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In this thesis, we present the design, fabrication and measurement of two

types of silicon-based terahertz waveguides. The first is anisotropically etched highly

doped silicon surface for supporting terahertz plasmonic guided wave. We demon-

strate propagation of terahertz waves confined to a semiconductor surface that is

periodically corrugated with subwavelength structures. We observe that the grating

structure creates resonant modes that are confined near the surface. The degree

of confinement and frequency of the resonant mode is found to be related to the

pitch and depth of structures. The second is silicon dielectric ridge waveguide used

to confine terahertz pulses and study silicon’s terahertz intensity-dependent ab-

sorption. We observe that the absorption saturates under strong terahertz fields.

By comparing the response between lightly-doped and intrinsic silicon waveguides,

we confirm the role of hot carriers in this saturable absorption. We introduce a

nonlinear dynamical model of Drude conductivity that, when incorporated into a

wave propagation equation, predicts a comparable field-induced transparency and

elucidates the physical mechanisms underlying this nonlinear effect. The results



are numerically confirmed by Monte Carlo simulations of the Boltzmann transport

equation, coupled with split-step nonlinear wave propagation.
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Chapter 1: Introduction

Terahertz (THz) spectrum (Fig. 1.1) loosely can be defined as 0.1-10 THz.

Wavelengths cover from 30 µm to 3 mm. Lying between well-developed microwave

and infrared in the electromagnetic spectrum, it’s least explored. Hence THz region

is called “THz-gap”. Since mid-1980s, tremendous work has been done to approach

this region from microwave, the low frequency side, and infrared, the high frequency

side. Technologies for THz application are rapidly growing and filling up the gap.

Milestones include the development of THz time domain spectroscopy, THz imaging,

and high power(mJ) THz generation. These innovations find application in an

increasing wide variety of fields: spectral fingerprint [6]; biology and medical sciences

[7]; homeland security [8]; next generation wireless transmission [9]; and monitoring
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10-4 10-7 10-10 10-13 10-1610-1102105

1015 1018 1021 1021

Hz

m
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Wavelength
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THz Gap

Figure 1.1: The electromagnetic spectrum.
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the Earth’s atmosphere [10].

1.1 Terahertz waveguides

The delivery of THz is very important for both communication and sensing ap-

plications. In recent years, there has been significant interest in developing guided

wave components operating in the terahertz regime for applications that include

bio-sensing [11,12], imaging [13], slow light devices [14], modulators and lasers [15].

Since terahertz is positioned between microwave and infrared, technology to study

this region can be borrowed from both sides. Researchers proposed several ter-

ahertz waveguides solutions based on electronic and optical technologies, such as

parallel plate waveguides [16, 17], metal wire waveguides [18], dielectric hollow core

waveguides [19], and dielectric solid core waveguides [20]. Metallic waveguides are

downscaled versions of microwave guiding devices, as most metals at THz frequencies

still behave like perfect conductor and metallic structures can be used for guidance

in this region. Dielectric waveguide, technology from optical frequency range, is

another major category of terahertz waveguides. Low absorption loss dielectrics in

THz region, such as high-resistivity silicon(absorption loss<0.05 cm−1), with proper

fabrication of geometries can also be good candidate for THz guidance. Several re-

ported terahertz waveguides have been listed in Table. 1.1. For metallic waveguides,

loss comes from finite conductivity of the metals in THz frequencies. And the prop-

agating mode suffers high dispersion around cut-off frequency if the dominant mode

is not TEM mode. While for dielectric waveguide, the attenuation and distortion

2



Table 1.1: Several Typical Terahertz Waveguides

Terahertz waveguide Material Dimension(µm) Absorption

coefficient(cm−1)

reference

Circular waveguides Stainless steel Diameter=280 0.7 [24]

Parallel plate waveg-

uides

Copper Distance=108 0.1 [25]

Metal wire Stainless steel Diameter=900 0.03 for TM01 [18]

Fish line Polyethylene Diameter=200 0.01 [20]

Teflon pipe Teflon Diameter=9000 0.0008 [26]

Polymer porous-core

fiber

cyclic olefin

copolymer

Diameter=900 0.08 [27]

of terahertz wave are due to material absorption and dispersion from material and

geometry.

In this thesis, we present the fabrication and application of two types of silicon-

based terahertz waveguides. One is anisotropically etched highly doped silicon sur-

face for supporting THz plasmonic guided wave [21], [22]. The other is intrinsic

silicon ridge waveguide used to study silicon’s terahertz intensity-dependent absorp-

tion [23].
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1.2 Characteristics of silicon

Among all the dielectrics, silicon is one of the most favorable materials for

terahertz applications. The linear absorption and index of refraction of silicon in

terahertz region have been studied since 1990s with the development of Terahertz

Time Domain Spectroscopy(THz-TDS).

From previous work [1], intrinsic silicon shows exceptionally low loss and neg-

ligible group-velocity dispersion in THz region (shown in Fig. 1.2). These properties

make intrinsic Si appealing to be used as windows, quasi-optic lens, and dielectric

slab or ribbon waveguides. For better understanding of the importance of intrinsic

silicon, Table. 1.2 provides the properties at 1 THz of several popular materials for

terahertz optics production. Among all the materials, undoped silicon is the most

transparent.

However, the excellent transparency is only the behavior of intrinsic or high

resistivity silicon. The absorption of terahertz wave in silicon is greatly carrier den-

sity dependent. With increasing doping density of free carriers, silicon can become

almost opaque. When silicon doping density exceeds 1019 cm−3, it exhibits metallic

properties at terahertz frequencies. Fig. 1.3 displays how the real and imaginary

permittivity ε of doped silicon change with doping density. Absorption is related

to permittivity by α = Im(n)ω
c

= Im(
√
ε)ω

c
. With doping density above 1019 cm−3,

the permittivity and thus absorption strongly increase. A comparison of relative

permittivity and skin depth at 1 THz of highly-doped Si, gold and copper is shown

in Table. 1.3. We can directly conclude that highly doped silicon behaves like metal.

4



Figure 1.2: (a) The power absorption coefficient and (b)measured refractive index

of float-zone, high-resistivity silicon [1]
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Table 1.2: Properties of several important THz materials at 1 THz

Material Refractive index Absorption(cm−1)

High resistivity(10 kΩ·cm) silicon 3.44 0.02

Sapphire 3.41/3.07 1.0

Quartz 2.15/2.11 0.1

Fused silica 1.95 2.0

TPX 1.46 0.4

PTFE 1.43 0.6

PMMA 1.5 20

HDPE 1.54 0.4
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And compared to metal, it’s easier to pattern periodically sub-wavelength structures

with mature fabrication technologies. It can therefore replace metal to fabricate THz

plasmonic waveguide, which we will discuss later.

Previous work of silicon in terahertz region are mostly focused on linear prop-

erties of this material. The loss in silicon is typically described by the Drude

model [28] [29]. The Drude model treats free carriers in solid in a classical way

and provides a good prediction of the carriers’ linear behavior inside bulk silicon.

The Drude model predicts the frequency-dependent complex dielectric constant,

conductivity and absorption are:

ε = ε∞ + iσ/ωε0, (1.1)

7



Table 1.3: Relative permittivity and skin depth at 1 THz

Material Relative permittivity Skin depth(µm)

Silicon (n=4×1019 cm−3) (-1.3+2i)×104 0.35

Gold (-1.1+7.2i)×105 0.074

Copper (-3.36+4.46i)×104 0.23

σ = σdciΓ/(ω + iΓ) = iε0ω
2
p/(ω + iΓ), (1.2)

α =
q2NΓ

ε0cm∗n(ω2 + Γ2)
, (1.3)

in which ε∞ is the contribution of the bound electrons, Γ is the momentum scattering

rate, ωp = Nq2/ε0m
∗ is plasma frequency, m∗ is effective mass, N is the doping

density, σdc = eµN represents DC conductivity, q is the elementary charge, ε0 is

the free-space permittivity, n = Re(
√
ε) is the real part refractive index, and c

is the free-space light velocity. α is the absorption coefficient. Intensity decays

with distance as I(z) = I(0) e−αz. Since the relation between momentum scattering

rate Γ and carrier mobility µ is µ = q/(m∗Γ), the Drude absorption sometimes is

represented as:

α =
qNΓ2µ

ε0cn(ω2 + Γ2)
. (1.4)

This formula is more useful when we discuss how field-dependent mobility effects

absorption in section 1.4.3.
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We note here that the original Drude model is linear and thus doesn’t reveal

any evidence of field-dependent absorption. In Chapter 3, we will propose a modified

Drude model to support the nonlinear absorption we observed in silicon.

1.3 Terahertz plasmonic wavguides

1.3.1 Surface plasmon polaritons (SPPs)

In infrared and visible electromagnetic frequencies, plasmonic waveguides (like

those shown in Fig. 1.4(a), in which electromagnetic wave is highly confined at the

surface of metallic material, can offer simple geometry and sub-wavelength confine-

ment of a guided mode. The bounded electromagnetic wave is called surface plasmon

polariton, which can exist at the interface between any two materials where the real

part of the dielectric function changes sign across the interface. This surface plasmon

concept originates in the plasma approach of Maxwell’s theory: the free electrons

of a metal are treated as an electron liquid of high density and density fluctuations

occurring on the surface of such a liquid are called plasmons. From Maxwell’s the-

ory, excitation of the surface plasmons can only be achieved by using TM incidence

beam. The dispersion relation for the surface mode is [30]:

kx =
ω

c

√
εmεd
εm + εd

, εm + εd < 0, (1.5)

in which εm and εd are relative permittivity of metal and dielectric respectively,

c is the free space light velocity. Fig. 1.4(b) shows typical dispersion relations for

radiative mode, quasi-bound mode and this plasmonic or bound mode obtained from
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(a)

(b)

Figure 1.4: (a)Surface plasmon polaritons travel along metal-dielectric inter-

face(http://en.wikipedia.org/wiki/Surface_plasmon). (b)Dispersion relation

for bound mode(surface plasmon), quasi-bound mode and radiative mode(http:

//optics.hanyang.ac.kr/~shsong/27-Metals.pdf)
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Maxwell equations. We can see the curve of plasmonic mode at the beginning follows

the light line and then bends over and reaches limit(called surface plasma frequency

ωsp) at high frequency, which leads to slower group velocity and tighter confinement.

The relation between surface plasmon frequency and plasmon frequency is

ωsp =
ωp√

1 + εd
. (1.6)

Because of its sub-wavelength spatial confinement, this type of waveguide finds

applications in sensing and switching. However, at THz frequencies, traditional

plasmonic metals and highly doped dielectrics have negligible penetration depth

and behave like perfect conductors. Therefore, traditional surface plasmons cannot

exist in this frequency region.

1.3.2 Mimicking Surface Plasmons with structured surfaces in THz

region

In order to compensate the wavevector mismatch and mimic plasmonic disper-

sion at optical wavelengths where metals behave like perfect conductor, Pendry pro-

posed [31] and developed [2] a method—periodically patterning conductive surface.

