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With the infrastructure of ubiquitous networks around the world, the study of robotic

systems over communication networks has attracted widespread attention. This area is

denominated as networked robotic systems. By exploiting the fruitful technological de-

velopments in networking and computing, networked robotic systems are endowed with

potential and capabilities for several applications. Robots within a network are capable

of connecting with control stations, human operators, sensors, and other robots via digital

communication over possibly noisy channels/media. The issues of time delays in com-

munication and data losses have emerged as a pivotal issue that have stymied practical de-

ployment. The aim of this dissertation is to develop control algorithms and architectures

for networked robotic systems that guarantee stability with improved overall performance

in the presence of time delays in communication.

The first topic addressed in this dissertation is controlled synchronization that is uti-

lized for networked robotic systems to achieve collective behaviors. Exploiting passivity

property of individual robotic systems, the proposed control schemes and interconnec-



tions are shown to ensure stability and convergence of synchronizing errors. The robust-

ness of the control algorithms to constant and time-varying communication delays is also

studied. In addition to time delays, the number of communication links, which prevents

scalability of networked robotic systems, is another challenging issue. Thus, a synchro-

nizing control with practically feasible constraints of network topology is developed.

The problem of networked robotic systems interacting with human operators is then

studied subsequently. This research investigates a teleoperation system with heteroge-

neous robots under asymmetric and unknown communication delays. Sub-task controllers

are proposed for redundant slave robot to autonomously achieve additional tasks, such as

singularity avoidance, joint angle limits, and collision avoidance. The developed control

algorithms can enhance the efficiency of teleoperation systems, thereby ameliorating the

performance degradation due to cognitive limitations of human operator and incomplete

information about the environment.

Compared to traditional robotic systems, control of robotic manipulators over net-

works has significant advantages; for example, increased flexibility and ease of mainte-

nance. With the utilization of scattering variables, this research demonstrates that trans-

mitting scattering variables over delayed communications can stabilize an otherwise un-

stable system. An architecture utilizing delayed position feedback in conjunction with

scattering variables is developed for the case of time-varying communication delays. The

proposed control architecture improves tracking performance and stabilizes robotic ma-

nipulators with input-output communication delays. The aforementioned control algo-

rithms and architectures for networked robotic systems are validated via numerical exam-

ples and experiments.
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Chapter 1

Introduction

1.1 Networked Robotic Systems

From assisting factory workers in manufacturing products to Roomba [35] cleaning

our rooms and AIBO [24] playing with children, robots of tomorrow will undoubtedly

become ever more important. In addition to industrial and entertainment robots, robotic

systems can also be applied to military, transportation, medicine, space exploration, and

personal service. The field of robotic systems is growing tremendously, and due to its

considerable potential, many companies and research institutes have started to invest large

amounts of funds in developing a variety of robots. Based on the fruitful technological

developments in computing and networking during the past decade, network communi-

cations are starting to play an important role in the area of robotics. Recently, researchers

and engineers have put efforts in investigating various robotic systems, which include the

study of sensors, actuators, controllers, and humans connected by communication net-

works. This emerging area is denominated as Networked Robotic Systems.

Networked robotic systems are robot devices embedded with the capabilities to

connect control stations, human operators, sensors, and other robots via communication

networks. Related fields such as control theory, ubiquitous computing, perception, ar-

tificial intelligence, and wireless communications should be considered and integrated

within the study of networked robotic systems. It can also lead to numerous applications,
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such as localization and navigation, environment perception, mapping, task execution,

human-robot interaction, and teleoperation.

The primary objective of networked robotic systems is to develop innovative ap-

proaches for interaction of interconnected (using communication networks) robots, hu-

mans, in uncertain or possibly unknown environments. These approaches can achieve

efficient and effective tasks, which are difficult to accomplish by utilizing conventional

robots. Research related to networked robotic system has drawn considerable attention

from various communities; however, the field is still in its infancy and several challenging

issues are yet to be resolved. For instance, the influence of unreliabilities in the communi-

cation channels, incomplete information about the workspace in the remote environment,

and the difficulties in the abstraction of multiple robots.

Networked robotic systems can be broadly sorted into two main subclasses: au-

tonomous and teleoperated systems [84]. In autonomous systems, robots communicate

with other robots and/or control stations to share their output signals, or to exchange

sensing and actuation data. There is no human operator intervening within the system

and communication network so the assigned tasks are accomplished autonomously. Si-

multaneously localization and mapping, controlled synchronization, formation control,

connectivity maintenance, sensors and robotic networks are examples of this type of net-

worked robotic systems.

The study of autonomous networked robotic systems has focused comprehensively

on multi-robot systems. By exploiting communications between robots, multi-robot sys-

tems are superior to the single robot system in performing difficult and complicated

tasks [3, 19]. Multi-robot systems are capable in carrying out various missions coop-
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eratively, such as transportation and manipulation of objects, localization and mapping,

and exploration [3, 60]. Moreover, multi-robot systems can also cooperatively accom-

plish tasks in search and rescue [34]. The coverage control for multi-robot systems dis-

tributed over an environment has been studied [85]. In addition, maintaining connectivity

of communication channels between multiple robots has been presented [59, 83], which

is essential for completing a cooperative task.

Another class of networked robotic system is teleoperated networked robotic sys-

tems, where human supervisors send commands and receive feedback via the network in

order to interact with robotic systems in a certain manner. With the utilization of human

input, robots in the network can be endowed with the intelligence to cope with more com-

plicated missions. This system framework enables human operators to complete tasks at

a distance without being physically present to the remote environments.

Different from autonomous networked robotic system, robotic manipulators with

the assistance of human operators can be teleoperated to achieve tasks over distances.

Bilateral teleoperation, a classical problem in robotics, has been developed over the past

decades [14,28,47,66], and extends the human capability to operate objects remotely. By

utilizing communication networks between master and slave robots, robots can achieve

different tasks in a remote environment. Therefore, robots can deal with missions in haz-

ardous environments, such as radioactive power plants, deep sea, or outer space. Due to

the nature that master and slave robots are located far from each other, the various signals

exchanged between the robots are subjected to time delays. The problem of delays in

bilateral teleoperation systems have been addressed to guarantee stability of such closed-

loop system [14, 47, 66]. Additional details and a brief historical account of bilateral
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teleoperation has been presented in [28].

Both autonomous and teleoperated networked robotic systems can offer efficient

approaches to achieve faster mission completion and complete complex tasks coopera-

tively. While networked robotic systems lead to several advantages over isolated robots,

the communication network, which is the prime enabler of networked robotic systems,

leads to fundamental constraints in the closed-loop behavior. These constraints, including

time delays, data reordering, quantized signals, and packet dropout, limit the applicability

of networked robotic systems. Therefore, researchers have to take communication con-

straints into account in the study of networked robotic systems to guarantee closed-loop

stability with high performance. In the author’s opinion, the effect of time delays is the

most significant impediment in the widespread realization of networked robotic systems.

Hence, this important issue is treated in detail in this dissertation.

1.2 Scope and Contributions

The aim of this dissertation is to study control problems for networked robotic sys-

tems under communication delays. The three different topics studied in this dissertation

are synchronization of networked robotic systems, semi-autonomous teleoperation sys-

tems, and control of robotic systems over networks. A brief introduction and contribu-

tions for each topic are discussed in the sequel.
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1.2.1 Synchronization of Networked Robotic Systems

Inspired by the behavior of animals, there has been remarkable research devoted

to analysis and control of coordinated motion for multi-robot systems. Utilizing the idea

of synchronization for control of networked robotic systems can provide the multi-robot

systems a desired collective behavior. Recently, control theoretic methods have been

utilized to address the problem of synchronization in robotic systems.

Mutual synchronization of nonlinear robotic systems while tracking a desired tra-

jectory was first proposed in [82]. However, the proposed control algorithm did not scale

with the number of agents due to the requirement of all-to-all coupling. Furthermore, the

system dynamics of the agents were required to be known, and the communication chan-

nels were assumed to be perfect. Contraction theory was exploited to guarantee synchro-

nization and trajectory tracking for multiple robotic manipulators in [17], where different

time-scales for tracking and synchronization were presented. Synchronization with tra-

jectory tracking has been utilized in a variety of applications [2, 14, 46, 100]. However, it

is to be noted that most of these previous results have been developed for the case where

time delays in communications and the presence of human input are not considered.

In this dissertation, the problem of synchronization between interconnected robots

with the consideration of dynamic uncertainty and communication delays is studied. Ad-

ditionally, in order to reduce loads transmitted in the communication channels, it is further

demonstrated that the networked robotic systems can achieve synchronization with the re-

duction of communication links. As the individual robots are assumed to be identical and

the communication delays are assumed to be constant in the literature, the problem of
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synchronizing heterogeneous robots under time-varying delays is also developed.

1.2.2 Semi-autonomous Teleoperation Systems

Teleoperation systems have been demonstrated as a useful method to accomplish

tasks in a remote or hazardous environment. The remote robots in a teleoperation system

can be equipped with intelligence under the assistance of a human operator. Due to signals

are transmitted over a long distance, the inherent unreliabilities in the communication

channels significantly influence stability and overall performance of such systems.

The study of bilateral teleoperation systems in the presence of communication de-

lays has attracted tremendous attention [14,28,47,66] in order to guarantee stability of the

closed-loop systems. However, these research efforts considered teleoperation systems

with the assumption that the master and slave robots are identical. Due to the requirement

of heterogeneous manipulators in practice, the authors in [37] proposed scaled bilateral

teleoperation for robots with different configurations. Teleoperation systems with hetero-

geneous robotic manipulators have been presented in [54]. However, the teleoperation

system was developed without considering possible time delays in the network.

Due to the fact that the master and slave robots may be separated by a consider-

able distance, the human operator is not able to access complete information about the

environment. Incomplete information about the remote environment, which leads to cog-

nitive limitations of the human operator, constrains the capabilities of the teleoperation

system. Therefore, a semi-autonomous control framework is developed in this disser-

tation to study task space teleoperation, in which the slave robot is able to accomplish
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additional tasks autonomously.

Under dynamic uncertainties and constant delays, the position and velocity tracking

between the master and slave robots is guaranteed in the absence of external forces. In

the presence of human and environmental forces, the semi-autonomous teleoperation is

studied with the investigation of force reflection. Thus, the human operator only requires

focusing on manipulating the master robot while the slave robot, in addition to tracking

the master robot, is able to accomplish several sub-tasks autonomously. Moreover, a

collision avoidance algorithm is proposed in this research for slave robot to autonomously

avoid obstacles in the remote environment.

1.2.3 Control of Robotic System over Networks

The use of communication networks for interconnecting robotic systems and con-

trollers can lead to significant advantages, such as the increased flexibility and modularity

as compared to traditional wired connections. However, the communication channels,

which are subjected to time delays, packet losses, and data reordering, can not only de-

grade the performance of the closed loop system but also render the system unstable.

Transmitting signals between dynamical systems and controllers via communica-

tion networks can potentially lead to various applications [56, 117]. Since signals ex-

changed between the plant and the controller go through communication networks, the

presence of time delays can cause significant impediments to the stability problem and

degrade performance of the closed-loop system. There have been numerous research ef-

forts focusing on control problems where the control system is closed through a real-time
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network [56, 106, 107, 117]. Such systems could bring significant advantages to the field

of robotics and automation, such as controlling robotic systems by utilizing controllers

installed in portable devices. However, the research on this topic has not focused on

controlling networked robotic systems.

The problem of controlling robotic system in the presence of input-output commu-

nication delays is studied in this dissertation. Based on passivity property of the robotic

manipulator and controller, stability and performance of position regulation under con-

stant delays are investigated with the use of scattering variables. The proposed framework

with scattering representation, after slight modification, can be extended to the system

with time-varying input/output delays. Yet, this control framework cannot guarantee the

regulation of the robotic manipulators under time-varying delays. Therefore, a new frame-

work is presented in this research to ensure both stability and asymptotic convergence of

the regulation error to the origin. Experimental results are addressed for networked con-

trol of robotic manipulators under input/output communication delays.

1.3 Outline

The problem of controlled synchronization for interconnected identical robots is

presented in Chapter 2. Provided that the communication topologies are balanced and

strongly connected, coupling control schemes are developed for the networked robotic

systems, subjected to dynamic uncertainties, to guarantee synchronization of the robots’

outputs. The effect of human input to one of the robots, time delays in the communication

channels, and using a weaker interconnection topology are investigated in this chapter.
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Motivated by the application of synchronization in bilateral teleoperation and the

utility of task-space teleoperation, controlled synchronization between heterogeneous

robots is studied in Chapter 3. Under the assumption that robots are communicating over

topologies represented by balanced and strongly connected graphs, a control scheme is

proposed that guarantees synchronous action by the robots. As delays are rarely constant

in practice, a new synchronizing control for time-varying delays problem is proposed to

guarantee stability of the networked system.

A semi-autonomous control framework is presented in Chapter 4 for bilateral tele-

operation systems in order to mitigate the cognitive limitations of human operators and

lack of complete information about the remote environment. Considering robots with

heterogeneous configuration, control schemes are proposed to ensure safety and enhance

the efficiency of complex teleoperation systems. By utilizing the redundancy of slave

robots, several sub-task controls, such as singularity avoidance, joint limits, and collision

avoidance, are developed to achieve teleoperation semi-autonomously.

In Chapter 5, the problem of guaranteeing stability and performance in position

regulation control of robotic systems under input-output delays is studied. Scattering

transformation, which was developed for bilateral teleoperation to ensure stability, has

been harnessed to stabilize the system. Control architectures are presented to stabilize

and to improve tracking performance for both constant and time-varying delays in the

input/output communication channels. Experimental results are presented to validate the

proposed control systems.

In Chapter 6, the results obtained in this dissertation are summarized and presented

along with possible future research directions.
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Chapter 2

Synchronization of Networked Robotic Systems in Joint Space

Synchronization is significant and plays an important role in the study of networked

robotic systems. Cooperative manipulations, bilateral teleoperations, industrial manufac-

turing, and flight formation control could benefit from the utilization of synchronization

between robotic systems. The problem of synchronization with trajectory tracking for net-

worked robotic systems is studied in this chapter. A passivity-based control algorithm is

developed to guarantee synchronization and trajectory tracking for networked robotic sys-

tems under balanced and strongly connected graphs. In addition, the case when a human

operator input is introduced in the closed loop system is also studied. It is demonstrated

that a bounded human input results in bounded tracking and synchronization errors, even

with constant time delays in communication channels.

Controlled synchronization of networked robotic systems is studied for a weaker as-

sumption on the communication topologies in the second part of this chapter. By using a

weighted storage function, it is demonstrated that synchronization and trajectory tracking

of a networked robotic system is achievable when the robotic systems communicate over

strongly connected graphs that are not necessarily balanced. Moreover, the robustness of

the control algorithms to constant delays in communication is also demonstrated. Numer-

ical simulations using two-link robotic manipulators and experiments using PHANToM

Omni devices are presented to demonstrate the performance of the control algorithms.
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2.1 Introduction

The idea of synchronization [67] was proposed to study collective behavior in cou-

pled nonlinear dynamical systems. Different from self-synchronization in the nature [99],

controlled synchronization utilizes a control scheme with artificially induced interconnec-

tions to achieve synchronous action in interconnected dynamical systems. In networked

robotic systems, the interconnections are achieved by using a communication network

which, provides agents the ability to share information with their neighbors. By utilizing

the shared information, agents can be controlled to achieve mutual synchronization. This

phenomenon can potentially result in numerous advantages; for instance, synchronization

of multiple robotic systems can improve the technology for mass and quick production in

industrial manufacturing [36]. Furthermore, in a bilateral teleoperation system, the idea

of controlled synchronization was utilized for demonstrating delay-independent conver-

gence of tracking errors between the master and slave robots [14].

In this chapter, the synchronization problem in networked robotic systems is studied

when the individual agents are required to follow a desired trajectory. Synchronization

can be utilized in the tracking problem for not only improving the tracking performance,

but also for improving the transient behavior [10, 17, 82]. In the control of ship replen-

ishment [46], synchronization was utilized for leader following of the main ship, which

tracked a desired trajectory. Controlled synchronization has also been applied to atti-

tude control for satellites and spacecraft [2,44], and for tracking and formation control of

multiple grounded and aerial vehicles [16, 23, 49, 100, 110].

Controlled synchronization was proposed in [12,76] to study collective behavior of
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nonlinear dynamical systems. Coordination of robotic manipulators was studied in [81]

where two robots synchronize while tracking a desired trajectory. In [82], mutual syn-

chronization of nonlinear robotic system while tracking a desired trajectory was proposed.

With only position measurements, this paper demonstrated that the robotic systems can

achieve synchronization by ensuring semi-global exponential convergence of the synchro-

nization errors. However, the proposed control scheme did not scale well with the number

of agents due to the requirement of all-to-all couplings. Furthermore, the system dynam-

ics of the agents were required to be known, and no communication delay between the

robots was considered [82].

Contraction theory was recently exploited to guarantee synchronization and trajec-

tory tracking for multiple robotic manipulators in [17], where different time-scales for

tracking and synchronization were presented. A neural network was used in [6] for syn-

chronization of networked Lagrangian systems with tracking control in the absence of

time delays. Two robotic manipulators were utilized to validate the proposed protocol,

which consisted of a PD controller and a nonlinear term with adaptive tuning laws at

each robotic agent. A distributed controller was proposed in [57] to guarantee state syn-

chronization of Euler-Lagrange systems with trajectory tracking under switching topolo-

gies. However, the communication links were assumed to be undirected, and time delays

between agents were not considered. The synchronization problem with dynamic un-

certainty was recently studied in [72] where nonlinear couplings were utilized together

with a new adaptive control algorithm. The coordinated tracking problem with a dynamic

leader was studied in [58].

In this chapter, the problem of synchronization and trajectory tracking for coupled
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robotic systems is studied. The first aim of this research is to overcome the restriction

on all-to-all coupling and to relax the assumption of perfect communication channels that

considered in previous papers. A passivity-based control algorithm is proposed in this

chapter to demonstrate that if the interconnection topology between the agents is balanced

and strongly connected, the networked robotic system can achieve synchronization and

trajectory tracking. Moreover, it is demonstrated that the interconnected system is stable

and the convergence of synchronization is guaranteed if the communications is subjected

to unknown and bounded constant delays.

Autonomous robotic systems operating in cluttered or possibly dynamic environ-

ments can be guaranteed to achieve only a small set of the desired tasks with possibly

conservative performance. Hence, it is important to study the case where human op-

erators can intervene intermittently to influence the networked system and ensure com-

pletion of the desired task. The application can be accomplished by exploiting coupled

synchronization between the agents. Since the presence of human input is not considered

for exploiting coupled synchronization in the literature, the problem of synchronization

for networked robotic systems with an arbitrary bounded human input is studied in this

chapter. The control system is demonstrated to be stable with explicit bounds on the syn-

chronization and tracking errors as a function of the human input even with time delays in

communication. The proposed control schemes for synchronization of networked robotic

systems under balanced and strongly connected graphs are experimentally implemented

on interconnected PHANToM Omni devices.

In the research on controlled synchronization, the assumption that the communica-

tion topology is balanced and strongly connected was required in [10,51] and the first part
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of this chapter. Even though the balanced graph assumption is weaker than all-to-all com-

munication [81, 82], and the undirected graph assumption [57], it can nevertheless result

in high communication costs. Therefore, in the last portion of this chapter, the controlled

synchronization problem is studied with the assumption that the communication topol-

ogy is only strongly connected. In addition to reducing the number of communication

links, unreliability in the communication channel is another issue that should be carefully

considered. Hence, the robustness of the proposed controlled synchronization algorithms

to communication delays is also studied for the proposed control system. Simulation

results using a group of two-link robotic manipulators are presented to demonstrate the

performance of the control algorithms.

This chapter is organized as follows. The main results for controlled synchroniza-

tion of networked robotic systems are presented in Section 2.2. The case with delays in

the communication channels and human input to the robots are addressed in Section 2.2.2

and Section 2.2.3, respectively. The experimental results of synchronization with bal-

anced and strongly connected graph are demonstrated in Section 2.3. Subsequently, the

problem of synchronization for networked robotic systems is studied in Section 2.4 for the

case that the communication topology is only strongly connected graph. Numerical ex-

amples are discussed in Section 2.5. The results addressed in this chapter are summarized

in Section 2.6.
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2.2 Synchronization of Networked Robotic Systems

Following [95], the dynamics of a robotic system, in the absence of friction and

viscous damping, can be described by the Euler-Lagrange equation

M(q)q̈ + C(q, q̇)q̇ + g(q) = u (2.1)

where q ∈ Rn is the vector of generalized configuration coordinates, u ∈ Rn is the

vector of generalized forces acting on the system, M(q) ∈ Rn×n is a symmetric and

positive definite matrix, C(q, q̇) ∈ Rn is the vector of Coriolis/Centrifugal forces, and

g(q)=∂H
∂q
∈ Rn is the gradient of the potential function H(q). Although the equations of

motion (2.1) are coupled and nonlinear, they exhibit certain fundamental properties due

to their Lagrangian dynamic structure (See Appendix A.2).

The motivation of this research is to guarantee state synchronization for intercon-

nected robotic systems with trajectory tracking in the presence of communication delays

and dynamic uncertainties. The controlled synchronization of networked robotic sys-

tems (with and without human operator inputs) is discussed in this section based on the

Slotine-Li trajectory tracking algorithm [92]. In the following analysis, it is assumed that

the individual agents are required to track a time-varying trajectory qd(t), which is twice

differentiable. Thus, the signals q̇d(t), q̈d(t) are well-defined, and they are assumed to

be bounded. In the rest of this chapter, for the sake of simplicity, the argument of the

time-dependent signals is omitted, for example qd(t) ≡ qd, unless otherwise required for

the sake of clarity.

For the sake of completeness, the trajectory tracking algorithm proposed in [92] and

its passivity properties are discussed first in this section. By defining the tracking error as
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q̃ = q − qd, a robotic system is said to asymptotically track a desired trajectory qd if

lim
t→∞

q̃(t) = lim
t→∞

˙̃q(t) = 0. (2.2)

Let the control input for the system (2.1) be given as

u = M̂a+ Ĉv + ĝ −Kts+ τs = Y (q, q̇, v, a)Θ̂−Kts+ τs (2.3)

where ˆ denotes the estimate of the enclosed signal, Kt is a positive definite diagonal

matrix, and τs is the synchronizing control that will be subsequently defined. The formu-

lation Y (q, q̇, v, a)Θ̂ = M̂a + Ĉv + ĝ is due to the linear parametrization property for

Euler-Lagrangian systems in Property A.2, and Θ̂ is the estimate of the unknown param-

eters Θ. The quantities a, v, s in (2.3) are given as

v = q̇d − Λq̃, a = v̇ = q̈d − Λ ˙̃q, s = q̇ − v = ˙̃q + Λq̃ (2.4)

where Λ is a positive definite diagonal matrix.

On substituting (2.3) into (2.1), the closed-loop system can be rewritten as

Mṡ+ Cs+Kts = Y Θ̃ + τs (2.5)

where Θ̃ = Θ̂ − Θ represents the error between the actual and the estimative uncertain

parameters. Let the estimate of uncertain parameters Θ̂ evolve as

˙̂
Θ = −Γ−1Y T s (2.6)

where Γ ∈ Rp×p is a positive definite matrix. Thus, the closed-loop system is given as

˙̃Θ = −Γ−1Y T s

˙̃q = −Λq̃ + s

ṡ = M−1
(
− (C +Kt)s+ Y Θ̃ + τs

) (2.7)

The following lemma discusses the passivity properties of the closed-loop system.
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Lemma 2.1 The dynamical system (2.7) is passive with (τs, s) as the input-output pair.

Proof Consider a positive-definite storage function for the system as

V (s, q̃, Θ̃) =
1

2

(
sTMs+ 2q̃TΛKtq̃ + Θ̃TΓΘ̃

)
. (2.8)

Differentiating along trajectories of (2.8) and using Property A.3, V̇ is given by

V̇ = sTMṡ+
1

2
sTṀs+ 2q̃TΛKt

˙̃q + Θ̃TΓ ˙̃Θ

= sT
(
− (C +Kt)s+ Y Θ̃ + τs

)
+

1

2
sTṀs− Θ̃TY T s+ 2q̃TΛKt

˙̃q

= −sTKts+ 2q̃TΛKt
˙̃q + sT τs.

By expanding s = ˙̃q + Λq̃, the derivative of the storage function becomes

V̇ = −( ˙̃q
T
Kt

˙̃q + q̃TΛTKtΛq̃) + τTs s. (2.9)

Following Definition A.1, the dynamical system (2.7) is passive with (τs, s) as the input-

output pair respectively. 2

2.2.1 Controlled Synchronization

Passivity of (2.7) with (τs, s) as the input-output pair and a positive-definite storage

function (2.8) implies that the output synchronization results in [12] are applicable to the

current setting. In the study of controlled synchronization, the communication topology

and information exchanging between agents can be represented as a graph. Some ba-

sic terminology and definitions from graph theory [26], which is sufficient to follow the

subsequent development, are mentioned in Appendix A.3.
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By denoting agents as the individual robots in the networked robotic systems, the

ith agent is defined according to

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = ui. (2.10)

After using the feedback law (2.3) and the adaptation law (2.6), the closed-loop dynamics

for the individual robotic system can be rewritten as

˙̃Θi = −Γ−1
i Y T

i si

˙̃qi = −Λq̃i + si

ṡi = M−1
i

(
− (Ci +Kti)si + YiΘ̃i + τsi

) (2.11)

where i = 1, . . . , N is the set of agents in the networked robotic system. The signal si

is the new output of the system, and the ith agent exchanges its output signal si with the

other agents based on the communication graph G.

The aim of this research is to guarantee synchronization and trajectory tracking for

the networked robotic systems. The agents are said to output synchronize if their outputs

satisfy the following definition.

Definition 2.1 Consider the robotic system (2.11), where si is the output of the ith agent.

Then, the networked robotic system is said to output synchronize if

lim
t→∞
||sj(t)−si(t)||=0 ∀i, j ∈ Ni(G) (2.12)

whereNi(G) denotes the set of neighbors of the ith agent in the interconnection graph G.

The output synchronization (2.12) implies that

sj − si = ( ˙̃qj + Λq̃j)− ( ˙̃qi + Λq̃i)
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=
(
q̇j − q̇d + Λ(qj − qd)

)
−
(
q̇i − q̇d + Λ(qi − qd)

)
= (q̇j + Λqj)− (q̇i + Λqi) = ėij + Λeij (2.13)

where eij = qj − qi. The above equation represents an exponentially stable linear system

with the input sj − si. As shown, for example, in [94], it follows that if sj − si is a signal

that converges asymptotically to zero and eij is bounded, then limt→∞ eij(t) = 0, ∀i, j.

Therefore, output synchronization in the absence of communication delays (2.12) also

guarantees that the agents’ position and velocity asymptotically approach each other.

Let the output synchronizing control law be given as

τsi = Ks

∑
j∈Ni(G)

(sj − si), ∀i (2.14)

where Ks is a positive scalar synchronizing gain, which is assumed to be identical for

all agents. By denoting zi = [si q̃i Θ̃i]
T as the state of the individual robots and Z =

[zT1 · · · zTN ]T the state of the networked robotic systems, the following theorem states the

synchronization results in the absence of communication delays.

Theorem 2.1 Consider the dynamical system described by (2.11) and (2.14). If the inter-

agent communication graph G is balanced and strongly connected, then the agents output

synchronize and asymptotically follow the desired trajectory.

Proof Consider a positive-definite storage function for the N agent system as

V (Z) =
N∑
i=1

Vi(zi) =
1

2

N∑
i=1

(
sTi Misi + 2q̃Ti ΛKtiq̃i + Θ̃T

i ΓiΘ̃i

)
(2.15)

where Vi is the storage function for ith agent and is defined as in (2.8). Following the proof

of Lemma 2.1 and using (2.14), the derivative of this storage function along trajectories
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of the system can be written as

V̇ =
N∑
i=1

V̇i =
N∑
i=1

(
− ˙̃qi

T
Kti

˙̃qi − q̃Ti ΛTKtiΛq̃i + τTsisi

)
= −

N∑
i=1

( ˙̃qi
T
Kti

˙̃qi + q̃Ti ΛTKtiΛq̃i) +Ks

N∑
i=1

∑
j∈Ni(G)

(sTj si − sTi si).

