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Abstract

Pseudo-alignment

Background: Ultra-fast pseudo-alignment approaches are the tool of choice in transcript-level RNA sequencing
(RNA-seq) analyses. Unfortunately, these methods couple the tasks of pseudo-alignment and transcript quantification.
This coupling precludes the direct usage of pseudo-alignment to other expression analyses, including alternative
splicing or differential gene expression analysis, without including a non-essential transcript quantification step.

Results: In this paper, we introduce a transcriptome segmentation approach to decouple these two tasks. We
propose an efficient algorithm to generate maximal disjoint segments given a transcriptome reference library on
which ultra-fast pseudo-alignment can be used to produce per-sample segment counts. We show how to apply these
maximally unambiguous count statistics in two specific expression analyses — alternative splicing and gene differential
expression — without the need of a transcript quantification step. Our experiments based on simulated and
experimental data showed that the use of segment counts, like other methods that rely on local coverage statistics,
provides an advantage over approaches that rely on transcript quantification in detecting and correctly estimating
local splicing in the case of incomplete transcript annotations.

Conclusions: The transcriptome segmentation approach implemented in Yanagi exploits the computational and
space efficiency of pseudo-alignment approaches. It significantly expands their applicability and interpretability in a
variety of RNA-seq analyses by providing the means to model and capture local coverage variation in these analyses.
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Background
Messenger RNA transcript abundance estimation from
RNA-seq data is a crucial task in high-throughput studies
that seek to describe the effect of genetic or environmental
changes on gene expression. Transcript-level analysis and
abundance estimation can play a central role in both fine-
grained analysis of local splicing events and global analysis
of changes in gene expression.

Over the years, various approaches have addressed the
joint problems of (gene level) transcript expression quan-
tification and differential alternative RNA processing.
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Much effort in the area has been dedicated to the prob-
lem of efficient alignment, or pseudo-alignment, of reads
to a genome or a transcriptome, since this is typically
a significant computational bottleneck in the analytical
process starting from RNA-seq reads to produce gene-
level expression or differentially expressed transcripts.
Among these approaches are alignment techniques such
as Bowtie [1], Tophat [2, 3], and Cufflinks [4], and newer
techniques such as sailfish [5], RapMap [6], Kallisto [7]
and Salmon [8], which provide efficient strategies through
k-mer counting that are much faster, but maintain compa-
rable, or superior, accuracy.

These methods simplified the expected outcome of
the alignment step to only find sufficient read-alignment
information required by the transcript quantification step.
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Given a transcriptome reference, an index of k-mers is cre-
ated and used to find a mapping between reads and the list
of compatible transcripts based on each approach’s defini-
tion of compatibility. The next step, quantification, would
be to resolve the ambiguity in reads that were mapped to
multiple transcripts. Many reads will multi-map to shared
regions produced by alternative splicing even if free from
error. The ambiguity in mapping reads is resolved using
probabilistic models, such as the EM algorithm, to pro-
duce the abundance estimate of each transcript [9]. It is at
this step that transcript-level abundance estimation faces
substantial challenges that inherently affect the underly-
ing analysis.

Sequence repeats and paralogous genes can create
ambiguity in the placement of reads. But more impor-
tantly, the fact that alternatively spliced isoforms share
substantial portions of their coding regions, greatly
increases the proportion of reads coming from these
shared regions and, consequently, reads are frequently
multi-mapped when aligning to annotated transcripts
(Fig. la-b). In fact, local splicing variations can be
joined combinatorially to create a very large number
of possible transcripts from many genes. An extreme
case is the Drosophila gene Dscam, which can produce
over 38,000 transcripts by joining less than 50 exons
[10]. Long-read sequencing indicates that a large num-
ber of possible splicing combinations is typical even
in the presence of correlations between distant splicing
choices [11].

Standard annotations, which enumerate only a minimal
subset of transcripts from a gene (e.g. [12]), are thus inad-
equate descriptions. Furthermore, short read sequencing,
which is likely to remain the norm for some time, does not
provide information of long-range correlations between
splicing events.

In this paper, we propose a novel strategy based on
the construction and use of a transcriptome sequence
segment library that can be used, without loss of infor-
mation, in place of the whole transcriptome sequence
library in the read-alignment-quantification steps. The
segment library can fully describe individual events (pri-
marily local splicing variation, but also editing sites or
sequence variants) independently, leaving the estimation
of transcript abundances through quantification as a sepa-
rate problem. Here we introduce and formalize the idea of
transcriptome segmentation, and propose and analyze an
algorithm for transcriptome segmentation, implemented
with a tool called Yanagi. To show how the segment library
and segment counts can be used in downstream analysis,
we show results from gene-level and alternative splicing
differential analyses.

We propose the use of pseudo-alignment to calcu-
late segment-level counts as a computationally effi-
cient data reduction technique for RNA-seq data that
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yields sufficient intepretable information for a variety of
downstream gene expression analysis.

Results

Yanagi’s Workflow for RNA-seq analysis

Figure le gives an overview of a Yanagi-based workflow
which consists of three steps. The first step is the tran-
scriptome segmentation, in which the segment library
is generated. Given the transcriptome annotation and
the genome sequences, Yanagi generates the segments
in FASTA file format. This step of library preparation —
done once and independently from the RNA-seq sam-
ples — requires a parameter value L which specifies the
maximum overlap length of the generated segments. The
second step is pseudo-alignment. Using any k-mer based
aligner (e.g. Kallisto or RapMap), the aligner uses the seg-
ments library for library indexing and alignment. The
outcome of this step is read counts per segment (in case
of single-end reads) or segment-pair counts (in case of
paired-end reads). These segment counts (SCs) are the
statistics that Yanagi provides for downstream analysis.
The third step depends on the specific target analysis. On
later subsections, we describe two use cases where using
segment counts shows to be computationally efficient and
statistically beneficial.

Analysis of Generated Segments

For practical understanding of the generated segments, we
used Yanagi to build segment libraries for the Drosophila
melanogaster and Homo sapiens genome assemblies and
annotations. These organisms show different genome
characteristics, e.g. the fruit fly genome has longer exons
than the human genome, while the number of anno-
tated transcripts per gene is much higher for the human
genome. A summary of the properties of each genome is
found in [13].

Sequence lengths of generated segments

Segments generated by Yanagi’s approach are L-disjoint
segments (See “Segments Properties” section). Since L is
the only parameter required by the segmentation algo-
rithm, we tried different values of L to understand the
impact of that choice on the generated segments library.
As mentioned in “Segments Properties” section, a proper
choice of L is based on the expected read length of the
sequencing experiment. For this analysis we chose the
set L = (40,100, 1000, 10000) as a wide span of possible
values of L.

