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In this dissertation, we study the errors of a numerical weather prediction due

to the errors in initial conditions and we present efficient nonlinear ensemble filters

for reducing these errors.

First, we investigate the error growth, that is, the growth in time of the dis-

tance E between two solutions of a global weather model with similar initial condi-

tions. Typically E grows until it reaches a saturation value Es. We find two distinct

broad log-linear regimes, one for E below 2% of Es and the other for E above. In

each, log(E/Es) grows as if satisfying a linear differential equation. When plotting

d log(E)/dt vs log(E), the graph is convex. We argue this behavior is quite different

from error growth in other simpler dynamical systems, which yield concave graphs.

Secondly, we present an efficient variation of the Local Ensemble Kalman Filter

[32, 33] and the results of perfect model tests with the Lorenz-96 model. This scheme

is locally similar to performing the Ensemble Transform Kalman Filter [5]. We also



include a “four-dimensional” extension of the scheme to allow for asynchronous

observations.

Finally, we present a modified ensemble Kalman filter that allows a non-

Gaussian background error distribution. Using a distribution that decays more

slowly than a Gaussian is an alternative to using a high amount of variance infla-

tion. We demonstrate the effectiveness of this approach for the three-dimensional

Lorenz-63 model and the 40-dimensional Lorenz-96 model in cases when the obser-

vations are infrequent, for which the non-Gaussian filter reduces the average analysis

error by about 10% compared to the analogous Gaussian filter. The mathematical

formulation of this non-Gaussian filter is designed to preserve the computational ef-

ficiency of the local filter described in the previous paragraph for high-dimensional

systems.
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Chapter 1

Introduction

In numerical weather prediction, forecasts are generated by solving initial value

problems. Forecast errors are caused by model error (deviation of the model from the

true atmospheric dynamics) and errors in the initial conditions. Errors in the initial

conditions are unavoidable since our collected measurements (from rawinsondes,

commercial aircraft, and satellites) are either prone to measurement error or are

incomplete and infrequent. The focus of this dissertation is to study the forecast

error due to errors in the initial conditions and to develop an efficient scheme that

reduces this error.

In Chapter 2, we study the behavior of the forecast error due to errors in the

initial conditions. Specifically, we would like to answer the following question: Is

there a significant benefit in reducing this particular error? If the answer is yes, for

how much longer can a reliable forecast be made if one is able to reduce this error?

If the answer is no, then in order to improve forecasts one has to improve the model,

which requires better understanding of the physics, better spatial resolution, and

requiring greater computing power.

We investigate the error growth over time of initial errors for a global weather

model and compare it to that of simpler chaotic models (Lorenz [27], Marshall and

Molteni [29]). In these models, a small initial error grows exponentially at a constant
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rate until it nears saturation. We find that the relation between the exponential er-

ror growth rate and the error amplitude is convex in a global weather model (The

National Centers for Environmental Predictions Global Forecast System) with mul-

tiple time scales, a phenomenon not found in simpler models with a single time scale.

After an initial rapid growth phase that occurs in the first 18 hours, the exponential

error growth rate slows down, approximately following a linear differential equation

in two separate regimes: fast and slow. The current state-of-art of initial conditions

in weather prediction is in the slow regime, where errors double roughly in 2 days

(see Bengtsson and Hodges [4]). This suggests that reducing the errors in the initial

conditions by half will enable accurate forecasts about 2 days further in the future.

This result answers our question and it serves as a motivation for the rest of this

dissertation.

In Chapter 3, we develop a data assimilation scheme to reduce the errors in

the initial conditions. That is, we approximate the current state of the atmosphere

by correcting a “background” forecast from a prior initial condition to be more

consistent with the current observations. Meteorologists call this correction analy-

sis. The revised (also called analysis) state is then fed into the model as an initial

condition that provides the background forecast at the next time analysis is per-

formed. In an ensemble Kalman filter, one generates forecasts from an ensemble of

initial conditions to assess the uncertainty in the background state. We present an

efficient scheme to generate the analysis state with a variation of the Local Ensem-

ble Kalman Filter [32, 33]. We test this scheme on a perfect-model scenario with

the 40-dimensional Lorenz-96 model [27]. We call this scheme the Local Ensemble

2



Transform Kalman Filter (LETKF) because it is locally similar to performing the

Ensemble Transform Kalman Filter [5]. We also include a four-dimensional exten-

sion of the scheme to allow for asynchronous observations.

Finally, we propose an extension of the LETKF to non-Gaussian error distri-

butions in Chapter 4. Our motivation is that with ensemble Kalman filters, one

often needs to artificially inflate the uncertainty suggested by the ensemble fore-

cast from one analysis time to the next, sometimes by a significant factor. This

uncertainty is typically underestimated due to the nonlinearity of the model and

to the small ensemble size. In this non-Gaussian filter, we use a symmetric fore-

cast error distribution with longer tails than a Gaussian. Hence, the closed-form

formulas of Kalman Filter are not usable since they assume a Gaussian error distri-

bution. Instead, a minimization scheme such as a conjugate gradient method is used.

Formally, this scheme is similar to the Maximum Likelihood Ensemble Filter [44]

with a non-quadratic likelihood function. We test this scheme on the 3-dimensional

Lorenz-63 [24] model and the 40-dimensional Lorenz-96 model and compare it to our

LETKF and see a substantial improvement for the case of infrequent observations.

We end this dissertation with a conclusion and discussion of work in progress in

Chapter 5.
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Chapter 2

Convex Error Growth Patterns in a Global Weather Model

2.1 Overview

The defining characteristic of a temporal chaotic dynamical system is a pos-

itive leading Lyapunov exponent. This quantity measures the long time average

exponential growth rate of two typical solutions that initially are separated by an

infinitesimal distance. One simple example of a chaotic system is the logistic map:

xn+1 = 4xn(1−xn), whose Lyapunov exponent equals log(2). This quantity suggests

that the difference between two nearby solutions doubles on each iteration until it

reaches saturation. From the point of view of weather forecasting, the logistic map

has an infinite limit of predictability: we can always extend the forecast for one more

iterate by halving the uncertainty in the initial conditions. Lorenz [27] suggested

that the Lyapunov exponents may be unbounded for the partial differential equa-

tion representing a global atmospheric model. He also argued that as saturation is

approached, the error growth rate behaves differently from Lyapunov exponents.

The atmosphere includes multiple scales of motion, which suggests that differ-

ent scales of motion grow with different rates. In [25], Lorenz observed that small

scales tend to grow at a fast rate and the larger scales of motion grow with a slower

rate. He concluded that as one refines the accuracy of the initial states, smaller

increments of forecast skill are obtained, and there appears to be a finite limit of

4



predictability. Numerous studies have been devoted to the predictability of different

types of motion that mimic the atmosphere. For example, Aurell et al. [3] show that

in the case of turbulence, the growth rate is determined by the cumulative effects of

multiple characteristic times.

A hallmark of chaos is the exponential growth of errors, where by error we

mean the distance E(t) between two trajectories that are close to each other at

time t = 0. When trajectories are bounded, the exponential growth of E(t) cannot

continue indefinitely; E(t) saturates near a value Es that is representative of the

size of the chaotic attractor. We consider the dependence of the exponential growth

rate of the error on the size of E(t)/Es for a global weather forecast model, and

we contrast our results with those for some simpler models. The exponential

growth rate is E ′/E, where E ′ is either the time derivative of E or a finite-time

approximation of the time derivative. Throughout this chapter, we approximate the

exponential growth rate as:

E ′

E
=

d log E(t)

dt
≈ log E(t + ∆t)− log E(t−∆t)

2∆t
(2.1)

for a suitable ∆t. This approximation is used to mask the rapid fluctuation of the

derivative. In some cases, again to suppress fluctuations, we may take E to be an

average distance, averaging over several pairs of solutions.

We call an interval J of values of E a log-linear regime if for some λ < 0 and

C ≤ Es and all E ∈ J , E ′/E approximately satisfies the linear differential equation

5



1:

E ′

E
= λ log(E/C). (2.2)

The exponent λ describes how E approaches C. A typical dynamical system has

one log-linear regime with C = Es; then λ is called the saturation exponent .

Here, we investigate a realistic weather forecast model and find that this model has

two distinct broad log-linear regimes (Figure 2.1).

2.2 Error Growth of a Global Weather Model

We report a striking behavior for a global weather model, the National Centers

for Environmental Prediction (NCEP) Global Forecast System (GFS). This opera-

tional global atmospheric model is a pseudo-spectral model, described in detail in

[8, 35]. The resolution considered here is chosen such that it has a maximum zonal

wavenumber of 62, and so is referred to as T62, where “T” stands for triangular

truncation. There are 192×94 horizontal grid points at each of 28 vertical levels. In

addition to the surface pressure, there are five variables defined at every grid point:

1) the vertical component of the vorticity of the horizontal wind, 2) the divergence of

the horizontal wind, 3) a generalized temperature that reflects humidity, 4) relative

humidity, and 5) ozone. Overall the state has dimension N ≈ 3× 106.

We select a point x in the state space from a trajectory after transients have

died away. We also choose at random an N -vector δp and renormalize it so that

1All logs are natural logarithms; generally we want E′/E to be within 10% of λ log(E/C)

6



‖δp‖ = Es. We choose perturbed initial points

pk(0) = x(0) + 10−kδp for k = 3, ..., 7. (2.3)

We do not show the cases for k = 1, 2 because we are interested in the behavior of

perturbations that are initially small. Both the reference state x and perturbations

pk are integrated from t = 0 for 14 days with a 20 minute time step. Now, define

Ek(t) to be the root-mean-square (rms) error of x and pk for each k:

Ek(t) = ‖pk(t)− x(t)‖. (2.4)

We focus our study on midlatitude tropospheric wind prediction. That is, calcula-

tions are restricted to the midlatitude bands in the Northern and Southern Hemi-

spheres (22.5◦ − 70◦ N/S) where the model is considered most accurate. We report

the rms errors calculated for the atmospheric level where the pressure equals half

of the surface pressure. We show only the rms errors of the vorticity, but the other

variables behave in a similar way.

In Figure 2.1, for E = E3(t), . . . , E7(t), the exponential growth rate E ′/E is

plotted as a function of relative error size E/Es in logarithmic coordinates. The

error growth rate E ′/E decays along two broad log-linear regimes (for time t > 18

hours). In what we call the “fast regime” (0.002Es < E < 0.02Es), the errors

double in less than a day. Here the error growth rates move along a straight line

(2.2) with λ = −2.5 (= λf in Figure 2.1) as if to saturate at C = Ef ≈ 0.021Es,

that is, 2.1% of the actual saturation size. After E reaches about 0.02Es, the

growth rate enters the “slow regime.” We refer to the point E = 0.02Es as the KT

7
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Figure 2.1: Convex exponential error growth rate of the NCEP GFS model as a
function of relative error E/Es. The graph reveals two linear regimes. For E <
0.02Es, E ′/E lies close to line yf = λf log(E/Ef ) with λf ≈ −2.5 and intercept
at Ef ≈ 2.1% of the saturation level Es. For E > .02ES, E ′/E lies close to the
line ys = λs log(E/Es) with λs ≈ −0.17. The doubling time of errors are 1/8,
1/4, 1, 2, and 3 days when E is 0.23%, 0.7%, 1.6%, 13% and 26% of saturation
level, respectively. Small errors grow in amplitude, moving from left to right, first
along the left line and then along the right until they saturate at Es. Each point
plotted here is for an individual pair of initial conditions. The dashes represent the
“superfast” regime for E < 2× 10−3Es (see text).
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boundary 2. After E passes the KT boundary, E ′/E follows the straight line (2.2)

with λ = −0.17 (= λs) and C = Es. Here the growth rate E ′/E slows to zero as

E approaches its saturation level Es. In creating Figure 2.1, we approximate E ′/E

using (2.1) with ∆t = 6 hours, with t in steps of 3 hours. The finite differences

show some oscillation about the lines. We plot E ′/E starting from t = 18 hours

because the NCEP model exhibits a third regime: superfast growth of extremely

small perturbations. Errors of size less than 10−4Es climb rapidly to 10−4Es, usually

in about 1 hour or less, even when beginning with size 10−7Es (not shown here).