As the interconnected graph G is balanced, the exchanging signals satisfy [12] such that

2
N∑
i=1

∑
j∈Ni(G)

sTi (t)si(t) =
N∑
i=1

∑
j∈Ni(G)

sTi (t)si(t) +
N∑
i=1

∑
j∈Ni(G)

sTj (t)sj(t). (2.16)

Therefore, it follows that

V̇ = −
N∑
i=1

( ˙̃qi
T
Kti

˙̃qi + q̃Ti ΛTKtiΛq̃i)−
Ks

2

N∑
i=1

∑
j∈Ni(G)

(sj − si)T (sj − si) ≤ 0. (2.17)

Thus, the zero solution of (2.11) and (2.14) is globally stable and all signals are

bounded. Integrating the above equation from [0, t], it is shown that ˙̃qi, q̃i, (sj− si) ∈ L2,

where ∀i, j ∈ Ni(G). As all signals are bounded, it can be obtained that ¨̃qi, ˙̃qi, (ṡj − ṡi) ∈

L∞ from the closed loop dynamics (2.11). It is well known [95] that a square inte-

grable signal with a bounded derivative converges to the origin. Hence, limt→∞ ˙̃qi(t) =

limt→∞ q̃i(t) = 0 and limt→∞(sj(t) − si(t)) = 0 ∀i, j ∈ Ni(G), which satisfy (2.2)

and (2.12). Therefore, the N individual robotic systems achieve synchronization while

following the desired trajectory asymptotically. 2

2.2.2 Synchronization with Communication Delays

As the agents are expected to exchange information with their neighbors over a

communication network, the effect of time delays on the stability [79] of the networked

systems needs to be studied. For the sake of simplicity, the delays between two connected
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agents are assumed to be constant, bounded, and unknown to the controller. As there can

be multiple paths between two agents, T kij denotes the delay along the kth path from the

ith agent to the jth agent, and henceforth it is denoted as the path delay. The problem is

studied under the restriction that delays along all paths of length one are unique, i.e. the

transmission delay from one agent to the other is uniquely defined.

By denoting Tij as the unique transmission delay in the communication channel

from the ith agent to the jth agent, the agents are said to delay-output synchronize if the

system satisfied the following definition.

Definition 2.2 In the presence of communication delays, the networked robotic system

(2.11) with si as output is said to delay-output synchronize if

lim
t→∞
||sj(t− Tji)−si(t)||=0 ∀i, j ∈ Ni(G) (2.18)

For a path of length one, where the delay is nothing but the one-hop transmission

delay, delay-output synchronization in the sense of (2.18) implies that

sj(t− Tji)− si = ( ˙̃qj(t− Tji) + Λq̃j(t− Tji))− ( ˙̃qi + Λq̃i)

=
(
q̇j(t− Tji)− q̇d(t− Tji) + Λ(qj(t− Tji)− qd(t− Tji))

)
− (q̇i − q̇d + Λ(qi − qd))

=
(

(q̇j(t− Tji)− q̇i) + (q̇d − q̇d(t− Tji))
)

+ Λ
(

(qj(t− Tji)− q̇i) + (qd − qd(t− Tji))
)

= ėdij + Λedij (2.19)

where edij = (qj(t−Tji)− qi)+(qd− qd(t−Tji)). The above equation represents a stable

linear system with sj(t−Tji)− si as the input signal. Hence, if sj(t−Tji)− si converges

asymptotically to zero and edij is bounded, then limt→∞ e
d
ij(t) = 0, ∀i, j ∈ Ni(G).

Therefore, if the signal edij approaches the origin, then boundedness of the position and
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velocity errors between the individual agents is guaranteed.

Motivated by the above property, let the synchronizing control be given as

τsi = Ks

∑
j∈Ni(G)

(sj(t− Tji)− si), ∀i. (2.20)

By defining Zt = Z(ϕ), ϕ ∈ [t − TM , t], where TM = max(Tji), ∀i, j ∈ Ni(G) as the

state of the system, the synchronization result in the absence of time delays follows.

Theorem 2.2 Consider the dynamical system described by (2.11) and (2.20). If the in-

teragent communication graph G is balanced and strongly connected, then the agents

delay-output synchronize and asymptotically follow the desired trajectory.

Proof Consider a positive-definite storage functional for the system as

V =
1

2

N∑
i=1

(
sTi Misi + q̃Ti ΛKtiq̃i + Θ̃T

i ΓiΘ̃i

)
+
Ks

2

N∑
i=1

∑
j∈Ni(G)

∫ t

t−Tji
sTj (w)sj(w)dw.

(2.21)

Differentiating (2.21) along trajectories of the system and utilizing the delay-synchronizing

control (2.20), V̇ is given by

V̇ =
N∑
i=1

(
− ˙̃qi

T
Kti

˙̃qi − q̃Ti ΛTKtiΛq̃i + τTsisi

)
+
Ks

2

N∑
i=1

∑
j∈Ni(G)

(sTj sj − sj(t− Tji)T sj(t− Tji))

= −
N∑
i=1

( ˙̃qi
T
Kti

˙̃qi + q̃Ti ΛTKtiΛq̃i) +Ks

N∑
i=1

∑
j∈Ni(G)

(sTj (t− Tji)si − sTi si)

+
Ks

2

N∑
i=1

∑
j∈Ni(G)

(sTj sj − sTj (t− Tji)sj(t− Tji)).

Exploiting the balanced graph assumption (2.16), the derivative of the storage function
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can be rewritten as

V̇ = −
N∑
i=1

( ˙̃qi
T
Kti

˙̃qi + q̃Ti ΛTKtiΛq̃i)

−Ks

2

N∑
i=1

∑
j∈Ni(G)

(sj(t− Tji)− si)T (sj(t− Tji)− si) ≤ 0.

Hence, all signals in the dynamical system described by (2.11) and (2.20) are bounded.

Following the arguments as in Theorem 2.1, it can be shown that limt→∞ ˙̃qi(t) = 0,

limt→∞ q̃i(t) = 0 and limt→∞(sj(t − Tji) − si(t)) = 0 ∀i, j ∈ Ni(G). Therefore,

trajectory tracking and output synchronization due to strong connectivity is guaranteed in

the presence of time delays in communication. 2

2.2.3 Synchronization with Human Input

In this subsection, the synchronization of networked robotic systems is extended to

the case when a human operator is included in the control loop. For the sake of simplicity,

it is assumed that there is no dynamic uncertainty (Θ̃i ≡ 0) in the following analysis.

Consequently, the system dynamics based on the control law (2.3) with the human input

can be written as

˙̃qi = Λq̃i + si

ṡi = M−1
i (−Cisi −Ktisi + τsi + τhi)

(2.22)

where τhi is the force applied by human operator on the ith robotic system. It is assumed

that τhi ∈ L∞ and only one of the agents in the network is influenced by human operators.

The motivation behind this formalism is to provide a framework for manipulating a group

of robotic systems to a desired configuration. Specifically, it is desirable that by utilization
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of the synchronization mechanism, the human operator can guide the networked robotic

systems to a desired configuration.

By denoting Ei = {eij|j ∈ Ni(G)} the synchronization state of the ith agent, let

zi = [si q̃i Ei]
T denote the state of the ith agent and z̄i = [ ˙̃qi q̃i Ei]

T . The agent state zi is

related to z̄i by a linear diffeomorphism, zi = Hiz̄i. The matrix Hi is given by

Hi =


In Λ ∅n×ni

∅n×n In ∅n×ni

∅ni×n ∅ni×n Ini

 (2.23)

where ∅n×ni
∈ Rn×ni denotes a zero matrix, and In ∈ Rn×n denotes an identical matrix.

The matrixHi is a nonsingular positive definite matrix with all non-distinct eigenvalues of

one. Thus, ‖zi‖ = ‖Hiz̄i‖ ≤ ‖Hi‖‖z̄i‖ ≤ ‖z̄i‖, where ‖ · ‖ denotes the Euclidean norm.

Define Z = [zT1 · · · zTN ]T the augmented state of the networked mechanical systems, the

next result in the presence of human input follows.

Theorem 2.3 Consider the interconnected dynamical systems described by (2.22) with

the coupling control (2.14). If one of the agents is influenced by human input, and pro-

vided that the interagent communication graph G is balanced and strongly connected,

then all signals in the networked robotic system are uniformly ultimately bounded.

Proof Consider a positive-definite storage function for the networked robotic system as

V (Z) =
1

2

N∑
i=1

(
sTi Misi + 2q̃Ti ΛKtiq̃i +Ks

∑
j∈Ni(G)

eTijΛeij

)
. (2.24)

Taking the time derivative of the storage function along trajectories, one obtains

V̇ = −
N∑
i=1

( ˙̃qTi Kti
˙̃qi + q̃Ti ΛTKtiΛq̃i) +

N∑
i=1

sTi τsi +Ks

N∑
i=1

∑
j∈Ni(G)

eTijΛėij +
N∑
i=1

sTi τhi.
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After using the synchronization control (2.14), and applying the balanced and strongly

connected graph assumption (2.16), the derivative of the storage function is given by

V̇ = −
N∑
i=1

( ˙̃qTi Kti
˙̃qi + q̃Ti ΛTKtiΛq̃i)−

Ks

2

N∑
i=1

∑
j∈Ni(G)

(sj − si)T (sj − si)

+Ks

N∑
i=1

∑
j∈Ni(G)

eTijΛėij +
N∑
i=1

sTi τhi. (2.25)

On utilizing (2.13), the above equation becomes

V̇ ≤ −
N∑
i=1

( ˙̃qTi Kti
˙̃qi + q̃Ti ΛTKtiΛq̃i)−

Ks

2

N∑
i=1

∑
j∈Ni(G)

eTijΛ
TΛeij +

N∑
i=1

sTi τhi

≤ −
N∑
i=1

z̄Ti Qiz̄i +
N∑
i=1

sTi τhi. (2.26)

The matrix Qi ∈ R(2+ni)n×(2+ni)n is defined as

Qi =


Kti ∅n×n ∅n×nni

∅n×n ΛTKtiΛ ∅n×nni

∅nni×n ∅nni×n
Ks

2
Ini

⊗
ΛTΛ

 (2.27)

where
⊗

is Kronecker product and ni is the in-degree of agent i.

Based on the assumption that only one of the agents is manipulated by human opera-

tors, the subscript h is used to denote the agent that is influenced by human input. Then the

last term of (2.26) can be rewritten as
∑N

i=1 s
T
i τhi = sTh τh. Denoting αi := λmin(Qi) the

minimum eigenvalue of Qi, and α := min{αi, i = 1, . . . , N}, and utilizing ‖zi‖ ≤ ‖z̄i‖,

the derivative of storage function becomes

V̇ ≤ −
N∑
i=1

αi‖zi‖2 + ‖zh‖‖τh‖

≤ −(1− η)α‖Z‖2 − ηα‖Z‖2 + ‖Z‖‖τh‖

≤ −(1− η)α‖Z‖2 := W (Z), ∀ ‖Z‖ ≥ βs (2.28)
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where η ∈ (0, 1), βs :=
√
‖τh‖
ηα

, and W (Z) is a continuous positive definite function.

Noting Property A.1 and (2.24), there exist K∞ functions αa and αb such that

αa(‖Z‖) ≤ V (Z) ≤ αb(‖Z‖). (2.29)

After using Theorems 4.18 in [38], the synchronization system with human input is uni-

formly ultimately bounded, and there exist T > 0, such that ∀t ≥ T , ‖Z‖ ≤ α−1
a

(
αb(βs)

)
.

Hence, the trajectories of the interconnected system are uniformly ultimately bounded. 2

For the networked robotic systems in the presence of human input and communi-

cation delays, Ed
i = {edij|j ∈ Ni(G)} is defined as the delay-synchronization state of

the ith agent where edij has been defined in (2.19). By denoting zti = [si q̃i E
d
i ]T and

z̄ti = [ ˙̃qi q̃i E
d
i ]T and following the definition in the delay-free case, it is obtained that

‖zti‖ ≤ ‖z̄ti‖ and Zt = [zTt1 · · · zTtN ]T . Based on the definition of edij , the derivative of edij

is given as ėdij = (q̇j(t − Tji) − q̇i) + (q̇d − q̇d(t − Tji)). Consequently, the next claim

addresses the case of synchronization with human input and time delays.

Theorem 2.4 Consider the interconnected dynamical systems described by (2.22) and

the coupling control (2.20). If one of the agents is influenced by human input, and pro-

vided that the interagent communication graph G is balanced and strongly connected,

then all signals in the networked robotic system are ultimately bounded.

Proof Consider a positive-definite storage functional for the system as

V (Zt) =
1

2

N∑
i=1

(
sTi Misi + 2q̃Ti ΛKtiq̃i +Ks

∑
j∈Ni(G)

edTij Λedij

+Ks

∑
j∈Ni(G)

∫ t

t−Tji
sTj (w)sj(w)dw

)
. (2.30)
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Taking the time derivative of the storage function yields

V̇ = −
N∑
i=1

( ˙̃qTi Kti
˙̃qi + q̃Ti ΛTKtiΛq̃i) +

N∑
i=1

sTi τsi +Ks

N∑
i=1

∑
j∈Ni(G)

edTij Λėdij +
N∑
i=1

sTi τhi.

Following the proof of Theorem 2.3, using the delay-synchronization control (2.20), and

substituting (2.19), the above equation can be rewritten as

V̇ = −
N∑
i=1

( ˙̃qTi Kti
˙̃qi + q̃Ti ΛTKtiΛq̃i)−

Ks

2

N∑
i=1

∑
j∈Ni(G)

ėdTij ė
d
ij

−Ks

2

N∑
i=1

∑
j∈Ni(G)

edTij ΛTΛedij +
N∑
i=1

sTi τhi

≤ −
N∑
i=1

( ˙̃qTi Kti
˙̃qi + q̃Ti ΛTKtiΛq̃i)−

Ks

2

N∑
i=1

∑
j∈Ni(G)

edTij ΛTΛedij +
N∑
i=1

sTi τhi

= −
N∑
i=1

z̄TtiQtiz̄ti +
N∑
i=1

sTi τhi (2.31)

where Qi is defined as in (2.27). Following the proof in Theorem 2.3, the derivative of

the storage function becomes

V̇ ≤ −
N∑
i=1

αi‖zti‖2 + ‖zh‖‖τh‖

≤ −(1− η)α‖Zt‖2 − ηα‖Zt‖2 + ‖Zt‖‖τh‖

≤ −(1− η)α‖Zt‖2 := W (Zt), ∀‖Zt‖ ≥ βs (2.32)

where η ∈ (0, 1) and W (Zt) is a continuous positive definite function. It is evident from

the above equation that ∃ βs such that for ‖Zt‖ ≥ βs, V̇ (Zt) ≤ 0. Hence, the state vectors

of the networked mechanical systems are ultimately bounded. 2
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2.3 Experimental Results

The proposed controlled synchronization is validated in this section through ex-

periments on interconnected PHANToM Omni haptic devices. PHANToM Omni haptic

device (see Figure B.1) is a cost-effective device that can be utilized to test and validate

control schemes after suitable modifications and improvements [4]. The dynamic and

kinematic model of Omni, which is necessary for the implementation of the proposed

control scheme, and modifications required to carry out the proposed synchronization

control by using Omni devices are discussed in Appendix B. Moreover, it is worth point-

ing out that the synchronizing control proposed in this chapter can be applied to general

dynamical system as long as the systems satisfy the aforementioned assumptions.

In the experiments, the Omni devices were connected to a desktop through the inter-

face IEEE-1394 Firewire port with the sampling rate of 1kHz. The program was written

in C with the use of OpenHaptics API 2.0 to acquire data from and send control com-

mands to the PHANToM Omni devices. The communication topologies of the networked

robotic system are shown in Figure 2.1, which are both balanced and strongly connected

graphs. For the case with communication delays, delays were artificially added to the

system. A first-input-first-output (FIFO) buffer was created in the program for each link

to implement the artificial delays. Experimental results are addressed subsequently.

Trajectory tracking with controlled synchronization is discussed first to demonstrate

that the interconnected systems are stable and can achieve good tracking performance in

the presence of dynamic uncertainty and communication delay between agents. Then,

controlled synchronization of networked robotic systems in the presence of human input
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2 1 

(a) Topology of two agents

1 

3 2 
(b) Topology of three agents

Figure 2.1: Balanced and strongly connected communication topologies for the experi-

ments.

will be demonstrated for both with and without communication delays.

Due to safety consideration, the values of unknown parameters Θi were experimen-

tally determined by using suitable measures. Theoretically, the results presented previ-

ously in the section dictate that the various control gains can be arbitrarily selected to

improve performance. However, the input torque is limited due to the device characteris-

tics and choosing high gains may lead to chattering and potential instability. Therefore,

to avoid chattering and poor tracking performance, the set of suitable control gains Λ and

Kti were selected experimentally.

Experimental results demonstrating synchronization of networked robotic systems

while following a desired trajectory is presented. The controller (2.3) is utilized for

two identical Omni devices under a balanced communication topology as shown in Fig-

ure 2.1 (a). The common trajectory for the individual agents was chosen as θd(t) =

[0.25 sin(0.5t) + 0.1 sin(0.2t), 0.3 + 0.15 sin(0.8t), 0.2 + 0.25 cos(0.8t)]T rad, which are

twice differentiable and bounded. The control parameters are given as Λ = diag{20, 26,
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Figure 2.2: Joint configuration of the agents when following a common trajectory with

controlled synchronization.

22},Kti = diag{55, 60, 55}, Γ−1
i = diag{0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.5, 0.5}, i =

1, 2, and synchronizing gain Ks = 5. The system parameters are updated by using

the adaptive control in (2.6) with Θ1(0) = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 80, 70]T and

Θ2(0) = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 85, 65]T .

In the absence of communication delay, the agents’ configurations are shown in

Figure 2.2. Since there is no compensation for joint friction and due to the assumption

in modeling, the tracking errors is notable. However, both agents in the network achieve

synchronization and are stable as studied in Section 2.2. The estimates of the dynamic pa-

rameters are shown in Figure 2.3, where Θi denotes the ith entry of Θ. These experimental

results demonstrate that the networked robotic system can achieve synchronization in the

presence of dynamic uncertainty.
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Figure 2.3: Estimates of the unknown parameters.
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Figure 2.4: Joint configuration of the agents in the presence of communication delays.
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Figure 2.5: The uncertain parameters are bounded even when there are communication

delays in the closed-loop system.
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Figure 2.6: Synchronizing errors between agents in the absence of human input.

32



For the delay case, all the parameters are selected the same as in the delay-free case

with T12 = 0.3sec and T21 = 0.5sec. The experimental results are shown in Figure 2.4

and Figure 2.5. Even though there are communication delays between agents, robotic

systems achieve synchronization and follow the desired trajectory. The synchronizing

errors between agent 1 and agent 2 are shown in Figure 2.6. It shows that the agents in

the network can still achieve synchronization independent of communication delays.

In the next experiments, as detailed in Theorem 2.3 and 2.4, a human operator

makes the networked robotic systems to deviate from the pre-planned desired trajectory.

For the case of synchronization with human input, three identical Omni robots were uti-

lized under the communication topology Figure 2.1 (b) to validate the proposed control

scheme. The human operator influences the motion of agent 3 in the sequel. The control

parameters are given as Λ = diag{40, 46, 42}, Kti = diag{20, 22, 20}, i = 1, 2, 3, and

the synchronizing gains Ks = 20. In this case, it is assumed that the parameters Θi of the

interconnected mechanical system are known. Following the experimental results in the

absence of human input, the initial parameter estimates are given as Θ1 = [0.1, 0.1, 0.1,

0.1, 0.1, 0.1, 80, 70]T , Θ2 = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 85, 65]T , and Θ3 = [0.1, 0.1, 0.1,

0.1, 0.1, 0.1, 80, 65]T .

In the case without communication delays, the joint configurations are shown in

Figure 2.7. Agents follow the desired trajectory until the human operator forces the mo-

tion of agent 3 to deviate from the desired trajectory. Due to the synchronization control,

agent 1 and 2 also deviate from the desired trajectory. Subsequently, when human input

is removed, all agents in the communication network track the desired trajectory. The

next experimental results illustrate controlled synchronization with human input under
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Figure 2.7: Joint configuration of the agents when agent 3 is influenced by a human input.
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Figure 2.8: Joint configuration of the agents with communication delays and human input.
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Figure 2.9: Synchronizing errors between agents in the presence of human input.

time delays, which are selected as T12 = 0.3sec, T23 = 0.2sec, and T31 = 0.5sec. All

the control parameters are chosen to be the same as in the delay-free case. The results

are shown in Figure 2.8. It can be observed that even under communication delays, and

due to coupled synchronization between the agents, the human input forces the agents to

deviate for the desired trajectory. The synchronization errors between agents, based on

the communication topology Figure 2.1 (b), are shown in Figure 2.9. It demonstrates, as

studied in Theorem 2.3 and 2.4, that the networked robotic system is stable with bounded

synchronization errors.

Remark 2.1 For the case with human input, the ability to track a desired trajectory or

synchronize was significantly influenced by the selected control parameters. If higher

values were chosen for the tracking gains Kti, then the agents converge to the desired

trajectory faster with smaller tracking errors. However, in the presence of a human input,
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the increase of tracking errors results in a higher torque to the devices. As the torque

provided by the device is limited, the tracking gains should be carefully selected in the

case with human input. Moreover, due to higher control torques resulting from high

tracking gains, it becomes difficult for the human operator to manipulate the networked

robotic system. Therefore, the trade-off between the synchronizing gain Ks and tracking

gains Kti, critically influence the behavior of the system.

2.4 Synchronization with Strongly Connected Graph

In the research on controlled synchronization, the assumption that the communica-

tion topology is balanced and strongly connected was required in the previous sections

and the literature [10, 51]. Even though the balanced graph assumption is weaker than

all-to-all communication [81, 82], and the undirected graph assumption [57], it can nev-

ertheless result in high communication costs. Therefore, in this section, the controlled

synchronization problem is studied with the assumption that the communication topology

is only strongly connected.

2.4.1 Delay-Free Synchronization

The individual dynamic systems considered in this section are given by (2.11).

Since the networked robotic system is studied with strongly connected graphs, the weighted

LaplacianLw(Gw) (see Appendix A.3) is utilized to represent the interconnection between

robotic systems.
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Let the synchronizing control between the agents be given by

τsi =
∑

j∈Ni(Gw)

wji(sj − si), ∀i (2.33)

where wji is a positive constant in the weighted Laplacian Lw(Gw), and Ni(Gw) is the set

of neighbors of the ith agent. Define zi = [si q̃i Θ̃i]
T as the state of the individual agent,

and denote by Z = [zT1 . . . zTN ]T the state of the interconnected multi-agent system. The

first result demonstrates controlled synchronization of the networked robotic system on

strongly connected graphs.

Theorem 2.5 Consider the dynamical system described by (2.11) with the synchronizing

control (2.33). If the interagent communication graph Gw is strongly connected, then the

agents output synchronize and asymptotically follow the desired trajectory.

Proof Consider a weighted positive-definite storage function for the N agent system as

V (Z) =
N∑
i=1

γi

(
sTi Misi + q̃Ti Piq̃i + Θ̃T

i ΓiΘ̃i

)
. (2.34)

It is to be noted that the scalars γi are positive due to Lemma A.1 which exploits strongly

connectivity of the communication graph. Differentiating the storage function along the

trajectory of the system and using Property A.3 and (2.11), V̇ is given as

V̇ =
N∑
i=1

γi(2s
T
i Miṡi + sTi Ṁisi + 2q̃Ti Pi ˙̃qi + 2Θ̃T

i Γi
˙̃Θi)

=
N∑
i=1

γi(−2sTi Kisi + 2sTi τi + 2q̃Ti Pi ˙̃qi).

After using the definition of si in (2.4) and choosing Pi = 2ΛKi (see [96] for details), the

derivative becomes

V̇ = 2
N∑
i=1

γi(− ˙̃qTi Ki
˙̃qi − q̃Ti ΛTKiΛq̃i + sTi τi).
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On substituting the synchronizing control (2.33) in the above equation, the result is

V̇ = −2
N∑
i=1

γi( ˙̃qTi Ki
˙̃qi + q̃Ti ΛTKiΛq̃i) + 2

N∑
i=1

γis
T
i

∑
j∈Ni(Gw)

wji(sj − si)

= −2
N∑
i=1

γi ˙̃qTi Ki
˙̃qi − 2

N∑
i=1

γiq̃
T
i ΛTKiΛq̃i −

N∑
i=1

∑
j∈Ni(Gw)

γiwji(s
T
i si − sTj sj)

−
N∑
i=1

∑
j∈Ni(Gw)

γiwji(sj − si)T (sj − si).

By denoting that STS = [sT1 s1 sT2 s2 · · · sTNsN ]T , the above equation can be

rewritten as

V̇ = −2
N∑
i=1

γiq̃
T
i ΛTKiΛq̃i − 2

N∑
i=1

γi ˙̃qTi Ki
˙̃qi − γTLw(STS)

−
N∑
i=1

∑
j∈Ni(Gw)

γiwji(sj − si)T (sj − si).

By applying the fact that γTLw = 0 from Lemma A.1, the above equation can be

written as

V̇ = −2
N∑
i=1

γi ˙̃qTi Ki
˙̃qi − 2

N∑
i=1

γiq̃
T
i ΛTKiΛq̃i

−
N∑
i=1

∑
j∈Ni(Gw)

γiwji(sj − si)T (sj − si) ≤ 0. (2.35)

Since V (Z) is positive definite and V̇ (Z) is negative semi-definite, the zero solution

of the system is globally stable and all signals are bounded. Integrating the above equation

and letting t → ∞, it can be seen that ˙̃qi, q̃i, (sj − si) ∈ L2, where j ∈ Ni(Gw),∀i.

As all signals are bounded, ¨̃qi, ˙̃qi, (ṡj − ṡi),∈ L∞. Hence, by Barbalat’s Lemma [38],

limt→∞ ˙̃qi(t) = limt→∞ q̃i(t) = 0 and limt→∞(sj(t) − si(t)) = 0 j ∈ Ni(Gw),∀i.

Therefore, the agents output synchronize and asymptotically follow the desired trajectory.

Additionally, using the definition of si in (2.4), for any two agents i and j, output

synchronization (2.12) implies that sj−si = ( ˙̃qj +Λq̃j)− ( ˙̃qi+Λq̃i) = (q̇j +Λqj)− (q̇i+
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Λqi) = ėij + Λeij , which represents an exponentially stable linear system with the input

sj − si. Hence, it follows [94] that if sj − si is a signal that converges asymptotically to

zero and eij is bounded, then limt→∞ ||eij(t)|| = 0 ∀i, j ∈ Ni(Gw). Consequently, the

agents’ joint configuration and velocities asymptotically approach each other. 2

2.4.2 Synchronization with Time Delay

In this section, the synchronization result is extended to the case when there are

time delays in the communication network. As the ith agent receives the delayed output

of its neighbors, the synchronizing control (2.33) becomes

τsi =
∑

j∈Ni(Gw)

wji(sj(t− Tji)− si), ∀i (2.36)

where Tji is the transmission delay from the jth agent to the ith agent. The signal

sj(t− Tji) in the synchronizing control (2.36) is the output signal of the jth agent that is

transmitted Tji unit of time ago. It is worth pointing out that knowledge of the communi-

cation delays is not required by the controller. Define Zt = Z(ϕ), ϕ ∈ [t− TM , t], where

TM = max(Tji), ∀i, j as the state for the system. Then the following result holds.