Additional file 1: Figure S1 shows the histogram of the
lengths of the generated segments compared to the his-
togram of the transcripts lengths, for each value of L, for
both fruit fly (left) and human (right) genomes. The figure
shows the expected behavior when increasing the value of
L; using small values of L tends to shred the transcriptome



Gunady et al. BMC Bioinformatics (2019) 20:421

Page 30f 19

(A) :

Reads

Exons

(B)

Tx1

™>2

(D)

(E)

‘RNA- Seq Reads —— -
R1 %ﬁ Kmer-based Alignment
R2 e.g. Kallisto

Genome Structure

GTFfile %

Transcripts Sequences
FASTA file(s)

Parameters:  ------------oooooooo
L 9: Transcripts Segmentation i

Segments Sequences
FASTA file(s)

T4
/ \ TL12T3

o

Preprocessed Data

Segment Nodes

Generation N1 N3 NS

Segl:TLT2T3

Segments Graph

Seg5:T4

the beginning portion of the graph for brevity

™ Segment Reads SC
S1 5 \L\L % Two BAM files
§2 e 4
| 1
S3 3 ! Segments Counting {
S4—— ) e :
S5- — 4 \L % Segment Pair
Sem 1 counts
e AS events :' """""""""" :
(c) x o Annotation %%' AS Events to Segments 1
™1, T2 ™ il ! Mapping i
Splice Graph . 4
S1 S3 S5 Samples
2 - i
Segments — s4 — § .
- 56 - -
(F) n
anEn
. T YZ "7
Splice Graph B gh II( =" Y5\:]

mn
2 n P
E\ 0 /{I\t{/‘)_\{— P
i A AR O e e 20
) mn on ]

Seg2:T1T2

@) e

Fig. 1 An overview of transcriptome segmentation and Yanagi-based workflow. (@) Shows the example set of exons and its corresponding
sequenced reads. (b) shows the result of alignment over the annotated three isoforms spliced from the exons. (c) shows the splice graph
representation of the three isoforms along with the generated segments from yanagi. (d) shows the alignment outcome when using the segments,
and its segment counts (SCs). (e) Yanagi-based workflow: segments are used to align a paired-end sample then use the segments counts for
downstream alternative splicing analysis. Dotted blocks are components of Yanagi. (f) Yanagi's three steps for generating segments starting from
the splice graph for an example of a complex splicing event. Assuming no short exons for simplicity. Step two and three are cropped to include only
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more (higher frequencies for small sequence lengths),
especially with genomes of complex splicing structure
like the human genome. With high values of L, such as
L = 10,000, segments representing full transcripts are
generated since the specificed minimum segment length

tends to be longer than the length of most transcripts. It
is important to note that the parameter L does not define
the segments length since a segment length is mainly
determined based on the neighboring branches in the
splicing graph (See “Segments Properties” section), but
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rather L defines the maximum overlap allowed between
segments, hence in a sense controls the minimum seg-
ment length (excluding trivial cases where the transcript
itself is shorter than L).

Number of generated segments per gene

Additional file 1: Figure S2 shows how the number of gen-
erated segments in a gene is compared to the number
of the transcripts in that gene, for each value of L, for
both fruit fly (left) and human (right) genomes. A similar
behavior is observed while increasing the value L, as with
the segment length distribution. The fitted line included
in each scatter plot provides indication of how the num-
ber of target sequences grows compared to the original
transcriptome. For example, when using L = 100 (a com-
mon read length with [llumina sequencing), the number of
target sequences per gene, which will be the target of the
subsequent pseudo-alignment steps, almost doubles. It is
clear from both figures the effect of the third step in the
segmentation stage. It is important not to shred the tran-
scriptome so much that the target sequences become very
short leading to complications in the pseudo-alignment
and quantification steps, and not to increase the number
of target sequences increasing the processing complexity
of these steps.

Library Size of the generated segments

As a summary, Table 1 shows the library size when using
segments compared to the reference transcriptome in
terms of the total number of sequences, sequence bases,
and file sizes. The total number of sequence bases clearly
shows the advantage of using segments to reduce repeated
sequences appearing in the library that corresponds to
genomic regions shared among multiple isoforms. For
instance, using L = 100 achieves 54% and 35% compres-
sion rates in terms of sequence lengths for fruit-fly and
human genomes, respectively. The higher the value of L
is, the more overlap is allowed between segments, hence
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providing less the compression rate. Moreover, that neces-
sarily hints to the expected behavior of the alignment step
in terms of the frequency of multi-mappings.

Impact of using segments on Multi-mapped Reads

To study the impact of using the segments library instead
of the transcriptome for alignment, we created segments
library with different values of L and compared the num-
ber of multi-mapped and unmapped reads for each case
to alignemnt to the full transcriptome. We used RapMap
[6] as our k-mer based aligner, to align samples of 40
million simulated reads of length 101 (samples from
the switchTx human dataset discussed in “Simulation
Datasets” section) in a single-end mode. We tested val-
ues of L centered around L = 101 with many values close
to 101, in order to test how sensitive the results are to
small changes in the selection of L. Figure 2 shows the
alignment performance in terms of the number of multi-
mapped reads (red solid line) and unmapped reads (blue
solid line), compared to the number of multi-mapped
reads (red dotted line) and unmapped reads (blue dot-
ted line) when aligning using the transcriptome. Using
segments highly reduces the number of multi-mapped
reads produced mainly from reads mapped to a single
genomic location but different transcripts. The plot shows
that too short segments compared to the read length
results in a lot of unmapped reads, while using long
segments compared to the read length causes an increas-
ing number of multimappings. Consequently, choosing
L to be close to the read length is the optimal choice
to minimize multimappings while maintaining a steady
number of mapped reads. This significant reduction in
multimappings reported from the alignment step elim-
inates the need for a quantification step to resolve the
ambiguity when producing raw pseudo-alignment counts.
It is important to note that the best segments configu-
ration still produces some multimappings. These result
from reads sequenced from paralogs and sequence repeats

Table 1 Library size summary when using segments compared to the reference transcriptome in terms of the total number of

sequences, number of sequence bases, and total FASTA file sizes

Transcriptome Segments
L =140 L =100 L =1000 L = 10000

BDGP6
Number of bases (Gb) 90 39 41 71 90
Number of Sequences 34,681 54,680 53,694 48,741 34,625
FASTA File Size (MB) 89 44 47 76 92
GRCh38
Number of bases (Gb) 278 147 181 308 281
Number of Sequences 182,435 544,991 541,361 264,083 183,165
FASTA File Size (MB) 276 206 239 338 302

With L = 100, using segments achieves 54% and 35% compression rates over the transcriptome in terms of number of bases for fruit fly and human genomes, respectively.



Gunady et al. BMC Bioinformatics (2019) 20:421 Page 5 0of 19

—— Multimapped —®— Unmapped
5 .
qEEese===F “r“r r "™ T--rcrrcr - TEa-s _.y
)
© 4
O
(2]
N
o
o
[%2]
c
Ke]
=
£
»
o
m -
O
x
0 :
40 60 85 90 95 100 105 110 115 1000 10000
L
Fig. 2 Alignment performance using segments from human transcriptome, tested for different values of L, to align 40 million reads of length 101
(first sample in SwitchTx dataset, see section 3). Performance is shown in terms of the number of multimapped reads (red solid line) and unmapped
reads (blue solid line), compared to the number of multimapped reads (red dotted line) and unmapped reads (blue dotted line) when aligning
using the transcriptome

which are not handled by the current version of Yanagi.
Nevertheless, using segments can achieve around 10-fold
decrease in the number of multimappings.