Thus, the errors grow to approximately 0.002Es after 18 hours independently of E(0)

provided E(0) < 10−4Es. Toth and Kalnay [39, 40] investigated weather prediction

using a reference state plus multiple perturbations as initial conditions. They report

“enormous” growth of errors, more than a factor of 5 per day, when perturbations

have amplitude less than 0.001Es. They attribute such growth mostly to tropical

convection, which they say saturates at less than 0.01Es. They see slow growth

for amplitudes between 0.01Es and 0.1Es and attribute this behavior to baroclinic

instabilities. They do not discuss the transition between these behaviors.

2.3 Error growth of the Lorenz-96 and QG model

In contrast with the striking results of Figure 2.1, simpler models often have

a single log-linear regime. We illustrate the typical behavior of simpler models with

the 40-dimensional Lorenz-96 model [27] of differential equations and the Quasi-

2Named after Toth and Kalnay [39, 40] and the famous paleontological demarcation point.
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Geostrophic (QG) model of Marshall and Molteni [29] with resolution T21.

The Lorenz-96 model [27, 28] represents an “atmospheric variable” with values

xj at N equally spaced points around a circle of constant latitude:

5
dxj

dt
= (xj+1 − xj−2)xj−1 − xj + F (2.5)

where j = 1, ..., N represent the spatial coordinates (“longitude”). Periodic bound-

ary conditions are imposed by identifying x−1 ≡ xN−1, x0 ≡ xN , and xN+1 ≡ x1.

This model is designed to satisfy three basic properties: it has linear dissipation

(the −xj term) that decreases the total energy (defined as V = 1
2

∑N
j=1 x2

j), an ex-

ternal forcing term F that can increase or decrease the total energy, and a quadratic

advection-like term that conserves the total energy (i.e., it does not contribute to

d
dt

V ). Following [27, 28], we choose the external forcing to be F = 8 and the number

of spatial elements to be N = 40. The “5” in (2.5) scales the unit time to correspond

to one day in real time. We also use a fourth-order Runge-Kutta scheme for time

integration of (2.5) with time step ∆t = 1/4 days. With these parameters, the so-

lution to (2.5) has a behavior reminiscent of the midlatitude atmosphere. It has 13

positive Lyapunov exponents, with the leading Lyapunov exponent corresponding

to a doubling time of 2.1 days, and a Kaplan-Yorke dimension of 27.1 [27].

The QG approximation describes weather-like slow atmospheric motion. Steady

state flow in a rotating sphere satisfies the geostrophic balance, i.e., the horizontal

pressure gradient balances the Coriolis force. Slow Rossby waves satisfy a quasi-

geostrophic balance as represented by the conservation of quasi-geostrophic poten-

tial vorticity (QGPV), see Holton [15]. In our study, we use the three-level QG
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model developed by Marshall and Molteni [29] with T21 resolution.

In the NCEP model, we examined the rms difference between a pair of tra-

jectories x and pk. For the Lorenz-96 and QG models, we examine L such pairs of

trajectories and average the resulting errors in order to mask the rapid fluctuation

of E. The rms of the i-th pair of x(t) and pk(t) at time t, denoted as Ek
i (t), is

calculated from (2.4) for i = 1, ..., L. Then, we let Ek(t) be the geometric mean

Ek(t) = exp〈log Ek
i (t)〉, (2.6)

where the average 〈·〉 is computed over L pairs. The previous Ek(t) in Figure 2.1 is

an average of a single (L = 1) trajectory. We use L = 1000 for the Lorenz-96 model

and L = 100 for the QG model. Both the reference state x and perturbations pk,

with k = 3, ..., 6, are integrated with 6 hour time steps from time t = 0 for 60 days

for the Lorenz-96 model and for 360 days for the QG model.

In Figure 2.2 ((a) for Lorenz-96 and (b) for QG model), the exponential growth

rates are plotted as functions of the relative rms difference between each pk and x.

In creating these plots, the growth rate is approximated using (2.1) with ∆t = 1/2

days for the Lorenz-96 and ∆t = 10 days for the QG model. Our experiments with

the Lorenz-96 and the QG models show small averaged errors growing exponentially.

Close to saturation (i.e., as E → Es), the exponential growth rate slows down as with

differential equation (2.2) with C = Es and enters the log-linear regime. Specifically,

the log-linear regime of Lorenz-96 model is approximately 0.4Es < E < Es with

saturation exponent λ ≈ −0.22. We obtain a similar range of log-linear behavior

with λ ≈ −0.035 for the QG model. We believe that this single time scale behavior
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Figure 2.2: Concave error growth rates, estimated by finite-differences in (2.1), as
functions of relative error E/Es. (a) The error growth rate of the Lorenz-96 model
fluctuates about 0.35 for E < 10−3Es and decays in accordance to (2.2) where
λ = −0.22 (see the line tangent to the growth rate) and C = Es. (b) In the
QG model, the growth rate fluctuates about 0.044 when E < 10−3Es and decays
asymptotically to (2.2) where C = Es, with λ = −0.035 as E > 0.4Es. As time
increases, errors move from left to right, asymptoting to Es. Each point plotted here
is averaged over L = 1000 pair of trajectories for the Lorenz-96 model and L = 100
for the QG model.
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is due to the presence of only baroclinic instabilities in the QG model, while other

instabilities (discussed at Section 2.5) are present in the NCEP model. Next, we

offer a scalar linear differential equation that justifies the typical error growth as

observed in Lorenz-96 or QG model.

2.4 A simple error growth model

Here we modify the logistic differential equation 3 and model the growth of

the error E(t) by a scalar differential equation:

E ′ =
dE

dt
= aE(1− E−λ/a). (2.7)

Near the steady state E = 0, we have E ′/E ≈ a. For 0 < E < 1, we have E → 1

as t → ∞, and for E ≈ 1, E ′/E ≈ λ log(E). With this variant of the logistic

equation, two parameters a and λ can be selected independently. Figure 2.3 shows

the exponential growth rate of the error, E ′/E compared to E. We choose a = 0.35

and λ = −0.22 to fit the rate of Lorenz-96 model in Figure 2.2(a). For E > 0.7 4,

E ′/E is close to the line (2.2) with C = 1. Similarly, the error growth rate of the

QG model can be illustrated by (2.7) by choosing a = 0.044 and λ = −0.035.

3Lorenz [26] modeled the error growth by the one-parameter logistic equation E′ = aE(1−E).

This equation, however, has an initial exponential growth rate equal to its saturation rate; that is

a = −λ in (2.7). Such a constraint, as we see in Figure 2.2, is not necessarily satisfied.
4We say E is in the log-linear regime when a(1−E−λ/a)

λ log E > 0.9, namely for E ∈ (0.7, 1).
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Figure 2.3: Concave exponential growth rate, E ′/E for (2.7) as a function of E in
logarithmic scale. We set a = 0.35, λ = −0.22, E(0) = 10−6, and ∆t = 1. When
E < 10−3, we get E ′/E ≈ a = 0.35. As the error grows, the instantaneous doubling
time Td increases. We show Td = 2, 3 and 4 corresponding to exponential growth
rate of 0.34, 0.23 and 0.17, respectively. The line y = λ log(E) with λ = −0.22 is
tangent to the E ′/E curve at the asymptotic value E = 1.
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2.5 Summary

Convex error growth in the NCEP global atmospheric model contrasts with

the concave error growth seen in simpler models that have a single type of instabil-

ities. In the simple models we observe constant exponential growth that decreases

once nonlinear effects become important. In the realistic weather model there is no

exponential growth with constant E ′/E. Instead, E ′/E is strictly decreasing, indi-

cating the presence of multiple types of instabilities that dominate at very different

amplitude ranges. We see an initial super rapid growth, followed by two log-linear

regimes. This is reminiscent of the difference between the 2-dimensional turbulence

that dominates large scales (Charney [7]) and 3-dimensional turbulence that dom-

inates smaller scales, with a transition taking place for wavelengths between 400

and 1000 km (Nastrom and Gage [31], 1985). The shortest waves present in our

model (with triangular truncation T62) have a wavelength of 40000 km/62 ≈ 320

km so that there is only enough resolution to crudely resolve 3-dimensional turbulent

scales.

Our results suggest that the growth of perturbations occurs in three phases

and we examine the perturbation kinetic energy spectra (see Nastrom and Gage [31])

in each of these phases. In the first phase, tiny perturbations grow very fast through

the most efficient mechanism that provides finite amplitude perturbation growth:

the triggering of cumulus convection at slightly different times or locations. Because

of the enormous latent heat energy released by convection, even the smallest per-

turbations that are computationally realizable become significant within an interval
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of a few convective time scales (within 1-3 hours). In the first few time steps the

perturbation kinetic energy is dominated by wavenumbers larger than 32, corre-

sponding to single grid point cumulus perturbations. After this initial supergrowth

period, perturbations have acquired roughly the same finite size (3 × 10−3Es) in-

dependent of the initial perturbations sizes (Fig. 2.1). The fact that during this

period of superfast growth, “butterfly”-sized model perturbations become signifi-

cant, supports the insight of Lorenz [25] and is consistent with the results of Zhang

et al. [43] and Toth and Kalnay [39]. In the second phase, from 1-3 hours to about

12-36 hours, the perturbation spectrum shifts to waves between wavenumbers 20

and 50 (wavelengths between 800 km and 2000 km). This fast growth of small-scale

perturbations is dominated by small-scale, turbulent dynamics. Beyond that time,

the growth slows further as the perturbation energy shifts to lower wavenumbers

in the range of 2-dimensional turbulence, until by the saturation time, the kinetic

energy of the difference peaks at wavenumber 10 (about 4000 km, the characteristic

wavelength of baroclinic instability).

The results of this chapter were published in [14]. While these results were

obtained for the NCEP global model, we believe that they are relevant to all realistic

models of the atmosphere that include convection. As mentioned before in Chapter

1, the current state-of-the-art of initial conditions in weather prediction is in the

slow regime, where errors double roughly in 2 days. Therefore reducing the errors

in the initial conditions by half will enable accurate forecasts about 2 days further

in the future. Similar results were reported recently by Bengtsson and Hodges [4].

