation for entropy: 
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1

T

~

P

~

= a
2 1

+ b
1eff 12( )  

 

and 

 

  

2

T

~

P

~

= a
2 12

+ b
1eff 2

 

 

and 

 

  

V

~

T

~

P

~

= a
1eff

a
2 1

+ a
1eff

b
1eff

+ a
2
b

2( ) 12
+ b

1eff
b

2 2( ) =V

~ ~

 

 

  

~

P

1

V

~

V

~

T

~

P

~

=
1

V

~
a

1eff
a

2 1
+ a

1eff
b

1eff
+ a

2
b

2( ) 12
+ b

1
b

2 2( )  

 

 

III.  Mean-Field or Classical Theory 

 

 

The Landau expansion in powers of the order parameter 
1
 

  
G

~

h
1
,h

2( ) =
1

2
a

0
h

2 1

2
+

1

4
u

0 1

4
h

1 1
 

Minimizing the thermodynamic potential with respect to 
1 
yields 

  
u

0 1

3
+ a

0
h

2 1
h

1
= 0  

 

  

2
=

G

~

h
2

h
1

=
1

2
a

o 1

2  

1 =
h1

1 h2

1

=
uo 1

3
+ aoh2 1( )
1

h2

1

= 3uo 1
2
+ aoh2( )

1
 

 

12 =
h2

1 h1

1

=
uo 1

2 ao h1 ao 1( )
1

h2

1

=
2uo 1

3 h1
ao 1

2

1

=
ao 1

2

2uo 1
3
+ h1

 

substituting for h1,  



 99

12 =
ao 1

2

2uo 1
3
+ uo 1

3
+ aoh2 1

=
ao 1

3uo 1
2
+ aoh2

= ao 1 1  

 

2 =
h2

2 h1

1

=
h2

1 h1

1

1

2 h1

1

=
h2

1 h1

1

2

1 h1

=
h2

1 h1

1
1
2
ao 1

2

1

h1

= ao 1

h2

1 h1

1
 

 

 

 

2 =
h2

2 h2

1

= ao 1

h2

1 h2

1

= ao 1 12 = ao
2

1
2

1  

 

The critical part of the entropy, 

  

S

~

= a
2 1

+ b
1eff 2( ) =

b
1eff

a
o 1

2

2
a

2 1
 

The heat capacity in classical theory is  

 

  

S

~

T

~

P

~

= b
1eff

a
o 1

1

T

~

P

~

a
2

1

T

~

P

~

=

C
p

~

C
p

r

~

T

~
 

 

Since 

 

 

  

1

T

~

P

~

= a
2 1

+ b
1eff 12( ) =

a
2

a
o
b

1eff 1

a
o
h

2
+ 3u

o 1

2
  

 

we find 

 

  

C
p

~

=
T

~

a
2

a
o
b

1eff 1( )
2

a
o
h

2
+ 3u

o 1

2( )
 

 

2 =
ao 1

2

2
= ao 1 1
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~

=
1

V

~

V

~

P

~

T

~

=
1

V

~
a

1eff

2

1
+ 2a

1eff
b

2 12
+ b

2

2

2( ) =
1

V

~

a
1

2 2a
1eff

b
2
a

o 1
+ b

2

2
a

o

2

1

2

3u
o 1

2
+ a

o
h

2

 

 

 

 

 

 

  

~

P

1

V

~

V

~

T

~

P

~

=
1

V

~
a

1eff
a

2 1
+ a

1eff
b

1eff
+ a

2
b

2( ) 12
+ b

1eff
b

2 2( )
P

~

=
1

V

~

a
1eff

a
2

3u
o 1

2
+ a

o
h

2( )
+ a

1eff
b

1eff
+ a

1eff
b

2( )
a

o 1

2

2u
o 1

3
+ h

1

+
b

2

2
a

o

2

1

2

3u
o 1

2
+ a

o
h

2( )
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Parametric Mean-Field Representation: 

 

Using the simplest form of the parametric equations of state, we have a “linear model” 

for the “polar” variables r and . 

h1 = ar
+ 1 2( )  

h2 = r 1 b2q2( )  

1 = kr  

 

where r represents the distance to the critical point,  is the distance along a contour of 

constant r, b is a universal constant, and a and k are system dependent constants. 

 

In mean field (classical) theory, the magnitudes of the critical exponents are = 0 , 

= 1 / 2 , = 1, = +1 = 3 , where delta is the universal critical exponent.  The value 

of b 2 = 2( ) / 1 2( )  can be found by using the expansion for critical 

exponents, where = 4 d .  The mean field results are valid in the limit 0 .  In the 

first order of , the expansion gives 2 = 1
1

3
, = 1+

1

6
, =

1

6
, thus b 2 = 3 / 2 . 