The importance of maximality property

Yanagi generates maximal segments, as mentioned in
Definition 4 (“Segments Properties” section), which are
extended as much as possible between branching points
in the segments graph. The purpose of this property is
to maintain stability in the produced segment counts
since shorter segments will inherently produce lower
counts which introduces higher variability that can com-
plicate downstream analysis. To examine the effect of
the maximal property, we simulated 10 replicates from
1000 random genes (with more than two isoforms) from
the human transcriptome using Ployester [14]. Additional
file 1: Figure S3 shows the distribution of the coefficient
of variation (CV) of the produced segment counts from
segments with and without the maximal property. When
segments are created without maximal property, the scat-
ter plot clearly shows that maximal segments have lower
CVs to their corresponding short segments for a majority
of points (40% of the points has a difference in CVs >0.05).
That corresponds to generating counts with lower means
and/or higher variances if the maximal property was not
enforced.

Segment-based Gene Expression Analysis

We propose a segment-based approach to gene expres-
sion analysis to take advantage of pseudo-alignment while
avoiding a transcript quantification step. The standard

RNA-seq pipeline for gene expression analysis depends
on performing k-mer based alignment over the transcrip-
tome to obtain transcripts abundances, e.g. Transcripts
Per Million (TPM). Then depending on the objective of
the differential analysis, an appropriate hypothesis test
is used to detect genes that are differentially expressed.
Methods that perform differential gene expression (DGE)
prepare gene abundances by summing the underlying
transcript abundances. Consequently, DGE methods aims
at testing for differences in the overall gene expression.
Among these methods are: DESeq2 [15] and edgeR [16].
Such methods fail to detect cases where some transcripts
switch usage levels while the total gene abundance is not
significantly changing. Note that estimating gene abun-
dances by summing counts from the underlying tran-
scripts can be problematic, as discussed in [17]. RATs [18]
on the other hand is among those methods that target
to capture such behavior and tests for differential tran-
script usage (DTU). Regardless of the testing objective,
both tests entirely depend on the transcript abundances
that were obtained from algorithms like EM during the
quantification step to resolve the ambiguity of the multi-
mapped reads, which requires bias-correction modeling
[8] adding another layer of complexity to achieve the final
goal of gene-level analysis.

Our segment-based approach aims at breaking the cou-
pling between the quantification, bias modeling, and gene
expression analysis, while maintaining the advantage of
using ultra-fast pseudo-alignment techniques provided by
k-mer based aligners. When aligning over the L-disjoint
segments, the problem of multimapping across target
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sequences is eliminated making the quantification step
unecessary. Statistical analysis for differences across con-
ditions of interest is performed on segment counts matrix
instead of TPMs.

Kallisto’s TCC-based approach

Yi et al. introduce a comparable approach in [19]. This
approach uses an intermediate set defined in Kallisto’s
index core as equivalence classes (EC). Specifically, a set of
k-mers are grouped into a single EC if the k-mers belong
to the same set of transcripts during the transcriptome
reference indexing step. Then during the alignment step
Kallisto derives a count statistic for each EC. The statis-
tics are referred to as Transcript Compatibility Counts
(TCC). In other words, Kallisto produces one TCC per
EC representing number of fragments that appeared com-
patible with the corresponding set of transcripts during
the pseudo-alignment step. Then the work in [19] uses
these TCCs to directly perform gene-level differential
analysis by skipping the quantification step using logis-
tic regression and compared it to other approaches like
using DESeq2. We will refer to that direction as the TCC-
based approach. To put that approach into perspective
with our segment-based approach, we will discuss how the
two approaches compare to each other.

Comparison between segment-based and TCC-based
approaches

Both segment-based and TCC-based approaches avoid
a quantification step when targeting gene-level analysis.
This can be seen as an advantage in efficiency, speed,
simplicity, and accuracy, as previously discussed. One dif-
ference is that segment-based approach is agnostic to
the alignment technique used, while TCC-based approach
is a Kallisto-specific approach. More importantly, statis-
tics derived in segment-based approach are easily inter-
pretable. Since segments are formed to preserve the
genomic location and splicing structure of genes, Segment
Counts (SC)s can be directly mapped and interpreted with
respect to the genome coordinates. In contrast, ECs do
not have a direct intepretation in this sense. For instance,
all k-mers that belong to the same transcript yet orig-
inated from distinct locations over the genome will all
fall under the same EC, making TCCs less interpretable.
Figure 3-top shows a toy example for a simple case with
two transcripts and three exons along with its resulting
segments and ECs. In this case, k-mer contigs from the
first and last exons are merged into one EC (EC1) in
Kallisto, while Yanagi creates a separate segment for each
of the two constitutive exons (S1, S2), hence preserving
their respective location information. This advantage can
be crucial for a biologist who tries to interpret the out-
come of the differential analysis. In the next section we
show a segment-based gene visualization that exploits the
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genomic location information of segments to allow users
to visually examine what transcripts exons and splicing
events contributed to differences for genes identified as
determined differentially expressed.

Figure 3-bottom shows the number of Yanagi’s seg-
ments per gene versus the number of Kallisto’s equiva-
lence classes per gene. The number of equivalence classes
were obtained by building Kallisto’s index on human tran-
scriptome, then running the pseudo command of Kallisto
(Kallisto 0.43) on the 6 simulated samples from SwitchTx
dataset (“Simulation Datasets” section).

Note that, in principle there should be more segments
than ECs since segments preserve genome localization,
however in practice Kallisto reports more ECs than those
discovered in the annotation alone in some genes. The
extra ECs are formed during pseudo-alignment when
reads show evidence of unannotated junctions.

DEXSeq-based model for differential analysis

In this work we adopt the DEXSeq [20] method to per-
form segment-based gene differential analysis. DEXSeq is
a method that performs differential exon usage (DEU).
The standard DEXSeq workflow begins by aligning reads
to a reference genome (not to the transcriptome) using
TopHat2 or STAR [21] to derive exon counts. Then, given
the exon counts matrix and the transcriptome annotation,
DEXSeq tests for DEU after handling coverage biases,
technical and biological variations. It fits, per gene, a
negative binomial (NB) generalized linear model (GLM)
accounting for effect of the condition factor, and compares
it to the null model (without the condition factor) using
a chi-square test. Exons that have their null hypotheses
rejected are identified as differentially expressed across
conditions. DEXSeq can tehn produce a list of genes with
at least one exon with significant differential usage and
controls the false discovery rate (FDR) at the gene level
using the Benjamini—Hochberg procedure.

We adopt the DEXSeq model for the case of segments
by replacing exons counts with segments counts, the lat-
ter derived from pseudo-alignment. Once segments are
tested for differential usage across conditions, the same
procedure provided by DEXSeq is used to control FDR on
the list of genes that showed at least one segment with
significant differential usage.

We tested that model on simulated data (SwitchTx
dataset in “Simulation Datasets” section) for both human
and fruit fly samples and compared our segment-based
approach with the TCC-based approach since they are
closely comparable. Since the subject of study is the effec-
tiveness of using either SCs or TCCs as a statistic, we
fed TCCs reported by Kallisto to DEXSeq’s model as well
to eliminate any performance bias due the testing model.
As expected, Fig. 3-middle shows that both approaches
provide highly comparable results on the tested dataset.
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Fig. 3 Segment-based gene-level differential expression analysis. (Top) Diagram showing an example of two transcripts splicing three exons and
their corresponding segments from Yanagi versus equivelance classes (ECs) from kallisto. K-mer contigs from the first and last exons are merged into
one EC (EC1) in kallisto while Yanagi creates two segments, one for each exon (S1, S2), hence preserving their respective location information. Both
Kallisto and Yanagi generate ECs or segments corresponding to exon inclusion (EC2, S3) and skipping (EC3, S4). (Middle) ROC curve for simulation
data for DEX-Seq based differential gene-level differential expression test based on segment counts (SC) and Kallisto equivalence class counts (TCC)
for D. melanogaster and H. sapiens. (Bottom) Scatter plot of number of segments per gene (x-axis) vs. Kallisto equivalence classes per gene (y-axis)

for the same pair of transcriptomes

Recall that using segment counts to test for differentially
expressed genes adds to the interpretability of the test
outcomes.