This motivates the next two chapters in this dissertation.
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Chapter 3

Local Ensemble Transform Kalman Filter

3.1 Motivation

Here, we describe an efficient method of implementing an Ensemble Kalman

Filter (EnKF), which we call a Local Ensemble Transform Kalman Filter (LETKF).

Unlike variational-based data assimilation schemes, LETKF (or any EnKF scheme)

represents the forecast uncertainty with an ensemble of forecasts. Ensemble-based

data assimilation is a natural approach because numerical weather prediction cen-

ters, such as NCEP and ECMWF, already employ ensemble forecasting opera-

tionally to assess the uncertainty in their forecasts. Using this information in the

data assimilation procedure has the potential to provide better initial conditions,

both for the main forecast and for the ensemble forecast.

The goal of an EnKF is to generate, at regular time intervals, an analysis

ensemble, that is, an ensemble of model states that reflects both an estimate of

the true atmospheric state (through its mean) and the uncertainty of this estimate

(through its spread). If successful, then applying the forecast model to the analysis

ensemble at one time yields a background ensemble that at the next analysis time

provides a probabilistic estimate of the atmospheric state before new observations

are taken into account. The analysis cycle is then completed by adjusting the

background ensemble to better fit the new observations. In particular, the analysis
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ensemble mean is a weighted average of the background ensemble mean and the

observations, with the weights determined from the background and observation

uncertainties. More precisely, the analysis ensemble mean is the model state that

best fits the given background and observation probability distributions in a least-

squares sense.

In a Kalman filter, these distributions are treated as Gaussian, and the uncer-

tainties are thus characterized by covariance matrices. The background and obser-

vation covariances determine the analysis covariance. The background covariance

is computed as the sample covariance of the background ensemble, and thus, to be

consistent, one must choose an analysis ensemble whose sample covariance matches

the analysis covariance determined by the Kalman filter. One approach is to add to

the analysis ensemble mean the columns of a square root of the analysis error covari-

ance matrix. This type of analysis scheme is known as an Ensemble Square Root

Filter (EnSRF) [38] or a deterministic EnKF [42]. In contrast, the early versions

of EnKF [9, 6, 16] are stochastic in the sense that they perturb the observations

randomly when generating each ensemble member. Several variations of implement-

ing EnSRF were introduced by exploiting the non-uniqueness of matrix square root,

including the Ensemble Adjustment Kalman Filter (EAKF) of [1], Ensemble Trans-

form Kalman Filter (ETKF) of [5], and Local Ensemble Kalman Filter (LEKF) of

[32, 33].

In LEKF, the analysis state is obtained by performing “local analyses” at each

model grid point. Each local analysis accounts for only the observations within a lo-

cal region surrounding the grid point, and therefore the choice of the size of the local
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regions should reflect the distance over which dynamical correlations represented by

the ensemble are meaningful. The localization improves the efficiency of the scheme

because each local analysis involves much less data than a global analysis, and the

local analyses can be computed independently in parallel. More importantly, as

pointed out in [1], [13], and [17], the localization suppresses spurious long-range

correlations produced by a limited ensemble size.

For ensemble of size k, LEKF performs the analysis in a (k − 1)-dimensional

space E, using an orthonormal basis consisting of eigenvectors of the background

covariance matrix. In this chapter, we show that by performing the analysis in a

k-dimensional space S with the background ensemble perturbations as the “basis”,

LEKF computationally becomes more efficient. Formally, each local analysis with

this choice of basis is analogous to the ETKF and hence we call our scheme a Local

ETKF (or LETKF). In contrast to the global ETKF, which requires the ensemble

to encompass the global uncertainty, in LETKF the ensemble need only encompass

the uncertainty within each local region. We believe that this is feasible with an

ensemble of moderate size due to the local low-dimensionality of the atmospheric

uncertainty observed in [34] and the results in [36] for LEKF on the NCEP GFS

model using fewer than 100 ensemble members. In our implementation of LETKF,

we form the analysis ensemble perturbations from the symmetric square root of the

analysis error covariance matrix, as opposed to the non-symmetric square root used

by [5]. In this respect, our approach is analogous to the Spherical Simplex ETKF

of [41].

In an operational setting, the initial conditions are generated every six hours,
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though many observations (mainly from the satellite and commercial flight obser-

vations) are available more frequently. Very limited computational time is allowed

for each analysis (less than 10 minutes at NCEP). Given such constraints, an ef-

ficient algorithm becomes very important. One approach is the 4D-EnKF of [20].

This four-dimensional extension of EnKF finds the analysis ensemble mean by fit-

ting the linear combinations of the trajectories of the background ensemble to the

asynchronous observations. This scheme may be thought of as an approximation to

4D-VAR [37], the four-dimensional data assimilation technique used operationally

by ECMWF; its main advantages is that it does not require computing the linear

adjoint model for the (nonlinear) forecast model. Here, we introduce a 4D-LETKF

that is analogous to 4D-EnKF but mathematically simpler.

The reminder of this chapter is organized as follows. In Section 3.2 we present

our global filter, which is an alternate formulation of ETKF, together with a step-by-

step guide on how to efficiently implement this formulation. We discuss localization,

our four-dimensional extension, and variance inflation in Section 3.3. We conclude

this chapter by showing some results obtained for the Lorenz-96 model [28] in Sec-

tion 3.4, and give a brief summary in Section 3.5.

3.2 Global Filter Formulation

In this section, we first formulate the governing equations of LETKF in a

global setting, then we give step-by-step instructions for applying them in an efficient

manner. For a more detailed derivation, see [19].
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3.2.1 Filter Derivation

The goal of an ensemble square root filter is to evolve an ensemble of model

states that at any given time reflects, in the manner described below, both an es-

timate of the true system state and an uncertainty of that estimate. The ensemble

members are evolved independently according to the model, except when new ob-

servations of the system state become available, at which point the entire ensemble

is adjusted in tandem to reflect the new state estimate and (reduced) uncertainty

dictated by the observations. This adjustment is called the “analysis”.

The inputs to the analysis are the forecast (or “background”) ensemble {xb(i) :

i = 1, 2, . . . , k} of size k, the observation operator H : Rm → Rs that maps the model

space to the observation space, the observations yo ∈ Rs, and the observation error

covariance matrix R ∈ Rs×s. The analysis assumes that the best available estimate

to the system state, before the observations are taken into account, is the background

mean

x̄b = k−1

k∑
i=1

xb(i).

Define the m×k matrix of background ensemble perturbations Xb, whose ith column

is Xb(i) = xb(i) − x̄b. Then the background uncertainty in this state estimate is

described by the background error covariance matrix

Pb = (k − 1)−1Xb(Xb)T . (3.1)

Thus Xb is a matrix square root of (k − 1)Pb. (Since Pb can have rank at most

k− 1, it accounts for uncertainty only in k− 1 directions in model space, which can

be problematic if k is too small.)
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The output of the analysis is the analysis ensemble {xa(i) : i = 1, 2, . . . , k}.

The analysis mean

x̄a = k−1

k∑
i=1

xa(i)

and error covariance matrix

Pa = (k − 1)−1Xa(Xa)T , (3.2)

should represent respectively the estimate of the system state after the observations

are assimilated, and uncertainty in this estimate. Here, the matrix Xa of analysis

ensemble perturbations, whose ith column is Xa(i) = xa(i) − x̄a, is an m× k matrix

square root of (k − 1)Pa.

The transformation from background ensemble {xb(i)} to analysis ensemble

{xa(i)} is based on the transformation from the background mean x̄b and error co-

variance matrix Pb to the analysis mean x̄a and error covariance matrix Pa in the

standard Kalman Filter (see e.g. [21]), which assumes Gaussian observation errors,

a linear model, and a linear observation operator. Ensemble Kalman filters handle

nonlinear model dynamics by evolving the analysis ensemble of model states from

one analysis time to the next and by using the sample mean and covariance of the

evolved ensemble as the background mean and covariance for the next analysis. If

the time interval and analysis error covariance are sufficiently small, a Gaussian dis-

tribution whose mean and covariance match those of the ensemble at the beginning

of the time interval evolves approximately to a Gaussian distribution at the end of

the time interval. So, we approximate the background distribution as a Gaussian.

Later, we will describe how we handle the nonlinear operator H; for now, we assume

22



a linear operator H. Then, with a Gaussian background distribution and Gaussian

observation errors, the analysis distribution will be Gaussian, too.

Based on the standard Kalman Filter [21], the analysis ensemble mean is

x̄a = x̄b + K(yo −Hx̄b), (3.3)

where

K = PbHT (HPbHT + R)−1 (3.4)

is the Kalman gain matrix. The analysis error covariance is given by:

Pa = (I−KH)Pb. (3.5)

To construct the analysis ensemble, one must then find an m × k matrix Xa for

which (3.2) is satisfied, and add x̄a to each column of Xa.

The matrix HPbHT +R, which is invertible as long as R is, is an s× s matrix

that changes from one analysis time to the next. Thus as written, computing K

takes at least on the order of s3 floating-point operations. Computing Pa and Xa

involves operations on m × m matrices. However, since Pb has rank less than k,

so do K and Pa, and they can be computed much more efficiently if k is small

compared to m and s.

Since our ultimate goal is to transform the background ensemble {xb(i)} =

{x̄b +Xb} into an analysis ensemble {xa(i)} = {x̄a +Xa}, the most efficient method

for doing so should avoid computing Pb altogether. Ott et al. [32, 33] performed a

reduced-rank analysis in the space E spanned by the background ensemble of per-

turbations {Xb(i)}, using an orthonormal basis of E formed by the eigenvectors of

23



Pb. Then Pb = QP̂bQT , where P̂b is a (k− 1)× (k− 1) diagonal matrix containing

the nonzero eigenvalues of Pb, and Q is an m× (k−1) orthogonal matrix of the cor-

responding eigenvectors. The matrix P̂b represents the background error covariance

in the chosen orthogonal coordinate system on E.

Our approach is to replace Q by Xb and avoid solving the eigenvalue problem.

Now Xb represents a transformation from an abstract k-dimensional space S onto

the space E within the m-dimensional model space. This transformation maps the

orthonormal basis vectors in S to the background ensemble perturbations. Thus S

and Xb represent a choice of coordinates on E that is non-orthogonal and overde-

termined (each point in E has multiple coordinate representations in S). The main

convenience of doing the analysis in the space S is that the effective background

error covariance matrix is simply

P̃b = (k − 1)−1I. (3.6)

This matrix satisfies the relationship Pb = XbP̃b(Xb)T , and thus transforms under

Xb into the correct covariance matrix. Furthermore, P̃b is invertible, unlike Pb, and

this allows us to use a more convenient form of the Kalman filter equations involving

the inverse of the background error covariance matrix.

Substituting (3.1) to (3.4) yields

K = (k − 1)−1Xb(Xb)THT [(k − 1)−1HXb(Xb)THT + R]−1. (3.7)

At this point we can deal effectively with a nonlinear observation operator H. In

(3.7), we see that every time the linearized operator H appears, it is next to the
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matrix Xb. The ith column of HXb is H(xb(i) − x̄b), a first-order Taylor approxi-

mation of H(xb(i))−H(x̄b). Instead of linearizing H on the entire model space, we

linearly approximate HXb by the matrix Yb of background ensemble observation

perturbations, whose ith column is H(xb(i)) − ȳb, where ȳb is the average over i of

H(xb(i)). Notice that the sum of the columns of Yb is zero.