Grating structure on conductive surface creates resonant modes that are confined

near the surface. The schematic for rectangular apertures that Pendry used in his

2004 paper is shown in Fig. 1.5(a). By supposing an effective homogeneous field

in surrounding material and arguing the instantaneous flow of energy across the

surface must be the same, he calculated the dispersion relation for this structure is:
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(a) (b)

Figure 1.5: (a)Schematic and (b)dispersion relation of rectangular apertures. [2]

k2
//c

2 = ω2 +
1

ω2
cut−off − ω2

64a4ω4

π4d4
, ωcut−off =

πc

a
√
εhµh

(1.7)

and ploted in Fig. 1.5(b). In Eq. 1.7, k// is the wave vector along the metal sur-

face, c is the free space light velocity, d is the distance between each hole, a is

the length of these square apertures, ωcut−off = πc√
εhµh

is the cut-off frequency of

this waveguide, and εh and µh are the permittivity and permeability of any mate-

rial that may be filling the holes. By comparing Fig. 1.5(b) and Fig. 1.4(b), we

can conclude this kind of structure mimicks the dispersion relation of a traditional

surface-plasmon polariton. The limit the dispersion relation reached is the exactly

cut-off frequency of this waveguide. Pendry pointed out this technology can be ap-

plied to any frequency(metals are nearly perfect conductors from zero frequency to

terahertz regime)even where traditional surface plasmons do not exist before.

Since then, much experimental, theoretical, and numerical work has been re-
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ported on terahertz plasmonic waveguides using metallic corrugated surface. Several

geometries, including metallic aperture [32], rectangular gratings [33], triangular

grooves [34], have been demonstrated and shown to support highly confined surface

modes.

In these previous work, fabrication of corrugated structures on metal has been

proved to be challenging because of the difficulty of patterning or etching metal.

There is a need for alternative substrate. By recalling that silicon, when heavily

doped(> 1019 cm−3), can be treated as perfect conductor in THz regime and can

therefore replace the periodic metallic structures originally used to guide waves.

Moreover, this approach can benefit from the mature silicon fabrication technologies.

What’s more, unlike metals, the dielectric properties of silicon can be manipulated

by changing doping density or photo-illumination, or current injection which in turn

determines the degree of confinement and loss for plasmonic wave. In Chapter 2, we

will show terahertz time domain measurements and simulated results for plasmonic

waveguide based on anisotropically etched silicon substrate.

1.4 Nonlinear terahertz exploration

1.4.1 High power terahertz generation

Traditional terahertz generation methods include photoconductive antenna,

optic rectification in second-order nonlinear crystals like ZnTe or GaP and photo-

dember effect on InAs. These low terahertz energy sources provide 0.1-10 THz band-

width and enable applications like terahertz imaging and spectroscopy. However,
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for important applications such as terahertz pump-terahertz probe measurement

of dynamics and terahertz electron spin resonance, high power terahertz source is

required. In recent years, several group reported the development of high power

terahertz generation. One solution is to use free electron pump laser [35]. This can

provide 10-100 µJ terahertz. However, the large-scale pump facility is not easily

accessible. Another solution utilizes large-aperture photoconductive switch [36] il-

luminated by ultrashort laser pulses, which can produce 1 µJ in energy. However,

strong saturation of generated THz signal limits scaling with increasing laser pulse

energy. Some group reported by using large aperture ZnTe [37], they can also gen-

erate µJ terahertz pulse through optical rectification. Efficiency of this method is

limited by the free carriers absorption in ZnTe. The record for high THz field gener-

ation is with nonlinear organic crystals [38,39], such as DAST. This kind of crystals

has very high nonlinear coefficient(for example second order nonlinear coefficient

deff=615 pmV−1 for DAST) and can generate 8 GV/m [39] THz by optical recti-

fication. However, nonlinear organic crystal is not widely used due to difficulties

with fabrication. Nowadays, two most appealing high power terahertz generation

methods are terahertz generation using two-color mixing in plasma [40] [41] and

optical rectification of femtosecond laser in LiNbO3(LN) with tilted pump pulse

scheme [42] [43].

Two color mixing generation: This technique generates single-cycle high power

THz pulses by mixing fundamental ω and second-harmonic 2ω pump pulses in gas

plasma. Typical schematic of this method is shown in Fig. 1.6. In most ex-

periments, fundamental pump beam has a center wavelength of 800 nm. A Beta
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Figure 1.6: Experiment setup for terahertz two-color generation.

Barium Borate(BBO) crystal is used to generate second-harmonic, in this case 400

nm. A double wavelength waveplate, half wave plate at 800nm and full wave plate

at 400nm, is used to rotate 400 nm to be polarized in the same direction as 800

nm for highly efficient THz generation. The 800 nm and 400 nm pump pulses are

focused by a lens to generate plasma in gas. Third order nonlinear effect takes place

in plasma and generates THz. There is no damage threshold for the emitter since

effective media is gas. Conversion efficiency from optical to THz energy exceeded

10−4 [44]. And the bandwidth is only limited by pump laser duration. THz pulses

with several µJ power has been reported using this technique [45].

Generation by optical rectification in LiNbO3: Another widely used method

for ultrashort high field THz generation is utilizing tilted pump pulse technique for

efficient optical rectification in LiNbO3(LN) [43, 46]. In this thesis, our high power

terahertz source is based on tilted pump-pulse scheme. Compared to ZnTe(deff=68.5
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pmV−1) or GaP(deff=24.8 pmV−1), LiNbO3(deff=168 pmV−1) has much larger

nonlinear coefficient for optical rectification generation. What’s more, LN is an at-

tractive nonlinear crystal because it has a higher band gap than other commonly

used EO materials. This makes LN less susceptible to multiphoton absorption of

the excitation laser pulses. Multiphoton absorption is known to not only give a

higher possibility for optical damage to the crystal, but also generate free carriers

in the nonlinear material that screen the THz generation. This is considered the

major cause of saturation in THz generation through optical rectification when high

excitation laser power is used for other crystals. The higher band gap allows LN

crystals to hold higher laser power, and thus delivers stronger THz radiation.

However, unlike ZnTe or GaP, this crystal is not automatically fulfill the velocity-

matching requirement for efficient optical rectification. The group velocity of the

(near-IR) pump is more than two times larger then the THz phase velocity. The

THz wave and NIR beam ”walk away” from each other in a short distance. The large

angle between THz and optical beam also brings difficulty in coupling the THz wave

out of the LN. This greatly limits LN’s application. In 2002, Hebling [47] proposed

to use tilted pulse front pumping (TPFP) scheme (shown in Fig. 1.7) to realize ve-

locity matching in LiNbO3 and generated µJ terahertz radiation. By diffracting the

incoming ultrashort pump pulse off an optical grating, we can introduce a tilt of the

pulse front and make the projected group velocity of the pump onto the propagation

direction of the THz radiation be equal to the THz phase velocity. This velocity

matching condition can be expressed as:
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Figure 1.7: Typical experiment setup of tilted pulse front pumping method. Inset

is velocity matching using TPFP
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vgroupPump · cos(γ) = vphaseTHz . (1.8)

For LN, γ = 63◦at1THz for LN. The lens in Fig. 1.7 enlarges the angular dispersion

introduced by the grating and recreates the original short pulse duration inside of

the medium by imaging the grating surface into the crystal. Orange lines are tilted

pulse fronts of pump beam before and after the lens. A half-wave plate rotates the

polarization of pump beam to align with LN’s optical axis for maximizing optical

rectification effect. By changing the grating and imaging parameters, the experi-

mental setup can easily be adapted to different pump wavelengths and repetition

rates.

Thereafter, this technology is rapidly developed. More than 1 MV/cm [43] and up

to 125 µJ per pulse [46] terahertz has been generated. This greatly inspired and

enabled terahertz nonlinear optics exploration.

1.4.2 Terahertz nonlinear spectroscopy

The interaction of THz radiation with semiconductors has been studied exten-

sively and include effects such as free carrier absorption, the photon drag effect or

intersubband transitions. However, few studies have been reported on the nonlinear

terahertz characteristics of semiconductors using high fields.

With development of high power terahertz sources, terahertz induced non-

linear transmission has began to be observed in a variety of bulk semiconductors,
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including Si [3, 4], Ge [3], GaAs [48–53], GaP [54] and InSb [55–57], and numerous

hot carrier effects have been offered as explanations, including intervalley scattering,

band nonparabolicity, and impact ionization.

Terahertz induced transparency [3]: In 2010, the time evolution of hot car-

rier distribution and the cooling was studied in Ge, GaAs and Si by using THz-

pump/THz probe scheme. In all samples, high field terahertz induced absorption

bleaching has been observed. And from the spectral analysis of the data, it can be

seen the characteristics of the hot electron gas deviates significantly from the Drude

behavior.

Terahertz induced impact ionization: When high power terahertz is directed to

low bandgap semiconductor such as InSb [56], it can accelerate electrons inside InSb

to overcome the bandgap and lead to increase in absorption caused by newly gener-

ated electron-hole pairs. This impact ionization phenomenon has been observed by

Nelson’s group using THZ-pump/THz-probe spectroscopy. More recently, Jepsen’s

group reported impact ionization in high resistivity silicon when the peak THz field

exceeds 1 MV/cm, a condition that is difficult to experimentally achieve [58]. They

utilized metal resonant antenna to concentrate the original hundred kV/cm THz

field.

Nonlinear THz response at 2D metamaterial: Recently, two groups [59, 60]

employed two-dimensional terahertz metamaterial to study the nonlinear transmis-

sion at semiconductor surface, and phenomenologically modeled the observations

by a change in conductivity. Al-Naib used silicon as the substrate and observed

enhanced transmission when increasing THz field from 0.4 to 90 kV/cm. Fan fabri-
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cated a similar structure on GaAs. He observed enhanced transmission by increasing

THz field from 20 to 160 kV/cm. However, reversed effect happened when the THz

field was increased above that range. The reason for this reversal is that impact

ionization increases the carrier concentration leading to suppressed transmission.

In most previous cases, the observations were carried out using wafers or win-

dows with optical thickness of only a few terahertz wavelengths. In such thin sam-

ples, the cumulative nonlinearity is necessarily quite small, and it is difficult to

separate propagation effects from interface effects such as small changes in reflec-

tivity, or spatial effects such as self-focusing and diffraction. In this thesis, we will

fabricate silicon ridge waveguide to increase interaction length between THz and

carriers while maintaining high power THz in small region.

1.4.3 Silicon nonlinear terahertz phenomenon

Nonlinear properties of silicon, such as drift velocity saturation [61], impact

ionization [62], two photon absorption [63], and self phase modulation [64], are

fully studied in DC, mid IR and near IR. However until recently, terahertz induced

nonlinear effects are less explored due to lack of high power terahertz source. In

2010, both Hebling [3](Fig. 1.8(a)) and Kaur [4](Fig. 1.8(b)) examined high power

THz induced absorption bleaching in n-doped bulk silicon. Their work showed when

terahertz field increased from several kV/cm to several hundreds of kV/cm, silicon

became more transparent. More recently, Jepsen’s group observed MV/cm teraherz

induced impact ionization in high resistivity silicon wafers [58].
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(a)

(b)

Figure 1.8: (a) Dynamic behavior of the saturation of free-carrier absorption in the

n-type Si measured by terahertz pump terahertz probe method [3](b)Absorption of

n-doped Si under different applied THz field [4].
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As carriers dynamics play a important role in determining silicon absorption,

most previous work used doped bulk silicon to study intensity-dependent absorp-

tion. Intrinsic or lightly doped bulk silicon is almost not studied for its negligible

carrier-based absorption in THz regime. In order to overcome this difficulty, we

fabricated Si ridge waveguide to increase interaction length between THz and car-

riers while maintaining high power THz in small region. Again, we observed high

terahertz(≤100 kV/cm) induced transparency in lightly doped silicon ridge waveg-

uides.