Although that experiment was chosen to test the use of
SCs or TCCs as statistics to perform differential usage, dif-
ferent gene-level tests can also be performed on segment
counts. For instance, testing for significant differences
in overall gene expression is possible based on segment
counts as well. A possible procedure for that purpose
would be using DESeq2. One can prepare the abundance
matrix by R package tximport [22], except that the matrix
now represent segment instead of transcript abundances.
The next section shows how visualizing segment counts
connects the result of some hypotheses testing with the
underlying biology of the gene.

Segment-based Gene Visualization
Figure 4 shows Yanagi’s proposed method to visualize
segments and the segment counts of a single gene. The

plot includes multiple panels, each showing a different
aspect of the mechanisms involved in differential expres-
sion calls. The main panel of the plot is the segment-exon
membership matrix (Panel A). This matrix shows the
structure of the segments (rows) over the exonic bins
(columns) prepared during the annotation preprocessing
step. An exon (or a retained intron) in the genome can
be represented with more than one exonic bin in case of
within-exon splicing events (See Step 1 in “Segmentation
Algorithm” section). Panel B is a transcript-exon member-
ship matrix. It encapsulates the transcriptome annotation
with transcripts as rows and the exonic bins as columns.
Both membership matrices together allow the user to map
segments (through exonic bins) to transcripts.

Panel C shows the segment counts (SCs) for each seg-
ment row. Panel D shows the length distribution of the
exonic bins. Panel E is optional. It adds the transcript
abundances of the samples, if provided. This can be
useful to capture cases where coverage biases over the
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Fig. 4 Visualizing segments and segment counts of a single gene with differentially expressed transcripts. It shows human gene EFS (Ensembl
ENSG00000100842). The gene is on the reverse strand, so the bins axis is reversed and segments are created from right to left. (@) Segment-exonic
bin membership matrix, (b) Transcript-exonic bin membership matrix. (€) Segment counts for three control and three case samples, fill used to
indicate segments that were significantly differential in the gene. (d) Segment length bar chart, (e) (optional) Estimated TPMs for each transcript

transcriptome is considered, or to capture local switching
in abundances that are inconsistent with the overall abun-
dances of the transcripts. The exonic bins axis is reversed
and segments are created from right to left as the gene
shown is on the reverse strand.

Consider the top-most segment (S.1310) for instance. It
was formed by spanning the first exonic bin (right-most
bin) plus the junction between the first two bins. This
junction is present only at the second transcript (T.1354)
and hence that segment belongs to only that transcript. In
the segment-exon matrix, red-colored cells mean that the
segment spans the entire bin, while salmon-colored cells
represent partial bin spanning; usually at the start or end
of a segment with correspondence to some junction.

Alternative splicing events can be easily visualized from
Fig. 4. For instance, the third and fourth segments from
the top (S.1308 and S.1307) represent an exon-skipping
event where the exon is spliced in T.6733 and skipped in
both T.1354 and T.9593.

Segment-based Alternative Splicing Analysis

The analysis of how certain genomic regions in a gene are
alternatively spliced into different isoforms is related to
the study of relative transcript abundances. For instance,
an exon cassette event (exon skipping) describes either
including or excluding an exon between the upstream and
downstream exons. Consequently, isoforms are formed
through a sequential combination of local splicing events.

For binary events, the relative abundance of an event is
commonly described in terms of percent spliced-in (PSI)
[23] which measures the proportion of reads sequenced
from one splicing possibility versus the alternative splic-
ing possibility, while APSI describes the difference in PSI
across experimental conditions of interest.

Several approaches were introduced to study alterna-
tive splicing and its impact in studying multiple diseases.
[24] surveyed eight different approaches that are com-
monly used in the area. These approaches can be roughly
categorized into two categories depending on how the
event abundance is derived for the analysis. The first
category is considered count-based where the approach
focuses on local measures spanning specific counting bins
(e.g. exons or junctions) defining the event, like DEXSeq
[20], MATS [25] and MAJIQ [26]. Unfortunately, many
of these approaches can be expensive in terms of com-
putation and/or storage requirements since it requires
mapping reads to the genome and subsequent process-
ing of the large matrix of counting bins. The second
category is isoform-based where the approach uses the
relative transcript abundances as basis to derive PSI val-
ues. This direction utilizes the transcript abundance (e.g.
TPMs) as a summary of the behavior of the underlying
local events. Cufflinks [4, 17], DiffSplice [27] and SUPPA
[28, 29] are of that category. Unlike Cufflinks and Diff-
Splice which perform read assembly and discovers novel
events, SUPPA succeeds in overcoming the computational
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and storage limitations by using transcript abundances
that were rapidly prepared by lightweight k-mer counting
alignment like Kallisto or Salmon.

One drawback of SUPPA and other transcript-based
approaches alike is that it assumes a homogeneous abun-
dance behavior across the transcript making it susceptible
to coverage biases. Previous work showed that RNA-seq
data suffers from coverage bias that needs to be modeled
into methods that estimate transcript abundances [30, 31].
Sources of bias can vary between fragment length, posi-
tional bias due to RNA degradation, and GC content in
the fragment sequences.

Another critical drawback with transcript-based
approaches is that its accuracy highly depends on the
completeness of the transcript annotation. As mentioned
earlier standard transcriptome annotations enumerate
only a parsimonious subset of all possible sequential
combinations of the present splicing events. Consider
the diagram in Fig. 5 with a case of two annotated iso-
forms (Isoform 1 and 2) whereas a third isoform (isoform
3) is missing from the annotation. The three isoforms
represent three possible combinations of two splicing
events (skipping exons E1 and E2). If the two events are
sufficiently far apart in genomic location, short reads
would fail to provide evidence of the presence of isoform
3, leading to mis-assignment of reads into the other
two isoforms (Fig. 5 right). That behavior can bias the
calculated PSI values of both events E1 and E2. Even if
the mis-assigned reads did not change the estimation of
TPM; and TPM,, the calculated PSIs for both events can
be significantly far from the truth. Further in this paper
we refer to any pair of events that involves such behavior
as coupled events.

Our segment-based approach works as a middle ground
between count-based and transcript-based approaches. It
provides local measures of splicing events while avoiding
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the computational and storage expenses of count-based
approaches by using the rapid lightweight alignment
strategies that transcript-based approaches use. Once the
segment counts are prepared from the alignment step,
Yanagi maps splicing events to their corresponding seg-
ments, e.g. each event is mapped into two sets of seg-
ments: The first set spans the inclusion splice, and the
second for the alternative splice (See “Segment-based cal-
culation of PSI” section). Current version of Yanagi follows
SUPPA’s notation for defining a splice event and can
process seven event types: Skipped Exon (SE), Retained
Intron (RI), Mutually Exclusive Exons (MX), Alternative
5’ Splice-Site (A5), Alternative 3’ Splice-Site (A3), Alterna-
tive First Exon (AF) and Alternative Last Exon (AL).