Next, using the matrix identity1

AT (AAT + R)−1 = (I + ATR−1A)−1ATR−1

with A = (k − 1)−
1
2Yb, we have

K = (k − 1)−1Xb[I + (k − 1)−1(Yb)TR−1Yb]−1(Yb)TR−1.

Then from (3.5),

Pa = (k − 1)−1(I−KH)Xb(Xb)T

= (k − 1)−1Xb
(
I− (k − 1)−1

[
I + (k − 1)−1(Yb)TR−1Yb

]−1
(Yb)TR−1Yb

)
(Xb)T .

Using the identity I − (I + B)−1B = (I + B)−1 with B = (k − 1)−1(Yb)TR−1Yb

yields

Pa = (k − 1)−1Xb
[
I + (k − 1)−1(Yb)TR−1Yb

]−1
(Xb)T

= Xb
[
(k − 1)I + (Yb)TR−1Yb

]−1
(Xb)T .

Then

Pa = XbP̃a(Xb)T , (3.8)

1To verify this identity, multiply both sides on the right by AAT + R and observe that

AT R−1(AAT + R) = (AT R−1A + I)AT .
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where

P̃a =
[
(k − 1)I + (Yb)TR−1Yb)

]−1
(3.9)

is the k × k matrix that represents the analysis error covariance in the space S.

Then, (3.3) becomes

x̄a = x̄b + XbP̃a(Yb)TR−1(yo − ȳb), (3.10)

where we have replaced Hx̄b with ȳb; one could use instead H(x̄b). Writing

wa = P̃a(Yb)TR−1(yo − ȳb), (3.11)

we have

x̄a = x̄b + Xbwa,

where wa represents the analysis increment in S. Despite the formal differences,

one can show that the analysis increment given by (3.10) and (3.9) is equivalent to

Ensemble Transform Kalman Filter (ETKF) of Bishop et al. [5].

To construct the analysis ensemble, we choose

Xa = XbWa, (3.12)

where Wa is a k×k matrix square root of (k−1)P̃a; that is, Wa(Wa)T = (k−1)P̃a.

Here the columns of Wa represent the analysis ensemble perturbations in S. Then

from (3.8), we have the required relationship (3.2). The ith member of the analysis

ensemble is created by adding the ith column of (3.12) to (3.10)

xa(i) = x̄a + Xa(i). (3.13)

26



For the mean of the analysis ensemble to be x̄a, we require the sum of the columns

Xa(i) of Xa to be zero; that is, Xav = 0 where v = (1, 1, . . . , 1)T . Since Xbv = 0, it

suffices that v be an eigenvector of Wa. This is true for the symmetric square root

Wa = ((k − 1)P̃a)
1
2 ,

but is not true for the choice of the matrix square root described in [5]; see also

Wang et al. [41]. We will discuss this further in Section 3.4.2. Thus the filter we

describe in this section is equivalent to ETKF using the symmetric square root of

the analysis covariance in the k-dimensional space S.

3.2.2 Efficient Computation of the Analysis

We now give a step-by-step description of how to implement the analysis de-

scribed in the previous section with an eye toward minimizing the amount of com-

putation. The inputs to the steps below are the m-dimensional vectors {xb(i) : i =

1, 2, . . . , k}, a nonlinear operator H from m variables to s variables, an s-dimensional

vector yo, and an s× s matrix R.

1. Form {xb(i)} into an m × k matrix X, and apply H to each column of X

to form an s × k matrix Y. Average its columns to get the s-dimensional

vector ȳb, and substract this vector from each column of Y to get Yb. This

requires k applications of H, plus 2ks floating-point operations. If H is an

interpolation operator that requires only a few model variables to compute

each observation, then the total number of floating-point operations for this

step is proportional to ks, multiplied by the average number of model variables
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required to compute each scalar observation.

2. Average the columns of X to get the m×1 vector x̄b, and subtract this vector

from each column of X to get Xb; This step requires a total of 2km operations

(additions and multiplications).

3. Compute the k×s matrix C = (Yb)TR−1. Since this is the only step in which

R is used, it may be most efficient to compute C by solving the linear system

RCT = Yb rather than inverting R. In practice R will be a block diagonal

with each block representing a group of correlated observations. As long as the

size of each block is relatively small, inverting R or solving the linear system

above will not be computationally expensive. Furthermore, many or all of

the blocks that make up R may be unchanged from one analysis time to the

next, so that their inverses need not be computed each time. Based on these

considerations, we estimate the number of operations required for this step in

a typical application to be proportional to ks, multiplied by the average value

of the cube of the block size of R.

4. Compute the k × k matrix P̃a =
[
(k − 1)I + CYb

]−1
. Multiplying C and Yb

requires 2k2s operations, while the number of operations required is propor-

tional to k3.

5. Compute the k×k matrix Wa = [(k−1)P̃a]1/2. Again the number of operations

required is proportional to k3.

6. Compute the k-dimensional vector wa = P̃aC(yo − ȳb) and add it to each
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column of Wa, forming the k × k matrix W. Computing the formula for wa

from right-to-left, the total operations required are s + 2sk + 2k2.

7. Compute XbW and add x̄b to each column. This requires a total of 2k2m

operations.

The output of the final step is an m × k matrix whose columns are the analysis

ensemble members {xa(i)}. If k is reasonably large but still small compared to

m and s, then the number of floating-point operations required is proportional to

k2s (multiplying C and Yb in Step 4) or k2m (multiplying Xb and W in Step 7),

whichever is larger, If k is small enough, then more operations may be required for

Step 3.

3.3 Localization, 4D Extension, and Variance Inflation

The fundamental difference between LETKF and ETKF is the localization,

and in this section we describe how to localize the approach of the previous section.

We also describe a four-dimensional extension that assimilates asynchronous data,

and a way to do variance inflation.

3.3.1 Localization

To perform ensemble data assimilation for a global atmospheric model with

an ensemble of moderate size, some form of localization is important. As we will

see in Section 3.4.2, even for relatively small models, localization can improve filter

performance. See [20] for a discussion of different localization strategies.
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Our localization is similar to that of [22] and [32, 33], in that the analysis is

done separately and, if desired, in parallel for different local regions that cover the

globe. In our formulation, the localization is relatively simple; for each grid point of

the model, we choose a local subset of the global observations and apply the equa-

tions of Section 3.2 using only the local observations. To be more precise, we first

perform Steps 1 and 2 of Section 3.2.2 globally (though in a parallel implementation,

it is possible to perform them locally if H is a local interpolation operator). Then for

each model grid point, we truncate yo, ȳb, and Yb to include only observations from

a local region surrounding that point, and truncate x̄b and Xb to include only the

model variables for that grid point. Performing Steps 3 to 7 then yields an analysis

ensemble {xa(i)} of model states at the given grid point. After we do Steps 3 to 7

for each grid point, we have determined the global analysis ensemble.

In order to use the analysis ensemble members as initial conditions for the

forecast model, it is essential that the analyses at nearby grid points be similar.

This can be ensured by choosing similar sets of observations for neighboring grid

points. As long as the observation sets overlap heavily, the analyses will be similar.

Our choice of the matrix square root is important here: the symmetric square root

ensures that Wa depends continuously on P̃a.

3.3.2 4D-LETKF

In this section, we describe four-dimensional extension to LETKF that han-

dles asynchronous observations. The main idea of this method is to find the linear
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combination of the ensemble trajectories that best fits all of the observations col-

lected between two analysis times. Our approach is analogous to that of [20], but is

simplified in the LETKF setting.

In that paper, the observations at different times are expressed as a function

of the model state at the analysis time, using the background ensemble at both

the analysis time and the observation times in conjunction with the observation

operator H. In the LETKF framework, we are able to simplify this approach by

directly mapping the background ensemble into observation space at the observation

times, without referring to the background state at the analysis time.

Recall that in Section 3.2 we wrote the analysis mean as x̄a = x̄b + Xbwa,

where wa is determined from R,yo, ȳb, and Yb by (3.9) and (3.11). In essence, the

coordinates of wa specify the linear combination of background ensemble states that

best fit the data yo; recall that ȳb and Yb are formed by mapping the background

ensemble into observation space. So if the observations are not made at the analysis

time, then we must redefine ȳb and Yb accordingly.

Let tn be the assimilation time and tl 6= tn be a time where the observations

are collected. As in [20], we can use the background ensemble together with the

observation operator H for time tl to map a model state at time tn to the observations

at time tl. Recall that in each analysis, we readjust the background ensemble state

{xb(i), i = 1, . . . , k} with equations (3.10), (3.12), and (3.13) to produce the analysis

ensemble state {xa(i), i = 1, . . . , k}, for which each analysis ensemble member lies

in the space spanned by the background ensemble state. Thus, we can write a
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prospective model state xn at time tn as

xn = X(tn)w, (3.14)

where column vectors of X(tn) are the background ensemble states at time tn (see

Step 1 of Section 3.2.2) and w is a k×1 weight vector. Notice that unlike wa, which

was multiplied by the ensemble perturbations from their mean, w is multiplied by

ensemble states themselves. At the observation time tl, we associate to xn the model

state

xl = X(tl)w,

where column vectors of X(tl) denote the ensemble background states at time tl.

The orthogonal projection of vector v onto the space spanned by the column

vectors of X(tn) is given by X(tn)
(
X(tn)TX(tn))−1(X(tn)

)T

v. A vector xn in this

space is equal to its projection, so (3.14) is satisfied with

w =
(
X(tn)TX(tn)

)−1

(X(tn))Txn.

Therefore, observations H(xl) at time tl can be described as a function of xn by:

H ′(xn) = H(X(tl)(X(tn)TX(tn))−1(X(tn))Txn)

= H(X(tl)w)

= H(xl). (3.15)

In 4D-EnKF [20], H ′ replaces operator H during the analysis. Next we show that

in our formulation, the coordinate transformation in the definition of H ′ becomes

unnecessary.
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In the analysis prescribed by (3.9) and (3.10), the terms yb and Yb depend on

the images H(xb(i)) of the ensemble members in observation space. Let us replace

every H by H ′ as in (3.15) and define ei to be a column vector with one on the ith

term and zero everywhere else. Thus, at time tl we have

H ′(xb(i)(tn)) = H

(
X(tl)

(
X(tn)TX(tn)

)−1

(X(tn))T [X(tn)ei]

)
= H(X(tl)ei)

= H(xb(i)(tl)),

so ȳb(tl) = H(xb(i)(tl)), and Yb(tl) = H(xb(i)(tl))− ȳb(tl). Hence, all of the analysis

derived in Section 3.2.1 holds whenever observations at time tl are incorporated

during the analysis at time tn.