The absorption of silicon is related to mobility by Eq. 1.3. Inter-valley scat-

tering, and thus higher effective mass and lower mobility, has been suggested to

cause this saturable absorption. However, for better understanding of underly-

ing physics, more rigorous study is needed. Hot carriers’ transport is described

by Boltzmann Transport Equation(BTE). Since Monte Carlo simulation is known

to be able to provide precise solution to this equation, in this thesis, we develop

a THz Monte Carlo simulation to study the nonlinear transmission phenomenon.

It’s known that carrier drift velocity saturates in bulk silicon for applied DC field

above 45 kV/cm(Fig. 1.9 [5]), leading to a field-dependent reduction in mobility.

We checked whether drift velocity behaves a similar way under high THz signal and

causes reduction in absorption in silicon by using Monte Carlo simulation assem-

bled with split-step nonlinear wave propagation in chapter 3. We also introduce a

nonlinear dynamical model of Drude conductivity that, when incorporated into a

wave propagation equation, accurately reproduces the observations and elucidates

the physical mechanisms underlying this nonlinear effect.
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Figure 1.9: (a)Electron and (b)hole drift velocity in silicon as a function of electric

field at three different temperatures. The points are the experimental data and the

continuous line are from vd = µ E

[1+(E/Ec)
β]

1/β [5].
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1.5 Summary of dissertation

This thesis is mainly focused on two types of silicon-based terahertz waveguides

and their applications. In this chapter, we introduced the background and motiva-

tion of our research. Current status and basic knowledge of terahertz waveguide,

surface plasmon polaritons, high power terahertz generation, and silicon nonlinear

terahertz phenomenon were discussed.

In chapter 2, we describe terahertz spoof plasmon polariton propagation on

a highly doped silicon surface that is patterned with periodic V-grooves. Tera-

hertz time domain spectroscopy is used to characterize the surface wave, and shows

evidence of a resonant mode that is confined to the surface. Numerical and experi-

mental measurements reveal that the resonant frequency and degree of confinement

can be adjusted by tailoring the depth and period of the structures. Numerical sim-

ulations reveal that deeper structures can provide tighter surface confinement and

slower group velocities for the resonant mode.

In chapter 3, we discuss the fabrication of silicon ridge waveguide and experi-

mental setup for studying nonlinear terahertz optics. The field-induced transparency

and associated carrier velocity saturation is shown to be dynamical effect that can-

not be adequately explained by a modified effective mobility or Drude model. We

present a simple, nonlinear Drude model that explains the observations, and we

confirm the model using rigorous Monte Carlo simulations. Further, we introduce a

numerical split-step method that models the interplay of nonlinearity and dispersion

in the wave propagation. These results could have important consequences in fu-
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ture high-power terahertz guidedwave nonlinear devices, such as terahertz frequency

converters, parametric oscillators, mixers, and modulators.

In chapter 4, details about our Monte Carlo simulation introduced in chapter

3 are provided. First, ways to estimate input terahertz field amplitude in the sim-

ulation are introduced. Then processes and parameters of Monte Carlo simulation

are presented. Velocity saturation at high THz field(obtained from Monte Carlo

simulation) is observed for both electrons and holes.

In chapter 5, we briefly summarize this thesis and discuss the potential appli-

cation of our nonlinear results and model.

25



Chapter 2: Plasmonic terahertz waveguide based on anisotropically

etched highly doped silicon substrate

In recent years, electromagnetic waves propagating at the interface between a

metal and dielectric have been of significant interest [18,65–70]. These waves allow

for sub-wavelength confinement of the field, overcoming the diffraction limit, and

opening the possibility for unprecedented device miniaturization. Possible applica-

tions of surface waves include bio-sensing [71], nonlinear phenomenon [72], material

characterization and surface enhanced Raman scattering [69,73].

At visible and near infrared frequencies, many conventional metal surfaces

support localized surface plasmon polariton modes that can be excited using prism-

coupling method [74]. Such method cannot be applied at terahertz frequencies,

where most metals behave more like perfect electrical conductors. In 2004, Pendry

et.al proposed the introduction of a periodic texture to a conducting surface in

order to compensate for the wavevector mismatch, thus allowing for excitation of

surface waves with a wavenumber that exceeds that of the excitation [2]. Thereafter,

extensive experimental and theoretical work has been reported on the excitation and

confinement of surface waves using surface corrugations [75–81]. Highly confined

surface modes have been demonstrated in several geometries, including metallic
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apertures, blind holes, rectangular gratings, and others. Most of these devices have

used laser micromachining, or planar photolithographic techniques such as liftoff,

reactive-ion etching, thin-film deposition, and electroplating to form rectangular

conductive features on a substrate.

More recently, other geometries have been proposed for plasmonic waveguides,

including triangular surface grooves [34,82–86]. At telecommunication wavelengths,

isolated V-groove structures have been experimentally verified to guide channel plas-

mon polariton with subwavelength confinement and low loss at bends [87,88]. More

recently, Wood et al. numerically analyzed a surface plasmon mode sustained by

periodic array of slanted rectangular grooves in a conductive substrate [89]. Fab-

rication of non-rectangular grooves in a metallic substrate has proved challenging

because of the difficulty of patterning or etching metal, and consequently most of

the prior research on such structures has been numerical.

In crystalline silicon, V-groove geometries and pyramidal troughs can be read-

ily fabricated by employing anisotropic wet etching [90]. At terahetz frequencies,

silicon can exhibit metallic properties when heavily doped and can be used to ef-

ficiently propagate surface plasmon polaritons when patterned with subwavelength

structures. Unlike metals, the dielectric properties of silicon can be adjusted by

controlling the free carriers concentration through doping, photoexcitation, or cur-

rent injection, which in turn determines the degree of confinement and the loss for

the plasmonic wave – an additional degree of freedom that is unavailable in most

plasmonic substrates.

In this chapter, we report two types periodic structures, v-grooves and pyra-
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midal troughs, patterned on highly doped silicon and serve as terahertz plasmonic

waveguide. Terahertz time domain spectroscopy is used to characterize the sur-

face wave, and shows evidence of a resonant mode that is confined to the surface.

Numerical and experimental measurements reveal that the resonant frequency and

degree of confinement can be adjusted by tailoring the depth and period of the

structures. Numerical simulations reveal that deeper structures can provide tighter

surface confinement and slower group velocities for the resonant mode.

2.1 V-groove waveguides

2.1.1 Numerical analysis of surface modes

Fig. 2.1a depicts the geometry of the semiconductor plasmonic waveguide con-

sidered here. The substrate is comprised of crystalline silicon that is patterned

through anisotropic etching, such that the sides of the V-grooves are parallel to the

〈111〉 and 〈1̄1̄1〉 crystallographic planes. The apex angle θ is therefore constrained

to be θ = tan−1
√

8 = 70.53◦, and the width-to-height ratio is likewise constrained to

be w/h = 2 tan θ/2 =
√

2. The pitch and height of the corrugation can be controlled

through lithographic processing.

Fig. 2.1b depicts the calculated dispersion relation for three different grating

line widths of w = 100, 200, and 250 µm, each with the same grating pitch of p = 250

µm. The dispersion curves were calculated using the finite difference time-domain

method, and the solid black curve indicates the light line for wave propagation in

the free-space region. We note that as the width (and hence the depth) of the V-
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Figure 2.1: (a) Geometry of semiconductor plasmonic V-groove waveguide fabricated

on a silicon substrate. The width and height are related by w/h = 2 tan θ/2 =
√

2.

(b) Numerically computed dispersion relations of the fundamental surface mode for

three different line widths (w).
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Figure 2.2: Anisotropic etching process

grooves is increased, the dispersion of the wave shows a pronounced curvature away

from the light line, indicating slower phase and group velocities, especially near the

first Brillouin edge.

2.1.2 Fabrication

The fabrication process is shown in Fig. 2.2. We fabricated our strutures on

〈100〉 boron-doped silicon wafers with resistivity of 2-5 mΩ·cm (dopant concertraion
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4×1019 cm−3). 1.2 µm thick silicon dioxide layer was deposited on both sides of

substrate by using low pressure chemical vapor deposition (LPCVD). This layer

was then patterned using UV contact photolithography followed by wet etching

in buffered hydrofluoric acid, to produce a periodic array of openings in the SiO2

film. The sample was then immersed in a solution of potassium hydroxide, water,

and isopropanol in the ratio of 60:30:10 at a temperature of 80 ◦C to perform the

anisotropic etching which forms the V-grooves. During the etching, the depth of

the V-groove h was estimated to increase at approximately 0.4 µm/s. Following

the etching, the remaining oxide mask layer was removed in a buffered hydrofluoric

acid solution. Fig. 2.3a shows a representative cross-sectional scanning electron

micrograph of a completed structure. The grating lines were each 30 mm wide, which

was much larger than the terahertz beam size, thus ensuring that the propagation

could be adequately approximated as a two-dimensional structure. Each waveguide

was composed of an array containing 200 grating lines at a pitch of p = 250 µm, for

a total length of 50 mm. Groove widths of w = 100 µm and 200 µm were fabricated

(with corresponding depths of 71 and 141 µm). It should be noted that comparing

with the wavelength of interest discussed below, the considered parameters indicate

that we are operating in the subwavelength limit.

In order to facilitate coupling from a free-space terahertz beam into the plas-

monic waveguide, a second photolithographic step was used to pattern a shallow 300

µm wide groove at 5 mm away from the edge of the V-groove array. This groove

was etched to a depth of 100 µm using deep reactive ion etching (DRIE). When

a terahertz beam from free space impinges at normal incidence onto the coupling
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groove, a portion of the radiation scatters into the plasmonic waveguide mode.

2.1.3 Experiment set-up

Fig. 2.3b depicts the terahertz time-domain spectroscopy system used to char-

acterize the plasmonic waveguides. Pulses from an amplified Ti:sapphire laser sys-

tem were split (80:20) into pump and probe beams that generate and detect the

terahertz waveforms, respectively. The optical pulses were 43 fs in duration, at a

repetition period of 1 kHz and a central wavelength of 800 nm. Terahertz pulses

were generated using optical rectification in a 1 mm thick 〈110〉-oriented ZnTe crys-

tal, with an input pulse energy of 1.2 mJ and beam diameter of 10 mm. The pump

beam was synchronously chopped at a rate of 250 Hz. The terahertz radiation was

collected and collimated using off-axis parabolic mirrors, and focused at normal in-

cidence onto the rectangular coupling groove. The impinging terahertz beam was

linearly polarized in the direction perpendicular to the grooves (i.e., with the mag-

netic field parallel to the grooves), in order to ensure that the scattered radiation

couples into the TM-polarized plasmonic mode of the structure.

At the opposite edge of the corrugated structure, the emerging terahertz beam

was electrooptically sampled using a similar ZnTe crystal, which was brought into

contact with the substrate. The probe beam of diameter 0.5 mm was adjusted to

co-propagate with the terahertz wave through the ZnTe crystal at a height of 0.5 mm

from the surface. Following the electrooptic crystal, a quarter wave plate, Wollaston

prism, balanced photoreceiver, transimpedance amplifier, and lock-in detector (not
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Figure 2.3: (a) Cross-sectional SEM image of a portion of the fabricated structure.

(b) Schematic of the experimental setup. The ZnTe crystal is used to generate

terahertz via photo-rectification. The detection is accomplished via electro-optic

sampling using 1 mm thick (110) ZnTe crystal.
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Figure 2.4: Experimentally measured frequency domain transmission spectra: (a)

THz input signal used in the experiments, measured in back-to-back configuration.

(b) Simulated (blue) and measured (black) transmission spectrum for plasmonic

V-groove waveguide with w = 100 µm. (c) Simulated (red) and measured (black)

transmission spectrum for plasmonic V-groove waveguide with w = 200 µm.

shown) were used to measure the terahertz electric field as the delay τ between the

pump and probe was swept using a motorized translation stage.