Theorem 2.6 Consider the dynamical system described by (2.11) with the synchroniza-

tion control law (2.36). If the communication graph Gw is strongly connected, then all

signals in the closed loop system are bounded independent of the constant delays, the

agents delay-output synchronize in the sense of (2.18) and asymptotically follow the de-

sired trajectory.
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Proof Consider a weighted positive-definite storage functional for N agent system as

V (Zt) =
N∑
i=1

γi

(
sTi Misi + q̃Ti Piq̃i + Θ̃T

i ΓiΘ̃i +
∑

j∈Ni(Gw)

wji

∫ t

t−Tji
sTj (σ)sj(σ)dσ

)
.

Following the proof of Theorem 2.5 and the control law (2.36), the derivative of

this storage function is given as

V̇ = −2
N∑
i=1

γi ˙̃qTi Ki
˙̃qi − 2

N∑
i=1

γiq̃
T
i ΛTKiΛq̃i −

N∑
i=1

∑
j∈Ni(Gw)

γiwji

(
sTi si − sTj sj

)

−
N∑
i=1

∑
j∈Ni(Gw)

γiwji

(
sTi si − 2sTi sj(t− Tji) + sTj (t− Tji)sj(t− Tji)

)

= −2
N∑
i=1

γi ˙̃qTi Ki
˙̃qi − 2

N∑
i=1

γiq̃
T
i ΛTKiΛq̃i − γTLw(STS)

−
N∑
i=1

∑
j∈Ni(Gw)

γiwji
(
sj(t− Tji)− si

)T (
sj(t− Tji)− si

)
= −2

N∑
i=1

γi ˙̃qTi Ki
˙̃qi − 2

N∑
i=1

γiq̃
T
i ΛTKiΛq̃i

−
N∑
i=1

∑
j∈Ni(Gw)

γiwji
(
sj(t− Tji)− si

)T (
sj(t− Tji)− si

)
≤ 0.

From the above analysis and using the definition of si in (2.4), all signals in the dynamical

system are bounded. Following the arguments as in Theorem 2.5, it can be shown that

limt→∞
(
sj(t−Tji)−si(t)

)
= 0 ∀ i, j ∈ Ni(Gw). Therefore, as the communication graph

is strongly connected, the agents delay-output synchronize (2.18). Moreover, it is possible

to demonstrate that [10] delay-output synchronization further implies limt→∞ ||edij(t)|| =

0 ∀i, j ∈ Ni(Gw), where edij = (qj(t− Tji)− qi) + (qd − qd(t− Tji)). 2
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Figure 2.10: Robots communicate over a strongly connected communication graph.

2.5 Simulation Results

Numerical simulations are presented in this section to demonstrate the efficiency of

the proposed algorithms. In the simulations, five agents, modeled as nonlinear 2DOF pla-

nar robots [95], are interconnected according to the strongly connected topology shown

in Figure 2.10. The weighted Laplacian is given as

Lw =



60 0 −25 −20 −15

−45 45 0 0 0

0 −55 55 0 0

0 0 −50 50 0

0 0 0 −40 40


.

Based on Lw, the vector γ is selected by γ = [1.000, 1.333, 1.090, 0.700, 0.375]T , which

satisfies the property that γTLw = 0 in Lemma A.1.

By utilizing the linear parametrization property of Lagrangian system [95], the

robot dynamics is equal to the constant vector of inertia parameters Θ multiplied the
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(b) Synchronization errors, which are the posi-

tion errors between an agent with its neighbors

Figure 2.11: Performance of the adaptive tracking algorithm in the absence of controlled

synchronization.

matrix of known functions Y . In the following simulations, the actual constant vector of

five planar robots are selected as

Θ1 = [2.406, 0.792, 0.416, 7.980, 0.660]T

Θ2 = [0.688, 0.096, 0.172, 0.840, 0.160]T

Θ3 = [2.108, 0.520, 0.408, 1.900, 0.520]T

Θ4 = [1.520, 0.500, 0.260, 1.500, 0.500]T

Θ5 = [2.612, 0.786, 0.353, 2.015, 0.605]T

(2.37)

In addition, the tracking gains are given as Ki = 3I3, i = 1, · · · , 5, and Λ = 2I3.

The simulation result for controlled synchronization with the use of strongly con-

nected graph in the absence of time delays is first demonstrated. Given the adaptive con-

trol parameters Γi = 20I5, and the initial unknown parameters Θ1(0) = [2.647, 0.871,

0.458, 2.178, 0.726], Θ2(0) = [0.585, 0.082, 0.146, 0.714, 0.136], Θ3(0) = [2.003, 0.494,

0.388, 1.805, 0.494], Θ4(0) = [1.368, 0.450, 0.234, 1.350, 0.450], and Θ5(0) = [1.596,
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(b) Synchronization errors between agents in

the network

Figure 2.12: Both tracking and synchronization performance improves with the use of

controlled synchronization.

0.525, 0.273, 1.575, 0.525], the simulation results in the absence of controlled synchro-

nization are shown in Figure 2.11. Due to the dynamic uncertainty in the robotic agents,

the tracking errors are relatively high, which leads to larger synchronization errors as

shown in Figure 2.11 (b).

If controlled synchronization is utilized, and the agents are interconnected using

strongly connected graphs (Figure 2.10) with synchronization gains Lw, the tracking per-

formance improves and the synchronization errors between the agents converge to the

origin asymptotically as shown in Figure 2.12. Compared to the robotic systems without

using synchronization in Figure 2.11, both the tracking and synchronization performance

in Figure 2.12 are improved. In the presence of communication delays T31 = 0.1sec,

T41 = 0.8sec, T51 = 0.7sec, T12 = 0.2sec, T23 = 0.6sec, T34 = 0.3sec, T45 = 0.25sec,

the simulation result is shown in Figure 2.13. It can be observed that even with time de-

lays in the communication channels, the interconnected robotic system is stable, and the
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Figure 2.13: The interconnected system is stable and achieves synchronization even if the

communication channels are subjected to delays.

synchronization errors approach the origin.

2.6 Summary

In this chapter, control algorithms for synchronization of networked robotic systems

with dynamic uncertainty under time-delayed communication channels were studied. By

utilizing the control law developed in [92], a coupling control scheme, based on [12], was

first presented to guarantee synchronization and trajectory tracking for the interconnected

robotic systems if the communication topology is balanced and strongly connected. It

was demonstrated that the proposed control scheme can guarantee position and velocity

synchronization with asymptotic trajectory tracking in networked robotic systems. In ad-

dition, the problem was studied for the case when there is a human input being exerted

on one of the robots in the interconnected system. Under the assumption that the system

dynamics are known, the state of the networked robotic systems was shown to uniformly
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ultimately bounded under the proposed control law. Experiments on networked PHAN-

ToM Omni devices were conducted to validate the proposed control algorithms. The ex-

perimental results showed that additional coupling control can result in synchronization

of networked robotic systems even in the presence of communication delays.

For the sake of reducing communication costs, in the second part of this chapter,

controlled synchronization of networked robotic systems was studied when the commu-

nication topology is only strongly connected. Using a weighted storage function, it was

demonstrated that synchronization of networked robotic systems is achievable on com-

munication graphs that are strongly connected and not necessarily balanced. In addition

to the delay-free case, the effect of communication delays on the synchronization behav-

ior was also studied. Simulations on five interconnected two-link robotic manipulators

were presented to validate the proposed control scheme.

The study of controlled synchronization in this chapter can be utilized for cooper-

ative manipulation, attitude regulation, and formation control. However, the control sys-

tem is considered under the assumption that the individual robots in the interconnected

network have the same degree-of-freedom. In order to enhance the applications of syn-

chronization on networked robotic systems, in next chapter, the synchronization problem

is studied for heterogeneous robotic systems in the task space.
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Chapter 3

Synchronization of Robotic Manipulators in Task Space

Controlled synchronization has been demonstrated as a useful mechanism for coop-

erative manipulation and bilateral teleoperation. In the previous chapter, the synchroniza-

tion problem was studied while the system is subjected to time-delayed communications,

human input, and strongly connected graphs. Despite the practical utility of task-space al-

gorithms, the previous results focussed on joint-space synchronization, and were primar-

ily derived for kinematically similar manipulators. The restriction may limit the applica-

tions of controlled synchronization. Hence, the problem of task-space synchronization of

(possibly redundant) heterogeneous robotic systems is studied in this chapter.

Passivity-based control has emerged as an important paradigm for synchronization

of networked robotic systems. By exploiting passivity-based synchronization results de-

veloped previously, an adaptive control algorithm is proposed to guarantee task-space

synchronization of networked robotic manipulators in the presence of dynamic uncertain-

ties while the communication topology is balanced and strongly connected. Since the

communication channel is possible to have time-varying delays between the robotic sys-

tems when communicating over unreliable networks, the problem of synchronization in

the presence of time-varying delays is also studied. Numerical simulations on heteroge-

neous planar manipulators and experiments on PHANToM Omni devices are conducted

to demonstrate the efficacy of proposed framework.

46



3.1 Introduction

The design of control algorithm, and/or artificial interconnections to synchronize a

group of interconnected dynamical systems is known as controlled synchronization [67].

Controlled synchronization between multiple manipulators can lead to high performance

control algorithms, for example, in production processes where high flexibility, manip-

ulability, and maneuverability are desirable characteristics. Controlled synchronization

for robotic systems was first proposed in [82], where the manipulators were controlled to

follow a desired trajectory, and mutual synchronization between the robotic systems was

utilized to enhance the performance of the closed loop system. As the proposed algorithm

required all-to-all coupling between the agents, the control scheme did not scale well with

the number of robots. Subsequently, contraction theory was utilized [17] to guarantee

synchronization and tracking on regular graphs. The authors also applied their theoret-

ical results for synchronization of formation flying spacecraft [16]. A passivity-based

algorithm for synchronization and tracking of mechanical systems on balanced commu-

nication graphs was studied in [10]. The various advantages of controlled synchronization

have been well discussed in the aforementioned papers [10, 16, 17, 82].

The passivity and the dissipativity paradigm were used to study the synchroniza-

tion problem in [12, 77, 97]. Specifically, it was demonstrated in [11, 12] that nonlinear

passive systems can be output synchronized, provided the storage function is positive def-

inite, and the interagent communication graph is balanced. These results were success-

fully applied to joint space synchronization of bilateral teleoperators [14]. Building on

this work, scaled synchronization of bilateral teleoperators with different configurations
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was proposed in [37]; however, the authors considered motion control of kinematically

identical, and non-redundant robotic systems. Motivated the possible performance ben-

efits of redundant systems, teleoperation of redundant manipulators was studied in [65].

However, the master and slave robots were required to have the same degrees-of-freedom,

and communication unreliabilities (e.g. time delays) between the robotic systems were

not considered.

In this chapter, controlled synchronization of heterogeneous robotic manipulators

in the task space is studied. By demonstrating that the task-space tracking control de-

veloped in [92, 116] is input-output passive, the output synchronization results in [12]

are utilized to synchronize robotic manipulators in the task space. Under the assumption

that the communication graph between the agents is balanced and strongly connected, the

tracking and synchronizing errors are guaranteed to converge to the origin. In contrast

to [14, 37, 65], where joint-space synchronization between robotic systems was studied,

this research develops task-space synchronization algorithms for multiple non-redundant

and redundant manipulators. Additionally, redundancy in the manipulators is also ex-

ploited for achieving sub-tasks [30], such as increased manipulability in the workspace.

It is well known that time delays in the feedback loop, for example when the

control signals are communicated over unreliable networks, can destabilize the closed-

loop system [79]. The problem of synchronization with time delays has been studied

in [10–12, 17], where the time delays were assumed to be constant and bounded. How-

ever, in networked robotic systems, the communication delays may be time-varying with

possibly unknown statistics. To address this issue, the problem of task-space synchroniza-

tion with time-varying communication delays is also studied. Based on the assumption
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that the maximum rate of change of delays is less than one, a control algorithm is proposed

for delay independent task-space synchronization of heterogeneous robotic manipulators.

The rest of the chapter is organized as follows. The relevant background and the

passivity property of the control algorithm are discussed in Section 3.2, which is followed

by the results of task-space synchronization in Section 3.3. The output synchronization

problem in the presence of time-varying delays in the communication channel is studied

in Section 3.4. The simulation results are presented in Section 3.5, and the experimental

results are mentioned in Section 3.6. Finally, the summary of this chapter is addressed in

Section 3.7.

3.2 Control Algorithm and Passivity Property

The control algorithm and passivity property of the task-space trajectory tracking

algorithm is first developed [92, 116] in this section. Following [95], in the absence of

friction and viscous damping, the Euler-Lagrange equations of motion for an n-degree-

of-freedom robotic manipulator are given as

M(q)q̈ + C(q, q̇)q̇ + g(q) = u (3.1)

where q ∈ Rn is the vector of generalized configuration coordinates, u ∈ Rn is the vector

of generalized forces acting on the system,M(q) ∈ Rn×n is a symmetric, positive definite

matrix, C(q, q̇)q̇ ∈ Rn is the vector of Coriolis/Centrifugal forces, and g(q)=∂G
∂q
∈ Rn is

the gradient of the potential function G(q). In this research, the analysis is focused on

manipulators with revolute joints. Therefore, the above equations exhibit certain funda-

mental properties due to their Lagrangian dynamic structure [95]. These properties are

49



mentioned in Appendix A.2.

LetX ∈ Rm represent the position of the end-effector in the task space. It is related

to the joint-space vector q as

X = h(q) , Ẋ = J(q)q̇ (3.2)

where h(·) : Rn → Rm denotes the mapping between the joint space and the task space,

and J(q) = ∂h(q)/∂q ∈ Rm×n is the Jacobian matrix. In this chapter, the Jacobian

is assumed to be known; future work will incorporate adaption schemes as proposed

in [5, 20].

In this research, the individual systems are required to track a trajectory Xd(t)

which is assumed to be bounded and twice differentiable. Thus, the signals Ẋd(t), Ẍd(t)

are well defined, and are additionally assumed to be bounded. It is also assumed that the

position of end-effector X is known from either vision systems, position sensors or laser

systems, and that the robot is operated in a finite task-space where the Jacobian matrix

has full rank. The synchronization problem in this research is studied under dynamic

uncertainty in the individual robots. The dynamic uncertainty in the robot dynamics is

represented by the uncertain parameter Θ, and more details about the uncertain parameter

vector are referred to Appendix A.2.

Let the control input [92, 116] for the dynamical system (3.1) be given as

u = M̂a+ Ĉv + ĝ −Kts− JTKT
J X̃ + JT τs (3.3)

where M̂ , Ĉ, and ĝ denote the estimates of M , C, and g respectively, X̃ = X − Xd

denotes the tracking error, Kt, KJ and Λ are positive definite diagonal matrices, and τs
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is the synchronizing control that will be subsequently defined. The signals a, v, and s in

(3.3) are defined below (for the non-redundant case where n = m),

v = J−1(Ẋd − Λ(X −Xd))

a = J−1(Ẍd − Λ(Ẋ − Ẋd)) + J̇−1(Ẋd − Λ(X −Xd)) (3.4)

s = J−1(−Ẋd + Λ(X −Xd)) + q̇

where v = q̇ − s and a = v̇.

By defining r = Js, the signal r is given by

r = (Ẋ − Ẋd) + Λ(X −Xd) = ˙̃X + ΛX̃ (3.5)

where r is the combination of position and velocity tracking errors in the task space.

Using Property A.2, the linear parametrization property for Lagrangian systems,

the control input (3.3) can be written as

u = Y (q, q̇, v, a)Θ̂−Kts− JTKT
J X̃ + JT τs (3.6)

where Θ̂ is the estimate of the unknown dynamic parameter vector Θ. Let the estimate of

the dynamic uncertainty be updated as

˙̂
Θ = −Γ−1Y T s (3.7)

where Γ is a positive definite constant matrix. Substituting (3.6) into (3.1), the closed

loop system can be written as

Mṡ+ Cs+Kts = Y Θ̃− JTKT
J X̃ + JT τs (3.8)

where Θ̃ = Θ̂−Θ. The first result in this research follows.
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Lemma 3.1 The dynamical system (3.4), (3.7), and (3.8) is passive with (τs, r) as the

input-output pair.

Proof Consider the positive-definite storage function V as

V (s, X̃, Θ̃) =
1

2

(
sTMs+ X̃TKJX̃ + Θ̃TΓΘ̃

)
. (3.9)

Differentiating the storage function along the system trajectory and using Property A.3,

the derivative of the storage fucntion reduces to

V̇ = sTJT τ − sTKts+ X̃TKJ
˙̃X − sTJTKT

J X̃ + sTY Θ̃ + Θ̃TΓ
˙̂
Θ. (3.10)

Using (3.5), the derivative of X̃ can be written as

˙̃X = −ΛX̃ + Js. (3.11)

Substituting the update law (3.7) and (3.11) in (3.10) yields

V̇ = rT τs − sTKts− X̃TKJΛX̃. (3.12)

Hence, following Definition A.1 the dynamical system (3.4), (3.7), and (3.8) is passive

with (τs, r) as the input-output pair respectively. 2

3.3 Task-Space Controlled Synchronization

The problem of controlled synchronization with heterogeneous robotic manipula-

tors is studied in this section. For the networked robotic system, the communication

topology and information exchange between the agents can be represented as a graph.

The reader is referred to Appendix A.3 for the graph theoretic notions utilized in this
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research. The subsequent analysis are performed under the assumption that the inter-

connected communication graph is balanced and strongly connected, and there exists a

unique path between any two distinct agents.

3.3.1 Controlled Synchronization

The passivity property (Lemma 3.1) suggests that the output synchronization results

of [12] can be applied to the dynamical system (3.4), (3.7), and (3.8). Considering an

N agent networked robotic system, the dynamics of the individual manipulators can be

written as

˙̂
Θi = −Γ−1

i Y T
i si

˙̃Xi = Jisi − ΛX̃i (3.13)

ṡi = M−1
i (−Cisi −Ktisi + YiΘ̃i − JTi KT

JiX̃i + JTi τsi)

where i = 1, . . . , N is the set of agents in the network.

Definition 3.1 The agents communicate the signals ri = JTi si with their neighbors, and

are said to output synchronize if

lim
t→∞

(ri(t)− rj(t)) = 0 ∀i, j ∈ Ni(G) (3.14)

where Ni(G) denotes the set of neighbors for agent ith in the communication graph G.

By define zi = [Θ̃i X̃i si]
T as the state of the individual agent, the state of the in-

terconnected multi-agent system is denoted by Z = [zT1 . . . zTN ]T . Let the synchronizing

control be given as

τsi =
∑

j∈Ni(G)

Ks(rj − ri), ∀i (3.15)

53



where the synchronizing gain Ks is assumed to be a positive constant for the sake of

simplicity. The main result on task-space synchronization is now presented.

Theorem 3.1 Consider the dynamical system, described by (3.13) and (3.15), where the

robotic systems are assumed to be non-redundant. If the Jacobian matrix has full rank,

and the interconnected communication graph G is balanced and strongly connected, then

the agents’ position and velocities synchronize in the task space, and agents asymptoti-

cally follow the desired trajectory.

Proof Consider a positive-definite storage function for the N agents system as

V (Z) = V1(z1) + . . .+ VN(zN) =
N∑
i=1

Vi(zi) (3.16)

where Vi(zi) is the storage function (3.9) for the ith agent. Following the proof of

Lemma 3.1, and using (3.12), the derivative of this storage function can be written as

V̇ (Z) =
N∑
i=1

(
rTi τsi − sTi Ktisi − X̃T

i KJiΛX̃i

)
=

N∑
i=1

∑
j∈Ni(G)

Ksr
T
i (rj − ri)−

N∑
i=1

(
sTi Ktisi + X̃T

i KJiΛX̃i

)
.

As the information exchange graph G is balanced, the following equation holds [12].

2
N∑
i=1

∑
j∈Ni(G)

rTi ri =
N∑
i=1

∑
j∈Ni(G)

rTi ri +
N∑
i=1

∑
j∈Ni(G)

rTj rj.

Therefore, the derivative of storage function becomes

V̇ = −1

2

N∑
i=1

∑
j∈Ni(G)

Ks(rj − ri)T (rj − ri)−
N∑
i=1

(
sTi Ktisi + X̃T

i KJiΛX̃i

)
≤ 0.

Hence, the zero solution of (3.13) and (3.15) is globally stable, and all signals are bounded.

Integrating the above equation from [0, t], it is shown that X̃i, si, and (rj−ri) ∈ L2, where
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j ∈ Ni(G), ∀i. As all signals are bounded, the signals ˙̃Xi,
¨̃Xi, and (ṙj − ṙi) ∈ L∞. By

utilizing Lemma 8.1 in [95], it can be obtained that limt→∞ X̃i(t) = 0, limt→∞ si(t) = 0,

and limt→∞(rj(t) − ri(t)) = 0 j ∈ Ni(G),∀i. Therefore, the agents achieve output syn-

chronization (3.14), and asymptotically follow the desired trajectory in the task space.

Note that rj − ri = ( ˙̃Xj + ΛX̃j)− ( ˙̃Xi + ΛX̃i) = (Ẋj − Ẋi) + Λ(Xj −Xi) = ėij + Λeij ,

where eij := Xj − Xi denotes the synchronization error. The equation represents an

exponentially stable linear system with the input rj − ri. As shown in [94], it follows

that if rj − ri is a signal that asymptotically converges to zero, and eij is bounded then

limt→∞ eij(t) = 0 j ∈ Ni(G), ∀i. Therefore, output synchronization (3.14) guarantees

that the position and the velocities of neighboring agents’ end-effectors asymptotically

approach each other. As the communication graph is assumed to be strongly connected,

all agents synchronize in the task space. 2

3.3.2 Synchronization with Redundant Manipulators

If the robotic manipulators are redundant, that is n > m, the null space of the

Jacobian matrix has a minimum dimension of n −m. Therefore, the task-space motion

will not be influenced by the link velocity in the null space. This fact can be utilized in

several sub-tasks, such as singularity avoidance, joint limits, and obstacle avoidance, to

improve the performance of trajectory tracking [30, 104].

Following [114, 116], the control scheme can be modified as

v = J+(Ẋd − Λ(X −Xd)) + (In − J+J)ψ

a = J+(Ẍd − Λ(Ẋ − Ẋd)) + J̇+(Ẋd − Λ(X −Xd)) +
d

dt
[(In − J+J)ψ]
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s = J+(−Ẋd + Λ(X −Xd))− (In − J+J)ψ + q̇ (3.17)

where ψ ∈ Rn is a negative gradient of a differentiable function for which a lower value

is associated with a more desirable configuration, In is n × n identity matrix, and J+ ∈

Rn×m is pseudo-inverse of J , which is defined by J+ = JT (JJT )−1, and satisfies JJ+ =

Im.

Since pseudo-inverse J+ has the following properties,

J(In − J+J) = 0 , (In − J+J)J+ = 0

(In − J+J)(In − J+J) = In − J+J

the vector r can be defined analogously (3.5) to the non-redundant scenario.

According to [30], the sub-task tracking error is defined as eN(t) = (In−J+J)(q̇−

ψ). Pre-multiplying s in (3.17) by (In − J+J) and using the properties above, it can be

given that relation between the sub-task tracking error eN and s is

(In − J+J)s = (In − J+J)J+(−Ẋd + Λ(X −Xd))

−(In − J+J)(In − J+J)ψ + (In − J+J)q̇

= (In − J+J)(q̇ − ψ) := eN . (3.18)

Thus, if limt→∞ s(t) = 0, then the sub-task tracking error also approaches the origin.

As the matrix (In−J+J) satisfies the property that J(In−J+J) = 0, for redundant

robots, the modified signals a, v, and s in (3.17) are employed for the control input (3.3)

in the control task. Hence, following the proof of Theorem 3.1, the convergence of task-

space synchronization errors, and the sub-task tracking errors to the origin is guaranteed

by the control scheme. The next result formalizes the above discussion.
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Corollary 3.1 Consider the dynamical system described by (3.13) and (3.15), where one

or more manipulators may have redundant degrees-of-freedom. If the interconnected

communication graph G is balanced and strongly connected, then the manipulators syn-

chronize in the task space, and asymptotically follow the desired trajectory. Additionally,

the sub-task tracking errors for the redundant manipulators converge to the origin.

3.4 Task-Space Synchronization with Time-Varying Delays

When communicating over unreliable communication networks, such as a wireless

network, it is possible to have time-varying communication delays between the robotic

systems. In the subsequent analysis, it is assumed that Tji(t) denotes the time-varying

time delays from the jth agent to the ith agent. The time delays are assumed to be contin-

uously differentiable, bounded (0 < Tij(t) ≤ TMij
<∞), and satisfy

Ṫij(t) ≤ T̄ij < 1 j ∈ Ni(G), i = 1, · · · , N (3.19)

where T̄ij is a nonnegative constant. The condition (3.19) implies that the time-varying

delays cannot grow faster than time itself, but there is no constraint on the decreasing rate

of delays, as long as the delays are continuously differentiable and bounded.

Definition 3.2 In the presence of delays, the manipulators are said to delay-output syn-

chronize if

lim
t→∞

(rj(t− Tji(t))− ri(t)) = 0 ∀i, j ∈ Ni(G) (3.20)

where rj(t− Tji(t)) is the delayed output of the jth agent received by the ith agent .
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To achieve delay-output synchronization, positive constant gains dependent on the

maximum rate of change of delays are defined as

d2
ji ≤ (1− T̄ji) j ∈ Ni(G), i = 1, · · · , N. (3.21)

Let the delay-synchronizing control be given by

τsi =
∑

j∈Ni(G)

Ks

(
d2
jirj(t− Tji(t))−

(d2
ji

2
+

1

2

)
ri

)
, ∀i (3.22)

In the proposed control algorithm, rj(t − Tji(t)) indicates the output signal that was

transmitted Tji(t) units of time earlier by the jth agent, and is received at the current time

instance t by the ith agent. Hence, the control input defined above utilizes the delayed

output, and does not require exact knowledge of time-varying delays. The result on task-

space synchronization with communication time-varying delays follows.

Theorem 3.2 Consider the dynamical system, described by (3.13) and (3.22), where only

non-redundant manipulators are considered. If the Jacobian matrix has full rank, and

the interconnected communication graph G is balanced and strongly connected, then the

manipulators delay output synchronize and asymptotically follow the desired trajectory.

Furthermore, in the presence of time-varying delays, the synchronization errors in the

task space are bounded, and asymptotically converge to zero.

Proof Consider a positive-definite storage functional for the delayed system as

V (Z) =
N∑
i=1

Vi(zi) +
Ks

2

N∑
i=1

∑
j∈Ni(G)

∫ t

t−Tji(t)
rTj (σ)rj(σ)dσ

where the storage function Vi(zi) is given by (3.9) for ith agent. Taking the time derivative

along the trajectories of the system yields

V̇ =
N∑
i=1

(
rTi τi − sTi Ktisi − X̃T

i KJiΛX̃i

)
+
Ks

2

N∑
i=1

∑
j∈Ni(G)

(
rTj rj
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−(1− Ṫji(t))rTj (t− Tji(t))rj(t− Tji(t))
)
.

By substituting the delay-synchronizing control (3.22) into the inequality above, the deriva-

tive becomes

V̇ ≤ Ks

2

N∑
i=1

∑
j∈Ni(G)

(
2d2

jir
T
i rj(t− Tji(t))− d2

jir
T
i ri − rTi ri + rTj rj

−d2
jirj(t− Tji(t))T rj(t− Tji(t))

)
−

N∑
i=1

(sTi Ktisi + X̃T
i KJiΛX̃i).

As the graph is balanced such that
∑N

i=1

∑
j∈Ni(G) r

T
i ri =

∑N
i=1

∑
j∈Ni(G) r

T
j rj , the deriva-

tive of the storage function becomes

V̇ ≤ −
N∑
i=1

(sTi Ktisi + X̃T
i KJiΛX̃i)

−Ks

2

N∑
i=1

∑
j∈Ni(G)

d2
ji

(
ri − rj(t− Tji(t))

)T (
ri − rj(t− Tji(t))

)
.