Comparing Segment-based and isoform-based PSl values
with incomplete annotation

To show how the estimated transcript abundances in the
case of incomplete annotations can affect local splicing
analysis, we ran both SUPPA and Yanagi pipelines on
dataset simulating situations like the one in Fig. 5. We
simulated reads from 2454 genes of the human genome.
A novel isoform is formed in each gene by combining
two genomically distant events in the same gene (coupled
events) where the inclusion of the first and the alterna-
tive splicing of the second does not appear in any of the
annotated isoforms of that gene (IncompTx dataset in
“Simulation Datasets” section). After reads are simulated
from the annotated plus novel isoforms, both SUPPA and
Yanagi pipelines where run with the original annotation
which does not contain the novel isoforms.

Figure 6 shows the calculated PSI values of the coupled
events compared to the true PSI values. It is clear how
the PSI values for both events can be severely affected by
the biased estimated abundances. In SUPPA’s case, abun-
dance of both sets of inclusion and exclusion isoforms

Isoform 1 E1 F=R= E2
Isoform 2 ==
Isoform 3 ===

True¥, > 0.5 True¥, < 0.5

E1l -——R—— E2
——R——
¥ >05 W <05
TPM, = TrueTPM, + 6.
1 rue 116, WTPM _ gTPM _ TPM, _m
TPM, = TrueTPM, + 6, 1 2 TPM, + TPM,

Fig. 5 This diagram illustrates a problem with transcript-based approaches for calculating PS/in the presence of unannotated transcripts. (Left)
shows the truth, with three isoforms combining two exon skipping events (E1, E2). However, isoform 3 is missing from the annotation. Reads
spanning both events are shown along their true source. Reads spanning an exon incluion are colored green whereas reads spanning a skipping
junction are colored orange. (Right) shows the problem with PS/ values from transcript abundance. Because these two alternative splicing events
are coupled in the annotation, their PS/ values calculated from transcript abundances will always be the same (1//1”7M =y
values are not (Trueyr; # Trueyr,). Furthermore, changes in the estimated abundances (TPMy, TPM;) make the calculated PS/ values unpredictable.
Count-based PS/ values (wf, ch) on the other hand correctly reflect the truth

ZTPM), even though the true
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Fig. 6 The PSI values of 2454 coupled events formulating novel isoforms used in simulated data to simulate scenarios of incomplete annotation,
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second event. PSI values obtained by Yanagi and SUPPA are compared to the true PSl values. Red points are measures of error larger than 0.2. SUPPA
tends to underestimate the PSI of the first event and overestimate in the second event (43% of the points are red compared to only 7% in Yanagi)
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were overestimated. However, the error in abundance esti-
mates of inclusion transcripts were consistently higher
than the error in exclusion transcripts. Therefore, the
PSI values of the second event were consistently overes-
timated by SUPPA whereas PSI values of the first events
were consistently underestimated. Furthermore, splicing
events involving the affected isoforms will be inherently
affected as well even when they were unrelated to the
missing transcript. This coupling problem between events
inherent in transcript-based approaches is circumvented
in values calculated by Yanagi, and generally, by count-
based approaches.

Figure 7 shows the trends in estimation error of PSI
across methods for the 2454 coupled events. APSI of an
event is calculated here as the difference between the
calculated PSI of that event obtained either by Yanagi
or SUPPA, and the true PSI. For each splicing event
couple, a line connecting APSI of the first event to
the second’s is drawn to show the trend of change in
error between the first and second event in each pair.
We found that estimates by SUPPA drastically exhibit a
trend we refer to as overestimation-to-underestimation
(or underestimation-to-overestimation) in 50% of the
pairs while 36% of the pairs showed minor errors (APSI <

Di inPSI

(2454 genes)

Yanagi vs. SUPPA

Yanagi vs. Real

Real vs. SUPPA

2nd Event 1stEvent

Coupled Events

Fig. 7 Trends of error in event PSI values across methods. APS/ of an event is calculated here as the difference in the calculated PS/ of that event
obtained either by Yanagi, SUPPA, or the truth. For each coupled event, a line connecting APS/ of the first event to the second’s is drawn to show
the trend of change in error among the first and second event in each pair. Overestimation-to-underestimation (and
underestimation-to-overestimation) trends are colored red. Orange colored trends represent trends where both events were either overestimated
or underestimated. Trends with insignificant differences (|APS/| < 0.2) are colored grey

2nd Event 1stEvent 2nd Event
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0.2). Yanagi’s estimates on the other hand showed the fur-
ther trend only in 7% of the pairs while 87% of the pairs
showed minor errors.

Comparing Segment-based and isoform-based PSI values
on drosophila melanogaster

Based on known complexity and incompleteness of
the Drosophila melanogaster transcript annotation we
examined an RNA-seq dataset of male fly head (available
online with GEO accession number GSM2108304) for
evidence of similar behavior to that studied in the
previous simulation. Since the true PSI values are
unknown, we compare the trends of the difference in
PSI between SUPPA and Yanagi. We add to the com-
parison the PSIs obtained from a count-based approach,
rMATS.

The scenario studied in the simulation is just one
possible scenario of missing isoforms. More complex
scenarios are likely to occur in real situations. Com-
plex scenarios may include missing more than one iso-
form or when the event coupling problem involves more
than two events. Such scenarios make detecting the
full scale of the problem more complicated. Here we
focus on the issue of coupled events as described in our
simulation.

We follow the same analogy used in the simulation to
define coupled events and find candidate genes of at least
one missing isoform that couples two sufficiently distant
events. By searching genes only in the forward strand and
only events of type SE, A3, A5, we found 172 candidate
genes and pair of coupled events where some splicing
combination is possibly missing. Note that this candi-
date search is independent of the RNA-seq data, or the
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segment generation process. Figure 8 shows the trends
in APSI between Yanagi, SUPPA and rMATS for the 172
cases of coupled events. Evidence of overestimation-to-
underestimation trends were found between SUPPA and
both Yanagi and rMATS, suggesting a similar behavior
to the phenomenon present in our simulation (33% in
Yanagi-SUPPA, 11% in Yanagi-rMATS, 29% in rMATS-
SUPPA). It should be noted that those 172 cases of coupled
events were only selected from part of the genome as can-
didates of one scenario of missing isoforms which means
it is very likely for more cases to exist at the scale of the
whole transcriptome. Additional file 1: Figure S4 shows a
scatter plot of the PSI values of full list of events found in
the transcriptome annotation.