2.1.4 Results

Fig. 2.4 shows the experimentally observed transmitted terahertz waveforms,

together with numerical simulations obtained using finite element time-domain sim-

ulation. Fig. 2.4a depicts the input terahertz waveform, measured by redirecting the
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terahertz wave directly to the electrooptic detector with the silicon waveguide ab-

sent. The simulations were conducted using the finite-element time-domain method,

with perfect electrical conducting boundary conditions assumed at the silicon sur-

face. For the dopant concentration considered here, the Drude model predicts a

relative permittivity of ε = (−1.3 + 2.0i)× 104 at 1 THz, which is sufficiently large

to justify treatment as a perfect conductor. To confirm the validity of the assumed

PEC boundary conditions, we have repeated selected simulations using a more ac-

curate 3D Drude model, and an equivalent surface impedance model, and found no

significant difference in the numerical results.

Fig. 2.4b shows the terahertz spectrum measured at the output of the V-groove

array, for the case when the grating line width was w = 100 µm. The blue curve

shows the calculated spectrum obtained by numerically simulating the structure

using the input waveform taken in Fig. 2.4a. Both the theory and numerical simu-

lation show a pronounced null in the transmitted spectrum at a frequency of 0.58

THz. This frequency matches the frequency at the first Brillouin edge in Fig. 2.1,

where the wavevector reaches p/π. The occurrence of null in the spectrum can be

attributed to the interference effect occurring between the discrete resonance caused

by the diffraction from the corrugations and the continuum transmission spectrum

on the surface associated with the waveguide geometry. The interference effect be-

tween discrete and broad spectrum has been studied in the literature [91, 92]. The

resonance associated with the null associated with strong confinement in the grat-

ing corrugations. The experimental measurements show weak Fabry-Pérot spectral

fringes associated with multiple internal reflections inside of the ZnTe detection

35



0.2 THz

250 µm

0.46 THz 0.8 THz

(a) (b) (c) (d)

1.2 THz
0
(dB)

–5

–10

–15

–20

Figure 2.5: Electric fields calculated for w = 200 µm at four different frequencies

below and above the resonant frequency: (a) 0.2 THz, below resonance, (b) 0.46

THz, on resonance, (c), 0.8 THz, above resonance, and (d) 1.2 THz, second-order

resonance. The static frames shown here were captured at the peak of each cycle.

crystal, an effect that is not modeled in the simulation.

Fig. 2.4c shows similar results obtained when w = 200 µm. In this case, the

null frequency associated with the fundamental resonance shifts to 0.46 THz, again

in agreement with the frequency of the first Brillouin edge in Fig. 2.1. The mea-

surements and simulations further reveal a higher-order resonance at approximately

1.2 THz.

To better illustrate the nature of the resonant plasmonic confinement, in

Fig. 2.5 we plot the electric field profiles for the case when w = 200 µm, calcu-

lated at four different frequencies.

Fig. 2.5a shows the electromagnetic fields calculated at 0.2 THz, which is below

the plasmonic resonant frequency. In this case, the wave propagation resembles as

an unbound travelling wave above the surface, with no significant confinement in the

periodic structure. In contrast, Fig. 2.5b shows the fields computed at the resonant
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frequency of 0.46 THz. On resonance, the electromagnetic fields remain confined

near the surface and inside of the V-grooves, and the spatial periodicity of the wave

matches that of the grating. Fig. 2.5c shows the calculated fields at 0.8 THz (above

resonance), again showing no significant surface confinement. Finally, in Fig. 2.5d

we show the field profile at a frequency of 1.2 THz, which corresponds to a second-

order resonance. In this case, the spatial periodicity of the wave matches the second

spatial harmonic of the grating corrugation, and we again see plasmonic confinement

near the surface (a weaker confinement than for the fundamental resonance.)

The degree of confinement in the plasmonic structure is closely related to the

depth of the V-grooves, with deeper features producing stronger confinement. How-

ever, because of the anisotropic etching process used to fabricate the structures, the

grating depth is restricted to be equal to w/
√

2. We note, however, that alternative

fabrication methods, such as reactive ion etching, could potentially be used to pro-

duce V-grooves with much higher aspect ratios. Next we numerically analyze deeper

V-grooves with a fixed width. Fig. 2.6a plots the calculated dispersion relation for

three different plasmonic waveguides for which the pitch and width are fixed at p

= 250 µm and w = 150 µm, respectively, but the apex angle is decreased from

θ = 60◦ to 20◦. As before, in all cases the grating exhibits a resonant frequency at

the edge of the Brillouin zone boundary, at which point the surface wave was found

to be localized near the conductive surface. The steeper apex angles produce a

much stronger deviation from the light line and a tighter confinement in the groove.

Fig. 2.6b shows the related group velocity, obtained after numerically finding the

slope of the dispersion curve. The steeper (and hence deeper) gratings show a slower
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Figure 2.6: (a) Numerically calculated dispersion relation for the surface modes

supported by a conductive grating structure with p = 250 µm, w = 150µm, and

θ = 60◦, 40◦, 20◦. (b) The associated group velocity dispersion for the three struc-

tures considered in (a), showing the progressively slower wave velocities attained by

increasing the depth of the grooves.
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group velocity, associated with tighter confinement in the V-grooves.

In order to explain the correlations between the depth of the V-groove, the

confinement of the surface mode, and the reduction in group velocity, we consider

the special case of V-groove with an apex angle of 90◦, which can be generalized from

the recent analysis of Wood et al. [89]. In this case, the dispersion relation using

quasi-analytical approach in the long wavelength limit and neglecting the higher

order diffraction terms may be written as

kx = k0

[
1 + 2

(
h

p
tan

(
k0h√

2

)
sinc−1

(
k0h√

2

))2
] 1

2

(2.1)

where kx is the propagation constant in the x-direction (traveling wave direc-

tion), k0 = 2π
λ

is the free space propagation constant, h is the depth of the groove

from the apex to the surface in normal direction and p is the periodicity. For the

traveling surface plasma wave which has major component of the electric field in

the transverse and the propagation direction, the transverse confinement factor (α)

can be calculated as

α =
(
k2
x − k2

0

)1/2
(2.2)

From the dispersion relation given in Eq. 2.1, one may easily calculate the

group velocity of the traveling surface wave. We plot in Fig. 2.7 the confinement

factor α and group velocity of the surface bound wave as a function of frequency for

two different depths of h = 50 µm and h = 75 µm, using p = 250 µm and θ = 90◦.

One may note that confinement factor increases with the frequency while group
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velocity decreases. At any frequency considered, the deeper grooves show a higher

confinement factor and smaller group velocity than the corresponding shallow-groove

structure. Although the theoretical relationship only applies to the special case of

θ = 90◦, our numerical simulations suggest that these general relations should also

hold true for other V-groove structures as well.

2.2 Transverse confinement using pyramidal troughs

We have already demonstrated silicon V-grooves corrugations are able to pro-

vide vertical confinement of THz waves to the surface. Here, we show a one-

dimensional array of finite width silicon troughs can serve as a THz plasmonic

waveguide and provide confinement in both transverse directions.

2.2.1 Fabrication and Experiment set-up

We followed similar fabrication process as described above. The waveguide

samples were fabricated on 〈100〉 oriented boron-doped silicon substrates by using

anisotropical etching. The etching forms concave rectangular trough bounded by

four facets aligned with the 〈111〉,〈1̄1̄1〉,〈1̄11〉, and 〈11̄1〉 crystal planes, as shown in

Fig. 2.8a. Each side facet is inclined at an angle of 54.73◦ with respect to the 〈100〉

surface. A 300 µm long, 100 µm deep and 2.5 mm wide coupling groove is separately

fabricated using deep reactive ion etching near the input side of the waveguide to

facilitate scattering of the normally incident THz wave into the surface plasmonic

mode.
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Figure 2.8: (a) Scanning electrom micrograph of a portion of anisotropically etched

troughs in silicon.(b) Schematic of the plasmonic waveguide comprising a periodic

array of pyramidal troughs in silicon. A rectangular groove at the input end is used

to promote coupling in the out-of-plane direction.
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A modified terahertz time domain spectroscopy system was employed to char-

acterize the plasmonic waveguides (Fig.2.3b and Fig.2.8b). The focused THz beam

of about 3 mm diameter is normally incident on the coupling groove. By comparing

the intensity measured after the coupling groove to that obtained by replacing the

device with an off-axis parabolic mirror, we estimated input coupling efficiency to

be 10 %. After propagating along the patterned surface, the emerging THz wave is

measured using a 〈110〉 oriented ZnTe crystal of thickness 1 mm, brought into close

proximity to the surface.

2.2.2 Results

In our study, we fabricated three waveguide samples, each with a length of 5 cm

and periodicity of p = 300 µm. The length and width of the rectangular troughs were

varied. Fig. 2.9 shows both the experimentally observed (black) and numerically

simulated (red) time domain signals for the case where the trough dimensions were

500 × 250 µm (w × l). The corresponding frequency domain spectra, obtained by

Fourier transform, are shown on the right panel of Fig. 2.9.

Both experiment and simulation exhibit resonant behavior, as evidenced by

the long-lived oscillations in the time-domain traces and the corresponding null

in the frequency spectra at 0.45 THz. The observed resonant frequency agrees

well with that predicted numerically. Some discrepancies between the experimental

measurement and numerical prediction exist, which we attribute to diffractive losses,

interference from unguided radiation, and multiple internal reflections in the ZnTe
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Figure 2.9: Time domain signal (left) and corresponding frequency domain spectra

(right) of the transmitted THz waveform for a 300 µm period array of 500×250 µm

(w × l) troughs.
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Figure 2.10: Simulated electric field profile evaluated at the center of a trough (a)

at the resonant frequency (0.45 THz), (b) higher-order resonance (0.99 THz) and

(c) off-resonance (0.71 THz). The dashed cross-hairs indicate the approximate size

and position of the optical probe beam used in the experiment.

detection crystal–effects that are not captured by the simulation.

In order to better illustrate the mode behavior, in Fig. 2.10 we plot the nu-

merically simulated electric field at the resonant frequency, evaluated in a cross

sectional plane at the center of one trough. Clearly, at the resonant frequency of

0.45 THz, the field is highly confined within the trough. The simulated traces also

show evidence of a higher order resonance 0.99 THz that is not as tightly-confined,

as shown in Fig. 2.10(b). By contrast, at the off-resonance frequency of 0.71 THz

the field profile is not confined to the surface, as shown in Fig. 2.10(c). Because

of losses at higher frequencies, the higher order resonances were more difficult to

observe experimentally.

Fig. 2.11(a) shows similar measurements and simulations performed on devices

with trough dimensions of 500×200 µm and 400×250 µm (w× l). While the overall

45



A
m

pl
itu

de
 (a

.u
.)

(b)

(a)

Time delay (ps)

0.2

0.0

-0.2

-0.4

-0.6
0 20 40 60

Time delay (ps)

0.2

0.0

-0.2

-0.4

-0.6
0 20 40 60 80

 Experiment

 Simulation

 Experiment

 Simulation

Am
pl

itu
de

 (a
.u

.)

f (THz)

0.08

0.06

0.04

0.02

0

0.10

0 0.5 1.0 1.5

Am
pl

itu
de

 (a
.u

.)