Hence, all signals in the dynamical system (3.13) and (3.22) are bounded. Following the

arguments as in Theorem 3.1, it can be obtained that the signals X̃i, si, rj(t−Tji(t))−ri ∈

L2, ˙̃Xi,
¨̃Xi, ṙj(t − Tji(t)) − ṙi ∈ L∞, and it can be shown that limt→∞ X̃i(t) = 0,

limt→∞ si(t) = 0 and limt→∞(rj(t− Tji(t))− ri(t)) = 0 ∀i, j ∈ Ni(G). Therefore, the

synchronizing control and communication assumption guarantee delay-output synchro-

nization (3.20) in the presence of time-varying delays in the communication.

By defining edji := Xj(t−Tji(t))−Xi(t)+Xd(t)−Xd(t−Tji(t)), the delay-output

synchronization can be further rewritten as

rj(t− Tji(t))− ri =
((
Ẋj(t− Tji(t))− Ẋd(t− Tji(t))

)
+ Λ

(
Xj(t− Tji(t))

−Xd(t− Tji(t))
))
−
(

(Ẋi − Ẋd) + Λ(Xi −Xd)
)

=
(
Ẋj(t− Tji(t))− Ẋi + Ẋd − Ẋd(t− Tji(t))

)
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+Λ
(
Xj(t− Tji(t))−Xi +Xd −Xd(t− Tji(t))

)
= ėdji + Λedji. (3.23)

Following the statement in [10], as rj(t−Tji(t))− ri(t) converges asymptotically to zero

and edji is bounded, limt→∞ e
d
ji(t) = 0, j ∈ Ni(G),∀i. Since edji and X̃j are bounded, and

edji = Xj(t− Tji(t))−Xi +Xd −Xd(t− Tji(t))

= (Xj −Xi) + X̃j(t− Tji(t))− X̃j (3.24)

the synchronization errors in the task space, Xj − Xi, j ∈ Ni(G),∀i, are bounded. Us-

ing (3.24) and letting t→∞, it is concluded that limt→∞(Xj(t)−Xi(t)) = 0. 2

Theorem 3.2 demonstrates that by utilizing the delay-synchronizing control (3.22),

it is possible to synchronize heterogeneous robotic manipulators under time-varying com-

munication delays. Based on the assumption that time delays in the communication chan-

nels are continuous, the derivative of the time-varying delays is less than one due to the

causality implications [45]. Therefore, the delays may be large, but are required to have

slow variations as dictated by the assumption (3.19). In practical implementation, it is

possible that there may be packet losses, sharply varying delays, and packet ordering in

the system. The incoming data can be buffered, and appropriate communication man-

agement modules can be utilized [9] to address this problem. As the application of these

methods is beyond the scope of this research, the readers are referred to [9, 41, 91] for

more details.

The delay-synchronizing control (3.22) in Theorem 3.2 is applicable for guarantee-

ing output synchronization by choosing dij = 1 if the time delays in the communication
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channels are constant. In addition, if there are redundant manipulators in the intercon-

nected system, the next corollary follows from the analysis in Section 3.3.2.

Corollary 3.2 Consider the dynamical system described by (3.13) and (3.22), where one

or more redundant manipulators may cooperate with other robots. If the interconnected

communication graph G is balanced and strongly connected, then the agents delay output

synchronize, and asymptotically follow the desired trajectory. Additionally, the conver-

gence of sub-task tracking errors of redundant manipulators is guaranteed.

Remark 3.1 For the problem of controlled synchronization studied in this chapter, the as-

sumption that the communication graph is balanced and strongly connected can be relaxed

by utilizing a weighted storage function addressed in the previous chapter. Following the

development in Section 2.4, the networked robotic systems developed in this section can

be synchronized if the communication graph is only strongly connected.

3.5 Simulation Results

In this section, simulations are presented to analyze the efficacy of the previously

described synchronization algorithms. The networked robotic system consists of two 2-

link, and two 3-link planar manipulators. Since all the robotic agents in the system are

planar manipulators, the control goal is to synchronize the end-effectors in the X-Y plane

while ensuring that they follow the desired trajectory. The agents are interconnected

using a ring topology as shown in Figure 3.1 (a), where agents 2 and 3 are the 2-link

manipulators, and agents 1 and 4 are the 3-link redundant manipulators.

The dynamics of the planar manipulators are adapted from [95]. By denoting mij
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(a) Topology for simulations

1 

3 2 

(b) Topology for experiments

Figure 3.1: Balanced communication topologies for the simulations and experiments.

the mass of the jth link for the ith agent, lij the length of the jth link for the ith agent, and

Iij the moment of inertia of the jth link for the ith agent, the simulation parameters for

the robotic manipulators are given as

Agent Length of link Mass

1st l11 = 1.2, l12 = 0.9, l13 = 0.8 m11 = 1.1, m12 = 0.8, m13 = 0.5

2nd l21 = 1.5, l22 = 1.4 m21 = 1.2, m22 = 0.6

3rd l31 = 1.5, l32 = 0.6 m31 = 0.8, m32 = 0.75

4th l41 = 0.9, l42 = 0.8, l43 = 0.7 m41 = 1.1, m42 = 0.9, m43 = 0.8

Agent Inertia

1st I11 = 0.012, I12 = 0.135, I13 = 0.025

2nd I21 = 0.24, I22 = 0.12

3rd I31 = 0.035, I32 = 0.08

4th I41 = 0.12, I42 = 0.023, I43 = 0.31
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with g = 9.8. The initial joint angles are assigned as q1(0) = [0.8, 1.2, 0.4] rad, q2(0) =

[0.5, 0.8] rad, q3(0) = [−0.8, 1.8] rad, and q4(0) = [1.7, 1.6, 0.9] rad. The desired trajec-

tory for the end-effectors is given asX(t) = 1.2+0.5 sin(t) cm, and Y (t) = 1+0.3 cos(t)

cm. Furthermore, in the simulations, the sub-task function for redundant manipulator

agent 1 is selected as ψ1 = −20(q11−1), which is the negative gradient of (10(q11−1))2,

where q11 is the first joint angle of agent 1. This sub-task tracking function forces the

first joint of agent 1 towards q11 = 1 rad. In the case of agent 4, ψ4 = ∂
∂q

(det(J4J
T
4 )) is

selected as in [30] for increasing the manipulability of the manipulator.

The control gains for the subsequent simulations are given as Λ = diag{10, 10},

Kt1 = Kt4 = diag{5, 5, 5}, Kt2 = Kt3 = diag{5, 5}, and KJi = diag{2, 2}, i =

1, 2, 3, 4. In the absence of synchronization, Ks = 0, manipulators follow the desired

trajectory in the task space as shown in Figure 3.2 (a). If the synchronizing gain Ks = 10,

agents synchronize and then follow the trajectory as shown in Figure 3.2 (b). For the

redundant manipulators, agents 1 and 4, the null space can be utilized in several sub-

tasks. Based on the sub-task functions described above, the first joint of agent 1 moves

towards a steady state configuration of 1 rad as shown in Figure 3.3, and the sub-task for

agent 4 increases the manipulability as shown in Figure 3.4.

The next simulation results illustrate the task-space synchronization in the presence

of communication delays. The agents communicate the signal ri to their neighbors with

communication delays T12(t) = T23(t) = 0.6 + 0.5 sin(t/2) sec, and T34(t) = T41(t) =

0.3+0.2 sin(t/2) sec, which satisfy the assumption that Ṫi(t) ≤ 1, i = 1, 2, 3, 4. The gains

for the time-varying delays, dji, ∀i, j, are assumed to be equal for the sake of simplicity,

and are selected as dji = 0.5 j ∈ Ni(G), i = 1, 2, 3, 4. If the synchronizing controller
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Figure 3.2: Trajectory of the end-effectors. (a) Ks = 0, without synchronization. (b)

Ks = 10, with synchronizing control (3.15).
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Figure 3.3: Joint angles of the agent 1, which is a redundant manipulator. (a) Without

sub-task control. (b) With sub-task control, the first joint of agent 1 was forced toward

1rad.
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Figure 3.4: Sub-task control of agent 4 increases the manipulability in the task space.
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Figure 3.5: Trajectory of the end-effectors with time-varying communication delay. (a)

Use of non-delay-synchronizing controller (3.15). (b) Use of delay-synchronizing con-

troller (3.22).
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Figure 3.6: X-axis synchronization errors in the presence of time-varying communication

delay.

in (3.15) is utilized without any additional compensation, as shown in Figure 3.5 (a), there

are abnormal oscillations resulting from the influence of time-varying communication

delays. However, if the controller was replaced by (3.22), the manipulators synchronize

without perturbations, and follow the desired trajectory as shown in Figure 3.5 (b). The

synchronization errors between the agents are shown in Figure 3.6 and 3.7. Using the

time-varying synchronizing controller (3.22), agents achieve synchronization faster with

better performance as compared to the controller described in (3.15).

3.6 Experiments

The proposed control algorithms are implemented experimentally by using non-

redundant PHANToM Omni devices. The Omni is a cost-effective device that can be

utilized to test, and verify control schemes. For the subsequent experiments, the detach-
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Figure 3.7: Y-axis synchronization errors in the presence of time-varying communication

delay.

able stylus of the Omni device was removed, and the last two joints were constrained to

reduce the influence of the unactuated links on the robot dynamics. Hence, the Omni

device performs as a fully actuated manipulator with three revolute joints. More details

of the Omni devices are discussed in Appendix B.

In the experiments, three fully actuated manipulators interconnected with a bal-

anced topology (see Figure 3.1 (b)), are controlled by a desktop computer. The control

program was written in C with the use of OpenHaptics API, a software by SensAble

Technologies [88]. It was assumed that all signals acquired from the API are reliable.

The data collection and control input rate ran at a sampling rate of 1kHz, and the po-

sition and velocity of the end-effector was obtained from OpenHaptics API. The de-

sired trajectory for the end-effector was chosen as X(t) = 60 sin(0.2πt)mm, Y (t) =

150 + 40 cos(0.2πt)mm, and Z(t) = 80mm due to the workspace limitations. Moreover,
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Figure 3.8: Experimental results for task-space synchronization with time-varying delays.

time-varying delays were artificially added to the communication path and were given as

T12(t) = 0.3+0.2 sin(t)sec, T23(t) = 0.6+0.5 sin(t)sec, and T31(t) = 0.4+0.3 sin(t)sec.

The gains dij utilized to compensate for the time-varying delays were chosen to be equal

with dji = 0.7 j ∈ Ni(G), i = 1, 2, 3.

The experiments were conducted using the control scheme (3.6), where the regres-

sor matrix Y and parameter vector Θ are listed in the Appendix B. The control parame-

ters are given as Λ =diag{10, 10, 10}, Kti =diag{0.1, 0.15, 0.15}, KJi =diag{0.1, 0.15,

0.14}, Γ−1
i =diag{0.01, 0.01, 0.001, 0.001, 0.01, 0.005, 1.5, 2} i = 1, 2, 3, and synchro-

nizing gain Ks = 0.006. The dynamic parameters are updated using the adaptive control

in (3.7) with Θ̂1(0) = [0.1, 0, 0.2, 0.4, 0.4, 0.1, 70, 80]T , Θ̂2(0) = [0.1, 0, 0.2, 0.4, 0.4,

0.1, 80, 60]T , and Θ̂3(0) = [0.1, 0, 0.2, 0.4, 0.4, 0.1, 75, 70]T .

If the synchronizing controller in (3.15) was used, time-varying delays resulted in

abnormal oscillations as shown in Figure 3.8 (a). However, if the controller was replaced

by (3.22), the manipulators synchronized faster with better performance, as shown in Fig-

ure 3.8 (b). For the synchronizing controller (3.22), the synchronizing errors between
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Figure 3.9: When the delay-synchronizing controller (3.22) is used, the above plots illus-

trate (a) the synchronization errors, and (b) the synchronizing torque JT τs.
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Figure 3.10: The control algorithm results in bounded estimates despite the time-varying

delays in the closed-loop system.
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agents are shown in Figure 3.9 (a), and Figure 3.9 (b) illustrates the synchronizing joint

torque JT τs. As seen from these results, three manipulators can achieve task-space syn-

chronization in the presence of time-varying delays with bounded synchronizing torques.

Additionally, the synchronizing errors in the task space are bounded, and asymptotically

converge to zero. Furthermore, the estimates of the dynamic parameters are shown in

Figure 3.10, where Θi denotes the ith entry of Θ. These experimental results demonstrate

that the interconnected manipulators can achieve task-space synchronization in the pres-

ence of dynamic uncertainties, and time-varying communication delays by utilizing the

control algorithms developed in this chapter.

3.7 Summary

In this chapter, task-space controlled synchronization for heterogeneous robotic

manipulators with time-varying communication delays and dynamic uncertainties was

studied. It was demonstrated that robotic manipulators, communicating with each other

over balanced graphs, can achieve task-space synchronization when following a nomi-

nal trajectory. The synchronization results were developed for both redundant and non-

redundant manipulators. If one or more of the robotic systems are redundant, the addi-

tional degrees-of-freedom are exploited to achieve several sub-tasks, such as singularity

and obstacle avoidance. The robustness of the synchronization algorithm to time-varying

delays in communication was also investigated. The efficacy of the proposed control al-

gorithms was studied by numerical simulations, and experiments on PHANToM Omni

robotic systems.
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It is worth mentioning that synchronization for heterogeneous robotic systems de-

veloped in this chapter can be extended to the system with only strongly connected graphs.

Following the study in the previous chapter, the weighted storage function can be utilized

for Theorem 3.1 and 3.2 to prove the efficacy. In next chapter, the benefit of using hetero-

geneous robots in networked robotic systems with human operators is addressed for the

case of teleoperation systems.

71



Chapter 4

Control of Semi-Autonomous Teleoperation with Time Delays

This chapter addresses the study of heterogeneous robotic systems for the applica-

tions of teleoperation systems. Due to the cognitive limitations of human operators and

incomplete information about the remote environment, safety and performance of teleop-

eration systems can potentially be comprised. In order to ensure safety and enhance the

efficiency of complex teleoperation systems operating in cluttered environments, in this

chapter a semi-autonomous control framework is proposed and investigated for bilateral

teleoperation.

The semi-autonomous teleoperation system is composed of heterogeneous master

and slave robots, where the slave robot is assumed to be a redundant manipulator. Consid-

ering robots with different configurations, and in the presence of dynamic uncertainties

and communication delays, a control algorithm is first developed to ensure position and

velocity tracking in the task space. Additionally in the absence of dynamic uncertainty,

and in the presence of human operator and environmental forces, all signals of the pro-

posed teleoperation system are proven to be ultimately bounded. The redundancy of the

slave robot is then utilized for achieving autonomous sub-task control, such as singularity

avoidance, joint limits, and collision avoidance. The control algorithms for the proposed

semi-autonomous teleoperation system are validated through numerical simulations on a

non-redundant master and a redundant slave robot.
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4.1 Introduction

Teleoperated robotic systems have emerged as a useful tool to accomplish tasks in

remote or hazardous environments, as was witnessed during the recent Fukushima Daiichi

nuclear disaster. A bilateral teleoperation system is composed of master and slave robots,

where the signals are exchanged between the two robots via a communication channel. On

being manipulated by a human operator, the controlled coupling between the master and

slave robots is utilized by the slave robot for carrying out tasks remotely. However, due

to the fact that the master and slave robots may be separated by a considerable distance,

the human operator is not able to access complete information about the environment.

This lack of information, coupled with the cognitive limitations of the human operator,

limits the capabilities of the teleoperation system. Hence, this limitation necessitates the

study of semi-autonomous robotic systems where there is shared autonomy between the

human operator and remote slave robotic system. The idea of semi-autonomous robotic

systems has been utilized for health care [22], search and rescue [21], and under water

vehicles [48]. In this chapter, a semi-autonomous control framework is developed for

task-space bilateral teleoperation system, where the slave robot is able to accomplish

additional tasks autonomously.

Control of teleoperation system has been studied in [14,47,70]; however, the prob-

lem was solved in the joint space with the assumption that the master and slave robots

are kinematically identical. Due to the practical importance of heterogeneous manipula-

tors, several researchers have recently studied teleoperation systems where the master and

slave robots have different configurations. Building on the work [14], scaled synchroniza-
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tion has been proposed for bilateral teleoperators with different configurations [37], but

the master and slave robots system were assumed to be kinematically identical and non-

redundant manipulators. Teleoperation of redundant manipulators was studied in [65],

where the robots are assumed to track a desired trajectory in the task space. However, the

teleoperation system was developed without considering communication delays and the

master and slave robots were required having the same degrees of freedom. Synchroniza-

tion of heterogeneous robotic manipulators following a desired trajectory in the task space

has recently presented in [51]. Even though the individual robotic manipulators could be

nonidentical and the communication delays are considered, all the agents in the system

require the knowledge of a common trajectory, which is rarely feasible in teleoperation

system.

The study of teleoperation system between nonidentical robots has been recently

addressed [50, 54]. Task-space teleoperation with redundant slave robot has been stud-

ied in the presence of constant delays [50]. A control framework and controller were

proposed to guarantee the position and velocity tracking between the master and slave

robots, but external (human and environmental) forces were not considered and the per-

formance of the force reflection was not studied. An interesting teleoperation system has

been developed in [54], where the system utilizes dual master robots to control different

frames assigned on the slave robot. Even though the authors studied the teleoperation

system, where the master and slave robots are nonidentical, the slave robot requires full

control from the human operator. Moreover, the issue of communication delays, a signif-

icant issue in the study of teleoperation systems, was not considered.

It is well known that the presence of time delays in a closed-loop system affects
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the stability of the teleoperation system [1, 79]. The problem of constant time delays in

bilateral teleoperation systems was addressed using scattering or the wave-variable for-

mulation [1,66]. Even though the stability problem is solved by scattering transformation,

position drifts resulting from offset of initial conditions is a well-known problem in such

systems [15]. Without relying on the use of scattering transformation, passive control for

nonlinear robotic teleoperation was studied [47] with constant time delays under the as-

sumption that the system dynamics are known. The result has been further studied in [70]

by demonstrating that it is possible to control a teleoperation system with a simple PD

controller. Recently, without using the scattering transformation, passivity-based syn-

chronization [14] has been utilized to synchronize the state of master and slave robot in

the presence of dynamic uncertainties. To overcome a drawback of the adaptive gravity

compensation algorithm addressed in [14], a new adaptive controller was proposed [71]

to overcome the problem.

As introducing autonomy for various sub-tasks and ensuring stability of the teleop-

eration system in the presence of time delays [28] are important goals for teleoperating

in complex environments, in this chapter, a semi-autonomous control system is proposed

for task-space teleoperation. Considering both time delays and dynamic uncertainties,

the objective of this research is to develop a teleoperation system where the slave robot

can autonomously achieve an additional task while tracking the position and velocity of

the master robot. Hence, the human operator only focuses on controlling the position

of the end-effectors by manipulating the master robot while the slave robot, in addition

to tracking the master position in the task space, is able to accomplish several tasks au-

tonomously.
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The proposed teleoperation system is constituted by a master robot, which could

be a non-redundant or redundant manipulator, with a redundant slave robot. Since the

degrees of freedom in a redundant manipulator is more than the dimension of the task

space, the motion of the redundant robot in the null space of the Jacobian matrix will not

influence the task-space motion. Therefore, this property is utilized for achieving several

sub-tasks, such as singularity avoidance, joint limits, and collision avoidance, to enhance

the overall performance of the teleoperation system. In addition, an obstacle avoidance

algorithm, which is an adaption of a previously proposed collision avoidance scheme for

multi-agent system, is proposed in this chapter for the slave robot to avoid the obstacles

in the remote environment.

The chapter is organized as follows. The control problem is formulated in Sec-

tion 4.2, and the theoretical results for task-space teleoperation system with dynamic

uncertainties and communication delays are presented in Section 4.3. Subsequently, the

semi-autonomous control framework for the redundant slave robot is discussed in Sec-

tion 4.4. The numerical examples for semi-autonomous teleoperation with communi-

cation delays are discussed in Section 4.5. Finally, Section 4.6 summarizes the results

studied in this chapter.

4.2 Problem Formulation

With the assumption that manipulators in the teleoperation system are modeled

by Lagrangian systems (see Appendix A.2) and driven by actuated revolute joints, the
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dynamics of the master and slave robots are given as

M1(q1)q̈1 + C1(q1, q̇1)q̇1 + g1(q1) = JT1 (q1)F1 + τ1

M2(q2)q̈2 + C2(q2, q̇2)q̇2 + g2(q2) = −JT2 (q2)F2 + τ2

(4.1)

where the subscript {1, 2} denote the master robot and slave robot, q1(t) ∈ Rn, q2(t) ∈

Rm, M1(q1) ∈ Rn×n, M2(q2) ∈ Rm×m, C1(q1, q̇1) ∈ Rn×n, C2(q2, q̇2) ∈ Rm×m,

g1(q1) ∈ Rn, g2(q2) ∈ Rm, τ1(t) ∈ Rn and τ2(t) ∈ Rm are the vectors of applied torques,

J1(q1) ∈ Rn×n and J2(q2) ∈ Rn×m are the Jacobian matrices, and F1(t), F2(t) ∈ Rn×1

are the forces exerted by the human operator and the environment on the end-effectors of

the master and slave robot respectively. In order to achieve semi-autonomous teleopera-

tion, the slave robot in this research is assumed to be a redundant manipulator. For the

sake of simplicity, the master robot in the system is assumed to be a non-redundant manip-

ulator; however, a redundant master robot can also be easily incorporated in the proposed

teleoperation framework. The above equations exhibit several fundamental properties

due to their Lagrangian dynamic structure [95], and these properties can be referred to

Appendix A.2.

Let X1(t), X2(t) ∈ Rn represent the position of the end-effector in the task space.

It is related to the joint space vector as

X1 = h1(q1) , Ẋ1 = J1(q1)q̇1

X2 = h2(q2) , Ẋ2 = J2(q2)q̇2

(4.2)

where h1(·) ∈ Rn×n, h2(·) ∈ Rm×n denote the mapping between the joint space and the

task space, and J1(q1) = ∂h1(q1)/∂q1, J2(q2) = ∂h2(q2)/∂q2 are the Jacobian matrices

that are assumed to be known.

77



Master
Robot

Slave
Robot

Sub-task
Controller

1T

2T

Master
Controller

Slave
Controller

Human
Operator

Slave
Environ.

Comm.
Channel

1F

2F1

21 1,q q

2 2,q q

s

2 2,q q

1 1,X X

2 2,X X

Figure 4.1: Framework of the proposed semi-autonomous teleoperation system.

In general, lack of complete information (such as obstacles, slave joint limits) about

the remote environment can make teleoperation a tedious task for the human operator. To

address this issue, and to ensure that the teleoperation system is not restricted by the cog-

nitive limitation of the human operator, a semi-autonomous teleoperation framework is

studied in this chapter. As seen in Figure 1, the position and velocity signals, Xi and

Ẋi, are transmitted between the master and slave controller via a communication chan-

nel, which is subjected to constant delays. In the proposed framework, a teleoperation

controller is developed so that the end-effector of the slave robot tracks the corresponding

position of the master robot. Additionally, a sub-task controller is also developed that

exploits the redundancy of the slave robot, to ensure autonomous compliance with other

goals, such as obstacle avoidance, etc., in teleoperation mission. The theoretical formu-

lations proposed in this research ensure that the interaction of the sub-task controller and

the teleoperation controller results in a stable closed-loop system. Moreover, the feedback

signals from the slave robot provide the human operator with a perception of the remote

environment. Hence, the human operator only focuses on manipulating the end-effector

of the slave robot, and the redundant slave robot is able to achieve an additional sub-task

autonomously while tracking the master robot.
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The tracking errors are defined by

e1(t) = X2(t− T2)−X1(t)

e2(t) = X1(t− T1)−X2(t)

(4.3)

where T1 and T2 are the constant time delays in the communication channel. In the rest of

this chapter, for the sake of simplicity, the argument of time-dependent signals are omit-

ted, for example e1 ≡ e1(t), unless otherwise required for the sake of clarity. To develop

the aforementioned semi-autonomous teleoperation system, the following problems are

studied in this chapter:

P1 In the presence of communication delays and dynamic uncertainties, design a syn-

chronization controller for the heterogeneous master and slave robots in free motion

to accomplish the position and velocity tracking (Theorem 4.1) such that

limt→∞ e1(t) = limt→∞ e2(t) = 0

limt→∞ ė1(t) = limt→∞ ė2(t) = 0.

(4.4)

P2 If the human operator provides a damping force and the slave robot is allowed to

move freely (Theorem 4.2), demonstrate that the position and velocity of the master

and the slave robots converge asymptotically (4.4).

P3 On hard contact of the slave robot with the remote environment, and when the

human operator exerts non-passive force, ensure the boundedness of the position

tracking e1, e2 (4.3), and force reflection errors (Theorem 4.3).

P4 Based on the proposed teleoperation framework, study the semi-autonomous behav-

ior for P1 to P3 by utilizing the redundancy of the slave robot (Section 4.4).
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The task space teleoperation system between heterogeneous robotic system is first studied

in Section 4.3, and the semi-autonomous control is presented in Section 4.4.

4.3 Task-Space Teleoperation

Let the control input τi (4.1) i = {1, 2} be given as

τi = M̂iai + Ĉivi + ĝi −Kisi − JTi τ̄i

= YiΘ̂i −Kisi − JTi τ̄i (4.5)

where M̂i(qi), Ĉi(qi, q̇i), and ĝi(qi) denote the estimate of Mi, Ci, and gi, which may

include unknown parameters of the manipulator. The formulation Yi(qi, q̇i, vi, ai)Θ̂i =

M̂iai + Ĉivi + ĝi is due to Property A.2 (see Appendix A) for Lagrangian systems, Ki

is positive-definite diagonal matrix, and τ̄i is the coordinating control that will be subse-

quently defined.

The signal ai, vi, and si in (4.5) are defined as

s1 = −J−1
1 λe1 + q̇1

v1 = q̇1 − s1 = J−1
1 λe1 (4.6)

a1 = q̈1 − ṡ1 = J̇−1
1 λe1 + J−1

1 λė1

s2 = −J+
2 λe2 + q̇2 − (Im − J+

2 J2)ψs

v2 = q̇2 − s2 = J+
2 λe2 + (Im − J+

2 J2)ψs (4.7)

a2 = q̈2 − ṡ2 = J̇+
2 λe2 + J+

2 λė2 +
d

dt
[(Im − J+

2 J2)ψs]

where λ is a positive control constant, ψs ∈ Rm is the negative gradient of an appropri-

ately defined convex function (for sub-task control in Figure 4.1), Im is a m×m identity
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matrix, J−1
1 ∈ Rn×n is the inverse of J1, and J+

2 ∈ Rm×n is the pseudo-inverse of J2,

which is defined by J+
2 = JT2 (J2J

T
2 )−1 and satisfies J2J

+
2 = In.

By defining ri = Jisi and substituting si into ri, it can be obtained that

ri = Jisi = −λei + Jiq̇i = −λei + Ẋi (4.8)

where the property of the pseudo-inverse matrix J+
2 that J2(Im − J+

2 J2) = 0 [115] is

utilized.

On substituting the controller (4.5) in the robot dynamics (4.1), the closed-loop

system for the master and slave robots can be written as

M1ṡ1 + C1s1 +K1s1 = Y1Θ̃1 − JT1 τ̄1 + JT1 F1

M2ṡ2 + C2s2 +K2s2 = Y2Θ̃2 − JT2 τ̄2 − JT2 F2

(4.9)

where Θ̃i = Θ̂i −Θi is the estimation error of unknown parameters.

Define the coordinating control τ̄1 and τ̄2 as

τ̄i = krri −KJ ėi (4.10)

where kr is a positive constant gain, and KJ is a positive definite constant matrix. By

letting the time-varying estimates of the uncertain parameters evolve as

˙̂
Θi = −ΓiY

T
i si (4.11)

where Γi is a positive-definite matrix.

Denote by C = C([−Ti, 0], Rn), the Banach space of continuous functions map-

ping the interval [−Ti, 0] into Rn, with the topology of uniform convergence. Let z =

[s1 s2 e1 e2 Θ̃1 Θ̃2]T and define zt = z(t + φ) ∈ C, −Ti ≤ φ ≤ 0 as the state of the
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system [27]. It is assumed in this chapter that z(φ) = η(φ), η ∈ C and all signals belong

to L2e, the extended L2 space. Based on the aforementioned formulation, the following

result provides a solution to the problem (P1).