Now suppose that we have data (tl,y
o
l ) from various times tl, l = 1, 2, . . . , n

since the last assimilation. Let Hl be the observation operator for time tl and let Rl

be the error covariance matrix for these observations. Let x̄b(tl) and Xb(tl) be the

respective ensemble background mean and matrix of background ensemble pertur-

bations at time tl. We now form a combined observation vector yo by concatenating

(vertically) the (column) vectors yo
l . The corresponding error covariance matrix R

is a block-diagonal matrix with blocks Rl (thus, we assume that observations taken

at different times have uncorrelated errors). Form ȳb
l and Yb

l as in Section 3.2: ap-

ply Hl to each background ensemble state xb(i)(tl) to get vectors y
b(i)
l , average those

vectors to get ȳb
l , and subtract ȳb

l from y
b(i)
l to get the columns of Yb

l . Let ȳb be the

vertical concatenation of the column vectors of ȳb
l , and let Yb be the matrix formed

by stacking the matrices Yb
l vertically. Then Yb maps the k-dimensional analysis
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space S to the observation space containing yo.

Here then is how to modify the steps in Section 3.2 for this scenario of asyn-

chronous data. First, perform Step 1 for each observation time tl and combine the

results as described in the previous paragraph to form ȳb and Yb. But perform

Step 2 only at the analysis time and save the resulting Xb and x̄b to use in Step 7.

In an efficient implementation of the steps above, it is probably best to store

the blocks Rl of R separately from each other and sum over l at appropriate places.

For example, the matrix C defined in Step 3 has blocks Cl = (Yb
l )

TR−1
l , and the

matrix CYb in Step 4 is then the sum over l of ClY
b
l . Likewise, the vector wa

defined in Step 6 is the sum over l of vectors wa
l = P̃aCl(y

o
l − yb

l ).

3.3.3 Variance Inflation

In order to compensate for the tendency of a small ensemble to underestimate

uncertainty, it may be desirable to artificially inflate the background error covariance

matrix Pb before each analysis. (Or, one could instead inflate the analysis error

covariance matrix Pa after each analysis.)

From the formulation in Section 3.2.1,

P̃a =
[
(P̃b)−1 + (Yb)TR−1Yb)

]−1

,

where P̃a and P̃b is defined by (3.9) and (3.6), respectively. The standard variance

inflation approach is to multiply the background ensemble perturbations Xb by a

constant factor
√

ρ > 1, which effectively multiplies Pb by ρ. A similar result can be

achieved more efficiently by leaving Xb alone and multiplying (3.6) by ρ. Therefore,
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(3.9) is replaced by

P̃a =
[
(k − 1)I/ρ + (Yb)TR−1Yb)

]−1
,

In other words, replace (k − 1)I by (k − 1)I/ρ in Step 4 of Section 3.2.2. One can

check that this change yields the same x̄a and Xa in (3.10) and (3.12) as leaving (3.9)

unchanged and replacing Xb and Yb by
√

ρXb and
√

ρYb respectively. For linear

H, this is the same as inflating the background ensemble by
√

ρ before applying H

to form Yb, and even for nonlinear H the result is similar if ρ is close to one.

3.4 Simulations on the Lorenz-96 Model

3.4.1 Experimental Design

The Lorenz-96 model represents an “atmospheric variable” x at m equally-

spaced points around a circle of constant latitude. The jth component is propagated

in time following differential equation:

dxj

dt
= (xj+1 − xj−2)xj−1 − xj + F (3.16)

where j = 1, ...,m represent the spatial coordinates (“longitude”). This model is

designed to satisfy three basic properties: it has linear dissipation (the −xj term)

that decreases the total energy defined as V = 1
2

∑m
j=1 x2

j , an external forcing term

F that (on average) increases the total energy, and a quadratic advection term that

conserves the total energy (i.e. it does not contribute to d
dt

V ). Following [27] and

[28], we choose the external forcing to be F = 8 and the number of spatial elements

to be m = 40. We also use a fourth-order Runge-Kutta scheme for time integration
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of (3.16) with time step ∆t = 0.05. With these parameters, the attractor has 13

positive Lyapunov exponents, with the leading Lyapunov exponent corresponding to

a doubling time of 0.42 time units, and a Kaplan-Yorke dimension of 27.1 [27]. On

the basis of doubling time, Lorenz suggested that 1 time unit of the model is roughly

equivalent to 5 days in a global weather model. Thus, performing data assimilation

every time step of our model integration corresponds roughly to performing it every

6 hours in a global weather model.

We perform all simulations in the perfect model scenario; that is, a long inte-

gration of an arbitrary initial condition is assumed to be the “true” state. Through-

out the rest of this chapter, we assume that the observational variables are the same

as to the model’s and can be obtained at each model grid. In other words, the mea-

surement function H is the identity. We create the observation vector yo by adding

to the true state a random vector, where each coordinate is chosen independently

with standard normal distribution. Hence, the observation error covariance matrix

R is the identity matrix. The initial background ensemble (xb(i) : i = 1, 2, ..., k) is

created by adding uncorrelated perturbation vectors to the true state. In fact, one

may start with an arbitrary ensemble where each member is uncorrelated to the

true state.

In all of the results below, we measure the quality of the analysis at time t

by calculating the Root-Mean-Square (RMS) difference between the true state and

the analysis ensemble mean at time t, where t = ∆t, 2∆t, ..., N∆t. We then take

the root-mean-square average of these differences over 10 different runs of N=20,000

analyses each. For the rest of this chapter, we refer to this averaged quantity as
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RMSE. An RMSE value of greater than one implies that the distance from the true

state to the analysis ensemble mean is no smaller on average than from the true

state to the observation state with unit variance, and hence, one may trust the

observations rather than performing an analysis.

3.4.2 Results

In this section, we verify and assess the sensitivity of LETKF and 4D-LETKF

toward different parameter quantities. The parameters are the number of model

variables m, localization distance d, ensemble size k, and variance inflation coefficient

ρ. By localization distance d, we mean that the analysis at a given grid point uses

the observations from the 2d + 1 grid points centered at the analysis point. In

4D-LETKF, an additional parameter will be introduced later. In the experiments

below, we refer the default parameter set as fixing m = 40, d = 6, and k = 10. This

value of d was found to be optimal for the given value of m and k [32, 33].

In our first experiment, we are interested with how well LETKF performs com-

pared to LEKF using default parameter set. Particularly, we plot the accuracy (or

RMSE) of both schemes as functions of the variance inflation coefficient. Figure 3.1

indicates that both schemes perform about equally well for 1.04 ≤ ρ ≤ 1.06 for

which we get the smallest RMSE of about 0.21, and diverge when ρ < 1.04.

In the second experiment, we examine the sensitivity of the local and global

analyses under the variations of the ensemble member k and the model dimension

m. In particular we fix ρ, d, and m; and plot the RMSE as a function of ensemble

37



1.03 1.04 1.05 1.06

0.2

0.4

0.6

0.8

1

!

RM
SE

Figure 3.1: RMSE of the LEKF (solid) scheme and the LETKF (dashes) scheme
as functions of variance inflation coefficient ρ. Differences for ρ < 1.04 are not
significant; in these cases, both methods have RMS errors for some of the 10 runs,
indicating that the inflation amount is insufficient.
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size k. For the global analysis, we use all observations for the analysis at each grid

point (essentially, d = m/2). We use ρ = 1.04 in all cases; as in Figure 3.1, slightly

larger values did not significantly change the results. In the local analysis, we fix

d = 6. Figure 3.2(a) indicates that if one doubles the model variables m from 40

(dashes) to 80 (solid), similar accuracy (shown by RMSE ≈ 0.21) can be obtained

by performing the local analysis with an ensemble of size k = 10. In Figure 3.2(b),

results for the global analysis are plotted in similar fashion as the local analysis in

Figure 3.2(a) for ensembles of size 10 to 70 in increments of 5. The results here

show that to obtain an accuracy of RMSE ≈ 0.19, an ensemble of size 20 sufficed

when m = 40, but an ensemble of size at least 40 is needed for m = 80. Thus while

the number of ensemble members required grows is proportional to system size for

the global analysis, for the local analysis this number remains small as the system

size grows. A similar result with LEKF was found in [33].

As we mentioned before, ensemble square-root filters generate the analysis

ensemble by adding an analysis ensemble of perturbations to the analysis ensemble

mean. The ensemble of perturbations is a square root Xa of the scaled analysis

covariance matrix (k − 1)Pa. In Section 3.2, we wrote Xa = XbWa where Wa is a

square root of (k − 1)P̃a; that is, Wa(Wa)T = (k − 1)P̃a. We can then write

Wa = UΣ1/2V (3.17)

where the ith column of U ∈ Rk×k is the eigenvector of (k − 1)P̃a corresponding

to the eigenvalue in the ith diagonal element of Σ, for i = 1, . . . , k; and V can be

any k × k orthogonal matrix (VVT = I). In all of the previous results, we used
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Figure 3.2: RMSE for LETKF as a function of ensemble size k: (a) for local analysis
with d = 6 and (b) for global analysis. In both cases, the dashed curve is for m = 40
and the solid curve is for m = 80.
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V = UT so that Wa is symmetric. Wang et al. [41] called this choice the Spherical

Simplex ETKF. Now, we compare this choice of square root with the non-symmetric

square root Wa = UΣ1/2 (V = I), as was originally proposed by Bishop et al. [5].

In Figure 3.3, see that the symmetric square root (dashes) with k = 20 ensemble

members converges with RMSE ≈ 0.19 and the non-symmetric square root (solid)

converges with k = 40 ensemble members and RMSE ≈ 0.25. Thus, even for a

global filter, the choice of the square root can have a significant impact on the

results. In the case of local analysis, the choice of the symmetric square root is

even more crucial since it ensures consistency between adjacent local analyses. As

discussed in Section 3.3.1, this is because it makes Wa a continuous function of P̃a.

By contrast, numerically computed eigenvectors can depend discontinuously on the

input matrix, and thus Wa = UΣ1/2 is not a continuous function of P̃a. Indeed,

we found that the LETKF with this non-symmetric square root diverges even for

k = 12 ensemble members and variance inflation ρ = 1.30.

In the last experiment, we validate the four-dimensional scheme described in

Section 3.3.2. Here, we compare the accuracy of the 4D-LETKF and LETKF as

one varies the “steps per analysis” n. That is, we perform analysis every n∆t time

units, where ∆t = 0.05 is the numerical integration time. For each analysis, our

LETKF results ignore all observations at the non-analysis steps (times l∆t, where

l is not a multiple of n) and use only the observations at the analysis time. On

the other hand, 4D-LETKF uses all the observations collected since the previous

analysis time. That is, for the analysis at time jn∆t it accounts observations at

time l∆t for l = (j − 1)n + 1, (j − 1)n + 2, . . . , jn. For n = 1, 4D-LETKF and
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Figure 3.3: Plots of the RMSE for model size m = 40 as a function of ensemble
size k for the symmetric square root (dashes) and non-symmetric square root (solid)
Wa = UΣ1/2. Here we used variance inflation ρ = 1.04 as before for the symmetric
square root, but needed more inflation ρ = 1.15, to obtain convergence for the
non-symmetric square root.
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LETKF are equivalent.