Am
pl

itu
de

 (a
.u

.)

f (THz)

0.08

0.06

0.04

0.02

0

0.10

0 0.5 1.0 1.5

 Experiment
 Simulation

 Simulation
 Experiment

80
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corresponding frequency domain spectra (right) for an array of troughs with dimen-

sions (a) 500× 200 µm and (b) 400× 250 µm. In all cases the period was p = 300

µm.
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calculated over the first Brilloun zone, for three different geometrical parameters.

responses are similar, the resonant frequencies for the fundamental mode show a

slight red-shift (0.47 THz and 0.48 THz, respectively) in comparison to the that

seen in Fig. 2.9, which is well confirmed by the numerical simulations.

In Fig. 2.12, we show the dispersion relations calculated numerically using a

finite element eigenmode solver for the three waveguides examined experimentally

in Figs. 2.9-2.11. The dispersion relation was calculated by numerically modeling

one unit cell of the periodic structure, using Bloch boundary conditions along the

direction of propagation and absorbing boundary conditions in the transverse direc-

tions. Perfect electrical conducting boundary conditions were assumed at the silicon
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surface, as approximated for heavily doped silicon. The black solid line in the figure

corresponds to the light line for plane waves propagating in vacuum. The blue,

green and red curves correspond to surface electromagnetic modes supported by the

periodically patterned troughs with dimensions (w× l) = 400× 250, 500× 200, and

500× 250 µm, respectively. The periodicity in all the cases was held constant at p

= 300 µm. Within the first Brillouin zone, the wavenumber and frequency increase

monotonically, but with a reduced group and phase velocity compared to vacuum

waves. The group velocity reduces to zero at the first Brillouin zone boundary

(kx = π/p), corresponding to the excitation of a confined resonant surface mode.

The calculated frequency of the first Brillouin zone edge is observed to match the

null-frequency seen in experiments and simulations. One can obtain the group ve-

locity of the surface modes from the slope of the dispersion relations depicted in

Fig. 2.12. The group velocity decreases with increasing depth of the trough, and

approaches zero at the first Brillouin boundary.

In order to examine the dependance of the resonant frequency on the dimen-

sions of the troughs, we carried out simulations for the various combinations of

length, width and periodicity. The results are shown through a color and contour

plot in Fig. 2.13. The length and width are plotted on the horizontal and vertical

directions respectively, normalized relative to the period p. The resonant frequency,

normalized to c/2p, is shown by the contours and color map. In the limit that the

length of the trough is small compared to the period, the resonant frequency ap-

proaches c/2p indicating that even near the Brillouin edge there is no substantial

deviation from the vacuum light line. In the case when width is very large, the
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resonant frequency approaches a constant value characteristic of what is expected

for infinitely long (1-dimensional) V-grooves [21].

The plasmonic confinement in corrugated waveguide structures is a resonant

effect with a frequency that depends on the size and shape of the pyramidal troughs.

Many THz applications could benefit from further confinement in the longitudinal

direction. We numerically investigated this possibility by simulating a periodic

array with one dissimilar defect introduced at the center, as shown in Fig. 2.14.

In this simulation the defect trough has dimensions of (w × l) = 500 × 250 µm.

The experimental and simulated results presented in Fig. 2.9 suggest that these

dimensions should exhibit a resonant frequency near 0.45 THz. The surrounding

troughs measured 500 × 50 µm and formed a shallow, linear array of 6 mm length

on either side of the defect. Fig. 2.14 plots the transverse electric field evaluated at

the silicon surface, calculated at 0.45 THz (blue) and at the off-resonant frequency

of 0.71 THz (red). As expected, when excited near the resonant frequency (0.45

THz), the plasmonic field shows significant enhancement in the defect, indicating

that longitudinal confinement is possible by spatially tailoring the device dimensions.

The inset to Fig. 2.14 plots the electric field profile calculated on resonance, further

confirming the spatial localization of the resonant mode. It is important to mention

that deeper structure can result in further confinement of the modes, however in the

case examined here, depth is limited by the angle dependent etching. Therefore one

needs to explore techniques of achieving waveguide structures with higher aspect

ratio (depth to width ratio) in semiconductors.

50



0.45 THz
0.71 THz

0

0.2

0.4

0.6

0.8

1

0 21 4 5 6 7 83

Am
pl

itu
de

 (a
.u

.)

x (mm)

y
x

0.45 THz

Figure 2.14: Simulated electric field amplitude for a periodic structure with a defect

at the center, showing evidence of longitudinal confinement. The amplitudes are

shown at the predicted resonant frequency of 0.45 THz (blue) and at the off-resonant

frequency of 0.71 THz (red).

51



2.3 Conclusion

In this chapter, we described the analysis, theory, fabrication, and measure-

ment of semiconductor plasmonic THz waveguides that use p+-doped silicon as the

conductive substrates that are patterned with array of grooves through anisotropic

wet chemical etching. The structures are simulated using finite element methods,

and measured using a terahertz time-domain spectroscopy system that was modi-

fied to sample surface fields. Measurements and simulations both show evidence of

a resonant surface wave that occurs when kx = π/p, with a reduced group velocity.

The field confinement, the degree of reduction in group velocity, and the resonant

frequency are related to the corrugation shape, with deeper structure producing a

more pronounced effect. The study could play an important role in the developments

of active and passive semiconductor devices operating at terahertz frequencies.
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Chapter 3: Terahertz nonlinear conduction and absorption satura-

tion in silicon waveguides

Among semiconductors, silicon is not only the most prevalent material in elec-

tronics, but it is also one of the most favorable dielectric materials for terahertz

applications. Intrinsic silicon is transparent at wavelengths longer than 1100 nm,

and has exceptionally low loss in the far infrared [1, 93, 94]. While the nonlinear

properties and applications of silicon are well established in the near-infrared and

mid-infrared regime [95–100], there have been very few observations of nonlinear

propagation in the terahertz regime.

Silicon has band gap 1.11 eV. Its band structure is shown in Fig. 3.1. The

terahertz photon energy (4.1 meV at 1 THz) is too small to produce new carriers

in silicon through a 1- or 2-photon absorption, and hence the linear and nonlinear

properties are caused by acceleration or heating of the existing electron (or hole)

population. The traditional Drude model of conductivity Eq. 1.4 that is commonly

used to describe free carrier absorption and dispersion in silicon in the terahertz

regime fails to explain nonlinear wave propagation effects.

In 2010, Hebling et al. and Kaur et al. independently observed THz field in-

duced absorption bleaching in n-doped bulk silicon, using terahertz pump-probe
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Eg=1.11 eV

Figure 3.1: Silicon band structure(http://www2.warwick.ac.uk/fac/sci/

physics/current/postgraduate/regs/mpags/ex5/bandstructure/)
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measurements [3] and z-scan measurements [4]. They suggested that the effect

might be explained by scattering of electrons into a higher energy (L) valley within

the conduction band. More recently, Al-Naib et al. employed a two-dimensional

terahertz metamaterial to enhance the nonlinearity at a silicon surface [60], and

phenomenologically modeled the observations by a change in conductivity. Tera-

hertz induced nonlinear effects have also been observed in a variety of other bulk

semiconductors, including Ge [3], GaAs [48–53], GaP [54] and InSb [55–57], and

numerous hot carrier effects have been offered as explanations, including intervalley

scattering, band nonparabolicity, and impact ionization. In most cases, the obser-

vations were carried out using wafers or windows with optical thickness of only a

few terahertz wavelengths. In such thin samples, the cumulative nonlinearity is nec-

essarily quite small, and it is difficult to separate propagation effects from interface

effects such as small changes in reflectivity, or spatial effects such as self-focusing

and diffraction.

To overcome these limitations, we couple picosecond terahertz pulses into a

2 cm long silicon dielectric ridge waveguide. The waveguide greatly enhances the

field concentration and nonlinear propagation length, thereby ensuring that the

measured effect represents a true nonlinear wave interaction accumulated over hun-

dreds of terahertz wavelengths, and also allows for interplay between the linear

mode propagation and nonlinearity. The waveguide configuration also eliminates

spatial nonlinear effects like self-focusing, enabling unambiguous measurement of

the temporal nonlinear behavior. We observe over a two-fold increase in the power

transmission ratio at high powers relative to low powers, depending on the carrier
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Figure 3.2: Fabrication process of ridge waveguide.

concentration, and we present a new physical and numerical model that offers an

explanation of the observed behavior.

3.1 Fabrication

As shown in Fig. 3.2, the silicon ridge waveguides were fabricated from 400

µm thick, double-side polished (DSP), 〈100〉 silicon wafers. In order to better assess

the role of carriers, we used two types of silicon: lightly p-doped wafers with a
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Figure 3.3: (a) Cross-sectional micrograph of fabricated silicon ridge waveguide and

(b) calculated TE eigenmode at 0.5 THz.
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nominal resistivity of of 150-350 Ω·cm and float-zone semi-insulating wafers with a

resistivity of 10 kΩ·cm. A 1 µm sacrificial layer of SiO2 was deposited by CVD on

the wafers, and patterned using contact photolithography and reactive-ion etching

to produce a 300 µm wide oxide hard-mask for subsequent etching of the waveguides.

The waveguides were etched to a depth of 100 µm using pulsed deep reactive ion

etching (Bosch process), after which the remaining photoresist and oxide hard mask

were removed. Fig. 3.3(a) shows a cross-sectional micrograph of the completed ridge

waveguide, and Fig. 3.3(b) shows the corresponding fundamental TE eigenmode of

the waveguide, calculated at 0.5 THz. The transverse waveguide dimensions were

chosen to ensure single-mode operation over the frequency range of interest. The

waveguides were cut to a length of 2 cm using a dicing saw.

3.2 TE mode vs TM mode

The waveguide mode can be excited by terahertz polarized either along x(TM)

or y(TE) direction. Fig. 3.4 displays the TE(Fig. 3.4(a)) and TM(Fig. 3.4(b)) out-

put THz signals of our p-doped waveguide. The propagating distance is 1 cm.

Fig. 3.4(b) is the result for TM mode and shows obviously higher group dispersion.

In order to understand the cause of the observed pulse spreading, we used an opti-

cal eigenmode solver to compute the effective refractive index(shown in Fig. 3.5) at

different frequencies for TE and TM mode of our waveguide structure. As shown

in Fig. 3.5, the TM mode shows a stronger variation in group velocity compared to

TE mode in the frequency range(0-1 THz) of interest, and leads to widely spread
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Figure 3.4: Measured output THz signals of TE(a) and TM(b) mode after 1 cm

propagating distance

output signal. Because nonlinear effect is field-dependent, we prefer the THz signal

to maintain tight shape and high intensity during propagation. Our measurements

and simulations were therefore conducted under TE mode.

3.3 Experimental set-up and measurement

Fig. 3.6 illustrates the experimental setup used to characterize the THz nonlin-

ear response. An amplified Ti-sapphire laser system produces 40 fs, 1 kHz repetition
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rate pulses at 800 nm center wavelength. The optical pulses are split (80:20) into

pump and probe beams that are used for terahertz generation and detection, re-

spectively. The pump pulse impinges on a grating (2000 lines/mm), producing a

−1 order diffracted beam that has a tilted pulse front [42,47,101]. The tilted pulse

was de-magnified by a factor of 2× using a 60 mm focal length lens into a LiNbO3

prism. A λ/2 waveplate rotates the optical beam polarization from horizontal to

vertical direction to align with the optical axis of the LiNbO3. The power of the

THz output beam was adjusted using a pair of wire-grid polarizers, and focused

using a polymethylpentene (TPX) lens onto the input waveguide facet. The THz

beam was linearly polarized in the 〈011〉 crystallographic direction of the silicon

waveguide. Using the experimentally measured energy, pulse duration, and focused

spot size of the terahertz beam, the peak electric field at the focus before inserting

the waveguide was estimated to be 200 kV/cm [101], of which detailed explanation

will be shown in Chapter 4.