4.3.1 Free Motion

In this section, the convergence of position and velocity tracking errors to the ori-

gin is studied for the proposed teleoperation system. The heterogeneous master and slave

robots are considered to be able to move freely under dynamic uncertainties and commu-

nication delays (P1). The first theorem is addressed as follows.

Theorem 4.1 Consider the closed-loop teleoperation system described by (4.9), (4.10)

and the update law (4.11). Assume that the Jacobian matrix of the non-redundant master

manipulator is full rank. Then in free motion (F1 = F2 = 0) the task space position

error (ei) and the velocity error (ėi) asymptotically approach the origin independent of

the constant communication delays.

Proof Consider a positive-definite storage functional V for the system as

V (zt) =
1

2

∑
i={1,2}

(
sTi Misi + Θ̃T

i Γ−1Θ̃i + λeTi KJei +

∫ t

t−Ti
ẊT
i (σ)KJẊi(σ)dσ

)
.

Taking the time derivative of the storage function, V̇ (zt) is given by

V̇ (zt) =
∑

i={1,2}

(
sTi (−Cisi −Kisi − JTi τ̄i + YiΘ̃i) +

1

2
siṀisi + Θ̃T

i Γ−1
i (−ΓiY

T
i si)

+λeTi KJ ėi +
1

2
ẊT
i KJẊi −

1

2
ẊT
i (t− Ti)KJẊi(t− Ti)

)
. (4.12)

Using Property A.3 and substituting the coordinating control (4.10), the derivative be-
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comes

V̇ (zt) =
∑

i={1,2}

(
− sTi JTi (krri −KJ ėi)− sTi Kisi + λeTi KJ ėi +

1

2
ẊT
i KJẊi

−1

2
Ẋi(t− Ti)KJẊi(t− Ti)

)
. (4.13)

As ri = Jisi and ri = −λei + Ẋi, the derivative can be rewritten as

V̇ (zt) =
∑

i={1,2}

(
− krrTi ri + (−λei + Ẋi)

TKJ ėi − sTi Kisi + λeTi KJ ėi (4.14)

+
1

2
ẊT
i KJẊi −

1

2
Ẋi(t− Ti)KJẊi(t− Ti)

)
.

Substituting ė1 = Ẋ2(t− T2)− Ẋ1 and ė2 = Ẋ1(t− T1)− Ẋ2 yields

V̇ (zt) = −krrT1 r1 − krrT2 r2 − sT1K1s1 − sT2K2s2 −
1

2
ẊT

1 KJẊ1

+ẊT
1 KJẊ2(t− T2)− 1

2
ẊT

2 (t− T2)KJẊ2(t− T2)− 1

2
ẊT

2 KJẊ2

+ẊT
2 KJẊ1(t− T1)− 1

2
ẊT

1 (t− T1)KJẊ1(t− T1)

= −
∑

i={1,2}

(
krr

T
i ri + sTi Kisi +

1

2
ėTi KJ ėi

)
≤ 0. (4.15)

As V is positive-definite and V̇ is negative semi-definite, limt→∞ V exists and is finite.

Therefore, ri, si, ėi ∈ L2, and si, Θ̃i, ei ∈ L∞. From (4.10), it can be obtained that

τ̄i ∈ L∞, hence utilizing Property A.1 and A.4 provides that ṡi ∈ L∞ from (4.9). As

si ∈ L2, and ṡi ∈ L∞, it can show that limt→∞ si(t) = 0. Since si, ṡi ∈ L∞, the

derivative of ri = Jisi, which is ṙi = J̇isi + Jiṡi, results in ṙi ∈ L∞. By utilizing

Barbalat’s Lemma, ri ∈ L2 and ṙi ∈ L∞ result in limt→∞ ri(t) = 0. Taking the derivative

of ri = −λei + Ẋi, thus ṙi = −λėi + Ẍi, then Ẍi ∈ L∞, which implies ëi ∈ L∞. Noting

that ėi ∈ L2 and ëi ∈ L∞, limt→∞ ėi(t) = 0.
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The definition of r1 and r2 in (4.8) gives that

r1 = −λe1 + Ẋ1 (4.16)

r2 = −λe2 + Ẋ2 (4.17)

Delaying (4.16) by T1 and subtracting from (4.17) yields

r1(t− T1)− r2 = −λ(e1(t− T1)− e2) + (Ẋ1(t− T1)− Ẋ2)

= −λ(X2(t− T1 − T2) +X2 − 2X1(t− T1)) + ė2. (4.18)

Since limt→∞ ri(t) = limt→∞ ėi(t) = 0, taking limit of (4.18) for t→∞ yields that

−2 lim
t→∞

(X1(t− T1)−X2(t)) = lim
t→∞

(X2(t)−X2(t− T1 − T2)).

By noting that X2(t)−X2(t− T1 − T2) =
∫ t
t−T1−T2 Ẋ2(σ)dσ, the above equation can be

rewritten as

−2 lim
t→∞

e2(t) = lim
t→∞

∫ t

t−T1−T2
Ẋ2(σ)dσ. (4.19)

Observing that limt→∞ r2(t) = 0, taking limit of (4.17) results in λ limt→∞ e2(t) =

limt→∞ Ẋ2(t). Hence, (4.19) becomes

−2

λ
lim
t→∞

Ẋ2(t) = lim
t→∞

∫ t

t−T1−T2
Ẋ2(σ)dσ. (4.20)

Since limt→∞ ė1(t) = limt→∞ ė2(t) = 0, limt→∞(ė2(t) + ė1(t− T1)) = 0 gives that

lim
t→∞

(Ẋ2(t− T1 − T2)− Ẋ2(t)) = 0.

From the above equation, it is obtained that limt→∞ Ẋ2(t) is either a constant or a periodic

signal with period T1 + T2. By assuming first that limt→∞ Ẋ2(t) is a periodic signal,
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limt→∞
∫ t
t−T1−T2 Ẋ2(σ)dσ = constant. Thus, it is evident that the right term of (4.20)

satisfies

−2

λ
lim
t→∞

Ẋ2(t) = lim
t→∞

∫ t

t−T1−T2
Ẋ2(σ)dσ = constant

which contradicts the assumption that limt→∞ Ẋ2(t) is a periodic signal. Accordingly,

limt→∞ Ẋ2 can only be a constant. By denoting limt→∞ Ẋ2(t) = X̄c2, where X̄c2 is a

constant, (4.20) can be rewritten as

−2

λ
X̄c2 = lim

t→∞

∫ t

t−T1−T2
Ẋ2(σ)dσ = (T1 + T2)X̄c2

where the second equality results from the mean value theorem. Therefore, it is given

that (T1 + T2)X̄c2 + 2
λ
X̄c2 = 0. Since T1 + T2 and λ are both positive constants, the only

solution is X̄c2 = 0, which leads to limt→∞ Ẋ2(t) = 0. Following similar arguments,

it can be demonstrated that limt→∞ Ẋ1(t) = 0. As limt→∞ ri(t) = limt→∞ Ẋi(t) = 0,

from (4.8) the tracking errors satisfy limt→∞ ei(t) = 0. Consequently, the position and

velocity tracking errors of the closed loop teleoperation system are stable and approach

the origin independent constant communication delays. 2

Remark 4.1 The convergence of position and velocity errors between the master and

slave robots in the teleoperation system can be guaranteed if limt→∞ ei(t) = 0 and

limt→∞ ėi(t) = 0. In Theorem 4.1, it is also shown that limt→∞ si(t) = 0 as the conver-

gence of si to the origin is necessary (see Section 4.4) for utilizing the null space of the

redundant manipulator to accomplish semi-autonomous behavior (with the use of sub-task

control). For the robot without requiring sub-task control, for example the non-redundant

master robot, the term Kisi in the control input (4.5) could be eliminated. Following the
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proof of Theorem 4.1 for K1 = 0, it can be obtained that limt→∞ ei(t) = limt→∞ ėi(t) =

0 and limt→∞ s2(t) = 0. Accordingly, the proposed task space teleoperation system can

still guarantee the convergence of position and velocity errors in free motion.

4.3.2 Damping Force from the Human Operator

The next result addresses the case when the human operator provides a damping

force while there is no contact force between the slave robot and the remote environment

(P2). The external force for the teleoperation system is given as F1 = −kdẊ1 and F2 = 0,

where kd is a positive constant. A lemma that is utilized in this section for the proof of

stability is addressed first.

Lemma 4.1 [15] Given signals x, y ∈ Rn, ∀T > 0 there exists α > 0 such that the

following inequality holds

−
∫ t

0

xT (σ)

∫ 0

−T
y(σ + θ)dθdσ ≤ α

2
‖x‖2

2 +
T 2

2α
‖y‖2

2 (4.21)

where ‖ · ‖2 denotes the L2 norm of the enclosed signal.

Denoting T̄ = T1 + T2 and Λ = 1
4krT̄ 2

(√
k2
d + 16k2

r T̄
2 + 16krkdT̄ 2− kd

)
> 0, the

next theorem follows.

Theorem 4.2 Consider the closed-loop teleoperation system described by (4.9), (4.10)

and the update law (4.11). If the human operator provides a damping force, and the Ja-

cobian matrix of the master manipulator is full rank, then for the range of gains satisfying

Λ > λ > kd
2kr

, ei → 0 and ėi → 0 as t→∞. Therefore, the teleoperation system achieve

position and velocity tracking in task space in the presence of constant communication

delays.
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Proof Consider a positive-definite storage functional for the system as

V (zt) =
1

2

∑
i={1,2}

(
sTi Misi + Θ̃T

i Γ−1Θ̃i + λeTi KJei (4.22)

+

∫ t

t−Ti
ẊT
i (σ)KJẊi(σ)dσ

)
+ λkr(X1 −X2)T (X1 −X2).

Following the proof of Theorem 4.1 with F1 = −kdẊ1, the derivative of V is given as

V̇ (zt) = −
∑

i={1,2}

(
krr

T
i ri + sTi Kisi +

1

2
ėTi KJ ėi

)
− kdrT1 Ẋ1

+2λkr(X1 −X2)T (Ẋ1 − Ẋ2). (4.23)

On substituting (4.8) to expand the term krr
T
i ri, the derivative of V becomes

V̇ (zt) = −
∑

i={1,2}

(
λ2kre

T
i ei − 2λkre

T
i Ẋi + krẊ

T
i Ẋi + sTi Kisi +

1

2
ėTi KJ ėi

)
+λkde

T
1 Ẋ1 − kdẊT

1 Ẋ1 + 2λkr(X1 −X2)Ẋ1 + 2λkr(X2 −X1)Ẋ2

= −
∑

i={1,2}

(
λ2kre

T
i ei + krẊ

T
i Ẋi + sTi Kisi +

1

2
ėTi KJ ėi

)
+2λkr(X2(t− T2)−X1)T Ẋ1 + 2λkr(X1 −X2)Ẋ1

+2λkr(X1(t− T1)−X2)T Ẋ2 + 2λkr(X2 −X1)Ẋ2

+λkde
T
1 Ẋ1 − kdẊT

1 Ẋ1.

By noting that Xi(t− Ti)−Xi(t) =
∫ 0

−Ti Ẋi(t+ σ)dσ, the above equation becomes

V̇ (zt) = −
∑

i={1,2}

(
λ2kre

T
i ei + krẊ

T
i Ẋi + sTi Kisi +

1

2
ėTi KJ ėi

)
−2λkrẊ

T
1

∫ 0

−T2
Ẋ2(t+ σ)dσ − 2λkrẊ

T
2

∫ 0

−T1
Ẋ1(t+ σ)dσ

−kdẊT
1 Ẋ1 + λkde

T
1 Ẋ1. (4.24)

By expanding the term λkde
T
1 Ẋ1 ≤ 1

2
λkd(e

T
1 e1 + ẊT

1 Ẋ1), integrating (4.24) from 0 to t,
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and using Lemma 4.1 it can be obtained that

V (t)− V (0) ≤ −
∑

i={1,2}

(
λ2kr‖ei‖2

2 + kr‖Ẋi‖2
2 +Ki‖si‖2

2 +
1

2
KJ‖ėi‖2

2

)
+2λkr

(α1

2
‖Ẋ1‖2

2 +
T 2

2

2α1

‖Ẋ2‖2
2 +

α2

2
‖Ẋ2‖2

2 +
T 2

1

2α2

‖Ẋ1‖2
2

)
−kd‖Ẋ1‖2

2 +
1

2
λkd(‖e1‖2

2 + ‖Ẋ1‖2
2). (4.25)

The coefficients of ‖Ẋ1‖2
2, ‖Ẋ2‖2

2, and ‖e1‖2
2 have to be negative in order to guarantee

that V (t)− V (0) ≤ 0, ∀t > 0. Therefore, it is given that from the coefficient of ‖e1‖2
2

λkr >
1

2
kd (4.26)

and from the coefficients of ‖Ẋ1‖2
2 and ‖Ẋ2‖2

2
(kr + kd − 1

2
λkd) > λkr(α1 +

T 2
1

α2
)

kr > λkr(α2 +
T 2
2

α1
)

(4.27)

The above equation (4.27) have positive solutions α1 and α2 if kr+kd− 1
2
λkd > λ2kr(T1+

T2)2 = λ2krT̄
2, which can be rewritten as

λ2krT̄
2 +

1

2
λkd − (kr + kd) < 0. (4.28)

Observing that λ has to satisfy the inequality λ > kd
2kr

> 0 from (4.26) and Λ > λ > −Λ

from (4.28), it is given that Λ > λ > kd
2kr

.

Consequently, if gains and time delays satisfy the conditions Λ > λ > kd
2kr

, then

V (t) − V (0) ≤ 0, ∀t > 0, and hence the signals si, ei, ėi, Ẋi ∈ L2. Moreover,

si, Θ̃i, ei, X1 − X2 ∈ L∞ because V is bounded. From the definition of ri in (4.8),

the signals ri ∈ L2. Following the argument in the proof of Theorem 4.1, limt→∞ si =
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limt→∞ ri = limt→∞ ei = limt→∞ ėi = limt→∞ Ẋi = 0. Hence, the position and veloc-

ity errors between the master and slave robot converge to the origin in the presence of

communication delay. 2

Remark 4.2 For the teleoperation system in Theorem 4.2, the exact value of kd and T̄ do

not have to be known a priori. The inequality Λ > kd
2kr

has to satisfy for the existence of

λ. Thus, the inequality can be rewritten by

1

4krT̄ 2

(√
k2
d + 16k2

r T̄
2 + 16krkdT̄ 2 − kd

)
>

kd
2kr

.

After rearranging the above equation, it becomes

4(
kr
kd

)2 + 4(
kr
kd

)− 1 > T̄ 2. (4.29)

By selecting the maximum acceptable kd and T̄ , the range of control gain kr can be

obtained from (4.29). Noting that the control gain λ exists if (4.29) is satisfied, the desired

value of λ can be selected from Λ > λ > kd
2kr

.

4.3.3 Hard Contact with the Environment

In the last part of this section, the stability of task space teleoperation when the slave

robot in contact with the environment, which is assumed to be passive with respect to r2,

and the human operator exerts a non-passive force to the master robot (P3) are studied.

The human and environmental force are given as

F1 = Kf − khr1, F2 = ker2 (4.30)

where Kf is a positive bounded vector in Rn, and kh, ke are bounded nonnegative con-

stant. In this case, it is assumed that there is no dynamic uncertainty, which implies that
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Θ̃i ≡ 0. Hence, the closed loop dynamics of the teleoperation system can be written as

M1ṡ1 + C1s1 +K1s1 = −JT1 τ̄1 + JT1 F1

M2ṡ2 + C2s2 +K2s2 = −JT2 τ̄2 − JT2 F2

(4.31)

The next lemma is utilized in this section for the proof of stability.

Lemma 4.2 [31] Given signals x, y ∈ Rn, ∀T > 0 and a positive definite matrix Υ

such that the following inequality holds

−2xT (t)

∫ t

t−T
y(σ)dσ −

∫ t

t−T
yT (σ)Υy(σ)dσ ≤ TxT (t)Υ−1x(t). (4.32)

Letting z = [s1 s2 e1 e2]T , the result for the hard contact case is addressed.

Theorem 4.3 Consider the closed-loop teleoperation system described by (4.31) and (4.10).

If the external force exerting to the teleoperation system are given as (4.30), and the Ja-

cobian matrix of the non-redundant master manipulator is full rank, then for the range of

gains kr > 1
2(1−λT̄ )

> 1
2
, all signals in the system are ultimately bounded.

Proof Consider a positive-definite storage functional V for the system as

V (zt) =
1

2

∑
i={1,2}

(
sTi Misi + λeTi KJei +

∫ t

t−Ti
ẊT
i (σ)KJẊi(σ)dσ

+λkr

∫ t

t−Ti
(θ − t+ Ti)Ẋ

T
i (θ)Ẋi(θ)dθ

)
+ λkr(X1 −X2)T (X1 −X2).

It is to be noted that V (zt) > 0, ∀z(t) 6= 0. Taking the time derivative of the storage

function, V̇ (zt) is given by

V̇ (zt) =
∑

i={1,2}

(
− krrTi ri − sTi Kisi −

1

2
ėTi KJ ėi + λkrTiẊ

T
i Ẋi

−λkr
∫ t

t−Ti
ẊT
i (θ)Ẋi(θ)dθ

)
+ rT1 F1 − rT2 F2
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+2λkr(X1 −X2)T (Ẋ1 − Ẋ2). (4.33)

Expanding the term krr
T
i ri and substituting F1, F2 from (4.30), the above equation be-

comes

V̇ (zt) = −
∑

i={1,2}

(
λ2kre

T
i ei + krẊ

T
i Ẋi + sTi Kisi +

1

2
ėTi KJ ėi

)
−2λkrẊ

T
1

∫ t

t−T2
Ẋ2(σ)dσ − 2λkrẊ

T
2

∫ t

t−T1
Ẋ1(σ)dσ

+λkrT1Ẋ
T
1 Ẋ1 − λkr

∫ t

t−T1
ẊT

1 (θ)Ẋ1(θ)dθ

+λkrT2Ẋ
T
2 Ẋ2 − λkr

∫ t

t−T2
ẊT

2 (θ)Ẋ2(θ)dθ

+KT
f r1 − khrT1 r1 − kerT2 r2. (4.34)

Utilizing Lemma 4.2 for the integral terms in (4.34) and expanding r1 in KT
f r1, it can be

obtained that

V̇ (zt) ≤ −
∑

i={1,2}

(
λ2kre

T
i ei + krẊ

T
i Ẋi + sTi Kisi +

1

2
ėTi KJ ėi

)
+λkrT1Ẋ

T
1 Ẋ1 + λkrT1Ẋ

T
2 Ẋ2 + λkrT2Ẋ

T
2 Ẋ2 + λkrT2Ẋ

T
1 Ẋ1

−λKT
f e1 +KT

f Ẋ1 − khrT1 r1 − kerT2 r2

≤ −
∑

i={1,2}

(
λ2kre

T
i ei + krẊ

T
i Ẋi + sTi Kisi +

1

2
ėTi KJ ėi

)
+λkrT̄ Ẋ

T
1 Ẋ1 + λkrT̄ Ẋ

T
2 Ẋ2 − khrT1 r1

−kerT2 r2 +KT
f Kf +

1

2
ẊT

1 Ẋ1 +
1

2
λ2eT1 e1

≤ −λ2(kr −
1

2
)eT1 e1 − krλ2eT2 e2 − sT1K1s1 − sT2K2s2

−1

2
ėT1KJ ė1 −

1

2
ėT2KJ ė2 −

(
kr −

1

2
− λkrT̄

)
ẊT

1 Ẋ1

−
(
kr − λkrT̄

)
ẊT

2 Ẋ2 − khrT1 r1 − kerT2 r2 +KT
f Kf .

From the coefficient of ẊT
1 Ẋ1, the gains can be chosen by kr > 1

2(1−λT̄ )
> 1

2
, which
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implies λT̄ < 1 and kr > 1
2
. Then, the derivative of V becomes

V̇ (zt) ≤ −λ2(kr −
1

2
)eT1 e1 − λ2kre

T
2 e2 − sT1K1s1 − sT2K2s2 +KT

f Kf .

Define 0 < η < 1 and denote Kmin := min
{
λmin(Ki), (λ2(kr − 1

2
))
}

, where λmin(·) is

the smallest eigenvalue of the enclosed matrix, the derivative becomes

V̇ ≤ −Kmin(1− η)‖z‖2 −Kminη‖z‖2 +KT
f Kf

≤ −Kmin(1− η)‖z‖2 ∀ ‖z‖ ≥

√
KT
f Kf

Kminη
. (4.35)

Since Kmin, η are bounded away from zero, and Kf is assumed to be bounded, V̇ (zt) <

0, ∀z(t) 6= 0 for large values of the norm of z(t). Therefore, the trajectories of the system

are ultimately bounded. 2

Remark 4.3 In the case of hard contact scenario, the teleoperation system is expected

to achieve static force reflection. However, in comparison to the previous work in joint-

space teleoperation [15, 47], where the force reflection (F1 → F2) was accomplished, the

force feedback error in the proposed semi-autonomous teleoperation system with hard

contact can only be guaranteed to be bounded. For the static force reflection, suppose

that q̇1, q̇2, q̈1, q̈2 → 0 [15, 47], then ṡ1, ṡ2 → 0. From the closed-loop dynamics of the

teleoperation system (4.31) with Property A.4, it is evident that

F1 → −krλ(X2 −X1) + ζ1K1s1

F2 → krλ(X1 −X2)− ζ2K2s2

(4.36)

where ζ1 is the inverse of JT1 , and ζ2 is the pseudo-inverse of JT2 . Therefore, (4.36) guar-

antees that the force feedback error is bounded. Since the term K1s1 can be eliminated

for the non-redundant master robot, as discussed in Remark 4.1, the force feedback from
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the slave robot to the master robot becomes F1 = −krλ(X2 − X1). Consequently, the

human operator feels a force proportional to the difference between the position of master

and slave robot in the task space.

Since the slave robot is assumed to be a redundant manipulator, the null space of

the Jacobian matrix has a minimum dimension of m− n, and the task-space motion will

not be influenced by the link velocity in the null space. Hence, this property can be

utilized to achieve a desired sub-task control by appropriately designing the vector ψs

for the slave robot. According to [30], the sub-task tracking error is defined as esN =

(Im − J+
2 J2)(q̇2 − ψs) for the redundant slave robot. Pre-multiplying s2(t) in (4.7) by

(Im − J+
2 J2), it is obtained that the relation between the sub-task tracking error esN and

s2 as

(Im − J+
2 J2)s2 = (Im − J+

2 J2)J+
2 λe2 + (Im − J+

2 J2)q̇2

−(Im − J+
2 J2)(Im − J+

2 J2)ψs

= (Im − J+
2 J2)(q̇2 − ψs) = esN (4.37)

where the properties of pseudo-inverse J+
2

(Im − J+
2 J2)J+

2 = 0, (Im − J+
2 J2)(Im − J+

2 J2) = Im − J+
2 J2

are utilized. Hence, if limt→∞ s2(t) = 0 (Theorem 4.1 and 4.2), the sub-task tracking

errors approach the origin. Moreover, if s2 is only ultimately bounded (Theorem 4.3), the

sub-task tracking error will also be bounded as Im − J+
2 J2 is bounded. This result can

be utilized in several sub-task controls that enable the semi-autonomous characteristics
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of the teleoperation system. Details on the semi-autonomous control problem (P4) are

provided in the next section.

4.4 Semi-Autonomous Control for the Slave Robot

Based on the framework discussed in Section 4.3, the redundancy of the slave robot

can be used for achieving sub-task control for enhancing the performance of the teleop-

eration system. The gradient projection method [90] is utilized in this research with the

proposed teleoperation framework in order to achieve semi-autonomous behavior of the

slave robot. The sub-task of the slave robot can be controlled by designing the auxiliary

function ψs for various applications and demand. Any differentiable auxiliary function

can be used for ψs as long as it can be expressed in terms of joint angles or end-effector

position. While other sub-task control methods might suffer from severe computational

requirements [64, 90], the gradient projection method is more useful and suitable for

application in teleoperation systems.

As the slave manipulator is redundant, the null space of the Jacobian matrix has

a minimum dimension of m − n. Therefore, the task space velocity of the redundant

manipulator will not be affected by the link velocity in the null space. The function

(Im − J+
2 J2)ψs in (4.7) can be considered as the desired velocity in the null space of J2.

Hence, a convex function f(q2) whose minima leads to the desired configuration can be

defined to control the redundancy of the slave manipulator. In this section, qs, Xs, and

Js are used to denote the generalized configuration coordinates, the position of the end-

effector, and the Jacobian matrix of a redundant manipulator under the sub-task control.

94



Then, the negative gradient function of the convex function is given by

ψs = − ∂

∂qs
f(qs) (4.38)

which is utilized for achieving the sub-task for the redundant slave robot. In this section,

three sub-task control objectives, that is singularity avoidance, joint limits, and colli-

sion avoidance, are discussed for demonstrating the applicability of the proposed semi-

autonomous architecture.

4.4.1 Singularity Avoidance

The first sub-task considered for semi-autonomous teleoperation is singularity avoid-

ance for the slave robotic system. The goal is to regulate the configuration of slave robot

for avoiding configurations that result in singularity. To this end, the purpose is to increase

the manipulability of the manipulator [64, 65, 114]. Hence, the convex function for this

sub-task can be defined as f(qs) = −
√

det (JsJTs ). Then, the negative gradient of the

convex function is given as

ψs = − ∂

∂qs
f(qs) =

∂

∂qs

√
det(JsJTs ). (4.39)

Using this auxiliary function, the slave robot will regulate its configuration to increase the

manipulability while tracking the position of master robot in the task space. Simulation

results will be demonstrated in the next section to show the utility of this approach.

4.4.2 Joint Angle Limits

In order to enhance the teleoperation performance, the redundancy in the slave robot

can be utilized for respecting joint angle constraints that may occur due to the mechanical
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constraints or may be induced by the operating environment. For example, to maintain

joint limits the function can be defined as [104]

f(qs) = −Πm
j=1

(
(1− qsj

qmaxsj

)(
qsj
qminsj

− 1)
)

(4.40)

where qsj is the jth joint angle of the redundant robot with j = 1, · · · ,m, qmaxsj denotes

the maximum angle for the jth joint, and qminsj denotes the minimum angle for the jth joint.

Then, the auxiliary function is given by (4.38). Moreover, the convex function f(qs) can

also be replaced by other functions to maintain joint angle limits. For example, if the

convex function is defined as f(qs) = (qsi − 1)2 + (qsj − 0.5)2, then using (4.38), the

sub-task control will force the ith joint towards 1rad and the jth joint towards 0.5rad.

4.4.3 Collision Avoidance

In the last and practically important case, the sub-task control is used for guaran-

teeing collision avoidance between links of the slave robot and obstacles in the operating

environment. Utilizing redundancy of the manipulators to achieve collision avoidance

has been studied in [25, 62, 80]. As collision avoidance were treated as a path-planning

problem, these previous methods are more effective for off-line path planning but are not

ideal for real-time obstacle avoidance. A real-time algorithm has been presented in [39]

by utilizing attractive function for the goal position and repulsive function for obstacles

to avoid collision. However, in a teleoperation system, the desired position or trajectory

is manipulated by the human operator, so there is no predefined trajectory available for

the slave robot.

Hence, a collision avoidance scenario, which is adapted from [98] that was origi-
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nally developed for collision avoidance in multi-agent systems, is addressed in this sec-

tion. The proposed collision avoidance method can be utilized for real-time control, and

only the local distance between the designated collision-free points on the robot and the

obstacle is required for implementing the control algorithm. Moreover, the redundant

robot is unaffected by the collision avoidance control if the designated collision-free

points are outside the sensing regions. In addition, if there exists collision-free config-

urations and paths, the position tracking in the end-effector of the redundant robot can be

guaranteed.