Figure 3.4 plots the RMSE of both the LETKF and 4D-LETKF as functions of

number of steps per analysis n. In this simulation, we use our default values for the

model size (m = 40), localization distance (d = 6), and ensemble size (k = 10), and

tune the variance inflation ρ so that the RMSE is minimized for each value of n. In

LETKF, we obtained the lowest RMSE (solid) by setting ρ = 1.04, 1.12, 1.24, 1.33,

and 1.65 for n = 1, 2, . . . , 5. In 4D-LETKF, we obtained the lowest RMSE (dashes)

by setting ρ = 1.04, 1.12, 1.24, 1.38, and 1.75 for n = 1, 2, . . . , 5. Here ρ grows

more than linearly as a function of n, in contrast to the linear growth used in [20].

(In their experiment, they performed a global analysis (4D-EnKF) with a different

type of “additive” variance inflation.) In Figure 3.4, we observe that the RMSE of

LETKF increases almost linearly as the steps per analysis n increases up to five.

The 4D-LETKF preserves its accuracy better as one increases n. Of course, this is

because it uses more observations than LETKF for n > 1, but our main point is

that 4D-LETKF uses them nearly as well as if the analysis were done every time

step. The need for increasing variance inflation as n increases is primarily due to

the increasing time between analyses for uncertainties not captured by the ensemble

and the RMSE becomes worse as n gets large.

3.5 Summary

We combine the local analysis suggested in [32, 33] and the simplified for-

mulation of the global spherical simplex ETKF of [5] and [41]. In our experiments
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Figure 3.4: Plots of the RMSE as a function of the number of steps per analysis
n for LETKF (solid) and 4D-LETKF (dashes) using our default parameters m =
40, d = 6, k = 10. See text for the amount of variance inflation used.
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with the Lorenz-96 model, we compared LEKF and LETKF and conclude that both

schemes produce a similar level of accuracy. We also tested the importance of the

local analysis and found as in [32, 33] that localization allows one to maintain a

constant ensemble size as the number of variables in the model increases. We also

show that using the symmetric square root in the analysis is significantly better

than another possible choice of matrix square root.

In operational weather forecasting, one must assimilate data that are collected

more frequently than the time between analysis. LETKF extends easily to this

case, in a manner equivalent to but simpler than the 4D-EnKF of [20]. The only

additional computational requirement is to make use of the background ensemble at

intermediate times between analyses. In our numerical experiments, we found this

approach to perform nearly as well as assimilating data more frequently.
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Chapter 4

A Non-Gaussian Local Ensemble Filter

4.1 Motivation

An Ensemble Kalman Filter (EnKF) approximates the state of a system from

a time series of noisy observations by iteratively minimizing a quadratic cost func-

tion in the space spanned by an ensemble of forecast model states. Typically, this

ensemble space is much lower dimensional than the model state space. Instead of

using the Kalman filter equations, which analytically minimize the quadratic cost

function, here we numerically minimize a non-quadratic cost function. Our approach

is similar to the Maximum Likelihood Ensemble Filter (MLEF) of [44], which min-

imizes a cost function based on a non-Gaussian observation error distribution with

a pre-conditioned conjugate gradient method [11]. In this chapter, we show that

using a non-quadratic background error distribution can also improve results.

The goal of data assimilation is to approximate the true state xt of a system,

such as the atmosphere, given noisy observations

yo = H(xt) + εo (4.1)

at the current and past times, where H is the observation operator, and εo is the

observation error. Typically, the true state xt and its underlying dynamics are

unknown. We assume that the evolution of xt is modeled by a chaotic dynamical
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system governed by a deterministic differential equation

dx

dt
= f(x, µ), (4.2)

where µ is a vector of parameters.

From a probabilistic point of view, the problem of data assimilation is that of

characterizing the analysis probability distribution p(xt|yo), the distribution of the

system state given the observations yo. The analysis state xa is typically chosen to

be the mode of this distribution, i.e., the most likely state. We assume that prior

observations have yielded a background distribution p(xt) and that the distribution

of observation errors is known. Then from (4.1), p(yo|xt) is known as well. Applying

Bayes’s rule gives

p(xt|yo) ∝ p(xt)p(yo|xt). (4.3)

Kalman filters generally assume Gaussian background and observation error distri-

butions: p(xt) ∼ N(xb,B) and p(yo|xt) ∼ N(H(xt),R), respectively. Here, xb is

the background state obtained by feeding the prior analysis state xa into (4.2), B is

the background error covariance matrix, and R is the observation error covariance

matrix. Thus, maximizing (4.3) is equivalent to minimizing the cost function:

J(x) = J b(x) + Jo(x)

=
1

2

(
x− xb

)T
B−1

(
x− xb

)
+

1

2
(yo − H (x))T R−1 (yo − H (x)) . (4.4)

Here we have replaced xt by x to reflect that the truth is unknown when we minimize

J(x). Notice that the background term J b(x) is quadratic in x as a consequence

of Gaussian distribution assumption. For linear H, the observation term Jo(x) is

47



quadratic in x as well. For a nonlinear observation operator H, Kalman filter typi-

cally make a linear approximation in order to analytically approximate the minimum

of the cost function (see Section 4.2).

A classical approach that is employed by the National Centers for Environ-

mental Prediction (NCEP) does not make (except in the course of numerical mini-

mization) a linear approximation to H but uses the same B for each analysis; this

method is known as 3D-VAR [23]. However, the background uncertainty can vary

considerably from time to time, so it is desirable to allow B to vary from one analy-

sis to the next. The extended Kalman filter [12] dynamically varies the background

covariance matrix using the linear tangent model of (4.2). However, this background

covariance matrix update is not practical for large models. Evensen [9] introduced

an ensemble Kalman filter (EnKF), which samples the background distribution with

an ensemble of background states {xb(i), i = 1, . . . , k}. The ensemble size k is typ-

ically much less than the model dimension m. In the last decade, many variations

of EnKF have been introduced [1, 5, 16, 17, 22, 32, 33, 42].

In this chapter, we introduce a non-quadratic (hence non-Gaussian) convex

and symmetric background cost term J b(x) into the computational framework of

the Ensemble Transform Kalman Filter [5], and our local version (See Chapter 3).

The local filter is designed to be computationally efficient for large systems, and

this is not affected significantly by the non-Gaussian modification, which changes

only the computations done within the relatively low-dimensional ensemble space.

We choose the non-Gaussian background term J b(x) to grow linearly as x → ∞,

corresponding to a distribution with exponential rather than Gaussian tail. This
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allows the filter to weight the observations more heavily than the Gaussian filter

in cases when they disagree significantly from background. We will show that our

non-Gaussian filter is superior for infrequent observations and that it handles model

error better than ETKF.

In Section 4.2, we derive ETKF from the cost function (4.4). In Section 4.3, we

introduce a non-quadratic J b(x) into the computational framework of Section 4.2.

In Section 4.4, we present preliminary results obtained for the 3-variable [24] model

and, using a local filter, for the 40-dimensional [27] model. We show results in both

a perfect-model scenario, where the “truth” is generated from (4.2) and the filter

uses (4.2) with the same parameter set µ as its “model”, and in scenarios with

deterministic model error, where the filter uses a different parameter set. Finally,

we conclude with a short summary in Section 4.5.

4.2 Variational Formulation of Ensemble Transform Kalman Filter

Ensemble Kalman filters approximate the true state xt by an ensemble whose

mean and covariance represent respectively an estimate of xt and the uncertainty in

the estimate. In the cost function (4.4), we replace the background state xb by the

sample mean x̄b of the background ensemble, and the background error covariance

matrix B by the sample covariance matrix

Pb = (k − 1)−1Xb(Xb)T , (4.5)

where k is the number of ensemble members and

Xb = [xb(1) − x̄b|xb(2) − x̄b| . . . |xb(k) − x̄b] (4.6)
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is the m×k matrix of background ensemble perturbations. Notice that this approx-

imation is problematic for k < m since Pb is not a full rank matrix, and hence is

not invertible. However, (Pb)−1 is well-defined on the “ensemble subspace” spanned

by the columns of Xb. Thus, ensemble Kalman filters minimize the cost function on

this subspace where it is well-defined.

Let us employ a pre-condition (or a coordinate change) by expressing the

deviation of a state x from the background mean state x̄b as a linear combination

of the background ensemble of perturbations. Using the notation of Section 3.2.1,

we write

x = x̄b + Xbw (4.7)

where the weight w ∈ Rk is to be determined, and we approximate the observation

vector corresponding to the model state x by:

H (x) = H (x̄b + Xbw) ≈ H (x̄b) + Ybw. (4.8)

Here the ith column vector of the s× k matrix Yb is the deviation of H (xb(i)) from

its ensemble average; that is,

Yb = [H (xb(1))− ȳb|H (xb(2))− ȳb| . . . |H (xb(k))− ȳb] (4.9)

with ȳb = 1
k

∑k
i=1 H(xb(i)).1 Replacing xb with x̄b and B with Pb, and using (4.5),

(4.7), and (4.8), reduce the cost function (4.4) to:

J(w) =
1

2
(k−1)wTw+

1

2

(
yo − H (x̄b)−Ybw

)T
R−1

(
yo − H (x̄b)−Ybw

)
. (4.10)

1If H is linear, then ȳb = H(x̄b), but for nonlinear H these quantities are different. One could

use either ȳb or H(x̄b) in (4.8). We always use ȳb in forming Yb, so that the sum of the columns

of Yb is zero.
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That is, we reduce the m-dimensional minimization problem to a k-dimensional

minimization problem, assuming the ensemble size k is less than the number m

of model variables. Notice that in the w coordinate system, the background error

covariance matrix becomes the identity and hence we do not have to invert it.

The minimum of (4.10) is obtained by setting

∇J(w) = (k − 1)w − (Yb)TR−1
(
yo − H (x̄b)−Ybw

)
= 0.

The solution of this equation is the analysis weight vector

wa = P̃a(Yb)TR−1(yo − H (x̄b)), (4.11)

where

P̃a =
(
(k − 1)I + (Yb)TR−1Yb

)−1
. (4.12)

The analysis error covariance matrix P̃a in the ensemble space is the inverse of

the Hessian of the cost function (4.10) [10, 44]. The analysis state is obtained by

substituting (4.11) into (4.7):

x̄a = x̄b + Xbwa = x̄b + XbP̃a(Yb)TR−1(yo − H (x̄b)). (4.13)

In the case that H is linear, equations (4.12) and (4.13) are equivalent to the stan-

dard Kalman filter equations, which minimize J in closed form.

To complete the analysis, we generate an analysis ensemble of model states

whose mean is x̄a and whose error covariance matrix in the model space is Pa =

XbP̃a(Xb)T . In this chapter, we update the ensemble using

xa(i) = x̄a + XbWa(i) = x̄b + Xb(wa + Wa(i)), (4.14)
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where Wa(i) is the ith column of the symmetric square root of (k−1)P̃a (see Section

3.2.1 and 3.4.2).

Algorithm 1 ETKF pseudo-code with Kalman filter equations

1. Generate xb(i) at the current analysis time by feeding xa(i) from the previous

analysis time into model (4.2).

2. Form the background ensemble average x̄b and matrix of perturbations Xb

given by (4.6).

3. Form Yb according to (4.9).

4. Evaluate P̃a using (4.12) and wa using (4.11).

5. Take the symmetric square root of (k − 1)P̃a and call its columns Wa(i).

6. Compute the analysis ensemble members xa(i) at the current analysis time with

(4.14).