 

For scaling densities and susceptibilities in the parametric form: 

 

1 = kr
1/2  

2 =
1

2
akr 2

=
1

2
a0 1

2  

1 = k / a( )r 1
= aoh2 + 3uo 1

2 1
 

12 = kr 1/2
= ao 1 1  

2 = ak
2
=
ao
2

2uo

2
= ao

2
1
2

1  

where the coefficients are related to k and a as follows: 

ao = a / k  

uo = a / 2k
3  

ak = a0
2 / 2uo  
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IV.  Scaling Theory and the Parametric Linear Model 

 

Equations of state described through power laws are called “scaling laws”.  They are 

characterized by universal exponents or critical exponents.  In scaling theory these 

exponents have values: 

 

Critical Exponent Scaling Theory Mean-Field Theory 

 0.11 +/- 0.01 0 

 0.325 +/- 0.005 0.5 

 4.81 3 

 1.24 +/- 0.01 1 

b
2

 1.36 1.5 

 1.26 +/- 0.02 1.5 in vdw 

 0.63 +/- 0.01 Not defined unambiguously 

 

Delta is the universal critical exponent, found from the relation 1( ) = . 

 

The simplest form of the parametric equations of state is the “linear model”, representing 

h1 and h2 using the “polar variables” r and . 

 

h1 = ar
+ 1 2( )  

h2 = r 1 b 2 2( )  

The singular part of the thermodynamic potential is: 

 
r,( ) = akr 2 f ( ) 2 1 2( ) + ak / 6( )r2 1 b2 2( )

2
 

with the last term added to make the model fully consistent with the results of 

renormalization group (RG) theory
2
.  

1 = kr , 2 = akr
1 s( ) akr 1 b2q2( ) / 3  

1 =
k

a
r c1 ( )  

12 = kr
1c12 ( )  

2 = akr c2 ( ) ak / 3  

where r represents the distance to the critical point, the parameter  is the distance along a 

contour of constant r, the coefficient b 2 = 2( ) / 1 2( )  is a universal constant, 

and a and k are system dependent constants.   

 

The universal heat capacity is given as: 

  
C

p
= T a

2

2

1
+ 2a

2
b

1eff 12
+ b

1eff

2

2( ) + C
p

r  

 

                                                
2
 M.A. Anisimov, V.A. Agayan, P.J. Collings, “Nature of the Blue-Phase-III-Isotropic…” 
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The polar variables r and q used in the parametric representation of the equation of state 

are shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The functions f( ), s( ), and ci( ) are known functions of : 

f ( ) = f0 + f2
2
+ f4

4  

f0 =
3( ) b2

2b4 2( ) 1( )
 

f2 =
3( ) b 2 1 2( )

2b2 1( )
 

f4 =
1 2

2
 

s( ) = s0 + s2
2  

s0 = 2( ) f0  

s2 = 2( )b2 1 2( ) f0 f2  

c1 ( ) = 1 b2 2 1 2( )( ) / c0 ( )( )  

c12 ( ) = 1 2 3( ) / c0 ( )  

c0 ( ) = 1 3 2( ) 1 b2 2( ) + 2 b2 2 1 2( )  

 

To solve for thermodynamic properties for water at the critical pressure using the scaling 

theory, we find: 

 

 
h1 = a2 T = ar + 1 2( )  

h2 = b1 T = r 1 b 2 2( )  

h1 

h2 

 = +1/b 

 = 0 

 = -1/b 

 = +1 

 = -1 
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Rearranging and combining terms: 

ar + 1 2( )
a2

=
r 1 b 2 2( )

b1
 

r =
a2r 1 b 2 2( )
ab1 1 2( )

1/ + 1( )( )

.  Given theta, r and  T are well defined. 

To solve for thermodynamic properties for water at any pressure using the scaling theory, 

we find: 

 

 
h1 = a1 P + a2 T + a3 P2 = ar + 1 2( )  

 
h2 = b1 T + b2 P = r 1 b 2 2( ) . 

 

Rearranging and combining terms: 

 

r +
a 1 2( )

a2
+ r

b 2 2 1( )
b1

=
b2
b1

P +
a1
a2

P +
a3
a2

P2  

of the form Ar +
+ Br = C  

 

OR 

 

 

a1 P

a2

a3 P2

a2
+
ar +

a2

ar + 3

a2
= T  

 

r

b1

rb 2

b1

2 b2 P

b1
= T  

 

ar +

a2

3
+
rb 2

b1

2
+
ar +

a2
+
b2 P

b1

r

b1

a1 P

a2

a3 P2

a2
= 0  

in the form of Ax3 + Bx2 + Cx + D = 0  

where 

A =
ar +

a2
, B =

rb2

b1
, C =

ar +

a2
, 

 