Denote as Xsk, the point on the redundant slave manipulator that need to be pro-

tected from collisions with the obstacles in the environment, and letXo denote the location

of obstacles. Consider the avoidance function between Xsk and Xo as

fk(qs) =
(

min
{

0,
‖Xsk −Xo‖2 −R2

‖Xsk −Xo‖2 − r2

})2

, k ∈ Ω (4.41)

where ‖Xsk −Xo‖ is the distance between Xsk and Xo, Ω is the set of points that are de-

signed for avoiding collision, R denotes the avoidance distance, and r denotes the avoid-

ance region which is the smallest safe distance of ‖Xsk−Xo‖. When the distance between

Xsk and Xo is less than R, the aim of the avoidance function is to change the configura-

tion of the redundant manipulator for guaranteeing that the distance between Xsk and Xo

will remain greater than the safe distance r.

It is assumed that ‖Xsk−Xo‖ is larger thanR for the initial configuration. Denoting

the distance between Xsk and Xo as dko = ‖Xsk − Xo‖, the sub-task control for Xsk is

given as the negative gradient of the potential function and can be written as

ψsk = − [∂fk(qs)
∂qs1

∂fk(qs)
∂qs2

· · · ∂fk(qs)
∂qsm

]T (4.42)
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Figure 4.2: Diagram of collision avoidance scenario.

where ∂fk(qs)
∂qsj

for j = 1, · · · ,m is given by

∂fk(qs)

∂qsj
=
∂fk(qs)

∂Xsk

∂Xsk

∂qsj
=



0 if dko ≥ R

4
[

(R2−r2)(d2ko−R
2)

(d2ko−r2)3

]
(Xsk −Xo)

T ∂Xsk

∂qsj
if r < dko < R

not defined if dko = r

0 if dko < r

(4.43)

Due to the assumption that the manipulators are composed of actuated revolute joints,

∂Xsk

∂qsj
in the above equation can be obtained from the column of the Jacobian matrix.

Additional details can be seen from the diagram of the collision avoidance method

in Figure 4.2, where the redundant manipulator has to avoid an obstacle located at Xo.

The points chosen to avoid the obstacle can be either at a joint Xs1 or on a link Xs2.

Using (4.42) and (4.43), the distance d1o and d2o keep larger than r, which is the safe

distance between the manipulator and the obstacle. Taking the collision-free point at a
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joint as an example, the term ∂Xs1

∂qsj
in (4.43) is equal to the jth column of the Jacobian

matrix with Ls1 = Ls1 and Lsi = 0, where i = 2, · · · ,m. Here, Lsi denotes the length

of link of the redundant manipulator. If the collision-free point is designed to be on a link

as Xs2 in Figure 4.2, the term ∂Xs2

∂qsj
in (4.43) is equal to the jth column of the Jacobian

matrix with Ls1 = Ls1, Ls2 = ls2, and Lsi = 0, where i = 3, · · · ,m. Here, lsi denotes

the length from the ith joint to the collision-free point on the ith link.

For different applications, there could be several such collision points, and in that

case the auxiliary function is the summation of these negative gradients (ψs =
∑

k∈Ω ψsk)

of the various avoidance functions. Moreover, this method can be extended to the case

with multiple obstacles in the environment.

Remark 4.4 In the presence of hard contact (Theorem 4.3), the signals of the teleop-

eration system are ultimately bounded. Since the semi-autonomous control is based on

the convergence of signal s2, the fact that s2 is only bounded under hard contact can not

guarantee the convergence of sub-task tracking errors, but can still ensure boundedness of

the errors from (4.37). Based on the collision avoidance control proposed in this section,

even though the sub-task tracking errors esN are not able to converge to the origin, the fact

that s2 is bounded still guarantees that ψs is bounded. Hence, from (4.42) and (4.43), the

boundedness of ψs ensures that the designated collision-free points of the slave robot do

not enter the regions of the safe distance r, provided existence of a collision-free config-

uration and trajectory is feasible. Consequently, the collision avoidance control ensures

that the slave redundant robot to avoid colliding obstacles in the presence of human and/or

environmental force.
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4.5 Simulation Results

Numerical simulations are presented in this section to demonstrate the efficacy of

the proposed semi-autonomous teleoperation system. The following simulations employ

a 2-DOF planar master robot and a 3-DOF planar slave robot, which is a redundant ma-

nipulator. The reader is referred to [95] for the dynamics of the robots. The physical

parameters of the manipulators are given as m1 = [3.14, 2.26]kg, I1 = [0.16, 0.07]kgm2,

L1 = [1.04, 0.96]m, m2 = [3.12, 1.85 1.02]kg, I2 = [0.12, 0.07, 0.04]kgm2, L2 =

[1.08, 0.98, 0.94]m, and g = 9.8. The control gains, which are assumed to be identi-

cal throughout this section, are given as λ = 0.8, kr = 8, K1 = 2I2, K2 = 2I3, and

KJ = 5I2. The communication time delays are given as T1 = 0.3sec and T2 = 0.4sec.

The first simulation illustrates the position tracking capabilities of the teleoperation

system in the task space with and without utilizing joint limits sub-task control, and the

case where the human operator exerts a damping force on the master robot is considered.

The master and slave robots start from different initial positions, where the initial condi-

tions are q1(0) = [1.2, 0.8]T rad, q2(0) = [0.5, − 0.3, 0.3]T rad, and q̇i(0) = q̈i(0) =

0, i = {1, 2}. Moreover, Γ1 = 0.75I5, Γ2 = 0.75I9, Θ1(0) = [4 1 0.5 4 1]T , and

Θ2(0) = [7 3 1 3 1 1 60 30 10]T are chosen for the adaptive control, and the damping gain

is selected 12Ns/m. The results are shown in Figure 4.3 and Figure 4.4. In the absence of

sub-task control for the slave robot under constant delays, Figure 4.3 (a) demonstrates that

the position tracking errors between the master and slave robots converge to the origin.

With the use of sub-task control to limit the joint angles for qmax21 = 0.5rad, qmin21 =

−0.5rad, qmax22 = 0.5rad, and qmin22 = −1rad, where q2i denotes the ith joint of the slave
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(b) With sub-task control to limit the angle of joints.
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Figure 4.3: Position configurations and joint angles of the master and slave robots with

dynamic uncertainties, constant delays, and human damping force.
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(b) With the use of sub-task control for joint limits.

Figure 4.4: Estimates of the dynamic uncertainty in the proposed semi-autonomous tele-

operation system.
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robot, the semi-autonomous teleoperation system can guarantee position tracking in the

task space, and the tracking errors converge to the origin, as shown in Figure 4.3 (b). It

is worth mentioning that the final configuration of the teleoperation system in Figure 4.3

(b) is different from the result in Figure 4.3 (a) due to the influence of sub-task control

in the slave robot, and as the human operator is assumed to only exert a damping force.

Figure 4.3 (c) shows the joint angles of the slave robot with and without using sub-task

control. It is evident that the joint-limit sub-task control forces the joint angles to stay

within the designed range without influencing the stability and position tracking capa-

bilities of the system. The estimates of the uncertain dynamic parameters of the robotic

systems are shown in Figure 4.4.

The second simulation illustrates the utilization of the (slave) sub-task controller

for obstacle avoidance. The human operator exerts a force to manipulate the master

robot from one set-point to another set-point, and there is no environmental force ap-

plied to the slave robot. Following [47], it is assumed that the human operator exerts

a spring-damper force, where the spring and damping gains are 80N/m and 10Ns/m,

for both the x and y directions. In the simulations, F1 = 0N at t = 0 ∼ 13sec,

t = 23 ∼ 30sec, t = 45 ∼ 50sec, and the human operator moves the master robot

towards X1 = [−0.3, 2]Tm at t = 13 ∼ 23sec and towards X1 = [−0.6, 1.5]Tm

at t = 30 ∼ 45sec. The obstacle that the slave robot needs to avoid is located at

Xo = [0.1, 0.9]m, and the collision distance and the safe distance are given as R = 0.7m

and r = 0.35m, which are shown as the dashed circle and solid circle, respectively. By

choosing the initial conditions as q1(0) = [1.2, 0.8]T rad, q2(0) = [0.5, − 0.3, 0.4]T rad,

and q̇i(0) = q̈i(0) = 0, i = {1, 2}, the simulation results in the absence of sub-task
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(b) Configurations of the slave robot without sub-task control.

Figure 4.5: Configurations of slave robot in the presence of an obstacle in the environment

without using collision avoidance control. The gray box is assumed to be the obstacle in

the remote environment.
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(b) Configurations of the slave robot with sub-task control.

Figure 4.6: Configurations of slave robot with an obstacle in the environment and using

collision avoidance control.

105



control are shown in Figure 4.5, and Figure 4.6 demonstrates the results with the use

of collision avoidance sub-task control. If no sub-task control is utilized, the links of the

slave robot enter the region surrounding by the solid circle and collide with the obstacle as

shown in Figure 4.5 (b). By utilizing the collision avoidance algorithm (4.42) and (4.43)

for the first two joints, the slave robot regulates its configuration to avoid colliding with

the obstacle as seen in Figure 4.6 (b). Under the sub-task control for collision avoid-

ance, the teleoperation system still achieves position tracking as shown in Figure 4.6 (a).

Moreover, comparing the position configurations in Figure 4.5 (a) and Figure 4.6 (a), it

is evident that the tracking performance is unaffected by the sub-task control, provided a

collision-free configuration and trajectory exist.

The performance of the semi-autonomous teleoperation when the slave robot con-

tacts the environment is finally demonstrated. In this simulation, the case where the sub-

task control ensures that the slave robot avoids singular configurations is considered. The

human operator is modeled as a spring-damper system whose spring and damping gains

are 30N/m and 15Ns/m for both the x and y directions. In the simulations, there is no

human force before t = 15sec, and the human operator pushes the master to the position

X1 = [−0.5, 1.5]Tm at t = 15 ∼ 30sec and X1 = [0.5, 1]Tm after t = 30sec. In order to

evaluate the stability in the presence of environmental force, we implement a wall in the

remote environment at x = 0m, which means that the slave robot will suffer an external

force if its position in x direction is negative. The environmental force is modeled as a

lightly damped spring-damper system, whose spring and damping gains are selected as

80N/m and 0.1Ns/m. The simulation results are shown in Figure 4.7 (a) and (b) with sub-

task control. When there is no human force before t = 15sec, the master and slave robots
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end-effector of slave robot to the wall.
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Figure 4.7: Simulation results of the proposed teleoperation system with hard contact and

sub-task control to avoid configuration singularity.
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converge to each other as in the free motion case. After t = 15sec, the human opera-

tor exerts force to move the master robot towards the first set-point. Around t = 19sec,

the slave robot contacts the wall in the remote environment, so the position errors in

Figure 4.7 (a) do not approach the origin. As seen in Figure 4.7 (b), the human operator

exerts a force to the master robot in order to push it moving towardsX1 = [−0.5, 1.5]Tm.

When the slave robot contacts the wall, the environmental force is reflected to the mas-

ter robot, and hence the human operator is not able to push the master robot any further.

When the human operator moves the master robot to another set-point after t = 30sec,

the environmental force disappears, and the tracking errors of the teleoperation converge

to the origin eventually. Moreover, the singularity avoidance sub-task control changes

the configuration of the slave robot to increase the manipulability [64, 114]. The value

of manipulability with and without using sub-task control are shown in Figure 4.7 (c). It

is evident that the sub-task control increases the manipulability as compared to the case

when no sub-task control is utilized.

4.6 Summary

A semi-autonomous control framework was proposed in this chapter to overcome

human operators’ cognitive limitations and to improve the performance of teleoperation

systems. It was demonstrated that the proposed control system in free motion can guaran-

tee position and velocity tracking in the task space independent of the constant commu-

nication delays, and the initial position errors. The position and velocity tracking errors

are guaranteed to converge to the origin even when the human operator exerts a damping
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force on the master robot. On hard contact with the environment, and when operated

by the human operator, all signals of the teleoperation system were demonstrated to be

ultimately bounded.

By exploiting the redundancy of the slave robot, the additional degrees of freedom

were utilized to achieve several sub-tasks, such as singularity avoidance, joint limits,

and collision avoidance. An obstacle avoidance algorithm, which is an adaptation of a

previously studied collision avoidance scheme for multi-agent systems, was also proposed

to ensure the slave robot autonomously avoiding obstacles in the remote environment.

The efficacy of the proposed teleoperation system and the control algorithms was studied

using numerical simulations with a 2-DOF master robot and a 3-DOF redundant slave

robot.
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Chapter 5

Control of Robotic Systems under Input-Output Delays

Control of robotic systems over a network brings various application and ease of

maintenance. However, input-output delays, which are induced by unreliable communi-

cations, can pose significantly impediments to the stabilization problem and potentially

degrade the performance of the closed-loop system. Experimental and simulation results

illustrating that delayed system is unstable have been addressed in the literature. In this

chapter, the classical set-point control problem for rigid robots with input-output commu-

nication delays in the closed-loop system is studied.

This chapter first demonstrates that the use of the scattering variables can stabilize

an otherwise unstable system, if there are arbitrary unknown constant delays between the

robotic system and the controller. It is also shown that the proposed algorithm results in

guaranteed set-point tracking. In the case of time-varying delays, scattering variables to-

gether with additional gains can be utilized to stabilize the closed-loop system composed

of robotic manipulators and the controllers. However, this architecture cannot guarantee

asymptotic regulation to the desired configuration and the stability depends on the rate

of change of delays. For this reason, a scattering representation based design with posi-

tion feedback is proposed to improve closed-loop performance under time-varying delays.

The proposed algorithms are validated via experiments in this chapter.
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5.1 Introduction

The use of communication networks for interconnecting robotic systems and con-

trollers can lead to significant advantages, such as the increased flexibility and modularity

as compared to traditional wired connections. Several results in the field of closed-loop

control systems over networks have been studied in [106–108, 117]. A wide variety of

applications have been discussed [87, 103, 105]. However, the communication channels

are subjected to various time delays that can not only degrade the performance of the

closed-loop system but also render the system unstable. Therefore, in this research, the

problem of motion control of rigid robots in the presence of input-output communication

delays, as shown in Figure 5.1, is studied.

Delays in a control system can significantly pose impediments to the stabilization

problem and potentially degrade the performance of the closed-loop system. It is well

known that guaranteeing stability of a control system with time delays is a challenging

problem [79]. The Smith predictor [93], a useful delay-dependent method, can be applied

to stabilize the closed loop system with high performance but requires exact knowledge

of time delays and is sensitive to modeling errors. The classical Smith predictor has been

developed for nonlinear systems in [43, 109] and for time-varying delays in [68].

Starting with the work of [40, 102], passivity-based control [74] has emerged a

fruitful methodology for control design of robotic systems. Several control design have

been presented in the literature [53, 73] where the controller and the mechanical system

can be represented as a negative feedback interconnection of passive systems. Invoking

the fundamental passivity theorem [18], it is then possible to guarantee passivity of the
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Figure 5.1: The sketch of using communication networks to interconnect a robotic system

with a controller.

closed-loop system. The property that a feedback interconnection of passive systems is

also passive has been utilized in the study of bilateral teleoperation system with commu-

nication delays. Under the assumption that the environment and the human operator are

passive, scattering or the wave-variable representation, which was studied in [1, 66], has

been proposed to ensure the passivity of the communication block.

Recently, the scattering representation has emerged as a novel tool for studying net-

worked control systems [13, 42, 56, 75, 86]. The basic idea in these results is to use the

scattering variables for guaranteeing passivity of the communication block, thereby cre-

ating a passive two-port network between a passive plant and a passive controller. The

use of scattering representation for networked control systems with constant delays was

proposed in [56] where the results were developed for linear time-invariant (LTI) systems.

This paper demonstrated that it was possible to stabilize the closed-loop LTI system us-

ing the scattering transformation independent of the constant delay. This approach was

extended in [55] for nonlinear systems with non-passive plants or controllers by using the

excess of passivity from passive system to compensate the shortage of passivity in the
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non-passive system. A coordinated compliance control of a robot system with distributed

control architecture utilized wave variables to handle the constant delays in [75]. In [86],

the scattering representation was employed for the energy shaping control methodology

over a constant delays communication network. It is noted that neither the aforemen-

tioned results address the problem of set-point control of nonlinear robotic manipula-

tors [13, 42, 55, 56, 75] in the presence of constant input-output communication delays,

nor the set-point convergence has not been formally demonstrated [86]. In [7], the use

of scattering representation for control of robotic manipulators with constant input-output

delays was studied. However, this paper only demonstrated that the state of the controller

converged to the desired configuration, while the set-point control of the robotic system

was not guaranteed.

As the communication delays are rarely constant in practice, the scattering represen-

tation methodology has been extended to address time-varying delays. For the problem

of bilateral teleoperation, the scattering or wave variables were modified in [52,112,113]

to address time-varying delays in communication channels. By sending wave variables

with stamped time, [111] proposed a method to compensate the distorted wave variables

with the integration of waveform errors. An energy based input-output balance monitor-

ing method was presented in [112] to improve the drawback in [111] that the system may

generate infinite energy from integration. Without the needs of integrating waveform er-

rors or the wave variables for the sum of energy, gains dependent on the maximum rate

of change of delays were utilized to scale wave variables in [52] to ensure the passiv-

ity of the communication block under time-varying delays. Although the time-varying

delay problem in bilateral teleoperation was studied by [52, 111, 112] using the scatter-
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ing representation, these algorithms cannot be directly utilized for studying the set-point

control problem with time-varying input-output delays. The time-varying gain formalism

proposed in [52] has been utilized in [8] for stabilizing the networked set-point control

system. However, the proposed architecture only ensures stability of the closed-loop sys-

tem and does not guarantee set-point tracking in the presence of time-varying delays.

In this chapter, the study of set-point control in rigid robots (with revolute joints)

is addressed for both constant and time-varying input-output communication delays. In

the absence of precise knowledge of the time delays and the robot dynamics, stability and

performance of the closed loop system is studied. In Theorem 5.1, it is demonstrated by

using Lyapunov analysis that if the scattering transformation is used to encode the input-

output variables for the nonlinear robotic system and the controller, then under appropriate

assumptions, stability of the closed-loop is recovered independent of unknown constant

time delays. Furthermore, the theorem also justifies the intuitive claim that if the initial

state of the controller is equal to the initial configuration of the robotic system, then the

tracking error asymptotically approaches the origin. The control architecture is further

validated via experiments in this chapter.

The aforementioned control system is extended for handling time-varying delays in

Theorem 5.2, where in conjunction with the scattering variables, gains dependent on the

maximum rate of change of delays [52] are utilized to guarantee stability of the closed-

loop system. However, this theorem can only ensure stability of the closed loop system

and cannot guarantee set-point control in the presence of time-varying delays. Hence,

in Theorem 5.3 delayed position feedback in conjunction with the scattering represen-

tation is proposed so as to achieve the regulation objective. The proposed control al-
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gorithm guarantees stability of the closed-loop system and tracking performance under

input-output time-varying delays even in the absence of innate dissipation in the robotic

system [8]. Experimental results are presented to validate the efficiency for the proposed

control architecture.

The rest of this chapter is organized as follows. In Section 5.2 background on

fundamental properties of robotic systems and problem formulation are presented. This

is followed by the stability result for constant input-output delays problem in Section 5.3.

Subsequently, the time-varying input-output delay problem is studied in Section 5.4. The

proposed control algorithms are validated through experiments in Section 5.5. The results

of this chapter are summarized in Section 5.6.

5.2 Problem Formulation

The robotic manipulator in the input-output delay system is modeled as a La-

grangian system. Following [95], in the absence of friction and disturbances, and assum-

ing gravity compensation, the equations of motion for an n-degree-of-freedom robotic

system are given as

Σr : M(q)q̈ + C(q, q̇)q̇ = −τs + τe = τt (5.1)

where q ∈ Rn is the vector of generalized configuration coordinates, τs ∈ Rn is mo-

tor torque acting on the system, τe ∈ Rn is the external torque acting on the system,

M(q) : Rn → Rn×n is the positive definite inertia matrix, and C(q, q̇)q̇ is the vector of

Coriolis/Centrifugal forces where C(q, q̇) : Rn × Rn → Rn×n. The above equations ex-

hibit certain fundamental properties (see Appendix A.2) due to their Lagrangian dynamic
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Figure 5.2: A negative feedback interconnection of the robot dynamics and the controller.

structure [95]. In addition, it is well known that the robot dynamics are passive [95] with

(τt, q̇) as the input-output pair.

Lemma 5.1 Consider the dynamic equations (5.1), the system is passive with (τt, q̇) as

the input-output pair.

This research studies the control problem when the communication channels be-

tween the controller and the robot are subjected to various delays, as shown in Figure 5.2.

Under the assumption of perfect communication, the controller dynamics considered are

given as

Σc :


ẋc = uc = q̇

yc = K1uc +K2(xc − qd)
(5.2)

where K1, K2 > 0 are the controller gains that are assumed to be scalars for simplicity,

and qd ∈ Rn denotes the constant vector for the desired configuration. For simplicity, the

control gains in this research are assumed to be scalars.
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It has been demonstrated [7] that using the controller (5.2) under perfect commu-

nication, i.e. uc = q̇, τs = yc, the closed-loop system is stable and position regulation is

guaranteed if xc(0) = q(0). However, if the communication channels between the robotic

manipulator and the controller are subjected to time delays, the closed-loop system easily

destabilizes even with small input-output constant delays [7]. The objective of this re-

search is to study the stability and tracking performance for robotic manipulators under

input-output communication delays. As the robotic dynamics are passive with (τt, q̇) as

the input-output pair (Lemma 5.1), the passivity property is utilized to study the control

problem.

The passivity property of the robot dynamics has led to constructive control de-

signs for robot manipulators. Specifically, several robot control algorithms can be refor-

mulated as a negative feedback interconnection of two passive systems [53]. Observing

Figure 5.2, the controller takes in the robot velocity as the input, and the output of the

controller block is fed back to the robot as the desired control input. If the controller and

the communication channels are input-output passive, then by the fundamental passivity

theorem [18], the closed loop system formed by the robot dynamics, the controller, and

the communication channels is passive. The next lemma demonstrates the passivity of the

controller (5.2).

Lemma 5.2 [7] The controller dynamics given as (5.2) is passive with (uc, yc) as the

input-output pair.

Proof Consider a positive-definite storage function for the controller such that Sc(xc) =

1
2
K2(xc − qd)d(xc − qd). The time derivative of the storage function is given by Ṡc(xc) =
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K2(xc − qd)T ẋc. Substituting the controller (5.2), Ṡc becomes

Ṡc(xc) = (yc −K1uc)
Tuc = yTc uc −K1u

T
c uc. (5.3)

Following the definition of passivity (Definition A.1), the controller dynamics Σc is pas-

sive with (uc, yc) as the input-output pair. 2

Following the fundamental passivity theorem [18], Lemma 5.1 and Lemma 5.2 give

that if the communication channels in the closed-loop system is passive, the feedback

interconnection is passive. Taking the benefit of the passivity properties, the scattering or

wave-variable representation, which was originally developed in [1, 66] for teleoperation

system to ensure the passivity of the communication channels, is adopted to study the

proposed system.

In the following of this chapter, signals are assumed to be equal to zero for t < 0 and

let x(t) = [xc(t) q̇(t)]T . Denote by C = C([−h, 0], Rn), the Banach space of continuous

functions mapping the interval [−h, 0] intoRn, with the topology of uniform convergence.

Define xt = x(t + φ) ∈ C,−h < φ < 0 as the state of the system [27]. It is further

assumed that x(φ) = η(φ), η ∈ C and that all signals belong to L2e, the extended L2

space.

5.3 Constant Delays Problem

In this section, constant delays in the input-output channel are addressed. If the

closed-loop system in Figure 5.2 is subjected to constant delays, the interconnection of

the robot dynamics and the controller is illustrated in Figure 5.3. The controller dynamics
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with input-output constant delays.

are then given as in (5.2) with uc(t) = q̇(t − T1) and furthermore the control input to

the robot is given as τs(t) = yc(t − T2), where T1, T2 are the constant, heterogeneous

time delays between the robot and the controller. The signal q̇(t − T1) (or yc(t − T2))

indicates the output of the robotic manipulator (or the controller) transmitted T1 (or T2)

units of time. It has been demonstrated via simulations (see [7]) that the closed-loop

system easily destabilizes even with small input-output constant delays.

With the aim of stabilizing the closed loop system, instead of transmitting the joint

velocities and input torques directly, the scattering variables [1,66] are transmitted across

the communication channel

v1 = 1√
2b

(τs + bq̇) , z1 = 1√
2b

(τs − bq̇)

v2 = 1√
2b

(yc + buc) , z2 = 1√
2b

(yc − buc)
(5.4)

where the wave impedance b is a positive constant. The proposed architecture is demon-

strated in Figure 5.4.

According to Figure 5.2, the transmission equations between the robot and the con-
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troller can be written as

z1(t) = z2(t− T2) , v2(t) = v1(t− T1). (5.5)

Hence, the input of the controller dynamics in (5.2) is derived from the scattering rep-

resentation (5.4) and the transmission equations (5.5). The first result in this research

follows.

Theorem 5.1 Consider the closed-loop system described by (5.1), (5.2), (5.4) and (5.5).

If all signals equal zero for t < 0, then

1. The closed loop system is input-output passive with (τe, q̇) as the input-output pair.

2. If τe ≡ 0 and K1 = b, then all signals in the closed loop system are bounded and

limt→∞ q̇(t) = 0, limt→∞(xc(t)− qd) = 0.

3. If xc(0) = q(0), then additionally limt→∞(q(t)− qd) = 0.
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Proof Consider a positive semi-definite storage functional for the system as

S(xt) =
1

2

(
q̇TM(q)q̇ +K2(xc − qd)T (xc − qd)

)
+

1

2

( ∫ t

t−T1
||v1(τ)||2dτ (5.6)

+

∫ t

t−T2
||z2(τ)||2dτ

)
. (5.7)

By substituting (5.1) and utilizing Property A.3, Ṡ(xt) becomes

Ṡ(xt) = (−τs + τe)
T q̇ + yTc uc −K1u

T
c uc +

1

2

(
||v1||2 − ||z1||2 + ||z2||2 − ||v2||2

)
= (−τs + τe)

T q̇ + yTc uc −K1u
T
c uc + τTs q̇ − uTc yc

= τTe q̇ −K1u
T
c uc. (5.8)

From the above calculations it is evident that the closed loop system is passive with (τe, q̇)

as the input-output pair.

To prove the second claim, note that with τe ≡ 0, Ṡ(xt) = −K1u
T
c uc ≤ 0. There-

fore, the storage function is bounded which implies that signals q̇, xc ∈ L∞. Using the

scattering variables (5.4) and the transmission equations (5.5), the relationship between

the various power variables can be written as

yc(t) + buc(t) = τs(t− T1) + bq̇(t− T1) (5.9)

yc(t− T2)− buc(t− T2) = τs(t)− bq̇(t). (5.10)

Using (5.2) in the above equations yields

(b+K1)uc(t) +K2(xc − qd) = τs(t− T1) + bq̇(t− T1) (5.11)

(K1 − b)uc(t− T2) +K2(xc(t− T2)− qd) = τs(t)− bq̇(t). (5.12)

Choosing K1 = b to avoid wave reflection [66], the above equations can be rewritten as

2buc(t) +K2(xc(t)− qd) = τs(t− T1) + bq̇(t− T1) (5.13)
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K2(xc(t− T2)− qd) = τs(t)− bq̇(t). (5.14)

It can be obtained that τs ∈ L∞ from (5.14) and the fact that xc, q̇ are bounded signals.

Utilizing this result in (5.13) yields the boundedness of uc. Observing the robot dynam-

ics (5.1) with τe ≡ 0 and using Property A.1 give that q̈ ∈ L∞. Differentiating (5.14)

gives that τ̇s is bounded and furthermore differentiating (5.13) leads that the signal u̇c is

bounded.

Integrating (5.8) (with τe ≡ 0) and letting t → ∞ obtain that uc ∈ L2. It is

well known [95] that a square integrable signal with a bounded derivative approaches the

origin, and thus limt→∞ uc(t) = 0. Delaying the transmission equation (5.14) by T1 and

subtracting from (5.13) give that

2buc(t) +K2

(
xc(t)− xc(t− T1 − T2)

)
= 2bq̇(t− T1).