Now we give step-by step pseudo-codes of ETKF: one uses Kalman filter formu-

las (see Algorithm 1) and the other uses a variational formulation (see Algorithm 2).

Notice that the difference between both algorithms is only in Step 4. Regarding Step

4b, the Hessian of (4.10) is the same at every point, but when we generalize to a

nonquadratic cost function, it becomes important where we evaluate the Hessian.

Of course, in the quadratic case, Algorithm 1 is computationally faster. However,

our main goal is to generalize the ETKF for non-Gaussian background error distri-

butions where the Kalman filter equations do not apply. In the next section, we

adopt the framework given in Algorithm 2 for a different background cost function

term that is still convex and symmetric, with the same Hessian as the quadratic

background term at w = 0. Hereafter, by the Gaussian filter we mean ETKF, or
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LETKF as described below, implemented by Algorithm 1.

Algorithm 2 ETKF pseudo-code with variational formulation

1. Generate xb(i) at the current analysis time by feeding xa(i) from the previous

analysis time into model (4.2).

2. Form the background ensemble average x̄b and matrix of perturbations Xb

given by (4.6).

3. Form Yb according to (4.9).

4a. Minimize cost function (4.10) to obtain wa. One may use any unconstrained

minimization scheme such as the conjugate gradient method.

4b. Evaluate P̃a as the inverse of the Hessian of cost function (4.10) at wa.

5. Take the symmetric square root of (k − 1)P̃a and call its columns Wa(i).

6. Compute the analysis ensemble members xa(i) at the current analysis time with

(4.14).

For large systems, local analysis has been used for practical purposes and to

prevent spurious correlations, caused by small ensemble size, of the model variables

at grid points separated by a large distance [16, 17, 22, 33]. Here, we adopt the

localization as in Section 3.3.1. In contrast with the global analysis, the local analysis

performs a separate analysis at each model grid point, using observations only from

a local region surrounding the grid point. The analysis ensembles computed at

each grid point are combined to form a global analysis ensemble. Therefore, the

analysis at each location reflects the observations within its neighborhood, which

presumably are the most correlated observations. With this approach, each grid

point is updated independently. Thus, analysis can be performed in parallel and so

53



dramatically reduce the cost of its implementation.

4.3 Non-Gaussian Filter

In practice, even with a perfect model, ensemble Kalman filter are suboptimal

due to model nonlinearity and finite ensemble size. Nonetheless, even for large

systems one can obtain reasonable results with an ensemble of moderate size (less

than 100) by spatially localizing the analysis [36, 16, 17, 22]. However, regardless of

any localization employed, such as [33], [16], or [22], the nonlinearity of the model

together with the small ensemble size still generally cause the analysis ensemble to

underestimate its uncertainty. A common approach to overcome this problem is to

inflate the variance of the covariance matrix [2].

As described earlier in Section 3.3.3, the variance inflation is applied to the

background by multiplying the background covariance matrix P̃b = (k − 1)−1I in

the ensemble space by a constant ρ = 1 + r with r > 0. This changes the term

(k− 1)I of (4.12) to (k− 1)I/(1+ r). Thus in practice, we use Algorithm 1 with the

following equation in place of (4.12):

P̃a =

(
(k − 1)

1 + r
I + (Yb)TR−1Yb

)−1

.

In the variational formulation (see Algorithm 2), the variance inflation changes the

first term of the cost function J(w) to

J b(w) =
1

2

(k − 1)wTw

1 + r
. (4.15)

In a given scenario, we determine the value of r empirically, turning it to
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achieve the best results. If the best value of r is small, this suggests that the Gaus-

sian assumption approximates the background statistics reasonably well. However,

the best results are obtained with relatively large r when the observations are infre-

quent and when model errors are significant. In such cases, the Gaussian assumption

probably does not fit the background statistics well. For such situations, we intro-

duce a new background term by replacing (4.15) with

J b(w) =
1

2

(k − 1)wTw

1 + α
√

wTw
, (4.16)

where α is a constant to be determined empirically. Notice that when w is small,

(4.16) behaves like the quadratic function 1
2
(k − 1)wTw, and for large w, (4.16)

grows close to linearly. Function (4.16) corresponds to a Gaussian-like background

error distribution with longer tails (see Figure 4.1 for an illustration). This non-

Gaussian error distribution approaches a Gaussian error distribution when α → 0.

On the other hand, the tail distribution gets thicker as α increases. Furthermore,

this symmetric function remains convex with the same Hessian (k−1)I at w = 0 for

all α. This non-Gaussian filter can be easily implemented by applying Algorithm 2

to the following cost function instead of (4.10):

J(w) =
1

2

(k − 1)wTw

1 + α
√

wTw
+

1

2

(
yo − H (x̄b)−Ybw

)T
R−1

(
yo − H (x̄b)−Ybw

)
.

(4.17)

Notice that one when minimizing J , one can easily compute its gradient ana-

lytically.

Based on the discussion above, we see that (4.17) is very close to (4.10) when

w is small, but the background term grows more slowly when w is large. Small
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Figure 4.1: Density of a one-dimensional Gaussian (solid) error distribution with
mean 0 and variance 1 and non-Gaussian (dashes) error distribution with α = 1.
The standard Gaussian density is proportional to exp
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}
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.
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w corresponds to model states close to the background mean x̄b. Thus, if the

background mean agrees well with the observations, both (4.10) and (4.17) will

be minimized for small w, and will produce very similar analyses. But when the

background mean and observations differ significantly, (4.17) will be minimized for

larger w, and hence allows a larger analysis increment than (4.10).

Notice that we still use the linear approximation (4.8) to the observation op-

erator in (4.17). While in principle there is no reason to force the observation term

in (4.17) to be quadratic, in practice using H(x̄b + Xbw) in the cost function could

significantly complicate its minimization. With (4.17) we maintain a simple depen-

dence on w that allows us to compute J(w) and its partial derivatives efficiently

during the minimization procedure. Indeed, we can compute the partial derivatives

analytically.

4.4 Results

4.4.1 Numerical Simulations on the Lorenz-63 Model

In this section, we compare the performance of our proposed non-Gaussian

filter with the Gaussian filter described in Section 4.2 for the three-dimensional [24]

model:

dx

dt
= σ(y − x)

dy

dt
= rx− y − xz (4.18)

dz

dt
= xy − bz,
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where the parameter set µ (as in (4.2)) is the triplet (σ, b, r). We integrate the model

using the fourth order Runge-Kutta method with time step 0.01.

In our numerical simulations, we generate the true state by running the model

for 500 non-dimensional time units (i.e., 50,000 steps) with µ = (10, 8/3, 28), which

results in a “butterfly”-like attractor [24]. We create infrequent “observations” ev-

ery 0.5 time units2 by adding Gaussian noise with mean 0 and variance 4 to each

coordinate of the true state xt. Hence, the observation operator H is linear, equal

to the identity, and the observation error covariance matrix R is a diagonal matrix

with all diagonal components equal to 4.

We consider three cases: perfect model (no model error) by setting the fore-

cast parameter set µf = µ, small model error by setting µf = (10, 8/3, 30), and

large model error with µf = (10, 8/3, 35). Table 4.1 shows the Root-Mean-Square

difference between analysis and true states for each coordinate, averaged over time

and over 10 simulations; we refer to this RMS error as the analysis error hereafter.

Each simulation was based on a different trajectory for the “true” state but we used

the same trajectories and associated “observations” for each choice of the filter and

model error.

All results use an ensemble of size k = 10. In the Gaussian filter experiments,

we use r = 4.5 for the no model error case and r = 5.5 for experiment with small

model error and r=10.5 for large model error. The non-Gaussian filter simulations

with no model error and small model error use α = 2, and with large model error

uses α = 10. In cases of small and no model errors, these values yielded the smallest

2A full oscillation around one of the “butterfly” wings corresponds to roughly 1 time unit.
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Gaussian Non-Gaussian
No model error (r=4.5) α = 2

x 1.38 1.22
y 1.68 1.63
z 1.97 1.63

Small model error (r=5.5) α = 2

x 1.55 1.33
y 1.84 1.70
z 2.00 1.77

Large model error (r=10.5) α = 10

x 2.13 1.91
y 2.05 1.84
z 2.26 1.93

Table 4.1: RMS analysis error of Gaussian and non-Gaussian filters on the Lorenz-
63 model. The filters are run with ensemble size k=10 and observation error 2. The
analysis is performed every 50 steps with time step ∆t = 0.01/step. In the no model
error case, the forecast model parameter set is similar to the true model parameter
set, µf = µ = (10, 8/3, 28). Small and large model errors are introduced by setting
µf = (10, 8/3, 30) and µf = (10, 8/3, 35), respectively.

analysis error among the valued we tried (r = 1, 1.5, 2.5, 3.5, 4.5, 5.5, . . . , 9.5 and

α = 1, 2, 4, 8, 10). For the large model error, we stop tuning r since we can replace

r → ∞ and the Gaussian filter is equivalent to direct insertion, i.e., directly using

the observations as analysis, for which the analysis error would equal the RMS

observation error 2. In fact, Table 4.1 shows that the Gaussian filter with r = 10.5

is close to but no better than direct insertion. Table 4.1 also shows that the non-

Gaussian filter performs better than the Gaussian filter by about 10% in all three

cases of small, large and no model error experiments.

We also measured the variability of the analysis error in time by computing

the standard deviation of |x̄a − xt|, |ȳa − yt|, and |z̄a − zt|. In Table 4.2, we see that

the analysis errors of the non-Gaussian filter are roughly 15% less varied than those
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Gaussian Non-Gaussian
No model error (r=4.5) α = 2

x 0.99 0.81
y 1.08 1.03
z 1.32 1.03

Small model error (r=5.5) α = 2

x 1.09 0.86
y 1.21 1.11
z 1.24 1.07

Large model error (r=10.5) α = 10

x 1.36 1.17
y 1.32 1.13
z 1.42 1.15

Table 4.2: Variability of the analysis error for the experiments of of Table 4.1. For di-
rect insertion this quantity is about 1.83. For each coordinate, x, y, z, we computed
the square root of the variance of |x̄a − xt|, |ȳa − yt|, and |z̄a − zt|, respectively.

of the Gaussian filter. For direct insertion, the analysis error variability is about

1.83 in each coordinate, which is significantly larger than both filters in all cases

except the Gaussian filter with large model error. Thus the analysis results from

the non-Gaussian filter are more consistent in time than those from the Gaussian

filter, and both filters performed more consistently than direct insertion.

The filter analysis also shows a further advantage over direct insertion when we

consider the forecasts they generate. An important feature of ensemble-based data

assimilation is that it naturally yields initial conditions for an ensemble forecast,

and we find that forecasting from each analysis ensemble member and averaging

the forecasts yields better results than making a single forecast from the analysis

ensemble mean. Thus for both filters, we measure their forecast error by calculating

the RMS difference between the true state and the mean of the ensemble forecast,
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where each ensemble member is generated by feeding each analysis ensemble member

to the model (4.2). In Figure 4.2, we show the RMS forecast errors as functions

of time. We graph the errors on a logarithmic scale, so that the distance between

two curves represents a relative (percentage) difference between their forecast errors.