The THz pulses impinging on and emerging from the waveguides were mea-

sured using both a pyroelectric detector and electrooptic sampling. In the latter

case, we used a 1 mm thick 〈110〉 ZnTe crystal that was coated with an 800 nm

dielectric mirror front face, and antireflection coating on the rear face, which allows

the probe beam to be introduced in a reflection geometry [102, 103], as shown in

Fig. 3.6. The ZnTe electrooptic crystal was placed in contact with the output facet

of the waveguide, to allow for near-field optical sampling of the mode emerging from

the waveguide.

To measure the nonlinear transmission through the waveguide, we used the
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Figure 3.7: Normalized power transmission for semi-insulating (circle) and doped

(square) waveguides, and corresponding calculated (dashed lines) pulse energy trans-

mission.

Fourier transform to calculate the spectrum of the emerging waveform, and inte-

grated the intensity spectrum to obtain a measure of the transmitted power. For

the range of powers considered, the nonlinearity of the electrooptic detection pro-

cess was confirmed to be negligible in comparison to the absorption saturation in

the silicon waveguide.

Fig. 3.7 shows the normalized transmission ratio as a function of the input

pulse energy and peak field for the two waveguides considered here. The semi-

insulating silicon waveguide shows a small, but clearly measurable increase of 5%
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in transmission as the pulse energy is increased from 0 to 75 nJ. The p-type silicon

waveguide, by contrast, shows a more than 2-fold increase in transmission at higher

fluence. The dashed lines plot the numerically calculated result (to be explained

below), which shows that at sufficiently high pulse power, the power transmission

ratio saturates at a level close to unity. The fact that the saturable absorption is

much stronger in doped silicon clearly demonstrates the role of free carriers in the

nonlinear response.

3.4 Discussion

A complete model of absorption in silicon waveguides must account for not only

the field-dependent nonlinear carrier dynamics, but also the linear dispersion, which

diminishes the peak field of the signal. The terahertz nonlinear wave propagation

can be described by a simplified one-dimensional wave equation,[
∂2

∂z2
− 1

c2

∂2

∂t2

]
E = µ0

[
∂2

∂t2
P +

∂

∂t
J

]
, (3.1)

where J is the current density (which is non-linearly related to E) and P is the

linear polarization of the material, which is linearly related to the electric field in

the frequency domain by:

P̂ (z, ω) = ε0
[
n2(ω)− 1

]
Ê(z, ω) , (3.2)

where n(ω) is the effective the refractive index of the waveguide.

The propagation equation is not easy to solve as: (1) E(z,t) contains linear and

nonlinear effect; (2) J(z,t) obtained from Monte Carlo or nonlinear Drude simulation

changes with time and distance.
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Figure 3.8: Scheme of split step method.

In order to simplify this problem, we adopted split-step Fourier method, which

is a known numerical way, to solve this kind of nonlinear partial differential equa-

tion. Scheme of this method is shown in Fig. 3.8. Propagating distance is divided

into several small steps. In each step, current density J , obtained from Monte Carlo

or nonlinear Drude simulation at the beginning of that step, is assumed to be z inde-

pendent. By treating nonlinear effect as a small perturbation to linearly propagating

E field in each step, we are able to separate linear and nonlinear propagation.

Linear part: If the current is neglected, the forward traveling solution to

Eq. 3.1 in the frequency domain is

Ê(∆z, ω) = Ê(0, ω) exp
[
i
ω

c
n(ω)∆z

]
, (3.3)

where the refractive index n(ω) incorporates material and modal dispersion of the
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waveguide.

Nonlinear part: If the dispersion is neglected but the current term is re-

tained, then the wave equation can be written as:

∂2E

∂z2
− 1

v̄2

∂2E

∂t2
= µ0

∂J

∂t
, (3.4)

where v̄ ≡ c/n(ω̄) represents the average velocity of the terahertz pulse, evaluated

at the center frequency of the spectrum.

Combined result: Because the electric field travels in the +z direction with

an average velocity of v̄, we assume that the resulting current density can be likewise

cast as a function of a single argument, J(t − z/v̄), in which case Eq. 3.4 can be

integrated to find the field at the end of one step ∆z:

E(∆z, t) = E(0, t−∆z/v̄) +
v̄2µ0

4

t−∆z/v∫
t−3∆z/v̄

[J(t′)− J(t−∆z/v̄)] dt′ (3.5)

The second term in Eq. 3.5 represents a perturbation ∆E in the electric field caused

by the current J . The split-step numerical method replaces this accumulated non-

linearity by an equivalent lumped effect at z = 0, which is found by advancing

Eq. 3.5 by the propagation time ∆z/v̄,

∆E(t) =
v̄2µ0

4

t∫
t−2∆z/v̄

[J(t′)− J(t)] dt′ (3.6)

The nonlinear wave propagation is numerically simulated by dividing the total

propagation distance into steps of size ∆z, computing the linear propagation for each

increment in the Fourier domain using Eq. 3.3, and incorporating the nonlinearity

as lumped in the time domain using Eq. 3.6.
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The nonlinear relationship between the electric field E(t) and current density

J(t) can be described using the balance equations obtained from the Boltzmann

transport equations. Although the complete Boltzmann transport equations can

account for spatially-dependent heating and hot carrier diffusion in the transverse

dimensions, the spreading of hot carriers is expected to be negligible for the dimen-

sions and wavelength considered here. We therefore consider the homogeneous limit,

where the momentum balance equation is [104]:

dv

dt
+ Γm(ε)v =

qE

m∗
, (3.7)

where v represents the carrier velocity, which is directly proportional to the current

density through J = Nqv, and Γm(ε) is the momentum relaxation rate, which we

take to be a function of the energy, ε.

The energy balance equation is

dε

dt
+ Γεε = qEv , (3.8)

where ε is the carrier energy relative to thermal equilibrium, and Γε is the energy

relaxation rate. The momentum and energy scattering rates are, in general, energy

dependent, which couples these two equations. We adopt the simple, and widely

used model where the energy relaxation rate Γε is taken to be constant, while the

momentum relaxation rate increases linearly with the carrier energy [105]:

Γm(ε) = Γ0 +
Γεε

m∗v2
sat

(3.9)

For sufficiently small carrier energy, the second term in Eq. 3.9 may be neglected,

in which case Eq. 3.7 can be solved directly to give the familiar linear Drude rela-
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tionship between v and E, in the frequency domain,

v̂(ω) =
µ

1− iω/Γ0

Ê(ω) , (3.10)

where µ ≡ q/m∗Γ0 is the low-field mobility. However, for sufficiently high

fields, Eqs. 3.7-3.9 predict well-known nonlinear transport phenomena including the

saturation(Fig. 3.9(a)) and overshoot(Fig. 3.9(b)) of carrier velocity at v = vsat

with increasing DC field strength. The electron and hole saturation velocities in

silicon are approximately vsat ∼ 107 cm/s, and the corresponding critical electric

field strength above which saturation effects become important is Ecr = vsat/µ ∼ 7

kV/cm (for electrons), 16 kV/cm (for holes) – conditions that are readily achieved for

the terahertz pulses used in these experiments. A similar transition from ballistic to

drift dynamics has been observed in photoexcited GaAs wafers for strong terahertz

pulses. [53].

We used the split-step numerical method described above, together with the

nonlinear Drude relations described in Eqs. 3.7-3.9 to calculate the power-dependent

transmission as a function of input power for the two waveguides under consid-

eration. For the p-doped silicon sample, we assumed a carrier concentration of

N = 8.5 × 1013 cm−3, a low-field hole mobility of µ = 470 cm2/(V·s), a hole ef-

fective mass of m∗ = 0.36m0, and a saturation velocity of 0.75 × 107 cm/s. For

the high-resistivity float-zone silicon, we estimated a residual electron concentration

of N = 5 × 1011 cm−3 and a low-field electron mobility of µ = 1, 416 cm2/(V·s),

effective mass of m∗ = 0.26m0, and an electron saturation velocity of 107 cm/s.
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response to an electric field that is turned on at t=0.
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In both cases the energy relaxation rate was taken to be 1/Γε = 0.2 ps. We used

accepted physical parameters from the literature, and the only adjustable parameter

in the calculation was the carrier concentration N , which was chosen to both match

the resistivity range of the wafers and to also agree with the observed absorption

in the low-field limit. The calculations were performed using 100 µm steps and a

temporal window of 80 ps divided into 4000 steps. For the numerical calculations,

the input THz waveform was taken to be of the form E(t) = E0 cos(at − b)e−ct
2

where the constants a, b and c were chosen to best match the actual measured

input waveform. The input coupling to the waveguide was estimated by project-

ing the Gaussian input beam onto the frequency-dependent computed eigenmode

of the waveguide. The dashed lines in Fig. 3.7 show the calculated pulse energy

transmission as a function of the input power and peak field, and agree well with

the experimental measurements. In optical materials saturable absorption is often

described by a factor 1/(1 + I/Isat), which can be derived from a simple two-level

population model. While this phenomenological treatment can, by proper choice of

Isat, also match the observations in Fig. 3.7, it does not reduce to the conventional

Drude model in the low-intensity limit and it fails to predict well-known nonlinear

transport phenonemena such as velocity saturation in the limit of static fields.

Fig. 3.10 shows a numerical simulation of how the terahertz pulse evolves in

time as it traverses the 2 cm long lightly p-doped silicon waveguide. The left portion

was calculated using the conventional Drude model while the right portion includes

the nonlinear split-step model discussed here, assuming a peak-peak input field of

100 kV/cm, clearly showing the enhanced field transmission.
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Figure 3.11: (a) Transmitted terahertz waveform, calculated using Monte Carlo sim-

ulation of carrier dynamics together with the split-step Fourier method. The linear

(green) output curve was calculated using the conventional linear Drude model and

waveguide dispersion, and shows lower transmission. Inset: the simulated input

pulse, with a peak-peak field of 100 kV/cm. (b) Transmitted power spectrum, cal-

culated with (blue) and without (green) nonlinearity. (c) Experimentally measured

transmitted terahertz waveform for 75 nJ (blue) and 0.75 nJ (green) incident pulse

energy. The green field was scaled by 10× to account for the 100× lower energy.

(d) Experimentally measured power spectra for 75 nJ (blue) and 0.75 nJ (green)

incident pulse energy. The green curve was scaled by 100× to account for the lower

energy. Gray bands are additional losses caused by water absorption.
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The balance equations Eqs. 3.7-3.9 provide a simple and efficient model of

the nonlinear transport in silicon, but there are alternative models used to explain

the energy-dependent relaxation rates. The most accurate and widely accepted

approach is to use the Monte Carlo method to directly simulate the Boltzmann

transport equations in the time domain [106–108]. To better resolve the physical

origins of the nonlinearity, we used the same split-step Fourier method to compute

the nonlinear propagation, but instead of Eqs. 3.7-3.9, the current density at each

step was estimated using time-dependent Monte Carlo simulations of an ensemble of

10,000 carriers. This method is far more computationally intensive, and we therefore

divided the waveguide into only 20 steps and simulated propagation for an input

pulse with peak-peak field of 100 kV/cm. The same enhancement of transmission

is observed (Fig. 3.11).