We study the Bruchpilot gene (FBgn0259246) as a spe-
cific illustration of a candidate gene with coupled events
exhibiting overestimation-to-underestimation trend in
SUPPA’s APSIs on Drosophila sample SRR3332174.
Figure 9 shows three panels: (top panel) the read cov-
erage of the genomic region of the gene by IGV along-
side the 9 annotated transcripts, (bottom left panel) the
segments visualization and its counts along with the tran-
scripts abundances estimated by Kallisto, (bottom right
panel) the PSI values of the coupled events E1, E2 cal-
culated by SUPPA, Yanagi and rMATS. The read cover-
age for both events supports Yanagi’s results rather than
SUPPA’s. The overestimation of one particular transcript,
NM_001259298.2 (T.5059 in figure), can be one poten-
tial cause of such deviation. As the read coverage panel
shows, most of the reads supporting that transcript are in
fact coming from the first coding exon (its junction seg-
ment is highlighted grey) whereas the rest of the junctions,
e.g. the skipping junction in E1, does not show sufficient

Difference in PSI between methods (172 candidate genes)

Yanagi vs. SUPPA

Yanagi vs. IMATS

rMATS vs. SUPPA

APSI

1stEvent

Yanagi-SUPPA, 11% in Yanagi-rMATS, 29% in rIMATS-SUPPA

) Coupled Event§

d Event

Fig. 8 Trends in APS/ across methods Yanagi, SUPPA, rMATS for 172 coupled events in candidate genes for incomplete annotation in drosophila
melanogaster (SRR3332174). Overestimation-to-underestimation (and underestimation-to-overestimation) trends are colored red. Orange colored
trends represent trends where both events were either overestimated or underestimated. Trends with insignificant differences (|APSI| < 0.2) are
colored grey. Out of the 172 cases, 33% showed Overestimation-to-underestimation (or underestimation-to-overestimation) trends in
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Fig. 9 The Bruchpilot gene in Drosophila melanogaster (SRR3332174) serves as an example of a gene likely to have incomplete annotation.
(Bottom-Right) The PS/ values of the coupled events E1 and E2 exhibit severe overestimation and underestimation, respectively, by
transcript-based approaches compared to Yanagi and rMATS. (Top) illustrates read coverage across the gene prepared using IGV, aligned with the 9
annotated isoforms. (Bottom-Left) The segments visualization of the gene is compared to transcript-level expression (TPM) obtained from kallisto,
and the segment counts (normalized) from Yanagi's pipeline. Refer to section 3 for details on this panel’'s components. Postulating a isoform X
(shown as a green-colored track on the top panel) missing from the annotation explains the deviation in both PS/ values and the inconsistency in

coverage across transcript T.5059

o
- -9 S
oe > ©

wn
ior
P o
e
) O
nu
3 Qﬁ.
=y
wn
= 9
o
o
<
o
b} &
Event

coverage supporting its high abundance estimated by
Kallisto. One possible explanation is that the annotation
is missing isoform X (colored green on the top panel).
It is the same as the present transcript T.5059 except it
combines the skipping splicing for E1 and the inclusion
splicing for E2. The inclusion of isoform X in the annota-
tion during transcript abundance estimation would have
directed most reads aligned to the first exon towards iso-
form X rather than T.5059 for a more consistent coverage
over both transcripts. Consequently, SUPPA’s PSI values
for both E1 and E2 would align better with Yanagi and
rMATS values.

Comparing segment-based PSI values with

counting-based and isoform-based PSI values

Here we are comparing PSI values obtained from
Yanagi (See “Segment-based calculation of PSI” section)
versus counting-based approaches like rMATS and
isoform-based approaches like SUPPA on a very con-
trolled setting. In that setting, we expect no significant
difference between measures obtained from each of the
three approaches. We used the simulation of switch-
ing abundance dataset (SwitchTx dataset in “Simulation
Datasets” section). Since each tool provides separate set of
events, we focus our comparison on the intersection set of
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events between SUPPA and rMATS. That includes events
from five types of splicing events. Table 2 summarizes the
number of events subject to the study. Two levels of filter-
ing are applied to observe how the different approaches
behave in different scenarios. Non-overlapping events is
the smallest subset of events. Those events exclude com-
plex splicings where more than two splicings define the
event. While highTPM events is a subset of events in
which inclusion and exclusion isoform levels are relatively
high (TPM;,. > 1,TPM,, > 1). This is a typical filter-
ing criterion adopted by isoform-based approaches. This
filter excludes events involving isoforms of low levels of
expression which inherently suffer from low estimation
accuracy. Note that when complex events are included,
they are treated as a set of separate binary events.

Figure 10 (Top) shows a scatter plot of PSI values cal-
culated by the three approaches for all events. Separate
plots for the filtered events in Additional file 1: Figure
S5. Among the five different splicing types exon skipping,
alternative 3’ and alternative 5’ events give the highest cor-
relation between segment counts and rMATS approaches.
In our experiments we noticed that rMATS (v4.0.1) does
not behave as intended for intron retention events. We
noticed that counts including junction reads only and
counts including both junction and intron reads (which
we use in this study) are the same. In other words, rMATS

Table 2 Running time (seconds) and memory usage (gigabytes)
by Yanagi to generate segment library for fruit fly (BDGP6) and
human (GRCh38) genomes, for both the preprocessing and
segmentation steps

BDGP6 GRCh38

time(s) memory(GB) time(s) memory(GB)
Preprocessing 13 09 112 1.5
Segmentation
L=40 20 04 248 1.3
=108 20 04 250 13
L=1000 20 04 228 1.3
L=10000 8.5 04 77 13
Rapmap Indexing
(4 Threads)
=108 103 0.8 420 26
Txs 121 1.1 480 3.7
Rapmap Quantifi-
cation (8 Threads)
=108 236 0.7 220 2.1
Txs 292 12 416 3.1

Time for the preprocessing step does not include the time to load the FASTA and
GTF files. Most of the memory usage is from loading the input data in both steps.
Running on a 6-core 2.1 GHz AMD processor, using single-threaded processes. The
lower half shows the time and memory usage for running Rapmap’s quasi-mapping
using the segments library and the the full transcriptome, to quantify samples of
40M paired-end reads, each of length 101bp.
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fails to report reads spanning the intron, which explains
the underestimated inclusion counts and PSI values for
retained introns.

It should be noted that most count-based approaches
require aligning to the genome which is usually the bottle-
neck process in the pipeline that some try to overcome in
the expense of storage by storing large intermediate data
(BAM files). The major motivation of transcript-based
approaches is to achieve fast and light-weight pipelines
that is not that expensive in terms of time and mem-
ory. For instance, even when using STAR, which is one
of the fastest genome mappers in the field, using pseudo-
alignment tools can be several orders of magnitude faster
(or efficient in terms of storage and memory). That is why
our segments approach is unique in leveraging such light-
weight tools that utilizes pseudo-alignment algorithms
with the capability of obtaining local measurements.

Segment-based Differential Alternative Splicing

Since the scope of this paper is to introduce the use of seg-
ment counts as a statistic for studying alternative splicing,
we want to use the simplest statistical model for differ-
ential splicing to exclude any advantage obtained by the
model itself. In that matter we used the PSI values of the
three approaches (SCs, rMATS, SUPPA) as discussed in
the previous section. Then we used a linear model for
differential hypothesis testing (implemented with Limma-
voom R Package [32, 33]). However, more advanced
models of differential analysis can be used instead. For
example, a similar model to SUPPA2 can be developed
to test the significance of APSI by considering all events
genome-wide [29]. Figure 10 (Bottom) shows ROC plots
for sensitivity and specificity measures. Using segment
counts achieves comparable performance to both rMATS
and isoform-based approaches in that setting.

Discussion
Recent efforts like recount2 [34] and refine.bio [35] pro-
vide comprehensive uniformly processed summary data
for large repositories of RNA-seq data. refine.bio uses
psuedo-mapping procedures to process data and thus pro-
vide statistics at transcript level resulting from a transcript
quantification step. This precludes the direct use of these
data in downstream analyses where transcript quantifica-
tion is not essential. Recount2 provides data as exon and
junction-level counts but requires genome alignment pro-
cedures which are computationally heavier and prone to
errors (e.g. in the case of extremely small exons). Our pro-
posed segment approach provides a useful compromise
for these large-scale uniform data catalogs between using
lightweight pseudo-mapping and providing data directly
usable in a variety of expression analyses.