We observe that after the first few time steps, the forecast errors of direct insertion

method (dotted) grow faster than those produced by two filters. In the small and no

model error simulations, the forecast error of direct insertion saturates around 8.51,

similar to the climatological error (see top and middle images of Figure 4.2). In these

cases, notice also that the forecast errors of the non-Gaussian filter (dashes) remain

lower than those of Gaussian filter (solid) at all times. As we mentioned before in

Table 4.1, for large model error the Gaussian filter analysis error (or forecast error

at time 0 in Figure 4.2) is significantly worse than that of direct insertion. On the

other hand, the non-Gaussian filter analysis error is only slightly better than that

of direct insertion. However, the forecast error of direct insertion again grows more

quickly than that of the filters. Here, the model error is large enough so that the

skill of the ensembles produced from both filters are indistinguishable after time 0.1

unit.

4.4.2 Numerical Simulations on the Lorenz-96 Model

In the previous simulations on the Lorenz-63 model, we see that our non-

Gaussian filter yields better results than the Gaussian filter for a simple temporal

chaotic dynamical system, in a case when a large amount of variance inflation is
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Figure 4.2: Forecast errors as functions of time for the experiments in Table 4.1: no
model error (top), small model error (middle) and large model error (bottom). We
use a logarithmic scale on the vertical axis so that the distance between two curves
represents the ratio between their errors. The forecast errors of the initial conditions
from direct insertion (dotted) are significantly worse than both the Gaussian (solid)
and non-Gaussian (dashed) filters. The observation RMS error is 2 (thin dashed
horizontal line).
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needed for the Gaussian filter. Now, we want to show that this result also holds in a

simple spatio-temporal chaotic dynamical system. For this purpose, we choose the

40-dimensional [27] model and perform a local analysis as described at the end of

Section 4.2 and Section 3.3.1.

The Lorenz-96 model represents an “atmospheric variable” x at m equally

spaced points around a circle of constant latitude. The jth component is propagated

in time following the differential equation

dxj

dt
= (xj+1 − xj−2)xj−1 − xj + µ (4.19)

where j = 1, ...,m represent the spatial coordinates (“longitude”). This model is

designed to satisfy three basic properties: it has linear dissipation (the −xj term)

that decreases the total energy defined as V = 1
2

∑m
j=1 x2

j , an external forcing term µ

that can increase or decrease the total energy, and a quadratic advection term that

conserves the total energy (i.e. it does not contribute to d
dt

V ). Following [27] and

[28], we choose the external forcing to be µ = 8 and the number of spatial elements

to be m = 40. With these parameters, the attractor has 13 positive Lyapunov

exponents, with the leading Lyapunov exponent corresponding to a doubling time

of 0.42 time units, and a Kaplan-Yorke dimension of 27.1 [27]. We use a fourth-order

Runge-Kutta scheme for time integration of (4.19) with time step ∆t = 0.05, and

we observe the system state and perform an analysis every 6 time steps. This is

relatively infrequent in the following sense. On the basis of doubling time, Lorenz

suggested that 1 time unit of the model is roughly equivalent to 5 days in a global

weather model. Thus, performing data assimilation every 6 time step of our model
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integration corresponds roughly to performing it every 1.5 days in a global weather

model.

In our numerical simulations, we compute the true state by running the model

for 1,000 time units (i.e., 20,000 steps). We generate observations every 0.3 time

units (6 steps) by adding Gaussian noise with mean 0 and variance 1 to each co-

ordinate of the true state xt. Hence, the observation operator H is linear and the

observation error covariance matrix R is the identity matrix. The analysis error is

defined as in the previous section, except now the RMS error is not only temporally

but also spatially averaged.

We consider two cases: perfect model (no model error) by setting the forecast

parameter µf to be equal to the true state parameter µ = 8 and with model error

by setting µf = 8.5. All results use an ensemble of size k = 10 and we perform the

local analysis at each grid point with localization distance d = 6 as in Section 3.4.2;

(that is, the local analysis at each grid point uses all observations from 2d + 1 = 13

grid points centered at the analysis point). In the Gaussian filter experiments, we

obtained the lowest analysis error with r = 1.0 for the no model error case and

r = 1.6 for experiment with model error. For the non-Gaussian filter simulations

without and with model error, we found the best results with α = 0.6 and 0.8,

respectively.

Figure 4.3 show the forecast errors as functions of time (as in Figure 4.2 but

with linear vertical-axis). We observe that the forecast errors of the non-Gaussian

filter (dashed) are about 5% and 10% lower than those produced by the Gaussian

filter (solid) with and without model errors, respectively. We also calculate the time
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Figure 4.3: Forecast error (again on a logarithmic scale) as a function of time:
with no model error (top) and with model error (bottom). The forecast errors
of the Gaussian filter (solid) are larger than those produced by the non-Gaussian
filter (dashed) by about 10% in the case of no model error and 5% in the presence of
model error. The observation RMS error is 1 (dotted horizontal line). The Gaussian
filter uses variance inflation coefficient r = 1 and 1.6 without and with model error,
respectively. The non-Gaussian filter uses α = 0.6 and 0.8 without and with model
errors, respectively.

variability of the forecast error as a function of time. The forecast error variability

is the standard deviation of ‖x̄b − xt‖, where x̄b denotes the ensemble average of

the forecasts produced by propagating each analysis ensemble member as initial

condition. We find that the non-Gaussian filter reduces the variation for about 30%

(see Figure 4.4) both with and without model errors.

4.5 Summary

In this chapter, we review a Gaussian ensemble Kalman filter (LETKF) and

extend it to a non-Gaussian filter by introducing a non-quadratic background term
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Figure 4.4: Forecast variability (again on a logarithmic scale) as a function of time:
with no model error (top) and with model error (bottom). The forecast errors
variability of the Gaussian filter (solid) are about 30% larger than those produced
by the non-Gaussian filter (dashed).

in the cost function that is minimized by the analysis. This symmetric and con-

vex non-quadratic term (4.16) is chosen to closely match the usual quadratic term

near its minimum but grow more slowly away from the minimum. This cost term

corresponds to a distribution with longer tails than the Gaussian distribution.

Our results from the Lorenz-63 model simulations show that when the ob-

servations are sufficiently infrequent, the non-Gaussian filter yields a significantly

better analysis, reducing the analysis error by about 10%. The non-Gaussian filter

also reduces the analysis error time variations and the forecast errors compared to

both the Gaussian filter and direct insertion.

In our simulations on the 40-variable Lorenz-96 model, we performed the anal-

ysis locally as in LETKF. We find that with moderately infrequent observations, the

local non-Gaussian filter yields analysis and forecast errors that are 5-10% lower than
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that of the local Gaussian filter. We also found that the local non-Gaussian filter

analysis errors are about 30% less variable in time than those of the local Gaussian

filter in cases with and without model error. For each model, the non-Gaussian and

Gaussian filters produced analyses of similar quality when we tested them with more

frequent observations. When the observations became more frequent, less variance

inflation is needed, and as we discussed in Section 4.3, the two methods become

more similar. For the low-dimensional Lorenz-63 model, we see significant differ-

ences between the two filters when the optimal variance inflation is larger than 500%

for the Gaussian filter, whereas for the higher-dimensional Lorenz-96 model, we see

a noticeable difference in a case where only 100% variance inflation is needed. This

suggests to us that for high-dimensional systems, cases in which the non-Gaussian

filter is advantageous to the Gaussian filter may be more common.

Finally, one can consider a more general class of non-quadratic terms than

(4.16). The functions

(k − 1)wTw

γ + α(wTw)β
, (4.20)

include (4.16), with β = 1/2 and γ = 1, and have similar properties for other values

of β and γ. In particular, the convexity of this function retained for 0 ≤ β ≤ 1/2.

We tested several different parameters and found that for β = 1/4 we did not get

a better result than what we showed with β = 1/2. However, one may want to

explore these parameters more thoroughly for other models.
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Chapter 5

Conclusions and Work in Progress

In this dissertation, we show the importance of employing data assimilation

in numerical weather prediction, introduce an efficient strategy for implementing

ensemble Kalman filter, and generalize this efficient scheme to allow a the non-

Gaussian forecast error distribution.

In Chapter 2, we see a distinct error growth pattern from a standard chaotic

dynamical system. Here, the error growth pattern is dominated by two regimes (first

with a fast regime for relatively small scales and then a slow regime for larger scales).

Figure 2.1 suggests that in the fast regime, correcting errors in initial condition is not

very helpful since the doubling time is less than 1 day. The results of Bengtsson and

Hodges [4] indicate that the current state of art of weather forecasts have about 2

days of doubling time. In Figure 2.1, this is in the slow regimes. Therefore, reducing

the errors in initial condition can lead to significant forecast improvements.

In Chapter 3, we derive a local filter, LETKF, based on the Local Ensemble

Kalman Filter (LEKF) [32, 33] but whose local analysis is similar to the global

analysis of the Ensemble Transform Kalman Filter of Bishop et al. [5]. We obtain

results of similar quality to the LEKF but with a more efficient scheme. Specifi-

cally, we replace the coordinate system used in the analysis from using the singular

vectors of the background error covariance matrix as a basis to using ensemble of
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perturbations as a basis. In addition to the results in this dissertation, we have

seen a comparable results between LEKF and LETKF, in a simplified parametrized

primitive equation (SPEEDY) model of Molteni [30] with 105 degrees of freedom

with LETKF performing twice as fast as the LEKF. A second theme of this chapter

is that with this choice of basis for analysis, we simplify the 4D-EnKF of Hunt et

al. [20] mathematically. In a separate work, we compare this scheme with 4D-VAR

(the current state of art of four dimensional data assimilation) and we find that

while the average quality of the forecasts resulting from both schemes are compara-

ble, the variability of the analysis produced by the 4D-LETKF is significantly lower

than that of 4D-VAR. Recent results from the SPEEDY model show a significant

advantage of this scheme over the simpler approach where all the asynchronous ob-

servations are assumed to occur at the analysis time and another approach where

the differences between the observations and the model state at asynchronous times

are assumed to occur at the analysis time. The latter approach is called FGAT

(First-Guess at the Appropriate Time) by Huang et al. [18] who apply it to a High

Resolution Limited Area Modeling (HIRLAM) within a 3D-VAR.

In Chapter 4, we introduce into the LETKF framework an exponential back-

ground error distribution with longer tails rather than the Gaussian distribution.

The main motivation is that in practice we generally readjust the Gaussian back-

ground error distribution by inflating the entire distribution, but we think that the

main improvement comes from inflating the tail. Especially when the observation

time interval is sparse, the optimal inflation factor can be quite large. Our non-

Gaussian filter is developed to retain the computational efficiency of the local en-
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semble filter in Chapter 3. The computational framework only replaces the Kalman

filter equations with the conjugate-gradient minimization scheme, which is relatively

inexpensive when the minimization is performed in the ensemble space. We spec-

ulate that this non-Gaussian filter is attractive for assimilation problems with low

frequency of observations availability, such as in the ocean data assimilation, or for

which high amounts of variance inflation are used due to model error.
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