The Monte Carlo calculations incorporate several physical effects that con-

tribute to the observed response, including band non-parabolicity, Coulomb scatter-

ing, intravalley acoustic phonon scattering, and equivalent intervalley optical phonon

scattering. Of these, simulations revealed that intravalley and equivalent intervalley

phonon scattering were found to be the dominant factors that contribute to the

nonlinearity in the simulated response. In the Monte Carlo simulation, impact ion-

ization is not included as THz field of interest is not strong enough to cause this

phenomenon. And notably, higher energy L-X intervalley scattering does not play

a significant role, as had been previously suggested.

Fig. 3.11(a)-(b) show the calculated output waveform and spectra, obtained

using a combination of the Monte Carlo simulation with split step Fourier method,
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for the highest input field (100 kV/cm) that was considered in the p-doped waveg-

uide. The input pulse shape is obtained from experimentally measured results. For

comparison we also show the field obtained from the conventional (linear) Drude

model, which would predict a higher carrier velocity and lower output field. Media

1 provides an animation showing how the nonlinearity and dispersion accumulate

as the pulse traverses waveguide.

Fig. 3.11(c)-(d) show the corresponding experimental measurements of the

output terahertz waveforms and spectra, which show a similar increase in relative

transmission at high fields. To assess the role of nonlinearity, we attenuated the input

power by a factor of 100× and repeated the measurement of the output waveform.

The green linear curve shown in Fig. 3.11(c)-(d) was then scaled by a factor of

10 or 100 to provide a direct comparison with the field and power (respectively)

measured at higher power. The experimental spectra show additional loss that

is caused by strong water absorption(details can be found in Fig. 3.12) at 0.55,

0.75 and 1.1 THz that was not included in the simulations, indicated by the gray

bands in Fig. 3.11(d). These features also contribute to the discrepancy in the

time-domain traces shown in Fig. 3.11(a) and (c). More precise matching of the

temporal waveforms and spectral shape would require accurate determination of the

frequency-dependent input coupling of the waveguide, as well as the atmospheric

attenuation of the terahertz pulse—factors that were impossible to measure in our

experiment. While the pulse shape and spectrum are determined by the linear

dispersion and absorption, the nonlinear Drude absorption serves primarily to reduce

the transmitted field amplitude at higher power. Notably, the measurements show
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Figure 3.12: Atmospheric terahertz water absorption lines obtained by NPL(http:

//www.npl.co.uk/upload/pdf/naftaly.pdf)

that the relative transmission is significantly higher for strong terahertz pulses, and

the degree of absorption saturation is comparable to that shown in Fig. 3.11(b).

A direct comparison of TE mode output signal from Monte Carlo and Balance

Equation with same input signal (100 kV/cm) for the p-doped waveguide is shown

in Fig. 3.13. Parameters used for the p-doped sample are Ecr=16 kV/cm, mobility

µ=470 cm2/(V·s), effective mass m∗=0.36 m0, and doping density N=8.5 × 1013

cm−3. From Fig. 3.13, we can see results from balance equation agree very well with

that from Monte Carlo even after 2 cm propagation distance in p-doped waveguide.

We also show the linear result calculated from linear Drude equation assembled
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Figure 3.13: TE mode results from Monte Carlo simulation(red), balance equa-

tion(blue, and linear Drude model(green) with same input 100 kV/cm signal after

2 cm propagation distance.

with wave equation in this plot. Monte Carlo and balance equation both lead to

enhancement of the transmission phenomenon.

3.5 Conclusion

In conclusion, we experimentally explore the phenomenon of absorption sat-

uration in silicon dielectric waveguides at terahertz frequencies. The field-induced

transparency and associated carrier velocity saturation is shown to be dynamical ef-

fect that cannot be adequately explained by a modified effective mobility or Drude

model. We present a simple, nonlinear Drude model that supports the observa-

tions, and we confirm the model using rigorous Monte Carlo simulations. Further,
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we introduce a numerical split-step method that models the interplay of nonlinear-

ity and dispersion in the wave propagation. These results could have important

consequences in future high-power terahertz guided-wave nonlinear devices, such as

terahertz frequency converters, parametric oscillators, mixers, and modulators.
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Chapter 4: Details about nonlinear THz propagation simulation

In chapter 3, we briefly introduced estimation of THz field and Monte Carlo

simulation. Here, we will describe details about those theories and methods.

4.1 Estimation of terahertz field entering silicon waveguide

In our experiment, we used two ways to measure the THz signals. Pyroelec-

tric detector can provide us the information of THz power, and we can obtain the

amplitude and spectrum of our THz signal from EO sampling. For intense THz

pulses, attenuation is required prior to EO sampling to avoid nonlinearity in the EO

detection process. Both measurements do not give us the direct knowledge of input

THz field amplitude needed by nonlinear propagation study.

During past years, many research groups tried to calibrate their THz field

amplitude from these indirect measurements. Currently, there are 2 commonly used

methods: (1)electro-optic sampling [43] and (2) intensity measurement [101].

4.1.1 Electro-optic sampling

Electro-optic(EO) sampling(Fig. 4.1) is an optoelectronic technique of optical

sampling that exploits the linear Pockels effect. It measures the actual THz pulses
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Figure 4.1: Schematic of THz Electro-Optic sampling

in the time domain. In EO sampling, THz and probe laser beam co-propagate in the

electro-optic crystals, such as ZnTe or GaP. The existance of the THz field changes

the birefringence of the EO crystal and causes the refractive index difference for po-

larizations along different axes of the crystal. The polarization of probe beam(with

intensity I) is modulated by this birefringence change. This polarization change is

converted to intensity change ∆I = I
′
y − I

′
x between the beams emerging from the

Wollaston prism and polarization beam-splitter. A pair of balanced photodiodes is

used to suppress the common laser noise while the signal is doubled.

For high enough power, the THz induced phase delay coming from the refrac-

tive change is no longer in the linear region. In order to attenuate THz, people often

use several high-resistivity silicon wafers to reflect most power of THz. After atten-

uation, the linear EO signal ∆I/I measured by balanced photodetectors is related
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to electric field amplitude ETHz by the formula:

sin−1(∆I/I) =
2πn3

0r41tZnTet
5
SiETHzL

λ0

, (4.1)

in which center wavelength λ0 is 800 nm, n0 = 2.85 is refractive index for ZnTe

detection crystal at 800 nm, r41 =4 pm/V is ZnTe EO coefficient, L is the thickness

of EO crystal, and tZnTe = 0.48 and tSi = 0.7 are Fresnel transmission coefficient

for ZnTe surface and Si wafer used to attenuate THz field. From Eq. 4.1, we can

calculate without silicon wafer, the E-field needed to produce a pi/2(quarter-wave)

birefringence is 45 kV/cm for 1 mm ZnTe.

4.1.2 Relation between intensity and E field

For a monochromatic propagating wave, such as a plane wave or a Gaussian

beam, the local intensity is related to the amplitude E of the electric field via:

I =
P

A
=
cnε0

2
|ETHz|2. (4.2)

A is the area. P is the THz peak power. Our average THz power is 110 µW. The

repetition rate of our laser system is 1 kHz. And pulse duration measured by EO

sampling is 1 ps. Hence, the real peak power of our pulsed teraherze wave was:

P = (110× 10−6W )× 1/repetition rate

pulse duration

= (110× 10−6W )× 1 ms

1 ps

= 1.1× 105 W.

(4.3)

The spot size(FWHM) of focused terahertz beam measured by bolometer cam-

era is 0.5 mm(diameter). Before entering the waveguide, electrical field is (refractive
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index=1 for air):

|ETHz| =
√

2P

Area× cnε0

= 205 kV/cm.

(4.4)

4.1.3 Input coupling efficiency

When terahertz is coupled into silicon ridge waveguide from air, it experiences

coupling loss at the input facet. This loss comes from two parts: reflection and

mode matching.

4.1.3.1 Reflection loss

This loss arises from the discontinuity of refractive index at the input facet.

Using field transmission formula for plane wave normal incidence, we can estimate

the transmitted field is:

Etrans = Ein
2nair

nSi + nair
= 0.45Ein. (4.5)

We could also calculate electrical field inside waveguide by using power transmission

formula, which represents as:

Ptrans = Pin × (1−
∣∣∣∣nair − nSinair + nSi

∣∣∣∣2) = 0.702Pin. (4.6)

And by estimating the confined area of terahertz under the ridge to be 300×400

µm2, we obtain the field from(refractive index n=3.4):

|ETHz| =
√

2Ptrans
Acnε0

= 119 kV/cm.

(4.7)
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4.1.3.2 Mode matching loss

The reflection loss introduced above is good enough to estimate coupling effi-

ciency of bulk sample. However, as our sample is a ridge waveguide, the coupling

efficiency also depends on the overlap integral of Gaussian mode of the input THz

beam and the fundamental mode of the waveguide.

The time domain THz field can be represented by:

E(x, y, z, t) =
1

2π

∫
Ê(ω)Φ(x, y, ω)ei[β(ω)z−ωt]dω (4.8)

where Φ(x, y, ω) is the eigenmode of the waveguide at frequency ω, z is the propa-

gation direction. By assuming the Φ(x, y, ω) is normalized to have a value of 1 at

the measurement position (x0,y0) Ê(ω) and its Fourier transform E(t) represent the

on-axis electric field at the input of the waveguide:

E(x0, y0, z = 0, t) =
1

2π

∫
Ê(ω)e−iωtdω = E(t). (4.9)

By taking the Fourier transform of Eq. 4.8, at z =0, we find the equivalent frequency

domain expression for the input electric field in the waveguide:

E(x, y, z = 0, ω) = Ê(ω)Φ(x, y, ω). (4.10)

Using the same expansion to describe the Gaussian beam that is incident on the

waveguide, we get:

Ein(x, y, z = 0, ω) = Êin(ω)Φin(x, y, ω), (4.11)

where Êin(ω) is the Fourier transform of the input THz waveform measured at

(x0,y0). We assume Φin(x, y, ω) is Gaussian beam with waist w and normalized to
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have peak value of 1 at (x0,y0).

Φin(x, y) = exp

(
−(x− x0)2 + (y − y0)2

w2

)
(4.12)

Now we can calculate the Ê(ω) by a simple projection operation:

Ê(ω) =

∫
Φ∗(x, y, ω)Φin(x, y)dxdy∫
|Φ(x, y, ω)|2dxdy

Êin(ω). (4.13)

For w=200 µm input Gaussian beam, the coupling coefficient at different frequency

of our waveguide is calculated from Eq. 4.13 and plotted in Fig. 4.2, which indi-

cates the coupling works as a high-pass filter. One thing to mention is we are not

computing the power-coupling, but the peak on-axis electrica field coupling. This

is what is modeled and also what is measured.

4.2 THz Monte Carlo simulation

As discussed in Chapter 1, high THz field induced transparency was observed

in n-type bulk semiconductors including GaAs, Ge, and Si. Several theories were

suggested for this phenomenon, such as intervalley scattering and nonparabolicity

of the conduction band valleys. However more rigorous theory and simulation are

needed to study the underlying physics.

Carriers’ statistical behavior in semiconductors can be described by Boltzmann

Transport Equation(BTE) [106]:

∂f

∂t
+ v×∇rf + F×∇pf =

∂f

∂t
|scatt. (4.14)

The first item is probability density function f(r, p, t) changes with time. The

second comes from diffusion. v is the carrier velocity. The third represents drift. F
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waveguide shown in Chapter 3 with input Gaussian beam width 200 µm.
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is the force applied on the carrier. The term on the right side accounts for carrier

scattering. The BTE enables us to calculate position and momentum versus time

for each carrier inside silicon.