D =
b2 P

b1

r

b1

a1 P

a2

a3 P2

a2
 

Substituting y = x +
B

3A
, we get y3 + 3Py +Q = 0  

Where P =
3AC B2

9A2
 or P =

1

3
+
1

9

ra2b
2

b1ar
+

2
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and Q =
2B3 9ABC + 27A2D

27A3
 or 

 

Q =

2
rb2

b1

3

+ 9
ar +

a2

2
rb2

b1
+ 27

ar +

a2

2
b2 P

b1

r

b1

a1 P

a2

a3 P2

a2

27
ar +

a2

3  or 

 

Q =
2

27

a2rb
2

ar + b1

3
1

3

a2rb
2

ar + b1

a2
ar +

b2 P

b1

r

b1

a1 P

a2

a3 P2

a2
 

Defining  

=
Q + Q2

+ 4P3

2
 and =

Q Q 2
+ 4P3

2
 

The solution to the equation y 3 + 3Py +Q = 0  is given by 

3
+ 3 , e

2 i

3 3
+ e

4 i

3 3 , e
4 i

3 3
+ e

2 i

3 3 . 

 

Since eix = cos x + i sin x ,  

e
i4

3 = cos
4

3
+ i sin

4

3
=

1

2
i
3

2
, e

i2

3 = cos
2

3
+ i sin

2

3
=

1

2
+ i

3

2
 

Using this, the solution  

e
2 i

3 3 + e
4 i

3 3 =
1

2
3 + i

3

2
3 1

2
3 i

3

2
3 =

1

2
3 + 3( ) + i

3

2
3 3( )
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V.  Actual EOS Equations: 

 

Solving for theta, h1 = a1( )
eff

P + a2 T = ar + 1 2( ) , from scaling theory 

We simplify the equation and get ar + 3 ar +
+ a1( )

eff
P + a2 T( ) = 0  in the form 

of  ax3 + bx2 + cx + d = 0 .  Substituting y = x +
b

3a
, we get the equation 

y3 + 3py + q = 0 , where p =
3ac b2

9a2
 and q =

2b3 9abc + 27a2d

27a3
.  The discriminant of 

this polynomial is 4 p3 + q2 .  The solutions are given by 3 + 3 , e
2 i

3 3
+ e

4 i

3 3 , 

and e
4 i

3 3
+ e

2 i

3 3 , where =
q + q2 + 4 p3

2
 and =

q q 2 + 4 p3

2
.  If the 

discriminant is +, then 1 root is real and 2 are complex conjugates.  If the discriminant is 

0, then there are 3 real roots of which at least two are equal.  If the  discriminant is 

negative, then there are 3 unequal real roots. 

 

Column C:  3
=

a r +

a2
 

Column D: 2
=
r b2

b1( )
eff

 

Column E: has b1eff for Column D equation and ?? 

Column F: 1
=
a r +

a2
 

Column G: 0
=

a3 P2

a2

a1 + 2a3 P( ) P

a2
+
b2 P

b1( )
eff

r

b1( )
eff

 

Column H: P =
3 3 1 0( )

2

9 3
 

Column I: Q =
2 2( )

3
9 3 2

+ 27 3( )
2 0

27 3( )
3  

Column J: Q2
+ 4P3  

Column K: IF Q 2
+ 4P3 = 0 , then =

Q

2
.  If not, then if Q 2

+ 4P3 > 0 , 

=
Q + Q2

+ 4P 3

2
.  If Q 2

+ 4P 3
< 0 , then =

Q

2
+

Q 2
+ 4P3

2
i  



 108 

Column L: If Q 2
+ 4P3 = 0 , then =

Q

2
.  If not, then if Q2

+ 4P3 > 0 , 

=
Q Q2

+ 4P3

2
.  If Q2

+ 4P3 < 0 , then =
Q

2

Q 2
+ 4P3

2
i  

Column M: Solution1 = 
1
3 +

1
3  

Column N: Solution2 = 
1
3e
2 i

3 +
1
3e
4 i

3  

Column O: Solution3 = 
1
3e
4 i

3 +
1
3e
2 i

3  

Column P: 1 =
1
3 +

1
3

2( )
3 3( )

 

Column Q: 2 =
1
3e
2 i

3 +
1
3e

4 i
3

2( )
3 3( )

 

Column R: 3 =
1
3e

4 i
3 +

1
3e
2 i

3

2( )
3 3( )

 

Using theta to solve for thermodynamic properties and the critical point 

Column S: T =
r 1 b2 2( )

b1( )
eff

Pb2
b1( )

eff

 

Column T: T =
T Tc
Tc

 

Column U: h1 = a1 P + a2 + a
3
P2  

Column V: h2 = b1 T + b2 P + b3 T 2  
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