Taking the limit t → ∞ on both sides and using the result that limt→∞ uc(t) = 0, the

above equation becomes

lim
t→∞

K2

(
xc(t)− xc(t− T1 − T2)

)
= lim

t→∞
2bq̇(t− T1)

lim
t→∞

K2

∫ t

t−T1−T2
ẋc(τ)dτ = lim

t→∞
2bq̇(t− T1)

lim
t→∞

K2

∫ t

t−T1−T2
uc(τ)dτ = lim

t→∞
2bq̇(t− T1).

It can be obtained from the last equation that limt→∞ q̇(t) = 0. Therefore, the robot

velocity approaches the origin independent of the time delay.

Differentiating the robot dynamics (5.1), it can be shown that
...
q (t) ∈ L∞ (note that

the derivative of the Coriolis term is also bounded for revolute joints [69]). This obser-

vation coupled with the fact that limt→∞ q̇(t) = 0, and invoking Barbalat’s lemma [38]
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yields that limt→∞ q̈(t) = 0. Therefore, from (5.1), limt→∞ τs(t) = 0. Taking limits on

both sides of the transmission equation (5.14) implies that limt→∞ (xc(t− T2)− qd) = 0.

As qd is a constant reference, it can be obtained that limt→∞ (xc(t)− qd) = 0, and hence

the signal xc − qd approaches the origin independent of the time delay.

To prove the third claim, it can be observed that as limt→∞ (xc(t)− qd) = 0 and

limt→∞ uc(t) = 0, from (5.2) the output of the controller satisfies limt→∞ yc(t) = 0.

Integrating (5.9) from 0 to time t yields∫ t

0

yc(τ)dτ + b

∫ t

0

uc(τ)dτ

=

∫ t

0

τs(τ − T1)dτ + b

∫ t

0

q̇(τ − T1)dτ

=

∫ t−T1

0

τs(τ)dτ +

∫ 0

−T1
τs(τ)dτ + b

∫ t−T1

0

q̇(τ)dτ + b

∫ 0

−T1
q̇(τ)dτ. (5.15)

Based on the assumption that all signals are zero for t < 0, (5.15) can be rewritten as∫ t

0

(
yc(τ) + buc(τ)

)
dτ =

∫ t−T1

0

(
τs(τ) + bq̇(τ)

)
dτ. (5.16)

Similarly, the transmission equation (5.10) can be written as∫ t−T2

0

(
yc(τ)− buc(τ)

)
dτ =

∫ t

0

(
τs(τ)− bq̇(τ)

)
dτ. (5.17)

Subtracting (5.16) from (5.17) and letting t→∞ give that

lim
t→∞

( ∫ t

t−T2
yc(τ)dτ + b

∫ t

0

uc(τ)dτ + b

∫ t−T2

0

uc(τ)dτ
)

= lim
t→∞

(
−
∫ t

t−T1
τs(τ)dτ + b

∫ t−T1

0

q̇(τ)dτ + b

∫ t

0

q̇(τ)dτ
)
.

Since T1 and T2 are constant, and limt→∞ yc(t) = limt→∞ τs(t) = limt→∞ uc(t) =

limt→∞ q̇(t) = 0, the above equation can be written as

lim
t→∞

2b

∫ t

0

uc(τ)dτ = lim
t→∞

2b

∫ t

0

q̇(τ)dτ. (5.18)
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As ẋc = uc from the controller dynamics (5.2), the integral of uc becomes∫ t

0

uc(τ)dτ =

∫ t

0

ẋc(τ)dτ = xc(t)− xc(0). (5.19)

Letting t → ∞ for the integral of uc and noting that limt→∞(xc(t) − qd) = 0 (Claim

2), (5.19) becomes

lim
t→∞

∫ t

0

uc(τ)dτ = lim
t→∞

xc(t)− xc(0) = qd − xc(0). (5.20)

Taking the limit t→∞ for the integral of q̇ yields

lim
t→∞

∫ t

0

q̇(τ)dτ = lim
t→∞

q(t)− q(0). (5.21)

Substituting (5.20) and (5.21) into (5.18) obtains

2bqd − 2bxc(0) = 2b lim
t→∞

q(t)− 2bq(0). (5.22)

Consequently, if xc(0) = q(0), then limt→∞(q(t)− qd) = 0. 2

Theorem 5.1 demonstrated that if configuration control of a robotic manipulator is

subject to unknown and constant input-output delays, then the closed loop system can be

stabilized by utilizing the scattering transformation. Even though the use of scattering

transformation can ensure robust stability of a class of delayed systems, the performance

issues of guaranteeing position tracking have not been well studied. Theorem 5.1 fills this

knowledge gap in the current literature. The proof of Theorem 5.1 not only shows that the

xc − qd is asymptotically stable, but also demonstrates that if xc(0) = q(0), the tracking

error q − qd can eventually go to zero independent of the constant delays.

Remark 5.1 In addition to the position drift, the phenomenon of wave reflections is an-

other issue that needs to be dealt with while using scattering transformation [66]. For the
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sake of avoiding wave reflections, the impedance of the wave variables (5.4) has to be

identical for both sites of the robot and the controller. Since only the control gains on the

controller side can be adjusted, in the proposed control architecture, it is assumed that the

wave impedance is predetermined. Hence, the gain K2 and the desired configuration qd

can be modified in the side of the controller so as to fulfill various control demands.

5.4 Time-Varying Delays Problem

As discussed in Section 5.1, the delays in the input-output channel may be time-

varying. Therefore, in this section the set point problem for robotic systems with time-

varying input-output delays is studied with the use of scattering transformation.

In the first part of this section, the control of robotic manipulators under input-

output time-varying delays is studied by utilizing scattering variables with gains depen-

dent on the maximum rate of change of delays [52]. This control algorithm can guarantee

the stability of the closed loop system under time-varying delays. However, this method

is dependent on the maximum rate of change of delays, and additionally the control al-

gorithm is not able to regulate the robotic system to the desired configuration. Hence,

another control framework, which combines the delayed position feedback with scatter-

ing representation, is proposed in the second part of this section to achieve position reg-

ulation. Furthermore, the position feedback control algorithm can stabilize the delayed

system and also ensure position tracking independent of the maximum rate of change of

delays.

In this section, the time-varying delays are assumed to be continuously differen-
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Figure 5.5: The scattering transformation, together with the gains (dependent on the rate

of change of delay) are used to ensure stability of the closed loop system.

tiable and bounded (0 < Ti(t) ≤ TMi <∞), where TMi is the upper bound of Ti(t). It is

worth to note that the proposed control architecture in this section does not require exact

knowledge of time-varying delays.

5.4.1 Using Scattering Transformation

To passify the communication block, scattering variables, shown in (5.4), are uti-

lized between the robotic manipulator and the controller. The time-varying delays are

assumed to satisfy

Ṫi(t) ≤ T̄i < 1, i = 1, 2 (5.23)

where T̄i is the upper bound of Ṫi(t). The above condition implies that the time delays

cannot grow faster than time itself. Furthermore, to address time-varying delays [8, 52],
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gains dependent on the maximum rate of change of delay are inserted in the communica-

tion between the robot and the controller, as shown in Figure 5.5. The constant gains d1,

d2 are selected as

d2
1 < (1− T̄1) , d2

2 < (1− T̄2) (5.24)

Based on the proposed framework, the transmission equations between the robot and the

controller can be written as

z1(t) = d2z2(t− T2(t)) , v2(t) = d1v1(t− T1(t)). (5.25)

Thus, the input of the controller dynamics (5.2) is derived from the scattering rep-

resentation (5.4) and the transmission equation (5.25). The first theorem for control of

robotic manipulators with time-varying input-output delay problem follows.

Theorem 5.2 Consider the closed-loop system described by (5.1), (5.2), (5.4), and (5.25).

Then, the closed loop system is input-output passive with (τe, q̇) as the input-output pair.

Additionally, if τe ≡ 0, then the signals q̇ and xc − qd are bounded.

Proof Consider a positive semi-definite storage functional for the system as

S(xt) =
1

2

(
q̇TM(q)q̇ +K2(xc − qd)T (xc − qd)

)
+

1

2

( ∫ t

t−T1(t)

||v1(τ)||2dτ

+

∫ t

t−T2(t)

||z2(τ)||2dτ
)
. (5.26)

The derivative of the storage function is given by

Ṡ(xt) = q̇T (−C(q, q̇)q̇ − τs + τe) +
1

2
q̇TṀ(q)q̇ +K2(xc − qd)T ẋc +

1

2

(
||v1||2

−||v1(t− T1(t))||2
(
1− Ṫ1(t)

)
+ ||z2||2 − ||z2(t− T2(t))||2

(
1− Ṫ2(t)

))
.
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By applying the condition (5.24), the derivative of the storage function becomes

Ṡ(xt) ≤ q̇T (−C(q, q̇)q̇ − τs + τe) +
1

2
q̇TṀ(q)q̇ +K2(xc − qd)T ẋc

+
1

2

(
||v1||2 − ||v1(t− T1(t))||2d2

1 + ||z2||2 − ||z2(t− T2(t))||2d2
2

)
.

By utilizing Property A.3, Ṡ(xt) becomes

Ṡ(xt) ≤ (−τs + τe)
T q̇ + yTc uc −K1u

T
c uc +

1

2

(
||v1||2 − ||z1||2 + ||z2||2 − ||v2||2

)
≤ (−τs + τe)

T q̇ + yTc uc −K1u
T
c uc + τTs q̇ − uTc yc

≤ τTe q̇ −K1u
T
c uc. (5.27)

Hence, the closed loop system is passive with (τe, q̇) as the input-output pair. From (5.27)

it can be observed that if τe ≡ 0, then Ṡ(xt) ≤ 0 and hence the signals q̇ and xc − qd are

bounded. 2

The above result demonstrates that the closed-loop system constituted by the robotic

system, coupled with the PI controller, can be stabilized with the use of scattering transfor-

mation in the presence of time-varying input-output delays. Without the exact knowledge

of time-varying delays, the passivity of communication channels can be guaranteed by

using gains dependent on the maximum rate of change of delays. Theorem 5.2 provides a

simple method to stabilize the control of robotic system under time-varying delays. How-

ever, the proposed control framework can only ensure that the signal xc − qd is bounded,

which implies that the robotic system is not guaranteed to be regulated to the desired con-

figuration. The inability to achieve position tracking stems from the scaling introduced

in (5.25), especially for rapidly varying time-varying delays. This observation is validated

in the experimental results discussed in Section 5.5.
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5.4.2 Position Feedback Controller

In order to achieve the desired regulation goal in the presence of time-varying de-

lays, an alternative architecture is proposed as shown in Figure 5.6. In contrast to the

control algorithm in Section 5.4.1, the proposed framework does not scale the scattering

or wave variables for ensuring the passivity of the communication block. In the pro-

posed architecture, the velocity signal q̇ is encoded by using scattering transformation

and then transmitted to the controller, and the configuration of the robotic manipulator q

is communicated directly to the controller. The signal uc, which is decoded from scatter-

ing representation, and delayed position q(t − T1(t)) are combined to generate a control

action from the controller which is given as

Σc : yc = K1uc +K2(q(t− T1(t))− qd). (5.28)

Then the output of the controller yc is communicated back to the robot via the scattering

transformation.

As there is no scaling in this framework, the transmission equations between the

robot and the controller are given as

z1(t) = z2(t− T2(t)) , v2(t) = v1(t− T1(t)). (5.29)

Using the scattering variables z1 and z2 in (5.4) with the transmission equation z1(t) =

z2(t− T2(t)), it can obtain that

τs − bq̇ = yc(t− T2(t))− buc(t− T2(t)). (5.30)

Then, the control torque to the robotic manipulator can be written as

τs = yc(t− T2(t))− buc(t− T2(t)) + bq̇ (5.31)
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Figure 5.6: A position feedback architecture with the use of scattering transformation are

proposed to ensure the tracking performance and stability of the closed loop system.

where bq̇ comes from the scattering transformation.

The stability of the control system with position feedback and scattering transfor-

mation is studied next. For the sake of completeness, a brief overview of a technical result

developed in [69] that is utilized to finish the proof of Theorem 5.3 is provided.

Lemma 5.3 Given signals x, y ∈ Rn, ∀T (t) such that 0 < T (t) ≤ TM <∞, and α > 0

the following inequality holds

−
∫ t

0

xT (σ)

∫ 0

−T (σ)

y(σ + θ)dθdσ ≤ α

2
||x||22 +

T 2
M

2α
||y||22

where || · ||2 denotes the L2 norm of the enclosed signal.

The reader are referred to [69] for a proof of the above result.

Theorem 5.3 Consider the closed-loop system described by (5.1), (5.4), (5.28), and (5.29)

with τe ≡ 0. If the time-varying delays satisfy 0 ≤ T1(t) + T2(t) ≤ TM < ∞, then for a
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range of the gain 0 < K2 < K1/TM , the signals q̇ and q − qd are bounded for all times

and asymptotically approach the origin.

Proof Consider a positive semi-definite storage function for the system as

S(q̇, q) =
1

2

(
q̇TM(q)q̇ +K2(q − qd)T (q − qd)

)
.

Taking the time derivative along the trajectories of the system, Ṡ is give by

Ṡ = q̇T
(
− C(q, q̇)q̇ − τs

)
+

1

2
q̇TṀ(q)q̇ +K2q̇

T (q − qd). (5.32)

By using Property A.3, the controller (5.28), and the control torque (5.31), the derivative

of the storage function becomes

Ṡ = −q̇T
(
yc(t− T2(t))− buc(t− T2(t)) + bq̇

)
+K2q̇

T (q − qd)

= −q̇T
(
K1uc(t− T2(t)) +K2

(
q(t− T1(t)− T2(t))− qd

)
−buc(t− T2(t)) + bq̇

)
+K2q̇

T (q − qd).

Choosing b = K1 to avoid wave reflection [66], the above equation can be rewritten as

Ṡ = −q̇TK2(q(t− T1(t)− T2(t))− qd) + q̇TK2(q − qd)− q̇TK1q̇
T

= K2q̇
T (q − q(t− T1(t)− T2(t))−K1q̇

T q̇

≤ K2q̇
T

∫ 0

−T1(t)−T2(t)

q̇(t+ θ)dθ −K1q̇
T q̇. (5.33)

Note that as the derivative of the storage function needs to be upper bounded, the sign of

the first term does not affect the subsequent calculations.

Integrating (5.33) from 0 to t and using Lemma 5.3, it can be obtained that

S(q̇(t), q(t))− S(q̇(0), q(0)) ≤ −K1||q̇||22 +K2

(α
2
||q̇||22 +

T 2
M

2α
||q̇||22

)
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≤ −||q̇||22(K1 −
K2α

2
− K2T

2
M

2α
).

Thus, if the following inequality given by

K1 −
K2α

2
− K2T

2
M

2α
> 0 (5.34)

is satisfied for α > 0, then S(q̇(t), q(t)) − S(q̇(0), q(0)) ≤ 0 and hence the signal q̇(t)

is square integrable. The above inequality has a solution α > 0 if K1 > K2TM . There-

fore, if K2 < K1/TM , S(q̇(t), q(t)) ≤ S(q̇(0), q(0)), ∀t > 0. Consequently, for any

appropriately selected K1 and K2 as discussed above, the signals q̇, q − qd ∈ L∞.

Using the scattering variables v1 and v2 in (5.4) with the transmission equations

v2(t) = v1(t− T1(t)), it is given that

τs(t− T1(t)) + bq̇(t− T1(t)) = yc + buc. (5.35)

Delaying the transmission equation (5.30) by T1(t) and subtracting from (5.35) yields

2bq̇(t− T1(t)) = yc − yc(t− T1(t)− T2(t)) + buc + buc(t− T1(t)− T2(t)).

Substituting the controller (5.28) into the equation above with b = K1 gives that uc ∈

L∞. Consequently, from the controller (5.28) it can be obtained that yc ∈ L∞, hence

observing (5.31) gives τs ∈ L∞. Noting the system dynamics (5.1), this additionally

implies that the robot acceleration q̈ ∈ L∞. Hence as q̇ ∈ L2 and its derivative is bounded,

the robot velocity asymptotically approaches the origin.

To demonstrate asymptotic convergence of the tracking error, differentiating (5.1)

yields that the signal
...
q ∈ L∞ (note that the derivative of the Coriolis term is also bounded

for revolute joints [69]). Hence, the robot acceleration is uniformly continuous and

132



limt→∞
∫ t

0
q̈(s)ds exists and is finite. Invoking Barbalat’s Lemma [38], limt→∞ q̈(t) = 0.

From the closed loop dynamics (5.1), it can be obtained that limt→∞ τs(t) = 0. Delaying

the transmission equation (5.35) by T2(t) and subtracting from (5.30) yield

2buc(t− T2(t)) = τs(t− T1(t)− T2(t))− τs + bq̇(t− T1(t)− T2(t)) + bq̇. (5.36)

Taking the limit t → ∞ on both sides of the above equation and using the results

that limt→∞ q̇(t) = 0 and limt→∞ τs(t) = 0, it is given that limt→∞ uc(t) = 0, which

means that limt→∞ yc(t) = 0 from (5.35). By observing (5.28), it can be obtained that

limt→∞(q(t − T1(t)) − qd) = 0 . As qd is a constant reference, the aforementioned re-

sults lead to limt→∞(q(t)− qd) = 0 and consequently the regulation objective is achieved

asymptotically. 2

Utilizing the delayed position feedback and encoding the output of the controller

by scattering representation, the proposed control architecture in Figure 5.6 and Theo-

rem 5.3 can both stabilize the robotic manipulator with input-output time-varying delays

and ensure position regulation. Since the position signal is transmitted to the controller

directly, in this framework the controller does not need knowledge of the initial position

of the robotic manipulator. The performance of the control system can be adjusted by

tuning the controller gains. Moreover, the proposed architecture is able to guarantee sta-

bility and position tracking independent of the maximum rate of change of delays. The

efficacy of the proposed control scheme when the maximum rate of change is close to one

is validated in the next section.

Remark 5.2 In Theorem 5.2, gains d1 and d2 are required to satisfy the condition (5.24),

which implies that as Ṫi(t) approaches one, the gains d1 and d2 approach zero and hence
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the system performance deteriorates considerably. The result in Theorem 5.2 was based

on the assumption that Ṫi(t) < 1, but this assumption is not required in Theorem 5.3.

Hence the position feedback architecture is valid for all positive, continuously differen-

tiable, and bounded time-varying delays even if the maximum rate of change of delays

is higher than one. However, the derivative of the time-varying delays should be strictly

smaller than one for control systems due to the causality implications [45].

The control of robotic manipulator with time-varying input-output delays has been

studied in [8] to ensure position regulation under the assumption that there exists innate

dissipation in the robotic system. The proposed control scheme in Theorem 5.3 was

developed for the robotic system without innate dissipation but can be modified for robotic

systems with known internal damping. In this case, the robot dynamics are given as

Σr : M(q)q̈ + C(q, q̇)q̇ +Bnq̇ = −τs + τe = τt (5.37)

where Bn > 0 is a scalar denoting the natural damping in the system. The next corollary

follows from Theorem 5.3 for the robotic system (5.37).

Corollary 5.1 Consider the closed-loop system described by (5.4), (5.28), (5.29), and (5.37)

with τe ≡ 0. If the time-varying delays satisfy 0 ≤ T1(t) + T2(t) ≤ TM < ∞, then for a

range of the gain 0 < K2 < (K1 + Bn)/TM , the signals q̇ and q − qd are bounded and

asymptotically approach the origin.

Proof Consider a positive-definite storage function for the system as

S(q̇, q) =
1

2

(
q̇TM(q)q̇ +K2(q − qd)T (q − qd)

)
.
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Taking the time derivative along the trajectories of the system and following the proof of

Theorem 5.3, the derivative of the storage function becomes

Ṡ = K2q̇(q − q(t− T1(t)− T2(t))−K1q̇
T q̇ −Bnq̇

T q̇

≤ K2

∫ 0

−T1(t)−T2(t)

q̇(t+ θ)dθ − (K1 +Bn)q̇T q̇. (5.38)

Integrating the above equation and using Lemma 5.3, if K2 < (K1 + Bn)/TM , then

S(q̇(t), q(t)) ≤ S(q̇(0), q(0)), ∀t > 0. Thus, following the analysis in Theorem 5.3, the

robot velocity asymptotically approaches the origin, and limt→∞(q(t)− qd) = 0. Hence,

the regulation objective is achieved asymptotically. 2

5.5 Experiments

As it has been shown via simulation [7] that the closed-loop system easily becomes

unstable even with small constant input-output delays, in this chapter, only the stable

system with the use of the proposed schemes are demonstrated. The various controllers

were validated via experiments on a PHANToM Omni haptic device. It is a cost-effective

device that can be utilized to test and validate control schemes after suitable modifica-

tions [4]. More details and model of a PHANToM Omni haptic device are mentioned in

Appendix B.

In the subsequent experiments, the detachable stylus was removed and the last two

joints of the manipulator were constrained for the purpose of reducing the influence of

unactuated links on the robot dynamics. Consequently, the device is equivalent to a fully

actuated manipulator with three revolute joints, whose joint angles are denoted by q =

[q1, q2, q3]T .
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In order to implement the proposed control schemes, g ∈ R3, the gravitational

torques of the fully actuated manipulator were compensated by

g =


0

1
2
m3gl2s2,3 + 1

2
(m2 +m3)gl1c2

1
2
m3gl2s2,3

 , (5.39)

where s2,3 denotes sin(q2 + q3), c2 denotes cos(q2), mi is the translational inertia of link

i, and li is the length of link i with i = 1, 2, 3. In the experiment, the values of 1
2
m3gl2,

and 1
2
(m2 + m3)gl1 were experimentally selected with 1

2
m3gl2 = 70mNm, and 1

2
(m2 +

m3)gl1 = 85mNm. The control program was written in C with the use of OpenHaptics

API, which is due to SensAble Technologies [89]. The data collection and control input

rate ran at a sampling rate of 1kHz.

Since the effect of packet loss is not considered in the theoretical results, the sub-

sequent experiments were conducted using a single desktop computer, where no signals

are transmitted through the real network. The data, transmitted between the robot and the

controller, are stored in the FIFO buffers. The stored data is utilized within the computer

after a certain time interval so as to imitate communication delays.

In the constant delay case, the delays were selected as T1 = 0.3sec and T2 =

0.2sec for the signals transmitting between the robot and the controller respectively. The

desired set point was given as qd = [0.4, 0.5, 0.3]T rad and the control parameters were

chosen as K1 =diag{40, 40, 40}, K2 =diag{400, 600, 600}, and b = 40. The initial

configuration of the robot is q(0) = [0, 0, 0]T rad. Under the condition that xc(0) =

q(0), the experimental validation of Theorem 5.1, where the scattering variables are used

in the control system to compensate for the time delays, is demonstrated in Figure 5.7
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(b) Control torque applied to the robotic system

Figure 5.7: In the constant delay case, when the scattering variables are used, the closed

loop system is stable independent of the time delays.
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(a). As expected, the closed loop system is stable and the manipulator is successfully

regulated to the desired configuration represented by the dashed lines in Figure 5.7 (a).

The control torque for the experiment with constant delays is shown in Figure 5.7 (b).

The torque in Figure 5.7 (b) takes time in settling down due to the effect of the scattering

transformation. Moreover, the initial torque in the second joint is not zero due to gravity

compensation (5.39). The initial torques in the first and third joints are zero due to the

assumption that signals are zero for t < 0. Hence, the signals τs(t) = 0, v1(t) = 0 if

t < T1 and z1(t) = 0 if t < T2, and the control torque is transmitted to the robot after

t = T1 + T2 units of time.

For the time-varying delay case, the delays were selected as
T1(t) = 0.15 + 0.10 sin(2

3
πt) sec

T2(t) = 0.15− 0.10 sin(2
3
πt) sec

(5.40)

which are continuously differentiable and satisfy the condition (5.23). Hence, the constant

gains d1 and d2 were obtained as d1 = d2 = 0.8. In the subsequent experiments, the

desired set point is the same as in the constant delay case.

The experimental results are first presented for the architecture proposed in The-

orem 5.2. The control parameters for this case are given as K1 =diag{50, 50, 50},

K2 =diag{450, 450, 450}, and the wave impedance constant b is set equal to the value

in the matrix K1. As shown in Figure 5.8 (a), even in the presence of time-varying input-

output delays, the closed-loop system is stable. However, the proposed control algorithm

was not able to regulate the robotic system to the desired configuration. The input torque

to the robot is shown in Figure 5.8 (b).

Next the position feedback architecture, proposed in Theorem 5.3 and Figure 5.6,
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(b) Control torque applied to the robotic system

Figure 5.8: The controller in Theorem 5.2 can ensure the system to be stable but cannot

regulate the robotic system to the desired equilibrium (dashed line).
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is validated in the experimental setup. In this case, the control gains is limited by the

maximum value of T1(t)+T2(t). Since there is unknown innate dampingBn in the robotic

system, Corollary 5.1 is utilized for the following experiments. The experiment using the

position feedback architecture in Section 5.4.2 was first conducted under the time-varying

delays (5.40), where the maximum value of the set of delays is TM = 0.3sec. Therefore,

the control gains are constrained by the inequality K1+Bn

K2
> 0.3, which implies that K1 >

0.3K2 +Bn. However, as the actual value of the natural damping in the robotic system is

unknown, the control gains are experimentally selected to demonstrate the performance

of the proposed control scheme. The control gains for delays (5.40) were selected as

K1 =diag{50, 50, 50},K2 =diag{250, 330, 370}, and the impedance parameter b = 50.

Experimental results are shown in Figure 5.9, where the system is stable and the control

system is able to regulate the robotic system to the desired equilibrium.

The proposed control architecture in Section 5.4.2 can regulate the robotic system

to the desired configuration under time-varying delays and achieve the control goal if the

maximum rate of change of delays approaches one. The next experiment demonstrates

the robustness of the proposed scheme under fast varying delays. The set of time-varying

delays are selected as 
T1(t) = 0.15 + 0.10 sin(5

3
πt) sec

T2(t) = 0.23− 0.19 sin(5
3
πt) sec

(5.41)

which are continuously differentiable and the maximum rate of change of T2(t) is 0.9948.

The maximum round-trip delays is TM = 0.47sec, so the control gains should satisfy

K1 > 0.47K2 + Bn. Given K1 =diag(50, 50, 50), K2 =diag(200, 270, 310), and the

impedance parameter b = 50, the experimental results are shown in Figure 5.10. It is seen

140



0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

1 st
 J

oi
nt

 (
ra

d)

0 1 2 3 4 5 6 7 8

0

0.5

1

2 nd
 J

oi
nt

 (
ra

d)

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

3 rd
 J

oi
nt

 (
ra

d)

Time (sec)

(a) Configuration of the robotic system

0 1 2 3 4 5 6 7 8
−50

0

50

100

150

200

250

Time (sec)

T
or

qu
e 

(m
N

m
)

1
st

 Joint 2
nd

 Joint 3
rd

 Joint

(b) Control torque applied to the robotic system

Figure 5.9: The position feedback with the use of scattering transformation results in a

stable system with better performance.
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Figure 5.10: Even when the derivative of time-varying delays is close to one, the stability

and tracking performance are guaranteed by using the position feedback architecture.
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that the proposed algorithm is able to ensure position regulation and the control torque is

bounded independent of the maximum rate of change of time-varying delays.

5.6 Summary

In this chapter, the problem of set-point control in rigid robots with constant and

time-varying input-output delays was studied. Without the precise knowledge of time de-

lays and robot dynamics, control algorithms based on the use of scattering representation

between the controller and the robotic system were proposed to ensure stability and posi-

tion regulation. It was first demonstrated that using the scattering variables can stabilize

an otherwise unstable system for arbitrary unknown constant delays. The tracking errors

asymptotically converge to the origin if there is no initial position difference between the

robot and the state of the controller.