Recent work done on alternative splicing, e.g. Whip-
pet [36] and ASGAL [37], may seem similar to Yanagi’s
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Comparing PSI values of AS events between three methods: SCs, MATS, SUPPA
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versus SUPPA (third row) on human samples from SwitchTx simulated dataset. Columns indicate seven types of alternative splicing events.
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approach since they all rely on processing the splice
graph. ASGAL uses graph-based alignment approach to
align reads directly into the splice graph which may
introduce more complexity processing and traversing the
graph. Whippet prepares and indexes what it defines
as contiguous splice graph (CSG) before linear align-
ment of reads is performed. Both methods are built
solely for the purpose of alternative splicing analysis.
Yanagi’s motivation and objective is different. It is impor-
tant to note that the intent of this work is not to pro-
pose another alternative splicing method, but rather to
introduce a conceptual framework that extends pseudo-
alignment techniques through decoupling the alignment

and quantification steps to generate statistics suitable to
a variety of downstream analyses, including alternative
splicing.

Alternative Splicing (AS) methods that use transcript
abundance, provided that a complete transcript annota-
tion and a transcript quantification method that suffi-
ciently addresses coverage bias across a transcript is used,
can provide an advantage over methods that only use
local information for AS analysis, including AS based on
segment counts produced by Yanagi. Nonetheless, as we
discussed elsewhere in the manuscript, there is no loss of
information in segment counts and they may be used to
perform transcript quantification or as statistics into a AS
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method that borrows information across splicing events
to take advantage of their correlation.

This type of extension on the use of segment counts to
perform transcript quantification is a fruitful direction for
future research. Another interesting extension of our work
would be to study the use of segments in discovering novel
transcripts. Using paired-end reads mapped to two seg-
ments that do not share any common transcripts can be a
potential direction.

For the moment, analysts using ultra-fast pseudo-
mapping will need to decide if they prefer possible loss of
performance in AS analysis from using only local infor-
mation, or from using an incomplete annotation. We
believe that the results we show in our paper are infor-
mative in this situation. In Section 2.6, we showed how
severely an incomplete annotation can decrease the cor-
relation of PSI estimates with the truth (0.6 compared
to 0.9 when using segments). Incomplete annotations
are common in species with multiple introns per gene
because the standard is to report a parsimonious set of
transcripts rather than a complete set that represents all
combinations of local splicing choices. We also showed
in Section 2.8 an analysis on simulated data where the
annotation is complete comparing the performance of
the segments approach to an approach that makes use of
information from other parts of the transcript (SUPPA).
We observed that segment-based PSIs, that didn’t use the
information in the other parts of the transcript unlike
transcript-based PSIs, obtain a 0.92 correlation with those
PSI values estimated using that information. Given these
results indicating there is greater loss of performance
when using an incomplete annotation compared to the
exclusive use of local information, we suggest that a con-
servative approach based on segment counts, which is
more robust to incomplete annotation, is used for AS
analysis.

The current version of Yanagi, discussed here, generates
L-disjoint segments from gene independently, since that is
arguably the major cause of ambiguity from multimapping
reads. However, other sources of ambiguity (such as over-
lapping genes and paralogs) are also of interest. That can
be tackled in future versions by processing multiple genes
simultaneously in the segmentation step.

Here we have discussed the use of segments and
segment counts in two resolutions of RNA-seq analysis:
gene level expression estimates and local alternative splic-
ing. We demonstrated comparable results while avoiding
the transcript quantification step completely. A natural
extension to our work is to study the use of segments
into the middle resolution of transcript level analysis.
We hypothesize that the usage of segments can simplify
the task of transcript abundance estimation and enable
simpler incorporation of different sources of bias. Con-
sequently, downstream analyses where quantification is
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appropriate are still available after generating segment-
level counts.

Conclusions

In this paper we have formalized the concept of tran-
scriptome segmentation and proposed an efficient algo-
rithm for generating segment libraries from transcript
libraries based on a length parameter L (typically chosen
dependent on an experiment-specific RNA-seq library
construction). The resulting segment sequences are used
with pseudo-alignment tools to quantify expression at the
segment level, providing sufficient information for a vari-
ety of expression analyses. We have characterized segment
libraries for the reference transcriptomes of Drosophila
melanogaster and Homo sapiens for various read-length
RNA-seq experimental designs. We also provide a novel
gene-level visualization of transcriptome segments and
transcript structure for ease of interpretation. Finally, we
have demonstrated the use of segment-level quantifica-
tion in differential gene expression and alternative splicing
analysis.

Using a segment library rather than the standard tran-
scriptome succeeds in significantly reducing ambiguous
alignments where reads are multi-mapped to several
sequences in the reference, thereby decoupling the
pseudo-alignment and quantification steps used in cur-
rent k-mer based pipelines for gene expression anal-
ysis. Moreover, using segment counts as statistics for
gene-level differential expression and alternative splicing
analyses achieves performance comparable to counting-
based approaches (e.g. rMATS for splicing analysis)
while using fast and lightweight pseudo-alignment. The
notion of transcript segmentation as introduced here and
implemented in Yanagi has the potential to extend the
application of lightweight, ultra-fast, pseudo-alignment
algorithms to a wider variety of RNA-seq analyses.

Methods

Transcriptome Segmentation

Figure 1 shows a typical situation in RNA-seq data analysis
and provides an overview of the transcript segmentation
strategy. In particular, it summarizes how reads that would
be multi-mapped when aligning to a transcript library
would be aligned to segments. In the latter case, all reads
are aligned to a single target sequence and read counts are
obtained per segment without the need of probabilistic
quantification methods to resolve ambiguity. The next few
subsections present specifics of the Yanagi [38] method
for transcriptome segmentation.

Segments Properties

Yanagi’s objective is to generate a minimal set of dis-
joint sequences (where disjointness is parameterized by
L, which is typically chosen to be the experimental
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sequencing read length), while maintaining transcriptome
sequence completeness.

The following definitions are for a given transcriptome
T, and parameter L.

Definition 1 (A Segment) A segment seg defined by the
tuple (exs, loc, w) is a genomic region of width w beginning
at genomic location loc and spanning the sequence of con-
secutive exonic regions exs € Exst (either exons or retained
introns). Exonic regions are considered consecutive if they
are consecutively spliced into at least one possible isoform
in T. And for all segments in a segment library St , its
width w is at least L bases.

Definition 2 (Segments Sequences Completeness) The
set of segments St,1 is Complete if and only if

seq € St.1;Vseq eSubstring(T), len(seq) < L
and

seq € Substring(T);Vseq € Substring(St,1)

Definition 3 (L-disjoint Segments) Each segment in the
set St is L-disjoint if and only if
width| overlap(seg;, seg))] < L; Vseg;,segi € S,i # j

The L-disjointness property restricts any pair of L-
disjoint segments to have an overlap region shorter than
parameter L, which typically equals to the sequencing read
length. In other words, no read of length at least L can be
mapped to both segments of an L-disjoint segment pair,
assuming error-free reads.