The BTE is usually very difficult to solve. It’s much easier to simulate the

trajectories of individual carriers as they move in semiconductors under the influence

of electric fields and random scattering forces. Monte Carlo is such a simulation

method, and provides the most accurate simulation results for studying transport

by tracking a large amount of carriers through time. We adopted the Monte Carlo

process [109]. The flowchart of our Monte Carlo simulation is shown in Fig. 4.3.

4.2.1 Initialization

First, we read in all related parameters such as effective mass m∗, nonparabol-

icity factor α, lattice temperature T , doping density n, terahertz field ETHz and

time step ∆t. Silicon material parameters used are listed in Table. 4.1. We note

that typically simulation of holes in silicon is more complicated than electrons. The

valance band consists 3 bands at ~k = 0: heavy band, light band, and split-off band.

In previous Monte Carlo calculations, the simplest way people reported to describe

valance band is to use one band model [110]. Here for simplicity, we adopt an one

band nonparabolic model as used for conduction band.

We calculated the 10,000 carriers’ initial energy and k distribution(Fig. 4.4)

from Maxwellian Boltzmann distribution equations:

E = ±3

2
kBT ln

(
1

r

)
, r is chosen randomly between 0 to1 for each carrier, (4.15)
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Generate scattering table
(different scattering mechanisms’ scatter-

ing rates versus carrier energy)

Read in parameters
(Effective mass, nonparabolicity factor, 
time step, temperature, doping density, 

terahertz field, etc. )

Initialize carriers distribution
(Maxwellian Boltzmann distribution)

Solve BTE

Calculate average energy, velocity along 
field

Figure 4.3: Flowchart of Monte Carlo simulation
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Table 4.1: Silicon material parameters

Lattice constant(Angstroms) 5.43

Density(g/cm3) 2.329

Sound velocity(m/s) 9040

Relative Dielectric Constant 10.92

Electron effective mass 0.26m0

Hole effective mass 0.36m0

Electron acoustic deformation potential(eV) 9.5

Hole acoustic deformation potential(eV) 5

Optical phonon energy (eV) 0.063

α =
(1− m∗

m0
)2

Egap
, Egap is energy gap between conduction and valence band. (4.16)

k =

√
±2m(E ± αE2)

h̄2 , (4.17)

kx = k
√

1− (1− 2r)2 cos(2πr)

ky = k
√

1− (1− 2r)2 sin(2πr)

kz = k(1− 2r)


0 ≤ r ≤ 1 (4.18)

in which, + for electron, - for hole. E is initial carrier energy. kB is Boltzmann

constant. T represents temperature. α is nonparabolicity factor for silicon. m∗ is

effective mass. h̄ is Planck constant. k is initial wavevector. r is a random number
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uniformly distributed from zero to one. Distribution of k along x, y, z directions is

calculated from Eq. 4.18.

Then we generate scattering table for different scattering mechanisms. In

our Monte Carlo simulation, scattering mechanisms considered are acoustic phonon

scattering, equivalent intervalley scattering, intravalley optical phonon scattering,

and Coulomb scattering. Impact ionization is not included here as field of interest

is not strong enough to induce this phenomenon for the experimental conditions

considered here.

Acoustic phonon scattering: It is carrier-lattice interaction. The carrier ex-

changes energy with an acoustic mode of the vibration of atoms in the crystal

lattice.

Equivalent intervalley phonon scattering: This type of scattering accounts for

the charge carrier transition from initial states to final states which belong to differ-

ent but equivalent valleys. For conduction band, silicon has six equivalent valleys

located at 〈100〉 axes. Two types of intervalley scattering are possible in Si; ‘g-type’

processes move a carrier from a given valley to one on the opposite side of the same

axis. The ‘f-type’ processes move a carrier to one of the remaining valleys.

Intravalley phonon scattering accounts for carriers’ transition within the same

valley, i.e., carrier resides in the same valley before and after scattering. The phonons

involved are those with wave vectors near the center of Brillouin zone.

Coulomb scattering rises from carrier-carrier interaction and reflects the electro-

static forces between charge carriers.

In our simulation, acoustic, intervalley and intravalley scattering are consid-
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89



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11010

1011

1012

1013

1014

1015

1016

Acoustic

Coulomb

Intervalley g-type absorption 

Intervalley f-type absorption 
Intervalley g-type emission

Intervalley f-type emission

S
ca

tte
rin

g 
ra

te
 (1

/s
)

Energy (eV)

Figure 4.5: Scattering table for different mechanism for electron

ered to be isotropic inelastic scattering. Coulomb scattering is treated as anisotropic

elastic scattering.

Scattering rates for electrons for different mechanisms versus energy are shown

in Fig. 4.5.

4.2.2 Monte Carlo process

After initialization, the next step is true Monte Carlo process. We divide the

total time window into several time steps dt. During each time step, terahertz field
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is assumed to be constant.

4.2.2.1 Drift

In each time step, carriers move under the influence of terahertz field.

F =
dp

dt
= qE. (4.19)

in which F is the force on the carrier, p is the carrier momentum, E is the electrical

field. This is called free flight. The free flight is terminated by different scattering

events that change the carriers energy and momentum. In order to mimic this, for

each carrier in every step, we first generate a free flight time using random time

generator(Eq. 4.20). This will generate scattering events at random times with

exponential inter-scattering times.

dtf = − 1

Γ0

ln(r1) (4.20)

Γ0 is an empirical determined number. In our cases, it’s assumed to be 3×1014

s−1. During the free flight process, carrier is drifted under the influence of terahertz

field. If free flight time is smaller than time step, carrier will encounter scatterings.

Otherwise, we will directly go to the next time step. Because the duration of the col-

lision is typically much shorter than the duration of the free flight between collisions,

collisions are treated as instantaneous events here. After scattering, we generate a

new free flight time dtf2 and check whether dtf + dtf2 > dt. If dtf + dtf2 < dt, we

accelerate carrier to dtd = dtf2 and scatter it again.
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4.2.2.2 Identification of scattering mechanism

After the process of free flight in each time step dt, momentum, position and

energy of that carrier are updated at dtf . If dtf is smaller than dt, collisions take

place and alter the carrier’s momentum and energy. This change varies by adopting

different scattering mechanisms. And in reality, the collision can be caused by any

scattering mechanisms. In order to update the momentum and energy, we should

first identify which scattering event is happening. The mathematical description of

the identification procedure is to select mechanism l, if∑l−1
i=1

1
τi(E)

Γ0

≤ r2 <

∑l
i=1

1
τi(E)

Γ0

, l = 1, 2, 3...k + 1, (4.21)

in which r2 is a random number uniformly distributed from zero to one, τi is the

scattering time for mechanism l at energy E. Details of this process is shown in

Fig. 4.6.

For anisotropic elastic scattering such as Coulomb scattering, changing the

wave vector k follows these steps.

1. Determine original θ0 and φ0.

2. Rotate original coordinate. z axis is directed along initial k.

3. Scatter the carrier:

cos(θ) = 1− 2r

1 + 4k2L2
D(1− r)

, φ = 2πr (4.22)

in which r is a random number between 0 and 1, LD is Debye length.

4. Return to original coordinate.
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Figure 4.6: Process in each time step in Monte Carlo
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corresponding (b) drift velocity of electron in intrinsic silicon and (c) drift velocity

of hole in 250 Ω · cm p-doped silicon in room temperature obtained from Monte

Carlo simulation.
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While for isotropic inelastic scattering, the angle changed by: cos(θ) = 1− 2r,

φ = 2πr. Again r is a random number between 0 and 1.

In Fig. 4.7, we are showing electrons’ average drift velocity in intrinsic silicon

and holes’ average drift velocity in p-doped silicon in room temperature after apply-

ing high field THz(pulse duration 1 ps) along 〈100〉 direction with different intensity.

The reason that the velocities of hole and electron are in reverse direction is they

have opposite charge sign. It’s clear that drift velocity begins to saturate above 50

kV/cm.

4.3 Conclusion

In this chapter, we provide theory and simulation details about the Monte

Carlo process introduced in Chapter 3. First, we describe how we estimate the THz

field coupled into waveguide. Two different estimation methods are provided. Then,

we show how the Monte Carlo works, including description of initialization, drift,

and scattering processes. Average drift velocities of electrons and holes under high

terahertz field obtained from Monte Carlo simulation is also presented. Velocity

saturation phenomenon at high field is observed for both carriers.
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Chapter 5: Summary and future work

5.1 Summary

In this thesis, we studied two types of silicon-based terahertz waveguides:

plasmonic waveguide and ridge waveguide. Experimental results were obtained by

terahertz time domain spectroscopy(THz-TDS). The low THz generation source

utilized optical rectification in ZnTe crystal. The high power THz system adopted

the tilted pump pulse front technique to generate THz in LN. At detection side,

both used electro-optic sampling method.

In chapter 2, the plasmonic waveguide based on anisotropically etched highly

doped silicon substrate is proved to be able to confine THz at its surface. Simulation

performed in CST Microwave Studio, a commercial software, confirms our THz-

TDS measurements. By varying the depth and width of those periodic structures,

the confinement and resonant frequency can be changed. Due to the capability of

confining spoof surface plasmon polaritons, this waveguide can find application in

many areas, such as waveguide-based sensing and switching.

In chapter 3 and 4, we present the experimental results and theoretic study

of nonlinear terahertz transmission through intrinsic and lightly doped silicon ridge

waveguide. Enhanced transmission through waveguide at high THz field is observed.
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A simple and efficient nonlinear Drude model assembled split-step method is pro-

posed and compared to rigorous Monte Carlo simulation to support our observations.

This research can be used for development of terahertz saturable absorber and high

power terahertz guided-wave devices.

5.2 Future work

5.2.1 Impact ionization

The range of THz field considered in Chapter 3 and Chapter 4 is from 0 to 200

kV/cm. In this region, people observed enhanced transmission at high THz field

through intrinsic and lightly doped silicon. Our Monte Carlo simulation suggests

the physical origins of this nonlinear phenomenon come from acoustic, intervalley,

and intravalley scatterings. Recently, Tarekegne fabricated antenna array on high

resistivity silicon to enhance local field and observed impact ionization in this semi-

conductor induced by MV/cm THz field [58]. The impact ionization generated new

electron-hole pair and caused a decrease in transmission, an opposite phenomenon

to former results measured in the range 0 to 200 kV/cm THz field. Current Monte

Carlo simulation does not include impact ionization scattering and fails to explain

this phenomenon. In the future, we will add this scattering mechanism in the orig-

inal Monte Carlo simulation to cover MV/cm THz-induced nonlinear transmission.
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5.2.2 Frequency-dependent property of THz-induced nonlinear trans-

mission in silicon

THz-induced absorption saturation can find potential applications in THz sat-

urable absorbers, modulators and THz frequency converters. Those applications re-

ply on nonlinear capability at discrete frequency. In order to examine the frequency-

dependent property of this phenomenon, we explore how high field wave at specific

frequency behaves after propagating in the silicon ridge waveguide using the nonlin-

ear Drude model assembled with split step Fourier method. For simplification, we

adopt sinusoidal waveform to do simulation. Several results for different frequencies

are shown in Fig. 5.1. The input THz waves are with the form:

Einput = Epeak × sinωt, ω = 2πf. (5.1)

Frequencies f simulated are 0.1 THz, 0.5 THz, 1 THz, 5 THz, and 10 THz.

The sample parameters are the same as our p-doped silicon. Epeak is the input peak

field and assigned to be 100 kV/cm for all the cases. Linear results(green) calculated

from conventional Drude model are also displayed. From these simulated results,

we can predict the nonlinear effects are very obvious for frequencies below 1 THz.

Above 5 THz, the enhanced transmission is barely observed. Experiments is needed

to confirm these simulations.
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