For time-varying delays, the closed-loop system was stabilized using a modified

scattering representation scheme in Theorem 5.2. While stability was preserved by the

proposed algorithm, due to scaling of the power variables in the control scheme, the

regulation goal was not always achievable. Moreover, the control scheme was dependent

on the maximum rate of change of delays in the communication channel. To improve the

tracking performance, a new control architecture was proposed in this chapter with the

use of position feedback and scattering representation. Given the control gains, which

are contingent on the maximum round trip delay, the architecture can guarantee stability

of the closed-loop system and also position regulation. Moreover, this algorithm works

even if the maximum rate of change of delays is extremely close to one, and additionally
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the controller does not require knowledge of the initial position of the robotic system.

Experiments were performed in this chapter to validate the efficiency of the proposed

control architecture.
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Chapter 6

Conclusions and Future Directions

The aim of this dissertation is to study control problems of networked robotic sys-

tems in order to guarantee stability and to enhance performance when the system is sub-

jected time delays. The problem of controlled synchronization, semi-autonomous teleop-

eration, and control of robots with input-output delays were studied in this dissertation.

6.1 Synchronization of Networked Robotic Systems

The problem of synchronization was studied in Chapter 2 under the assumption

that the communication topology is balanced and strongly connected. By exploiting out-

put synchronization results proposed previously [12], the interconnected robots achieved

synchronization under dynamic uncertainties. It was demonstrated that the proposed con-

trol scheme can guarantee that the output of robotic systems asymptotically converge to

each other. If the networked robotic systems is subjected to constant communication

delays, the convergence of synchronizing errors to the origin is also guaranteed.

In addition, the presence of human input to the networked robotic systems with syn-

chronization was also studied in Chapter 2. In this case, robots follow a desired trajectory,

which can be intermittently changed by teleoperation based on task requirements by the

human operators. Excessive communications between the agents, resulting from strong

assumptions on communication topologies, makes the system hard to be scalable. By uti-
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lizing weighted storage function it was manifested that the proposed system will achieve

synchronization over strongly connected communication graphs that are not necessarily

balanced.

From the perspective of practical applicability, Chapter 3 studied synchronization

problem for heterogeneous (degree-of-freedom) robotic manipulators in the task space. It

was demonstrated that the task-space tracking controller developed in [92, 116] is input-

output passive. Exploiting the passivity property, a controller was presented to guarantee

the convergence of the tracking and synchronizing errors in the task space to the origin,

provided that the communication topology is balanced and strongly connected. Sub-

sequently, synchronizing networked robotic systems under time-varying communication

delays was also studied. Under the assumption that the maximum rates of change of

the various time-varying delays are known, the proposed control algorithm was shown to

guarantee task-space synchronization of the robotic manipulators.

The synchronization problem was studied in this dissertation under the assumption

that every individual robotic system in the network can acquire information about the

desired trajectory. However, this assumption might not be feasible in practice. It is pos-

sible that only a subset of the robots in the network can receive the desired trajectory,

and signals of the desired trajectory are probably subjected to time delays in the com-

munication channels. This issue should be considered in the future while dealing with

synchronization of networked robotic systems. In addition, the control schemes were

developed under the assumption that the knowledge of the network topology and cou-

pling weights are available controllers. Therefore, future work of this research involves

achieving synchronization with unknown communication topologies. Moreover, the ap-
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plications of synchronized networked robotic systems to cooperative manipulation could

benefit from the studies in this dissertation.

6.2 Semi-autonomous Teleoperation Systems

Teleoperated robotic system is a useful tool to accomplish tasks in remote or haz-

ardous environments. However, due to limited communications, the information ex-

changed between the master and slave robots is insufficient for human operators to accom-

plish complicated tasks in cluttered environments with high performance. Therefore, a

semi-autonomous teleoperation system, where the master and slave robots are assumed to

be heterogeneous robotic manipulators, was addressed in Chapter 4. Different from pre-

vious works [14,15,47,70], a control architecture was presented for teleoperation system

to enhance efficiency for operating in cluttered environments. The proposed controller

was shown to guarantee position and velocity tracking between heterogeneous robotic

manipulators with time delays. By utilizing the redundancy of the slave robot, the semi-

autonomous behavior was achieved with the use of only one master robot, while [54]

requires dual master robots to control the slave robot.

Moreover, the developed teleoperation system was able to achieve tracking even

when the human operator exerts a damping force. In hard contact, the signals of the

system were shown to be ultimately bounded with force reflection. Based on the pro-

posed semi-autonomous teleoperation framework, the redundant slave robot can regulate

its configuration for achieving some additional tasks while following the position of the

master robot in the task space. Three sub-task controls, which are singularity avoidance,
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joint angle limits, and collision avoidance, were discussed subsequently in this research.

A previously developed collision avoidance control, which was originally designed for

multi-agent systems, was modified and applied in this research for obstacle avoidance for

redundant slave robots.

Task-space position and velocity tracking were studied in the problem of semi-

autonomous teleoperation. However, the orientation tracking of the end-effector, which is

significant in practice, was not considered. In addition, time delays in the communication

channels were assumed to be continuous in this research. Therefore, future work in this

topic encompasses studying system performance under time-varying delays, developing

algorithms for end-effector attitude tracking, and enhancing the quality of force reflection

in the teleoperation system.

6.3 Control of Robotic System over Networks

Controlling robotic systems over networks will be the harbinger of potential appli-

cations, such as controllers, which can be installed in portable devices for human opera-

tors to remotely control the robotic manipulators. However, unreliable communications

between the controller and the robotic system are crucial for stability and performance of

networked robotic systems. Hence, the problem of controlling robotic manipulators with

input-output delays was studied in Chapter 5. After demonstrating that the robotic system

and controller are both passive systems, scattering representation was utilized to passify

the communication channels subjected to constant delays. Utilizing the property that a

feedback interconnection of passive system is also passive, stability of the closed-loop
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system was guaranteed.

The architecture with scattering representation was applied for the system with

time-varying delays after slight modification. Even though stability of the closed-loop

system is recovered by utilizing this architecture, the robotic system can only be oper-

ated with poor performance. Hence, a controller with a position feedback and scattering

representation was presented to ensure both stability and tracking performance when the

system is subjected to time-varying input-output delays. The proposed control systems

were validated experimentally via a PHANToM Omni device.

The control problem that signals exchanging between robotic manipulators and con-

trollers are subjected to communication delays was studied in this dissertation. However,

the system was considered only for set-point control. In order to enhance practicability

of this study for various applications, more complicated control schemes, such as trajec-

tory tracking and path planning, should be considered in this research. Moreover, the

assumption that the communication channels are continuous (constant and continuous

time-varying delays) is inadequate to cope with the discrete nature in the communication

network. Hence, future work in this topic includes not only trajectory tracking control of

robotic manipulators under input-output delays, but also studying discrete time network

effect in the communication channels [9, 32].
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Appendix A

Background

A.1 Passivity

A passive system is one in which the output energy from the system is less than or

equal to the input energy exerted from external source. The concept of passivity is one of

the most physically appealing concepts of system theory and, as it is based on the input-

output behavior of a system, it is equally applicable to both linear and nonlinear systems.

Most of the ideas presented in this section are adapted from [38]. The purpose of this

section is to set the background and notation of passivity for the study in this dissertation.

A control affine nonlinear system is considered having the form

Σ =


ẋ(t) = f(x) + g(x)u(t)

y(t) = h(x)

(A.1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rm. The functions f(·) ∈ Rn, g(·) ∈ Rn×m, and

h(·) ∈ Rm are assumed to be sufficiently smooth. The admissible inputs are assumed to

be piecewise continuous and locally square integrable. For simplicity, it is noted that the

dimensions of the input and output are the same, and f(0) = 0 and h(0) = 0.

Definition A.1 [38] The nonlinear system Σ is said to be passive if there exists a C1

non-negative definite storage function V (x) ≥ 0 with V (0) = 0, and a function S(x) ≥ 0
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such that for all t ≥ 0,

V (x(t))− V (x(0)) =

∫ t

0

uT (w)y(w)dw −
∫ t

0

S(x(w))dw (A.2)

which can be written as

V̇ (x) = uT (t)y(t)− S(x) (A.3)

Moreover, the system is said to be

• strictly passive if S(x) > 0 so that (A.3) can be written as uTy ≥ V̇ (x)

• lossless if S(x) = 0 so that (A.3) can be written as uTy = V̇ (x)

• input strictly passive if uTy ≥ V̇ (x) + uTψ(u), where uTψ(u) > 0 for some

function ψ and ∀u 6= 0

• output strictly passive if uTy ≥ V̇ (x) + yTρ(y), where yTρ(y) > 0 for some

function ρ and ∀y 6= 0

A.2 Euler-Lagrangian System

A dynamic system can be represented by using Euler-Lagrange equations. Follow-

ing [95], in the absence of friction and disturbances, the Euler-Lagrange equations of

motion for an n-degree-of-freedom robotic system are given as

M(q)q̈ + C(q, q̇)q̇ + g(q) = u (A.4)

where q ∈ Rn is the vector of generalized configuration coordinates, u ∈ Rn is the vector

of generalized forces acting on the system,M(q) ∈ Rn×n is a symmetric, positive definite
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matrix, C(q, q̇)q̇ ∈ Rn is the vector of Coriolis/Centrifugal forces, and g(q)=∂G
∂q
∈ Rn is

the gradient of the potential function G(q).

For robotic systems with all revolute joints, the above equations exhibit certain

fundamental properties due to their Lagrangian dynamic structure [95].

Property A.1 The matrix M(q) is symmetric positive definite, and there exists positive

constants λm and λM such that

λmIn ≤M(q) ≤ λMIn (A.5)

where In is an n× n identity matrix.

Property A.2 For any differentiable vector ξ ∈ Rn, the Lagrangian dynamics are lin-

early parameterizable which implies that

M(q)ξ̇ + C(q, q̇)ξ + g(q) = Y (q, q̇, ξ, ξ̇)Θ (A.6)

where Θ is a constant w-dimensional vector of unknown parameters, and Y (q, q̇, ξ, ξ̇) ∈

Rn×w is the matrix of known functions of the generalized coordinates and their higher

derivatives.

Property A.3 Under an appropriate definition of the matrix C, the matrix Ṁ - 2C is

skew symmetric.

Property A.4 For q, q̇, ξ ∈ Rn, there exists kc ∈ R+ such that the matrix of Corio-

lis/Centrifugal torques is bounded by

|C(q, q̇)ξ| ≤ kc|q̇||ξ|. (A.7)
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A.3 Graph Theoretic Terminology

Communication topology and information exchanging between agents can be rep-

resented as a graph. Some basic terminology and definitions from graph theory [26],

which is sufficient to follow the subsequent development, are mentioned in this section.

By a graph G(V , E) it means a finite set V(G) = {vi, . . . , vN}, whose elements

are called nodes or vertices, together with set E(G) ⊂ V × V , whose elements are called

edges, which is an ordered pair of distinct vertices. An edge (vi, vj) is said to be incoming

with respect to vj and outgoing with respect to vi and can be represented as an arrow with

vertex vi as its tail and vertex vj as its head. The in-degree of a vertex v ∈ G is the number

of edges that have this vertex as a head. Similarly, the out-degree of a vertex v ∈ G is the

number of edges that have this vertex as the tail. If the in-degree equals the out-degree

for all vertices v ∈ V(G), then the graph is said to be balanced.

If, for all (vi, vj) ∈ E(G), the edge (vj, vi) ∈ E(G) then the graph is said to be

undirected. Otherwise, it is called a directed graph. A path of length ` in a directed graph

is a sequence v0, . . . , vr of ` + 1 distinct vertices such that for every i ∈ {0, . . . , ` − 1},

(vi, vi+1) is an edge. A weak path is a sequence v0, . . . , v` of ` + 1 distinct vertices such

that for each i ∈ {0, . . . , `− 1} either (vi, vi+1) or (vi+1, vi) is an edge. A directed graph

is strongly connected if any two vertices can be joined by a path and is weakly connected

if any two vertices can be joined by a weak path.

From the above terminology, the information exchanging between the networked

robotic systems can also be represented by a weighted directed graph Gw = (V , E ,W),

where the vertex set V denotes robots in the communication network, the edge set E

153



denotes communication between robots, andW(Gw) = {wji}, j ∈ Ni denotes the weight

of each link. Here, Ni denotes the set of neighbors of edge υi if (υj, υi) ∈ E , and wji

denotes the weight of the edge from υi to υj . In the following, agents are used to denote

the individual robotic systems in the communication graph.

The weighted Laplacian Lw(Gw) for the interconnection graph is defined as

Lw := [Lwij] =


=
∑

j∈Ni
wji if i = j

= −wji if j ∈ Ni

= 0 Otherwise

Lemma A.1 [33,78] If the communication graph is strongly connected and weights are

positive, there exists a vector γ (with positive elements) satisfying γTLw = ∅, where ∅

denotes a zero vector, and the vector γ is defined as

γT = [γ1, . . . , γn], γi > 0 ∀i ∈ {1, . . . , N}

for the case with N agents.
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Appendix B

Kinematic and Dynamic Model of PHANToM Omni

PHANToM haptic device [88] is mainly used for human operator to interact with a

virtual environment because of its low inertia, large workspace and precise measurement

of position. The device has been implemented in many haptic applications [29, 61]. In

addition to haptic applications, PHANToM device can be utilized to test and validate con-

trol schemes after suitable modifications and improvements. Researchers in [4] studied

the mechanical and electrical properties of the PHANToM device in order to overcome

the limitation and use for control application with high performance. The experimental

identification and analysis of the dynamic model has been discussed in [101]. However,

most of these researches focused on PHANToM Premium 1.5 haptic device; the study of

PHANToM Omni for the implementation of control scheme has not been well studied.

PHANToM Omni, as seen in Figure B.1, is a cost-effective haptic device having

6-DoF position sensing and force feedback on the axis of x, y, and z. Only three of six

Figure B.1: The appearance of PHANToM Omni haptic device.
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Figure B.2: The schematic diagrams of PHANToM Omni haptic device.

joints of PHANToM Omni are actuated. The end-effector position resolution is 0.055mm,

and the maximum and continuous exertable force at the end-effector are 3.3N and 0.88N,

respectively. PHANToM Omni uses the interface IEEE-1394 Firewire port to communi-

cate with a computer. Using OpenHaptics API 2.0 [89], user can acquire data from and

send control command to a PHANToM Omni device. For the experiments conducted in

this dissertation, it is assumed that all signals acquired from the API are reliable.

Since the control schemes developed in this dissertation consider fully actuated

robots, the detachable stylus of PHANToM Omni is removed and the last three joints are

constrained in order to reduce the influence of the unactuated links on the behavior of

the manipulator. The schematic diagrams of the modified PHANToM Omni are shown

in Figure B.2 (a) and (b), where θ1, θ2, θ3 are joint angle, m2, m3 are the translational

inertias of link 2 and 3, and l1, l2 are length of links. In addition, X(t) = [x, y, z]T

denotes the position of the end-effector, Ẋ(t) denotes the velocity of end-effector, θ(t) =

[θ1, θ2, θ3]T denotes the joint angles, and θ̇ denotes the angular velocity of joints. The
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position X and linear velocity Ẋ of the end-effector can be acquired directly by using

OpenHaptics API for PHANToM Omni.

Since the joint angle of the third joint obtained from OpenHaptics API is depen-

dent on the second joint, for the sake of conforming usual practice, the captured signal

is modified to make the third joint independent of the second joint. In the system model,

the center of mass for all the links are assumed to be in the halfway along the link seg-

ment. Furthermore, two offsets, d1 and d2, on the second and third joints, as shown in

Figure B.2 (b), are assumed to have the same length and be massless. The required model

for the experiments are discussed based on these assumptions and modifications. In this

appendix, the derivation of rigid body transformations, forward kinematics, and dynamic

model are followed the notation in [63, 95].

B.1 Kinematic Model

Following the naming convention and home configuration shown in Figure B.2,

the forward kinematic configuration of a PHANToM Omni can be characterized by the

following vectors and points.

ω1 = [0, − 1, 0]T , ω2 = [−1, 0, 0]T , ω3 = [−1, 0, 0]T ,

q1 = [0, 0, − l1]T , q2 = [−d1, l2, − l1]T , q3 = [d2 − d1, l2, 0]T . (B.1)

The rotation matrices for individual joints are given as

eω̂1θ1 =


cos θ1 0 − sin θ1

0 1 0

sin θ1 0 cos θ1

 , e
ω̂2θ2 = eω̂3θ3 =


1 0 0

0 cos θ2 sin θ2

0 − sin θ2 cos θ2

 . (B.2)
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With the twist

ξi =

 −ωi × qi
ωi

 =

 υi

ωi

 i = 1, 2, 3, (B.3)

the exponential map from ξ̂ ∈ se(3) to SE(3) follows that

eξ̂iθi =

 eω̂iθi (I − eω̂iθi(ωi × υi) + ωiω
T
i υiθi

0 1

 . (B.4)

The forward kinematics map of a PHANToM Omni has the form

gst(θ) = eξ̂1θ1eξ̂2θ2eξ̂3θ3gst(0) =

 R(θ) p(θ)

0 1

 . (B.5)

The individual exponentials and gst(0) are given by

eξ̂1θ1 =



cos θ1 0 − sin θ1 −l1 sin θ1

0 1 0 1

sin θ1 0 cos θ1 l1 cos θ1 − l1

0 0 0 1


(B.6)

eξ̂2θ2 =



1 0 0 0

0 cos θ2 sin θ2 l1 sin θ2 − l2 cos θ2 + l2

0 − sin θ2 cos θ2 l1 cos θ2 + l2 sin θ2 − l1

0 0 0 1


(B.7)

eξ̂3θ3 =



1 0 0 0

0 cos θ3 sin θ2 −l2 cos θ3 + l2

0 − sin θ3 cos θ3 l2 sin θ3

0 0 0 1


(B.8)
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and gst = I4×4 identify matrix.

By expanding the product terms of the exponentials formula, the R(θ) and p(θ) can

be given as

R(θ) =


cos θ1 sin(θ2 + θ3) sin θ1 − cos(θ2 + θ3) sin θ1

0 cos(θ2 + θ3) sin(θ2 + θ3)

sin θ1 − sin(θ2 + θ3) cos θ1 cos(θ2 + θ3) cos θ1

 (B.9)

p(θ) =


− sin θ1(l2 sin(θ2 + θ3) + l1 cos θ2)

l2 − l2 cos(θ2 + θ3) + l1 sin θ2

cos θ1(l1 sin(θ2 + θ3) + l1 cos θ2)− l1

 := X. (B.10)

Since only the linear Jacobian is required in the experiment, the linear Jacobian

matrix can be directly obtained by taking the derivative of p. The structure and elements

of Jacobian are listed in the equation (B.11) and (B.12). Here, si, ci, sij, cij, s2i,

c2i, s2i,j, c2i,j, s2i,2j and c2i,2j where i, j = 1, 2, 3 are represented in the following as

shorthand for sin θi, cos θi, sin(θi+θj), cos(θi+θj), sin(2θi), cos(2θi), sin(2θi+θj),

cos(2θi + θj), sin(2θi + 2θj) and cos(2θi + 2θj), respectively.

J =


J11 J12 J13

0 J22 J23

J31 J32 J33

 (B.11)

J11 = −l1c1c2 − l2c1c2s3 − l2c1s2c3 , J12 = l2s1s2s3 + l1s1s2 − l2s1c2c3

J13 = −l2s1c2c3 + l2s1s2s3 , J22 = l2s2c3 + l2c2s3 + l1c2

J23 = l2c2s3 + l2s2c3 , J31 = −l2s1s2c3 − l1s1c2 − l2s1c2s3

J32 = l2c1c2c3 − l2c1s2s3 − l1c1s2 , J33 = l2c1c2c3 − l2s3c1s2

(B.12)
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For computing the Jacobian, the link lengths can be obtained based on the forward

kinematics and the linear property of kinematics that X = h(θ) = Yk(θ)Lk, where Yk

is known regressor matrix, and Lk = [l1, l2]T is the unknown link length vector for the

PHANToM Omni. As the position of the end-effector are available from the OpenHap-

tics API and there are only two unknowns in three equations, the length of PHANToM

Omni can be obtained that Lk = Yk(θ)
+X = [133mm, 133mm]T . The Jacobian matrix

acquired from OpenHaptics API is the same as the Jacobian computed from (B.11) based

on the length obtained above. As all the required signals are all available, the elements of

the regressor matrix Y (θ, θ̇, v, a) can be obtained and computed for the experiments.

In this dissertation, since the angular velocities of joint are required to implement

the control schemes, Jacobian matrix and linear velocities of the end-effector are used to

obtain angular velocities by θ̇(t) = J−1(θ)Ẋ(t), where J(θ) denotes the linear Jacobian

matrix. Moreover, due to that the control with the use of OpenHaptics API 2.0 can only

be applied to PHANToM Omni in the joint space by motor DAC value or the task space

by linear end-effector force, in all experiments, the torque, computed from the proposed

control scheme, will be converted to force in the end-effector by using Jacobian matrix.

B.2 Dynamic Model

The dynamic model can be derived by using Euler-Lagrange equations. The func-

tion, which is the difference of the kinetic and potential energy, can be given as

L = K − P (B.13)
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where L is Lagrangian, K is kinetic energy, and P is potential energy due to gravity.

Then, the equations of motion of the robotic system is

d

dt

∂L
∂θ̇i
− ∂L
∂θi

= τi , i = 1, 2, 3 (B.14)

where τi is the force associated with joint θi.

Referring to [63], the instantaneous body linear and angular velocities are given as

υbi = RT
i Ṗi , ω̂

b
i = RT

i Ṙi (B.15)

whereRi is the rotational matrix shown in (B.2). Then, the kinetic energy of a PHANToM

Omni can be written as

K =
3∑
i=1

(1

2
υbiMiυ

b
i +

1

2
ωbiIiωbi

)
(B.16)

whereMi is the total mass of link i, and Ii is the inertial tensor of link i. The potential

energy of a PHANToM Omni can be given as

P =
3∑
i=1

Mig
Tpci (B.17)

where g is the vector giving the direction of gravity, and pci gives the coordinates of the

center of mass of link i. The equations of motion can be derived by (B.14), and kinetic

and potential energy.

Based on the above assumptions and modifications, in the absence of frictional and

viscous damping forces, the dynamics of the robotic system can be written as

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = u(t) (B.18)

where M(θ) ∈ R3×3 is the inertia matrix, C(θ, θ̇) ∈ R3×3 is the vector of Corio-

lis/Centrifugal forces, andG(θ) ∈ R3 is the gravitational vector. Here, u(t) = [u1, u2, u3]T
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and θ(t) = [θ1, θ2, θ3]T denote the torque command to drive PHANToM Omni and the

angular positions of three actuated joints, respectively.

Rearranging C(q, q̇) in the structure that makes Ṁ(q)−2C(q, q̇) a skew symmetric

matrix, the dynamics of PHANToM Omni can be written as
M11 0 0

0 M22 M23

0 M32 M33




θ̈1

θ̈2

θ̈3

+


C11 C12 C13

C21 C22 C23

C31 C32 0




θ̇1

θ̇2

θ̇3

+


0

G2

G3

 =


u1

u2

u3


(B.19)

where the elements of the matrices M(θ), C(θ, θ̇) and G(θ) are listed as follows

M11 =
1

2
I2z −

1

2
I2yc22 +

1

2
I3y +

1

2
I2y −

1

2
I3yc22,23 +

1

2
I2zc22 +

1

2
I3zc22,23 +

1

2
I3z

+I1z +
1

8
m2l

2
1 +

1

2
m3l

2
1c22 +

1

2
m3l1l2s22,3 +

1

2
m3l

2
1 +

1

8
m2l

2
1c22 +

1

8
m3l

2
2

−1

8
m3l

2
2c22,23 +

1

2
m3l1l2s3

M22 = I2x + I3x +m3l
2
1 +m3l1l2s3 +

1

4
m3l

2
2 +

1

4
m2l

2
1

M23 = M32 = I3x +
1

4
m3l

2
2 +

1

2
m3l1l2s3

M33 = I3x +
1

4
m3l

2
2

C11 = (
1

8
m3l

2
2s22,23 −

1

2
m3l

2
1s22 +

3

8
m2l

2
1s22 −

1

2
m2l

2
1s22 +

1

2
m3l1l2c22,3

−1

2
I2zs22 +

1

2
I2ys22 −

1

2
I3zs22,23 +

1

2
I3ys22,23)θ̇2 + (

1

8
m3l

2
2s22,23

+
1

4
m3l1l2c22,3 +

1

4
m3l1l2c3 +

1

2
I3ys22,23 −

1

2
I3zs22,23)θ̇3

C12 = −C21 = (
1

8
m3l

2
2s22,23 −

1

2
m3l

2
1s22 +

3

8
m2l

2
1s22 +

1

2
m3l1l2c22,3

−1

2
m2l

2
1s22 +

1

2
I2ys22 −

1

2
I3zs22,23 +

1

2
I3ys22,23 −

1

2
I2zs22)θ̇1

C13 = −C31 = (
1

8
m3l

2
2s22,23 +

1

4
m3l1l2c22,3 +

1

4
m3l1l2c3
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−1

2
I3zs22,23 +

1

2
I3ys22,23)θ̇1

C22 =
1

2
m3l1l2c3θ̇3

C23 =
1

2
m3l1l2c3θ̇2 +

1

2
m3l1l2c3θ̇3

C32 = −1

2
m3l1l2c3θ̇2

G2 =
1

2
m3gl2s2,3 +

1

2
m3gl1c2 +

1

2
m2gl1c2

G3 =
1

2
m3gl2s2,3

where mi and Iij are the translational and rotational inertia of link i, in which i = 1, 2, 3

and j = x, y, z.

By the Property A.2, the Lagrangian dynamics of the device can be linearly param-

eterized as

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = Y (θ, θ̇, θ̈)Θ (B.20)

where Θ ∈ R 8 is the unknown parameter vector and Y ∈ R 3×8 is the regressor ma-

trix. For implementing the proposed control scheme, the regressor matrix Y (θ, θ̇, θ̈)

in (B.20) is modified to Y (θ, θ̇, v, a), where a(t) and v(t) were defined in the proposed

control scheme. Based on the system dynamics, the vector of unknown parameter Θ

and regressor matrix Y (θ, θ̇, v, a) are calculated in (B.21), and (B.22) to (B.24), where

Y = [Y1, Y2, Y3]T . Notations v1, v2, v3, a1, a2, and a3 are the elements corresponding to

the vectors v(t) and a(t) defined in the proposed control scheme.
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Θ =



1
2
m3l

2
1 + 1

8
m2l

2
1 + 1

2
I2z − 1

2
I2y

−1
8
m3l

2
2 − 1

2
I3y + 1

2
I3z

1
2
m3l1l2

1
8
m2l

2
1 + 1

8
m3l

2
2 + 1

2
m3l

2
1 + 1

2
I2z + 1

2
I3y + 1

2
I2y + 1

2
I3z + I1z

1
4
m3l

2
2 +m3l

2
1 + 1

4
m2l

2
1 + I2x + I3x

1
4
m3l

2
2 + I3x

1
2
m3gl2

1
2
m3gl1 + 1

2
m2gl1



(B.21)

Y1 =



a1c22 − v2s22θ̇1 − v1s22θ̇2

−v3s22,23θ̇1 − v1s22,23θ̇2 − v1s22,23θ̇3

a1c22,23 − v2s22,23θ̇1

a1(s22,3 + s3) + (1
2
v3c3 + v2c22,3 + 1

2
v3c22,3)θ̇1 + v1c22,3θ̇2

+(1
2
v1c3 + 1

2
v1c22,3)θ̇3

a1

0

0

0

0



(B.22)
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Y2 =



v1s22θ̇1

v1s22,23θ̇1

2a2s3 + a3s3 − v1c22,3θ̇1 + v3c3θ̇2 + (v3c3 + c3v2)θ̇3

0

a2

a3

s2,3

c2



(B.23)

Y3 =



0

v1s22,23θ̇1

a2s3 − (1
2
v1c22,3 + 1

2
v1c3)θ̇1 − c3v2θ̇2

0

0

a2 + a3

s2,3

0



. (B.24)
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