Another property of the generated segments is to be
maximal. For seg : (exs, loc, w), denote Txs(seg) as the set
intersection of annotated transcripts splicing exons exs.
We can define a subsumption relationship between seg-
ments as seg; > segy if and only if exs; = ewsy,loc; =
locy, Txs(seg1) = Txs(segz) and wy > wy. With this rela-
tionship we can define the following property of a segment
library St

Definition 4 Maximal Segments For each segment in
the set St 1 to be Maximal
seg1 > segr = segx ¢ St,1,
Vseg1 € ST,L
Thus a maximal segment is the longest common sequence
of genomic regions starting at loc, such that these regions
are spliced similarly, i.e. the entire sequence belongs to the
same set of transcripts. That is why in Fig. 1 ¢ segment S5
is extended to include two exons and its junction, while
segment S2 is interrupted by the different splicing of Tx1
and Tx2.

Page 16 of 19

Segmentation Algorithm

The transcriptome segmentation process can be summa-
rized into three steps: (1) Preprocessing the transcriptome
annotation to obtain disjoint exonic bins, (2) Construct-
ing a Segments Graph, and finally (3) Generating the final
segments. Transactions in Fig. 1 f represent these three
steps.

1. Annotation Preprocessing:

Yanagi applies a preprocessing step to eliminate overlaps
present in the transcriptome reference. Parts of an exon
(or a retained intron) can be differentially spliced between
isoforms either due alternative 3’/5” splice sites, or tran-
scription start/end sites. For example, splicing the first
and second exons between Tx1 and Tx3 in Fig. 1 f. This
step ensures that any splicing event is occurring either at
the beginning or the end of a disjoint exonic bin (hence-
forth, simply ’exonic bin’), which makes the process of
generating maximal L-disjoint segments easier. The pre-
processing step is independent from the parameter L, so it
can be done only once per transcriptome reference.

2. Constructing Segments Graph:

Currently Yanagi builds a separate segment graph for
each gene, since there are no alternative splicing events
between transcripts of different genes. However, future
work may use segment graphs that connect different genes
sharing regions of identical sequence length L or greater,
but we have yet to address this.

Definition 5 Segments Graph A segment graph G is
an acyclic directed graph defined by the pair (N, E), where
N is a set of nodes representing segments, and E is the set of
directed edges between the nodes. An edge e : (n;,nj) € E
is created if the segment corresponding to node n; directly
precedes the segment corresponding to node nj in some
transcript.

For each gene, the preprocessed Splice graph is parsed
to construct a set of segment nodes (review algorithm
details in [38]). These nodes formulate the segments graph
of that gene. Each segment node represents an L-disjoint
segment, which is not necessarily a maximal segment.

3. Generating Segments:

To preserve the maximality property, the segments
graph is parsed to aggregated segment nodes into the
final maximal segments. In a segment graph, if there is
an edge from node; to node; while outdegree(node;) =
indegree(node;) = 1, that implies that both nodes belong
to the same set of transcripts and can be aggregated into a
segment that subsumes both nodes. In other words, aggre-
gating nodes along a path in the segment graph bounded
by branching points (nodes with indegree or outdegree
greater than 1).

Yanagi reports the segments into a FASTA file. Each
sequence represents a maximal L-disjoint segment. Each
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segment sequence has a header specifying metadata of
how each segment was formed, including: gene ID, the
set of exonic bins exs included in the segment, genome
location in the first exonic bin of exs where the segment
starts, genome location in the last exonic bin of exs where
the segment ends, and the set of transcripts splicing the
segment’s region.

Segment-based calculation of PSI

While Yanagi uses the transcriptome annotation to pre-
pare the segments along with the splicing events, it gen-
erates mapping between each event and its corresponding
segments spanning the event. For each event, Yanagi takes
into consideration the transcripts involved and the event
genomic coordinates to decide the set of transcriptome
segments that correspond to each of the two possibilities
of the splicing event. This step becomes complicated in
case of overlapping events. The current version of Yanagi
selects segments that spans either the event exon or junc-
tions while the segment belong to at least one transcript
that undergoes the corresponding splicing.

After alignment, Yanagi provides segment counts or
segment-pair counts in case of paired-end reads. For each
splicing event, we calculate the PSI value of event e in
sample x as follows:

Cincle,
PSI(e,x) = - Cmc@® (1)
Cinc(e,x) + Cyi(e, %)

~ 2 seSiele) SC(5 %)
Cinc(e,x) = —"————,

2 seSinc(e) Len(s) @
- Zsesah(e) SC(s,x)
Cﬂlt(e’ x) = —l

2 sesae len(s)

where Sj,c(e) and S, (e) are inclusion and exclusion seg-
ments, respectively, and SC(s, x) is the segment count in
the sample. That means segment-based PSI values uses
reads spanning both the junctions and the target inclu-
sion exon towards the inclusion count. In fact, read counts
can also include reads extended around the event as far as
the segment extends on both sides. This extension takes
advantage of situations where multiple splicing events
are adjacent, in which the segment approach will include
as much discriminative reads into the counts to achieve
higher levels of confidence when calculating PSI values.

Finally, as we did here while calculating PSI values, one
can obtain segment quantification units normalized for
sequencing depth and segment length. One way of nor-
malization is to follow similar calculation of TPM which is
a widely accepted normalized quantification of transcript
expressions. However, it may require more sophisticated
modeling for length normalization in the presence of
complex splicing.
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Simulation Datasets

Simulation of Switching Abundance (SwitchTx): We
used the simulation data provided by [13] for both fruit
fly and human organisms (E-MTAB-3766). Each dataset
consists of six samples from two conditions. Each con-
dition has three replicates. The reads for the replicates
are simulated from real RNA-seq samples, to get real-
istic expression values, after incorporating a variance
model and the change required between conditions. The
simulation is restricted to protein-coding genes in the
primary genome assembly. The difference in transcript
usage across conditions was simulated in 1000 genes ran-
domly selected from genes with at least two transcripts
and high enough expression levels. For each of these
1000 genes, the expression levels of the two most abun-
dant transcripts is switched across conditions. Refer to
[13] for full details of the preparation procedure of the
dataset.

Simulation of Incomplete Annotation (IncompTx):
Starting from the transcriptome annotation of the human
genome, we searched for candidate cases where one com-
bination of splicing events can be missing from the anno-
tation. For a given gene, a combination of two splicing
events (e1, ez) can form a candidate case if two condi-
tions are satisfied. 1) If the two splicing events (ordered
by their genomic coordinates) have at least one tran-
script common in their inclusion splicing 79" N T =
Té”c while there are no transcripts common between the
inclusion of the first event and exclusion of the sec-
ond event T{”" N Tﬁ’lt = ¢ (which will later form the
missing isoform in that gene). 2) If the transcript sets
Ti" and Tglt share "long enough" contig in the splice
graph between the two events. In our simulation, we
searched genes on the forward strand for only combi-
nations of SE, A3, A5 typed events. We used a cutoff
of 100bp required for the common contig between the
two events to be long enough. 2454 genes were found
as candidate cases of possible missing isoforms and were
used to simulate the data. In each of these genes a sin-
gle novel isoform is formed by combining the inclusion
splicing path of the first event with the alternative splicing
path of the second event. Then we used polyester [14] to
simulate RNA-seq reads (100bp single end reads) includ-
ing the novel isoforms which were given high expression
levels.

Experiments run throughout the paper used Ensembl
GRCh37 and BDGP5 (unless mentioned otherwise) refer-
ence genomes and transcriptomes for human and fruit fly
annotations, respectively.
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